
Ph.D. Thesis

Space and Time-Efficient
Data Structures

for Massive Datasets
by

Giulio Ermanno Pibiri

Supervisor
Rossano Venturini

Referee Referee
Daniel Lemire Simon Gog

Ph.D.
in

Computer Science

Department of Computer Science
University of Pisa, Italy

2018

Abstract

This thesis concerns the design of compressed data structures for the e�cient stor-
age of massive datasets of integer sequences and short strings. The studied prob-
lems arise in several real-world scenarios, such as inverted index engineering, thus
a consistent part of the thesis focuses on the experimental analysis of the proposed,
practical, solutions. All the code used in the experimentation is publicly available
in the hope of being useful for further research.

For the problem of representing in compressed space the sorted integer sequences
of inverted indexes, we propose three di�erent solutions showing new interesting
space/time trade-o�s.

The �rst proposal shows that clustering the inverted lists yields more compact
indexes at the expense of a moderate slowdown in query processing speed. The
core idea is that clusters of similar inverted lists, i.e., the ones sharing many inte-
gers, are compressed together, thus permitting to reduce their redundancy.

The second proposal describes an optimal, linear-time, algorithm that splits an
inverted list in variable-size partitions in order to minimize its space when the
Variable-Byte encoding is used to compress its partitions. The proposed algorithm
is fast and yields indexes that are more than twice smaller than regular Variable-
Byte, without compromising their speed e�ciency.

The third proposal exploits the repetitiveness of the d-gapped inverted lists to
achieve compact storage and very fast decoding speed. Speci�cally, we show that
a dictionary of repeated integer patterns can be built to compress the inverted
lists. This permits to represent the inverted lists as references to the dictionary’s
patterns, thus allowing the two-fold advantage of: encoding many integers with a
single reference identi�er; decoding many integers with a single dictionary access.

We then take into account strings of at most n words, i.e., n-grams and address
the two fundamental problems of: indexing large and sparse n-gram datasets; esti-
mating language models from a large textual collection.

For the problem of indexing, we introduce a compressed trie data structure
where the identi�er of a word appearing after a context of k preceding words is
represented as an integer whose value is proportional to the number of words
that can follow only such context. Since the number of words following a given

i

context is small for natural languages, the data structure achieves very compact
storage and fast random access to the n-gram satellite values.

For the problem of estimation, we design an algorithm for estimating Kneser-
Ney language models in external memory, which have emerged as the de-facto
choice for language modelling. We show that exploiting the relation between con-
text and su�x order of the extracted n-gram strings signi�cantly improves the
running time of the algorithm.

From a theoretical perspective, we also study the fascinating problem of repre-
senting dynamic integer dictionaries in succinct space. Many solutions for this
problem are known to implement the operation of insertion, deletion and access
to individual integers in optimal time, yet without posing any space bound on
the problem. We exhibit, instead, a data structure that matches the optimal time
bounds for the operations and, at the same time, achieves almost optimal com-
pressed space by resorting on the succinctness of the Elias-Fano integer encoding.

ii

Acknowledgments

I come writing this page after a long journey of three years of academic research
that undoubtedly changed me in a professional way, as well as personal. This page
is meant to express my sincere gratitude to all people I have interacted with and
made this change possible.

The �rst words of gratitude are dedicated to Rossano Venturini, who has proven
to be a great mentor and the best supervisor. He taught me how to do high-quality
research, how to not give up in critical moments and how to always push forward
my limits and expectations. Moreover, I am excited to know that we will have a
lot more to share in the future.

I am also grateful to the referees for all the useful comments and suggestions.

A special thank is dedicated to the people from the HPC-lab, at the ISTI-CNR
of Pisa. This goes especially to Nicola Tonellotto, Franco M. Nardini and Ra�aele
Perego for their kind support.

I am very grateful for the opportunity I had to visit both Japan and Australia
during my last year of Ph.D., therefore a special thank goes to Yasuo Tabei for
having hosted me at Riken AIP and to Alistair Mo�at and Matthias Petri for having
welcomed me at the University of Melbourne. I also have to thank Shane Culpepper
(RMIT University) for having contributed in funding my visit to Australia.

These three years would not have been the same without the support of all
my dear friends in Pisa, Florence, Tokyo and Melbourne. This is dedicated to:
Marco, Luca, Giovanna, Laura, Alessandro, Shunsuke, Bonnie, Adrián, Joanna,
Brian, Takahiro, Ryo, Cham and many others (this list is by no means exhaustive!).

Last but not least words of gratitude are for where heart is. Giovanni, Isabella
and Fiammetta are the best family one could ever dream on. Their unconditional
love, wise advices and support are my life-guide, forever. The formidably strength
and respect they provide me is a unique gift. These are the people with whom it
is worth spending a life, therefore this thesis is dedicated to them.

Florence, Italy
October, 2018

Giulio Ermanno Pibiri

iii

Contents

1 introduction . 1
1.1 Thesis organization and contributions 5

2 background and tools . 9
2.1 Basic concepts . 9

2.1.1 Model of computation . 9
2.1.2 Sequences, arrays and bitvectors 10
2.1.3 Information-theoretic lower bound 12
2.1.4 Succinct data structures 13
2.1.5 Entropy . 13

2.2 Representation of integer sequences 14
2.2.1 Elias- Gamma and Delta 14
2.2.2 Golomb-Rice . 15
2.2.3 Variable-Byte . 15
2.2.4 Packed . 17
2.2.5 PForDelta . 17
2.2.6 Elias-Fano . 18
2.2.7 Partitioned Elias-Fano . 22
2.2.8 Binary interpolative coding 24
2.2.9 Asymmetric numeral systems 25

2.3 Inverted indexes . 26
2.3.1 Query processing . 27
2.3.2 Compression . 29

2.4 N-Gram language models . 30
2.4.1 Estimation . 32
2.4.2 Indexing . 33

3 integer dictionaries in compressed space 35
3.1 Related work . 36
3.2 Static predecessor queries in optimal time 39
3.3 Extensible representation . 41
3.4 Dynamic representation . 43

v

3.4.1 A basic tool: sorted blocks in succinct space 44
3.4.2 Data structure . 46
3.4.3 Space analysis . 47
3.4.4 Operations . 48
3.4.5 A further consideration 49

4 clustered inverted indexes 51
4.1 Related work . 54
4.2 Representing a set of inverted lists 56

4.2.1 Clustering . 61
4.2.2 Reference selection . 63
4.2.3 Encoding . 64
4.2.4 Index layout . 64

4.3 Experiments . 67
4.3.1 Clustering . 68
4.3.2 Space/time trade-o�s . 69
4.3.3 Analysis . 72

5 optimal variable-byte encoding 75
5.1 Related work . 78
5.2 Optimal partitioning in linear time: fast and exact 79

5.2.1 Overview . 79
5.2.2 The algorithm . 82
5.2.3 Technical discussion . 82

5.3 Experiments . 88
5.3.1 The Variable-Byte family 89
5.3.2 Optimized Variable-Byte indexes 90

6 dictionary-based decoding 95
6.1 Related work . 96
6.2 Dictionay-based compression for inverted indexes 97

6.2.1 Dictionary structure . 97
6.2.2 Decoding algorithm . 102

6.3 Further improvements . 103
6.3.1 Packed dictionary structure 103
6.3.2 Exploiting strings overlap 104
6.3.3 Optimal block parsing . 105
6.3.4 Multiple dictionaries . 106

6.4 Experiments . 107
6.4.1 Initial exploration . 107
6.4.2 Multi-context operation 109

vi

7 comparing inverted index representations 113
7.1 Index space . 114
7.2 Decoding speed . 117
7.3 Query speed . 119
7.4 Conclusions . 122

8 compressed indexes for n-gram strings 125
8.1 Related work . 126
8.2 Elias-Fano tries . 128

8.2.1 Data structure . 129
8.2.2 Context-based identi�er remapping 133

8.3 Hashing . 137
8.4 Experiments . 137

8.4.1 Elias-Fano tries . 140
8.4.2 Hashing . 145
8.4.3 Overall comparison . 145

9 language models estimation 151
9.1 Related Work . 152
9.2 The 3-Sort algorithm . 155

9.2.1 Counting . 155
9.2.2 Adjusting . 156
9.2.3 Normalization . 156
9.2.4 Interpolation and joining 156

9.3 Improved construction: the 1-Sort algorithm 157
9.3.1 Counting . 158
9.3.2 Adjusting . 158
9.3.3 Normalization and interpolation 163
9.3.4 Joining and indexing . 165

9.4 Experiments . 170
9.4.1 Preliminary analysis . 171
9.4.2 Optimizing our solution 175
9.4.3 Overall comparison . 177

10 future research directions 181

bibliography . 185

vii

1 Introduction

The incredibly fast growth of hardware and software technologies in recent years
has radically changed the way data is stored and processed. On the one hand,
advancements in hardware that are now in widespread use, such as multicore ar-
chitectures, GPUs and larger internal memories, permit the treatment of datasets
far beyond the capabilities of a decade ago. On the other hand, the ubiquitous
availability of devices like smart phones, tablets and personal computers, have
caused a critical explosion of information to be stored, analyzed and indexed. As a
result, nowadays computations are more data-intensive than ever. This evidence
imposes a severe limitation: the increase of information does not scale with tech-
nology. Therefore, we will always reach the point at which hardware can only
help but not solve our problems. Indeed Niklaus Wirth observed that: “Software is
getting slower more rapidly than hardware becomes faster” [167].

The main reason lies in the fact that current computer architectures have a hi-
erarchical memory system, i.e., multiple layers with di�erent access latency and
size (Table 1). Layers that are closer (lower) to the processor are small but are
extremely fast. Conversely, higher layers are much bigger but also much slower.
A typical organization, shown in Figure 1, includes one or more level of caches
(L1, L2 and, often, L3), an internal memory (RAM) and a disk (referred to as exter-
nal memory). There are still orders of magnitude of di�erence in accessing speed
between consecutive memory layers, as we can see from Table 1a (the numbers
reported in the table are taken from Latency Numbers Every Programmer Should
Know [46], see also [54]). For example, while a L1 cache reference may only costs
1 nanosecond, a RAM reference costs 100 nanoseconds and a random disk read a
few (3-4) milliseconds.

Di�erently, processors (indicated as the CPUs in Figure 1) are fast: a single cache
miss, i.e., the time spent in fetching (say) 64 bytes from main memory to L1 cache,
could su�ce to execute hundreds of CPU operations. This discrepancy in speed
between modern processor and memory technology is known in the literature as
the I/O bottleneck and it ultimately implies the following facts:

• it makes sense to trade instructions for memory reads/writes;

• cache-aware algorithms are substantially faster than non cache-aware ones;

• if the data �ts in main memory and no disk usage is needed, the computation
can be speeded up by several order of magnitudes.

1

1. introduction

CPU L1 L2

L3 RAM Disk
(SSD)

registers

Size, latency

CPU L1 L2

registers

...

Figure 1: The computer memory hierarchy. From le� to right, the memory size increases
but latency increases as well.

Event 10−9 secs

L1 cache reference 1
L2 cache reference 4
RAM reference 100
SSD random read 16,000
Disk random read 3,000,000

(a)

Memory type Size

registers 64 bits
L1 32 KB
L2 1 MB
L3 30 MB
RAM 64 GB
Disk 1 TB

(b)

Table 1: Example of latency time in nanosec-
onds for various hardware events in (a) and
memory sizes for a server machine in (b).

In this scenario, data compression ap-
pears as mandatory since it can intro-
duce a twofold advantage over non-
compressed data: transfer more bytes
from slower memory levels into faster
ones and, hence, improve the speed
of algorithms. In other terms, more
data can be stored within the same
memory budget, thus enabling the han-
dling of larger datasets. This could
make the di�erence for the very same
algorithm to work in internal mem-
ory (compressed case) or in external
memory (uncompressed case). How-
ever, we stress the fact that data com-
pression is only advantageous as long
as the decompression/access time is
(a lot) faster than the time needed to
fetch the data itself from slower mem-
ories. In fact, while general-purpose
compression utilities such as gzip per-
mit to compress virtually any source
of data, applying data compression to
data structures require a non-trivial en-
gineering e�ort, especially when fast
random access is needed.

2

1. introduction

These considerations highlight the challenge addressed in this thesis: how to
design compressed data structures that support fast access to data. In particular,
we consider two types of data: integer sequences and strings, because these arise in
many practical applications, such as in the ones that we are going to discuss next.

The motivation for this work �nds its origin in the observation that the engi-
neering of data structures, e.g., inverted indexes, tries, B-trees and hash tables just
to name a few, is what boosts the availability and wealth of the information around
us, making its access more economical by saving computer resources. In particu-
lar, as we have already argued above, the study of this engineering has noticed
that there is a strict correlation between time and space optimizations, now more
than ever. The impact of such optimizations is broad, far reaching and, not least,
usually implies substantial economic gains. To better understand what we mean,
we discuss some meaningful real-world examples in the following.

Consider a hash table T with two hash functions, h1 and h2. During a search, if
the key k is not found at the position p1 = h1(k) we have to jump unconditionally
to position p2 = h2(k) which may not be in the cache. This algorithm is likely to
incur in many cache misses. To improve its spatial locality, we could try to store
the key in any location available in T [p1,p1 + s] if T [p1] is already occupied (if all
such positions are occupied, we try the same strategy but starting at position p2).
If the span s is chosen such that the space taken by T [p1,p1 + s] �ts in a cache
line, accessing the table at position p1 will likely fetch into the cache the searched
key. Moreover, if the keys are stored compressed, we can a�ord larger values of s ,
thus improving the spatial locality and access time. This optimization e�ectively
doubled the speed of RocksDB (Facebook) Cuckoo Hashing Table Format [84].

Fire�y is the Dropbox’s full-text search engine. During 2016, Fire�y’s engineers
saw the query search latency deteriorating from 250 ms to 1000 ms as they kept
adding new users to the system [82]. They found that the reason was an increase
in I/O operations per second on the machines hosting their inverted index. In fact,
the index was not loaded in internal memory because its space was too big, rather
it was accessed directly from the disk. They solved the problem by compressing the
index (by 33% using a variable-byte scheme called Varint) as this greatly reduced
the I/O pressure on the server machines, bringing them back to 250 ms. In partic-
ular, the energetic cost of a massive disk usage is the main cost in modern storage
architectures. This is also why, on July 14, 2016, Dropbox announced a new encod-
ing algorithm for images, Lepton [83], which saves 22% of space without any loss
and able of decompressing at 15 MB/sec. Indeed, as the post reports [83], Lepton
is saving multiple petabytes of space and, thus, reducing the number of machines
as well as the electricity bill.

3

1. introduction

S2 Geometry [85] is the geographic information systems developed at Google
that represents all data on a three-dimensional sphere by �rst mapping the Earth
surface onto the �x faces of a cube and, then, placing all points on a face along a
space-�lling curve (in their implementation, along a Hilbert curve). Using a space-
�lling curve implies that points that are close on the Earth surface will be placed
close together in a two-dimensional space, e.g., a sequence of integers. Again,
a higher spatial locality of accesses can be achieved in this case with improved
performance of proximity queries in spatial databases, such as Google Maps.

Another crucial application which has demanded exceptionally fast random ac-
cess and good storage requirements is the representation of language models that
are, essentially, dictionaries of (short) strings. Their usage is widespread in infor-
mation systems and applications, such as automatic speech recognition, machine
translation and auto-completion in search engines just to name a few [90]. Two no-
ticeable examples are Google Translate and Apple Siri. In all such cases, storing the
dictionary in compressed format has become fundamental since larger language
models can be loaded in internal memory, therefore improving the application’s
accuracy and speed. This is especially true for battery-limited devices, such as
mobile phones and tablets, where performing a network request is too costly and
slow.

All these examples con�rm the importance of compressing large real-world
datasets and operating on them with e�cient algorithms. For this reason, space-
e�ciency and fast access are the two key design goals of the work presented in this
thesis. In particular, we will show that these two objectives, typically considered
to be opposite by nature, can now be combined in a single solution.

To this end, particular care has been put in providing a practical implementation
of the ideas described in the thesis that, besides the theoretical analysis of the
algorithms, is the only one measuring a concrete improvement over the state-of-
the-art. The hiding constants e�ect of the asymptotic notation can, in fact, abstract
away the real space cost of a data structure or disrupt the e�ciency of a carefully-
designed algorithm. For example, compressed datasets often exhibit less space
with aO(n logn)-bit data structure rather than with ao(n logn)-bit one or, similarly,
a constant-time algorithm can be slower than a (small) optimized binary search.

4

1. introduction

1.1 Thesis organization and contributions

We describe here how the thesis is structured. After introducing the needed back-
ground in Chapter 2, we articulate our contributions in seven chapters that are
brie�y summarized below. We conclude the thesis with Chapter 10, discussing
some interesting open problems and future research directions.

Integer Dictionaries in Compressed Space. The e�cient maintenance of a
dynamic set on n integer keys is among the most studied problems in Computer
Science. While some solutions are known to spend an optimal amount of time
per operations, whether time optimality can be preserved in the compressed space
regime is still an interesting open problem.

Therefore, the problem we consider in Chapter 3 is the one of representing in
compressed space a dynamic ordered set S of n integer keys drawn from a uni-
verse of size u ≥ n. We show a data structure representing S with ndlog u

n e +
2n + o(n) bits of space and supporting random access in O(logn/log logn) worst-
case, insertions and deletions in O(logn/log logn) amortized and predecessor in
O(min{1 + log u

n , log logn}) worst-case time. The mentioned time bounds are op-
timal [65, 134, 136].

The contents of this chapter are based on [127].

Clustered Inverted Indexes. State-of-the-art encoders for inverted indexes com-
press each posting list individually. Encoding clusters of inverted lists o�ers the
possibility of reducing the redundancy of the lists while maintaining a noticeable
query processing speed.

In Chapter 4 we propose a new index representation based on clustering the
collection of inverted lists and, for each created cluster, building an ad-hoc refer-
ence list with respect to which all lists in the cluster are encoded. We describe an
inverted lists clustering algorithm tailored for our encoder and an e�cient method
for building the reference list for a cluster.

The extensive experimental analysis indicates that signi�cant space reductions
are indeed possible, beating the best state-of-the-art encoders.

The contents of this chapter are based on [126].

Optimal Variable-Byte Encoding. The ubiquitous Variable-Byte encoding is
considered one of the fastest compressed representation for integer sequences.
However, its compression ratio is usually not competitive with other more sophis-
ticated encoders, especially when the integers to be compressed are small that is
the typical case for inverted indexes.

In Chapter 5 we show that the compression ratio of Variable-Byte can be im-
proved by 2× by adopting a partitioned representation of the inverted lists. This
makes Variable-Byte surprisingly competitive in space with the best bit-aligned en-

5

1. introduction

coders, hence disproving the folklore belief that Variable-Byte is space-ine�cient
for inverted index compression.

Despite the signi�cant space savings, we show that our optimization almost
comes for free, given that: we introduce an optimal partitioning algorithm that,
by running in linear time and with low constant factors, does not a�ect indexing
time; we show that the query processing speed of Variable-Byte is preserved with
an extensive experimental analysis.

The contents of this chapter are based on [130].

Dictionary-based Decoding. In Chapter 6 we continue our exploration about
e�ective and e�cient inverted index representation by developing a new compres-
sion approach, based on a dictionary of integer sequences.

Conversely from the standard approaches, ours adopts a �xed-to-�xed decoding
algorithm. The core idea is that each unit of decoding consumes one b-bit integer
codeword, and causes a �xed-length copying operation from an internal codebook
of size 2b – the dictionary – to the output bu�er. The elegance of this approach
means that decoding is fast; and yet, as we demonstrate with our experiments, it
also provides state-of-the-art compression e�ectiveness.

The contents of this chapter are based on [125]1.

Comparing Inverted Index Representations. In Chapter 7 we o�er a conclu-
sive experimental comparison between the techniques introduced in chapters 4, 5
and 6. We also test the many encoders for inverted indexes described in the back-
ground Section 2.2, in order to provide an extensive comparison against the state-
of-the-art.

We adopt the same datasets used for the experiments in chapters 4, 5 and 6,
whose description and statistics are reported below. Whenever needed in the ex-
perimental analysis of the individual chapters, we will point the reader to this
subsection and the relevant table.

• Gov2 is the TREC 2004 Terabyte Track test collection, consisting in roughly
25 million .gov sites crawled in early 2004. The documents are truncated to
256 KB.

• ClueWeb09 is the ClueWeb 2009 TREC Category B test collection, consist-
ing in roughly 50 million English web pages crawled between January and
February 2009.

1This work was done while the author was visiting the School of Computing and Information
Systems at the University of Melbourne, Australia. Therefore, some of the writing and pictures
of the paper have been made in collaboration with the other two co-authors.

6

1. introduction

Collection Lists Postings Documents

Gov2 35,636,425 5,742,630,292 24,622,347
ClueWeb09 92,094,694 15,857,983,641 50,131,015

Table 2: Basic statistics for the Gov2 and ClueWeb09 test collections.

Standard text preprocessing was performed on the collections. For each docu-
ment, the body text was extracted using Apache Tika2, and the words lowercased
and stemmed using the Porter2 stemmer. Identi�ers were assigned to documents
according to the lexicographic order of their URLs [148]. Table 2 reports the basic
statistics for the two collections.

Compressed Indexes for N-Gram Strings. In Chapter 8 we address the prob-
lem of reducing the space required by the representation of datasets of short string
(namely, n-grams), maintaining the capability of looking up for a given string
within micro seconds.

In particular, we present a compressed trie data structure in which each word
following a context of �xed length k , i.e., its preceding k words, is encoded as an
integer whose value is proportional to the number of words that follow such con-
text. Since the number of words following a given context is typically very small
in natural languages, we lower the space of the representation to compression lev-
els that were never achieved before. Despite the signi�cant savings in space, our
technique introduces a negligible penalty at query time. Compared to the state-
of-the-art proposals, our data structures outperform all of them for space usage,
without compromising their time performance. e�cient proposals in the litera-
ture, that are both quantized and lossy, are not smaller than our trie data structure
and up to 5 times slower. Conversely, we are as fast as the fastest competitor, but
also retain an advantage of up to 65% in absolute space.

The contents of this chapter are based on [128].

Language Models Estimation. The problem we tackle in Chapter 9 is the one
of computing the Kneser-Ney probability and backo� penalty for every n-gram,
1 ≤ n ≤ N , extracted from a large textual source. Estimating such models from
large texts poses the challenge of devising e�cienct external memory algorithms,
i.e., that make a parsimonious use of the disk.

The state-of-the-art algorithm uses three sorting steps in external memory: we
show an improved construction that requires only one sorting step thanks to ex-
ploiting the properties of the extracted n-gram strings. With an extensive exper-

2http://tika.apache.org

7

http://tika.apache.org

1. introduction

imental analysis performed on billions of n-grams, we show an average improve-
ment of 4.5× on the total running time of the state-of-the-art approach.

The contents of this chapter are based on [131].

8

2 Background and Tools

In this thesis, we will address problems concerning the design of compressed data
structures and the analysis of the algorithms operating on them. Therefore, the
aim of this chapter is the one of introducing the notation and tools that we will
exploit throughout the chapters of the thesis.

2.1 Basic concepts

Let [n] indicate the ordered set of integers {0, . . . ,n − 1},∀n > 0. Unless otherwise
speci�ed, all logarithms are in base 2, i.e., logx = log2 x , x > 0, and we assume
that 0 log 0 = 0. Given a set X, let |X| be its cardinality.

Let B(x) represent the binary representation of the integer x , andU (x) its unary
representation, that is a run of x zeros plus a �nal one: 0x1. The negated unary
representation of x is the bitwise NOT of U (x), i.e., 1x0.

2.1.1 Model of computation

Every algorithm is designed in the context of a model of computation. We ana-
lyze the algorithms described in this thesis with a classic model of computation,
called RAM (Random Access Machine). This theoretical model tries to capture the
behavior of a real computer, by using two components:

• a CPU with a set of elementary operations, all executed in constant time
worst-case;

• a set of memory cells that we indicate with the integers in [u]. Each cell can
be read/written by the CPU in constant time worst-case1. We will assume u
to be a power of two, i.e., if u = 2w thenw bits are transferred from memory
to the CPU in O(1). The bit width w is called the memory word size.

The only assumption we make onw is that it is at least n, our input problem
size, i.e., w = Ω(logn) bits. This assumption is actually realistic because if
w were not Ω(logn), then we would not even be able to index all the ele-
ments in our input, i.e., n > u. The assumption also reveals the power and

1In practice, memory access on hardware is of logarithmic complexity due to adress translation
from virtual to physical [91, 70].

9

2. background and tools

generality of the model: w changes with n and so does the modelled CPU
(trans-dichotomous RAM [66]).

Under this model of computation, the time complexity of an algorithm is mea-
sured as the number of memory words it reads/writes and, similarly, the space of
a data structure is measured as the number of words it consists in.

However, it is our responsibility to not abuse the RAM model, pretending it in-
cludes some instructions that it should not. For illustrative purposes, think of an
elementary sorting instruction. If such instruction were part of the model instruc-
tion set, then we would be able to sort in constant time by just using one instruc-
tion! This is, of course, a very unrealistic assumption [42]. Therefore, we assume
the instruction set coincides with the one of the C programming language [93],
that includes: arithmetic operations, bitwise operations, data movements and con-
trol structures such as loops (for and while) and conditionals (if-and-else).

2.1.2 Seqences, arrays and bitvectors

Many times in this thesis we will mention lists, arrays, vectors and strings. Since
these are all equivalent from a mathematical point of view, we �rst provide a de�-
nition of such objects, commonly referred to as sequences and, then, �x some con-
ventions that we will adopt throughout the thesis.

Definition 1 — Let Σ be a set called the alphabet. Then for any set X of n = |X|
symbols drawn from Σ, we de�ne a sequence as the function S : [n] → X de�ned
as i 7→ xi ∈ X.

Sequences and arrays. In other terms, a sequence S of length n is a function
associating the integer indexes in [n] with elements of a set X.

There are many possible ways of implementing a sequence in a programming
language, e.g., in C++ or Java. Perhaps, the easiest one is to use an array, that
is a contiguous piece of memory containing a collection of objects of the same
type and supporting random access to individual elements in constant time. In the
thesis, whenever we mention the term array (or vector), we implicitly refer to this
computerized representation and not to an abstract mathematical entity.

Thinking of a sequence as implemented with an array, we will refer to a se-
quence S of length n as S[0,n) and to its i-th element as S[i], for any 0 ≤ i < n.
Similarly, for every 0 ≤ i < j < n, S[i , j] refers to the sub-sequence starting with
element S[i] and ending with element S[j] (including it).

When the elements of a sequence are integers and the sequence is sorted, we
call universe an integer u ≥ S[n − 1] and indicate such sequence with S(n,u).

10

2. background and tools

With this de�nition and notation, it is now easy to refer to other objects without
confusion. For example, we call string a sequence where its elements are characters
from a given alphabet Σ (often identi�ed with set of ASCII symbols2). Similarly a
text can be thought to be a “long” string.

Bitvectors. A particular case of interest for us is the one with Σ = {0, 1}. In this
case, we call any sequence a bitvector (often referred to as bitarray or bitmap in
the literature). For example, the following S[0, 40) is a bitvector of 40 bits.

S = 01001001 00011001 01001011 10100110 10001101
32 24 16 8 0

Bitvectors can be implemented with arrays of integer numbers, with the binary
representation of an integer representing a contiguous range of bits. For example,
the above bitvector could be implemented with an array of 5 8-bit numbers, that
are 〈141, 166, 75, 25, 73〉 because B(141) = 10001101, B(166) = 10100110, B(75) =
01001011, B(25) = 00011001 and B(73) = 01001001. Similarly, with an array of 2
32-bit numbers, we will have 〈424388237, 73〉. In such cases, bit-wise operations
(binary and/or and left/right shift) may be needed to read and write ranges of bits.

Given two bitvectors B1 and B2, we indicate with B1B2 their concatenation.

Operations. Given a sequence S over a generic alphabet Σ, we de�ne the follow-
ing operations for any 0 ≤ i < n.

• Access(i), that returns the i-th element of S, i.e., S[i].
• Rankc(i), that returns the number of elements equal to c in S[0, i).
• Selectc(i), that returns the position of the i-th element equal to c in S or just
−1 if there is no such element in S.

If the symbols of S are integer numbers and S is sorted, we will also use the
following two operations.

• Predecessor(x) = max{S[i] : S[i] < x} or −1 if no such element exists.

• Successor(x) = min{S[i] : S[i] ≥ x} or −1 if no such element exists.

For example, if S is 〈12, 14, 22, 35, 46〉, then Predecessor(10) = −1, Successor(15) =
22, Predecessor(40) = 35, Successor(244) = −1, ecc.

Often we need to iterate sequentially through the elements of a sequence. In
this case, we use the operation Next that takes no parameters and returns the next

2http://www.ascii-code.com

11

http://www.ascii-code.com

2. background and tools

integer of the sequence after the last returned. Notice that this actually needs to
keep track of the position of the last returned integer. We, therefore, assume that
this information is saved somewhere (e.g., in a concrete C++ implementation, in
the state of an iterator object) so that the last returned integer (and its position)
is available for other queries on the sequence. This holds true for the operations
Predecessor and Successor as well.

For example, continuing the example for S = 〈12, 14, 22, 35, 46〉, consider the
following sequence of operations: Successor(17), Next(), Next(). The results re-
turned, in order, will be 22, 35 and 46 because Successor(17) = S[2] = 22 and
moving from position 2 twice will return the integers S[3] = 35 and S[4] = 46.

We will exploit binary rank and select in this thesis, that is, if S is a bitvector:
Rankb(i) returns number of bits equal to b in S[0, i) and Selectb(i) returns the
position of the i-th b bit. For example, if S is

S = 1 1 0 0 0 1 1 0 1 1 0 1 0
0 1 2 3 4 5 6 7 8 9 10 11 12

then Rank0(6) = 3, Select0(4) = 10, Rank1(4) = 2, Select1(11) = −1, ecc.

2.1.3 Information-theoretic lower bound

We often ask how many bits are needed to optimally represent a combinatorial
object. In order to answer such question, we need a tool from Information Theory.

Given a set X of combinatorial objects, the minimum amount of bits we need to
uniquely identify each element of X is dlog |X|e bits. This quantity is what we call
an information-theoretic lower bound. This means that, generally speaking, there is
no hope of using less bits to represent X then the quantity given by such bound.

But here is the trick, we shall say. In fact, if we restrict the scope of the ob-
jects in X by making some assumptions on them, we can lower the bound. As
an example, consider the set X of bitvectors of length u. Then we have that
|X| = 2u and therefore we need at least u bits. Instead, if we restrict our atten-
tion to the class of bitvectors of length u having exactly n bits set, say B(n,u),
then we have |B(n,u)| = (u

n

)
, i.e., all possible ways we can set n bits starting

from an all-zero bitvector of length u. Therefore, for the bitvectors in B(n,u) the
information-theoretical lower bound is dlog

(u
n

)e bits. Now, by doing some math
(i.e., using Newton’s coe�cient formula and Stirling’s factorial approximation), we
have dlog

(u
n

)e ' u logu −n logn+ (u −n) log 1
u−n −O(logu) and, by adding and sub-

tracting (u − n) logu, we �nally get dlog
(u
n

)e ' n log u
n + (u − n) log u

u−n −O(logu)
bits. This function is symmetric and has a maximum in n = u/2, therefore that we

12

2. background and tools

can concentrate our attention to the values of the function for 0 ≤ n ≤ u/2 [145],
obtaining

B(n,u) = n log u

n
+O(n) bits, (1)

which represents a more practical way of describing the minimum number of bits
we need to encode a bitvector in B(n,u).

2.1.4 Succinct data structures

Succinct data structures were originally introduced by Jacobson [88] in his doctoral
thesis and constitute a speci�c class of compressed data structures. In particular,
if an object (e.g., a tree, a graph or a sequence) requires at least m bits to be repre-
sented, then a succinct representation for this object will use o(m) additional bits
to implement all the operations needed for this object and the total space occu-
pancy will be m + o(m) bits. This quantity is referred to as a succinct bound. For
example, many solutions are known to succinctly encode static binary trees and
planar graphs [87]. Informally, we could say that the object is �rst described using
the minimum amount of bits and, then, a “small” redundancy (a lower-order term)
is added to the representation to implement the operations.

However, as already observed in Chapter 1, a theoretical negligible redundancy
of o(m) bits does not always imply a practically negligible redundancy too. This is
due the hiding constants e�ect of the Big-Oh asymptotic notation, as also observed
in other works [73, 160, 70].

2.1.5 Entropy

The father of Information Theory, Claude E. Shannon, left us a powerful tool that
he names entropy [145]. He was concerned with the problem of de�ning the in-
formation content of a discrete random variable x : Σ → R, with distribution
pc = P{x = c}, ∀c ∈ Σ. He de�ned the entropy of x as

H(x) = −
∑
c∈Σ

pc logpc bits.

The quantity − logpc bits is also called the self-information of c ∈ Σ. H(x)
represents the number of bits we need to encode each value of Σ.

Let now S be a string of n characters drawn from an alphabet Σ. Let also nc
denote the number of times the character c occurs in S. Assuming empirical fre-
quencies as probabilities [121] (the larger is n, the better the approximation), i.e.,

13

2. background and tools

pc ≈ nc/n, we can consider S as a random variable assuming value c with proba-
bility pc . In this setting, the entropy of a string S is

H0(S) = −1
n

∑
c∈Σ

nc log nc
n

bits.

This quantity is also knows as the 0-th order empirical entropy of S. The quan-
tity nH0(S) gives a theoretic lower bound on the average number of bits we need
to representS, and consequently to the output size of any compressor that encodes
each symbol of S with a �xed-length codeword.

2.2 Representation of integer seqences

A key ingredient of the data structures we will design in this thesis is the represen-
tation of integer sequences. Therefore, this section overviews the most important
techniques used to compress integer numbers and sequences [129].

The most classical solution is to assign each integer a self-delimiting (or uniquely-
decodable) variable-length codeword, so that the whole integer sequence is the
result of the concatenation of the codewords of all its integers. Clearly, the aim of
such encoders is to assign the smallest codewords as possible in order to minimize
the number of bits used to represent the sequence.

2.2.1 Elias- Gamma and Delta

The two codes we now describe have been introduced by Elias [57] in the ’60.
Given an integer x > 0, γ (x) = 0|B(x)|−1B(x), where |B(x)| = dlog(x + 1)e. There-

fore, |γ (x)| = 2dlog(x + 1)e − 1 bits. For example, γ (11) = 0001011 because the
binary representation of 11, that is 1011, has length 4 bits and, therefore, we pre�x
it by 4 − 1 = 3 zeroes.

Decoding γ (x) is simple: �rst count the number of zeroes up to the one, say
there are n of these, then read the following n + 1 bits and interpret them as x .

The key ine�ciency of γ lies in the use of the unary code for the representation
of |B(x)| − 1, which may become very large for big integers. The δ code replaces
the unary part 0|B(x)|−1 with γ (|B(x)|), i.e., δ (x) = γ (|B(x)|)B(x). Notice that, since
we are representing with γ the quantity |B(x)| = dlog(x + 1)e which is guaranteed
to be greater than zero, δ can represent value zero too. The number of bits required
by δ (x) is |γ (|B(x)|)| + |B(x)|, which is 2dlog(d|B(x)| + 1e)e + dlog(x + 1)e − 1.

14

2. background and tools

As an example, consider δ (113) = 001111110001. The last part, 1110001, is
B(113) whose length is 7. Therefore we pre�x B(113) by γ (7) = 00111, which
is the �rst part of the encoding.

The decoding of δ codes follows automatically from the one of γ codes.

2.2.2 Golomb-Rice

In the early ’70, Rice [140] introduced a parameter code that can better compress
the integers in a sequence if these are highly concentrated around some value. This
code is actually a special case of the Golomb code [72], hence its name.

The Rice code of x with parameter k , Rk(x), consists in two pieces: the quotient
q = b x−1

2k c and the remainder r = x − q × 2k − 1. The quotient is encoded in unary,
i.e., with U (q), whereas the remainder is written in binary with k bits. Therefore,
|Rk(x)| = q + k + 1 bits. Clearly, the closer 2k is to the value of x the smaller
the value of q: this implies a better compression and faster decoding speed. As
an example, consider R5(113) = 000110000. Because b 112

25 c = 3, we �rst write
U (3) = 031. Then we write in binary the remainder 113 − 3 × 25 − 1 = 16, using 5
bits. If we would have adopted k = 6, then R6(113) = 01110000. Notice that we are
saving one bit with respect to R5(113) since 26 = 64 is closer to 113 than 25 = 32.
In fact, the quotient in this case is 1 rather than 3.

Given the parameter k and the constant 2k that is computed ahead, decoding
Rice codes is simple too: count the number of zeroes up to the one, say there are q
of these, then multiply 2k by q and �nally add the remainder, by reading the next
k bits. Finally, add one to the computed result.

2.2.3 Variable-Byte

The codes described in the previous subsections are bit-aligned as they do not
represent an integer using a multiple of a �xed number of bits, e.g., a byte. The
decoding speed can be slowed down by the many operations needed to decode a
single integer. This is a reason for preferring byte-aligned or even word-aligned
codes when decoding speed is the main concern.

Variable-Byte (VByte), �rst described by Thiel and Heaps [155] in 1972, is the
most popular and simplest byte-aligned code: the binary representation of a non-
negative integer is split into groups of 7 bits which are represented as a sequence
of bytes. In particular, the 7 least signi�cant bits of each byte are reserved for the
data whereas the most signi�cant (the 8-th), called the continuation bit, is equal
to 1 to signal continuation of the byte sequence. The last byte of the sequence
has its 8-th bit set to 0 to signal, instead, the termination of the byte sequence.
The main advantage of VByte codes is decoding speed: we just need to read one

15

2. background and tools

byte at a time until we found a value smaller than 27. Conversely, the number
of bits to encode an integer cannot be less than 8, thus VByte is only suitable for
large numbers and its compression ratio may not be competitive with the one of
bit-aligned codes for small integers.

As an example, consider VByte(65,790) = 100001001000000101111110, where
we underline the control bits. Also notice the padding bits in the �rst byte start-
ing from the left, inserted to align the binary representation of the number to a
multiple of 8 bits. VByte uses ddlog(x + 1)e/7e × 8 bits to represent the integer x .

Several enhancements were proposed in the literature to improve the (sequen-
tial) decoding speed of VByte. In order to reduce the probability of a branch mis-
prediction - that leads to a higher throughput and helps keeping the CPU pipeline
fed with useful instructions - the control bits can be grouped together. For exam-
ple, if we assume that the largest represented integer �ts into four bytes (which is
reasonable, given that we often represent d-gaps), we have to distinguish between
only four di�erent lengths, thus two bits are su�cient. In this way, groups of four
integers require one control byte. This optimization was introduced in Google’s
Varint-GB [45], which is faster than the original VByte format to decode.

Using SIMD. SIMD (Single-Instruction-Multiple-Data) is a computer organiza-
tion that exploits the independence of multiple data objects to execute a single
instruction on these objects simultaneously. Speci�cally, a single instruction (e.g.,
arithmetic or boolean) is executed for every element of a vector, that is a large(r)
machine register containing, say, 128 or 256 bits of data, that packs multiple el-
ements together. SIMD is now widely used to accelerate the execution of many
data-intensive tasks, e.g., graphic-related applications, and (usually) an optimizing
compiler is able of “vectorizing” code snippets to make them run faster.

Working with byte-aligned codes opens the possibility of exploiting the paral-
lelism of SIMD instructions to further enhance decoding speed. This is the ap-
proach taken by the recent proposals Varint-G8IU [151], Masked-VByte [132] and
Stream-VByte [101].

Varint-G8IU [151] uses a format similar to the one of Varint-GB: one control
byte is used to describe a variable number of integers in a data segment of exactly
eight bytes, therefore each group can contain between two and eight compressed
integers. In Chapter 7 we will see an improvement in sequential decoding speed
of ≈2× with respect to the scalar VByte decoding.

Masked-VByte [132] works, instead, directly on the original VByte format. The
decoder �rst gathers the most signi�cant bits of consecutive bytes using a dedi-
cated SIMD instruction. Then using previously-built look-up tables and a shu�e
instruction, the data bytes are permuted to obtain the decoded integers.

16

2. background and tools

Stream-VByte [101] separates the encoding of the control bits from the data
bits by writing them into separate streams. This organization permits to decode
multiple control bits simultaneously and, therefore, reduce branch mispredictions
that can stop the CPU pipeline execution when decoding the data stream.

2.2.4 Packed

A relatively simple approach to improve both compression ratio and decoding
speed is to encode a block of integers, instead of the whole sequence. This line
of work �nds its origin in the so-called frame-of-reference [71] and dates back to
the late ’90.

Once the sequence has been partitioned into blocks (of �xed or variable length),
then each block is encoded separately. An example of this approach is binary pack-
ing [10, 100], where blocks of �xed length are used, e.g., 128 integers. Given a block
S[i , j], we can simply represent its integers using dlog(S[j] −S[i]+ 1)e bits by sub-
tracting the lower bound S[i] from their values. Plenty of variants of this simple
approach has been proposed [149, 49, 100].

Simple. Among some of the simplest binary packing strategies, Simple-9 [9],
Simple-16 [173] and Simple-8b [10] combine very good compression ratio and high
decompression speed. The key idea is to try to pack as many integers as possible
in a memory word (32 or 64 bits). As an example, Simple-9 uses 4 selector bits
and 28 data bits. The selector bits provide information on how many elements are
packed in the data segment using equally-sized codewords. A selector 0000 may
correspond to 28 1-bit integers; 0001 to 14 2-bits integers; 0010 to 9 3-bits integers
(1 bit unused), and so on. The four bits distinguish from 9 possible con�gurations.
Similarly, Simple-16 has 16 possible con�gurations. Simple-8b, instead, uses 64-bit
words with �xed 4-bit selectors.

QMX. The QMX mechanism introduced by Trotman [156] packs as many integers
as possible into 128-bit words (Quantities) and stores the selectors (eXtractors)
separately in a di�erent stream. The selectors are compressed (Multipliers) with
RLE (Run-Length Encoding), that is with a stream of couples (value , lenдth). For
example, if S = 〈12, 12, 12, 5, 7, 7, 7, 7, 9, 9〉, the corresponding RLE representation
is 〈(12, 3), (5, 1), (7, 4), (9, 2)〉.

2.2.5 PForDelta

The biggest limitation of block-based strategies is their space-ine�ciency when-
ever a block contains at least one large value, because this forces the compressor

17

2. background and tools

to use a universe of representation as large as this value. This has been the main
motivation for the introduction of PForDelta (PFOR) [176]. The idea is to choose
a proper value k for the universe of representation of the block, such that a large
fraction, e.g., 90%, of its integers can be written in k bits each. All integers that
do not �t in k bits, are treated as exceptions and encoded separately using another
compressor. This strategy is called patching.

More precisely, two con�gurable parameters are chosen: a b value (base) and
a universe of representation k , so that most of the values fall in the range [b,b +
2k − 1] and can be encoded with k bits each by shifting (delta-encoding) them in
the range [0, 2k − 1]. To mark the presence of an exception, we also need a special
escape symbol, thus we have [0, 2k − 2] available con�gurations.

As an example, consider the sequence 〈3, 4, 7, 21, 9, 12, 5, 16, 6, 2, 34〉. By using
b = 2 and k = 4, we obtain 〈1, 2, 5, ∗, 7, 10, 3, ∗, 4, 0, ∗〉〈21, 16, 34〉, where we use the
special symbol ∗ to represent an exception that is written in a separate sequence,
reported to the right part of the example.

The optimized variant Opt-PFOR [170], which selects for each block the values
of b and k that minimize its space occupancy, has been demonstrated to be more
space-e�cient and only slightly slower than the original PFOR [170, 100].

2.2.6 Elias-Fano

The encoder we now describe was independently proposed by Elias [56] and Fano
[58] in the ’70, hence its name.

Encoding. Given a sorted sequence S(n,u), we write each S[i] in binary using
dlogue bits. The binary representation of each integer is then split into two parts:
a low part consisting in the right-most ` = dlog u

n e bits that we call low bits and
a high part consisting in the remaining dlogue − ` bits that we similarly call high
bits. Let us call `i and hi the values of low and high bits of S[i] respectively. The
Elias-Fano encoding of S(n,u) is given by the encoding of the high and low parts.

The integers L = [`0, . . . , `n−1] are written explicitly in ndlog u
n e bits and they

represent the encoding of the low parts. Concerning the high bits, we represent
them in negated unary using a bitvector of n + 2blognc ≤ 2n bits as follows. We
start from a 0-valued bitvector H and set the bit in position hi + i , for all 0 ≤ i < n.
The e�ect is that now the k-th unary integer m of H indicates that m integers of

18

2. background and tools

0
1
1
0
0
1

0
1
0
1
0
1

0
0
1
1
1
0

0
0
1
1
0
1

0
0
1
1
1
1

0
0
0
0
1
1

0
0
0
1
1
1

0
0
0
1
0
0

1
1
1
1
1
0

1
1
0
1
1
0

1
0
0
1
0
0

1
0
1

1
0
0
1
1
0

H

high

low

L
1110 10 101110 110 0 10 10

001100111 101110111 101 001 100110 110 110

3 4 7 13 14 15 21 3825 36 54 62input

Figure 2: The sequence 〈3, 4, 7, 13, 14, 15, 21, 25, 36, 38, 54, 62〉 as encoded with Elias-Fano.
The missing high bits are shown in bold.

S have high bits equal to k , 0 ≤ k ≤ blognc. Finally the Elias-Fano representation
of S is given by the concatenation of H and L and overall takes3

EF(S(n,u)) ≤ n
⌈

log u

n

⌉
+ 2n bits. (2)

While we can opt for an arbitrary split into high and low parts, ranging from 0
to dlogue, it can be shown that ` = dlog u

n e minimizes the overall space occupancy
of the encoding [56]. Moreover, as the information-theoretic lower bound (see
Section 2.1.3) for a monotone sequence of n elements drawn from a universe of
size u is dlog

(u+n
n

)e ≈ n log u+n
n + n log e bits, it can be shown that less than half a

bit is wasted per element by the Elias-Fano space bound [56].

Figure 2 shows a graphical example of encoding for the sequence S(12, 62) =
〈3, 4, 7, 13, 14, 15, 21, 25, 36, 38, 54, 62〉. The missing high bits embody the represen-
tation of the fact that using blognc bits to represent the high part of an integer, we
have at most 2blognc distinct high parts because not all of them could be present.
In Figure 2, we have blog 12c = 3 and we can form up to 8 distinct high parts. No-
tice that, for example, no integer has high part equal to 101 which are, therefore,
“missing” high bits.

Since we set a bit for every 0 ≤ i < n in H and each hi is extracted in O(1) time
from S[i], it follows that S gets encoded with Elias-Fano in Θ(n) time.

Access. Despite the space-e�ciency of the encoding, it is possible to support
Access without decompressing the whole sequence. The operation is implemented
by using an auxiliary data structure that is built on the bitvector H and that is
able to e�ciently answer Select1 queries (see Section 2.1.2). This auxiliary data

3Using the same choice of Elias for ceilings and �oors, we arrive at the slightly di�erent bound
of at most nblog u

n c + 3n bits.

19

2. background and tools

structure is succinct in the sense that it is negligibly small in asymptotic terms
compared to EF(S(n,u)), requiring only o(n) additional bits [108, 161].

Using the Select1 primitive, it is possible to implement Access in O(1). We basi-
cally have to re-link together the high and low bits of an integer, previously split up
during the encoding phase. The low bits `i are trivial to retrieve as we need to read
the range of bits L[i × `, (i + 1) × `). The retrieval of the high bits deserve, instead, a
bit more care. Since we write in negated unary how many integers share the same
high part, we have a bit set for every integer in S and a zero for every distinct high
part. Therefore, to retrieve the high bits of the i-th integer, we need to know how
many zeros are present in H [0, Select1(i)). This quantity is evaluated on H in O(1)
as Rank0(Select1(i)) = Select1(i) − i (notice that Rank0 is not needed at all). Finally,
linking the high and low bits is as simple as: Access(i) = ((Select1(i) − i) � `) | `i ,
where� is the left shift operator and | is the bitwise OR.

Successor. The query Successor(x) is supported in O(1 + log u
n) time4, as follows.

Let hx be the high bits of x . Then for hx > 0, i = Select0(hx) − hx + 1 indicates
that there are i integers in S whose high bits are less than hx . On the other hand,
j = Select0(hx + 1) − hx gives us the position at which the elements having high
bits greater than hx start. The corner case hx = 0 is handled by setting i = 0. These
two preliminary operations takeO(1). Now we have to conclude our search in the
range S[i , j], having skipped a potentially large range of elements that, otherwise,
would have required to be compared with x . We �nally determine the successor
of x by binary searching in this range which may contain up to u/n integers. The
time bound follows.

As an example, consider Successor(30). Since h30 = 3, we have i = Select0(3) −
3 + 1 = 7 and j = Select0(4) − 3 = 8. Therefore we conclude our search in the
range S[7, 8] by returning Successor(30) = S[8] = 36.

The algorithm for Predecessor(x) runs in a similar way. In particular, it could
be that Predecessor(x) lies before the interval S[i , j]: in this case S[i − 1] is the
element to return.

Implementing the binary Select primitive. As the binary Select primitive is
fundamental to enable fast Elias-Fano codes (and many other succinct data struc-
tures as well), we now discuss how it can be implemented e�ciently on top of a
bitvector by using little extra space. Also, see the paper by Vigna [161] and refer-
ences therein for an in-depth discussion.

While there exists a large body of research on selection that has developed op-
timal, i.e., constant-time, algorithms requiring tiny space [38], such solutions are
rather complicated and not practically appealing for their high constant costs. The

4We report the bound as O(1 + log u
n), instead of O(log u

n), to cope with the case n = u.

20

2. background and tools

24 25 26 27 28 29 210

q

0.00

13.10

26.19

39.29

52.38

65.48

78.57

91.67
ex

tra
 sp

ac
e

[%
]

20

25

30

35

ns
/q

ue
ry

Access Successor

(a) Dense

22 23 24 25 26 27 28 29 210

q

0.00

11.85

23.69

35.54

47.39

59.24

71.08

82.93

ex
tra

 sp
ac

e
[%

]

15

20

25

30

35

40

ns
/q

ue
ry

Access Successor

(b) Sparse

Figure 3: �ery time (solid lines) and extra space (dashed lines) for the Elias-Fano repre-
sentation of a sequence of one million integers, having an average gap of 2 (a) and 2000
(b).

solution we describe here is, instead, very simple and of practical use. It actually
dates back to the original work by Elias [56].

Let n be the size of the bitvector and m the number of bits set. We write the
position of the next bit we would reach after reading k ×q unary codes, where q is
a �xed quantum and k = 0, . . . , bm/qc. These bm/qc sampled positions are called
forward pointers. The algorithm for Select1(i) �rst fetches the (bi/qc)-th pointer,
say p, and then completes exhaustively by reading i % q unary codes starting from
position p in the bitvector.

Concerning the Elias-Fano representation of a sequence, we can use the intro-
duced algorithm on top of bitvector H to support Select1 for random Access and,
with a straightforward adaptation, also Select0 for Successor. In Figure 3 we show
how the needed extra space and query time change by varying q, for a sequence
of 1 million integers whose average gap between the integers is 2 (dense case) and
2000 (sparse case). The benchmark numbers were obtained with an Intel i7-7700
processor clocked at 3.6 GHz, on Linux 4.4.0 (64 bits). The code was written in
C++ and compiled in release mode with gcc 7.3.0 using compilation �ags -O3 and
-march=native.

Clearly, smaller values of q permit less unary reads, hence resulting in a faster
execution, but cost more extra space. As a suitable space/time trade-o� con�gura-
tion for all the experiments in the thesis, we chooseq = 28 for Access andq = 29 for
Successor given that in correspondance of these values the extra cost is almost the
same for both operations, being 2.86% for the dense case and 0.65% for the sparse
case.

21

2. background and tools

2.2.7 Partitioned Elias-Fano

One of the most relevant characteristics of the Elias-Fano space Formula 2 is that it
only depends on two parameters, i.e., the length n and universe u of the sequence
S(n,u). As we are going to see in the next chapters, integer sequences often present
groups of very similar numbers and Elias-Fano fails to exploit such natural clusters
because it uses a number of bits per integer equal to dlog(u/n)e + 2, thus propor-
tional to the logarithm of the average gap (i.e., u/n) between the integers.

Therefore, partitioning the sequence into blocks to better adapt to the distribu-
tion of the gaps between the integers, is the key idea of the partitioned Elias-Fano
(PEF) representation devised in [120].

The core idea is as follows. The sequence S(n,u) is partitioned into k blocks of
variable length. The �rst level of representation stores two sequences compressed
with plain Elias-Fano: (1) the sequence made up of the last elements {u1, . . . ,uk}
of the blocks, the so-called upper-bounds and (2) the pre�x-summed sequence of
the sizes of the blocks. The second level is formed, instead, by the representation
of the blocks themselves, that can be again encoded with Elias-Fano. The main
advantage of this two-level representation, is that now the integers in the i-th
block are encoded with a smaller universe, i.e., ui −ui−1 − 1, i > 0, thus improving
the space with respect to the original Elias-Fano representation.

Encoding. More precisely, each block in the second level is encoded with one
among three di�erent strategies. As already stated, one of them is Elias-Fano. The
other two additional strategies come into play to overcome the space ine�ciencies
of Elias-Fano when representing dense blocks.

Let consider a block and call b its size, m its universe respectively. Vigna [161]
�rst observed that as b approaches m the space bound b dlog(m/b)e + 2b bits be-
comes close to 2m bits. In other words, the closer b is to m, the denser the block.
However, we can always represent the block withm bits by writing the character-
istic vector of the block, that is a bitvector where the i-th bit is set if the integer i
belongs to the block.

Therefore, besides Elias-Fano, two additional encodings can be chosen to encode
the block, according on the relation between m and b. The �rst one addresses the
extreme case in which the block covers the whole universe, i.e., when b = m: in
such case, the �rst level of the representation (upper-bound and size of the block)
trivially su�ces to recover each element of the block which is, therefore, encoded
with zero bits. The second case is used whenever the number of bits used by the
Elias-Fano representation of the block is larger than m bits: by doing the math, it
is not di�cult to see that this happens whenever b > m/4. In this case we can
encode the block with its characteristic bitvector usingm bits.

22

2. background and tools

The dynamic programming algorithm. Splitting the sequence S(n,u) into
equally-sized block is clearly sub-optimal, since we cannot expect clusters of sim-
ilar integers to be aligned with uniform partitions. For such reason, an algorithm
based on dynamic programming is presented in [120] to �nd, in Θ(n) time and
space, a partition whose cost in bits (i.e., the space taken by the partitioned encoded
sequence) is at most (1 + ϵ) times away from the optimal one, for any 0 < ϵ < 1.
We now describe such algorithm.

The problem of determining the partition of minimum encoding cost can be seen
as the problem of determining the path of minimum cost (shortest) in a complete,
weighted and directed acyclic graph (DAG) G. This DAG has n vertices, one for
each integer of S, and Θ(n2) edges where the cost w(i , j) of edge (i , j) represents
the number of bits needed to represent S[i , j]. Each edge cost w(i , j) is computed
in O(1) by just knowing the universe and size of the chunk S[i , j], as explained
above.

Since the DAG is complete, a simple shortest path algorithm is ine�cient already
for medium sized inputs. However, it could be used on a pruned DAG Gϵ , which
is obtained from G and has the following crucial properties: (1) the number of
edges is O(n log1+ϵ

U
F) for any given ϵ ∈ (0, 1); (2) its shortest path distance is at

most (1 + ϵ) times the one of the original DAG G. U represents the encoding cost
of S when no partitioning is performed; F represents the �xed cost that we pay
for each partition. Precisely, for each partition we have to write its universe of
representation, its size and a pointer to its second-level Elias-Fano representation.
F can be, therefore, safely upper bounded with 2 logu + logn.

The pruning step retains all the edges (i , j) from G that satisfy the following
two properties for any i = 0, . . . ,n − 1, j > i: (1) there exists an integer h ≥ 0
such that w(i , j) ≤ F × (1+ ϵ)h < w(i , j + 1); (2) (i , j) is the last edge outgoing from
node i , i.e., j = n. The edges is Gϵ are the ones that better approximate the value
(1 + ϵ)hF from below because the edge costs are monotone. Such edges are called
(1 + ϵ)-maximal edges. Since for each h ≥ 0 it must be F × (1 + ϵ)h ≤ U , there are
at most log1+ϵ

U
F edges outgoing from each node of Gϵ , thus in conclusion Gϵ has

O(n log1+ϵ
U
F) edges. Now the dynamic programming recurrence can be solved in

Gϵ in O(n log1+ϵ
U
F) admitting a solution whose cost is at most (1 + ϵ) times larger

than the optimal one [61].
We can further reduce this complexity to O(n log1+ϵ

1
ϵ) conserving the same ap-

proximation guarantee as follows. Let ϵ1 ∈ [0, 1) and ϵ2 ∈ [0, 1) two approximation
parameters. We �rst retain from G all the edges whose cost is no more than L = F

ϵ1
,

then we apply the pruning strategy as described above with approximation param-
eter ϵ2. The obtained graph has now O(n log1+ϵ2

L
F) = O(n log1+ϵ2

1
ϵ1
) edges, which

is O(n) as soon as ϵ1 and ϵ2 are �xed. It can be shown [120] that the shortest path
distance is no more than (1 + ϵ1)(1 + ϵ2) ≤ (1 + ϵ) times the one in G by setting

23

2. background and tools

ϵ1 = ϵ2 =
ϵ
3 . Note that the complexity O(n log1+ϵ

1
ϵ) becomes Θ(n) as soon as ϵ is

constant.
Finally, to generate the pruned DAG from G, we employ q = O(log1+ϵ

1
ϵ) win-

dowsW1, . . . ,Wq , one for each possible exponent h ≥ 0 such that F × (1 + ϵ)h ≤ L.
Each sliding window covers a di�erent portion of S and it slides over the sequence.
We generate the q maximal edges outgoing from node i on-the-�y as soon as the
shortest path algorithm visit this node. Initially all windows start and end at po-
sition 0. Every time the algorithm visits the next node i , we advance the starting
position of each window by one position and the ending position j until w(i , j)
exceeds the value F × (1 + ϵ)j .
In practice. The parameters ϵ1 and ϵ2 deeply a�ect index construction time, as
they directly control the number of edges considered by the algorithm. Therefore,
whenever mentioned in this thesis, we refer to PEF as the con�guration that uses
ϵ1 = 0.03 and ϵ2 = 0.3 that were chosen in the original work (and implementation)
by Ottaviano and Venturini [120], to tradeo� between index space and construc-
tion time.

2.2.8 Binary interpolative coding

Binary interpolative coding (BIC) [115] is a recursive algorithm that �rst encodes
the integer in the middle of the sequence and then recursively applies this encoding
step to both halves of the sequence. At each step of recursion, the algorithm knows
the reduced ranges that will be used to write the middle elements in fewer bits
during the next recursive calls.

More precisely, consider the rangeS[i , j]. The encoding step writes the quantity
S[m] − low −m + i using dlog(hi − low − j + i)e bits, where: S[m] is the range mid-
dle element, i.e., the integer at position m = (i + j)/2; low and hi are respectively
the lower bound and upper bound of the range S[i , j], i.e., two quantities such that
low ≤ S[i] and hi ≥ S[j]. The algorithm proceeds recursively, by applying the
same encoding step to both halves: S[i ,m] andS[m+ 1, j] by settinghi = S[m] − 1
for the left half and low = S[m] + 1 for the right half.

At the beginning, the encoding algorithm starts with i = 0, j = n− 1, low = S[0]
and hi = S[n − 1]. These quantities must be also known at the beginning of the
decoding phase. Apart from the initial lower and upper bound, all the other values
of low and hi are computed on-the-�y by the algorithm.

Figure 4 shows an encoding example for the same sequence of Figure 2. We can
interpret the encoding as a pre-order visit of the binary tree formed by the recur-
sive calls the algorithm performs. Therefore, the encoded elements in the example
will be, in order: 〈7, 2, 0, 0, 18, 5, 3, 16, 1, 7〉. Moreover, notice that whenever the al-

24

2. background and tools

3 4 7 13 14 15 21 3825 36 54 62
(7, 48)

21 3825 36 54 62
(18, 41)

3 4 7 13 14
(2, 7)

(5, 18) (16, 23)

(3, 13) (1, 15) (7, 7)

16

37 38 53 55 6222 25 35

(0, 2)

(0, 2)

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 6 7 8 9 10 11

0 1 3 4 6 7 9 10 11

7 9 111

37 38 54 6216 21 25 35

4 6

8 13 143 4 6

Figure 4: Binary Interpolative coding example for the same sequence of Figure 2, i.e.,
〈3, 4, 7, 13, 14, 15, 21, 25, 36, 38, 54, 62〉. In bold we highlight the middle element currently
encoded: above each element we report a pair, where the first value indicates the element
actually encoded and the second value the universe of representation.

gorithm works on a rangeS[i , j] of consecutive integers, such as the rangeS[3, 4] =
[13, 14] in the example, i.e., the ones for which the condition S[j] − S[i] = j − i
holds, it stops the recursion by emitting no bits at all. The condition is again de-
tected at decoding time and the algorithm implicitly decodes the run S[i],S[i] +
1,S[i]+ 2, . . . ,S[j]. This property makes BIC extremely space-e�cient whenever
the encoded sequences feature clusters of very close integers [168, 170, 149]. The
key ine�ciency of BIC is, however, the decoding speed which is highly a�ected
by the recursive nature of the algorithm.

2.2.9 Asymmetric numeral systems

Asymmetric Numeral Systems (ANS) is a family of entropy coders, originally devel-
oped by Jarek Duda [55]. ANS combines the excellent compression ratio of Arith-
metic coding with a decompression speed comparable with the one of Hu�man. It
is now widely used in commercial applications, like Facebook ZSTD, Apple LZFSE
and in the Linux kernel.

The basic idea of ANS is to represent a sequence of symbols with a natural num-
ber x . If each symbol s belongs to the binary alphabet Σ = {0, 1}, then append-
ing s to the end of the binary string representing x will generate a new integer
x′ = 2x + s . This coding is optimal whenever P(0) = P(1) = 1/2. ANS generalizes

25

2. background and tools

D1 = {house ,doд, red ,boy,people}
D2 = {doд,boy,people ,hunдry}
D3 = {people ,boy, red}
D4 = {hunдry,house ,people , sun, red}

(a)

boy → 〈1, 2, 3〉
doд → 〈1, 2〉
house → 〈1, 4〉
hunдry → 〈2, 4〉
people → 〈1, 2, 3, 4〉
red → 〈1, 3, 4〉
sun → 〈4〉

(b)

Table 3: In (a), a collection of four textual documents, represented as sets of terms and,
in (b), the corresponding inverted lists.

this concept by adapting it to a general distribution of symbols {ps}s∈Σ. In partic-
ular, appending a symbol s to x increases the information content from logx bits
to logx − logps = log(x/ps) bits, thus the new generated natural number will be
x′ ≈ x/ps .

2.3 Inverted indexes

Consider a collection of textual documents, where each document can be regarded
as being a (multi) set of terms, like the ones shown in Table 3a. Now, for each
distinct term t appearing in the collection we build the integer sequence St listing
in sorted order all the identi�ers of the documents (docIDs in the following) in
which the term appears. The sequence St is called the inverted list (or posting list)
of the term t and the collection of inverted lists for all the distinct terms is called
the inverted index. Table 3b shows the inverted index built for the textual collection
in Table 3a.

Inverted lists can store additional information about each term, such as the
set of positions in which the term appears in the documents (in positional in-
dexes) and the number of occurrences of the term in the documents (term fre-
quency) [175, 109, 31]. In this thesis we consider the docID-sorted version of the
inverted index, i.e., all inverted lists are monotonically increasing. Furthermore,
we ignore additional information about each term except the term frequencies,
which are stored in separate sequences. For example, consider the inverted list
boy → 〈1, 2, 3〉 in Table 3b and call fboy,k the number of times the term boy appears
in document k . Suppose that fboy,1 = 2, fboy,2 = 1 and fboy,3 = 1. Then the sequence
of the frequencies will be 〈2, 1, 1〉, which is not sorted by construction.

26

2. background and tools

The inverted index is the data structure at the core of nowadays large-scale
search engines, social networks and storage architectures [175, 109, 31] and, di�er-
ently from our toy example in Table 3, it stores million of documents. We mention
now some noticeable examples.

Classically, inverted indexes are used to support full-text search in databases [109].
Then, identifying a set of documents containing all the terms in a user query re-
duces to the problem of intersecting the inverted lists associated to the terms in
the query, as we are going to better see in the next subsection. Likewise, an in-
verted list can be associated to a user in a social network (e.g., Facebook) and stores
the sequence of all friend identi�ers of the user [44]. Moreover, database systems
based on SQL often precompute the list of row identi�ers matching a speci�c fre-
quent predicate over a huge table, in order to speed up the execution of a query
involving the conjunction of, possibly, many predicates [80, 139]. Also, �nding all
occurrences of twig patterns in XML databases can be done e�ciently by resort-
ing on an inverted index [27]. In recent years, a vast number of key-value stores
has emerged, e.g., Apache Ignite, Redis, In�nityDB, BerkeleyDB and many others.
Common to all such architectures is the organization of data elements falling into
the same bucket due to an hash collision: the list of all such elements is recorded,
which is nothing but an inverted list [47].

2.3.1 �ery processing

The inverted index owes its popularity to the e�cient resolution of queries, ex-
pressed as a set of terms {t1, . . . , tk} combined with a query operator. The sim-
plest operators are boolean AND and OR such that, for example, the query q =

AND(ti , tj)means that the index has to report all the docIDs of the documents con-
taining term ti and term tj . This operation ultimately boils down to intersecting the
two inverted lists Sti and Stj , because the docIDs belonging to the intersection of
the two lists are the ones corresponding to documents in which ti and tj co-occur.
Back to our example in Table 3, given the query q = AND(hunдry,doд), the index
has to fetch the inverted lists of the two terms, i.e., 〈2, 4〉 and 〈1, 2〉, and compute
their intersection. In this case, the intersection contains the docID 2 and, as we
can see in Table 3a, the document D2 is the only one containing both hungry and
dog. We can easily generalize the above example to an arbitrary number of query
terms, as well as with other query operators.

However, as already stated, the inverted lists manipulated by search engines are
very long and computing the intersection must be done e�ciently. This is espe-
cially true considering that million of users could be using the inverted index at the
same time (think of, for example, the Google search engine). For these reasons, an
e�cient algorithm for computing the intersection between two (or more) sorted

27

2. background and tools

integer sequences is of utmost importance. The e�ciency of this algorithm relies
on the query Successort (x), which returns the smallest integer z ∈ St such that
z ≥ x (see Section 2.1.2). In the context of inverted indexes, the Successor query
is often called NextGEQ (next Greater-then or EQual-to). The NextGEQ is used
because it permits to skip over the sequences to be intersected.

Suppose we have to compute AND(ti , tj) = Sti ∩ Stj , and suppose that Sti is
smaller than Stj . We search for the �rst docID x = Sti [0] in Stj by means of
NextGEQtj (x): if the docID z returned by the search is equal to x then it is a mem-
ber of the intersection and we can just repeat this search step for the next docID of
Sti ; otherwise z gives us the candidate docID to be searched next, indeed allowing
to skip the searches for all docIDs in between x and z. In fact, since we have that
z ≥ x , NextGEQtj (y) will be equal to z also for all x < y < z, thus none of such
docIDs can be a member of the intersection.

This strategy processes the two inverted list concurrently, keeping them aligned
by docID. This behaviour is known as document-at-a-time and is the one that we
will adopt in this thesis, since it is the most natural for docID-sorted indexes. An-
other popular strategy is, instead, term-at-a-time that scans each inverted list sep-
arately to build the results set.

The algorithm coded in Figure 5 illustrates what we have just explained for any
arbitrary number k of query terms. In particular, it returns the number of docIDs
shared between the inverted lists, rather than returning the set of docIDs them-
selves (that is, anyway, a simple extension). In the pseudo code we adopted the
convention of regarding a sequence as an object of a programming language and
use the dot notation obj.foo(args) to mean that the foo method is invoked on
the object obj with arguments args.

In many applications, it is also preferable to associate to each document match-
ing the query a score value, indicating the relevance of the document to the query.
This score is typically computed as a function of the term frequency in the docu-
ment and few other statistics. For example, a common relevance score is BM25 [141].
Furthermore, to limit the number of query results, only the k documents scoring
better are usually taken into account (top-k retrieval).

For example, WAND [25] is a popular strategy that augments the inverted index
by storing for each term its maximum impact to the score. More precisely, WAND
processes a query in phases by maintaining a priority queue storing the top-k doc-
uments seen so far along with a cursor for each term in the query scanning the
corresponding inverted list. During each phase, WAND estimates an upper bound
to the scores that can be reached by the documents currently pointed to by the cur-
sors. In this way, it is possible to either determine a new candidate to be inserted
in the priority queue or move forward one cursor, potentially skipping several
documents in its inverted list.

28

2. background and tools

1 intersect({S0, . . . ,Sk−1})
2 results = 0
3 candidate = S0[0]
4 i = 1
5 while candidate < # o f documents
6 for ; i < k ; i = i + 1
7 z = Si .NextGEQ(candidate)
8 if z ! = candidate
9 candidate = z

10 i = 0
11 break

12 if i == k
13 results = results + 1
14 candidate = S0.Next()
15 i = 1

16 return results

Figure 5: The intersection algorithm.

2.3.2 Compression

Because of the huge quantity of indexed documents and heavy query loads, com-
pressing the inverted index has become indispensable because, as motivated in
Chapter 1, it can introduce a two-fold advantage over a non-compressed represen-
tation: feed faster memory levels with more data and, hence, speed up the query
processing algorithms. As a result, the design of algorithms that compress the in-
dex e�ectively while maintaining a noticeable decoding speed is an old problem in
Computer Science, that dates back to more than 50 years ago, and still a very active
�eld of research.

Many representation for inverted lists are known, each exposing a di�erent com-
pression ratio vs. query processing speed trade-o�. All the techniques we have
described in Section 2.2 can be used to compress the inverted lists and, as a matter
of fact, most of them were proposed exactly for this purpose. Therefore, we point
the reader to Section 2.2 for a detailed overview of such mechanisms.

In particular, since we are dealing with inverted lists that are monotonically in-
creasing by construction, we can subtract from each element the previous one (the
�rst integer is left as it is), making the sequence be formed by integers greater
than zero known as delta-gaps (or just d-gaps). This popular delta encoding strat-
egy helps in reducing the number of bits for the codes. Most of the literature on
inverted index compression assumes this sequence form.

29

2. background and tools

Here, we mention an important property that the inverted lists exhibit and that
most of the encoders described in Section 2.2 exploit to achieve good compression
e�ectiveness. Indeed some of the proposals described in this thesis strictly depends
on such property.

Property 1 — Inverted lists often contain clusters of close docIDs, e.g., runs of
consecutive integers, that are far more compressible than highly scattered regions.

The reason for the presence of such clusters is that the indexed documents them-
selves tend to be clustered, i.e., there are subsets of documents sharing the very
same set of terms. As a meaningful example, consider all the Web pages belonging
to a certain domain (e.g., all the pages hosted by di.unipi.it): since their topic
is likely to be the same, they are also likely to share a lot of terms.

Consequently, the compressors bene�t a lot from docID-reordering strategies
that focus on re-assigning the docIDs in order to form larger clusters of docIDs. An
amazingly simple strategy, but very e�ective, for Web pages is to assign identi�ers
to documents according to the lexicographical order of their (reversed) URLs [148].
A recent approach has instead adopted a recursive graph bisection algorithm to
�nd a suitable re-ordering of docIDs [53]. In this model, the input graph is a bi-
partite graph in which one set of vertices represents the terms of the index and
the other set represents the docIDs. A graph bisection identi�es a permutation of
the docIDs and, thus, the goal is the one of �nding, at each step of recursion, the
bisection of the graph which minimizes the size of the graph compressed using
delta-encoding.

2.4 N-Gram language models

A language model (LM) is a probability distribution P(W) that describes how often
a stringwn

1 = w1 · · ·wn drawn from the setW appears in some domain of interest.
The primary goal of a language model is to compute the probability of the word
wn given its preceding history of n − 1 words, called the context, that is: compute
P(wn |wn−1

1) for all wn
1 ∈ W. Using informal words, we would say that the goal is

to predict the “next” word following a given context.
In what follows, let us indicate with w j

i the sequence of words wi · · ·wj , for any
1 ≤ i ≤ j, that is equal to ε , the empty string, whenever i < j < 0.

The conditional probability P(wn |wn−1
1) is equal to

∏n
k=1 P(wk |wk−1

1), i.e., all con-
texts of length 1, 2, . . . ,n − 1 contribute to the �nal computed value. Therefore,
computing such probability exactly is ine�cient in both time and memory require-
ments when n is large. To make this task feasible and e�cient, n-gram language
models are adopted.

30

2. background and tools

Ann-gram is a sequence ofn tokens. A token can be either a single character or a
word, the latter intended as a sequence of characters delimited by a special symbol,
e.g., a whitespace character. Unless otherwise speci�ed, throughout the thesis we
consider datasets of n-grams consisting of words. Since we impose that 1 ≤ n ≤ N ,
whereN is a small constant, (e.g., typicallyN = 5), dealing with strings of this form
permits to work with a context of at most N − 1 preceding words. This ultimately
implies that the aforementioned probability P(wn |wn−1

1) =
∏n

k=1 P(wk |wk−1
1) can

be approximated with
∏n

k=1 P(wk |wk−1
k−N−1).

Now, the way each N -gram probability P(wk |wk−1
k−N−1) is computed depends on

the chosen language model.

Two fundamental problems are central to the handling of large and sparse n-
gram language models:

• estimation, that is computing the probability distribution of the strings from
a large textual source; and

• indexing, that is compressing the extracted n-gram strings and associated
satellite data without compromising their retrieval speed.

Performing these two tasks e�ciently is fundamental for several applications
in the �elds of Information Retrieval, Natural Language Processing and Machine
Learning, such as: auto-completion in search engines [14, 113, 112], spelling correc-
tion [97], similarity search [96], identi�cation of text reuse and plagiarism [144, 81],
automatic speech recognition [90] and machine translation [76, 122], to mention
some of the most notable.

For example, query auto-completion is one of the key features that any modern
search engine o�ers to help users formulate their queries. The objective is to pre-
dict the query by saving keystrokes: this is implemented by reporting the top-k
most frequently-searchedn-grams that follow the words typed by the user [14, 113,
112]. The identi�cation of such patterns is possible by traversing a data structure
that stores the n-grams as seen by previous user searches. Given the number of
users served by large-scale search engines and the high query rates, it is of utmost
importance that such data structure traversals are carried out in a handful of mi-
croseconds [90, 14, 43, 113, 112]. Another noticeable example is spelling correction
in text editors and web search. In their basic formulation, n-gram spelling correc-
tion techniques work by looking up every n-gram in the input string in a pre-built
data structure in order to assess their existence or return a statistic, e.g., a fre-
quency count, to guide the correction [97]. If the n-gram is not found in the data
structure it is marked as a misspelled pattern: in such case correction happens
by suggesting the most frequent word that follows the pattern with the longest
matching history [90, 97, 43].

31

2. background and tools

2.4.1 Estimation

Several language models have been proposed in the literature, such as Laplace,
Good-Turing, Katz, Jelinek-Mercer, Witten-Bell and Kneser-Ney (see [36] and ref-
erences therein for a complete description and comparison). For a n-gram backo�-
smoothed language model, the probability of wn with context wn−1

1 is assigned
according to the following recursive equation

P(wn |wn−1
1) =

P(wn |wn−1

1) if n-gram wn
1 ∈ W

b(wn−1
1)P(wn |wn−1

2) otherwise

that is: if the model has enough information we use the full distribution P(wn |wn−1
1),

otherwise we backo� to the lower-order distribution P(wn |wn−1
2) with penalty

b(wn−1
1).

Clearly, the bigger the language model the more accurate the computed probabil-
ity will be. In other words, predictions will be more accurate when more n-grams
are used to estimate the probability of a word following a given context. Therefore,
we would like to handle as many n-grams as possible: Chapter 8 and 9 describe
techniques to handle several billions of n-grams.

The n-gram strings are extracted from text, from any of its di�erent incarna-
tions, e.g., web pages, books, code fragments and scienti�c articles, by adopting
a sliding-window approach. A window of n words, for 1 ≤ n ≤ N , slides over a
text counting the number of times such n words appear in the text. This counting
process is usually implemented using a hash data structure, whose keys are the dis-
tinct n-gram strings and the values are the accumulated frequency counts: if the
extracted n-gram is not already present in the table, a new entry is allocated with
associated value 1; otherwise the corresponding value is incremented by 1. This
process is repeated for di�erent widow sizes over huge text corpora: this gives
birth to colossal datasets in terms of number of distinct strings.

As a concrete example, consider Table 4: we have already more than 250 thou-
sands distinct grams for 164 pages written in English. Applying this process on
approximately 8 million books, or 6% of all books ever published [105], resulted in
a huge dataset of more than 11 billion N -grams (see also Table 28 at page 138).

32

2. background and tools

n # of n-grams

1 8761
2 38,900
3 61,516
4 70,186
5 73,187

total 252,550

Table 4: Number of distinct n-grams in the Agner Fog’s manual Optimizing so�ware in
C++ [62].

2.4.2 Indexing

In this subsection we discuss the classic data structures used to represent e�-
ciently large n-gram datasets, highlighting the advantages/disadvantages of these
approaches in relation to the structural properties that n-gram datasets exhibit.

Two di�erent data structures are mostly used to storen-grams datasets: tries [63]
and hash tables [102].

Tries. A trie is a tree data structure devised for e�cient indexing and search of
string dictionaries, in which the common pre�xes shared by the strings are repre-
sented once to achieve compact storage. This property makes this data structure
useful for storing the n-gram strings in compressed space.

In this case, each constituent word of a n-gram is associated to a node in the
trie and di�erent n-grams correspond to di�erent root-to-leaf paths. These paths
must be traversed to resolve a query, which looks up for a string and, if present,
retrieves the associated satellite value, e.g., a frequency count. Conceptually, a trie
implementation has to store a triplet for any node: the associated word, satellite
value and a pointer to each child node. As n is typically very small and each node
has many children, tries are shallow and wide. Therefore, these are implemented as
a collection of (few) sorted arrays: for each level of the trie, a separate array is built
to contain all the triplets for that level, sorted by the words. In this implementation,
a pair of adjacent pointers indicates the sub-array listing all the children for a word,
which can be e�ciently inspected by binary search.

Hash tables. Hashing is another way to implement associative arrays: for each
value of n from 1 to N a separate hash table stores all grams of order n. At the
location indicated by the hash function the following information is stored: a �n-
gerprint value to lower the probability of a false positive (typically the 4 or 8-byte

33

2. background and tools

hash of the n-gram itself) and the satellite data for the n-gram. This data struc-
ture permits to access the speci�ed n-gram data in expected constant time. Open
addressing with linear probing is usually preferred over chaining for its better lo-
cality of accesses.

Tries are usually designed for space-e�ciency as the formed sorted arrays are
highly compressible. However, retrieval for the value of a n-gram involves exactly
n searches in the constituent arrays. Conversely, hashing is designed for speed
but sacri�ces space-e�ciency since its keys, along with their �ngerprint values,
are randomly distributed and, therefore, incompressible. Moreover, hashing is a
randomized solution, i.e., there is a non-null probability of retrieving a frequency
count for an-gram not really belonging to the indexed corpus (false positive). Such
probability equals 2−b , where b indicates the number of bits dedicated to the �n-
gerprint values: larger values of b yield a smaller probability of false positive but
also increase the space of the data structure.

34

3 Integer Dictionaries in Compressed Space

The e�cient maintenance of a dynamic set on n integer keys is among the most
studied problems in Computer Science (see the introduction to parts III and V
of [42]). Many solutions for this problem are known to require an optimal amount
of time per operation within polynomial space. For example, any self-balancing
search tree data structure, e.g., AVL or Red-Black tree, solves the problem optimally
in the comparison model [42], by implementing all operations in O(logn) worst-
case time and using linear space. However, by exploiting the fact that the stored
integers are drawn from a bounded universe of sizeu ≥ n, the problem is known to
admit more e�cient solutions in terms of asymptotic time complexity while still
retaining linear space [42, 136, 157, 165, 65, 66]. In this case, classical examples
include the van Emde Boas tree [157, 158, 159], x/y-fast trie [165] and the fusion
tree [66], that was the �rst data structure able to surpass the information-theoretic
lower bound ofO(logn), by exhibiting an improved running time ofO(logw n) per
operation on a RAM with word size w = Θ(logu) bits. Some e�orts have been
spent in trying to reduce the space requirements of the representation [75, 108, 142]
but known compressed solutions do not closely match the information-theoretic
lower bound of the underlying integer set. Whether time optimality can be pre-
served in the compressed space regime is still an interesting open problem. There-
fore, the problem we consider in this chapter is the one of representing in com-
pressed space a dynamic ordered set S of n integer keys drawn from a universe of
size u ≥ n.

In this chapter we show that it is possible to preserve the optimal bounds for the
operations under almost optimal space requirements. The key ingredient of our
data structures is the Elias-Fano representation of monotone integer sequences [56,
58] that we have described in details in Section 2.2.6. Here, we just recall that Elias-
Fano encodes a monotone integer sequence S(n,u) in EF(S(n,u)) ≤ ndlog u

n e +
2n bits of space and supports the Access operation in O(1) worst-case time. The
query Predecessor(x) = max{y ∈ S : y < x} is supported in O(1 + log u

n) worst-
case time. Throughout the paper we adopt the classical nomenclature and discuss
the Predecessor query as it is well known that the twin Successor query can be
answered in a similar way.

The natural question is whether it is possible to extend the static Elias-Fano rep-
resentation to dynamic scenarios, in which integers can also be inserted (deleted)
in (from) S. To this end, we consider the case in which the n integers of S are
drawn from a polynomial universe of size u = nγ , for any γ = Θ(1). This is the clas-

35

3. integer dictionaries in compressed space

sical operational setting considered by Fredman and Saks [65] in the so-called List
Representation Problem, i.e., how to maintain S subject to the operations Access,
Insert and Delete.

In order to characterize the asymptotic complexity of the data structures de-
scribed in the paper and review the literature, we use the RAM model as described
in Section 2.1.1 that is: we consider words of sizew = Θ(logu) bits and allow arith-
metic operations onw bits inO(1) time. We also adopt the usual trans-dichotomous
assumption [66], making w grow with n as needed.

Our contributions. In this chapter we show how to represent the sequence
S(n,u) with EF(S(n,u)) + o(n) bits of space, hence introducing a sublinear space
overhead with respect to its static Elias-Fano representation, and how:

• static predecessor queries can be supported in O(min{1 + log u
n , log logn})

worst-case time (note that the �rst term of the bound, i.e., O(1 + log u
n), is

optimal for polynomial universes of size u = nγ when γ is 1 ≤ γ ≤ 1 +
log logn/logn);

• to maintain S(n,u) in an append-only fashion, i.e., by inserting the integers
in sorted order in constant time;

• to maintain S(n,u) in a fully dynamic way, supporting random access in
O

(
logn

log logn

)
worst-case, insertions and deletions in O

(
logn

log logn

)
amortized and

predecessor in O(min{1 + log u
n , log logn}) worst-case time.

The mentioned time bounds are optimal [65, 134, 136].

3.1 Related work

We organize the discussion of the related work in two parts: the �rst concerns the
review of the results about the static predecessor problem, whereas the second one
describes the results closest to our work for the maintenance of a dynamic integer
set.

The static predecessor problem. We could solve the static predecessor problem
inO(1)worst-case by storing the results to every possible query using perfect hash-
ing [64] in O(u) words of space. In order to not trivialize the problem, we assume
to have a polynomial space budget, i.e., we deal with a data structure occupying
O(nO(1)) memory words.

Ajtai [7] proved the �rst ω(1) lower bound for polynomial space, claiming that
∀w , ∃n that gives Ω(

√
logw) query time. Only ten years later Beame and Fich

36

3. integer dictionaries in compressed space

[15, 16] proved two strong bounds for any cell-probe data structure1. They proved
that ∀w , ∃n that gives Ω(logw/log logw) query time and that ∀n, ∃w that gives
Ω(

√
logn/log logn) query time. They also gave a static data structure achieving

O(min{logw/log logw ,
√

logn/log logn}) which is, therefore, optimal. Building
on a long line of research, Pǎtraşcu and Thorup [134, 135] �nally proved that

Θ
(

min
{

logw n, log w − logn
a

,
log w

a

log(a
logn log w

a)
,

log w
a

log(log w
a /log logn

a)
})

(3)

is an optimal space/time trade-o� for a static data structure taking m = n2aw bits
of space, where a = log m

n − logw . This lower bound holds for cell-probe, RAM,
trans-dichotomous RAM, external memory and communication game models. The
�rst branch of the trade-o� indicates that, whenever we are in RAM or external
memory with one integer �tting in one memory word, fusion trees [66] are optimal,
as these require O(logw n) = O(logn/logw) query time. The second branch holds
for polynomial universes, i.e., whenever u = nγ , for any γ = Θ(1). In such case
we have that w = Θ(logu) = γ logn, therefore y-fast tries [165] and van Emde
Boas trees [157, 158, 159] are optimal with query time O(log logn). Finally, the
last two branches of the trade-o� treat the case for super-polynomial universes. In
particular, the third branch matches the lower bound by Beame and Fich [15, 16]
that requires nO(1) words of space. Finally, the fourth branch improves the latter
space occupancy, showing that n1+1/exp(log1−ϵ logu) words are su�cient for any ϵ >
0.

Dynamic problems. We now review the most important results concerning the
maintenance of a dynamic set of integers, following the chronological order of
their proposal. We will reuse some of these results later on in this chapter.

The van Emde Boas tree is a recursive data structure that maintains S in O(u)
words of space and supports the operations: Search. which tests whether a given
integer is present or not in S, Insert, Delete and Predecessor all inO(logw) worst-
case time [157, 158, 159]. Willard [165] improved the space bound to O(n) words
by introducing the y-fast trie that supports Search and Predecessor queries in
O(logw) worst-case time, Insert and Delete in amortized O(logw) time.

The work by Fredman and Saks [65] is useful to understand which lower bounds
apply to the problem we consider in this chapter. They proved that the List Rep-
resentation Problem, i.e., maintaining S under Access, Insert and Delete, can be
solved in Ω(logn/log logn) amortized time per operation ifw ≤ logγ n for some γ .

1In the cell-probe computational model, described by Yao [171], computation is for free given that
we only take into account word reads. It is not a very realistic model of computation, but it is
useful to prove lower bounds because it is a stronger model than RAM and trans-dichotomous
RAM.

37

3. integer dictionaries in compressed space

No space bound is posed on such problem. Their lower bound does not apply to dy-
namic predecessor queries and holds for the cell-probe computational model [171].
Extending the result to the dynamic predecessor problem, they proved that any
cell-probe data structure representing S using (logu)O(1) bits per memory cell and
nO(1) worst-case time for insertions, requires Ω(

√
logn/log logn)worst-case query

time. They also proved that on a RAM, the dynamic predecessor problem can be
solved in O(min{log logn · logw/log logw ,

√
logn/log logn}), using O(n) words.

This bound was matched by Andersson and Thorup [8] with the so-called expo-
nential search tree. This data structure has an optimal bound ofO(

√
logn/log logn)

worst-case time for searching and updating S, using polynomial space.
Raman, Raman, and Rao [138] also addressed the List Representation Problem2

for arrays of length n by providing two solutions. Their �rst data structure sup-
ports Access in O(1) and Insert/Delete in O(nϵ) worst-case time for any �xed
positive ϵ < 1; the second data structure implements all the three operations in
O(logn/log logn) amortized time. Both data structures use o(n) bits of redundancy
and the time bounds are optimal.

Fredman and Willard [66] showed that dynamic predecessor queries can be an-
swered in O(logn/log logn) time by using the fusion tree. This data structure is
a B-tree with branching factor B = Θ(logn) that stores in each internal node a
fusion node, a small data structure able of answering predecessor queries in O(1)
for sets up to w1/5 integers. Updating a fusion node takes, however, O(B4) time.
The overall space of the data structure is O(n) words. The work by Pǎtraşcu and
Thorup [136] has recently shown that it is possible to “dynamize” the fusion node,
in order to support Insert and Delete in O(1). As a result, they have proposed a
data structure representing S in O(n) words and optimal [15, 16] O(logn/logw)
running time for the following operations: Insert, Delete, Predecessor, Successor,
Rank and Select. Pǎtraşcu and Thorup [134] also proved that y-fast tries and van
Emde Boas trees have an optimal query time for the dynamic predecessor problem
too, as long as polynomial universes are considered.

We conclude this section by mentioning few additional results, that will be use-
ful in the following. Bille et al. [20] recently combined the static solution of De-
maine and Pǎtraşcu [51] with the one by Pǎtraşcu and Thorup [136] to support
dynamic pre�x sums over an array of size n in optimal O(logn/log(w/δ)) time per
operation and linear space, where δ is the number of bits needed to encode the
quantity that we sum to the elements of the array.

Though not devised for integer sets, the extended CRAM (Compressed Random
Access Memory) data structure described by Jansson, Sadakane, and Sung [89] al-
lows a string S of length n to be stored using its k-th order empirical entropy,

2In their paper [138], the authors refer to the List Representation Problem of Fredman and Saks
[65], as the Dynamic Array Problem. Also, the operation Access is named Index.

38

3. integer dictionaries in compressed space

nHk(S), plus a redundancy of O(n logσ (k logσ + (k + 1) log logn)/logn) bits for
every 0 ≤ k < logσ n, where σ is the size of the alphabet. Insertions/deletions of
characters and Access to any consecutive logσ n bits are all supported in optimal
O(logn/log logn) worst-case time. We will exploit the part of this work dedicated
to the memory management (Appendix A). Finally, Grossi, Raman, Rao, and Ven-
turini [74] improved the previous space bound by using nHk(S)+O

(
n

log logn
logσ n

)
bits

and maintaining the asymptotic optimality for all operations.
The paper by Navarro and Nekrich [118] illustrates a data structure supporting

Access, Rank and Select queries, as well as insertions/deletions of symbols of S
in optimal O

(
logn

log logn

)
time and taking nH0(S) +O(n + σ (logσ + log1+ϵ n)) bits of

space. Of particular interest for our purposes, is the data structure described in
Appendix A.1 concerning the organization of data in small blocks. The high-level
idea is to maintain a tree of constant height with node degree logδ n, for some
0 < δ < 1, and leaves containing o(logn) elements each. As each internal node
can �t in one machine word, the tree supports basic search operations inO(1) time
by using a small pre-computed table. In order to handle small blocks of sorted
integers, we will make use of a similar data structure in Section 3.4.

3.2 Static predecessor qeries in optimal time

In this section we are interested in determining the optimal running time of the
query Predecessor for the Elias-Fano space bound of EF(S(n,u)) ≤ ndlog u

n e + 2n
bits in Equation 2. As already mentioned, our focus is on polynomial universes, i.e.,
u = nγ for any γ = Θ(1), for which the second branch of the time/space trade-o�
in Equation 3 is optimal.

The following theorem shows that adding o(n) bits of redundancy to EF(S(n,u))
is enough to support Predecessor queries in optimal time.

Theorem 1 — There exists a data structure representing an ordered set S(n,u) of
n integers drawn from a polynomial universe of size u = nγ , for any γ = Θ(1), that
takes EF(S(n,u)) + o(n) bits of space and supports: Access in O(1) worst-case and
Predecessor queries in optimal O(min{1 + log u

n , log logn}) worst-case time.

Discussion. The parameter a in (3) is equal to log(dlog u
n e + 2) for our space budget

and, given that w = Θ(logu) = γ logn bits, the second branch of the trade-o�
becomes

log w − logn
a

= log (γ − 1) logn
log(d(γ − 1) logne + 2) = O(log logn),

39

3. integer dictionaries in compressed space

that shows that the running time of Predecessor fory-fast tries and van Emde Boas
trees is optimal within the Elias-Fano space bound.

However, such bound ofO(log logn) only depends on n, whereas the plain Elias-
Fano bound for Predecessor ofO(1+ log u

n) depends on both n and u. On the other
hand, the relation u = nγ relates the two parameter by means of the constant
γ = Θ(1). It is clear that varying γ only one of the two bounds is optimal. Indeed,
comparing 1 + log u

n with log logn, we have that 1 + log u
n ≤ log logn whenever

u ≤ n
2 logn, i.e., when nγ−1 ≤ 1

2 logn. From this last condition we derive that the
plain Elias-Fano is faster than van Emde Boas whenever 1 ≤ γ ≤ 1+ log logn

logn . In this
case the static Elias-Fano representation does not need to be augmented. When,
instead, γ > 1 + log logn

logn , the query time O(log logn) is optimal and exponentially
better than plain Elias-Fano. Therefore, O(min{1+ log u

n , log logn}) is an accurate
characterization of the Predecessor time bound, within EF(S(n,u)) + o(n) bits of
space.

Data structure. We are now left to describe a data structure that matches the
bound of O(log logn) and uses EF(S(n,u)) + o(n) bits of space. We divide S into
dn/log2ue blocks of log2u integers each (the last block may contain less integers).
We can solve Predecessor queries in a block in O(log logu) = O(log logn) time by
applying binary search. Now, we need a data structure on top of S that allows us
to identify the proper block in O(log logn) time.

Call the �rst element of a block its lower bound. We attach to S an y-fast trie
storing the lower bounds of the blocks. More precisely, each leaf in the y-fast trie
holds the lower bound of a block and its position in S. The integers stored in the
y-fast trie are dn/log2ue, therefore the space of the trie isO(n

log2 u
logu) = o(n) bits.

To identify the block where the predecessor of x is located, we answer a partial
Predecessor(x) query among the integers stored in the y-fast trie in O(log logn)
worst-case time. The position p in S of the block’s lower bound, associated to
the identi�ed partial answer, indicates that the search must continue in the block
S[p, min{p + log2u,n}).

Observe again that the time bound for Predecessor is always at mostO(log logn)
except when 1 ≤ γ ≤ 1 + log logn

logn : in this case, the plain Elias-Fano representation
beats the time bound of O(log logn). Therefore, in what follows we report the
bound as O(min{1 + log u

n , log logn}) but discuss the case for γ > 1 + log logn
logn .

40

3. integer dictionaries in compressed space

3.3 Extensible representation

When the integers are inserted in sorted order, we obtain an e�cient extensible
representation because these can only be added at the end ofS by using an Append
operation. This is a scenario of practical interest as it is the operational setting of
append-only inverted indexes, e.g., the one of Twitter [29].

In this section we aim at illustrating the following theorem.

Theorem 2 — There exists a data structure representing an ordered set S(n,u) of
n integers, drawn from a polynomial universe of size u = nγ , for any γ = Θ(1),
that takes EF(S(n,u)) + o(n) bits of space and supports: Append in O(1) amor-
tized, Access in O(1) worst-case and Predecessor queries in optimal O(min{1 +
log u

n , log logn}) worst-case time.

Discussion. We maintain an array B of sizem in which integers are appended un-
compressed. This array acts as a bu�er, which is periodically encoded with Elias-
Fano in Θ(m) time and overwritten. Each compressed representation of the bu�er
is appended to an array of blocks encoded with Elias-Fano. More precisely, when
B becomes full we encode with Elias-Fano its corresponding di�erential bu�er, i.e.,
the bu�er whose values are B[i] − B[0], 0 ≤ i < m. Each time the bu�er is com-
pressed, we append in another array C the pair (base , low) = (B[0], dlog(B[m −
1]/m)e), i.e., the bu�er lower bound value (base) and the number of bits (low)
needed to encode the average gap of the Elias-Fano representation of the bu�er.

Space analysis. Apart from the space taken by the compressed Elias-Fano blocks,
the space of the data structure is given by the following contributions:

• (m + 1) logu bits for the bu�er B of uncompressed integers and its size;

• O(nm logn) bits for pointers to rank/select data structures, low and high bit
arrays;

• O(nm logu) bits for the array C .

Summing up, the redundancy isO((m + n
m + 1) × logu) bits. We setm = log2u and,

as done in Section 3.2, we index the bu�er lower bounds in an y-fast trie. More
precisely, each leaf of the fast trie stores a bu�er lower bound and the index of
the compressed block to which the lower bound belongs to. The values stored
in the y-fast trie are dn/log2ue, thus taking o(n) bits of space. The redundancy
O((m + n

m + 1) × logu) bits becomes o(n) bits for n = ω(log3u), which is already
satis�ed by requiring that γ = Θ(1).

41

3. integer dictionaries in compressed space

To analyze the space taken by the representation of the blocks, we use the prop-
erty that splitting a block encoded with Elias-Fano into two sub-blocks never in-
creases the cost of representation of the block. This is possible because each sub-
block can be encoded with a universe relative to the sub-block, which is smaller
than the original block universe, by subtracting to each integer the lower bound
(�rst value) of the sub-block3. Doing so, we say that each sub-block has been “re-
mapped” relatively to its universe. The following property can be easily extended
to work with an arbitrary number of splits.

Property 2 — Given a monotone sequence S of n integers, let S[i , j) indicate the
range of S delimited by endpoints i and j. Then for any i , k and j such that 0 ≤
i < k < j < n, we have that EF(S[i ,k)) + EF(S[k , j)) ≤ EF(S[i , j)).

Proof. Let m and u be respectively size and universe of the sub-sequence S[i , j),
and, similarly, letm1,m2,u1,u2 be the sizes and universes of the two sub-sequences
S[i ,k) and S[k , j) respectively. We have that m = m1 +m2 and u = u1 + u2.
From Section 2.2.6, we know that EF(S[i , j)) takes mϕ +m + d u2ϕ e bits. Similarly
EF(S[i ,k)) = m1ϕ1 +m1 + d u1

2ϕ1 e bits and EF(S[k , j)) = m2ϕ2 +m2 + d u2
2ϕ2 e bits.

EF(S[i ,k)) and EF(S[k , j)) are minimized by settingϕ1 = blog u1
m1
c andϕ2 = blog u2

m2
c

respectively [56], therefore, by replacingϕ1 andϕ2 withϕ, we have that EF(S[i ,k))+
EF(S[k , j)) ≤m1ϕ +m2ϕ +m1 +m2 + du1

2ϕ e + d
u2
2ϕ e =mϕ +m+ d u2ϕ e = EF(S[i , j)). �

The above property guarantees that the space taken by the blocks encoded with
Elias-Fano can be safely upper bounded by EF(S(n,u)) so that the overall space of
the data structure is at most EF(S(n,u)) + o(n) bits.

Operations. The operations are supported as follows. Since we compress the
bu�er each time it �lls up (by taking Θ(m) time), Append is performed in O(1)
amortized time. Appending new integers in the bu�er accumulates a credit of
O(log2u) which pays (by a large margin) the amortized cost O(log logu) of insert-
ing a bu�er lower bound into the y-fast trie. To Access the i-th integer, we retrieve
the element x in position i − k ×m from the compressed block of index k = b im c.
This is done in O(1) worst-case time, since we know how many low bits are re-
quired to perform the access by reading C[k].low . We �nally return the integer
x +C[k].base . Predecessor queries are supported similarly as in the description of
Theorem 1. Given the integer x , we �rst resolve a partial Predecessor(x) query in
the y-fast trie to identify the index k of the compressed block in which the prede-
cessor is located. Then we returnC[k].base +Predecessor(x −C[k].base) by binary
searching the block of index k in O(log logu) = O(log logn) worst-case time.

3Or by subtracting the upper bound (last value) of the preceding sub-block. In this chapter, we
prefer to subtract the lower bounds because it slightly simpli�es the design of the data struc-
tures.

42

3. integer dictionaries in compressed space

Further considerations. From Theorem 2, the following lemma easily follows.

Lemma 1 — There exists a data structure representing an ordered set S(n,u) of
n = ω(log2u) integers drawn from a universe of sizeu that takes EF(S(n,u))+o(n)
bits of space and supports Append and Access operations in O(1) worst-case time.

Without using the y-fast trie we are able to achieve a worst-case running time
for the Append operation in Lemma 1 by using a classical de-amortization argu-
ment (note that, however, Predecessor queries are not supported in optimal time
anymore). We maintain two bu�ers, B1 and B2, instead of only one. When one is
full we use the other to store the elements that must be appended. Suppose B1 is
full. For each of the successive m Append operations, we compress one element
from B1 and append the new integer in B2. These two steps requireO(1)worst-case
time each.

3.4 Dynamic representation

In this section we describe how to exploit the space e�ciency of the Elias-Fano rep-
resentation in order to obtain a compressed dynamic data structure that supports
random access, insertions, deletions and predecessor queries in optimal time, tak-
ing EF(S(n,u)) + o(n) bits of space.

As already discussed in the related work, Fredman and Saks [65] proved that
O

(
logn

log logn

)
amortized time is optimal for any data structure maintaining a set of

integers subject to Access, Insert and Delete (List Representation Problem). Their
result holds when w ≤ logγ n for some γ , which covers the case for polynomial
universes, that is, u = nγ , since γ ≤ logγ−1 n, for any γ ≥ 1 and n ≥ 2. We
operate, therefore, in the same setting as Theorems 1 and 2, considering integers
drawn from a polynomial universe of size u = nγ , for any γ = Θ(1). In this set-
ting, Pǎtraşcu and Thorup [134] showed that the O(log logn) query time of y-fast
tries and van Emde Boas trees is optimal for the dynamic predecessor problem too.

We will now show the following theorem which claims we can attain to the
optimal operational bounds mentioned above in compressed space.

Theorem 3 — There exists a data structure representing an ordered set S(n,u) of
n integers drawn from a polynomial universe of size u = nγ , for any γ = Θ(1), that
takes EF(S(n,u)) + o(n) bits of space and supports: Access in O(logn/log logn)
worst-case; Insert and Delete in O(logn/log logn) amortized; Predecessor queries
in O(min{1 + log u

n , log logn}) worst-case. These time bounds are optimal.

In what follows, we �rst describe the layout of the data structure, then analyse
its space and time complexities.

43

3. integer dictionaries in compressed space

3 4 2 3 5 3 4 2 3

3 7 9 3 8 11 4 6 9

9 20 29
2 3 3

a

b c d

upper
lower

Figure 6: A graphical example of the tree data structure described in Lemma 2, indexing a
collection C of 9 sorted blocks, represented as gray rectangles. The numbers in the blocks
indicate their sizes. The number of integers stored in the sub-tree rooted in the (only)
internal node a of the example are, respectively, 9, 11 and 9, which are kept in prefix sums
as the sequence 〈9, 20, 29〉 and stored in the lower part of the node. For each child, we
also store the pointer (dashed arrow) to the right-most block indexed in its sub-tree and
its size. In the example, this information is stored in the upper part of the node a: the
sequence of the children sizes is 〈2, 3, 3〉. The leaves of the tree (nodes b, c and d in the
example) store, instead, the sizes of the blocks in prefix sums and pointers to the blocks.

3.4.1 A basic tool: sorted blocks in succinct space

We begin our description by showing how to handle a dynamic collection of mini
blocks in succinct space, which is a key tool to obtain the full dynamic data struc-
ture. This result builds on an idea from [118], Appendix A.1.

Let C be a collection of k = O(polylogn) blocks of sorted integers, with the
following properties. The blocks of C form a total order, i.e., uj ≤ fj+1, for all
j = 1, . . . ,k − 1, where fj and uj indicate, respectively, the �rst and last element of
the j-th block in the total order. Each block supports random access to its elements
and is of size Θ(b) = ρb with 1

2 ≤ ρ ≤ 2 and b = O(polylogn).
Lemma 2 — The total order of the blocks of C can be maintained by using a data
structure that takes O(polylogn × log logn) bits of space and supports the follow-
ing operations in O(log logn) worst-case time: Search(x) ,which returns a pointer
to the block containing the integer x ; Access(i), which returns the i-th integer of
the total order; Insert and Delete of a block.

Data structure. Pointers of O(log logn) bits to blocks are stored in the leaves of
a τ -ary tree T , with τ = Θ(logσ n) for some 0 < σ < 1. Given that we have
O(polylogn) leaves, the height of T is constant and equal toO(1/σ). Therefore, T
operates as a B-tree, in which internal nodes have Θ(τ) = ρτ children.

44

3. integer dictionaries in compressed space

Logically, we divide the information stored at each internal node of the tree into
two levels of representation. For each of the two levels we store Θ(τ) pairs, where
the i-th pair maintains information about the sub-tree rooted in the i-th child. The
pairs are stored following the order of the upper bounds of the blocks indexed in
the sub-trees rooted in the node’s children. In the lower level, each pair contains a
pointer to the sub-tree rooted in the child and the size of such sub-tree. The Θ(τ)
children sizes are kept in pre�x sums to enable binary search. In the upper level,
each pair contains a pointer to the right-most block indexed in the sub-tree rooted
in its child and the size of such sub-tree. Clearly, each leaf only stores the lower
level. Refer to Figure 6 for a pictorial example.

Space analysis. Each node usesO(τ ×(log logn+ log polylogn)) = O(τ log logn) =
o(logn) bits, thus �tting in (less than) a machine word. The space taken by whole
data structure is, therefore, O(τO(1/σ) log logn) = O(polylogn × log logn) bits.

Operations. To support Search(x), i.e., determining the block where the integer x
is comprised, we percolate T , locating the correct child at each node inO(logτ) =
O(log logn) by binary searching on blocks’ upper bounds. Speci�cally, if the upper
bounds of the i-th block is needed for comparison for some 1 ≤ i ≤ Θ(τ), we access
the block following the pointer (to the right-most block) of the i-th pair stored in
the upper level of the node and we retrieve the upper bound inO(1), given that we
also know the size of the block.

When we have to insert (delete) an integer, we identify the proper block of the
total order in (from) which the integer must be inserted (deleted) in O(log logn)
time (as described for the Search operation) and update the pairs along the path
from the root in constant time, as these pairs �ts in o(logn) bits overall. If a split or
merge of a block happens, it is handled as usual and solved in a constant number
of O(1)-time operations.

During an Access(i) query, we follow the proper root-to-leaf path in T . The
traversal of the data structure does not need to access the blocks directly, but
instead uses their sizes to determine the correct child at each level. By binary
searching the sizes, we traverse the data structure in O(log logn) time4. During
the traversal of the path we also compute the sum ∆ of the sizes of the preceding
blocks by summing to the current value of ∆, at each level, the value stored in the
(j − 1)-th pair of the lower level if the j-th child is traversed. Finally we retrieve the
(i − ∆)-th integer from the identi�ed block in O(1), as the blocks of the collection
C support random access by assumption.

4Since the sizes �t in less than a machine word, we could identify the correct child at each level
in O(1) by using a small universal table.

45

3. integer dictionaries in compressed space

3.4.2 Data structure

Let ` be logn/log logn. We logically divide the sorted sequence S(n,u) into mini
blocks of Θ(`) = ρ` integers each. We organize the dynamic layout into two levels.

(1) Lower level. We group O(log2 n) consecutive mini blocks together and in-
dex such collection using the data structure T described in Lemma 2. In the
following, we refer to this collection as a “block” and say that T stores a
“block of O(log2 n) mini blocks”. The set {Tj}k ′j=1, with k′ = n/O(` log2 n), of
all such data structures forms the lower level of the dynamic layout. Each Tj
also stores the lower bound fj of its block and the number of low bits required
by its Elias-Fano representation in Θ(logu) bits, so that we can subtract fj
to all the integers belonging to the mini blocks of Tj .

(2) Upper level. The set { fj}k ′j=1 of all the lower bounds of the blocks are indexed
using any-fast trie. The sizes of the blocks are maintained, instead, using the
dynamic pre�x sums data structure described in [20], i.e., a B-tree in which
each node stores a dynamic pre�x sums data structure operating on a small
set of integers in O(1) time. In particular, we use the operation Update(i ,∆)
as described in [20], which sums to the i-th integer of the data structure
the quantity ∆ (that �ts in δ bits) and runs in optimal O(logn/log(w/δ))
worst-case time. In our setting this operation is supported inO(`) given that
δ = ∆ = 1.

These two data structures, i.e., the y-fast trie and the dynamic pre�x sums
data structure, form the upper level of the dynamic layout. We will indicate
them withY and P, respectively. The j-th leaf ofY and P stores aO(logn)-
bit pointer to the data structure Tj in the lower level.

To handle the memory allocation for the mini blocks, we employ a di�erent tech-
nique to manage the high and low part of their Elias-Fano representation. Recall
from Section 2.2.6 that, given a sequence S(n,u), the high part of EF(S(n,u)) con-
sists in a bitvector of at most 2n bits, whereas the low part is given by a vector of
n integers, each taking dlog u

n e bits. In our case, the high part of each mini block
requires at most 2` = O(w) bits and is stored using the data structure of Theorem
6 from [89] that allows to address and allocate the high part of a mini block in
O(1) worst-case time. The low part of a mini block is instead stored using the data
structure of Corollary 3 from [138] that supports Access inO(1) and Insert/Delete
in O(`ϵ) worst-case time for any �xed positive ϵ < 1.

46

3. integer dictionaries in compressed space

3.4.3 Space analysis

The space required by the introduced layout will be clearly given by the contri-
bution of: 1. the data structures Y and P used in the upper level and the data
structures T of Lemma 2 used in the lower level; 2. the cost of representation of
the mini blocks encoded with Elias-Fano; 3. the overhead given by the mini blocks
memory management.

In the following we separately analyze each contribution.

Lower and upper levels. The space taken by the data structuresY and P in the
upper level is O(n

` log2 n
× logu) = o(n) bits. All the data structures T of Lemma 2

require O(n
` log2 n

× log2 n log logn) = o(n) bits too.

Mini blocks. We now analyze the space taken by the encoding of the mini blocks.
Since the universe of representation of a mini block could be as large as the one of
its comprising block, i.e., u, storing the lower bounds of the mini blocks in order
to use reduced universes (as already done for the blocks), would requireO(n` logu)
bits, which is not o(n) bits. In what follows we show that it is not necessary to
re-map the mini blocks using Property 2, hence these are kept encoded with the
universe relative to their comprising block, if we carefully set the number of bits
required to represent each low part in the Elias-Fano space bound (Equation 2).
As pointed out previously, each low part in the Elias-Fano representation of a se-
quence S(n,u) is encoded using dlog u

n e bits, which is the number of bits needed
to encode the average gap u/n of S. The number of bits for the average gap of a
block is therefore dme = dlog u

` log2 n
e.

The idea is to choose a number of bits dm′e for the encoding of the average
gap of the mini blocks such that dm′e = dme for a su�ciently long sequence of p
insertions/deletions. After p insertions/deletions have been performed, we rebuild
the mini blocks using dme bits for the average gap. In other words, we want to
guarantee that encoding the mini blocks with dm′e bits for the average gap, instead
of dme, does not introduce any extra space. Since m′ lies in the interval [l , r] =
[log u

` log2 n+p
, log u

` log2 n−p], m′ must be chosen in order to satisfy dme − 1 < m′ <
dme, which indeed implies dm′e = dme. Precisely, we satisfy this condition by
�xing m′ = m ± θ with dme − l < ±θ < dme − r + 1. To derive this condition, we
distinguish three possible cases.

(1) [l , r] ⊂ [dme − 1, dme). In this case the condition dme − 1 < m′ < dme is
already satis�ed. The other two cases below are symmetric.

(2) dle = dme − 1. In this case we set m′ = m + θ . To let dme − 1 < m′ < dme
holds, θ must be at least dme − l and at most dme + 1 − r .

47

3. integer dictionaries in compressed space

(3) dre = dme + 1. In this case we set m′ = m − θ . To let dme − 1 < m′ < dme
holds, θ must be at least r − dme − 1 and at most l − dme.

Cases (2) and (3) together yield the condition dme − l < ±θ < dme − r + 1.
Finally, we have to determine the proper number p of insertions/deletions be-

fore triggering the rebuilding of the mini blocks in order to attain to optimal in-
sert/delete amortized time O(`). As blocks are of size Θ(` log2 n), p is chosen to be
O(log2 n).
Memory allocation. The techniques used to manage the memory allocation for
the mini blocks introduce an overall redundancy of o(n) bits. Precisely, the data
structure of Theorem 6 from [89] has an overhead of O(w4 + n

logn log2w) = o(n)
bits, while the one of Corollary 3 from [138] uses o(n) bits by choosing a proper
positive ϵ < 1.

In conclusion, by the above discussion and the use of Property 2, the space taken
by the mini blocks can be safely upper bounded by EF(S(n,u)) and the redundancy
sums up to o(n) bits, so that the whole data structure requires EF(S(n,u)) + o(n)
bits of space.

3.4.4 Operations

In this subsection we describe how the operations of Theorem 3, namely Access,
Insert, Delete and Predecessor queries are supported. As stated before, we will use
` as a short-hand for logn/log logn.

• To Access the i-th integer, we �rst resolve Search(i) onP inO(`): Search(i) =
j indicates that the j-th block contains the i-th integer given that Sum(j −
1) < i ≤ Sum(j), where Sum(j) equals the sum of the sizes of the �rst j
blocks. We then follow the pointer stored in the j-th leaf of P, which points
to the data structureTj . We �nally access the integer x of index i −Sum(j − 1)
from Tj inO(log logn) and return x + fj . The overall complexity is, therefore,
O(`).

• To Insert (Delete) an integer x , we perform the following steps.
(1) Identify the proper data structure Tj by resolving a partial Successor(x)

query on Y in O(log logn) and following the pointer retrieved at the
identi�ed leaf of Y.

(2) Identify the correct mini block by Search(x − fj) in Tj in O(log logn).
(3) Insert (Delete) x − fj in Tj by rebuilding the proper mini block in Θ(`).
(4) Update P in O(`).

48

3. integer dictionaries in compressed space

During the third step, split or merge of a mini block can happen and it is han-
dled in O(`) worst-case time by the data structure Tj ; rebuilding of the mini
blocks can happen as pointed out in the previous section and it is handled in
O(`) amortized time. If splitting (merging) of a block is necessary, the lower
bound of the block is inserted (removed) from Y in O(log logn) time. The
overall complexity is, therefore, O(`) amortized.

• The query Predecessor(x) is supported as follows. We identify the proper
data structure Tj inO(log logn) by answering a partial Predecessor(x) query
onY and following the pointer retrieved at the identi�ed leaf ofY. Then we
identify the proper mini block by Search(x − fj) in Tj inO(log logn) time. We
�nally return fj + Predecessor(x − fj) by binary searching on the identi�ed
mini block. The overall complexity is O(log logn) worst-case.

3.4.5 A further consideration

Observe that the data structure described in Section 3.4 allows us to support all op-
erations in time O(log logu) when non-polynomial universes are considered, i.e.,
when n and u are not necessarily related by the formula u = nγ for any γ = Θ(1).
In this setting, the data structure of Lemma 2 will takeO(polylogu × log logu) bits
and operate in O(log logu) time. In order to guarantee an overall redundancy of
o(n) bits, we let mini blocks be of size Θ((log logu)2) and group O(log2u) consecu-
tive mini blocks into a block. The high part of a mini block �ts into one machine
word, whereas we can insert/delete a low part in O((log logu)2ϵ) for Corollary 3
of [138], which is O(log logu) as soon as ϵ < 1

2 . Therefore, the following corollary
matches the asymptotic time bounds of y-fast tries and van Emde Boas trees but
in almost optimally compressed space.

Corollary 1 — There exists a data structure representing an ordered set S(n,u)
of n integers drawn from a universe of size u that takes EF(S(n,u)) + o(n) bits
of space and supports: Access and Predecessor queries in O(log logu) worst-case,
Insert and Delete in O(log logu) amortized time.

49

4 Clustered Inverted Indexes

As we have motivated in Section 2.3, representing the posting lists of document
identi�ers in compressed space while attaining to e�cient query processing is the
fundamental challenge of any Information Retrieval system. This is especially true
nowadays, given the size of textual corpora and stringent query e�ciency require-
ments. Achieving both objectives is generally hard, since they are con�icting in
nature: a great deal of compression usually sacri�ces fast retrieval; on the contrary,
high speed algorithms bene�t from an augmented index representation [25, 30]. A
vast amount of literature describes di�erent space/time trade-o�s: see Section 2.2
for a description of the encoders proposed for inverted index compression.

Here, we notice that such encoders represent each inverted list individually and,
thus, none of those techniques exploits the redundancy that may exist between
two or more lists. Indeed the compression e�ectiveness of such encoders would be
better if clusters of inverted lists were encoded together instead of separately since
this o�ers the possibility of reducing the redundancy of the lists. Understanding
how to reduce such redundancy to save index space and, at the same time, achieve
very fast retrieval time is the issue addressed in this chapter.

As a matter of fact, inverted indexes naturally present some amount of redun-
dancy. The reason is that the document identi�ers (docIDs in the following) of
“similar” documents, i.e., the ones sharing a lot of terms, will be stored in the in-
verted lists of the terms they share. More precisely, consider a document having
docID d in which terms t1 and t2 occur. Then the inverted lists of both t1 and t2 will
contain d . Figure 7 gives a graphical evidence of this fact. The picture shows how
many times the 300 most frequent docIDs appear in an example cluster of 1000
inverted lists belonging to the Gov2 dataset (see Section 1.1 for its description and
Table 2 for its statistics). Values are plotted along a Hilbert curve to better high-
light the regions of docIDs having similar frequencies. The intensity of the color
represents the degree of repetitiveness of a docID.

Now, generalizing to an arbitrary number of terms and documents, consider a
set of terms {t1, . . . , tk} that occurs inm documents having identi�ers {d1, . . . ,dm}.
If the k terms always co-occur in the considered documents, then the set of inte-
gers {d1, . . . ,dm} would be present in each of the posting lists of {t1, . . . , tk}. In
this special case, reducing the redundancy of the lists has an obvious solution: the
redundant set {d1, . . . ,dm} is encoded just once and each posting list stores a ref-
erence to it.

51

4. clustered inverted indexes

Figure 7: The 300 most frequent docIDs for a set of 1000 random inverted lists drawn from
the dataset Gov2. We plot their frequencies along a Hilbert curve in order to highlight
the regions of redundant postings. The color scale on the right indicates the intensity of
frequency.

Unfortunately, it is very unlikely that the k terms appear in all documents. In
general, it is more likely to have: very few terms co-occurring in all documents
and several subsets of terms co-occurring in subsets of documents. Indeed notice
that only few squares in Figure 7 are much darker than others, meaning that rela-
tively few docIDs appear in all the lists of the cluster. Most docIDs have, instead,
intermediate frequencies and constitute, therefore, the fundamental data source
to be represented e�ectively, i.e., for which a space-e�cient solution should be
designed.

In this scenario, the problem of reducing the redundancy of the inverted lists is
much more di�cult, due to the following two di�erent aspects.

• We do not know what and how many terms should be clustered together in
order to maximize the number of co-occuring terms.

• It is not obvious how to compactly represent the redundant docIDs shared
by the clustered inverted lists to save index space.

Here is, in short, our main idea. Suppose that we build a meta-list R by selecting
a subset of docIDs belonging to the lists in a cluster C. Then the integers belonging
to the intersection of list S ∈ C with R can be rewritten as the positions they
occupy in R (see also Figure 8). The list R will be called the cluster reference list. If
u denotes the last element of S, each docID in the intersection is now drawn from
a universe of size |R | instead of u, i.e., the number of bits necessary to represent
each docID is now dlog |R |e instead of dlogue. Then, if R is chosen such that the

52

4. clustered inverted indexes

list intersection PEF CPEF

1 68% 18.25 KB 15.27 KB (−16%)
2 67% 18.92 KB 15.50 KB (−18%)
3 68% 19.92 KB 16.92 KB (−15%)
4 59% 19.71 KB 17.54 KB (−11%)
5 66% 20.19 KB 17.16 KB (−15%)

Table 5: Example of our method, CPEF, applied to five lists drawn from the Gov2 cluster
of Figure 7. Last column shows the percentage of space reduction achieved with respect
to partitioned Elias-Fano, PEF. This reduction depends on the percentage of intersection,
shown in the first column, between the reference list of the cluster and the individual lists.

condition |R | � u holds true, the universe of the intersection is highly reduced
and can be, therefore, encoded with much fewer bits. The representation of each
list is �nally compressed using a state-of-the-art encoder to save index space: in
this work, we use PEF (see Section 2.2.7 and paper [120]) to support e�cient query
processing.

To better illustrate the potential of this technique, we build the reference list for
the cluster of inverted lists illustrated in Figure 7, using the algorithm that we will
discuss later in Section 4.2.2. This reference list contains 880,638 docIDs and its PEF
representation takes 0.54 MB of space. In Table 5 we report the space occupancy
for some inverted lists drawn from the Gov2 cluster of Figure 7, compressed using
our technique (referred to as clustered PEF, or CPEF in the following) and com-
pared against the space taken by PEF. We can see from this example that we are
able to substantially improve the compression e�ectiveness over the PEF represen-
tation. Notice, in particular, how the gain strictly depends on the corresponding
percentage of intersection with the reference list.

Therefore in the following, we are interested in the problem of determining the
partition of the set of inverted lists into clusters and the choice of each cluster
reference list such that the overall encoding cost is minimum. This is a di�cult
optimization problem. Indeed we will show that the problem of selecting docIDs
to build the reference list such that the encoding cost of the cluster is minimized is
NP-hard, already when considering a special (and simpli�ed) case of the problem.

Our contributions. We discuss here the main contributions of this chapter.
We introduce a novel list representation designed to exploit the redundancy of

inverted indexes by encoding a portion of a list with respect to a carefully built

53

4. clustered inverted indexes

reference list. The representation is fully compressed using PEF, as to support
very fast random access and search operations.

We describe an algorithm to cluster posting lists which is tailored for the intro-
duced list representation. Moreover, we show how the optimization problem of se-
lecting the proper reference meta-list for each cluster can be solved by an heuristic
approach of selecting the postings by frequency within their cluster. This heuristic
is fast and helps controlling the building time of the indexes.

We �nally present a rich experimental analysis to show how to obtain inter-
esting trade-o�s by varying the size of the reference list. We then compare our
technique with the state-of-the-art in Chapter 7.

4.1 Related work

We point the reader to Sections 2.2 and 2.3 for general background on integer com-
pressors and inverted indexes. Here, we review the approaches most similar to our
work in terms of index representation and clustering algorithms.

Index representations. Lam et al. [98] explore the possibility of exploiting the
redundancy of inverted indexes by encoding two lists together. Their work pro-
poses two encoding schemes: Mixed Union (MU) and Separated Union (SU). MU
stores the union of two posting lists with two additional bits per posting, indi-
cating whether the posting belong to the �rst posting list (bits 10), to the second
(bits 01) or to both (bits 11). SU splits the representation of the union in three seg-
ments: the intersection between the two lists and the two residual parts. The terms
that should be paired together are chosen by solving a maximum-weight matching
problem on the graph G = (V ,E) built as follows. Each node of V is a term; edge
(ti , tj) ∈ E is labeled with a value indicating how many bits would be saved with
the pairing of terms ti and tj .

Another multi-term indexing strategy appeared in the work by Chaudhuri et al.
[32]. Their solution builds, beside the traditional inverted index, a multi-term in-
verted index where each entry is composed by terms co-occurring frequently in
query logs. As they observed that the distribution of terms is highly skewed in
query logs, the aim of their proposal is to boost query processing speed at the
price of the extra space needed to deal with another index.

Broder et al. [26] also noticed that many document collections, such as Web
pages, e-mails and newsgroups can be highly repetitive (e.g., up to 45% of the
Web pages are duplicates or nearly duplicates). They proposed a tree-based en-
coding for such collections, where each node of the tree contains one document
and its children are documents that share its content. This encoding allows to in-
dex shared content just once. The experimental assessment discussed in the paper

54

4. clustered inverted indexes

shows that signi�cant space savings are possible while preserving the traditional
ability of inverted indexes of handling free-text queries.

Recently, an approach based on generating a context-free grammar from the in-
verted index has been proposed by Zhang et al. [174]. The core idea is to identify
common patterns, i.e., repeated sub-sequences of docIDs, and substitute them with
symbols belonging to the generated context-free grammar. Although the reorga-
nized posting lists and grammar can be suitable to di�erent encoding schemes, the
authors preferred Opt-PFOR [170]. The experimental analysis indicates that good
space reductions are possible (as reported by the authors, around 8.8%) compared
to state-of-the-art encoding strategies with competitive query processing perfor-
mance. By exploiting the fact that the identi�ed common patterns can be directly
placed in the �nal result set, decoding speed can also be improved.

Clustering algorithms. The classical categorization of clustering algorithms di-
vides them into two broad classes, dual in nature: partitioning and agglomerative.
Partitioning algorithms work by partitioning the whole set of objects X according
to an objective function f , until the desired number of clusters is reached or a stop-
ping criterion is satis�ed. On the other hand, agglomerative algorithms start by
considering as many initial singleton clusters as the number of objects in X. Then
two or more clusters are merged together according to f . This process produces a
hierarchy of clusters that may be subject to further re�nement.

Among the �rst class, k-means [6] is the most popular and used clustering algo-
rithm. In its simplest formulation [107]:

(1) k objects are drawn at random from X and considered as centroids;

(2) all other objects are assigned to the closest centroid, according to a distance
function D;

(3) centroids are updated to be the mean of all objects in their clusters;

(4) repeat from step 2. until centroids “stop moving”.

Hierarchical clustering algorithms include, instead: Single-Link, Average-Link
and Complete-Link. We point the reader to the survey by Xu and Wunsch [169]
for an exhaustive overview on the subject. Although such algorithms are supposed
to produce superior clusters in terms of cluster quality [150], their quadratic com-
plexity often prevents from practical use. This has been the main reason of the
success of k-means which is elegant, simple and fast [150, 123, 12]: its complexity
is O(kd |X|i), where d is the dimensionality of the clustered objects and i is the
number of needed iterations to converge. Since usually k and d are much less than
|X|, its complexity is very appealing in practice.

55

4. clustered inverted indexes

Many variants of the regular k-means algorithm have been proposed in the lit-
erature [150, 123, 12]. Steinbach, Karypis, and Kumar [150] introduced a bisecting
variant of regular k-means that computes two initial clusters and recurse on them
until k clusters are formed. They proved bisecting k-means performs even better
than the classical one, because it produces relatively uniformly sized clusters. We
will use this approach in our own clustering algorithm. Pelleg and Moore [123]
improved on the classical formulation that needs the user to provide the number
of clusters. Instead of a single value for k , their algorithm takes as input a possible
range of values. In essence, the algorithm starts with k equal to the lower bound
of the provided range and keep adding centroids until the upper bound is attained.
Adding a new centroid implies splitting an existing one in two: the decision on
which centroid to split is based on the bayesian information criterion. During the
whole process, the centroid set that achieves the highest score is stored and �nally
output.

As the question regarding which seeds to choose for the initialization step of
k-means is posed, Arthur and Vassilvitskii [12] proposed to select k seeds at ran-
dom, one at a time, from a non-uniform distribution. Speci�cally, the �rst centroid
c is picked uniformly at random, then the probability that the point x becomes
the next centroid is dist(x , c)2/∑y∈S\{x} dist(y, c)2. The process is repeated until
k seeds are chosen. The key drawback of such approach lies in its inner sequen-
tial nature, since the k seeds must be chosen sequentially thus requiring k passes
over the data. This issue was tackled by Bahmani et al. [13], providing an e�cient
parallel implementation of the above procedure. As clear from the above formula,
the greater the distance of an object to the just chosen centroid, the higher the
probability of selecting that object. The intuition, con�rmed by their experimen-
tal analysis, is that a “good” initial choice of centroids will place them far apart
from each other. We will use this initialization procedure in our own algorithm.

4.2 Representing a set of inverted lists

In this section we introduce our novel index representation for a set of posting lists.
The key idea is to exploit the implicit redundancy of the inverted lists to reduce
space, via a universe reduction technique.

Encoding. Let L indicate the set of all inverted lists in the index. Let R be a list
not necessarily belonging to L and C ⊆ L a subset of lists (a cluster). Then the
integers belonging to the intersection of list S ∈ C with R can be rewritten as the
positions they occupy in R. If u denotes the universe of S, the intersection is now
encoded with a universe of size m = |R | instead of u. If R is chosen such that the
condition m � u holds, we can reduce the universe of the intersection which can

56

4. clustered inverted indexes

2 13

12 15 21 31

12 15 21 31

5 11 26
0 1 2 3 4

5 11
0 1 2 3 4 5 6

reference

list

42
5

26 42
7

1
0

2 4
1 2 4 5 6 7

map residual

encoded list

5
3

Figure 8: List representation example: shaded boxes mark the integers falling in the inter-
section between list and reference (map); all the others form the residual part (residual).

be, therefore, encoded with much fewer bits. The list R will be called the reference
list for the cluster C. Figure 8 shows an encoding example.

This strategy introduces a partition of each list into two segments: a map part
made up of all rewritten integers falling in the intersection with the reference,
and a residual part consisting in all other integers. Our list representation is the
juxtaposition of these two segments.

Speci�cally, suppose S and R share k integers. Using the space bound of plain
Elias-Fano (equation 2), the space taken by S in this new representation is

EF(S(n,m)) ≤ k
⌈

log m

k

⌉
+ (n − k)

⌈
log u

n − k
⌉
+ 2n bits. (4)

Not surprisingly, the greater the number of integers shared by S and R, the better
the space of our encoding. Notice that, though the average gap dlog(u/(n−k))e will
become larger, the overall residual cost will decrease too, since (n − k)dlog(u/(n −
k))e is monotonically decreasing for reasonably large values of u, as it is likely to
be in practice. For example, substituting m = u/8 and k = n/2 in Equation 4, the
resulting space is ndlog(u/n)e + 2n −n/2 bits, thus saving 0.5 bits per integer with
respect to plain Elias-Fano.

Note that the described solution is general, in the sense that it allows for any
encoding strategy to be used for the reference, map and residual lists. As already
stated and motivated, in our implementation we adopt PEF, to encode both map
and residual segments of each list, as well as references. Furthermore, observe that
nothing prevents from recursively applying the very same encoding strategy to the
residual segment of each list. However, implementing such a recursive encoder is
much more complicated and may prevent from practicality.

Searching. The cursor operations, NextGEQ and Next, can be e�ciently imple-
mented by means of the same operations performed by three cursors, each oper-
ating on map, residual and reference list separately. To answer a NextGEQ query

57

4. clustered inverted indexes

map

residual

cached state

x x

.

x
<latexit sha1_base64="ZOV60ywK/5AQ4PCam7fQYc3q50k=">AAACOnicbVDLSsNAFJ34rPXV6tJNMAiuSiKCLotuXLbQF7ShTKY37dDJJMzcSEvoF7jVv/FH3LoTt36Ak7YL23rhwuHc17knSATX6Lof1tb2zu7efuGgeHh0fHJaKp+1dJwqBk0Wi1h1AqpBcAlN5CigkyigUSCgHYwf83r7GZTmsWzgNAE/okPJQ84oGqo+6Zcct+LOw94E3hI4ZBm1ftlyeoOYpRFIZIJq3fXcBP2MKuRMwKzYSzUklI3pELoGShqB9rO50pl9ZZiBHcbKpER7zv6dyGik9TQKTGdEcaTXazn5X62bYnjvZ1wmKYJki0NhKmyM7fxte8AVMBRTAyhT3Gi12YgqytCYU1xZ1fD8LFeX71m5L3gA5ku59iRHKjjzs1wU1QgTnBWNrd66iZugdVPx3IpXv3WqD0uDC+SCXJJr4pE7UiVPpEaahBEgL+SVvFnv1qf1ZX0vWres5cw5WQnr5xcPsq2x</latexit><latexit sha1_base64="ZOV60ywK/5AQ4PCam7fQYc3q50k=">AAACOnicbVDLSsNAFJ34rPXV6tJNMAiuSiKCLotuXLbQF7ShTKY37dDJJMzcSEvoF7jVv/FH3LoTt36Ak7YL23rhwuHc17knSATX6Lof1tb2zu7efuGgeHh0fHJaKp+1dJwqBk0Wi1h1AqpBcAlN5CigkyigUSCgHYwf83r7GZTmsWzgNAE/okPJQ84oGqo+6Zcct+LOw94E3hI4ZBm1ftlyeoOYpRFIZIJq3fXcBP2MKuRMwKzYSzUklI3pELoGShqB9rO50pl9ZZiBHcbKpER7zv6dyGik9TQKTGdEcaTXazn5X62bYnjvZ1wmKYJki0NhKmyM7fxte8AVMBRTAyhT3Gi12YgqytCYU1xZ1fD8LFeX71m5L3gA5ku59iRHKjjzs1wU1QgTnBWNrd66iZugdVPx3IpXv3WqD0uDC+SCXJJr4pE7UiVPpEaahBEgL+SVvFnv1qf1ZX0vWres5cw5WQnr5xcPsq2x</latexit><latexit sha1_base64="ZOV60ywK/5AQ4PCam7fQYc3q50k=">AAACOnicbVDLSsNAFJ34rPXV6tJNMAiuSiKCLotuXLbQF7ShTKY37dDJJMzcSEvoF7jVv/FH3LoTt36Ak7YL23rhwuHc17knSATX6Lof1tb2zu7efuGgeHh0fHJaKp+1dJwqBk0Wi1h1AqpBcAlN5CigkyigUSCgHYwf83r7GZTmsWzgNAE/okPJQ84oGqo+6Zcct+LOw94E3hI4ZBm1ftlyeoOYpRFIZIJq3fXcBP2MKuRMwKzYSzUklI3pELoGShqB9rO50pl9ZZiBHcbKpER7zv6dyGik9TQKTGdEcaTXazn5X62bYnjvZ1wmKYJki0NhKmyM7fxte8AVMBRTAyhT3Gi12YgqytCYU1xZ1fD8LFeX71m5L3gA5ku59iRHKjjzs1wU1QgTnBWNrd66iZugdVPx3IpXv3WqD0uDC+SCXJJr4pE7UiVPpEaahBEgL+SVvFnv1qf1ZX0vWres5cw5WQnr5xcPsq2x</latexit><latexit sha1_base64="ZOV60ywK/5AQ4PCam7fQYc3q50k=">AAACOnicbVDLSsNAFJ34rPXV6tJNMAiuSiKCLotuXLbQF7ShTKY37dDJJMzcSEvoF7jVv/FH3LoTt36Ak7YL23rhwuHc17knSATX6Lof1tb2zu7efuGgeHh0fHJaKp+1dJwqBk0Wi1h1AqpBcAlN5CigkyigUSCgHYwf83r7GZTmsWzgNAE/okPJQ84oGqo+6Zcct+LOw94E3hI4ZBm1ftlyeoOYpRFIZIJq3fXcBP2MKuRMwKzYSzUklI3pELoGShqB9rO50pl9ZZiBHcbKpER7zv6dyGik9TQKTGdEcaTXazn5X62bYnjvZ1wmKYJki0NhKmyM7fxte8AVMBRTAyhT3Gi12YgqytCYU1xZ1fD8LFeX71m5L3gA5ku59iRHKjjzs1wU1QgTnBWNrd66iZugdVPx3IpXv3WqD0uDC+SCXJJr4pE7UiVPpEaahBEgL+SVvFnv1qf1ZX0vWres5cw5WQnr5xcPsq2x</latexit>

x
<latexit sha1_base64="ZOV60ywK/5AQ4PCam7fQYc3q50k=">AAACOnicbVDLSsNAFJ34rPXV6tJNMAiuSiKCLotuXLbQF7ShTKY37dDJJMzcSEvoF7jVv/FH3LoTt36Ak7YL23rhwuHc17knSATX6Lof1tb2zu7efuGgeHh0fHJaKp+1dJwqBk0Wi1h1AqpBcAlN5CigkyigUSCgHYwf83r7GZTmsWzgNAE/okPJQ84oGqo+6Zcct+LOw94E3hI4ZBm1ftlyeoOYpRFIZIJq3fXcBP2MKuRMwKzYSzUklI3pELoGShqB9rO50pl9ZZiBHcbKpER7zv6dyGik9TQKTGdEcaTXazn5X62bYnjvZ1wmKYJki0NhKmyM7fxte8AVMBRTAyhT3Gi12YgqytCYU1xZ1fD8LFeX71m5L3gA5ku59iRHKjjzs1wU1QgTnBWNrd66iZugdVPx3IpXv3WqD0uDC+SCXJJr4pE7UiVPpEaahBEgL+SVvFnv1qf1ZX0vWres5cw5WQnr5xcPsq2x</latexit><latexit sha1_base64="ZOV60ywK/5AQ4PCam7fQYc3q50k=">AAACOnicbVDLSsNAFJ34rPXV6tJNMAiuSiKCLotuXLbQF7ShTKY37dDJJMzcSEvoF7jVv/FH3LoTt36Ak7YL23rhwuHc17knSATX6Lof1tb2zu7efuGgeHh0fHJaKp+1dJwqBk0Wi1h1AqpBcAlN5CigkyigUSCgHYwf83r7GZTmsWzgNAE/okPJQ84oGqo+6Zcct+LOw94E3hI4ZBm1ftlyeoOYpRFIZIJq3fXcBP2MKuRMwKzYSzUklI3pELoGShqB9rO50pl9ZZiBHcbKpER7zv6dyGik9TQKTGdEcaTXazn5X62bYnjvZ1wmKYJki0NhKmyM7fxte8AVMBRTAyhT3Gi12YgqytCYU1xZ1fD8LFeX71m5L3gA5ku59iRHKjjzs1wU1QgTnBWNrd66iZugdVPx3IpXv3WqD0uDC+SCXJJr4pE7UiVPpEaahBEgL+SVvFnv1qf1ZX0vWres5cw5WQnr5xcPsq2x</latexit><latexit sha1_base64="ZOV60ywK/5AQ4PCam7fQYc3q50k=">AAACOnicbVDLSsNAFJ34rPXV6tJNMAiuSiKCLotuXLbQF7ShTKY37dDJJMzcSEvoF7jVv/FH3LoTt36Ak7YL23rhwuHc17knSATX6Lof1tb2zu7efuGgeHh0fHJaKp+1dJwqBk0Wi1h1AqpBcAlN5CigkyigUSCgHYwf83r7GZTmsWzgNAE/okPJQ84oGqo+6Zcct+LOw94E3hI4ZBm1ftlyeoOYpRFIZIJq3fXcBP2MKuRMwKzYSzUklI3pELoGShqB9rO50pl9ZZiBHcbKpER7zv6dyGik9TQKTGdEcaTXazn5X62bYnjvZ1wmKYJki0NhKmyM7fxte8AVMBRTAyhT3Gi12YgqytCYU1xZ1fD8LFeX71m5L3gA5ku59iRHKjjzs1wU1QgTnBWNrd66iZugdVPx3IpXv3WqD0uDC+SCXJJr4pE7UiVPpEaahBEgL+SVvFnv1qf1ZX0vWres5cw5WQnr5xcPsq2x</latexit><latexit sha1_base64="ZOV60ywK/5AQ4PCam7fQYc3q50k=">AAACOnicbVDLSsNAFJ34rPXV6tJNMAiuSiKCLotuXLbQF7ShTKY37dDJJMzcSEvoF7jVv/FH3LoTt36Ak7YL23rhwuHc17knSATX6Lof1tb2zu7efuGgeHh0fHJaKp+1dJwqBk0Wi1h1AqpBcAlN5CigkyigUSCgHYwf83r7GZTmsWzgNAE/okPJQ84oGqo+6Zcct+LOw94E3hI4ZBm1ftlyeoOYpRFIZIJq3fXcBP2MKuRMwKzYSzUklI3pELoGShqB9rO50pl9ZZiBHcbKpER7zv6dyGik9TQKTGdEcaTXazn5X62bYnjvZ1wmKYJki0NhKmyM7fxte8AVMBRTAyhT3Gi12YgqytCYU1xZ1fD8LFeX71m5L3gA5ku59iRHKjjzs1wU1QgTnBWNrd66iZugdVPx3IpXv3WqD0uDC+SCXJJr4pE7UiVPpEaahBEgL+SVvFnv1qf1ZX0vWres5cw5WQnr5xcPsq2x</latexit>

x
<latexit sha1_base64="ZOV60ywK/5AQ4PCam7fQYc3q50k=">AAACOnicbVDLSsNAFJ34rPXV6tJNMAiuSiKCLotuXLbQF7ShTKY37dDJJMzcSEvoF7jVv/FH3LoTt36Ak7YL23rhwuHc17knSATX6Lof1tb2zu7efuGgeHh0fHJaKp+1dJwqBk0Wi1h1AqpBcAlN5CigkyigUSCgHYwf83r7GZTmsWzgNAE/okPJQ84oGqo+6Zcct+LOw94E3hI4ZBm1ftlyeoOYpRFIZIJq3fXcBP2MKuRMwKzYSzUklI3pELoGShqB9rO50pl9ZZiBHcbKpER7zv6dyGik9TQKTGdEcaTXazn5X62bYnjvZ1wmKYJki0NhKmyM7fxte8AVMBRTAyhT3Gi12YgqytCYU1xZ1fD8LFeX71m5L3gA5ku59iRHKjjzs1wU1QgTnBWNrd66iZugdVPx3IpXv3WqD0uDC+SCXJJr4pE7UiVPpEaahBEgL+SVvFnv1qf1ZX0vWres5cw5WQnr5xcPsq2x</latexit><latexit sha1_base64="ZOV60ywK/5AQ4PCam7fQYc3q50k=">AAACOnicbVDLSsNAFJ34rPXV6tJNMAiuSiKCLotuXLbQF7ShTKY37dDJJMzcSEvoF7jVv/FH3LoTt36Ak7YL23rhwuHc17knSATX6Lof1tb2zu7efuGgeHh0fHJaKp+1dJwqBk0Wi1h1AqpBcAlN5CigkyigUSCgHYwf83r7GZTmsWzgNAE/okPJQ84oGqo+6Zcct+LOw94E3hI4ZBm1ftlyeoOYpRFIZIJq3fXcBP2MKuRMwKzYSzUklI3pELoGShqB9rO50pl9ZZiBHcbKpER7zv6dyGik9TQKTGdEcaTXazn5X62bYnjvZ1wmKYJki0NhKmyM7fxte8AVMBRTAyhT3Gi12YgqytCYU1xZ1fD8LFeX71m5L3gA5ku59iRHKjjzs1wU1QgTnBWNrd66iZugdVPx3IpXv3WqD0uDC+SCXJJr4pE7UiVPpEaahBEgL+SVvFnv1qf1ZX0vWres5cw5WQnr5xcPsq2x</latexit><latexit sha1_base64="ZOV60ywK/5AQ4PCam7fQYc3q50k=">AAACOnicbVDLSsNAFJ34rPXV6tJNMAiuSiKCLotuXLbQF7ShTKY37dDJJMzcSEvoF7jVv/FH3LoTt36Ak7YL23rhwuHc17knSATX6Lof1tb2zu7efuGgeHh0fHJaKp+1dJwqBk0Wi1h1AqpBcAlN5CigkyigUSCgHYwf83r7GZTmsWzgNAE/okPJQ84oGqo+6Zcct+LOw94E3hI4ZBm1ftlyeoOYpRFIZIJq3fXcBP2MKuRMwKzYSzUklI3pELoGShqB9rO50pl9ZZiBHcbKpER7zv6dyGik9TQKTGdEcaTXazn5X62bYnjvZ1wmKYJki0NhKmyM7fxte8AVMBRTAyhT3Gi12YgqytCYU1xZ1fD8LFeX71m5L3gA5ku59iRHKjjzs1wU1QgTnBWNrd66iZugdVPx3IpXv3WqD0uDC+SCXJJr4pE7UiVPpEaahBEgL+SVvFnv1qf1ZX0vWres5cw5WQnr5xcPsq2x</latexit><latexit sha1_base64="ZOV60ywK/5AQ4PCam7fQYc3q50k=">AAACOnicbVDLSsNAFJ34rPXV6tJNMAiuSiKCLotuXLbQF7ShTKY37dDJJMzcSEvoF7jVv/FH3LoTt36Ak7YL23rhwuHc17knSATX6Lof1tb2zu7efuGgeHh0fHJaKp+1dJwqBk0Wi1h1AqpBcAlN5CigkyigUSCgHYwf83r7GZTmsWzgNAE/okPJQ84oGqo+6Zcct+LOw94E3hI4ZBm1ftlyeoOYpRFIZIJq3fXcBP2MKuRMwKzYSzUklI3pELoGShqB9rO50pl9ZZiBHcbKpER7zv6dyGik9TQKTGdEcaTXazn5X62bYnjvZ1wmKYJki0NhKmyM7fxte8AVMBRTAyhT3Gi12YgqytCYU1xZ1fD8LFeX71m5L3gA5ku59iRHKjjzs1wU1QgTnBWNrd66iZugdVPx3IpXv3WqD0uDC+SCXJJr4pE7UiVPpEaahBEgL+SVvFnv1qf1ZX0vWres5cw5WQnr5xcPsq2x</latexit>

x
<latexit sha1_base64="ZOV60ywK/5AQ4PCam7fQYc3q50k=">AAACOnicbVDLSsNAFJ34rPXV6tJNMAiuSiKCLotuXLbQF7ShTKY37dDJJMzcSEvoF7jVv/FH3LoTt36Ak7YL23rhwuHc17knSATX6Lof1tb2zu7efuGgeHh0fHJaKp+1dJwqBk0Wi1h1AqpBcAlN5CigkyigUSCgHYwf83r7GZTmsWzgNAE/okPJQ84oGqo+6Zcct+LOw94E3hI4ZBm1ftlyeoOYpRFIZIJq3fXcBP2MKuRMwKzYSzUklI3pELoGShqB9rO50pl9ZZiBHcbKpER7zv6dyGik9TQKTGdEcaTXazn5X62bYnjvZ1wmKYJki0NhKmyM7fxte8AVMBRTAyhT3Gi12YgqytCYU1xZ1fD8LFeX71m5L3gA5ku59iRHKjjzs1wU1QgTnBWNrd66iZugdVPx3IpXv3WqD0uDC+SCXJJr4pE7UiVPpEaahBEgL+SVvFnv1qf1ZX0vWres5cw5WQnr5xcPsq2x</latexit><latexit sha1_base64="ZOV60ywK/5AQ4PCam7fQYc3q50k=">AAACOnicbVDLSsNAFJ34rPXV6tJNMAiuSiKCLotuXLbQF7ShTKY37dDJJMzcSEvoF7jVv/FH3LoTt36Ak7YL23rhwuHc17knSATX6Lof1tb2zu7efuGgeHh0fHJaKp+1dJwqBk0Wi1h1AqpBcAlN5CigkyigUSCgHYwf83r7GZTmsWzgNAE/okPJQ84oGqo+6Zcct+LOw94E3hI4ZBm1ftlyeoOYpRFIZIJq3fXcBP2MKuRMwKzYSzUklI3pELoGShqB9rO50pl9ZZiBHcbKpER7zv6dyGik9TQKTGdEcaTXazn5X62bYnjvZ1wmKYJki0NhKmyM7fxte8AVMBRTAyhT3Gi12YgqytCYU1xZ1fD8LFeX71m5L3gA5ku59iRHKjjzs1wU1QgTnBWNrd66iZugdVPx3IpXv3WqD0uDC+SCXJJr4pE7UiVPpEaahBEgL+SVvFnv1qf1ZX0vWres5cw5WQnr5xcPsq2x</latexit><latexit sha1_base64="ZOV60ywK/5AQ4PCam7fQYc3q50k=">AAACOnicbVDLSsNAFJ34rPXV6tJNMAiuSiKCLotuXLbQF7ShTKY37dDJJMzcSEvoF7jVv/FH3LoTt36Ak7YL23rhwuHc17knSATX6Lof1tb2zu7efuGgeHh0fHJaKp+1dJwqBk0Wi1h1AqpBcAlN5CigkyigUSCgHYwf83r7GZTmsWzgNAE/okPJQ84oGqo+6Zcct+LOw94E3hI4ZBm1ftlyeoOYpRFIZIJq3fXcBP2MKuRMwKzYSzUklI3pELoGShqB9rO50pl9ZZiBHcbKpER7zv6dyGik9TQKTGdEcaTXazn5X62bYnjvZ1wmKYJki0NhKmyM7fxte8AVMBRTAyhT3Gi12YgqytCYU1xZ1fD8LFeX71m5L3gA5ku59iRHKjjzs1wU1QgTnBWNrd66iZugdVPx3IpXv3WqD0uDC+SCXJJr4pE7UiVPpEaahBEgL+SVvFnv1qf1ZX0vWres5cw5WQnr5xcPsq2x</latexit><latexit sha1_base64="ZOV60ywK/5AQ4PCam7fQYc3q50k=">AAACOnicbVDLSsNAFJ34rPXV6tJNMAiuSiKCLotuXLbQF7ShTKY37dDJJMzcSEvoF7jVv/FH3LoTt36Ak7YL23rhwuHc17knSATX6Lof1tb2zu7efuGgeHh0fHJaKp+1dJwqBk0Wi1h1AqpBcAlN5CigkyigUSCgHYwf83r7GZTmsWzgNAE/okPJQ84oGqo+6Zcct+LOw94E3hI4ZBm1ftlyeoOYpRFIZIJq3fXcBP2MKuRMwKzYSzUklI3pELoGShqB9rO50pl9ZZiBHcbKpER7zv6dyGik9TQKTGdEcaTXazn5X62bYnjvZ1wmKYJki0NhKmyM7fxte8AVMBRTAyhT3Gi12YgqytCYU1xZ1fD8LFeX71m5L3gA5ku59iRHKjjzs1wU1QgTnBWNrd66iZugdVPx3IpXv3WqD0uDC+SCXJJr4pE7UiVPpEaahBEgL+SVvFnv1qf1ZX0vWres5cw5WQnr5xcPsq2x</latexit>

01

23

Figure 9: NextGEQ algorithm operating on the clustered list representation. Depending
on the relation between the searched value x and the cached state of our cursor, the
algorithm may perform 3, 2, 1 or even 0 NextGEQs. Below each case, we report the
number of performed operations.

on our list organization, a naïve implementation will �rst perform a NextGEQ on
the residual followed by another one on the map to �nally return the minimum
of the two. Given an integer x , notice that the map may only contain its position
px within the reference. Therefore a NextGEQ(x) operation on the map actually
involves a �rst rx = NextGEQ(x) on the reference followed by NextGEQ(px) on
the map. This second NextGEQ(px) is necessary to verify if the searched element
px is actually contained in the map. If it is, then rx is the value to return, otherwise
a �nal random-access operation must be performed on the reference to retrieve
R[NextGEQ(px)].

The outlined algorithm will always execute three NextGEQs. We argue that this
complexity can be alleviated if we cache a state in our cursor implementation. In
particular, we save the last accessed values in map and residual: call them ym and
yr respectively. Depending on the relationship between the given lower bound x ,
ym and yr , it is possible to write the algorithm such that we do not always need
three NextGEQs but just two, one or even none of them. Figure 9 o�ers a pictorial
representation of such relations. In the following description we show in brackets
the number of NextGEQs performed.

If x > ym then a NextGEQ on the map is performed (2). At this point we also
check if x > yr . If so, a NextGEQ on the residual is performed and we return
the minimum of the two values (3). If x ≤ ym instead, we can directly check if
x > yr . If so a NextGEQ on residual is performed (1). Eventually, if both previous
conditions are not satis�ed, i.e., x ≤ ym and x ≤ yr , then no NextGEQ are needed
and we can just return the minimum between ym and yr (0). This completes the
description on the NextGEQ algorithm operating on the new list representation.
The Next procedure can be implemented similarly.

58

4. clustered inverted indexes

At this point it is clear that the reference length is a crucial parameter for our
encoder. As already mentioned, the larger the number of integers shared by the ref-
erence and a list, the better the space usage but, conversely, the greater the number
of integers that need to be un-mapped during a search operation (two NextGEQs
and one Access in the worst case), a�ecting the retrieval e�ciency. We will stress
this evident trade-o� in Section 4.3 with an extensive experimental analysis.

Finally, observe that frequency lists need to re�ect the partition into map and
residual segments too. Therefore, �rst we store all frequencies for the map, then all
frequencies for the residual. When resolving an x′ = NextGEQ(x) query we need
to know the frequency of the term in document x′, we access the corresponding
frequency list at position k + jr if x′ falls into the residual or at position jm if it falls
into the map, where jm and jr denote the position of cursors operating on map and
residual respectively.

The optimization problem. We argue that two intuitive, yet fundamental, prob-
lems naturally arise from the given representation.

• Which lists to group together in set C under the same reference. Since the
greater the intersection of a list with its reference the better our encoding,
we would like to collect together lists sharing a lot of integers so that a given
reference is able to “cover” a greater portion of the lists in C. This problem
reduces to the problem of clustering the index posting lists to maximize the
number of integers shared by the lists in a cluster.

• Choosing which integers to put into the reference list reduces to an opti-
mization problem. Indeed, our goal is that of selecting the reference list for
a given set C such that the space taken by the encoding of C is minimized.

These two considerations allow us to formally state the problem we are consid-
ering. Let CPEF(Ci ,Ri) be the cost, in bits, of our encoding applied to the lists in
set Ci , using reference Ri . We want to solve the following optimization problem.

Problem 1 — Determine the partition of L in c clusters, i.e., {C1, . . . ,Cc} subject
to L = ∪ci=1Ci , Ci ∩ Cj = ∅ ∀i , j and each Ci non-empty, and the choice of Ri ,
|Ri | > 0, for each cluster Ci , such that

c∑
i=1

CPEF(Ci ,Ri) (5)

is minimum.

This problem is di�cult. In fact, suppose to have already computed the partition
{C1, . . . ,Cc}. Now consider a cluster Ci and the problem of choosing a reference

59

4. clustered inverted indexes

of size k such that the encoding cost of Ci is minimum when each list is encoded
with plain Elias-Fano. This is a k-reference selection problem (RSPk). Even in this
simpli�ed setting, the following theorem holds.

Theorem 4 — RSPk is NP-hard.

Proof. We use the hardness of the k-Clique Problem (CPk) [69], in which the input
is an undirected graph G = (V ,E) and the output is a clique of k nodes (if one
exists). In particular, the variant ofCPk for which we are asked to �nd, for a given
0 < ϵ < 1, a clique of size ϵ |V | is NP-complete for any choice of ϵ [69]. In our
reduction we are interested in the variant where k equals n/4, i.e., ϵ = 1/4.

Consider an instance G = (V ,E) of CPk . V is the set of n vertices that, without
loss of generality, we can indicate with 1, . . . ,n. E is the set ofm undirected edges.
The instance of RSPk is obtained from G by letting vertices in V be the set of
postings and by including in C the m posting lists, one for each edge (u,v) ∈ E,
formed by the two postings u and v .

Call R the optimal solution for RSPk on C. The encoding of each posting list
with respect to R has only the following three possible costs

(1) 2
⌈

log k
2

⌉
+ 4 bits when both postings are in R;

(2) 2
⌈

log n
2

⌉
+ 4 bits when both postings are not in R;

(3) dlogke + dlogne + 4 bits when one posting is in R and the other is not.

Since k is n/4, the costs in (2) and (3) coincide and (1) is always the smallest
encoding cost. Thus, R must be such that the number of posting lists whose en-
coding cost is 1. is maximized. This is equivalent of saying that R is such that it
maximizes the number of edges that have both vertices in R, by the one-to-one cor-
respondence between edges of G and posting lists in C. Thus, if G has a k-clique,
R is formed by the vertices of this k-clique. �

As it is not obvious which is the strategy that selects the best clusters and refer-
ences so that the encoding of the clusters is minimum, it is convenient to consider
the following three-step modelling, in which the �rst two steps are solved by an
heuristic approach.

(1) Clustering L into {C1, . . . ,Cc}, where c is unknown, to group together lists
sharing as many docIDs as possible.

(2) For each cluster Ci select the reference Ri , |Ri | > 0, such that CPEF(Ci ,Ri)
is minimum. We will illustrate an e�cient, heuristic, algorithm for this prob-
lem.

60

4. clustered inverted indexes

(3) Encode each Ci ∈ {C1, . . . ,Cc} with PEF.

In what follows, we discuss each of these three steps in details. Although the
three steps are strictly correlated and, therefore, cannot be completely separated
from each other, this modelling yields an e�cient algorithm for an approximate
solution to the original problem.

4.2.1 Clustering

In this subsection we describe the algorithm that we use to cluster the inverted lists.
We use a modi�ed version of k-means [6]. We adopt a k-means-based approach be-
cause it is the only able to scale to the dimensions we are dealing with (see Table 2
for the basic statistics of the tested collections). More precisely, although other
clustering approaches, e.g., Single-Link or Average-Link [169] may produce supe-
rior clusters in terms of cluster quality [150], their quadratic complexity prevents
from practical use. As inverted lists may contain from tens of thousands to millions
of postings, either an approximate distance metric is used or a lower-complexity
algorithm is used. This is the main reason for the success of k-means and, indeed,
the reason for its choice as our clustering algorithm.

Overview. We start with a high-level overview of the algorithm. In order to avoid
to supply the apriori number of k clusters to the algorithm, we use the bisecting
approach by Steinbach, Karypis, and Kumar [150]: we execute an instance of 2-
means and recurse on the two children clusters. More speci�cally, we maintain
a deque Q of clusters to be split, initially containing the �ctitious cluster formed
by the entire dataset. At each step of recursion a cluster is picked from the top of
Q and an instance of 2-means is executed on it. Each of the two children is then
inserted to the back of Q if it needs re�nement. Whenever a cluster does not need
any further splitting, it is inserted in a list L of “�nal” clusters. When Q is empty,
the algorithm terminates. The number of created clusters is the length of list L.
This skeleton describes a divisive and hierarchical clustering algorithm.

Details. Instead of recurring on the largest of the two children (as done in [150]),
we adopt an ad-hoc criterion that meets the requirement of the encoding phase
that will follow the clustering step. Since the cost of our encoding comprises the
cost for the reference lists as well, we intuitively would like to create as few clus-
ters as possible. The problem is that, in general, the bigger the cluster, the longer
the reference. However, encoding lists with respect to a very long reference will
produce a negligible universe reduction, thus dwar�ng the quality of our encoder.
Therefore, we decide that a cluster needs further splitting if its current reference is
greater than a user-de�ned threshold. This threshold de�nes the maximum length

61

4. clustered inverted indexes

of the reference that the algorithm builds for each cluster. The current reference
size of a cluster is estimated using a fast, heuristic approach that we will describe
in Section 4.2.2. The number of documentsu in the collection clearly represents an
upper bound on the possible values of this threshold. The experiments regarding
how the cluster quality varies for di�erent values of the threshold are presented
and discussed in Section 4.3. In particular, we will determine the best choice of
maximum reference size in terms of encoding cost, i.e., the number of bits per
posting.

The other meaningful point to describe is the choice of the two seeds. We use the
randomized approach described by Arthur and Vassilvitskii [12]: the �rst seed c is
drawn uniformly at random from the setX of approximately equally-sized posting
lists, then another list x is chosen with probability dist(x , c)2/∑y∈X\{x} dist(y, c)2.
We follow this approach since we want the two clusters to be well far-apart from
each other. Notice that a single pass over the cluster lists su�ces for this task.

The last detail we illustrate is how the distance of a list from a cluster centroid
is computed. It seems natural to use a similarity measure that accounts for how
many integers of a sequence S are shared with centroid C. Using set notation, a
modi�ed Jaccard coe�cient sim = |S ∩ C|/|S| ∈ [0, 1] provides us this quantity.
We argue that this similarity measure su�ers from several problems.

First of all, not all postings should be considered for intersection but only a sub-
set of S. This is a direct consequence of the fact that we are using PEF to encode
map and residual segments in our list representation. Recall that the j-th chunk of
b docIDs can be encoded in three di�erent ways according to the relation between
b and its universe uj . In particular whenever a chunk is encoded with its charac-
teristic bit vector or with 0 bits, it is never advantageous to represent some of its
elements with respect to the reference because the chunk will be broken in pieces,
each encoded with a larger number of bits. This implies that we have to exclude
from S all docIDs except the ones belonging to chunks encoded with Elias-Fano.

The other problem is that sim = |S ∩ C|/|S| completely ignores the distribu-
tion of docIDs in the posting lists. In fact, |S ∩ C| could be large just because of
docIDs: that are shared between S and C but not with all other lists in the cluster;
or occurring very frequently in the whole collection and, therefore, in almost each
list. These issues are tackled by maintaining two counts for each posting: a local
count keeping track of how many times the posting occurs in the lists of the cluster
and a global count that weights each posting for its own frequency in the whole
collection. Notice that the combination of local and global measures is the same
solution adopted by the so-called vector-space model [109, 31]. If we provide anal-
ogous de�nitions of term-frequency (tf) and inverse-document-frequency (idf) in
the inverse domain, which is made up of all posting lists of the document collec-

62

4. clustered inverted indexes

tion, then we can treat each posting list as a vector of real numbers. More precisely,
we de�ne as document-frequency df(x ,S) the frequency of docID x in inverted list
S. This measure corresponds to the tf count in the documents’ domain. This count
depends on how the posting lists are built. In our case each df is just 1, but it could
be greater depending on the occurrences of a docID in a posting list. A real-life ex-
ample of this scenario is the Twitter inverted index: a docID is appended multiple
times to the posting list of a term if that term occurs multiple times in the indexed
tweet [29].

The corresponding of the idf count in the inverse domain is the inverse-term-
frequency (itf), which accounts for how many times x is appearing in whole col-
lection: itf(x) = log(|T |/|{S ∈ L : x ∈ S}|), where T is the collection lexicon.

Now each posting list S is seen as a vector S[1,u], with S[i] = itf(i) if integer
i belongs to S or 0 otherwise. In what follows, we implicitly refer to a list S by
means of its itf vector S . As distance function we use dist = 1 − cos(S ,C), where
cos(S ,C) = ∑u

i=1(S[i] ×C[i])/
√
‖S ‖2 × ‖C‖2 is the cosine similarity between the

centroid C and the vector S . Whenever a list is added to its closest cluster, we
immediately update the centroid to be the sum of the newly added list and the
centroid itself. In this way, the centroid C of each cluster takes into account the
number of times the posting i occurs within the cluster (local count), that is exactly
C[i]/itf(i) times.

4.2.2 Reference selection

Consider the cluster Ci and the optimization problem of synthesizing the reference
Ri such that CPEF(Ci ,Ri) is minimum. We have shown in Theorem 4 that the sim-
pli�ed RSPk is NP-hard. If m is the number of integers in Ci , i.e., the sum of the
lengths of its posting lists, andn the number of its distinct integers, then an optimal
solution can be computed inΘ(mn) time andO(n) space. In fact, for each sorted sub-
set Ri of the distinct integers of Ci we should keep track of arg minRi CPEF(Ci ,Ri).
Since there are

∑n
k=1

(n
k

)
= 2n − 1 possible ways of choosing Ri and encoding takes

linear time in the number of postings, the time complexity follows. This is clearly
unfeasible.

As a general overview, our approach selects postings that will end up in the
reference from a set that we call the set of candidate postings. Let c indicate the
cardinality of this set. As already noted in Section 4.2.1, only postings belonging
to blocks encoded with Elias-Fano should be considered as possible candidates,
otherwise there is the risk of “breaking” a block encoded with much fewer bits.

Frequency-based selection. An e�ective method to select the postings for the
reference is based on their frequencies within the cluster, i.e., how many times

63

4. clustered inverted indexes

they occur in the posting lists belonging to the cluster. We just need to sort the
set of candidate postings according to their frequencies and add to the reference
the top-k most frequent postings, where k is the reference wanted dimension. The
intuition behind this heuristic is that if the reference is composed by postings oc-
curring in most lists, then it should have a good “coverage” property. On the other
hand, including postings occurring only a few times, would be bene�cial for few
lists too while, at the same time, be detrimental for all other lists: the reference
will grow, therefore expanding the universe of the representation of each map.

As the experimental Section 4.3 will show next, this heuristic performs well in
practice especially for larger values of reference size. Its most important advantage
is its speed: a single pass over the lists su�ces to build frequency counts that are
used as the sort-criterion. Time and space complexities are, respectively,O(m) and
O(c).

4.2.3 Encoding

Each cluster Ci gets encoded with respect to its reference list Ri according to the
representation we have detailed at the beginning of Section 4.2.

In particular, only postings belonging to Elias-Fano encoded blocks are consid-
ered for intersection with the reference, all others form the residual part. Recall
from Section 2.2.7 that a block in PEF is encoded with one among three di�erent
representations, according to the relation between its universe and size: 1. Elias-
Fano; 2. the block’s characteristic bit vector; 3. not encoded at all, thus taking 0 bits.
Since we can calculate the Elias-Fano partitions of a sequence in linear time using
the dynamic programming algorithm by Ottaviano and Venturini [120] and deter-
mine in O(1) which is the type of encoder used for each block, map and residual
segments are computed in time proportional to the length of the sequence.

Considering all clusters, the overall complexity of the encoding step is, therefore,
linear in the number of postings in the inverted index.

4.2.4 Index layout

We now describe our index organization, starting with a high-level picture: our
index is made up of three large bit vectors, that we call document, frequency and
reference bit streams. They represent the index posting, frequency and reference
lists respectively.

Each bit stream results from the concatenation of the bit vectors that individ-
ually represent posting, frequency and reference lists. The three bit streams are
aligned: the i-th frequency list is associated to the i-th document list. Document
lists are stored according to cluster-identi�er order, i.e., the �rst lists in the docu-

64

4. clustered inverted indexes

endpoints

size

metadata

�
<latexit sha1_base64="zhdTqOj/oekiOpmGDA34fUV5ii8=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYbdu3N3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSPWMtwI1k0UQxkI1gkmt3O/88SU5nH0YKYJ8yWOIh5yisZK3Wp/hFJidVCuuDV3AbJOvJxUIEdzUP7qD2OaShYZKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM/SCCXTfra4d0YurDIkYaxsRYYs1N8TGUqtpzKwnRLNWK96c/E/r5ea8NrPeJSkhkV0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBAs49v</latexit><latexit sha1_base64="zhdTqOj/oekiOpmGDA34fUV5ii8=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYbdu3N3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSPWMtwI1k0UQxkI1gkmt3O/88SU5nH0YKYJ8yWOIh5yisZK3Wp/hFJidVCuuDV3AbJOvJxUIEdzUP7qD2OaShYZKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM/SCCXTfra4d0YurDIkYaxsRYYs1N8TGUqtpzKwnRLNWK96c/E/r5ea8NrPeJSkhkV0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBAs49v</latexit><latexit sha1_base64="zhdTqOj/oekiOpmGDA34fUV5ii8=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYbdu3N3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSPWMtwI1k0UQxkI1gkmt3O/88SU5nH0YKYJ8yWOIh5yisZK3Wp/hFJidVCuuDV3AbJOvJxUIEdzUP7qD2OaShYZKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM/SCCXTfra4d0YurDIkYaxsRYYs1N8TGUqtpzKwnRLNWK96c/E/r5ea8NrPeJSkhkV0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBAs49v</latexit><latexit sha1_base64="zhdTqOj/oekiOpmGDA34fUV5ii8=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYbdu3N3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSPWMtwI1k0UQxkI1gkmt3O/88SU5nH0YKYJ8yWOIh5yisZK3Wp/hFJidVCuuDV3AbJOvJxUIEdzUP7qD2OaShYZKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM/SCCXTfra4d0YurDIkYaxsRYYs1N8TGUqtpzKwnRLNWK96c/E/r5ea8NrPeJSkhkV0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBAs49v</latexit>

non-zero

list
representation

first list second list

EF<latexit sha1_base64="eaqlyhuO8L9qccpszc5SNv2CtyQ=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0l60WNRFI8V7Ae0oWy2m3bpZhN2J2IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7G1zO//ci1EbF6wEnC/YgOlQgFo2ilbg/5E5owu7md9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufPCVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NLPhEpS5IotFoWpJBiT2f9kIDRnKCeWUKaFvZWwEdWUoU2pZEPwll9eJa1a1XOr3n2tUr/K4yjCCZzCOXhwAXW4gwY0gUEMz/AKbw46L86787FoLTj5zDH8gfP5A4XTkWM=</latexit><latexit sha1_base64="eaqlyhuO8L9qccpszc5SNv2CtyQ=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0l60WNRFI8V7Ae0oWy2m3bpZhN2J2IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7G1zO//ci1EbF6wEnC/YgOlQgFo2ilbg/5E5owu7md9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufPCVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NLPhEpS5IotFoWpJBiT2f9kIDRnKCeWUKaFvZWwEdWUoU2pZEPwll9eJa1a1XOr3n2tUr/K4yjCCZzCOXhwAXW4gwY0gUEMz/AKbw46L86787FoLTj5zDH8gfP5A4XTkWM=</latexit><latexit sha1_base64="eaqlyhuO8L9qccpszc5SNv2CtyQ=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0l60WNRFI8V7Ae0oWy2m3bpZhN2J2IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7G1zO//ci1EbF6wEnC/YgOlQgFo2ilbg/5E5owu7md9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufPCVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NLPhEpS5IotFoWpJBiT2f9kIDRnKCeWUKaFvZWwEdWUoU2pZEPwll9eJa1a1XOr3n2tUr/K4yjCCZzCOXhwAXW4gwY0gUEMz/AKbw46L86787FoLTj5zDH8gfP5A4XTkWM=</latexit><latexit sha1_base64="eaqlyhuO8L9qccpszc5SNv2CtyQ=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0l60WNRFI8V7Ae0oWy2m3bpZhN2J2IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7G1zO//ci1EbF6wEnC/YgOlQgFo2ilbg/5E5owu7md9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufPCVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NLPhEpS5IotFoWpJBiT2f9kIDRnKCeWUKaFvZWwEdWUoU2pZEPwll9eJa1a1XOr3n2tUr/K4yjCCZzCOXhwAXW4gwY0gUEMz/AKbw46L86787FoLTj5zDH8gfP5A4XTkWM=</latexit>

bitss
<latexit sha1_base64="N1eK0lTaQQAFA6yHzcECkl4oWJk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/epYz3</latexit><latexit sha1_base64="N1eK0lTaQQAFA6yHzcECkl4oWJk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/epYz3</latexit><latexit sha1_base64="N1eK0lTaQQAFA6yHzcECkl4oWJk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/epYz3</latexit><latexit sha1_base64="N1eK0lTaQQAFA6yHzcECkl4oWJk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/epYz3</latexit>

…s
<latexit sha1_base64="N1eK0lTaQQAFA6yHzcECkl4oWJk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/epYz3</latexit><latexit sha1_base64="N1eK0lTaQQAFA6yHzcECkl4oWJk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/epYz3</latexit><latexit sha1_base64="N1eK0lTaQQAFA6yHzcECkl4oWJk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/epYz3</latexit><latexit sha1_base64="N1eK0lTaQQAFA6yHzcECkl4oWJk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/epYz3</latexit>

size bits

Figure 10: Bit stream and endpoints.

ments stream are the ones belonging to the �rst cluster, then the ones belonging
to the second cluster follow and so on. Except for frequency lists, each list repre-
sentation in the stream is enriched with a metadata information storing the size of
the list. First we write in γ code the number of bits necessary to represent the size,
then the size value is written uncompressed using this number of bits. Notice that
since lists are non-empty we can subtract 1 to the γ encoding of the size (γ non-
zero). Since we use PEF to encode both map and residual segments of our posting
list organization, we store list sizes in order to distinguish the di�erent metadata
sections of the partitioned Elias-Fano representation that we discuss later. Finally,
in order to be able to access each sequence, we store the positions of the bit stream
at which sequences end in an Elias-Fano encoded list of endpoints. In this way, as
random access operations are supported e�ciently with Elias-Fano, we can access
each sequence in O(1) within compressed space. Figure 10 shows how each bit
stream is organized. Now we discuss how a single list is represented.

CPEF layout. Our posting list organization contains a metadata header section
before the actual representation of its map and residual segments. This metadata
section is structured as follows. First of all, we need to store the identi�er of the
reference list with respect to which the list is encoded. Such identi�er ranges from
0 to the number of possible clusters minus 1 and is represented in γ . Then we need
to record the length of the map segment, saym. We �rst store the quantity logm+ 1
in γ , then m using logm + 1 bits. We �nally need to know where the �rst stored
segment (the map) ends to be able to distinguish between the two segments. The
last metadata information is, therefore, the number of bits s of the map segment
written uncompressed in 32 bits. Map and residual segments are stored one after
the other, both encoded as a partitioned Elias-Fano sequence that we describe next.
Figure 11a shows our clustered sequence organization. In this case, the size of the

65

4. clustered inverted indexes

reference id log m + 1 map length
m

log m + 1 bits

map
endpoint

32 bits
�

<latexit sha1_base64="zhdTqOj/oekiOpmGDA34fUV5ii8=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYbdu3N3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSPWMtwI1k0UQxkI1gkmt3O/88SU5nH0YKYJ8yWOIh5yisZK3Wp/hFJidVCuuDV3AbJOvJxUIEdzUP7qD2OaShYZKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM/SCCXTfra4d0YurDIkYaxsRYYs1N8TGUqtpzKwnRLNWK96c/E/r5ea8NrPeJSkhkV0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBAs49v</latexit><latexit sha1_base64="zhdTqOj/oekiOpmGDA34fUV5ii8=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYbdu3N3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSPWMtwI1k0UQxkI1gkmt3O/88SU5nH0YKYJ8yWOIh5yisZK3Wp/hFJidVCuuDV3AbJOvJxUIEdzUP7qD2OaShYZKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM/SCCXTfra4d0YurDIkYaxsRYYs1N8TGUqtpzKwnRLNWK96c/E/r5ea8NrPeJSkhkV0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBAs49v</latexit><latexit sha1_base64="zhdTqOj/oekiOpmGDA34fUV5ii8=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYbdu3N3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSPWMtwI1k0UQxkI1gkmt3O/88SU5nH0YKYJ8yWOIh5yisZK3Wp/hFJidVCuuDV3AbJOvJxUIEdzUP7qD2OaShYZKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM/SCCXTfra4d0YurDIkYaxsRYYs1N8TGUqtpzKwnRLNWK96c/E/r5ea8NrPeJSkhkV0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBAs49v</latexit><latexit sha1_base64="zhdTqOj/oekiOpmGDA34fUV5ii8=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYbdu3N3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSPWMtwI1k0UQxkI1gkmt3O/88SU5nH0YKYJ8yWOIh5yisZK3Wp/hFJidVCuuDV3AbJOvJxUIEdzUP7qD2OaShYZKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM/SCCXTfra4d0YurDIkYaxsRYYs1N8TGUqtpzKwnRLNWK96c/E/r5ea8NrPeJSkhkV0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBAs49v</latexit>

�
<latexit sha1_base64="zhdTqOj/oekiOpmGDA34fUV5ii8=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYbdu3N3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSPWMtwI1k0UQxkI1gkmt3O/88SU5nH0YKYJ8yWOIh5yisZK3Wp/hFJidVCuuDV3AbJOvJxUIEdzUP7qD2OaShYZKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM/SCCXTfra4d0YurDIkYaxsRYYs1N8TGUqtpzKwnRLNWK96c/E/r5ea8NrPeJSkhkV0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBAs49v</latexit><latexit sha1_base64="zhdTqOj/oekiOpmGDA34fUV5ii8=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYbdu3N3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSPWMtwI1k0UQxkI1gkmt3O/88SU5nH0YKYJ8yWOIh5yisZK3Wp/hFJidVCuuDV3AbJOvJxUIEdzUP7qD2OaShYZKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM/SCCXTfra4d0YurDIkYaxsRYYs1N8TGUqtpzKwnRLNWK96c/E/r5ea8NrPeJSkhkV0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBAs49v</latexit><latexit sha1_base64="zhdTqOj/oekiOpmGDA34fUV5ii8=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYbdu3N3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSPWMtwI1k0UQxkI1gkmt3O/88SU5nH0YKYJ8yWOIh5yisZK3Wp/hFJidVCuuDV3AbJOvJxUIEdzUP7qD2OaShYZKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM/SCCXTfra4d0YurDIkYaxsRYYs1N8TGUqtpzKwnRLNWK96c/E/r5ea8NrPeJSkhkV0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBAs49v</latexit><latexit sha1_base64="zhdTqOj/oekiOpmGDA34fUV5ii8=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYbdu3N3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSPWMtwI1k0UQxkI1gkmt3O/88SU5nH0YKYJ8yWOIh5yisZK3Wp/hFJidVCuuDV3AbJOvJxUIEdzUP7qD2OaShYZKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM/SCCXTfra4d0YurDIkYaxsRYYs1N8TGUqtpzKwnRLNWK96c/E/r5ea8NrPeJSkhkV0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBAs49v</latexit>

map residual

metadata

PEF<latexit sha1_base64="X6AZLSdh3nFpN17M1uXKb8XUOYk=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GNRFI8V7Ac0pWy2k3bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLK6tr6RnGztLW9s7tX3j9omjjVHBo8lrFuB8yAFAoaKFBCO9HAokBCKxhdT/3WI2gjYvWA4wS6ERsoEQrO0Eq+j/CEJszqN7eTXrniVt0Z6DLxclIhOeq98pffj3kagUIumTEdz02wmzGNgkuYlPzUQML4iA2gY6liEZhuNrt5Qk+s0qdhrG0ppDP190TGImPGUWA7I4ZDs+hNxf+8TorhZTcTKkkRFJ8vClNJMabTAGhfaOAox5YwroW9lfIh04yjjalkQ/AWX14mzbOq51a9+/NK7SqPo0iOyDE5JR65IDVyR+qkQThJyDN5JW9O6rw4787HvLXg5DOH5A+czx8pH5G/</latexit><latexit sha1_base64="X6AZLSdh3nFpN17M1uXKb8XUOYk=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GNRFI8V7Ac0pWy2k3bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLK6tr6RnGztLW9s7tX3j9omjjVHBo8lrFuB8yAFAoaKFBCO9HAokBCKxhdT/3WI2gjYvWA4wS6ERsoEQrO0Eq+j/CEJszqN7eTXrniVt0Z6DLxclIhOeq98pffj3kagUIumTEdz02wmzGNgkuYlPzUQML4iA2gY6liEZhuNrt5Qk+s0qdhrG0ppDP190TGImPGUWA7I4ZDs+hNxf+8TorhZTcTKkkRFJ8vClNJMabTAGhfaOAox5YwroW9lfIh04yjjalkQ/AWX14mzbOq51a9+/NK7SqPo0iOyDE5JR65IDVyR+qkQThJyDN5JW9O6rw4787HvLXg5DOH5A+czx8pH5G/</latexit><latexit sha1_base64="X6AZLSdh3nFpN17M1uXKb8XUOYk=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GNRFI8V7Ac0pWy2k3bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLK6tr6RnGztLW9s7tX3j9omjjVHBo8lrFuB8yAFAoaKFBCO9HAokBCKxhdT/3WI2gjYvWA4wS6ERsoEQrO0Eq+j/CEJszqN7eTXrniVt0Z6DLxclIhOeq98pffj3kagUIumTEdz02wmzGNgkuYlPzUQML4iA2gY6liEZhuNrt5Qk+s0qdhrG0ppDP190TGImPGUWA7I4ZDs+hNxf+8TorhZTcTKkkRFJ8vClNJMabTAGhfaOAox5YwroW9lfIh04yjjalkQ/AWX14mzbOq51a9+/NK7SqPo0iOyDE5JR65IDVyR+qkQThJyDN5JW9O6rw4787HvLXg5DOH5A+czx8pH5G/</latexit><latexit sha1_base64="X6AZLSdh3nFpN17M1uXKb8XUOYk=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GNRFI8V7Ac0pWy2k3bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLK6tr6RnGztLW9s7tX3j9omjjVHBo8lrFuB8yAFAoaKFBCO9HAokBCKxhdT/3WI2gjYvWA4wS6ERsoEQrO0Eq+j/CEJszqN7eTXrniVt0Z6DLxclIhOeq98pffj3kagUIumTEdz02wmzGNgkuYlPzUQML4iA2gY6liEZhuNrt5Qk+s0qdhrG0ppDP190TGImPGUWA7I4ZDs+hNxf+8TorhZTcTKkkRFJ8vClNJMabTAGhfaOAox5YwroW9lfIh04yjjalkQ/AWX14mzbOq51a9+/NK7SqPo0iOyDE5JR65IDVyR+qkQThJyDN5JW9O6rw4787HvLXg5DOH5A+czx8pH5G/</latexit> PEF<latexit sha1_base64="X6AZLSdh3nFpN17M1uXKb8XUOYk=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GNRFI8V7Ac0pWy2k3bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLK6tr6RnGztLW9s7tX3j9omjjVHBo8lrFuB8yAFAoaKFBCO9HAokBCKxhdT/3WI2gjYvWA4wS6ERsoEQrO0Eq+j/CEJszqN7eTXrniVt0Z6DLxclIhOeq98pffj3kagUIumTEdz02wmzGNgkuYlPzUQML4iA2gY6liEZhuNrt5Qk+s0qdhrG0ppDP190TGImPGUWA7I4ZDs+hNxf+8TorhZTcTKkkRFJ8vClNJMabTAGhfaOAox5YwroW9lfIh04yjjalkQ/AWX14mzbOq51a9+/NK7SqPo0iOyDE5JR65IDVyR+qkQThJyDN5JW9O6rw4787HvLXg5DOH5A+czx8pH5G/</latexit><latexit sha1_base64="X6AZLSdh3nFpN17M1uXKb8XUOYk=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GNRFI8V7Ac0pWy2k3bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLK6tr6RnGztLW9s7tX3j9omjjVHBo8lrFuB8yAFAoaKFBCO9HAokBCKxhdT/3WI2gjYvWA4wS6ERsoEQrO0Eq+j/CEJszqN7eTXrniVt0Z6DLxclIhOeq98pffj3kagUIumTEdz02wmzGNgkuYlPzUQML4iA2gY6liEZhuNrt5Qk+s0qdhrG0ppDP190TGImPGUWA7I4ZDs+hNxf+8TorhZTcTKkkRFJ8vClNJMabTAGhfaOAox5YwroW9lfIh04yjjalkQ/AWX14mzbOq51a9+/NK7SqPo0iOyDE5JR65IDVyR+qkQThJyDN5JW9O6rw4787HvLXg5DOH5A+czx8pH5G/</latexit><latexit sha1_base64="X6AZLSdh3nFpN17M1uXKb8XUOYk=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GNRFI8V7Ac0pWy2k3bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLK6tr6RnGztLW9s7tX3j9omjjVHBo8lrFuB8yAFAoaKFBCO9HAokBCKxhdT/3WI2gjYvWA4wS6ERsoEQrO0Eq+j/CEJszqN7eTXrniVt0Z6DLxclIhOeq98pffj3kagUIumTEdz02wmzGNgkuYlPzUQML4iA2gY6liEZhuNrt5Qk+s0qdhrG0ppDP190TGImPGUWA7I4ZDs+hNxf+8TorhZTcTKkkRFJ8vClNJMabTAGhfaOAox5YwroW9lfIh04yjjalkQ/AWX14mzbOq51a9+/NK7SqPo0iOyDE5JR65IDVyR+qkQThJyDN5JW9O6rw4787HvLXg5DOH5A+czx8pH5G/</latexit><latexit sha1_base64="X6AZLSdh3nFpN17M1uXKb8XUOYk=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GNRFI8V7Ac0pWy2k3bpZhN2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLK6tr6RnGztLW9s7tX3j9omjjVHBo8lrFuB8yAFAoaKFBCO9HAokBCKxhdT/3WI2gjYvWA4wS6ERsoEQrO0Eq+j/CEJszqN7eTXrniVt0Z6DLxclIhOeq98pffj3kagUIumTEdz02wmzGNgkuYlPzUQML4iA2gY6liEZhuNrt5Qk+s0qdhrG0ppDP190TGImPGUWA7I4ZDs+hNxf+8TorhZTcTKkkRFJ8vClNJMabTAGhfaOAox5YwroW9lfIh04yjjalkQ/AWX14mzbOq51a9+/NK7SqPo0iOyDE5JR65IDVyR+qkQThJyDN5JW9O6rw4787HvLXg5DOH5A+czx8pH5G/</latexit>

(a) Clustered Elias-Fano sequence

endpoints# of
partitions p

endpoint bits
e sizes upper bounds

�
<latexit sha1_base64="zhdTqOj/oekiOpmGDA34fUV5ii8=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYbdu3N3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSPWMtwI1k0UQxkI1gkmt3O/88SU5nH0YKYJ8yWOIh5yisZK3Wp/hFJidVCuuDV3AbJOvJxUIEdzUP7qD2OaShYZKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM/SCCXTfra4d0YurDIkYaxsRYYs1N8TGUqtpzKwnRLNWK96c/E/r5ea8NrPeJSkhkV0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBAs49v</latexit><latexit sha1_base64="zhdTqOj/oekiOpmGDA34fUV5ii8=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYbdu3N3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSPWMtwI1k0UQxkI1gkmt3O/88SU5nH0YKYJ8yWOIh5yisZK3Wp/hFJidVCuuDV3AbJOvJxUIEdzUP7qD2OaShYZKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM/SCCXTfra4d0YurDIkYaxsRYYs1N8TGUqtpzKwnRLNWK96c/E/r5ea8NrPeJSkhkV0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBAs49v</latexit><latexit sha1_base64="zhdTqOj/oekiOpmGDA34fUV5ii8=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYbdu3N3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSPWMtwI1k0UQxkI1gkmt3O/88SU5nH0YKYJ8yWOIh5yisZK3Wp/hFJidVCuuDV3AbJOvJxUIEdzUP7qD2OaShYZKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM/SCCXTfra4d0YurDIkYaxsRYYs1N8TGUqtpzKwnRLNWK96c/E/r5ea8NrPeJSkhkV0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBAs49v</latexit><latexit sha1_base64="zhdTqOj/oekiOpmGDA34fUV5ii8=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYbdu3N3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSPWMtwI1k0UQxkI1gkmt3O/88SU5nH0YKYJ8yWOIh5yisZK3Wp/hFJidVCuuDV3AbJOvJxUIEdzUP7qD2OaShYZKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM/SCCXTfra4d0YurDIkYaxsRYYs1N8TGUqtpzKwnRLNWK96c/E/r5ea8NrPeJSkhkV0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBAs49v</latexit>

metadata

�
<latexit sha1_base64="zhdTqOj/oekiOpmGDA34fUV5ii8=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYbdu3N3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSPWMtwI1k0UQxkI1gkmt3O/88SU5nH0YKYJ8yWOIh5yisZK3Wp/hFJidVCuuDV3AbJOvJxUIEdzUP7qD2OaShYZKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM/SCCXTfra4d0YurDIkYaxsRYYs1N8TGUqtpzKwnRLNWK96c/E/r5ea8NrPeJSkhkV0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBAs49v</latexit><latexit sha1_base64="zhdTqOj/oekiOpmGDA34fUV5ii8=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYbdu3N3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSPWMtwI1k0UQxkI1gkmt3O/88SU5nH0YKYJ8yWOIh5yisZK3Wp/hFJidVCuuDV3AbJOvJxUIEdzUP7qD2OaShYZKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM/SCCXTfra4d0YurDIkYaxsRYYs1N8TGUqtpzKwnRLNWK96c/E/r5ea8NrPeJSkhkV0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBAs49v</latexit><latexit sha1_base64="zhdTqOj/oekiOpmGDA34fUV5ii8=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYbdu3N3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSPWMtwI1k0UQxkI1gkmt3O/88SU5nH0YKYJ8yWOIh5yisZK3Wp/hFJidVCuuDV3AbJOvJxUIEdzUP7qD2OaShYZKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM/SCCXTfra4d0YurDIkYaxsRYYs1N8TGUqtpzKwnRLNWK96c/E/r5ea8NrPeJSkhkV0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBAs49v</latexit><latexit sha1_base64="zhdTqOj/oekiOpmGDA34fUV5ii8=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYbdu3N3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSPWMtwI1k0UQxkI1gkmt3O/88SU5nH0YKYJ8yWOIh5yisZK3Wp/hFJidVCuuDV3AbJOvJxUIEdzUP7qD2OaShYZKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM/SCCXTfra4d0YurDIkYaxsRYYs1N8TGUqtpzKwnRLNWK96c/E/r5ea8NrPeJSkhkV0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBAs49v</latexit>

non-zero EF<latexit sha1_base64="eaqlyhuO8L9qccpszc5SNv2CtyQ=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0l60WNRFI8V7Ae0oWy2m3bpZhN2J2IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7G1zO//ci1EbF6wEnC/YgOlQgFo2ilbg/5E5owu7md9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufPCVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NLPhEpS5IotFoWpJBiT2f9kIDRnKCeWUKaFvZWwEdWUoU2pZEPwll9eJa1a1XOr3n2tUr/K4yjCCZzCOXhwAXW4gwY0gUEMz/AKbw46L86787FoLTj5zDH8gfP5A4XTkWM=</latexit><latexit sha1_base64="eaqlyhuO8L9qccpszc5SNv2CtyQ=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0l60WNRFI8V7Ae0oWy2m3bpZhN2J2IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7G1zO//ci1EbF6wEnC/YgOlQgFo2ilbg/5E5owu7md9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufPCVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NLPhEpS5IotFoWpJBiT2f9kIDRnKCeWUKaFvZWwEdWUoU2pZEPwll9eJa1a1XOr3n2tUr/K4yjCCZzCOXhwAXW4gwY0gUEMz/AKbw46L86787FoLTj5zDH8gfP5A4XTkWM=</latexit><latexit sha1_base64="eaqlyhuO8L9qccpszc5SNv2CtyQ=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0l60WNRFI8V7Ae0oWy2m3bpZhN2J2IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7G1zO//ci1EbF6wEnC/YgOlQgFo2ilbg/5E5owu7md9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufPCVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NLPhEpS5IotFoWpJBiT2f9kIDRnKCeWUKaFvZWwEdWUoU2pZEPwll9eJa1a1XOr3n2tUr/K4yjCCZzCOXhwAXW4gwY0gUEMz/AKbw46L86787FoLTj5zDH8gfP5A4XTkWM=</latexit><latexit sha1_base64="eaqlyhuO8L9qccpszc5SNv2CtyQ=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0l60WNRFI8V7Ae0oWy2m3bpZhN2J2IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7G1zO//ci1EbF6wEnC/YgOlQgFo2ilbg/5E5owu7md9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufPCVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NLPhEpS5IotFoWpJBiT2f9kIDRnKCeWUKaFvZWwEdWUoU2pZEPwll9eJa1a1XOr3n2tUr/K4yjCCZzCOXhwAXW4gwY0gUEMz/AKbw46L86787FoLTj5zDH8gfP5A4XTkWM=</latexit>EF<latexit sha1_base64="eaqlyhuO8L9qccpszc5SNv2CtyQ=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0l60WNRFI8V7Ae0oWy2m3bpZhN2J2IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7G1zO//ci1EbF6wEnC/YgOlQgFo2ilbg/5E5owu7md9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufPCVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NLPhEpS5IotFoWpJBiT2f9kIDRnKCeWUKaFvZWwEdWUoU2pZEPwll9eJa1a1XOr3n2tUr/K4yjCCZzCOXhwAXW4gwY0gUEMz/AKbw46L86787FoLTj5zDH8gfP5A4XTkWM=</latexit><latexit sha1_base64="eaqlyhuO8L9qccpszc5SNv2CtyQ=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0l60WNRFI8V7Ae0oWy2m3bpZhN2J2IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7G1zO//ci1EbF6wEnC/YgOlQgFo2ilbg/5E5owu7md9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufPCVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NLPhEpS5IotFoWpJBiT2f9kIDRnKCeWUKaFvZWwEdWUoU2pZEPwll9eJa1a1XOr3n2tUr/K4yjCCZzCOXhwAXW4gwY0gUEMz/AKbw46L86787FoLTj5zDH8gfP5A4XTkWM=</latexit><latexit sha1_base64="eaqlyhuO8L9qccpszc5SNv2CtyQ=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0l60WNRFI8V7Ae0oWy2m3bpZhN2J2IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7G1zO//ci1EbF6wEnC/YgOlQgFo2ilbg/5E5owu7md9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufPCVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NLPhEpS5IotFoWpJBiT2f9kIDRnKCeWUKaFvZWwEdWUoU2pZEPwll9eJa1a1XOr3n2tUr/K4yjCCZzCOXhwAXW4gwY0gUEMz/AKbw46L86787FoLTj5zDH8gfP5A4XTkWM=</latexit><latexit sha1_base64="eaqlyhuO8L9qccpszc5SNv2CtyQ=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0l60WNRFI8V7Ae0oWy2m3bpZhN2J2IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7G1zO//ci1EbF6wEnC/YgOlQgFo2ilbg/5E5owu7md9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufPCVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NLPhEpS5IotFoWpJBiT2f9kIDRnKCeWUKaFvZWwEdWUoU2pZEPwll9eJa1a1XOr3n2tUr/K4yjCCZzCOXhwAXW4gwY0gUEMz/AKbw46L86787FoLTj5zDH8gfP5A4XTkWM=</latexit>

b0 b1 bp�1…

bitse ⇥ (p � 1)
<latexit sha1_base64="ZEfJHWrnZgaiQ4fRWcNMvdOCDJE=">AAAB9XicbVDLSgNBEJyNrxhfUY9eBoMQD4ZdEfQY9OIxgnlAsobZSScZMju7zPQqYcl/ePGgiFf/xZt/4yTZgyYWNBRV3XR3BbEUBl3328mtrK6tb+Q3C1vbO7t7xf2DhokSzaHOIxnpVsAMSKGgjgIltGINLAwkNIPRzdRvPoI2IlL3OI7BD9lAib7gDK30ALSDIgRDy/GZd9otltyKOwNdJl5GSiRDrVv86vQinoSgkEtmTNtzY/RTplFwCZNCJzEQMz5iA2hbqphd5aezqyf0xCo92o+0LYV0pv6eSFlozDgMbGfIcGgWvan4n9dOsH/lp0LFCYLi80X9RFKM6DQC2hMaOMqxJYxrYW+lfMg042iDKtgQvMWXl0njvOK5Fe/uolS9zuLIkyNyTMrEI5ekSm5JjdQJJ5o8k1fy5jw5L8678zFvzTnZzCH5A+fzB6PPkUg=</latexit><latexit sha1_base64="ZEfJHWrnZgaiQ4fRWcNMvdOCDJE=">AAAB9XicbVDLSgNBEJyNrxhfUY9eBoMQD4ZdEfQY9OIxgnlAsobZSScZMju7zPQqYcl/ePGgiFf/xZt/4yTZgyYWNBRV3XR3BbEUBl3328mtrK6tb+Q3C1vbO7t7xf2DhokSzaHOIxnpVsAMSKGgjgIltGINLAwkNIPRzdRvPoI2IlL3OI7BD9lAib7gDK30ALSDIgRDy/GZd9otltyKOwNdJl5GSiRDrVv86vQinoSgkEtmTNtzY/RTplFwCZNCJzEQMz5iA2hbqphd5aezqyf0xCo92o+0LYV0pv6eSFlozDgMbGfIcGgWvan4n9dOsH/lp0LFCYLi80X9RFKM6DQC2hMaOMqxJYxrYW+lfMg042iDKtgQvMWXl0njvOK5Fe/uolS9zuLIkyNyTMrEI5ekSm5JjdQJJ5o8k1fy5jw5L8678zFvzTnZzCH5A+fzB6PPkUg=</latexit><latexit sha1_base64="ZEfJHWrnZgaiQ4fRWcNMvdOCDJE=">AAAB9XicbVDLSgNBEJyNrxhfUY9eBoMQD4ZdEfQY9OIxgnlAsobZSScZMju7zPQqYcl/ePGgiFf/xZt/4yTZgyYWNBRV3XR3BbEUBl3328mtrK6tb+Q3C1vbO7t7xf2DhokSzaHOIxnpVsAMSKGgjgIltGINLAwkNIPRzdRvPoI2IlL3OI7BD9lAib7gDK30ALSDIgRDy/GZd9otltyKOwNdJl5GSiRDrVv86vQinoSgkEtmTNtzY/RTplFwCZNCJzEQMz5iA2hbqphd5aezqyf0xCo92o+0LYV0pv6eSFlozDgMbGfIcGgWvan4n9dOsH/lp0LFCYLi80X9RFKM6DQC2hMaOMqxJYxrYW+lfMg042iDKtgQvMWXl0njvOK5Fe/uolS9zuLIkyNyTMrEI5ekSm5JjdQJJ5o8k1fy5jw5L8678zFvzTnZzCH5A+fzB6PPkUg=</latexit><latexit sha1_base64="ZEfJHWrnZgaiQ4fRWcNMvdOCDJE=">AAAB9XicbVDLSgNBEJyNrxhfUY9eBoMQD4ZdEfQY9OIxgnlAsobZSScZMju7zPQqYcl/ePGgiFf/xZt/4yTZgyYWNBRV3XR3BbEUBl3328mtrK6tb+Q3C1vbO7t7xf2DhokSzaHOIxnpVsAMSKGgjgIltGINLAwkNIPRzdRvPoI2IlL3OI7BD9lAib7gDK30ALSDIgRDy/GZd9otltyKOwNdJl5GSiRDrVv86vQinoSgkEtmTNtzY/RTplFwCZNCJzEQMz5iA2hbqphd5aezqyf0xCo92o+0LYV0pv6eSFlozDgMbGfIcGgWvan4n9dOsH/lp0LFCYLi80X9RFKM6DQC2hMaOMqxJYxrYW+lfMg042iDKtgQvMWXl0njvOK5Fe/uolS9zuLIkyNyTMrEI5ekSm5JjdQJJ5o8k1fy5jw5L8678zFvzTnZzCH5A+fzB6PPkUg=</latexit>

(b) Partitioned Elias-Fano sequence

Figure 11: Clustered and partitioned Elias-Fano sequence organizations. Below each
block we report how it is encoded: γ , fixed-width, Elias-Fano (EF), partitioned Elias-Fano
(PEF). In picture (a), m represents the length of the map segment; in picture (b), p indi-
cates the number of partitions whereas e the number of bits needed to encode a pointer
to a block.

whole list in the stream is necessary to derive the size of the two segments, which
are needed to correctly search their PEF representation.

As to be able to encode the frequency lists using Elias-Fano, each of them is
transformed into a monotonically increasing integer sequence by computing its
pre�x sums. Since we only need to randomly access such lists, we can subtract i
to the i-th frequency value and save space. Notice that we do not need to store the
size of each frequency list in the bit stream, given that frequency and document
streams are aligned: the size of the i-th frequency list will be the size of the i-th
list of the stream.

PEF layout. We conclude this subsection by explaining the PEF layout. Refer to
Figure 11b. As usual, a metadata section precedes the representation of the blocks
{b0, . . . ,bp−1}. We �rst write the number of partitions using γ non-zero. Then we
write the number of bits for each block endpoint: ifm is the length of the bitvector
resulting from the concatenation of all blocks, then we need e = logm+ 1 bits. Two
Elias-Fano encoded blocks follow, representing blocks’ sizes and upper bounds re-
spectively. The Elias-Fano representation of a sequence is self-delimiting because
we can compute exactly the number of bits of the representation if we only know
the length and universe of the sequence [161]. In this case, both sizes and upper
bounds blocks have length equal to the number of partitions; the universe of sizes
is the length of the sequence whereas the universe of upper bounds is just the num-

66

4. clustered inverted indexes

ber of documents in the collection. The endpoints are just stored in �xed-width
fashion. The concatenation of all encoded blocks terminates the list representa-
tion.

4.3 Experiments

Datasets. We performed our experiments on the datasets described in Section 1.1,
whose statistics are summarized in Table 2 (page 7).

Experimental se�ing and methodology. All tests have been performed on a
machine with 16 Intel Xeon E5-2630 v3 cores (32 threads) clocked at 2.4 Ghz, with
64 GB RAM, running Linux 3.13.0, 64 bits. Hardware caches have the following
sizes: 32 KB (L1), 256 KB (L2) and 20 MB (L3). Levels L1 and L2 are private to each
core, while L3 is shared among all the 8 cores on one socket. In addition, we have
repeated all the experiments on a second machine equipped with 4 Intel i7-4790K
cores (8 threads) clocked at 4 Ghz, with 32 GB RAM, running Linux 4.2.0, 64 bits
to con�rm the results. This second machine has the same cache sizes of the other,
except for the last shared level (L3) which is 8 MB.

All the code is implemented in standard C++11, based on the popular ds2i project1

and compiled with gcc 5.3.0 with the highest optimization settings. We have pre-
ferred template specialization over inheritance to avoid virtual method call over-
head, which can be disruptive for very �ne-grained operations, such as the ones
we consider in the following. Except for the instructions to count the number of
bits set in a word and to �nd the position of the least signi�cant bit, no special
processor feature was used. In particular, we did not add any SIMD instruction to
our code.

The indexes were saved to disk after construction, and memory-mapped to per-
form the queries. To test the speed of the indexes, we use a random sampling of
1000 queries, respectively from TREC 2005 and 2006 E�ciency Track topics. In
order to smooth the e�ect of �uctuations during measurements, we repeat each
experiment three times and consider the mean. All query algorithms were run on
a single core and query times are reported in milliseconds.

Source code. https://github.com/jermp/clustered_elias_fano_indexes

1https://github.com/ot/ds2i

67

https://github.com/jermp/clustered_elias_fano_indexes
https://github.com/ot/ds2i

4. clustered inverted indexes

T u u
2

u
4

u
8

u
16

u
32

Gov2
Number of clusters 2 5 25 70 150 264
Minutes 5 10 23 32 34 37
Bits per posting 2.70 2.67 2.67 2.65 2.71 2.79

ClueWeb09
Number of clusters 2 31 88 174 302 461
Minutes 24 105 127 138 153 170
Bits per posting 4.60 4.62 4.54 4.50 4.75 4.87

Table 6: Number of clusters, clustering time in minutes and number of bits per posting
by varying the reference size threshold T.

4.3.1 Clustering

For the clustering step, instead of considering only the posting lists containing
more than a given number of postings (as done, for example, in [53]), we sort the
lists by length in descending order and discard the k smallest lists such that the
sum of their postings is 10% of the postings of the original collections. The posting
lists excluded from clustering are encoded with PEF.

This simple pruning strategy allows us to signi�cantly reduce the number of
processed terms from millions to tens of thousands while concentrating our e�ort
on most of the postings, because the distribution of terms occurrences is highly
skewed: relatively few lists are very long while the majority being very short. In
fact, for the Gov2 dataset we retain only 17,959 inverted lists out of more than 35
millions; for the ClueWeb09 datasets we retain, instead, 30,972 inverted lists out
of more than 92 millions. As already said, for both datasets, these lists account for
the 90% of the postings in the collections.

Table 6 shows the number of created clusters, clustering time in minutes and the
number of bits per posting by varying the reference size threshold. We recall from
Section 4.2.1 that this threshold is the free parameter of our clustering algorithm
and represents the maximum length of the reference that is built for each cluster.
This threshold is expressed as the ratio between the universe collection u (number
of documents) and a constant ranging from 1 to 32. As we can see, the smaller the
reference a cluster can synthesize, the greater the number of iterations performed
by the algorithm and, consequently, the number of clusters and clustering time.
In particular, clustering time for ClueWeb09 is approximately four times the one
of Gov2 since ClueWeb09 has roughly two times the number of posting lists and
universe of Gov2. In the next subsection we discuss how the number of bits per
posting has been derived.

68

4. clustered inverted indexes

0.05 0.10 0.20 0.40 0.80 1.60
Referece size (×106)

2.65

2.70

2.75

2.80
bi

ts
 p

er
 p

os
tin

g

(a) Gov2

0.05 0.10 0.20 0.40 0.80 1.60 3.20 6.40
Referece size (×106)

4.50

4.55

4.60

4.65

4.70

bi
ts

 p
er

 p
os

tin
g

(b) ClueWeb09

Figure 12: Bits per posting of Gov2 and ClueWeb09 by varying the reference size.

4.3.2 Space/time trade-offs

In this subsection we present a detailed analysis on how and why varying the ref-
erence size of the encoder can yield interesting space/time trade-o�s. During the
analysis we also experimentally determine the values of reference size that give
the best trade-o�s.

Varying the reference size. As already pointed out in Section 4.2, the reference
selection step for each cluster deeply a�ects the quality of the representation in
terms of both space usage and speed, as we are going to motivate next. Intuitively,
dealing with small references implies that the fraction of remapped postings is
small too on average and this is less bene�cial for index space. Conversely, as
references grow in dimension, space is gradually reduced but accessing the rep-
resentation of the references becomes the major bottleneck at query time. The
introduced trade-o� is evident: smaller references yield faster but bigger indexes
while longer ones slower but smaller indexes.

To test this impact, we build several indexes for the two test collections, varying
the reference size from 50,000 to 1,600,000 for Gov2 and to 6,400,000 for ClueWeb09,
doubling its size each time. These sizes represent the maximum reference sizes that
the algorithm is permitted to build.

Now, before concentrating the analysis on the mentioned space/time trade-o�,
we choose the clustering that yields the smallest encoding cost in terms of bits per
posting. To help our decision we consider Table 6. The reported number of bits per
posting has been obtained by encoding each cluster with the largest reference size,
i.e., 1,600,000 for Gov2 and 6,400,000 for ClueWeb09. For both datasets, a value of
threshold equal tou/8 yields the most compact indexes. Therefore, in what follows,
all experiments have been done using such value for the clustering algorithm.

69

4. clustered inverted indexes

0.05 0.10 0.20 0.40 0.80 1.60
Referece size (×106)

8

10

12

m
illi

se
co

nd
s

(a) Gov2

0.05 0.10 0.20 0.40 0.80 1.60 3.20 6.40
Referece size (×106)

20

25

30

35

m
illi

se
co

nd
s

(b) ClueWeb09

Figure 13: Timings for AND queries by varying the reference size on Gov2 and ClueWeb09,
using the query set TREC 06.

Reference size (×106) 0.1 0.2 0.4 0.8 1.6 3.2

Gov2
space −1.71% −3.82% −5.53% −6.45% −6.52% —
time +7.15% +20.07% +35.69% +52.92% +57.18% —

ClueWeb09
space −0.71% −1.58% −2.48% −3.40% −4.21% −4.56%
time +4.38% +11.79% +22.76% +38.50% +61.12% +75.28%

Table 7: Space and time percentages for CPEF with respect to the minimum value of
reference size 50,000.

Figure 12 illustrates the number of bits per posting by varying the reference
size. These plots have to be read together with the ones in Figure 13, which show
mean query times for AND queries, performed on ClueWeb09 collection using the
TREC 06 query log. The two plots together con�rm the trade-o� that we explained
before: as references grow in size, the number of bits per posting decreases but the
mean query time increases as well.

Choosing the trade-o� points. We now determine three values of reference size
as representatives of the di�erent space/time trade-o�s we can obtain, in order to
concentrate our analysis on these selected points. To help our decision, consider
Table 7. The table reports the percentages of space and time with respect to the
values in correspondence of reference size 50,000.

For both datasets, a value of reference size equal to 100,000 looses a negligible
factor in query processing speed but space reductions are very poor too. Therefore,
we choose this value of reference size as representative of the faster query time
with respect to the other trade-o� points we are going to choose. On the other
hand, larger values of reference size optimize space sacri�cing query processing
speed. For Gov2 values of 800,000 and 1,600,000 o�er practically the same space
reduction but the former achieves better speed. The same holds for ClueWeb09 as

70

4. clustered inverted indexes

Gov2 ClueWeb09

PEF 2.94 4.80

CPEF@MIN 2.77 (−6%) 4.66 (−3%)
CPEF@MID 2.71 (−8%) 4.57 (−5%)
CPEF@MAX 2.65 (−10%) 4.50 (−6%)

(a) clustered

Gov2 ClueWeb09

PEF 4.10 5.85

CPEF@MIN 3.94 (−4%) 5.70 (−3%)
CPEF@MID 3.88 (−6%) 5.61 (−4%)
CPEF@MAX 3.81 (−7%) 5.54 (−5%)

(b) total

Table 8: Bits per document in the selected trade-o� points on the clustered collections in
(a) and on the whole collections in (b).

TREC 05 TREC 06

PEF 3.7 6.1

CPEF@MIN 5.3 (+43%) 8.3 (+36%)
CPEF@MID 5.9 (+59%) 9.3 (+52%)
CPEF@MAX 7.8 (+111%) 11.9 (+95%)

(a) Gov2

TREC 05 TREC 06

PEF 14.6 17.7

CPEF@MIN 17.7 (+21%) 21.2 (+20%)
CPEF@MID 20.6 (+41%) 25.0 (+41%)
CPEF@MAX 29.1 (+99%) 35.6 (+101%)

(b) ClueWeb09

Table 9: Timings in milliseconds for AND queries for Gov2 and ClueWeb09, using the
query logs TREC 05 and TREC 06.

well but for values 3,200,000 and 6,400,000. Values that fall in between these two
extreme points trade-o� between space and time.

We now select our trade-o� points such that two of them optimize either space
or time, the third one tries to grab the best from both. From the above discussion,
we choose the following points for ClueWeb09: MIN = 100,000; MID = 400,000;
MAX = 3,200,000. For Gov2 we choose instead: MIN = 100,000; MID = 200,000;
MAX = 800,000. In the following analysis, we concentrate on such points.

Table 8 and Table 9 show the bits per posting achieved in correspondence of
such trade-o� points and the query processing speed for AND queries, respectively,
with percentages calculated with respect to PEF as a single reference point. A full
experimental comparison is shown in Chapter 7.

As we can see from Table 8, a good space reduction can be achieved when using
longer reference sizes, up to 10% and 6% respectively on the clustered Gov2 and
ClueWeb09. When considering the whole collections, the space reductions are
smaller instead because Elias-Fano is space-ine�cient on smaller lists for which
the ratio between universe of representation and size is very high.

Also notice from Table 9 that, small reference sizes introduce a moderate slow-
down of around 40% and 30% on average for Gov2 and ClueWeb09 respectively,
whereas it becomes ≈2× in correspondence of the MAX point.

71

4. clustered inverted indexes

L1 L2 L3 intersection ms/query

PEF 174 36 25 — 17.7
CPEF@MIN 216 47 31 9.78% 21.2
CPEF@MID 267 58 39 18.93% 25.0
CPEF@MAX 444 89 54 44.37% 35.6

Table 10: Cache misses (×106) at the three cache levels, average intersection with refer-
ence list and mean query time for AND queries on ClueWeb09 using the query set TREC
06.

4.3.3 Analysis

This subsection is dedicated to show why the reference size sensibly a�ects the
query processing speed of our proposal. As already argued, clustering the index
inevitably brings a penalty at query time. The penalty comes precisely from the
cache misses induced by accessing the references. The reason is that as references
grow in dimension the number of integers that have been encoded with respect to
them grows as well, therefore needing more reference accesses to be decoded. In
particular, cache misses are spent in the �rst level of the partitioned Elias-Fano rep-
resentation and are due to chunk-switching operations, i.e., whenever the distance
from two consecutive searched values (jump entity) exceeds the current chunk
size.

Reference cache misses. To quantify the impact of the cache misses introduced
by the reference lists, we report in Table 10 the number of cache misses in million
(×106) for AND queries on ClueWeb09, using the TREC 06 query log. Fourth col-
umn of the table reports the average intersection of posting lists with the reference
while �fth column reports the sum of the space of the references accessed during
the queries over the total space of the references. Cache misses have been collected
with the perf Linux tool (version 3.13.11-ckt35). Levels L1 and L2 are private while
L3 is shared among all the 8 cores on one socket.

As evident, we increase the number of misses at all levels going from MIN to
MAX, con�rming the shape of Figure 13. Most importantly, the average percent-
ages of reference intersection reported in the fourth column are proportional to
the cache misses at L3 as claimed before. From MIN to MID we have an increase
of cache misses at L3 of 27.18% which corresponds to an increase of reference in-
tersection of about 1.93 times. Instead, from MIN to MAX the increase of reference
intersection is 4.54 times, therefore we should expect a corresponding increasing
of cache misses of about 63.94% which is 53.9 million of cache misses, practically
the same as the value reported at MAX.

72

4. clustered inverted indexes

p1 p2 p3 partial NextGEQs ms/query

MIN 0.85 0.04 0.11 1.26 21.2
MID 0.61 0.09 0.29 1.66 25.0
MAX 0.32 0.23 0.45 2.13 35.6

Table 11: Mean number of partial NextGEQ operations and corresponding empirical fre-
quencies pk for AND queries on ClueWeb09 using the query set TREC 06.

We have repeated the test for the second machine, having the same data cache di-
mensions except for last level which is 8 MB, again shared among all cores. Results
were practically the same. The reason is that all query algorithms have no tempo-
ral locality: even though some reference cached blocks could be reused for other
queries, they will be inevitably deallocated and refetched when needed. Therefore,
having a bigger cache will not bring a performance improvement at query time,
unless we explicitly decide to keep in cache as many reference blocks as possible.
Notice that, however, for the illustrated example, this would only be possible for
the MIN point for which the cache is able to contain the whole reference working
set as reported in the �fth column of Table 10.

The last column of the table reports the mean query time. Again, we con�rm
that query processing speed sensibly depends on the number of cache misses. By
the values reported in the third column, we should expect to have a slowdown,
with respect to PEF, of roughly 24%, 57.8% and 118.5% for MIN, MID and MAX
respectively. Indeed mean query times report slowdown factors of 19.7%, 41.2%
and 101.2%.

Partial NextGEQs. As discussed in Section 4.2, our posting list organisation may
require up to three NextGEQ operations, each operating on the map, residual and
reference sequences. We argue that, while this case arises in practice, it is very
pessimistic and not the most frequent one. In order to avoid confusion, let us call
partial a NextGEQ resolved on map, residual or reference and full the NextGEQ
on the whole clustered list. Beside the worst case, a full NextGEQ may need 2, only
1 or even 0 partial NextGEQ . In Table 11 we report the mean number of partial
NextGEQ operations, where pk represents the probability of performing k partial
NextGEQs, k = 1, 2, 3 (the probability of performing no NextGEQ , i.e., k = 0, is
minimal and does not contribute to the calculation of the mean value).

The mean number of partial NextGEQs clearly increases for growing values of
reference size. More precisely, we notice an increment proportional to the values
presented in Table 10. In fact, the mean number of extra partial NextGEQs per-
formed in the three points is 25%, 68% and 113% respectively, while the number
of cache misses in excess are 24%, 57.8% and 118.5%. Finally notice that these val-

73

4. clustered inverted indexes

ues are also con�rmed by mean query time values that report slowdown factors of
19.7%, 41.2% and 101.2%.

Moreover, it is interesting to notice how each pi changes in relation to the ref-
erence size. In particular, p1 is decreasing because as the reference grows, map
segments grow as well thus reducing the entity of residuals and, consequently, the
number of partial NextGEQs performed on them.

Terms per cluster. The crucial parameter a�ecting the query processing speed is,
therefore, the mean number of accessed reference lists per query. Intuitively, if all
the terms of a query belong to the same cluster, the number of accessed reference
lists is just one.

To give a practical evidence of this fact, we conduct the following experiment.
For each query we evaluate the ratio between the number of terms and the number
of distinct clusters. Taking the average of these quantities among all queries gives
us the mean number of terms per cluster within a query, indicated with r in the
following.

r 1.07 1.48 2.01

MIN 21.2 19.5 14.1
MID 25.0 23.3 17.4
MAX 35.6 33.5 25.2

Table 12: Timings for AND queries by vary-
ing terms per cluster ratio on ClueWeb09 us-
ing the query set TREC 06.

If ρ is the mean number of terms per
query in a query set, then r ∈ [1, ρ]:
when r = 1, it means that, for each
query, all terms belong to distinct clus-
ters; on the other hand, when r = ρ

then all terms belong to the same clus-
ter. We test the speed of AND queries
on three sampling of 1000 queries from
TREC 06, having respectively r equal to
1.07, 1.48 and 2.01. Table 12 illustrates
the result. As we can see, when r in-

creases the number of reference lists accessed per query decreases and so does the
mean query time. For the other query sets, i.e., TREC 06 for ClueWeb09 and TREC
05 for both Gov2 and ClueWeb09, it is not possible to obtain su�ciently diversi�ed
values for r because it is concentrated in the interval [1.06, 1.09].

74

5 Optimal Variable-Byte Encoding

Variable-Byte [155, 166] (henceforth, VByte) is the most popular and used byte-
aligned code. Section 2.2.3 explains how this elegant integer encoding works and
Section 2.3 provides general background on inverted indexes. In particular, we
recall that VByte owes its popularity to its sequential decoding speed and, indeed,
it is the fastest representation up to date for integer sequences. For this reason, it is
widely adopted by well-known companies as a key database design technology to
enable fast query processing. We mention some noticeable examples. Google uses
VByte extensively: for compressing the posting lists of inverted indexes [45] and as
a binary wire format for its protocol bu�ers [1]. IBM DB2 employs VByte to store
the di�erences between successive record identi�ers [19]. Amazon patented an
encoding scheme, based on VByte and called Varint-G8IU (Section 2.2.3), which
uses SIMD to perform decoding faster [151]. Many other storage architectures
rely on VByte to support fast full-text search, like Redis [2], UpscaleDB [3] and
Dropbox [82].

On the other hand, the main drawback of VByte lies in its byte-aligned nature,
which means that the number of bits needed to encode an integer cannot be less
than 8. For this reason, VByte is only suitable for large numbers. However, as
we have explained in Section 2.3.2 with Property 1, the inverted lists are notably
known to exhibit a clustering e�ect, i.e., these present regions of close identi�ers
that are far more compressible than highly scattered regions [115, 120, 129]. Such
natural clusters are present because the indexed data itself tends to be very similar.
As a simple example, consider all the Web pages belonging to the same site: these
are likely to share a lot of terms. Also, the values stored in the columns of databases
typically exhibit high locality: that is why column-oriented databases can achieve
very good compression and high query throughput [5].

The key point is that e�cient inverted index compression should exploit as
much as possible the clustering e�ect of the inverted lists. VByte currently fails
to do so and, as a consequence, it is believed to be space-ine�cient for inverted
indexes.

The motivating experiment. As an illustrative example, consider the following
two sequences: 〈1, 2, 3, 4, 5〉 and 〈127, 254, 318, 408, 533〉. To reduce the values of
the integers, VByte compresses the di�erences between successive values, known
as delta-gaps or d-gaps, i.e., the sequences 〈1, 1, 1, 1, 1〉 and 〈127, 127, 64, 90, 125〉
respectively (the �rst integer is left as it is). Now, it is easy to see that VByte will

75

5. optimal variable-byte encoding

Short
3.5%

Medium
85.5%

Long
11.0%

55.8%
65.3%

85.4%

44.2%
34.7%

14.6%

Dense Sparse

(a) Gov2

Short
3.1%

Medium
63.9%

Long
33.0%

55.5% 56.0%

90.7%

44.5% 44.0%

9.3%

Dense Sparse

(b) ClueWeb09

Figure 14: Percentage of integers belonging to dense and sparse regions of the posting
lists for the Gov2 and ClueWeb09 datasets. The inverted lists have been clustered by size
into three categories: Short (size < 10K), Medium (10K ≤ size < 7M) and Long (size ≥ 7M).
Below each category we also indicate the percentage of integers belonging to its inverted
lists.

use 5 bytes to encode both sequences, but the �rst one can be compressed much
better, with just ≈log 5 bits. To better highlight how this behaviour can deeply af-
fect compression e�ectiveness, we consider the statistic shown in Figure 14. This
statistic reports the percentage of postings belonging to dense and sparse regions
of the lists for the datasets Gov2 and ClueWeb09 (see the statistics in Table 2, Sec-
tion 1.1). More precisely, the plot originated from the following experiment: we
divided each inverted list into chunks of 128 integers and we considered as sparse
a chunk where VByte yielded the best space usage with respect to the characteris-
tic bit-vector representation of the chunk (if u is the last element in the chunk, we
have the i-th bit set in a bitmap of size u for all integers i belonging to the chunk),
regarded to as the dense case. We also clustered the inverted lists by their sizes, in
order to show where dense and sparse regions are most likely to be present.

The experiment clearly shows that we have a majority of dense regions, thus ex-
plaining why in this case VByte is not competitive with respect to bit-aligned en-
coders and, thus, motivating the need for introducing a better encoding strategy
that can adapt to such distribution without compromising the query processing
speed of VByte. We can also conclude that such optimization is likely to pay o�
because the majority of integers, i.e., 85% for Gov2 and 64% for ClueWeb09, con-
centrate in the lists of medium size (thanks to the Zip�an distribution of words in
text), where indeed more than half of them belong to dense chunks.

76

5. optimal variable-byte encoding

Problem statement. In this chapter we study the problem of partitioning a mono-
tone integer sequence S(n,u), of size n and universeu, to improve its compression
by adopting a 2-level representation. This data structure stores S as a sequence
of partitions L2[S1, . . . ,Sk] that are concatenated in the second level L2. The �rst
level L1 stores, instead, a �x amount of bits, say F , for each partition Si , needed to
describe its size ni and largest element ui . Clearly, F can be safely upper bounded
byO(logu) bits. This representation has several important advantages over a shal-
low representation:

(1) it permits to choose the most suitable encoder for each partition, given its
size and upper bound, hence improving the overall index space;

(2) each partition Si can be represented in a smaller universe, i.e., ui −ui−1 − 1,
by subtracting to all its elements the base value ui−1 + 1, thus contributing
to further reduction in space;

(3) it allows a faster access to the individual elements of S, since we can �rst
locate the partition to which an element belongs to and, then, conclude the
search in that partition only.

Now, the natural arising problem is how to choose the lengths and encoders for
each partition in order to minimize the space of S. As already noted, the problem
is not trivial since we cannot expect dense regions of the lists being always aligned
with �x-sized partitions. While a dynamic programming recurrence o�ers an opti-
mal solution to this problem in Θ(n2) time and O(n) space by just considering the
cost of all possible splittings, this approach is clearly unfeasible already for modest
sizes of the input. Therefore, we need an e�cient algorithm such as the one we
describe in this chapter.

Our contributions. We discuss here the main contributions of this chapter.
We disprove the folklore belief that VByte is too large to be considered space-

e�cient for compressing inverted indexes, by exhibiting an improved compression
ratio of 2×. The result is achieved by partitioning the inverted lists into blocks and
representing each block with the most suitable encoder, chosen among VByte and
the characteristic bit-vector representation. Partitioning the lists has the potential
of adapting to the distribution of the integers in the lists, such as the ones shown in
Figure 14, by adopting VByte for the sparse regions where larger d-gaps are likely
to be present.

Since we cannot expect the dense regions of the lists be always aligned with uni-
form boundaries, we consider the optimization problem of minimizing the space of
representation of an inverted list of size n by representing it with variable-length
partitions. To solve the problem e�ciently, we introduce an algorithm that �nds
the optimal partitioning in Θ(n) time and O(1) space.

77

5. optimal variable-byte encoding

We remark that the state-of-the-art dynamic programming algorithm in [120]
can be used as well to �nd an (1 + ϵ)-optimal solution in O(n log1+ϵ

1
ϵ) time and

O(n) space for any ϵ ∈ (0, 1), but it is noticeably slower than our approach and
approximated, rather than exact.

Although we conduct our experimental analysis using VByte, we will see that
our optimal algorithm can be actually applied to any point-wise encoder, that is
whenever the chosen encoder needs a number of bits to represent an integer that
solely depends on the value of the integer and not on the universe and size of the
chunk to which it belongs to.

We conduct an experimental analysis to demonstrate the e�ectiveness and e�-
ciency of our algorithm on the standard datasets Gov2 and ClueWeb09 described in
Section 1.1, Table 2. More precisely, when compared to the un-partitioned VByte
indexes, the optimally-partitioned counterparts are: (1) signi�cantly smaller, by
2× on average; (2) only marginally slower at computing boolean conjunctions (by
only 5% on the tested architecture); (2) even faster to build on large datasets thanks
to the introduced fast partitioning algorithm and improved compression ratio.

We compare the performance of the optimally-partitioned VByte indexes against
several state-of-the-art encoders in Chapter 7.

5.1 Related work

The simplest partitioning strategy is to �x the length B of every partition, e.g.,
B = 128 integers, and split the list S(n,u) into dn/Be blocks (the last partition
could be potentially smaller than B integers). We call this partitioning strategy,
uniform. The advantage of this representation is simplicity, since no expensive
calculation is needed prior to encoding. However, we cannot expect this strategy
to yield the most compact indexes because the highly clustered regions of inverted
lists could be likely broken by such �x-sized partitions.

This is the main motivation for introducing optimization algorithms that try to
�nd the best partitioning of the list, thus minimizing its space of representation.
Silvestri and Venturini [149] obtained a O(n ×h) construction time, where n is the
length of the inverted list and h its longest partition. Ferragina et al. [61] improve
the result in [28] by computing a partitioning whose cost is guaranteed to be at
most (1 + ϵ) times away from the optimal one, for any ϵ ∈ (0, 1), in O(n log1+ϵ n)
time. Their approach can be applied to any encoder E whose cost in bits can be
computed (or, at least, estimated) in constant-time, for any portion of the input.

Dynamic programming: slow and approximated. The core idea of this ap-
proach is to not consider all possible splittings, but only the ones whose cost is

78

5. optimal variable-byte encoding

able of amortizing the �x cost F . Inspired by the ideas in [61], Ottaviano and
Venturini [120] obtained a running time of O(n log1+ϵ

1
ϵ), and preserved the same

approximation guarantees. We point the reader to Section 2.2.7 and to the original
paper [120] for the description of the dynamic programming algorithm. Here, we
recall that it �nds a solution whose encoding cost is at most (1+ ϵ) away from the
optimal one in O(n log1+ϵ

1
ϵ) time and O(n) space, for any ϵ ∈ (0, 1). Note that the

time complexity is linear as soon as ϵ is constant.
Despite the theoretical linear-time complexity for a constant ϵ , the main draw-

back of the algorithm lies in the high constant factor. For example, even by setting
ϵ = 0.03 (as done in the experimental evaluation of the original paper), we obtain
a hidden constant of log1+0.03 33.33 ' 118.63, which results in a noticeable cost in
practice. Although enlarging ϵ can reduce the constant at the price of reducing
the compression e�cacy, this remains the bottleneck for the building step of large
inverted indexes.

5.2 Optimal partitioning in linear time: fast and exact

The interesting research question we now pose is whether there exist an algorithm
that �nds an exact solution, rather than approximated, in linear time and with low
constant factors. This chapter answers positively to this question by showing that
if the cost function of the chosen encoder is point-wise, i.e., the number of bits
need to represent a single posting solely depends on such posting and not on the
universe and size of the partition it belongs to, the problem of determining and
optimal partition admits an exact and fast solution in Θ(n) time and O(1) space.

In the following, we �rst overview and discuss our solution by explaining the
intuition that lies at its core, then we give the full technical details along with a
proof of optimality and the relative pseudo-code.

5.2.1 Overview

We are interested in computing the partitioning of S whose encoding cost is min-
imum by using two di�erent encoders that take into account the relation between
the size and universe of each partition. We already motivated the potential of this
strategy by commenting on Figure 14, which shows the distribution of the inte-
gers in dense and sparse regions of the inverted lists. Let us consider the partition
S[i , j), 0 ≤ i < j ≤ n, of relative universe m = S[j − 1] − S[i − 1] − 1 and size
b = j − i . Intuitively, when b gets closer to u the partition becomes denser, vice
versa, it becomes sparser whenever b diverges from m. Thus the encoding cost
C(S[i , j)) is chosen to be the minimum between B(S[i , j)) = u bits (dense case) and

79

5. optimal variable-byte encoding

E(S[i , j)) bits (sparse case), where B is the characteristic bit-vector of S[i , j) and E
is the chosen point-wise encoder for sparse regions.

In Section 2.2 we described some encoders that are point-wise, such as, for ex-
ample, VByte, Elias- γ and δ and Golomb-Rice. Other encoders, such as Elias-Fano
(and partitioned Elias-Fano), BIC and PForDelta are not point-wise, since a di�er-
ent number of bits could be needed to represent the same integer when belonging
to partitions having di�erent characteristics, namely di�erent length and universe.
To clarify what we mean, consider the following exemplar sequence

S[0, 10) = 〈8, 9, 10, 11, 12, 36, 37, 38, 39, 40〉

Let us now compare the behaviour of Elias-Fano (non point-wise) and VByte
(point-wise). By performing no splitting, Elias-Fano will use dlog(40/10)e + 2 = 4
bits to represent every posting. By performing the splitting [0, 5)[5, 10), the �rst
�ve values will be represented with 4 bits each, but the next �ve values will be
represented with dlog(40 − 12 − 1)/5e + 2 = 5 bits each. Instead, by performing
the splitting [0, 6)[6, 10), the �rst six values will use 5 bits each, while the next four
only 2 bits each. Thus, performing di�erent cuts change the cost of representation
of the same postings for a non point-wise encoder, such as Elias-Fano. Instead, it is
immediate to see that VByte will encode each element with 8 bits, regardless any
partitioning. Obviously, we do not have to try many (or even, all) di�erent cuts in
order to know the best number of bits we should use to represent an element.

The intuition. The above example gives us an intuitive explanation of why it
is possible to design a light-weight approach for a point-wise encoder E: we can
compute the number of bits needed to represent a partition ofSwith E by just scan-
ning its elements and summing up their costs, knowing that performing a splitting
will not change their cost of representation nor, therefore, the one of the partition.
This means that as long as the cost E(S[0, j)), for some 0 < j ≤ n, is less than
B(S[0, j)) we know that S[0, j) will be represented optimally with E. Therefore,
we can safely keep scanning the sequence until the di�erence in cost between
E(S[0, j)) and B(S[0, j)) becomes more than F bits. At this point, it means that E
is wasting more than F bits with respect to B, thus we should stop encoding with
E the current partition because we can a�ord to pay the �x cost F and continue
the encoding with B. Now, the crucial question we would like to answer is: at
which position k < j should we stop encoding with E and switch to B? The answer
is simple: we should stop at the position k < j at which we saw the maximum
di�erence between the costs of E and B, because splitting in any other point will
yield a larger encoding cost. In other words, k represents the position at which
E gains most with respect to B, so we will be wasting bits by splitting before or
after position k . Observe that we must also require such gain be more than F bits,

80

5. optimal variable-byte encoding

y
<latexit sha1_base64="+q2QWmJDTcfKlCV4e9t0tKZl9ck=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9bYdOJmHmRiyhX+BW/8YfcetO3PoBTtosbOuFC4dzX+eeIBZco+t+WIWt7Z3dveJ+6eDw6PikXDlt6yhRDFosEpHqBlSD4BJayFFAN1ZAw0BAJ5g+ZPXOEyjNI9nEWQx+SMeSjzijaKjGbFB23Kq7CHsTeDlwSB71QcVy+sOIJSFIZIJq3fPcGP2UKuRMwLzUTzTElE3pGHoGShqC9tOF0rl9aZihPYqUSYn2gv07kdJQ61kYmM6Q4kSv1zLyv1ovwdGdn3IZJwiSLQ+NEmFjZGdv20OugKGYGUCZ4karzSZUUYbGnNLKqqbnp5m6bM/KfcEDMF/KtSc5UsGZn2aiqEZ4xnnJ2Oqtm7gJ2tdVz616jRundp8bXCTn5IJcEY/ckhp5JHXSIowAeSGv5M16tz6tL+t72Vqw8pkzshLWzy8RiK2y</latexit><latexit sha1_base64="+q2QWmJDTcfKlCV4e9t0tKZl9ck=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9bYdOJmHmRiyhX+BW/8YfcetO3PoBTtosbOuFC4dzX+eeIBZco+t+WIWt7Z3dveJ+6eDw6PikXDlt6yhRDFosEpHqBlSD4BJayFFAN1ZAw0BAJ5g+ZPXOEyjNI9nEWQx+SMeSjzijaKjGbFB23Kq7CHsTeDlwSB71QcVy+sOIJSFIZIJq3fPcGP2UKuRMwLzUTzTElE3pGHoGShqC9tOF0rl9aZihPYqUSYn2gv07kdJQ61kYmM6Q4kSv1zLyv1ovwdGdn3IZJwiSLQ+NEmFjZGdv20OugKGYGUCZ4karzSZUUYbGnNLKqqbnp5m6bM/KfcEDMF/KtSc5UsGZn2aiqEZ4xnnJ2Oqtm7gJ2tdVz616jRundp8bXCTn5IJcEY/ckhp5JHXSIowAeSGv5M16tz6tL+t72Vqw8pkzshLWzy8RiK2y</latexit><latexit sha1_base64="+q2QWmJDTcfKlCV4e9t0tKZl9ck=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9bYdOJmHmRiyhX+BW/8YfcetO3PoBTtosbOuFC4dzX+eeIBZco+t+WIWt7Z3dveJ+6eDw6PikXDlt6yhRDFosEpHqBlSD4BJayFFAN1ZAw0BAJ5g+ZPXOEyjNI9nEWQx+SMeSjzijaKjGbFB23Kq7CHsTeDlwSB71QcVy+sOIJSFIZIJq3fPcGP2UKuRMwLzUTzTElE3pGHoGShqC9tOF0rl9aZihPYqUSYn2gv07kdJQ61kYmM6Q4kSv1zLyv1ovwdGdn3IZJwiSLQ+NEmFjZGdv20OugKGYGUCZ4karzSZUUYbGnNLKqqbnp5m6bM/KfcEDMF/KtSc5UsGZn2aiqEZ4xnnJ2Oqtm7gJ2tdVz616jRundp8bXCTn5IJcEY/ckhp5JHXSIowAeSGv5M16tz6tL+t72Vqw8pkzshLWzy8RiK2y</latexit><latexit sha1_base64="+q2QWmJDTcfKlCV4e9t0tKZl9ck=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9bYdOJmHmRiyhX+BW/8YfcetO3PoBTtosbOuFC4dzX+eeIBZco+t+WIWt7Z3dveJ+6eDw6PikXDlt6yhRDFosEpHqBlSD4BJayFFAN1ZAw0BAJ5g+ZPXOEyjNI9nEWQx+SMeSjzijaKjGbFB23Kq7CHsTeDlwSB71QcVy+sOIJSFIZIJq3fPcGP2UKuRMwLzUTzTElE3pGHoGShqC9tOF0rl9aZihPYqUSYn2gv07kdJQ61kYmM6Q4kSv1zLyv1ovwdGdn3IZJwiSLQ+NEmFjZGdv20OugKGYGUCZ4karzSZUUYbGnNLKqqbnp5m6bM/KfcEDMF/KtSc5UsGZn2aiqEZ4xnnJ2Oqtm7gJ2tdVz616jRundp8bXCTn5IJcEY/ckhp5JHXSIowAeSGv5M16tz6tL+t72Vqw8pkzshLWzy8RiK2y</latexit>

2F
<latexit sha1_base64="EPWt85mgE2Okc/bvy+u27d9ulJ8=">AAACO3icbVDLSsNAFJ3UV62vVpdugkVwVZIi6LIoiMsqfUEbymR60w6dTMLMjVhC/8Ct/o0f4tqduHXvpO3Ctl64cDj3de7xY8E1Os6HldvY3Nreye8W9vYPDo+KpeOWjhLFoMkiEamOTzUILqGJHAV0YgU09AW0/fFtVm8/gdI8kg2cxOCFdCh5wBlFQz1W7/rFslNxZmGvA3cBymQR9X7JKvcGEUtCkMgE1brrOjF6KVXImYBpoZdoiCkb0yF0DZQ0BO2lM6lT+9wwAzuIlEmJ9oz9O5HSUOtJ6JvOkOJIr9Yy8r9aN8Hg2ku5jBMEyeaHgkTYGNnZ3/aAK2AoJgZQprjRarMRVZShcaewtKrhemmmLtuzdF9wH8yXcuVJjlRw5qWZKKoRnnFaMLa6qyaug1a14joV9+GyXLtZGJwnp+SMXBCXXJEauSd10iSMBOSFvJI36936tL6s73lrzlrMnJClsH5+ATUarbs=</latexit><latexit sha1_base64="EPWt85mgE2Okc/bvy+u27d9ulJ8=">AAACO3icbVDLSsNAFJ3UV62vVpdugkVwVZIi6LIoiMsqfUEbymR60w6dTMLMjVhC/8Ct/o0f4tqduHXvpO3Ctl64cDj3de7xY8E1Os6HldvY3Nreye8W9vYPDo+KpeOWjhLFoMkiEamOTzUILqGJHAV0YgU09AW0/fFtVm8/gdI8kg2cxOCFdCh5wBlFQz1W7/rFslNxZmGvA3cBymQR9X7JKvcGEUtCkMgE1brrOjF6KVXImYBpoZdoiCkb0yF0DZQ0BO2lM6lT+9wwAzuIlEmJ9oz9O5HSUOtJ6JvOkOJIr9Yy8r9aN8Hg2ku5jBMEyeaHgkTYGNnZ3/aAK2AoJgZQprjRarMRVZShcaewtKrhemmmLtuzdF9wH8yXcuVJjlRw5qWZKKoRnnFaMLa6qyaug1a14joV9+GyXLtZGJwnp+SMXBCXXJEauSd10iSMBOSFvJI36936tL6s73lrzlrMnJClsH5+ATUarbs=</latexit><latexit sha1_base64="EPWt85mgE2Okc/bvy+u27d9ulJ8=">AAACO3icbVDLSsNAFJ3UV62vVpdugkVwVZIi6LIoiMsqfUEbymR60w6dTMLMjVhC/8Ct/o0f4tqduHXvpO3Ctl64cDj3de7xY8E1Os6HldvY3Nreye8W9vYPDo+KpeOWjhLFoMkiEamOTzUILqGJHAV0YgU09AW0/fFtVm8/gdI8kg2cxOCFdCh5wBlFQz1W7/rFslNxZmGvA3cBymQR9X7JKvcGEUtCkMgE1brrOjF6KVXImYBpoZdoiCkb0yF0DZQ0BO2lM6lT+9wwAzuIlEmJ9oz9O5HSUOtJ6JvOkOJIr9Yy8r9aN8Hg2ku5jBMEyeaHgkTYGNnZ3/aAK2AoJgZQprjRarMRVZShcaewtKrhemmmLtuzdF9wH8yXcuVJjlRw5qWZKKoRnnFaMLa6qyaug1a14joV9+GyXLtZGJwnp+SMXBCXXJEauSd10iSMBOSFvJI36936tL6s73lrzlrMnJClsH5+ATUarbs=</latexit><latexit sha1_base64="EPWt85mgE2Okc/bvy+u27d9ulJ8=">AAACO3icbVDLSsNAFJ3UV62vVpdugkVwVZIi6LIoiMsqfUEbymR60w6dTMLMjVhC/8Ct/o0f4tqduHXvpO3Ctl64cDj3de7xY8E1Os6HldvY3Nreye8W9vYPDo+KpeOWjhLFoMkiEamOTzUILqGJHAV0YgU09AW0/fFtVm8/gdI8kg2cxOCFdCh5wBlFQz1W7/rFslNxZmGvA3cBymQR9X7JKvcGEUtCkMgE1brrOjF6KVXImYBpoZdoiCkb0yF0DZQ0BO2lM6lT+9wwAzuIlEmJ9oz9O5HSUOtJ6JvOkOJIr9Yy8r9aN8Hg2ku5jBMEyeaHgkTYGNnZ3/aAK2AoJgZQprjRarMRVZShcaewtKrhemmmLtuzdF9wH8yXcuVJjlRw5qWZKKoRnnFaMLa6qyaug1a14joV9+GyXLtZGJwnp+SMXBCXXJEauSd10iSMBOSFvJI36936tL6s73lrzlrMnJClsH5+ATUarbs=</latexit>

2F
<latexit sha1_base64="EPWt85mgE2Okc/bvy+u27d9ulJ8=">AAACO3icbVDLSsNAFJ3UV62vVpdugkVwVZIi6LIoiMsqfUEbymR60w6dTMLMjVhC/8Ct/o0f4tqduHXvpO3Ctl64cDj3de7xY8E1Os6HldvY3Nreye8W9vYPDo+KpeOWjhLFoMkiEamOTzUILqGJHAV0YgU09AW0/fFtVm8/gdI8kg2cxOCFdCh5wBlFQz1W7/rFslNxZmGvA3cBymQR9X7JKvcGEUtCkMgE1brrOjF6KVXImYBpoZdoiCkb0yF0DZQ0BO2lM6lT+9wwAzuIlEmJ9oz9O5HSUOtJ6JvOkOJIr9Yy8r9aN8Hg2ku5jBMEyeaHgkTYGNnZ3/aAK2AoJgZQprjRarMRVZShcaewtKrhemmmLtuzdF9wH8yXcuVJjlRw5qWZKKoRnnFaMLa6qyaug1a14joV9+GyXLtZGJwnp+SMXBCXXJEauSd10iSMBOSFvJI36936tL6s73lrzlrMnJClsH5+ATUarbs=</latexit><latexit sha1_base64="EPWt85mgE2Okc/bvy+u27d9ulJ8=">AAACO3icbVDLSsNAFJ3UV62vVpdugkVwVZIi6LIoiMsqfUEbymR60w6dTMLMjVhC/8Ct/o0f4tqduHXvpO3Ctl64cDj3de7xY8E1Os6HldvY3Nreye8W9vYPDo+KpeOWjhLFoMkiEamOTzUILqGJHAV0YgU09AW0/fFtVm8/gdI8kg2cxOCFdCh5wBlFQz1W7/rFslNxZmGvA3cBymQR9X7JKvcGEUtCkMgE1brrOjF6KVXImYBpoZdoiCkb0yF0DZQ0BO2lM6lT+9wwAzuIlEmJ9oz9O5HSUOtJ6JvOkOJIr9Yy8r9aN8Hg2ku5jBMEyeaHgkTYGNnZ3/aAK2AoJgZQprjRarMRVZShcaewtKrhemmmLtuzdF9wH8yXcuVJjlRw5qWZKKoRnnFaMLa6qyaug1a14joV9+GyXLtZGJwnp+SMXBCXXJEauSd10iSMBOSFvJI36936tL6s73lrzlrMnJClsH5+ATUarbs=</latexit><latexit sha1_base64="EPWt85mgE2Okc/bvy+u27d9ulJ8=">AAACO3icbVDLSsNAFJ3UV62vVpdugkVwVZIi6LIoiMsqfUEbymR60w6dTMLMjVhC/8Ct/o0f4tqduHXvpO3Ctl64cDj3de7xY8E1Os6HldvY3Nreye8W9vYPDo+KpeOWjhLFoMkiEamOTzUILqGJHAV0YgU09AW0/fFtVm8/gdI8kg2cxOCFdCh5wBlFQz1W7/rFslNxZmGvA3cBymQR9X7JKvcGEUtCkMgE1brrOjF6KVXImYBpoZdoiCkb0yF0DZQ0BO2lM6lT+9wwAzuIlEmJ9oz9O5HSUOtJ6JvOkOJIr9Yy8r9aN8Hg2ku5jBMEyeaHgkTYGNnZ3/aAK2AoJgZQprjRarMRVZShcaewtKrhemmmLtuzdF9wH8yXcuVJjlRw5qWZKKoRnnFaMLa6qyaug1a14joV9+GyXLtZGJwnp+SMXBCXXJEauSd10iSMBOSFvJI36936tL6s73lrzlrMnJClsH5+ATUarbs=</latexit><latexit sha1_base64="EPWt85mgE2Okc/bvy+u27d9ulJ8=">AAACO3icbVDLSsNAFJ3UV62vVpdugkVwVZIi6LIoiMsqfUEbymR60w6dTMLMjVhC/8Ct/o0f4tqduHXvpO3Ctl64cDj3de7xY8E1Os6HldvY3Nreye8W9vYPDo+KpeOWjhLFoMkiEamOTzUILqGJHAV0YgU09AW0/fFtVm8/gdI8kg2cxOCFdCh5wBlFQz1W7/rFslNxZmGvA3cBymQR9X7JKvcGEUtCkMgE1brrOjF6KVXImYBpoZdoiCkb0yF0DZQ0BO2lM6lT+9wwAzuIlEmJ9oz9O5HSUOtJ6JvOkOJIr9Yy8r9aN8Hg2ku5jBMEyeaHgkTYGNnZ3/aAK2AoJgZQprjRarMRVZShcaewtKrhemmmLtuzdF9wH8yXcuVJjlRw5qWZKKoRnnFaMLa6qyaug1a14joV9+GyXLtZGJwnp+SMXBCXXJEauSd10iSMBOSFvJI36936tL6s73lrzlrMnJClsH5+ATUarbs=</latexit>

i
<latexit sha1_base64="D0csGnFkJQtwMZWzLSA3HQOPD48=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9aYdOJmHmRiyhX+BW/8YfcetO3PoBTtoubOuFC4dzX+eeIBFco+t+WIWt7Z3dveJ+6eDw6PikXDlt6zhVDFosFrHqBlSD4BJayFFAN1FAo0BAJ5g85PXOEyjNY9nEaQJ+REeSh5xRNFSDD8qOW3XnYW8Cbwkcsoz6oGI5/WHM0ggkMkG17nlugn5GFXImYFbqpxoSyiZ0BD0DJY1A+9lc6cy+NMzQDmNlUqI9Z/9OZDTSehoFpjOiONbrtZz8r9ZLMbzzMy6TFEGyxaEwFTbGdv62PeQKGIqpAZQpbrTabEwVZWjMKa2sanp+lqvL96zcFzwA86Vce5IjFZz5WS6KaoRnnJWMrd66iZugfV313KrXuHFq90uDi+ScXJAr4pFbUiOPpE5ahBEgL+SVvFnv1qf1ZX0vWgvWcuaMrIT18wv0Ga2i</latexit><latexit sha1_base64="D0csGnFkJQtwMZWzLSA3HQOPD48=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9aYdOJmHmRiyhX+BW/8YfcetO3PoBTtoubOuFC4dzX+eeIBFco+t+WIWt7Z3dveJ+6eDw6PikXDlt6zhVDFosFrHqBlSD4BJayFFAN1FAo0BAJ5g85PXOEyjNY9nEaQJ+REeSh5xRNFSDD8qOW3XnYW8Cbwkcsoz6oGI5/WHM0ggkMkG17nlugn5GFXImYFbqpxoSyiZ0BD0DJY1A+9lc6cy+NMzQDmNlUqI9Z/9OZDTSehoFpjOiONbrtZz8r9ZLMbzzMy6TFEGyxaEwFTbGdv62PeQKGIqpAZQpbrTabEwVZWjMKa2sanp+lqvL96zcFzwA86Vce5IjFZz5WS6KaoRnnJWMrd66iZugfV313KrXuHFq90uDi+ScXJAr4pFbUiOPpE5ahBEgL+SVvFnv1qf1ZX0vWgvWcuaMrIT18wv0Ga2i</latexit><latexit sha1_base64="D0csGnFkJQtwMZWzLSA3HQOPD48=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9aYdOJmHmRiyhX+BW/8YfcetO3PoBTtoubOuFC4dzX+eeIBFco+t+WIWt7Z3dveJ+6eDw6PikXDlt6zhVDFosFrHqBlSD4BJayFFAN1FAo0BAJ5g85PXOEyjNY9nEaQJ+REeSh5xRNFSDD8qOW3XnYW8Cbwkcsoz6oGI5/WHM0ggkMkG17nlugn5GFXImYFbqpxoSyiZ0BD0DJY1A+9lc6cy+NMzQDmNlUqI9Z/9OZDTSehoFpjOiONbrtZz8r9ZLMbzzMy6TFEGyxaEwFTbGdv62PeQKGIqpAZQpbrTabEwVZWjMKa2sanp+lqvL96zcFzwA86Vce5IjFZz5WS6KaoRnnJWMrd66iZugfV313KrXuHFq90uDi+ScXJAr4pFbUiOPpE5ahBEgL+SVvFnv1qf1ZX0vWgvWcuaMrIT18wv0Ga2i</latexit><latexit sha1_base64="D0csGnFkJQtwMZWzLSA3HQOPD48=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9aYdOJmHmRiyhX+BW/8YfcetO3PoBTtoubOuFC4dzX+eeIBFco+t+WIWt7Z3dveJ+6eDw6PikXDlt6zhVDFosFrHqBlSD4BJayFFAN1FAo0BAJ5g85PXOEyjNY9nEaQJ+REeSh5xRNFSDD8qOW3XnYW8Cbwkcsoz6oGI5/WHM0ggkMkG17nlugn5GFXImYFbqpxoSyiZ0BD0DJY1A+9lc6cy+NMzQDmNlUqI9Z/9OZDTSehoFpjOiONbrtZz8r9ZLMbzzMy6TFEGyxaEwFTbGdv62PeQKGIqpAZQpbrTabEwVZWjMKa2sanp+lqvL96zcFzwA86Vce5IjFZz5WS6KaoRnnJWMrd66iZugfV313KrXuHFq90uDi+ScXJAr4pFbUiOPpE5ahBEgL+SVvFnv1qf1ZX0vWgvWcuaMrIT18wv0Ga2i</latexit>

j
<latexit sha1_base64="OkyghtWnkZHEeDVopACBXtJ0Jr4=">AAACOnicbVDLSsNAFJ34rPHV6tJNsAiuSiKCLotuXLbQF7ShTKY37djJJMzciCX0C9zq3/gjbt2JWz/ASduFbb1w4XDu69wTJIJrdN0Pa2Nza3tnt7Bn7x8cHh0XSyctHaeKQZPFIladgGoQXEITOQroJApoFAhoB+P7vN5+AqV5LBs4ScCP6FDykDOKhqo/9otlt+LOwlkH3gKUySJq/ZJV7g1ilkYgkQmqdddzE/QzqpAzAVO7l2pIKBvTIXQNlDQC7WczpVPnwjADJ4yVSYnOjP07kdFI60kUmM6I4kiv1nLyv1o3xfDWz7hMUgTJ5ofCVDgYO/nbzoArYCgmBlCmuNHqsBFVlKExx15a1fD8LFeX71m6L3gA5ku58iRHKjjzs1wU1QjPOLWNrd6qieugdVXx3IpXvy5X7xYGF8gZOSeXxCM3pEoeSI00CSNAXsgrebPerU/ry/qet25Yi5lTshTWzy/1762j</latexit><latexit sha1_base64="OkyghtWnkZHEeDVopACBXtJ0Jr4=">AAACOnicbVDLSsNAFJ34rPHV6tJNsAiuSiKCLotuXLbQF7ShTKY37djJJMzciCX0C9zq3/gjbt2JWz/ASduFbb1w4XDu69wTJIJrdN0Pa2Nza3tnt7Bn7x8cHh0XSyctHaeKQZPFIladgGoQXEITOQroJApoFAhoB+P7vN5+AqV5LBs4ScCP6FDykDOKhqo/9otlt+LOwlkH3gKUySJq/ZJV7g1ilkYgkQmqdddzE/QzqpAzAVO7l2pIKBvTIXQNlDQC7WczpVPnwjADJ4yVSYnOjP07kdFI60kUmM6I4kiv1nLyv1o3xfDWz7hMUgTJ5ofCVDgYO/nbzoArYCgmBlCmuNHqsBFVlKExx15a1fD8LFeX71m6L3gA5ku58iRHKjjzs1wU1QjPOLWNrd6qieugdVXx3IpXvy5X7xYGF8gZOSeXxCM3pEoeSI00CSNAXsgrebPerU/ry/qet25Yi5lTshTWzy/1762j</latexit><latexit sha1_base64="OkyghtWnkZHEeDVopACBXtJ0Jr4=">AAACOnicbVDLSsNAFJ34rPHV6tJNsAiuSiKCLotuXLbQF7ShTKY37djJJMzciCX0C9zq3/gjbt2JWz/ASduFbb1w4XDu69wTJIJrdN0Pa2Nza3tnt7Bn7x8cHh0XSyctHaeKQZPFIladgGoQXEITOQroJApoFAhoB+P7vN5+AqV5LBs4ScCP6FDykDOKhqo/9otlt+LOwlkH3gKUySJq/ZJV7g1ilkYgkQmqdddzE/QzqpAzAVO7l2pIKBvTIXQNlDQC7WczpVPnwjADJ4yVSYnOjP07kdFI60kUmM6I4kiv1nLyv1o3xfDWz7hMUgTJ5ofCVDgYO/nbzoArYCgmBlCmuNHqsBFVlKExx15a1fD8LFeX71m6L3gA5ku58iRHKjjzs1wU1QjPOLWNrd6qieugdVXx3IpXvy5X7xYGF8gZOSeXxCM3pEoeSI00CSNAXsgrebPerU/ry/qet25Yi5lTshTWzy/1762j</latexit><latexit sha1_base64="OkyghtWnkZHEeDVopACBXtJ0Jr4=">AAACOnicbVDLSsNAFJ34rPHV6tJNsAiuSiKCLotuXLbQF7ShTKY37djJJMzciCX0C9zq3/gjbt2JWz/ASduFbb1w4XDu69wTJIJrdN0Pa2Nza3tnt7Bn7x8cHh0XSyctHaeKQZPFIladgGoQXEITOQroJApoFAhoB+P7vN5+AqV5LBs4ScCP6FDykDOKhqo/9otlt+LOwlkH3gKUySJq/ZJV7g1ilkYgkQmqdddzE/QzqpAzAVO7l2pIKBvTIXQNlDQC7WczpVPnwjADJ4yVSYnOjP07kdFI60kUmM6I4kiv1nLyv1o3xfDWz7hMUgTJ5ofCVDgYO/nbzoArYCgmBlCmuNHqsBFVlKExx15a1fD8LFeX71m6L3gA5ku58iRHKjjzs1wU1QjPOLWNrd6qieugdVXx3IpXvy5X7xYGF8gZOSeXxCM3pEoeSI00CSNAXsgrebPerU/ry/qet25Yi5lTshTWzy/1762j</latexit>

k
<latexit sha1_base64="qNyMWNERAxppMb1V7o1rxlnkX3w=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9aYdOJmHmRiyhX+BW/8YfcetO3PoBTtoubOuFC4dzX+eeIBFco+t+WIWt7Z3dveJ+6eDw6PikXDlt6zhVDFosFrHqBlSD4BJayFFAN1FAo0BAJ5g85PXOEyjNY9nEaQJ+REeSh5xRNFRjMig7btWdh70JvCVwyDLqg4rl9IcxSyOQyATVuue5CfoZVciZgFmpn2pIKJvQEfQMlDQC7WdzpTP70jBDO4yVSYn2nP07kdFI62kUmM6I4liv13Lyv1ovxfDOz7hMUgTJFofCVNgY2/nb9pArYCimBlCmuNFqszFVlKExp7Syqun5Wa4u37NyX/AAzJdy7UmOVHDmZ7koqhGecVYytnrrJm6C9nXVc6te48ap3S8NLpJzckGuiEduSY08kjppEUaAvJBX8ma9W5/Wl/W9aC1Yy5kzshLWzy/3xa2k</latexit><latexit sha1_base64="qNyMWNERAxppMb1V7o1rxlnkX3w=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9aYdOJmHmRiyhX+BW/8YfcetO3PoBTtoubOuFC4dzX+eeIBFco+t+WIWt7Z3dveJ+6eDw6PikXDlt6zhVDFosFrHqBlSD4BJayFFAN1FAo0BAJ5g85PXOEyjNY9nEaQJ+REeSh5xRNFRjMig7btWdh70JvCVwyDLqg4rl9IcxSyOQyATVuue5CfoZVciZgFmpn2pIKJvQEfQMlDQC7WdzpTP70jBDO4yVSYn2nP07kdFI62kUmM6I4liv13Lyv1ovxfDOz7hMUgTJFofCVNgY2/nb9pArYCimBlCmuNFqszFVlKExp7Syqun5Wa4u37NyX/AAzJdy7UmOVHDmZ7koqhGecVYytnrrJm6C9nXVc6te48ap3S8NLpJzckGuiEduSY08kjppEUaAvJBX8ma9W5/Wl/W9aC1Yy5kzshLWzy/3xa2k</latexit><latexit sha1_base64="qNyMWNERAxppMb1V7o1rxlnkX3w=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9aYdOJmHmRiyhX+BW/8YfcetO3PoBTtoubOuFC4dzX+eeIBFco+t+WIWt7Z3dveJ+6eDw6PikXDlt6zhVDFosFrHqBlSD4BJayFFAN1FAo0BAJ5g85PXOEyjNY9nEaQJ+REeSh5xRNFRjMig7btWdh70JvCVwyDLqg4rl9IcxSyOQyATVuue5CfoZVciZgFmpn2pIKJvQEfQMlDQC7WdzpTP70jBDO4yVSYn2nP07kdFI62kUmM6I4liv13Lyv1ovxfDOz7hMUgTJFofCVNgY2/nb9pArYCimBlCmuNFqszFVlKExp7Syqun5Wa4u37NyX/AAzJdy7UmOVHDmZ7koqhGecVYytnrrJm6C9nXVc6te48ap3S8NLpJzckGuiEduSY08kjppEUaAvJBX8ma9W5/Wl/W9aC1Yy5kzshLWzy/3xa2k</latexit><latexit sha1_base64="qNyMWNERAxppMb1V7o1rxlnkX3w=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9aYdOJmHmRiyhX+BW/8YfcetO3PoBTtoubOuFC4dzX+eeIBFco+t+WIWt7Z3dveJ+6eDw6PikXDlt6zhVDFosFrHqBlSD4BJayFFAN1FAo0BAJ5g85PXOEyjNY9nEaQJ+REeSh5xRNFRjMig7btWdh70JvCVwyDLqg4rl9IcxSyOQyATVuue5CfoZVciZgFmpn2pIKJvQEfQMlDQC7WdzpTP70jBDO4yVSYn2nP07kdFI62kUmM6I4liv13Lyv1ovxfDOz7hMUgTJFofCVNgY2/nb9pArYCimBlCmuNFqszFVlKExp7Syqun5Wa4u37NyX/AAzJdy7UmOVHDmZ7koqhGecVYytnrrJm6C9nXVc6te48ap3S8NLpJzckGuiEduSY08kjppEUaAvJBX8ma9W5/Wl/W9aC1Yy5kzshLWzy/3xa2k</latexit>

(a)

F

F

0
<latexit sha1_base64="ig2wYhEmcgE9cUIGGXBMGLeO6gM=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9aYdOJmHmRiyhX+BW/8YfcetO3PoBTtoubOuFC4dzX+eeIBFco+t+WIWt7Z3dveJ+6eDw6PikXDlt6zhVDFosFrHqBlSD4BJayFFAN1FAo0BAJ5g85PXOEyjNY9nEaQJ+REeSh5xRNFTDHZQdt+rOw94E3hI4ZBn1QcVy+sOYpRFIZIJq3fPcBP2MKuRMwKzUTzUklE3oCHoGShqB9rO50pl9aZihHcbKpER7zv6dyGik9TQKTGdEcazXazn5X62XYnjnZ1wmKYJki0NhKmyM7fxte8gVMBRTAyhT3Gi12ZgqytCYU1pZ1fT8LFeX71m5L3gA5ku59iRHKjjzs1wU1QjPOCsZW711EzdB+7rquVWvcePU7pcGF8k5uSBXxCO3pEYeSZ20CCNAXsgrebPerU/ry/petBas5cwZWQnr5xeLc61p</latexit><latexit sha1_base64="ig2wYhEmcgE9cUIGGXBMGLeO6gM=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9aYdOJmHmRiyhX+BW/8YfcetO3PoBTtoubOuFC4dzX+eeIBFco+t+WIWt7Z3dveJ+6eDw6PikXDlt6zhVDFosFrHqBlSD4BJayFFAN1FAo0BAJ5g85PXOEyjNY9nEaQJ+REeSh5xRNFTDHZQdt+rOw94E3hI4ZBn1QcVy+sOYpRFIZIJq3fPcBP2MKuRMwKzUTzUklE3oCHoGShqB9rO50pl9aZihHcbKpER7zv6dyGik9TQKTGdEcazXazn5X62XYnjnZ1wmKYJki0NhKmyM7fxte8gVMBRTAyhT3Gi12ZgqytCYU1pZ1fT8LFeX71m5L3gA5ku59iRHKjjzs1wU1QjPOCsZW711EzdB+7rquVWvcePU7pcGF8k5uSBXxCO3pEYeSZ20CCNAXsgrebPerU/ry/petBas5cwZWQnr5xeLc61p</latexit><latexit sha1_base64="ig2wYhEmcgE9cUIGGXBMGLeO6gM=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9aYdOJmHmRiyhX+BW/8YfcetO3PoBTtoubOuFC4dzX+eeIBFco+t+WIWt7Z3dveJ+6eDw6PikXDlt6zhVDFosFrHqBlSD4BJayFFAN1FAo0BAJ5g85PXOEyjNY9nEaQJ+REeSh5xRNFTDHZQdt+rOw94E3hI4ZBn1QcVy+sOYpRFIZIJq3fPcBP2MKuRMwKzUTzUklE3oCHoGShqB9rO50pl9aZihHcbKpER7zv6dyGik9TQKTGdEcazXazn5X62XYnjnZ1wmKYJki0NhKmyM7fxte8gVMBRTAyhT3Gi12ZgqytCYU1pZ1fT8LFeX71m5L3gA5ku59iRHKjjzs1wU1QjPOCsZW711EzdB+7rquVWvcePU7pcGF8k5uSBXxCO3pEYeSZ20CCNAXsgrebPerU/ry/petBas5cwZWQnr5xeLc61p</latexit><latexit sha1_base64="ig2wYhEmcgE9cUIGGXBMGLeO6gM=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9aYdOJmHmRiyhX+BW/8YfcetO3PoBTtoubOuFC4dzX+eeIBFco+t+WIWt7Z3dveJ+6eDw6PikXDlt6zhVDFosFrHqBlSD4BJayFFAN1FAo0BAJ5g85PXOEyjNY9nEaQJ+REeSh5xRNFTDHZQdt+rOw94E3hI4ZBn1QcVy+sOYpRFIZIJq3fPcBP2MKuRMwKzUTzUklE3oCHoGShqB9rO50pl9aZihHcbKpER7zv6dyGik9TQKTGdEcazXazn5X62XYnjnZ1wmKYJki0NhKmyM7fxte8gVMBRTAyhT3Gi12ZgqytCYU1pZ1fT8LFeX71m5L3gA5ku59iRHKjjzs1wU1QjPOCsZW711EzdB+7rquVWvcePU7pcGF8k5uSBXxCO3pEYeSZ20CCNAXsgrebPerU/ry/petBas5cwZWQnr5xeLc61p</latexit>

n
<latexit sha1_base64="NPNqqrkgyK8M3D6U54coii6W9G0=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9aYdOJmHmRiyhX+BW/8YfcetO3PoBTtoubOuFC4dzX+eeIBFco+t+WIWt7Z3dveJ+6eDw6PikXDlt6zhVDFosFrHqBlSD4BJayFFAN1FAo0BAJ5g85PXOEyjNY9nEaQJ+REeSh5xRNFRDDsqOW3XnYW8Cbwkcsoz6oGI5/WHM0ggkMkG17nlugn5GFXImYFbqpxoSyiZ0BD0DJY1A+9lc6cy+NMzQDmNlUqI9Z/9OZDTSehoFpjOiONbrtZz8r9ZLMbzzMy6TFEGyxaEwFTbGdv62PeQKGIqpAZQpbrTabEwVZWjMKa2sanp+lqvL96zcFzwA86Vce5IjFZz5WS6KaoRnnJWMrd66iZugfV313KrXuHFq90uDi+ScXJAr4pFbUiOPpE5ahBEgL+SVvFnv1qf1ZX0vWgvWcuaMrIT18wv9R62n</latexit><latexit sha1_base64="NPNqqrkgyK8M3D6U54coii6W9G0=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9aYdOJmHmRiyhX+BW/8YfcetO3PoBTtoubOuFC4dzX+eeIBFco+t+WIWt7Z3dveJ+6eDw6PikXDlt6zhVDFosFrHqBlSD4BJayFFAN1FAo0BAJ5g85PXOEyjNY9nEaQJ+REeSh5xRNFRDDsqOW3XnYW8Cbwkcsoz6oGI5/WHM0ggkMkG17nlugn5GFXImYFbqpxoSyiZ0BD0DJY1A+9lc6cy+NMzQDmNlUqI9Z/9OZDTSehoFpjOiONbrtZz8r9ZLMbzzMy6TFEGyxaEwFTbGdv62PeQKGIqpAZQpbrTabEwVZWjMKa2sanp+lqvL96zcFzwA86Vce5IjFZz5WS6KaoRnnJWMrd66iZugfV313KrXuHFq90uDi+ScXJAr4pFbUiOPpE5ahBEgL+SVvFnv1qf1ZX0vWgvWcuaMrIT18wv9R62n</latexit><latexit sha1_base64="NPNqqrkgyK8M3D6U54coii6W9G0=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9aYdOJmHmRiyhX+BW/8YfcetO3PoBTtoubOuFC4dzX+eeIBFco+t+WIWt7Z3dveJ+6eDw6PikXDlt6zhVDFosFrHqBlSD4BJayFFAN1FAo0BAJ5g85PXOEyjNY9nEaQJ+REeSh5xRNFRDDsqOW3XnYW8Cbwkcsoz6oGI5/WHM0ggkMkG17nlugn5GFXImYFbqpxoSyiZ0BD0DJY1A+9lc6cy+NMzQDmNlUqI9Z/9OZDTSehoFpjOiONbrtZz8r9ZLMbzzMy6TFEGyxaEwFTbGdv62PeQKGIqpAZQpbrTabEwVZWjMKa2sanp+lqvL96zcFzwA86Vce5IjFZz5WS6KaoRnnJWMrd66iZugfV313KrXuHFq90uDi+ScXJAr4pFbUiOPpE5ahBEgL+SVvFnv1qf1ZX0vWgvWcuaMrIT18wv9R62n</latexit><latexit sha1_base64="NPNqqrkgyK8M3D6U54coii6W9G0=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9aYdOJmHmRiyhX+BW/8YfcetO3PoBTtoubOuFC4dzX+eeIBFco+t+WIWt7Z3dveJ+6eDw6PikXDlt6zhVDFosFrHqBlSD4BJayFFAN1FAo0BAJ5g85PXOEyjNY9nEaQJ+REeSh5xRNFRDDsqOW3XnYW8Cbwkcsoz6oGI5/WHM0ggkMkG17nlugn5GFXImYFbqpxoSyiZ0BD0DJY1A+9lc6cy+NMzQDmNlUqI9Z/9OZDTSehoFpjOiONbrtZz8r9ZLMbzzMy6TFEGyxaEwFTbGdv62PeQKGIqpAZQpbrTabEwVZWjMKa2sanp+lqvL96zcFzwA86Vce5IjFZz5WS6KaoRnnJWMrd66iZugfV313KrXuHFq90uDi+ScXJAr4pFbUiOPpE5ahBEgL+SVvFnv1qf1ZX0vWgvWcuaMrIT18wv9R62n</latexit>

k
<latexit sha1_base64="qNyMWNERAxppMb1V7o1rxlnkX3w=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9aYdOJmHmRiyhX+BW/8YfcetO3PoBTtoubOuFC4dzX+eeIBFco+t+WIWt7Z3dveJ+6eDw6PikXDlt6zhVDFosFrHqBlSD4BJayFFAN1FAo0BAJ5g85PXOEyjNY9nEaQJ+REeSh5xRNFRjMig7btWdh70JvCVwyDLqg4rl9IcxSyOQyATVuue5CfoZVciZgFmpn2pIKJvQEfQMlDQC7WdzpTP70jBDO4yVSYn2nP07kdFI62kUmM6I4liv13Lyv1ovxfDOz7hMUgTJFofCVNgY2/nb9pArYCimBlCmuNFqszFVlKExp7Syqun5Wa4u37NyX/AAzJdy7UmOVHDmZ7koqhGecVYytnrrJm6C9nXVc6te48ap3S8NLpJzckGuiEduSY08kjppEUaAvJBX8ma9W5/Wl/W9aC1Yy5kzshLWzy/3xa2k</latexit><latexit sha1_base64="qNyMWNERAxppMb1V7o1rxlnkX3w=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9aYdOJmHmRiyhX+BW/8YfcetO3PoBTtoubOuFC4dzX+eeIBFco+t+WIWt7Z3dveJ+6eDw6PikXDlt6zhVDFosFrHqBlSD4BJayFFAN1FAo0BAJ5g85PXOEyjNY9nEaQJ+REeSh5xRNFRjMig7btWdh70JvCVwyDLqg4rl9IcxSyOQyATVuue5CfoZVciZgFmpn2pIKJvQEfQMlDQC7WdzpTP70jBDO4yVSYn2nP07kdFI62kUmM6I4liv13Lyv1ovxfDOz7hMUgTJFofCVNgY2/nb9pArYCimBlCmuNFqszFVlKExp7Syqun5Wa4u37NyX/AAzJdy7UmOVHDmZ7koqhGecVYytnrrJm6C9nXVc6te48ap3S8NLpJzckGuiEduSY08kjppEUaAvJBX8ma9W5/Wl/W9aC1Yy5kzshLWzy/3xa2k</latexit><latexit sha1_base64="qNyMWNERAxppMb1V7o1rxlnkX3w=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9aYdOJmHmRiyhX+BW/8YfcetO3PoBTtoubOuFC4dzX+eeIBFco+t+WIWt7Z3dveJ+6eDw6PikXDlt6zhVDFosFrHqBlSD4BJayFFAN1FAo0BAJ5g85PXOEyjNY9nEaQJ+REeSh5xRNFRjMig7btWdh70JvCVwyDLqg4rl9IcxSyOQyATVuue5CfoZVciZgFmpn2pIKJvQEfQMlDQC7WdzpTP70jBDO4yVSYn2nP07kdFI62kUmM6I4liv13Lyv1ovxfDOz7hMUgTJFofCVNgY2/nb9pArYCimBlCmuNFqszFVlKExp7Syqun5Wa4u37NyX/AAzJdy7UmOVHDmZ7koqhGecVYytnrrJm6C9nXVc6te48ap3S8NLpJzckGuiEduSY08kjppEUaAvJBX8ma9W5/Wl/W9aC1Yy5kzshLWzy/3xa2k</latexit><latexit sha1_base64="qNyMWNERAxppMb1V7o1rxlnkX3w=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9aYdOJmHmRiyhX+BW/8YfcetO3PoBTtoubOuFC4dzX+eeIBFco+t+WIWt7Z3dveJ+6eDw6PikXDlt6zhVDFosFrHqBlSD4BJayFFAN1FAo0BAJ5g85PXOEyjNY9nEaQJ+REeSh5xRNFRjMig7btWdh70JvCVwyDLqg4rl9IcxSyOQyATVuue5CfoZVciZgFmpn2pIKJvQEfQMlDQC7WdzpTP70jBDO4yVSYn2nP07kdFI62kUmM6I4liv13Lyv1ovxfDOz7hMUgTJFofCVNgY2/nb9pArYCimBlCmuNFqszFVlKExp7Syqun5Wa4u37NyX/AAzJdy7UmOVHDmZ7koqhGecVYytnrrJm6C9nXVc6te48ap3S8NLpJzckGuiEduSY08kjppEUaAvJBX8ma9W5/Wl/W9aC1Yy5kzshLWzy/3xa2k</latexit>

y
<latexit sha1_base64="+q2QWmJDTcfKlCV4e9t0tKZl9ck=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9bYdOJmHmRiyhX+BW/8YfcetO3PoBTtosbOuFC4dzX+eeIBZco+t+WIWt7Z3dveJ+6eDw6PikXDlt6yhRDFosEpHqBlSD4BJayFFAN1ZAw0BAJ5g+ZPXOEyjNI9nEWQx+SMeSjzijaKjGbFB23Kq7CHsTeDlwSB71QcVy+sOIJSFIZIJq3fPcGP2UKuRMwLzUTzTElE3pGHoGShqC9tOF0rl9aZihPYqUSYn2gv07kdJQ61kYmM6Q4kSv1zLyv1ovwdGdn3IZJwiSLQ+NEmFjZGdv20OugKGYGUCZ4karzSZUUYbGnNLKqqbnp5m6bM/KfcEDMF/KtSc5UsGZn2aiqEZ4xnnJ2Oqtm7gJ2tdVz616jRundp8bXCTn5IJcEY/ckhp5JHXSIowAeSGv5M16tz6tL+t72Vqw8pkzshLWzy8RiK2y</latexit><latexit sha1_base64="+q2QWmJDTcfKlCV4e9t0tKZl9ck=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9bYdOJmHmRiyhX+BW/8YfcetO3PoBTtosbOuFC4dzX+eeIBZco+t+WIWt7Z3dveJ+6eDw6PikXDlt6yhRDFosEpHqBlSD4BJayFFAN1ZAw0BAJ5g+ZPXOEyjNI9nEWQx+SMeSjzijaKjGbFB23Kq7CHsTeDlwSB71QcVy+sOIJSFIZIJq3fPcGP2UKuRMwLzUTzTElE3pGHoGShqC9tOF0rl9aZihPYqUSYn2gv07kdJQ61kYmM6Q4kSv1zLyv1ovwdGdn3IZJwiSLQ+NEmFjZGdv20OugKGYGUCZ4karzSZUUYbGnNLKqqbnp5m6bM/KfcEDMF/KtSc5UsGZn2aiqEZ4xnnJ2Oqtm7gJ2tdVz616jRundp8bXCTn5IJcEY/ckhp5JHXSIowAeSGv5M16tz6tL+t72Vqw8pkzshLWzy8RiK2y</latexit><latexit sha1_base64="+q2QWmJDTcfKlCV4e9t0tKZl9ck=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9bYdOJmHmRiyhX+BW/8YfcetO3PoBTtosbOuFC4dzX+eeIBZco+t+WIWt7Z3dveJ+6eDw6PikXDlt6yhRDFosEpHqBlSD4BJayFFAN1ZAw0BAJ5g+ZPXOEyjNI9nEWQx+SMeSjzijaKjGbFB23Kq7CHsTeDlwSB71QcVy+sOIJSFIZIJq3fPcGP2UKuRMwLzUTzTElE3pGHoGShqC9tOF0rl9aZihPYqUSYn2gv07kdJQ61kYmM6Q4kSv1zLyv1ovwdGdn3IZJwiSLQ+NEmFjZGdv20OugKGYGUCZ4karzSZUUYbGnNLKqqbnp5m6bM/KfcEDMF/KtSc5UsGZn2aiqEZ4xnnJ2Oqtm7gJ2tdVz616jRundp8bXCTn5IJcEY/ckhp5JHXSIowAeSGv5M16tz6tL+t72Vqw8pkzshLWzy8RiK2y</latexit><latexit sha1_base64="+q2QWmJDTcfKlCV4e9t0tKZl9ck=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9bYdOJmHmRiyhX+BW/8YfcetO3PoBTtosbOuFC4dzX+eeIBZco+t+WIWt7Z3dveJ+6eDw6PikXDlt6yhRDFosEpHqBlSD4BJayFFAN1ZAw0BAJ5g+ZPXOEyjNI9nEWQx+SMeSjzijaKjGbFB23Kq7CHsTeDlwSB71QcVy+sOIJSFIZIJq3fPcGP2UKuRMwLzUTzTElE3pGHoGShqC9tOF0rl9aZihPYqUSYn2gv07kdJQ61kYmM6Q4kSv1zLyv1ovwdGdn3IZJwiSLQ+NEmFjZGdv20OugKGYGUCZ4karzSZUUYbGnNLKqqbnp5m6bM/KfcEDMF/KtSc5UsGZn2aiqEZ4xnnJ2Oqtm7gJ2tdVz616jRundp8bXCTn5IJcEY/ckhp5JHXSIowAeSGv5M16tz6tL+t72Vqw8pkzshLWzy8RiK2y</latexit>

(b)

Figure 15: In case (a), we should split S[i , j) in correspondence of position k because
there the gain is the minimum among all points whose gain is below 2F from S[i] and
S[j]; in case (b) we should not split the sequence because, although an increase in gain
of F bits follows, we do not have a su�iciently high gain up to S[n − 1] to amortize the
cost of the spli�ing.

otherwise switching encoder will actually cause a waste of bits. In other terms, we
say that in such case the gain would not be su�cient to amortize the �x cost of
the partition, meaning that we should not split the sequence yet.

In conclusion, we encode S[0,k) with E and know that the elements S[k , j) will
be now best represented with B, rather than with E. Figure 15 o�ers a pictorial
representation of how the di�erence between the encoding costs of E and B, re-
ferred to as the gain function, changes during the scan of S. When the function
is decreasing, it means that E is winning over B, i.e., its encoding cost is less; con-
versely, when B is more e�cient than E, the function is increasing.

After encoding the �rst partition S[0,k), the process repeats: (1) we keep scan-
ning S until B loses more than 2F bits with respect to E; (2) we encode with B the
elements in S[k ,k′) if the maximum gain of B with respect to E, seen at position
k′, is greater than 2F bits. We keep alternating compressors until the end of the
sequence.

Before sketching a compact pseudo-code of our algorithm, we �rst express some
considerations. First of all note that, for all partitions except the �rst, we need to
amortize twice the �x cost, because we could potentially merge the last formed
partition with the current one, thus, in order to be bene�cial, the di�erence in the
cost of the two encoders must be larger than 2F bits. Again, refer to Figure 15a
for an example. Also, for illustrative purposes, in the previous discussion we have
assumed that the �rst partition is best encoded with E: clearly, B could be better
at the beginning but the algorithm will work in the very same way.

81

5. optimal variable-byte encoding

5.2.2 The algorithm

In the most general terms, call L the encoder used to represent the last encoded
partition and C the current one. These will be either E or B. We also indicate with
the same letters the costs in bits of their representation of the current partition.
Finally, let д∗ indicate the best gain of C with respect to L. At a high level, the
skeleton of our algorithm looks as follows.

(1) Encode the �rst partition.

(2) If |C − L| and д∗ are greater than 2F bits, encode the current partition with
C and swap the roles of C and L.

(3) Repeat step 2. until the end of the sequence.

(4) Encode the last partition.

In the above pseudo-code, the encoding of the �rst and last partitions its treated
separately because these must amortize a �x cost of F bits instead of 2F bits, be-
cause we do not have any partition before and after, respectively (see Figure 15b).

It is immediate to see that the described approach can be implemented by using
O(1) space because we only need to keep the di�erence between the costs of E and
B (plus some cursor variables), and that it runs in Θ(n) time because we calculate
the cost in bits of each integer exactly once. We have, therefore, eliminated the
linear-space complexity of any dynamic programming approach because we do
not need to maintain the costs of the shortest path ending in each position of
S. Moreover, the introduced algorithm has very low constant factors in the time
complexity, since it just performs few comparisons and updates of some variables
for each integer of S.

5.2.3 Technical discussion

Let д : N∪ {0} → Z be the gain function, de�ned as

д(S[j]) =
j−1∑
i=0

[
E(S[i]) − B(S[i])

]
, for j = 0, . . . ,n − 1.

In order to describe the properties of our solution, we �rst need the following
de�nition.

82

5. optimal variable-byte encoding

Definition 2 — Given S[i , j), 0 ≤ i < j ≤ n, the integer y ∈ S[i , j) is the point
dominating S[i , j) for the encoder E, if

y = arg min
i<k≤j

д(S[k]) such that д(S[i]) −д(y) > T , (6)

where T = F if i = 0 or 2F otherwise, and S[j] satis�es one of the following:

д(S[j]) −д(y) > 2F , or (7)
д(z) −д(y) > F , for all z ≥ S[j]. (8)

Notice that the dominating point could not exist for any sub-sequence S[i , j),
but if it exists and E(x) , B(x) for any x ∈ S[i , j), it must be unique. Clearly, the
de�nition of dominating point for encoder B is symmetric to De�nition 2.

The above de�nition explains that, given S[i , j), we can always improve its cost
of representation by splitting the interval in correspondence of the dominating
point y if it exists, otherwise we should not split S[i , j). It is easy to see that the
dominating point inS[i , j) is the point in which the di�erence of the costs between
the two compressors is maximized, thus it will be only bene�cial to split in this
point rather than any other point, as we explained previously.

It is also easy to see why we should search the dominating point among the ones
whose gain is at leastT bits less thanд(S[i]). The thresholdT is set to the minimum
amount of bits needed to amortize the cost of switching from one compressor to
the other. Consider Figure 15a and suppose we are encoding with B before S[i]
and after y. If we compress with E the partition S[i ,k), we are switching encoder
twice, thus the gain in y must be at least 2F bits less than д(S[i]) to be able of
amortizing the cost for two switches. In Figure 15b, instead, we have no partition
before S[0], thus we strive to amortize the cost for a single switch.

Now, let p(x) ∈ [0,n) be the position of integer x in S[0,n), i.e., S[p(x)] = x .
Our strategy consists in splitting the sequence in correspondence of the dominating
points, as de�ned above. More precisely, the solution P = 〈p1, . . . ,pk〉 output by
this strategy can be described by the following recursive equation

pi = p(yi), (yi−1,yi ,yi+1), for i = 1, . . . ,k , (9)

where y0 = S[0], yk+1 = S[n − 1] and notation (S[i],y,S[j]) means that y is the
point dominating S[i , j). In other words, any pi ∈ P, except for the �rst and the
last, is the dominating point of the interval whose endpoints are dominating points
as well.

Notice that, by de�nition, there cannot be two adjacent dominating points that
are relative to the same encoder, but they must be relative to di�erent encoders.

83

5. optimal variable-byte encoding

i0
<latexit sha1_base64="ig2wYhEmcgE9cUIGGXBMGLeO6gM=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9aYdOJmHmRiyhX+BW/8YfcetO3PoBTtoubOuFC4dzX+eeIBFco+t+WIWt7Z3dveJ+6eDw6PikXDlt6zhVDFosFrHqBlSD4BJayFFAN1FAo0BAJ5g85PXOEyjNY9nEaQJ+REeSh5xRNFTDHZQdt+rOw94E3hI4ZBn1QcVy+sOYpRFIZIJq3fPcBP2MKuRMwKzUTzUklE3oCHoGShqB9rO50pl9aZihHcbKpER7zv6dyGik9TQKTGdEcazXazn5X62XYnjnZ1wmKYJki0NhKmyM7fxte8gVMBRTAyhT3Gi12ZgqytCYU1pZ1fT8LFeX71m5L3gA5ku59iRHKjjzs1wU1QjPOCsZW711EzdB+7rquVWvcePU7pcGF8k5uSBXxCO3pEYeSZ20CCNAXsgrebPerU/ry/petBas5cwZWQnr5xeLc61p</latexit><latexit sha1_base64="ig2wYhEmcgE9cUIGGXBMGLeO6gM=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9aYdOJmHmRiyhX+BW/8YfcetO3PoBTtoubOuFC4dzX+eeIBFco+t+WIWt7Z3dveJ+6eDw6PikXDlt6zhVDFosFrHqBlSD4BJayFFAN1FAo0BAJ5g85PXOEyjNY9nEaQJ+REeSh5xRNFTDHZQdt+rOw94E3hI4ZBn1QcVy+sOYpRFIZIJq3fPcBP2MKuRMwKzUTzUklE3oCHoGShqB9rO50pl9aZihHcbKpER7zv6dyGik9TQKTGdEcazXazn5X62XYnjnZ1wmKYJki0NhKmyM7fxte8gVMBRTAyhT3Gi12ZgqytCYU1pZ1fT8LFeX71m5L3gA5ku59iRHKjjzs1wU1QjPOCsZW711EzdB+7rquVWvcePU7pcGF8k5uSBXxCO3pEYeSZ20CCNAXsgrebPerU/ry/petBas5cwZWQnr5xeLc61p</latexit><latexit sha1_base64="ig2wYhEmcgE9cUIGGXBMGLeO6gM=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9aYdOJmHmRiyhX+BW/8YfcetO3PoBTtoubOuFC4dzX+eeIBFco+t+WIWt7Z3dveJ+6eDw6PikXDlt6zhVDFosFrHqBlSD4BJayFFAN1FAo0BAJ5g85PXOEyjNY9nEaQJ+REeSh5xRNFTDHZQdt+rOw94E3hI4ZBn1QcVy+sOYpRFIZIJq3fPcBP2MKuRMwKzUTzUklE3oCHoGShqB9rO50pl9aZihHcbKpER7zv6dyGik9TQKTGdEcazXazn5X62XYnjnZ1wmKYJki0NhKmyM7fxte8gVMBRTAyhT3Gi12ZgqytCYU1pZ1fT8LFeX71m5L3gA5ku59iRHKjjzs1wU1QjPOCsZW711EzdB+7rquVWvcePU7pcGF8k5uSBXxCO3pEYeSZ20CCNAXsgrebPerU/ry/petBas5cwZWQnr5xeLc61p</latexit><latexit sha1_base64="ig2wYhEmcgE9cUIGGXBMGLeO6gM=">AAACOnicbVDLSsNAFJ3UV62vVpdugkFwVRIRdFl047KFvqANZTK9aYdOJmHmRiyhX+BW/8YfcetO3PoBTtoubOuFC4dzX+eeIBFco+t+WIWt7Z3dveJ+6eDw6PikXDlt6zhVDFosFrHqBlSD4BJayFFAN1FAo0BAJ5g85PXOEyjNY9nEaQJ+REeSh5xRNFTDHZQdt+rOw94E3hI4ZBn1QcVy+sOYpRFIZIJq3fPcBP2MKuRMwKzUTzUklE3oCHoGShqB9rO50pl9aZihHcbKpER7zv6dyGik9TQKTGdEcazXazn5X62XYnjnZ1wmKYJki0NhKmyM7fxte8gVMBRTAyhT3Gi12ZgqytCYU1pZ1fT8LFeX71m5L3gA5ku59iRHKjjzs1wU1QjPOCsZW711EzdB+7rquVWvcePU7pcGF8k5uSBXxCO3pEYeSZ20CCNAXsgrebPerU/ry/petBas5cwZWQnr5xeLc61p</latexit>

u v j

Figure 16: Path of minimum cost till position j (thick black line) and its representation
in terms of gain function; u is the position of the point dominating S[i , j).

In fact, suppose we have a dominating point y for E: it means that either we have
seen an increase in gain of 2F after y and, thus, the dominating point after y (if
found) will be relative to B, or the gain never goes under y and a dominating point
after y if not found. This means that P alternates the choice of compressors, i.e.,
a partition encoded with E is delimited by two partitions encoded with B and vice
versa (except for the �rst and last). We call such behaviour, alternating.

In particular, our strategy will encode with compressor E all partitions ending
with a dominating point for E (and starting with a dominating point for B, since
P alternates the compressors). The same holds for B. As already pointed out, the
only exception is made for the last partition S[pk ,n), because S[n − 1] cannot be a
dominating point by de�nition (no increase or decrease in gain is possible after the
end of the sequence). In this case, the strategy selects the compressor that yields
the minimum cost over S[pk ,n).

Since a feasible solution to the problem is just either a singleton partition or con-
sists in any sequence of strictly increasing positions, we argue that P is a feasible
solution. This follows automatically by the de�nition of dominating point because
such points are di�erent one another and, therefore, their positions strictly increas-
ing. If no dominating points exist, then P will be empty: it is a feasible solution
too and indicates that S should not be cut (singleton partition). We now show the
following lemma.

Lemma 3 — P is optimal.

Proof. As already noted in Section 2.2.7, an optimal solution to the problem can be
thought as a path of minimum cost in the DAG whose vertices are the positions
of the integers of S and C(i , j) = C(S[i , j]) for any edge (i , j). Thus, suppose that
P is not a shortest path and let P∗ = [p∗1 , . . . ,p∗m] be the shortest path sharing the
longest common pre�x with P. Refer to Figure 16 for a graphical representation:
i is the largest position shared by P∗ and P. We want to show that we can replace
the edge (i ,v), v ∈ P∗, with the path (i ,u)(u,v), u ∈ P, without changing the
cost of P∗, therefore extending the longest common pre�x up to node u < v (the
case for u > v is symmetric). We argue that this is only possible if P is optimal,

84

5. optimal variable-byte encoding

otherwise it would mean that P∗ is not a shortest path sharing a common longest
pre�x with P, which is absurd by assumption.

First note that both edges (i ,v) and (i ,u) must be encoded with the same com-
pressor. In fact, suppose that these are not, for example (i ,v) is encoded with B
and (i ,u) with E. Since v ∈ P∗, we know that it is optimal to encode with B until
v . However, the fact thatu is a dominating point for E implies that B(i ,u) > E(i ,u),
which is absurd because u < v and B is optimal until v . Therefore, both edges
must use the same encode. Assume that it is E (the case for B is symmetric).

The fact that v belongs to the optimal solution P∗ means that if we split the
edge into two (or more) pieces, we cannot decrease the cost, i.e., E(i ,v) ≤ E(i ,k)+
B(k ,v) + F , ∀i ≤ k ≤ v . Since E is point-wise, we have E(i ,v) − E(i ,k) = E(k ,v)
and thus, by imposing k = u, we obtain (1) E(u,v) ≤ B(u,v) + F . Vice versa, the
fact that u is a dominating point for E means that from u to v the cost is higher if
we keep the same encoder, i.e., E(i ,v) ≥ E(i ,u) + B(u,v) + F . Again, by exploiting
the fact that E is point-wise, we have (2) E(u,v) ≥ B(u,v) + F . Conditions (1) and
(2) together imply that it must be E(u,v) = B(u,v) + F , thus we have no change
in the cost of P∗ by performing the exchange, which contradicts our assumption
that P was not optimal.

�

We are now left to present a detailed algorithm that computes P, i.e., that itera-
tively �nds all the dominating points of S according to equation 9. The argue that
the function optimal_partitioning shown in Figure 18 does the job. Before prov-
ing that the algorithm is correct, let us explain the meaning of the variables used in
the pseudo-code. Call ` the last added position to P. Variables i and j keep track of
the positions of the points dominating the interval S[`,k) for, respectively, B and
E encoders. Likewise, max and min are the gains in correspondence of positions i
and j; д indicates the gain at step k , for k = 0, . . . ,n − 1.

Lemma 4 — The algorithm shown in Figure 18 is correct.

Proof. We want to show that the array P returned by optimal_partitioning
contains all the positions of the dominating points, as recursively described by
equation 9. We proceed by induction on the elements of P.

The main loop in lines 6-17:

(1) computes the gain д at step k (line 7);

(2) updates the variables i ,max (lines 9-10) and j,min (lines 14-15);

(3) add new positions to P (lines 11-12 and 16-17).

Correctness of points (1) and (2) is immediate: the crucial one to explain is the
third.

85

5. optimal variable-byte encoding

1 optimal_partitioning(S)
2 P = �
3 T = F
4 i = j = д = 0
5 min =max = 0
6 for k = 0; k < n; k = k + 1
7 д = д + E(S[k]) − B(S[k])
8 if д is non-decreasing
9 if д > max
10 max = д, i = k + 1
11 ifmin < −T andmin −д < −2F
12 update(min,max , j, i)
13 else
14 if д < min
15 min = д, j = k + 1
16 ifmax > T andmax −д > 2F
17 update(max ,min, i , j)

18 close()
19 return P

Figure 18: The optimal_partitioning algorithm.

The if statements in lines 11 and 16 check whether positions i and j are the
positions of a dominating point in S[`,k), i.e., whether S[i] and S[j] satisfy De�-
nition 2. Since the if statements are symmetric, we proved the correctness of the
�rst one for non-decreasing values of д (line 11).

1 update(д0,д1,p0,p1)

2 P.append(p0)
3 T = 2F
4 p1 = p + 1
5 д = д −д0
6 д0 = 0
7 д1 = д

Figure 17: The update algorithm
used in the pseudo code of Figure 18.

We �rst check whether themin gain, as seen
so far, is su�cient to be the one of a dominat-
ing point for E as required by equation 6. At the
beginning of the algorithm, the current interval
starts at i = 0 and T = F , therefore д(S[0]) = 0
in equation 6 and the test min < −T is correct.
If min < −T is true, then we also check if we
have a su�ciently large increase in gain at the
current step k with respect to the previously
seenmin gain according to condition 7.

Again, it is immediate to see that the test
min − д < −2F checks such condition and,
therefore, it is correct. If both previous condi-

tions are satis�ed, then j is the position of the dominating point for E in the �rst
interval S[0,k) by De�nition 2.

86

5. optimal variable-byte encoding

1 close()
2 ifmax > F andmax −д > F
3 update(max ,min, i , j)
4 ifmin < −F andmin −д < −F
5 update(min,max , j, i)
6 if д > 0
7 i = n, update(max ,min, i , j)
8 else
9 j = n, update(min,max , j, i)

Figure 19: The close algorithm used in the pseudo code of Figure 18.

If so, we can execute the update code, show in Figure 17, which adds j to P and
setsT to 2F according to De�nition 2. Moreover, it updates the gain д to maintain
the invariant that its value is always relative to the current interval, which now
begins at position j. In fact: since we have seen an increase of 2F bits, the max

gain in S[j,k) must be the current gain д, whereas the min gain is 0 because д is
non-decreasing. Thus, the �rst point is computed correctly.

Now, assume that we have added m points to P and that the last added is for
encoder E. We want to show that the next point will be dominating for encoder
B. As explained before, whenever we add a dominating point for E to P, it means
that we have seen an increase of 2F bits with respect to the last added position, i.e.,
position k + 1 is the one of a point that satis�es equation 6 for encoder B. Therefore
the (m + 1)-th point added to P will be dominating for B.

To conclude, we have to explain what happens at the end of the algorithm. Refer
to the close function, illustrated in Figure 19. Lines 1-2 (3-4) check condition 8:
if successful, then max (min) is the next dominating point for B (E) and, since
compressors must alternate each other, we close the encoding of the sequence
with the other compressor in lines 5-8, that is E (B); if both unsuccessful, i.e., no
dominating point is found, then it means that the remaining part of the sequence
should not be cut and, thus, encoded with a single compressor in lines 5-8.

�

In conclusion, since we consider each element of S once and use a constant
number of variables, Lemma 3 and Lemma 4 imply the following result.

Theorem 5 — A monotone integer sequence of size n can be partitioned optimally
in Θ(n) time and O(1) space, whenever its partitions are represented with a point-
wise encoder and characteristic bit-vectors.

87

5. optimal variable-byte encoding

5.3 Experiments

Datasets. We performed our experiments on the datasets described in Section 1.1,
whose statistics are summarized in Table 2 (page 7).

Experimental se�ing and methodology. All the experiments were run on a
machine with 4 Intel i7-4790K CPUs (8 threads) clocked at 4.00GHz and with 32GB
of RAM DDR3, running Linux 4.13.0 (Ubuntu 17.10), 64 bits. The implementation
of our partitioned indexes is in standard C++14 and it is a �exible template library
allowing any point-wise encoder to be used, provided that its interface exposes a
method to compute the cost in bits of a single integer in constant time. The source
code was compiled with gcc 7.2.0 using the highest optimization setting.

To test the building time of the indexes we measure the time needed to perform
the whole building process, that is: 1. accessing the inverted lists from disk; 2.
encoding them in main memory; 3. saving the whole index data structure back to
a �le on disk. Since the process is mostly I/O bound, we make sure to avoid disk
caching e�ects by clearing the disk cache before building the indexes.

To test the query processing speed of the indexes, we memory map the index
data structures on disk and compute boolean conjunctions over a set of random
queries drawn from TREC 05 and TREC 06 E�ciency Track topics. We repeat each
experiment three times to smooth �uctuations in the measurements and consider
the mean value. The query algorithm runs on a single core and timings are reported
in milliseconds.

In all the experiments, we use the value F = 64 bits for partitioning the inverted
lists. For block-based methods, we use blocks of 128 postings, with trailing ele-
ments encoded with BIC as it is standard for all methods in the ds2i framework.

Source code. https://github.com/jermp/opt_vbyte

Organization. The aim of this section is to measure the space improvement, in-
dexing time and query processing speed of indexes that are optimally partitioned
by the algorithm described in Section 5.2. Since we adopt VByte as exemplar point-
wise encoder, the next subsection compares the performance of all the encoders
in the VByte family in order to chose the most convenient for the subsequent ex-
periments. Then, we measure the bene�ts of applying our optimization algorithm
on the chosen VByte encoder, by comparing the corresponding partitioned index
against the un-partitioned counterpart.

88

https://github.com/jermp/opt_vbyte

5. optimal variable-byte encoding

space docs freqs building AND query

[GB] [bpi] [bpi] [min] [ms/query]

Varint-GB 15.06 11.15 9.77 10.60 0.88
Varint-G8IU 14.00 10.43 9.00 18.00 0.84
Masked-VByte 12.64 9.53 8.02 10.50 0.90
Stream-VByte 15.06 11.15 9.77 10.60 0.86

(a) Gov2

space docs freqs building AND query

[GB] [bpi] [bpi] [min] [ms/query]

Varint-GB 42.23 11.43 9.80 46.50 5.32
Varint-G8IU 39.43 10.84 8.99 65.80 5.10
Masked-VByte 35.63 9.91 8.01 45.50 5.52
Stream-VByte 42.23 11.43 9.80 46.50 5.30

(b) ClueWeb09

Table 13: The performance of the Variable-Byte family on Gov2 and ClueWeb09: space
in GB; average number of bits (bpi) for documents (docs) and frequencies (freqs); index
building time in minutes and query processing time for TREC 05 AND queries in millisec-
onds.

5.3.1 The Variable-Byte family

To help us in deciding which VByte encoder to chose for our subsequent analysis,
we consider Table 13. The data reported in the table illustrates how di�erent VByte
stream organizations actually impact index space.

Stream-VByte takes exactly the same space of Varint-GB because it stores the
very same control and data bytes but concatenated in separate streams. For this
reason, we will refer to both versions as Varint-GB. As we can see, the original
VByte format (referred to as Masked-VByte in Table 13 because it uses this algo-
rithm to perform decoding) is the most space-e�cient among the family. This is
not surprising given the distribution plotted in Figure 14 (page 76): it means that
the majority of the encoded d-gaps falls in the interval [0, 27), otherwise the com-
pression ratio of VByte would have been worse than the one of Varint-GB and
Varint-G8IU.

As an example, consider the sequence of d-gaps 〈132, 233, 246, 178〉. VByte uses
8 bytes to represent such sequence, whereas Varint-GB uses 1 control byte and

89

5. optimal variable-byte encoding

4 data bytes, thus 5 bytes in total. When all values are in [0, 27), VByte uses 4
bytes instead of 5 as needed by Varint-GB. For this reason, the space usage of
Varint-GB and Varint-G8IU is worse than the one of VByte: it is 16% and 15% on
Gov2 and ClueWeb09 respectively for Varint-GB; more than 10% for Varint-G8IU.
The control byte of Varint-G8IU stores a bit for every of the 8 data bytes: a 0 bit
means that the corresponding byte completes a decoded integer, whereas a 1 bit
means that the byte is part of a decoded integer or it is wasted. Thus, Varint-G8IU
compress worse than plain VByte due to the wasted bytes. Finally notice that
Varint-GB is slightly worse than Varint-G8IU because it uses 10 bits per integer
instead of 9 for all integers in [0, 28). In fact, the di�erence between these two
encoders in less than 1 bit on both Gov2 and ClueWeb09.

The speed of the encoders is actually very similar for all alternatives. Among the
ones taking less space, i.e., Varint-G8IU and Masked-VByte, the spread between
the fastest and the slowest alternative is as little as 6÷ 8%. The same holds true for
the building of the indexes where, as expected, the plain VByte is the fastest and
Varint-G8IU is 40% slower on average.

In conclusion, for the reasons discussed above, i.e., better space occupancy, fastest
index building time and competitive speed, we adopt the original VByte stream or-
ganization and the Masked-VByte algorithm by Plaisance, Kurz and Lemire [132]
to perform sequential decoding.

5.3.2 Optimized Variable-Byte indexes

In this subsection, we compare the optimally-partitioned VByte indexes against
the un-partitioned indexes and the ones obtained by using other partitioning strate-
gies, like the ϵ-optimal based on dynamic programming (see Section 2.2.7) and the
uniform one.

The result of the comparison shows that our optimally-partitioned VByte in-
dexes are 2× smaller than the original, un-partitioned, counterparts; can be built
2.6× faster than dynamic programming and o�er the strongest guarantee, i.e., an
exact solution rather than an ϵ-approximation; despite the signi�cant space sav-
ings, they are as fast as the original VByte indexes.

Index space. Table 14 shows the results concerning the space of the indexes. Com-
pared to the case of un-partitioned indexes, we observe gains ranging from 51% up
to 222%, with a net factor of 2× improvement with respect to the original VByte
format. For the uniform partitioning we used partitions of 128 integers, for both
documents and frequencies. As we can see, this simple strategy already produces
signi�cant space savings: it is 43.3% and 25.6% better on doc sequences for Gov2
and ClueWeb09 respectively; 58.7% and 66.3% better on freq sequences. This is be-

90

5. optimal variable-byte encoding

space docs freqs building

[GB] [bpi] [bpi] [min]

VByte optimal 5.68 4.87 3.04 10.50

VByte 12.64(+122.74%) 9.53(+95.75%) 8.02(+163.92%) 10.10 (−3.81%)
VByte uniform 6.26 (+10.22%) 5.41(+11.05%) 3.31 (+8.92%) 11.30 (+7.62%)
VByte ϵ-optimal 5.73 (+0.93%) 4.93 (+1.21%) 3.05 (+0.49%) 26.70(+154.29%)

(a) Gov2

space docs freqs building

[GB] [bpi] [bpi] [min]

VByte optimal 17.88 6.54 2.48 28.50

VByte 35.63(+99.26%) 9.90(+51.52%) 8.01(+222.39%) 43.30 (+51.93%)
VByte uniform 19.95(+11.58%) 7.37(+12.73%) 2.69 (+8.54%) 29.30 (+2.81%)
VByte ϵ-optimal 18.15 (+1.53%) 6.66 (+1.84%) 2.50 (+0.68%) 72.30(+153.68%)

(b) ClueWeb09

Table 14: Space in GB, average number of bits (bpi) for documents (docs) and frequencies
(freqs) and index building time in minutes.

cause most d-gaps are actually very small but any un-partitioned VByte encoder
needs at least 8 bits per d-gap. In fact, notice how the average bits per integer on
the doc sequences becomes less than 8.

We remark that the ϵ-optimal algorithm based on dynamic programming was
proposed for Elias-Fano, whose cost in bits can be computed inO(1): we adapt the
dynamic programming recurrence in order to use it for VByte too. As approxima-
tion parameters we used the same as in the experiments of the original paper [120],
i.e., we set ϵ1 = 0.03 and ϵ2 = 0.3. The computed approximation could be possibly
large by enlarging such parameters, while our algorithm �nds an exact solution.
However, we notice that the ϵ-approximation is good and our optimal solution
is slightly better: precisely by 1.2% and 1.84% on the doc sequences of Gov2 and
ClueWeb09, respectively. Compared to uniform, the optimal partitioning pays o�:
indeed it produces a further saving of 11% on average, thus con�rming the need
for an optimization algorithm.

Index building time. Although the un-partitioned variant would be the fastest
to build in internal memory because the posting lists are compressed in the same
pass in which these are read from disk, the writing of the data structure to the
disk imposes a considerable overhead because of the high memory footprint of

91

5. optimal variable-byte encoding

Gov2 ClueWeb09

TR
EC

05
VByte optimal 0.89 5.70

VByte 0.90 (+1.37%) 5.56 (−2.54%)
VByte uniform 0.94 (+5.07%) 5.90 (+3.45%)
VByte ϵ-optimal 0.92 (+2.70%) 5.89 (+3.34%)

TR
EC

06

VByte optimal 2.12 8.96

VByte 2.12 (+0.02%) 8.35 (−6.90%)
VByte uniform 2.22 (+4.98%) 9.02 (+0.60%)
VByte ϵ-optimal 2.24 (+5.77%) 9.17 (+2.31%)

Table 15: Timings for AND queries in milliseconds per query.

the un-partitioned index. Notice how this factor becomes dramatic for the larger
dataset ClueWeb09, resulting in a 50% overhead. This also causes the simple uni-
form strategy be not faster at all, being actually a little slower (by 5% on average).
Despite the linear-time complexity as soon as ϵ is constant, the ϵ-optimal solution
has a noticeable CPU cost due to the high constant factor, as we motivated in Sec-
tion 5.2. The optimal solutions has instead low constant factors and, as a result, is
faster than the dynamic programming approach by more than 2.6× on average on
both Gov2 and ClueWeb09.

AND queries. Table 15 illustrates the results. The striking result of the experiment
is that, despite the signi�cant space reduction (2× improvement, see Table 14), the
partitioned indexes are as fast as the un-partitioned ones on both the Gov2 and
ClueWeb09 datasets.

It is, therefore, important to provide a careful explanation of such result. The
answer is provided by understanding the plots in Figure 20, along with the ones in
Figures 14 (page 76) and 21. In particular, Figure 20 illustrates the average nanosec-
onds spent per NextGEQ query by VByte, the binary vector representation and
Elias-Fano (EF) too (as a useful reference point that we will exploit in Chapter 7
for a full comparison) on a sequence of one million integers and with an average
gap of: (a) 2.5, as a dense case and (b) 1850 as a sparse case. As the dense case illus-
trates, the binary vector representation is as fast as VByte for all jumps of entity
less then or equal to 8, and becomes actually faster for longer jumps.

Moreover, the distribution of the jump sizes plotted in Figure 21 indicates us
that, whenever executing AND queries, the number of jumps of size less than 16
accounts for ≈90% of the jumps performed by NextGEQ. Furthermore, the distri-

92

5. optimal variable-byte encoding

20 23 25 28 211

jump size

0.00
16.09
32.18
48.27
64.36
80.45
96.54

na
no

se
cs

/N
ex

tG
EQ

VByte
Binary
EF

(a) Dense

20 23 25 28 211

jump size

0.0
27.5
54.9
82.4

109.9
137.3
164.8

na
no

se
cs

/N
ex

tG
EQ

VByte
Binary
EF

(b) Sparse

Figure 20: Nanoseconds per NextGEQ query for (a) dense and (b) sparse sequences of
one million integers, having an average gap of 2.5 and 1850, respectively. These values
mimic the ones for the Gov2 datasets, that are 2.125 and 1852. The ones for the ClueWeb09
dataset are 2.137 and 963, and the plots have a similar shape.

0 1 2 4 8 16 32 64 128
jump size

0.00
4.35
8.71

13.06
17.41
21.76
26.12
30.47

%
 o

f j
um

ps

Gov2 TREC 05
Gov2 TREC 06
ClueWeb09 TREC 05
ClueWeb09 TREC 06

Figure 21: When the di�erence between two consecutive accessed positions is d ,
NextGEQ is said to make a jump of size d . The distribution of the jump sizes is divided
into buckets of exponential size: all sizes between 2d−1 and 2d belong to bucket d . The plot
shows the jumps distribution, in percentage, for the query logs used in the experiments,
when performing AND queries.

bution plotted in Figure 14 tells us that the majority of blocks are actually encoded
with their characteristic bit-vector, thus explaining why the partitioned indexes
exhibit no penalty against the un-partitioned counterparts.

However, VByte tends to be slower on longer jumps because of its block-wise
organization: since a posting list is split into blocks of 128 postings that are en-
coded separately, a block must be completely decoded even for accessing a single

93

5. optimal variable-byte encoding

integer, which is not uncommon for boolean conjunctions. Moreover, since d-gaps
values are encoded, we need to access the elements by a linear scan of the block
after decoding in order to compute their pre�x sums. When the accessed elements
per block are very few, even using SIMD instructions to perform decoding results
in a slower query execution. Conversely and as expected, the binary vector repre-
sentation is ine�cient for the sparse regions since potentially many bits need to
be scanned to perform a query, but still faster than VByte whenever the jump size
becomes larger than 64 because it allows skipping over the bit stream by keeping
samples of the bit set positions.

94

6 Dictionary-based Decoding

The many approaches devised for inverted index compression described in Sec-
tion 2.2 can be broadly categorized into two classes: �xed-to-variable and variable-
to-�xed.

In a �xed-to-variable arrangement, a �xed number of integers is encoded using
a variable number of bits. The simplest incarnation of this approach is to split an
inverted list into blocks and then represent each integer of a block in dlogmaxe bits,
wheremax is the maximum element of the block. A more sophisticated example is
the well-known patched frame of reference (PFOR) mechanism, where a bit-width
is chosen that covers most of the values in the block, but not necessarily all of them,
and any values that require more than that many bits (referred to as exceptions) are
represented using a secondary patching mechanism.

Conversely, in a variable-to-�xed arrangement, a variable number of integers is
�t into a single machine word, namely 32 or 64 bits. A noticeable example of this
approach is the Simple family, i.e., Simple9, Simple16 and Simple8b. For example,
Simple9 uses 4 header bits and 28 data bits. The header bits provide information on
how many integers are packed in the data segment using equally-sized codewords.
The four header bits can distinguish 9 di�erent combinations: 28 1-bit integers, 14
2-bit integers, 9 3-bit integers (1 bit unused), 7 4-bit integers, and so on.

Our contributions. In this chapter, we develop a novel �xed-to-�xed compres-
sion approach, based on a Dictionary of INTeger sequences, that we call DINT.
The core idea is that each unit of decoding consumes one b-bit integer codeword,
and causes a �xed-length copying operation from an internal codebook of size 2b
– the dictionary – to the output bu�er. The simplicity of this approach means that
decoding is fast; and yet, as we demonstrate with our experiments, DINT provides
almost state-of-the-art compression e�ectiveness. Therefore, the improved combi-
nation of e�ciency and e�ectiveness provides an important new reference point
in the available spectrum of known trade-o� options.

We introduce many re�nements to our basic implementation of the mechanism
to provide further compression e�ectiveness, without hurting e�ciency, namely
sequential decoding speed. The devised optimizations include: packed-dictionary
arrangement with possible exploitation of strings overlap, optimal block-level en-
coding and the use of multiple dictionaries to better adapt to the distribution of
the encoded integer sequences. We defer the comparison of our technique with
the state-of-the-art in Chapter 7.

95

6. dictionary-based decoding

6.1 Related work

We point the reader to Section 2.3 for general background on inverted indexes and
to Section 2.2 for a detailed description of many of the integer encoders devised
for e�cient and e�ective index compression.

Here, we review dictionary-based approaches for compression.

Dictionary-based compression. In recent work, Martinez et al. [110] introduce
a dictionary-based approach that they call plurally parsable. Starting with a proba-
bility distribution over an alphabet of symbols, and an assumption of a memoryless
source, they construct a set of strings with which to populate a dictionary of some
target size, and then use a greedy parsing approach to render any input sequence
into a stream of integer dictionary o�sets. Their dictionary is allowed to contain
pre�xes of other entries, and with entries capped at some maximum length.

Table 16a gives an example of a plurally parsable dictionary, assuming an in-
put alphabet of {a, b, c, d} and dictionary width ` = 4 and dictionary size 2b = 8.
Each entry in the dictionary contains ` + 1 entries, as many as ` of which are the
corresponding string, and the last one of which is the number of symbols in that
string. Using this dictionary, the example string aaabaabcaaaab would be greedily
parsed as 〈aaa, b, aa, b, c, aaaa, b〉, and coded as the sequence of b = 3-bit integers
〈5, 1, 4, 1, 2, 7, 1〉 using a total of 21 bits. Note how all three of the bs, and the c as
well, are coded as sequences of length one. In the development below we refer
to these instances as being singletons. The dictionary does not force the bs to be
coded as singletons, but the left-to-right greedy parsing of the input has resulted
in that happening. Singletons are relatively costly, because each of them requires
a full codeword in the compressed stream.

Martinez et al. [110] use a �nal (` + 1)-th column as a way of accelerating de-
coding. Given a sequence of 3-bit integers 〈ci〉, rather than executing a loop that
counts the right number of symbols to be written to the output bu�er and, in do-
ing so, tests a guard at every iteration, the decoding process copies the full ` + 1
symbols (including the length on the string) from the ci-th table entry to the out-
put bu�er in a single �xed operation, and then increases the output pointer by the
amount indicated by the (` + 1)-th stored value. Because one of the levels of con-
ditionals is eliminated in this iterative cycle, branch mis-predictions are reduced,
and higher decoding speeds can be achieved [110].

To build the dictionary Martinez et al. [110] describe a process that tentatively
assigns strings to the dictionary based on their zero-order probability of occur-
rence based on the symbol frequencies, and then iteratively re�nes those estimates,
converging to a set of variable length strings that provide the best coverage. They
build a suite of such dictionaries for di�erent initial symbol distributions, and then
use them to losslessly code 64 × 64-pixel blocks of grey-scale image data, with a

96

6. dictionary-based decoding

Index String Size

0 a - - - 1
1 b - - - 1
2 c - - - 1
3 d - - - 1
4 a a - - 2
5 a a a - 3
6 a b - - 2
7 a a a a 4

(a)

Index String Size

0 - - - - 1
1 a - - - 1
2 b - - - 1
3 a a - - 2
4 a b - - 2
5 b a - - 2
6 a a a a 4
7 a a a b 4

(b)

Table 16: Two examples of plurally parsable dictionaries of width ` = 4 over the alphabet
{a, b, c, d}. The last column provides the length of each string and is also stored as part of
the dictionary. In (b), index zero is a reserved vocabulary entry for a rare symbol exception.

matching dictionary selected for each block, and indicated to the decoder via a
selector at the start of the block.

Hoobin et al. [79] and Liao et al. [104] have also considered dictionary-based
compression options as applied to the text of large document collections; and
Zhang et al. [174] have sought to apply that same relative Lempel Ziv (RLZ) ap-
proach to index data.

6.2 Dictionay-based compression for inverted indexes

In this section, we describe the salient features of our �xed-to-�xed approach,
namely: (1) how to exploit a dictionary of integer sequences to e�ectively rep-
resent the sequences of docIDs and frequencies and (2), how to attain to fast de-
compression speed.

6.2.1 Dictionary structure

Our starting point is to consider a rectangular dictionary structure, such as the one
illustrated in Figure 16, that is a 2-dimensional array of 2b × (` + 1) integers. This
simple organization allows random access to any dictionary string in O(1). We
now detail its structure.

97

6. dictionary-based decoding

As we have already introduced and motivated in the previous chapters, there are
two factors that make inverted index data highly distinctive. First, very long runs
of consecutive docIDs, i.e., runs of 1s (almost always the most frequent symbol in
the alphabet) create opportunities for the use of a frequent symbol exception (Prop-
erty 1 in Section 2.3.2), whereby long repetitive sequences are handled outside the
normal regime. For example, as we can see from Figure 22, up to 41% of the docID
gaps of Gov2 are runs, and handling these economically is a key requirement to
attain to good compression e�ectiveness. Second, the alphabet for docID gaps is
very large, into the millions, and it is impossible to consider providing a codeword
for every symbol, even as a singleton. Instead, use must be made of rare symbol
exceptions, a special code that indicates that the next symbol must be fetched from
a secondary stream of uncompressed integers.

Figure 22, shows an example of repeated frequent subsequences occurring in a
typical extract of 2,048 docID gaps. Each colored rectangle represents a sequence
of docID gaps that occurs many times across the index and can be represented as
a codeword relative to a dictionary of 65,536 such sequences. Only 3 out of the
2048 docID gaps (or 0.146%) in this fragment are su�ciently rare that they must
be coded in full, rather than via the dictionary.

Rare symbol exceptions. To see the use of rare symbol exceptions, consider
the dictionary shown in Table 16b, in which only two singleton codes are pro-
vided. Using this table the same example string aaabaabcaaaab would be parsed
as 〈aaab, aa, b,−, c, aaaa, b〉, and coded as the sequence of integers 〈7, 3, 2, 0, c, 6, 2〉
using a total of 6 × 3 + 1 × 2 = 20 bits, where it is assumed that the rare symbol
exception needed for c (that follows a codeword of 0 in the message stream) re-
quires two bits over the alphabet of four symbols. In this small example an overall
slight reduction in cost arises, primarily because of the presence of the string aaab
in the dictionary. But the general principle is valid: the greater the number of long
sequences that can be included in the dictionary, the better the compression rate
that we can hope to achieve.

The large symbol alphabet used in index compression means that it makes sense
to employ multiple exception codes: 0 to indicate that the corresponding patching
symbol is a b-bit value between 1 and 2b ; 1 to indicate that the associated patching
value is a 2b-bit value in the range 2b + 1 to 22b ; and so on. For example, when
b = 16, two rare-exception codes cover the space of 32-bit integers; and four rare-
symbol exception codewords are employed if b = 16 and the input is regarded as
being the space of 64-bit integers.

Frequent symbol exceptions. To handle long runs of 1s, further exception codes
are added, covering sequences of lengthB, B/2, B/4,. . ., 2`. The �rst of these covers

98

6. dictionary-based decoding

0 10 20 30 40 50 60 70 80 90 100
freqs

docs

distribution [%]
exceptions 1 2 4 8 16 runs

Figure 22: Analysis of a typical sequence of 2048 docID gaps drawn from Gov2. Long runs
of 1s are shown in the darkest blue color, the other shades represent frequently-occurring
subsequences of length 2, 4, 8 and 16. The light blue squares represent single docID gaps
that are frequent, but not as part of longer subsequences and the three red squares are
single docID gaps that are rare across the collection, i.e., exceptions (not included in the
dictionary). Finally, we show the complete distribution for both docs and freqs sequences
of Gov2.

an entire block that is all 1s very economically; and short runs of (only) ` 1s can
be covered by a regular non-exception codeword if required.

For ab = ` = 16 con�guration, there will thus be six dictionary slots reserved for
exceptions (two rare symbol exception codes, and four frequent symbol exception
codes), leaving 65,530 codewords for regular dictionary entries.

Frequency estimation. The set of 2b sequences making up the dictionary should
be tailored to the data being compressed. Intuitively, we would like to store in the
dictionary a highly frequent substring of integer, since all the occurrences of such
substring will be encoded with just b bits.

To count sub-sequence frequencies, we employ an interval sampling approach,
examining the source sequence at uniform intervals of L = 2k ≥ ` and extract-

99

6. dictionary-based decoding

ing samples of each length `′ ∈ {1, 2, 4, . . . , `} at that point. The frequency of a
sequence of length `′ is incremented by L/`′. For example, if `′ = 2 and L = 8,
a two-symbol pre�x is extracted every 8 symbols in the input sequence, and that
two-symbol combination has its frequency incremented by four. To reduce the
counting time L can be made relatively large, e.g., L = 1024, and to reduce the
space required by the data structure accumulating the counts, a reservoir-based
approach can be employed [162, 103]. Both of these techniques produce estimates
of the sequence frequencies and not exact counts. But having exact counts would
not necessarily be any more useful, since any particular factor parsed from the
source sequence might include part or all of other dictionary strings, a�ecting
those counts.

Throughout all the experimental analysis in Section 6.4, exhaustive sampling
with L = `′ is used.

Construction. We now consider an heuristic algorithm for selecting a set of 2b
sequences with which to populate the dictionary. In the description, we indicate
with f (S) the number of times the sequence S, of length |S|, has been estimated
to occur.

If some sequence S is selected to enter the dictionary, then it seems likely that
both its �rst half, denoted S1, of length |S|/2, and its second half, denoted S2,
also of length |S|/2, with S = S1S2, will already be in the dictionary. This is
because (assuming interval sampling) f (S1) ≥ f (S) and (via symmetry, but not
guaranteed) that f (S2) ≥ f (S). If S1 and S2 are in the dictionary, then the saving
generated by adding S to the dictionary is only f (S), since one codeword will be
used for each instance of S, rather than two. The same argument can be applied
inductively, with the base case arising when singletons are being considered. The
true cost of not including them in the dictionary is simply the di�erence in cost
generated by the use of a rare symbol exception.

Hence, the heuristic we consider for populating the dictionary is that of decreas-
ing static frequency (DSF), i.e., choosing the sequences with the highest f (S) es-
timates, regardless of length. As a secondary sort key, to break ties, we sort by
decreasing length |S|. Note that this inductive argument is also why we focus on
a restricted set of target lengths, i.e., {1, 2, . . . , `/2, `} with ` = 2k for some k , that
are powers of two.

We also explored adaptive selection heuristics, dynamically updating the f (S)
count for sequences that were pre�xes and su�xes of longer strings when they
were committed to the dictionary, the idea being to maintain more precise fre-
quency estimates for a better sequence selection. Small gains in compression ef-
fectiveness were observed in some test situations, but small losses in others; and
overall we were unable to consistently outperform the DSF method. Mechanisms

100

6. dictionary-based decoding

docs freqs

dictionary codewords integers dictionary codewords integers

exceptions 0.00 17.72 1.66 0.00 0.13 0.01
1 21.30 24.13 6.18 1.46 6.32 0.80
2 36.86 31.67 16.22 13.45 19.91 5.05
4 31.03 19.15 19.62 39.07 35.47 17.99
8 8.55 4.69 9.61 34.84 22.98 23.31
16 2.24 1.40 5.74 11.18 13.06 26.49

runs 0.01 1.24 40.97 0.01 2.13 26.35

Table 17: Percentage of integers, codewords, and dictionary entries associated with each
target size for the docIDs and freqs sequences of Gov2, parameters b = 16, ` = 16.

0 10 20 30 40 50 60 70 80 90 100
dictionary

codewords

integers
docs

0 10 20 30 40 50 60 70 80 90 100
dictionary

codewords

integers

usage [%]

freqs

exceptions 1 2 4 8 16 runs

Figure 23: The same data from Table 17 represented as breakdowns.

101

6. dictionary-based decoding

1 copy(D, c , output)
2 beдin = c × (` + 1)
3 copy 4 × ` bytes starting from D[beдin] to output
4 end = beдin + `
5 size = D[end]
6 return size

Figure 24: The copy algorithm that performs the copy of a dictionary sequence to the
output stream. Note that ` is a constant know at compile time and not a variable.

for populating the dictionary will be a target for future work, noting that the prob-
lem we face here has parallels in the Re-Pair compression technique [99], which
has also been used for index compression [40]; and that Apostolico and Lonardi
[11] have also considered the question of identifying useful subsequences.

Performance. Figure 23 provides a summary of the patterns already illustrated
in Figure 22, and shows the distribution of target lengths in the raw index, in the
compressed index, and in the dictionary respectively. For example, around 18%
of the compressed codewords are rare symbol exceptions for less than 1.7% of the
docIDs in the actual Gov2 index; whereas up to 41% of the docIDs can be handled
by frequent symbol exceptions, consuming just 1.24% of the actual codewords. The
freqs dictionary matches are longer than in the docIDs stream, leading to higher
compression rates and faster decoding speed, as we are going to explain next.

6.2.2 Decoding algorithm

The standard unit of access is a single block of B integers, and we employ B =

256 throughout this investigation. That is, each postings list is partitioned into
�xed-length blocks, with any remaining elements represented using a secondary
mechanism. Fewer than 5% of the postings are coded in this manner. Each block
of integers is represented as a set of one or more codewords, each of these being a
b-bit binary code.

The action of the decoding algorithm is described in Figure 25: it is assumed
that b = ` = 16, with codewords 0 and 1 indicating rare symbol exceptions, and
codewords 2, 3, 4, 5 indicating frequent symbol exceptions, as described in the pre-
vious subsection. Small changes might be required ifb or ` are varied, but note that
the rare symbol exception codewords and frequent symbol exception codewords
should always be grouped together in the code space, so that a single conditional
is su�cient to reach the dominant case, that of a standard codeword referring to a
symbol sequence in the dictionary.

102

6. dictionary-based decoding

1 decode(D, input , output)
2 for i = 0; i < B;
3 c = get_16bits(input)
4 size = 1
5 if c > 2
6 size = copy(D, c ,output)
7 else
8 e = 0
9 if c == 1
10 e = get_32bits(input)
11 else
12 e = get_16bits(input)
13 copy e to output

14 i = i + size

Figure 25: The decode algorithm that decodes a block of B integers (assuming b = 16).

6.3 Further improvements

In this section, we illustrate several improvements to our initial design presented
in Section 6.2. The �rst two improvements are targeted to enhance the speed of
our proposal, whereas the second two to improve its space e�ectiveness.

6.3.1 Packed dictionary structure

The rectangular dictionary described in Section 6.2 and shown in Table 16 is po-
tentially expensive in terms of space, especially if there are relatively few targets
of length `, or if there is signi�cant overlap between pre�xes and su�xes of dif-
ferent targets. Therefore, we consider ways of reducing the space required by the
dictionary, noting that the smaller the space required, the more likely it is to be
retained primarily in cache, thus enhancing the speed of decoding.

To reduce the memory required by the dictionary the packed form shown in Fig-
ure 26 can be employed. Now the target lengths are separated from the sequences,
and more than one target can indicate the same start position in the single con-
solidated dictionary string. Doing so both allows the unused trailing symbols to
be avoided, and also allows targets that are pre�xes of each other to share space.
The length[] component of each dictionary entry is instead stored as one-byte �eld
within each dictionary o�set in the array start[], allowing sequences that have the
same starting point to be distinguished, an arrangement that is valid provided that

103

6. dictionary-based decoding

1 0 1 2 2 4 2 0 2 2 4 40 — 4 8

0 1 2 3 4 5 6 7
start

a b b a a a a a a a a b dictionary

0 2 4 8

Figure 26: Packed layout for the dictionary shown in Table 16b, with ` = 4 and b = 3.
The first number in each element in start[] is the sequence length. For example, when the
input codeword is 3 the four integers in dictionary[4, . . . , 7] are copied to the output, and
then the output pointer is incremented by two. All trailing don’t-care symbols have been
trimmed, and dictionary sequences have been removed if they are a prefix of another
longer sequence. For aesthetic purposes, in this simple example no provision has been
made for frequent symbol exceptions.

b ≤ 24 and ` < 256. The indirection via start[] means that one additional array
dereferencing operation is required in each innermost loop in Algorithm 25, plus
a mask/shift sequence to extract the two parts of start[c], where c is a codeword,
but the net cost is moderate and might be warranted by the space savings. In rect-
angular form (Table 16), an ` = 16 and b = 16 dictionary requires 4× 216 × (16+ 1)
bytes, that is 4.45 MB; in packed form (see Section 6.4.2, Table 22) that requirement
can be reduced to around 1 MB.

6.3.2 Exploiting strings overlap

Further savings are also possible, beyond those o�ered by pre�x matches and
trailing don’t-cares. For example, with strategic reordering and overlapping, the
twelve-symbol dictionary[] array in Figure 26 could be further condensed to just
six symbols baaaab, since every target listed in Table 16b appears within it as a sub-
sequence. The problem of identifying a minimal-length super-sequence in which
every one of an original set of supplied sequences occurs as a sub-sequence is NP-
hard [68]. But simple greedy approximation algorithms can provide solutions that
are within a constant factor of being optimal [22, 92].

The approach we employ here considers the initial set of sequences, determines
the longest possible match between a pre�x of one sequence and a su�x of an-
other, and replaces the two sequences with their lapped concatenation. Each such
step reduces the number of sequences in the set by one, and ensures that a single
sequence emerges in which every one of the original sequences is embedded. For

104

6. dictionary-based decoding

greedy parse
aa d ba aa a

a a d b a a a a

optimal parse

aa d aaaab

0 1 1 3 4 4 5 5 5

rse

rse

Figure 27: Example in which optimal parsing requires fewer codewords than greedy pars-
ing. The sequence aadbaaaa is being represented relative to the dictionary shown in Ta-
ble 16b. The cost below each node is the length of the shortest path from the origin to that
point. The parse shown at the bo�om of the graph has a cost of 5; whereas the greedy
parse shown above requires 6 codewords. In both cases it is assumed that d requires a
rare symbol exception (rse) codeword, followed by a patch codeword that identifies the
symbol required.

example, starting with the sequences in Table 16b, the �rst cycle combines aaaa
and aaab to form aaaab.

6.3.3 Optimal block parsing

Dictionary-based compression implementations typically make use of greedy left-
to-right parsing, with the longest matching dictionary entry employed at each cod-
ing step. But in the situation considered here, it is straightforward to identify an
optimal parse for each block, because each dictionary sequence or frequent symbol
exception has a cost of one 16-bit integer, and each rare symbol exception has a
�xed cost that depends only on its value.

Figure 27 shows how the pre�xes of the block correspond to nodes in an acyclic
directed graph, and how the dictionary entries are edges that extend one pre�x of
the block to a longer one. Within this graph the shortest path from source to sink
describes an optimal parse, and can be computed via a left-to-right iterative label-
ing process that assigns the source with cost zero, and then pushes tentative costs
ahead from each node via the edges that emanate from it. The proof of optimality
is obvious in this case. The small number of edges that are possible at each node
(a maximum of log ` + 1 if target lengths are restricted to powers of two) makes
this process only moderately slower than the more usual greedy approach, with a
complexity of O(n log `) that is Θ(n) when ` is a constant.

105

6. dictionary-based decoding

6.3.4 Multiple dictionaries

Following the example of Mo�at and Petri [114], it is also possible for multiple
dictionaries to be used. For example, if the input symbols are assumed to be inte-
gers between 1 and 232 − 1, then the use of 32 dictionaries allows each block to be
handled within a context established by blog maxc, where max is the largest value
in the block. Stratifying the blocks according to their maximum value o�ers clear
bene�ts: blocks in which max < 4 are likely to generate quite di�erent dictionar-
ies from those arising when, say, max < 1024, even though 1s are likely to still be
the most common symbol.

There is, however, a cost. Each additional dictionary must be stored during
decoding operations, and both adds to the memory cost, and also adds to the likeli-
hood of cache misses. For this reason, other, less costly, categorizations might also
be desirable. In Section 6.4 we make use of the mapping context = dlog log maxe
(taking log 0 = 0 when max = 1), creating a set of six di�erent contexts [0, 5] with
limiting values 2, 4, 16, 256, 65536, and 232.

Once the suite of dictionaries has been created, the encoder either uses the same
mapping to determine which context to use when encoding each block, or carries
out an exhaustive search over all contexts to identify the one that minimizes the
compressed size. Either way, each encoded block is pre�xed by a selector indicat-
ing which dictionary to use. In the current DINT implementation the selector is
(slightly wastefully) stored as a one-byte integer.

There is a second way in which multiple dictionaries might be employed, and
that is through the use of alternative combinations of b and `. For example (see
Table 18) it might be bene�cial to consider both b = 16 and b = 8 dictionaries
for each context, anticipating (say) that blocks in which context is small might be
handled more compactly by a 256-element dictionary and the corresponding 8-bit
codewords. Again, the selector is used to indicate which context is in use in any
particular block. No extra memory space is required by this option, since the b = 8
dictionary for any context is an exact pre�x of the b = 16 dictionary.

As already noted, when multiple contexts are in use memory consumption might
become an issue. If so, rather than store each dictionary separately, a set of distinct
start[] arrays can be used to index a single shared dictionary[] array (see Figure 26),
with the complete set of contexts’ sequences stored overlapped using the heuristic
already described.

106

6. dictionary-based decoding

6.4 Experiments

Datasets. We performed our experiments on the datasets described in Section 1.1,
whose statistics are summarized in Table 2 (page 7).

Experimental se�ing and methodology. All experimentation is based on the
ds2i framework1, with methods implemented using C++14 and compiled with gcc
7.2.0 using the highest optimization setting. The test machine is a server equipped
with 512 GB RAM and an Intel Xeon 6144 processor employing 32 KB of L1 cache,
1024 KB of L2 cache, and 25344 KB of L3 cache.

All compression results given in this section are for complete indexes without
stopping or other reduction mechanisms being applied, and cover all postings, with
sizes given in GB and rates given in bits per integer (bpi). All compression e�ec-
tiveness results include the overhead of the corresponding dictionaries, accounted
as part of the total index size in GB. We use blocks of 256 postings, with trailing
elements encoded with BIC as it is standard for all methods in the ds2i framework.

Source code. https://github.com/jermp/dint

Dictionary width

` = 4 ` = 8 ` = 16

b = 8 4.84 4.68 4.65
b = 16 5.50 4.68 4.49

(a) Gov2

Dictionary width

` = 4 ` = 8 ` = 16

b = 8 17.16 16.63 16.61
b = 16 19.51 16.66 16.09

(b) ClueWeb09

Table 18: Total index size in GB for a complete document-level index (docIDs and freqs
combined) for di�erent combinations of bits per codeword b and dictionary width `.

6.4.1 Initial exploration

Choosing alignment. To establish the likely parameter combination for a full im-
plementation, we carried out a preliminary exploration of the parameters b (bits
per codeword) and ` (maximum length of dictionary entries, in number of inte-
gers), using the Gov2 and ClueWeb09 dataset, with measured index sizes in GB.
As an initial exploration of the technique, greedy block parsing is adopted for this

1https://github.com/ot/ds2i

107

https://github.com/jermp/dint
https://github.com/ot/ds2i

6. dictionary-based decoding

Variable-length Constant-length

docs freqs docs freqs

instructions (× 109) 53.63 35.02 41.72 28.35
instructions/cycle 1.16 1.13 1.28 1.24
cache-misses (× 107) 10.77 9.06 8.21 7.60
branch-misses (%) 3.40 2.79 2.24 0.35
nanoseconds/int 1.82 1.08 1.12 0.73

Table 19: Performance counts reported by the perf Linux utility, when decoding the index
sequences of Gov2, comparing variable-length copying and constant-length copying for
` = 16.

experiment whose results are shown in Table 18. The trend on both datasets is
very similar: all combinations of b = 8 provide compression e�ectiveness levels
that are comparable with the ones achieved for b = 16, and actually being almost
the same for ` = 8.

Baseline compression rates for other methods on these datasets are provided in
Section 7.1: here we report, as a single reference point, that a VByte index occu-
pies 12.47 GB for Gov2 and 35.14 GB for ClueWeb09. As can be seen in Table 18, all
combinations of b and ` are capable of yielding relatively good compression e�ec-
tiveness once suitable dictionaries have been identi�ed, with the b = 16 and ` = 16
combination slightly better than the other arrangements. Therefore, for the rest
of the experimental analysis we are going to adopt the con�guration b = ` = 16.

Copying fixed-length strings. To further motivate �xed-length dictionary-based
decoding, Table 19 shows statistics collected using the Linux perf utility, when
decoding the sequences of the Gov2 dataset. In the left pair of columns, the copying
process is executed via a loop that copies the strictly needed number of symbols
from the dictionary to the output; in the right pair of columns, a constant ` symbols
are always copied, with ` �xed a compilation time. Copying a �xed number of
bytes allows better exploitation of the instruction cache, and leads to a higher
instruction throughput (instructions/cycle) with fewer cache- and branch-misses.

Overall, the time taken to extract each decoded integer decreases to around two-
thirds of what it would be if the copying process was controlled by a loop, a sub-
stantial gain in speed.

Decoding speed analysis. Two parameters a�ect DINT’s sequential decoding
time: the average number of decoded integers per codeword, say m, and the cost
of the copy operation that is associated with each codeword, say c . Decoding

108

6. dictionary-based decoding

docs freqs

m predicted actual m predicted actual

` = 4, c = 2.495 4.25 0.59 0.82 5.02 0.50 0.50
` = 8, c = 4.177 4.63 0.90 0.91 7.05 0.59 0.56
` = 16, c = 5.342 4.69 1.14 1.12 7.87 0.68 0.73

Table 20: Average number of decoded integers per codeword, m, when decoding the se-
quences of Gov2, using a rectangular dictionary. The average decoding time per codeword
is indicated with c and expressed in nanoseconds per integer. The comparison between
predicted and actual sequential decoding time is reported.

more values per codeword increases throughput; on the other hand, copying fewer
words during a single decoding operation is faster. This means that using smaller
(larger) values of ` decreases (increases) the cost of a single copy operation, but
also that more (fewer) operations are needed to decode the sequence. To quantify
this behaviour, Table 20 reports measured values for c and for m as a function of
`, using the docIDs and freqs sequences of Gov2. The predicted decoding time
is calculated as c/m nanoseconds/integer. As we can see, the predicted decoding
time per integer is a very accurate estimate of the measured one.

6.4.2 Multi-context operation

Space enhancements. From the starting point �xed in Table 18, i.e., the con�g-
uration that uses b = ` = 16 and greedy block parsing, we now apply the several
re�nement introduced in Section 6.3. The impact of these improvements is evalu-
ated in Table 21.

The second row of the table adopts the optimal block parsing. Although a space
improvement is always achieved, notice that this is not so high as one could expect.
Why? Remember from Section 6.3.3, that the optimal block-parsing algorithm has
to consider a small number of edges for each distinct node during the traversal of
the DAG illustrated in Figure 27. This number is log ` + 1, thus for b = 16 only 5
edges have to be considered. This causes the number of possible sub-optimal, i.e.,
“wrong”, choices that the greedy parsing can make to be very limited.

The third row shows the additional compression gains that result when a total of
six dictionaries are used per stream, conditioned on the largest value max in each
block via the mapping context = dlog log maxe. A one-byte selector is required
per block (partially eroding the gain). In the fourth row, we also allow the choice
of representing the codewords of the blocks with b = 8 bits (still with ` = 16)

109

6. dictionary-based decoding

Gov2 ClueWeb09

space docs freqs space docs freqs

[GB] [bpi] [bpi] [GB] [bpi] [bpi]

DINT 4.49 4.21 1.98 16.09 5.97 2.09

+ optimal parsing 4.43 4.16 1.94 15.85 5.90 2.04
+ 6 contexts 4.39 4.10 1.93 15.60 5.76 2.05
+ b = 8, 16 4.27 4.04 1.83 15.24 5.67 1.96
+ exhaustive search 4.24 4.01 1.81 15.14 5.64 1.94
+ entropy 3.75 3.47 1.75 13.54 4.96 1.87

Table 21: Total index size in GB and compression rate in bits per integer (bpi) for docs and
freqs. The first row uses DINT with greedy parsing; four enhancements are then added.
In the last row, the dictionary codewords are assumed to be input to an optimal entropy
coder.

docs freqs

MB ns/int MB ns/int

Si
ng

le rectangular 4.456 1.12 4.456 0.73
packed 1.070 0.88 1.849 0.64
overlapped 8.722 0.95 1.459 0.69

M
ul

tip
le rectangular 22.855 1.66 22.380 1.04

packed 8.046 1.20 10.121 0.80
overlapped 6.792 1.33 8.540 0.90

Table 22: Dictionary space in MB for di�erent schemes and corresponding decoding
speeds for Gov2.

whenever this provides an advantage in space. The choice between the b = 8 and
b = 16 dictionary is made by test-compressing the block using each. In the �fth
row, an exhaustive search using test-compression is made on a per-block basis,
slowing decoding time, but not a�ecting decoding throughput in any way.

We �nally report the last row of the table the binary entropy of the written
codewords to provide a useful (but unrealistic) lower bound on the space usage of
the indexes.

110

6. dictionary-based decoding

Gov2 ClueWeb09

docs freqs docs freqs docs freqs docs freqs

[bpi] [bpi] [ns/int] [ns/int] [bpi] [bpi] [ns/int] [ns/int]

DINT Time-Opt 4.16 1.94 0.88 0.64 5.90 2.04 1.29 0.78
DINT Space-Opt 4.01 1.81 1.20 0.80 5.64 1.94 1.66 0.94

Table 23: Space usage and sequential decoding time for the two selected DINT configu-
rations.

Dictionary data structures. Table 22 shows, instead, the space usage in MB
of the di�erent dictionary data structures described, i.e., rectangular, packed and
overlapped, in relation to their decoding speed.

Decoding using a packed dictionary is faster than decoding via a rectangular
dictionary because of its more compact memory footprint that lowers the num-
ber of cache misses. This is especially true when multiple dictionaries are used.
Overlapping the strings to further save space loses the alignment property of the
packed arrangement, and slightly increases decoding cost. Use of multiple con-
texts leads to slightly better compression, but slows decoding throughput because
of the increased memory and greater number of cache misses.

Choosing a trade-o� configuration. In this concluding paragraph we are inter-
ested in selecting two con�gurations of our technique that we will use for a full
comparison again the state-of-the-art in Chapter 7.

The �rst con�guration optimizes space at the expense of decoding speed. In
this case, we choose a DINT con�guration with multi-packed dictionaries, optimal
block parsing, choice of b = 8 or b = 16 when advantageous and exhaustive search.
This space con�guration corresponds to the �fth row in Table 21.

The second con�guration optimizes decoding speed but sacri�ces memory foot-
print. In this case, we choose instead a DINT con�guration with optimal block
parsing and a single-packed dictionary.

Space and time requirements for both con�gurations are �nally summarized in
Table 23.

111

7 Comparing Inverted Index Representations

In chapters 4, 5 and 6 we described three di�erent techniques to e�ectively repre-
sent the sorted integer sequences of inverted indexes. The aim of this chapter is
the one of providing a comparison between such techniques and the many other
competitors described in the background Section 2.2, using the same experimental
setting, i.e., testing machine, datasets and methodology.

Inverted index representations. The experiments in this chapter test the ef-
fectiveness and e�ciency of 14 di�erent encoders for inverted indexes. Three of
them are the ones described in chapters 4, 5 and 6, i.e., CPEF, Opt-VByte and
DINT respectively. We point the reader to the individual chapters for the descrip-
tion of such techniques. The other eleven methods are the ones described in the
background Section 2.2, including: VByte without the use of SIMD instructions
to accelerate decoding speed and the SIMD-ized variants Varint-GB, Varint-G8IU,
Masked-VByte and Stream-VByte; Simple16; QMX; Opt-PFOR; PEF; BIC; ANS.

Datasets. We performed our experiments on the datasets described in Section 1.1,
whose statistics are summarized in Table 2 (page 7).

Experimental se�ing and methodology. Experiments are based on the ds2i
framework1, implemented using C++14 and compiled with gcc 7.2.0 using the high-
est optimization setting, that is with compilation �ags -march=native and -O9.
The test machine is a server equipped with 512 GB RAM and an Intel Xeon 6144
processor with 32 KB of L1 cache, 1024 KB of L2 cache, and 25344 KB of L3 cache.

All compression results are for the complete indexes without stopping or other
reduction mechanisms being applied, and cover all postings, with sizes given in
GB and rates given in bits per integer (bpi). We use blocks of 256 postings, with
trailing elements encoded with BIC as it is standard for all methods in the ds2i
framework.

To test the sequential decoding speed of the di�erent proposals, we encoded
the docs and freqs sequences in separate streams and decoded all the lists larger
than 4096 integers, using a single core. Decoding longer lists favour the decoding
throughput of the encoders using SIMD instructions. The reported timings are
given in nanoseconds per integer.

To test the query processing speed of the indexes, we memory map the index
data structures on disk and compute the boolean conjunctions over a set of queries

1https://github.com/ot/ds2i

113

https://github.com/ot/ds2i

7. comparing inverted index representations

drawn from TREC 05 and TREC 06 E�ciency Track topics. We use a random set of
selective and non-selective queries for each query log, drawn following the method-
ology of Ottaviano and Venturini [120]. We de�ne as selective a query whose ratio
between the number of document returned by the conjunction of its terms and
the disjunction of its terms is small: in our experiments, we used 0.5%. Viceversa,
a non-selective query is a query whose ratio is not small: for this case, we used
10%. We repeat each experiment three times to smooth �uctuations in the mea-
surements and consider the mean value. The query algorithm runs on a single
core and timings are reported in milliseconds per query.

Organization. This chapter is organized as follows. In the �rst three sections we
discuss the results of the experiments by showing the related tables and comment-
ing on the individual trends for: the space of the indexes (Section 7.1), the sequen-
tial decoding speed (Section 7.2) and the query processing speed (Section 7.3). In
the conclusive Section 7.4 we �nally consider all the three aspects of space, decod-
ing and query processing speed as plotted together in trade-o� curves, to individ-
uate the techniques that embody the best space/time trade-o�s.

7.1 Index space

Table 24 shows the space taken by the di�erent methods, with percentages calcu-
lated with respect to the BIC technique (�rst row), which is traditionally the most
compact representation for inverted lists. The two DINT con�gurations used are
the ones identi�ed in Table 23 (see details in Chapter 6). Also, the used CPEF con-
�guration is the one optimizing the space at the expense of retrieval speed (see
details in Chapter 4).

The general trend, on both datasets, is that CPEF, BIC, ANS and DINT Space-Opt
are the most space-e�cient, with DINT Time-Opt and PEF coming second. Among
the byte-aligned methods including QMX, Simple16 and Opt-VByte, the latter is
the smallest. The other encoders in the Variable-Byte family, i.e., VByte, Varint-
GB and Varint-G8IU, are much larger: among them, the simplest VByte stream
organization is the most e�ective for the reasons that we explained in Section 5.3.1.
We now discuss some details.

In particular on Gov2, BIC and ANS are the best methods to represent the docs
sequences, while DINT Space-Opt is the best to represent the freqs sequences. No-
tice that this latter characteristic makes DINT Space-Opt to come very close to the
overall space of BIC: it is only 3% larger than BIC and actually 14% smaller on the
freqs sequences (beating ANS as well), that is a remarkable result. On ClueWeb09
instead, BIC maintains its usual supremacy on the freqs sequences too, in this case
DINT Space-Opt is 12% larger.

114

7. comparing inverted index representations

space docs freqs

[GB] [bpi] [bpi]

BIC 4.13 3.58 2.12

DINT Space-Opt 4.24 (+3%) 4.01 (+12%) 1.81 (−14%)
DINT Time-Opt 4.43 (+7%) 4.16 (+16%) 1.94 (−9%)
PEF 4.65 (+13%) 4.10 (+15%) 2.38 (+12%)
CPEF 4.43 (+7%) 3.81 (+7%) 2.37 (+12%)
ANS 3.96 (−4%) 3.59 (+1%) 1.92 (−9%)
Opt-PFOR 4.96 (+20%) 4.48 (+25%) 2.38 (+12%)
Simple16 5.73 (+39%) 5.06 (+42%) 2.86 (+35%)
QMX 6.37 (+54%) 5.58 (+56%) 3.23 (+53%)
VByte 12.47 (+202%) 9.28 (+160%) 8.02 (+279%)
Opt-VByte 5.68 (+38%) 4.87 (+36%) 3.04 (+44%)
Varint-GB 15.24 (+269%) 11.12 (+211%) 10.04 (+374%)
Varint-G8IU 13.49 (+227%) 10.02 (+180%) 8.71 (+311%)

(a) Gov2

space docs freqs

[GB] [bpi] [bpi]

BIC 13.55 4.93 1.85

DINT Space-Opt 15.13 (+12%) 5.64 (+14%) 1.94 (+5%)
DINT Time-Opt 15.85 (+17%) 5.90 (+20%) 2.04 (+10%)
PEF 15.94 (+18%) 5.85 (+18%) 2.20 (+19%)
CPEF 15.33 (+13%) 5.54 (+12%) 2.19 (+18%)
ANS 13.90 (+3%) 5.06 (+3%) 1.95 (+6%)
Opt-PFOR 17.15 (+26%) 6.18 (+25%) 2.41 (+30%)
Simple16 18.68 (+38%) 6.63 (+34%) 2.74 (+48%)
QMX 22.22 (+64%) 7.57 (+53%) 3.58 (+94%)
VByte 35.14 (+159%) 9.66 (+96%) 8.01 (+333%)
Opt-VByte 17.88 (+32%) 6.54 (+32%) 2.48 (+34%)
Varint-GB 42.61 (+214%) 11.40 (+131%) 10.03 (+442%)
Varint-G8IU 38.21 (+182%) 10.43 (+111%) 8.78 (+375%)

(b) ClueWeb09

Table 24: Total index size in GB and compression rate in bits per integer (bpi) for docs
and freqs sequences.

115

7. comparing inverted index representations

PEF BIC

55% 54%
34% 37%

11% 9%

docs freqs overhead

(a) Gov2

PEF BIC

65% 65%

25% 27%
10% 8%

docs freqs overhead

(b) ClueWeb09

Figure 28: Index space breakdowns in percentages for PEF and BIC representations.

On both datasets, the two DINT con�gurations are better than PEF especially
thanks to their e�ectiveness in representing the freqs sequences. Notice also that
the better compression on the frequencies allows the DINT Space-Opt to win over
the CPEF proposal.

The space required by the Opt-VByte technique is comparable (but smaller) with
the one of Simple16, with QMX being, instead, considerably larger. The optimiza-
tion on the space usage of VByte does actually pay o�, reducing the gap in com-
pression from BIC from 202% to 38% on Gov2 and from 159% to 32% on ClueWeb09.

As already commented, the other encoders in the Variable-Byte family take
roughly 3× the space of the smallest encoders.

Space breakdowns. It is also informative to show space breakdowns of the index
layouts in order to better highlight how the three di�erent components of the in-
dexes, i.e., docs, freqs and query-processing overhead constitute the overall space.

We distinguish between encoders (1) working with variable-length partitions,
such as PEF, CPEF and Opt-VByte, and (2) encoders working with �xed-length
partitions, such as BIC, DINT and the many others mentioned at the beginning
of the chapter. For the �rst class of encoders, the query-processing overhead is
due to the cost of the variable-length partitions themselves for which we need to
maintain the sizes, upper-bounds and endpoints (also refer to Figure 11 at page 66).
For the second class, the overhead is represented by the blocks’ upper-bounds and
endpoints. In Figure 28 we show the space breakdowns for PEF and BIC, chosen
as representatives of the �rst and second class respectively.

By looking at the plots, we see that the space breakdowns for the two indexes are
very similar. In particular, observe that the query-processing overhead is around
10%, with variable-length partitions costing a little more. As expected and dis-
cussed, the most expensive components are the sequences of docs whereas the
ones of freqs feature more regularities that favour compression: the ratio between
the space of docs and freqs is 1.5 ÷ 1.6 for Gov2 and 2.4 ÷ 2.6 for ClueWeb09.

116

7. comparing inverted index representations

Gov2 ClueWeb09

docs freqs docs freqs

VByte 1.08 0.76 1.22 0.69

DINT Time-Opt 0.64 (−40%) 0.51 (−33%) 1.00 (−18%) 0.62 (−10%)
DINT Space-Opt 0.93 (−14%) 0.70 (−8%) 1.44 (+18%) 0.83 (+21%)
PEF 2.37 (+120%) 2.43 (+221%) 3.02 (+148%) 2.46 (+259%)
CPEF 4.22 (+291%) 3.67 (+385%) 5.37 (+341%) 3.83 (+460%)
Opt-PFOR 1.21 (+12%) 0.89 (+17%) 1.75 (+43%) 1.09 (+59%)
BIC 7.25 (+573%) 7.05 (+832%) 8.81 (+623%) 8.01 (+1069%)
ANS 5.72 (+431%) 6.01 (+695%) 8.11 (+565%) 7.44 (+987%)
QMX 0.87 (−20%) 0.86 (+14%) 1.31 (+7%) 1.22 (+78%)
Simple16 1.12 (+4%) 0.93 (+23%) 1.52 (+24%) 1.02 (+49%)
Opt-VByte 0.59 (−45%) 0.42 (−44%) 0.85 (−30%) 0.35 (−49%)
Varint-GB 0.57 (−47%) 0.52 (−32%) 0.67 (−45%) 0.49 (−28%)
Varint-G8IU 0.45 (−58%) 0.38 (−49%) 0.52 (−57%) 0.43 (−37%)
Masked-VByte 0.47 (−57%) 0.41 (−46%) 0.56 (−54%) 0.42 (−38%)
Stream-VByte 0.42 (−61%) 0.40 (−47%) 0.47 (−62%) 0.42 (−39%)

Table 25: Sequential decoding throughput in nanoseconds per integer by scanning all the
docs and freqs sequences larger than 4096 postings.

7.2 Decoding speed

Table 25 reports the sequential decoding speed of the various methods, with per-
centages calculated with respect to the VByte method that does not use SIMD
instructions. We express the percentages with respect to this method because it
is considered to be the fastest in the literature (as already discussed in chapters 2
and 5), and we can also evaluate the impact of the SIMD instructions.

The general trend is that, not surprisingly, the VByte family is the fastest when
the SIMD instructions are used: an integer can be decoded in roughly half of a
nanosecond (and sometimes in even less than that, e.g., on the freqs sequences),
representing a ≈2× improvement when such instructions are not used. We now
discuss some details.

The DINT Time-Opt and Opt-VByte methods approach the highest speed. No-
tice that, however, we did not add any SIMD instructions to the the DINT’s de-
coding algorithm but the adopted �xed-copy approach makes it very fast. It also
outperforms the QMX mechanism that uses them. Moreover, the DINT’s decod-

117

7. comparing inverted index representations

4 4.5 5 5.5 6 7 8 12 13 14 16
Space [GB]

0.7
1

1.5
2

5

8

16

Ti
m

e
[n

s/
in

t]

BIC
ANS
CPEF
PEF
Opt-PFOR

Simple16
QMX
VByte
Varint-GB
Varint-G8IU

Masked-VByte
Stream-VByte
Opt-VByte
DINT Time-Opt
DINT Space-Opt

Figure 29: E�ectiveness/e�iciency plot for Gov2 concerning sequential decoding speed.
The horizontal scale shows the total index size in GB, whereas the vertical scales sums the
per-posting docs and freqs nanoseconds per integer. Both scales are logarithmic.

ing speed for the freqs sequences is practically as fast as the one of the reported
SIMD-ized approaches (see the relevant Section 6.4.1, Table 20, for the details).

Instead, the encoders decoding an integer in the range 1 ÷ 1.5 nanoseconds in-
clude: VByte, QMX, Simple16, Opt-PFOR and DINT Space-Opt. Notice that also
the DINT Space-Opt version is competitive in speed, being actually faster than
QMX (on the frequencies) and Simple16. PEF and BIC are the slowest in raw
sequential decoding, with PEF being roughly 3× faster than BIC. Although the
current implementation of CPEF and ANS is not (yet) optimized for raw sequen-
tial decoding speed, we report their timings for completeness: ANS codes perform
similarly to BIC; the CPEF mechanism is faster than ANS but still roughly twice
slower than PEF due to the additional accesses to the lists of reference.

Figure 29 plots the timings shown in Table 25 for the Gov2 dataset in relation to
the space taken by each method.

118

7. comparing inverted index representations

7.3 �ery speed

Table 26 and 27 report the average time for AND queries in milliseconds, respec-
tively for selective and non-selective queries drawn from the TREC 05 and TREC 06
logs. Figure 30 and 31 plot the timings shown in such tables for the Gov2 dataset
in relation to the space taken by each method. In what follows, we discuss the two
tables separately.

Selective queries. On selective queries, PEF is the fastest method thanks to
the powerful skipping capabilities of Elias-Fano when performing the operation
NextGEQ (see Section 2.2.6), reaching (or even beating) the speed of the fastest
SIMD-ized decoders. A similar consideration applies to the Opt-VByte technique
for the reasons explained in details in Section 5.3.2: in particular, as we can see
from the plot illustrated in Figure 20b, for all the jump sizes less than 32, VByte
is 2× faster than Elias-Fano, while this advantage vanishes for the longer jumps
thanks to the mentioned skipping abilities of Elias-Fano. However, we know that
this advantage is shrunk because jumps larger than 32 are not very frequent on
the tested query logs, as depicted by the distribution of Figure 21.

Competitive approaches, but still slightly slower in this case, are QMX, VByte,
Simple16 and Opt-PFOR. Also the DINT Time-Opt approach is fast, being 22%
slower than PEF on average.

Lastly, the most space-e�cient methods, i.e., CPEF, ANS and BIC, are consid-
erably slower than PEF. As already reported in Section 4.3.2, although the CPEF
mechanism imposes a penalty of roughly 50% over PEF, it is still more than 2× and
3× faster than ANS and BIC respectively.

Non-selective queries. Di�erently from the selective case, the trend changes
considering the non-selective queries. In this case, the methods that are faster at
raw sequential decoding perform better, e.g., the ones in the VByte family.

Notice, in fact, how the DINT mechanism approaches the speed of the fastest
methods (also con�rming the trend shown in Table 25) and being on average faster
than PEF by 30%. Opt-VByte has a similar behaviour to the one of PEF (and slightly
faster on ClueWeb09) because the sparse blocks of the lists are sequentially de-
coded with the SIMD-ized Masked-VByte that is faster than Elias-Fano for such
task (see details in Section 5.3).

Again, CPEF, ANS and BIC still remain the slowest methods, with CPEF and
ANS being comparable to each other and BIC much slower.

119

7. comparing inverted index representations

Gov2 ClueWeb09

TREC 05 TREC 06 TREC 05 TREC 06

PEF 1.10 2.42 6.67 10.10

DINT Time-Opt 1.29 (+17%) 2.90 (+20%) 8.30 (+24%) 12.70 (+26%)
DINT Space-Opt 1.56 (+42%) 3.57 (+48%) 9.39 (+41%) 14.15 (+40%)
CPEF 2.00 (+82%) 4.30 (+78%) 12.10 (+81%) 18.40 (+82%)
Opt-PFOR 1.65 (+50%) 3.80 (+57%) 10.40 (+56%) 15.20 (+50%)
BIC 6.80 (+518%) 15.20 (+528%) 40.00 (+500%) 60.00 (+494%)
ANS 5.00 (+355%) 11.00 (+355%) 29.00 (+335%) 41.00 (+306%)
QMX 1.25 (+14%) 2.60 (+7%) 7.20 (+8%) 11.00 (+9%)
Simple16 1.70 (+55%) 3.80 (+57%) 10.60 (+59%) 15.90 (+57%)
VByte 1.40 (+27%) 3.00 (+24%) 8.60 (+29%) 12.80 (+27%)
Opt-VByte 0.96 (−13%) 2.17 (−10%) 7.00 (+5%) 9.10 (−10%)
Varint-GB 1.13 (+3%) 2.60 (+7%) 7.30 (+9%) 11.00 (+9%)
Varint-G8IU 1.10 (+0%) 2.46 (+2%) 6.70 (+0%) 10.00 (−1%)
Masked-VByte 1.12 (+2%) 2.56 (+6%) 6.90 (+3%) 10.30 (+2%)
Stream-VByte 1.17 (+6%) 2.80 (+16%) 6.70 (+0%) 10.40 (+3%)

Table 26: Timings in milliseconds per query for selective AND queries using the TREC 05
and TREC 06 query logs.

4 4.5 5 5.5 6 7 8 12 13 14 16
Space [GB]

3
4
5
6

12

22

Ti
m

e
[m

s/
qu

er
y]

BIC
ANS
CPEF
PEF
Opt-PFOR

Simple16
QMX
VByte
Varint-GB
Varint-G8IU

Masked-VByte
Stream-VByte
Opt-VByte
DINT Time-Opt
DINT Space-Opt

Figure 30: E�ectiveness-e�iciency plots for Gov2, concerning selective query processing.
The horizontal scale shows the total index size in GB, whereas the vertical scales sums the
timings on TREC 05 and TREC 06. Both scales are logarithmic.

120

7. comparing inverted index representations

Gov2 ClueWeb09

TREC 05 TREC 06 TREC 05 TREC 06

PEF 4.88 8.76 17.10 21.20

DINT Time-Opt 3.30 (−32%) 6.40 (−27%) 12.10 (−29%) 15.50 (−27%)
DINT Space-Opt 3.81 (−22%) 7.41 (−15%) 13.31 (−22%) 17.04 (−20%)
CPEF 7.00 (+43%) 15.30 (+75%) 31.00 (+81%) 38.40 (+81%)
Opt-PFOR 4.80 (−2%) 9.40 (+7%) 17.20 (+1%) 22.00 (+4%)
BIC 12.00 (+146%) 23.00 (+163%) 42.00 (+146%) 53.00 (+150%)
ANS 7.90 (+62%) 15.20 (+74%) 31.00 (+81%) 39.30 (+85%)
QMX 3.28 (−33%) 6.50 (−26%) 11.40 (−33%) 14.80 (−30%)
Simple16 4.10 (−16%) 8.00 (−9%) 15.46 (−10%) 18.50 (−13%)
VByte 3.60 (−26%) 7.10 (−19%) 12.36 (−28%) 16.00 (−25%)
Opt-VByte 4.89 (+0%) 8.70 (−1%) 15.80 (−8%) 19.00 (−10%)
Varint-GB 3.27 (−33%) 6.43 (−27%) 11.25 (−34%) 14.55 (−31%)
Varint-G8IU 3.22 (−34%) 6.40 (−27%) 11.04 (−35%) 14.20 (−33%)
Masked-VByte 3.28 (−33%) 6.57 (−25%) 11.16 (−35%) 14.35 (−32%)
Stream-VByte 3.24 (−34%) 6.37 (−27%) 11.05 (−35%) 14.40 (−32%)

Table 27: Timings in milliseconds per query for non-selective AND queries using the
TREC 05 and TREC 06 query logs.

4 4.5 5 5.5 6 7 8 12 13 14 16
Space [GB]

9
10
11
12

13.5
15

22

35

Ti
m

e
[m

s/
qu

er
y]

BIC
ANS
CPEF
PEF
Opt-PFOR

Simple16
QMX
VByte
Varint-GB
Varint-G8IU

Masked-VByte
Stream-VByte
Opt-VByte
DINT Time-Opt
DINT Space-Opt

Figure 31: E�ectiveness-e�iciency plots for Gov2, concerning non-selective query pro-
cessing. The horizontal scale shows the total index size in GB, whereas the vertical scales
sums the timings on TREC 05 and TREC 06. Both scales are logarithmic.

121

7. comparing inverted index representations

7.4 Conclusions

We now consider all the three aspects of space, sequential decoding speed and
query processing speed together by commenting on the trade-o� curves plotted
in �gures 29, 30 and 31. The curves for the ClueWeb09 dataset are similar to the
ones illustrated for Gov2.

Concerning sequential decoding (refer to Figure 29), Opt-VByte is almost as fast
as the fastest VByte representations but also takes almost one third of the space;
in turn, the DINT Time-Opt con�guration is smaller than Opt-VByte (by 30% on
Gov2, but by 15% on ClueWeb09) and decodes only slightly slower. Opt-PFOR,
Simple16, QMX and VByte are all very similar in speed but are outperformed by
the aforementioned methods because they take more space and are slower.

Regarding selective queries (refer to Figure 30): DINT, PEF and Opt-VByte are
the ones performing best. Again, Opt-PFOR, Simple16 and QMX are outperformed
by these methods because are larger and slower. In this case, also the VByte family
does not pay o� since their speed is not better (or only marginally better) than the
leading methods and their space much larger, by 2 ÷ 3 times. Also notice that the
CPEF mechanism is dominated by both DINT con�gurations that are even smaller
and faster. For this reason, DINT dominates over BIC and ANS too because it
comes very close to the space of BIC (only 3% away on Gov2 and 12% away on
ClueWeb09) but is much faster.

Concerning non-selective queries (refer to Figure 31) : DINT dominates here too
since it is as fast as the fastest SIMD-ized decoders in the VByte family and almost
as small as the smallest BIC, CPEF and ANS (that are all better than PEF regarding
the space). PEF, Opt-PFOR, Simple16 and Opt-VByte are all similar in speed, with
PEF being the smallest among them. The QMX mechanism is comparable in speed
with DINT Time-Opt, but its space usage is much larger.

In conclusion, Opt-PFOR, Simple16 and QMX are always outperformed by other
mechanisms. The same conclusion applies for SIMD-ized decoders in the VByte
family that can still be the fastest but actually not as fast as one could expect com-
pared to other methods that take 1/3 of their space and do not use SIMD instruc-
tions. PEF and Opt-VByte are similar, with the former being smaller but the lat-
ter being faster. DINT Time-Opt uses the same space of PEF (actually, slightly
less) and it is faster in performing sequential decoding by 3× and on non-selective
queries by 30%. Only on selective queries it is slower, by only 22% on average. The
other space-e�cient methods BIC, CPEF and ANS are also dominated by the DINT
technique that is much faster and not signi�cantly larger.

122

7. comparing inverted index representations

For these reasons, DINT, PEF and Opt-VByte embody the best time/space trade-
o�s. In particular, as apparent from the trade-o� plots, the DINT method almost
bridges the gap between space e�ectiveness and e�ciency, by combining a small
memory footprint with the highest speed in the literature.

123

8 Compressed Indexes for N-Gram Strings

In Section 2.4, we discussed the importance of n-gram strings in several crucial
applications in Information Retrieval and Machine Learning and noted that at the
core of all such applications lies an e�cient data structure mapping n-grams to
their associated satellite data, e.g., a frequency count representing the number of
occurrences of then-gram or probability/backo� weights for word-predicting com-
putations [76, 122]. The e�ciency of the data structure should come both in time
and space, because modern string search and machine translation systems make
very frequent queries over databases containing several billion n-grams that of-
ten do not �t in internal memory [90, 43]. To reduce the memory-access rate and,
hence, speed up the execution of the retrieval algorithms, the design of an e�cient
compressed representation of the data structure appears as mandatory. While sev-
eral solutions have been proposed for the indexing and retrieval of n-grams, either
based on tries or hashing (see the background Section 2.4.2), their practicality is
actually limited because of some important ine�ciencies that we discuss below.

Context information, such as the fact that relatively few words may follow a
given context, is not currently exploited to achieve better compression. When
query processing speed is the main concern, space e�ciency is almost completely
neglected by not compressing the data structure using sophisticated encoding tech-
niques [76]. In fact, space reductions are usually achieved by either: lossy quan-
tization of satellite values, or by randomized approaches with false positive al-
lowed [154]. The most space-e�cient and lossless proposals still employ binary
search over the compressed representation to lookup for a n-gram: this results in
a severe ine�ciency during query processing because of the lack of a compression
strategy with a fast random access operation [122]. To support random access,
current methods leverage on block-wise compression with expensive decompres-
sion of a block every time an element of the block has to be retrieved. Finally,
hashing schemes based on open addressing with linear probing result extremely
large for static corpora as long as the tables are allocated with 30− 50% extra space
to allow fast random access [76, 122].

Since a solution that is compact, fast and lossless at the same time is still missing,
the �rst aim of this chapter is that of addressing the aforementioned ine�ciencies
by introducing compressed data structures that, despite their small memory foot-
print, support e�cient random access to the satellite n-gram values. This is the
problem of indexing n-gram datasets that we introduced in Section 2.4.

125

8. compressed indexes for n-gram strings

Given a n-gram string, the compressed data structure should allow fast random
access to the corresponding associated value, being either a frequency count (inte-
ger) or a probability (�oating point) by means of the operation Lookup.

Our contributions. We list here the main contributions of this chapter.

(1) We introduce a compressed trie data structure in which each level of the
trie is modeled as a monotone integer sequence that we encode with Elias-
Fano (see Section 2.2.6) as to e�ciently support random access operations
and successor queries over the compressed sequence. We refer to such data
structure as the Elias-Fano trie.
We also adopt a hashing approach that leverages on minimal perfect hash in
order to use tables of size equal to the number of stored n-grams and spend
one random access to retrieve the corresponding n-gram satellite value.

(2) We describe a technique for lowering the space usage of the trie data struc-
ture, by reducing the magnitude of the integers that form its levels. Our
technique is based on the observation that few distinct words follow a pre-
de�ned context, in any natural language. In particular, each word following
a context of �xed length k , i.e., its preceding k words, is encoded as an in-
teger whose value is proportional to the number of words that follow such
context.

(3) We present an extensive experimental analysis to demonstrate that our tech-
nique o�ers a signi�cantly better compression with respect to the plain Elias-
Fano trie, while only introducing a slight penalty at query processing time.
Our data structures outperform all proposals at the state-of-the-art for space
usage, without compromising their time performance. More precisely, the
most space-e�cient proposals in the literature, that are both quantized and
lossy, are no better than our trie data structure and up to 5 times slower.
Conversely, our trie data structure is as fast as the fastest competitor, but
also retains an advantage of up to 65% in absolute space.

8.1 Related work

Section 2.4 o�ers a general overview about N -gram strings, their applications and
the two basic indexing techniques: tries and hash tables. Here, we describe how
these two fundamental data structures have been adopted in the literature.

State-of-the-art. Pauls and Klein [122] proposed trie-based data structures in
which the nodes are represented via sorted arrays or with hash tables with lin-
ear probing. The trie sorted arrays are compressed using a variable-length block

126

8. compressed indexes for n-gram strings

encoding: a con�gurable radix r = 2k is chosen and the number of digits d to rep-
resents a number in base r is written in unary. The representation then terminates
with the d digits, each of which requires exactly k bits. To preserve the property
of looking up a record by binary search, each sorted array is divided into blocks of
128 bytes. The encoding is used to compress words, pointers and the positions that
frequency counts take in a unique-value array that collect all distinct counts. The
hash-based variant is likely to be faster than the sorted array variant, but requires
extra table allocation space to avoid excessive collisions.

Hea�eld [76] improves the sorted array trie implementation with some opti-
mizations. The keys in the arrays are replaced by their hashes and sorted, so that
these are uniformly distributed over their ranges. Now �nding a word ID in a trie
level of size m can be done in O(log logm) with high probability by using inter-
polation search [50]. Records in each sorted arrays are minimally sized at the bit
level, improving the memory consumption over [122]. Pointers are compressed
using the integer compressor devised in [137]. Values can also be quantized using
the binning method [59] that sorts the values, divides them into equally-sized bins
and then elects the average value of the bin as the representative of the bin. The
number of chosen quantization bits directly controls the number of created bins
and, hence, the trade-o� between space and accuracy.

Talbot and Osborne [154] use Bloom �lters [21] with lossy quantization of fre-
quency counts to achieve small memory footprint. In particular, the raw frequency
count fд of gram д is quantized using a logarithmic codebook, i.e., f̃д = 1+ logb fд.
The scale is determined by the base b of the logarithm: in the implementation b is
set to 21/v , where v is the quantization range used by the model, e.g., v = 8. Given
the quantized count f̃д of gram д, a Bloom �lter is trained by entering composite
events into the �lter, represented by д with an appended integer value j, which is
incremented from 1 to f̃д. Then at query time, to retrieve f̃д, the �lter is queried
with a 1 appended toд. This event is hashed using the k hash functions of the �lter:
if all of them test positive, then the count is incremented and the process repeated.
The procedure terminates as soon as any of the k hash functions hits a 0 and the
previous count is reported. This procedure avoids a space requirement for the
counts proportional to the number of grams in the corpus because only the code-
book needs to be stored. The one-sided error of the �lter and the training scheme
ensure that the actual quantized count cannot be larger than the reported value.
As the counts are quantized using a logarithmic-scaled codebook, the count will
be incremented only a small number of times. The quantized logarithmic count is
�nally converted back to a linear count.

The use of the succinct encoding Level-Order Unary-Degree Sequence [87], in
short LOUDS, is advocated in [164] to implicitly represent the trie nodes. In par-
ticular, the pointers for a trie of m nodes are encoded using a bitvector of 2m + 1

127

8. compressed indexes for n-gram strings

bits. Bit-level searches on such bitvector allow forward/backward navigation of
the trie structure. Words and frequency counts are compressed using Variable-
Byte encoding [155, 143], with an additional bitvector used to indicate the bound-
aries of such byte sequences as to support random access to each element. The
paper also discusses the use of block-wise compression (basically gzip on blocks
of 8 KB) though it is not used in the implementation for time e�ciency reasons.
Shareghi et al. [146, 147] also consider the usage of succinct data structures to rep-
resent su�x trees that can be used to compute Kneser-Ney probabilities on-the-�y.
Experimental results indicate that the method is practical for large-scale language
modeling although signi�cantly slower to query than leading toolkits for language
modeling [76].

Because of the importance of strings as one of the most common computerized
kind of information, the problem of representing trie-based storage for string dic-
tionaries is among one of the most studied in computer science, with many and
di�erent solutions available [78, 117, 39]. It goes without saying that, given the
properties that n-gram datasets exhibit, generic trie implementations are not suit-
able for their e�cient handling. However, comparing with the performance of
such implementations gives useful insights about the performance gap with re-
spect to a general solution. We mention Marisa [172] as the best and practical
general-purpose trie implementation. The core idea is to use Patricia tries [116] to
recursively represent the nodes of a Patricia trie. This clearly comes with a space/-
time trade o�: the more levels of recursion are used, the greater the space saving
but also the higher the retrieval time.

8.2 Elias-Fano tries

In this subsection we present a compressed trie data structure, based on the Elias-
Fano representation of monotone integer sequences for its e�cient random access
and search operations. We point the reader to Section 2.2.6 for the description of
this elegant integer encoding. As we will see, the constant-time random access of
Elias-Fano makes it the right choice for the encoding of the sorted-array trie levels,
given that we fundamentally need to randomly access the sub-array pointed to by
a pair of pointers. Such pair is retrieved in constant time too. Now every access
performed by binary search takesO(1)without requiring any block decompression,
di�erently from currently employed strategies [122].

We also introduce a novel technique to lower the memory footprint of the trie
levels by losslessly reducing the entity of their constituent integers. This reduction
is achieved by mapping a word ID conditionally to its context of �xed length k , i.e.,
its k preceding words.

128

8. compressed indexes for n-gram strings

8.2.1 Data structure

This subsection contains the core description of the compressed trie data structure:
we dedicate one paragraph to each of its main building components, i.e., how the
grams, satellite data and pointers are represented; how searches are implemented.

As it is standard, a unique integer ID is assigned to each distinct word to form
the vocabulary of the indexed n-gram corpus. Such vocabulary is implemented
using a hash data structure that stores for each uni-gram its ID in order to retrieve
it when needed in O(1). If we sort the n-grams following the token-ID order, we
have that all the successors of gramwn−1

1 = w1 · · ·wn−1, i.e., all grams whose pre�x
iswn−1

1 , form a strictly increasing integer sequence. For example, suppose we have
the uni-grams1 {A, B, C, D}, which are assigned IDs {0, 1, 2, 3} respectively. Now
consider the bi-grams {AA, AC, BB, BC, BD, CA, CD, DB, DD} sorted by IDs. The
sequence of the successors of A, referred to as the range of A, is 〈A, C〉, i.e., 〈0, 2〉;
the sequence of the successors of B, is 〈B, C, D〉, i.e., 〈1, 2, 3〉 and so on. Figure 32
shows a graphical representation of what we described. Concatenating the ranges,
we obtain the integer sequence 〈0, 2|1, 2, 3|0, 3|1, 3〉 that we can see in Figure 32b
(the vertical bars, depicted in dark blue in Figure 32b, are not really part of the
sequence: they are shown to better highlight the di�erent ranges). In order to
distinguish the successors of an n-gram from others, we also maintain where each
range begins in a monotone integer sequence of pointers. In our example, the
sequence of pointers is 〈0, 2, 5, 7, 9〉 (we also store a �nal dummy pointer to be
able to obtain the last range length by taking the di�erence between the last and
previous pointer). The ID assigned to a uni-gram is also used as the position at
which we read the uni-gram pointer in the uni-grams pointer sequence.

Therefore, apart from uni-grams that are stored in a hash table, each level of
the trie is composed by two integer sequences: one for the representation of the
gram-IDs, the other for the pointers.

We have therefore reduced the problem of representing a trie to the problem
of compressing (a few) integer sequences. Among the many integer compressors
available in the literature (see Section 2.2), we choose Elias-Fano, along with its
partitioned variant, PEF [120] (Sections 2.2.6 and 2.2.7 respectively).

Gram-ID sequences and pointers. While the sequences of pointers are mono-
tonically increasing by construction and, therefore, immediately Elias-Fano encod-
able, the gram-ID sequences may not be, as we can see from Figure 32b. However, a
gram-ID sequence can be transformed into a monotone one, though not strictly in-
creasing, by taking range-wise pre�x sums: to the values of a range we add the last

1Throughout this subsection we consider, for simplicity, an n-gram as consisting of n capital
letters.

129

8. compressed indexes for n-gram strings

pre�x sum (initially equal to 0). Then, our example sequence 〈0, 2|1, 2, 3|0, 3|1, 3〉
becomes 〈0, 2|3, 4, 5|5, 8|9, 11〉.

B C

B

C D

D

B D

C

A D

A

A C

C

B

C D D D

1

2

3

(a)

2 2 3 3 1 2 3

0 1 2 3
0 2 5 7 9

0 2 1 2 3 0 3 1 3
0 1 1 3 4 4 4 4 6 7

1

2

3

(b)

2 4 5 8 9 10 13

0 1 2 3
0 2 5 7 9

0 2 3 4 5 5 8 9 11
0 1 1 3 4 4 4 4 6 7

1

2

3

(c)

Figure 32: In (a) we show an example of a
trie of order 3, representing the set of grams
{A, AA, AAC, AC, B, BB, BBC, BBD, BC, BCD,
BD, C, CA, CD, D, DB, DBB, DBC, DDD}.
In (b) we see the sorted-array representa-
tion of the trie, where each vocabulary token
is assigned a distinct integer ID. Lastly, in
(c), we show the final representation of the
trie where each sorted array has been trans-
formed in a monotone sequence by comput-
ing the prefix sums of the ranges marked
with the dark blue bars in (b). The shaded
arrays represent the pointers.

The last pre�x sum is initially 0,
therefore the range of A remains the
same, i.e., 〈0, 2〉. Now the last pre�x
sum is 2, so we sum 2 to the values in
the range of B, yielding 〈3, 4, 5〉. Now
the last pre�x sum is 5, so we sum 5 to
the values in the range of C, yielding
〈5, 8〉. Finally, the last pre�x sum is 8,
therefore we sum 8 to the values in the
range of D, obtaining 〈9, 11〉. The �nal
trie resulting from this transformation
is shown in Figure 32c.

In particular, if we sort the vocab-
ulary IDs in decreasing order of oc-
currence, we make small IDs appear
more often than large ones and this is
highly bene�cial for the growth of the
universe u and, hence, for Elias-Fano
whose space occupancy critically de-
pends on it. We emphasize this point
again: for each uni-gram in the vocab-
ulary we count the number of times
it appears in all gram-ID sequences.
Note that the number of occurrences
of an n-gram can be di�erent than its
frequency count as reported in the in-
dexed corpus. The reason is that such
corpora often do not include the n-
grams appearing less than a prede�ned
frequency threshold.

Frequency counts. To represent the
frequency counts, we use the unique-
value array technique, i.e., each count
is represented by its index in an array
C[n], 1 ≤ n ≤ N , that collects all
the distinct frequency counts for the n-

grams. The unique-value array technique is widely used in data compression when-
ever the distribution of the represented values is extremely skewed, as it is in our

130

8. compressed indexes for n-gram strings

case for the frequency counts of the n-grams: relatively few n-grams are very fre-
quent while most of them appear only a few times. As we can better see in Table 28,
the number of distinct counts is very small compared to the number of n-grams
themselves, so the space for the arrays C[n], 1 ≤ n ≤ N , is negligible.

Now, each level of the trie, besides the sequences of gram-IDs and pointers, has
also to store the sequence made by all the frequency-count indexes. Unfortunately,
this sequence of indexes is not monotone, yet it follows the aforementioned highly
repetitive distribution. Therefore, we assigned to each index a codeword of vari-
able length. As similarly done for the gram-IDs, by assigning smaller codewords to
more repetitive indexes, we have most indexes encoded with just a few bits. More
speci�cally, starting from k = 1, we �rst assign all the 2k codewords of length
k before increasing k by 1 and repeating the process until all indexes have been
considered. Therefore, we �rst assign codewords 0 and 1, then codewords 00, 01,
10, 11, 000 and so on. All codewords are then concatenated one after the other in
a bitvector B.

Following [67], to the i-th index we give codeword c = i + 2 − 2`c , where `c =
blog(i + 2)c is the number of bits dedicated to the codeword. From codeword c

and its length `c in bits, we can retrieve i by taking the inverse of the previous
formula, i.e., i = c − 2 + 2`c . Besides the bitvector for the codewords themselves,
we also need to know where each codeword begins and ends. We can use another
bitvector for this purpose, say L, that stores a 1 for the starting position of every
codeword. A small additional data structure built on L allows e�cient computation
of the Select1 primitive that we use to retrieve `c . In fact, b = Select1(i) gives us the
starting position of the i-th codeword. Its length is easily computed by scanning L

upward from position b until we hit the next 1, say in position e . Finally, `c = e −b
and c = B[b, e − 1].

In conclusion, a trie is represented by an array of levels, levels[1,N], where
each levels[n] stores, for 1 ≤ n ≤ N : the gram-ID sequence levels[n].ids , the
sequence of frequency-count indexes levels[n].indexes and the pointer sequence
levels[n].pointers , with the only exceptions of 1-grams and N -grams, for which
gram-ID and pointer sequences are missing respectively.

Lookup. We now describe how the Lookup operation is supported, i.e., how to
retrieve the frequency count given an n-gramwn

1 . The corresponding pseudo code
is illustrated in Figure 33. We �rst perform n vocabulary lookups to map the gram
tokens into its constituent IDs. We write these IDs into an array ids[1,n] (lines 2-4
in Figure 33a). This preliminary query-mapping step takes Θ(n). Now, the search
procedure has to locate ids[i] in the i-th level of the trie (lines 3-6 in Figure 33b),
as follows.

131

8. compressed indexes for n-gram strings

1 lookup(wn
1)

2 ids[1,n] = [0, 0]
3 for i = 1; i ≤ n; i = i + 1
4 ids[i] = vocab.lookup(wi)
5 p = search(ids , 1, n, false)
6 i = levels[n].indexes[p]
7 return C[n][i]

(a)

1 search(ids , i , j, remappinд)
2 b = 0
3 e = 0
4 p = ids[i]
5 for k = 1; k ≤ j − i; k = k + 1
6 b = levels[k].pointers[p]
7 e = levels[k].pointers[p + 1]
8 p = find(levels[k + 1].ids , b, e , ids[k + i])
9 return p − (b if remappinд == true else 0)

(b)

Figure 33: The lookup and search functions. The find(A,b, e ,x) function, used in the
search pseudo code, finds the integer x in the range A[b, e) and returns its position in A.

If n = 1, then our search terminates: at the position p = ids[1] we read the rank
i = levels[1].indexes[p] to �nally return C[1][i]. If, instead, n is greater than 1, the
position p is used to retrieve the pair of pointers (b, e) = (levels[1].pointers[p], lev-
els[1].pointers[p + 1]) in constant time, which delimits the range of IDs in which
we have to search for ids[2] in the second level of the trie. This range is inspected
by binary search with the operation find, taking O(log(e − b)) because each ac-
cess to an Elias-Fano-encoded sequence is performed in constant time. Now p

is updated to be the position in levels[2].ids at which ids[2] is found in the range.
Again, if n = 2, the search terminates by accessingC[2][i]where i is now the index
levels[2].indexes[p]. If n is greater than 2, we fetch the pair (levels[2].pointers[p],
levels[2].pointers[p + 1]) to continue the search of ids[3] in the third level of the
trie, and so on. This search step is repeated for n − 1 times in total, to �nally return
the count C[n][i] of wn

1 .

132

8. compressed indexes for n-gram strings

8.2.2 Context-based identifier remapping

In this subsection we describe a novel technique that lowers the space occupancy
of the gram-ID sequences that constitute, as we have seen, the main component
of the trie data structure.

The idea is to map a wordw occurring after the contextwk
1 to an integer whose

value is bounded by the number of words that follow such context, and not bounded
by the total vocabulary sizeV . Speci�cally,w is mapped to the position it occupies
within its siblings, i.e., the words following the gram wk

1 . We call this technique
context-based identi�er remapping because each ID is re-mapped to the position it
takes relatively to a context.

Figure 34a shows a representation of the action performed by the remapping
strategy: the last word IDw of any sub-path of length k + 1 (e.g., the dark blue one
in the �gure) is searched along the same path occurring in the �rst k + 1 levels of
the trie (e.g., the light green one in the �gure). This can be graphically interpreted
as if the dark blue path were projected to the light green path in order to searchw

along its sibling IDs that are the ones occurring after the gram wk
1 (the small dark

gray triangle in the �gure). We stress that this projection is always possible, i.e., we
are guaranteed to �nd any sub-path of length k + 1 in the �rst k + 1 levels of the
trie, because of the sliding-window extraction process described in Section 2.4.1.
Figure 34a also highlights that using a context of length k will partition the levels
of the trie into two categories: the so-called mapper levels and the mapped levels.
The �rst k + 1 levels of trie act, in fact, as a mapper structure whose role is to map
any word ID through searches; all the other N − k − 1 levels are the ones formed
by the remapped IDs.

The salient feature of our strategy is that it takes full advantage of the n-gram
model represented by the trie structure itself in that it does not need any redun-
dancy to perform the mapping of IDs, because these are mapped by means of
searches in the �rst k + 1 levels of the trie. The strategy also allows a great deal
of �exibility in that we can choose the length k of the context. In general, with
an n-gram dataset of order N ≥ 2, we can choose between N − 2 distinct context
lengths k , i.e., 1 ≤ k ≤ N − 2. Clearly, the greater the context length we use, the
smaller the remapped IDs will be but the searches will take longer. The choice of
the proper context length to use should take into account the characteristics of the
n-gram dataset; in particular the number of n-grams per order.

In what follows we motivate why the introduced remapping strategy o�ers
a valuable contribution to the overall space reduction of the trie data structure,
throughout some didactic and real examples. As we will see in the experimental
Section 8.4, the dataset vocabulary can contain several million tokens, whereas

133

8. compressed indexes for n-gram strings

k
+

1
<latexit sha1_base64="WQ1Pq4PaurbAYh2IvNbHNUhqTKM=">AAACPHicbVDLSsNAFJ34rPXV6tJNMAiCUBIRdFl047JiX9CGMpnetkMnkzBzI5bQT3Crf+N/uHcnbl07abOwrRcuHM59nXuCWHCNrvthra1vbG5tF3aKu3v7B4el8lFTR4li0GCRiFQ7oBoEl9BAjgLasQIaBgJawfguq7eeQGkeyTpOYvBDOpR8wBlFQz2OL7xeyXEr7izsVeDlwCF51Hply+n2I5aEIJEJqnXHc2P0U6qQMwHTYjfREFM2pkPoGChpCNpPZ1qn9plh+vYgUiYl2jP270RKQ60nYWA6Q4ojvVzLyP9qnQQHN37KZZwgSDY/NEiEjZGdPW73uQKGYmIAZYobrTYbUUUZGnuKC6vqnp9m6rI9C/cFD8B8KZee5EgFZ36aiaIa4RmnRWOrt2ziKmheVjy34j1cOdXb3OACOSGn5Jx45JpUyT2pkQZhZEheyCt5s96tT+vL+p63rln5zDFZCOvnF+wrrhQ=</latexit><latexit sha1_base64="WQ1Pq4PaurbAYh2IvNbHNUhqTKM=">AAACPHicbVDLSsNAFJ34rPXV6tJNMAiCUBIRdFl047JiX9CGMpnetkMnkzBzI5bQT3Crf+N/uHcnbl07abOwrRcuHM59nXuCWHCNrvthra1vbG5tF3aKu3v7B4el8lFTR4li0GCRiFQ7oBoEl9BAjgLasQIaBgJawfguq7eeQGkeyTpOYvBDOpR8wBlFQz2OL7xeyXEr7izsVeDlwCF51Hply+n2I5aEIJEJqnXHc2P0U6qQMwHTYjfREFM2pkPoGChpCNpPZ1qn9plh+vYgUiYl2jP270RKQ60nYWA6Q4ojvVzLyP9qnQQHN37KZZwgSDY/NEiEjZGdPW73uQKGYmIAZYobrTYbUUUZGnuKC6vqnp9m6rI9C/cFD8B8KZee5EgFZ36aiaIa4RmnRWOrt2ziKmheVjy34j1cOdXb3OACOSGn5Jx45JpUyT2pkQZhZEheyCt5s96tT+vL+p63rln5zDFZCOvnF+wrrhQ=</latexit><latexit sha1_base64="WQ1Pq4PaurbAYh2IvNbHNUhqTKM=">AAACPHicbVDLSsNAFJ34rPXV6tJNMAiCUBIRdFl047JiX9CGMpnetkMnkzBzI5bQT3Crf+N/uHcnbl07abOwrRcuHM59nXuCWHCNrvthra1vbG5tF3aKu3v7B4el8lFTR4li0GCRiFQ7oBoEl9BAjgLasQIaBgJawfguq7eeQGkeyTpOYvBDOpR8wBlFQz2OL7xeyXEr7izsVeDlwCF51Hply+n2I5aEIJEJqnXHc2P0U6qQMwHTYjfREFM2pkPoGChpCNpPZ1qn9plh+vYgUiYl2jP270RKQ60nYWA6Q4ojvVzLyP9qnQQHN37KZZwgSDY/NEiEjZGdPW73uQKGYmIAZYobrTYbUUUZGnuKC6vqnp9m6rI9C/cFD8B8KZee5EgFZ36aiaIa4RmnRWOrt2ziKmheVjy34j1cOdXb3OACOSGn5Jx45JpUyT2pkQZhZEheyCt5s96tT+vL+p63rln5zDFZCOvnF+wrrhQ=</latexit><latexit sha1_base64="WQ1Pq4PaurbAYh2IvNbHNUhqTKM=">AAACPHicbVDLSsNAFJ34rPXV6tJNMAiCUBIRdFl047JiX9CGMpnetkMnkzBzI5bQT3Crf+N/uHcnbl07abOwrRcuHM59nXuCWHCNrvthra1vbG5tF3aKu3v7B4el8lFTR4li0GCRiFQ7oBoEl9BAjgLasQIaBgJawfguq7eeQGkeyTpOYvBDOpR8wBlFQz2OL7xeyXEr7izsVeDlwCF51Hply+n2I5aEIJEJqnXHc2P0U6qQMwHTYjfREFM2pkPoGChpCNpPZ1qn9plh+vYgUiYl2jP270RKQ60nYWA6Q4ojvVzLyP9qnQQHN37KZZwgSDY/NEiEjZGdPW73uQKGYmIAZYobrTYbUUUZGnuKC6vqnp9m6rI9C/cFD8B8KZee5EgFZ36aiaIa4RmnRWOrt2ziKmheVjy34j1cOdXb3OACOSGn5Jx45JpUyT2pkQZhZEheyCt5s96tT+vL+p63rln5zDFZCOvnF+wrrhQ=</latexit>

k
+

1
<latexit sha1_base64="WQ1Pq4PaurbAYh2IvNbHNUhqTKM=">AAACPHicbVDLSsNAFJ34rPXV6tJNMAiCUBIRdFl047JiX9CGMpnetkMnkzBzI5bQT3Crf+N/uHcnbl07abOwrRcuHM59nXuCWHCNrvthra1vbG5tF3aKu3v7B4el8lFTR4li0GCRiFQ7oBoEl9BAjgLasQIaBgJawfguq7eeQGkeyTpOYvBDOpR8wBlFQz2OL7xeyXEr7izsVeDlwCF51Hply+n2I5aEIJEJqnXHc2P0U6qQMwHTYjfREFM2pkPoGChpCNpPZ1qn9plh+vYgUiYl2jP270RKQ60nYWA6Q4ojvVzLyP9qnQQHN37KZZwgSDY/NEiEjZGdPW73uQKGYmIAZYobrTYbUUUZGnuKC6vqnp9m6rI9C/cFD8B8KZee5EgFZ36aiaIa4RmnRWOrt2ziKmheVjy34j1cOdXb3OACOSGn5Jx45JpUyT2pkQZhZEheyCt5s96tT+vL+p63rln5zDFZCOvnF+wrrhQ=</latexit><latexit sha1_base64="WQ1Pq4PaurbAYh2IvNbHNUhqTKM=">AAACPHicbVDLSsNAFJ34rPXV6tJNMAiCUBIRdFl047JiX9CGMpnetkMnkzBzI5bQT3Crf+N/uHcnbl07abOwrRcuHM59nXuCWHCNrvthra1vbG5tF3aKu3v7B4el8lFTR4li0GCRiFQ7oBoEl9BAjgLasQIaBgJawfguq7eeQGkeyTpOYvBDOpR8wBlFQz2OL7xeyXEr7izsVeDlwCF51Hply+n2I5aEIJEJqnXHc2P0U6qQMwHTYjfREFM2pkPoGChpCNpPZ1qn9plh+vYgUiYl2jP270RKQ60nYWA6Q4ojvVzLyP9qnQQHN37KZZwgSDY/NEiEjZGdPW73uQKGYmIAZYobrTYbUUUZGnuKC6vqnp9m6rI9C/cFD8B8KZee5EgFZ36aiaIa4RmnRWOrt2ziKmheVjy34j1cOdXb3OACOSGn5Jx45JpUyT2pkQZhZEheyCt5s96tT+vL+p63rln5zDFZCOvnF+wrrhQ=</latexit><latexit sha1_base64="WQ1Pq4PaurbAYh2IvNbHNUhqTKM=">AAACPHicbVDLSsNAFJ34rPXV6tJNMAiCUBIRdFl047JiX9CGMpnetkMnkzBzI5bQT3Crf+N/uHcnbl07abOwrRcuHM59nXuCWHCNrvthra1vbG5tF3aKu3v7B4el8lFTR4li0GCRiFQ7oBoEl9BAjgLasQIaBgJawfguq7eeQGkeyTpOYvBDOpR8wBlFQz2OL7xeyXEr7izsVeDlwCF51Hply+n2I5aEIJEJqnXHc2P0U6qQMwHTYjfREFM2pkPoGChpCNpPZ1qn9plh+vYgUiYl2jP270RKQ60nYWA6Q4ojvVzLyP9qnQQHN37KZZwgSDY/NEiEjZGdPW73uQKGYmIAZYobrTYbUUUZGnuKC6vqnp9m6rI9C/cFD8B8KZee5EgFZ36aiaIa4RmnRWOrt2ziKmheVjy34j1cOdXb3OACOSGn5Jx45JpUyT2pkQZhZEheyCt5s96tT+vL+p63rln5zDFZCOvnF+wrrhQ=</latexit><latexit sha1_base64="WQ1Pq4PaurbAYh2IvNbHNUhqTKM=">AAACPHicbVDLSsNAFJ34rPXV6tJNMAiCUBIRdFl047JiX9CGMpnetkMnkzBzI5bQT3Crf+N/uHcnbl07abOwrRcuHM59nXuCWHCNrvthra1vbG5tF3aKu3v7B4el8lFTR4li0GCRiFQ7oBoEl9BAjgLasQIaBgJawfguq7eeQGkeyTpOYvBDOpR8wBlFQz2OL7xeyXEr7izsVeDlwCF51Hply+n2I5aEIJEJqnXHc2P0U6qQMwHTYjfREFM2pkPoGChpCNpPZ1qn9plh+vYgUiYl2jP270RKQ60nYWA6Q4ojvVzLyP9qnQQHN37KZZwgSDY/NEiEjZGdPW73uQKGYmIAZYobrTYbUUUZGnuKC6vqnp9m6rI9C/cFD8B8KZee5EgFZ36aiaIa4RmnRWOrt2ziKmheVjy34j1cOdXb3OACOSGn5Jx45JpUyT2pkQZhZEheyCt5s96tT+vL+p63rln5zDFZCOvnF+wrrhQ=</latexit>

w
<latexit sha1_base64="qNapL720Yjbmam75X0ZsphL8f6I=">AAACOnicbVDLSsNAFJ34rPHV6tJNsAiuSiKCLotuXLbQF7ShTKY37dDJJMzcqCX0C9zq3/gjbt2JWz/ASduFbb1w4XDu69wTJIJrdN0Pa2Nza3tnt7Bn7x8cHh0XSyctHaeKQZPFIladgGoQXEITOQroJApoFAhoB+P7vN5+BKV5LBs4ScCP6FDykDOKhqo/9Ytlt+LOwlkH3gKUySJq/ZJV7g1ilkYgkQmqdddzE/QzqpAzAVO7l2pIKBvTIXQNlDQC7WczpVPnwjADJ4yVSYnOjP07kdFI60kUmM6I4kiv1nLyv1o3xfDWz7hMUgTJ5ofCVDgYO/nbzoArYCgmBlCmuNHqsBFVlKExx15a1fD8LFeX71m6L3gA5ku58iRHKjjzs1wU1QjPOLWNrd6qieugdVXx3IpXvy5X7xYGF8gZOSeXxCM3pEoeSI00CSNAXsgrebPerU/ry/qet25Yi5lTshTWzy8N3K2w</latexit><latexit sha1_base64="qNapL720Yjbmam75X0ZsphL8f6I=">AAACOnicbVDLSsNAFJ34rPHV6tJNsAiuSiKCLotuXLbQF7ShTKY37dDJJMzcqCX0C9zq3/gjbt2JWz/ASduFbb1w4XDu69wTJIJrdN0Pa2Nza3tnt7Bn7x8cHh0XSyctHaeKQZPFIladgGoQXEITOQroJApoFAhoB+P7vN5+BKV5LBs4ScCP6FDykDOKhqo/9Ytlt+LOwlkH3gKUySJq/ZJV7g1ilkYgkQmqdddzE/QzqpAzAVO7l2pIKBvTIXQNlDQC7WczpVPnwjADJ4yVSYnOjP07kdFI60kUmM6I4kiv1nLyv1o3xfDWz7hMUgTJ5ofCVDgYO/nbzoArYCgmBlCmuNHqsBFVlKExx15a1fD8LFeX71m6L3gA5ku58iRHKjjzs1wU1QjPOLWNrd6qieugdVXx3IpXvy5X7xYGF8gZOSeXxCM3pEoeSI00CSNAXsgrebPerU/ry/qet25Yi5lTshTWzy8N3K2w</latexit><latexit sha1_base64="qNapL720Yjbmam75X0ZsphL8f6I=">AAACOnicbVDLSsNAFJ34rPHV6tJNsAiuSiKCLotuXLbQF7ShTKY37dDJJMzcqCX0C9zq3/gjbt2JWz/ASduFbb1w4XDu69wTJIJrdN0Pa2Nza3tnt7Bn7x8cHh0XSyctHaeKQZPFIladgGoQXEITOQroJApoFAhoB+P7vN5+BKV5LBs4ScCP6FDykDOKhqo/9Ytlt+LOwlkH3gKUySJq/ZJV7g1ilkYgkQmqdddzE/QzqpAzAVO7l2pIKBvTIXQNlDQC7WczpVPnwjADJ4yVSYnOjP07kdFI60kUmM6I4kiv1nLyv1o3xfDWz7hMUgTJ5ofCVDgYO/nbzoArYCgmBlCmuNHqsBFVlKExx15a1fD8LFeX71m6L3gA5ku58iRHKjjzs1wU1QjPOLWNrd6qieugdVXx3IpXvy5X7xYGF8gZOSeXxCM3pEoeSI00CSNAXsgrebPerU/ry/qet25Yi5lTshTWzy8N3K2w</latexit><latexit sha1_base64="qNapL720Yjbmam75X0ZsphL8f6I=">AAACOnicbVDLSsNAFJ34rPHV6tJNsAiuSiKCLotuXLbQF7ShTKY37dDJJMzcqCX0C9zq3/gjbt2JWz/ASduFbb1w4XDu69wTJIJrdN0Pa2Nza3tnt7Bn7x8cHh0XSyctHaeKQZPFIladgGoQXEITOQroJApoFAhoB+P7vN5+BKV5LBs4ScCP6FDykDOKhqo/9Ytlt+LOwlkH3gKUySJq/ZJV7g1ilkYgkQmqdddzE/QzqpAzAVO7l2pIKBvTIXQNlDQC7WczpVPnwjADJ4yVSYnOjP07kdFI60kUmM6I4kiv1nLyv1o3xfDWz7hMUgTJ5ofCVDgYO/nbzoArYCgmBlCmuNHqsBFVlKExx15a1fD8LFeX71m6L3gA5ku58iRHKjjzs1wU1QjPOLWNrd6qieugdVXx3IpXvy5X7xYGF8gZOSeXxCM3pEoeSI00CSNAXsgrebPerU/ry/qet25Yi5lTshTWzy8N3K2w</latexit>

mapper
levels

<latexit sha1_base64="TbqWE40jA/Q/N86dhLSoEWaTsZM=">AAACbnicbVDLSiNBFK30+OxxNCq4EbGYMOAqdMeFsxTduFQwKqSbcLtyOymsrm6qbouhyYfM17jVT5i/8BOsTrIw0QMXDue+T1IoaSkI/je8Hyura+sbm/7PrV/bO83dvTubl0ZgV+QqNw8JWFRSY5ckKXwoDEKWKLxPHi/r/P0TGitzfUvjAuMMhlqmUgA5qd88jRIcSl2lqrQjhSlN/AyKAg2PIl/hEyrrR6gHnwv6zVbQDqbgX0k4Jy02x3V/t9GKBrkoM9QkFFjbC4OC4goMSaFw4kelxQLEIwyx56iGDG1cTb+b8D9OGfA0Ny408an6uaOCzNpxlrjKDGhkl3O1+F2uV1L6N66kLkpCLWaL0lJxynltFR9Ig4LU2BEQRrpbuRiBAUHOUH9h1G0YV/V19ZyF/Uom6L7US09KAiVFXNVHgSV8ntkaLpv4ldx12mHQDm86rfOLucEb7JD9ZicsZGfsnF2xa9Zlgv1jL+yVvTXevQPvyDuelXqNec8+W4B38gF2i77u</latexit><latexit sha1_base64="TbqWE40jA/Q/N86dhLSoEWaTsZM=">AAACbnicbVDLSiNBFK30+OxxNCq4EbGYMOAqdMeFsxTduFQwKqSbcLtyOymsrm6qbouhyYfM17jVT5i/8BOsTrIw0QMXDue+T1IoaSkI/je8Hyura+sbm/7PrV/bO83dvTubl0ZgV+QqNw8JWFRSY5ckKXwoDEKWKLxPHi/r/P0TGitzfUvjAuMMhlqmUgA5qd88jRIcSl2lqrQjhSlN/AyKAg2PIl/hEyrrR6gHnwv6zVbQDqbgX0k4Jy02x3V/t9GKBrkoM9QkFFjbC4OC4goMSaFw4kelxQLEIwyx56iGDG1cTb+b8D9OGfA0Ny408an6uaOCzNpxlrjKDGhkl3O1+F2uV1L6N66kLkpCLWaL0lJxynltFR9Ig4LU2BEQRrpbuRiBAUHOUH9h1G0YV/V19ZyF/Uom6L7US09KAiVFXNVHgSV8ntkaLpv4ldx12mHQDm86rfOLucEb7JD9ZicsZGfsnF2xa9Zlgv1jL+yVvTXevQPvyDuelXqNec8+W4B38gF2i77u</latexit><latexit sha1_base64="TbqWE40jA/Q/N86dhLSoEWaTsZM=">AAACbnicbVDLSiNBFK30+OxxNCq4EbGYMOAqdMeFsxTduFQwKqSbcLtyOymsrm6qbouhyYfM17jVT5i/8BOsTrIw0QMXDue+T1IoaSkI/je8Hyura+sbm/7PrV/bO83dvTubl0ZgV+QqNw8JWFRSY5ckKXwoDEKWKLxPHi/r/P0TGitzfUvjAuMMhlqmUgA5qd88jRIcSl2lqrQjhSlN/AyKAg2PIl/hEyrrR6gHnwv6zVbQDqbgX0k4Jy02x3V/t9GKBrkoM9QkFFjbC4OC4goMSaFw4kelxQLEIwyx56iGDG1cTb+b8D9OGfA0Ny408an6uaOCzNpxlrjKDGhkl3O1+F2uV1L6N66kLkpCLWaL0lJxynltFR9Ig4LU2BEQRrpbuRiBAUHOUH9h1G0YV/V19ZyF/Uom6L7US09KAiVFXNVHgSV8ntkaLpv4ldx12mHQDm86rfOLucEb7JD9ZicsZGfsnF2xa9Zlgv1jL+yVvTXevQPvyDuelXqNec8+W4B38gF2i77u</latexit><latexit sha1_base64="TbqWE40jA/Q/N86dhLSoEWaTsZM=">AAACbnicbVDLSiNBFK30+OxxNCq4EbGYMOAqdMeFsxTduFQwKqSbcLtyOymsrm6qbouhyYfM17jVT5i/8BOsTrIw0QMXDue+T1IoaSkI/je8Hyura+sbm/7PrV/bO83dvTubl0ZgV+QqNw8JWFRSY5ckKXwoDEKWKLxPHi/r/P0TGitzfUvjAuMMhlqmUgA5qd88jRIcSl2lqrQjhSlN/AyKAg2PIl/hEyrrR6gHnwv6zVbQDqbgX0k4Jy02x3V/t9GKBrkoM9QkFFjbC4OC4goMSaFw4kelxQLEIwyx56iGDG1cTb+b8D9OGfA0Ny408an6uaOCzNpxlrjKDGhkl3O1+F2uV1L6N66kLkpCLWaL0lJxynltFR9Ig4LU2BEQRrpbuRiBAUHOUH9h1G0YV/V19ZyF/Uom6L7US09KAiVFXNVHgSV8ntkaLpv4ldx12mHQDm86rfOLucEb7JD9ZicsZGfsnF2xa9Zlgv1jL+yVvTXevQPvyDuelXqNec8+W4B38gF2i77u</latexit>

mapped
levels

<latexit sha1_base64="4JahSoMSDFpXK35vP1sN4zdk91A=">AAACbnicbVDdSuNAFJ7G3bVmf6wK3ojssGXBq5K4F+tl0RsvFawKTSgnk5N2cDIJMydiCX0Qn8bb3UfwLXwEJ20vbPWDAx/f+f+SUklLQfDc8jY+ff6y2d7yv377/mO7s7N7bYvKCByIQhXmNgGLSmockCSFt6VByBOFN8ndWZO/uUdjZaGvaFpinMNYy0wKICeNOn+iBMdS15mq7ERhRjM/h7LElEeRr/AelfUj1OnbglGnG/SCOfh7Ei5Jly1xMdppdaO0EFWOmoQCa4dhUFJcgyEpFM78qLJYgriDMQ4d1ZCjjev5dzP+2ykpzwrjQhOfq287asitneaJq8yBJnY914gf5YYVZSdxLXVZEWqxWJRVilPBG6t4Kg0KUlNHQBjpbuViAgYEOUP9lVFXYVw31zVzVvYrmaD7Uq89KQmUFHHdHAWW8GFha7hu4ntyfdwLg154edztny4NbrMD9osdsZD9ZX12zi7YgAn2yJ7YP/a/9eLte4fez0Wp11r27LEVeEevW12+4A==</latexit><latexit sha1_base64="4JahSoMSDFpXK35vP1sN4zdk91A=">AAACbnicbVDdSuNAFJ7G3bVmf6wK3ojssGXBq5K4F+tl0RsvFawKTSgnk5N2cDIJMydiCX0Qn8bb3UfwLXwEJ20vbPWDAx/f+f+SUklLQfDc8jY+ff6y2d7yv377/mO7s7N7bYvKCByIQhXmNgGLSmockCSFt6VByBOFN8ndWZO/uUdjZaGvaFpinMNYy0wKICeNOn+iBMdS15mq7ERhRjM/h7LElEeRr/AelfUj1OnbglGnG/SCOfh7Ei5Jly1xMdppdaO0EFWOmoQCa4dhUFJcgyEpFM78qLJYgriDMQ4d1ZCjjev5dzP+2ykpzwrjQhOfq287asitneaJq8yBJnY914gf5YYVZSdxLXVZEWqxWJRVilPBG6t4Kg0KUlNHQBjpbuViAgYEOUP9lVFXYVw31zVzVvYrmaD7Uq89KQmUFHHdHAWW8GFha7hu4ntyfdwLg154edztny4NbrMD9osdsZD9ZX12zi7YgAn2yJ7YP/a/9eLte4fez0Wp11r27LEVeEevW12+4A==</latexit><latexit sha1_base64="4JahSoMSDFpXK35vP1sN4zdk91A=">AAACbnicbVDdSuNAFJ7G3bVmf6wK3ojssGXBq5K4F+tl0RsvFawKTSgnk5N2cDIJMydiCX0Qn8bb3UfwLXwEJ20vbPWDAx/f+f+SUklLQfDc8jY+ff6y2d7yv377/mO7s7N7bYvKCByIQhXmNgGLSmockCSFt6VByBOFN8ndWZO/uUdjZaGvaFpinMNYy0wKICeNOn+iBMdS15mq7ERhRjM/h7LElEeRr/AelfUj1OnbglGnG/SCOfh7Ei5Jly1xMdppdaO0EFWOmoQCa4dhUFJcgyEpFM78qLJYgriDMQ4d1ZCjjev5dzP+2ykpzwrjQhOfq287asitneaJq8yBJnY914gf5YYVZSdxLXVZEWqxWJRVilPBG6t4Kg0KUlNHQBjpbuViAgYEOUP9lVFXYVw31zVzVvYrmaD7Uq89KQmUFHHdHAWW8GFha7hu4ntyfdwLg154edztny4NbrMD9osdsZD9ZX12zi7YgAn2yJ7YP/a/9eLte4fez0Wp11r27LEVeEevW12+4A==</latexit><latexit sha1_base64="4JahSoMSDFpXK35vP1sN4zdk91A=">AAACbnicbVDdSuNAFJ7G3bVmf6wK3ojssGXBq5K4F+tl0RsvFawKTSgnk5N2cDIJMydiCX0Qn8bb3UfwLXwEJ20vbPWDAx/f+f+SUklLQfDc8jY+ff6y2d7yv377/mO7s7N7bYvKCByIQhXmNgGLSmockCSFt6VByBOFN8ndWZO/uUdjZaGvaFpinMNYy0wKICeNOn+iBMdS15mq7ERhRjM/h7LElEeRr/AelfUj1OnbglGnG/SCOfh7Ei5Jly1xMdppdaO0EFWOmoQCa4dhUFJcgyEpFM78qLJYgriDMQ4d1ZCjjev5dzP+2ykpzwrjQhOfq287asitneaJq8yBJnY914gf5YYVZSdxLXVZEWqxWJRVilPBG6t4Kg0KUlNHQBjpbuViAgYEOUP9lVFXYVw31zVzVvYrmaD7Uq89KQmUFHHdHAWW8GFha7hu4ntyfdwLg154edztny4NbrMD9osdsZD9ZX12zi7YgAn2yJ7YP/a/9eLte4fez0Wp11r27LEVeEevW12+4A==</latexit>

(a)

k 3-grams 4-grams 5-grams

Eu
ro

pa
rl 0 2404 2782 2920

1 213 (11×) 480 (6×) 646 (5×)
2 2404 48 (58×) 101 (29×)

Ya
ho

oV
2 0 7350 7197 7417

1 753 (10×) 1461 (5×) 1963 (4×)
2 7350 104 (69×) 249 (30×)

G
oo

gl
eV

2 0 4050 6631 6793
1 1025 (4×) 2192 (3×) 2772 (2×)
2 4050 221 (30×) 503 (14×)

(b)

Figure 34: In (a), we depict the action performed by the context-based identifier remap-
ping strategy. The last word ID w of any sub-path of length k + 1, e.g., the dark blue one,
is replaced with the position it takes within its sibling IDs. These sibling IDs are found at
the end (spanned by the gray triangle) of the search of w along the same path, e.g., the
light green one, in the first k + 1 levels of the trie. In (b), we show the e�ect of the context-
based remapping on the average gap (ratio between universe and size) of the gram-ID
sequences of the datasets used in the experiments, with context length k = 0, 1, 2.

the number of words that naturally occur after another is typically very small.
Even in the case of stopwords, such as “the” or “are”, the number of words that
can follow is far less than the whole number of distinct words for any n-gram
dataset. This ultimately means that the remapped integers forming the gram-ID

134

8. compressed indexes for n-gram strings

D
3

D
3

B C
1 2

0 1 1

DB

C
2

DA

D
3

C D
2 3

1 2 1

CB D

B
1

C
2

1

CA

A
0

Figure 35: Example of a trie of order 3, representing the set of grams {A, AA, AAC, AC,
B, BB, BBC, BBD, BC, BCD, BD, CA, CD, DB, DBB, DBC, DDD}. Vocabulary IDs are
represented in darkest blue while level-3 IDs in light blue. The light green IDs are derived
by applying a context-based remapping with context length 1.

sequences of the trie will be much smaller than the original ones, which can indeed
range from 0 to V − 1. Lowering the values of the integers clearly helps in reduc-
ing the memory footprint of the levels of the trie because any integer compressor
takes advantage of encoding smaller integers, since fewer bits are needed for their
representation [115, 120]. In our case the gram-ID sequences are encoded with
Elias-Fano: from Section 8.2.1, we know that Elias-Fano spends dlog u

m e + 2 bits
per integer, thus a number of bits proportional to the average gap u/m between
its values. The remapping strategy reduces the universe u of representation, thus
lowering the average gap and space of the sequence.

This e�ect is illustrated by the numbers in Figure 34b that shows how the av-
erage gap of the gram-ID sequences of the datasets we used in the experiments
(see also Table 28) is a�ected by the context-based remapping. As uni-grams and
bi-grams constitute the mapper levels, these are kept unmapped: we show the
statistics for the mapped levels, i.e., the third, fourth and �fth, of a trie of order 5
built from the n-grams of the datasets. For each dataset we did the experiment for
context lengths 0, 1 and 2. As we can see by considering Europarl, our technique
with a context of length 1 achieves an average reduction of 7.2 times (up to 11.3
on tri-grams). With a context of length 2, instead, we obtain an average reduction
of 43.4 times (up to 58 on 4-grams). Very similar considerations and numbers hold
for the YahooV2 dataset as well. The reduction on the GoogleV2 dataset is less
dramatic instead, being on average of 3 times with a context of length 1 and of
16.75 times with a context of length 2.

Example. To better understand how the remapping algorithm works, we consider
now a small didactic example. We continue with the example from Section 8.2.1
and represented in Figure 35. The blue IDs are the vocabulary IDs and the red
ones are the last token IDs of the tri-grams as assigned by the vocabulary. We now

135

8. compressed indexes for n-gram strings

1 lookup(wn
1 ,k)

2 ids[1,n] = [0, 0]
3 remapped_ids[1,n] = [0, 0]
4 for i = 1; i ≤ n; i = i + 1
5 id = vocab.lookup(wi)
6 ids[i] = remapped_ids[i] = id

7 for i = k + 1; i ≤ n; i = i + 1
8 remapped_ids[i] = search(ids , i − k , i , true)
9 p = search(remapped_ids , 1, n, false)

10 i = levels[n].indexes[p]
11 return C[n][i]

Figure 36: The lookup function with context-based remapping of order k .

explain how the remapped IDs, represented in green, are derived by the model
using our technique with a context of length 1. Consider the tri-gram BCD. The
default ID of D is 3. We now rewrite this ID as the position that D takes within
the successors of the word preceding it, i.e., C (context of length 1). As we can see,
D appears in position 1 within the successors of C, therefore its new ID will be
1. Another example: take DBB. The default ID of B is 1, but it occurs in position
0 within the successors of its parent B, therefore its new ID is 0. The example in
Figure 35 illustrates how to map tri-grams using a context of length 1: this is clearly
the only one possible as the �rst two levels of the trie must be used to retrieve the
mapped ID at query time. However, if we have an n-gram of order 4, i.e., w4

1 , we
can choose to map w4 as the position it takes within the successors of w3 (context
of length 1) or within the successors of w2w3 (context of length 2).

Lookup. The described remapping strategy comes with an overhead at query time
because the lookup algorithm illustrated in Figure 33 must map a default vocabu-
lary ID to its remapped ID, before it can be searched in the proper trie level. Specif-
ically, if the remapping strategy is applied with a context of length k , it involves
k × (N − k − 1) additional searches in the trie levels. As an example, by looking at
Figure 35, before searching the mapped ID 1 of D for the tri-gram BCD, we have
to map the vocabulary ID of D, i.e., 3, to 1. For this task, we search 3 within the
successors of C. As 3 is found in position 1, we now know that we have to search
for 1 within the successors of BC.

On the one hand, the context-based remapping will assign smaller IDs as the
length of the context rises, on the other hand it will also spend more time at query
processing. Therefore, we have a space/time trade-o� that we explore with an
extensive experimental analysis in Section 8.4. The pseudo code for the Lookup

136

8. compressed indexes for n-gram strings

operations with context-based remapping is illustrated in Figure 36. Note that, in
comparison with the pseudo code in Figure 33a, the remapping technique uses an
array to store the re-mapped IDs (line 3) and an additional for loop (lines 7-8).

8.3 Hashing

Since the indexed n-gram corpus is static, we obtain a full hash utilization by re-
sorting to Minimal Perfect Hash (MPH). We index all n-grams (of the same order
n) into a separate MPH table, levels[n], each with its own MPH function hn. This
introduces a twofold advantage over the linear probing approach used in the lit-
erature [76, 122]: use a hash table of size equal to the exact number of grams per
order (no extra space allocation is required) and avoid the linear probing search
phase by requiring one single access to the required hash location.

We use the publicly available implementation of MPH as described in [17] and
available at https://github.com/ot/emphf. This implementation requires 2.61
bits per key on average.

At the hash location for an n-gram we store: its 8-byte hash key as to have a
false positive probability of 2−64 (4-byte hash keys are supported as well) and the
position of the frequency count in the unique-value array C[n] which keeps all
distinct frequency counts for order n. As already motivated, these unique-value
arrays, one for each di�erent order of n, are negligibly small compared to the num-
ber of n-grams themselves and act as a direct map from the position of the count
to its value. Although these unique values could be sorted and compressed, we do
not perform any space optimization as these are too few to yield any improvement
but we store them uncompressed and byte-aligned, in order to favour lookup time.
We also use this hash approach to implement the vocabulary of the previously
introduced trie data structure.

Lookup. Given the n-gramwn
1 we compute the position p = hn(wn

1) in the relevant
table levels[n], then we access the count index i stored at position p and �nally
retrieve the count value C[n][i].

8.4 Experiments

In this subsection, we �rst present experiments to validate the e�ectiveness of
our compressed data structures in relation to the corresponding query processing
speed; then we compare our proposals against several solutions available in the
state-of-the-art.

Datasets. We performed our experiments on the following standard datasets.

137

https://github.com/ot/emphf

8. compressed indexes for n-gram strings

n
Europarl YahooV2 GoogleV2

n-grams counts n-grams counts n-grams counts

1 304,579 4518 3,475,482 23,785 24,357,349 246,490
2 5,192,260 4663 53,844,927 31,711 665,752,080 722,966
3 18,908,249 2975 187,639,522 19,856 7,384,478,110 683,653
4 33,862,651 1744 287,562,409 10,761 1,642,783,634 133,491
5 43,160,518 1032 295,701,337 6167 1,413,870,914 104,025

total 101,428,257 7147 828,223,677 45,285 11,131,242,087 1,073,473

gzip 6.98 6.45 6.20

Table 28: Number of n-grams and distinct frequency counts for the datasets used in the
experiments. We also report the average bytes per gram achieved by gzip as a useful
baseline for comparison.

• Europarl consists in all unpruned n-grams extracted from the English Eu-
roparl parallel corpus [95], available at: http://www.statmt.org/europarl.

• YahooV2 is a collection of English n-grams with minimum frequency count
equal to 2, extracted from a corpus of 14.6 million documents crawled from
more than 12,000 sites during 2006 [4]. The dataset is available at: http:

//webscope.sandbox.yahoo.com/catalog.php?datatype=l.

• GoogleV2 is the latest English version of Web1T [24], whose n-grams have a
minimum frequency count of 40. This collection roughly corresponds to 6%
of the books ever published. The dataset is available at: http://storage.
googleapis.com/books/ngrams/books/datasetsv2.html.

Each dataset comprises all n-grams for 1 ≤ n ≤ N = 5 and associated frequency
counts. Table 28 shows the basic statistics of the datasets. We choose these datasets
in order to test our data structures on di�erent corpora sizes: starting from the
left of Table 28 each dataset has roughly 10 times the number of n-grams of the
previous one.

Compared indexes. We compare the performance of our data structures against
the following software packages that use the approaches introduced in Section 8.1.

• BerkeleyLM implements two trie data structures based on sorted arrays and
hash tables to represent the nodes of the trie [122]. The code is written in
Java and available at: https://github.com/adampauls/berkeleylm.

138

http://www.statmt.org/europarl
http://webscope.sandbox.yahoo.com/catalog.php?datatype=l
http://webscope.sandbox.yahoo.com/catalog.php?datatype=l
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
https://github.com/adampauls/berkeleylm

8. compressed indexes for n-gram strings

• Expgram makes use of the LOUDS succinct encoding [87] to implicitly rep-
resent the trie structure, while the frequency counts are compressed us-
ing VByte encoding [164]. The code is written in C++ and available at:
https://github.com/tarowatanabe/expgram.

• KenLM implements a trie with interpolation search and a hashing with lin-
ear probing [76]. The code is written in C++ and available at: http://

kheafield.com/code/kenlm.

• Marisa is a general-purposes string dictionary implementation in which Pa-
tricia tries are recursively used to represent the nodes of a Patricia trie [172].
The code is written in C++ and available at: https://github.com/s-yata/
marisa-trie.

• RandLM employs Bloom �lters with lossy quantization of frequency counts
to attain to low memory footprint [154]. The code is written in C++ and
available at: https://sourceforge.net/projects/randlm.

Experimental se�ing and methodology. All experiments have been performed
on a machine with 16 Intel Xeon E5-2630 v3 cores (32 threads) clocked at 2.4 Ghz,
with 193 GB of RAM, running Linux 3.13.0, 64 bits. Our implementation is in
standard C++11 and compiled with gcc 5.4.1 with the highest optimization settings.
Template specialization has been preferred over inheritance to avoid the virtual
method call overhead, which can be disruptive for the very �ne-grained operations
we consider. Except for the instructions to count the number of bits set in a word
(popcount), and to �nd the position of the least signi�cant bit (number of trailing
zeroes), no special processor feature was used. In particular, we did not add any
SIMD instruction to our code.

The data structures were saved to disk after construction, and loaded into main
memory to be queried. For the scanning of input �les we used the posix_madvice
system, called with the parameter POSIX_MADV_SEQUENTIAL to instruct the
kernel to optimize the sequential access to the mapped memory region.

To test the speed of Lookup queries, we use a query set consisting of 5 million
n-grams for YahooV2 and GoogleV2 and of 0.5 million for Europarl, drawn at ran-
dom from the entire datasets. In order to smooth the e�ect of �uctuations during
measurements, we repeat each experiment �ve times and consider the mean. The
shown query results are, therefore, average times. All query algorithms were run
on a single core.

Source code. https://github.com/jermp/tongrams

139

https://github.com/tarowatanabe/expgram
http://kheafield.com/code/kenlm
http://kheafield.com/code/kenlm
https://github.com/s-yata/marisa-trie
https://github.com/s-yata/marisa-trie
https://sourceforge.net/projects/randlm
https://github.com/jermp/tongrams

8. compressed indexes for n-gram strings

8.4.1 Elias-Fano tries

bytes/gram µs/query

EF 1.97 1.28
PEF 1.87 (−5%) 1.35 (+6%)

k
=

1 EF 1.67 (−15%) 1.58 (+24%)
PEF 1.53 (−22%) 1.61 (+26%)

k
=

2 EF 1.46 (−26%) 1.60 (+25%)
PEF 1.28 (−35%) 1.64 (+28%)

(a) Europarl

bytes/gram µs/query

EF 2.17 1.60
PEF 1.91 (−12%) 1.73 (+8%)

k
=

1 EF 1.89 (−13%) 2.05 (+28%)
PEF 1.63 (−25%) 2.16 (+35%)

k
=

2 EF 1.68 (−22%) 2.08 (+30%)
PEF 1.38 (−36%) 2.15 (+35%)

(b) YahooV2

bytes/gram µs/query

EF 2.13 2.09
PEF 1.52 (−29%) 1.91 (−9%)

k
=

1 EF 1.91 (−10%) 3.03 (+45%)
PEF 1.31 (−39%) 2.30 (+10%)

(c) GoogleV2

Table 29: Average bytes per gram
(bytes/gram) and average Lookup time
per query in microseconds (µs/query).

In this subsection we test the e�-
ciency of our trie data structure. As al-
ready done for the description in Sec-
tion 8.2.1, we dedicate one paragraph
to the validation of each of the main
building components of the trie, as well
as to the introduced performance opti-
mizations.

Gram-ID sequences. Table 29 shows
the average number of bytes per gram
including the cost of pointers, and
lookup speed per query. The �rst two
rows refers to the trie data structure
described in Section 8.2.1, when the
sorted arrays are encoded with Elias-
Fano (EF) and partitioned Elias-Fano
(PEF) [120]. Subsequent rows indi-
cate the space gains obtained by apply-
ing the context-based remapping strat-
egy using EF and PEF for contexts
of lengths respectively 1 and 2. For
GoogleV2 we use a context of length 1,
as the tri-grams alone roughly consti-
tute 66% of the whole the dataset, thus
it would make little sense to optimize
only the space of 4- and 5-grams that
take 27% of the dataset.

As expected, partitioning the gram
sequences using PEF yields a better
space occupancy. Though the paper
by Ottaviano and Venturini [120] de-
scribes a dynamic programming algo-
rithm that �nds the partitioning able of
minimizing the space occupancy of a
monotone sequence, we instead adopt
a uniform partitioning strategy. Par-
titioning the sequence uniformly has

several advantages over variable-length partitions for our setting. As we have seen

140

8. compressed indexes for n-gram strings

25 26 27 28 29 210

block size

1.2

1.4

1.6

1.8
by

te
s/

gr
am

2-grams 3-grams 4-grams 5-grams

1.30

1.35

1.40

1.45

1.50

se
c/

qu
er

y

Figure 37: Bytes per gram (le� vertical axis) and µs per query (right vertical axis, black
dashed line) by varying block size in PEF uniform on the gram-ID sequences of Europarl.

in Section 8.2.1, trie searches are carried out by performing a preliminary random
access to the endpoints of the range pointed to by a pointer pair. Then a search in
the range follows to determine the position of the gram-ID.

Partitioning the sequence by variable-length blocks introduces an additional
search over the sequence of partition endpoints to determine the proper block in
which the search must continue. While this preliminary search only introduces a
minor overhead in query processing for inverted index queries [120] (as it has to be
performed once and successive accesses are only directed to forward positions of
the sequence), it is instead the major bottleneck when random access operations
are very frequent as in our case. By resorting on uniform partitions, we elimi-
nate this �rst search and the cost of representation for the variable-length sizes.
To speed up queries even further, we also keep the upper bounds of the blocks
bit-packed in the minimum number of bits.

As the problem of deciding the optimal block size is posed, Figure 37 shows the
space/time trade-o� obtained by varying the block size on the gram-ID sequences.
The plots for YahooV2 and GoogleV2 datasets exhibit the same shape, therefore
we report the one for Europarl. The dashed black line illustrates how the aver-
age Lookup time varies when all the gram-ID sequences are partitioned using the
same block size. The �gure suggests to use partitions of 64 integers for bi-gram
sequences, and of 128 for all other orders, i.e., for N ≥ 3, given that the space us-
age remains low without increasing much the query processing speed. With this
choice of block sizes, the loss in space with respect to PEF is small and equal to
3.32% for Europarl; 5.29% for YahooV2 and 7.33% for GoogleV2.

Shrinking the size of blocks speeds up searches over plain Elias-Fano because
a successor query has to be resolved over an interval potentially much smaller
than a range length. This behavior is clearly highlighted by the shape of the black
dashed line of Figure 37. However, excessively reducing the block size may ruin the

141

8. compressed indexes for n-gram strings

Europarl YahooV2 GoogleV2

Variable-len. codewords 0.36 0.47 1.46
Prefix sums + EF 0.35 (−2%) 0.62 (+32%) 1.59 (+9%)
Prefix sums + PEF 0.30 (−17%) 0.51 (+9%) 1.30 (−11%)
Variable-len. block-coding 0.76 (+156%) 0.79 (+56%) 1.32 (+1%)
Packed 1.63 (+445%) 2.00 (+294%) 2.63 (+102%)
VByte 3.21 (+975%) 3.32 (+555%) —

Table 30: Average bytes per count for di�erent techniques.

advantage in space reduction. Therefore it is convenient to use small block sizes
for the most traversed sequences, e.g., the bi-gram sequences, that indeed must be
searched several times during the query-mapping phase when the context-based
remapping is adopted. In conclusion, as we can see by the second row of Table 29,
there is no practical di�erence between the query processing speed of EF and PEF:
this latter sequence organization brings a negligible overhead in query processing
speed (less than 8% on Europarl and YahooV2), while maintaining a noticeable
space reduction (up to 29% on GoogleV2).

Context-based identifier remapping. Concerning the e�cacy of the context-
based remapping, we have that remapping the gram IDs with a context of length
k = 1 is already able of reducing the space of the sequences by ≈13% on average
when sequences are encoded with Elias-Fano, with respect to the EF cost. If we
consider a context of length k = 2 we double the gain, allowing for more than
28% of space reduction without a�ecting the lookup time with respect to the case
k = 1. As a �rst conclusion, when space e�ciency is the main concern, it is always
convenient to apply the remapping strategy with a context of length 2. The gain
of the strategy is even more evident with PEF: this is no surprise as the encoder
can better exploit the reduced IDs by encoding all the integers belonging to a block
with a universe relative to the block and not to the whole sequence. This results
in a space reduction of more than 36% on average and up to 39% on GoogleV2.

Regarding the query processing speed, as explained in Section 8.2.2, the remap-
ping strategy comes with a penalty at query time as we have to map an ID before it
can be searched in the proper gram sequence. On average, by looking at Table 29,
we found that 30% more time is spent with respect to the Elias-Fano baseline. No-
tice that PEF does not introduce any time degradation with respect to EF with
context-based remapping: it is actually faster on GoogleV2.

142

8. compressed indexes for n-gram strings

Frequency counts. For the representation of frequency counts we compare three
di�erent encoding schemes: the �rst one refers to the strategy described in Sec-
tion 8.2.1 that assigns variable-length codewords to the ranks of the counts and
keeps track of codewords length using a binary vector (Variable-len. codewords);
the other two schemes transform the sequence of count ranks into a non-decreasing
sequence by taking its pre�x sums and then applies EF or PEF (Prefix sums +
EF/PEF).

Table 30 shows the average number of bytes per count for these di�erent strate-
gies. The reported space also includes the space for the storage of the arrays con-
taining the distinct counts for each order of N . As already pointed out, these take
a negligible amount of space because the distribution of frequency counts is highly
repetitive (see Table 28). The percentages of Prefix sums + EF/PEF are done with
respect to the �rst row of the table, i.e., Variable-len. codewords.

The time for retrieving a count was pretty much the same for all the three tech-
niques. Pre�x-summing the sequence and apply EF does not bring any advantage
over the codeword assignment technique because its space is practically the same
on Europarl but it is actually larger on both YahooV2 (by up to 32%) and GoogleV2.
These two reasons together place the codeword assignment technique in net ad-
vantage over EF. PEF, instead, o�ers a better space occupancy of more than 16% on
Europarl and 10% on GoogleV2. Therefore, in the following we assume this repre-
sentation for frequency counts, except for YahooV2, where we adopt Variable-len.
codewords.

We also report the space occupancy for the counts representation of BerkeleyLM
and Expgram which, di�erently from all other competitors, can also be used to
index frequency counts. BerkeleyLM COMPRESSED variant uses the Variable-
len. block-coding mechanism explained in Section 8.1 to compress count ranks,
whereas the HASH variant stores bit-packed count ranks, referred to as Packed in
the table, using the minimum number of bits necessary for their representation (see
Table 28). Expgram, instead, does not store count ranks but directly compress the
counts themselves using Variable-Byte encoding (VByte) with an additional binary
vector as to be able of randomly accessing the counts sequence. The available RAM
of our test machine (193 GBs) was not su�cient to successfully build Expgram on
GoogleV2. The same holds for KenLM and Marisa, as we are going to see next.
Therefore, we report its space for Europarl and YahooV2.

We �rst observe that rank-encoding schemes are far more advantageous than
compressing the counts themselves, as done by Expgram. Moreover, none of the
these techniques beats the three ones we previously introduced, except for the
BerkeleyLM COMPRESSED variant which is ≈10% smaller on GoogleV2 with re-
spect to Variable-len. codewords. However, note that this gap is completely bridged
as soon as we adopt the combination Prefix sums + PEF.

143

8. compressed indexes for n-gram strings

query mapping search count lookup

34% 41%
25%

41% 42%
17%

34%
48%

18%

Europarl YahooV2 GoogleV2

(a) PEF-RTrie

query mapping search count lookup

24%

59%

17%22%

56%

22%21%

57%

22%

Europarl YahooV2 GoogleV2

(b) PEF-Trie

grams counts pointers

70%

18% 12%

60%

27%
13%

41% 50%

9%

Europarl YahooV2 GoogleV2

(c) PEF-RTrie

grams counts pointers

73%

17% 10%

69%

21% 10%

43% 49%

8%

Europarl YahooV2 GoogleV2

(d) PEF-Trie

Figure 38: Trie data structures timing (a-b) and size (c-d) breakdowns in percentage on
the tested datasets. For the timing breakdowns we distinguish the three phases of query
mapping, ID-search and final count lookup. For the space breakdowns we distinguish,
instead, the contribution of gram-ID, count and pointer sequences.

Time and space breakdowns. Before concluding the subsection, we use the
analysis to �x two di�erent trie data structures that respectively privilege space
e�ciency and query time: we call them PEF-RTrie (the R stands for remapped) and
PEF-Trie. For the PEF-RTrie variant we use PEF for representing the gram-ID se-
quences; Prefix sums + PEF for the counts on Europarl and GoogleV2 but Variable-
len. codewords for YahooV2. We also use the maximum applicable context length
for the context-based remapping technique, i.e., 2 for Europarl and YahooV2; 1 for
GoogleV2. For the PEF-Trie variant we choose a data structure using PEF for rep-
resenting gram-ID sequences and Variable-len. codewords for the counts, without
remapping.

The corresponding size breakdowns are shown in Figures 38c and 38d respec-
tively. The sequences for pointers take very little space for both data structures
(approximately 10.3%), while most of the di�erence lies, not surprisingly, in the
space of the gram-ID sequences (roughly 70% for Europarl and YahooV2; 40% for
GoogleV2). The timing breakdowns in Figures 38a and 38b clearly highlight, in-
stead, how the context-based remapping technique rises the time we spend in the
query-mapping phase, during which the IDs are mapped to their reduced IDs. In
such case, the two phases of query mapping and search are almost the same, while
in the PEF-Trie the search phase dominates.

144

8. compressed indexes for n-gram strings

8.4.2 Hashing

We build our MPH tables using 8-byte hash keys, as to yield a false positive rate
of 2−64. For each di�erent value of n we store the distinct count values in an array,
uncompressed and byte-aligned using 4 bytes per distinct count on Europarl and
YahooV2; 8 bytes on GoogleV2.

For all the three datasets, the number of bytes per gram, including also the cost of
the hash function itself (0.33 bytes per gram) is 8.33. The number of bytes per count
is given by the sum of the cost for the ranks and the distinct counts themselves
and is equal to 1.41, 1.74 and 2.43 for Europarl, YahooV2 and GoogleV2 respectively.
Not surprisingly, the majority of space is taken by the hash keys: clients willing
to reduce this memory impact can use 4-byte hash keys instead, at the price of
a higher false positive rate (2−32). Therefore, it is worth observing that spending
additional e�ort in trying to lower the space occupancy of the counts only results
in poor improvements as we pay for the high cost of the hash keys.

The constant-time access capability of hashing makes gram lookup extremely
fast, by requiring on average 1/3 of a microsecond per lookup (exact numbers
are reported in Table 31). In particular, all the time is spent in computing the
hash function itself and access the relative table location: the �nal count lookup is
completely negligible.

8.4.3 Overall comparison

In this subsection we compare the performance of our selected trie-based solutions,
i.e., the PEF-RTrie and PEF-Trie, as well as our minimal perfect hash approach
against the competitors introduced at the beginning of this subsection. The results
of the comparison are shown in Table 31, where we report the space taken by the
representation of the gram-ID sequences and average Lookup time per query in
microseconds. For the trie data structures, the reported space also includes the cost
of representation for the pointers. We compare the space of representation for the
n-grams excluding their associated information because this varies according to
the chosen implementation: for example, KenLM can only store probabilities and
backo�s, whereas BerkeleyLM can be used to store either counts or probabilities.
For those competitors storing frequency counts, we already discussed their count
representation in Section 8.4.1. Expgram, KenLM and Marisa require too much
memory for the building of their data structures on GoogleV2, therefore we mark
as empty their entry in the table for this dataset.

Except for the last two rows of the table in which we compare the performance
of our MPH table against KenLM probing (P.), we write for each competitor two
percentages indicating its score against our selected trie data structures PEF-Trie

145

8. compressed indexes for n-gram strings

and PEF-RTrie, respectively. Let us now examine each row, one by one. In the
following discussion, unless explicitly stated, the numbers cited as percentages
refer to average values over the di�erent datasets.

BerkeleyLM COMPRESSED (C.) variant results 21% larger than our PEF-RTrie
implementation and slower by more than 70%. It gains, instead, an advantage of
roughly 9% over our PEF-Trie data structure, but it is also more than 2 times slower.
The HASH variant uses hash tables with linear probing to represent the nodes
of the trie. Therefore, we test it with a small extra space factor of 3% for table
allocation (H.3) and with 50% (H.50), which is also used as the default value in
the implementation, as to obtain di�erent time/space trade-o�s. Clearly the space
occupancy of both hash variants do not compete with the ones of our proposals
as these are from 3 to 7 times larger, but the O(1)-lookup capabilities of hashing
makes it faster than a sorted array trie implementation: while this is no surprise,
notice that our PEF-Trie data structure is anyway competitive as it is actually faster
on GoogleV2.

Expgram is 13.5% larger than PEF-Trie and also 2 and 5 times slower on Europarl
and YahooV2 respectively. Our PEF-RTrie data structure retains an advantage in
space of 60% and it is still signi�cantly faster: about 72% on Europarl and 4.3 times
on YahooV2.

KenLM is the fastest trie language model implementation in the literature. As
we can see, our PEF-Trie variant retains 70% of its space with a negligible penalty
at query time. Compared to PEF-RTrie, it is slightly faster, i.e., 15%, but also 2.3
and 2.5 times larger on Europarl and YahooV2 respectively.

We also tested the performance of Marisa even though it is not a trie optimized
for language models as to understand how our data structures compare against a
general-purpose string dictionary implementation. We outperform Marisa in both
space and time: compared to PEF-RTrie, it is 2.7 times larger and 38% slower; with
respect to PEF-Trie it is more than 90% larger and 70% slower.

RandLM is designed for small memory footprint and returns approximated fre-
quency counts when queried. We build its data structures using the default setting
recommended in the documentation: 8 bits for frequency count quantization and 8
bits per value as to yield a false positive rate of 1

256 . While being from 2.3 to 5 times
slower than our exact and lossless approach, it is quite compact because the quan-
tized frequency counts are recomputed on the �y using the procedure described in
Section 8.1. Therefore, while its space occupancy results even larger with respect
to our grams representation by 61%, it is still no better than the whole space of our
PEF-RTrie data structure. With respect to the whole space of PEF-Trie, it retains in-
stead an advantage of 15.6%. This space advantage is, however, compensated by a
loss in precision and a much higher query time (up to 5 times slower on GoogleV2).

146

8. compressed indexes for n-gram strings

Eu
ro

pa
rl

Ya
ho

oV
2

G
oo

gl
eV

2

by
te

s/
gr

am
µ

s/
qu

er
y

by
te

s/
gr

am
µ

s/
qu

er
y

by
te

s/
gr

am
µ

s/
qu

er
y

PE
F-

Tr
ie

1.8
7

1.3
5

1.9
1

1.7
3

1.5
2

1.9
1

PE
F-

R
Tr

ie
1.2

8
1.6

4
1.3

8
2.1

5
1.3

1
2.3

0

B
er

ke
le

yL
M

C
.

1.7
0
(−

9%
)

2.8
3(
+

10
9%
)

1.6
9
(−

11
%)

3.4
8(
+

10
2%
)

1.4
5
(−

5%
)

4.1
3(
+

11
7%
)

(+
33

%)
(+

73
%)

(+
22

%)
(+

62
%)

(+
11

%)
(+

80
%)

B
er

ke
le

yL
M

H
.3

6.7
0(
+

25
9%
)

0.9
7
(−

28
%)

7.8
2(
+

31
0%
)

1.1
3
(−

34
%)

9.2
4(
+

50
8%
)

2.1
8
(+

14
%)

(+
42

3%
)

(−
41

%)
(+

46
5%
)

(−
47

%)
(+

60
8%
)

(−
5%
)

B
er

ke
le

yL
M

H
.5

0
7.9

6(
+

32
6%
)

0.9
7
(−

28
%)

9.3
7(
+

39
1%
)

0.9
6
(−

44
%)

—
—

(+
52

1%
)

(−
41

%)
(+

57
8%
)

(−
55

%)
Ex

pg
ra

m
2.0

6
(+

10
%)

2.8
0(
+

10
7%
)

2.2
4
(+

17
%)

9.2
3(
+

43
5%
)

—
—

(+
61

%)
(+

71
%)

(+
62

%)
(+

32
9%
)

K
en

LM
T.

2.9
9
(+

60
%)

1.2
8
(−

5%
)

3.4
4
(+

80
%)

1.9
4
(+

12
%)

—
—

(+
13

4%
)

(−
22

%)
(+

14
9%
)

(−
10

%)
M

ar
is

a
3.6

1
(+

93
%)

2.0
6
(+

52
%)

3.8
1(
+

10
0%
)

3.2
4
(+

88
%)

—
—

(+
18

2%
)

(+
26

%)
(+

17
5%
)

(+
51

%)
R

an
dL

M
1.8

1
(−

3%
)

4.3
9(
+

22
4%
)

2.0
2
(+

6%
)

5.0
8(
+

19
4%
)

2.6
0
(+

71
%)

9.2
5(
+

38
5%
)

(+
41

%)
(+

16
8%
)

(+
46

%)
(+

13
6%
)

(+
99

%)
(+

30
2%
)

M
PH

8.3
3

0.2
6

8.3
3

0.3
2

8.3
3

0.3
7

K
en

LM
P.

3
9.4

0
(+

13
%)

0.4
3
(+

63
%)

9.4
1
(+

13
%)

0.3
8
(+

20
%)

—
—

K
en

LM
P.

50
16

.91
(+

10
3%
)

0.3
1
(+

17
%)

16
.92
(+

10
3%
)

0.3
4
(+

8%
)

—
—

Ta
bl

e
31

:A
ve

ra
ge

by
te

s
pe

r
gr

am
(b

yt
es

/g
ra

m
)

an
d

av
er

ag
e

Lo
ok

up
ti

m
e

pe
r

qu
er

y
in

m
ic

ro
se

co
nd

s
pe

r
qu

er
y

(µ
s/

qu
er

y)
.

Fo
r

ou
r

da
ta

st
ru

ct
ur

es
,i

.e
.,

PE
F-

Tr
ie

an
d

PE
F-

R
Tr

ie
,t

he
by

te
s/

gr
am

co
st

al
so

in
cl

ud
es

th
e

sp
ac

e
of

re
pr

es
en

ta
ti

on
fo

r
th

e
po

in
te

r
se

qu
en

ce
s.

147

8. compressed indexes for n-gram strings

The last two rows of Table 31 regard the performance of our MPH table with
respect to KenLM PROBING. As similarly done for BerkeleyLM H., we also test
the PROBING data structure with 3% (P.3) and 50% (P.50) extra space allocation
factor for the tables. While being larger as expected, the KenLM implementation
makes use of expensive hash key recombinations that yields a slower random ac-
cess capability with respect to our minimal perfect hashing approach.

We �nally compare the total space occupancy, as given by the sum of the space
of gram-ID sequences, frequency counts and pointers, of our trie data structures
against the gzip baseline reported in Table 28. The total average bytes per repre-
sented n-gram for PEF-Trie are 2.17, 2.38 and 2.82 on the three datasets Europarl,
YahooV2 and GoogleV2 respectively. Table 28 shows that gzip takes, instead, 6.98,
6.45 and 6.2 bytes per gram. This means that our PEF-Trie is 3.2×, 2.7× and 2.2×
smaller than gzip and it does also support e�cient search of individual n-grams.
Finally, our PEF-RTrie is 4.4×, 3.5×, 2.4× smaller.

Perplexity benchmark. Besides the e�cient indexing of frequency counts, our
data structures can also be used to map n-grams to language model probabilities
and backo�s. As done by KenLM, we also use the binning method [59] to quantize
probabilities and backo�s, but allowing any quantization bits ranging from 2 to 32.
Uni-grams values are stored unquantized to favor query speed: as vocabulary size
is typically very small compared to the number of totaln-grams, this has a minimal
impact on the space of the data structure. Our trie implementation is reversed as to
permit a more e�cient computation of sentence-level probabilities, with a stateful
scoring function that carries its state on from a query to the next, as similarly done
by KenLM and BerkeleyLM.

For the perplexity benchmark we used the standard query dataset publicly avail-
able at http://www.statmt.org/lm-benchmark, that contains 306,688 sentences,
for a total of 7,790,011 tokens [33]. We used the utilities of Expgram to build mod-
i�ed Kneser-Ney [35, 36] 5-gram language models from the counts of Europarl
and YahooV2 that have an OOV (out of vocabulary) rate of, respectively, 16% and
1.82% on the test query �le. As Expgram only builds quantized models using 8
quantization bits for both probabilities and backo�s, we also use this number of
quantization bits for our tries and KenLM trie. For all data structures, BerkeleyLM
truncates the mantissa of �oating-point values to 24 bits and then stores indices
to distinct probabilities and backo�s. RandLM was build, as already said, with the
default parameters recommended in the documentation.

Table 32 shows the results of the benchmark. As we can see, the PEF-Trie data
structure is as fast as the KenLM trie while being more than 30% more compact
on average, whereas the PEF-RTrie variant doubles the space gains with negligible
loss in query processing speed (13% slower). We instead signi�cantly outperform

148

http://www.statmt.org/lm-benchmark

8. compressed indexes for n-gram strings

Eu
ro

pa
rl

Ya
ho

oV
2

by
te

s/
gr

am
µ

s/
qu

er
y

by
te

s/
gr

am
µ

s/
qu

er
y

PE
F-

Tr
ie

3.4
8

0.2
5

3.6
4

0.3
8

PE
F-

R
Tr

ie
2.9

1
0.2

8
3.0

6
0.4

3

B
er

ke
le

yL
M

C
.

6.5
0
(+

87
%)

1.1
9
(+

37
2%
)

6.3
9
(+

76
%)

1.0
8
(+

18
7%
)

(+
12

3%
)

(+
32

2%
)

(+
10

9%
)

(+
15

2%
)

B
er

ke
le

yL
M

H
.3

9.3
6(
+

16
9%
)

0.8
4
(+

23
4%
)

8.7
5(
+

14
0%
)

0.7
4
(+

96
%)

(+
22

2%
)

(+
19

9%
)

(+
18

6%
)

(+
72

%)
B

er
ke

le
yL

M
H

.5
0

12
.31
(+

25
4%
)

0.3
5
(+

39
%)

12
.01
(+

23
0%
)

0.3
0
(−

19
%)

(+
32

3%
)

(+
24

%)
(+

29
3%
)

(−
29

%)
Ex

pg
ra

m
4.1

5
(+

19
%)

3.8
3(
+

14
25

%)
5.8

0
(+

59
%)

14
.05
(+

36
38

%)
(+

43
%)

(+
12

65
%)

(+
90

%)
(+

31
79

%)
K

en
LM

T.
4.5

8
(+

32
%)

0.2
3
(−

8%
)

5.0
4
(+

39
%)

0.3
9
(+

5%
)

(+
57

%)
(−

18
%)

(+
65

%)
(−

8%
)

R
an

dL
M

4.0
1
(+

15
%)

6.4
8(
+

24
78

%)
3.8

6
(+

6%
)

6.2
5(
+

15
61

%)
(+

38
%)

(+
22

07
%)

(+
26

%)
(+

13
57

%)
M

PH
9.9

2
0.1

5
9.9

4
0.2

4
K

en
LM

P.
3

14
.77
(+

49
%)

0.3
2
(+

10
6%
)

14
.84
(+

49
%)

0.3
0
(+

25
%)

K
en

LM
P.

50
21

.48
(+

11
7%
)

0.1
0
(−

36
%)

21
.57
(+

11
7%
)

0.1
5
(−

40
%)

Ta
bl

e
32

:P
er

pl
ex

it
y

be
nc

hm
ar

k
re

su
lt

s
re

po
rt

in
g

av
er

ag
e

nu
m

be
r

of
by

te
s

pe
r

gr
am

(b
yt

es
/g

ra
m

)a
nd

m
ic

ro
se

co
nd

s
pe

r
qu

er
y

(µ
s/

qu
er

y)
us

in
g

m
od

ifi
ed

K
ne

se
r-

N
ey

5-
gr

am
la

ng
ua

ge
m

od
el

s
bu

ilt
fr

om
Eu

ro
pa

rl
an

d
Ya

ho
oV

2
co

un
ts

.

149

8. compressed indexes for n-gram strings

all other competitors in both space and time, including the BerkeleyLM H.3 variant.
In particular, notice that we are also smaller than RandLM which is randomized
and, therefore, less accurate. The query time of BerkeleyLM H.50 is smaller on
YahooV2; however, it also uses from 3 up to 4 times the space of our tries.

The last two rows of the table are dedicated to the comparison of our MPH ta-
ble with KenLM PROBING. While our data structure stores quantized probabilities
and backo�s, KenLM stores uncompressed values for all orders of N . We found out
that storing unquantized values results in indistinguishable di�erences in perplex-
ity while unnecessarily increasing the space of the data structure, as it is apparent
in the results. The expensive hash key recombinations necessary for random ac-
cess are avoided during perplexity computation for the left-to-right nature of the
query access pattern. This makes, not surprisingly, a linear probing implementa-
tion actually faster, by 38% on average, than a minimal perfect hash approach when
a large multiplicative factor is used for tables allocation (P.50). The price to pay is,
however, the double of the space. On the other hand, the P.3 variant is larger (by
50%) and slower (by 60% on average).

150

9 Language Models Estimation

The problem we tackle in this chapter is the one of computing the probability
distribution of then-grams extracted from large textual collections. We refer to this
problem as the one of estimation, that is the second problem that we introduced in
Section 2.4. This problem is clearly related to the one of indexing n-gram strings
that we study in Chapter 8 because, after estimation, the computed language model
needs to be queried e�ciently.

In other words, we would like to create and e�cient, compressed, index that
maps the n-grams of a large text to its probability of occurrence in the text. The
way such probability is computed depends on the chosen model. This is an old
problem and has received a lot of attention: not surprisingly, several models have
been proposed in the literature, such as Laplace, Good-Turing, Katz, Jelinek-Mercer,
Witten-Bell and Kneser-Ney (see the background Section 2.4.1).

Among the many, Kneser-Ney language models [94] and, in particular, their
modi�ed version introduced by Chen and Goodman [36], have gained popular-
ity thanks to their relatively low-perplexity performance. This makes modi�ed
Kneser-Ney the de-facto choice for language model toolkits. The following soft-
ware libraries, widely used in both academia and industry (e.g., Google [23, 34]
and Facebook [37]), all support modi�ed Kneser-Ney smoothing: KenLM [76],
BerkeleyLM [122], RandLM [154], Expgram [164], MSRLM [119], SRILM [152],
IRSTLM [60] and the recent approach based on su�x trees by Shareghi et al. [146,
147]. For such reasons, Kneser-Ney is the model we consider in this work too and
that we review in Section 9.1.

The current limitation of the mentioned software libraries is that estimation of
such models occurs in internal memory and, as a result, these approaches are not
able to scale to the dimensions we consider in this work. An exception is repre-
sented by the work of Hea�eld, Pouzyrevsky, Clark, and Koehn [77] (KenLM) that
contributed an estimation algorithm involving three steps of sorting in external
memory. Their solution embodies the current state-of-art solution to the problem:
the algorithm takes, on average, as low as 20% of the CPU and 10% of the RAM of
the cited toolkits [77]. Therefore, the focus of this chapter is on improving upon
the I/O e�ciency of such an approach.

151

9. language models estimation

C
A
A
B
A

A
A
B
A
X

C
A
B
C
A

B
A
X
X
X

A
B
A
X
X

A
B
C
A
A

B
C
A
A
B

X
C
A
B
C

X
X
C
A
B

X
X
X
C
A

X
X
X
X
C

A
X
X
X
X

1 2 3 4 5 6 7 8 9 10 11 12

(a)

C
A
A
B
A

A
A
B
A
X

C
A
B
C
A

B
A
X
X
X

A
B
A
X
X

A
B
C
A
A

B
C
A
A
B

X
C
A
B
C

X
X
C
A
B

X
X
X
C
A

X
X
X
X
C

A
X
X
X
X

7 1 8 5 2 3 6 9 10 11 12 4

(b)

Figure 39: A block of 12 5-grams sorted in su�ix order (a) and sorted in context order (b).

Our contributions. We list here the main contributions of this chapter.

(1) We present a faster estimation algorithm that requires only one step of sort-
ing in external memory, as opposed to the state-of-the-art approach [77]
that requires three steps of sorting. The result is achieved by the careful ex-
ploitation of the properties of the extracted N -gram strings. Thanks to such
properties, we show how it is possible to perform the whole estimation on
the context-sorted strings and, yet, be able to e�ciently lay out a reverse trie
data structure, indexing such strings in su�x order.
We provide an e�cient implementation of the described algorithm targeting
billions of N -grams in external memory and show that saving two steps of
sorting in external memory yields a solution that is 2.87× faster on average
than the fastest algorithm proposed in the literature.

(2) We introduce many optimizations to further enhance the running time of
our proposal, such as: asynchronous CPU and I/O threads, parallel LSD radix
sort, block-wise compression and multi-threading.

(3) With an extensive experimental analysis conducted over standard text datasets,
we study the behavior of our solution at each step of estimation; quantify the
impact of the introduced optimizations and consider the comparison against
the state-of-the-art. The devised optimizations further improve the running
time by 1.6× on average, making our optimized algorithm 4.5× faster than
the state-of-the-art.

9.1 Related Work

Basics and assumptions. Since the sorted orders de�ned over a set of n-grams
are central to the description of the algorithms we are going to consider, we now
de�ne them. Consider a set of n-grams. The set is put into sorted order by sorting
the n-grams on their words, as considered in a speci�c order.

152

9. language models estimation

⇥ • +u(w3|w2)
<latexit sha1_base64="vAKnyL/bk/IVRQhhk6oIeSQoN7E=">AAACVnicbVBNS8NAEN3E7/rV6tHLYhEUoSRV0GPRi0cF2wptCJvtVBc3m7A7UUvswV/jVf+N/hlx0/ZgWwcGHm8+3syLUikMet634y4sLi2vrK6V1jc2t7bLlZ2WSTLNockTmei7iBmQQkETBUq4SzWwOJLQjh4vi3r7CbQRibrFQQpBzO6V6AvO0FJhea+LIgZDu1EmJSA9ptnhc3jy+hzWj8Jy1at5o6DzwJ+AKpnEdVhxqt1ewrMYFHLJjOn4XopBzjQKLmFY6mYGUsYf2T10LFTMSgf56IshPbBMj/YTbVMhHbF/J3IWGzOII9sZM3wws7WC/K/WybB/HuRCpRmC4mOhfiYpJrSwhPaEBo5yYAHjWthbKX9gmnG0xpWmVt36QV5cV+yZ0pciAvulmnlSIJOCB3lxFDMILzgsWVv9WRPnQate872af3NabVxMDF4le2SfHBKfnJEGuSLXpEk4eSPv5IN8Ol/Oj7vkroxbXWcys0umwi3/ArgPtLE=</latexit><latexit sha1_base64="vAKnyL/bk/IVRQhhk6oIeSQoN7E=">AAACVnicbVBNS8NAEN3E7/rV6tHLYhEUoSRV0GPRi0cF2wptCJvtVBc3m7A7UUvswV/jVf+N/hlx0/ZgWwcGHm8+3syLUikMet634y4sLi2vrK6V1jc2t7bLlZ2WSTLNockTmei7iBmQQkETBUq4SzWwOJLQjh4vi3r7CbQRibrFQQpBzO6V6AvO0FJhea+LIgZDu1EmJSA9ptnhc3jy+hzWj8Jy1at5o6DzwJ+AKpnEdVhxqt1ewrMYFHLJjOn4XopBzjQKLmFY6mYGUsYf2T10LFTMSgf56IshPbBMj/YTbVMhHbF/J3IWGzOII9sZM3wws7WC/K/WybB/HuRCpRmC4mOhfiYpJrSwhPaEBo5yYAHjWthbKX9gmnG0xpWmVt36QV5cV+yZ0pciAvulmnlSIJOCB3lxFDMILzgsWVv9WRPnQate872af3NabVxMDF4le2SfHBKfnJEGuSLXpEk4eSPv5IN8Ol/Oj7vkroxbXWcys0umwi3/ArgPtLE=</latexit><latexit sha1_base64="vAKnyL/bk/IVRQhhk6oIeSQoN7E=">AAACVnicbVBNS8NAEN3E7/rV6tHLYhEUoSRV0GPRi0cF2wptCJvtVBc3m7A7UUvswV/jVf+N/hlx0/ZgWwcGHm8+3syLUikMet634y4sLi2vrK6V1jc2t7bLlZ2WSTLNockTmei7iBmQQkETBUq4SzWwOJLQjh4vi3r7CbQRibrFQQpBzO6V6AvO0FJhea+LIgZDu1EmJSA9ptnhc3jy+hzWj8Jy1at5o6DzwJ+AKpnEdVhxqt1ewrMYFHLJjOn4XopBzjQKLmFY6mYGUsYf2T10LFTMSgf56IshPbBMj/YTbVMhHbF/J3IWGzOII9sZM3wws7WC/K/WybB/HuRCpRmC4mOhfiYpJrSwhPaEBo5yYAHjWthbKX9gmnG0xpWmVt36QV5cV+yZ0pciAvulmnlSIJOCB3lxFDMILzgsWVv9WRPnQate872af3NabVxMDF4le2SfHBKfnJEGuSLXpEk4eSPv5IN8Ol/Oj7vkroxbXWcys0umwi3/ArgPtLE=</latexit><latexit sha1_base64="vAKnyL/bk/IVRQhhk6oIeSQoN7E=">AAACVnicbVBNS8NAEN3E7/rV6tHLYhEUoSRV0GPRi0cF2wptCJvtVBc3m7A7UUvswV/jVf+N/hlx0/ZgWwcGHm8+3syLUikMet634y4sLi2vrK6V1jc2t7bLlZ2WSTLNockTmei7iBmQQkETBUq4SzWwOJLQjh4vi3r7CbQRibrFQQpBzO6V6AvO0FJhea+LIgZDu1EmJSA9ptnhc3jy+hzWj8Jy1at5o6DzwJ+AKpnEdVhxqt1ewrMYFHLJjOn4XopBzjQKLmFY6mYGUsYf2T10LFTMSgf56IshPbBMj/YTbVMhHbF/J3IWGzOII9sZM3wws7WC/K/WybB/HuRCpRmC4mOhfiYpJrSwhPaEBo5yYAHjWthbKX9gmnG0xpWmVt36QV5cV+yZ0pciAvulmnlSIJOCB3lxFDMILzgsWVv9WRPnQate872af3NabVxMDF4le2SfHBKfnJEGuSLXpEk4eSPv5IN8Ol/Oj7vkroxbXWcys0umwi3/ArgPtLE=</latexit>

1
V

⇥ • + u(w3)
<latexit sha1_base64="iXFn00/rHMROXtN48oYFfFV2xR4=">AAACXnicbVDLSsNAFJ3GV61v3QhuBotQEUqigi5FNy4r2Ac0oUymNzo4mYSZG7WEfIBf41Y/xZ2f4qR2YVsvXDic+zj3njCVwqDrflWchcWl5ZXqam1tfWNza3tnt2OSTHNo80QmuhcyA1IoaKNACb1UA4tDCd3w6aasd59BG5GoexylEMTsQYlIcIaWGmzX/UgznntF3imojyIGQ/0wkxKQntCs8TI4O7ZdbtMdB50H3gTUySRag51K3R8mPItBIZfMmL7nphjkTKPgEoqanxlIGX9iD9C3UDErG+Tjbwp6ZJkhjRJtUyEds38nchYbM4pD2xkzfDSztZL8r9bPMLoMcqHSDEHxX6EokxQTWlpDh0IDRzmygHEt7K2UPzJrD1oDa1Or7r0gL68r90zpSxGC/VLNPCmQScGDvDyKGYRXLGrWVm/WxHnQOW16btO7O69fXU8MrpIDckgaxCMX5IrckhZpE07eyDv5IJ+Vb2fZ2XC2fludymRmj0yFs/8Dtqy3DQ==</latexit><latexit sha1_base64="iXFn00/rHMROXtN48oYFfFV2xR4=">AAACXnicbVDLSsNAFJ3GV61v3QhuBotQEUqigi5FNy4r2Ac0oUymNzo4mYSZG7WEfIBf41Y/xZ2f4qR2YVsvXDic+zj3njCVwqDrflWchcWl5ZXqam1tfWNza3tnt2OSTHNo80QmuhcyA1IoaKNACb1UA4tDCd3w6aasd59BG5GoexylEMTsQYlIcIaWGmzX/UgznntF3imojyIGQ/0wkxKQntCs8TI4O7ZdbtMdB50H3gTUySRag51K3R8mPItBIZfMmL7nphjkTKPgEoqanxlIGX9iD9C3UDErG+Tjbwp6ZJkhjRJtUyEds38nchYbM4pD2xkzfDSztZL8r9bPMLoMcqHSDEHxX6EokxQTWlpDh0IDRzmygHEt7K2UPzJrD1oDa1Or7r0gL68r90zpSxGC/VLNPCmQScGDvDyKGYRXLGrWVm/WxHnQOW16btO7O69fXU8MrpIDckgaxCMX5IrckhZpE07eyDv5IJ+Vb2fZ2XC2fludymRmj0yFs/8Dtqy3DQ==</latexit><latexit sha1_base64="iXFn00/rHMROXtN48oYFfFV2xR4=">AAACXnicbVDLSsNAFJ3GV61v3QhuBotQEUqigi5FNy4r2Ac0oUymNzo4mYSZG7WEfIBf41Y/xZ2f4qR2YVsvXDic+zj3njCVwqDrflWchcWl5ZXqam1tfWNza3tnt2OSTHNo80QmuhcyA1IoaKNACb1UA4tDCd3w6aasd59BG5GoexylEMTsQYlIcIaWGmzX/UgznntF3imojyIGQ/0wkxKQntCs8TI4O7ZdbtMdB50H3gTUySRag51K3R8mPItBIZfMmL7nphjkTKPgEoqanxlIGX9iD9C3UDErG+Tjbwp6ZJkhjRJtUyEds38nchYbM4pD2xkzfDSztZL8r9bPMLoMcqHSDEHxX6EokxQTWlpDh0IDRzmygHEt7K2UPzJrD1oDa1Or7r0gL68r90zpSxGC/VLNPCmQScGDvDyKGYRXLGrWVm/WxHnQOW16btO7O69fXU8MrpIDckgaxCMX5IrckhZpE07eyDv5IJ+Vb2fZ2XC2fludymRmj0yFs/8Dtqy3DQ==</latexit><latexit sha1_base64="iXFn00/rHMROXtN48oYFfFV2xR4=">AAACXnicbVDLSsNAFJ3GV61v3QhuBotQEUqigi5FNy4r2Ac0oUymNzo4mYSZG7WEfIBf41Y/xZ2f4qR2YVsvXDic+zj3njCVwqDrflWchcWl5ZXqam1tfWNza3tnt2OSTHNo80QmuhcyA1IoaKNACb1UA4tDCd3w6aasd59BG5GoexylEMTsQYlIcIaWGmzX/UgznntF3imojyIGQ/0wkxKQntCs8TI4O7ZdbtMdB50H3gTUySRag51K3R8mPItBIZfMmL7nphjkTKPgEoqanxlIGX9iD9C3UDErG+Tjbwp6ZJkhjRJtUyEds38nchYbM4pD2xkzfDSztZL8r9bPMLoMcqHSDEHxX6EokxQTWlpDh0IDRzmygHEt7K2UPzJrD1oDa1Or7r0gL68r90zpSxGC/VLNPCmQScGDvDyKGYRXLGrWVm/WxHnQOW16btO7O69fXU8MrpIDckgaxCMX5IrckhZpE07eyDv5IJ+Vb2fZ2XC2fludymRmj0yFs/8Dtqy3DQ==</latexit>

⇥ • +u(w3|w2w1)
<latexit sha1_base64="fVWRkRDNEai5GBpXciyYFAZf1q8=">AAACWnicbVBNS8NAEN3Gr1q/WvXmwcUiKEJJqqDHohePFWwrtCFstlNd3GzC7sRaYo/+Gq/6YwR/jJvag60ODDzefLyZFyZSGHTdz4KzsLi0vFJcLa2tb2xulSvbbROnmkOLxzLWdyEzIIWCFgqUcJdoYFEooRM+XuX1zhNoI2J1i6ME/IjdKzEQnKGlgvJ+D0UEhvbCVEpAekLTo2Fw+jIM6nQYeMdBuerW3EnQv8CbgiqZRjOoFKq9fszTCBRyyYzpem6CfsY0Ci5hXOqlBhLGH9k9dC1UzMr72eSTMT20TJ8OYm1TIZ2wvycyFhkzikLbGTF8MPO1nPyv1k1xcOFnQiUpguI/QoNUUoxpbgvtCw0c5cgCxrWwt1L+wDTjaM0rzay69fwsvy7fM6MvRQj2SzX3pEAmBfez/ChmEJ5xXLK2evMm/gXtes1za97NWbVxOTW4SPbIATkiHjknDXJNmqRFOHklb+SdfBS+HMdZddZ+Wp3CdGaHzISz+w1uXLUB</latexit><latexit sha1_base64="fVWRkRDNEai5GBpXciyYFAZf1q8=">AAACWnicbVBNS8NAEN3Gr1q/WvXmwcUiKEJJqqDHohePFWwrtCFstlNd3GzC7sRaYo/+Gq/6YwR/jJvag60ODDzefLyZFyZSGHTdz4KzsLi0vFJcLa2tb2xulSvbbROnmkOLxzLWdyEzIIWCFgqUcJdoYFEooRM+XuX1zhNoI2J1i6ME/IjdKzEQnKGlgvJ+D0UEhvbCVEpAekLTo2Fw+jIM6nQYeMdBuerW3EnQv8CbgiqZRjOoFKq9fszTCBRyyYzpem6CfsY0Ci5hXOqlBhLGH9k9dC1UzMr72eSTMT20TJ8OYm1TIZ2wvycyFhkzikLbGTF8MPO1nPyv1k1xcOFnQiUpguI/QoNUUoxpbgvtCw0c5cgCxrWwt1L+wDTjaM0rzay69fwsvy7fM6MvRQj2SzX3pEAmBfez/ChmEJ5xXLK2evMm/gXtes1za97NWbVxOTW4SPbIATkiHjknDXJNmqRFOHklb+SdfBS+HMdZddZ+Wp3CdGaHzISz+w1uXLUB</latexit><latexit sha1_base64="fVWRkRDNEai5GBpXciyYFAZf1q8=">AAACWnicbVBNS8NAEN3Gr1q/WvXmwcUiKEJJqqDHohePFWwrtCFstlNd3GzC7sRaYo/+Gq/6YwR/jJvag60ODDzefLyZFyZSGHTdz4KzsLi0vFJcLa2tb2xulSvbbROnmkOLxzLWdyEzIIWCFgqUcJdoYFEooRM+XuX1zhNoI2J1i6ME/IjdKzEQnKGlgvJ+D0UEhvbCVEpAekLTo2Fw+jIM6nQYeMdBuerW3EnQv8CbgiqZRjOoFKq9fszTCBRyyYzpem6CfsY0Ci5hXOqlBhLGH9k9dC1UzMr72eSTMT20TJ8OYm1TIZ2wvycyFhkzikLbGTF8MPO1nPyv1k1xcOFnQiUpguI/QoNUUoxpbgvtCw0c5cgCxrWwt1L+wDTjaM0rzay69fwsvy7fM6MvRQj2SzX3pEAmBfez/ChmEJ5xXLK2evMm/gXtes1za97NWbVxOTW4SPbIATkiHjknDXJNmqRFOHklb+SdfBS+HMdZddZ+Wp3CdGaHzISz+w1uXLUB</latexit><latexit sha1_base64="fVWRkRDNEai5GBpXciyYFAZf1q8=">AAACWnicbVBNS8NAEN3Gr1q/WvXmwcUiKEJJqqDHohePFWwrtCFstlNd3GzC7sRaYo/+Gq/6YwR/jJvag60ODDzefLyZFyZSGHTdz4KzsLi0vFJcLa2tb2xulSvbbROnmkOLxzLWdyEzIIWCFgqUcJdoYFEooRM+XuX1zhNoI2J1i6ME/IjdKzEQnKGlgvJ+D0UEhvbCVEpAekLTo2Fw+jIM6nQYeMdBuerW3EnQv8CbgiqZRjOoFKq9fszTCBRyyYzpem6CfsY0Ci5hXOqlBhLGH9k9dC1UzMr72eSTMT20TJ8OYm1TIZ2wvycyFhkzikLbGTF8MPO1nPyv1k1xcOFnQiUpguI/QoNUUoxpbgvtCw0c5cgCxrWwt1L+wDTjaM0rzay69fwsvy7fM6MvRQj2SzX3pEAmBfez/ChmEJ5xXLK2evMm/gXtes1za97NWbVxOTW4SPbIATkiHjknDXJNmqRFOHklb+SdfBS+HMdZddZ+Wp3CdGaHzISz+w1uXLUB</latexit>

b(w2w1)b(w2)b(")
<latexit sha1_base64="SgFTIQdbWX5dcrFpS5ppVoSQ2sw=">AAACR3icbVDLTsJAFJ3iG1+oSzeNxEQ3pDUmuiS6cYkJCAlUcjtcZMJ02szcEknDf7jVv/ET/Ap3xqVTZCHgTW5ycu7r3BMmUhjyvA+nsLK6tr6xuVXc3tnd2y8dHD6YONUcGzyWsW6FYFAKhQ0SJLGVaIQolNgMh7d5vTlCbUSs6jROMIjgSYm+4ECWegzPOiPQmBghY3XeLZW9ijcNdxn4M1Bms6h1D5xypxfzNEJFXIIxbd9LKMhAk+ASJ8VOajABPoQnbFuoIEITZFPZE/fUMj23H2ubitwp+3cig8iYcRTazghoYBZrOflfrZ1S/zrIhEpSQsV/D/VT6VLs5h64PaGRkxxbAFwLq9XlA9DAyTpVnFtV94MsV5fvmbsvRYj2S7XwpCCQggdZLgoM4TNNitZWf9HEZfBwUfG9in9/Wa7ezAzeZMfshJ0xn12xKrtjNdZgnGn2wl7Zm/PufDpfzvdva8GZzRyxuSg4P/4Zsg4=</latexit><latexit sha1_base64="SgFTIQdbWX5dcrFpS5ppVoSQ2sw=">AAACR3icbVDLTsJAFJ3iG1+oSzeNxEQ3pDUmuiS6cYkJCAlUcjtcZMJ02szcEknDf7jVv/ET/Ap3xqVTZCHgTW5ycu7r3BMmUhjyvA+nsLK6tr6xuVXc3tnd2y8dHD6YONUcGzyWsW6FYFAKhQ0SJLGVaIQolNgMh7d5vTlCbUSs6jROMIjgSYm+4ECWegzPOiPQmBghY3XeLZW9ijcNdxn4M1Bms6h1D5xypxfzNEJFXIIxbd9LKMhAk+ASJ8VOajABPoQnbFuoIEITZFPZE/fUMj23H2ubitwp+3cig8iYcRTazghoYBZrOflfrZ1S/zrIhEpSQsV/D/VT6VLs5h64PaGRkxxbAFwLq9XlA9DAyTpVnFtV94MsV5fvmbsvRYj2S7XwpCCQggdZLgoM4TNNitZWf9HEZfBwUfG9in9/Wa7ezAzeZMfshJ0xn12xKrtjNdZgnGn2wl7Zm/PufDpfzvdva8GZzRyxuSg4P/4Zsg4=</latexit><latexit sha1_base64="SgFTIQdbWX5dcrFpS5ppVoSQ2sw=">AAACR3icbVDLTsJAFJ3iG1+oSzeNxEQ3pDUmuiS6cYkJCAlUcjtcZMJ02szcEknDf7jVv/ET/Ap3xqVTZCHgTW5ycu7r3BMmUhjyvA+nsLK6tr6xuVXc3tnd2y8dHD6YONUcGzyWsW6FYFAKhQ0SJLGVaIQolNgMh7d5vTlCbUSs6jROMIjgSYm+4ECWegzPOiPQmBghY3XeLZW9ijcNdxn4M1Bms6h1D5xypxfzNEJFXIIxbd9LKMhAk+ASJ8VOajABPoQnbFuoIEITZFPZE/fUMj23H2ubitwp+3cig8iYcRTazghoYBZrOflfrZ1S/zrIhEpSQsV/D/VT6VLs5h64PaGRkxxbAFwLq9XlA9DAyTpVnFtV94MsV5fvmbsvRYj2S7XwpCCQggdZLgoM4TNNitZWf9HEZfBwUfG9in9/Wa7ezAzeZMfshJ0xn12xKrtjNdZgnGn2wl7Zm/PufDpfzvdva8GZzRyxuSg4P/4Zsg4=</latexit><latexit sha1_base64="SgFTIQdbWX5dcrFpS5ppVoSQ2sw=">AAACR3icbVDLTsJAFJ3iG1+oSzeNxEQ3pDUmuiS6cYkJCAlUcjtcZMJ02szcEknDf7jVv/ET/Ap3xqVTZCHgTW5ycu7r3BMmUhjyvA+nsLK6tr6xuVXc3tnd2y8dHD6YONUcGzyWsW6FYFAKhQ0SJLGVaIQolNgMh7d5vTlCbUSs6jROMIjgSYm+4ECWegzPOiPQmBghY3XeLZW9ijcNdxn4M1Bms6h1D5xypxfzNEJFXIIxbd9LKMhAk+ASJ8VOajABPoQnbFuoIEITZFPZE/fUMj23H2ubitwp+3cig8iYcRTazghoYBZrOflfrZ1S/zrIhEpSQsV/D/VT6VLs5h64PaGRkxxbAFwLq9XlA9DAyTpVnFtV94MsV5fvmbsvRYj2S7XwpCCQggdZLgoM4TNNitZWf9HEZfBwUfG9in9/Wa7ezAzeZMfshJ0xn12xKrtjNdZgnGn2wl7Zm/PufDpfzvdva8GZzRyxuSg4P/4Zsg4=</latexit>

P(w3)
<latexit sha1_base64="s3jDj+F+I9AtGUTTAmCZSsG2U6I=">AAACS3icbVDLSsNAFJ1Uq7W+qi7dDAZBNyVRQZeiG5cVrAptCJPpbTt0MgkzN9US+idu9W/8AL/Dnbhw0nZhqxcuHM59nXuiVAqDnvfhlJaWyyurlbXq+sbm1nZtZ/feJJnm0OSJTPRjxAxIoaCJAiU8phpYHEl4iAbXRf1hCNqIRN3hKIUgZj0luoIztFRYq7Vjhv0oyhvjo6fw9JiGNdere5Ogf4E/Ay6ZRSPccdx2J+FZDAq5ZMa0fC/FIGcaBZcwrrYzAynjA9aDloWKxWCCfCJ9TA8t06HdRNtUSCfs74mcxcaM4sh2FkLNYq0g/6u1MuxeBLlQaYag+PRQN5MUE1r4QDtCA0c5soBxLaxWyvtMM47Wrercqjs/yAt1xZ65+1JEYL9UC08KZFLwIC9EMYPwjOOqtdVfNPEvuD+p+17dvz1zL69mBlfIPjkgR8Qn5+SS3JAGaRJOhuSFvJI35935dL6c72lryZnN7JG5KJV/AEGZso0=</latexit><latexit sha1_base64="s3jDj+F+I9AtGUTTAmCZSsG2U6I=">AAACS3icbVDLSsNAFJ1Uq7W+qi7dDAZBNyVRQZeiG5cVrAptCJPpbTt0MgkzN9US+idu9W/8AL/Dnbhw0nZhqxcuHM59nXuiVAqDnvfhlJaWyyurlbXq+sbm1nZtZ/feJJnm0OSJTPRjxAxIoaCJAiU8phpYHEl4iAbXRf1hCNqIRN3hKIUgZj0luoIztFRYq7Vjhv0oyhvjo6fw9JiGNdere5Ogf4E/Ay6ZRSPccdx2J+FZDAq5ZMa0fC/FIGcaBZcwrrYzAynjA9aDloWKxWCCfCJ9TA8t06HdRNtUSCfs74mcxcaM4sh2FkLNYq0g/6u1MuxeBLlQaYag+PRQN5MUE1r4QDtCA0c5soBxLaxWyvtMM47Wrercqjs/yAt1xZ65+1JEYL9UC08KZFLwIC9EMYPwjOOqtdVfNPEvuD+p+17dvz1zL69mBlfIPjkgR8Qn5+SS3JAGaRJOhuSFvJI35935dL6c72lryZnN7JG5KJV/AEGZso0=</latexit><latexit sha1_base64="s3jDj+F+I9AtGUTTAmCZSsG2U6I=">AAACS3icbVDLSsNAFJ1Uq7W+qi7dDAZBNyVRQZeiG5cVrAptCJPpbTt0MgkzN9US+idu9W/8AL/Dnbhw0nZhqxcuHM59nXuiVAqDnvfhlJaWyyurlbXq+sbm1nZtZ/feJJnm0OSJTPRjxAxIoaCJAiU8phpYHEl4iAbXRf1hCNqIRN3hKIUgZj0luoIztFRYq7Vjhv0oyhvjo6fw9JiGNdere5Ogf4E/Ay6ZRSPccdx2J+FZDAq5ZMa0fC/FIGcaBZcwrrYzAynjA9aDloWKxWCCfCJ9TA8t06HdRNtUSCfs74mcxcaM4sh2FkLNYq0g/6u1MuxeBLlQaYag+PRQN5MUE1r4QDtCA0c5soBxLaxWyvtMM47Wrercqjs/yAt1xZ65+1JEYL9UC08KZFLwIC9EMYPwjOOqtdVfNPEvuD+p+17dvz1zL69mBlfIPjkgR8Qn5+SS3JAGaRJOhuSFvJI35935dL6c72lryZnN7JG5KJV/AEGZso0=</latexit><latexit sha1_base64="s3jDj+F+I9AtGUTTAmCZSsG2U6I=">AAACS3icbVDLSsNAFJ1Uq7W+qi7dDAZBNyVRQZeiG5cVrAptCJPpbTt0MgkzN9US+idu9W/8AL/Dnbhw0nZhqxcuHM59nXuiVAqDnvfhlJaWyyurlbXq+sbm1nZtZ/feJJnm0OSJTPRjxAxIoaCJAiU8phpYHEl4iAbXRf1hCNqIRN3hKIUgZj0luoIztFRYq7Vjhv0oyhvjo6fw9JiGNdere5Ogf4E/Ay6ZRSPccdx2J+FZDAq5ZMa0fC/FIGcaBZcwrrYzAynjA9aDloWKxWCCfCJ9TA8t06HdRNtUSCfs74mcxcaM4sh2FkLNYq0g/6u1MuxeBLlQaYag+PRQN5MUE1r4QDtCA0c5soBxLaxWyvtMM47Wrercqjs/yAt1xZ65+1JEYL9UC08KZFLwIC9EMYPwjOOqtdVfNPEvuD+p+17dvz1zL69mBlfIPjkgR8Qn5+SS3JAGaRJOhuSFvJI35935dL6c72lryZnN7JG5KJV/AEGZso0=</latexit>

P(w3 |w2)
<latexit sha1_base64="ur16TNuwKhvtKFCRD+gtvVBryCE=">AAACfXicbVFdS8MwFM3q9/ya+uhLcQgKMloV9EUQffFxilNhKyXNbjWYpjW5dc643+Kr/iR/jaZ1iJteCBzOPTc59yTKBNfoeR8VZ2Jyanpmdq46v7C4tFxbWb3Saa4YtFgqUnUTUQ2CS2ghRwE3mQKaRAKuo/vTon/9CErzVF5iP4MgobeSx5xRtFRYW+skFO+iyDQHW71w76UX7m6HtbrX8Mpy/wJ/COpkWM1wpXLR6aYsT0AiE1Trtu9lGBiqkDMBg2on15BRdk9voW2hpAnowJTuB+6mZbpunCp7JLol+3vC0ETrfhJZZeFVj/cK8r9eO8f4MDBcZjmCZN8PxblwMXWLKNwuV8BQ9C2gTHHr1WV3VFGGNrCRmxCPYio07JSD/hGqHAIjeAR2Qzm24CNVD3lgnvn+KP8jD4yEHj6VvkcUl35gigwKt1X7C/545n/B1W7D9xr++X79+GT4H7NknWyQLeKTA3JMzkiTtAgjffJK3sh75dPZdHacxrfUqQxn1shIOQdf9QrEoA==</latexit><latexit sha1_base64="ur16TNuwKhvtKFCRD+gtvVBryCE=">AAACfXicbVFdS8MwFM3q9/ya+uhLcQgKMloV9EUQffFxilNhKyXNbjWYpjW5dc643+Kr/iR/jaZ1iJteCBzOPTc59yTKBNfoeR8VZ2Jyanpmdq46v7C4tFxbWb3Saa4YtFgqUnUTUQ2CS2ghRwE3mQKaRAKuo/vTon/9CErzVF5iP4MgobeSx5xRtFRYW+skFO+iyDQHW71w76UX7m6HtbrX8Mpy/wJ/COpkWM1wpXLR6aYsT0AiE1Trtu9lGBiqkDMBg2on15BRdk9voW2hpAnowJTuB+6mZbpunCp7JLol+3vC0ETrfhJZZeFVj/cK8r9eO8f4MDBcZjmCZN8PxblwMXWLKNwuV8BQ9C2gTHHr1WV3VFGGNrCRmxCPYio07JSD/hGqHAIjeAR2Qzm24CNVD3lgnvn+KP8jD4yEHj6VvkcUl35gigwKt1X7C/545n/B1W7D9xr++X79+GT4H7NknWyQLeKTA3JMzkiTtAgjffJK3sh75dPZdHacxrfUqQxn1shIOQdf9QrEoA==</latexit><latexit sha1_base64="ur16TNuwKhvtKFCRD+gtvVBryCE=">AAACfXicbVFdS8MwFM3q9/ya+uhLcQgKMloV9EUQffFxilNhKyXNbjWYpjW5dc643+Kr/iR/jaZ1iJteCBzOPTc59yTKBNfoeR8VZ2Jyanpmdq46v7C4tFxbWb3Saa4YtFgqUnUTUQ2CS2ghRwE3mQKaRAKuo/vTon/9CErzVF5iP4MgobeSx5xRtFRYW+skFO+iyDQHW71w76UX7m6HtbrX8Mpy/wJ/COpkWM1wpXLR6aYsT0AiE1Trtu9lGBiqkDMBg2on15BRdk9voW2hpAnowJTuB+6mZbpunCp7JLol+3vC0ETrfhJZZeFVj/cK8r9eO8f4MDBcZjmCZN8PxblwMXWLKNwuV8BQ9C2gTHHr1WV3VFGGNrCRmxCPYio07JSD/hGqHAIjeAR2Qzm24CNVD3lgnvn+KP8jD4yEHj6VvkcUl35gigwKt1X7C/545n/B1W7D9xr++X79+GT4H7NknWyQLeKTA3JMzkiTtAgjffJK3sh75dPZdHacxrfUqQxn1shIOQdf9QrEoA==</latexit><latexit sha1_base64="ur16TNuwKhvtKFCRD+gtvVBryCE=">AAACfXicbVFdS8MwFM3q9/ya+uhLcQgKMloV9EUQffFxilNhKyXNbjWYpjW5dc643+Kr/iR/jaZ1iJteCBzOPTc59yTKBNfoeR8VZ2Jyanpmdq46v7C4tFxbWb3Saa4YtFgqUnUTUQ2CS2ghRwE3mQKaRAKuo/vTon/9CErzVF5iP4MgobeSx5xRtFRYW+skFO+iyDQHW71w76UX7m6HtbrX8Mpy/wJ/COpkWM1wpXLR6aYsT0AiE1Trtu9lGBiqkDMBg2on15BRdk9voW2hpAnowJTuB+6mZbpunCp7JLol+3vC0ETrfhJZZeFVj/cK8r9eO8f4MDBcZjmCZN8PxblwMXWLKNwuV8BQ9C2gTHHr1WV3VFGGNrCRmxCPYio07JSD/hGqHAIjeAR2Qzm24CNVD3lgnvn+KP8jD4yEHj6VvkcUl35gigwKt1X7C/545n/B1W7D9xr++X79+GT4H7NknWyQLeKTA3JMzkiTtAgjffJK3sh75dPZdHacxrfUqQxn1shIOQdf9QrEoA==</latexit>

P(w3 |w2w1)
<latexit sha1_base64="OEJYpiI4dqeduYkejq+dsD6tMqQ=">AAACgXicbVHRShtBFJ1satWobWwf+tCXoUFQkLCTCgoSkPalj2kxKiTLMju5q4Ozs+vMXWM6zdf0tf2g/o2zayhN7IWBw7nnzpx7JimUtBiGfxpB88Xay/WNzdbW9s6r1+3dNxc2L42AochVbq4SbkFJDUOUqOCqMMCzRMFlcvu56l/eg7Ey1+c4KyDK+LWWqRQcPRW3340zjjdJ4gbz/Wn88cc07tFpzA7idifshnXR54AtQIcsahDvNr6NJ7koM9AoFLd2xMICI8cNSqFg3hqXFgoubvk1jDzUPAMbuXqDOd3zzISmufFHI63Zfyccz6ydZYlXVn7taq8i/9cblZieRE7qokTQ4umhtFQUc1rFQSfSgEA184ALI71XKm644QJ9aEs3IfZTriwc1oOsj6aEyCmZgN9Qryx4z81dGbnv8miZ/yuPnIYpPtS+lxTnLHJVBpXblv8Ftpr5c3DR67Kwy74edc4+Lf5jg7wnH8g+YeSYnJEvZECGRJA5+Ul+kd9BMzgIwqD3JA0ai5m3ZKmC00fWvsTw</latexit><latexit sha1_base64="OEJYpiI4dqeduYkejq+dsD6tMqQ=">AAACgXicbVHRShtBFJ1satWobWwf+tCXoUFQkLCTCgoSkPalj2kxKiTLMju5q4Ozs+vMXWM6zdf0tf2g/o2zayhN7IWBw7nnzpx7JimUtBiGfxpB88Xay/WNzdbW9s6r1+3dNxc2L42AochVbq4SbkFJDUOUqOCqMMCzRMFlcvu56l/eg7Ey1+c4KyDK+LWWqRQcPRW3340zjjdJ4gbz/Wn88cc07tFpzA7idifshnXR54AtQIcsahDvNr6NJ7koM9AoFLd2xMICI8cNSqFg3hqXFgoubvk1jDzUPAMbuXqDOd3zzISmufFHI63Zfyccz6ydZYlXVn7taq8i/9cblZieRE7qokTQ4umhtFQUc1rFQSfSgEA184ALI71XKm644QJ9aEs3IfZTriwc1oOsj6aEyCmZgN9Qryx4z81dGbnv8miZ/yuPnIYpPtS+lxTnLHJVBpXblv8Ftpr5c3DR67Kwy74edc4+Lf5jg7wnH8g+YeSYnJEvZECGRJA5+Ul+kd9BMzgIwqD3JA0ai5m3ZKmC00fWvsTw</latexit><latexit sha1_base64="OEJYpiI4dqeduYkejq+dsD6tMqQ=">AAACgXicbVHRShtBFJ1satWobWwf+tCXoUFQkLCTCgoSkPalj2kxKiTLMju5q4Ozs+vMXWM6zdf0tf2g/o2zayhN7IWBw7nnzpx7JimUtBiGfxpB88Xay/WNzdbW9s6r1+3dNxc2L42AochVbq4SbkFJDUOUqOCqMMCzRMFlcvu56l/eg7Ey1+c4KyDK+LWWqRQcPRW3340zjjdJ4gbz/Wn88cc07tFpzA7idifshnXR54AtQIcsahDvNr6NJ7koM9AoFLd2xMICI8cNSqFg3hqXFgoubvk1jDzUPAMbuXqDOd3zzISmufFHI63Zfyccz6ydZYlXVn7taq8i/9cblZieRE7qokTQ4umhtFQUc1rFQSfSgEA184ALI71XKm644QJ9aEs3IfZTriwc1oOsj6aEyCmZgN9Qryx4z81dGbnv8miZ/yuPnIYpPtS+lxTnLHJVBpXblv8Ftpr5c3DR67Kwy74edc4+Lf5jg7wnH8g+YeSYnJEvZECGRJA5+Ul+kd9BMzgIwqD3JA0ai5m3ZKmC00fWvsTw</latexit><latexit sha1_base64="OEJYpiI4dqeduYkejq+dsD6tMqQ=">AAACgXicbVHRShtBFJ1satWobWwf+tCXoUFQkLCTCgoSkPalj2kxKiTLMju5q4Ozs+vMXWM6zdf0tf2g/o2zayhN7IWBw7nnzpx7JimUtBiGfxpB88Xay/WNzdbW9s6r1+3dNxc2L42AochVbq4SbkFJDUOUqOCqMMCzRMFlcvu56l/eg7Ey1+c4KyDK+LWWqRQcPRW3340zjjdJ4gbz/Wn88cc07tFpzA7idifshnXR54AtQIcsahDvNr6NJ7koM9AoFLd2xMICI8cNSqFg3hqXFgoubvk1jDzUPAMbuXqDOd3zzISmufFHI63Zfyccz6ydZYlXVn7taq8i/9cblZieRE7qokTQ4umhtFQUc1rFQSfSgEA184ALI71XKm644QJ9aEs3IfZTriwc1oOsj6aEyCmZgN9Qryx4z81dGbnv8miZ/yuPnIYpPtS+lxTnLHJVBpXblv8Ftpr5c3DR67Kwy74edc4+Lf5jg7wnH8g+YeSYnJEvZECGRJA5+Ul+kd9BMzgIwqD3JA0ai5m3ZKmC00fWvsTw</latexit>

1 2 3

Figure 40: The Kneser-Ney interpolated probabilities for a 3-gram, calculated in a bo�om-
up fashion, from le� (1-gram) to right (3-gram).

If this speci�c order is N ,N − 1, . . . , 1, i.e., we sort n-grams from the last word
up to the �rst, then the block is su�x-sorted: last word is primary (Figure 39a).
If the considered order is N − 1,N − 2, . . . , 1,N , then the block is context-sorted:
penultimate word is primary (Figure 39b).

During the estimation process, we deal with the following assumptions:

(1) the uncompressedn-gram strings with associated satellite values, 1 ≤ n ≤ N

do not �t in internal memory and we necessarily need to rely on disk usage;

(2) the estimate is performed without pruning [77], thus the minimum occur-
rence count for an n-gram is 1;

(3) the compressed index built over the n-gram strings (e.g., the trie presented
in Section 8.2) must reside in internal memory to allow fast query processing
(perplexity and machine translation) [76, 122].

Modified Kneser-Ney smoothing. We detail here the modi�ed version of Kneser-
Ney smoothing [94] that was introduced by Chen and Goodman [35] and shown to
have superior performance with respect to regular Kneser-Ney in terms of perplex-
ity score. Under this model, the conditional probability P(wn |wn−1

1) is computed
recursively according to the following equation

P(wn |wn−1
1) = u(wn |wn−1

1) +b(wn−1
1) ×P(wn |wn−1

2) (10)

where all lower-order probabilities are interpolated together and u(wn |wn−1
1) and

b(wn−1
1) are, respectively, the normalized probability and context backo� for n-

gram wn
1

u(wn |wn−1
1) =

a(wn
1) −Dn(a(wn

1))∑
x a(wn−1

1 x) (11)

b(wn−1
1) =

∑2
k=1 Dn(k) × Nk(wn−1

1 •) +Dn(3) × N3+(wn−1
1 •)∑

x a(wn−1
1 x) (12)

Also, refer to Figure 40 for an example of a 3-gram interpolated probability.

153

9. language models estimation

We now explain the quantities used in the above formulas. The quantity a(wn
1)

is called the modi�ed count for then-gramwn
1 and it is equal to: the raw occurrence

count c(wn
1) ofwn

1 in the text ifn = N ; |{x : xwn
1 }|, that is, informally, the number of

distinct words to the left of wn
1 (also called the left extensions of wn

1). The quantity
Nk(wn−1

1 •) = |{x : a(wn−1
1 x) = k}| represents the number of n-grams having

context wn−1
1 and modi�ed count equal to k ; N3+(wn−1

1 •) is equal, instead, to |{x :
a(wn−1

1 x) ≥ 3}|, i.e., the number of n-grams having modi�ed count greater than or
equal to 3.

Recursion terminates when uni-grams are interpolated with the probability of
the unknown word which is uniformly distributed by assumption: P(wn) = u(wn)+
b(ε) × 1

V , where V denotes the size of the vocabulary. Notice that b(ε)/V is a
constant quantity that depends on the textual collection used for estimating the
language model. Finally, following [35, 36], closed-form discounts Dn(k) are com-
puted according to

Dn(k) =

0, k = 0

k − (k + 1) × tn,1tn,k+1
(tn,1+2tn,2)tn,k

, k = 1, 2, 3

Dn(3), otherwise

(13)

with the smoothing statistic tn,k representing the total number of n-grams in the
corpus with modi�ed count k , i.e., tn,k = |{wn

1 : a(wn
1) = k}| for k = 1, 2, 3 and 4.

State-of-the-art. The use of the Map+Reduce paradigm for the problem has been
advocated in [23]. As reported in the paper, estimation involved hundreds of ma-
chines for a few days. Our work does not consider distributed computations, rather
it shows how to let the estimation process scale well on the cores of a single target
machine. Nguyen et al. [119] (MSRLM) also considered estimation on a single
machine, using a parallel merge sort implementation. However, part of the estima-
tion process is delayed until query-time: while this allows to save some resources
during estimation, it also imposes a signi�cant burden during the most e�ciency-
demanding use of language models which is query processing [36, 76]. We, instead,
prefer to follow the approach of [77] that performs all steps of estimation as to per-
mit the building of an e�cient, static, compressed index over the computed model.

The works done by Stolcke [152] (SRILM), Federico et al. [60] (IRSTLM), Pauls
and Klein [122] (BerkeleyLM) and Watanabe et al. [164] (Expgram) build Kneser-
Ney language models in internal memory without resorting on sophisticated soft-
ware optimizations and data compression techniques: as a result, are not able to
scale to the dimensions we consider in this work.

154

9. language models estimation

Hea�eld et al. [77] (KenLM) contributed an estimation algorithm involving
three steps of sorting in external memory. Their solution, referred to as the 3-Sort
algorithm in the following, signi�cantly outperforms the approaches that we have
mentioned above, making it the state-of-art solution to the problem.

Shareghi et al. [146] resort on compressed su�x trees to compute on-the-�y
the Kneser-Ney probabilities. The experimental analysis reported in the paper
compares against SRILM and shows that such approach is comparable in build-
ing time with SRILM indexes but several orders of magnitude (e.g., 1000×) slower
to query. In [147] the same authors improved over their previous work [146] by
pre-computing some modi�ed counts to speed up the on-the-�y calculation of the
Kneser-Ney probabilities. Although pre-computing allows for signi�cant improve-
ment at query time (by up to 2500× faster than the previous solution) at the price
of a larger index construction time (70% more time), the resulting language model
is still 5× slower than KenLM.

For the reasons discussed in this paragraph, we aim at improving upon the I/O ef-
�ciency of the 3-Sort approach of KenLM that we describe in details in Section 9.2.

9.2 The 3-Sort algorithm

In this section we review the algorithm devised by Hea�eld et al. [77] since our
work aims at improving its I/O e�ciency. As already states, the algorithm is the
fastest implementation of modi�ed Kneser-Ney smoothing up to date, as it takes
25.4% and 7.7% of, respectively, CPU time and RAM of SRILM; 16.4% and 16.6% of
CPU and RAM of IRSTLM [77].

As an overview, the algorithm consists in four streaming passes over the data
that we are going to detail next: (1) counting, (2) adjusting counts, (3) normal-
ization and (4) interpolation. Since all n-grams, 1 < n ≤ N , are sorted between
these steps in the next-step desired order, thus three times in total, we refer to this
approach as the 3-Sort algorithm.

9.2.1 Counting

The �rst step computes the unpruned occurrence counts c(wN
1) for all the distinct

N -grams in the text (with order exactly N) by streaming through the textual cor-
pus. Lower-order n-grams are not counted since raw occurrence counts for N -
grams are su�cient to derive smoothing statistics. In particular, N -gram tokens
are replaced with 4-byte vocabulary identi�ers and uni-gram strings are written to
disk as plain text. Their 8-byte Murmur hash is retained in internal memory. The
occurrence counts, represented as 8-byte numbers, are accumulated in an open-

155

9. language models estimation

addressing hash table with linear probing: the counts are �nally written to disk in
a su�x-sorted block as records of the form 〈wN

1 , c(wN
1)〉 whenever the table reaches

a speci�ed amount of internal memory.

9.2.2 Adjusting

All blocks sorted in su�x order are merged together in a single block BN . This
step aims at computing the modi�ed counts a(wn

1) for the n-grams wn
1 that, as we

have seen in Section 9.1, is equal to |{x : xwn
1 }|, which is the number of distinct

words to the left of wn
1 .

By streaming through BN sorted in su�x order it is su�cient to compare con-
secutive entries to decide whether to write the record 〈wn

1 ,a(wn
1)〉 to a new block

Bn or increment the currently computed a(wn
1). During the same pass, smooth-

ing statistics tn,k are collected and discount coe�cients Dn(k) are calculated as in
Formula 13.

9.2.3 Normalization

This step computes normalized probabilities and backo�s according to, respec-
tively, Formula 11 and 12. For such purpose, the blocks Bn, 1 < n ≤ N , produced
during the previous Adjusting step, are sorted in context order such that, for each
contextwn−1

1 , the entrieswn−1
1 x are consecutive. Also in this case, a streaming pass

through each Bn su�ces to emit records of the form 〈wn
1 ,u(wn |wn−1

1),b(wn−1
1)〉. The

information stored in the records, enclosed in the rectangles in Figure 40, is one
needed to perform interpolation. The computed backo�s are saved twice on disk,
also as bare values without keys, one �le per order 1 ≤ n < N to facilitate the next
step of interpolation and joining.

9.2.4 Interpolation and joining

The last streaming step performs interpolation of all orders to compute the �nal
Kneser-Ney probability as in Equation 10. The blocks Bn are sorted again in su�x
order so that P(wn) is computed before it is needed to compute P(wn |wn−1), which
in turn is computed before P(wn |wn−2wn−1), and so on. Figure 40 o�ers a pictorial
representation of this bottom-up process for a 3-gram. Note that the backo�s for
the contexts that are needed for interpolation were saved in-line with the string
wn

1 during the previous step. Also note that since normalization streamed through
the blocks sorted in context order, the backo�s were saved to disk in su�x order.

156

9. language models estimation

Therefore, during this step the two quantities P(wn |wn−1
1) and b(wn

1) are joined
together, for 1 ≤ n < N (N -grams do not have backo�).

9.3 Improved construction: the 1-Sort algorithm

In this section we introduce our main result that is an estimation algorithm for
unpruned, modi�ed, Kneser-Ney language models which substantially improve
upon the I/O e�ciency of 3-Sort by requiring only one sorting in external memory.

1 2

3

U S C

Figure 41: Sorting passes performed be-
tween N -grams: unsorted (U), su�ix-sorted
(S) and context-sorted (C). Solid arrows de-
scribe the path followed by the 3-Sort algo-
rithm; the dashed arrow the one followed by
the 1-Sort algorithm.

In fact, from the description in Sec-
tion 9.2 we observe that the running
time of 3-Sort is dominated by the cost
of sorting in external memory, which
is paid three times in total: (1) from ex-
traction order (unsorted) to su�x or-
der, (2) from su�x order to context or-
der and then (3) from context order to,
again, su�x order. This round-trip is
the performance bottleneck of 3-Sort
and it is graphically represented in Fig-
ure 41. The natural question is whether
it is possible to avoid the round-trip

and perform the whole estimation by exploiting a single ordering over the N -gram
strings. This section answers positively to such question.

As a general overview, the 1-Sort algorithm we are going to describe performs
three steps:

(1) Counting N -grams (Section 9.3.1).

(2) Adjusting counts (Section 9.3.2).

(3) In a single, last, pass: normalization and interpolation (Section 9.3.3), joining
and index construction (Section 9.3.4).

In what follows we detail the steps performed by the algorithm in comparison
with 3-Sort and, thus, show how to save two steps of sorting.

157

9. language models estimation

9.3.1 Counting

This �rst step is performed similarly to the counting step of 3-Sort. We maintain a
�xed-size memory block to accommodate as many N -grams as possible, i.e., with-
out taking more space than the amount of RAM speci�ed by the user. Speci�cally,
the block stores records of the form 〈wN

1 , c(wN
1)〉, each taking 4N bytes for its vo-

cabulary identi�ers, plus an 8-byte frequency count. In order to tell whether an
N -gram was already seen or not during the scanning of the input, we associate a
4-byte identi�er to each distinct N -gram by resorting to an open-addressing hash
set.

If a cell of the set is not empty and contains the identi�er k ≥ 0, our probe
consists in comparing the extracted N -gram string with the 4N bytes stored in the
block starting from position k × (4N + 8). If the comparison yields equality, then
we increment the corresponding counter, otherwise we advance to the next probe
position. If any probed cell is found to be empty, then we write there the next
available identi�er (equal to the number of distinct seen N -grams) and append a
new record to the in-memory block. As soon as we completely �ll the block, we
use a parallel thread to sort and write it to disk, thus hash deduplication of the text
and I/O happen simultaneously.

The key di�erence of this step with respect to the one of 3-Sort, lies in the fact
that we sort the blocks in context order instead of su�x order. The reason for this
choice will become clear as we proceed in the description of the subsequent steps.

9.3.2 Adjusting

All blocks written to disk by the Counting step are merged together during this
step to obtain a single block BN , listing all distinct N -grams sorted in context order.
During the process of merging the blocks, we collect the smoothing statistics tn,k
in order to use the closed-form estimate of discount coe�cients Dn(k), for k =
1, . . . , 4 (Formula 13). Because smoothing statistics and, thus, discount coe�cients,
depend on the modi�ed counts of the n-grams, the key ingredient we develop in
this subsection is a linear-time algorithm that computes the modi�ed counts of all
n-grams for 1 ≤ n < N by scanning the context-sorted block BN .

In particular, the merged records are accumulated in a blockblock[1,m], in mem-
ory, of m records. When the block �lls up, we run the algorithm over the block
B. We repeat the process until the whole input BN is processed completely. At the
end of the process, we use Formula 13 to compute the discount coe�cients Dn(k).

Before illustrating the algorithm for computing the modi�ed counts over the
context-sorted block BN , we �rst discuss its immediate advantage and then in-

158

9. language models estimation

C
A
A
B
A

A
A
B
A
X

C
A
B
C
A

B
A
X
X
X

A
B
A
X
X

A
B
C
A
A

B
C
A
A
B

X
C
A
B
C

X
X
C
A
B

X
X
X
C
A

X
X
X
X
C

A
X
X
X
X

1 2 3 4 5 6 7 8 9 10 11 12

5

4

3

2

1

Figure 42: The le� extensions (words in blue) of AC must be found in the region high-
lighted by the light green rectangle, that is the run of entries whose context of length 1 is
equal to A.

troduce the property of N -grams that the algorithm exploits. Recall that 3-Sort
computes the modi�ed counts of the n-grams by scanning BN as sorted in su�x
order (Section 9.2). Because the next step of estimation is normalization and it
requires context order, computing discount coe�cients directly over the strings
sorted in context order has the bene�t of avoiding to sort from su�x to context. We
are, therefore, eliminating the sorting step 2 of Figure 41.

Exploiting the completeness of N -gram strings. First of all, observe that since
estimation is done without pruning by assumption and N -grams are extracted us-
ing a window of size N that slides by one word at a time, the strings in BN cover the
input text completely. This means that all the substrings of length 1 ≤ n < N of
each N -gram occur as substrings of some other N -gram in BN . Refer to Figure 42
and consider the �rst 5-gram ABAAC in the context-sorted block at the bottom of
the picture. For example, we know that its sub-string BAA must appear at positions
1, 2 and 3 of some other N -grams (the ones in position 7, 1 and 2, respectively). In
particular we know that its pre�x of length 4, i.e., ABAA will be matched at posi-
tion 2 in some other N -gram (in this case, the second N -gram XABAA). We will
return to this point later on, in Section 9.3.4.

This observation means that all lower-order n-grams strings are implicitly con-
tained in the single source block BN . Two important facts are direct consequences
of this property.

(1) A sorted scan of the n-grams can be performed by just scanning BN , without
the need of replicating on disk all other n-gram strings, for 1 ≤ n < N , as
done by 3-Sort during the Adjusting step.

(2) Let Cn−1 be the context of length n − 1 of an n-gram wn
1 . The number of

distinct left extensions, i.e., the distinct words appearing to the left of wn
1 ,

159

9. language models estimation

1 compute_left_extensions(block,m)
2 pN1 = block[1] . previous record
3 for i = 1; i ≤ m; i = i + 1
4 wN

1 = block[i]
5 right = wN

6 for n = 1; n < N ; n = n + 1
7 if n != 1 andwN−1

N−n != p
N−1
N−n

8 ++ranдes[n]
9 for k = 1; k ≤ 4; k = k + 1
10 T [n][k] += R[n][k]
11 R[n][k] = 0

12 left = wN−n−1
13 update(n, left, right)
14 pN1 = w

N
1

15 k = c(wN
1)

16 if k ≤ 4
17 ++T [N][k]

Figure 43: The algorithm for computing the le� extensions in context order.

can be computed by scanning the N -grams whose context of length n − 1 is
equal to Cn−1

1.

By exploiting these two properties, we now explain the linear-time algorithm
for computing the distinct left extensions in context order.

Computing distinct le� extensions in context order. We now introduce the
linear-time algorithm for computing the distinct left extensions in context order.
For ease of explanation, let us consider anN -gramwN

1 as composed by three pieces,
in order: P , Cn−1 and wN , where Cn−1 is the context of length n − 1 and P is the
remaining pre�x. Our aim is to compute the number of distinct words wN−n−1 to
the left of the n-gramCn−1wN , because this quantity will be its adjusted count, i.e.,
a(Cn−1wN). Since BN is sorted in context order, the entries PCn−1 are consecutive

1Observe that we could compute the left extensions for an n-gram by directly scanning the N -
grams having wn

1 as a context of length n. Again, consider the example in Figure 42. We could
scan the N -grams in position 7 and 8 to compute the distinct left extensions (words in blue) of
the bi-gram AC, instead of the ones in position 1, 2, 3 and 4. The problem with this approach is
that we would not be able to compute the wanted quantity for (N − 1)-grams because, obviously,
a context of length N − 1 can not be extended to the left. Moreover, consider the �rst 5-gram
ABAAC. Since interpolation produces the probabilities for all its su�xes, i.e., for C, AC, AAC
and BAAC, we need the modi�ed counts for these su�xes and not for its contexts A, AA, BAA
and ABAA that we could have computed with the other approach.

160

9. language models estimation

1 update(n, left, right)
2 s = statistics[n][right]
3 k = s .count
4 ` = s .left
5 if n != 1
6 if not_seen(n, right)
7 k = 0
8 ` = -1 . invalid word ID

9 if ` != left
10 ` = left
11 k = k + 1
12 if k == 1
13 ++R[n][1]
14 else
15 if 1 < k ≤ 5
16 ++R[n][k]
17 --R[n][k − 1]

Figure 44: The update algorithm at the core of the Adjusting step.

for every context Cn−1, but entries Cn−1wN could not (these entries Cn−1wN are
clearly consecutive in su�x order). However, from fact (2), we know that every
left extension must necessarily appear to the left of the context Cn−1, and thus we
need to only scan the entries having context Cn−1.

The quantity a(Cn−1wN) is computed using a direct-address table of size Θ(V),
called statistics in the pseudo code shown in Figure 44, in which we store, for each
distinctwN , the last seen left word (left) and the number of distinct left words seen
so far (count).

As long as contextCn−1 remains the same during the scan of the block, we look
at the table entry corresponding to wN (riдht) and consider its last seen left word:
if di�erent from wN−n−1 then we increment its count by one and update the last
seen left word with the current one; otherwise we do nothing. This update step
takes O(1) worst-case and it is coded in the update function shown in Figure 44.
We are sure to count correctly the number of left extensions because left words
are seen in sorted order.

Figure 42 shows an example for the bi-gram AC. In this case we have Cn−1 = A,
thus we need to scan all the (consecutive) N -grams having an A as a context of
length 1. These N -grams are the ones spanned by the light green rectangle in
Figure 42. In this example, AC can be extended to the left with words A and B,

161

9. language models estimation

as depicted in blue in the picture, thus a(AC) = 2. Also observe that these two
words, A and B, correspond to the children of the bi-gram CA in the reverse trie
representation of the block shown in the upper part of the Figure 49. The trie stores
the strings in su�x order. In other terms, the node spelling out the bi-gram CA
will store two pointers: one for A and one for B. Again, we will return to this point
when we will discuss how to lay out e�ciently the reverse trie, in Section 9.3.4.

At the end of the scan of all entries with the same context Cn−1, it is therefore
guaranteed that the table contains the modi�ed counts for all the n-grams Cn−1x .

When the context Cn−1 changes (line 7 in the pseudo code of Figure 43), then
we would need a fast way of zeroing all counts in the table. Instead, we do not
re-initialize the table explicitly which would cost Θ(V) time, but we associate each
context an increasing identi�er, as follows.

We store an identi�er for each distinct word wN , called range in the function
not_seen of Figure 45, in the table statistics, that represents the identi�er of the
range in which the word wN was last seen.

1 not_seen(n, right)
2 s = statistics[n][right]
3 r = s .range
4 if r != ranдes[n]
5 r = ranдes[n]
6 return true

7 return false

Figure 45: The not_seen function that
checks whether the right word was not seen
in the current range.

We also keep track of the cur-
rent range identi�ers in an array
ranдes[1,N − 2]. Now, during the up-
date step we �rst check the context
identi�er for the current word wN : if
di�erent from the current one, we set
its count in the table to zero and update
its range identi�er accordingly (lines 6-
8 in the pseudo code of Figure 44 and
Figure 45).

Before concluding, there are two cor-
ner cases that we must mention for
completeness: the one of N -grams and

the one of 1-grams. The former because N -grams do not have modi�ed counts,
rather their counts are equal to the raw frequency counts written in the block BN

(lines 15-17 in Figure 43). The latter because their context is empty and we do not
have to re-initialize their counts in the table when we switch range (if at line 5 in
the pseudo code in Figure 44).

Collecting smoothing statistics. We are left to describe how we collect the
smoothing statistics tn,k for k = 1, . . . , 4 by using the introduced algorithm. For
each ordern, we maintain an array R[1, 4], where R[k]will store the quantity |{wn

1 :
a(wn

1) = k}|. A trivial solution scans the table of size Θ(V) used by the algorithm
whenever we change context and update the counters accordingly. This approach

162

9. language models estimation

is clearly infeasible in terms of running time. Instead, we can update each R[k] in
O(1) on-the-�y, during the update function of the algorithm, as follows. Whenever
we increment the occurrence of wN from k to k + 1 (line 11 in Figure 44), we just
have to check the value ofk : ifk = 1 then we only incrementR[1]; otherwise, if 1 <
k ≤ 5 then we increment R[k] and decrement R[k − 1] (lines 12-17 in the pseudo
code of Figure 44). Whenever we change context, the local counts accumulated inR

are �rst combined with the global ones in another arrayT and, then, re-initialized
(lines 9-11 in the pseudo code in Figure 43). Also this re-combining step takes
constant time.

Finally, from the computed smoothing statistics we can calculate the discount
coe�cients Dn using Formula 13. These are kept in an array D[1,k], one for each
order 1 ≤ n ≤ N and k = 1, 2, 3.

9.3.3 Normalization and interpolation

In the previous subsection we have shown how we can compute the modi�ed
counts over the block BN sorted in context order. Thanks to this tool, we can
therefore calculate pseudo probabilities and backo� values using Formula 11 and
12 respectively, by just scanning BN and using a direct-address table of size Θ(V)
to read the modi�ed counts.

Refer to the pseudo code in Figure 46. In order to interpolate all di�erent orders,
we produce pseudo probabilities and backo�s for all n-grams sharing the same
context, starting from order 2 up to N . This guarantees that as soon as we compute
u(wN |wN−1

N−n−1) for 2 ≤ n < N , we can directly interpolate it with P(wN |wN−1
N−n) that

has been already computed. Therefore, the function write in Figure 47 normalizes
and interpolates all n-grams sharing the same context (there are size of them at
each iteration of the loop). We now discuss some details about the pseudo code.

We accumulate the interpolated probabilities of the n-grams sharing the same
context in an array called probabilities and read them sequentially when needed to
perform interpolation by using another array of o�sets. The body of the function
consists in three loops. The loop in the lines 4-6 calculates the numerator of the
backo� for the context. The one in the lines 8-11 calculates the denominator for
normalized probabilities and backo�s. Finally, the one in the lines 13-20 calculates
the interpolated probabilities. The case for the N -grams in line 22 is not shown
here because, as observed in the previous subsection, it is identical to the general
case for n < N with the only di�erence that the N -grams’ counts are not modi�ed
but are the occurrence counts as seen in the text. We will return to this case in the
next subsection.

Finally, for ease of presentation, the line 17 assumes that the uni-grams’ prob-
abilities are stored in the array probabilities[1]. Actually, a uni-gram probability

163

9. language models estimation

1 last(block,m)
2 iterators[1,N] = [0, 0]
3 while iterators[N] <m
4 for n = 2; n ≤ N ; n = n + 1
5 i = iterators[n]
6 pN1 = block[i]
7 size = 0
8 while i < m
9 wN

1 = block[i]
10 if wN−1

N−n == p
N−1
N−n

11 size = size + 1
12 left = wN−n−1
13 right = wN

14 update(n, left, right)
15 else
16 break

17 pN1 = w
N
1

18 i = i + 1
19 write(n, size)

Figure 46: The main loop of the last step of estimation.

P(wn) can be computed in O(1) when needed as illustrated in the pseudo code in
Figure 48.

In conclusion, normalization and interpolation are carried on as explained for
the 3-Sort algorithm described in Section 9.1, but without requiring two separate
sorting passes over the N -gram strings.

1 unigram_prob(wn)

2 k = statistics[1][wn].count
3 u = (k −D[1][k])/m2
4 p = u + b(ε)/V
5 return p

Figure 48: Final interpolated probability for
the uni-gram wn . The denominator for the
quantityu is equal to the number of bi-grams
in the text, calledm2.

Another crucial di�erence is that the
two phases are performed during the
same scan of only one block, i.e., BN ,
and we do not need to jointly iterate
through N distinct �les, one for each
value of n, as done by 3-Sort. The net
result is that we avoid to sort from con-
text to su�x in order to perform inter-
polation, thus eliminating the sorting
step 3 of Figure 41. Summing up, given
that we have formerly shown how to
save the sorting from su�x to context

164

9. language models estimation

1 write(n, size)
2 i = iterators[n], j = o�sets[n]
3 b = 0, d = 0
4 for k = 1; k ≤ 3; k = k + 1
5 b += R[n][k] ×D[n][k]
6 R[n][k] = 0
7 if n < N
8 for ` = i − size; ` < i; ` = ` + 1
9 wN

1 = block[`]
10 if not_seen(n, wN)
11 d += statistics[n][wN].count
12 b = b/d
13 for ` = i − size; ` < i; ` = ` + 1
14 wN

1 = block[`]
15 k = statistics[n][wN].count
16 u = (k −D[n][k])/d
17 p = u + b × probabilities[n − 1][j]
18 probabilities[n].add(p)
19 j = j + 1
20 lines 1-4 of Figure 50a
21 else
22 lines 1-13 of Figure 50b
23 o�sets[n + 1] = 0

Figure 47: The write function that performs normalization and interpolation.

too (Section 9.3.2), we have completely eliminated the round-trip of 3-Sort men-
tioned at the beginning of Section 9.3.

9.3.4 Joining and indexing

We now show how to perform the two remaining steps of estimation, i.e., �rst, the
joining of probabilities with backo� values and, second, the building of the reverse
trie data structure during the same pass.

We recall that the output of this last step is the compressed, static, trie index
that maps the extracted n-gram strings to their Kneser-Ney probabilities and back-
o�s, described in Chapter 8. In particular, it is the reverse trie variant, such as the
one depicted in Figure 49, because it optimizes the left-to-right pattern of lookups

165

9. language models estimation

A B X

A B X A C C X

B A C X X C X

A X A X X A B C B A C X

X X A X X B A A C B A C

C

A

A B AA

1 2 3 4 5 6 7 8 9 10 11 12

C
A
A
B
A

A
A
B
A
X

C
A
B
C
A

B
A
X
X
X

A
B
A
X
X

A
B
C
A
A

B
C
A
A
B

X
C
A
B
C

X
X
C
A
B

X
X
X
C
A

X
X
X
X
C

A
X
X
X
X

1 2 3 4 5 6 7 8 9 10 11 12

5

1

2

3

4

5

4

3
2

1

Figure 49: The 5-gram block sorted in context order of Figure 42 in relation with its reverse
trie representation. The bo�om level of the trie, i.e., [X, X, A, X, X, B, A, A, C, B, A, C] is
obtained by permuting the first words of the strings in the context-sorted block, i.e., [A,
X, A, X, X, A, B, C, B, A, C, X], according to the lexicographic position of their last words,
i.e., [C, A, C, B, A, A, B, X, X, X, X, A]. The le� extensions (words in blue) of AC correspond
to the children of CA in the reverse trie representation.

166

9. language models estimation

performed by perplexity scoring [122, 76] (see also the perplexity benchmark in
Section 8.4.3).

For this purpose, we exploit the property already mentioned in Section 9.3.2,
that is: every N -gram pre�x of length N − 1 must be matched at position 2 in some
other N -gram. This property gives us two important guarantees.

(1) The �rst N − 1 levels of the reverse trie can be built by streaming through
the N -grams in context order.

(2) Backo�s are emitted in su�x order.

In the following we exploit the �rst guarantee to build the reverse trie data
structure and the second one to perform joining of probabilities with backo�s.

By looking at the example in Figure 49 for N = 5, we can graphically visualize
these two guarantees. Let us discuss them separately.

Regarding guarantee (1), we can immediately see that the �rst 4 levels of the
trie are indeed the contexts of length 4 of the N -gram strings in the context-sorted
block. For example, the pre�x of length 4 of ACBAC, i.e., ACBA, is found in the
6-th string; the one of XXXAB in the 12-th string instead (follow the dashed lines at
the bottom of Figure 49). Notice that we always �nd the match at position 2, thus
the �rst 4 levels of the trie store such pre�xes. In general we have that: the �rst
N − 1 levels of the reversed trie are the pre�xes of size N − 1 of the context-sorted
N -grams and can be, therefore, e�ciently built directly from the context-sorted
N -grams without having to sort the N -grams in su�x order.

Regarding guarantee (2), consider the �rst N -gram ABAAC. Since interpolation
produces the probabilities for all the su�xes, i.e., for C, AC, AAC and BAAC, we
compute the backo�s for their contexts, i.e., b(ε), b(A), b(AA) and b(BAA) respec-
tively, which appear in sorted order in the block. Refer to Figure 40 too for a
graphical example. Backo�s are, therefore, computed in su�x order and can be
written directly in the corresponding trie nodes.

Now that we know how to e�ciently build the �rst N − 1 levels of the reversed
trie and perform joining, we are left to consider two problems: �rst, how to handle
the bottom level of the trie and, second, how to write the interpolated probabilities
in the nodes of the trie. In fact, notice that: regarding the �rst problem, we can
not build the bottom level of the trie directly because a context of length N − 1
does not extend to the left; regarding the second problem, interpolation produces
the probabilities for the su�xes but we rather would need the ones for the contexts
in order to write them in the trie as we can do for the backo�s. We clarify this
latter point by continuing the example for ABAAC. We interpolate its constituent
n-grams in the following (su�x) order: C, AC, AAC, BAAC and ABAAC, but we

167

9. language models estimation

would actually need the probabilities for the contexts A, AA, BAA and ABAA, in
order to write them in the su�x trie (as done for the backo�s).

Exploiting the relation between context and su�ix order. To e�ciently solve
these two remaining problems, we exploit the following property that establishes
the relation between context and su�x order: A context-sorted block can be sorted
e�ciently in su�x order by considering the order on the last word only, because the
pre�xes of length N − 1 are already sorted.

In turn, this property implies that: The bottom level of the trie can be built by
placing the �rst words of the strings of the context-sorted block in the lexicographic
positions of their last words. Thanks to this property, although the algorithm oper-
ates over the strings sorted in context order, it is still able to e�ciently lay out the
strings in su�x order.

The relation is depicted in Figure 49 (page 166) by the dashed lines linking the
context-sorted 5-grams with the corresponding root-to-leaf paths in the reverse
trie. For example, consider the �rst 5-gram ABAAC. We know that such string will
terminate with A (�rst word) in the bottom level of the trie. The position at which
we have to place this �rst word in the bottom level is the lexicographic position of
the last word, i.e., the C. Since the lexicographic position of the C is 7 within all
the last words of the 5-grams (4 As and 2 Bs �rst), A is placed in position 7 in the
last level of the trie (follow the dashed line from position 1 in the context-sorted
block to position 7 in the trie).

In order to place word identi�ers and probabilities in correct position, we use a
count-indexing technique. For each vocabulary word, we maintain the number of
times it appears as last word of an N -gram in a direct-address table of size Θ(V).

Pre�x-summing such counts (and shifting them by one position to the right)
gives us in O(1), for each distinct word identi�er wN , the position in the array,
that represents the bottom level of the trie, at which we have to write the �rst
occurrence ofwN . Given such position, we write the integerwN inO(1) and incre-
ment the position in the table by one. Notice that this is the same procedure used
by counting sort, thus the correctness of the approach follows automatically (see
Section 8.2 of [42]). It only requires V integer counters, that we store in an array
positions[1,N].

Let us consider a complete example. Refer to Figure 49 (page 166) and the pseudo
code in Figure 50b. For the uni-grams A, B, C and X, we count how many times they
appear as last words of the N -grams and we obtain the following counts [4, 2, 2, 4],
because A and X appear 4 times each, while B and C appear twice each. Now we

168

9. language models estimation

pre�x sums such counts2, obtaining [5, 7, 9, 13], and we shift them one position to
the right, obtaining the following initial positions[5][4] = [1, 5, 7, 9].

1 if not_seen(n, wN)
2 pos = positions[n][wN]
3 levels[n][pos].prob = p

4 pos = pos + 1

(a)

1 for ` = i − size; ` < i; ` = ` + 1
2 wN

1 = block[`]
3 d += c(wN

1)
4 b = b/d
5 for ` = i − size; ` < i; ` = ` + 1
6 wN

1 = block[`]
7 k = c(wN

1)
8 u = (k −D[n][k])/d
9 p = u + b × probabilities[N − 1][j]

10 pos = positions[N][wN]
11 levels[N][pos].prob = p

12 levels[N][pos].word = w1
13 pos = pos + 1

(b)

Figure 50: The pseudo code that illustrates how
to perform indexing, for the case n < N in (a)
and for the case n = N in (b). The two listings
complete the pseudo code in Figure 47.

Consider the �rst 5-gram in the
context-sorted block, i.e., ABAAC.
Since its last word is C, we look
at its initial position in the array,
which is 7, and we know that we
have to place its �rst word, A, at po-
sition 7 in the last level of the trie.
This is done in line 9 of the pseudo
code. Indeed, the 7-th string in
the reverse trie of Figure 49 is ex-
actly ABAAC. Then, we know that
the second occurrence of C (last
word of ACBAC) will give us po-
sition 7 + 1 = 8. Thus, we will
write an A in position 8. Let us now
consider the second N -gram, i.e.,
XABAA. The position associated to
A is 1, so we have to write the �rst
word X at position 1. We repeat
the process for all the N -grams in
the context-sorted block: follow-
ing the dashed lines of Figure 49, it
is easy to see that the last level of
the trie can be built correctly by the
introduced algorithm. The corre-
sponding pseudo code is illustrated
in Figure 50b and it represents the
case for n = N in the write pseudo
code in Figure 47 (line 22).

The same technique is also used to place the �nal probabilities in the correct
trie nodes for all orders 1 < n ≤ N . Let us consider a full example for n = 2
in order to explain how this is possible. For the uni-grams A, B, C and X, we
obtain the following counts [3, 2, 1, 2]. In fact, although A appears 4 times, it only
appears in 3 distinct contexts, i.e., to the right of the bi-grams AA, BA (that appears
twice) and XA. Instead, B appears twice: once to the right of AB and to the right
of CB. As done before, pre�x-summing and shifting the counts, we obtain the

2And also sum 1 because our examples use 1-based indexes.

169

9. language models estimation

n 1BillionWord Wikipedia17 ClueWeb09

1 2,438,616 5,681,625 4,291,588
2 43,179,094 141,639,447 236,626,867
3 203,793,974 587,261,939 977,038,965
4 427,172,514 1,115,647,651 1,710,815,581
5 588,390,914 1,463,820,688 2,129,634,982

total 1,264,975,112 3,314,051,350 5,058,407,983

Table 33: Number of n-grams for the datasets used in the experiments.

initial positions[2][4] = [1, 4, 6, 7]. Now, consider the �rst 5-gram ABAAC. When
we produce the �nal interpolated probability for AC, we have to write it in the
second level of the trie in position 6 as given by corresponding counter in the
array. Again, we can immediately verify that the (6+1)-th root-to-leaf path in the
trie is the one spelling out CA. For the second 5-gram XABAA, instead, we have to
write the probability of AA at position 1 in the second level of the trie.

The examples above can be easily extended to any other order 2 < n ≤ N . In this
case, the corresponding pseudo code is illustrated in Figure 50a and it completes
the write function coded in Figure 47 (line 20).

Finally, we also have to write the pointers for each node of the trie. However,
observe that a pointer represents the number of successors of a given n-gram, thus
pointers are the same as the modi�ed counts. Therefore, pointers require no extra
e�ort (and are not shown in the pseudo code for simplicity).

9.4 Experiments

The experiments we now show have the purpose of �rst characterizing the running
time of our solution, i.e., the 1-Sort algorithm, of introducing optimizations and of
�nally considering the comparison against the 3-Sort approach.

Datasets. We performed our experiments using the following textual collections
in the English language.

• 1BillionWord is the concatenation of all the news �les contained in the train-
ing directory of the dataset described in [33] and publicly available at: http:
//www.statmt.org/lm-benchmark;

170

http://www.statmt.org/lm-benchmark
http://www.statmt.org/lm-benchmark

9. language models estimation

• Wikipedia17 is a recent Wikipedia dump, collected from October to Decem-
ber 2017 and publicly available at: https://dumps.wikimedia.org/enwiki/
latest;

• ClueWeb09 is a sampling of 5 million pages drawn from the ClueWeb 2009
TREC Category B test collection, consisting of English web pages crawled be-
tween January and February 2009, available at: http://www.lemurproject.
org/clueweb09.

From each dataset we removed all non-ASCII characters and markup tags. We use
the (standard) value of N = 5 in every experiment. The datasets are of increasing
size, reported as the number of n-grams in Table 33: this will be useful to show the
behavior of our solution by varying the size of the input.

Experimental se�ing and methodology. All experiments have been performed
on a machine with 4 Intel i7-7700 cores clocked at 3.6 GHz, with 64 GB of RAM
DDR3, running Linux 4.4.0, 64 bits. RAM is clocked at 2.133 GHz. The machine
is equipped with a mechanical disk of 3 TB WDC WD30EFRX-68E, with standard
page size of 4 KB.

We implemented the 1-Sort algorithm in standard C++14. As our competitor, we
use the C++ implementation of 3-Sort as provided by the authors of [77] and avail-
able at http://kheafield.com/code/kenlm. We refer to this implementation as
KenLM, which is the lead toolkit for language modeling [76]. As a matter of fact,
KenLM provides the fastest estimation algorithm, signi�cantly outperforming the
previous approaches [77] as reported in Section 9.1. This is also con�rmed by other
recent experiments, showing KenLM to be up to 10× faster to build for the typical
values of n ≤ 5 than approaches based on compressed su�x trees [147].

Both implementations were compiled with gcc 5.4.0, using the highest optimiza-
tion setting, i.e., with compilation �ags -O3 and -march=native.

Source code. https://github.com/jermp/tongrams

9.4.1 Preliminary analysis

As a �rst set of experiments we show how the running time of our algorithm de-
pends on the amount of provided internal memory. We inspect CPU and I/O activ-
ity to explain the observed runtime.

Varying the amount of internal memory. As a �rst experiment, we show the
running time of our algorithm at each step of estimation, by varying the allowed
amount of internal memory. We show the results using three values: 4 GB, 16 GB
and the maximum available RAM, 64 GB. This experiment aims at showing which

171

https://dumps.wikimedia.org/enwiki/latest
https://dumps.wikimedia.org/enwiki/latest
http://www.lemurproject.org/clueweb09
http://www.lemurproject.org/clueweb09
http://kheafield.com/code/kenlm
https://github.com/jermp/tongrams

9. language models estimation

steps are the most expensive and �x the amount of internal memory that we will
use for the subsequent analysis.

4GB 16GB 64GB

5.4
57%

6.6
62%

8.4
68%

1.3
13%

1.2
11%

1.1
9%

2.8
30%

2.8
27%

2.8
23%

Counting Adjusting Last

(a) 1BillionWord

4GB 16GB 64GB

13.2
37%

14.5
39%

18.0
46%

12.6
35% 12.1

32% 11.3
29%10.1

28%
10.5
28% 9.7

25%

Counting Adjusting Last

(b) Wikipedia17

4GB 16GB 64GB

22.0
35%

21.8
35%

27.2
43%23.8

38% 21.9
35% 19.6

31%16.8
27%

18.0
29% 16.5

26%

Counting Adjusting Last

(c) ClueWeb09

Figure 51: Time in minutes spent at
each step of estimation by using di�erent
amounts of internal memory.

The plots in Figure 51 illustrate the
results. Above each bar, we report two
numbers: the �rst indicating the num-
ber of minutes spent during the step,
the second indicating the percentage
with respect to the total running time
of the algorithm. This grand total mea-
sures the time of the whole estimation
process, i.e., the time it takes from the
scanning of the input text to the �ush-
ing on disk of the compressed index
built over the extracted strings. Some
considerations are in order.

First of all, we can observe that,
not surprisingly, the size of the lan-
guage model has a signi�cant impact
not only on the total running time
but also on which step becomes the
most expensive. In fact, while on the
1BillionWord dataset the Counting and
the Last steps contribute for more than
80% of the total running time and the
Adjusting step has a quite low impact,
the trend changes signi�cantly on the
larger datasets. In fact, on Wikipedia17
and ClueWeb09 the total running time
is almost evenly distributed across the
three steps. Notice that, in particu-
lar, the time for Adjusting rises signi�-
cantly.

This is due to the number of N -
gram blocks written to disk during the
Counting step and that are merged to-
gether during the Adjusting step. On
the smaller dataset 1BillionWord, we

have relatively few blocks to merge, thus Adjusting is performed quickly. Clearly,
using more internal memory helps in lowering the number of blocks to merge and,
thus, reducing the time for Adjusting.

172

9. language models estimation

Counting Adjusting Last

4.8
73%

0.6
52%

2.8
100%

1.2
17%

0.1
5%

0.1
2%

0.7
11%

0.8
65% 0.0

1%

CPU IN OUT

(a) 1BillionWord

Counting Adjusting Last

9.3
64%

2.8
23%

10.3
98%

5.0
34%

9.2
77%

3.5
34%1.8

12% 0.3
2%

0.4
4%

CPU IN OUT

(b) Wikipedia17

Counting Adjusting Last

13.7
63%

5.0
23%

16.4
91%

7.9
36%

16.9
77%

8.2
45%

2.8
13% 0.4

2%
1.3
7%

CPU IN OUT

(c) ClueWeb09

Figure 52: Time in minutes spent by CPU
computation and I/O activity at each step of
estimation.

We also observe that the step of
Counting and the Last one do not vary
much when more memory is available.
Concerning the Counting step, more
memory is not useful to lower the run-
ning time because using larger hash
sets also means sorting larger blocks of
N -grams. Indeed, observe that the to-
tal running time of Counting (slightly)
increases by increasing the amount of
memory.

However, as we have discussed
above, using more memory for sort-
ing implies fewer of blocks to merge,
thus internal memory size has an im-
pact only on the Adjusting step. For
the open-address hash set implementa-
tion that we use in the Counting step,
we experimented with linear probing,
quadratic probing and double hashing.
No signi�cant di�erence among the
three strategies was observed, thus we
prefer linear probing for its better lo-
cality of accesses. Concerning the last
step, we need to scan the merged N -
gram �le once. We use a standard
bu�ered-scan approach using blocks of
64 MB by default. Using larger blocks
does not impact the running time.

Since similar observations also hold
true for KenLM, we choose the middle
value of 16GB for all datasets as the
quantity of memory we use for all the
following experiments.

Inspecting CPU and I/O activity. It is now interesting to quantify the impact
that CPU and I/O operations have on the total running time of each step. Under a
di�erent perspective, this analysis is also useful to understand and how disk usage
is impacted by the size of the language model. The plots in Figure 52 illustrate
such impact, i.e., the time spent by CPU and I/O at each step by using the amount
of RAM that we �xed before (16 GB).

173

9. language models estimation

Dealing with external memory poses the challenge of trying to avoid CPU idle
time by overlapping CPU computation with I/O activity. For such reason, we use
asynchronous threads to handle input/output operations, so that while the CPU is
performing internal processing, data is read or written to disk simultaneously [52].
This is a feature of particular importance for on-disk programs such as the ones
we are considering, given the huge discrepancy in speed of modern processors
and (mechanical) disks. Clearly, a perfect overlapping between CPU and I/O time
would mean to only pay the maximum of the two. Consequently, the sum of three
percentages for CPU, IN and OUT time for a given step in Figure 52, may exceed
100% because these are handled by di�erent threads. Let us now consider each step
in order.

During the Counting step, while the reader thread is scanning the input and
probing the hash set, the writer thread is asynchronously sorting the previous N -
gram block and �ushing it to disk. While sorting is strictly CPU-bound because
it is performed in memory, the scanning of the input text imposes some CPU idle
time as apparent for the plots of the larger datasets Wikipedia17 and ClueWeb09.
However, probing the hash set and sorting contribute to most of the time spent
during the Counting step. In fact, the plots report that the sum of CPU and IN
percentages yields almost the whole running time of Counting, whereas the OUT
time is completely overlapped with CPU processing.

The total running time of the Adjusting step is, instead, dominated by the cost
of reading the blocks from the disk. This is no surprise given that multiple input
streams are contending the disk for input operations, thus incurring in more disk
seeks [163]. As a result, on the larger datasets Wikipedia17 and ClueWeb09 we
can see the IN time taking 77% of the total: this causes the CPU utilization to drop
down to roughly 23%, by experiencing idle time. Indeed, the time taken by the
algorithm described in Section 9.3.2 is negligible compared to the overall running
time of the step and contributes to a small percentage of the CPU: it is just 0.42,
1.2 and 1.8 minutes on 1BillionWord, Wikipedia17 and ClueWeb09 respectively.
The remaining part of the CPU is spent by iterating through the fetched block of
N -grams and comparing records during the merging process.

During the Last step, while the reader thread is loading a block from disk, the
CPU is processing the previous block. Therefore, we have a good overlap between
CPU and reading time from disk. This is possible because disk reads are issued to
a single source, i.e., the merged N -gram �le, thus we avoid the disk seeks experi-
enced during the Adjusting step. As a result, all time is spent by the CPU.

174

9. language models estimation

9.4.2 Optimizing our solution

In this subsection we devise and quantify the impact of one performance optimiza-
tion for each step of estimation.

Counting: implementing a parallel radix sort. In order to lower the total run-
ning time of the Counting step, it is important to guarantee a good overlap between
input scanning and sorting in order to only pay the maximum of the two latencies
and not the sum of the two. For this reason, we use LSD (least-signi�cant-digit)
radix sort [42], instead of the general-purpose std::sort. This sorting algorithm is
the right choice in our setting because each N -gram is a (short) string of exactly
N word identi�ers, thus N passes of counting sort, i.e., one for each word index j,
j = N − 1, 0, 1, . . . ,N − 2, are su�cient (and necessary) to sort a block in context
order. The time complexity to sort a block ofm N -grams is Θ((m +V) ×N), which
is Θ(m ×N) given that V = O(m).

Moreover, each step of counting sort on column index j is implemented in par-
allel, as follows. Let K be the number of threads used for sorting. We allocate a
tableC[K + 1][V] of counters, whereC[t + 1]will store the number of occurrences
of each word identi�er in the partition of Θ(mK) records assigned to thread t . Then
each thread t , for 0 ≤ t < K , runs in parallel and increments by one the entry
C[t + 1][i] whenever it encounters the word identi�er i . Now, pre�x-summing the
counters by a column-major scan ofC transforms each entryC[t][i] into the (sorted)
position in the output block at which thread t has to write the record having i as
its j-th word identi�er.

Thanks to this strategy and by using all the available cores on our test machine
(K = 4), the time for the Counting step improves substantially3 because sorting
N -gram blocks becomes completely overlapped with input scanning and probing
of the hash set: from 6.6 minutes we pass to 3.5 minutes on 1BillionWord (1.88×);
from 14.5 to 10 minutes on Wikipedia17 (1.45×); from 21.8 to 15.8 on ClueWeb09
(1.38×).

Adjusting: compressing N -gram blocks. The high cost of reading the N -gram
�les from disk during the Adjusting step suggests that all e�orts spent in enhancing
its running time should be devoted in reducing the loading time from disk, because
lowering the CPU cost will result in a negligible improvement. For this reason we
compress the N -gram blocks created during the Counting step. Compressing the
blocks has the potential of reducing the time spent in reading from disk because

3During our experimentation, we found out that this parallel implementation of radix sort is also
roughly 1.8× faster on average than gnu::parallel_sort. As an example, to sort an N -gram block
of 8 GB, the gnu::parallel_sort takes 30 seconds while our parallel LSD radix sort takes 16.4
seconds.

175

9. language models estimation

CPU IN total bytes/gram

Uncompressed 2.81 9.24 12.05 28.00
FC bit-aligned 5.77 (0.5×) 0.10 (97×) 5.86 (2×) 9.00 (3×)
FC byte-aligned 3.94 (0.7×) 1.22 (8×) 5.03 (2.4×) 11.00 (2.5×)

(a) Wikipedia17

CPU IN total bytes/gram

Uncompressed 4.98 16.91 21.89 28.00
FC bit-aligned 9.29 (0.5×) 5.25 (3×) 14.55 (1.5×) 9.75 (3×)
FC byte-aligned 7.61 (0.7×) 4.23 (4×) 11.55 (2×) 11.65 (2.4×)

(b) ClueWeb09

Table 34: The e�ect of compressing blocks during the Adjusting step, on Wikipedia17 and
ClueWeb09 datasets. The table reports: the time in minutes spent by computation (CPU),
reading from disk (IN) and globally (total) and the average bytes per gram achieved by
the di�erent implementations.

more (compressed) N -grams are transferred from disk to memory during an input
operation.

What we need is a compressed stream representation that supports fast sequen-
tial decoding. We adapt a front-coding [168] representation of an N -gram block, as
follows. We �x a window size in bytes (64 MB by default, in our implementation)
and compress as many records 〈wN

1 , c(wN
1)〉 as possible, i.e., as many as can be pos-

sibly contained in the window. When encoding/decoding a window, we maintain
the following invariant: a record is either written uncompressed, or compressed
with respect to the previous one. In particular, a record is encoded as a pair 〈`, s〉,
where ` is the number of words identi�er we have to copy from the previous record
(in context order) and s is the remaining part of the string. The �rst record of each
window is written uncompressed.

We can use the minimum number of bits or bytes to represent each word iden-
ti�er and frequency count. We refer to such strategies as, respectively, FC bit-
aligned and FC byte-aligned, whose impact is evaluated in Table 34. As we can see
from the data reported in the table, the bit-aligned version o�ers a 3× space reduc-
tion: from 28 bytes per record of the uncompressed version, we pass to an average
of 9 bytes per record on Wikipedia17 and to 9.75 bytes per record on ClueWeb09.
As a net result, the Adjusting step on Wikipedia17 and ClueWeb09 runs 2× and
1.5× faster. Indeed, we can observe that the input time decreases signi�cantly: it
is almost 100× smaller on Wikipedia17 and more than 3× smaller on ClueWeb09.

176

9. language models estimation

However, notice that the CPU time rises as well, roughly 2×, due to decoding from
a compressed stream: we trade CPU time for less reading from disk. The byte-
aligned version, FC byte-aligned, avoids the many bit-level instructions to decode
a record. Not surprisingly, we can see that this strategy is actually faster than
the bit-aligned version by 25% on average, while only allowing a slightly worse
compression (2.5× on average compared to 3×). In conclusion, compressing the
N -gram blocks with byte-aligned front-coding yields an improvement of 2.4× and
1.9× on Wikipedia17 and ClueWeb09 datasets, respectively. Therefore, for the rest
of the experiments we use the FC byte-aligned representation of the blocks. On
the smaller dataset 1BillionWord, however, compressing the blocks does not yield
an appreciable improvement since input time from disk takes a negligible fraction
of the total running time of the step (see Figure 52a).

Last: processing N -gram blocks in parallel. As discussed in Section 9.4.1,
the last step of estimation is CPU-bound. Thus, we can use multi-threading to
speed up the execution of the step. If K is the chosen parallelism degree, we use 1
reader thread to load the next K − 1 blocks from the merged N -gram �le and K − 1
worker threads to process these blocks in parallel. While each worker thread inde-
pendently executes the algorithm described in Section 9.3.4 on its own block, the
reader thread asynchronously loads the next K − 1 blocks in memory. The main
challenge of this approach lies in computing the partition of each level of the trie
that has to be written by a worker thread. For such purpose, we adopted a simi-
lar partitioning strategy to the one described in the previous subsection: in a �rst
phase, each worker thread computes the number of distinct n-grams in its own
block; in a second phase these counts are combined to obtain the o�sets of the
global partition of the trie. Although the �rst phase is performed in parallel, it has
an impact on the achieved scalability.

On our test machine, we have K = 4, thus we use 3 worker threads and 1 reader
thread. On 1BillionWord we reduce the running time from 2.8 to 1.33 minutes
(2.1×); on Wikipedia17 from 10.53 to 6.85 minutes (1.54×); on ClueWeb09 from 18
to 11.8 minutes (1.52×).

9.4.3 Overall comparison

In this subsection we compare the performance of our solution, featuring all the
optimizations that we have discussed before, against the state-of-the-art implemen-
tation of 3-Sort that is KenLM. The �rst comparison plots we show are illustrated
in Figure 53. The plots strictly con�rm the thesis of this chapter. The round-trip
performed by 3-Sort, i.e., the sorting from su�x to context and then back from con-
text to su�x (see Figure 41), results in a severe penalty on the total running time

177

9. language models estimation

of the estimation process: our improved 1-Sort algorithm exploits the properties
of the extracted N -gram strings in order to completely avoid the round-trip.

Counting Adjusting Last

4.0
6.2

13.9

3.5
1.1X 1.2

5.3X
1.3

10.5X

KenLM Our

(a) 1BillionWord

Counting Adjusting Last

10.5

29.9

68.9

10.1
1.0X 5.0

6.0X
6.9

10.0X

KenLM Our

(b) Wikipedia17

Counting Adjusting Last

18.4

55.0

135.6

15.8
1.2X

11.6
4.8X

11.8
11.5X

KenLM Our

(c) ClueWeb09

Figure 53: Time in minutes spent by KenLM
and our algorithm at each step of estimation.

Overall, this makes our approach
run 4×, 4.9× and 5.3× faster than
KenLM, respectively on 1BillionWord,
Wikipedia17 and ClueWeb09. Let us
now discuss each step separately.

As already explained in Section 9.3.1,
the �rst step of Counting is performed
similarly by the two algorithms and
this is the reason why the correspond-
ing running times are comparable.

In fact, both algorithms use a sep-
arate thread to sort the previously-
formed block in parallel and �ushing
it to disk while input scanning takes
place at the same time. Both implemen-
tations also use open-addressing with
linear probing. The key di�erence lies
in the fact that we sort in context or-
der, whereas KenLM adopts su�x or-
der. Another crucial di�erence is that
our solution compresses the blocks to
reduce the merging time in the next
step, that KenLM does not do.

During the Adjusting step, our ap-
proach computes the modi�ed counts
in context order as described in Sec-
tion 9.3.2 on every output block formed
during the merging process. KenLM
does the same but over su�x-sorted
blocks, thus it has to write back to disk
each n-gram, for 1 < n ≤ N , along with
its own modi�ed count, in context or-
der.

Since our approach re-computes the
modi�ed counts during the process of normalization itself, we only need to handle
the N -grams and merge their blocks. Instead, KenLM has to �nally merge the
blocks or all n-grams written to disk.

178

9. language models estimation

0 2 3 5 7 8 10 12 13 15 17
minutes

0.0

1.0

2.0

3.0

4.0
GB

/s
ec

KenLM Our

(a) 1BillionWord

0 8 15 23 31 38 46 53 61 69 76
minutes

0.0

1.0

2.0

3.0

4.0

GB
/s

ec

KenLM Our

(b) Wikipedia17

0 15 30 45 59 74 89 104 119 134 149
minutes

0.0

1.0

2.0

3.0

4.0

GB
/s

ec

KenLM Our

(c) ClueWeb09

Figure 54: Gigabytes per second wri�en on
disk by KenLM and our algorithm.

Although it exploits multiple threads
(one for each order), the additional
writes to disk and sorting operations
cause KenLM be on average 5.3×
slower during this step than our ap-
proach.

During the last step, normalization,
interpolation and indexing are per-
formed (Section 9.3.3 and 9.3.4). Again,
we can observe an average speed-up
of 10.6×. Since our algorithm builds
a compressed reverse trie index during
the same step, we also sum to the time
of KenLM the time it takes to build the
same data structure, because the cur-
rent implementation does not build the
index during the same pass (although
the possibility is advocated in the pa-
per [77]). To ensure fairness, the in-
dexing time for KenLM is measured by
excluding the time to write and parse
the intermediate (ARPA) �le on disk:
it is anyway a signi�cant amount of
the total running time of KenLM, equal
to 7, 31 and 61 minutes for, respec-
tively, 1BillionWord, Wikipedia17 and
ClueWeb09. Apart from indexing, the
rest of the time is spent in sorting again
from context to su�x order, as needed
for interpolation.

Both normalization and interpola-
tion phases of KenLM exploits multi-
threading, by using separate threads
for each value of n. In particular, two
threads are used to compute the de-

nominators and numerators of the quantities in Formula 11 and 12. Again, recall
that we only need to tackle N -grams because we consider the other n-gram strings
implicitly, thus our implementation uses multiple threads for in-memory process-
ing and a thread to asynchronously feed the CPU with input.

179

9. language models estimation

Output volume. Another way of visualizing the comparison between our solu-
tion and KenLM is to measure the number of bytes read/written per second from/to
disk by the two algorithms. Figure 54 shows the number of GB written per second
on disk for each dataset. We collect the statistic using the Linux utility pidstat
with time interval of 1 second and matching the name of the executed task. The
volume for our construction also includes the one spent when �ushing the com-
pressed index to disk, whereas the volume for KenLM does not because the current
implementation builds the index with a separate program.

The plots strictly match the results shown in Figure 53, i.e., not surprisingly
the improvement in running time is directly proportional to the quantity of data
written to disk. In fact, the area below the curve of our algorithm is ≈6× less than
the one of KenLM (20.4 GB vs. 124.5 GB) on 1BillionWord; ≈5× less on Wikipedia17
(63.6 GB vs. 310.7 GB) and ≈5.8× less on ClueWeb09 (88 GB vs. 514 GB).

180

10 Future Research Directions

In this concluding chapter we discuss some challenging open problems that could
be excellent candidates for investigation during the upcoming years.

Dynamic inverted indexes. We described the use of inverted indexes in Sec-
tion 2.3 and presented many di�erent techniques to e�ectively represent the in-
verted lists in Section 2.2 and in chapters 4, 5 and 6. We have also mentioned
that all those results regard the use of a static inverted index: from a static textual
collection, the data structure is built and no updates are possible. This could be
a great limitation for interesting real-world applications that actually need to re-
�ect changes in the indexing structure as users add and delete some contents. For
example, we mentioned Fire�y [82], the Dropbox full-text search engine. Other
practical examples include Facebook, e.g., users constantly add new post and/or
delete past ones, and Twitter, e.g., tweets must be indexed at exceptionally high
rates. Therefore, an interesting open problem regards the engineering of dynamic
inverted indexes.

A classical solution to this problem resorts on using two distinct indexes (many
variations of this approach could be possible): one index is static and usually very
big, the other is small and should re�ect dynamic updates very fast. When the
small index reaches a prede�ned capacity, it is merged with the big one into a new
static index. The small index is dumped and the process repeated. This solution
is simple, it has an amortized running time, and may require additional resources
during the merging phase given that updates may occur before the merging phase
completes. Is it possible to directly update the inverted lists without inducing a
whole index reconstruction and, therefore, eliminating the need for two indexes?
As already noted, dynamic updates can be a source of performance degradation
for compressed data structures.

However, in Chapter 3 we presented a dynamic data structure which exhibits an
optimal running time for such dynamic operations in almost optimal compressed
space. Therefore, we believe that a practical implementation of the ideas described
in that chapter may provide a new solution to the problem.

Compressed B-trees. The B-tree data structure has been one of the most success-
ful data structures since its invention with applications to databases and �lesys-
tems (see Chapter 18 of [42]). Indeed the best known data structure which has
been commercialized for databases is the fractal tree index [18], a variation of a
classic B-tree. A fractal tree index matches the performance of a B-tree for search

181

10. future research directions

and sequential scan but allows faster insertion and deletions. The space usage is
the same as the one for a B-tree. Unlike a B-tree, a Fractal Tree Index maintains
for each node a bu�er which records insertions and/or deletions to direct to its
children. The role of such bu�ers is the one of amortizing the I/O cost over many
updates. By exploiting such bu�ers, the insertion/deletion time is improved by a
factor proportional to the length of employed bu�ers, i.e., Bε , where B is the tree
branching factor and ε > 0. Notice that bu�ering updates to a dynamic data struc-
ture may work well in cases when the data structure is compressed, since expensive
rebuildings can be amortized over time while using only little extra space. In fact,
the sorted keys of a B-tree are excellent to be compressed, e.g., with Elias-Fano
because it can allow fast searches. Compressing the keys at each node of a B-tree
will e�ectively enlarge by a lot the quantity of data we can index. The crucial al-
gorithmic challenge for this problem is to design fast split and merge operations
on blocks of compressed keys.

Fast successor queries for IP-lookup. As observed by Pǎtraşcu and Thorup
[134], the most important application of predecessor search is IP-lookup. This is
the algorithm that Internet routers use to choose the subnetwork to which packets
have to be forwarded to and, thus, the most run algorithm in the world. Time-
e�ciency for this algorithm is crucial. Nonetheless, compressing the forwarding
tables so that a better cache exploitation is achieved has a great impact on time too.
Unibit and Patricia tries (and their many variations) are the typical data structures
used for this problem [48, 124, 153] as they support longest pre�x match in time
proportional to the length of the searched binary string (IP address, in this case).
However, if a routing table contains n sorted IP (binary) strings, we know that
can jump directly to the position of the �rst IP address having the same dlogne
bits in O(1), resorting on the powerful search capabilities of Elias-Fano (see Sec-
tion 2.2.6). Therefore, the applicability of this encoder to forwarding tables is a
pro�table research problem.

Floating point compression. In this thesis we concentrated on compressing in-
teger sequences and strings, and also discussed about their applicability to several
practical scenarios. The integer data type is, however, not the only one relevant to
real-world applications. In recent years there has been an explosion of works on
Machine Learning. Most of these works have to train a neural network, an object
whose input and output is a vector of �oating-point numbers. Scienti�c, �nancial
computing and 3D graphics in video games are good examples of applications that
manage huge quantities of �oating-point numbers. However, while a plethora of
di�erent results have been proposed for integer compression, little attention has
been devoted to �oating-point compression. To the best of our knowledge, the best

182

10. future research directions

result is zfp1, a C/C++ library primarily written by Lindstrom [106]. To achieve
the highest compression ratio, the library resorts on lossy compression. A nice
research direction would be proposing a lossless coder for �oating-point arrays.

For example, consider word2vec [111], a technology that produces word em-
beddings, i.e., a correspondence between a word and a �oating-point vector. The
length of the produced vector is user-de�ned. The key characteristics of word em-
beddings is that words that are similar (or semantically related) have also similar
vectors. In other words, if plotted in a 2/3-dimensional space the points are very
close to each other. In order to compress a large collection of word embeddings, we
can therefore cluster similar vectors together and encode them with respect to the
representative (e.g., a centroid) of each cluster, as similarly proposed in Chapter 4.

Practical implementation of compressed dynamic integer dictionaries. The
dynamic data structure presented in Chapter 3 combines the space e�ciency of
Elias-Fano in representing integer sequences with the optimal running time for
dynamic operations, e.g., adding and/or removing an integer. We have already ar-
gued that a practical implementation of this data structure could be of great impact
for dynamic inverted indexes.

We also point out that in recent years dynamic succinct data structures have
received attentions, with e�orts spent in making entropy-compressed dynamic bit
vectors [41] and dynamic partial sums data structures in compressed space [133].
Note that these are both useful building-blocks of the dynamic data structure de-
signed in Chapter 3 of this thesis, thus a competitive implementation and compar-
ison with these approaches could be a good starting point for a new experimental
work.

Compression of spatial data. Geo-tagged data is now ubiquitous in several com-
mercial applications, like Facebook, Twitter, GoogleMaps, Uber and the successful
video games run by Niantic. The most primitive form of data manipulated by the
aforementioned application is a latitude-longitude pair representing a point on the
Earth surface. As mentioned in Chapter 1, such points can be represented in a 2-
dimensional space, i.e., a sequence, by using a space �lling Hilbert curve, as done
by S2 Geometry [85]. Uber, instead, has developed an indexing technique based
on hexagon cells and called H3 [86].

Some preliminary experiments performed on real datasets of points reveal that,
not surprisingly, such sequences of points exhibit a clustering e�ect similar to the
one exhibited by the inverted lists. This means that a great deal of compression is
already achievable by adopting the classical techniques reviewed in Section 2.2.

However, the current storage engine of both S2 Geometry and H3 do not use
any sophisticated compression technique (or at least, we suspect to). Therefore, a

1https://github.com/LLNL/zfp

183

https://github.com/LLNL/zfp

10. future research directions

good research direction could focus on developing an ad-hoc coder for sequences
of coordinates.

184

Bibliography

[1] Protocol Bu�ers - Google’s data interchange format, https://github.com/
google/protobuf. Accessed on 15-04-2018. → 75

[2] RediSearch, https://github.com/RedisLabsModules/RediSearch/blob/
master/docs/DESIGN.md. Accessed on 15-04-2018. → 75

[3] UpscaleDB, https://upscaledb.com/about01.html#compression. Ac-
cessed on 15-04-2018. → 75

[4] 2006. Yahoo! N-Grams, version 2.0, http://webscope.sandbox.yahoo.
com/catalog.php?datatype=l. → 138

[5] Daniel Abadi, Peter Boncz, Stavros Harizopoulos, Stratos Idreos, Samuel Mad-
den, and others. 2013. The design and implementation of modern column-
oriented database systems. Foundations and Trends® in Databases 5, 3 (2013),
197–280. → 75

[6] Charu Aggarwal and Chandan Reddy. 2013. Data Clustering: Algorithms and
Applications (1st ed.). Chapman and Hall/CRC. → 55 and 61

[7] Miklós Ajtai. 1988. A lower bound for �nding predecessors in Yao’s cell probe
model. Combinatorica 8, 3 (1988), 235–247. → 36

[8] Arne Andersson and Mikkel Thorup. 2007. Dynamic ordered sets with expo-
nential search trees. Journal of the ACM (JACM) 54, 3 (2007), 13. → 38

[9] Vo Ngoc Anh and Alistair Mo�at. 2005. Inverted Index Compression Using
Word-Aligned Binary Codes. Information Retrieval Journal (IRJ) 8, 1 (2005),
151–166. → 17

[10] Vo Ngoc Anh and Alistair Mo�at. 2010. Index compression using 64-bit words.
Software: Practice and Experience (SPE) 40, 2 (2010), 131–147. → 17

[11] A. Apostolico and S. Lonardi. 2000. O�-line compression by greedy textual
substitution. Proc. IEEE 88, 11 (Nov. 2000), 1733–1744. → 102

[12] David Arthur and Sergei Vassilvitskii. 2007. K-means++: the advantages of
careful seeding. In Proceedings of the Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA). 1027–1035. → 55, 56, and 62

185

https://github.com/google/protobuf
https://github.com/google/protobuf
https://github.com/RedisLabsModules/RediSearch/blob/master/docs/DESIGN.md
https://github.com/RedisLabsModules/RediSearch/blob/master/docs/DESIGN.md
https://upscaledb.com/about01.html#compression
http://webscope.sandbox.yahoo.com/catalog.php?datatype=l
http://webscope.sandbox.yahoo.com/catalog.php?datatype=l

bibliography

[13] Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and
Sergei Vassilvitskii. 2012. Scalable K-means++. In Proceedings of the Very
Large Database Endowment (PVLDB). 622–633. → 56

[14] Ziv Bar-Yossef and Naama Kraus. 2011. Context-sensitive query auto-
completion. In International Conference on World Wide Web (WWW). 107–116.
→ 31

[15] Paul Beame and Faith E. Fich. 1999. Optimal Bounds for the Predecessor
Problem. In Proceedings of the Thirty-First Annual Symposium on Theory of
Computing (STOC). 295–304. → 37 and 38

[16] Paul Beame and Faith E. Fich. 2002. Optimal Bounds for the Predecessor Prob-
lem and Related Problems. Journal of Computer and System Sciences (JCSS)
65, 1 (2002), 38–72. → 37 and 38

[17] Djamal Belazzougui, Paolo Boldi, Giuseppe Ottaviano, Rossano Venturini,
and Sebastiano Vigna. 2014. Cache-oblivious peeling of random hypergraphs.
In International Data Compression Conference (DCC). 352–361. → 137

[18] Michael A Bender, Martin Farach-Colton, Jeremy T Fineman, Yonatan R Fogel,
Bradley C Kuszmaul, and Jelani Nelson. 2007. Cache-oblivious streaming
B-trees. In Proceedings of the nineteenth annual ACM symposium on Parallel
algorithms and architectures. ACM, 81–92. → 181

[19] Bishwaranjan Bhattacharjee, Lipyeow Lim, Timothy Malkemus, George Mi-
haila, Kenneth Ross, Sherman Lau, Cathy McArthur, Zoltan Toth, and Reza
Sherkat. 2009. E�cient index compression in DB2 LUW. Proceedings of the
Very Large Database Endowment (PVLDB) 2, 2 (2009), 1462–1473. → 75

[20] Philip Bille, Patrick Hagge Cording, Inge Li Gørtz, Frederik Rye Skjoldjensen,
Hjalte Wedel Vildhøj, and Søren Vind. 2018. Dynamic Relative Compression,
Dynamic Partial Sums, and Substring Concatenation. Algorithmica 80, 11
(2018), 3207–3224. → 38 and 46

[21] Burton H. Bloom. 1970. Space/time trade-o�s in hash coding with allowable
errors. In Communications of the ACM (CACM). 422–426. → 127

[22] A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis. 1994. Linear approx-
imation of shortest superstrings. Journal of the ACM (JACM) 41, 4 (1994),
630–647. → 104

[23] Thorsten Brants, Ashok C Popat, Peng Xu, Franz J Och, and Je�rey Dean. 2007.
Large language models in machine translation. In International Conference

186

bibliography

Empirical Methods on Natural Language Processing (EMNLP). 858–867. → 151
and 154

[24] Thorsten Brantz and Alex Franz. 2006. The Google Web 1T 5-
Gram Corpus, http://storage.googleapis.com/books/ngrams/books/

datasetsv2.html. In Linguistic Data Consortium, Philadelphia, PA, Techni-
cal Report LDC2006T13. → 138

[25] Andrei Z. Broder, David Carmel, Michael Herscovici, Aya So�er, and Jason Y.
Zien. 2003. E�cient query evaluation using a two-level retrieval process.
In Proceedings of the 12th ACM International Conference on Information and
Knowledge Management (CIKM). 426–434. → 28 and 51

[26] Andrei Z Broder, Nadav Eiron, Marcus Fontoura, Michael Herscovici, Ronny
Lempel, John McPherson, Runping Qi, and Eugene Shekita. 2006. Indexing
shared content in information retrieval systems. In International Conference
on Extending Database Technology. Springer, 313–330. → 54

[27] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. 2002. Holistic twig joins:
optimal XML pattern matching. In Proceedings of the 2002 ACM SIGMOD in-
ternational conference on Management of data. ACM, 310–321. → 27

[28] A.L. Buchsbaum, G.S. Fowler, and R. Giancarlo. 2003. Improving table com-
pression with combinatorial optimization. J. ACM 50, 6 (2003), 825–851.→ 78

[29] Michael Busch, Krishna Gade, Brian Larson, Patrick Lok, Samuel Luckenbill,
and Jimmy Lin. 2012. Earlybird: Real-time search at twitter. In Proceedings
of the 28th International Conference on Data Engineering (ICDE). IEEE, 1360–
1369. → 41 and 63

[30] Stefan Büttcher and Charles Clarke. 2007. Index compression is good, espe-
cially for random access. In Proceedings of the 16th ACM International Confer-
ence on Information and Knowledge Management (CIKM). 761–770. → 51

[31] Stefan Büttcher, Charles Clarke, and Gordon Cormack. 2010. Information
retrieval: implementing and evaluating search engines. MIT Press. → 26, 27,
and 62

[32] Surajit Chaudhuri, Kenneth Church, Arnd Christian König, and Liying Sui.
2007. Heavy-Tailed Distributions and Multi-Keyword Queries. In Proceedings
of International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (SIGIR). 663–670. → 54

187

http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

bibliography

[33] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants,
Phillipp Koehn, and Tony Robinson. 2014. One billion word benchmark for
measuring progress in statistical language modeling. In INTERSPEECH. 2635–
2639. → 148 and 170

[34] Ciprian Chelba and Johan Schalkwyk. 2013. Empirical Exploration of Lan-
guage Modeling for the google.com Query Stream as Applied to Mobile Voice
Search. In Mobile Speech and Advanced Natural Language Solutions (MSANLS).
197–229. → 151

[35] Stanley Chen and Joshua Goodman. 1996. An empirical study of smoothing
techniques for language modeling. In Association for Computational Linguis-
tics (ACL). 310–318. → 148, 153, and 154

[36] Stanley Chen and Joshua Goodman. 1999. An empirical study of smoothing
techniques for language modeling. In Computer Speech and Language (CSL),
Vol. 13. 359–394. → 32, 148, 151, and 154

[37] Wenlin Chen, David Grangier, and Michael Auli. 2015. Strategies for Training
Large Vocabulary Neural Language Models. In Preprint arXiv:1512.04906. 13.
→ 151

[38] David Clark. 1996. Compact Pat Trees. Ph.D. Dissertation. University of Wa-
terloo. → 20

[39] David R. Clark and J. Ian Munro. 1996. E�cient su�x trees on secondary
storage. In Symposium on Discrete Algorithms (SODA). 383–391. → 128

[40] F. Claude, A. Fariña, and G. Navarro. 2009. Re-Pair compression of inverted
lists. CoRR abs/0911.3318 (2009), 19. http://arxiv.org/abs/0911.3318

→ 102

[41] Joshimar Cordova and Gonzalo Navarro. 2016. Practical Dynamic Entropy-
Compressed Bitvectors with Applications. In International Symposium on Ex-
perimental Algorithms (SEA). 105–117. → 183

[42] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord Stein.
2009. Introduction to Algorithms - 3rd ed. MIT Press. → 10, 35, 168, 175,
and 181

[43] Bruce Croft, Donald Metzler, and Trevor Strohman. 2009. Search Engines: In-
formation Retrieval in Practice (1st ed.). Addison-Wesley Publishing Company.
→ 31 and 125

188

http://arxiv.org/abs/0911.3318

bibliography

[44] Michael Curtiss, Iain Becker, Tudor Bosman, Sergey Doroshenko, Lucian Gri-
jincu, Tom Jackson, Sandhya Kunnatur, Soren Lassen, Philip Pronin, Sriram
Sankar, Guanghao Shen, Gintaras Woss, Chao Yang, and Ning Zhang. 2013.
Unicorn: A System for Searching the Social Graph. In Proceedings of the Very
Large Database Endowment (PVLDB), Vol. 6. 1150–1161. → 27

[45] Je�rey Dean. 2009. Challenges in building large-scale information retrieval
systems: invited talk. In Proceedings of the 2nd International Conference on
Web Search and Data Mining (WSDM). → 16 and 75

[46] Je�rey Dean. 2018. Latency Numbers Every Programmer Should Know,
https://people.eecs.berkeley.edu/~rcs/research/interactive_

latency.html. → 1

[47] Biplob Debnath, Sudipta Sengupta, and Jin Li. 2011. SkimpyStash: RAM space
skimpy key-value store on �ash-based storage. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data. ACM, 25–36. → 27

[48] Mikael Degermark, Andrej Brodnik, Svante Carlsson, and Stephen Pink. 1997.
Small forwarding tables for fast routing lookups. Vol. 27. ACM. → 182

[49] Renaud Delbru, Stéphane Campinas, and Giovanni Tummarello. 2012. Search-
ing web data: An entity retrieval and high-performance indexing model. Jour-
nal of Web Semantics 10 (2012), 33–58. → 17

[50] Erik D. Demaine, Thouis Jones, and Mihai Pătraşcu. 2004. Interpola-
tion search for non-independent data. In Symposium on Discrete Algorithms
(SODA). 529–530. → 127

[51] Erik D. Demaine and Mihai Pǎtraşcu. 2004. Tight bounds for the partial-sums
problem. In Proceedings of the 15-th Annual Symposium on Discrete Algorithms
(SODA). 20–29. → 38

[52] Roman Dementiev, Lutz Kettner, and Peter Sanders. 2008. STXXL: standard
template library for XXL data sets. In Software, Practice and Experience (SPE),
Vol. 38. 589–637. → 174

[53] Laxman Dhulipala, Igor Kabiljo, Brian Karrer, Giuseppe Ottaviano, Sergey
Pupyrev, and Alon Shalita. 2016. Compressing Graphs and Indexes with Re-
cursive Graph Bisection. In Proceedings of the ACM Conference on Knowledge
Discovery and Data Mining (KDD). 1535–1544. → 30 and 68

[54] Ulrich Drepper. 2007. What every programmer should know about memory.
Red Hat, Inc 11 (2007), 114. → 1

189

https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html

bibliography

[55] Jarek Duda. 2013. Asymmetric numeral systems: entropy coding combining
speed of Hu�man coding with compression rate of arithmetic coding. arXiv
preprint arXiv:1311.2540 (2013), 24. → 25

[56] Peter Elias. 1974. E�cient Storage and Retrieval by Content and Address of
Static Files. Journal of the ACM (JACM) 21, 2 (1974), 246–260. → 18, 19, 21,
35, and 42

[57] Peter Elias. 1975. Universal codeword sets and representations of the integers.
IEEE Transactions on Information Theory (IT) 21, 2 (1975), 194–203. → 14

[58] Robert Mario Fano. 1971. On the number of bits required to implement an
associative memory. Memorandum 61, Computer Structures Group, MIT (1971).
→ 18 and 35

[59] Marcello Federico and Nicola Bertoldi. 2006. How many bits are needed to
store probabilities for phrase-based translation?. In Workshop on Statistical
Machine Translation (WMT). 94–101. → 127 and 148

[60] Marcello Federico, Nicola Bertoldi, and Mauro Cettolo. 2008. IRSTLM: an
open source toolkit for handling large scale language models. In INTER-
SPEECH. 1618–1621. → 151 and 154

[61] Paolo Ferragina, Igor Nitto, and Rossano Venturini. 2011. On optimally par-
titioning a text to improve its compression. Algorithmica 61, 1 (2011), 51–74.
→ 23, 78, and 79

[62] Agner Fog. 2014. Optimizing software in C++: an optimization guide from
Windows, Linux and Mac platforms. Technical University of Denmark. → 33

[63] Edward Fredkin. 1960. Trie memory. In Communications of the ACM (CACM).
490–499. → 33

[64] Michael L Fredman, János Komlós, and Endre Szemerédi. 1984. Storing a
sparse table with O(1) worst-case access time. Journal of the ACM (JACM) 31,
3 (1984), 538–544. → 36

[65] Michael L. Fredman and Michael E. Saks. 1989. The Cell Probe Complexity
of Dynamic Data Structures. In Proceedings of the 21-st Annual Symposium on
Theory of Computing (STOC). 345–354. → 5, 35, 36, 37, 38, and 43

[66] Michael L. Fredman and Dan E. Willard. 1993. Surpassing the Information
Theoretic Bound with Fusion Trees. Journal of Computer and System Sciences
(JCSS) 47, 3 (1993), 424–436. → 10, 35, 36, 37, and 38

190

bibliography

[67] Kimmo Fredriksson and Fedor Nikitin. 2007. Simple compression code sup-
porting random access and fast string matching. In Workshop on Experimental
Algorithms (WEA). 203–216. → 131

[68] J. Gallant, D. Maier, and J. A. Storer. 1980. On �nding minimal length super-
strings. Journal of Computer and System Sciences (JCSS) 20, 1 (1980), 50–58.
→ 104

[69] Michael Garey and David Johnson. 1979. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman and Company. → 60

[70] Simon Gog and Matthias Petri. 2014. Optimized succinct data structures for
massive data. Software: Practice and Experience (SPE) 44, 11 (2014), 1287–1314.
→ 9 and 13

[71] Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. 1998. Compressing
Relations and Indexes. In Proceedings of the 14th International Conference on
Data Engineering (ICDE). 370–379. → 17

[72] Solomon Golomb. 1966. Run-length encodings. IEEE Transactions on Infor-
mation Theory 12, 3 (1966), 399–401. → 15

[73] Rodrigo González, Szymon Grabowski, Veli Mäkinen, and Gonzalo Navarro.
2005. Practical implementation of rank and select queries. In WEA. 27–38.
→ 13

[74] Roberto Grossi, Rajeev Raman, S. Srinivasa Rao, and Rossano Venturini. 2013.
Dynamic Compressed Strings with Random Access. In Proceedings of 40-th
International Colloquium on Automata, Languages, and Programming (ICALP).
504–515. → 39

[75] Ankur Gupta, Wing-Kai Hon, Rahul Shah, and Je�rey Scott Vitter. 2007. Com-
pressed data structures: Dictionaries and data-aware measures. Theoretical
Computer Science (TCS) 387, 3 (2007), 313–331. → 35

[76] Kenneth Hea�eld. 2011. KenLM: Faster and smaller language model queries.
In Workshop on Statistical Machine Translation (WMT). 187–197. → 31, 125,
127, 128, 137, 139, 151, 153, 154, 167, and 171

[77] Kenneth Hea�eld, Ivan Pouzyrevsky, Jonathan H Clark, and Philipp Koehn.
2013. Scalable Modi�ed Kneser-Ney Language Model Estimation. In Associa-
tion for Computational Linguistics (ACL). 690–696. → 151, 152, 153, 154, 155,
171, and 179

191

bibliography

[78] Ste�en Heinz, Justin Zobel, and Hugh E. Williams. 2002. Burst tries: a fast,
e�cient data structure for string keys. In Transactions on Information Systems
(TOIS). 192–223. → 128

[79] C. Hoobin, S. J. Puglisi, and J. Zobel. 2011. Relative Lempel-Ziv factorization
for e�cient storage and retrieval of web collections. Proceedings of the Very
Large Database Endowment (PVLDB) 5, 3 (2011), 265–273. → 97

[80] Vagelis Hristidis, Yannis Papakonstantinou, and Luis Gravano. 2003. E�cient
IR-Style Keyword Search over Relational Databases. In Proceedings of the Very
Large Database Endowment (PVLDB). 850–861. → 27

[81] Samuel Huston, Alistair Mo�at, and W. Bruce Croft. 2011. E�cient index-
ing of repeated n-grams. In International Conference on Web Search and Data
Mining (WSDM). 127–136. → 31

[82] Dropbox Inc. Fire�y - Dropbox Techblog, https://blogs.dropbox.com/
tech/2016/09/improving-the-performance-of-full-text-search/.
Accessed on 15-04-2018. → 3, 75, and 181

[83] Dropbox Inc. Lepton, https://blogs.dropbox.com/tech/2016/07/lepton/.
Accessed on 10-09-2018. → 3

[84] Facebook Inc. 2014. RocksDB Cuckoo Hashing Table Format, http://

rocksdb.org/blog/2014/09/12/cuckoo.html. → 3

[85] Google Inc. 2015. S2 Geometry, http://s2geometry.io/. → 4 and 183

[86] Uber Inc. 2018. H3, https://uber.github.io/h3/. → 183

[87] Guy Jacobson. 1989. Space-e�cient Static Trees and Graphs. In Foundations
of Computer Science (FOCS). 549–554. → 13, 127, and 139

[88] Guy Jacobson. 1989. Succinct Static Data Structures. Ph.D. Dissertation.
Carnegie Mellon University. → 13

[89] Jesper Jansson, Kunihiko Sadakane, and Wing-Kin Sung. 2012. CRAM: Com-
pressed random access memory. In Proceedings of 39-th International Collo-
quium on Automata, Languages, and Programming (ICALP). 510–521. → 38,
46, and 48

[90] Dan Jurafsky and James H. Martin. 2014. Speech and language processing.
Pearson. → 4, 31, and 125

192

https://blogs.dropbox.com/tech/2016/09/improving-the-performance-of-full-text-search/
https://blogs.dropbox.com/tech/2016/09/improving-the-performance-of-full-text-search/
https://blogs.dropbox.com/tech/2016/07/lepton-image-compression-saving-22-losslessly-from-images-at-15mbs/
http://rocksdb.org/blog/2014/09/12/cuckoo.html
http://rocksdb.org/blog/2014/09/12/cuckoo.html
http://s2geometry.io/
https://uber.github.io/h3/

bibliography

[91] Tomasz Jurkiewicz and Kurt Mehlhorn. 2014. On a Model of Virtual Address
Translation. ACM Journal of Experimental Algorithmics (JEA) 19, 1 (2014).
→ 9

[92] H. Kaplan and N. Shafrir. 2005. The greedy algorithm for shortest super-
strings. Information Processing Letters (IPL) 93, 1 (2005), 13–17. → 104

[93] Brian W. Kernighan. 1988. The C Programming Language (2nd ed.). Prentice
Hall Professional Technical Reference. → 10

[94] Reinhard Kneser and Hermann Ney. 1995. Improved backing-o� for m-gram
language modeling. In International Conference on Acoustics, Speech, and Sig-
nal Processing (ICASSP), Vol. 1. 181–184. → 151 and 153

[95] Philipp Koehn. 2005. Europarl: A parallel corpus for statistical machine trans-
lation, http://www.statmt.org/europarl. In MT summit. 79–86. → 138

[96] Grzegorz Kondrak. 2005. N-gram similarity and distance. In International
symposium on string processing and information retrieval (SPIRE). Springer,
115–126. → 31

[97] Karen Kukich. 1992. Techniques for automatically correcting words in text.
In ACM Computing Surveys (CSUR). 377–439. → 31

[98] Hoang Thanh Lam, Ra�aele Perego, Nguyen Thoi Minh Quan, and Fabrizio
Silvestri. 2009. Entry Pairing in Inverted File. In Proceedings of the 10th In-
ternational Conference Web Information Systems Engineering (WISE). 511–522.
→ 54

[99] N. Jesper Larsson and Alistair Mo�at. 1999. O�ine Dictionary-Based Com-
pression. In Data Compression Conference (DCC). 296–305. → 102

[100] Daniel Lemire and Leonid Boytsov. 2013. Decoding billions of integers per
second through vectorization. Software: Practice and Experience 45, 1 (2013),
1–29. → 17 and 18

[101] Daniel Lemire, Nathan Kurz, and Christoph Rupp. 2018. Stream-VByte:
faster byte-oriented integer compression. Inform. Process. Lett. 130 (2018),
1–6. → 16 and 17

[102] Ted G. Lewis and Curtis R. Cook. 1988. Hashing for dynamic and static
internal tables. In Computer. 45–56. → 33

[103] K.-H. Li. 1994. Reservoir-sampling algorithms of time complexity O(n(1 +
log(N /n))). ACM Transactions on Mathematical Software (TOMS) 20, 4 (1994),
481–493. → 100

193

http://www.statmt.org/europarl

bibliography

[104] K. Liao, M. Petri, A. Mo�at, and A. Wirth. 2016. E�ective construction of
Relative Lempel-Ziv dictionaries. In International Conference on World Wide
Web. 807–816. → 97

[105] Yuri Lin, Jean-Baptiste Michel, Erez Lieberman Aiden, Jon Orwant, Will
Brockman, and Slav Petrov. 2012. Syntactic annotations for the google books
ngram corpus. In Association for Computational Linguistics (ACL). 169–174.
→ 32

[106] Peter Lindstrom. 2014. Fixed-rate compressed �oating-point arrays. IEEE
transactions on visualization and computer graphics 20, 12 (2014), 2674–2683.
→ 183

[107] Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE Transactions
on Information Theory (IT) 28 (1982), 129–137. → 55

[108] Veli Mäkinen and Gonzalo Navarro. 2007. Rank and select revisited and
extended. Theoretical Computer Science (TCS) 387, 3 (2007), 332–347. → 20
and 35

[109] Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. In-
troduction to Information Retrieval. Cambridge University Press. → 26, 27,
and 62

[110] M. Martinez, M. Haurilet, R. Stiefelhagen, and J. Serra-Sagristà. 2017. Marlin:
A high throughput variable-to-�xed codec using plurally parsable dictionar-
ies. In Data Compression Conference (DCC). 161–170. → 96

[111] Tomas Mikolov, Kai Chen, Greg Corrado, and Je�rey Dean. 2013. E�-
cient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781 (2013), 12. → 183

[112] Bhaskar Mitra and Nick Craswell. 2015. Query auto-completion for rare pre-
�xes. In International Conference on Information and Knowledge Management
(CIKM). 1755–1758. → 31

[113] Bhaskar Mitra, Milad Shokouhi, Filip Radlinski, and Katja Hofmann. 2014.
On user interactions with query auto-completion. In International Confer-
ence on Research and Development in Information Retrieval (SIGIR). 1055–1058.
→ 31

[114] Alistair Mo�at and Matthias Petri. 2017. ANS-Based Index Compression.
In International ACM Conference on Information and Knowledge Management
(CIKM). 677–686. → 106

194

bibliography

[115] Alistair Mo�at and Lang Stuiver. 2000. Binary Interpolative Coding for Ef-
fective Index Compression. Information Retrieval Journal 3, 1 (2000), 25–47.
→ 24, 75, and 135

[116] Donald R. Morrison. 1968. PATRICIA: practical algorithm to retrieve in-
formation coded in alphanumeric. In Journal of the ACM (JACM). 514–534.
→ 128

[117] Gonzalo Navarro, Ricardo A. Baeza-Yates, Erkki Sutinen, and Jorma Tarhio.
2001. Indexing methods for approximate string matching. In Bulletin of
the IEEE Computer Society Technical Committee on Data Engineering. 19–27.
→ 128

[118] Gonzalo Navarro and Yakov Nekrich. 2013. Optimal Dynamic Sequence
Representations. In Proceedings of the Twenty-Fourth Annual Symposium on
Discrete Algorithms (SODA). 865–876. → 39 and 44

[119] Patrick Nguyen, Jianfeng Gao, and Milind Mahajan. 2007. MSRLM: a scalable
language modeling toolkit. In Microsoft Research MSR-TR-2007-144.2007. 19.
→ 151 and 154

[120] Giuseppe Ottaviano and Rossano Venturini. 2014. Partitioned Elias-Fano
Indexes. In Proceedings of the 37th International Conference on Research and
Development in Information Retrieval (SIGIR). 273–282. → 22, 23, 24, 53, 64,
75, 78, 79, 91, 114, 129, 135, 140, and 141

[121] Athanasios Papoulis. 1991. Probability, Random Variables, and Stochastic Pro-
cesses (3. ed.). McGraw-Hill. → 13

[122] Adam Pauls and Dan Klein. 2011. Faster and Smaller N-gram Language
Models. In Association for Computational Linguistics (ACL). 258–267. → 31,
125, 126, 127, 128, 137, 138, 151, 153, 154, and 167

[123] Dan Pelleg and Andrew Moore. 2000. X-means: Extending K-means with
E�cient Estimation of the Number of Clusters. In Proceedings of the 17th In-
ternational Conference on Machine Learning (ICML). 727–734. → 55 and 56

[124] Marco Pellegrini and Giordano Fusco. 2004. E�cient IP table lookup via
adaptive strati�ed trees with selective reconstructions. In European Sympo-
sium on Algorithms. Springer, 772–783. → 182

[125] Giulio Ermanno Pibiri, Matthias Petri, and Alistair Mo�at. 2019. Fast
Dictionary-Based Compression for Inverted Indexes. In International ACM
Conference on Web Search and Data Mining (WSDM). 9. → 6

195

bibliography

[126] Giulio Ermanno Pibiri and Rossano Venturini. 2017. Clustered Elias-Fano
indexes. ACM Transactions on Information Systems (TOIS) 36, 1, Article 2
(2017), 33 pages. → 5

[127] Giulio Ermanno Pibiri and Rossano Venturini. 2017. Dynamic Elias-Fano
Representation. In Annual International Symposium on Combinatorial Pattern
Matching (CPM). 30:1–30:14. → 5

[128] Giulio Ermanno Pibiri and Rossano Venturini. 2017. E�cient Data Structures
for Massive N-Gram Datasets. In International ACM Conference on Research
and Development in Information Retrieval (SIGIR). 615–624. → 7

[129] Giulio Ermanno Pibiri and Rossano Venturini. 2018. Inverted Index Com-
pression. Encyclopedia of Big Data Technologies (2018), 1–8. → 14 and 75

[130] Giulio Ermanno Pibiri and Rossano Venturini. 2018. Variable-Byte Encoding
is Now Space-E�cient Too. ArXiv e-prints (2018), 14. arXiv:cs.IR/1804.10949
→ 6

[131] Giulio Ermanno Pibiri and Rossano Venturini. 2019. Handling Massive N-
Gram Datasets E�cienctly. ACM Transactions on Information Systems (TOIS).
To appear. (2019), 42. → 8

[132] Je� Plaisance, Nathan Kurz, and Daniel Lemire. 2015. Vectorized VByte De-
coding. In International Symposium on Web Algorithms (iSWAG). 7. → 16
and 90

[133] Nicola Prezza. 2017. A Framework of Dynamic Data Structures for String
Processing. In International Symposium on Experimental Algorithms (SEA).
11:1–11:15. → 183

[134] Mihai Pǎtraşcu and Mikkel Thorup. 2006. Time-space trade-o�s for pre-
decessor search. In Proceedings of the 38-th Annual Symposium on Theory of
Computing (STOC). 232–240. → 5, 36, 37, 38, 43, and 182

[135] Mihai Pǎtraşcu and Mikkel Thorup. 2007. Randomization does not help
searching predecessors. In Proceedings of the 18-th Annual Symposium on Dis-
crete Algorithms (SODA). 555–564. → 37

[136] Mihai Pǎtraşcu and Mikkel Thorup. 2014. Dynamic Integer Sets with Opti-
mal Rank, Select, and Predecessor Search. In Proceedings of the 55-th Annual
Symposium on Foundations of Computer Science (FOCS). 166–175. → 5, 35, 36,
and 38

196

bibliography

[137] Bhiksha Raj and Ed Whittaker. 2003. Lossless Compression of Language
Model Structure and Word Identi�ers. In International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP). 388–391. → 127

[138] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. 2001. Succinct Dy-
namic Data Structures. In Proceedings of the 7-th International Workshop on
Algorithms and Data Structures (WADS). 426–437. → 38, 46, 48, and 49

[139] Vijayshankar Raman, Lin Qiao, Wei Han, Inderpal Narang, Ying-Lin Chen,
Kou-Horng Yang, and Fen-Ling Ling. 2007. Lazy, adaptive rid-list intersection,
and its application to index anding. In Proceedings of the 2007 ACM SIGMOD
international conference on Management of data. ACM, 773–784. → 27

[140] Robert Rice and J. Plaunt. 1971. Adaptive Variable-Length Coding for E�-
cient Compression of Spacecraft Television Data. IEEE Transactions on Com-
munications 16, 9 (1971), 889–897. → 15

[141] Stephen Robertson and Sparck Jones. 1976. Relevance weighting of search
terms. Journal of the American Society for Information Science 27, 3 (1976),
129–146. → 28

[142] Kunihiko Sadakane and Roberto Grossi. 2006. Squeezing succinct data struc-
tures into entropy bounds. In Proceedings of the 17-th Annual Symposium on
Discrete Algorithms (SODA). 1230–1239. → 35

[143] David Salomon. 2007. Variable-length Codes for Data Compression. Springer.
→ 128

[144] Jangwon Seo and W. Bruce Croft. 2008. Local text reuse detection. In In-
ternational Conference on Research and Development in Information Retrieval
(SIGIR). 571–578. → 31

[145] Claude Elwood Shannon. 2001. A mathematical theory of communication.
ACM SIGMOBILE Mobile Computing and Communications Review 5, 1 (2001),
3–55. → 13

[146] Ehsan Shareghi, Matthias Petri, Gholamreza Ha�ari, and Trevor Cohn. 2015.
Compact, e�cient and unlimited capacity: Language modeling with com-
pressed su�x trees. In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing (EMNLP). 2409–2418. → 128, 151, and 155

[147] Ehsan Shareghi, Matthias Petri, Gholamreza Ha�ari, and Trevor Cohn. 2016.
Fast, Small and Exact: In�nite-order Language Modelling with Compressed
Su�x Trees. Transactions of the Association of Computational Linguistics
(TACL) 4, 1 (2016), 477–490. → 128, 151, 155, and 171

197

bibliography

[148] Fabrizio Silvestri. 2007. Sorting Out the Document Identi�er Assignment
Problem. In Proceedings of the 29th European Conference on IR Research (ECIR).
101–112. → 7 and 30

[149] Fabrizio Silvestri and Rossano Venturini. 2010. VSEncoding: E�cient Cod-
ing and Fast Decoding of Integer Lists via Dynamic Programming. In Pro-
ceedings of the 19th International Conference on Information and Knowledge
Management (CIKM). 1219–1228. → 17, 25, and 78

[150] Michael Steinbach, George Karypis, and Vipin Kumar. 2000. A comparison
of document clustering techniques. In 6th Annual Conference on Knowledge
Discovery and Data Mining (KDD), Workshop on Text Mining. 109–111. → 55,
56, and 61

[151] Alexander Stepanov, Anil Gangolli, Daniel Rose, Ryan Ernst, and Paramjit
Oberoi. 2011. SIMD-based decoding of posting lists. In Proceedings of the 20th
International Conference on Information and Knowledge Management (CIKM).
317–326. → 16 and 75

[152] Andreas Stolcke. 2002. SRILM - an extensible language modeling toolkit.
In International Conference on Spoken Language Processing (ICSLP). 901–904.
→ 151 and 154

[153] Muhammad Tahir and Shakil Ahmed. 2015. Tree-Combined Trie: A Com-
pressed Data Structure for Fast IP Address Lookup. International Journal of
Advanced Computer Science & Applications 1, 6 (2015), 168–175. → 182

[154] David Talbot and Miles Osborne. 2007. Randomised language modelling for
statistical machine translation. In Association for Computational Linguistics
(ACL). 512–519. → 125, 127, 139, and 151

[155] Larry H Thiel and HS Heaps. 1972. Program design for retrospective
searches on large data bases. Information Storage and Retrieval (ISR) 8, 1 (1972),
1–20. → 15, 75, and 128

[156] Andrew Trotman. 2014. Compression, SIMD, and postings lists. In Pro-
ceedings of the 2014 Australasian Document Computing Symposium. ACM, 50.
→ 17

[157] Peter van Emde Boas. 1975. Preserving Order in a Forest in less than Loga-
rithmic Time. In Proceedings of the 16-th Annual Symposium on Foundations
of Computer Science (FOCS). 75–84. → 35 and 37

198

bibliography

[158] Peter van Emde Boas. 1977. Preserving Order in a Forest in Less Than Loga-
rithmic Time and Linear Space. Information Processing Letters (IPL) 6, 3 (1977),
80–82. → 35 and 37

[159] Peter van Emde Boas, Robert Kaas, and Erik Zijlstra. 1977. Design and Im-
plementation of an E�cient Priority Queue. Mathematical Systems Theory
(MST) 10 (1977), 99–127. → 35 and 37

[160] Sebastiano Vigna. 2008. Broadword implementation of rank/select queries.
In Workshop on Experimental Algorithms (WEA). 154–168. → 13

[161] Sebastiano Vigna. 2013. Quasi-succinct indices. In Proceedings of the 6th
ACM International Conference on Web Search and Data Mining (WSDM). 83–
92. → 20, 22, and 66

[162] J. S. Vitter. 1985. Random sampling with a reservoir. ACM Transactions on
Mathematical Software (TOMS) 11, 1 (1985), 37–57. → 100

[163] Je�rey Scott Vitter. 1998. External memory algorithms. In European Sympo-
sium on Algorithms (ESA). 1–25. → 174

[164] Taro Watanabe, Hajime Tsukada, and Hideki Isozaki. 2009. A succinct n-
gram language model. In International Joint Conference on Natural Language
Processing (IJCNLP). 341–344. → 127, 139, 151, and 154

[165] Dan E. Willard. 1983. Log-Logarithmic Worst-Case Range Queries are Pos-
sible in Space Θ(N). Information Processing Letters (IPL) 17, 2 (1983), 81–84.
→ 35 and 37

[166] Hugh E Williams and Justin Zobel. 1999. Compressing integers for fast �le
access. Comput. J. 42, 3 (1999), 193–201. → 75

[167] Niklaus Wirth. 1995. A plea for lean software. Computer (1995), 64–68. → 1

[168] Ian Witten, Alistair Mo�at, and Timothy Bell. 1999. Managing gigabytes:
compressing and indexing documents and images (2nd ed.). Morgan Kaufmann.
→ 25 and 176

[169] Rui Xu and Donald Wunsch. 2005. Survey of Clustering Algorithms. IEEE
Transactions on Neural Networks (NN) 16, 3 (2005), 645–678. → 55 and 61

[170] Hao Yan, Shuai Ding, and Torsten Suel. 2009. Inverted index compression
and query processing with optimized document ordering. In International
Conference on World Wide Web (WWW). 401–410. → 18, 25, and 55

199

bibliography

[171] Andrew Chi-Chih Yao. 1981. Should Tables Be Sorted? Journal of the ACM
(JACM) 28, 3 (1981), 615–628. → 37 and 38

[172] Susumu Yata. 2011. Pre�x/Patricia trie dictionary compression by nesting
Pre�x/Patricia tries. In International Conference on Natural Language Process-
ing (NLP). → 128 and 139

[173] J. Zhang, X. Long, and T. Suel. 2008. Performance of compressed inverted
list caching in search engines. In International Conference on World Wide Web
(WWW). 387–396. → 17

[174] Zhaohua Zhang, Jiancong Tong, Haibing Huang, Jin Liang, Tianlong Li, Re-
becca J. Stones, Gang Wang, and Xiaoguang Liu. 2016. Leveraging Context-
Free Grammar for E�cient Inverted Index Compression. In Proceedings of the
39th International Conference on Research and Development in Information Re-
trieval (SIGIR). 275–284. → 55 and 97

[175] Justin Zobel and Alistair Mo�at. 2006. Inverted �les for text search engines.
ACM Computing Surveys (CSUR) 38, 2 (2006), 1–56. → 26 and 27

[176] Marcin Zukowski, Sándor Héman, Niels Nes, and Peter Boncz. 2006. Super-
Scalar RAM-CPU Cache Compression. In Proceedings of the 22nd International
Conference on Data Engineering (ICDE). 59–70. → 18

200

	Contents
	1 Introduction
	1.1 Thesis organization and contributions

	2 Background and Tools
	2.1 Basic concepts
	2.1.1 Model of computation
	2.1.2 Sequences, arrays and bitvectors
	2.1.3 Information-theoretic lower bound
	2.1.4 Succinct data structures
	2.1.5 Entropy

	2.2 Representation of integer sequences
	2.2.1 Elias- Gamma and Delta
	2.2.2 Golomb-Rice
	2.2.3 Variable-Byte
	2.2.4 Packed
	2.2.5 PForDelta
	2.2.6 Elias-Fano
	2.2.7 Partitioned Elias-Fano
	2.2.8 Binary interpolative coding
	2.2.9 Asymmetric numeral systems

	2.3 Inverted indexes
	2.3.1 Query processing
	2.3.2 Compression

	2.4 N-Gram language models
	2.4.1 Estimation
	2.4.2 Indexing

	3 Integer Dictionaries in Compressed Space
	3.1 Related work
	3.2 Static predecessor queries in optimal time
	3.3 Extensible representation
	3.4 Dynamic representation
	3.4.1 A basic tool: sorted blocks in succinct space
	3.4.2 Data structure
	3.4.3 Space analysis
	3.4.4 Operations
	3.4.5 A further consideration

	4 Clustered Inverted Indexes
	4.1 Related work
	4.2 Representing a set of inverted lists
	4.2.1 Clustering
	4.2.2 Reference selection
	4.2.3 Encoding
	4.2.4 Index layout

	4.3 Experiments
	4.3.1 Clustering
	4.3.2 Space/time trade-offs
	4.3.3 Analysis

	5 Optimal Variable-Byte Encoding
	5.1 Related work
	5.2 Optimal partitioning in linear time: fast and exact
	5.2.1 Overview
	5.2.2 The algorithm
	5.2.3 Technical discussion

	5.3 Experiments
	5.3.1 The Variable-Byte family
	5.3.2 Optimized Variable-Byte indexes

	6 Dictionary-based Decoding
	6.1 Related work
	6.2 Dictionay-based compression for inverted indexes
	6.2.1 Dictionary structure
	6.2.2 Decoding algorithm

	6.3 Further improvements
	6.3.1 Packed dictionary structure
	6.3.2 Exploiting strings overlap
	6.3.3 Optimal block parsing
	6.3.4 Multiple dictionaries

	6.4 Experiments
	6.4.1 Initial exploration
	6.4.2 Multi-context operation

	7 Comparing Inverted Index Representations
	7.1 Index space
	7.2 Decoding speed
	7.3 Query speed
	7.4 Conclusions

	8 Compressed Indexes for N-Gram Strings
	8.1 Related work
	8.2 Elias-Fano tries
	8.2.1 Data structure
	8.2.2 Context-based identifier remapping

	8.3 Hashing
	8.4 Experiments
	8.4.1 Elias-Fano tries
	8.4.2 Hashing
	8.4.3 Overall comparison

	9 Language Models Estimation
	9.1 Related Work
	9.2 The 3-Sort algorithm
	9.2.1 Counting
	9.2.2 Adjusting
	9.2.3 Normalization
	9.2.4 Interpolation and joining

	9.3 Improved construction: the 1-Sort algorithm
	9.3.1 Counting
	9.3.2 Adjusting
	9.3.3 Normalization and interpolation
	9.3.4 Joining and indexing

	9.4 Experiments
	9.4.1 Preliminary analysis
	9.4.2 Optimizing our solution
	9.4.3 Overall comparison

	10 Future Research Directions
	Bibliography

