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Abstract

Multi-core computing systems are becoming increasingly parallel and heterogeneous.
Parallelism exploitation is today the primary instrument for improving application
performance. Despite the impressive evolution of parallel HW, parallel software de-
velopment tools have not yet reached the same level of maturity.

Programmers need high-level parallel programming models capable from the one
hand of reducing the burdens of the efficient parallelization of their applications, and
from the other side of accommodating hardware heterogeneity. Abstracting parallel
programming by employing parallel design patterns has received renovated attention
over the last decade. However, the pattern-based approach to parallelism exploitation
suffers from limited flexibility and extensibility.

In this thesis, we present the new version of the FastFlow parallel library that
completes and strengthens the library that we started developing since 2010. Over
the years the FastFlow pattern-based library was used in three EU-funded research
projects. The lessons learned over this period of research and parallel software de-
velopment convinced us to redesign, restructure and improve the lower level software
layers of the library and also to introduce a new concurrency graph transformation
component aiming at refactoring the parallel structure obtained through patterns
compositions. The objectives of the new FastFlow design are twofold: a) to increase
flexibility and composability of the approach while preserving its efficiency, and b) to
introduce new features that open to the possibility of introducing static optimizations.

We propose a small set of highly efficient, customizable and composable parallel
building blocks that can be connected and nested in many different ways and that
provides the user with a reduced set of powerful parallel components. The base idea
mimics the RISC approach of microprocessor architectures. The FastFlow library
targets domain-expert programmers by offering some well-know high-level parallel
patterns as well as run-time system programmers by providing a set of parallel build-
ing blocks along with clean and effective data-flow composition rules.

The new FastFlow software layer provides the essential mechanisms to restructure
the data-flow concurrency graph produced by patterns and building blocks compo-
sitions. Straightforward yet effective graph transformations are transparently and
automatically provided to the user through optimization flags. Its clean API enables
the implementation of new and more powerful static optimization policies.

Finally, a full set of experiments is discussed assessing both functional and non-
functional properties of both the building block set and the transformation rules.
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Chapter 1

Introduction

The slowdown of Moore’s law and the end of Dennard scaling has produced a radi-

cal change in the computing landscape. We are witnessing a continuous increase in

the number of cores packed in a single chip and to the on-chip integration of stan-

dard CPUs with specialized HW accelerators (e.g., FPGAs). Recently a new term

“Megacore era” has been coined indicating that we are entering a new era of com-

puting where “hundreds of thousands, or millions, of (small) cores” will be available

to the programmer on a single or few highly heterogeneous devices [186]. Examples

of current highly parallel general-purpose multi-core platforms are the Intel’s Xeon

Phi KNL featuring 72 hardware cores (4-way SMT) for a total of 288 logical cores (at

1.5GHz), and the IBM Power9 E980 with 24 hardware cores (8-way SMT) for a total

of 192 logical cores (up to 4.0GHz). The Intel Xeon Gold 6138P Processor is an ex-

ample of integration in a single chip of a high-end multi-core with a high-performance

and power-efficient mid-range FPGA [98].

Today, the primary means for improving application performance is to employ

parallel processing at the application level. The “free lunch” era of continuously

increasing processor speeds has ended [307]. Despite the impressive evolution of the

HW platforms, a wide gap still exists between parallel architectures and parallel

programming maturity, and the software community is slowly moving to fill this gap.

It is crucial, then, that the research community makes a significant advance toward

making the development of parallel code accessible to all programmers achieving a

27



proper trade-off among Performance, Programmability and Portability. The new “free

lunch” requires scalable parallel programming [242].

In the parallel scientific community, it is widely recognized that high-level parallel

abstractions are the solution to the “programmability wall” [85, 34], and they repre-

sent the cornerstone for achieving performance portability [241, 242, 94, 268, 66, 129].

A quantitative definition of performance portability has been recently proposed by

Pennycook, et al. [269]. Informally, it can be defined as the ability to compile the

same code on different platforms maintaining the desired level of performance consid-

ering the features and the peak-performance of the target platform. The challenge is

to be able to guarantee adequate performance, possibly close to hand-tuned parallel

implementation made by experts, without sacrificing code portability and programma-

bility. This last aspect is particularly critical to enlarge the parallel software developer

community to non-expert parallel programmers.

Abstracting parallel programming by employing parallel design patterns has re-

ceived renovated attention over the last decade. The programming approach based

on parallel patterns is denominated structured parallel programming [122, 123, 94,

242, 318]. This term has been borrowed from sequential programming where in the

60s and 70s programs were often poorly designed [139]. The foundational ideas were

initially proposed in the late 80s when the algorithmic skeleton concept was intro-

duced to simplify parallel programming [93, 267]. Briefly, algorithmic skeletons may

be considered as a best practice of implementation of parallel patterns [88]. The key

benefits of parallel patterns are that they abstract over many low-level implementa-

tion details merging parallelism exploitation and synchronization requirements at a

sufficiently high level of abstraction. The definition of suitable parallel abstractions

with their associated functional and parallel semantics requires efficient parallel Run-

Time Systems (RTS, from now on), which in turn requires a deep understanding of all

aspects of modern parallel architectures. Parallel patterns have been used in multiple

recent research proposals [64, 134, 282, 43, 233].

However, one of the main limitations of concrete implementations of the parallel

patterns approach is that it restricts the possibilities to express parallelism only to
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those patterns (and their compositions) offered by the framework/library considered.

For this reason, some parallel software developers consider the parallel pattern-based

approach as not enough flexible and extensible to be used in practice. Therefore,

it is of paramount importance, when designing a new software stack inspired by

this programming methodology, to provide the RTS programmer with suitable tools

and mechanisms that allow him/her to build new parallel patterns and to integrate

existing ones with ad hoc parallel solutions in a well-defined way. In this case, “well-

defined” means that the extensions and customizations should not impair the overall

efficiency and portability of the structured approach and that they can be integrated

into the considered system as smoothly as possible. In that regard, some recent

research works advocated that a relatively small number of parallel components can

be used to model a broad range of operations and high-level parallel components

covering multiple application domains efficiently [306, 7]. These results have opened

a new perspective to overcome the flexibility limitation of the pattern-based approach.

The structured parallel programming methodology was the fertile ground in which

the initial ideas of the FastFlow project have grown1, then such programming method-

ology guided us during its implementation. The ”FastFlow way” to harnessing parallel

programming on multi/many-core platforms is the main subject of this dissertation.

The lessons learned over about eight years of research and parallel software develop-

ment using the library led us to recently redesign and improve the lower level software

layers of the FastFlow library to make it more powerful and flexible and to enrich the

library with a new software component for managing concurrency graph transforma-

tions/optimizations.

Thesis aims and context.

The main aim of the research effort described in this thesis is to provide a redesign

of the FastFlow parallel library capable of offering a reduced set of powerful parallel

components mimicking the idea of the RISC-like approach in microprocessor archi-

tectures. We want to demonstrate that, by using such building blocks, it is easy to

1The FastFlow project home is http://calvados.di.unipi.it/fastflow
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build complex parallel patterns and to introduce concurrency graph transformations

and optimizations capable of enhancing performance portability. The final goal is to

substantiate that the performance obtained by the resulting parallel solutions targeting

multi/many-core platforms are as good as or even better than state-of-the-art parallel

frameworks, but with more programmer flexibility, enhanced performance portability

and software engineering advantages.

We do believe that the FastFlow programming model based on the proper com-

position of parallel building blocks presents a clear methodology for building parallel

components providing the RTS programmer with the right level of abstraction to

develop efficient and flexible solutions.

The FastFlow project started around 2010 with the primary aim at targeting ef-

ficient parallel streaming computations on emerging multi-core platforms [22]. Since

then, it has been extended and improved in different directions, from the targeting of

distributed memory systems [11, 73], to the definition of OpenCL-based and CUDA-

based heterogeneous patterns targeting CPU+GPUs [23, 8]. Since the beginning of

the project, the author was (and still he is at the time of writing) the leading developer

and the maintainer of the FastFlow library.

A significant boost to the development of the FastFlow library came from its uti-

lization as RTS in three successful European research projects (EU-FP7 ParaPhrase,

EU-FP7 REPARA, and EU-H2020 RePhrase). The usage of the FastFlow library

within these EU-funded research projects, allowed us to enhance both its RTS and

its usability [119, 108], and to actively contribute to the success of the projects.

Besides, over the years, the FastFlow library has sustained several research works in-

cluding some Ph.D. theses covering different aspects of multi-cores and many-cores

programming [168, 240, 104, 250, 143, 128], and it has also been used for years as

a tool to teach structured parallel programming at the Master Degree in Computer

Science and Networking jointly run by the University of Pisa and Scuola Superiore

Sant’Anna [120].

Since the initial phases of the FastFlow project, we firmly believed that a relatively

small set of primitive parallel components (in this thesis called building blocks) could
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be used to model a wide range of parallel computations across multiple application

domains [118, 7]. Also, the stream concept revealed itself as a powerful abstraction

particularly suitable for modern multi-core platforms [18]. Therefore, parallel building

blocks and streaming are the two fundamental ingredients of the FastFlow library.

Following the same principles of the structured parallel programming methodol-

ogy, a parallel application (or a parallel component) is conceived by selecting and

adequately assembling a small set of well-defined building blocks modeling both data

and control flows. Parallel building blocks are key elements that can be used by the

RTS developer to construct high-level parallel patterns as well as by the application

programmer to design his/her parallel components for implementing specific parts of

the application at hand.

The idea is to promote the so-called LEGO-style approach to parallel programming

where the bricks can be either complex pre-assembled and tested structures (i.e.

parallel patterns) or elementary bricks (i.e. parallel building blocks). As we shall

discuss in Chapter 5, the FastFlow parallel building blocks are: the pipeline modeling

data-flow pipeline parallelism, the farm modeling functional replication coordinated

by a centralized entity, and the all-to-all building block modeling both functional

replication without a centralized coordination and the shuffle communication pattern

between function replicas. These parallel building blocks can be combined and nested

in many ways forming either acyclic or cyclic concurrency graphs, where nodes are

FastFlow concurrent entities and edges are communication channels.

The idea of modeling parallel applications as compositions of basic building blocks

can be considered at the core of the structured parallel programming methodology.

It promotes the pattern-based approach not only at the application level to ease

the application programmer’s job but also at a lower level of abstraction, that is, in

the design and implementation of the underlying RTS by providing suitable parallel

abstractions capable of simplifying the job of the RTS developer [7].

In addition to the composability property of the LEGO-style approach, the FastFlow

building blocks promote specialization as a way to create custom and well-defined

new building blocks, which seamlessly integrate into the FastFlow application topol-
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ogy. For example, the FastFlow farm building block may be customized with ad hoc

input data scheduling and output results gathering policies to fulfill specific applica-

tion needs. Such operation is straightforward to implement, and it is confined to the

single building block considered with no intrusion within the FastFlow RTS.

Given a FastFlow concurrency graph describing a given parallel application, the

LEGO-style approach to parallel programming allows to deconstruct the graph easily

and to reassemble the building blocks taken apart in a different and possibly better

way according to some optimization objectives. Examples of possible optimizations

are: to reduce the number of resources used by the application (i.e. to increase

its efficiency); to remove potential bottlenecks introduced by the composition and

nesting of high-level parallel patterns (i.e. to improve the application performance).

This approach opens many opportunities to devise and introduce smart optimization

strategies on top of the FastFlow building block layer, for example, through a Domain

Specific Language (DSL) interpreter [121, 163], or by implementing higher-level frame-

works such as PiCo [251] and Nornir [131, 131], or DSL compilers such as SPar [177].

The primary objectives of the optimizations are to improve both the performance

of applications and also to enhance their performance portability on different target

platforms.

To this end, we introduced a new software layer in the FastFlow software stack

called graph transformation component, which provides the essential mechanisms to

operate directly at the building block level to restructure the application concurrency

graph to accommodate the efficient execution of FastFlow applications on different

target platforms. A small set of already defined transformations (e.g., to remove

adjacent service nodes in the network topology) and a set of predefined combin-

ing functions working with parallel building blocks (e.g., merging two or more farm

components connected in pipeline) have been designed and provided as ready-to-use

transformations to the FastFlow programmer. Some of these graph transformations

can be automatically enabled by setting proper optimization flags before starting the

execution of the FastFlow parallel program.
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Thesis Contributions

The main contributions of this dissertation, that complete and improve the FastFlow

library as previously developed by the author, are as follows:

C1 A comprehensive and thorough description of the FastFlow library design, its par-

allel programming model and its implementation. Although several research pa-

pers describe and discuss features of the FastFlow library, no organic description of

the FastFlow programming model and its implementation was previously stated.

C2 The definition and implementation of the new building blocks layer in the FastFlow

software stack. In this layer, a new parallel component called all-to-all modeling

the shuffle communication pattern, and a set of new composition and combin-

ing rules have been defined, which enable the construction of complex non-linear

streaming networks made of both sequential nodes, i.e. standard, multi-input,

and multi-output nodes, as well as parallel building blocks, i.e. farm, all-to-all

and pipeline. The latter, coordinates the parallel execution of a proper assembly

of a well-defined set of sequential nodes. The new all-to-all parallel building

block can also be profitably used to optimize typical compositions of patterns

such as the widely used Map+Reduce compositions or farm+farm compositions

where the two farms have a different number of Workers. The network topol-

ogy describing the parallel application is obtained by a data-flow composition

of building blocks connected by bounded or unbounded FIFO channels imple-

mented by using Single-Produce Single-Consumer (SPSC) FIFO queues. The

unbounded FastFlow SPSC queue is considered state-of-the-art and is one of the

distinguishing features of the library [19]. We designed the FastFlow channels at

the beginning of the project [312]. Related publications: [7, 118].

C3 A new FastFlow concurrency graph transformation software component. This

component allows to statically (and automatically) introduce graph transforma-

tions capable of optimizing the FastFlow concurrency graph describing the ap-

plication. The transformations proposed mainly aim to reduce both the number
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of nodes implementing the data-flow network by removing “unnecessary” fan-

in/fan-out service nodes and to optimize particular pattern compositions (e.g.,

compositions of Map and Reduce). The objective is on the one hand to increase

resource efficiency and on the other hand to promote performance portability on

machines with a different number of computing resources. Related publica-

tion: [129].

C4 The implementation of both blocking and non-blocking concurrency control mech-

anisms for accessing the communication channels connecting two concurrent en-

tities in the run-time. The proposed mechanisms allow us to improve power

saving and/or throughput by statically and dynamically switching the concur-

rency mode between passive waiting (blocking) and active waiting (non-blocking)

of run-time threads. This is particularly relevant for long-running data streaming

computations where variable arrival rates and sudden workload changes require

different levels of reactiveness to respect a given QoS level. Related publica-

tion: [314].

C5 The implementation of concurrency throttling mechanisms in the farm building

block. This enables the development of sophisticated policies that dynamically

change the concurrency level of parts of the parallel application (e.g., in a farm

building block) to increase either the sustained input rate in a pipeline compu-

tation or to reduce the power consumption by reducing the number of Worker

threads. Related publications: [114, 130].

C6 Experimental validation of the proposed building blocks to support the efficient im-

plementation of well-known parallel patterns. We aimed at demonstrating that

FastFlow building blocks can also be profitably used for implementing usable and

efficient task-based patterns (such as Divide & Conquer, Macro Data-Flow and

ParallelFor) with the same level of performance and usability of specialized li-

brary using a task-based programming model such as Intel TBB and the OpenMP

standard. Related publications: [109, 119, 69].
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Thesis outline

This thesis is organized in nine chapters. Apart from the first and last chapters

presenting the introduction of this work and outlining the conclusions and possible

future research directions, the other chapters are organized as follows:

Chapter 2: It provides the essential ingredients to help the reader going through

the contributions of the thesis and provide the relevant background to comprehend

related research works. We give an overview of the complex and variegated world of

parallel computing focusing on the consequences of the transition from multiproces-

sors to multi/many-core systems. Finally, we describe the most relevant programming

models focusing on the structured parallel programming methodology which is at the

basis of our work.

Chapter 3: In this chapter, we present the frameworks and libraries targeting parallel

programming on multi-cores with particular focus on frameworks promoting high-level

parallel programming that are close to the FastFlow approach. The main aim of this

chapter is to provide the reader with a broad spectrum of past and current research

efforts in the context of structured parallel programming and parallel programming

in general.

Chapter 4: This is the central chapter of the thesis. It presents an overview of

the FastFlow library, its programming model, the distinguishing features of the new

version compared to previous versions of the library and also the new layered software

design. We briefly go through the FastFlow project history starting from its first

version released in 2010 and then we highlight the most significant enhancements it

had over about eight years of development. This chapter, provides the reader with

the links to other chapters where a broader discussion of the most important aspects

can be found. Contribution C1 .

Chapter 5: This chapter presents the FastFlow building blocks, their composition

rules, and their parallel semantics. FastFlow building blocks promote a LEGO-style

approach to parallel programming targeting mainly RTS programmers rather than
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application programmers. The idea underpinning building block is that of promot-

ing the structured parallel programming methodology at a lower level of abstraction

compared to the one promoted by parallel patterns. The aim is to make available

suitable parallel abstractions to RTS developers so that they can develop efficient and

portable high-level parallel components. Contribution C2.

Chapter 6: In this chapter we describe the FastFlow communication channels which

play a crucial role both for performance and parallel execution correctness reasons.

A communication channel connecting two FastFlow concurrent entities is implemented

by using a First-In First-Out (FIFO) Single-Producer Single-Consumer (SPSC) queue.

This kind of queues are particularly interesting because they can be implemented in

a very efficient way on shared-cache multi-cores. The FastFlow channel has been im-

plemented to support both blocking and non-blocking concurrency control policies

and provides the necessary hooks allowing the automatic switching between the two

concurrency modes dynamically. This chapter describes the two concurrency control

policies used to regulate concurrent accesses to the channel and used for improving

performance and power efficiency. Contributions C4.

Chapter 7: This chapter elaborates on the implementation of the building blocks

(both sequential and parallel ones). The FastFlow node concept and its implementa-

tion is presented. It represents the atomic concurrent entity provided by the FastFlow

library. The sequential node combiner as well as all different kind of sequential nodes

are presented. The pipeline, farm and all-to-all building blocks are discussed present-

ing their features and capabilities and assessing the parallel overhead they introduce

in FastFlow applications. This chapter also discuss the implementation of the dynamic

concurrency throttling of farm’s Workers. Contribution C2, C5.

Chapter 8: This chapter presents the new concurrency graph transformation soft-

ware component added to the FastFlow software stack. This layer contains a set of

mechanisms and functions that allow us to statically restructure the application con-

currency graph to reduce the number of FastFlow nodes and to optimize particular

combinations of building blocks. A simple interface function is provided to the user
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to automatically apply simple yet powerful transformations. More complex graph

transformations based on the provided mechanisms are currently user’s responsibil-

ity. Contribution C3.

Chapter 9: In this chapter, we discuss some parallel patterns implemented on top

of FastFlow building blocks. Notably we considered: the ParallelFor pattern pro-

viding a versatile implementation of the Map and Map+Reduce abstractions; the

Macro Data-Flow pattern modeling general, non-recursive, parallel computations by

automatically managing data-flow dependencies among tasks; and finally, the Divide

& Conquer parallel pattern modeling classical recursive computations. We assess

both usability and performance of these three high-level patterns by using simple

benchmarks as well as real applications/kernels and comparing performances with

state-of-the-art framework offering either native construct (i.e. parallel-for) or general

implementation mechanisms such as the ones provided by task-based programming

model. Contribution C6.

Possible ways to read the thesis

There is more than one possibility for reading this thesis apart from barely following

the numerical order of chapters straight from the Introduction to the Conclusion.

Chapter 4 has been conceived as the central chapter of the thesis, summarizing

all works done over the years related to the FastFlow parallel programming library we

developed, and what we have added to the library during the Ph.D. period. It also

discusses the programming model offered by the library, a fundamental concept that

is of primary importance to understand the contributions presented in technical chap-

ters, and introduces the primary aspects discussed in more detail in other chapters.

The reader who is familiar with parallel programming approaches and particular with

structured parallel programming, might consider to skip the background and related

work chapters (i.e. Chapter 2 and Chapter 3, respectively) and read Chapter 4 after

the Introduction chapter. In any case, by considering the connections between chap-

ters reported in Figure 1-1 (thin solid gray lines), the reader may decide to follow

37



Figure 1-1: Possible ways to read this dissertation.

his/her preferred path. Among the possible paths, and apart from Chapter 1 and

10, we would like to highlight three paths which have a particular focus, notably:

Low-level mechanisms, Building blocks and Patterns and Graph’s transformations.

• Low-level mechanisms. It includes: Chapters 4, 6, and Section 7.3.2 of

Chapter 7 (thick solid blue lines). This path allows consideration of contribu-

tions C1, C4 and C5 focusing on low-level mechanisms: communication chan-

nels implementation, concurrency control policies and the concurrency throttling

mechanisms.

• Building blocks and Patterns. It includes: Chapters 4, 5, 7, 9 (dotted

red lines). This path allows consideration of contributions C1, C2, and C6

skipping all details about the implementation of channels and concurrency graph

transformations.

• Graph’s transformations. It includes: Chapters 4, 5, 8 (dashed green lines).

This path allows consideration of contributions C1, C2, C3 skipping the details

related to the channels, building blocks and pattern implementations.
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Chapter 2

Background

2.1 Parallel Computing

The unquenchable need of scientists to perform more and more extensive computa-

tions has nurtured the evolution of computers and applications in the past fifty years.

The only approach that was able to satisfy such scientific needs is parallelism, i.e. the

capability of computing more than one task simultaneously.

A parallel computer is a “collection of processing elements that communicate and

cooperate to solve a large problem fast” [28]. This definition at first glance appears

straightforward, but it hides many complex problems that fed extensive scientific

research. To mention some of them: How large does the “collection of processing

elements” need to be to solve a problem? How processing elements “communicate”

one each other and how frequently? How “cooperation” has to be handled? Answering

these questions even for a single well-defined problem is not easy.

In principle, building a parallel computer to solve a given problem is easy to put

into practice. It is sufficient to get a set of independent computers, each one possibly

equipped with multiple execution units, connected by a communication network and

using them simultaneously to solve a computation problem. The problem to be

solved is broken down into independent discrete parts in a manner that the splitting

does not impair the overall results; if possible, each part is further broken down

into a series of instructions. Instructions coming from the different parts are then
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Figure 2-1: Bridge analogy connecting users to a parallel IT industry. From “A View
of the Parallel Computing Landscape” [35].

executed simultaneously on different computational units of each computer. A global

coordinator is used to control and regulate different phases of the computation and

to assemble the partial results into the final one.

Doing this is not difficult per se, what instead is far more challenging is to build a

well-balanced parallel system so that its exploitation is not hindered by any internal

bottlenecks. In the previous näıve model of a parallel system, the coordinator and/or

the network system might result to be the bottleneck making the overall performance

of the system even worse than the one of the single computer unit composing the

system. However, even if there are no serious bottlenecks in the system, an important

limiting factor might be the way the initial problem is broken down into parts and how

these parts are mapped onto the available computing resources. In the end, the huge

research efforts of the last fifty years in academic and industrial settings demonstrated

that the primary problem in parallel computing is software, not hardware.

This important issue was clearly identified as “the problem” in the famous Berke-

ley Report “The Landscape of Parallel Computing Research: A View from Berkeley”

[34] in 2006, at the beginning of the “multi-cores era”. A few years later, the same

authors stated: “Software is the main problem in bridging the gap between users and

the parallel IT industry. Hence, the long distance of the span in Figure 2-1 reflects
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the daunting magnitude of the software challenge” [35].

Parallel programs are far more challenging to design, write, debug, and tune than

sequential ones. Splitting the program into multiple parts making them run concur-

rently, introduces several new problems that programmers must tackle. The allocation

of different parts of the program together with the fine-tuning of communications and

synchronizations among concurrent parts are considered one of the greatest difficul-

ties in parallel programming [244]. These aspects, if not properly handled, might

undermine the overall parallelization thus lowering or nullifying the parallelization

outcomes. This is due to the fact that, generally, more work needs to be done by

the parallel application with respect to its sequential counterpart. This extra work,

called “overhead”, is introduced by parallel programming and it is associated with

the execution of any non-functional code of parallel applications.

To quantify the impact of the overhead and to give an idea of the difficulties

in the parallelization process, let us consider one of the examples reported in the

reference book “Parallel Computer Architecture: A Hardware/Software Approach”

by D. Culler et al. [100]. Figure 2-2 shows the speedup of the parallelization of the

AMBER code on a 128-processor Intel Paragon machine for three distinct versions

developed over a period of about six months. The initial parallelization of the AMBER

code (version 8/94) showed good speedup only for a small number of processors.

The second version (version 9/94) improved the scaling by optimizing the workload

balancing among computing resources. The final effort to optimize communication

(version 12/94), improved the speedup of the application significantly.

The overhead introduced by the parallelization is strictly related to the tools and

programming models used. The scarcity of good high-level parallel programming

libraries and environments often forces the application developers to rewrite the se-

quential programs into a parallel one trying to exploit all the (low-level) features and

peculiarities of the target system. This makes difficult and time-consuming the devel-

opment of efficient parallel applications, making also the software not easily portable

with the same or better performance on newer architectures. This last aspect, often

referred to as performance portability (see also Section 2.4.1) is particularly critical
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Figure 2-2: Speedup of three parallel versions of the AMBER code running on a
128-processor Intel Paragon machine. From “Parallel Computer Architecture: A
Hardware/Software Approach” [100].

because of the rapid evolution of modern platforms. In the past few years, parallel

computers have entered mainstream with the advent of multi-core computers. This

makes urgent to define useful abstractions that allow easy and efficient development

of parallel applications on the large set of systems equipped with different number

of cores and different HW architecture. The applications running on multi-cores sys-

tems are not necessarily (parts of) large HPC applications but they are also standard

software needing to fully use the available resources.

The advent of multi-core processors has alleviated several problems that are re-

lated to single-core processors (as for example the so-called memory wall [325]) but

it raised the issue of the so called programmability wall [85]. Current approaches

to exploit multi-core parallelism mainly rely on sequential flows of control (threads),

and the sharing of data is coordinated by using locks (in shared memory systems) or

explicit messages (in distributed memory systems).

It is widely acknowledged that high-level parallel abstractions are the solution to

the programmability wall providing the ground for achieving performance portabil-

ity [241, 242, 94, 268, 318]. Raising the level of abstraction in developing parallel

applications can greatly simplify parallel programming by hiding all low level as-
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pects related to task scheduling, resource mapping, synchronization and so on. The

challenge is, at the same time, to be able to guarantee adequate performance, pos-

sibly close to hand-tuned parallel implementation made by experts, and most of all

guarantee performance portability across different platforms.

Abstracting parallel programming by means of parallel design patterns have re-

ceived lots of attention over the last decade. Parallel patterns are used in several

recent systems [64, 134, 282, 43, 233]. The key benefit of parallel patterns is that they

abstract over the low-level implementation differences merging parallelism exploita-

tion and synchronization requirements at a sufficiently high level of abstraction. The

definition of suitable parallel abstractions with their associated properties requires to

be able to provide efficient parallel run-time systems, which in turn requires a deep

understanding of all aspects of modern parallel architectures. Some recent research

works have shown how a relatively small number of parallel components can be used

to model a wide range of operations across multiple domains [306, 7].

In our opinion, further research is needed in this respect to fully recognize which

are the most suitable abstractions for reasoning about parallelism that are able to

play a key role in the scalable exploitation of ubiquitous parallelism.

2.2 The multi-core era of computing

For almost forty years computing hardware has continuously evolved to sustain the

high demand for increasing performance. From the early 70s up to 2004, we profited

from the continuous growth of the performance capability of computer systems. This

was mainly due to the success in the advance of the VLSI technology, which allows

clock rates to increase, and also to pack more and more components into a single

chip. More components in a chip translate in the execution of more instructions in

parallel, and this, together with higher clock rates translates into increasing applica-

tion performance without the need to touch even a single line of code. Such trend

was predicted in 1965 by Gordon Moore, one of the founders of Intel, and it is known

as Moore’s Law [253], which roughly states that integrated circuit resources double
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every 18–24 months. Moore’s law was the key indicator of successful leading-edge

semiconductor products and companies at least until the mid-2000’s.

The basic recipe for technology scaling was laid down by Robert N. Dennard at

IBM in the early 1970s. This recipe is known as Dennard Scaling [137] and remained

valid for about three decades. In a nutshell, the Dennard Scaling law states that as

transistors get smaller their power density stays constant. Decreasing a transistor’s

linear size by a factor of two reduced power by a factor of four, or with both voltage

and current halving [281].

Historically, the transistor power reduction afforded by the Dennard scaling law

allowed manufacturers to drastically raise clock frequencies from one generation to

the next one without significantly increasing overall circuit power consumption. If

we consider the Intel 8086-8 processor at 8MHz and the Intel PIII at 1GHz, the first

one had a power draw of about 1.8Watts whereas the PIII’s power draw was about

33Watts, meaning that CPU power consumption increased by 18.3 times while CPU

frequency improved by 125 times in about twenty years. Moreover, in the same time

span, other fundamental technological advances occurred such as the adoption of

L2 integrated caches, out-of-order instructions execution, superscalar and pipelining

processors, all of them together boosted the computing power of the single computing

system.

Although transistor size still continues to shrink, transistor power consumption

no longer decreases accordingly. This has led to the end of the Dennard Scaling [89].

The primary reason for the breakdown of the Dennard scaling is that at small sizes,

current leakage poses significant challenges, also causing the chip to heat-up with

critical cooling problems. The breakdown of Dennard scaling and resulting inability

to increase clock frequencies has caused most CPU manufacturers to stop trying to

make the single processor run faster.

Around 2004, chip manufacturers started focusing on multi-core architectures as

an alternative way to improve performance. Processor engineers, instead of boosting

Instruction Level Parallelism and increasing clock frequency, started adding multiple

processors (called cores) in a single chip making them communicate through shared
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Figure 2-3: Forty-two years of microprocessor evolution. Figure by K. Rupp [288].

hardware caches. The result was a Chip Multiprocessor, also referred to as CMP, in

which the computing power can be fully exploited only through application paral-

lelism, i.e. employing multiple cores to work on a single task. Since then, we entered

the so-called “multi-core era” [195], where parallelism, at multiple levels of abstrac-

tion, is the driving force of computer design across all classes of computers, from

small devices and desktop workstations to large-scale computer systems.

Figure 2-3 shows forty-two years (from about 1975 to 2017) of microprocessor evo-

lution considering different metrics: 1) the number of integrated transistors; 2) single

thread performance measured considering a well-known benchmark; 3) processor fre-

quency; 4) power consumption; 5) and the number of logical cores (i.e. considering

also hyperthreaded and SMT cores). It is clear from the plot that frequency and

power do not experience any significant changes in the last ten years. Single-thread

performance has kept increasing even if at a lower speed and this is mainly due to

the introduction of smart power management and dynamic clock frequency scaling

techniques. Moore’s Law is still valid, in fact, for each year, the number of transistors
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Figure 2-4: Number of general-purpose cores (GPP) and simpler embedded cores
(EMB) that can be integrated on a die over different technology generations based
on the available power budget. Figure from “Server Architecture for the Post-Moore
Era” HotDC Keynote talk by Prof. B. Falsafi [152]. Full study presented in [188].

fitting into the same space, has continued to increase almost at the same rate. The

number of logical cores per chip is increasing proportionally to the number of tran-

sistors. At the time of writing, a top-of-the-line Intel server processor has 56 logical

cores (28 physical ones) while the Intel Knights Landing Xeon Phi CMP is equipped

with up to 288 logical cores (72 physical ones).

2.2.1 Dark Silicon

The broad diffusion of CMP architectures has had and still is having, an important

effect on how software is developed. The “free lunch era” of continuously increasing

single processor speeds ended around 2005 [307]. Since then, the old software will run

slower on new machines and an increase of performance can only be obtained if the

application can run in parallel over the available cores. Advances in technology will

mostly mean an increased number of cores. The full exploitation of such parallelism is

one of the outstanding challenges of modern Computer Science. Packing multiple pro-

cessors on a single chip does not automatically guarantee lower power consumption,

instead, this technology enables the continuous improvement of the performance by

replacing a high-clock-rate with efficient exploitation of the application parallelism.
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However, if from one side increasing the core count allows increasing overall peak

performance leveraging on parallelism, from the other side the increased number

of active elements coming from multiple cores and large shared cache still results

in increased overall power consumption. Power consumption together with limited

cooling technology and device packaging constraints produced the so-called “dark

silicon” problem [151, 150]. That is, a significant amount of transistor on-chip cannot

simultaneously be powered-on at the peak performance level and thus stay “dark”,

i.e. in low-power states.

Figure 2-4 shows the number of general-purpose high-performance high-power

cores (GPP) and simple low-power embedded cores (EMB) that can be integrated on

a die over multiple technology generations on the basis of the available power budget.

In the figure, it is also reported the theoretical maximum number of embedded cores

that could fit in the chip area. As can be seen, considering the available power budget

and the peak performance attainable using GPP cores, a large fraction of chip area

is dark due to power and thermal constraints. The main reason stands on the fact

that up to half of the on-chip area is dedicated to large caches needed to sustain the

memory bandwidth required to reach the desired performance [188]. However, such

large caches are often ineffective at improving the performance of a wide range of real

server workloads [154].

The switch from homogeneous architecture designs to heterogeneous ones provides

more flexibility in utilizing the available power budget. On the other hand, complex

heterogeneous multi-cores, presents even harder difficulties from the programming

standpoint if compared to homogeneous multi-cores. At present, each computing

element (CPU, GPU, DSP, FPGA) follows its own programming model and these

divergent programming models are one of the most crucial obstacles to the broader

acceptance of heterogeneous systems. The OpenCL programming standard [180], is

a recent development effort promoted by several hardware vendors in the direction of

enhancing program portability across CPU, GPU, and FPGAs. However, a unified

software tool-chain for heterogeneous multi-cores remains one of the main challenges

in Computer Science
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2.3 Parallel Systems Architectures

One of the possible categorizations of parallel hardware is based on the number of

instruction streams and the number of data streams [266]. This classification was

proposed by Michael J. Flynn in 1966 and it is still used today [156]. A conventional

uniprocessor system has a “Single Instruction stream and Single Data stream” (SISD).

A conventional multiprocessor has “Multiple Instruction stream and Multiple Data

stream” (MIMD). MISD (“Multiple Instruction stream and Single Data stream”)

architectures are not popular today. In these systems, many functional units perform

different instructions on the same data set. These types of architecture are mainly

used for fault-tolerant purposes where the same instructions are executed redundantly

to handle faults and detect errors.

Parallelism at instruction level is exploited by SISD architectures, whilst MIMD

architectures leverage parallelism at the process level. In SIMD architectures the

same instruction is executed by multiple processors on different data streams. They

support data-level parallelism by applying the same operations to multiple items

of data in parallel. In MIMD systems, each processor fetches its own instructions

and operates on its own data, and generally targets task-level parallelism. MIMD

systems are more expensive than SIMD in terms of memory and control logic, on the

contrary MIMD architectures are more general and widely applicable to larger classes

of problems.

Depending on memory organization, MIMD architectures can be further subdi-

vided into two main sub-classes: tightly coupled (or shared memory) and loosely

coupled (or distributed memory) systems. In the category of tightly coupled MIMD

there are two sub categories which are SMP (Symmetric MultiProcessors) and NUMA

(Non-Uniform Memory Access) systems characterized by non-uniform memory access

latency and higher memory bandwidth. Loosely coupled MIMD are essentially dis-

tributed memory systems like for example Beowulf clusters [302].

Many processors are nowadays “hybrids” using multiple classes of parallelism. For

example, Multimedia Extension (MMX) instructions were added by Intel to the x86
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SISD microarchitecture, then Streaming SIMD Extensions (SSE) and more recently

Advanced Vector Extensions (AVX) instructions (supporting the simultaneous exe-

cution of four double precision or eight single precision floating-point numbers), have

been added to successive generations of Intel processors including MIMD multi-cores.

Another hybrid architecture is the modern Graphics Processing Unit (GPU) that

is a MIMD+SIMD architecture. A GPU contains a collection of multithreaded SIMD

processors (also called SIMT processors – Single Instruction Multiple Threads) each

one executing the same instruction on different data streams. For example, the

NVIDIA Pascal architecture [258] has 56 multithreaded SIMD processors (Stream

Multiprocessors) each one incorporating 64 single-precision NVidia cores for a total

of 3854 cores. The interest in GPU computing blossomed when its massively paral-

lel potential was combined with a programming language that made GPUs easier to

program and to use.

In the following, we provide a brief overview of some different microarchitectures

that are nowadays used in HPC and cloud environments as well as in standalone par-

allel computers. We consider GPUs, multi/many-cores and also distributed systems

possibly aggregating all different forms of parallelism.

2.3.1 General-Purpose GPUs Architecture

One of the big differences between CPU and GPU architectures is how they use the

chip area. A CPU uses most of its chip area for implementing multilevel caches to

reduce the long latency to off-chip memory. Instead, GPUs rely mainly on hardware

multithreading to hide the memory access cost to high-latency memories. The GPU

devotes much more chip space for pure floating-point operations. Besides, GPU mem-

ory is more oriented toward providing high-bandwidth rather than low-latency and

the memory capacity is smaller if compared to conventional general-purpose servers.

This makes GPUs very effective for data-parallel problems with regular memory ac-

cesses and a relatively high ratio between computation and memory transfer time.

Since GPUs are coprocessors, typically attached to PCIe buses, one of the main

source of overhead when using GPUs is the time spent transferring data between
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CPU memory to/from GPU memory. Hiding and/or reducing such transfer time is

of foremost importance to benefit of the computing power of the many GPU cores.

In GPU computing, performance comes from using a large number of GPU threads,

which are quite light-weight entities with zero context-switching overhead. This is

another important difference with respect to CPU systems whose threads are more

coarse-grained entities and are usually quite lower in numbers.

GPU Computing took off when CUDA and AMD FireStream was proposed around

2006 for programming GPU cards. These programming interfaces and languages

were designed by the GPU vendors to make a step forward to a usable, scalable and

manageable programming model for GPU architectures. Later, the Open Compute

Language (OpenCL) has been proposed to provide a unified API for heterogeneous

computing on several different kinds of parallel devices, including GPUs, multi-core

CPUs and more recently FPGAs [101].

Although GPUs were initially conceived for computer graphics, some pioneer

efforts have been made to develop user-friendly, C-like programming languages so

to write parallel programs running on graphic cards. Examples are Cg [232] and

OpenGL Shading Language [206]. Later in 2006 NVIDIA introduced the GeForce

8800 graphic card featuring the first unified graphics and computing GPU archi-

tecture programmable in C with the Compute Unified Device Architecture (CUDA)

parallel model. Since its first public release, CUDA has evolved to a more complete

programming language that looks like a C++ program, albeit with some important

restrictions. The scientific research community and software developers have then be-

come interested in harnessing the computing power of GPU cards for general-purpose

computing. This field of research is known as GPGPU (“General-Purpose computing

on the GPU”) [265].

In the following, we briefly recap CUDA and OpenCL programming models.

CUDA

In CUDA, the program consists of both host and device code [261]. Host code is

compiled by a standard C/C++ compiler (e.g., GNU gcc) whereas device code is
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compiled by the CUDA compiler (NVIDIA nvcc) to an assembly language called PTX

(Parallel Thread Execution) providing a stable instruction set for general purpose

parallel thread execution [259].

Figure 2-5: CUDA hierarchy of threads, blocks, and grids and its memory organiza-
tion.

A CUDA program execution starts on a CPU where host threads transfer input

data to GPU device memory before invoking the GPU kernel code. When the kernel

execution finishes, output data is transferred back from the GPU device memory to

the CPU main memory.

Threads in a CUDA kernel are organized in grids of blocks where each thread

block internally contains multiple threads (see Figure 2-5). The maximum number

of threads inside a single thread block depends on the compute capability of a GPU.

Blocks of thread can be executed by a single compute unit called Streaming Mul-

tiprocessor. The group of threads executed together is called warp by Nvidia. All

threads grouped into a warp perform the same instructions in a lockstep manner. It
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is possible that two or more threads follow different execution paths. In this case, all

threads sharing a common execution path execute together while the other threads

are paused. Therefore, it is beneficial to avoid warps with divergent execution paths,

as this reduces the amount of threads pausing their execution. Nvidia calls this

execution model: Single-Instruction, Multiple-Thread (SIMT).

GPU shared memory (also called global memory) is the largest memory but it

has high latency compared to other kinds of GPU memories. The GPU can optimize

accesses to the global memory when it is accessed in certain fixed patterns. Specif-

ically, multiple accesses to the the global memory from different threads in a block

can be coalesced into a single larger memory access. There are several different access

patterns which are detected by the hardware and coalesced. Such optimized accesses

allow us to fully exploit the available memory bandwidth. Besides global memory,

each Streaming Multiprocessor has an on-chip shared memory having low latency and

high bandwidth. If the programmer wants to exploit this memory, he/she has to move

data between the global memory and the shared memory using explicit CUDA calls.

All threads executing on the same Multiprocessor have shared access to the shared

memory. Shared memory can also be used by a thread to efficiently synchronize and

communicate with other threads running on the same SM.

Finally, starting from CUDA 6 one extra layer of APIs called Unified Memory

for CPU/GPU memory management has been introduced. Data is allocated at the

host side and migrated in a user-transparent fashion to and from the GPU memory.

This new feature aims at simplify the complexities of memory management while still

maintaining acceptable overall performance [217].

OpenCL

OpenCL (Open Computing Language) is a multi-company initiative promoted by

the Khronos group1 to develop a portable programming language that provides a

unified computing platform for heterogeneous multi-/many-core systems. The main

technological players such as Intel, Apple, NVIDIA, AMD, and ARM are part of the

1Khronos group web site: https://wwww.khronos.org
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Khronos consortium and these players provided OpenCL implementations for differ-

ent architectures, from standard multi-cores to GPUs, FPGAs and general purpose

many-cores such as the Intel Xeon Phi. For example, the OpenCL implementation

by NVIDIA runs on all NVIDIA GPUs that support the CUDA architecture. The

OpenCL standard version 1.1 was ratified in 2010 (the version 1.0 was released in

2009) and it is currently the most commonly supported version of the standard [180].

OpenCL abstracts different hardware architectures providing a platform model and

a common parallel programming interface.

The OpenCL platform model distinguishes between a host and multiple OpenCL

devices to which the host is connected. An OpenCL application executes sequentially

on the host and offloads parallel computations to the devices through a command

queue. The host submits commands into a command queue which by-default processes

all commands in the FIFO order even though it is also possible to configure command

queues to operate out-of-order. An OpenCL device holds compute units (CU) which

further may include one or more SIMD processing elements (PE). For a standard

multi-core, the single core corresponds to a CU whereas the vector units inside a core

are the PEs. In the case of GPU devices, a streaming multiprocessor is the CU and

the GPU cores are PEs.

Conceptually, the OpenCL programming style is very similar to CUDA when

NVIDIA GPUs are considered. The main difference between CUDA and OpenCL

models is that OpenCL code is compiled dynamically by invoking specific OpenCL

functions. The dynamic compilation enables better utilization of the underlying de-

vice and latest software and hardware features such as SIMD computing capability

of the hardware. At the first invocation, the OpenCL code is automatically uploaded

to the OpenCL device memory.

The OpenCL memory model defines four types of memories: global, constant, local

and private (see Figure 2-6). Each device has its memory that is logically distinct

from the host memory. Data has to be explicitly moved between the host and device

memory issuing specific commands into the command queue for copying data from

the host to the device and vice versa. The global memory area is shared by all CUs of
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Figure 2-6: OpenCL schematic architecture.

the device and is accessible from any PE and from the host in read/write mode. As

in CUDA, the global memory is the largest and slowest memory area on an OpenCL

device. The constant memory is a region of the global memory which remains constant

during device execution. It is initialized once by the host and remains constant with

read-only access from the device. The local memory is a memory region private to

a CU. It permits read and write accesses from the device; the host has no access to

such memory area. The private memory is a memory region private to a processing

element. Differently, from the host, the device has full read and write access to it.

The basic execution model of OpenCL relies on the concepts of kernel and program.

A kernel is the basic unit of executable code applied over a data set (for data parallel

execution) or as one instance of a function, to model a task parallel execution. A
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program is a collection of kernels and OpenCL functions for managing kernels. The

execution starts on the host program, which can manage one or more OpenCL devices,

by enqueuing the kernel-execution and memory-transfer commands to the command

queues of the selected devices. When launching a kernel on a device, the programmer

explicitly specifies how many threads will execute the kernel on the device. A thread

executing a kernel is called a work-item. Work-items are grouped in work-groups

which enable a more coarse-grained organization of the execution. All work-items

of a work-group share the same local memory, and they may synchronize one each

other because OpenCL guarantees that work-group are executed on the same CU.

Synchronization between work-items of different work-groups is not allowed. Local

memory can be used to make variables shared for a work-group as all work-items

of the workgroup can read/write to it. Private memory is only visible to individual

work-items and each work-item can modify or read only its data.

OpenCL is emerging as the de facto standard for programming heterogeneous

systems. In principle, code written in OpenCL can be ported to all OpenCL plat-

forms without any modification. However, device-specific optimization applied to an

OpenCL code, for example, to optimize GPU execution, may negatively affect per-

formance when moving the code to a different device (e.g., CPU device). Moreover,

the OpenCL programming interface requires explicit management of many low-level

details (memory transfers, kernels compilation, and workload scheduling) which re-

quire a deep understanding of all components of the system architecture. This makes

OpenCL an excellent candidate to be used as a run-time system of higher-level pro-

gramming abstractions relying on OpenCL for portable program execution on het-

erogeneous systems [27].

In this respect, an example of a parallel framework using OpenCL run-time is

SYCL [285]. SYCL is an open industry standard for programming a heterogeneous

system allowing to run standard C++ source code on either an OpenCL device or on

the host. Kernels are expressed through C++ lambda functions. A SYCL program

is valid C++ program that can be compiled by any C++ compliant compiler, and

can be executed on the host as fallback for platforms with no OpenCL support.
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Figure 2-7: Example of cache architectures in CMPs.

2.3.2 Multi-core and Many-core Processor Architecture

Multi-cores are tightly-coupled MIMD architectures. They are shared-memory mul-

tiprocessors systems (SMPs) integrated into a single chip, also referred to as Chip

Multi-Processors (CMPs). In these systems, the physically shared memory is the pri-

mary means of cooperation among threads and processes running on different cores.

Communications occur implicitly through loads and stores coordinated by synchro-

nization protocols typically implemented using locks.

Today, almost all multi-cores implement a form of Simultaneous Multi-Threading

(SMT) in which instructions are fetched from different control flows at every clock

cycle. SMT technology has the potential of significantly enhancing processor com-

putational capabilities by exploiting thread-level parallelism (TLP) inside a single

physical core. An SMT core is a logical core having a private hardware context and

sharing a set of functional units with other logical cores of the same physical core.

This architecture reduces context switching and provides an effective mechanism for
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hiding high-latency accesses to off-chip memories.

All multi-core processors maintain a cache-coherent memory system of both shared

and private data. The cache coherence protocol allows fast access to commonly used

data in their own private caches while maintaining consistency when some other

processor updates shared variables. A caching system is said to be coherent if all

processors, at any point in time, have a consistent view of what is the last globally

written value to each location. The most common implementation of cache coherency

uses an invalidation protocol where local copies are invalidated if a thread updates

a shared variable present in another cache. Various cache organization architectures

have been proposed, relying on private, shared or mixed, flat or hierarchical cache

structures [266]. Figure 2-7 gives a schematic overview of some cache architectures

available in current CMPs.

Many-core processors are CMP systems that are designed to employ a high degree

of parallelism (currently up to one thousand cores), containing a large number of

simpler cores than those of general-purpose multi-cores. Cores are interconnected

with sophisticated on-chip network and distributed caching system. Since they usually

have the form factor of PCI cards, they are often referred to as hardware accelerators

like other accelerators such as GPUs and FPGAs. One of the main differences between

multi-cores and many-cores is the organization of the caching subsystem and the

computing power of the single core. In multi-cores, cache coherence is automatically

enforced by a sophisticated coherency protocol (e.g., MESIF or MOESI). Moreover,

the single core of a multi-core system has quite complex hardware logic for out-of-

order and speculative code execution. In many-core systems instead, given the higher

number of cores, they have reduced cache coherency capabilities, and most of all,

their cores are much less performant. In these systems, top performance is obtained

by fully exploiting all cores rather than the high clock rate and large caches of each

core.

A multi-core server equipped with one or more hardware accelerators (e.g., GPUs,

many-cores, and FPGAs) is an example of a heterogeneous multi-/many-core archi-

tecture.
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General-purpose multi-core technology has become pervasive in all fields of com-

puting. Even in the realm of Digital Signal Processing (DSP) where, in the past,

a single general-purpose control core marshaled many special purpose Application-

Specific Integrated Circuits (ASICs) as part of a System on Chip (SOC) architecture.

This technology shift is primarily due to the variety and the increased complexity of

applications which require general-purpose processors with parallelism capabilities.

Examples of these applications are software-defined radio [308] and mobile phone

processors [296] that need to support several complex codecs and many different ap-

plications.

As discussed, the cache-coherent memory subsystem is what mainly character-

ize CMP system architectures. From the programmer perspective, automatic cache

coherence introduces many benefits but also new challenges and some issues. Regard-

ing challenges, the ability to fully exploit cache accesses often requires to define new

cache-oblivious algorithms [161]. Besides, maintaining automatic coherence through

cache line invalidation introduces the problem of false-sharing which may have a sig-

nificant impact on the program performance [315]. False-sharing is a subtle source of

cache misses, which arises from the use of an invalidation-based coherence protocol

working at the granularity of block of data (on multi-cores, the block is the cache line

storing multiple memory words – typically 8 64bit wide memory words).

Another important aspect that affects not only performance but also programma-

bility and portability in CMP systems is the memory consistency model [299, 1]. A

memory consistency model defines the shared-memory behavior in terms of loads and

stores dealing with the ordering of operations to multiple locations with respect to

all processors. The Sequential Consistency model (SC) defines the most basic con-

sistency model. Writes to variables by different processors have to be seen in the

same order by all processors. As defined by Leslie Lamport [216], a shared-memory

system is Sequentially Consistent if “the result of any execution is the same as if

the operations of all the processors were executed in some sequential order, and the

operations of each individual processor appear in this sequence in the order specified

by its program.” In a nutshell, the execution order within a single thread is the same
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Figure 2-8: Tilera TilePro64 processor diagram (left) and schema of one of its
core named tile (right). Figure from Wikipedia (https://en.wikipedia.org/wiki/
TILEPro64)

as the program order, while the execution order of program between threads is not

defined by SC.

Sequential Consistency prevents many common compiler and hardware optimiza-

tions as for example executing instructions out-of-order with the goal of using more

Instruction Level Parallelism. To overcome the limitations of the SC model several

relaxed memory models have been proposed [1]. Among these models, the Total Store

Order (TSO) is the one used in x86-based architectures. It allows reordering of write-

to-read operations while read-to-read, read-to-write, and write-to-write operations are

executed in program order.

In the following, we briefly describe the architectural features of three CMP sys-

tems that are used in today HPC scenarios. Specifically, we consider two many-core

architectures (Tilera TilePro64 and Intel Xeon Phi), and one multi-core architecture

(Intel Xeon Skylake microarchitecture).

Tilera TilePro64. In 2008 Tilera proposed the TilePro64 multi-core processor

(see Figure 2-8). It was one of the first multi-core with a high number of cores (64

identical cores – called tiles) interconnected with Tilera’s iMesh on-chip network. The

TILEPro64 is attached to a PCIe bus of a server machine and it is equipped with
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on-chip PCIe and network controllers. Some of the 64 tiles are not available to user

programs, as they are used to run OS specific code to drive external interfaces.

Each tile is a 3-way superscalar VLIW processor running at 866MHz with a cache

subsystem composed of 16KB L1i, 8KB L1d and 64 KiB L2. The cache subsystem

also contains a Translation Lookaside Buffer (TLB) and a DMA engine that support

automatic memory-to-cache and cache-to-cache data transfers. Differently from off-

the-shelf multi-cores, no automatic memory prefetching mechanisms are provided. To

sustain the memory bandwidth requirements relative to the 64 cores, the TilePro64

provides four on-chip DDR2 memory controllers that are placed at the edges of the

chip. Therefore, the memory latency from a given tile depends on the tile position in

the mesh and on the memory controller selected.

Virtual memory pages are “striped” among the physical controllers in 8KB chunks.

The memory requests are therefore automatically spread across the different memory

controllers. By using a different operating mode, the programmers may directly need

to allocate entire VM pages on particular memory controllers, as usual in NUMA

architectures.

Tilera also provides advanced cache management mechanisms and policies based

on the concept of Home-Node, i.e. a tile is elected to be the home of a given cache

line. This Home Node is responsible for handling the coherency relative to the line,

by always maintaining an updated version and sending proper invalidations when

needed. This “homing” mechanism is handled by the L2 cache of the tile, so that any

local L2 space is contended by the core on the tile and the DDC. The programmer

may define a specific tile as a home node for the entire memory page. If properly

selected, the home node will match the core that is extensively using that page,

reducing the L2 contention effect. In addition, cache-coherency can be completely

disabled by defining no home node for the page, meaning that the programme must

explicitly manage data coherency.

The TilePro64 processor architecture defines a relaxed consistency memory model:

both load and store can be reordered (in contrast to x86 architectures where total

store ordering is maintained) [299]. A memory fence instruction is provided to force
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ordering when needed.

The iMesh Network on Chip (NoC) is composed of five independent 2D meshes,

each carrying a different kind of traffic. One called Memory Dynamic Network (MDN)

is dedicated to memory transfers in such a way memory accesses are not influenced

by other traffic, another one called User Dynamic Network (UDN) is reserved to user-

level traffic. The other meshes are dedicated to I/O transfers and cache coherence

protocol. The UDN mesh can be used for ultra-low-latency inter-tile message passing

communications [67, 68].

Intel Xeon Phi. In 2010 Intel introduced a new technology based on the Many In-

tegrated Core (MIC) Architecture. The first commercial version was a 22nm Knights

Corner chip, released under the code-named Xeon Phi Knights Corner (KNC) [202].

The Xeon Phi coprocessor is a CMP system that can be plugged into a server host

via a PCIe slot. It can be used as a coprocessor by offloading the execution of parts

of the programs into the card and receiving back the results in a way similar to what

happens for a GPU system. In addition, it can be used in a “native” mode, i.e. the

program is loaded and executed directly in the coprocessors and can run in parallel

with a program executed on the host. The two programs can communicate through

an API. The Xeon Phi KNC cannot operate on its own and needs a host to provide

storage and IO services. Its cores are based on the x86 microarchitecture with an

in-order code execution model to reduce complexity and power consumption. The

number of cores ranges from 57 to 61 (depending on the model) and the cores has a

clock of about 1GHz. The Xeon Phi utilizes Simultaneous Multi-Threading on each

core as a primary mechanism to hide high memory access latencies typical of in-order

microarchitecture. It offers four hardware threads per core with sufficient memory

and floating-point capabilities. Every core has 512 bit wide SIMD vector registers

in addition to the standard x86 registers. The interconnection among cores is a ring

network. Cores are connected by a high-speed bidirectional ring that allows the L2

caches of each core to be accessible by all cores for a total cache size of about 30MB.

The Xeon Phi hosts from 6 to 16 GB of onboard GDDR5 RAM providing a maximum
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Figure 2-9: Intel Xeon Phi Knight Landing processor diagram (left) and schema of
one of its tile (right). Figure from “Intel Xeon Phi Processor High Performance
Programming – Knights Landing Edition” [203]

bandwidth of about 170GB/s. Each core has 32KB L1 cache that is accessible only

locally.

The second generation of the MIC architecture is based on a 14 nm Knights

Landing (KNL) chip featuring up to 72 physical cores and a total of 288 logical cores.

Differently from the first-generation, the KNL processor is also shipped as a stan-

dalone architecture that can boot an off-the-shelf operating system offering full x86

compatibility [203]. The KNL architecture represents a performance jump compared

with the previous KNC version, with a renewed on-chip interconnection network,

memory sub-system with empowered performance for scalar and vector instructions

and offering higher floating-point performance than previous generations.

The design on the KNL chip is separated into several tiles. It has 36 active

tiles (see Figure 2-9), each one comprising 2 cores, 2 AVX-512 Vector Processing

Units (VPU) and 1MB L2 Cache shared between the two cores. The core internal

architecture is derived from the Intel Atom core: it is a two-wide out-of-order core

with 4 SMT thread contexts and 32KB private cache.

Tiles, memory controllers, I/O controllers and other chip components are inter-
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connected through a 2D mesh. The mesh supports the MESIF cache coherent pro-

tocol. The KNL supports two levels of memory: multi-channel 3D-stacked DRAM

(MCDRAM) and double rate memory (DDR4). The former is a 16GB on-die high

bandwidth memory (up to 400GB/s bandwidth), composed by 8 modules of 2 GB

each, integrated on the same package and directly connected to the processor. More-

over, the chip has 2 DDR4 memory controller that allows the support of up to 384

GB RAM through 6 channels toward the external host memory.

Intel Xeon Skylake. The Skylake – the code name for the 6th-generation Intel

Core microarchitecture – is a further development of the Haswell and Broadwell mi-

croarchitecture design providing many additional features and increased performance.

These features include increased cores count, larger L2 cache, increased memory

bandwidth, non-inclusive cache, Advanced Vector Extensions 512 (AVX-512), Mem-

ory Protection Extensions (MPX), Ultra Path Interconnect (UPI), and sub-NUMA

clusters [200]. The new features of the Skylake microarchitecture are reported in

Figure 2-10. The Skylake uses 14nm technology. The processors from Skylake fam-

ily are scalable from a two-socket configuration up to an eight-socket configuration.

The flagship processor (Platinum series) provides up to 28 cores at 2.5GHz with a

CPU Thermal Design Power (TDP) ranging from 45W to 205W and with an L3

cache size of 38.5MB. As the number of CPU cores is increasing with each genera-

tion, the ring interconnection architecture utilized in previous generations (formerly

Haswell and Broadwell) has been substituted by a mesh architecture to mitigate the

increased latencies and bandwidth constraints associated with previous ring-based ar-

chitecture. The mesh interconnection encompasses an array of vertical and horizontal

bi-directional communication paths between cores, caches and I/O controller allow-

ing also traversal from one core to another through the shortest path. The horizontal

data traversal requires more cycle than the vertical data traversal. It requires one

hop/cycle to move data vertically to the next core’s cache, but moving horizontally,

for instance between the second to the third column of cores, requires three cycles

(see Figure 2-11).
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Figure 2-10: Intel Skylake family processor microarchitecture. Figure from “Intel
Xeon Processor Scal able Family Technical Overview” [200]

Figure 2-11: Skylake 6x6 mesh topology. Figure from WikiChip (https://en.
wikichip.org/wiki/intel/microarchitectures/skylake_(server))

The Quick Path Interconnect (QPI) that was a successful enhancement compared

to the Front-Side Bus (FSB) architecture, has been replaced in the Skylake family with

the Ultra Path Interconnect (UPI). The UPI is a coherent interconnect for scalable

systems containing multiple processors in a single shared address space. There are up

to three UPI links for connecting to other processors (3 links are used in the 8-way

sockets configuration). They use directory-based home snoop coherency protocol. As
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Figure 2-12: Organization of a distributed memory multiprocessor with private mem-
ories.

in the QPI, UPI also features a low power state (L0p) that reduces throughput during

periods of low activity to save power. The increased efficiency of UPI allows for even

lower L0p power consumption. The end result is an increase from 9.6 GT/s to 10.6

GT/s without excessive power consumption.

2.3.3 Distributed Systems

Distributed memory systems (also called multicomputers) are a collection of inde-

pendent computers, each owning its private memory, connected through an inter-

connection network and forming a given topology. Figure 2-12 shows the classic

organization of a distributed system, which according to Flynn’s classification are

examples of loosely-coupled MIMD architecture.

The communication and coordination of parallel programs on these systems must

be done through explicit messages. Therefore, the natural programming model of

distributed systems is message-passing. In the context of HPC systems, MPI is the

de facto standard API [298].

What most characterizes distributed systems is the interconnection network. There

have been several attempts by different vendors and research centers to build large-

scale computers based on high-performance message-passing networks offering both

low-latency and high-bandwidth communications such as InfiniBand [273], Myrinet [54]
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and QSNet [272].

However, outside the HPC niche, mainly dedicated to (high-cost) high-performance

scientific domain, reference networks are based on standard Ethernet protocols. To-

day, many datacenters consist of many low-cost servers with ample data storage

connected through high-bandwidth Ethernet networks (i.e. 10Gbit/40Gbit).

As a result, computing clusters have become the most widespread example of a

distributed system. A cluster is a collection of computers connected over standard

network interfaces and switches to form an abstraction of a single system. Clusters are

generally defined as homogeneous distributed systems meaning that each cluster node

is identical to other nodes. Given the separate memories, each node of a cluster runs

a distinct copy of the operating system. Internally, each node is a standard shared

memory multiprocessor with several cores and large caches. Cluster software is a

layer that runs on top of the local OSs offering a unified abstraction, for example, for

accessing the file system (e.g., DFS NFS) or for executing jobs (e.g., SLURM [328]).

Loosely-coupled distributed systems are easier to design compared to tightly-

coupled distributed shared-memory systems. System architectures such as Cache-

Only Memory Architecture (COMA) or Cache-Coherent-NUMA are very complex to

design and faced scalability problems with limited diffusion [300].

From the programmer standpoint, employing a distributed system requires more

work. It is harder to port a sequential program to a multicomputer since every

communication among different parts of the program must be identified in advance

and then coded using a proper communication interface. On the other hand, since

communications are explicit, there are fewer performance surprises than with the

implicit communication in cache-coherent shared memory computers. To simplify

programming and increase sequential code portability, several attempts were made to

build Software-based Distributed Shared Memory (SDSM) system providing a shared-

memory abstraction on top of distributed memory architectures [225, 256].

In contrast to tightly-coupled system, distributed systems organizations favor sys-

tem dependability and fault-tolerance as it is generally easier to replace a single node

without compromising the functionality of the entire system. Moreover, the pos-
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sibility to dynamically add and remove nodes enables horizontal scalability with an

impact only on the interconnection network. Their lower cost, higher availability, and

scalability make computing clusters attractive to Internet Services Providers that use

such clusters for high-volume data processing [218] or for offering file, web and mail

services to users often following a pay-per-use model.

Unlike homogeneous clusters, large-scale distributed systems are typically hetero-

geneous and they may comprise several collections of large and small clusters with

different internal topologies as well as dedicated systems for storage, monitoring and

for specific services. Although they may be classified as just large heterogeneous clus-

ters, their architecture and technological issues make them a new class of systems. At

such extreme scale, power distribution, networking, monitoring, and cooling are the

main critical aspects. These systems, are the basis of the Cloud Computing infrastruc-

ture. Recently, a cloud model referred to as Infrastructure-as-a-Service (IaaS) became

an increasingly popular paradigm for accessing computing resources. Providers of-

fer computing resources and services (typically by means of virtual machines) upon

request [46].

2.3.4 New Technological Trend

The rise of dark silicon, has stimulated a rethinking of systems design, where a sim-

pler chip design enriched with function-specific hardware accelerators often provide

a better balance between power consumption and performance [59]. It is thus fore-

seeable that future CMP systems will be packed with specialized hardware such as

GPUs, Digital Signal Processors (DSPs), and Field-Programmable Gate Arrays (FP-

GAs) in addition to Application-Specific Integrated Circuits (ASICs) implementing

common operations. At any given moment in time, only a subset of these hardware

components (i.e. those most suitable to solve the problem) would be powered on.

Early examples from the commercial roadmap are the ARM big.LITTLE het-

erogeneous processor hosting two different kinds of cores: the “LITTLE” processor

is designed for maximum power efficiency while the “big” processor is designed to

provide maximum performance. Both types of processor are coherent and share the

71



same ISA [175]. Another example is the NVIDIA Jetson TK1 hosting on the same

chip a low-power ARM processor (4-cores Cortex-A15) and an NVIDIA Kepler GPU

featuring 192 cores [260]. Specialization of chip parts will come at the price of more

complexity at the software level unless some technology breakthrough appears in the

coming years.

The trend of integrating large cache and in general large memory on-chip is ex-

pected to continue in the forthcoming years. In fact, large caches allow saving power

consumption since off-chip memory communications are avoided or at least reduced.

In this respect, it is foreseeable that on-chip large and fast memory will be made

available so to keep the entire working set of the application inside the chip area.

How to organize and keep consistent such memory is one of the main challenges.

2.4 Parallel Programming Models

A parallel programming model is an abstraction of the parallel machine architec-

ture [241]. For years, the term “parallel machine” was a synonym of a distributed

multiprocessing system. These machines were typically very costly and affordable

only by large laboratories either from academia or large industries, where expert

parallel programmers were able to develop software exploiting the features of these

machines using a limited set of machine-specific tools that allowed them to manually

optimize the application code with the only objective to increase performance.

Beowulf clusters [302] emerged in the late ’90s as an economical approach to su-

percomputing thus contributing to the wide diffusion of parallel machines to a broader

number of programmers. Still, only a restricted community of expert programmers

faces the problem of programming such systems. The evolution of cost-effective clus-

ters and then the advance of Grid computing infrastructures [160] where the parallel

system became not only more and more heterogeneous but also dynamic, immedi-

ately posed the urgent need of defining suitable programming models to discourage

(or to limit) the practice of using ad-hoc optimizations during software development

without loosing program efficiency.
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However, efficiency is not the only issue that parallel programmers have to deal

with: writing portable and maintainable parallel code are also important points that

a parallel programming model must address. The advent of multi-core processors

has produced a radical shift in the parallel software community which had to face the

challenge of defining programming models able to trade between absolute performance,

portability, and time-to-solution.

2.4.1 Not only absolute performance

For many years, parallel computing was a synonym of absolute performance. With

the diffusion of multi-cores, which retain many of the usage complexity of old parallel

architectures, absolute performance figures were not the only parameters of interest

when developing parallel applications. Programmer productivity, total cost-to-solution

and performance portability may be even more important metrics. Today, multi-

core systems are accepted in almost all industry segments, and from an economic

standpoint, industries cannot afford the cost of re-writing and re-tuning an application

for every new technological advance in computing platforms.

If on the one hand, the capability of entirely using the hardware-specific features

based on a deep understanding of the underlying micro-architecture remains crucial

for extracting the highest levels of performance and energy efficiency [211, 289, 203],

on the other hand, the shift to heterogeneous multi-cores and the rapid architectural

evolution has dramatically increased the complexity of software development that

cannot be handled by using low-level tools.

We do believe that parallel programmers should focus on “the 3P” criteria (Pro-

grammability, Portability, and Performance) in a synergistic manner without privi-

leging one specific “P”. Therefore, the 3P criteria should be the primary metric when

developing and evaluating parallel applications2.

• Programmability: Programmability is related to development costs, both for

what concerns the time spent to reach the final solution and programmer effort

2Sarita Adve first introduced the 3P criteria for evaluating memory consistency models [2].
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in writing the code. One of the ambitions of programmability in the context of

parallel programming is to remain as close as possible to traditional sequential

programming. Parallel development overheads are due to the direct manage-

ment of synchronization, communication, and task scheduling. Proper handling

of these essential aspects requires to introduce a significant amount of extra-code

that is needed only for the management of parallelism and concurrency.

Programmability is often paired with code reuse that is the capability of reusing

existing well optimized sequential code. Such sequential codes are often the re-

sult of several years of development, debugging and fine-tuning. Rewriting

them is therefore merely an unfeasible hypothesis. Consequently, any paral-

lel programming framework must support the re-use of existing code as much

as possible. This also means that it must offer the possibility to link and or-

chestrate parallel executions of different instances of such existing sequential

code.

High-level parallel programming based on parallel patterns and skeletons tries

to address the programmability challenge by clearly decoupling non-functional

code from the business logic code promoting existing code reuse. Regarding pro-

grammability, high-level models widen the spectrum of possibility and narrow

the distance with what is currently done in sequential programming.

• Portability : Functional portability is usually ensured by using standard libraries

and tools. Such libraries guarantee that the same software can be recompiled

and executed on different platforms. For example, an MPI program running

on a supercomputer can be quickly ported on a single workstation without

spending too much effort. Conversely, there is no guarantee on the level of

performance the application programmer can expect. Such MPI programs may

run even slower than the functionally-equivalent sequential program on the se-

lected workstation. Therefore, the real problem is not functional portability

(though it is an important aspect) instead is performance portability [270, 242].

Performance portability is the ability to compile the same code on different plat-
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forms maintaining the desired level of performance considering the features and

the peak-performance of the target platform. Recently a definition of perfor-

mance portability has been proposed as “A measurement of an applications

performance efficiency for a given problem that can be executed correctly on

all platforms in a given set.”, along with the metric to quantify it by using the

harmonic mean [269]. The equation proposed states that, on a given set of plat-

forms H, the performance portability PP (a, p,H), of an application a running a

problem p is the harmonic mean of the performance efficiencies ei(a, p) on each

platform i. PP (a, p,H) is 0, if any platform in H is not supported by a running

the problem p. However, this quantitative definition is not widely accepted yet.

One of the reasons is that it does not penalize some huge development efforts

for a given target platform.

A parallel application should exhibit enough hardware abstraction to hide low-

level hardware architecture details, accommodate hardware heterogeneity and

provide good software portability across different parallel hardware. A paral-

lel application should also be able to adapt to new underlying architectures

to maintain a reasonable level of execution efficiency. Currently, when a par-

allel program is ported to new parallel hardware, often it requires substantial

rewriting and tuning of the code to maintain the necessary level of performance.

Owing to its high-level nature, a high-level programming model is suitable for

meeting the performance portability requirement. However, this is not suffi-

cient. The run-time support implementation should be able to dynamically

adapt to different platform features and different environmental conditions,

such as the presence of other parallel applications running on the same sys-

tem. Rapid architectural evolution renders manual code adaptation unfeasible

and mandates adaptive solutions [131, 128].

A different approach tackling performance portability is based on Domain-

Specific Languages (DSLs) which trade productivity and performance at the

cost of generality at the application level [81]. These approaches, in principle
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more efficient than general-purpose approaches, focus on expressing highly spe-

cialized abstractions for a specific application domain that can be compiled and

mapped to multiple hardware architectures. Examples of frameworks providing

a platform-neutral intermediate representation for DSLs are DeLite [305] and

PENCIL [41].

• Performance: What is in general expected from a parallel program, is that the

time spent to execute it on a parallel machine with n processing elements is

about 1/n of the time spent running the sequential program that solves the

same problem in one of the available processing elements. Unfortunately, such

desirable behavior is not always attainable. On the one hand, not all problems

are suitable to be parallelized [176]. On the other hand, even those problems

suitable to be parallelized may contain a fraction of work that cannot be par-

allelized. The well-known “Amdahl’s Law” [29] gives a theoretical limit. The

amount of non-parallelizable code in an application determines the maximum

theoretical speedup it is possible to achieve. If for example, 10% of the appli-

cation is sequential by nature, even infinite parallelism will not speed up the

application by more than a factor of ten. However, the overhead in the par-

allelization further limits the possibility of achieving the theoretical maximum

stated by Amdahl’s law. It is easy to see that when taking into account over-

heads, the real limit in the speedup of a parallel application is even smaller than

the one determined by the fraction of the non-parallelizable parts.

Amdahl’s Law provides a performance upper bound to programs working on

a fixed data size with the only possibility to increase the computing resources.

In other words, the increase in the speedup for increasing problem size cannot

be captured even though newer and more performant computers usually allow

solving more massive problems due to the improved capabilities. In [182], John

Gustafson noted that as the problem size increases, the amount of parallel work

usually grows much faster than its serial counterpart. Therefore, the serial

fraction of work decreases and according to Amdahl’s law the speedup increases.
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Thus, as more and more computing resources are added, the same application

should solve bigger problems in the same amount of time. Gustafson’s law holds

only if the serial part grows much more slowly than the parallel one, and most

of all if also the overhead of increasing the number of computing resources scales

with the problem size. There exist more complex analysis methods which study

how problem size and number of processors used have to be related for obtaining

a given efficiency. An example is the use of isoefficiency metric function [181].

Another critical performance metric is scalability. Scalability refers to the abil-

ity of a program to utilize increasing available resources (both memory and

processing elements). Many problems, such as the emerging services for data-

analytics and social media, run on data-center servers. These applications op-

erate on massive datasets that are split across a large number of server nodes

for scalability. Each node concurrently services large numbers of independent

requests, and inter-node communication is restricted to task management and

coordination with minimal or no data-sharing. For these cases, it is of foremost

importance that the underlying run-time does not introduce unnecessary over-

heads that could hinder full scalability. These peculiarities distinguish scale-out

infrastructures and deployments from scale-up counterparts, which in contrast

exhibit more prevalent data sharing, requiring extensive coherence and commu-

nication infrastructure and are typical of high-performance scientific domains.

2.4.2 Types of parallelism

It is widely acknowledged that there are two main types of parallelism, data parallelism

and task parallelism. The first model refers to the possibility of performing the same

functional operation on separate pieces (or partitions) of the same data in parallel,

whereas task parallelism refers to those parallel executions that can be organized on

the basis of inter-dependencies among separate tasks composing the program. Task

parallelism is often specified through task-dependency graphs. Once the concept of

sequences of input data elements is considered, the task parallelism model can be
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further refined by introducing stream parallelism. A stream is a possibly infinite

sequence of values, all of them having the same data type, e.g., a stream of images

(not necessarily all having the same format), a stream of files, a stream of network

packets, a stream of bits, and so on. Without loss of generality, an application

can operate either on distinct values organized as streams of data elements or on a

single (possibly large) collection of data values. This leads us to make the distinction

between three main type of parallelism:

• Data Parallelism is a method for parallelizing a single collection of data by pro-

cessing independent sub-collections of elements in parallel. The input collection

of data, possibly but not necessarily coming from a stream, is split into multi-

ple sub-collections (or partitions) each one computed in parallel by applying the

same function to each partition. The results produced are collected in one single

output collection, usually having the same type and size of the input (this is

the case for the Map pattern – see Section 2.5.3). The computation on the sub-

collections may be completely independent, meaning that the computation uses

data only coming from the current sub-collection, or, instead may be dependent

on previously computed data (in this latter case, the function applied to the

sub-collection might have an internal state). Therefore, data parallelism can be

characterized by replication of functions and partitioning of data. Its primary

objective is to reduce the completion time (i.e. the total latency) of the entire

computation on the initial collection. It is worth noting that, data decomposi-

tion using large partitions, together with a static assignment of such partitions

to independent processing elements, may introduce workload imbalance during

the computation due to the potential variable calculation times associated to

each distinct partition. Numerous smart techniques and algorithms have been

proposed to define static and dynamic assignment of partitions to processing

elements, among these the work-stealing algorithm is one the most well-known

and widely used [52].

One of the primary sources of data parallelism are loops and in general iterative
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computations, where successive iterations working on independent or read-only

data can be executed in parallel.

• Stream Parallelism is a method for parallelizing the execution of a stream of

elements (or collections of elements) through a series of sequential or parallel

modules [301]. Parallelism is achieved by running each module (often called

filter) simultaneously on subsequent or independent data elements. Commu-

nication between distinct filters takes place through communication channels

preserving data ordering. Stream parallel systems are often visualized as di-

rected graphs with several sources and sink modules and a number of filters

atomically computing stateless or stateful user’s functions. A stream is a se-

quence of values (the sequence may be infinite), all of them having the same

data type. The typical requirement of a streaming application is to guarantee a

given QoS imposed by the application context. That means that the modules of

the streaming network representing the application have to be able to sustain a

given throughput. There are many applications in which the input streams are

primitive as they are generated by external sources (e.g., HW sensors) or I/O

devices. However, there are cases in which streams are not primitive, and se-

quences of data elements are generated directly within the program [18]. Stream

parallelism can also be applied when there exists a total or partial order in a

computation, preventing the use of other types of parallelism. Furthermore,

data streaming reduces the impact of long memory latencies and in general, the

memory wall problem because the producer-consumer pipeline of filters natu-

rally hides latency and favors on-chip communications through cache memo-

ries [275]. All these aspects make stream parallelism a first-class citizen in the

context of parallel computing.

Streaming network of filters underpin the formal definition of Kahn Process

Networks a distributed model of computation that describes a program as a

set of concurrent entities communicating through unbounded FIFO channels,

where read operations are blocking and write operations are non-blocking [204].
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• Task Parallelism is a method for parallelizing the execution of a function (by

decomposing it in multiple sub-functions) or a set of distinct functions by run-

ning each of them according to an application-dependency graph (also referred

to task-dependency graph). In this class, we can also include recursive fork-join

computations. Functions (or tasks) are processed concurrently by threads or

processes which communicate to satisfy input data dependency as described

by the dependency graph. As in data-parallel computations, task parallel ones

operate on a single data collection. In the case of sequences of input elements,

this model falls into the stream parallelism model.

Task parallelism is sometimes associated with the data-flow model of computa-

tion [220]. The data-flow model facilitates the construction of parallel programs

by leveraging a run-time scheduler that is aware of dependencies between dif-

ferent tasks and is able to balance the workload among a set of executors.

The atomic unit being scheduled is referred to as task. Each task is labeled

with a memory access mode, e.g., input, output or input/output dependencies.

These labels determine the memory side-effects produced by the task on the

arguments. The scheduler dynamically tracks dependencies between tasks and

if needed can also change the execution order of tasks to improve the utiliza-

tion of executors (often called Workers), while still respecting the dependencies

between tasks. Firing rules define when tasks are ready to be scheduled (fire-

ble) [20, 116].

2.4.3 Abstract Models of Parallel Computations

An abstract model of parallel computation defines an abstract parallel machine, its

primary operations (e.g., process creation, send/receive, read/write) and how these

operations affect the state of parallel computations. The model also defines the

constraints of when and where these operations can be used, and how they can be

composed to create a parallel program suitable to be executed on the abstract ma-

chine [229, 297, 207].
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At first glance, abstract models may appear to be useless for developing real-world

parallel applications. However, abstract machine models have been intensely utilized

to study parallel and distributed algorithms and for evaluating their performance

independently from the actual parallel platform that eventually will execute the code.

Since abstract models do not consider some practical aspects of real parallel and

distributed systems, this makes easier to focus on the computational aspects of the

algorithm to find performance bounds and complexity estimates.

Of particular importance is the cost model associated with the abstract parallel

machine, which describes how to predict the cost of executing the entire parallel

program. The total cost is computed by assigning a cost to each basic operation,

and it is usually measured by considering execution time units, the total number of

operations needed to solve the problem or the number of used resources.

In the following, we describe some relevant abstract models.

PRAM. The Parallel Random Access Machine model (PRAM) was introduced by

Fortune and Wyllie in 1978 as a model for general purpose computations [158]. It is

an extension of the Random Access Machine (RAM) model used in the design and

analysis of sequential algorithms.

The PRAM assumes a set of p processors connected to a single shared memory

space. Each processor has a set of local registers, knows its index i, and has instruc-

tions for direct and indirect read/write access to the shared memory. There is a single

global clock that feeds both processors and memory. At every cycle, each processor

performs one of the following operations: i) read a global memory location; ii) write

into the memory of a value stored in a local register; iii) compute an operation using

values stored in its local registers.

The execution of each instruction, including memory accesses and regardless of

the access pattern, takes one unit of time. Besides, there is no limit on the number of

processors accessing shared memory simultaneously. The memory consistency model

of the PRAM is strict consistency : a write at cycle c becomes visible to all processors

at the beginning of cycle c+ 1. The strict consistency memory model is the strongest

81



consistency model known [1].

The PRAM model is refined by defining the effect of multiple processors writing or

reading the same memory location in the same clock cycle. In the EREW (Exclusive

Read Exclusive Write) PRAM, the memory location is exclusively read or written

by at most one processor, in the CREW (Concurrent Read Exclusive Write) PRAM

concurrent reading are allowed, while in the CRCW (Concurrent Reading Concurrent

Writing) PRAM model even simultaneous write accesses by different processor to the

same memory location are allowed. When concurrent writes are allowed, the CRCW

PRAM model defines different sub-models depending on how such concurrent accesses

are resolved. In the common model more than one processor can write the same

location but only with the same value; in the arbitrary model the processor which

successfully writes its value is decided arbitrarily; in the priority model the winner

processor is the one with higher priority (if a priority exists); finally, in the combining

model the value that is written is a linear combination (e.g., a reduction) of all values

that should be written in the same memory location.

The cost model is simple: the total time spent to execute an algorithm, by all

processor, is the quantity pTp where Tp is the time used to run the algorithm with

p processors. The PRAM model completely hides aspects such as synchronizations,

data locality exploitation, and data transfer. Also, it does not consider essential as-

pects for reliable prediction of execution costs such as communication latency and/or

available bandwidth. For hiding communications cost one possibility is the exploita-

tion of a certain amount of excess parallelism also called parallel slackness [316].

Many variants of the PRAM model have been proposed mainly within the parallel

algorithms theory community. Such models relax one or several of the PRAM’s prop-

erties. These include Asynchronous PRAM (A-PRAM) [166, 95] and the Hierarchical

PRAM (H-PRAM) [192].

Asynchronous Shared Memory. An asynchronous shared memory model con-

sists of a finite collection of processes (or threads) interacting with each other through

a limited collection of shared variables. At first glance, this model resembles the

PRAM model, but its processes execution is entirely asynchronous. Each process
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can interleave its operations in an arbitrary order, with no bounds on single process

speeds. Conflicting accesses to shared variables must be resolved directly by the pro-

grammer by using features and mechanisms of the underlying system (e.g., atomic

operations, locks or semaphores). A crucial aspect is the visibility of write operations

which defines the memory consistency model. To improve efficiency with respect to

the strict consistency memory model of PRAM, several weaker consistency models

have been proposed such as for example the Total Store Ordering (TSO) and Weak

Ordering (WO) [299, 1].

POSIX threads (PThreads) is currently the most widely used parallel library im-

plementing the asynchronous shared memory model. It lacks a well-defined memory

model, therefore, the PThreads programmer inherits the memory consistency model

offered by the underlying hardware platform.

The cost model of the asynchronous shared memory model depends on the re-

alization of the shared address space. In SMP systems without caches, the cost of

accessing shared variable is the same independently of the address and the requesting

processor. In a NUMA multiprocessor, the cost of the shared memory access depends

on the distance of the memory location from the requesting process. In general, the

access time to shared variable depends on where the shared variable is stored: in the

local processor cache, in the local memory or in a remote memory. The cost associated

with accessing these memory levels may vary from one to more orders of magnitude

for each level. Essential parts of the cost for accessing a given memory location is

the time spent for having exclusive access to the memory location and the number of

requests the memory subsystem has to serve for a unit of time. Several attempts have

been made to define reliable cost models for different architectures, some of them are

based on queueing theory [68, 215, 318] others on concrete performance observations

of modern systems such as the well-know Roofline model [324], others more recent

proposals are based on hylomorphisms [79].

In the context of shared memory model, of particular relevance is the transactional

memory model [190]. It adopts the concept of transaction known from DBMS as a

primitive for parallel programming of asynchronous shared memory systems. A trans-
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action is a sequential code section enclosed in a statement (e.g., transaction{}) that

is guaranteed to either commit completely to shared memory or to fail. No interme-

diate state of a transaction is allowed to be visible to other processes. Transactional

memory provides a declarative approach which leaves the implementation of atom-

icity to the run-time system (in this case it is referred to as Software Transactional

Memory) [294] or directly to the hardware (Hardware Transactional Memory) [286].

A different approach to tackle the memory conflict problem, is the implementation

of lock-free concurrent data structures [252] which avoids idle times resulting from

using locks. Such implementations, leverage on hardware-supported atomic instruc-

tions that combine a load and a store operation such as for example compare-and-swap

(CAS) or load-linked/store-conditional (LL/SC).

LogP. The LogP model [99] is an asynchronous model describing distributed mem-

ory systems which communicate by using point-to-point non-blocking primitives. A

LogP program is defined as a set of asynchronously cooperating processes exchanging

data with an associated cost. The estimation of the communications cost is given

without considering the real topology of the interconnection network. A LogP ma-

chine comprises a set of processors each one with its local memory and connected one

each other via an interconnection network. The parameters describing a LogP ma-

chine are four: 1) the latency L which specifies an upper bound on the latency of the

interconnection network; 2) the overhead o which specifies the overhead associated

with the transmission or reception of a message; 3) the gap g which gives the time

that must pass between two successive send operations of a processor (its reciprocal

is the per-processor bandwidth); 4) the number of processors P .

To design a parallel algorithm by using the LogP model requires to balance both

computational and communication loads due to the limited available bandwidth. In

addition, an accurate scheduling and mapping of parallel activities are needed to

avoid bottlenecks during the program execution.

The LogP model has been extended to the LogGP model [26] by introducing

another parameter G modeling the difference in bandwidth when sending short or

long messages.
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BSP. The Bulk-Synchronous Parallel (BSP) model, is a model proposed by Leslie

Valiant in 1990 [316], proposing a “bridging” model between parallel software and

the underlying parallel machine. As the von Neumann model provides a unifying

approach bridging the two worlds of sequential hardware and software, likewise the

BSP model provides a unifying model that bridges between parallel hardware and

software.

A BSP computer is made by two main components: 1) a set of processor each

one with its local memory; 2) a communication network. The basic assumptions are:

i) accessing local memory is faster than accessing remote memory; ii) the algorithm

designer should not worry about network details, but only about global application

performance.

Figure 2-13: BSP supersteps.

A BSP algorithm consists of computation and communication supersteps. In each

superstep processors compute using local variable only, then follows a global inter-

processor communication phase where data are exchanged among processors. The

communication takes place only at the end of a superstep when all processors exe-

cute a synchronization barrier. The messages sent or received during a superstep can

be used only after the barrier has been crossed and so at the beginning of the next

superstep. The general structure of a BSP algorithm is sketched in Figure 2-13.

The cost model involves three parameters: 1) the number of processors p; 2)

the permeability g, that is the time spent to deliver a word; 3) the periodicity L,

that is the minimal time (expressed in local computation step) between two distinct
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synchronizations, in other words, it is the overhead associated to the communication

set-up and to the execution of the local work3.

A h-relation is a superstep in which every processor sends and receives at most

h words. The h-relation determines the cost of a superstep that can be computed

as hg. By considering w as the maximum amount of local computation performed

by each processor, the cost of a superstep is then give by: Tspep = w + hg + L. The

cost of the entire program is then simply determined by summing up the costs of all

supersteps executed.

The BSP model allows us to derive realistic predictions of execution time and can

thereby aid the programmer to design parallel programs. The model has inspired

several parallel programming interfaces in different host languages: BSPlib [194] for

the C language, BSML [227] for OCaml, Apache Hama [295] for the Java language

and recently Bulk [72] for the modern C++17 language.

2.4.4 Fundamental models of concurrency

Communicating Sequential Processes (CSP) [196] was proposed in 1978 by

Hoare as a new language for modeling concurrent systems. The CSP model introduced

a number of important concepts that can be found in many modern programming

languages. Later the CSP model was used to develop the process calculus theory.

In CSP, processes communicate exclusively through explicit messages without shared

memory, and no other synchronization mechanism is needed. The control of input

non-determinism via the guarded command and the rendez-vous of inter-process com-

munications, are two key concepts of the CSP model. A concrete implementation of

the CSP model was the Occam language used for programming Transputer micro-

processors. Recently, Google proposed the Go language [141], a C++-like imperative

language heavily inspired by the CSP model.

The Actor model is a concurrent programming model first proposed by Hewitt et

al. [191] in the context of Artificial Intelligence. Later, the actor model has been

3It may be seen as the cost of executing an empty superstep.
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formalized by Agha [4, 5]. Actors are concurrent entities, which interact exclusively

via asynchronous messages. They are uniquely identified by an opaque identifier

so that they can be transparently addressed during send operations. By providing

network-transparent messaging, the actor model offers a high-level of abstraction for

designing applications targeting parallel and distributed systems. Each actor buffers

input messages in a mailbox and processes them sequentially in a single logical step

thus avoiding non-determinism in actors execution. Upon receiving a message, an

actor can: (1) send messages to other actors, (2) spawn new actors to distribute

workload and (3) change its internal behavior to process subsequent input messages

differently. Such an event-based computation model prevents blocking waits for spe-

cific messages, which helps avoiding deadlocks in complex programs. Moreover, since

actors can only interact via message-passing, there is no shared state between actors

so that they never corrupt each other internal state (i.e. local variables) avoiding

potential race conditions. The lack of shared state among actors together with asyn-

chronous messaging enables actor programs to exploit the processing capabilities of

multi-core platforms, potentially. Also, since actors are not tied to the specific phys-

ical machine because of their opaque addressing, the run-time systems can distribute

actors across multiple devices de facto enabling strong scalability.

The Data-Flow model is a programming paradigm modeling a parallel program as

a directed graph where operations are represented by nodes while edges model data

dependencies. Nodes represent the functional unit of computations that are fired

when all input data items are present. Operations without direct dependences as

well as operations that become fireable at the same time can be executed in parallel.

Differently from the actor model, in the data-flow model, the structure of the parallel

program (i.e. its concurrency graph) is fixed and all data dependencies are statically

defined. A data-flow graph can be executed directly by mapping each node to a pro-

cess (or thread) and allowing them to communicate via FIFO channels, alternatively

in the dynamic scheduling approach, a scheduler tracks the availability of tokens in

input to each node and executes the ones that are ready [220]. The data-flow model

has been formalized by Kahn in 1974 [204].
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2.4.5 Evolution of classical parallel models

In the late ’90s, two approaches become predominant in the HPC parallel program-

ming landscape: OpenMP for shared memory systems [102] and MPI for distributed

memory platforms [298]. These two standards are two important representatives of

the so-called classical or pure parallel models [138]. Message passing and shared ad-

dress space represent two distinct programming models, each of them providing a

well-defined paradigm for sharing, communication, and synchronization. The shared

address space model (also called shared memory model) is a convenient programming

model enabling data sharing through natural mechanisms of reading and writing data

structures stored in a common address space. This is the classical model of concur-

rent programming used by POSIX Thread (PThreads) standard [70]. In the PThreads

model, the global variables and dynamically allocated heap memory areas are shared

by threads. This can cause programming difficulties, forcing the programmer to

deal with thread local storage and mutexes to protect critical sections. Moreover,

PThreads does not provide any parallel memory model that defines the behavior of

parallel programs for memory accesses. This limitation has been overcome in the

C++11 standard in 2011 [96], where multithreading programming was introduced in

the C++ language with a complete parallel memory model [55].

The OpenMP programming model tried to simplify shared memory programming

introducing higher-level concepts such as parallel-for for parallelizing loops with inde-

pendent iterations and more recently task-based programming starting from version

3.0. While PThreads is implemented as a library, OpenMP is implemented as a com-

bination of a set of compiler directives, pragmas, and a run-time providing both man-

agement of the thread pool and a set of library routines. These directives instruct the

compiler to create threads, perform synchronization operations, and manage shared

memory.

Recently, the PGAS paradigm (Partitioned Global Address Space) revamped the

Distributed Shared Memory approach that was very popular in ’90s [225] by adding

syntactic mechanisms to control data locality in a parallel application executed on a
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distributed system. The UPC (Unified Parallel C) [145] is an example of the PGAS

approach which extended the C language. In UPC, any processor can directly read

and write variables on the partitioned address space, while each variable is physically

associated with a single node. This programming model is still a shared-memory

model that uses barriers and locks to synchronize the execution flow.

Concerning the message passing model, it is a parallel programming model where

communication between processes happens by explicit messages. It is a natural model

for a distributed memory system, where communication cannot be directly imple-

mented by sharing variables. The Message Passing Interface (MPI) standard, is the

reference API to construct parallel applications composed of tens to hundreds of thou-

sands of communicating processes. Each MPI application, despite its complexity, is

conceived as a single program designed having precise knowledge of data partitioning

and communication patterns.

The evolution of parallel computing platforms toward heterogeneous many-core

systems and clusters of multi-cores equipped with accelerators has blurred the clear

boundary between the message passing and shared memory models. In the context

of HPC, the mainstream programming paradigm evolved into the so-called MPI +

X approach, where the X part is a model which mainly focuses on programming a

single node of the MPI network, for example by using OpenMP or OpenACC [263]

or CUDA [261] or OpenCL [180].

2.4.6 Parallelization approaches

There are basically two main approaches to program parallelization: autoparalleliza-

tion and explicit parallel programming [138]. Autoparallelization deals with paral-

lelization of sequential code using a compiler which can automatically detect par-

allelism and automatically performs data allocation and task scheduling. This is

considered as the “holy grail” of compilers and parallel computing research com-

munities since decades. This line of research has had advances in the exploitation

of Instruction Level Parallelism (ILP) through automatic vectorization of sequential

code [230]. Instead, the automatic extraction of thread-level parallelism needed for
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exploiting multi-core platforms had only limited success due to the need for com-

plex program analysis during the compilation phases [74]. Examples of automatic

parallelization compilers and tools are PLUTO [57] and Par4All [30]. Due to the

complexity of automatically transforming sequential algorithms into parallel ones,

the amount of parallelism extracted using this approach is low. This outlined the

need for higher-level programming models which allow programmers to instruct com-

pilers by introducing modifications to the original program to guide the compilation

process in introducing parallelism. New programs have to be written directly in par-

allel, avoiding to follow the path of writing first the sequential code and then trying

to parallelize it.

Nowadays almost all computing systems are hierarchical with different levels of

potential parallelism. Consequently, the programming model needs to address all

different forms of hardware parallelism in a manner that is abstract enough to avoid

limiting the implementation to a particular kind of hardware. The way the pro-

grammers provide “hits” to the compilation phase can be more-or-less explicit and

more-or-less intrusive in the program code. Over the years several initiatives propose

different approaches, from compiler directives such as in the OpenMP to libraries

such as Intel TBB [282] and FastFlow [21] to language extensions such as in Cilk [51]

to utterly new programming languages such as X10 [86].

2.5 High-Level Parallel Programming

In sequential programming, software portability and code maintainability have been

dealt with by raising the abstraction level of programming and introducing several

software layers from high-level requirements specification to low-level code genera-

tion for the target platform. Porting a sequential program to a different machine,

typically requires just to recompile the code or at worst to tweak a minimal number

of configuration parameters to let the programming environment generate a different

target program.

In the parallel computing scenario, we are still far away from this goal. Parallel
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programmers are still influenced by the HPC community approach so that they tend

to write parallel code by using low-level mechanisms and libraries that allow retaining

complete control over the underlying platform. This approach limits not only code

portability but most of all performance portability.

As is typical in computer science, abstraction of the problem and the utilization

of high-level methodologies are what provide the best answer to the given prob-

lem. In the context of parallel programming, for instance, this means that threads,

synchronizations, and communications concepts have to be abstracted out in higher-

level entities and constructs having a precise semantics. Intel Threading Building

Blocks [282], OpenMP [102], and Cilk [51] are three examples of widely used high-level

parallel frameworks that provide those kinds of abstractions each one in a different

way.

The programmer builds parallel applications by using and possibly composing

high-level constructs that are guaranteed to perform well on a wide range of parallel

systems. These constructs hide the actual complexity of dealing with threads and

synchronizations and abstract out all the details of the underlying architecture. In

this way, the programmer has only an abstract high-level view of the parallel program

and can concentrate only on computational aspects (i.e. functional code) leaving

the most critical implementation decisions to the run-time system executing the non-

functional code. By using different run-time implementations of high-level constructs,

it is possible to enable not only portability of code but also performance portability

as several different implementations of the same construct can be selected depending

on the target platform. One of the main advantages of a high-level approach is to

make programming efforts less time-consuming so to increase productivity in software

development [123, 297].

Any parallel computation can be described as a data-flow graph of parallel ac-

tivities where nodes represent tasks to be executed and arcs represent dependencies

between nodes. Specifically, two distinct types of relations among nodes can be

defined: a) control dependency, i.e. those dependencies explicitly given by the pro-

grammer and to establish an ordering in the execution of concurrent activities; b)
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data dependency, i.e. those dependencies on data where a data item produced by a

node is needed to compute the concurrent activity by another node. The parallelism

arises implicitly by executing in parallel tasks not linked by any dependency arc. Ac-

tivities linked by a control or data dependency form a sub-graph whose tasks have to

be executed respecting the ordering. In these cases, parallelism arises both exploiting

stream parallelism (e.g., data-flow pipelines) and executing independent sub-graph in

parallel.

A number of parallel frameworks have been proposed over the years that pro-

vide different implementations of the graph of concurrent activities by using differ-

ent methods for coordinating the execution of tasks, moving data among concurrent

entities and different techniques for synchronizing dependent tasks. Examples are

ASSIST [317], CnC [208], StarSs [274], StreamIt [310] just to mention some of them.

One of the most widely accepted approaches for raising the level of abstraction

in parallel programming is based on the concepts of parallel patterns [241] and al-

gorithmic skeletons [94], which are schemas of parallel computations that recur in

many applications and algorithms and that are made available to programmers as

high-level programming constructs with a well-defined functional and non-functional

semantics [15]. Each parallel pattern has one or more implementation skeletons de-

pending on the parallel platform considered. Different models of communications

synchronizations and coordination of task execution can be used to implement a

given parallel pattern.

In the following, we briefly introduce structured parallel programming, focusing

in particular on the skeleton-based approach.

2.5.1 Structured Parallel Programming

Parallelism exploitation is characterized by several complex problems that need to be

solved in a synergistic way. For example, once the problem to be solved is decomposed

into several modules that can operate in parallel, the programmer has to decide how to

map them onto processing elements, which task scheduling policy to use to balance the

workload, and how to hide/avoid costly memory accesses or expensive inter-module
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communications. All these decisions cannot be taken independently from each other

because all issues mentioned above are reciprocally connected.

One option to deal with these issues and to reduce the complexity of the paral-

lelization is to introduce constraints in such a way that well-known heuristics can be

applied to solve the given problem [268, 318]. To this end, one of the most widely

acknowledged approaches is the usage of parallel paradigms also referred as parallel

patterns.

Parallel paradigms are schemas of parallel computations that recur in the realiza-

tion of many algorithms and applications for which parametric implementations are

available. Also, such well-known parallel structures have a rigorous semantics with

an associated cost model that allows evaluating their profitability. This approach

liberates the programmer from the concerns of the process mapping, tasks schedul-

ing, and load-balancing, allowing him/her to concentrate on computational aspects,

having only an abstract high-level view of the parallel program, while all the most

critical implementation choices are in charge of the programming tools and RTSs.

The programming approach based on parallel patterns is called structured parallel

programming [122, 123, 94, 242, 318]. This term has been borrowed from sequential

programming where in the 60s and 70s programs were often poorly designed. Several

computer scientists recognized that programs should organize code more structurally

in procedures by using higher-level control structures (e.g., “if-then-else” and “while-

do”) aiming to establish structured programming practices [103] expressing a program

as the composition of a limited amount of abstract high-level constructs.

The structured parallel programming model provides the parallel application pro-

grammer with a set of predefined, ready-to-use parallel abstractions that may be

directly instantiated, alone or in composition with, to model the complete parallel

behavior of the application. This raises the level of abstraction by ensuring that the

application programmer does not need to deal with parallelism exploitation issues and

low-level architectural details during application development. Instead, these issues

are efficiently managed using state-of-art techniques by the system programmer while

designing the development framework and its associated run-time.
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More recently, some authors argue that parallel patterns should be used to replace

explicit thread programming to improve the maintainability of software [242]. The

initial idea was proposed in the late ’80s when algorithmic skeletons were introduced

to simplify parallel programming in the HPC context [93, 267]. As our work directly

extends the ideas of algorithmic skeletons, we will discuss them with more details in

the following.

2.5.2 Algorithmic Skeletons

Algorithmic skeletons4, first introduced in the field of High Performance Comput-

ing [93, 94], were developed independently of parallel patterns to support program-

mers with the provisioning of standard programming language constructs that model

and implement parametric, and reusable parallel schemes. The skeletons approach

inspired the development of several structured parallel programming frameworks and

libraries including P3L [39], ASSIST [317], Muesli [212], SkePU [146], PPL [75]

and FastFlow [21]. A survey of the many frameworks developed following the idea of

skeletons can be found in González-Vélez and Leyton research work [170].

Meanwhile, the software engineering community extended the classic design pat-

tern concepts [162] into the parallel design pattern concept [241] inheriting a lot of

the algorithmic skeletons ideas and experience. Afterward, the advantages deriving

from structured parallel programming approaches have been clearly identified as a

viable solution to the development of efficient parallel applications [35, 174, 242].

Formally, a skeleton is a higher-order function that executes one or more user-defined

functions following a predefined parallel schema and hiding the details of parallelism

exploitation to the user. In a nutshell, algorithmic skeletons may be considered as a

practical implementation of parallel patterns [88].

4We will refer to ”algorithmic skeletons” also as just ”skeletons”.
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2.5.3 A basic set of parallel patterns

Several works have described parallel patterns by providing a formal semantics al-

lowing to compose and nest patterns following rigorous rules [15, 76, 79]. Given the

clear functional and parallel semantics of patterns, several rewriting rules have been

developed allowing to transform a pattern expression into an equivalent one having

the same functional behavior, and an optimized parallel semantics according to some

metrics such as for example the number of resources used, the message latency and

the overall throughput [13, 173, 14, 63].

In the following, we describe the most common parallel patterns using an in-

formal syntax as presented in our recent work describing the P3ARSEC benchmark

suite [129].

Sequential (seq). This pattern encapsulates a portion of the business logic code

of the application. It can be used as a parameter of other more complex patterns.

The implementation requires to wrap the code in a function f : α → β with input

and output parameter types α and β, respectively. For each input x : α the pattern

(seq f) : α→ β applies the function f on the input by producing the corresponding

output y : β such that y = f(x). The pattern can also be applied when the input is

a stream of elements with the same type. Let α stream be a sequence (x1, x2, . . . , )

where xi : α for any i. The pattern (seq f) : α stream → β stream applies the

function f to all the items of the input stream, which are computed in their strict

sequential order, i.e. xi before xj iff i < j.

Pipeline (pipe). The pattern works on an input stream of type α stream. It models a

composition of functions f = fn◦fn−1◦ . . .◦f1 where fi : αi−1 → αi for i = 1, 2, . . . , n.

The pipeline pattern is defined as (pipe ∆1, . . . ,∆n) : α0 stream→ αn stream. Each

∆i is the i-th stage, that is a pattern instance having input type αi−1 stream and

output type αi stream. For each input item x : α0 the result out of the last pipeline

stage is y : αn such that y = fn(fn−1(. . . f1(x) . . .)). The parallel semantics is such

that stages process in parallel distinct items of the input stream, while the same item

is processed in sequence by all the stages.
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Figure 2-14: Implementation schema of a pipeline of n stages.

From an implementation viewpoint, a pipeline of sequential stages is implemented

by concurrent activities (e.g., threads), which communicate through FIFO queues

carrying messages or reference to messages. Figure 2-14 shows an implementation

schema.

Task-Farm (farm). It computes the function f : α→ β on an input stream α stream

where the computations on distinct items are independent. The pattern is defined as

(farm ∆) : α stream→ β stream where ∆ is any pattern having input type α stream

and output type β stream. The semantics is such that all the items xi : α are processed

and their output items yi : β where yi = f(xi) computed. From the parallel semantics

viewpoint, within the farm the pattern ∆ is replicated n ≥ 1 times (n is a non-

functional parameter of the pattern called parallelism degree) and, in general, the

input items may be computed in parallel by the different instances of ∆. In the case

of a farm of sequential pattern instances, the run-time system can be implemented

by a pool of identical concurrent entities (worker threads) that execute the function

f on their input items. In some cases, an active entity (usually called Emitter), can

be designed to assign each input item to a worker, while in other systems the workers

directly pop items from a shared data structure. Output items can be collected and

their order eventually restored by a dedicated entity (usually called Collector) that

produces the stream of results (see Figure 2-15).

Master-worker (master-worker). This pattern works on a collection (α collection)

of type α, i.e. a set of data items {x1, x2, . . . , xn} of the same type xi : α for any

i. There is an intrinsic difference between a stream and a collection. While in a

collection all the data items are available to be processed at the same time, in a stream

the items are not all immediately available, but they become ready to be processed

spaced by a certain and possibly unknown time interval. The pattern is defined as
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Figure 2-15: Implementations schema of a farm of n Workers, with (a) and without
(b) the Emitter and Collector entities.

(master-worker ∆, p) : α collection → α collection where ∆ is any pattern working

on an input type α and producing a result of the same type, while p is a boolean

predicate. The semantics is that the master-worker terminates when the predicate

is false. Different items can be computed in parallel within the master-worker.

A master-worker of sequential pattern instances consists of a pool of concurrent

workers that perform the computation on the input items delivered by a master entity.

The master also receives the items back from the workers and, if the predicate p is

true, reschedules some items.

Map (map). The pattern is defined as (map f) : α collection → β collection and

computes a function f : α → β over all the items of an input collection whose

elements have type α. The output produced is a collection of items of type β where

each yi : β is yi = f(xi). The precondition is that all the items of the input collection

are independent and can be computed in parallel.

The run-time of the map pattern is similar to the one described for the farm

pattern. The difference lies in the fact that since we work with a collection, the

assignment of items to the worker entities can be performed either statically or dy-

namically. Depending on the framework, an active entity can be designed to assign

input items to the workers according to a given policy.

Map+reduction (map+reduce). It is defined as (map+reduce f, ⊕) : α collection→

β, where f : α→ β and ⊕ : β × β → β. The semantics is such that the function f is

applied on all the items xi of the input collection (map phase). Then, the final result
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of the pattern y : β is obtained by composing all the items yi of the output collection

result of the map phase by using the operator ⊕, i.e. y = y1 ⊕ y2 ⊕ . . .⊕ yn.

A typical implementation is the same as the map where the reduction phase can

be executed serially, once all the output items have been produced, or in parallel

according to a tree topology by exploiting additional properties of the operator ⊕

(i.e. if it is associative and commutative).

Composition (comp). This pattern models the composition of two pattern instances

that work either on single items, on streams or on collections. In case of collections,

the composition is (comp ∆1, ∆2) : α collection→ γ collection where ∆1 is any pattern

(e.g., map or master-worker) working on input α collection and that produces an

output β collection, while ∆2 is a pattern working with input type β collection and

transforming it into a type γ collection. The semantics is that the first pattern is

executed, and when its execution has finished (i.e. all the items in the input collection

have been computed) the second pattern can be started for processing the collection

produced by the first pattern. In case of streams, the composition semantics is applied

on an item-by-item basis, i.e. each item in the input stream is processed first by ∆1

and then by ∆2 before starting to compute the next item. The RTS of a pattern-based

framework must ensure that the two patterns within the comp instance are executed

serially. In the case of collections, a barrier can be placed between the two patterns.

Iterator (iterator). In its basic form this pattern iterates a pattern ∆ working on

a single input item (seq or comp) or on a collection of items (map, master-worker).

In case of collections, the pattern is defined as (iterator ∆, p) : α collection →

α collection, where p is a boolean predicate. The inner pattern ∆ is iterated until the

predicate is true. At the implementation level, the run-time executes the pattern for

a certain number of times determined statically or at run-time. At the end of each

iteration there is an implicit barrier, since the output collection computed at iteration

i− 1 may be used as input for the iteration i.
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2.5.4 Parallel Building Blocks

Different from a pure skeleton based approach where a highly specialized, efficient

and monolithic implementation of each skeleton is optimized for a given target ar-

chitecture, the building block approach, recently proposed [118, 7], pushes the idea

of providing the programmer with efficient reusable implementations of basic com-

ponents that can be assembled following a LEGO-style methodology to build and

orchestrate more complex parallel structures. By using RISC-pb2l components, it

is possible to model both well-known parallel patterns and general-purpose parallel

programming abstractions not usually listed in classical skeleton sets, and also more

specialized domain-specific parallel patterns. Borrowing the concept of higher-order

functions/combinators distinction proposed for sequential building blocks in Backus’

FP programming language [40], the RISC-pb2l approach aims to provide a simi-

lar “algebra of programs” that is suitable for reasoning about parallelism to enable

refactoring and optimization of parallel programs.

RISC-pb2l is a description language for structured parallel programming built

upon three distinct components: wrappers, combinators, and functionals. Wrappers

describe how a given function has to be executed. They are used to encapsulate

either sequential or parallel code. Combinators are used to establish data-flow con-

nections between building blocks. Functionals are used to represent basic parallel

patterns. The complete set of RISC-pb2l building block is shown in Figure 2-16.

Each component follows a data-flow semantics.

As an example, both a Task-farm and Map parallel patterns (with a parallelism

degree of n Workers) can be described in RISC-pb2l as follows:

Farm(f,n) = CUnicast(Auto) • [| ∆ |]n •BGather

Map(f,n) = CScatter • [| ∆ |]n •BGatherall

In both cases, f is the function executed by ∆ and the parallel structure is defined

by a three-stage pipeline composition of building blocks. The Auto policy in the BPol

building block defines an auto-scheduling policy. It may be substituted by other
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Name Syntax Informal semantics

Wrappers
Seq wrapper ((f)) Wraps sequential code into a RISC-pb2l “function” .
Par wrapper (| f |) Wraps any parallel code into a RISC-pb2l “function” (e.g., code offload-

ing to GP-GPU or a parallel OpenMP code).

Functionals
Parallel [| ∆ |]n Computes in parallel n identical programs on n input items producing

n output items.
MISD [| ∆1, . . . ,∆n |] Computes in parallel a set of n different programs on n input items

producing n output items.
Pipe ∆1 • . . . •∆n Uses n (possibly) different programs as stages to process the input data

items and to obtain output data items. Program i receives inputs from
program i− 1 and delivers results to i + 1.

Reduce (gB) Computes a single output item using an l level (l ≥ 1) k−ary tree. Each
node in the tree computes a (possibly commutative and associative)
k − ary function g.

Spread (fC) Computes n output items using an l level (l ≥ 1) k − ary tree. Each
node in the tree uses function f to compute k items out of the input
data items.

Combinators
1-to-N CD-Pol Sends data received on the input channel to one or more of

the n output channels, according to policy D-Pol with D-Pol ∈
[Unicast(p), Broadcast, Scatter] where p ∈ [RR,AUTO]. RR applies
a round robin policy, AUTO directs the input to the output where a
request token has been received

N-to-1 BG-Pol Collects data from the n input channels and delivers the collected items
on the single output channel. Collection is performed according to
policy G-Pol with G-Pol ∈ [Gather,Gatherall, Reduce]. Gatherall
waits for an input from all the input channels and delivers a vector of
items, de facto implementing a barrier.

Feedback
←−−
(∆)cond Routes output data y relative to the input data x (y = ∆(x)) back to

the input channel or drives them to the output channel according to
the result of the evaluation of Cond(x). May be used to route back n
outputs to n input channels as well.

Legal compositions grammar

∆n ::= [| ∆ |]n | [| ∆1, . . . ,∆n |] |
←−−−
(∆n)cond | ∆n •∆n

∆1n ::= CPol | (fC)
∆n1 ::= BPol | (gB)

∆ ::= ((code)) | (| code |) | ∆ •∆ |
←−−
(∆)cond | ∆1n •∆n1 | ∆1n •∆n •∆n1

Figure 2-16: RISC-pb2l building blocks and its composition grammar as presented in
[7].

policies, such as for example by a simple round-robin policy (RR). In the Map

implementation, a gather-all collection policy is used to gather all results. In the

Task-Farm pattern a simple non-deterministic collection of results is applied.

The RISC-pb2l set has been recently extended to automatically extract the extra-

functional properties of an application with the aim of targeting efficient execution

on heterogeneous platforms [169]. The new framework, called SKIP (Structural

Composition and Interaction Protocol), coordinates the execution of structured par-

allel applications in heterogeneous multi-cores performing autonomic scheduling of
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components in heterogeneous devices and application performance related tuning.

2.6 Summary

In this chapter, we have provided an overview of the complex and variegated world

of parallel computing. We described the most relevant computing architectures with

particular emphasis on the transition from multiprocessors to multi-core and many-

core systems. Then we described the most relevant programming models focusing

on the structured parallel programming methodology which is at the basis of our

work. In our opinion the materials contained in this chapter should help the reader

to go through the contributions of the thesis and provide the relevant background to

comprehend related work, which is presented in the next chapter.
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Chapter 3

Overview of Existing Tools

A large body of research considers parallel programming frameworks and tools for

parallelism exploitation. Some of them mainly focus on simplifying parallel program-

ming others instead focus more on targeting multiple platforms aiming at increasing

portability. Among this latter, some proposals target heterogeneous systems equipped

with GPUs and HW accelerators.

In this chapter, we discuss notable projects related to parallel programming pro-

posed mainly by research groups. We do not pretend to be exhaustive nor to discuss

all features of the framework or library we present. However, we provide an overview

of the most important features that characterize each of them to give an overview of

the current state of the art related to parallel programming tools.

We start considering skeleton-based libraries, since the FastFlow framework has

been developed following the main principles of the structured parallel programming

model. Then, we focus on tools offering a high-level approach to parallel programming

and annotation based approaches. We also briefly consider existing tools and libraries

for programming distributed parallel systems.

Finally, we summarize what emerged from the analysis of existing tools, briefly

discussing the most recent research directions.
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3.1 Skeletons-based libraries

Skeleton-based programming (often referred to as structured parallel programming)

has been introduced by Murray Cole in his Ph.D. thesis [93]. Cole defined a skeleton

programming environment as follows:

The new system presents the user with a selection of independent “algo-

rithmic skeleton”, each of which describes the structure of a particular

style of algorithm, in the way in which higher order functions represent

general computational frameworks in the context of functional program-

ming languages. The user must describe a solution to a problem as an

instance of the appropriate skeleton.

Since then, the concept of algorithmic skeleton has been used by several re-

search groups to design high-performance structured parallel programming libraries

and frameworks with the main aim to replace the traditional low-level programming

models with better abstractions and an easier way to express parallelism through a

collection of recurrent and efficient parallel exploitation patterns [243, 242, 241]. The

main aim of this programming methodology is to provide a good trade-off between

programmability, reusability of code, portability and performance enhancement to im-

prove programmers’ productivity by letting them focus on algorithms and business

logic code instead of hardware architectures and low-level details.

Skeletons are provided to the programmer either as language constructs (for ex-

ample, in the ASSIST parallel framework [317]), or as libraries (for example in

SkePU [146] and SkelCL [304] frameworks). They can be nested to build complex par-

allel applications. Usually, the set of skeletons provided includes both data-parallel,

task and stream parallel patterns. The compiling tools of the skeleton language or

the RTSs of the skeleton libraries take care of automatically deriving/executing ef-

ficient parallel code out of the skeleton application without any direct programmer

intervention [268].

Recently, an increasing interest in Domain Specific Languages (DSLs) as a means

for tacking performance portability led to the proposal of some tools offering skeletons
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for design-space exploration before generating parallel application code for the target

platform [121].

In the rest of this section we briefly describe some notable research framework

mainly targeting multi/many-core platforms and GPUs. We will discuss skeleton-

based frameworks targeting distributed systems in Section 3.4.3.

3.1.1 SkePU

SkePU [146] is an open-source high-level C++ programming framework for hetero-

geneous parallel systems, with a primary focus on multi-core CPUs and multi-GPU

systems. Its main objectives are to enhance both performance portability and to pro-

vide a more programmer-friendly interface than low-level APIs such as OpenCL and

CUDA. It is implemented as a C++ template library that provides a unified interface

for data-parallel computations through algorithmic skeletons both on GPUs using

OpenCL and CUDA backends and on multi-core CPUs by using a parallel OpenMP

backend.

The first version of SkePU (called SkePU-1), developed until 2015 (the latest

release was SkePU 2.1), used a macro-based language where C preprocessor macros

were used to abstract the target platform. The SkePU-1 user functions, generated

from a macro interface, were C++ objects containing member functions for CUDA

and CPU targets, and strings of code for the OpenCL target to be dynamically

compiled. Deciding which backend to use for a given application, depends upon

several different factors such as the problem size the kind of target platforms and the

kind of skeleton used. In [125], the SkePU authors proposed an automatic selection

algorithm based on offline machine learning algorithm which generates a decision tree

with low training overhead that in the end provides the user with an auto-tuning

mechanism for backend selection.

SkePU-1 includes different flavors of the Map and Map-Reduce skeletons (Map,

MapArray, MapOverlap, Reduce, MapReduce), the Scan skeleton that is a generalized

prefix sum operation with a binary associative operator, and the Generate skeleton

that allows us to initialize elements of an aggregate data structure based on the
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element index and a shared initial value.

SkePU-1 includes also aggregate data structures called smart containers [124].

Smart containers are concurrent data structures of generic elements (currently avail-

able as vectors and matrices) stored in the host main memory, but that can temporar-

ily store subsets of their elements in GPU device memories to optimize memory-to-

memory transfers and device memory allocation. Besides, smart containers perform

transparent software caching of kernel operands they wrap.

Figure 3-1: The SkePU-2 compiler infrastructure.

SkePU-2 [148] is a redesign of SkePU-1 made available in 2016. It builds on the

run-time system of SkePU-1 updated to use C++ variadic template features. It also

adds a new user interface based on the modern C++ syntax that leverages lambda

expression and a new compilation model with a source-to-source translation. While

SkePU-1 uses preprocessor macros to transform user functions for parallel backends,

SkePU-2 utilizes a source-to-source precompilation phase based on libraries from the

Clang project [277]. The user source code is passed through this tool before the

standard compilation phases (see Figure 3-1).
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1 // map function working on the single item of the input collection

2 MapOutput mapFunction(skepu2::Index1D index, parm elem)

3 { <business-logic code>};

4 // preparing the input and output data structures

5 skepu2::Vector<parm> swaptions_sk(swaptions, nSwaptions, false);

6 skepu2::Vector<MapOutput> output_sk(nSwaptions);

7 // creating the map object by providing the function to compute

8 auto map = skepu2::Map<1>(mapFunction);

9 // setting up the OpenMP backend and the number of threads to use

10 auto spec = skepu2::BackendSpec{skepu2::Backend::Type::OpenMP};

11 spec.setCPUThreads(nThreads);

12 map.setBackend(spec);

13 // map execution invocation

14 map(output_sk, swaptions_sk);

Code 1: SkePU-2 implementation of the swaptions P3ARSEC benchmark using the
OpenMP backend. Code from [129].

The main aim of the redesign of SkePU-2 is to enhance flexibility and type-safety

by removing macros and leveraging C++ features for cleaning up the user interface.

SkePU-2 removes the MapArray and Generate skeletons in favor of a generalized

Map skeleton and adds the new Call skeleton. Call is not a skeleton in a strict

sense, as it does not enforce a specific structure for computations. It simply invokes

its user function. The programmer can provide arbitrary computations as explicit

user function backend specializations, which must include at least a sequential CPU

backend as a default variant. Call extends the traditional skeleton programming

model in SkePU with the functionality of user-defined multi-variant components with

auto-tunable automated variant selection [148].

An example of SkePU-2 code is shown in Code 1 where a single Map pattern

is used to parallelize the main kernel of the swaptions PARSEC application. The

function containing the business logic code operating on each element of the input

data is defined in line 2. Input and output data collections are instantiated by using

SkePU-2 smart containers (lines 5–6, respectively). Then, the map object is created

by providing the map function (line 8) and the OpenMP backend run-time (with its

parallelism degree – line 11) is selected for the map pattern at line 10. Finally, the
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1 int main() {

2 skelcl::init(); // initialize SkelCL

3 // specify calculations using parallel patterns (skeletons):

4 Zip<int(int,int)> mult("int func(int x, int y){ return x*y; }");

5 Reduce<int(int)> sum("int func(int x, int y){ return x+y; }","0");

6 // create and fill vectors

7 Vector<int> A(1024);

8 Vector<int> B(1024);

9 init(A.begin(), A.end()); init(B.begin(), B.end());

10 // perform calculation in parallel

11 Vector<int> C = sum( mult(A, B) );

12 // access result

13 std::cout << "Dot product: " << C.front() << std::endl;

14 }

Code 2: SkelCL program computing the dot product of two vectors. Code from [303].

data parallel computation is executed (line 12).

3.1.2 SkelCL

SkelCL [304] is a high-level programming framework targeting single and multi-GPU

systems. It extends OpenCL by introducing algorithmic skeletons operating on con-

tainer data types. Implemented as a library, it does not require the usage of a precom-

piler like SkePU, with the downside that user functions are defined as string literals.

Parallelism is expressed implicitly, using skeletons, and memory management is per-

formed automatically by the SkelCL run-time built on top of OpenCL. SkelCL aims at

simplifying the development of real-world applications for multi-GPU systems while

providing performance close to hand-tuned OpenCL implementations. It provides

a C++ API that simplifies several repetitive tasks such as explicit data transfer be-

tween CPU and GPU, memory allocation and program initialization. SkelCL can also

be used in combination with low-level OpenCL code for more advanced programming

that requires maximal flexibility.

Thanks to the definition of two container data types (vector and matrix) it au-

tomatically moves data between host CPU and GPUs and between multiple GPUs
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relieving the programmer of all tricky aspects related to the management of multi-

GPU platforms. SkelCL run-time abstracts from the physical memory of each GPU in

the systems, making available containers’ data on each GPU. Code 2 shows a SkelCL

program implementing the dot product operation on two vectors using two parallel

patterns: Zip for computing the Map part (line 4) and the Reduce to reduce the

intermediate results and produce the final result (line 5).

The current version of SkelCL provides four basic skeletons (Map, Reduce, Zip,

and Scan) and three more advanced skeletons (Allpairs, MapOverlap, and Stencil).

An in-depth discussion of the basic skeletons plus the Allpairs and MapOverlap ones

can be found in [303], the Stencil skeleton is discussed in [61]. The AllPairs skeleton

is an efficient implementation of specific complex access modes involving multiple

matrices.

All computations in SkelCL accept containers as their input and output. To sim-

plify the partitioning of a container on multiple GPUs, SkelCL supports the concept

of distribution that specifies how a container is distributed among the GPUs. The

application developer can set the distribution of containers explicitly or can use the

default distribution associated with each skeleton for its input and output containers.

The distribution of a container can be changed at run-time (with automatic data

exchanges between multiple GPUs and the CPU). Implementing such data trans-

fers in standard OpenCL requires lots of coding which introduces bugs and potential

inefficiency. SkelCL hides all this extra low-level coding to the user.

Figure 3-2: Different distribution policies in SkelCL ([61]).

The concept of distribution allows the application developer to abstract from

explicitly managing memory ranges which are shared or partitioned across multiple

GPUs. Four kinds of distributions are currently available to the application developer

in SkelCL: single, copy, block, and overlap. For a system with two GPUs, Figure 3-2
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1 int main() {

2 // initialize Muesli

3 msl::initSkeletons(argc, argv);

4

5 auto init = [] (int row, int col)

6 { return randomFloat(row, col); };

7 // create and initialize a distributed matrix dim x dim

8 msl::DMatrix<float> A(dim, dim, 1,

9 msl::Muesli::num_total_procs, init,

10 Distribution::DIST);

11 // create user functions

12 auto square = [](float a) {return a*a;};

13 auto sum = [](float a, float b) {return a+b;};

14 // apply skeletons

15 A.mapInPlace(square);

16 float f_norm = A.fold(sum);

17 // write result

18 printv("||A||_F = %f\n", sqrt(f_norm));

19 // terminate Muesli

20 msl::terminateSkeletons();

21 }

Code 3: Muesli program computing the Frobenius Norm of a matrix.

illustrates the four kinds of distributions. The overlap distribution is used for the

MapOverlap and Stencil skeletons: it stores on both GPUs a common block of data

from the border between the GPUs [61].

3.1.3 Muesli

Muesli [212], developed at University of Münster, is a C++ template library

that supports both shared-memory as well as distributed memory architectures. It

uses MPI for inter-node communications and OpenMP for intra-node parallelism

exploitation. Recently, it has also been extended to support multi-GPU systems by

using CUDA [147]. It provides data-parallel skeletons such as Map, Fold, Scan (i.e.

prefix sum) zip and mapStencil. Muesli also implements distributed data structures

such as distributed arrays, matrices, and sparse matrices (in the current version,

skeletons operating on sparse matrices cannot be executed on GPUs). Data parallel
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skeletons are offered to the user as member functions of distributed data structures.

Code 3 shows a Muesli implementation of the Frobenius Norm computation for a

matrix of size dim × dim using the Map and Fold skeletons.

Task parallel skeletons are offered as separate classes. They are used to construct

process topologies such as farm, pipeline, Divide & Conquer and branch-and-bound.

To use a task-parallel skeleton, the user has to instantiate an object of the corre-

sponding class. When nesting distributed data structures into task parallel skeletons,

only a subset of processes participate in the task parallel skeleton. In the current

version of Muesli the programmer must explicitly indicate whether GPUs are to be

used for data-parallel skeletons.

3.1.4 Marrow

Marrow [234] is a C++ algorithmic skeleton framework for the orchestration of

OpenCL-based computations. It provides a set of data and task-parallel skeletons

that can be nested to model complex computations targeting mainly GPU-based sys-

tems. Recently, it has been extended to support multiple GPUs [25]. It offers three

base skeletons:

• Pipeline: it defines computation with linear data dependencies where the output

of a stage is the input of the following one. Marrow, implements this pattern

by keeping the data buffers needed for inter-stage communications on the GPU

memory, thus eliminating host-device memory transfers.

• Loop: This pattern models an iterative loop over the entire skeleton computa-

tion until a user-defined condition is evaluated to true. It is particularly useful

for numerical methods and scientific simulations which typically are iterative

computations. The condition itself may be controlled by external or internal

events to the loop body. A particular instance of the Loop pattern is the For

skeleton.

• Map: It applies a computation to independent partitions of the input dataset.

This pattern fits particularly well with the semantics of the GPU’s execution

111



model. MapReduce extends Map by allowing the definition of a reduction stage,

to be subsequently performed at the host side. Optionally, this reduction step

can be partially performed on the GPU. For that purpose, the framework de-

ploys a pipeline, whose second stage is an explicitly supplied OpenCL reduction

kernel.

Recently Marrow has been extended to process streams of hybrid CPU/Xeon Phi

nodes [155]. Marrow’s skeletons have been used to transparently manage communi-

cations between the host and the Xeon Phi accelerators.

3.1.5 GrPPI

GrPPI (Generic and reusable Parallel Pattern Interface) is a programming interface

for modern C++ applications developed at the University Carlos III of Madrid [135].

It is an open source library that accommodates a layer between application developers

and existing parallel programming frameworks targeting multi-core systems.

According to GrPPI authors, the lack of a common terminology to denote different

kind of patterns and the lack of a common, recognized and assessed API to use these

patterns has prevented the wide diffusion of the pattern-based parallel programming

as well as a general acknowledgment of the related advantages. By making use of

advanced C++ features such as meta-programming concepts, and generic program-

ming techniques, GrPPI provides a fully C++ compliant API to well-known parallel

patterns on top of different programming models having as a result a unified standard

interface. GrPPI currently suppotrs as run-times ISO C++ Threads, OpenMP, Intel

TBB, and recently FastFlow. Figure 3-3 shows the general view of the GrPPI library.

GrPPI provides four main components to provide a unified interface for the sup-

ported frameworks: i) type traits, ii) pattern classes, iii) pattern interfaces and iv)

execution policies. Type traits are used for function overloading and to allow com-

position of different patterns. Moreover, by using the enable if type trait from the

C++ standard library, functions that are not used are removed at compile time so

that only functions meeting the conditions become available to the compiler, thus
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Figure 3-3: The GrPPI software layers.

1 void exec_pipeline(grppi::polymorphic_execution& e,

2 int N) {

3 grppi::pipeline(e,

4 [N]() -> optional<double> {

5 static int x = 0;

6 if (x<N) return x++; // produce an element

7 else return {}; // end-of-stream

8 },

9 [](double x) { return F(x); }, // apply F

10 [](double x) { return G(X); }, // apply G

11 [](double x) { cout << x << endl; } // print result

12 );

13 }

Code 4: GrPPI pipeline computing F (G(x)) for a stream of N elements.

allowing to provide the same interface for different implementations.

GrPPI provides a set of independent classes that represent each of the supported

patterns. These objects store references to other functions and to non-functional

information (e.g., concurrency degree) related to the pattern configuration. Thus,

they can be used inside another pattern in order to express complex constructions

that can not be represented by leveraging a single pattern.

For each supported parallel pattern, GrPPI offers two different alternatives, one

for pattern execution and one for composition with other patterns. Both alternatives
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receive the user functions that will be executed accordingly to the pattern and con-

figuration parameters as function arguments. Code 4 shows a simple GrPPI pipeline

computing F (G(x)) over a stream of N elements generated by the first stage.

Finally, a key point of GrPPI is the ability to easily switch between different

programming framework implementations of the same pattern. This is achieved by

providing a set class that encapsulates the actual pattern implementations of a given

framework. This way, it is straightforward to use different RTS frameworks. The

current GrPPI version provides support for sequential, C++ threads, OpenMP, Intel

TBB and FastFlow frameworks.

GrPPI targets the following stream parallel processing patterns: Pipeline, Farm,

Filter, Stream-Reduce, and Stream-Iteration. Recently, GrPPI has been extended

with several advanced patters targeting Data Stream Processing (DSP) [136].

3.1.6 Parallel Pattern Library (PPL)

Figure 3-4: Libraries and run-time components of the Parallel Pattern Library (PPL).
Figure from “Parallel Programming with Microsoft Visual C++” [75].

The parallel programming support in the Microsoft Visual C++ development

system is commonly referred to as the Parallel Patterns Library (PPL) [75]. PPL
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together with the Asynchronous Agents Library (AAL) aim at simplify the process of

adding parallelism and concurrency to applications written in C++. It raises the level

of abstraction between the application code and the underlying threading mechanisms

by providing generic, type-safe algorithms and containers that operate in parallel.

The library provides an imperative programming model that promotes parallel

patterns to improve scalability and simplify the development of concurrent applica-

tions. To abstract low-level threading details and architectural details, PPL and AAL

use the Concurrency Runtime which is responsible of task scheduling and resource

management (see Figure 3-4). The task scheduler determines on which cores and

when to run an application’s tasks. It uses cooperative scheduling to provide load

balancing across different cores. The resource manager assigns computing resource

to the application trying to prevents (or minimize) contention in the use of the cores.

It also helps to ensure the best use of cache hierarchy.

PPL provides task parallelism, parallel patterns and data containers that allow

safe concurrent access to their elements. PPL currently supports six patterns: Parallel

Loop, Parallel Task, Parallel Aggregation, Futures, Dynamic Task Parallelism and

Pipeline.

3.2 Other High-Level Approaches

In recent years, in addition to skeleton/pattern-based approaches, a number of frame-

works, targeting both shared-memory and distributed systems, have been proposed.

For instance, Intel Threading Building Blocks (TBB) [282] for general-purpose par-

allel computations and StreamIt [310] specifically targeting streaming computations.

We consider such approaches as high-level models because their primary aim is to hide

some low-level parallel programming details behind suitable APIs or abstractions. In

the following we provide a brief overview of some of these high-level approaches to

parallelism.
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3.2.1 Delite

In the context of parallel programming targeting heterogeneous architectures, is

emerging an increasing interest in Domain Specific Languages (DSLs). The main rea-

son is that DSLs can incorporate high-level parallel constructs and domain-specific

features together in the same language which facilitates performance portability on

a variety of hardware. Compiler analysis in DSLs is typically less conservative than

in general-purpose compilers. Some restrictions usually enforced in general-purpose

compilers and programming models can be removed allowing to introduce more ad-

vanced optimizations [82].

Despite the potential benefits of performance-oriented DSLs, the cost of developing

a DSL is high and requires expertise in multiple areas of computer science. Delite is a

framework for helping programmers in building compilers for high-performance DSLs

targeting heterogeneous architectures (multi-cores, GPUs, clusters and FPGAs) [305].

It is aiming to simplify DSLs construction by providing common reusable components

such as parallel patterns, optimizations techniques and code generation features that

can be used as basic building blocks by the DSL designer to build high-performance

DSLs with low effort in different application domains.

The main components of the Delite framework are shown in Figure 3-5. Delite

has been used to develop a suite of DSLs for data analysis: query processing (Op-

tiQL), machine learning (OptiML), graph processing (OptiGraph) and mesh-based

PDE solvers (OptiMesh). Delite-generated DSLs (e.g., OptiML), are embedded in

Scala [262], a general-purpose functional programming language with a rich type sys-

tem. Delite compiles DSLs to a platform-neutral Intermediate Representation (IR)

by using a Lightweight Modular Staging, an extensible run-time compilation frame-

work that serves as a common basis for all our DSLs [284]. From the IR and by

leveraging on knowledge conveyed in the DSL, the run-time code is generated for the

target platform. Interestingly, Delite-generated C code has been also used as input to

C-based High-Level Synthesis tools, such as Xilinx Vivado [326], to generate better

register-transfer level (RTL) implementations [276].
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Figure 3-5: The Delite DSL Framework.

The key reason why Delite is able to generate efficient code for the target machine

is its emphasis on parallel patterns. While DSLs are exposed to the users mainly

to provide more familiar domain-specific abstractions, parallel patterns are used as

building blocks in its RTS [305]. Delite currently supports the following parallel

patterns: Sequential, Map, FlatMap, Reduce, ZipWith, Foreach, ForeachReduce, Filter,

GroupBy, Sort. New patterns can be easily added in Delite. In fact, most of the

existing Delite patterns extend a common loop-based building block called MultiLoop

that is a highly generic data-parallel loop.

The Delite platform and associated DSLs are available as open source1.

3.2.2 Threading Building Blocks (TBB)

Threading Building Blocks (TBB) [282] is a parallel library developed by Intel. The

TBB programming model supports task-based parallel programming. It provides the

programmer with a collection of thread-safe and efficient concurrent data structures

(e.g., concurrent queue, concurrent hash map), a small set of parallel patterns includ-

1http://stanford-ppl.github.com/Delite
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1 void runPipeline(int ntokens, FILE* infile, FILE* outfile) {

2 tbb::parallel_pipeline(ntokens,

3 tbb::make_filter<void,MyTuple*>(

4 tbb::filter::serial_in_order, F1(infile))

5 &

6 tbb::make_filter<MyTuple*,MyTuple*>(

7 tbb::filter::parallel, F2() )

8 &

9 tbb::make_filter<MyTuple*,void>(

10 tbb::filter::serial_in_order, F3(outfile)));

11 }

Code 5: A three-stage pipeline built using TBB.

ing Map, Reduce, parallel for and task-graph and parallel pipeline. TBB can be used

with any compiler supporting ISO C++ and the most recent versions deeply uses fea-

tures of modern C++ like lambda expressions. TBB exploits the concept of task as

unit of parallelism without exposing threads to the programmer aiming at using the

available core resources more efficiently. As with Cilk Plus (see Section 3.2.3), TBB

implements a thread pool of workers and balancing their workload via work-stealing

algorithm [52]. The main advantage of this model of execution is that it enables

nested parallelism while avoiding some of the issues related to using more threads

than available resources (over-subscription).

TBB provides also a set of useful classes for example those implementing a lock-

free scalable memory allocator, and mutual exclusion mechanisms. Since global locks

serialize parts of programs, the TBB implementation, generally avoids locks in its

implementation and there is no global tasks’ queue.

In Code 5 is shown the top-level code for building and running a TBB pipeline

composed of three stages: a sequential stage running function F1, a parallel stage

running the function F2 and a final third stage running the function F3. The fil-

ters are concatenated with the C++ operator ’&’. Each filter is constructed by the

function make filter<inType,outType>(mode, functor). The parameter ntoken

to method parallel pipeline controls the maximum number of in flight data-items

(or tokens) processed by the pipeline. In a serial in-order filter, each token is pro-
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cessed serially. In a parallel filter, multiple tokens can by processed in parallel by the

filter. Once this limit is reached, the pipeline never creates a new token at the first

filter until another token is consumed by the last filter.

3.2.3 Cilk and Cilk Plus

Cilk and Cilk Plus (or Cilk++) are general purpose programming languages designed

for multi-threaded parallelism based on C and C++ languages, respectively. Cilk

Plus has been released both as open-source as well as a commercial product by Intel.

The Cilk research project was initially proposed in the mid 90s [51]. It was released

as a C language extension offering keywords such as cilk spawn, cilk sync to spawn

the execution of a function (i.e. a task) in a concurrent thread and synchronize with its

termination. In Cilk several functions can be spawned at the same time and then their

reconciliation can happen at specific synchronization points. This behavior models a

fork-join pattern of execution where the main control flow forks into several parallel

flows of execution that can rejoin in a common synchronization point. The parallel

flows can either execute replicas of the same flow or a set of different flows. The

nesting of multiple fork-join patterns in a structured fashion generates a hierarchical

task-graph.

Cilk Plus evolved from Cilk and currently provides support for both C and C++.

Cilk Plus has introduced the explicit specification of vector parallelism through a set

of array notations and elemental functions. Moreover, to express loop parallelism, a

new keyword cilk for has been added to transform a sequential loop into a parallel

loop. The implementation of cilk for loops uses a recursive fork-join approach.

A reducer hyperobject is a Cilk Plus linguistic construct that allows implementing

reductions on a shared variable or data structure. There are several reducers built

into Cilk Plus for common reduction operations. It is possible to define a custom

reducer for any data type and operation that form a mathematical monoid [242].

One of the most interesting features of Cilk was its work-stealing task-based

scheduler used to balance the workload among a pool of Workers [52]. The funda-

mental idea of this algorithm is to remove the bottleneck of a single global task queue
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by using a local task queue for each Worker. Workers obtain tasks only from their

queue until it becomes empty. Then, the generic Worker acts as a thief, i.e. selects

one of the other workers as a victim (usually randomly) and then tries to steal one

or more work items from its queue. This strategy minimizes communication among

threads and maximizes local reuse of data. A downside of the work-stealing algorithm

is its termination phase or, more generally, the efficient detection of idle states [320].

This is because Workers have only local knowledge. When the local queue runs out of

tasks, the Worker is not aware if there are jobs to steal in the other queues. Moreover,

if there are very few jobs in the system, it is hard to decide if it is more convenient

to keep trying to steal jobs or instead if it is more convenient to terminate.

3.2.4 StreamIt

StreamIt is a programming language for high-performance streaming computations [310].

Programs in StreamIt are represented as graphs whose nodes (called filters or ac-

tors) encapsulate computation, and edges represent inter-filter communications im-

plemented by using FIFO message channels. The programming model of StreamIt

computation is the Synchronous Data-Flow model (SDF) [219] that is a subset of

the pure Data-Flow model (see Section 2.4.4) in which the number of data elements

(tokens) produced and consumed by each filter is known at compile-time.

Each filter consists of a work function that repeatedly executes when sufficient

data is available on its input FIFO queue. The work function reads data from its

input queue, and writes data to its output queue. The work function can also inspect

input without removing items from the queue thus allowing to avoid using internal

filter state. StreamIt provides three basic constructs for composing filters into larger

streaming graphs: pipeline, splitjoin, and feedback loop. A pipeline connects streams

sequentially, a splitjoin models a task-farm pattern where streams diverge from a

common splitter and merge into a common joiner. A feedback loop allows us to create

cyclic data-flow graphs.

Filters in StreamIt can only access their locally declared variables, therefore data-

exchange between filters is accomplished using explicit data transfer. StreamIt ’s filters
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1 void->void pipeline IIR {

2 ...

3 add FIR(256); add FIR(96);

4 ...

5 }

6 int->int filter FIR(int n) {

7 int w[n];

8 ...

9 work pop 1 push 1 peek n {

10 int i;

11 int sum=0;

12 for(i=0;i<n;i++)

13 sum += peek(n) + w[i];

14 pop();

15 push(sum);

16 }

17 }

Code 6: Example of a 2-filter pipeline in StreamIt. Code from [213].

may be either stateful or stateless. A stateful filter that modifies local state during the

work function cannot be parallelized as the next invocation depends on the previous

invocation.

A special method called work is used to specify the work function that is executed

when the filter is invoked in steady state. The stream rates (i.e. the number of items

pushed and popped on every invocation) of the work functions are specified statically

in the program. The rate-matching guarantees that, during the steady state phase,

the number of data elements that is produced by a filter is equal to the number of

data elements its successors will consume.

Code 6 shows a simple example of a StreamIt program implementing a pipeline

of two filters. StreamIt provides the peek primitive to the programmer, which can be

used to non-destructively read values off the input channel. Peeking is an example of

a state representation (i.e. sliding window buffer) present in the language. A program

using the peek instruction can always be rewritten with just pushes and pops plus

some local state that holds a subset of values seen so far by filters.

StreamIt also provides a compiler infrastructure to implement the programming
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language. The compiler can generate code for distinct hardware devices and to

optimize code generation through the implementation of data-flow analysis tech-

niques [333, 171].

3.2.5 PACXX

PACXX (Programming Accelerators with C++) is a unified programming model for

systems with GPU accelerators developed at the University of Müenster [183]. In

PACXX, both host and device programs are written in C++14 standard using data

structure implementation from the Standard Template Library (STL). It leverages

on all modern features such as variadic templates, lambda expressions and the newly

proposed parallel extensions of the STL [97].

PACXX shares many fundamental choices with SkePU 2, for example the fact that

the implementation is based on Clang and LLVM frameworks. The authors implement

a custom compiler and a run-time system that together perform memory management

and synchronization automatically and transparently for the programmer. PACXX

includes an easy-to-use and type-safe API for multi-stage programming, memory

management is implicitly managed by the compiler and run-time system, which allows

the compiler to apply aggressive optimizations [184].

Recently PACXXv2 has been released with a novel CPU backend which pro-

vides portable and predictable performance on various state-of-the-art CPU architec-

tures [185]. It integrates the Region Vectorizer (RV)2 which is a vectorizer capable of

vectorizing any code region in LLVMs intermediate representation.

3.2.6 PiCo

In the context of applications for data analytics, with particular focus on Big Data

processing, PiCo (Pipeline Composition) has recently been proposed as a data-flow

model aiming at expressing Big Data processing applications in terms of graphs of

functional-style operators [250, 251]. The main entity of this programming model

2RV: A Unified Region Vectorizer for LLVM – https://github.com/cdl-saarland/rv
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is the Pipeline, basically a Direct Acyclic Graph (DAG)-composition of processing

elements. This model is intended to give the user a unique interface for both stream

and batch processing, hiding data management and focusing only on operations, which

are represented by Pipeline stages. PiCo is built on top of the FastFlow library, and

currently targets shared-memory platforms.

At lower-level, PiCo implements an application as a composition of FastFlow

farms and pipelines. In particular, the farm pattern is exploited to express the par-

allelism both between operators and within an operator. Data collections to be pro-

cessed, either bounded data sets or unbounded streams, are split into micro-batches,

that are streamed to the application as atomic data elements. Of particular interest is

the proposal of removing points of centralization (i.e. farm’s Emitter and Collector)

by refactoring the application graph and introducing a shuffling data operation [250].

3.2.7 C++ Actor Framework (CAF)

The C++ Actor Framework (CAF ) [87] enables the development of concurrent pro-

grams based on the Actor model leveraging on modern C++ language. Different

from other well-known implementations of the Actor model, such as Erlang [32] and

Akka [199], which use virtual machine abstractions, CAF is entirely implemented in

C++, and thus applications implemented in CAF are compiled directly into native

machine code. This allows use of the high-level programming model offered by actors

without sacrificing performance introduced by virtualization layers.

CAF applications are built decomposing the computation in small independent

work items that are spawned as actors and executed cooperatively by the CAF run-

time. Actors are modeled as lightweight state machines that are mapped onto a pre-

dimensioned set of run-time threads called Workers. Instead of assigning dedicated

threads to actors, the CAF run-time includes a scheduler that dynamically allocates

ready actors to Workers. Whenever a waiting actor receives a message, it changes its

internal state to ready and the scheduler assigns the actor to one of the Worker thread

for its execution. As a result, the creation and destruction of actors is a lightweight

operation.
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Actors that use blocking system calls (e.g., I/O functions) can suspend run-time

threads creating either imbalance in the threads workload or starvation. The CAF

programmer can explicitly detach actors, so that the actor lives in a dedicated thread

of execution. A particular kind of detached actor is the blocking actor. Detached

actors are not as lightweight as event-based actors.

In CAF, actors are created using the spawn function. It creates actors either

from functions/lambdas or from classes and returns a network-transparent actor han-

dle. Communication happens via explicit message passing using the send command.

Messages are buffered in the mailbox of the receiver actor in arrival order before they

are processed. The response to an input message can be implemented by defining

behaviors (usually through C++ lambdas). Different behaviors are identified by han-

dler function signature, for example using atoms, i.e. non-numerical constants with

unambiguous type.

3.2.8 Multi-core Task management API (MTAPI) and EMB2

The Multicore Association (MCA) has been set-up by a group of leading-edge com-

panies for addressing the programming challenges of heterogeneous embedded multi-

core platforms (https://www.multicore-association.org/). The main objective

of the association is the definition of a set of open specifications and APIs to facilitate

multi-core software development and to improve development of portable code across

different kind of multi-cores. MCA offers several industry-standard APIs such as

the Multicore Resource Management API (MRAPI) for data sharing among different

types of cores, the Multicore Communication API (MCAPI) for inter-core communi-

cation, and for task management the Multicore Task Management API (MTAPI).

Of particular interest is the MTAPI effort. MTAPI decomposes computations

into multiple tasks, then schedules them among the available processing units, and

combines the results after specific synchronization. The main components of MTAPI

are:

• Node: An MTAPI node is an independent unit of execution. A node can be
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a process, a thread, a thread pool, a general purpose processor or an HW

accelerator (e.g., DSP).

• Job and Action: A job is an abstraction representing the work and is imple-

mented by one or more actions depending on, for example, by the target node

which will execute the job (e.g., CPU or GPU). The MTAPI system binds tasks

to the most suitable actions during run-time.

• Task : An MTAPI task is an instance of a job together with its data environ-

ment. Tasks are very light-weight entities that can be created, scheduled so that

multiple tasks can be executed in parallel. Depending on the action bindings,

a task can be offloaded to a node.

• Queue: A queue is defined by the MTAPI specification to guarantee sequential

execution of tasks.

• Group: MTAPI groups are defined for synchronization purposes. A group is

similar to the concept of a synchronization barrier. Tasks attached to the same

group must be completed before starting the next step.

MTAPI provides a dynamic binding policy between tasks and actions. This is

mainly thought to facilitate jobs to be scheduled on more than one HW accelerator.

In this model, the task scheduler plays a central role for the efficient execution of

tasks on the heterogeneous multi-core platform.

Siemens, as one of the members of the MCA consortium, created an industry-

grade MTAPI implementation as part of a larger open source project called Embedded

Multicore Building Blocks (EMB2) [290]. Besides the task scheduler which provides

the Multicore Task management API (MTAPI), EMB2 provides also a set of parallel

building blocks and concurrent data structures specifically designed for embedded

systems with particular attention to their typical requirements such as predictable

memory consumption, and real-time capability (see Figure 3-6).

The EMB2 library supports task priorities and affinities, and the scheduling strat-

egy can be optimized for minimal latency and fairness. It also provides high-level

parallel patterns for implementing stream processing applications (such as pipeline
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Figure 3-6: The EMB2 framework using the Task management API (MTAPI). Figure
from [290].

and Task-Farm), parallel algorithms for parallelizing loops with reduction variables

and a small set of concurrent data structures implemented in a non-blocking fashion

to minimize locking overhead and guarantee program progress [252].

3.3 Annotation-based approaches

3.3.1 OpenMP

OpenMP (Open Multi Processing) [102, 84] is considered the de facto standard API

for programming CMPs. It is an open specification (currently is at version 4.5) that

defines language extensions for expressing task and data parallelism based on compiler

directives (within the C/C++ languages, directives are referred to as pragmas). The

OpenMP API is supported by major C, C++ and Fortran compilers. Compilers that

do not support specific pragmas, merely ignore them so that an OpenMP program can

be compiled and executed on every system with a standard sequential compiler. In

addition to compiler directives, OpenMP also includes a small set of run-time library
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routines and environmental variables that are used to modify some non-functional

features, as the degree of parallelism used in different portions of the program or the

placement of RTS threads on machine cores (thread-to-core affinity).

OpenMP promotes the fork-join execution model. Multiple threads of execu-

tion perform tasks defined implicitly or explicitly by OpenMP directives. The main

program (i.e. master-thread) is run sequentially while specific regions of code, called

parallel regions, are “accelerated” by spawning a team of parallel threads which

execute an instance of the parallel region. At the end of the parallel region, all

threads synchronize by joining the master-thread. The compiler directives are used

to describe parallel sections and declare which variables are shared or private.

OpenMP offers a higher level parallel programming model compared to Pthreads.

OpenMP allows declaring which block of code should be executed in parallel, leaving

to the compiler and the RTS the responsibility to deal with the details of the thread

execution and synchronization. Furthermore, it enables incremental parallelization

of existing sequential code by simply adding compiler directives, allowing a smooth

transition from sequential code to parallel code. This was one of the keys of success of

OpenMP. However, using a sequential application to generate a parallel one is usually

limiting the potential parallelism that can be exploited.

One of the primary sources of parallelism in OpenMP are program loops. The

focus on loops is based on the observation that loops often iterate over large data sets

performing operations on every data item without any dependencies between itera-

tions. In OpenMP, the programmer annotates such loops with compiler directives,

and a compiler supporting the OpenMP standard automatically generates code for

executing the loop in parallel. OpenMP implementations do not check that loop iter-

ations are independent or that race conditions do not exist. As in other frameworks

(e.g., Cilk and TBB) implementing correct parallelizations is the responsibility of the

programmer.

In addition to the parallel for construct, which can be used to express loop

parallelism, OpenMP has been enriched with pragmas targeting task parallelism,

allowing the user to identify which block of code should be considered as a separate
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task, leaving to the RTS the burden of efficient scheduling and execution of tasks.

Starting with OpenMP 4.0 it is possible to offload parallel regions to HW accel-

erators such as GPGPUs. Here the programmer has to additionally specify the data

regions which should be copied to and from the GPU before and after the computa-

tion. The new version introduced the target directive, which denotes a region of a

code that will be directly mapped onto the device for execution. Though not as ma-

ture as the CPU version, targeting GPUs with OpenMP seems a promising approach

to heterogeneous parallelism [235].

3.3.2 OmpSs

OmpSs [144] is a programming model developed at the Barcelona Supercomputer

Center and based on OpenMP and StarSs models. It is a framework focusing on the

task-based programming model for developing parallel applications on heterogeneous

multi-cores. The StarSs model (Star Superscalar) [274] has been used for general-

purpose multi-core platforms in the SMP Superscalar framework (SMPSs) [271] and

also for system equipped with multiple GPUs (GPU Superscalar – GPUSs [37]). More

recently the StarSs model combined with the OpenMP pragma-based approach has

been integrated into a single infrastructure targeting heterogeneous multi-cores with

the name OmpSs.

StarSs like OpenMP enables programmers to express parallelism by adding prag-

mas to their sequential code. These pragmas identify regions of code that can be

executed as tasks once their input data are ready. The programmer, does not have

to explicitly express data dependencies and synchronizations between task. Depen-

dencies are deduced from data accesses by means of task annotation clauses: input,

output and inout. Using these directionality clauses, the programmer specifies which

data each task accesses and how the data is accessed (read, write, or both). OmpSs

then uses this information to build a task dependency graph at run-time. Besides per-

forming a task-based parallelization, the run-time system moves the data as needed

between the different GPUs minimizing the impact of communication by using afnity

scheduling and by overlapping communication with the computation of tasks.
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1 # pragma omp task inout ([TS][TS]A)

2 void spotrf(float *A);

3 # pragma omp task input ([TS][TS]T) inout ([TS][TS]B)

4 void strsm(float *T, float *B);

5 # pragma omp task input ([TS][TS]A, [TS][TS]B) inout ([TS][TS]C)

6 void sgemm(float *A, float *B, float *C);

7 # pragma omp task input ([TS][TS]A) inout ([TS][TS]C)

8 void ssyrk(float *A, float *C);

9

10 void cholesky(int NT, float *A[NT][NT]) {

11 for(int k=0;k<NT;k++){

12 spotrf(A[k*NT+k]);

13 for(int i=k+1;i<NT;i++)

14 strsm(A[k*NT+k],A[k*NT+i);

15 for(int i=k+1;i<NT;i++) {

16 for(int j=k+1;j<i;j++)

17 sgemm(A[k*NT+i],A[k*NT+j],A[j*NT+i]);

18 ssyrk(A[k*NT+i],A[i*NT+i);

19 }

20 }

21 }

Code 7: Cholesky algorithm implementation using OmpSs annotations. Code from
[167].

OmpSs uses a thread-pool execution model instead of the traditional OpenMP

fork-join model. The master thread starts the execution and all other threads co-

operate executing the work it creates. Nesting of constructs allows other threads

to generate tasks as well. OmpSs assumes that multiple address spaces may exist.

As such shared data may reside in memory locations that are not directly accessible

from some of the computational resources. Therefore, all parallel code can only safely

access private data and shared data which has been marked explicitly with data spec-

ification directives (copy in, copy out, copy inout and copy deps. This assumption is

true even for SMP machines as the implementation may reallocate shared data to

improve memory accesses on NUMA architectures.

OmpSs enables incremental parallelization, where the source code is restructured

and optimized step-by-step, while the architecture specific details are separated by the

implementation. It is designed to be portable as the same pragmas can be potentially
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used by any host language and target any architecture that has an implemented

backend.

Code 7 shows an example of OmpSs application. The example implements a

Cholesky factorization algorithm. The kernels of the factorization have been anno-

tated with OmpSs compiler directives. The directionality clauses indicate whether

the given parameter is read, write or read and write in the scope of the task.

3.3.3 StarPU

StarPU [36] is a C-based RTS for scheduling a graph of tasks onto a heterogeneous

multi-core machine. It is primarily meant to be used as a backend of a parallel

programming framework. It promotes task-based parallel programming following two

basic principles: i) tasks may have several implementations on the basis of the various

heterogeneous processing units available in the target machine, and ii) data-transfers

and synchronizations of different tasks are handled transparently by the RTS.

StarPU uses the concept of codelet, a C structure containing different implemen-

tations of the same functionality for different target devices (e.g., CPU and GPU).

A StarPU task is an instance of a codelet applied to some data. The programmer

asynchronously submits all tasks by registering all the input and output operands

needed to compute the tasks. Tasks that depend on other tasks can either be speci-

fied by the programmer using explicit tags or can be derived automatically by StarPU

considering data dependency rules (e.g., read-after-write).

StarPU schedules tasks at run-time by moving data automatically and transpar-

ently to the programmer. There are several built-in scheduling (e.g., work-stealing)

and selection policies also based on task priority. Moreover, to avoid unnecessary

transfers, StarPU keeps data where it was last needed, even if it was modified there,

and it allows multiple copies of the same data to reside at the same time on several

processing units as long as it is not modified. StarPU RTS implements a Software

DSM with relaxed consistency model. The programmer has to register the different

pieces of data by giving their addresses and sizes in the main memory. Data can thus

be dynamically as well as statically allocated.
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3.3.4 OpenACC

OpenACC is an industry standard proposed for heterogeneous computing (http:

//wwww.openacc.org). It is a directive based language abstracting parallel program-

ming by using pragma annotations, relieving programmers from specifying how codes

should be mapped onto the target platform. It was introduced to manage parallelism

on accelerators, such as GPUs, although the same code can be compiled and run also

on standard CPU multi-cores.

OpenACC follows the OpenMP approach for introducing parallelism via sequen-

tial code annotation of compiler directives with the aim to target multiple hardware

accelerators. These directives identify which areas of code to accelerate, without

requiring programmers to modify or adapt the underlying code itself.

The execution model targeted by OpenACC implementations is the host-directed

execution targeting multiple attached accelerator devices (e.g., GPUs). User’s appli-

cations execute on the host while compute intensive regions of code are offloaded to

the accelerator device under control of the host. The device executes either parallel

regions, which typically contain loops that are executed in parallel on the accelerator,

or serial regions, which are blocks of sequential code that execute more efficiently on

the accelerators. Even in accelerator-targeted regions, the host may orchestrate the

execution by allocating memory on the accelerator device, initiating data transfer,

sending the code to the accelerator, passing arguments to the compute region, queu-

ing the device code, waiting for completion, transferring results back to the host, and

deallocating memory. In most cases, the host can queue a sequence of operations to

be executed on the device, one after the other [263].

Though the best performance is typically achieved with device-tuned implementa-

tions (by using CUDA or OpenCL), in many scientific applications, the performance

penalty obtained by the OpenACC model is within a reasonable range (10-30%) [236].

This together with the fact that many data-parallel patterns may be expressed easily

using the OpenACC model [323], makes OpenACC a first-class citizen in the context

of performance portability tools and frameworks targeting GPUs for scientific com-
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puting. It is still not clear if the OpenMP and OpenACC models will converge in a

single model or will co-exist for the foreseeable future.

3.3.5 The RePaRa tool-chain

The RePaRa project (Reengineering and Enabling Performance and poweR of Ap-

plications)3 funded by the European Seventh Framework Program (EU FP7) focused

on helping the transformation and deployment of new and legacy applications on

parallel heterogeneous computing architectures while maintaining a balance between

application performance, energy efficiency and source code maintainability.

To achieve this objective, differently from the mainstream OpenMP approach that

uses compiler directives to annotate the code, in REPARA, parallelization directives

are introduced as C++ attributes, which are part of the C++11 standard rather than

an extension to the language.

By leveraging on C++ attributes to identify parallel regions and to introduce

parallel patterns such as pipeline, farm and Map and their composition at higher level,

the REPARA project proposed a tool-chain based on source-to-source transformations

and refactoring techniques to produce parallel code targeting standard multi-cores

equipped with hardware accelerators such as GPUs, FPGAs, and DSPs.

The RePaRa tool-chain is aimed at providing a methodology to parallelize a pro-

gram starting from a sequential code (in some cases reshaped if necessary) by using a

set of C++ attributes to define parallel regions of code called kernels. The method-

ology is structured into steps, each one taking into account different aspects of the

parallelization of the code and implementing a clear separation of concerns. A code

annotation phase, currently performed directly by the programmer, identifies the

“kernels” subject to parallelization. Then a source-to-source transformation phase

(built into the Cevelop IDE4) deals with the refactoring of the identified parallel ker-

nels into suitable run-time calls, according to the Hardware&Software architecture(s)

targeted (i.e. multi-cores equipped with GP-GPUs, FPGAs and DSPs). Finally, a

3RePaRa project home: http://www.repara-project.eu/
4Cevelop homepage:https://www.cevelop.com/
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target-specific compilation phase generates the actual “object” (executable) code.

The first phase starts with a sequential program in which the user detects those

parts of the code which can be annotated using C++ attributes. In the second

phase, the annotated code is passed to the Source-to-Source Transformation Engine.

From the annotated source code, an Abstract Intermediate Representation (AIR) is

generated. Then, the engine uses the AIR and a set of predefined rules, specific for

each parallel programming model, for determining whether the corresponding code

can be transformed into a Parallel Programming Model Specific Code (PPMSC)5.

The PPMSC is the parallel generated code that is functionally equivalent to the

original sequential code extended with parallel kernels execution accordingly to the

attribute parameters and to the selected programming model (e.g., Intel TBB and

FastFlow). The third phase includes the target compilation phase using a standard

C++ compiler and all low-level dependencies needed to run the code. The run-

time used should provide coordination and all the mechanisms needed to support the

deployment, scheduling and synchronization of kernels on the target platform(s) [112].

3.3.6 SPar

SPar is a C++ parallel programming tool providing the user with an annotation-

based language aiming at modeling the main properties of stream parallel applica-

tions [177]. As in the RePaRa toolchain, SPar uses standard ISO C++11 attributes

mechanism to annotate the user’s sequential code and then generate an intermediate

C++ representation of the initial code containing calls to parallel run-time. SPar

provides attributes to introduce parallel patterns such as farm and pipeline and Map.

Currently, Spar supports as run-time the FastFlow framework [21].

The SPar annotation mechanism gives the application developer more flexibility

than pragma annotations, which are compiler pre-processing directives which are not

part of the C++ grammar. C++ annotations may be put almost anywhere in a pro-

gram according to the C++ standard grammar. The standard annotation grammar is

5REPARA imposes some restrictions on the parallelizable source code when targeting specific
hardware.
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1 [[spar::ToStream, spar::Input(res,channel,src,S)]] for(;;){

2 total_frames++;

3 inputVideo >> src;

4 if (src.empty()) break;

5 [[spar::Stage, spar::Input(res,channel,src,S),

6 spar::Output(res),spar::Replicate()]]{

7 vector<Mat> spl;

8 split(src, spl);

9 for (int i =0; i < 3; ++i){

10 if (i != channel) spl[i] = Mat::zeros(S, spl[0].type());

11 }

12 merge(spl, res);

13 cv::GaussianBlur(res, res, cv::Size(0, 0), 3);

14 cv::addWeighted(res, 1.5, res, -0.5, 0, res);

15 Sobel(res,res,-1,1,0,3);

16 }

17 [[spar::Stage, spar::Input(res)]] {

18 outputVideo << res;

19 }

20 } // for()

Code 8: SPar example. Code from [177].

general enough to support the customization of new attributes and determine where

they are allowed in the source code (e.g., to annotate types, classes, code blocks, etc.).

SPar preserves the initial sequential code, but it imposes some restrictions to ensure

correct parallel code generation.

In the Code 8 is presented a snippet of code where a subset of SPar attributes are

used to parallelize a video streaming computation [177]. In this example, a parallel

region is identified by the ToStream annotation which also identifies the input data

sources. Inside the parallel region, there are two Stage regions with the corresponding

dependencies that are captured by the Input and Ouput attributes. These two stages

are connected in a pipeline fashion. As the first Stage region may be computed

independently over different input items, to increase the concurrency degree, that

region is replicated by using the Replicate attribute. The logical computation model

in this example is a two-stage pipeline where the first stage is a Task-Farm pattern

and the second stage is sequential.
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3.4 Programming distributed systems

For the sake of completeness, in this section we briefly discuss the main tools and

libraries for programming distributed systems. Differently from shared-memory ar-

chitectures, distributed memory systems are individual computers connected by a

communication network, each having exclusive access to its private memory.

3.4.1 Message Passing Interface

The Message Passing Interface, commonly referred as MPI, is a standardization of

an API implementing the message-passing programming model [298]. It defines the

syntax and semantics of library routines for standard communication patterns such

as point-to-point, broadcast, scatter, gather, all-to-all and so on. In the MPI model,

the processes executed in parallel have separate memory address spaces and commu-

nications occur when two or more processes cooperate via communication primitives

to explicitly transfer part of the address space of a set of processes into the local ad-

dress space of other processes. Moreover, MPI implicitly follows the Single-Program

Multiple-Data (SPMD) paradigm, in which all processing units execute the same

program, each operating on its local chunk of data.

Many general-purpose programming languages have bindings to MPI: C, C++,

Fortran, Java, and Python. Mainly targeted to distributed architectures, MPI offers

specific implementations for almost any high-performance interconnection network.

Likewise, implementations exist that allow us to use MPI even on standalone CMP

systems (e.g., Xeon Phi).

In MPI, the workload partitioning and task mapping have to be done by the

programmer, therefore the programmer has to deal with both functional and extra-

functional semantics. Precisely, programmers must manage which tasks have to be

computed by each process.

MPI primitives can be classified as two-sided and one-sided communication. In the

first model comprising point-to-point, collectives to complete the communication both

senders and receivers have to match so that some amount of synchronization is needed
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to manage the matching of messages. However, starting from MPI-2 [179], one-

sided communications have been introduced to allow direct memory accesses without

requiring sender/receiver matching. In this way, the data transfer and synchronization

is completely decoupled. The standard provides three communication calls: MPI Put

(remote write), MPI Get (remote read), and MPI Accumulate (remote update).

Starting from MPI-2, the standard also offers parallel I/O operations [309] to pro-

vide access to external I/O devices exploiting complex data types and communicators

(i.e. an object that connects groups of processes in an MPI session).

MPI operations can be classified depending on the local effect as viewed by the

executing process and on the effect on the synchronization with other processes [279].

Considering the local view of the communicating process, the operation can be block-

ing or non-blocking :

• blocking: An MPI communication operation is blocking if their resources (e.g.,

buffers) can be reused after the function call. That means, blocking calls do not

return unless the operation has completed.

• non-blocking: An MPI communication operation is non-blocking if the corre-

sponding call may return before all effects of the operation are completed and

therefore the resources associated with the operation cannot be immediately

reused

Blocking and non-blocking operations performed by an MPI process do not affect

the execution of other processes. Instead, synchronous and asynchronous communi-

cations have an impact on the way the communication occur among different MPI

processes:

• synchronous communication: The communication between a sending process

and a receiving process is performed such that the communication operation

does not complete before both processes have started their communication op-

eration. This means that the completion of a synchronous send indicates not

only that the send buffer can be reused, but also that the receiving process has

started the execution of the corresponding receive operation.
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• asynchronous communication: In this case, the sender can execute its commu-

nication operation without any coordination with the receiving process.

At present, the MPI standard has several versions: version 1.3 (also known as

MPI-1), which emphasizes message passing and has a static run-time environment,

MPI-2.2 (MPI-2), which includes new features such as parallel I/O, dynamic process

management and one-sided operations, and MPI-3.1 (MPI-3), which includes exten-

sions to the collective operations with non-blocking versions and extensions to the

one-sided operations [159]. At present, the last version of the standard is MPI-4.0.

3.4.2 Partitioned Global Address Space

Writing shared-memory parallel programs is widely perceived as simpler than writing

message-passing ones. In the ’90s several attempts were made to build Software-based

Distributed Shared Memory (SDSM) systems on top of distributed memory systems

(notable examples are IVY [225], Munin [78] and ThreadMarks [205]). Though sev-

eral smart distributed caching techniques have been developed to reduce costly remote

memory operations, the principal obstacle for scalability of SDSM systems has been

their inability to exploit locality effectively. For this reason, there has been con-

siderable interest in developing locality-aware paradigms for shared-memory parallel

programming. The Partitioned Global Address Space (PGAS) model was devel-

oped to address this issue. In the PGAS model, multiple SPMD processes share a

global address space. However, the shared space is partitioned and a portion of it is

local to each process. Programs using the PGAS model can exploit locality by having

each process principally compute on data that is stored in its local memory [91].

Data structures can be allocated either globally or privately. Global data struc-

tures are distributed across address spaces of multiple nodes, typically under the con-

trol of the programmer. Remote global data are accessible to any process (or thread)

as simple assignment or by using dereference operations. The compiler and run-time

are responsible for converting such operations into messages between processes on a

distributed memory machine.
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A large number of PGAS programming systems have been implemented in the

past, including Split-C [210], Unified Parallel C (UPC) [145], HabaneroUPC++ [214],

Co-Array Fortran (CAF) [257], Chapel [83] and X10 [86]. Almost all these systems are

implemented on top of the GASNet [56] communication library. In the UPC language,

any processor can directly read and write variables on the partitioned address space,

while each variable is physically associated with a single processor. Each thread is

associated with a partition of the Global Address Space (GAS), which is subdivided

into a local portion and a shared portion. Local data can be accessed only by the

thread that owns the partition, while data in the shared portion are accessible by

all threads. Threads access shared memory addresses concurrently through standard

read and write instructions and using barriers and locks to synchronize the execution

flow.

What is most different between general SDSM systems and PGAS ones is that

in PGAS systems remote data accesses are explicit. Recently we are witnessing a

renewed interest in user-level SDSM systems that trade latency with throughput by

exploiting application parallelism. For example, a recent proposal called Grappa [256]

provides the user with a software DSM system for commodity clusters designed for

data-intensive applications. Instead of relying on locality to reduce the cost of memory

accesses, Grappa exploits local-node parallelism to keep processor resources busy and

hide the high cost of inter-node communication for accessing remote data.

In the context of shared memory models, another common abstraction is the so-

called key-value storage which provides virtual shared spaces accessible by all the

components in the system by using associative keys. Notable implementations of this

model are Redis [280] and Memcached [245] mainly designed for cluster-based HPC

systems.

3.4.3 Skeletons for Distributed Platforms

In this section, we briefly describe some notable implementations of high-level parallel

programming based on algorithmic skeletons proposed over the last two decades. Such

proposals, cover many different implementations of stream-parallel, data-parallel and

138



task-parallel skeletons targeting distributed memory systems. For a broader presen-

tation of algorithmic skeletons library and frameworks, please refer to the survey by

González-Vélez and Leyton [170].

One of the pioneering proposals for skeleton-based parallel programming was the

Pisa Parallel Programming Language (P 3L) developed at the Computer Science De-

partment of the University of Pisa in the nineties [267, 268]. P 3L was a coordination

language for the parallel execution of code written in C. Its language core included

programming paradigms like pipeline, Task-Farm and iterative data-parallel skeletons.

Skeletons in P 3L were used as constructs and they were the only way to express paral-

lel computations in the coordination language. It was released with a compiler using

the concept of implementation templates to compile the code into different target

architectures [39].

The experience of P 3L later converged into the development of the Skeleton Inter-

face Environment (SkIE ) that was developed by the Computer Science Department

of the University of Pisa in collaboration with QSW Ltd. [38]. SkIE improved P 3L

in different ways: enriching the number of different languages that could be used to

express different parts of the applications (C/C++/Fortran/Java) and most of all,

it allowed composition of skeletons. A SkIE program was basically a pipeline skele-

ton whose stages could be a composition of Task-Farms, Maps, pipelines. The loop

skeleton could be used only as the outermost skeleton of a more complex composition.

SKELib [117] is another fruit of the P 3L experience. It builds upon the contribu-

tions of P 3L by inheriting the template system for targeting different platforms, but

it differs from P 3L because it was implemented as a C library and not as a coordi-

nation language. It provided the user with only stream-based skeletons: Task-Farm

and pipeline.

ASSIST (A Software development System based upon Integrated Skeleton Tech-

nology) [317], developed starting from 2002 at the University of Pisa, was the evo-

lution of the SkIE environment and a rethinking of the skeleton-based approach.

The structure of an ASSIST program is a graph (written using the ASSIST-CL

language), whose nodes are components and the arcs are abstract interfaces that sup-
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port streams. Any graph structure is permitted. Streams are the structured way

to compose modules into an application. In addition, components can also interact

by means of “external” shared objects, i.e. external components not expressed in

ASSIST-CL. Components are expressed as language modules, which may be parallel

modules called parmod or sequential modules. A sequential module is the simplest

component expressed in ASSIST : it has an internal state and is activated by the input

stream values according to a deterministic data-flow behavior. The parallel module

is able to express the semantics of several skeletons as particular cases (e.g., farm,

pipeline, stencil and map) as well as to express more general parallel and distributed

program structures, including both data-flow and nondeterministic reactive compu-

tations. Access to external objects is allowed inside parmods. The introduction of

shared data structures aims to efficiently manipulate very large data sets, to simplify

the programming of irregular and/or dynamic problems.

SkeTo is a C++ skeleton library based on MPI developed at University of Tokyo [238].

It mainly provides skeletons for data-parallel computation using distributed data

structures, such as arrays, matrices, and trees. The semantics of the skeletons is

formally given in terms of homomorphisms and homomorphism transformations ac-

cording to the Bird-Meertens Formalism [49]. As the SKELib library, SkeTo is imple-

mented as a library aiming at using skeletons as plain library calls within sequential

C/C++ programs to accelerate the execution of a portion of code.

eSkel (the Edinburgh Skeleton Library) is a structured parallel programming li-

brary developed at the School of Informatics, University of Edinburgh. The first

version of the library was developed by Murray Cole in 2002 [149]. The new version,

eSkel2 was released around 2005 [44]. eSkel adds skeletal programming features to the

C/MPI parallel programming model. Its underlying model is SPMD, inherited from

MPI, and its operations must be invoked from within a program which has already

initialized an MPI environment. eSkel defines five skeletons: pipeline, deal, butter-

fly, farm and haloswap. The latest version available (eSkel 2.0.1) only implements

pipeline and deal skeletons.

The Orléans Skeleton Library (OSL) [222] is a C++ skeleton library developed
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at the University of Orléans, which is based on the Bulk-Synchronous Parallel (BSP)

model of parallel computation [316]. OSL provides a collection of data parallel skele-

tons implemented on top of MPI: Map, Zip, Reduce, Scan, Permute, Shift, Redis-

tribute, getPartition and Flatten. It takes advantage of the expression templates

optimisation techniques to provide good performance yet allowing programming in a

functional style. OSL aims to provide an easy-to-use library which enables simple rea-

soning about parallel performances based on a simple and portable cost model [201].

Lithium [9] was developed in the early ’00s at the University of Pisa. It was a pure

Java parallel programming environment based on skeletons and has represented one of

the first skeleton based programming environments implemented in Java and the first

complete skeleton based Java environment exploiting macro data-flow implementation

techniques [106]. One of the most interesting features of Lithium was that it used a

set of code optimizations based on skeleton rewriting techniques [14].

Lithium has been reimplemented and the name changed to Muskel. Muskel only

supported stateless stream parallel skeletons such as pipeline and task-farms whose

run-time was still based on the macro data-flow implementation techniques. The

semantics of Muskel has been provided in a formal way through labeled transition

systems [15]. Muskel supports both autonomic management of non-functional feature

and limited fault-tolerance. Muskel introduced the autonomic manager concept that

has been later inherited by other skeleton programming frameworks. The autonomic

manager of Muskel is able to ensure performance contracts concerning parallelism

degree and can solve problems related to the failure of nodes used to implement the

skeleton application. Muskel runs on any distributed systems supporting Java/RMI.

More recently, multi-core run-time support has been introduced in the programming

framework [17].

Calcium [77] provides a set of task and data parallel skeletons in Java target-

ing cluster of workstations. It also provides a performance tuning model which

helps programmers to find performance bottlenecks within the parallel infrastruc-

ture. Skandium is a recent evolution of Calcium targeting multi-core platforms.

OcamlP3L [111, 90] has been designed in mid ’90s as an Ocaml library imple-

141



mentation of the P 3L skeleton framework. OcamlP3L features the P 3L data-parallel

and stream-parallel skeletons. However, differently from P 3L it was implemented as

a library rather than as a new language. The functional semantics of the OcamlP3L

skeletons is given in terms of High-Order-Functions, while their parallel semantics is

given informally. OcamlP3L allows us to reuse the code written in Ocaml wrapped

into OcamlP3L sequential skeleton. The implementation of OcamlP3L followed the

template model as in P 3L. Templates may be written using POSIX processes/threads

and TCP/IP sockets for targeting communications in a distributed environment.

OcamlP3L uses functional closure for data communication across distributed Ocaml

interpreters. Each interpreter running on different nodes was used to specialize the

processing elements implementing the skeletons of the user application. From 2010,

OcamlP3L is no longer maintained and a new framework called CamlP3L and then

Sklml has been build using the experience of OcamlP3L.

Eden [226] extends the Haskell functional language by providing support for par-

allelism on shared and distributed memory platforms. In Eden, parallel programs are

organized as a set of processes communicating via Single-Producer Single-Consumer

channels. Although processes are defined explicitly, communication and synchroniza-

tion issues are handled transparently to the programmer. Eden is a general-purpose

parallel functional language suitable for developing sophisticated skeletons as well as

for exploiting more irregular parallelism that cannot easily be captured by a prede-

fined skeleton. Eden supports task and data parallelism through a set of skeletons

that are defined on top the process abstraction layer.

To the best of our knowledge, the only C++-based skeleton-based library targeting

distributed memory systems that is currently maintained is Muesli [212]. In Muesli,

data-parallel skeletons are offered as member functions of distributed data structures

whereas task-parallel skeletons are used to build process topologies. Data serializa-

tion, i.e. the process of transforming an object into a sequence of bytes that can be

stored in a contiguous memory buffer to be sent over the network, is an important

issue in C++-based distributed framework. In Muesli it is implemented by providing

mechanisms for serialization of arbitrary data types. In particular the C++ abstract
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class MSL Serializable provides the basic mechanism for serializing arbitrary data

types. Each object that contains pointers to data and that has to be transmitted

over the network, must be derived from this class and implement specific methods.

All other objects are implicitly serialized when needed [147].

In the context of algorithmic skeletons, Behavioural Skeletons (BS) have been

an interesting research effort raised within the CoreGRID programming model for

the GRID platform [10, 16]. They provide stream and data parallel components

equipped with autonomic managers dealing with skeletons’ non-functional features

(i.e. performance and security objectives). The abstract machine targeted by BS

was ProActive, a distributed middleware platform for clusters of workstations and

GRIDs.

3.4.4 Google’s Map-Reduce

In 2004, Jeff Dean and Sanjay Ghemawat working at Google published an article

in which they abstractly described large-scale map-and-reduce data processing at

Google [133]. Later in 2008, an update of the original publication appeared in the

ACM communications [134]. Basically, the authors proposed the so-called “Google’s

Map-Reduce” (GMR) as a programming model for processing large datasets. This

was one of the few cases where a powerful and widely accepted framework has been

built around a combination of only two parallel paradigms: Map and Reduce.

Figure 3-7: Two-phase computation schema of the Google’s Map-Reduce model.

Some authors pointed out that, the GMR programming model is just a smart

implementation of two well-known parallel skeletons [45, 65]. Moreover, given the
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great acceptance that the programming model has found, and its close relation to

skeleton programming, one of the main merits of the Google’s Map-Reduce model is

to have brought the skeleton approach to industry [45].

The computation scheme of Google’s Map-Reduce is sketched in Figure 3-7. A first

instance transforms the input data, coming from a set of files of a distributed storage,

into <key,value> pairs by using a mapF function such that to create collections of

intermediate data having the same key value format. Then, each collection with the

same key is reduced to one resulting <key,value> pair using a reduceF function.

From a high-level standpoint, a GMR job can be divided into three logical macro

steps: 1) a Map step in which each worker node applies the mapF function to the local

data, transforming each datum into a <key,value> pair; the data produced is then

written into a temporary storage; 2) a shuffle step where worker nodes redistribute

data based on the value of the keys such that all data belonging to one key is located

on the same worker node, and 3) a Reduce step where each worker computes the

reduce function on local data.

The main contribution of the GMR programming model is the utilization of a

key-value model for processing data and the repartitioning step (the shuffle step)

that occurs in-between the two phases. One important aspect of this model is the

data locality exploitation during the Map phase. The Map computation is performed

where the data are stored, promoting the idea of moving the computation close to the

data. The RTS exploits the natural data partitioning performed by the distributed

file system and forcing operations to be computed using local data.

A popular open-source GMR implementation is provided by Hadoop [322]. The

Hadoop framework consists of three main components: 1) a high-throughput Hadoop

Distributed File System (HDFS), 2) a Map-Reduce engine for data processing and, 3)

the Hadoop YARN software for resource management, job scheduling and monitoring

of resources. Recently, Hadoop has been detached from the Map-Reduce processing

engine, so that the HDFS+YARN software layers can be used as base tools for other

frameworks, such as Apache Spark [332] and Apache Storm [223]

The Google’s Map-Reduce model has also been implemented on shared-memory
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systems demonstrating good performance figures [278].

3.4.5 Apache Spark and Spark Streaming

Apache Spark [332] is a programming framework for large-scale data processing. It

has been initially designed to overcome some limitations of Google’s Map-Reduce

model when it was applied to iterative computation or in large-scale interactive data-

analytics. In these contexts, the cost associated with loading and storing data at

each iteration on the distributed file system and the cost of data replication could be

so high that the overall performance is not satisfactory. Apache Spark introduces an

additional data layer represented by the Resilient Distributed Dataset (RDD)

which is a read-only collection of objects partitioned across multiple processing nodes

and permanently stored in the main memory of each node [330]. The RDD data layer

implemented in Spark allows a general-purpose programming language (e.g., Scala)

to be used at interactive speeds for in-memory data processing on large clusters [329].

Spark also provides a streaming library (Spark Streaming [331], which leverages

Sparks core components to allow the definition and execution of Data Stream Pro-

cessing (DSP) applications [31]. Spark Streaming introduced a high-level abstraction

called Discretized Stream or DStream that basically represents a stream of RDDs with

elements being the data received from real input streams. Operations over DStreams

are executed at the RDD level. All RDDs in a DStream are processed in order,

whereas data items inside an RDD are processed in parallel without any ordering

guarantees. While other specialized Stream Processing Engines (SPEs), such as for

example Apache Storm6, are based on a record-at-a-time processing model, i.e. input

elements (called tuples in the DSP jargon) are processed as they arrive, the approach

followed by Spark Streaming is based on micro-batching. A micro-batch is a contin-

uous sequence of RDDs of the same type storing tuples received within a given time

interval. Spark Streaming provides various ready to use stream operators such as

Map, Reduce and Join. It also provides some basic operators that work on sliding-

window data abstraction and multi-keyed input streams. Spark Streaming is one of

6Apache Storm homepage: http://storm.apache.org
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the few large-scale frameworks that combine batch and continuous stream processing

in a single programming model [329].

Recently, many specialized SPEs have been proposed such as Flink (http://

flink.apache.org), the already mentioned Apache Storm and Thrill [48].

3.5 Summary

In this chapter, we have presented state-of-the-art frameworks and libraries for parallel

programming targeting multi-cores. Also, we briefly present programming models and

tools targeting distributed systems. We mainly focused on proposals promoting high-

level parallel programming covering stream, task, and data-parallelism on multi-cores

and GPUs. Almost all frameworks presented aim at overcoming the limitations of

the traditional “threads & locks” low-level parallel programming model still widely

used on shared-memory systems. We considered those proposals that are close to the

FastFlow library approach, which is the main subject of this thesis.

The evolution of parallel computing platforms is slipping toward heterogeneous

many-core systems. This evolution contributes to both blurring the boundaries be-

tween shared-memory and distributed-memory systems and to increase the complex-

ity in parallel programming. The use of low-level APIs for programming these new

emerging platforms often results in a fairly unproductive development process. Other

approaches promoting code annotations such as OpenMP and OpenACC (and also

the ones exploiting C++ attributes features) are becoming mainstream because of

their simplicity to target both multi-cores and HW accelerators. The compiler un-

dertakes all the necessary steps to implement parallelism guided by hints from the

user (i.e. annotations). The success of these approaches is mainly due to the fact

that programmers still tend to develop first a sequential version of their program or

kernel and then move to a parallel version, which naturally pairs with pragma-based

parallel annotations. Another important reason for using these models is that they

are language-agnostic between C and Fortran, the latter being still widely used in the

HPC and scientific communities. Additionally, by using sequential code annotations,
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the pure sequential version of the code is entirely reused. At RTS level, the significant

heterogeneity of new and forthcoming systems seems to promote OpenCL has the de

facto abstract platform. However, if on the one hand OpenCL-based RTSs deliver

good performance for GPUs, and potentially even performance portability since it is

efficiently implemented and offered by several vendors, on the other hand, standard

multi-cores are not yet well supported by OpenCL. This is mainly due to the dif-

ficulties in mapping OpenCL abstract platform to the concrete standard multi-core

platforms.

Task-based RTSs are increasingly employed on both heterogeneous multi-cores

and distributed-memory systems given the great parallelism opportunities offered by

the task-based programming model. In the context of distributed systems, tasks are

often combined with the GAS programming model. However, the task-based parallel

programming can be considered a low-level approach and it seems more suitable to

implement RTSs and high-level parallel components than complex applications.

Data stream processing is emerging as a central paradigm of modern data analyt-

ics. The efficient management of streams poses several challenges in terms of latency

and throughput, and recently several new frameworks have been proposed targeting

multi-core systems.

Among the broad set of recent proposals, the ones based on domain-specific par-

allel solutions represent a viable solution to the various, heterogeneous and increas-

ingly complex scenarios of typical multi-core architectures. In our vision, what is

currently missing is a common and widely accepted software layer of well-defined,

highly-efficient and portable parallel components that could be used to cover the us-

ability needs and the performance requirements of the different application domains

and also of the RTS programmers implementing the related DSLs. In this thesis, we

try to fill this gap by proposing a reduced set of parallel building blocks that can be

used both as RTS components for building higher-level frameworks and also as pri-

mary ingredients to increase the flexibility of the pattern-based parallel programming

methodology.

Although this chapter is far from being a complete and exhaustive presentation
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of all existing frameworks and libraries proposed by IT companies and research insti-

tutions, we believe it provides a broad spectrum of current and past research efforts

in the field of high-level parallel programming.
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Chapter 4

The FastFlow parallel library

4.1 Introduction

This chapter provides an overview of the FastFlow library and its programming model.

Notably, we introduce the new version of the FastFlow library by briefly presenting

its new distinguishing features together with the new layered software design. During

the presentation of the FastFlow components, we will provide the reader with links

to next chapters where a broader discussion of the most important aspects can be

found.

The FastFlow library is the result of a research effort started in 2010 by Massimo

Torquati (from University of Pisa) and Marco Aldinucci (from University of Turin)

with the aim of providing application designers with key features for parallel pro-

gramming via suitable parallel programming abstractions and a carefully designed

Run-Time System (RTS). The structured parallel programming methodology was the

fertile ground that has allowed the development of the initial idea and then guided

the FastFlow library implementation. Massimo Torquati was the developer of all the

most critical and important functionalities of the FastFlow library.

The history of the FastFlow project is briefly retraced starting from its first version

released in 2010 and then highlighting the most significant enhancements it had over

about eight years with particular focus on the latest advancements.
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4.2 Overview

FastFlow is a structured parallel programming library offering multi-level APIs to the

parallel programmer. The library was conceived to support highly efficient stream par-

allel computations on heterogeneous multi-cores with the challenge to tackle “the 3P”:

Performance, Programmability, and Portability (see also Section 2.4.1 for a discus-

sion about “the 3P” criteria). The library is released open-source under the LGPLv3

licence (http://calvados.di.unipi.it/fastflow).

FastFlow version 1 and 2. The FastFlow library is realized as a C++ header-only

template library1 that allows the programmer to simplify the development of parallel

applications modeled as a structured directed graph of processing nodes. The graph

of concurrent nodes (also called concurrency graph) is constructed by the assem-

bly of sequential and parallel building blocks as well as higher-level parallel patterns

modeling typical schemas of parallel computations such as pipeline, map+reduce, Di-

vide&Conquer, stencil, and parallel-for. FastFlow efficiency stems from the optimized

implementation of the base communication and synchronization mechanisms and from

its layered software design (see Figure 4-1).

Core patterns
pipeline, farm, feedback

High-level patterns
parallel_for, parallel_forReduce, …

Parallel applications
efficient and portable

Multicore and many-core platforms
Clusters of multicore + many-core

Fa
st
Fl
ow

CUDA TCP/IP
IB/OFED

Building blocks
queues, ff_node, ...

OpenCL

Figure 4-1: FastFlow software layers (versions 1 and 2).

In the FastFlow version 1 and 2, the bottom layer (Building blocks in Figure 4-1)

provides the node and communication channels components. A node is the basic unit

1Header-only libraries are compiled together with user’s code so there are more opportunities for
the compiler to introduce optimizations.
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of parallelism that is typically identified with a node in a data-flow process network

while communication channels are the edges connecting nodes. A FastFlow node is

used to encapsulate sequential portions of code implementing user’s functions (i.e.

business logic code) and also as a base abstraction of high-level parallel patterns.

From the API viewpoint, a FastFlow node is an instance of the ff node C++ class.

The second layer (called Core patterns) provides basic streaming parallel com-

ponents (i.e. farm and pipeline). On top of core patterns, High-level patterns are

provided to target different types of parallelism. For instance, the ParallelFor and

the Map allow the user to express data parallelism in a way that is conceptually

close to other popular frameworks (i.e. OpenMP and TBB). The ParallelFor pat-

tern has been implemented employing the farm parallel component [119]. Chunks

of independent loop iterations are streamed to be executed toward a pool of farm’s

Workers. Like other parallel libraries (e.g., Intel TBB), FastFlow’s ParallelFor pattern

uses C++ lambda expression as a concise way to create function objects defining the

body of the loop (the ParallelFor pattern is described in Chapter 9).

Some of the FastFlow high-level parallel patterns (i.e. Map, Reduce and Stencil)

can be executed either on CPU cores or their execution can be offloaded onto GPUs.

In the latter case, the user code may include GPU-specific code (i.e. CUDA or

OpenCL kernels).

FastFlow version 3. In the new FastFlow version (in the following called also

FastFlow-3 to distinguish it from previous versions, when necessary), the lower soft-

ware layer has been redesigned so that the building block and the Core pattern layers

have now been fused in a single component. Such a new low-level layer has been

extended and strengthened by adding new core parallel patterns, notably the all-to-

all and the sequential node combiner (discussed in Chapter 5 and Chapter 7), to

enhance both the programmability and the overall performance of the library. From

now on, we will refer to the new software layer simply as building blocks. As we shall

see in Chapter 8, the FastFlow-3 version introduced also a new software component

called concurrency graph transformer that allows us to modify and restructure the

concurrency graph of FastFlow nodes to introduce optimizations and to enhance the
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performance portability of FastFlow applications. Figure 4-2 shows the new software

components of the FastFlow-3 version.

Figure 4-2: New FastFlow-3 software layers.

From now on, unless otherwise noted, we will use the term FastFlow to refer to

the new FastFlow-3 version.

How to use the library. According to the structured parallel programming method-

ology (see also Section 2.5.1), FastFlow aims at providing the application programmer

with a variety of ready-to-use stream and data parallel patterns that may be eas-

ily composed and customized to implement complex parallel applications. Building

blocks and high-level patterns can be used by instantiating and extending objects

from the FastFlow C++ classes. Then, the entire parallel application is expressed

by connecting patterns and building-blocks in a data-flow pipeline. However, if the

parallel programmer instead of parallelizing the entire application needs to accelerate

only some specific parts, the approach offered by the FastFlow library is about the
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same. From the available set of patterns, the programmer chooses the most suitable

ones for accelerating the application kernel (e.g., a Task-Farm, a Map, or a Pipeline).

Then he/she creates an instance of the pattern selected or builds a pipeline instance

containing the set of patterns selected. Finally, the programmer executes the created

network topology by invoking the run method of the external object. At some point

of the main program, the method wait is called to wait for the termination of the

parallel kernel. Alternatively, the two calls can be combined by using the synchronous

run and wait end method (see also Figure 4-3). A simple schematic example of a

Figure 4-3: Left:) Standard usage of the FastFlow library: create the network topology
and synchronously runs it. Right:) software accelerator mode where the FastFlow
network is fed directly by the main thread.

possible usage of the FastFlow library is sketched in Figure 4-3. In the left-hand size

of the figure (Figure 4-3-a), a logical pipeline of four stages is created at a given point

in the application code and it is executed by synchronously waiting its termination.

Possibly, the results have been stored into a file or in a suitable data structure. In

this case, the stream feeding the pipeline stages is generated by the first stage of the

pipeline itself (e.g., reading from a file, or from a network socket) and when the stream

terminates the pipeline terminates as well returning the execution control to the main

thread. In the right-hand size of the same figure, FastFlow is used in the software

accelerator mode [18], i.e. parts of the computation (i.e. kernels) are offloaded to a
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parallel component (i.e. a pipeline containing multiple patterns), similarly to what

happens when offloading computation to a hardware accelerator. The main differ-

ence compared to the previous usage scenario is that the input data stream will be

provided directly by the main control flow and the output produced will be gathered

by the main control flow as well.

1 struct Source: ff_node_t<float> {

2 Source(std::vector<float>&D):D(D){}

3 float* svc(float *) {

4 for(size_t i=0;i<D.size();++i)

5 ff_send_out(&D[i]); // streaming elements

6 return EOS; // End-Of-Stream

7 }

8 std::vector<float>& D;

9 };

10 struct Worker: ff_node_t<float> {

11 float* svc(float* in) { return F(*in); }

12 };

13 struct Sink: ff_node_t<float> {

14 float* svc(float *in) { sum +=*in; return GO_ON; }

15 float sum = 0.0;

16 };

17 int main(int argc, char *argv[]) {

18 ...

19 Source S(D); // Source object

20 std::vector<ff_node*> W; // pool of 4 Workers

21 for(size_t i=0;i<4;++i) W.push_back(new Worker());

22 Sink R; // Sink object

23 ff_farm farm(W,S,R); // farm building block

24 farm.run_and_wait_end(); // run and wait for termination

25 ...

26 }

Code 9: Parallelization with FastFlow building blocks of a simple kernel computing∑N
i F (D[i]) where D is an input vector of size N and F is a given user function.

Simple example. To show how a FastFlow code looks like, a basic example is

sketched in Code 9. The farm building block is used to compute the simple operation∑N
i F (D[i]) where D is a vector of floats of size N . This simple kernel can be

parallelized in different ways. We want to show here first how the farm building block
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and the concept of data streaming can be used for the parallelization of this simple

use-case, then we show how to implement the same code by using a high-level parallel

pattern (the ParallelForReduce). The first approach allows the programmer to have

full control over the parallelization with lots of opportunity for customization, the

second approach requires less programming effort hiding almost all low-level details

of the parallelization.

1 int main(int argc, char *argv[]) {

2 ...

3 ParallelForReduce<float> pfr; // creating the pattern

4 float sum{0.0}; // reduction variable

5 pfr.parallel_reduce(sum,0,0,D.size(),

6 // map+reduce function

7 [&](const long i, float& sum) { sum+=Fun(i); },

8 [](float& v, const float& e) { v+=e;}, // reduce function

9 4); // parallelism degree

10 ...

11 }

Code 10: High-level version of the same code presented in Code 9 that uses the
FastFlow ParallelForReduce pattern.

All data elements of the array D are streamed toward the pool of farm Workers by

the farm Emitter (in the example only 4 Workers are used). The reduction phase (i.e.

the summation of all results) is computed sequentially by the farm Collector and in

pipeline with the Emitter and the pool of Workers. Basically the farm building block

is semantically equivalent to a three-stage pipeline whose middle stage is replicated

a given number of times. The first node, which produces the stream of data, is

defined at line 1 and it is instantiated at line 19. It generates a stream of N elements

(N=D.size()) by using the method ff send out (line 5) and then it generates the

EOS special value (End-Of-Stream), which allows the RTS to start the termination

phase. From line 20 to line 21 an STL vector containing 4 replicas of the Worker

node is created. The Worker is defined at line 10. Finally, the Sink node is defined

at line 13 and instantiated at line 22. It collects all results produced by farm Workers

and accumulates partial results in the sum local variable. The farm object uses as
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Emitter the Source node and as Collector the Sink node. It is created at line 23 by

passing as arguments of the ff farm constructor the vector containing the Worker

replicas and the objects implementing the Source and Sink nodes.

The previous simple example is clearly a map+reduce computation, and it could be

conveniently parallelized by using the FastFlow ParallelForReduce high-level pattern.

In Code 10 is sketched the parallelization of the same kernel described before but in

this case implemented by using the ParallelForReduce parallel pattern. A detailed

description of the ParallelForReduce pattern will be provided in Chapter 9.

Communication channels. FastFlow provides a fast implementation of bounded

and unbounded lock-free Single-Producer Single-Consumer (SPSC) FIFO channel [19]

carrying pointers to data allocated into the shared address space (see Chapter 6 for

an in-depth discussion about FastFlow channels).

Figure 4-4: Sending references to shared data over a SPSC FIFO channel.

The FastFlow semantics of sending references over a channel is that of transfer-

ring the ownership of the value pointed from the sender node to the receiver node

(see also the schema in Figure 4-4). According to this semantics, the receiver is

expected to have exclusive access to the data value. Communication channels are

one of the distinguishing features at the building block layer. Multi-Producer Single-

Consumer (MPSC), Single-Producer Multi-Consumer (SPMC) and Multi-Producer

Multi-Consumer (MPMC) interactions are not realized as concurrent passive data

structures (i.e. concurrent queues). Instead, they are implemented by using mediator

nodes to avoid both any memory fence induced by atomic operations (e.g., Compare-
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And-Swap) and to decouple data consistency from concurrency management. The

mediator nodes (for example the Emitter and the Collector nodes in a farm building

block) use multiple lock-free SPSC queues to distribute and/or collect data elements

to and from other computing or mediator nodes. They read data pointers from one

or more SPSC queues and write data pointers into one or more SPSC queues and

these operations use only loads and stores instructions. This approach not only avoids

using atomic operations (SPSC queues can be implemented without using any mem-

ory fences on a TSO memory model and by using just one Write Memory Barrier

on relaxed memory models [165]), but also allows us to employ mediator nodes for

implementing real data processing on input data according to the data-flow model of

computation. For example, in the farm building block, the Emitter and Collector node

can execute user-defined code on each input item, thus combining data management

with computation. Moreover, by using independent queues for each input/output

channel, it is possible to have full control of data movement, for example between

a producer node and a set of consumer nodes. The performance advantage of this

solution for implementing streaming networks comes mainly from the higher speed of

memory operations compared to atomic operations, and to the possibility to reduce

cache-coherence memory traffic when using a producer-consumer model, which, in

turn, provides a better support for fine-grained computations.

Building blocks. The FastFlow building blocks are concurrent components that

are the fundamental elements of any structured parallel applications implemented

using the FastFlow library. Building blocks are either sequential or parallel. Sequen-

tial building blocks are FastFlow nodes with one or more input or output channels.

Parallel building blocks are concurrent components made out of a proper assembly

of multiple nodes and multiple SPSC FIFO channels. We identified three parallel

building blocks (two of them were included in the previous FastFlow versions as core

patterns), pipeline, farm and all-to-all (described in Chapter 5), which can be spe-

cialized in different ways using also the feedback channel modifier (see Figure 4-5).

The pipeline is used both for connecting building blocks and to express data-flow

pipeline parallelism at run-time. The farm models functional replications coordi-
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Figure 4-5: FastFlow parallel building blocks and some possible specializations of
them.

nated by a centralized Emitter entity and a centralized Collector entity (that might

not be present), which can be specialized by the user to define custom data distribu-

tion and data gathering policies. The all-to-all building block models both functional

replication without a centralized coordination entity as well as the shuffle communi-

cation pattern between function replicas. It allows to remove potential bottlenecks

in the topology introduced by the farm building block having one or two centralized

entities (i.e. the Emitter and the Collector). The all-to-all also enables the fusion

operation of two (or more) farms in pipeline. Concurrency graph transformations

are discussed in Chapter 8. From the programmer perspective, the reduced set of

sequential and parallel building blocks with their customizability and composability

features, enables the so-called LEGO-style approach to parallel programming where

the “bricks” can be either complex pre-assembled and already tested structures or

elementary sequential and parallel building blocks.

The FastFlow building blocks motivations and characteristics are presented in
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Chapter 5. The details of their implementation and performance assessments are

presented in Chapter 7.

Parallel patterns. Parallel patterns are schemas of parallel computations that

recur in many algorithms and applications. For each pattern, there exist different

parametric implementations for a given class of target platforms, e.g., multi-cores and

distributed-memory systems. They can be used in many different contexts and are

targeted both to the parallelization of sequential legacy code and to the development

of brand-new parallel applications. Some patterns have the additional important

feature of being composable. For example, Pipeline and Task-Farm patterns can be

composed and nested in almost all possible combinations. Often, parallel patterns

are equipped with self-optimization capabilities (e.g., load-balancing policies, grain

and parallelism-degree auto-tuning). Moreover, some patterns may target multiple

devices, for example, the Map one can have both a CPU-based implementation as

well as a GPU-based implementation.

In FastFlow, all parallel patterns available are implemented on top of sequential

and parallel building blocks. They are parametric implementations of well-known

structures suitable for parallelism exploitation. The high-level patterns currently

available in FastFlow library are summarized in Table 4.1. A notable subset of them

will be described and evaluated in Chapter 9 (i.e. the ParallelFor, the ParallelForRe-

duce, the Macro Data-Flow and the Divide & Conquer). The FastFlow parallel pat-

terns layer is in continuous evolution. As soon as new patterns are recognized or new

smart implementations are available for the existing patterns, they are added to the

high-level layer and provided to the user.

4.3 Programming model

The programming model offered by the FastFlow library is inspired by the well-known

Data-Flow parallel model (see Section 2.4.4 for a concise introduction of the Data-

Flow model). A FastFlow program can be built through the specialization and pipeline

composition of sequential and parallel building blocks as well as high-level parallel
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FastFlow Name Pattern description

ff Pipe Pipeline pattern modeling a data-flow sequence of se-
quential and parallel patterns. It allows to implement
both linear and non-linear compositions of parallel
patterns. The FastFlow implementation of this pat-
tern is based on the pipeline building block.

ff Farm, ff OFarm Task-farm pattern modeling functional replication.
The ff OFarm pattern guarantees to preserve input
ordering. Both are built on top of the farm building
block.

ff Map In this pattern a function F is applied to all elements
of the input collection. The parallel calculation of the
function F over disjoint partitions of the initial col-
lection does not require any communication/synchro-
nization except for a barrier at the end. It is imple-
mented on top of the farm building block by using
the broadcast and gather all distribution and col-
lection policies. The FastFlow library provides also
an implementation based on the ParallelForReduce

pattern.

ff mdf It models the Macro Data-Flow execution model. A
program is interpreted by focusing on the functional
dependencies among data [20, 69].

poolEvolution This pattern models the evolution of a population ac-
cording to the principles typical of evolutionary com-
puting [12].

ff DC This pattern models Divide & Conquer computa-
tions [109].

ParallelFor,
ParallelForReduce

They model data-parallel computations, allowing the
parallelization of loops with independent iterations
and also having reduction variables [119].

ff stencilReduceOCL,
ff stencilReduceCUDA

These patterns model iterative stencil plus reduce
computations targeting GPU accelerators either using
OpenCL or using CUDA code [23, 8].

Table 4.1: High-level parallel patterns currently provided by the FastFlow library.

patterns. All components of the pipeline are created by extending proper FastFlow

interfaces. No centralized entity coordinating the execution of building blocks and

patterns instances is present. As discussed in the previous section, building blocks

and parallel patterns are structured collections of nodes connected by SPSC channels.
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A node is a stateful concurrent object that is triggered as soon as an input message

is present in one of its input channels. If the node has more than one input channel,

the choice of which channel will be selected for checking the presence of input mes-

sages, is non-deterministic. Once a channel is selected, a round-robin polling strategy

guarantees fairness when multiple messages are present into distinct channels at the

same moment.

A FastFlow node represents a basic unit of computation. Each node can have zero

or more input channels and zero or more output channels. For each input message,

a node can send zero, one or more output messages in its output channels. Messages

are removed from input channels upon reading. As soon as a message is received, the

service function of the node (i.e. the svc method of the ff node class) is invoked by

the RTS passing as argument a pointer to the input message just received. FastFlow

nodes with no input channel are activated by the RTS passing a nullptr argument to

the service function. Message exchange between nodes is asynchronous. The capacity

of a channel connecting two nodes can be either bounded to a fixed value or unbounded

(the channel size is set when the parallel component is instantiated). In the first case,

if the output channel is full, the node will be blocked until there is free space in

the channel. Feedback channels, i.e. graph’s edges directed in the opposite direction

than the standard data flow, always have an unbounded capacity to avoid deadlock

situations (see Chapter 6 for the implementation of channels and Section 7.3.1 for a

discussion about potential deadlock situations).

In the following we discuss some important aspects characterizing the FastFlow

programming model.

Program Termination. A node terminates if it receives an EOS message in input

or if the EOS value is returned from its service function. The EOS message is a special

message defined in the FastFlow namespace (there are a few other special messages

that will be introduced in Chapter 7). EOS messages are propagated by all nodes in

a pipeline fashion producing their termination and eventually the termination of the

application. Nodes with multiple input channels terminate and propagate the EOS

value only if they receive an EOS message from all input channels. Nodes with multiple
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output channels, propagate the EOS message into all output channels and then they

terminate. The termination of programs whose topologies have at least one cycle is

more complex and it is not automatic. It necessitates extra control code provided by

the user. To facilitate the implementation of the termination protocol, the ff node

class provides the eosnotify method. This method is called by the RTS as soon an

EOS message is received from one input channel, providing also the id of the channel.

By using this method, it is straightforward to implement a termination protocol and

to propagate EOS messages properly. A discussion about program termination for

FastFlow concurrency graphs containing cycles, is provided in Section 7.3.1.

State management. Each node, upon activation, can read and modify its internal

state. Nodes can also read and modify global states. In this case, it is the program-

mer’s responsibility is to protect conflicting accesses to the global state. Though

the model does not prevent the use of locking for protecting shared global states,

the FastFlow model promotes a different approach for dealing with shared states.

Whenever possible, concurrent accesses to a global state should be modeled through

parallel building blocks and the state either partitioned or replicated among available

nodes belonging to the building block. Communication channels are then used as syn-

chronization mechanisms for coordinating accesses to the shared state. This means

that, when a generic node (i.e. a sequential building block or a node being part of

a parallel building block) receives a data pointer to the global data structure, it is

intended that it has exclusive access to the data structure (either a partition or the

entire data structure). When the node has finished working on the data structure, it

passes the pointer (i.e. the capability of accessing the shared state) to another node.

If the state is neither partitionable nor replicable, this approach may lead to using

mediator nodes (also called “service nodes”) hosting the entire data structure and so

with exclusive accesses to it. Recently, this model of computation has been carefully

investigated on multi-core platforms and has demonstrated a significant performance

advantage against coarse-grained locking approaches [283]. In addition to that, the

Parallel Computing research group at the University of Pisa is currently investigat-

ing opportunities for defining suitable abstraction to simplify state management, i.e.
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state access patterns. Such patterns can be directly instantiated by the application

programmer within a FastFlow network, counting on a clear functional and parallel

semantics and performance guarantees [113].

Input non-determinism. FastFlow nodes with multiple input channels receive data

elements in a non-deterministic way. This aspect, together with the possibility to

access global state, represent the two major points of difference with respect to the

pure Data-Flow model. However, the management of input non-determinism is of

foremost importance to increase performance in data-flow networks. An example is

the well-known Task-Farm pattern where the scheduling policy can be either dynamic

(e.g., on-demand) or deterministic (e.g., round-robin). In many real use-cases, the first

policy provides superior performance thanks to a better workload balancing among

the farm’s Workers. Input non-determinism and asynchronous message exchange

among nodes are two distinguishing features of the FastFlow model.

Parallelism exploitation. In a Data-Flow model, parallelism comes from the exe-

cution of nodes with no direct dependencies. Besides, to increase parallelism, some

nodes can be replicated to let them work on disjoint partitions of the same input data.

This operation may require to add extra service nodes, which do not execute business

logic, needed to perform the split of input data and for the aggregation of the partial

results. Instead, in the case of nodes with dependencies, parallelism can still be ex-

ploited by data streaming, hence by the concurrent execution of multiple subsequent

nodes in the concurrency graph. In the FastFlow programming model, parallelism is

obtained both through the functional composition of sequential and parallel building

blocks as well as by exploiting stream parallelism. Data streams can either be native

(i.e. generated by external sources – eso-stream), or can be auto-generated by one

of the stage of the network (endo-stream), for example by reading files or by split-

ting/partitioning a data structure. Data-parallelism and task-parallelism are then

utilized within specific parallel components of the data-flow concurrency graph. For

example, the Map and ParallelFor patterns are used for exploiting data-parallelism

while the Macro Data-Flow and the Divide&Conquer patterns are used for exploiting
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task-parallelism.

Figure 4-6: An example of a possible building blocks fusion to reduce the number of
nodes. Initial graph structure (a), optimized graph structure (b).

Process network. Eventually, the flattened FastFlow application graph is com-

posed of sequential nodes connected by point-to-point FIFO channels. Therefore,

the directed graph describing the data-flow network can be analyzed and possibly

statically transformed/optimized to reduce the number of nodes in the graph, still

preserving the original functional semantics, with the aim of improving resource ef-

ficiency and performance. Optimizations can be applied, for example, by merging

sequential nodes (e.g., those with low service times), or by applying the so-called

normal-form [14] or by fusing farms building block implementing Map and Reduce

patterns (i.e. farm fusion and farm combine). As an example, on the left-hand side

of Figure 4-6 is sketched a FastFlow graph composed by a pipeline composition of se-

quential and parallel building blocks where nodes are stateless. This sample topology

can be automatically reduced to an equivalent one as sketched on the right-hand side

of Figure 4-6. In this case, the farm’s Workers have been combined. Likewise, Map’s

and Reduce’s Workers are used as L-Worker and R-Worker of an all-to-all building

block (see also Figure 4-5). In the context of pure functional polymorphic functions,

Wadler’s “Theorems for free” [321] provides a solid theoretical background for study-
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ing interesting transformations preserving functional equivalence. Concurrency graph

transformations, and some notable static optimizations are discussed in Chapter 8.

Deployment of FastFlow programs. The FastFlow concurrency graph resulting

from the transformation/optimization phase, can be directly deployed onto the par-

allel platform. The FastFlow programming model does not use any intermediate sched-

uler to execute the graph; instead, it relies on the straight deployment of the entire

process network on the target architecture. In FastFlow, nodes are implemented with

“heavy-weight” threads of control and not with light-weight concurrent abstractions

as happens in several Actor-based implementations (e.g., the CAF framework [87]).

The primary motivations for this decision are as follows:

(i) The experiences in developing complex parallel applications matured within the

structured parallel programming community over the last thirty years, report

that typically a structured parallel application is composed by a small num-

ber of patterns (or pattern compositions) where some of them can have a large

parallelism degree (for example a Task-Farm pattern having many Workers).

Recently, we have demonstrated that a small set of parallel patterns (all im-

plemented by the FastFlow library either as high-level patterns or as building

blocks) are sufficient to efficiently parallelize the PARSEC benchmarks [129].

Other experiences in this respect, include the one developed in the context of

the Delite parallel framework (see also Section 3.2.1), where a large number of

DSLs covering different application domains, have been implemented by using a

limited set of well-known parallel patterns [276].

(ii) Very fine-grained stream parallelism necessitates full control of threads on the

target platforms to be able to use available cores at maximum utilization. As we

will discuss in Chapter 6, FastFlow channels exhibit a latency down to a few tens

of nanoseconds per message on state-of-the-art multi-cores. This allows us to

build pipeline networks sustaining very high throughput, and this is only possible

by leveraging low-level mechanisms at the level of threads, such as thread-to-core

affinity and cache-to-cache fast communications [165, 19, 67].
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(iii) Decoupling high-level parallel patterns from lower-level flexible and customizable

building blocks helps to address both the RTS programmer and the application

programmer needs. The former will mainly use building blocks for creating new

patterns or new frameworks with sophisticated policies addressing specific ap-

plication domains. The latter will use high-level patterns instead, which provide

more specific and ready-to-use solutions to a given problem. From the RTS pro-

grammer standpoint, the use of a structured approach to parallel programming

with a few and well-defined building blocks with clear functional and parallel se-

mantics and a clear deployment process, allows him/her to use a programming

model without any further software layer, thus with no surprise at execution

time. Moreover, the approach based on building blocks facilitates application

debugging that is one of the most critical aspect of parallel software development.

(iv) The targeting of multiple HW accelerators (e.g., GPUs, FPGAs, and DSPs)

is easier if the single node is an independent concurrent entity. In fact, it is

possible to specialize nodes for different target devices to manage data-movement

and device kernel execution. In this respect, the FastFlow programming model

facilitates the integration with other parallel frameworks, too. For example, it is

straightforward to encapsulate SkePU code (see Section 3.1.1) within a FastFlow

node far managing one or multiple GPUs using the SkePU containers.

To conclude, being already widely recognized that the Programmability challenge

can be addressed only by means of high-level parallel abstractions such as parallel

patterns, we do believe that the Data-Flow-like parallel programming model offered

by the FastFlow library with its multi-level API and distinctive features is a good

compromise between absolute performance figures, multi-core scalability, portability

and performance portability targeting. Examples of existing frameworks leveraging

the FastFlow programming model are Nornir [293], SPar [177] and PiCo [251].
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4.4 New FastFlow features

In this section, we describe the new features of the FastFlow version 3. Before enu-

merating the main differences with previous versions, it is worth remarking that the

author of this thesis developed almost all low- and high-level features of the FastFlow

library since its early versions. Specifically, the communication channels and initial

building blocks, the core patterns, the distributed version, the memory allocator, the

OpenCL-based GPU support, and up to several high-level parallel patterns. Some of

these features that we developed, will not be discussed within this thesis. Anyhow,

we will provide references for the interested reader in Section 4.5.1.

The new FastFlow version presented in this thesis added several new features

and functionalities to the library and they constitute the main contributions of this

dissertation. The new version can be downloaded from the GitHub public repository

using the following command:

Download: git clone https://github.com/fastflow/fastflow.git

In the following, we enumerate the main differences of the new version compared

to the previous releases.

1. The basic software layer has been completely redesigned so that the building

blocks layer and the Core pattern layer of the previous versions (see Figure 4-1)

have been fused in a single layer called building blocks. This layer has been also

extended by introducing two new components (the all-to-all parallel building

block and the sequential node combiner), which allow us to further increase the

expressive power and the flexibility of the FastFlow library.

2. The new all-to-all building block allows us: i) to eliminate potential bottlenecks

introduced by the Emitter and Collector entities of the farm building block; ii)

to redesign farm-based parallel patterns by using a completely decentralized

configuration, therefore adding a new dimension in the software design space;

iii) to enable the introduction of automatic concurrency graph transformations,

such as for example the farm combine operation which merges two farm building
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blocks in pipeline.

3. The new sequential nodes combiner building block, supporting the merging of

sequential nodes, allows us to partially decouple the logical structure of the

FastFlow network from its concrete deployment on the target platform without

changing the FastFlow RTS. Moreover, it increases the composability of sequen-

tial nodes and the composability of sequential and parallel building blocks.

4. The implementation of the multi-input and multi-output nodes have been re-

designed to improve their capability to connect to other nodes by removing sev-

eral limitations present in the previous versions. The input and output channel

cardinality of multi-input and multi-output nodes are defined only when they

will be connected to another sequential or parallel building block. The “lazy”

evaluation of their degree of connectivity allowed us to connect them to other

building blocks greedily.

5. A new layer for implementing automatic concurrency graph transformations

has been introduced (the “Concurrency graph transformer” in Figure 4-2). By

leveraging a set of helper functions that allows us to combine two or more build-

ing blocks (both sequential as well as parallel) with a clear parallel semantics,

the new layer collects all potential optimizations that can be applied to the

network topology to reduce either resource utilization (i.e. the number of RTS

threads) or to remove potential bottlenecks. A subset of transformations im-

plemented so far are: i) removing all mediator nodes that are not explicitly

implemented by the user (i.e. default farm’s Emitter and Collector nodes); ii)

combining a sequence of farms with the same number of Workers (farm fusion

transformation); iii) merging two farms with different numbers of Workers by

using the all-to-all building block (farm combine transformation); iv) automat-

ically enabling the blocking concurrency control mode if the number of threads

is greater than a given threshold (typically the number of physical cores); v)

controlling the mapping of threads on available cores.

6. The implementation of both blocking and non-blocking concurrency control mech-
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anisms for accessing the communication channels connecting two FastFlow nodes

(see Chapter 6). The proposed mechanisms allow us to improve power saving

and/or throughput by statically and dynamically switching the concurrency

mode between passive waiting (blocking) and active-waiting (non-blocking) of

run-time threads. This is particularly relevant for long-running data streaming

computations where variable arrival rates and sudden workload changes require

different levels of reactiveness to respect a given QoS level.

7. A new implementation of concurrency throttling mechanisms in the farm build-

ing blocks. This enables the development of sophisticated policies that dynam-

ically change the concurrency level of parts of the parallel application (im-

plemented through the farm building block) to increase either the sustained

throughput or to reduce the power consumption by decreasing/increasing the

number of Worker nodes.

4.5 FastFlow project history

The FastFlow project started in 2010 after some preliminary discussions and ideas we

had with Prof. Marco Aldinucci from the University of Turin. Over the years several

other people (mainly from the Parallel Computing Group of the University of Pisa

and Turin) contributed with ideas and code to the development of the project. Many

people around the world used FastFlow either for research purposes and industrial

software development. Since the very beginning of the project, we have been (and

still we are) the maintainer and the leading developer of the FastFlow library.

The first version of FastFlow was released at the beginning of 2010. Figure 4-7

summarize the timeline of the most relevant releases and the relationship with the

three EU-funded research projects (ParaPhrase, RePaRa, and RePhrase) that allowed

us to enhance the FastFlow library and to contribute to the success of the projects.

Given the importance of the three EU-funded research projects in the history of

the FastFlow project development, we provide a brief description of each of them

highlighting the most significant enhancement developed in the FastFlow library.
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Figure 4-7: FastFlow project history.

The RePhrase project. The RePhrase H2020 project (Refactoring Parallel Het-

erogeneous Resource-Aware Applications a Software Engineering Approach)2 started

in April 2015 and lasted three years. The focus of the RePhrase project was on pro-

ducing new software engineering tools, techniques and methodologies for developing

data-intensive applications in C++, targeting heterogeneous multi-core systems com-

bining CPUs and GPUs into a coherent parallel platform.

FastFlow was one of the RTSs used in the project together with OpenMP and

Intel TBB. A uniform high-level interface for all RTSs is provided by GrPPI (see

Section 3.1.5). The FastFlow library provided the implementation of all parallel pat-

terns identified within the project. In the project time span, the FastFlow library has

been extended mainly with Data Stream Processing (DSP) parallel patterns such as

Window Farming and Keyed Farm [231] and the internal tracing of resource usage

has been improved. All FastFlow parallel patterns used within the RePhrase projects

have been summarized and assessed in Danelutto et al. [107]. Within the RePhrase

project, the RPL-sh shell has also been developed. Is is a skeleton-based DSL for

design-space exploration implemented on top of the FastFlow library [163]. The tool

allows exploring the space of functionally equivalent but alternatives implementations

2RePhrase project home: http://rephrase-eu.weebly.com/
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of the same parallel application with different non-functional properties.

The RePaRa project. The RePaRa project (Reengineering and Enabling Perfor-

mance and poweR of Applications)3 was an EU FP7 project aiming to deploy software

kernels of a sequential C++ applications targeting heterogeneous multi-cores by us-

ing static or dynamic scheduling and mapping techniques and maintaining a balance

between performance, energy efficiency and source code maintainability. The project

started in September 2013 and lasted three years.

The FastFlow library was the RTS for the RePaRa tool-chain (see also Section 3.3.5).

The library has been significantly extended to support parallel execution of RePaRa

kernels (identified by using attributes code annotation introduced in modern C++) on

GPU devices by using OpenCL, on FPGA devices by using the ThreadPoolComposer

(TPC) library [209] and on both standard multi-cores and DSP systems by using

standard POSIX threads [237]. A description of the RePara C++ attributes and how

the FastFlow library has been used within the project is described in Danelutto et

al. [112].

The ParaPhrase project. The ParaPhrase project (Parallel Patterns for Adaptive

Heterogeneous Multicore Systems) started in October 2011 and lasted 42 months4. It

aimed at producing a new structured design and implementation process for hetero-

geneous parallel architectures. Software developers using the ParaPhrase tool-chain

may use a set of parallel patterns to develop component based applications targeting

heterogeneous multi-cores. The key objectives of the project were both programmabil-

ity by reducing time-to-solution, and better resource utilization of emerging parallel

heterogeneous CPU/GPU architectures.

The FastFlow library was used as RTS for C++ programming (while Erlang was

used for functional programming). During the project, FastFlow version 1 was stabi-

lized, the first RTS support for GPUs (targeting both CUDA and OpenCL kernels)

was introduced and the first implementation of the ParallelFor [119] and Macro Data-

Flow [20] parallel patterns were introduced in the library.

3RePaRa project home: http://www.repara-project.eu/
4ParaPhrase project home: http://paraphrase.comp.rgu.ac.uk/The_ParaPhrase_Project
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A summary of the main objectives and results achieved during the ParaPhrase

project can be found in Hammond et al. [187].

Research tools leveraging the FastFlow library. Over the years several open-

source research tools have been developed on top of the FastFlow library. Among these,

some have been developed within Ph.D. thesis and are still maintained: SPar [177],

Nornir [293], PiCo [251], and PEI [168]. Other frameworks in different application do-

mains employed FastFlow patterns such as YaDT [24] and Peafowl [110] and PWHAT-

SHUP [60]. Currently, the WindFlow parallel library (under active development at

the time of writing), which targets high-performance Data Stream Processing (DSP)

applications, is using FastFlow building blocks and its nesting features for the devel-

opment of DSP parallel patterns5. The GrPPI [135] library (see also Section 3.1.5),

developed at University Carlos III de Madrid, recently has added FastFlow as one of

the possible backends.

Finally, FastFlow has also been used and tested in several industrial settings for

internal testing and products developments.

FastFlow used for teaching Parallel Programming. Starting from AY 2011-

2012, the FastFlow library was introduced as one of the parallel programming tools

within the course of “System Paradigms and Models” held by Prof. Marco Dane-

lutto for the Master Degree in Computer Science and Networking at University of

Pisa. In the course, several parallel programming frameworks are presented to dis-

cuss different aspects of parallel programming. The final exam project assignment

has to be implemented by the students with the FastFlow library. The main reason

of this choice is that it provides both powerful parallel patterns and also efficient

building blocks that can be used by the students to solve the critical aspect of the

project assigned following the structured parallel programming methodology taught

in the course. A summary of the experiences over several years of teaching structured

parallel programming is reported in Danelutto et al. [120].

5WindFlow library on GitHub: https://github.com/ParaGroup/WindFlow
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4.5.1 FastFlow features not covered in this thesis

There are important features of the FastFlow library that are not covered in this

dissertation. They are: i) the FastFlow memory allocator; ii) the support of GPUs

platforms by using either OpenCL or CUDA; iii) the extension of the FastFlow pro-

gramming model to target distributed-memory systems. In the following, we provide

a brief introduction to these features.

FastFlow memory allocator. The FastFlow library provides a custom allocator

optimized for the allocation of small objects used in a producer-consumer way. It is

based on the idea of slab allocator [58]. A slab is a contiguous region of memory split

into equal-size chunks plus a header containing information about how many of those

chunks are in use. Virtual memory is acquired and released per slab using a general-

purpose allocator (by default libc malloc/free calls). The allocator is implemented

as a C++ class that provides malloc-like and free-like methods.

A set of slabs, for a given object size, are pre-allocated in a local cache, so that

when a request to allocate memory for an object of that size is received, it can be

immediately served by using a free chunk. A request to release an object just produces

a new item in the free chunk list without really releasing virtual memory. Only when

all the chunks of a slab have been released, the slab memory is returned to the general-

purpose allocator. This simple process eliminates the need to search for suitable

memory space thus increasing the performance, reduces memory fragmentation and

increases memory re-use [58].

The base FastFlow allocator has been implemented with the idea that only one

thread can allocate memory (mem-producer) and one or more threads can release

memory (mem-consumer(s)). This is the typical scenario of Task-Farm and pipeline

computations. For implementing these simple scenarios, the FastFlow allocator inter-

nally uses lock-free SPSC queues, i.e. the same data structure used in FastFlow to

implement the communication channels between building blocks.

The efficiency of the FastFlow allocator in the context of Data Stream Processing

parallel patterns have been investigated and assessed in Torquati et al. [311].
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GPUs targeting. To the best of our knowledge, SkePU [146], SkelCL [304] and

Muesli [147] were the first algorithmic skeleton libraries to target the deployment of

data-parallel computations to heterogeneous CPU+GPU systems. We took inspira-

tion from those libraries to introduce GPU and multi-GPUs support in the FastFlow

library too.

The FastFlow characteristic to wrap arbitrary functions into a sequential build-

ing block node facilitates the integration and the use of external accelerators such

as GPUs. However, GPUs present additional challenges because of their different

features and capabilities, which typically require direct intervention and tuning from

the programmer. To facilitate the programmer, both CUDA and OpenCL support

have been added to the FastFlow library by leveraging customized sequential building

blocks such as the ff oclNode for the OpenCL architecture.

On top of the basic building blocks the Loop-of-Stencil-Reduce (LSR) pattern im-

plemented both in CUDA and OpenCL has been devised as an abstraction for tackling

the complexity of implementing iterative data-parallel computations on heterogeneous

platforms targeting both CPU cores and GPU accelerators [23, 8]. The LSR pattern

can be nested in other stream parallel patterns, such as farm and pipeline. Aside

from the LSR pattern, the more classical data parallel pattern such as Map and

Map+Rudce have also been provided to the FastFlow user. Currently, the kernel code

executed by the patterns is wrapped into proper C macros functions.

Distributed FastFlow. FastFlow provides an implementation running on distributed

systems [11]. It is currently based on the ZeroMQ communication library, which al-

lows us to build complex asynchronous message-passing networks in an easy way if

compared to standard socket programming, yet providing reasonable performance [198].

To support inter-process communication, the FastFlow standard node has been

extended with an additional “external channel” (the new channel can be present

either in input or in output). The extended node is called dnode (distributed node).

The basic idea is to allow the edge nodes of the FastFlow network to communicate

with the “external world” through a well-defined set of communication collectives.

This way, internal communication are implemented through shared-memory FastFlow
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channels whereas external communications happen through a transport layer and

according to useful abstractions for effective programming of hybrid multi-core and

distributed platforms.

Name Communication pattern description

unicast unidirectional point-to-point channel between two dnodes

onDemand one-to-many channel; the data is sent to one of the connected
peers, the choice is made dynamically on the basis of the
actual workload of the connected peers

scatter one-to-many channel; sends different parts of the data to all
connected peers

broadcast one-to-many channel; sends the same data to all connected
peers

fromAll many-to-one channel; collects different parts of the data
coming from all connected peers and then combines them in
a single data item (this pattern is also known as all-gather)

fromAny many-to-one channel; collects one data item from one of the
connected peers non-deterministically

Table 4.2: Available communication patterns between distinct dnodes in the dis-
tributed FastFlow version.

The communication patterns currently implemented are summarized in Table 4.2.

By means of two auxiliary methods provided by the FastFlow dnode for data mar-

shalling and unmarshalling, data elements are serialized and then streamed into net-

work channels, de facto extending the internal channel allowing data to flow across

dnodes. The serialization and de-serialization methods slightly increase the coding

complexity but they support the development of complex distributed applications.

There exists also a proof-of-concept implementation of a minimal message passing

layer implemented on top of InfiniBand RDMA features which can be used in al-

ternative to ZeroMQ [292]. The proposed RDMA-based communication channel

implementation achieves comparable performance with optimised MPI/InfiniBand

implementations.

In this thesis, we do not cover the programming model and the implementation

features of the distributed version of FastFlow. However, we want to remark here
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that the FastFlow model is suitable to be extended to target distributed systems to

provide the user with a unified model for shared-memory multi-cores and distributed

memory systems. In this respect, the FastFlow model and its distributed prototype,

has inspired the interesting research work done at University of Turin about the GAM

model, where executors (i.e. the equivalent of FastFlow dnodes) synchronize with each

other by exchanging messages that are global memory references enriched with access

attributes [143].

4.6 Summary

In this chapter, we introduced the new FastFlow parallel library (version 3) and its

programming model. The FastFlow library is the result of a research effort started in

2010 as a joint work between people from the Computer Science Department of Uni-

versity of Pisa and Turin. Over the years it has been improved and extended thanks

also to its employment as RTS into three EU-funded research projects (ParaPhrase,

RePaRa and RePhrase).

The new version of the library introduced in this thesis extends the previous

version mainly in two directions: 1) the redesign of the lower software layer of the

library introducing also new parallel building blocks that strengthened the flexibility

of the entire library and opens new opportunities to build more scalable parallel

solutions; 2) the introduction of a new concurrency graph transformation component

that enables the refactoring of the concurrency graph describing the FastFlow parallel

application with the objective to introduce optimizations.

We believe, supported by the many research works and applications developed in

the last years, that the FastFlow building block software layer is mature and stable.

We do not foresee the addition of new building blocks into the current set. The new

concurrency graph transformation layer added into the library will allow us to system-

atically design and implement several well-known and also new static optimizations

that so far have been implemented mainly manually by the FastFlow programmer.

This software layer is particularly important to enhance the Performance portabil-
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ity of the library for future multi-core systems with a high number of heterogeneous

cores. In our opinion, the new features we have introduced in the new FastFlow library

will foster new research directions in the context of structured parallel programming

optimizations and DSLs development.

177



THIS PAGE INTENTIONALLY LEFT BLANK

178



Chapter 5

Building Blocks Definition

5.1 Introduction

Several different approaches have been proposed to tackle the abstraction difficulties

in developing parallel applications on modern heterogeneous multi-core architectures.

One of the most popular approaches is the one based on sequential code annotation

where programmers use compiler directives to annotate regions of code that can

be executed in parallel either on the available CPUs or, for example, on a GPU

device. Then, the compiler automatically and transparently uses these directives

to generate efficient run-time code targeting code execution on the selected CPU

or GPU. Currently, the reference programming models using code annotations are

OpenMP [53] and OpenACC [263].

If on the one hand such parallelization approaches increase the level of abstraction

relieving the programmer to deal with resources allocation, data transfers, and explicit

synchronizations, on the other hand, they make it difficult to fine-tune and customize

the parallel application for specific needs. In fact, since the parallel structure of the

application is not explicitly exposed to the programmers, this makes it difficult to use

such libraries as RTS of more abstract and higher level framework.

Conversely, the structured parallel programming approach (whose foundations

are based on algorithmic skeletons [94]) makes explicit to the programmer the par-

allel structure of the application promoting the introduction of parallelism since the
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first phases of the application development process hiding all parallelism exploita-

tion details. Following the principles of this parallel programming model, a parallel

application is conceived by selecting and assembling a small set of distinct compo-

nents to avoid introducing any unneeded dependencies for both data and control

flows. Functional and performance portability (see Section 2.4.1) across different tar-

get platforms are then obtained through abstraction of the underlying architectures.

For each parallel pattern, efficient and parametric implementations of both communi-

cations/synchronizations and computation are available (i.e. algorithmic skeletons).

The QoS predictability of these parallel schemes can then be used to evaluate their

profitability, producing the best configuration and enabling adaptivity support and

autonomic solutions.

Accordingly, we envision the use of parallel building blocks as fundamental com-

ponents to build ready-to-use parallel patterns. The objective is to promote the

so-called LEGO-style approach to parallel programming. However, building blocks

alone, do not capture the whole parallel structure of a parallel application. Rather,

they should be used in proper compositions to model the parallel structure of the given

application. The level of abstraction offered by the building blocks is lower than the

one provided by high-level parallel patterns. Nevertheless, they still promote perfor-

mance portability thanks to a precise functional and parallel semantics. In addition,

building blocks are intended to be used by RTS programmers to provide high-level

abstractions (i.e. new parallel patterns) to the application programmers. This idea

can be considered at the core of the structured parallel programming methodology.

It promotes the skeleton/pattern approach not only at the application level to ease

the application programmer’s job, but also in the design and implementation of the

run-time support by providing powerful parallel abstractions capable of simplifying

RTS developer’s job too.

In Section 5.2 we introduce the sequential and parallel building blocks provided

by the FastFlow library. Section 5.3 describes the rules for combining and nesting the

building blocks. Section 5.4 shows how a possible implementation of the BSP parallel

programming model can be described by using the FastFlow building block.
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5.2 FastFlow building blocks

To describe the building blocks, we propose an analogy with the famous LEGO bricks.

LEGO bricks are simple components with different shapes (square, rectangular, cir-

cular, etc.) each with a different number of studs1. Studs fit into grooves found

at the bottom of every brick to create new shapes. LEGO pieces can be assembled

and connected in many different ways to construct complex objects including castles,

robots, and spaceships. Everything built by using LEGO bricks can then be taken

apart and reassembled differently to modify or improve the created objects.

Following this analogy, final LEGO objects are the parallel applications while

the basic LEGO bricks are the FastFlow building blocks. Just as LEGO bricks are

used to create new shapes, in the same way, the FastFlow building blocks are used

to implement parts or the whole parallel application. The programmer (either the

application programmer or the RTS developer) selects the most suitable building

blocks and assemble them in a smart and efficient way to solve the problem at hand.

In our vision, FastFlow building blocks are those concurrent components that are the

fundamental elements of any structured parallel applications. In Chapter 9 we will see

that carefully designed compositions of building blocks allows us to obtain powerful

high-level parallel patterns. In Chapter 8 we will show how the building blocks

composability feature can be effectively employed to transform the concurrency graph

of a pattern-based application by preserving its functional semantics and improving

its performance.

Figure 5-1: Symbols used to describe FastFlow building blocks.

To represent the FastFlow building blocks, we will use the diagrams sketched in

Figure 5-1. The basic abstraction of the building block set is the node. It encapsu-

lates either user’s code (i.e. business logic code) or RTS code. User’s code can also

1A stud is the little bumps on the top of almost every LEGO brick
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be wrapped by a FastFlow node executing RTS code (the diagram with two nested

cicles in Figure 5-1). In this way, input and output data can be manipulated and

filtered before and after the execution of the business logic code. This feature is par-

ticularly useful to interface already written code as well as to apply some automatic

transformations (cf. Chapter 8). A sequential node defines the unit of execution in

the FastFlow framework. The diagrams used to represent valid sequential nodes are

shown in Figure 5-2. User or RTS code can be embedded in a sequential or a parallel

building block that defines its concurrent behavior over a single or multiple input

data element(s) (i.e. streams) carried by channels which connect nodes.

Figure 5-2: Valid sequential nodes.

The set of FastFlow building blocks are shown in Figure 5-3. We will refer to them

also as FF-bb. Building blocks are either sequential or parallel. Sequential building

blocks are nodes with one or more input or output channels. Parallel building blocks

are concurrent components made out of a proper assembly of nodes and point-to-

point FIFO channels. We will show that FF-bb can be composed and nested using

a LEGO-style programming model to build more complex parallel components with

data-flow semantics. Note that there is always at least one forward channel connecting

two building blocks (or two nodes of a building block) whereas there could be zero

or more backward channels (this is denoted using a small empty circle close to the

dashed arrow representing a backward channel).

Sequential nodes. Sequential FastFlow nodes are concurrent entities that can be

classified according to their number of input and output channels. We define input

cardinality and output cardinality of a building block the number of input and output

channels, respectively. It is possible to distinguish four kinds of sequential nodes:
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Figure 5-3: The FastFlow building blocks.

1. the standard node (or simply node) with input

and output cardinalities equal to one;

2. the multi-input node with the input cardinality

not statically defined and the output cardinality

equal to one;

3. the multi-output node with the input cardinality

equal to one and the output cardinality not stat-

ically defined ;

4. the sequential node combiner, which allows us to

combine two sequential nodes into a single node.
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A node with a cardinality “not statically defined” (either in input or in output) is

a node whose input or output cardinality will be defined when the node is connected

to another node. As we shall see, this distinctive property of multi-input and multi-

output nodes enables great flexibility in connecting building blocks. As an example,

a multi-output node can be connected to whatever building block with any input car-

dinality. When the network of nodes describing the application has been completely

built, the multi-output node will inherit the input cardinality of the building block to

which it is connected to. A standard node might have no input channel or no output

channel. In the first case, it acts as a source node (i.e. a node generating data items).

In the second case, the node acts as a sink node (i.e. a node absorbing data items).

A combiner node is a sequential building block aiming at promoting code reuse

through fusion of already existing nodes. It can also be used to reduce the concur-

rent resources of the data-flow network by decoupling the node abstraction from its

concrete implementation. Finally, it can be used to “adjust” the input or output

cardinality of an existing node to connect it to a multi-input or multi-output parallel

building block.

As we shall see in Chapter 7, a FastFlow node is implemented as a C++ object.

Therefore, by leveraging C++ object inheritance and methods overloading features,

and thanks to the possibility of redefining some of the methods for controlling the

output message routing, it is straightforward to build custom sequential nodes.

Figure 5-4: Two simple examples of custom nodes.

As an example, Figure 5-4 shows two simple cases of “selector node”, i.e. a node

that encapsulates a number of other nodes and that dynamically (or even statically)

selects toward which node the data elements received in input have to be forwarded.

The results produced by the selected node are then diverted to the proper output
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channel(s). Such flexibility, allows the RTS programmer to build his/her own parallel

abstractions readily. This is a leading feature of the FastFlow building block which

promotes programmability even at RTS level. As a side note, a specific implementation

of the “selector node” has been provided in the RePaRa project run-time based on

the FastFlow library (see Section 3.3.5). In that case, a “selector node” was used

for targeting multiple devices (i.e. GPUs, FPGAs, and DSPs) for a given kernel

function [237].

Channels. Communication channels are used for connecting two building blocks as

well as the internal nodes used for implementing a parallel building block. We dis-

tinguish between forward and backward channels (also called feedback channels) on

the basis of the respective position of the sender node and receiver node with respect

to the conventional flow of data in a pipeline composition of nodes. All communica-

tion channels are implemented employing Single-Producer Single-Consumer (SPSC)

FIFO-ordered queues (see Chapter 6 for the implementation details). FastFlow chan-

nels do not carry plain data, but references to heap allocated data. Communication

channels are also used as synchronization mechanisms between two distinct FastFlow

nodes accessing a shared data structure. The semantics of sending references over a

channel is that of transferring the ownership of the value pointed from the sender node

to the receiver node. Therefore, the receiver is expected to have exclusive access to the

data value. The capacity of a channel connecting two nodes can be either bounded to

a fixed value or unbounded. Feedback channels always have an unbounded capacity to

avoid deadlock. The implementation of communication channels and the concurrency

control policies used to coordinate channel accesses are described in Chapter 6.

Parallel building blocks. The parallel building blocks are the pipeline, the all-to-all

and the farm. The latter has two different topologies (see Figure 5-3). The pipeline

building block is used both as a container of building blocks (including the pipeline

itself) and as application topology builder. At run-time, the pipeline building block

models data-flow computations working on streams. The farm and all-to-all build-

ing blocks model functional replication with and without a centralized coordination,

respectively. The farm defines a single set of Workers with a centralized coordinator
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called Emitter, whereas the all-to-all defines two distinct sets of Workers connected

together according to the shuffle communication pattern (see also Section 2.5.3). We

will describe the parallel semantics and the implementation of each parallel building

block in Chapter 7. Figure 5-3 shows that farm’s Workers, as well as the L-Workers

and R-Workers of an all-to-all building block, can be any valid pipeline composition

of building blocks. For the all-to-all, the only constraint is that the left-most node

of the L-Workers component must be a multi-output node and the right-most node

of the R-Workers component must be a multi-input node. Concerning the farm’s

Emitter, it can host any sequential node. However, as we shall see in Chapter 7, the

Emitter is a specialization of a multi-input sequential node.

Connecting building blocks. Sequential and parallel building blocks can be con-

nected (through one or more SPSC FIFO channels) by adding them to a pipeline

building block in the desired order. Not all possible compositions of FF-bb are al-

lowed. In Section 5.3 we will define the rules that allow building only well-defined

pipelines.

Despite the name, the pipeline building block permits to assemble either concurrent

linear chains of nodes (i.e. standard data-flow pipelines) as well as more complex

(unstructured) topologies (e.g., multi pipelines). However, not all possible directed

graphs can be constructed by using the FF-bb. For example, the following graphs of

nodes are not valid compositions of FastFlow building blocks:

Notwithstanding, the expert programmer can always use the FastFlow channels to con-

nect independent building block “manually” without the coordination of the pipeline

building block. We do believe that this operation is typically not needed and, al-

though supported, it has to be considered as a last resort and an “escape strategy”.
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Building blocks added to a pipeline will be executed according to the data-flow parallel

semantics. Besides, as long as the pipeline is not started, it acts also as a container

of building blocks whose input and output interface are the ones of the first and

last building blocks added to the pipeline itself. Therefore, according to the implicit

grammar described in Figure 5-3, a pipeline can be used as a base component to

build complex topologies made of multiple nesting of pipelines with several different

building blocks inside. It is worth pointing out that a pipeline may have different

input and output cardinalities depending on its first and last stage.

5.3 Composition rules

The FastFlow building blocks can be composed and nested to build networks of nodes

which are executed according to the data-flow model. The rules for connecting build-

ing blocks and to generate only valid network topologies, are as follows:

1. Two sequential building blocks can be connected in pipeline regardless of their

input/output cardinality:

A particular case is the conposition or multi-output and multi-input nodes. In

this case we assume a cardinality of one for the multi-input node.

2. A parallel building block can be connected to a sequential building block through

a multi-output and a multi-input nodes:

3. Two parallel building blocks can be connected either if they have the same
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number of nodes regardless of their input/output cardinality or through multi-

input multi-output nodes if they have a different number of nodes:

If the edge nodes of the two parallel building blocks are multi-output and multi-

input respectively (the right-hand side schema above), then, when they are

connected, any edge nodes of the first building block will be connected to any

other nodes of the second building block according to the shuffle communication

pattern.

The input and output channel cardinality of a single building block or of a compo-

sition of building blocks can be computed considering the rules showed in Figure 5-5.

We used the symbol “*” to denote a cardinality that is “not statically defined”.

It is worth observing that a given building block may have different cardinal-

ity on the basis of the number of edge-nodes composing it and on the basis of the

sequential node used for implementing edge-nodes. For example, a farm without

Collector may have an output cardinality equal to its number of Workers only if its

Workers are standard nodes. However, if the Workers are multi-output nodes, the

farm has a cardinality equal to the product of its number of Workers by the output

channel cardinality of each Worker. Furthermore, the farm building block has an

input cardinality that is “not statically defined”. This means that the farm behaves

as a multi-input node. For example, the farm can be used to receive output data

from another farm without the Collector or from an all-to-all building block with

multi-output R-Workers.

Given the composition rules described above, it is easy to see that the topologies

described in Figure 5-6 are not allowed within the FastFlow library. In general, it

is considered not-valid any pipeline composition where both the following conditions

hold:
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Figure 5-5: Cardinality of each building block. Icard/Ocard denote the Input/Out-
put cardinality, respectively. The function Card returns both cardinalities using the
notation: Card(BB) = Icard(BB) .. Ocard(BB).

(i) the edge-nodes of the two building blocks being connecting have a different

cardinality; and

(ii) the edge-nodes of the left-hand building block are not multi-output and the

edge nodes of the right-hand building block are not multi-input.

Essentially, having a mismatching cardinality between the output of a building

block and the input of another building block is a sufficient condition for not con-

necting the two only if multi-input and multi-output nodes are not used at the edge
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Figure 5-6: Building block compositions that are not allowed.

nodes of both building blocks. Such a strong connectivity policy is due to multi-output

and multi-input nodes which connect themselves greedily to other nodes. Moreover,

the two previous conditions imply that two building blocks can be always connected

provided that their edges nodes are multi-output and multi-input, respectively.

Some examples of valid pipeline compositions of different building blocks are

shown in Figure 5-7. The top most composition (composition a) in the figure) is

a three-stage pipeline of five sequential nodes. The middle stage is implemented as a

sequential nodes combiner building block of three standard nodes. Composition b) is

a pipeline of three building blocks with a feedback channel between the last and first

stage. The first stage is a sequential node; the second stage is a farm without the

Collector and whose nodes are pipelines of two sequential FastFlow nodes. Finally,

the last stage is a farm with the Collector whose nodes are multi-output nodes having

a forward channel toward the Collector and a feedback channel toward the Emitter.

When the pipeline composition in Figure 5-7(b) is executed, it will have six pipeline

stages and a concurrency degree of eleven distinct nodes (considering two Workers in

the first farm and three Workers in the second farm). Composition c) in Figure 5-7 is

still a three-stage pipeline network whose first stage is a farm of multi-output nodes

(with feedback channel toward the Emitter), the second stage is an all-to-all building

block. The last stage of the pipeline is a sequential multi-input node. In this case we

can see how the multi-output Workers of the first farm are connected to all L-Workers
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Figure 5-7: Some examples of building block compositions.

of the all-to-all even if they have different numbers of Workers. Moreover, since the

L-Workers of an all-to-all building block must be multi-output nodes, to realize a

valid connection between the two building blocks, a sequential nodes combiner can

be used for implementing a sequential node that is both multi-input and multi-output

at the same time. Finally, composition d) shows a pipeline of two all-to-all whose

L-Workers are multi-input nodes while R-Workers are multi-output nodes. There is a
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feedback channel connecting all R-Workers of the second all-to-all with the L-Workers

of the first all-to-all. In addition, since the number of R-Workers of the first all-to-all

is equal to the number of L-Workers of the second all-to-all there is a direct single

connections between the workers of the two all-to-all (to implement a shuffle pat-

terns between the two all-to-all it is sufficient to combine a multi-output node and a

multi-input node to the workers at the two respective edges).

The examples presented in Figure 5-7 show the expressive power of the FF-bb for

constructing sophisticated data-flow topologies of concurrent nodes. The proposed

schemas can be simply obtained by adding building blocks to a pipeline container

paying attention to the small set of composition rules discussed in this section.

We remark that the high degree of freedom offered by the FastFlow building block

software layer enables both modular programming and user’s code reuse. Besides, it

allows us to expand the design space exploration phase by quickly moving from one

implementation to a different one without the need to change the business logic code of

already tested parallel components thus limiting the programmer intervention only at

the edge nodes of the topology. Finally, even though applications built by using high-

level parallel patterns typically do not present complex process network topologies, the

process topologies reported in Figure 5-7, which present more elaborate connections,

can be the result of a parallel program optimization phase performed according to

some heuristics and through multiple concurrency graph transformations (we will

discuss some graph transformations in Chapter 8). On the other hand, complex

typologies may be the result produced by the RTS programmer that is designing a

new domain-specific pattern.

5.3.1 RISC-pb2l equivalence

The set of FastFlow building blocks presented in the previous sections has been heavily

inspired by the RISC-pb2l building blocks recently proposed in our previous research

work [118, 7].

RISC-pb2l is a description language conceived to reason about structured parallel

programming. One of its primary objectives is that of allowing the skeletons/patterns
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Figure 5-8: Correspondence between the RISC-pb2l and the FastFlow building blocks.

methodology to percolate to a lower level of abstractions than that of the applications.

The intent is that of studying code refactoring and to introduce static optimizations

into the developed application. A description of the RISC-pb2l grammar may be found

in Section 2.5.4 (Figure 2-16). All RISC-pb2l building blocks can be implemented by

using the FastFlow building blocks. Their mutual equivalence is shown in Figure 5-8.

The RISC-pb2l Parallel building block can be implemented with either a FastFlow

farm or with an all-to-all. The choice of which one to use depends on the other

building blocks used to define the application graph. For example, a single all-to-all

with the same number of L- and R-Workers can be used to implement a pipeline of

two Parallel building blocks. The Spread and Reduce functionals can be implemented

by a proper nesting of the farm and of the all-to-all building blocks as sketched in
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Figure 5-9: FastFlow building blocks implementation of the 3-level 4-ary tree Spread
(a) and Reduce (b) functionals of RISC-pb2l.

Figure 5-9.

The main differences between FF-bb and RISC-pb2l can be summarized as follows:

• FF-bb has a primitive building block (the all-to-all one) that is not present in

RISC-pb2l whose peculiarity is to have an input cardinality of n and an output

cardinality of m, where possibly n 6= m and n > 1,m > 1. The all-to-all

building block permits to build pipeline composition with different input and

output cardinalities. Instead, RISC-pb2l accepts as valid composition only the

following ones: ∆1n •∆n •∆n1 and ∆1n •∆n1.

• FF-bb provides more flexibility when connecting building blocks because of the

“not statically defined” cardinality of multi-input and multi-output nodes. For

example the FF-bb program described in Figure 5-10 cannot be written in RISC-

pb2l because it is not possible to connect a N-to-1 building block with both a

Parallel and a Sequential wrapper.
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Figure 5-10: FastFlow building block program that cannot be expressed using the
RISC-pb2l building blocks.

A valid RISC-pb2l program emulating the FF-bb topology described in Figure 5-

10 could be:
←−−−−−−−−−−−−−−−−−−−−−−−
(CPol • [| ∆ |]n •BPol • ((code)))cond

• FF-bb offers a clearer distinction between sequential and pipeline composition

than RISC-pb2l. In FF-bb, the first is used to reduce the number of active

concurrent entities and to increase computation granularity, the latter to express

pipeline concurrency.

5.4 BSP model implementation

As a more complex and relevant example, we show how the Bulk Synchronous Parallel

(BSP) model can be implemented by using the FastFlow building blocks. The BSP

general model of computation is described in Section 2.4.3.

At a high level, a BSP computation can be described as a sequence of supersteps

each one having a parallel computation phase and a communication phase. All BSP

processors run the same program according to the SPMD paradigm, and each pro-

cessor can independently send/receive data to/from other processors. At the end of

each superstep, a bulk synchronization (i.e. a barrier) is performed ensuring that all

communications have been concluded.

From the FastFlow building block viewpoint, each superstep can be seen as a two-
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Figure 5-11: Building block implementation schema of the BSP model.

stage pipeline in which the first stage of the pipeline executes the computation phase

while the second stage implements the communication and barrier features of each

superstep. The single superstep may then be modeled using the all-to-all FastFlow

building block with feedback channels between R-Workers and L-Workers. The feed-

back channel allows implementing the sequence of supersteps needed to compute the

final result. The L-Workers are the processors of the BSP model. They are responsi-

ble for executing the computation phase and sending the partial results computed to

the R-Workers that act as “communication processors”. L-Workers produce a list of

pairs <value,index>, where the index denotes the id of the p BSP processor to which

the data value has to be directed for computing the next superstep. The L-Workers

send the result produced to a subset of R-Workers selected, for example, by using a

round-robin or hashing policy, and send just a synchronization message to all other

R-Workers not part of the receivers set. The number of R-Workers to use and the size

of the receivers set are configuration parameters that depend on the target machine.

However, in most cases, it is reasonable to assume that the number of R-Workers is a

small subset of the number of L-Workers and that the cardinality of the receivers set

is a small number (e.g., 1 or 2). The R-Workers are used to implement the barrier

and also to combine partial results received by the L-Workers to minimize the number

of messages that have to be sent when redistributing the collected data back to the

L-Workers for computing the next superstep (if any). In this way, it is possible to

combine both data distribution and synchronization to implement the required BSP
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barrier.

It is worth remarking that in the FF-bb implementation on multi-core platform

data is not moved. Instead, references to data are passed through communication

channels (see Chapter 6 for an in-depth discussion about FastFlow channels). The

FF-bb implementation of the BSP model is sketched in Figure 5-11.

The first stage of the pipeline is responsible for partitioning the initial dataset

to the L-Workers. It also starts program termination on the basis of the feedback

received from the last stage of the pipeline. Actually, managing program termination

when the number of supersteps is not known in advance, requires extra synchroniza-

tions that are implemented by using the third stage of the pipeline. Specifically, when

there are no more data to redistribute by all R-Workers, the third stage of the pipeline

will notify the first stage that thus will notify all L-Workers to terminate.

5.5 Summary

The definition of suitable and performant parallel abstractions with their associated

functional and parallel semantics requires efficient parallel RTSs capable of delivering

adequate performance, possibly close to hand-tuned solutions. One of the challenges

is to define efficient and flexible primitive components and a clear methodology for

designing new parallel abstractions.

In this chapter, we defined a small set of building blocks with their functional and

parallel semantics. Building blocks are primitive sequential and parallel components

that can be combined and nested in many different ways according to a small number

of composition rules. We described the semantics of each building block together with

how it can be composed to other building blocks according to the rules defined. We

also identified which process network topologies cannot be constructed with the set of

building blocks proposed. Finally, we showed the equivalence of the FastFlow building

blocks with the RISC-pb2l set of parallel components [118, 7], which can model some

of the most powerful parallel patterns and parallel programming abstractions (e.g.,

Google’s Map-Reduce [134]). The building blocks set proposed in this chapter is a
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superset of the RISC-pb2l set. The new set includes the new all-to-all parallel building

block modeling the shuffle communication pattern and powerful composition rules.

In the remaining Chapters, we will see how the proposed set of primitive components

promotes the structured parallel programming methodology at the RTS level of the

software stack encouraging a LEGO-style approach for the design and implementation

of parallel patterns.
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Chapter 6

Communication Channels

6.1 Introduction

In this chapter we describe the FastFlow communication channels that are, accord-

ing to the analogy between FastFlow building blocks and LEGO bricks we made in

Chapter 5, the equivalent of studs and grooves present in almost all LEGO bricks.

In the context of data-flow parallel programming model, communication channels

used to connect concurrent entities (nodes according to the FastFlow terminology)

play a crucial role both for performance and program correctness reasons.

A communication channel connecting two FastFlow nodes is implemented by using

a 1-to-1 First-In First-Out (FIFO) queue. With the notation 1-to-1 we intend that,

at any point in time, there exist only a Single-Producer (SP) and a Single-Consumer

(SC) performing operations on the same queue concurrently. These kinds of queues

are also referred to as SPSC queues. In principle, a given concurrent entity can

perform both roles provided that the SPSC semantics is respected. The producer

entity must always invoke a push (or enqueue) method whereas the consumer entity

must always invoke a pop (or dequeue) method.

FIFO queues with their different concurrency levels (i.e. Multi-Producer Multi-

Consumer, Multi-Producer Single-Consumer, Single-Producer Multi-Consumer, and

Single-Producer Single-Consumer) are an important abstract data structure lying at

the heart of most operating systems and application software. Their efficient design
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has been widely investigated in the scientific works [249, 165, 255, 327, 33].

SPSC queues are particularly interesting because they can be implemented in a

very efficient way on multi/many-core platforms without the need for atomic opera-

tions [165]. The concurrency control policy used to regulate concurrent accesses to the

channel and to handle idle states may have a significant impact on both performance

and power consumption of the system. The FastFlow channel has been implemented

to support both blocking and non-blocking concurrency control policies and provides

the necessary hooks to support the dynamic switching between the two concurrency

modes.

This chapter proceeds as follows. In Section 6.2 we discuss concurrency control

policies and their impact on both performance and power consumption, in Section 6.3

we discuss the FastFlow implementation of both bounded and unbounded SPSC FIFO

queues used for implementing communication channels. Finally, in Section 6.4, we

present how both blocking and non-blocking concurrency control policies are employed

in the FastFlow framework for improving performance and power efficiency.

For the evaluation reported in this and other chapters, we used three different

multi-core platforms. They are described in Table 6.1

6.2 Concurrency Control

The standard approach to synchronize the execution of concurrent threads access-

ing shared data structures consists in protecting the access by using mutex -based

mechanisms. If the thread that currently holds the mutex is delayed, all the other

threads attempting to access the data structure are delayed too. Acquiring the mu-

tex typically implies passive waiting, i.e. the suspension of all the threads waiting

for the mutex acquisition. The suspended threads are moved in a waiting queue and

their core/hardware contexts are released to the OS. However, suspension and restart

mechanisms may reduce thread reactivity and therefore application performance due

to many factors such as the waiting time in the ready queue, context switch overhead,

compulsory cache misses or thread migration [153]. A concurrent algorithm that may
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Name Description Configuration

Xeon Dual-socket NUMA machine with two Intel Xeon E5-
2695 Ivy Bridge CPUs running at 2.40GHz featuring
24 cores (12 per socket). Each hyper-threaded core has
32KB private L1, 256KB private L2 and 30MB of L3
shared with the cores on the same socket. The machine
has 64GB of DDR3 RAM.

Linux 3.14.49
x86 64 shipped
with CentOS 7.1.
Available com-
piler gcc version
6.4.0.

KNL Machine with the Intel Xeon Phi model 7210 (codename
Knights Landing, KNL). The KNL is equipped with 32
tiles (each with two cores) working at 1.3 GHz, intercon-
nected by an on-chip mesh network. Each core (4-way
Hyper-Threading) has 32 KB L1d private cache and a L2
cache of 1 MB shared with the sibling core on the same
tile. The machine is configured with 96 GB of DDR4
RAM with 16 GB of high-speed on-package MCDRAM
configured in cache mode.

Linux 3.10.0
x86 64 shipped
with Centos 7.2.
Available com-
piler gcc version
7.3.0.

Power8 Dual-socket IBM server 8247-42L with two Power8 pro-
cessors each with ten cores organized in two CMPs of 5
cores working at 3.69GHz. Each core (8-way SMT) has
private L1d and L2 caches of 64 KB and 512 KB, and
a shared on-chip L3 cache of 8 MB per core. The total
number of cores is 20 physical and 80 logical cores. The
machine has 64 GB of RAM.

Linux 4.4.0-47
ppc64 shipped
with Ubuntu
16.04. Available
compiler gcc

version 5.4.0.

Table 6.1: Platforms used for the evaluation of the FastFlow library.

force the calling thread to be blocked waiting for the completion of a given operation

on the concurrent data structure is defined as blocking.

Concurrent queues can be implemented in an efficient and scalable way by using

non-blocking algorithms. Although many definitions exist and have been utilized in

the literature, here we consider a concurrent algorithm as non-blocking when thread

suspension cannot be caused by synchronizations related to the data structure us-

age (of course a thread can still be de-scheduled by a time-sharing scheduler or due

to preemption). Therefore, a solution that replaces passive waiting phases with a

busy-waiting spin-loop (e.g., by replacing mutexes with spin-locks) are accepted as

non-blocking according to this definition. One of the drawbacks of non-blocking algo-

rithms is that the busy-waiting phase consumes CPU cycles (and therefore power) and

increases contention without doing any useful work. This might reduce the application

throughput when there are more threads than available hardware contexts/cores.

The absence of blocking synchronization mechanisms allows increasing perfor-
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mance principally because the system is more reactive. However, the implementation

of non-blocking algorithms may require atomic operations, so that no intermediate

states can be seen by other executing threads while operating on the concurrent data

structure. Some of the atomic operations employed having different execution costs

and complexity are Test-And-Set (TAS), Fetch-And-Add (FAA), Compare-And-Swap

(CAS), and Load Linked/Store Conditional (LL/SC) [291]. Basically, these opera-

tions atomically combine a load and a store operations. At hardware level, almost

all current multi-core micro-architectures already provide a set of atomic operations

and memory fences. At software level, atomic operations are natively implemented

by some programming languages (e.g., modern C++) and concurrent libraries (e.g.,

ConcurrencyKit [42]).

Lock-free and wait-free progress

An interesting and widely studied class of non-blocking algorithms are the ones clas-

sified as lock-free [80]. This term refers to the fact that the failure or the suspension

of a thread in any arbitrary point during its execution cannot prevent at least one

thread in the system to make progress [252]. As an example, a spin-lock based queue

is not lock-free because if a thread fails after lock acquisition, no other threads would

be able to complete their operations on the queue correctly. In a lock-free concurrent

queue the producer and the consumer threads are able to push and pop elements con-

currently by working on different positions of the queue. This does not necessarily

mean that threads do not have to take into account their mutual interference. For

instance, a thread may start a push/pop operation and, if the queue state changes due

to the access by another thread, this must be detected and the operation restarted

until it is correctly executed. Such actions (occurring in while-loops) may consume

CPU cycles and power although the degree of concurrency inside the queue’s code is

maximized.

A stronger progress guarantee than lock-freedom is provided by wait-free algo-

rithm. A concurrent algorithm is wait-free if it is ensured that all operations are

guaranteed to complete in a finite number of steps, regardless of the timing behav-
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ior of other operations. The progress conditions enforced by lock-free and wait-free

algorithms are strong enough to preclude the use of blocking constructs.

However, it is worth to remark that, lock/wait-free data structures are signifi-

cantly more complicated to design and implement and consequently to verify their

correctness compared to lock-based structures [140].

Performance and power consumption implications

While lock-free and wait-free algorithms are mainly studied for their progress guaran-

tees, they are also employed for their higher throughput and lower latency [252, 197].

Furthermore, by avoiding the threads to be de-scheduled in the synchronization

phases, they contribute to reducing the so-called OS noise which may be a source

of scalability problems in many high-performance applications [254]. Unfortunately,

as stated the non-blocking approach is not power-efficient due to the busy-waiting

loop executed when a given operation cannot be immediately concluded (e.g., CAS

retry loop). Although several approaches have been proposed to reduce the power

consumption during busy-waiting loops, for example using pause, memory barriers

or monitor/mwait instructions [153], none of them proved completely successful on

multi-cores and busy-waiting is de facto considered not power efficient.

A way to improve power saving is to delay the busy-waiting phases with short

phases of passive waiting obtained by executing micro-sleep system calls. This tech-

nique is called backoff and has been widely adopted in the implementation of spin-

locks [3]. Theoretically, if the micro-sleep phases are perfectly regulated each time

by an oracle, the achievable performance/power trade-off can be optimal (same per-

formance of the pure busy-waiting approach with almost the same power saving of

passive waiting). However, this is unlikely in real situations and the use of wrong

values could have dramatic effects on the reactivity of the system or on its power

consumption. Furthermore, the tuning phase can hardly be automatized and the

solutions are in general less portable since the sleeping intervals should be regulated

for each machine and application, and it might be even impossible to use sufficiently
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fine-grained sleep time in some OSs1.
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Figure 6-1: Throughput (packets per second – pps) and power consumption (Watts)
of the blocking vs non-blocking concurrency control strategies in a pipeline application
with two distinct input rates.

Figure 6-1 shows the results of the analysis we performed on a simple FastFlow

pipeline application where a continuous flow of data packets is analyzed in real-time.

The application will be described with more detail in Section 6.3.1. We tested the

application with two different input rates: the first is of 350Kpps (three hundred fifty

thousand packets per second) while the second has 1Mpps (one million packets per

second). In both cases, we collected the throughput and power consumption measures

obtained by two configurations of the application, the first using a blocking concur-

rency mode, and the second using a non-blocking mode. With the slowest input rate,

the two versions achieve almost the same throughput, whereas the power consumption

is significantly in favor of the blocking concurrency mode. This is because in that case

the application is fast enough to sustain the rate, and during idle period the thread

is suspended thus not consuming power. The suspension and wake-up overhead are

negligible compared with the packet inter-arrival time. In the second case, the pres-

sure to the system is higher. A packet is producer every 1µs and on average there

are always packets to be processed for each stage in the pipeline. Hence, since there

are no idle times, the two versions have comparable power consumption. However,

the extra-overhead of the blocking version introduced by the protocol for managing

1For example, on Windows OSs is difficult to put one thread to sleep for less than one millisecond.
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suspension and wake up of threads, produces negative effects on the throughput. In

the non-blocking version no extra overhead is present thus a slight improvement of

the thread processing speed allows the system to be able to sustain the arrival rate.

This simple analysis allows us to state that there is no “one size fits all” solution

for the management of concurrency control when both maximum performance and

minimal power consumption have to be addressed. The solution we propose consists in

providing both mechanisms at the RTS level and also to provide suitable mechanisms

that enable the switching of the concurrency modes of the channel between blocking

and non-blocking (and vice versa) according to the actual properties of the incoming

workload. This switching is transparent to the user. As we shall see in Section 6.4,

a simple algorithm requiring minimal tuning can be used to implement automatic

switching of the concurrency modes [314].

6.3 FastFlow channels

Communication channels are the basic mechanisms used to transfer data between dif-

ferent FastFlow building blocks. On shared memory platforms, FastFlow channels do

not carry plain data, but references to data allocated into the shared address space.

Communication channels are used as synchronization mechanisms between two dis-

tinct FastFlow nodes. The philosophy underneath FastFlow communication channels

can be summarized by borrowing the Go language motto: “Don’t communicate by

sharing memory; share memory by communicating”2. In a nutshell, this means that

the programmer should limit to the bare minimum or avoid at all inter-thread commu-

nications by using synchronization primitives through shared memory such as locks

or mutexes, instead message-passing between concurrent entities has to be used to

synchronize accesses to shared variables.

In the FastFlow programming model, the semantics of passing a reference over a

FastFlow channel is that of transferring the ownership of the value pointed from the

2Codewalk: Share Memory By Communicating https://golang.org/doc/codewalk/

sharemem/.
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sender to the receiver. This means that the receiver is expected to have exclusive

access to the pointed data structure (that could be either a partition or the entire

data structure). This semantics is not statically enforced by the library, though it is

the “recommended” way to use the FastFlow memory channels.

In FastFlow, all communication channels connecting two building blocks are im-

plemented employing Single-Producer Single-Consumer (SPSC) FIFO-ordered queues

[19]. The reasons behind this choice are twofold:

• Independent point-to-point FIFO channels between distinct building blocks al-

low increasing the control on the receive operations and on output message

routing.

• SPSC FIFO queues can be implemented efficiently on systems with shared-cache

[165], specifically they can be implemented without using any atomic operations

(e.g., Compare-And-Swap).

The usage of independent FIFO channels other than facilitating the management

of input non-determinism for a node allows leveraging on specific low-level features of

modern many-cores such as the use of specialized NoC [67] and the user-level manage-

ment of the cache-coherent protocol [66]. Moreover, in FastFlow multi-producer and

multi-consumer channels are implemented by using independent SPSC channels and

mediator nodes (i.e. multi-input and multi-output nodes such as the Emitter and the

Collector in a farm) allowing to clearly decouple data and concurrency management

of the data structure.

Concerning performance, the efficiency of synchronization mechanisms is of fore-

most importance in all parallel application and specifically for fine-grained ones, where

the cost associated to the execution of the business logic code has about the same

order of magnitude as the synchronization cost. Typically the overhead associated

to synchronization has an increasingly significant effect on performance with increas-

ing parallelism degree and decreasing synchronization granularity. In this respect,

mutual exclusion using lock/unlock, is widely considered excessively demanding for

high-frequency synchronizations [6, 264]. Fixed-size SPSC queues are simple to im-

206



plement through circular buffers, and they perform very well on multi-cores when the

producer and the consumer work on different cache lines [165]. Leslie Lamport proved

that, under the Sequential Consistency (SC) memory model [1], a SPSC buffer can be

implemented using only read and write operations [216]. Lamport’s circular buffer is

a wait-free algorithm, i.e. it is guaranteed to complete after a finite number of steps,

regardless of the timing behavior of other operations. Unfortunately, the algorithm

is no longer correct if the SC requirement is relaxed. This happens, for example, in

those memory models where two distinct writes at different memory locations may

be executed out of program order (as in the Weak Ordering memory model). A few

modifications to the basic Lamport’s circular buffer algorithm allow correct execu-

tion even under weakly ordered memory consistency models. Such modifications have

been presented first and proved formally correct by Higham and Kavalsh [193]. The

idea behind the Higham and Kavalsh SPSC queue (referred as P1C1) basically con-

sists in tightly coupling control and data information into a single buffer operation

by extending the data domain with a new value “−” which cannot be inserted into

the queue. The special value can be used to denote an empty cell, and then used

to check if the queue is empty or full without directly comparing the indexes of the

queue’s head and tail. The same idea has been used by Giacomoni et al. [165] by im-

plementing an SPSC queue containing pointers to data and using as special value the

“NULL” pointer. They studied the behavior of the queue in cache-coherent multi-core

systems proposing a new technique called temporal slipping to reduce cache misses

and increasing the overall performance of a queue’s operations. Besides, they proved

that under weakly ordered memory model, a single Write Memory Barrier (WMB)

is sufficient to enforce completion of the data write by the producer before the data

pointer is passed to the consumer.

Since, unbounded queues are mostly preferred to avoid deadlock issues in complex

network topologies containing cycles without introducing heavy communication pro-

tocols, we implemented an unbounded lock-free SPSC FIFO-ordered queue [312, 19].

The implementation leverages both on bounded SPSC queue as implemented by Gi-

acomoni et al. (without the temporal slipping feature) and on a simple unbounded
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list-based SPSC queue derived from the well-know two-lock Multi-Producer/Multi-

Consumer queue proposed by Michael and Scott [249].

Figure 6-2: Left:) Internal structure of FastFlow SPSC bounded queue; Right:)
dSPSC list-based unbounded queue with its internal cache implemented by using
a bounded SPSC queue.

Figure 6-3: Internal structure of FastFlow uSPSC unbounded FIFO queue used to
implement communication channels.
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One of the main problems with list-based queues is the overhead associated with

dynamic memory allocation/deallocation of internal data structures. To mitigate the

overhead, it is common to use a data structure as cache, where elements are kept for

future fast reuse, instead of being deallocated [189].

In the producer-consumer pattern, the producer only allocates queue elements

while the consumer only frees them. To take advantage of this pattern, we used a

bounded SPSC queue for implementing the internal cache of the list-based queue thus

reducing the memory allocation/deallocation overheads. This optimization moves al-

location overhead outside the critical path at the steady state. The resulting algorithm

is called dSPSC and its main components are shown in Figure 6-2.

The unbounded SPSC queue implementation (called uSPSC) uses a pool of SPSC

queues connected together. FIFO ordering is guaranteed by a dSPSC queue which

contains pointer to SPSC queues that are currently in use. The pool makes use of

a cache of empty SPSC queues to decrease dynamic memory allocation/deallocation.

Figure 6-3 shows the internal structure of the uSPSC implementation.

The unbounded queue has the same interface as the SPSC and it can be configured

to behave as a fixed-size SPSC queue by setting a configuration parameter. This

simplifies the configuration of channels with unbounded capacity, as for the case of

feedback channels that are used to route back messages to some previous building

block.

In Code 11 is sketched the algorithm of the push and pop methods of the uSPSC

queue together with the internal pool implementing the cache of bounded SPSC

queues. The idea underpinning the uSPSC queue implementation is the nesting and

composition (realized through the pool) of two well-known and efficient SPSC queues:

the dSPSC and the SPSC queues. The pool of SPSC bounded queues (called also

buffers) aims to minimize the impact of dynamic memory allocation/deallocation by

using a fixed-size SPSC queue as a freelist. The uSPSC uses two internal pointers:

buf w which points to the writer’s buffer (i.e. the “tail” pointer), and buf r which

points to the reader’s buffer (i.e. the “head” pointer). Initially both buf w and buf r

point to the same SPSC queue. The push method (line 1) works as follows: the
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1 bool push(void* data} {

2 if (buf_w->isFull())

3 buf_w = pool.next_spsc_w();

4 buf_w->push(data);

5 return true;

6 }

7 bool pop(void** data) {

8 if (buf_r->isEmpty()) {

9 if (buf_r == buf_w)

10 eturn false;

11 if (buf_r->isEmpty()) {

12 SPSC* tmp=pool.next_spsc_r();

13 if (tmp) {

14 pool.release(buf_r);

15 buf_r = tmp;

16 }

17 }

18 }

19 return buf_r->pop(data);

20 }

1 struct Pool {

2 size_t size = N;

3 dSPSC inuse;

4 SPSC cache;

5

6 SPSC* next_spsc_w() {

7 SPSC* next;

8 if (!cache.pop(&next))

9 next = allocateSPSC(size);

10 inuse.push(next);

11 return next;

12 }

13 SPSC* next_spsc_r() {

14 SPSC* next;

15 if (inuse.pop(&next))

16 return next;

17 return NULL;

18 }

19 void release(SPSC* spsc) {

20 spsc->reset();

21 if (!cache.push(spsc))

22 deallocateSPSC(spsc);

23 }

Code 11: uSPSC queue implementation algorithm.

producer first checks whether the current buffer is not full (line 2), and then pushes

the data into the queue. If the current buffer is full, it asks the pool for a new buffer

(line 3), adjusts the buf w pointer and pushes the data into the new buffer. The pop

method (line 7), called only by the consumer, first checks whether the current buffer

is not empty and if so pops data from the queue. If the current buffer is empty, there

are two possibilities: a) there are no items to consume, i.e. the unbounded queue

is really empty; b) the current buffer is empty (i.e. the one pointed by buf r), but

there may be some items in the next buffer. If the buffer is empty for the consumer,

it tries to switch to a new buffer releasing the current one to be recycled by the

pool (lines 12– 15). From the consumer viewpoint, the queue is really empty when

the current buffer is empty and both the read and write pointers point to the same

buffer. If the read and writer queue pointers differ, the consumer has to check again
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the current queue emptiness because between the execution of instructions at line 8

and line 9 the producer could have written some new elements into the current buffer

before switching to a new one. This is the most subtle condition, in fact, if the

consumer switches to the next buffer while the previous one is not really empty, a

data loss will occur. We demonstrated that this condition cannot happen (the proof

has been presented in [19]) even on systems with weak ordering memory models,

thus the queue implementation is correct.

In the implementation of FastFlow channels, when the default non-blocking con-

currency control mode is used, between two distinct pop retries (i.e. when pop returns

false) a very small (configurable) active backoff of a few hundred cycles is executed

to reduce cache pressure. It is worth noting that, even though the push method can

never return false by definition of unbounded queue, to keep the same interface of

the SPSC buffer the function returns a boolean.

6.3.1 Latency and Throughput Evaluation

In this section we analyze the base performance of the bounded and unbounded queues

used to implement the FastFlow communication channels. Then, by means of two

simple benchmarks we measure latency and throughput in different configurations.

Latency benchmark. The first test is a Producer-Consumer benchmark in which

the first thread (P) pushes 10M data elements (each data element is just a memory

pointer) into a uSPSC queue and the second thread (C ) pops out tasks from the queue

and performs a simple consistency check. Neither additional memory operations nor

additional computation are executed. With this simple test we are able to measure

the raw latency of a queue operation by computing the average value of 100 runs.

We fixed the buffer size for the bounded configuration of the queue as well as for the

cache size for the dSPSC queue to 1024 slots.

We tested several cases that differ in terms of the physical mapping of the two

threads among the available cores. The objective is to measure the latency of oper-

ations where the two threads share different levels of caches. Therefore we consider
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Figure 6-4: Latency (nanoseconds) of the uSPSC queue in bounded and unbounded
configurations on three different platforms. Best case scenario: the Producer and the
Consumer work on different cache-lines.

the cases where P and C are pinned to:

• the same physical core but on different HW contexts (mapping0 );

• the same CPU but on different physical cores (mapping1 );

• two different cores of two distinct CPUs (mapping2 for the Xeon and KNL

platforms, and mapping3 for the Power8 platform);

• the same CPU but two distinct CMPs (mapping2 for the Power8 platform only)

In Figure 6-4 are shown the average results obtained by executing 100 runs of

the benchmark where P produces at maximum speed. The bounded and unbounded

configurations obtain almost the same results. On the Xeon platform the latency is
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Figure 6-5: Latency (nanoseconds) of the uSPSC queue in bounded and unbounded
configurations on three different platforms. Worst case scenario: the queue is always
empty.

always lower than 25ns whereas there is a significant distance in terms of latency for

the Power8 platform depending on the mapping of the threads.

In this test, P and C mostly work on distinct cache-lines (as C is a bit slower

than P due to the consistency checks) and therefore the number of cache compulsory

misses is minimized (on average). Thus each time the Consumer reads the head of

the queue to pop out data, it reads an entire cache-line containing up to 8 pointers to

data elements (typical cache-line size is 64bytes). From the perspective of reducing

message latency, this is a best case scenario, and it represents a typical case of pipeline

computations when P and C have almost the same execution time, and the execution

of C is shifted ahead by a small amount of time.

To also evaluate a worst-case scenario, we evaluated the case when the queue is
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always empty, for example, because the Consumer is faster than the Producer. Since P

and C work on the same cache-line, the queue accesses cause the cache-line containing

the buffer entry being accessed to bounce between the last level caches of the cores

hosting the threads. This phenomenon is known as cache thrashing which introduces

extra time due to the cache coherence traffic. Such extra time penalty introduced

by the cache coherence traffic for every single operation, produces up to one order

of magnitude higher latency than the previous case (see Figure 6-5). However, it is

worth noting that the point-to-point message latency is on average quite lower than

half microsecond in the worst case, thus allowing to target fine-grained computations

of the order of a few microseconds.

Scalability benchmark. To test scalability of the FastFlow channels when they

are used in a pipeline building block we used a simple synthetic microkernel. We

consider a pipeline of N sequential nodes with a feedback channel between the last

and the first stage. Channels use uSPSC queues in the unbounded configuration and

the number of messages injected into the pipeline is M = 10 million. The schema of

the benchmark is sketched in Figure 6-6.

Figure 6-6: Ring benchmark: a pipeline of N sequential building blocks with a feed-
back channel.

The first node emits a number of messages (a first large batch of 2048 messages

followed by many small batches of 128 messages) which flow around the ring. A

message is just a pointer obtained from the dynamic allocation of small segments

of memory (a random value between 32 and 256 bytes). The other nodes accept

messages, perform basic integrity verification and pass the reference to the message

to the next node. When the message returns to the first node of the ring, its memory

will be deallocated. The benchmark terminates when all messages are received back
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Figure 6-7: Scalability of the ring benchmark on Xeon, KNL and Power8 platforms.

by the first node. Each stage of the pipeline spends around 1µs absolute time spinning

on a local variable before sending the packet to the next stage. Each thread associated

to a sequential building block of the ring is statically pinned to a core whose id is the

same as the thread id. For the Xeon and KNL platforms, the core ids are linearly

distributed, so core id and node id correspond. For the Power8 platform, which has a

more complex hierarchy, the mapping of threads to cores is performed by first filling

the first context of each physical core, then the second context and so on. Since the

Power8 has 8 contexts and 20 cores, the mapping of the node with id i ∈ (1..N)

is x + y − 8 where x = 8i mod 160 and y = 8i div 160. This is not necessarily the

best mapping for the benchmark considered, but it is semantically equivalent to the

mappings used for the Xeon and KNL platforms.

To compute the scalability of the system, we measure the system throughput
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considering the total amount of messages exchanged during the benchmark execution

time (i.e. (M ∗N)/ExecutionT ime) and we compare with the throughput obtained

by a pipeline of a single node.

The scalability figures for the three platforms considered are reported in Figure 6-

7. The scalability is linear up to the point when all cores are filled with at least

one thread, and then it diverges from the ideal value in different ways depending on

the platform considered, still reaching good maximum values in all three cases. The

maximum scalability for the 1µs case are: 42.8, 183.16 and 105.4 for the Xeon, KNL

and Power8 platforms, respectively.

6.3.2 Blocking vs Non-Blocking vs Backoff

In this section we study three different concurrency control strategies: blocking, non-

blocking and non-blocking with backoff (simply backoff in the following). For evalu-

ating the performance and power implications of using different concurrency control

mechanisms we consider two benchmarks studying both latency and throughput

Figure 6-8: Latency benchmark: a pipeline of N + 2 sequential building blocks.

The first benchmark is a linear pipeline of N sequential nodes where the first stage

(the Generator) injects into the chain a continuous stream of packets at a predefined

constant rate for a given amount of time (30 seconds in our tests). A Gatherer stage

collects all packets injected into the pipeline (see Figure 6-8). It is worth to remark

that, the latency benchmark we consider in this section is different from the one

we used for the evaluation of the cost of push/pop operations for the uSPSC queue

presented in Section 6.3.1. Here the objective is to measure the average latency of a

message for crossing a single pipeline stage (i.e. the average time between the push of

a message by the previous stage and a pop operation by the next stage for receiving
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the message).

The second benchmark is the ring benchmark we already described in Section 6.3.1

(see also Figure 6-6).

Latency evaluation. The latency in the pipeline benchmark is computed by start-

ing a timer for each packet before sending it into the chain and stopping the timer

when the packet is received by the Gatherer stage. The Gatherer computes a mov-

ing average with an overlapping constant size of 10 values and eventually produce in

output the average value divided by the (N + 1) (i.e the number of channels of the

pipeline). The overall throughput in the ring benchmark is computed considering the

total amount of messages exchanged during the benchmark execution time and pre-

cisely M ∗(N+1)/TotalExecutionT ime where M and N are the number of messages

and the number of stages, respectively.

We studied three different configurations:

1. non-blocking concurrency mode where all threads continuously keep polling their

input/output queues with a minimal active backoff of a few hundred CPU cycles;

2. blocking concurrency mode where all threads are immediately put to sleep wait-

ing for a wake-up signal if their input/output queues are empty/full;

3. backoff where all threads use different retry policy strategies alternating active

polling and micro sleeping periods.

For the backoff configuration, we consider two distinct cases:

(i) backoff-2l having two levels of retry policies: aggressive and moderate;

(ii) backoff-3l having three distinct levels of retry policy: aggressive, moderate and

relaxed.

In the backoff-2l the aggressive policy performs 256 active polling attempts then it

switches to moderate strategy where, between two distinct retries, the polling thread

sleeps for 1 millisecond. In the backoff-3l case, the aggressive policy performs 64

attempts of active polling then it switches to moderate where the thread performs

256 attempts and between two distinct retries it sleeps for 50 microseconds then, if
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Figure 6-9: Latency and power consumption of the pipeline benchmark in blocking
and backoff configurations for “low” message rate (100msg/s).

0.5
1

5
10

100

 3  6  9  12  15  18  21  24

L
a
te

n
c
y
 (

u
s
 −

−
 l
o
g
s
c
a
le

)

n. of stages

Latency vs n. of stages −− high−rate 100K msg/s

blocking
backoff−2l
backoff−3l

 40

 60

 80

 100

 120

 140

 160

 3  6  9  12  15  18  21  24

W
a
tt
s

n. of stages

Power consumption −− high−rate 100K msg/s

blocking
backoff−2l
backoff−3l

Figure 6-10: Latency and power consumption of the pipeline benchmark in blocking
and backoff configurations for “high” message rate (100Kmsg/s).

 0

 0.2

 0.4

 0.6

 0.8

 1

3 24

L
a
te

n
c
y
 (

u
s
)

n. of stages

Per−stage latency vs. message rate (msg/s)

10 msg/s
100 msg/s

1000 msg/s
10000 msg/s

100000 msg/s

80

100

120

140

160

3 24

W
a
tt
s

n. of stages

Power consumption vs. message rate (msg/s)

10 msg/s
100 msg/s

1000 msg/s
10000 msg/s

100000 msg/s

Figure 6-11: Latency and power consumption varying the message rate for the pipeline
benchmark in the non-blocking configuration.

218



the queue is still empty/full, it switches again moving to the relaxed mode where

the thread sleeps for 1 millisecond between two distinct retries. The backoff-2l is

characterized by a more aggressive behavior where the thread spins or sleeps, whereas

the backoff-3l more gradually moves from spinning to sleeping over time. We select

these specific values for the sleeping time and for the number of retries since they

provide a good trade-off between power consumption and performance. To measure

the power consumption, we used the Mammut3 library [132], that on the multi-core

system used for the tests relies on RAPL counters.

Figure 6-9 shows the results of the pipeline benchmark in the blocking and backoff

configurations for low message rate (10msg/s). For such low rate the best average

latency is obtained using the backoff-3l configuration which has a moderate policy

that performs small sleeps (50 microseconds) whereas the backoff-2l has a longer

sleeping period (1 millisecond). It is worth pointing out that increasing the number

of stages the blocking and backoff-3l case have closer average latencies. Concerning

power consumption, as expected, the blocking concurrency mode is the most power

efficient consuming less than 50 Watts in all tests.

The results obtained with higher input message rage (100K msgs/s) are reported

in Figure 6-10. In this test, a packet is produced each 10 microseconds. The best

latency is obtained by the backoff-2l configuration while the backoff-3l is the worst

configuration. This can be explained considering that the backoff-2l has a higher

number of retry attempts in the aggressive strategy. In fact, it performs 256 retries

of active polling instead of 64 retries of the backoff-3l. Therefore, with the given

rate, in the backoff-3l the spinning thread does enter the retry loop of the moderate

strategy which between two consecutive retries the thread is put to sleep for at least

50 microseconds which is a time higher than the actual rate. Conversely, the backoff-

2l is the most power-hungry strategy consuming in the 24 stages configuration 167

Watts.

In Figure 6-11 we show the average latency and the power consumption for the

pipeline benchmark using the non-blocking configuration, varying the message rate

3http://danieledesensi.github.io/mammut/
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between 10msg/s to 100Kmsg/s. We considered two configurations for the pipeline: 3

and 24 stages. As can be seen, the latency is almost constant (about 400 nanoseconds)

for the two cases regardless of the input message rate and the number of stages of

the pipeline chain. The same applies for the power consumption that is constant

regardless of the input rate. The difference between the case with 3 and 24 pipeline

stages is due to number of CPUs used in the two configurations, in fact each CPU

of the platform considered for the tests hosts 12 cores. Therefore, in the pipeline

configuration with 3 stages only the cores of the first CPU are used, allowing the OS

to put the second CPU in low-power mode.

Throughput and CPU utilization. Concerning the throughput, in Figure 6-12

is shown the results obtained by the non-blocking, blocking and backoff-2l configura-

tions. As expected, the blocking concurrency mode offers the lowest overall system

throughput due to the higher overhead of the concurrency mechanisms, whereas the

non-blocking and the backoff-2l configurations have exactly the same system through-

put reaching a maximum value of about 55 Mpps (millions-packets-per-second).

Finally, in Figure 6-13 is reported the average CPU utilization of the pipeline

benchmark for the case with 24 stages. As can be observed, the non-blocking con-

figuration uses almost 100% of the CPU cycles available regardless the input rate,

the blocking configuration uses less than 1% of CPU cycles for low message rate (100

msg/s) and about 10% CPU cycles for high message rate. The backoff configurations

consume much less of the non-blocking concurrency mode for low message rate while

for high message rate the backoff concurrency mode consumes about 95% and 40%

CPUs cycles in the backoff-2l and backoff-3l configurations, respectively.

The results obtained demonstrate that the non-blocking concurrency model is

the most efficient and stable one when considering latency reduction as the most

important metric. On the other hand, it is also the most power expensive both in

terms of CPUs cycles and in terms of power consumed. The backoff and blocking

concurrency models offer different performance results on the basis of the given input

rate. Moreover, the tuning of the backoff’s sleeping time and the number of attempts
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for each strategy, is not an easy task and need to be regulated on the basis of the

rate. The backoff strategy is a good compromise if the most important optimization

metric is the throughput, in fact it can offer the same performance as the non-blocking

strategy at high rate and to offer almost the same power consumption as the blocking

strategy for low input rate. When latency is not the primary metric to optimize, the

blocking concurrency model offers the most efficient and effective solution providing

a good balance between absolute performance and power consumption.

6.4 Automatic Concurrency Control

The FastFlow framework supports both non-blocking and blocking concurrency control

mode for accessing communication channels. The non-blocking mode promotes system
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reactivity whereas the blocking mode promotes both power saving and more fair

execution of threads on a limited set of cores.

Before the program starts it is possible to switch between non-blocking and block-

ing concurrency mode by using the method blocking mode(blk) implemented in

each building block. If the function parameter is set to true, the concurrency control

mode selected is blocking (the default one) otherwise is non-blocking. If the method

is called on the outer-most pipeline, the concurrency mode will be set accordingly for

all internal channels contained in the pipeline. Since input and output channels of a

given node are independent, it is also possible to selectively switch the concurrency

mode either for the input channel or the output channel. This is an operation acting

only on one side of a channel connecting two nodes (either the producer or consumer

side), therefore it has to be explicitly applied also to the other side of the same chan-

nel (i.e. either to the previous or subsequent node). This is an important feature

offered by the FastFlow node that allows implementing autonomic algorithms capa-

ble of configuring different parts of the FastFlow network with different concurrency

control strategy according to some monitored metrics (e.g., CPU utilization, power

consumption, input data rate).

As we shall see in the following, it is also possible to dynamically switch between

the two concurrency mode at run-time for each building block. This requires the

implementation of a protocol to synchronize the switching between two distinct nodes

of the application topology. The algorithm has been described with detail in Torquati

et al. [314], here we summarize the results obtained.

push and pop operations. Here we want to focus on the algorithm used for imple-

menting both blocking and non-blocking concurrency control strategies in FastFlow.

In Code 12 is reported the implementation of the concurrency control push and pop

algorithms executed on the output and input channels of a node, respectively. The

boolean variable blocking mode holds the current status of the channel: true block-

ing, false non-blocking. Besides, each channel has associated a mutex and a con-

dition variable used to implement events notification between the producer and the
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consumer nodes.

1 void ccpush(void* data) {

2 if (blocking_mode) {

3 for(;;) {

4 bool r= chQ.push(data);

5 if (r) {

6 signalConcumer();

7 break;

8 } else

9 passiveWait(bigBackoff);

10 }

11 } else {

12 while(!chQ.push(data))

13 activeWait(smallBackoff);

14 }

15 }

1 void ccpop(void** data) {

2 if (blocking_mode) {

3 for(;;) {

4 bool r= chQ.pop(data);

5 if (r) {

6 signalProducer();

7 break;

8 } else

9 passiveWait(bigBackoff);

10 }

11 } else {

12 while(!chQ.pop(data))

13 activeWait(smallBackoff);

14 }

15 }

Code 12: Push and pop operations implementing both blocking and non-blocking
concurrency control strategies for accessing the FastFlow channel.

To push a message into the output channel the RTS first tries to put the data

pointer into the uSPSC queue associated to the channel (called chQ in Figure 12).

If the operation succeeds (it may fail if the queue is configured to have a limited

capacity), depending on the current concurrency mode of the node, two different ac-

tions are taken. In the case of non-blocking mode, the operation has been successfully

completed without any further action. Otherwise, in blocking mode, the RTS signals

the consumer node to wake up if it is waiting on the condition variable associated

with the channel (line 6). If the push fails and blocking mode is false the operation

is executed again until it will complete with success. In between two retries, a small

amount of active waiting on a local variable is executed (line 13). The backoff value

corresponds to a few hundred clock cycles and is necessary to reduce cache thrashing.

If blocking mode is false, then the run-time suspends the producer (line 9) for a fi-

nite amount of time. In this case, the sleep time is higher than the active waiting time

(hundreds thousand clock cycles). Such sleep time value is not particularly critical

in terms of power consumption provided it is high enough to allow the OS to put the

thread to sleep (typically few hundreds of microseconds on modern OSs) [313]. The
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producer will be woken up either by an event signaled from the consumer that made

space in the queue (i.e. after a successful chQ.pop operation – line 4) or because the

timeout associated to the condition variable expires. In the first case, the value will

be popped out from the queue, in the second case the entire cycle is executed again

and the consumer may fall asleep again. The pop operation algorithm is symmetric

to the push one.

It is worth pointing out that by properly changing the blocking mode variable

for a given channel (this operation can be done selectively for the input and output

channels of a given node), it is possible to switch between blocking and non-blocking

concurrency mode for a pair of nodes.

Power-Aware concurrency control. The implementation of the algorithm for

automatically switching between blocking and non-blocking concurrency mode lever-

ages a manager node that is in charge of making decisions for the building block. At

configurable time intervals, by collecting monitoring information about the current

performance and power consumption of the entire application, the manager decides

which message queue should operate in blocking or non-blocking mode by directly

notifying the producer and consumer nodes of the pipeline network.

We use the following notation. The average latency of a ccpop operation is Lb
pop

and Lnb
pop for the blocking and non-blocking concurrency control modes, respectively.

If the operation fails, the node waits for new data to arrive by suspending itself or

by doing active waiting on a local variable. Let us denote this average waiting time

with Lidle. The average time spent processing input data is denoted as Lproc. The

average latency of a ccpush operation is Lb
push and Lnb

push for the two concurrency

modes, respectively. For simplicity sake, we suppose that output queues for a node

have an unbounded capacity, therefore the ccpush operation will always succeed.

The breakdown of a single loop iteration of a node is sketched in Figure 6-14.

Timing values (e.g., Lidle, Lproc) are collected by each single FastFlow node and stored

in its internal object variables. The manager can read such monitoring traces by

directly accessing the internal state of each node without any extra synchronization.
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Figure 6-14: Different kinds of latencies in the FastFlow node operations.

It should be noted that the blocking mode variable is an atomic variable to allow

the manager node to change its value without race conditions.

From blocking to non-blocking. Suppose that when the application starts, it

uses all the message queues in blocking mode. To improve the throughput of the

application, we have to improve the throughput of its slowest node, i.e. the one with

the highest latency. We call this node S. If Lidle(S) > 0, despite being the slowest

node in the application, it is still fast enough to process the incoming data, so there

is no need to improve the throughput of the application at all. Otherwise, we can

improve the throughput of S by reducing the latency of both the ccpop and ccpush

operations. Let us start with the ccpop operation. Switching the input queue to

non-blocking mode would have no impact on the power consumption since Lidle = 0

and S will not do active waiting. Now let us consider the ccpush operation. We

could switch the output queue of S to non-blocking mode and reduce Lpush as well.

Let us call T the successor of S. Since S is slower than T, Lidle(T ) is greater than

zero. If the message queue is in blocking mode, while idling, T is suspended on

the condition variable. However, after switching to non-blocking mode, T will start

doing busy-waiting, thus increasing the power consumption of the application. To

determine if the increase in power consumption is worth the increase in performance,

we decided to let the application user (or the system developer) set some preferences

for the application, by specifying maximum allowed increase in power consumption

for each 1% increase in performance. Similarly, the user might just set a maximum

power consumption of the system letting the RTS optimize the performance with the
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given power budget (this is also known as Power Capping [92]).

For evaluating the outcome of the decision, we adopt a rollback-based approach.

When a potential performance improvement for the output queue is detected, the

algorithm switches the queue from blocking to non-blocking. Then, the performance

and the power consumption are monitored for the next time interval. If the results

of the switching do not comply with the user requirements, the decision is reverted,

otherwise it is kept. Since in both cases we improved S by switching its input queue,

the slowest node might now be a different one. If this is the case, the algorithm

is executed on the new slowest node, otherwise it terminates. To avoid too many

rollback operations, if a node was involved in a rollback operation, it is marked and

it is not evaluated again for a time interval that can be specified by the user.

From non-blocking to blocking. Due to workload fluctuations, the system could

start receiving less data per unit of time. In such a case, the message queues will

become empty and some nodes will start doing active waiting on their input queues

consuming clock cycles and therefore power. By switching a queue to blocking mode,

the nodes using the queue will start doing passive waiting sleeping for the configured

amount of time. However, as we have seen in Section 6.3.2, we will also increase

the latency of ccpush and ccpop operations. To ensure that this switch does not

decrease the throughput of the nodes, it is sufficient to ensure that the increase in

the ccpush and ccpop latency is “absorbed” by the idle latency, i.e. even if these

operations will last longer, the nodes will still have enough time before receiving the

next data element, thus not reducing their performance. To do so, it is sufficient to

find the pairs of nodes P (Producer), C (Consumer) such that the following condition

is true:

Lidle(C) > Lb
pop(C)− Lnb

pop(C) and Lidle(P ) > Lb
push(P )− Lnb

push(P )

If these conditions hold, we will have Lidle > 0 for both nodes after switching to

blocking, thus not reducing their throughput.
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6.4.1 Evaluation

In this section we validate the automatic concurrency control algorithm described in

the previous section by using a real streaming applications. We conducted all tests

on the Xeon platform (see Table. 6.1).

For implementing the manager node, we used the functionalities provided by the

Nornir framework [131, 293]. It uses the mechanisms provided by the FastFlow run-

time and on top of them implements the algorithm described in Section 6.4 to decide

when to switch from blocking to non-blocking and vice versa. The algorithm activates

once every second, and it takes just a few milliseconds to decide which queues must

be switched.

To compute Lb
push, Lnb

push, Lb
pop and Lnb

pop which are needed to decide when to switch

the concurrency mode, we used the same benchmark described in Section 6.3.1 consid-

ering the case of only two FastFlow nodes. On the Xeon platform we used the following

average values: Lb
push = 27us, Lnb

push = 0.4us, Lb
pop = 0.8us and Lnb

pop = 0.01us.

Malware Detection application. The Malware Detection application is described

in our previous work [110]. From the parallel standpoint, this application is structured

as a 3-stage pipeline where the middle stage computes the most expensive part of the

application and can be implemented in parallel by replicating several times the same

function operating on a partitioned hash table. In FastFlow, this network can be easily

and efficiently implemented by using a single farm building block with a user-defined

scheduling policy.

Each Worker of the task-farm, after having identified the protocol, searches for

a predefined set of “signatures” (representing malware binaries) inside each HTTP

packet. The packets are scheduled to one of the Workers according to the value of a

key computed by the first logical stage of the pipeline, that is combined with the task-

farm Emitter (see Figure 6-15). The application is implemented using the Peafowl

network framework whose RTS is based on the FastFlow library [110].

In this experiment we used the Xeon platform. The application graph is composed

by 24 nodes (22 Workers, 1 Emitter and 1 Collector nodes) The arrival rate of the
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Figure 6-15: Malware detection application implemented using the Peafowl framework
that leverages the FastFlow farm building block.
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Figure 6-16: Performance and power consumption comparison of blocking, non-
blocking and automatic concurrency control strategies for the Malware detection ap-
plication.

packets to the application is variable. In our test, we used the rate that characterizes a

modern Internet Exchange Point network4. For the malware detection part, we used

a subset of the database used by the ClamAV antivirus6, containing 2000 signatures.

4https://stats.linx.net/, (IXManchester)5. We scaled it down by a 3x multiplicative
factor to match the maximum performance achievable on our target architecture.

6https://www.clamav.net/.
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Figure 6-17: Comparison of efficiency of blocking, non-blocking and automatic con-
currency control strategies on the Malware detection application.

The results of our test are sketched in Figure 6-16, showing that the automatic

policy is able to achieve the maximum performance while having the same power

consumption obtained by the blocking concurrency mode. Between 15 and 22 the

blocking strategy has a lower power consumption but it cannot sustain the same

arrival rate as the non-blocking one.

In Figure 6-17 we show another interpretation of the result, by plotting the effi-

ciency of the different concurrency control techniques, expressed as the ratio between

the performance and the power consumption. As we can see from the plot, the auto-

matic strategy is always characterized by the highest efficiency between those of the

other two techniques.

Now we consider the case when the database of signatures is more extensive than

the one considered in the previous tests. This means that the generic Worker executes

more work for each input packet so its service time increases. By increasing the time

spent computing the single input element (i.e. Lproc in Figure 6-14), the relative

impact of Lpop and Lpush decreases, thus reducing the benefit of the non-blocking

strategy over the blocking one. In a nutshell, for application characterized by a high

Lproc, the blocking strategy performs as well as the non-blocking one.

While in the previous tests we considered a database of 2000 signatures, here

we consider two other cases: a bigger database of 45000 signatures and a very large

database of 90000 signatures. The results for the two cases tested are reported in

Figure 6-18 in the top and bottom plot, respectively.

Moving to a larger database of signatures, the performance gap between blocking
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Figure 6-18: Performance and power consumption comparison of blocking, non-
blocking and automatic concurrency control strategies for the Malware detection ap-
plication when the database of signatures is of 45000 (top plot) and 90000 (bottom
plot) signatures, respectively.

and non-blocking strategies gets closer (see the top plot of Figure 6-18). As expected,

the number of packets-per-second the system can sustain over time decreases because

of the increased service time of each Worker. When the largest database of signatures

is considered, the two concurrency control policies provide almost the same perfor-

mance (see the bottom plot of Fig. 6-18), whereas, in terms of the ratio between

performance and power consumption, the automatic policy still provides the best

efficiency.

To better quantify the relation between service time and maximum throughput of

the blocking and non-blocking concurrency control strategies for the Malware Detec-

tion application, we reported the measured values in Table 6.2. Specifically, the table

shows the average Worker service time (in microseconds) for the entire execution of

the application, and the maximum number of packets-per-second the system can sus-
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Worker’s
service time (µs)

Blocking vs Non Blocking
throughput difference (%)

19 24.23%

23 15.3%

26 5.15%

Table 6.2: Performance gap between blocking and non-blocking strategies considering
different Worker’s service time for the Malware detection application.

tain. The lower the Worker service time, the more significant the performance gap

between the two strategies. This confirms that the non-blocking strategy introduces

lower overhead than the blocking one. From our tests, for service time higher than 26

microseconds, the non-blocking policy starts providing only marginal benefit if any

at all. Therefore there is a clear threshold in the node’s service time that delimits

the point below which the automatic algorithm provides benefits and is worth to be

used.

6.5 Summary

In this chapter, we presented the implementation of the FastFlow communication

channel, which is the only mechanism used to transfer references to data between

distinct building blocks. We tested the performance of the channels concerning point-

to-point latency (both best-case and worst-case scenarios) and system throughput by

considering a pipeline of multiple nodes. The results demonstrate that the FastFlow

channel is capable of offering both low-latency and high-throughput on the three

different multi-core platforms considered.

Besides, we studied blocking and non-blocking concurrency control strategy for

regulating concurrent accesses to the communication channel. FastFlow offers both

concurrency control strategies that represent the two best solutions concerning per-

formance and power consumption for low and high data rate, respectively. The two

concurrency modes are integrated into the FastFlow implementation of communication

channels.
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The non-blocking strategy is the most performing one and the most power-hungry.

Its power consumption depends on the number of cores used and not on the input

data rate. The blocking strategy instead is the most power-efficient from low to

medium input rates and when more threads than physical cores are used. However,

its associated overhead does not always allow the application to reach the maximum

throughput, specifically for fine-grained computation.

Finally, we presented an autonomic algorithm that allows us to automatically

select the best concurrency mode at run-time based on monitoring information and

pre-computed measures related to the average latency of push and pop operations on

the target platform.

The automatic strategy proposed represents a good trade-off between absolute

performance and power consumption when a static-time decision between the two

policies is difficult to make. It allows exploiting both benefits of the blocking and

non-blocking strategies leading to optimal values of the power/performance ratio.

232



Chapter 7

Sequential and Parallel Building

Blocks

7.1 Introduction

In this chapter we describe and assess the implementation of the FastFlow sequential

and parallel building blocks. Sequential building blocks are the fundamental ele-

ments of any FastFlow streaming network and the primary components of the parallel

building blocks.

In Section 7.2.1 we describe the FastFlow node, the basic concurrent object imple-

menting a standard sequential building block. Multi-input and multi-output nodes

are presented in Section 7.2.2, while the sequential nodes combiner is presented in

Section 7.2.3. An evaluation of the overhead introduced by the sequential nodes

combining operation is presented in Section 7.2.4. In Section 7.3 the pipeline, farm

and all-to-all building blocks are discussed presenting their features and capabilities,

pointing out the main differences between the farm and all-to-all building blocks. In

Section 7.3.2 the new concurrency throttling mechanisms of the farm building block

will be described and tested. The parallel overhead introduced and the scalability

of the parallel building blocks are evaluated considering as target platforms both a

state-of-the-art multi-core and the Intel Xeon Phi KNL many-core.
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7.2 Sequential Building Blocks

7.2.1 The FastFlow node

Within the FastFlow framework, a concurrent activity, either implemented by a single

thread of execution or by multiple threads, is called node. It represents the base

C++ class for any parallel and sequential building block. The data type representing

a FastFlow node is ff node t, which is a C++ abstract class containing several methods

defining the data-flow behavior of the node. Three virtual methods of the ff node t

class, are of particular importance:

virtual TOUT* svc(TIN* task) = 0; // encapsulates user's code

virtual int svc_init(); // initialization code

virtual void svc_end(); // finalization code

Each FastFlow node must implement at least the method svc (which stands for

service). It gets as input argument a pointer to a data element and returns a pointer

to the same data or to another data allocated within the object. The svc method

is called by the FastFlow RTS as soon as a data element is available to be consumed

by the node, i.e. as soon as a data element is present in one of its input channels.

The other two methods are automatically invoked once by the FastFlow RTS when

the concurrent entity associated to the node starts (svc init) and right before it

terminates (svc end). These virtual methods may be overwritten in the user sup-

plied FastFlow node sub-class to implement initialization code and finalization code,

respectively. If the svc init returns a value different from zero, it means that some-

thing in the initialization phase went wrong and the node is terminated. While in

the svc init method it is possible to send data into output channels, in the svc end

method data produced in output will not be delivered. The three “service” methods

of the FastFlow node class implement the so-called business logic of the node.

A standard FastFlow node has one input channel and one output channel. It

processes data items delivered in its input channel and conveys the results to its
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output channel. Particular cases of FastFlow nodes may be implemented with no

input channel or no output channel (they are often called source and sink nodes,

respectively). The former is used to install a concurrent activity generating an output

stream of data elements (e.g., by reading data coming from standard input, files or

network sockets); the latter is used to install a concurrent activity consuming an input

stream (e.g., to present results on a standard output or to store them into disk files

or in a database). The FastFlow node terminates either if it receives a special data

element called EOS (End-Of-Stream) from all its input channels or if it returns the

EOS special value as a result of the svc method. It is possible that for a single input

element no element has to be produced into the output channel, then the special

value GO ON must be returned by the svc method. This special value tells the RTS to

maintain the concurrent entity associated to the node alive and to keep monitoring

its input channel(s) for new data elements to process. The simplified life cycle of the

generic FastFlow node is informally described in Code 13.

1 do {

2 if (svc_init() < 0) break;

3 do {

4 in = input_channel.pop();

5 if (in == EOS) {

6 // if this method has been redefined, the user's method

7 // is called and informed that the EOS has arrived

8 eosnotify();

9 output_channel.push(EOS);

10 } else {

11 out = svc(in); // it calls the business logic code

12 if (out == GO_ON) continue;

13 output_channel.push(out);

14 }

15 } while(out != EOS);

16 svc_end();

17 } while(true);

Code 13: Schema of the life cycle of the generic FastFlow node.

When the thread implementing the node is started, the svc init method is called

(line 2) and then, if a data element is present in its input channel, the element is
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1 # include <ff/ff.hpp>

2 using namespace ff;

3 struct myNode:ff_node_t<int> {

4 int svc_init() {

5 std::cout << "Hello. I'm going to start\n";

6 counter = 0;

7 return 0;

8 }

9 int* svc(int*) {

10 if (++counter > 5) return EOS;

11 std::cout << "Hi! (" << counter << ")\n";

12 return GO_ON; // keep calling the svc method

13 }

14 void svc_end() { std::cout << "Goodbye!\n"; }

15 // starts the node and waits for its termination

16 int run_and_wait_end(bool=false) {

17 if (run() < 0) return -1;

18 return wait();

19 }

20 long counter;

21 };

22 int main() {

23 myNode mynode;

24 return mynode.run_and_wait_end();

25 }

Code 14: How to define and execute a standalone FastFlow node.

extracted from the channel (line 4) and, either the method eosnotify is called to

notify the user’s code that the EOS has arrived (8) (this requires that the user has

overwritten this method), or the svc user’s function is called passing the data element

received (line 11). If the input channel is empty, the run-time waits until a valid data

element is present in the input channel according to the concurrency control mode

selected for the node (see Section 6.2). In some cases, it is useful that for a single

input element more than one element has to be produced to the output channel of

a node. To this end, the method ff send out can be used inside the svc method

to produce data elements into the node’s output channel. An example of how to use

ff send out is shown in Section 7.2.3. In Code 14 we show a very basic example of

how to define a sequential FastFlow node. As we shall see, usually, FastFlow nodes are
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not used alone, but they are added to a pipeline building block that connects them

in the proper order and then starts their execution. In such more common scenarios,

it is not required that the user defines the method run and wait end (see line 16 in

Code 14) or run for each single node. The pipeline building block already provides

these methods.

7.2.2 Multi-input and multi-output nodes

The ff minode t and the ff monode t classes define a multi-input and a multi-output

FastFlow node, respectively. Both classes extend the ff node t class. Differently from

the basic ff node t, which has one input channel and one output channel, the multi-

input node may have many input channels (at least one) while the multi-output node

may have many output channels (at least one). The number of input/output channels

is not defined when creating the object, instead they are associated to the multi node

when it is connected to other nodes. In Figure 7-1 is shown how a multi-input and a

multi-output nodes are connected to standard nodes.

Figure 7-1: Channels associated to multi-input/output nodes.

For the multi-input node, as soon as a data element is received from one of its

input channels, the svc method is called by the FastFlow RTS. Its default gathering

policy is to collect data elements “from any input channels” in a non-deterministic

fashion. The node terminates when it receives the special value EOS from all input

channels, and then the EOS value is propagated into the output channel (if present).

The multi-input node also provides the method all gather that allows the user to

synchronously receive a data element from all input channels. This method may be
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called inside the svc method once a single input item has already been received to

complete the reception of the other items from other input channels. This method is

particularly useful to implement the Map pattern.

Concerning the multi-output node, it has one single input channel and many

output channels. What characterizes the multi-output node is that it offers the pos-

sibility to control to which output channel the data elements computed in the svc

method have to be forwarded. It allows having full control of data routing by us-

ing the method ff send out to. Differently from the ff send out function, the

ff send out to method permits to specify the output channel identifier (from 0 to

n − 1) where the data has to be delivered. The default forwarding method for the

elements returned from the svc method is the round-robin policy. Alternatively, the

user can set the so-called on-demand policy which allows distributing data elements

in a way that produces a balanced workload distribution among the output channels.

This policy is described with more detail in Section 7.3.2.

7.2.3 Sequential nodes combiner

Sequential FastFlow nodes can be combined by using the combiner building block im-

plemented by the class ff comb. Given two sequential building blocks that potentially

could be executed in pipeline, combining them is an operation that statically merges

the two nodes in a single concurrent entity. Conceptually, the operation of combining

sequential nodes is similar to the functional composition of two functions. In this

case the functions that will be composed are the service functions of the two nodes,

i.e. svc, svc init and svc end methods as well as the eosnotify method. This

building block will be used to introduce automatic transformation of the application

concurrency graph (see Chaptert 8).

The ff comb class, takes two sequential nodes as input arguments and returns a

new FastFlow node capable to execute the business logic of both input nodes. This

operation allows us to not modify the original code of the two objects implementing

the nodes that are combined. Together with the C++ class ff comb, the building

block layer also provides the helper function combine nodes that gets two FastFlow
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1 # include <ff/ff.hpp>

2 using namespace ff;

3

4 struct First: ff_node_t<long> {

5 int svc_init() {

6 V.resize(1000);

7 std::for_each(V.begin(),V.end(), [&](long& i) {i=1;});

8 return 0;

9 }

10 long *svc(long*) {

11 for(size_t i=0;i<V.size();++i) ff_send_out(&V[i]);

12 return EOS;

13 }

14 std::vector<long> V;

15 } _1;

16

17 struct Inc: ff_minode_t<long> { // multi-input node

18 long *svc(long *in) { auto& t(*in); ++t; return in; }

19 } _2;

20

21 struct Dec: ff_monode_t<long> { // multi-output node

22 long *svc(long *in) { auto& t(*in); --t; return in; }

23 } _3;

24

25 struct Last: ff_node_t<long> {

26 long *svc(long *t) { std::cout<<*t<<"\n"; return GO_ON;}

27 } _4;

28

29 int main() {

30 auto comb= combine_nodes(_1,

31 combine_nodes(_2,combine_nodes(_3, _4)));

32 comb.run(); // asynchronous execution

33 // ... other code here

34 comb.wait(); // wait for node termination

35 return 0;

36 }

Code 15: Combining multiple FastFlow nodes by using the combine nodes function.

nodes and returns a const ff comb object. This helper function simplifies the usage

of the combiner building block allowing also to concatenate multiple combine oper-

ations to obtain a single node entity. The Code 15 shows a simple example that

combines several FastFlow nodes by using the combine nodes helper function.
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7.2.4 Evaluation

In this section we evaluate the sequential nodes combiner building block implemented

by the FastFlow class ff comb. The experiments were conducted on the Xeon platform

(see Table 6.1).
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Figure 7-2: Different cases tested for the sequential node combiner building block
(ff comb). Each stage of the pipeline SX , X ∈ [2..5] has a service time of about 1us.

The test performed is straightforward and aims at assessing the overhead intro-

duced by the sequential combiner building block. We considered a five-stage pipeline

of standard sequential nodes. The first stage just produces a stream of N values
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and then terminates. This stage is kept as an independent pipeline stage and never

combined to other stages. The other four stages, each one spends about 1us of local

computation upon receiving an input value and then forwards the value to the next

stage (if any). We consider different configurations by combining pipeline stages ac-

cording to the schemas showed in Figure 7-2. The base case is the one where the

entire computation is executed in a sequential loop and invoking the service func-

tions of each node composing the logical pipeline (the case with the label “FOR” in

Figure 7-2). At the other extreme, another interesting case to compare with is when

the entire computation is executed without combining any stage, i.e. executing all

stages in pipeline (this is the case with the label “PIPE” in Figure 7-2). The expected

completion time (Tc) for the pipeline execution (PIPE) of this simple test is:

Tc=̃N · max
X∈[1..5]

{TSX
}

where TSX
is the service time of stage SX . In our test the service time for each

stage is about 1µs and the number of data elements flowing is N = 100, 000, therefore

the ideal completion time is Tc=̃100ms.

The results of the test are reported in Figure 7-2. As can be seen, the obtained

results for each test case are very close to the expected value. For example, for

the cases “COMB2” and “COMB3” the ideal time is 300ms whereas for the cases

“COMB4”, “COMB5” and “COMB6” the ideal time is about 200ms. The results

obtained differ for less than 5% from the theoretical optimal value.

The second test we performed aims to study the overhead introduced by the

sequential combiner when an increasing number of sequential nodes are combined. In

this case a three-stage pipeline is considered. The first and last stage are fixed and

never combined to other stages. The middle stages (minimum two) are all combined

in a single node using the ff comb building blocks. As in the previous test, the average

service time of the stage is about 1us (the schema is the one sketched at the top of

Figure 7-3). The results obtained are shown in Figure 7-3 where the number of middle

stages vary from M = 2 to M = 512. In the plot are reported the overhead per data
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Figure 7-3: Per task overhead introduced by the sequential node combiner building
block varying the number of nodes combined (M).

element (N = 100, 000) in nanoseconds. As can be seen, the overhead introduced

is small and slightly increases with the number of nodes combined starting from 16

nodes.

In conclusion, the tests performed showed that the sequential nodes combiner does

not introduce significant overhead when merging sequential nodes. Its low overhead

enables the possibility to use the nodes combiner as a mean to reduce the number of

concurrent entities in the FastFlow network and to introduce static transformation-

s/optimizations of the concurrency graph describing the FastFlow application (see

Chapter 8).

7.3 Parallel Building Blocks

In this section we introduce the parallel building blocks used for connecting and

coordinating both standard FastFlow nodes as well as multi nodes. First we show

how to connect nodes by using the pipeline building block. Despite the name, in the

context of FastFlow building blocks the pipeline component does not produce just

linear chains of nodes, instead it allows us to connect sequential and parallel building
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blocks creating non-linear cyclic directed graphs. The pipeline building block enables

data-flow pipeline execution of its nodes (also called stages). The other two building

blocks presented in this section are the farm and the all-to-all.

7.3.1 Connecting FastFlow nodes in pipeline

Connecting nodes implies connecting the output channels of a node with input chan-

nels of one or more other nodes. The building block that allows connecting nodes is

the pipeline implemented by the FastFlow class ff pipelipe. The ff pipeline itself

is a FastFlow node, so multiple networks of FastFlow nodes built independently, can

then be connected together by adding them to a pipeline building block, thus creat-

ing more complex data-flow topologies. To increase type safety, the template class

ff Pipe, which extends the ff pipeline class, can also be used. It statically checks

type matching between two subsequent nodes of the pipeline. The svc method of the

first node of the outermost pipeline, that usually does not have any input channels (it

could have at least one if a feedback channel was present in the pipeline), is invoked

by the RTS passing as input parameter a nullptr pointer.

As an example of pipeline, let us consider the problem of computing a Simple

Moving Average (SMA) that is a method for computing an average of a stream of

numbers by only averaging the last P number from the input stream, where P is

known as the period. The input numbers are contained in a file and the results will

be stored in a file. The user may define three FastFlow nodes: the first one reads

numbers from the input file and produces a stream of them; the second one computes

the SMA, and finally the third stage stores the results into the output file. Code 16

shows how to build and (synchronously) execute the three-stage pipeline.

Creating cyclic network of nodes

The backward channel between two nodes is called feedback channel. These channels

are used either to route back results to some previous node or to send notification

messages that can be useful to make decisions, for example, on how to route next
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1 # include <ff/ff.hpp>

2 First first("in.txt");

3 Second sma(P);

4 Third third("out.txt");

5 ff_Pipe<> pipe(first,sma,third);

6 if (pipe.run_and_wait_end()<0)

7 error("running pipe");

Code 16: A simple three stage linear pipeline.

1 # include <ff/ff.hpp>

2 using namespace ff;

3 ff_Pipe<> pipeIn(S_A,S_B);

4 pipeIn.wrap_around();

5 ff_Pipe<> pipeOut(S_0,pipeIn,S_1);

6 pipeOut.wrap_around();

7 if (pipeOut.run_and_wait_end()<0)

8 error("running pipe");

Code 17: Creating nested pipelines with feedback channels.

data elements or about how to regulate the injection rate. As we will see when

presenting the ff farm building block, by leveraging feedback channels it is possible

to implement dynamic data scheduling policies between the Emitter node, which is a

multi-output node, and a pool of Worker nodes.

Feedback channels may be introduced only in parallel components, (i.e. ff a2a,

ff farm and ff pipeline) by using the method wrap around. The feedback channel

for a building block, acts as a modifier of its input or output channel set, enabling the

creation of one or more extra channels going in the opposite direction with respect

to the standard pipeline data flow.

In Code 17 it is defined a pipeline (pipeIn – line 3) composed by two stages (S A

and S B) connected by a forward and a feedback channel (the last one created at

line 4). The pipeIn pipeline is then added as a middle stage of a three-stage pipeline

called pipeOut (line 5). The pipeOut pipeline has a feedback channel created by using

the method wrap around (line 6). S A is a multi-input node while S B is a multi-
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output node. To discern between which output channel to select in the S B node,

the FastFlow RTS defines the nomenclature for input/output channels as described

in Figure 7-4.

Figure 7-4: Nomenclature of input/output channels in multi-input and multi-output
nodes.

The number of input and output channels, currently active for a given multi node,

can be obtained through specific member functions of the respective objects. Specif-

ically, for the multi-input node it is possible to know the number of forward channels

and the number of feedback channels by using the methods get num outchannels()

and get num feedbackchannels(), respectively. For the multi-input node the num-

ber of input channels can be obtained through get num inchannels() whereas the id

of the channel where the current data element has been received can be obtained by

the method get channel id(). To know if the input element is coming from an input

or a feedback channel the library provides the method fromInput() which returns

true in the first case and false in the second case.

Avoiding deadlock caused by bounded buffers

One of the most common causes of deadlock in data-flow networks including cycles

happens when some nodes cannot make progress because of the bounded capacity of

channels. Channels with bounded buffers can fill up quickly during traffic burst, and

if the application topology graph has cycles, deadlock can occur quickly as well.

To avoid potential deadlock induced by the presence of cycles produced by feed-

back channels, every queue associated with a backward channel is instantiated with an

245



unbounded capacity by the FastFlow RTS. Therefore a send operation on a feedback

channel never blocks the sender node.

Moreover, multi-input nodes having both input channels coming from previous

stages and feedback channels coming from some following stage, the RTS prioritizes

the management of data items coming from feedback channels for draining the internal

networks of the parallel building block.

These simple strategies, together with a careful management of feedback channels

at application or pattern level, are typically enough to avoid deadlock situations

caused by a limited capacity of buffers in the network topology composed by the

concurrent activities generated by the FastFlow application.

Managing program termination

If the application graph contains one or more cycles, one critical aspect is the manage-

ment of program termination. As discussed in Sec. 7.2.2, a FastFlow node terminates

if and only if it receives the EOS value from all input channels. Then, the EOS value is

propagated into all output channels. Therefore, the EOS generated by the first stage

of a pipeline will be automatically propagated over the entire network to terminate

all nodes.

If a node has in input both a forward channel coming from a previous stage and a

feedback channel coming from one of the following stages in the pipeline, the EOS value

received from the previous stage in the pipeline will not be automatically propagated

until the EOS is received from the feedback channel too. This situation, that prevents

program termination, can be handled by using the eosnotify method that is called by

the RTS as soon as an EOS value has been received in one of the input channels. The

method provides as argument the channel identifier where the EOS value has been

received. By counting the number of on-the-fly data elements that have not come

back yet through the feedback channels, and considering the channel-id from which

the EOS message has been received, it is possible to decide when the termination

message can be propagated to the next stage.

Code 18 shows a generic multi-input node that has in input both a standard input
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1 template<typename T>

2 struct S_1:ff_minode_t<T>{

3 T* svc(T* in) {

4 if (!this->fromInput()) {

5 --on_the_fly;

6 if ((on_the_fly==0)&&eosreceived)

7 return this->EOS;

8 return this->GO_ON;

9 }

10 on_the_fly++;

11 return in;

12 }

13 void eosnotify(ssize_t id) {

14 if (!eosreceived) {

15 eosreceived = true;

16 if (on_the_fly==0)

17 this->ff_send_out(this->EOS);

18 }

19 }

20 bool eosreceived=false;

21 long on_the_fly=0;

22 };

Code 18: Termination management using the eosnotify method in multi-input nodes
with feedback channels in input.

channel and a feedback channel (it is the code executed by the stage labeled with S 1

in the right-hand side). In line 4 we check if the input message just received comes

from the standard input channel or from feedback channels. If the message comes

from a feedback channel, then we decrease the number of on-the-fly messages (i.e.

messages we sent to the next stage and that have not come back yet) and in the

case of the EOS message has already been received (line 15) and the number of on-

the-fly messages is zero, then the EOS message can be forwarded to the next stage

(line 7). The other case in which the EOS has to be forwarded is when we receive the

termination message, and all previous messages have already come back (line 17).

It is worth mentioning that the eosnotify method can also be used to flush any

internal buffer of the node once the EOS message has been received and before the

svc end method is called by the RTS.
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7.3.2 The ff farm building block

The FastFlow farm building block is a flexible implementation of the Task-Farm pat-

tern (see Section 2.5.3). Basically it models functional replication coordinated by a

master node. However, it can be used also to compute in parallel n distinct func-

tions on the same input data, modeling the execution of “Multiple Instructions Single

Data” (MISD).

The simplest form of the farm building block (implemented by the C++ class

ff farm) is composed by two concurrent entities executed in pipeline: a multi-output

node called Emitter (the master), and a pool of standard nodes called Workers, each

of them possibly executing the same business logic code. The Emitter node schedules

the data elements received in input toward the Workers using either a default policy

(i.e. round-robin or on-demand) or according to the algorithm implemented by the

user code defined in its svc method. In this second scenario, the data routing is

controlled by using both the ff send out to as well as the broadcast task methods

of the multi-input node implementing the Emitter.

The ff farm extends the basic ff node building block and so it is itself a FastFlow

node object. The pool of Workers may be any object extending the ff node building

block, therefore the single Worker can be implemented by any instance of ff pipeline.

In other words, ff farm and ff pipeline objects can be composed and nested in any

possible combinations. For simplicity sake, the farm’s Worker can also be an ff farm

as well as an all-to-all building block implemented by the class ff a2a. The Emitter

entity of a farm building block can be either a user-defined standard node or a multi

node.

Since the farm building block is a primitive building block it has additional fea-

tures compared to the mere composition of a multi-output node and a set of FastFlow

nodes. Specifically, the Emitter entity is able to receive from multiple input channels,

for example it can receive from all Workers of a previous farm in pipeline, therefore

it acts as a multi-input and multi-output node at the same time. Another important

feature of the farm building block is the possibility to keep the input ordering of data
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element and to throttle the number of Workers dynamically (we discuss both these

important features in dedicated sections below).

Figure 7-5: Different topologies of the ff farm building block using standard FastFlow
nodes: a) the default farm building block; b) farm with the Collector node.

The two base parallel schema of the farm building block are sketched in Figure 7-5

(for simplicity, in the figure are used only standard sequential nodes). In the case of

a farm configured to preserve data ordering, it must have a Collector entity which

gathers data elements being computed by the pool of Workers. The Collector may

be either a user-defined standard node or a multi-input node. The Collector node

can be added to the farm building block whenever a particular data gathering policy

is needed (for example for executing an all gather – see Sect 7.2.2) and/or when a

post-processing phase has to be applied to the data elements produced by the Workers

before they leave the farm building block. The user may define the farm Collector

as a standard FastFlow node as well as a multi-input/output node. In the latter case,

the Collector acts as a multi-input and multi-output node at the same time. From

the concurrent execution point of view, the three farm entities (Emitter, Workers,

and Collector) work according to a data-flow pipeline execution model over a stream

of input elements.
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Figure 7-6: Possible topologies of a farm with feedback channels: a) each Worker has
a channel toward the Emitter; b) the Collector has a feedback channel toward the
Emitter; c) merging of topology a) and b).

The feedback modifier applied to the ff farm building block allows the program-

mer to produce different network topologies. All possible farm topologies are sketched

in Figure 7-6.

There are several ways to construct a farm building block object. The simplest

one is to create a farm without defining both Emitter and Collector entities and us-

ing the default implementations provided by the building block itself. This simple

case is reported in the Code 19 (left-hand side). A slightly more elaborate sce-

nario is sketched at the right-hand side of Code 19 where the farm building block

is built providing a user-defined Emitter and Collector nodes. The scheduling pol-

icy of input data elements is set to on-demand (line 12) and the Worker resources

allocated at line 10 will be automatically released once the farm object is destroyed

(line 13). The methods, cleanup emitter, cleanup collector, cleanup workers

and cleanup all allow the programmer to delegate the destruction of the objects to

the farm’s destructor.

Scheduling input elements. To select the Worker where an incoming input data

element has to be sent, the FastFlow farm building block uses an internal object

called ff loadbalancer. By overriding specific methods of the load-balancer class,

it is possible to define new scheduling strategies for the farm Emitter. Currently, two

policies have been implemented and provided to the user:
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1 # include <ff/ff.hpp>

2 using namespace ff;

3 // user-defined worker

4 Worker W;

5 // creating the pool of workers

6 std::vector<ff_node*> V;

7 for(int i=0;i<nworkers;++i)

8 V.push_back(new Worker(W));

9 // a farm with default emitter

10 // and collector

11 ff_farm farm(V);

12 if (farm.run_and_wait_end()<0)

13 error("running farm");

1 # include <ff/ff.hpp>

2 using namespace ff;

3 // user-defined ...

4 Emitter E; // ... emitter

5 Collector C; // ... collector

6 Worker W;

7 // creating the pool of workers

8 std::vector<ff_node*> V;

9 for(int i=0;i<nworkers;++i)

10 V.push_back(new Worker(W));

11 ff_farm farm(V,E,C);

12 farm.set_scheduling_ondemand();

13 farm.cleanup_workers();

14 if (farm.run_and_wait_end()<0)

15 error("running farm");

Code 19: Creating a farm with default emitter and collector (left), and with user-
defined emitter and collector (right).

• loose round-robin. This is the default farm scheduling policy. The Emitter sends

data elements in a round-robin fashion to the Workers in the pool. If the input

queue of the Worker selected is full (when the channels have bounded capacity),

the Emitter does not wait until it can insert the element into that queue; instead,

it selects the next Worker and keeps going on until the element can be assigned

to one of the Workers. It is clear that this policy follows a round-robin selection

of Workers only if the queues have an unbounded capacity (that is why we have

called this policy “loose” round-robin). In the remaining, we will refer to this

policy simply as round-robin.

• on-demand. This is a simple implementation of the “auto-scheduling” policy.

The semantics of this policy is that the Worker “ask for” a new data element

rather than passively accepting elements sent by the Emitter. Such distribution

policy can be employed by calling the method set scheduling ondemand() on

the farm object. By default, the asynchrony level of the “request-reply” protocol

between the Emitter and the generic Worker is set to one. If needed, it can be

increased by passing an integer value greater than zero to the farm’s method
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1 ff_farm farm;

2 MyEmitter myE;

3 farm.add_workers(Workers);

4 farm.add_emitter(myE);

5 farm.wrap_around();

6 farm.add_collector(C);

7 ....

1 template<typename T>

2 struct MyEmitter: ff_monode_t<T> {

3 T* svc(T* in) {

4 int wid = get_channel_id();

5 if (wid == -1) {

6 int victim = selectReadyWorker();

7 if (victim<0) data.push_back(in);

8 else

9 ff_send_out_to(in, victim);

10 return GO_ON;

11 }

12 if (data.size()>0) {

13 ff_send_out_to(data.back(), wid);

14 data.pop_back();

15 } else

16 updateReadyWorkers(wid);

17 if (checkTermination()) return EOS;

18 return GO_ON;

19 }

20 void eosnotify(ssize_t chid) { ... };

21 std::vector<T*> data;

22 };

Code 20: Example showing how to define an Emitter node with a custom scheduling
policy.

set scheduling ondemand().

The round-robin policy is very simple to implement and consequently very ef-

ficient. However, it does not work particularly well if input data elements have

very different execution times. On the other hand, the on-demand scheduling policy

has a slightly higher overhead than the round-robin policy but can ensure almost

even workload distribution among Workers. The user can implement an application-

specific scheduling policy by implementing a customized farm Emitter leveraging the

ff loadbalancer object of the farm. By utilizing the the method ff send out to,

each input data element can be sent to a specific destination Worker.

A snippet of code showing how to implement a simple user-defined policy in the

Emitter node is shown in Code 20. In line 2 at the top-left of Code 20 is shown how to

created an instance of the MyEmitter node class. The Emitter receives messages both
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from the previous stage as well as from the Workers. If the message is coming from

the previous stage (line 5) the selectReadyWorker looks for a Worker that is waiting

to receive a message (i.e. a Worker that has already completed its previous job and

has already sent a notification message to the Emitter) and if the search succeeds

the input data element is sent to the selected Worker (line 9) otherwise the input

message is stored into a local buffer (line 7). If the input message comes from one of

the Workers and if there are elements in the local buffer, then the oldest data element

received is sent to the current Worker (line 13) otherwise the Worker is considered

“ready” (line 16). The termination condition is checked before exiting the service

function (line 17). The condition is that the EOS message has been already received

(therefore the eosnotify function has been called by the FastFlow RTS) and there

are no more elements in the local buffer.

Throttling the number of Workers.

Concurrency throttling refers to the possibility to dynamically change the number of

threads composing a parallel application [114]. It is a powerful mechanism through

which it is possible to increase or decrease the concurrency level of an application

to improve performance and/or reduce power consumption [131]. Instead of placing

many threads on a smaller set of cores (this technique is called Thread packing [92]),

the concurrency manager is responsible for reducing their number to decrease con-

tention on shared resources. Concurrency throttling is a technique that cannot be

used in some cases since it may require some interactions with the application itself

and with the RTS. For example, it may involve a redistribution of thread’s internal

state, an operation that usually requires a synchronization protocol to keep the state

consistent. This is a complex problem to deal with in the general case and can be

easier to attack if the parallel structure of the application is known in advance (e.g.,

a farm skeleton) and the kind of internal state used are known [130].

The FastFlow library offers the mechanisms to change the number of Workers in

a farm on-the-fly without stopping and restarting the entire application. This fea-

ture, enables the possibility to build parallel patterns, and more generally, structured
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applications modeled as composition of parallel patterns that dynamically adapt the

number of resources employed according to, for example, the input rate [126] or to

performance/power constraints [131].

In the farm building block, the number of Workers can be greater than the number

of resources available. All Workers, or a subset of them, can be dynamically termi-

nated (or temporarily stopped) by selectively sending to them a particular message,

EOSW. This message is not propagated by the RTS outside the farm building block.

The farm Emitter enqueues the EOSW message into the input channel of the selected

nodes corresponding to the Workers that have to be terminated to start their termi-

nation protocol. All messages already present in the queues of the selected Workers

will be processed before the Workers’ termination. In the FastFlow library threads

implementing Worker nodes are not created and destroyed dynamically, instead they

are temporally stopped and started again when needed.

Figure 7-7: Logical schema for removing and adding Workers in a farm.

In addition, it is possible to put to sleep and afterward wake up one or more

sleeping Workers upon request. To enable this feature, the generic Worker has to have

the flag freezing set to true. This is an internal flag of the FastFlow sequential nodes
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that tells the RTS to put the thread running the node to sleep instead of terminating

it when it receives an EOSW message. This can be done is several ways, as for example

by starting the farm building block by using the method run then freeze (instead of

run and wait end) or directly by calling the freeze() method on the farm object. If

a Worker is started with the “freezing flag” enabled, once it receives in its input queue

an EOSW message or a GO OUT message, then the RTS does not terminate the threads,

instead, the Worker will be suspended on an event object. The difference between

the EOSW and GO OUT messages is that when the node receives the EOSW message the

eosnotify callback is called and the message is propagated until it reaches the farm’s

Collector. This is not the case for the GO OUT message. The svc end methods will be

called in either case to notify the user’s code that the node is going to be suspended.

The threads running the node will be woken up at the next building block execu-

tion. This simple protocol allows us, for example, to spare the overhead associated to

thread creation if the building block will be activated many times during the appli-

cation execution. However, to dynamically add and remove Workers within the same

application run, the method thaw(worker-id) allows the programmer to restart any-

time the thread running the Worker node with the logical identifier worker-id. The

restarted Workers will continue executing the main loop and processing data elements

in their input queues. The typical configuration of a FastFlow application exploiting

dynamic concurrency throttling in the task-farm pattern is sketched Figure 7-7. A

manager node (M in the figure) is attached to the farm Emitter by a point-to-point

channel. The same manager node can be attached to multiple farms building blocks.

The commands sent by the manager to add and remove Workers will be received by

the Emitter node. If the message comes from the manager node (such channel has

a unique identifier), then instead of forwarding the message to one of the Workers it

is interpreted and the corresponding action executed by the Emitter node. In Fig-

ure 7-7, it is shown a sequence of executions of two commands: the first command

asks to remove two Workers, while the second one asks to add one Worker (it is not

possible to ask for more Workers than the ones currently stopped). For the remove

command, the Emitter will send the EOSW message to the two selected Workers (the
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Figure 7-8: FastFlow concurrency throttling used in a DPI application. Top plot: CPU
utilization within the time interval considered. Bottom plot: comparison between
sustained bandwidth and system configuration (n. of Workers, CPU-frequency).

Workers that are removed are those with the highest id so to keep the list of identifiers

continuous). By reading monitoring information collected by each node, the manager

node knows when the Workers will be stopped. The second command is a request to

add one Worker therefore the Emitter will execute the thaw method on the object

corresponding to the stopped Workers with the lowest id. After the thaw method

completes, the Emitter restarts sending data-elements also to that Worker.

The manager uses monitoring information collected by Workers to make decisions.

An example of how the FastFlow concurrency throttling mechanisms have been used

for a real network application is shown in Figure 7-8. The step function in the figure

represents the product between the number of active Workers and the operating

frequency of the CPUs. For example, at minute 30 nine farm’s Workers are used with
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a system clock of 1.2Ghz, while at minute 35 eight Workers are used with a clock

frequency of 1.4Ghz.

The application analyses one hour of HTTP packets flowing in a backbone net-

work, searching for well-known patterns identifying possible security threats. It has

been implemented by using the Peafowl framework [110], a flexible and extensible

Deep Packet Inspection (DPI) framework implemented on top of the FastFlow library.

The logical structure of the application is a single farm where the Emitter reads net-

works packets, the Workers identify the protocol and process the data content, and

the Collector either drops the packets or re-injects them into the network.

In this application, the manager node changes both the number of Workers of the

farm and also the CPUs frequency of the system with the primary objective to keep

the utilization of the system high (in the test reported here, always between 80% and

90%, see the top part of Figure 7-8) while minimizing system power consumption.

To do this, among all possible configurations given by the number of farm’s Work-

ers and CPU frequency that are able to sustain the input rate, the manager selects

the one with the lower power consumption according to a performance model. The

details of the model used to select the optimal configuration is presented in Danelutto

et al. [115]. The number of Workers is changed sending commands to the Emitter

node according to the protocol described above, whereas CPU frequency is changed

directly by the manager by using the cpufreq library.

The mechanisms and protocols described in this section, have recently been used

in the Nornir framework [131, 293] to enforce performance and power consumption

constraints, and also to study different techniques to efficiently handle out-of-order

and bursty data streams [246].

Finally, it is worth to point out that all FastFlow nodes can be suspended and

re-started by properly invoking the methods freeze and thaw. Therefore, though

not yet implemented, the concurrency throttling mechanism can also be provided for

the all-to-all building block.
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Figure 7-9: All-to-all (A2A) building block topologies: a) default schema; b) A2A
with feedback channels, the two sets have the same cardinality; c) A2A with feedback
channels, the two sets have different cardinalities.

7.3.3 The ff a2a building block

The farm building block is a very powerful and flexible component with its many

features and possible configurations. However, in some applications, the Emitter

and/or the Collector nodes may introduce a centralized point of control that could

become the bottleneck of the entire processes network, hence preventing scalability.

In these cases, the all-to-all building block (briefly A2A) can be used to avoid any

centralization point. It defines two distinct sets of Workers connected together such

that a Worker of the first set (called L-Worker set, or simply L-Workers) is connected

to all Workers of the second set (called R-Workers). If the number of L-Workers is

m and the number of R-Workers is n, then there are m · n communication channels

connecting the two sets. This communication pattern is also known as shuffle. From

the concurrency standpoint, the semantics of the all-to-all building block is that of

two farms connected in pipeline, the first running the L-Workers and the second

running the R-Workers, with no guarantee on the arrival ordering of data elements

to the R-Workers.

The FastFlow class ff a2a provides the interface for defining an instance of the

A2A building block. The possible logical schemas of the A2A building block are

sketched in Figure 7-9.

The L-Workers are multi-output nodes so each one is able to select the destination
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1 # include <ff/ff.hpp>

2 using namespace ff;

3 // user-defined workers

4 Worker1 W1;

5 Worker2 W2;

6

7 // creating L-Workers

8 std::vector<ff_node*> V1;

9 for(int i=0;i<nworkers1;++i)

10 V1.push_back(new Worker1(W1));

11

12 // creating R-Workers

13 std::vector<ff_node*> V2;

14 for(int i=0;i<nworkers2;++i)

15 V2.push_back(new Worker2(W2));

16

17 ff_a2a a2a;

18 // adding the first set and setting

19 // the on-demand policy with

20 // asynchrony degree 2

21 a2a.add_firstset(V1, 2);

22 a2a.add_secondset(V2);

23 if (a2a.run_and_wait_end()<0)

24 error("running a2a");

1 # include <ff/ff.hpp>

2 using namespace ff;

3 // user-defined workers

4 Worker1 W1; // standard node

5 Worker2 W2; // multi-output node

6 MultiInputHelper1 H1;// helper node

7 MultiInputHelper2 H2;// helper node

8

9 // creating the L-Workers

10 std::vector<ff_node*> V1;

11 for(int i=0;i<nworkers1;++i)

12 V1.push_back(new ff_comb(H1,W1));

13

14 // creating the R-Workers

15 std::vector<ff_node*> V2;

16 for(int i=0;i<nworkers2;++i)

17 V2.push_back(new ff_comb(H2,W2));

18

19 ff_a2a a2a;

20 a2a.add_firstset(V1, 0, true);

21 a2a.add_secondset(V2, true);

22 a2a.wrap_around();

23 if (a2a.run_and_wait_end()<0)

24 error("running a2a");

Code 21: Two examples showing how to define an all-to-all building block.

Worker of the second set. As for the farm, the default scheduling policy of data

elements is the round-robin one. The on-demand policy can also be used with a user-

defined asynchrony degree. The user may also have full control of the destination of

output messages by using the ff send out to method.

The R-Workers are multi-input nodes, so each one receives data elements from

any L-Workers. Since R-Workers are multi-input nodes, the all gather method can

also be used to implement a gather-all collecting policy.

The A2A extends the standard ff node so it can be used as a farm’s worker or as

a stage of a pipeline. Allowed compositions of A2A with other building blocks are

described in Chapter 5.

Code 21 shows two basic examples on how to define and execute an A2A building

block. In the left-hand side of the figure, it is created an A2A where the L-Workers
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use an on-demand scheduling policy to distribute data elements to R-Workers. This

is enabled in line 21 where an asynchrony level of two messages is configured. If the

second parameter of the method add firstset is zero or it is not set, then the default

round-robin policy will be used. In the right-hand side of Figure 21, an A2A with

feedback channels is built. In this case we suppose that Worker1 is a standard node

while Worker2 is a multi-output node. Since the number of Workers in the first set

and in the second set might be different, two interface nodes are needed to adjust

the cardinality of the two sets (see also Section 5.3). These two interface nodes act

as “helper nodes” to set the proper cardinality. They do not execute any business

logic. Specifically, a sequential combiner node building block is used to create two

new nodes that are added in the L-Worker set and in the R-Worker set. They are

created at line 12 and at line 17, respectively. Both nodes H1 and H2 (defined at line 6

and line 7, respectively) are multi-input nodes. This way, all nodes in the L-Worker

set are multi-input nodes while all nodes in the R-Worker set are multi-output nodes,

hence they can be connected with feedback channels regardless of their number. As

we shall see in Chapter 8, helper nodes can be added automatically by the FastFlow

RTS when the concurrency graph composed by all nodes describing the application

is transformed to optimize the number of concurrent nodes.

Main differences between farm and all-to-all. If the A2A building block is

configured to have one single L-Worker and many R-Workers, the resulting parallel

structure is semantically equivalent to that of a farm building block without the

Collector. In principle, it is possible to implement a farm with an A2A, being a farm

(without Collector) a particular instance of the A2A.

Even though we could have provided the user with only the all-to-all building block

without adding the farm with no Collector in the building block set, we decided to

follow a different path. The farm is easier to use than the A2A. It is a more specialized

component with ready-to-use features that the user can simply enable without extra

coding. For example, a farm can preserve input data ordering and the Emitter is

de facto both a multi-input and a multi-output node allowing to connect in pipeline
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multiple farms without the Collector. The multi-output L-Workers nodes cannot

receive from a multitude of input channels. To solve this issue, the user has to create

a combiner node for each L-Worker, where each combiner node combines a multi-

input and a multi-output node. In addition, while for the farm building block it is

easier to control the concurrency throttling of Worker nodes, enabling this feature for

the A2A requires additional coordination among L-Workers and currently it is not

implemented.

The A2A building block has been thought mainly to optimize farm configurations

where the Emitter node can be easily replicated, and in general, where the Emitter

needs to be parallelized to avoid potential bottlenecks. The A2A avoids introducing

any centralized entity, thus enabling higher scalability than the farm even though at

higher costs in terms of complexity management.

7.3.4 Evaluation

In this section we evaluate the raw performance of the farm and all-to-all building

blocks considering two simple micro-benchmarks. The experiments reported in this

section, were conducted on the Xeon and KNL platforms (see Table 6.1).

farm building block The first test is a simple farm with the Collector. The Emit-

ter generates 100, 000 data elements toward the pool of Workers as fast as possible.

The channel’s capacity is fixed so that the Emitter cannot produce more that 10, 000

elements to the Workers. The Collector just receives results produced by the Work-

ers. The service time of the generic Worker of the pool is fixed to a constant value

varying from, very fine-grained granularity 1µs, fine-grained granularity 10µs, and

medium-grained granularity 100µs.

The average results, over 10 executions, obtained running this simple benchmark

is reported in Figure 7-10 (the standard deviation is less than 1%). On the Xeon

platform even for very fine grained computation granularity the farm building block

can obtain almost a linear scalability up to 16 Workers. This is not the case on

the KNL platform where 1µs computation granularity (about 1500 clock cycles) is
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Figure 7-10: Farm scalability varying the computation granularity of the Worker
function on the Xeon (left-hand side) and on the KNL (right-hand side) platforms.
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Figure 7-11: Farm benchmark implemented with FastFlow and Intel TBB on the Xeon
(left-hand size) and on the KNL (right-hand side) platforms.

too small to obtain good speedup figures. Increasing the granularity of one order

of magnitude allows us to obtain a scalability of about 43 with 56 Workers (and 58

threads).

The same test has been implemented using Intel TBB by using the parallel pipeline

construct provided by the library1. It can be used to model a Task-Farm pattern.

For the benchmark considered it implements a three-stage pipeline. Specifically, the

first and last stages (corresponding to the Emitter and the Collector) are sequential

filter whereas the middle stage is a parallel filter whose maximum parallelism degree

1The TBB parallel pipeline allows us to execute multiple stages in parallel
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is based according to the number of threads instantiated for the TBB run-time (in

our test it is equal to the number of Workers plus two). The maximum in-flight token

for the Intel TBB run-time has been set to 20, 000. The TBB library used is the

one shipped with Intel Parallel Studio XE 2017. The results obtained are shown in

Figure 7-11.

As can be seen, for a low number of Workers the TBB version provides the best

execution time thanks to its work-stealing based scheduler that is able to better utilize

the available threads in the run-time. Then, by increasing the number of Workers, the

FastFlow RTS is able to obtain slightly better results because of its direct mapping

between nodes and RTS threads. On the Xeon platform the lowest execution time

for the FastFlow and TBB versions is 418ms and 489ms, respectively. On the KNL

platform it is 165ms and 505ms, respectively. This simple benchmark clearly shows

that the FastFlow farm building block is effective for implementing the Task-Farm

pattern and its implementation provides good scalability figures even for fine-grained

computations.

all-to-all building block To test the all-to-all building block, we used the parallel

schema sketched on the right-hand side of Figure 7-12 (1-1 configuration). It is a four-

stage pipeline where the first and last stages are a multi-output node and a multi-input

node, respectively. They act as stream source and stream sink and do not execute

any business logic. The first node injects 100, 000 data items into the pipeline, and

the benchmark terminates when the last stage collects all data items.

The two middle stages (second and third stages) execute a synthetic computation.

They have been configured such that the second stage has a service time that is three

times larger than the third stage (e.g., 30µs and 10µs). Our objective is to parallelize

the second and third stage with an A2A building block and to measure the overall

performance of the pipeline. To balance the service times, the number of Workers in

the L-Worker set is three times larger than the number of Workers in the R-Worker

set. In this way, the two set of Workers have about the same service time in the ideal

case of zero overhead for the parallel implementation.
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In Figure 7-12 is shown the execution time varying the number of Workers in the

L- and R-Worker set and considering two different cases for the service time: 30µs,

10µs and 12µs, 4µs corresponding to the service time of the generic L-Worker and

R-Worker, respectively. As can be seen, the execution time has an almost perfect

decrease when the number of Workers of the A2A component is increased propor-

tionally. This simple benchmark demonstrates that the FastFlow implementation of

the A2A building block introduces a negligible overhead in the pipeline execution of

the L- and R-Workers.

To study the scalability of the all-to-all building block we used the same bench-

mark described before (a four-stage pipeline). However, differently from the previous

case, we considered the following configurations: 1) Workers of the first and second

set of the A2A have the same service time (fixed for the given platform); 2) only the

number of L-Workers are varied while the number of R-Workers is kept fixed for the

entire test. For the execution of the A2A benchmark on the Xeon platform we used a

service time of 1µs and 12 R-Workers. For the KNL platform, the service time is 10

times higher while the number of R-Workers is fixed to 32. The results obtained are

shown in Figure 7-13. On the Xeon platform, the A2A exhibit linear scalability up to

10 R-Workers then the curve starts flattening. It is worth pointing out that, with a
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service time of 1µs for the single Worker, the service time of the R-Workers is about

100ns, therefore close to the time needed for a single point-to-point communication

for the considered platform (see Chapter 6). On the KNL platform, the scalability

trend is close to the ideal one demonstrating that the building block implementation

does not introduce significant overheads.

As for the farm building block, also for the A2A component, the simple tests

proposed in this section demonstrate good performance figures even for fine-grained

computations.

7.4 Preserving stream ordering

In streaming computations, preserving stream ordering is an important feature of

many applications (e.g., video processing). Maintaining data ordering does not nec-

essarily mean to preserve total ordering among elements, sometimes this constraint

can be relaxed to have only a partial ordering, such as in key-based computations

where ordering is usually kept only among elements having the same key [31].

Data ordering is a critical issue that could have a serious impact on the over-

all application performance. Usually, preserving ordering requires buffering of data

elements arrived out-of-order and thus requires to establish how much memory to
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reserve for the buffer.

While the pipeline of sequential building blocks naturally preserves data ordering,

this is not the case if some stages of the pipeline are implemented with a farm and/or

with an all-to-all building block. In the following, we briefly discuss how the FastFlow

library deals with data element ordering when these two building blocks are used.

Ordered farm In the FastFlow library, farm’s Workers are executed within sepa-

rate threads of execution. Therefore there is no guarantee that the output sequence

produced by the Workers respects the input ordering of data elements as seen by the

Emitter. Due to the relative speed of each Worker and due to the different execution

time associated to different data elements, the results produced by the Workers might

arrive at the Collector in an unpredictable order. By default, the farm building block

does not preserve input ordering because in many applications ordering is not needed

and preserving data ordering might introduce extra overhead not worth paying if not

required. If preserving input ordering is essential for the application at hand, as in

parallel video processing applications where the order of frames must be maintained

in the output video, then the farm building block may enforce input-output ordering

if the user explicitly calls the method set ordered. In such a case, a default Collector

is automatically added by the RTS if the user will not provide one.

The most straightforward and most efficient way to enforce data ordering in the

farm building block is to schedule data elements in a given fixed order and to gather

Workers’ results in the Collector following the same order. This simple protocol

does not require any extra buffering in the Collector and introduces only a minimal

overhead. However, if the execution time associated with different input data elements

has a high time variance, this simple strategy does not provide the best performance

due to potential workload imbalance introduced by the static scheduling and gathering

policies.

As pointed out in Dalvan et al. [178], to solve the issue of workload imbalance in

an ordering FastFlow farm, a simple solution would be to tag data elements when they

enter the Emitter node and by buffering out-of-ordered elements in the Collector on
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the basis of their tag which has been forwarded by the Workers. The workload can

then be balanced by using a dynamic scheduling policy such as the on-demand policy

(see Section 7.3.2). We have implemented this policy in FastFlow-3. If both the

methods set ordered and set scheduling ondemand are called on a farm object,

the FastFlow RTS automatically and transparently to the user adds a unique tag to

each data element entering the farm. This also implies that the Workers nodes are

wrapped into system nodes that remove the tag before calling the service functions,

and re-add the same tag right before the result is sent to the Collector.

However, enforcing stream ordering for the farm building block introduces some

limitations:

1. Workers can be implemented using only standard nodes;

2. Workers cannot use in their service functions the method ff send out and the

svc method cannot return the special value GO ON.

While the first point is mainly a limitation of the current implementation of the

library and therefore can be relaxed in the next versions, the second point is critical

because the stream length cannot be increased/decreased by the Worker nodes oth-

erwise the ordering policies described before does not work. For these unusual cases,

the user has to provide his/her application-specific solution and can simply use the

standard farm building block and the mechanisms offered by the FastFlow nodes.

Ordered All-to-All Maintaining the input data element ordering for the all-to-all

building block is a feature that is not natively provided by the component. That

is due to the lack of a single entry point for all data elements in the all-to-all

building block.

A simple solution would be to encapsulate the all-to-all building block as a unique

Worker of a farm where the Emitter and Collector entities maintain data ordering

as described in the previous sections. This operation is not as straightforward as it

seems at first glance. The default round-robin scheduling policy of the farm does

not guarantee data ordering because of the multiple connections between L-Workers

and R-Workers. Therefore, without any extra information, the Collector node cannot
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Figure 7-14: Logical implementation schema of an ordered all-to-all building block.

know which is the correct order to follow in the gathering of data. Therefore, regard-

less of the data scheduling policy of the farm, the only solution is to use the policy

which tags input data elements with a unique monotonic identifier.

To alleviate the user from the burden of dealing with Worker wrapping and other

boilerplate code, the FastFlow framework provides a transformation function that,

given in input an all-to-all building block having standard nodes as L-Workers and

R-Workers, returns a pipeline containing an order-preserving farm whose Worker is

the all-to-all building block provided in input. As described before, the Emitter of

the order-preserving farm tags each input element with a unique identifier while the

Collector buffers out-of-order data elements until the correct values can be sent out

to the next stage. The logical schema of the “ordered all-to-all” is sketched in

Figure 7-14.

7.4.1 Evaluation

To evaluate the overhead introduced by the automatic ordering feature of the FastFlow

farm building block, we considered two video applications: i) Lane Detection, and

ii) Face Recognition [105]. Both applications have been implemented by using a

farm building block and defining the Emitter and Collector nodes to read the input

video from the disk and to write the output video into the local disk, respectively.

268



 50

 100

 150

 200

1 4 8 12 16 20 24 28 32 36 40 44 48

T
h

ro
u

g
h

p
u

t 
(f

ra
m

e
/s

e
c
.)

n. of Workers

Lane Detection, Xeon platform

ord−RR
ord−OD

no−ord TBB 1

4

8

12

16

20

24

28

1 4 8 12 16 20 24 28 32 36 40 44 48

T
h

ro
u

g
h

p
u

t 
(f

ra
m

e
/s

e
c
.)

n. of Workers

Person Recognition, Xeon platform

ord−RR
ord−OD

no−ord TBB

Figure 7-15: Comparison of the throughput for the Lane Detection (left-hand side)
and Person Recognition (right-hand side) applications obtained by different some
FastFlow ordering policies vs a not-order-preserving Intel TBB version.

The logical parallel structure of the two applications is that of a three-stage pipeline

(read-compute-write). Since video frames ordering has to be preserved, the farm

building block is configured to be an ordered farm (i.e. the set ordered method was

invoked on the farm object). The experiments were conducted on the Xeon platform

(see Table 6.1).

Lane Detection (LD) is a video application used on autonomous vehicles to detect

lane lines on the road. This application reads the video from an onboard camera

recording the whole lane and detects road lines in real-time. Face Recognition (FR)

is an application used in video controlled systems to prevent unauthorized accesses

in a room. Even in this case, FR reads data frames from a camera and performs the

face recognition in real-time using an image database.

For LD and FR applications we considered both a FastFlow implementation using

an ordered farm building block and a TBB version as baseline that does not preserve

frames ordering (and thus without additional overhead due to the ordering). For

the FastFlow version, we tested both the default round-robin scheduling policy (ord-

RR) and the on-demand scheduling policy (ord-OD) with an asynchronous degree of

8 frames. The maximum throughput obtained varying the number of Workers are

shown in Figure 7-15 (the number of threads used by the TBB run-time is equal to
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Figure 7-16: Left): Maximum throughput of the modified Lane Detection application
to produce unbalanced workload among farm Workers. Right): Number of video
frames computed by each Worker.

the number of Workers plus two while the number of in-flight tasks was set to a value

larger than the number of frames).

For the LD application, the maximum throughput is obtained by the FastFlow

version with the round-robin scheduling policy and 22 Workers (for a total of 24 sys-

tem threads). The configuration ord-OD is not able to obtain the same performance

results due to the higher overhead introduced by the automatic data element tagging

and to a relatively low variation in the per-frame service time. The average per-frame

service time is about 87ms with a standard deviation of about 20ms. The TBB ver-

sion obtains the lowest maximum throughput even if it exhibits a smoother behavior

when more threads than cores are used (i.e. starting from 22 Workers).

Concerning the FR application, it has a higher service time and a higher standard

deviation, i.e. about 880ms and about 195ms, respectively. In this case, the ord-OD

version obtains the highest throughput (24.7 vs 23.7 obtained by using the ord-RR

version).

To test the performance differences of the ord-RR and ord-OD, we artificially

increase the service time of the Lane Detection application. Specifically, 3 randomly

selected Workers execute extra works for each input frame. The new average service

time of the LD application is about 99ms (vs. 87 of the original version) with a
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standard deviation of about 40ms. We considered the case with 5, 10, and 20 Workers.

In the left-hand side of Figure 7-16 are reported the maximum throughput obtained.

In the right-hand side of the same figure we reported the number of frames computed

by each Worker for the two scheduling policies. As expected, the ord-OD provides a

better distribution of frames to Worker compared to the ord-RR which assigns almost

the same number of frames to each Worker.

7.5 Summary

In this chapter we described the FastFlow implementation of the sequential and paral-

lel building blocks introduced in Chapter 5. By using simple micro-benchmarks mod-

eling streaming computations, we assessed the overhead introduced by the FastFlow

implementation of the building blocks. Specifically, we tested the sequential nodes

combiner, the farm and the all-to-all building blocks. The pipeline is the base building

block used for all tests. The results obtained on two different multi-core platforms (a

standard Intel Xeon-based multi-cores, and the Intel KNL many-cores) demonstrate

that the implementation proposed introduces low run-time overheads and good scal-

ability. We also discussed the important problem of maintaining stream ordering.

The solution proposed for the farm building block has been assessed by using two

video applications. The results obtained demonstrate that the solutions proposed

introduce only a minimal overhead and provide good performance figures also in the

case of unbalanced workloads.
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Chapter 8

Concurrency Graph

Transformations

8.1 Introduction

In this chapter, we present the new FastFlow software layer providing a set of mecha-

nisms and functions that support the static restructuring of the application concur-

rency graph. The primary objectives of graph transformations are both to refactor

and to optimize the application graph by reducing the number of FastFlow nodes

and by optimizing particular combinations of building blocks. We are interested in

those transformations that maintain the functional semantics of the application while

increasing the throughput and/or decrease the latency of data elements flowing into

the graph.

From the theoretical standpoint, graph’s transformation and rewriting is a well-

known and widely studied problem (see for example [287]). In this chapter we do

not study the general problem, we focus on a restricted set of graphs that can be

derived from the composition of FastFlow building blocks with the aim of studying

their non-functional properties.

Given the direct relationship between the nodes of the FastFlow concurrency graph

and the actual mapping of nodes to system-level threads (cf. Section 4.3), the refac-

toring and optimizations rules are the primary mechanisms for promoting and en-
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hancing performance portability of FastFlow applications on current and forthcoming

highly-heterogeneous multi-cores.

Thanks to a clear functional and parallel semantics of the building blocks, several

different transformations can be developed that allow the programmer to transform a

FastFlow program into a functionally equivalent one achieving different performance

levels (both regarding latency and bandwidth) and using a different number of sys-

tem resources. These transformations can be driven by some analytical performance

models associated to the concrete implementation of the building blocks on the given

platforms with the aim to select only those transformations leading to efficient im-

plementations according to some target function [63].

However, in the following, we do not propose an analytical model nor possible

transformation strategies. Instead, we describe how we enriched the FastFlow library

with the essential mechanisms needed to implement the most interesting transfor-

mations and how such transformations are implemented. Policy-oriented software

layers, higher-level frameworks or DSLs can be built on top of the FastFlow graph

transformation software component thus benefiting from the mechanisms provided

by its API to devise smart transformation policies possibly guided by dynamically

collected performance metrics [131].

A simple interface function (called optimize static) is provided to the FastFlow

user to automatically apply straightforward transformations to the pipeline composi-

tions describing the application (or even parts of it). In the context of the FastFlow

concurrency graph transformations, the word automatic means “user-suggested and

automatically applied by the RTS”. The programmer may ask the FastFlow RTS to

automatically modify the concurrency graph, for example, to remove all default Col-

lector nodes in the farm building blocks. In order to preserve the functional semantics

of the application, the transformations will be implemented only if a predefined set of

conditions hold, otherwise, the concurrency graph will not be modified. The program-

mer may also choose to use ready-to-use optimizations (implemented by the OptLevel

object) that enable a subset of specific transformations automatically. They can also

explicitly select which transformations have to be automatically implemented for the
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given pipeline composition by simply setting specific flags in the OptLevel object.

However, the expert programmer, instead of relying on simple automatic transfor-

mations, may use the available API to “manually” apply specific and more complex

building block transformations to the pipeline or farm passed as arguments, which

might implement only a part of the entire application. These transformations can,

for example, by guided by some sophisticated static analysis on data collected from

previous executions [62]. Currently, the most complex and potentially critical graph

transformations from the functional semantics viewpoint, are in charge of the applica-

tion/RTS programmer. In other words, the concurrency graph transformer software

components provides a broad set of mechanisms and helper functions that can be

used by the expert programmer to decompose and rebuild the concurrency graph of

FastFlow applications for the sake of introducing optimizations.

The automatic graph transformations currently provided to the user through the

optimization interface are:

1. Removing default Collector nodes from the farm building block and from its

nesting instances into parallel building blocks.

2. Combining a sequential node with the subsequent farm’s Emitter.

3. Merging sequences of farms with the same number of Workers (farm fusion).

4. Combining two farms with non-default Emitter and/or Collector nodes (farm

combine).

5. Combining two farms by using the all-to-all building block (all-to-all introduc-

tion) if the Collector of the first farm and the Emitter of the second farm are

default service nodes.

The rest of this chapter is organized in two parts. The first part introduces the

graph transformations currently implemented and also describes which ones can be

implemented automatically and under what conditions. The second part focuses on

the evaluation of some of the transformations proposed by considering applications

and use-cases implemented in other libraries or frameworks (e.g., PiCo and WindFlow)

that are using the FastFlow library as RTS.
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8.2 Process Network Transformations

The directed FastFlow application graph is composed of different kinds of sequential

nodes connected by point-to-point channels. Nodes’ functions, either executing busi-

ness logic or RTS code, are executed in parallel on the available cores according to

the data-flow execution model. The graph represents the process network topology

describing the parallel application, and it can be analyzed and statically transformed

by combining or removing nodes. Apart from simple compositions of two sequential

nodes that can be obtained by using the sequential node combiner building block

(described in Section 7.2.3), other compositions might not be simple to implement

for the programmer. For this reason, the FastFlow framework provides a concurrency

graph transformer software component which implements a set of functions that can

be used to combine parallel building blocks in several different ways with the aim to

apply interesting and useful transformations to the process network topology. In the

following, we discuss some of these functions covering the most notable cases.

When the farm building block is connected in pipeline with other building blocks

(either sequential or parallel), the Emitter and Collector entities might be used just

to set proper input/output cardinality and to provide the connections with previous

and subsequent building blocks. In these cases, they are “service nodes” and do not

execute any business logic. However, the FastFlow RTS reserves to them a dedicated

thread. The Emitter node cannot be removed because the base farm building block

requires it as a master node. Instead, the default Collector node can be removed

forcing the Workers of the farm to send the output results directly to the next building

block. However, even if the default Emitter cannot be removed, it can be combined

with a previous sequential node (if present) and, from the viewpoint of the resource

usage, this operation is semantically similar to the Emitter removal.

We distinguish four transformations aimed at reducing the number of service nodes

or at removing potential bottlenecks:

1. Given a single farm building block, the transformation removes the Collector

node (if present) and combines the previous sequential node (if present) with
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the default farm Emitter. These transformations are described in Section 8.2.1.

2. Given a sequence of farm building blocks, the transformation fuses all farms in

a single farm building block. This transformation is described in Section 8.2.2

(farm fusion).

3. Given two farms in pipeline that cannot be merged (for example because they

have two different scheduling policies), the transformation combines them re-

moving the Collector of the first farm. This transformation is described in

Section 8.2.2 (combining two farms).

4. Given two farms in pipeline, the transformation substitutes the two farms with

a single farm whose Worker is an all-to-all building block. The objective is

twofold: i) to remove the intermediate Collector and Emitter nodes; ii) to repli-

cate one or both of them exploiting the all-to-all parallel structure. This trans-

formation is described in Section 8.2.3.

For the sake of simplicity, unless stated otherwise, in the rest of this chapter we will

examine cases where farm’s Workers and all-to-all ’s Workers are sequential building

blocks.

8.2.1 Reducing service nodes

Let us consider the case sketched in Figure 8-1 where the application (or part of it) is

a three-stage pipeline composed by two standard sequential nodes (the first and last

one) and a farm building block with default Emitter and Collector nodes.

This network can be transformed in one of the two options depicted at the bot-

tom part of the figure (i.e. opt1 and opt2). Both configurations have the same

parallel semantics of the original topology even if they have a lower concurrency de-

gree. From the standpoint of the FastFlow RTS, the two configurations allow the

programmer to spare two threads. This transformation can be applied by calling the

optimization function optimize static and setting the flags remove collector and

merge with emitter in the OptLevel object passed as argument to the function. As
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Figure 8-1: Transformation that removes the default Collectors and merges previous
stage with farm’s Emitter.

1 ... // creating Stage1, myFarm and Stage2

2 ff_Pipe<> pipe(Stage1, myFarm, Stage2);

3

4 OptLevel opt;

5 opt.remove_collector =true;

6 opt.merge_with_emitter=true;

7 optimize_static(pipe, opt);

8

9 .... // adding the transformed pipe to another pipe

10 ff_Pipe<> pipe2(Stage0, pipe, Stage3);

11 ...

12 pipe2.run();

Code 22: How to use the optimize static function.

an example, let us consider the snippet of Code 22 where the farm Collector is removed

(line 5) and the Stage1 is merged with the farm’s Emitter of the myFarm instance

(line 6). The transformed pipeline (pipe), obtained as result of the optimize static

function (line 7) is then added as a middle stage of the second pipeline pipe2 (line 10).

As we shall see, the optimize static function can be used to apply multiple

transformations using the same approach.

Another interesting case from the viewpoint of reducing the size of the FastFlow

concurrency graph is the nesting of farm of farms, i.e. a farm building block whose
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Figure 8-2: Farm of farms transformations. The default farm’s Collector of the
internal farms are removed.

Workers are farms as well. Even though farm nesting is not so common, it can be the

result of automatic code refactoring and/or the application code rewriting rules [163].

If the Collector nodes of the internal farms are default Collectors, then it is possible

to remove them. All results produced by Workers of internal farms will be collected by

the outermost farm building block (see Figure 8-2). This transformation is automat-

ically implemented by the FastFlow RTS by calling the function optimize static

(and setting the flag remove collector) either on the top-most pipeline building

block or directly to the farm building block that the user want to refactor. The

implementation recursively looks for farm contained in a farm building block. A par-

ticular case handled by the optimize static function is when the internal farm (with

a default Collector) is the last stage of a pipeline building block used as Worker of a
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farm.

Other interesting opportunities in which it is possible to reduce the service nodes

arise when there are two farms connected in pipeline. We will discuss these cases in

the next sections (Section 8.2.2 and Section 8.2.3).

8.2.2 Farms in pipeline

In this section we want to analyze the problem of combining and fusing two or more

farm building blocks. We distinguish between combining two farms and fusing two

farms. In the first case only a few parts of the two building blocks are merged.

Therefore, after the transformation, there are again two instances of the farm. In

the second case the two instances are merged into a single farm instance. Fusion is

a technique in which a sequence of operators, executed by a concurrent entity and

forming a pipeline graph, are merged and executed by a dedicated concurrent entity.

The motivations for implementing the fusion and the combine operations for two

(or more) farm building blocks, may be several:

1. To reduce the number of active entities that are used in the RTS implementation

of two farms in sequence.

2. To reduce the number of hops (i.e. the number of channels and nodes) a data

element has to traverse from when it enters the first farm to when it exits from

the second farm.

3. To avoid potential bottlenecks introduced by the communication channel be-

tween the Collector of the first farm and the Emitter of the second farm.

4. To eliminate potential bottlenecks introduced by either the sequential Collector

of the first farm or by the sequential Emitter of the second farm.

In the following we examine the first two cases. The other two will be discussed in

Section 8.2.3.

Algorithmic skeleton transformations have been extensively studied in the past [239,

14]. Some skeleton-based frameworks already implement the fusion operation mainly
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applied to data parallel skeletons (the so called map fusion) [148, 61, 147]. Other non-

skeleton approaches such as StreamIt [333], uses the filter fusion operation to coarsen

the granularity of streaming filters based on cost estimate [172]. From the theoret-

ical standpoint, it has been demonstrated that any stream parallel composition of

Pipeline and Task-Farm patterns can always be transformed into an equivalent “nor-

mal form” skeleton (i.e. a single farm building block whose “fat” Workers execute

multiple functions), which uses the same resources (in a different way) and delivers

at least the same service time [14].

On the basis of these theoretical and practical results, we are interested in provid-

ing the FastFlow user with mechanisms that allow fusing pipeline sequence of farms

regardless of what they are used for, i.e. for implementing a Task-Farm or a Map

patterns.

Farm fusion

The farm fusion transformation can be performed without affecting the result com-

puted by the FastFlow program if the Emitter and Collector entities are default RTS

nodes. It simply changes the amount and kind of parallelism in the concurrency graph

describing the application, hence it may affect the performance potentially achieved

by the application. Examples of computations that use sequences of multiple Task-

Farm patterns are Ferret [228] and Dedup both part of the PARSEC benchmark

suite targeting multi-core platforms [47]. We will study these two applications in the

evaluation section (Section 8.3).

The function combine farm nf, part of the FastFlow transformation API, gets

in input two farms with sequential Workers and returns a new farm building block

whose Workers are obtained by using the sequential node combiner building block that

merges Workers of the first farm with the corresponding Workers of the second farm.

The function can be called multiple times to combine more than two farms. The only

requirements for calling the combine farm nf function is that the two farms have the

same number of Workers and that both farms are either “standard” or “ordered” farm

building blocks. If the two farms are ordered farms then to be fused they must have
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Figure 8-3: Farm fusion transformation

the same ordering policy. No other checks are performed by the function. This means

that, if the first farm has a non-default Collector and/or the second farm has a non-

default Emitter, the transformation is discarded. Therefore, this function has to be

properly used by the RTS programmer, typically in conjunction with other low-level

transformation functions to obtain the correct final farm fusion transformation.

However, under particular conditions, the farm fusion transformation is imple-

mented automatically by the optimization function optimize static. The program-

mer does not need to call the function combind farm nf. The function optimize static

accepts the flag merge farms set in the OptLevel object passed as parameter to the

function (see also Code 22). Its implementation looks for the longest sequence of

farms having all the requirements necessary to enable the application of the farm

fusion operation, and then directly modifies the FastFlow concurrency graph substi-

tuting the sequence found with the new transformed version. The requirements for

the “automatic” farm fusion are the following:

1. The sequence of farms must have the same number of Workers.

2. The farms must use default Emitter and Collector entities (the Collector may

not be present). The first farm of the sequence may use a custom Emitter node
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and the last farm of the sequence may use a custom Collector node.

3. The channel configuration must be the same for all farms (i.e. all farms must

use either bounded or unbounded channels).

4. The data scheduling strategies must be the same (either round-robin or on-

demand).

5. If the first farm of the sequence is an order preserving farm, then all other farms

must be order preserving farm using the same policy.

.

Figure 8-3 shows the result of the farm fusion operation applied to a pipeline

containing a sequence of three farms.

Combining two farms

When it is not possible to fuse two farms because they have a different number of

Worker nodes or because the Collector of the first farm and/or the Emitter of the

second farm are non-default ones, it might still be possible to combine them. We call

this operation farm combine transformation.

Let us consider the cases sketched in Figure 8-4. The figure shows three cases

where the farm fusion transformation cannot be applied. However, it is possible to

combine the Collector of the first farm with the Emitter of the second farm building

block regardless of whether they are user-defined or not. In this way, the sequence of

the two farms spares a FastFlow node.

All transformations sketched in Figure 8-4 are implemented by the function combine farms

(together with other transformations that will be discussed with more details in Sec-

tion 8.2.3). The function gets in input two farms to combine and returns a pipeline

containing the transformed building blocks.

An interesting case of the farm combine transformation is given when in the

sequence of two farms there is an ordered farm building block (i.e. it guarantees that

the output sequence produced respects the input ordering of data elements as seen

by the Emitter – Section 7.4). This case introduces some constraints given by the
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Figure 8-4: Farm combine transformations.

need to preserve the ordering of stream elements.

The transformations allowed in this case are the following ones:

1. The first farm is a standard farm building block while the second one is an

ordered farm. This is the simplest case, if the Collector of the first farm is

present, then it can be removed, otherwise it can be merged by means of the

sequential node combiner building block with the Emitter of the ordered farm.

2. The first farm is an ordered farm building block while the second one is a

standard farm. In this case, the Collector of the first farm cannot be removed

even if it is a default Collector because its presence is required to preserve the

ordering of stream data elements. The transformation builds a new pipeline

composed by two farms where the first farm has a new Emitter which adds

unique ids to each input element produced toward the Workers (it also wraps

the user code executed by the Emitter of the first farm, if it were present). The

user code executed by the Workers is wrapped in a RTS node which removes the
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Figure 8-5: Combining ordered farm and standard farm in pipeline.

id before calling the svc method of the user’s node and then adds again the same

id before the result is forwarded to the Emitter of the second farm. The second

farm has a new Emitter which is a composition of two sequential nodes: the

first one is a RTS node which on the basis of data elements’ ids produces them

in output in order (without the ids); the second one is a sequential combiner

node between the Collector of the first farm (if present) and the Emitter of the

second farm. The resulting topology produced by this transformation is shown

in Figure 8-5.

The first transformation is handled as a particular case of the combine farms

function. The second case is handled by the combine ofarm farm function which

gets in input the two farms and returns the transformed pipeline building block.

Currently, the second transformation is not provided by the optimize static

function described in Code 22.
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Figure 8-6: Combining two farms by using the all-to-all building block.

8.2.3 All-to-all introduction

As we have seen in Section 8.2.2, given two farms in pipeline, if both the Collector

of the first farm and the Emitter of the second farm are default nodes, then it is

possible to apply the farm fusion transformation. Instead, if one of the two or both

are user-defined nodes, then we can apply the farm combine transformation.

Here we consider an alternative transformation. Instead of fusing the Worker

nodes, we want to combine them by using the all-to-all building block. The primary

objective of this transformation is not to reduce the number of RTS threads. Instead,

it is to remove the potential bottleneck introduced by the Collector and Emitter

service nodes without sacrificing the amount of parallelism of the application. The

new topology is sketched in Figure 8-6. The Workers of the first and second farm

are automatically transformed into multi-output and multi-input nodes, respectively.

The Workers of the first farm are added to the L-Worker set of the all-to-all while

the Workers of the second farm are added to the R-Worker set of the same all-to-all

building block.

If the Collector of the first farm and/or the Emitter of the second farm are user-

defined, the two farms can be combined without any application change if both of

them could be replicated. This means that they do not have any internal state or

that the internal state is used read-only. The resulting topology is the one that is

shown in Figure 8-7 where R=E and G=C. In the general case, the nodes R and G can

be any sequential composition of nodes such that they are eventually a multi-output

node and a multi-input node, respectively.

The transformation described above is implemented by the function combine farms
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Figure 8-7: Combining two farms with user-defined Collector and Emitter.

whose signature is shown in the following snippet of code:

template<typename R_t, typename G_t>

const ff_pipeline combine_farms(ff_farm& farm1, const R_t *R,

ff_farm& farm2, const G_t *G,

bool merge);

The function’s parameters R and G must be sequential FastFlow nodes, and, if not

null, they will be replicated and combined through the sequential node combiner with

the farm1 Workers and farm2 Workers, respectively.

The function returns a new pipeline building block that can be added to another

pipeline or can be executed directly. Depending on the values provided as arguments

(R, G and merge), the transformations executed by the combine farms function are

different. In particular, it provides four different transformations described in the

following.

If merge is false we can distinguish the following cases:

• Both R and G are valid pointers: it produces exactly the topology sketched
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in Figure 8-7.

• Only the R pointer is valid: it produces a pipeline of a single farm whose

Worker is an all-to-all building block where the nodes of L-Workers are a com-

position of farm1’s Workers and the node R.

• Only the G pointer is valid: it produces a pipeline of a single farm whose

Worker is an all-to-all building block where the nodes of the R-Workers are a

composition of the G node and farm2’s Workers.

• Both pointers are not valid: it produces the topology sketched in Figure 8-6.

. Instead, if the merge is true, the combine farms function executes the following

transformations:

• Both R and G are valid pointers: this produces a pipeline of two farms where

the first one does not have the Collector while the second one has as Emitter

node the composition of the R node and G node (this is the case sketched in

Figure 8-5 valid also for standard farm building blocks).

• Only the R pointer is valid: this produces a pipeline of two farms where

the first farm does not have the Collector node while the second farm has as

Emitter the R node (this transformation substitutes the Emitter of the second

farm and removes the Collector of the first farm, if present).

• Only the G pointer is valid: this is equivalent to the previous case (Only the

R pointer is valid) where R=G.

• Both pointers are not valid: in this case, if the parallelism degree of the two

farms is the same, it applies the farm fusion transformation. If the parallelism

degree of the two farms is different, the transformation applied is the same as

the case when merge=false.

.
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8.2.4 Utility functions

The concurrency graph transformer software layer provides a set of utility (or helper)

functions to help the programmers to transform and modify building blocks. The

pipeline building block provides methods to remove and add stages; the farm pro-

vides methods to change the Emitter node and Workers nodes; the all-to-all pro-

vides methods to change L- and R-Workers. These methods together with some

utility functions that can be used to combine a sequential stage with a parallel

building block enable a large set of possibilities for decomposing the building blocks

and re-assembly them in a different way. Some of these combining functions are

combine with firststage and combine with laststage which allow to combine a

sequential node as first and last node of a pipeline whatever is the current first and

last stage of the pipeline. Other similar functions are combine right with a2a and

combine left with a2a for the all-to-all building block and combine right with farm

and combine left with farm for the farm building block.

8.3 Evaluation

In this section, we evaluate the impact on the application performance of some of

the transformations discussed in the previous sections. Specifically, we consider the

farm fusion transformations in two distinct PARSEC benchmarks: Ferret and Dedup.

Then we consider two different cases where the all-to-all building block is used to in-

crease both resource efficiency and performance by modifying the RTS of two frame-

works implemented on top of FastFlow: PiCo and Peafowl. Finally we will examine

the WindFlow library by considering two use-cases. The WindFlow library provides

the user with a set of Data Stream Processing parallel patterns implemented on top

of the FastFlow pipeline and farm building blocks. It makes deep use of almost all

transformations discussed in previous sections.
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8.3.1 Farms fusion

To evaluate the farm fusion transformation we consider two applications from PAR-

SEC benchmarks [47] (Princeton Application Repository for Shared-Memory Com-

puters)1, namely Ferret and Dedup. Their parallelization using parallel patterns has

been studied in our previous work [129]. As reference platforms for the evaluation

we consider the Xeon, KNL and Power systems described in Table. 6.1. We used as

performance metric the speedup measured considering the so-called region of interest

(ROI), which includes all parts sensitive to the parallelization.

Figure 8-8: Pipeline schema of the Ferret application as implemented in the PARSEC
benchmark using the PThreads library.

Figure 8-9: Building blocks implementation of the Ferret application. Top):
The same topology of the PARSEC PThreads version. Bottom): Version ob-
tained by calling optimize static with merge farms, remove collector and
merge with emitter optimization flags.

1We refer to the PARSEC version 3.0: http://parsec.cs.princeton.edu/overview.htm
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Ferret. This is a stream-parallel benchmark. It is based on a toolkit used for

content-based similarity search of feature-rich data such as audio, images, video, and

3D shapes [228]. The toolkit is configured for image similarity search.

As sketched in Figure 8-8, this application can be modeled as a pipeline com-

putation of six stages where the first and last ones are sequential components while

the other four stages are internally concurrent. Communication channels between

pipeline stages are implemented by using queues of fixed size. The FastFlow parallel

version can be simply derived from the PARSEC PThreads version implementing the

sequential stages using sequential building blocks and the parallel stages by using a

farm building block [129]. The sequence of four farms can be fused in a single farm

because all of them have the same number of Workers and the same scheduling policy

(the default round-robin policy). The Workers of the new farm building block are

obtained by combining in the correct order the Workers of each farm in the pipeline.

In addition the first and last stage (load and output nodes, respectively) can be

combined with the Emitter and Collector of the new farm. The building block topol-

ogy describing the Ferret application before and after the transformations is shown

in Figure 8-9.

Code 23 shows the FastFlow parallel code. The business logic code of each stage

is encapsulated in a sequential FastFlow building block. Then, each node is added to

the ff Pipe pattern (this is the high-level version of the ff pipeline building block)

respecting the pipeline order. The farm building block implementing the concurrent

stages uses n replicas of the sequential building block implementing the stage. At

line 26 all transformations specified with the optimization flags at line 25 are applied

automatically to the pipeline pipe.

We measured the speedup of the Ferret application on all platforms. The plot

in the left-hand side of Figure 8-10 shows the speedup on the KNL platforms. The

performance improvement compared to the base FastFlow version is about 9% on the

KNL platform and around 2% on the Xeon platform (see the table in the right-hand

side of Figure 8-10). Basically, no performance improvement is obtained on the Power

platform. The number of threads saved with the transformations is 3 · (n + 2) + 2
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1 struct Load: ff_node_t<long,load_data> { // first stage

2 load_data *svc(long*) { <business logic code> };

3 } In;

4 struct Segment:ff_node_t<load_data,seg_data> { // second stage

5 seg_data *svc(load_data *in) { <business-logic code> };

6 };

7 struct Extract:ff_node_t<seg_data,extr_data> { // third stage

8 extr_data *svc(seq_data *in) { <business-logic code> };

9 };

10 struct Index:ff_node_t<extr_data,vec_query_data> { // fourth stage

11 vec_query_data *svc(extr_data *in) { <business-logic code> };

12 };

13 struct Rank:ff_node_t<vec_query_data,rank_data> { // fifth stage

14 rank_data *svc(vec_query_data *in) { <business-logic code>};

15 };

16 struct Output:ff_node_t<rank_data> { // sixth stage

17 void *svc(rank_data *in) { <busines-logic code> };

18 } Out;

19 auto farm1 = ...; auto farm2 = ...; // creating farms stages

20 auto farm3 = ...; auto farm4 = ...;

21 ff_Pipe<> pipe(In, farm1, farm2, farm3, farm4, Out);

22 OptLevel opt;

23 opt.remove_collector =true;

24 opt.merge_with_emitter=true;

25 opt.merge_farms =true;

26 optimize_static(pipe, opt);

27 pipe.run_and_wait_end(); // pipeline execution

Code 23: FastFlow code of the Ferret application.

where n is the parallelism degree of the farm building block.

One of the main limitations for improving the performance of the Ferret appli-

cation is the loading of input files in the main memory. Since input files can be

computed in parallel and the order of which one is computed first is not important,

the part of the load module that reads files into main memory can be parallelized by

moving it into the farm building block (see Figure 8-11, we divided the load module

into two modules load1 and load2 the first opening the file and the second loading

its content into main memory, respectively). The speedup of the modified version is

reported in Figure 8-12. As can be seen, the improvement is considerable both on

the KNL (about 66%) and Power (about 38%) platforms. This is an interesting case
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Figure 8-11: Modified FastFlow version of the Ferret application.
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where pattern composition allows the programmer to prototype alternative versions

that are more efficient than the initial one, by changing just a few lines of code.
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Figure 8-13: Pipeline schema of the Dedup application as implemented in the PAR-
SEC benchmark using the PThreads library.

Dedup. Like Ferret, Dedup is a coarse-grained streaming application that com-

presses a data stream with a combination of global and local compression phases

called “deduplication”. The PThreads version implements a pipeline with five stages,

where each middle stage is implemented with a thread pool (the first and last stages

are single-threaded). Figure 8-13 shows a representation of the Dedup pipeline. The

PThreads implementation is not a “pure” pipeline: results produced by the third stage

may be transmitted directly to the last stage skipping the fourth stage. Furthermore,

the second stage can generate more output items for each input data element. To

lower the contention on communication channels, the PThreads implementation uses

multiple queues of fixed size to connect consecutive stages. Each queue is assigned to

a subset of threads in the same pool.

The first stage (Fragment) reads the data stream from the disk and then partitions

the data at fixed positions; then, it produces in output a stream of data chunks.

Each chunk can be processed independently from the other chunks. The second stage

(Refine) further partitions the input chunk into smaller fine-grained chunks generating

a nested stream. The third stage (Deduplication) checks if the chunk has already

been compressed in the past by accessing a hash table. If so, the chunk is marked as

duplicate. The fourth stage (Compress) compresses all the chunks that are not marked

as duplicate, and updates the corresponding table entries. To ensure correctness in

the access to the table performed by the Deduplication and the Compress stages, each

bucket in the hash table is protected with a lock. Finally, the Reorder stage writes

the final compressed output data into the output file. If the input chunk was marked

as duplicate, it stores a “reference” to the corresponding chunk. This stage reorders

the data chunks as they arrive to match the original order of the uncompressed data.
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This stage represents the main bottleneck of the Dedup pipeline, both due to data

reordering and to I/O operations.

The Dedup application can be modeled as a FastFlow pipeline, where the first stage

and the last stage are sequential nodes, while the three middle stages are instances

of the farm building blocks. We implement the bypassing mechanism between the

third and fifth stage by adding a flag to each data element. The flag is set to true

if the data element must be transmitted directly to the last stage. In that case,

the Compress stage only forwards the element to the final stage without any further

processing. The building block schema of this parallelization is very similar to the

Ferret one (top part of Figure 8-9). The middle farm can be automatically merged

obtaining a single farm building block like the one obtained in the Ferret applications

(bottom part of Figure 8-9).

The speedup results are shown in Figure 8-14. The plot on the left-hand side

shows the speedup figures obtained in the Power platform. In this case the perfor-

mance improvement is about 16% on the Power platform and around 1% on the KNL

platform. Strangely in the Xeon platform the building blocks fusion does introduce

a small performance degradation.

As for Ferret, also for this benchmark, it is possible to derive a new version of the

Dedup application. The new version exploits the ordering feature of the farm building
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Figure 8-15: Modified FastFlow version of the Dedup application.
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Figure 8-16: Left): Speedup of the modified version of the Dedup application on the
Power platform. Right): Maximum speedup obtained by the modified and optimized
FastFlow version on the Xeon, KNL and Power platforms.

block, allowing to lighten the computational burden to the last stage of the pipeline

that does not need to keep the ordering of chunks. The last stage (Reorder) has been

substituted by the Output stage that simply writes the already ordered results into

the disk. The ordering policy used in the experiments is the round-robin one. The

building block structure of the new version is sketched in Figure 8-15.

The speedup figures obtained on the Power platform for the new version are shown

in the left-hand side of Figure 8-16. The new version provides an 8% improvement

on this platform and a marginal improvement on the KNL and Xeon platforms (see

the table on the right-hand side of Figure 8-16). For all platforms the advantage

compared to the original PThreads implementation is significant from about 14% to

about 40%.
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All in all, the farm fusion transformation allows us to increase the performance

in almost all cases tested. The reduction of the number of nodes used in the FastFlow

RTS is significant, and the resulting topology uses a lower number of threads with

respect to the initial versions. Moreover, we have shown that the building blocks

composition approach allows the programmer to quickly prototype different versions

of the same application by applying modifications to specific parts of the code. Both

for Ferret and Dedup applications, the versions obtained changing just a few lines of

code and re-using all other already written parts, combined with the process network

optimization for reducing the number of threads, allowed us to obtain significant

advantages in terms of speedup in all three platforms considered. Despite the fact

that different versions could also be implemented in PThreads (or other programming

models), this would require re-implementing from scratch all the communications and

the data dependencies between different parts of the parallel application. On the

contrary, in pattern-based model dependencies and communications are implicitly

coded in the pattern.

8.3.2 All-to-All Introduction

In this section we evaluate the transformation that introduces the all-to-all building

block as merging of two farms in pipeline (see Section 8.2.3). To this end, we consider

two different application scenarios: 1) the Word Count application implemented in

the PiCo parallel framework [251]; 2) a fine-grained network application (Protocol

Identification) implemented using the Peafowl framework [110]. The aim is to evaluate

the performance of the proposed graph transformations in two real use-case scenarios.

The PiCo framework. PiCo (Pipeline Composition), is a C++ framework aim-

ing at enhancing the performance of Big Data Analytics applications on multi-cores

through a unified model for batch and stream processing. It provides an expres-

sive programming model supported by a functional abstract semantics. The abstract

model is coupled with a concrete API expressed using modern C++, thus ensur-

ing good code portability. One distinguishing feature of PiCo is the polymorphic
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Figure 8-17: Left): PiCo logical implementation schema. Right): Word Count PiCo
semantic graph.

Figure 8-18: Building blocks implementation of the FlatMap+ReduceByKey opti-
mization in PiCo.

pipelines, that allow uniform programming for both stream and batch processing.

PiCo is currently implemented on top of FastFlow and its logical architecture is

sketched in the left-hand side of Figure 8-17. It also provides a set of rewriting rules

for optimizing the Data-Flow graph describing the application. For instance, in a

Map+ReduceByKey composition, part of the reducing phase is moved into the Map
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part to be computed in parallel.

It offers a set of operators as core components of Pipeline (e.g., Map, FlatMap,

ReduceByKey). These operators are implemented on top of FastFlow pipeline, farm

and sequential node building blocks.

We have modified the PiCo optimization layer to introduce the all-to-all building

block each time the Data-Flow graph contains a sequence of Map/FlatMap + Reduce-

ByKey operators. The building block implementation of the FlatMap+ReduceByKey

optimization using the all-to-all building block is shown in Figure 8-18.

The Emitter of the ReduceByKey farm (RBK E in the figure) is replicated and

combined with each Map Worker. In addition, in front of each ReduceByKey Worker

a service multi-input node is combined with each Worker to set the proper input

cardinality of the R-Workers of the all-to-all building block. All these operations are

automatically implemented by the combine farms function (see Section 8.2.3).

Word Count in PiCo. Although the “Word Count” is a very simple application,

in the context of Big Data analytics it is considered a reference test case. It finds the

number of occurrences of each word from an input text file. The input is read line by

line from the input file. Each line is tokenized into a sequence of words using a Map

pattern (FlatMap in PiCo) as each line contains a varying number of words. Then,

each word w is mapped to a key-value pair < w, 1 > which are grouped by-word and

then the values (i.e. the 1s) are summed up by a ReduceByKey pattern node. Finally,

the result (i.e. one pair per word along with its number of occurrences in the text),

is written into the text file. The semantic graph of the Word Count application in

PiCo is sketched in the right-hand side of Figure 8-17.

Figure 8-19 shows the results obtained testing the Word Count application on the

Xeon platform with a large number of keys (test called many keys) and a small number

of keys (test called the few keys). The many keys test uses about 350K keys while the

few keys test uses 10K keys. The input text file has two hundred thousand lines and

a size of about 1.3GB. For the many keys test, we fixed the number of Workers of the

FlatMap to 24 and we varied the parallelism degree of the ReduceByKey component.

In the left-hand side of Figure 8-19 is shown the optimized version (FF opt) obtains a

299



 4.5

 5

 5.5

 6

 6.5

 7

 7.5

1 2 4 6 8 10 12 14 16 18 20 22 24

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

reduce pardegree

Word Count (many keys), Xeon platform

FF
FF opt

1

2.2

5

15

35

1−1 8−2
16−2

24−2
24−4

24−8
24−12

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

pardegree (map−reduce)

Word Count (few keys), Xeon platform

FF
FF opt

Figure 8-19: Left): Word Count execution time in the configuration “many keys”.
The FlatMap uses 24 Workers whereas the number of Workers of the ReduceByKey
varies. Right): Execution time for “the few keys” configuration. The x-axis reports
the number of Workers of the FlatMap and ReduceByKey used.

better execution time (the improvement is about 5%). However, the most interesting

aspect is that the transformed version does not degrade considerably if the number

of Workers of the ReduceByKey increases thus demonstrating a more stable behavior

compared to the non-optimized FastFlow version.

The test with the few keys is reported in the right-hand side of Figure 8-19. In

this case, since the ReduceByKey part is less critical, we keep its number of Workers

fixed (equal to 2) varying the number of Workers of the FlatMap component up to the

available number of cores. Then, we start increasing that number of the ReduceByKey

Workers to see if the performance remains stable. As can be seen from the figure,

there are almost no differences between the default and the optimized FastFlow version

and when the parallelism degree of the reduce part increases the performance does

not decrease as expected.

This simple tests demonstrate that all-to-all transformations are beneficial for

optimizing the Map+Reduce compositions. It provides higher scalability when the

Reduce part may be a bottleneck and does not introduce extra overheads when the

Reduce part is not critical.
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Figure 8-20: Peafowl parallel framework logical architecture.

The Peafowl framework

Peafowl is a flexible and extensible Deep Packet Inspection (DPI) framework which

can be used to identify the application protocols carried by IP (IPv4 and IPv6) pack-

ets and to extract and also process data and metadata carried by those protocols2.

The framework is structured using the Task-Farm pattern whose Workers access a

carefully designed network flows table that is partitioned among all Workers. It is cur-

rently implemented by using the FastFlow building blocks pipeline and the farm [110].

Each Worker processes only the network flows belonging to its flow table partition.

Therefore, the farm Emitter uses ad-hoc scheduling function for the input packet

by hashing the information contained in the packet header. Once a generic Worker

receives the packet from the Emitter, by using the state information contained in the

hash-table, it manages the TCP stream, infers the protocol, and if required, after the

protocol has been identified, it executes further processing by calling proper user’s

application callbacks.

However, in the case of high-input rate, the time required to parse the network and

transport headers and to apply the hash function might be significant and therefore

2Peafowl project home: https://github.com/DanieleDeSensi/peafowl
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the centralized farm Emitter may limit the framework scalability. To avoid this

sequential bottleneck, the Peafowl framework allows the user to replace the farm

Emitter with a second farm (called L3 farm) where the Emitter is replicated. The

resulting topology is a two-stage pipeline where the first and second stages (L3 farm

and L7 farm, respectively) are two farms building blocks (see Figure 8-20).

In the tests, we considered the Peafowl configuration with two farms. Specifically,

we have modified the framework to introduce the all-to-all building block for merging

them. The L3 Workers of the first L3 farm are the L-Workers of the all-to-all while

the L7 Workers of the L7 farm are the R-Workers of the all-to-all building block. This

transformation, that allows us to spare two FastFlow threads, one for the L3 Collector

and one for the L7 Emitter, can be introduced because the L7 Emitter does not have

any internal state and can be replicated. The resulting building block topology is

very similar to the one obtained for the Word Count test in the PiCo framework

(see the bottom schema in Figure 8-18). The R-Workers of the all-to-all use an on-

demand scheduling policy to dispatch packets toward the L-Workers (implemented

by a multi-input node combined with the L7 Worker). The L7 Worker for each HTTP

packet identified, calls a user’s callback that simply inspect the packet payload. The

resulting computation per packet executed by the L7 Worker is very fine-grained with

an average execution time less than 1µs on the Xeon platform.

We tested the network application with a synthetic dataset containing several

millions of packets, most of them being HTTP packets (about 90%). Packets are

directed to the Peafowl farm at maximum speed by a dedicated node part of the

application pipeline. This test aims to measure the maximum throughput sustained

by the system for the two configurations considered.

The results obtained varying the number of Worker threads and considering the

default Peafowl configuration (i.e. two farms in pipeline – FF) and the transformed

configuration (i.e. one farm with a single all-to-all Worker – FF opt) are reported in

Figure 8-21.

The two configurations have been compared with an equal number of RTS threads.

The default version uses (L3Workers+L7Workers+4) threads while the transformed
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Figure 8-21: Left): Throughput (millions of packets per second – Mpkts/s) on the
Xeon platform of the Peafowl Protocol Identification application with and without
the all-to-all transformation. Right): Table showing the configuration of L3 and L7
Workers used for the given number of RTS threads. For instance for the case 10
threads, the FF version uses 1 L3 Worker and 5 L7 Workers, whereas the FF opt
version uses 2 L3 Workers and 6 L7 Workers.

version uses (L3Workers + L7Workers + 2) threads. As can be seen, the FF opt

version is able to obtain higher-throughput. This is because the transformed version

can use two extra Worker threads for the L3 Worker set and/or L7 Worker set. The

exact number of Workers used for the R-Workers and L-Workers is shown in the table

at the right-hand side of Figure 8-21. For example, for the case with 12 threads, the

FF version uses 1 L3 Worker and 7 L7 Workers, whereas the FF opt version uses 2

L3 Workers and 8 L7 Workers.

It is worth noting that, given the very fine-grained computation, the highest

throughput is obtained with 12 threads in both cases. This is because for that config-

uration all threads are packed in a single CPU of the Xeon platform, and all threads

share the last-level chip cache. The FF opt version is more efficient because the two

spared service threads are used to do useful work (one extra Worker both for the L3

and L7 parts), and this leads to an absolute gain of more than 40%. When increasing

the number of threads, some of them are pinned onto cores of the second CPU, thus

not sharing any cache and with a higher cost to dispatch packets from L-Workers

and R-Workers (for the higher cost of inter-thread communications not sharing chip

cache, see Chapter 6).

303



To conclude, we would like to remark that both PiCo and Peafowl frameworks

that we used in our tests were already optimized with excellent performance figures

in the application considered. The extra boost in the performance we were able to

obtain implementing suitable graph transformations by using the all-to-all building

block, confirms that the new building block widens the opportunity to introduce

optimizations in addition to increasing composability.

8.3.3 Multiple transformations

Here we consider the WindFlow parallel library targeting Data Stream Processing

(DSP) applications. It is currently under development at the Parallel Computing

Group of the Computer Science Department of the University of Pisa3. First, we

provide a brief introduction of the library and then we discuss the optimizations

currently employed by the library which make extensive use of the FastFlow graph

transformations offered by the new FastFlow transformations software layer.

The WindFlow library. The library provides the user with a set of ready-to-

use, user-friendly implementations of some of the most relevant patterns in the DSP

context for multi-cores platforms [127, 246, 248]. One of the main characteristics of

the library is the possibility to exploit pattern nesting to improve application per-

formance and enlarge the design space in DSP computations. The WindFlow library,

implemented on top of the FastFlow library, makes large use of the transformations

presented in this chapter with the aim to both reduce the number of concurrent en-

tities (nesting of patterns introduce many “service” nodes) and to remove potential

bottlenecks in the process network topology for high input rate.

Sliding windows model. Many applications (e.g., stock market prediction, web-

mining), do not consider outdated elements relevant to make near future decisions.

This peculiarity gives rise to the windowing paradigm where continuous queries are

applied to the most recent part of the data stream by using sliding windows buffers [31,

164]. How large is this part depends on the window size and on the sliding factor

3Parallel Programming Models Group: http://calvados.di.unipi.it/paragroup/
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Figure 8-22: Left): Sliding window model of computation. Right): UML diagram of
the WindFlow classes and relationship with the FastFlow classes.

(see the left-hand side of Figure 8-22). The choice of the sliding factor and the

window length, leads to several configurations that differ by the existence of a possible

overlapping between consecutive windows. In the most simple and general case, a

number of stream items (also called tuples) belong to multiple consecutive windows

thus allowing significant data reuse.

WindFlow patterns. The WindFlow library currently offers five streaming pat-

terns, one with sequential semantics and four parallel patterns all implemented as

C++ template classes extending the FastFlow classes. Figure 8-22 depicts the or-

ganization of the library’s source code. The sequential pattern named Win Seq rep-

resents the basic building block that directly extends the FastFlow sequential node

(through the ff node class). The parallel patterns, Win Farm, Key Farm, Pane Farm

and Win MapReduce, are based on either the pipeline or farm building blocks ex-

tending the FastFlow ff Pipe or the ff Farm classes. The farm building block is

configured with customized distribution and collection policies designed to enforce

the pattern-specific parallel semantics. The patterns enable the programmer to ex-

ploit different level of parallelism: inter-key parallelism where replicas of the same

transformation stage process items of different key groups in parallel; inter-window

parallelism where successive windows of the same sub-stream could be assigned and

processed in parallel by distinct replicas; and intra-window parallelism when specific

properties of the query function are known (e.g., associativity and commutativity),
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the processing of each window can be executed in parallel following the map-reduce

pattern, by splitting the window content and aggregating the partial results into a

window-wise result. Although some patterns already exploit more than one dimension

of parallelism, pattern nesting makes it possible to combine them in a general way

within a single application structure to have the possibility to explore many different

alternative solutions. In the following, we describe in detail only the patterns used

in our tests. The library supports both count-based and time-based windows in dif-

ferent configurations. In the first case, the window stores a fixed number of elements

(i.e. the window size), in the second case the number of elements in the window

depends on the input data rate. The Win Farm pattern [127] supports inter-window

Figure 8-23: Logical schema of some WindFlow patterns: a) Win Seq; b) Win Farm; c)
Pane Farm.

parallelism by extending the basic farm pattern of FastFlow by using a specialized

Emitter node for the scheduling policy. It replicates an inner pattern multiple times

according to the parallelism degree chosen by the user. The internal instances work

in parallel on distinct windows, regardless of their belonging to the same or different

sub-streams. The inner pattern can be any pattern in the library: notably, Pane Farm

and Win MapReduce patterns are natural candidates to be used within a Win Farm,

in addition to Win Seq instances that is the default case (in Figure 8-23(b) is shown

a Win Farm containing as a nesting pattern the Win Seq). Concerning the scheduling

policy, each input item is distributed to all the internal instances that are in charge

of computing at least one window where that item is included. This implies a multi-
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cast send. The Win Farm pattern has a custom Collector node which produces results

with the same key attribute in increasing order of identifier by implementing a proper

buffering of out-of-order results.

The Pane Farm models a parallel implementation of the paned approach to contin-

uous queries [224, 246]. The pattern supports inter-window parallelism, by executing

parts of different windows in parallel, and intra-window parallelism by using some

partial results of previous windows to avoid recomputing a new window from scratch.

To this end, it uses a two-level aggregation based on the notion of pane: panes are

windows of length equal to p = GCD(w, s) (where w and s are the window size and

the slide size, respectively). The computation consists in two phases: the Pane-Level

sub-Query (PLQ) computes a partial result for each pane, while in the Window-Level

sub-Query (WLQ) the results of the w/p panes that belong to the same window are

merged to produce the corresponding window result. The fundamental property is

that the partial results of panes shared among different windows are reused by sav-

ing computation time. The Pane Farm pattern is a pipeline of two stages, possibly

parallel inside, see Figure 8-23(c). The first stage is in charge of computing the in-

termediate results of the panes, while the second stage assembles the pane results to

build the results of each window. The pattern is implemented as a class extending

the ff pipe of the FastFlow library. The pipeline is built with two stages that can

be instances either of the sequential pattern or the Win Farm pattern according to

the concurrency level chosen by the user for that stage. The first stage works with

windows with length and slide equal to p (the pane length). The second stage always

works with count-based windows of length w/p and slide s/p.

Building block optimizations. The transformations currently used by the WindFlow

library for the Pane Farm pattern are those sketched in Figure 8-24, one for each pos-

sible implementation of the pattern. Specifically, the transformation with the label

d), requires to introduce a new node (called ORD in the figure) to keep the order-

ing of the pane results produced in parallel by the PLQ Workers. These nodes are

automatically added by the library when the transformation is used.

The Pane Farm pattern is an example of an advanced and complex pattern im-
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Figure 8-24: Pane Farm pattern implementations and their associated transforma-
tions. a) Both stages are sequential; b) First stage sequential and the second stage
parallel (instance of Win Farm). c) First stage parallel (Win Farm-based) and second
stage sequential; c) Both stages are parallel.

Figure 8-25: Building block schema of the “WF+PF” pattern and its transformed
version (WindFlow opt2 optimization level).

plemented as combination of simpler farm building blocks properly configured with

input parameters and proper scheduling and gathering policies.

Figure 8-25 shows the Win Farm + Pane Farm pattern composition (i.e. a Win Farm

whose Workers are Pane Farms) and the supported transformation. This pattern com-
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position (called simply “WF+PF” for brevity) allows us to combine the transforma-

tions of the Pane Farm pattern (see Figure 8-24) with the possibility to remove the

Collectors of nested PF farms into another farm (see Section 8.2.1).

To enable the WindFlow transformations (not only the ones presented here), the

library offers two command-line options: opt1 and opt2. The first option enables the

optimizations a), b) and c) sketched in Figure 8-24, while the opt2 options enables

all transformations including d) in Figure 8-24 and the one in Figure 8-25.

Evaluation

To evaluate the impact of the building block transformations presented in the previous

sections for the WindFlow library, we consider one synthetic benchmark and a simple

application. Both of them use the Pane Farm and Win Farm patterns described before.

The test is structured as a three-stage pipeline, where the first stage is the tuples

generator, the middle stage is the pattern selected, and the last stage is the results

collector.

We first evaluate the Pane Farm pattern and in particular the optimization of

combining both the PLQ and WLQ farms using the all-to-all building block (see

Section 8.2.3). We consider a synthetic use-case where the functions computed in the

PLQ and WLQ Workers introduce a negligible delay. This is an extreme case that

allows us to analyze the case where the service nodes used to connect the two farms

implementing the pattern may introduce a bottleneck in the Pane Farm pattern.

The synthetic Pane Farm benchmark considers count-based windows of size s =

1000 and a sliding factor of s = 10 tuples. The objective is to analyze the maximum

throughput sustained by the parallel implementation varying the number of Work-

ers used in the PLQ and WLQ farms. With an input rate of about R = 700, 000K

data elements per second (700Ktuple/s) the maximum number of results per second

produced by the pattern is (R·s)/w), that is 7, 000 results/s for the configuration con-

sidered. A lower number of results means that the Pane Farm pattern is a bottleneck,

i.e. one of the two farms is not able to sustain the data rate.

The results obtained on the KNL platform are shown in the left-hand side of
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Figure 8-26: Left): Pane Farm benchmark, count-based configuration, rate 700 Ktu-
ple/s, w = 1000s s = 10. Right): Skyline test, time-based configuration, rate about
500K tuple/s, w = 1s s = 2ms.

Figure 8-26. On the x-axis is reported the number of Workers used for the PLQ and

WLQ farms, respectively. It is possible to observe that the default version (PF ) is

not able to reach the maximum output rate for all configurations tested. Instead

the transformed version (PF opt in the figure) reaches the maximum value with 12

Workers for the PLQ farm and starting from 30 Workers for the WLQ farm. This

is due to the parallelization of the Emitter node of the WLQ farm that introduces a

sequential bottleneck in the default configuration when the number of WLQ Workers

is high. This is confirmed by the shape of the throughput curve of the default version.

The maximum value is reached with 12 PLQ Workers but as soon as the number of

WLQ Workers increases above 16 the throughput significantly degrades.

The second test considers a time-base configuration and a real kernel: the Skyline.

The Skyline query computes the set of non-comparable tuples using the Pareto domi-

nance. The operation is associative and commutative and therefore can be efficiently

computed in streaming using an incremental approach. However, WindFlow already

provides a batch-based implementation leveraging the SkyBench C++ library which

implements the efficient algorithm proposed by Lee & Wang [221]. We analyzed both

the Pane Farm and the Pane Farm nested into a Win Farm patterns (i.e. “WF+PF”).

For both versions we considered the corresponding transformed version obtained by

using the command-line optimization flag opt2.
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In the left-hand side of Figure 8-26 is shown the sustained throughput of the

Pane Farm pattern for 1 minute execution time in the stable state. For the config-

uration tested (R = 500Ktuples/s, w = 1000ms s = 2ms), both the PF and the

“WF+PF” patterns are able to reach the maximum throughput (given by w/s). The

fluctuations around the maximum value are given by small variations in the input

data rate introduced by the generator stage. The test demonstrates that the “PF opt”

and “WF+PF opt” do not introduce significant differences in the offered throughput

even if there are no bottlenecks in the system. It is worth pointing out that the “opt”

versions use a lower number of nodes. For example, the “WF+PF” uses 34 nodes

while the “WF+PF opt” configuration uses 28 nodes (2 PF replicas, 2 PLQ Workers

and 10 WLQ Workers).

Finally, Figure 8-27 shows the results obtained considering the count-based version

of the Skyline test-case. In this test, the aim is to measure the maximum throughput

sustained by the PF and the “WF+PF” patterns with and without the graph trans-

formations. All configurations use the same number of nodes (64 nodes, including the

generator and the collector nodes), this means that in the “opt” version it is possible

to use more Worker nodes. The results obtained are interesting. Basically, they sup-

port two claims: 1) a proper pattern nesting can improve the sustained throughput
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of the application (the “WF+PF” pattern offers about 10% more throughput than

the “PF opt”) ; 2) the building block transformations provide an extra performance

improvement of about 7% because they allow reducing the number of service nodes

thus making room for using more Worker nodes on the available resources.

8.4 Summary

In this chapter, we introduced the new FastFlow software component implementing

concurrency graph transformation mechanisms. We studied different transformations

aiming at reducing both the size of the graph and to remove sequential building

block that potentially may introduce bottlenecks in the process network implement-

ing the application. The new software layer provides a rich API implementing several

transformations. It also offers simple interface functions that can be used by the appli-

cation programmer to apply the most straightforward transformations automatically

without compromising the application’s functional semantics.

Basically, the new FastFlow software layer described in this chapter offers two

distinct interfaces targeting different programmers: 1) a set of “low-level” functions

implementing several different graph transformations targeting RTS programmers; 2)

a simple interface function (optimize static) capable of applying a subset of all

available transformations automatically and transparently to the user.

To evaluate the impact of the proposed transformations (whether implemented au-

tomatically or directly by the RTS programmer), we used two existing parallel frame-

works (namely PiCo and Peafowl), two streaming benchmarks (from the P3ARSEC

benchmark suite) implemented on top of the FastFlow library, and a new parallel

library (WindFlow) which makes broad use of several building block transformations

presented in this chapter. The results obtained demonstrate that the transformations

implemented and the mechanisms proposed are able to improve the application per-

formance and to significantly increase the resource usage efficiency by reducing the

number of nodes of the graph.
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Chapter 9

Parallel Patterns

9.1 Introduction

In this chapter, we discuss parallel patterns implemented on top of the FastFlow

building block software layer. Specifically, we concentrate on non-streaming parallel

patterns. The motivation for this choice is twofold:

(i) The FastFlow library has been conceived for streaming computations. There-

fore, it already provides suitable abstractions for streaming. Besides, some new

parallel research frameworks such as SPar [177, 105] and PiCo [250, 251] have

been developed for targeting both classical streaming computation and new Big

Data Analytics applications, respectively. Both frameworks use the FastFlow

library as RTS, specifically, they make extensive use of the pipeline and farm

building blocks. The PiCo framework is currently moving to the new version of

FastFlow to take advantage of the new all-to-all building block.

(ii) In Chapter 7 and Chapter 8 we have already shown the effectiveness of the

FastFlow building blocks and their composability for implementing streaming

use-cases (e.g., video streaming, network-based computations, and Data Stream

Processing patterns). Moreover, several recent research works from people of the

Parallel Computing Group of the University of Pisa targeted the implementation

of complex parallel patterns for high-performance Data Stream Processing on
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multi-cores by using as RTS the FastFlow building blocks [126, 246, 247]. The

WindFlow library introduced in Chapter 8 is the software result of these research

efforts.

The stream-oriented high-level parallel patterns provided by the FastFlow library

such as ff Pipe, ff Farm and ff OFarm are all implemented directly on top of

ff pipeline and ff farm building blocks. The main differences of these high-level

patterns with respect to the corresponding building blocks are mainly related to the

interface provided to the user, which is more user-friendly and easier to use. As an

example, the ff Farm pattern by default has the Collector entity, and it can also

be instantiated by passing a C-like function for implementing the business logic of

the Worker without the need of creating the vector of Worker nodes (see also Sec-

tion 7.3.2).

In this chapter, we aim at demonstrating the high flexibility of the FastFlow build-

ing blocks that can also be profitably used for implementing ready-to-use and efficient

task-based parallel computations that do not natively manage data streaming. We

will discuss in details three different patterns: 1) the ParallelFor pattern provid-

ing a versatile implementation of the Map and Map+Reduce abstractions; 2) the

Macro Data-Flow pattern modeling general, non-recursive, parallel computations by

automatically managing data-flow dependencies among tasks; and 3) the Divide &

Conquer parallel pattern modeling classical recursive computations.

The ParallelFor pattern has been initially implemented within the ParaPhrase

project [187] and its interface was based on C-macros [119]. Here we present the

new version using a modern C++ interface implemented within the RePara project

(cf. Section 3.3.5). The Macro Data-Flow pattern was initially implemented to

solve stencil-based numerical kernels [69] then it has been re-engineered to be used

for general use-cases. Finally, the Divide & Conquer pattern has been implemented

within the RePhrase project and added to the latest stable version of the FastFlow

library [109].

To assess the usability of the three patterns presented in this chapter, we will use

well-known algorithms, such as the Mergesort algorithm and the Cholesky factoriza-
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tion algorithm. Finally, to assess the performance of the FastFlow implementation,

we compare with state-of-the-art frameworks offering either native high-level con-

structs (i.e. parallel-for) or general implementation mechanisms (i.e. the task-based

programming model) for implementing the application kernels considered. Each test

reported in the following sections has been run multiple times, and the average results

are shown. The standard deviation measured was typically low and it is not reported

in the plots for readability reasons.

9.2 ParallelFor and ParallelForReduce

Data parallelism is a parallelization paradigm where a large input collection of data

elements is computed by processing independent sub-collections (or partitions) of

data elements in parallel. The input collection (that can also belong to a bounded

or unbounded stream) is split into multiple partitions each computed in parallel by

applying the same function to each partition (possibly to each item of the partition).

The results produced are collected in one single output collection, usually having the

same type and size of the input (this is the case for the Map pattern). The primary

objective of data-parallel computation is to reduce the completion time (latency) of

the entire computation on the input collection.

The computation on the sub-collections may be completely independent, meaning

that the computation uses only data coming from the current sub-collection, or, in-

stead may be dependent on previously computed data. In the latter case, the function

applied to the sub-collections might have an internal state. The way input data is

partitioned and assigned to executors may introduce workload imbalance during the

computation due to the potential variable calculation time associated to each dis-

tinct partition. Numerous techniques and algorithms have been proposed to define

static and dynamic assignment of partitions to processing elements, among these the

work-stealing algorithm is the most widely used [52].

Data parallelism can be specified at different levels of granularity and implemented

at thread level (Thread Level Parallelism – TLP) or at the instruction level (Instruc-
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tion Level Parallelism – ILP). To increase throughput, ILP can be used to process

several elements simultaneously within each partition assigned to multiple threads.

One of the main sources of data parallelism are loops and in general iterative com-

putations, where consecutive iterations working on independent or read-only data can

be executed in parallel. A sequential iterative kernel having independent iterations is

also known as a parallel loop. Parallel loops may be clearly parallelized by using the

farm pattern/building block by streaming loop’s iteration [18]. However, this might

require a substantial refactoring of the original loop code running the risk to introduce

bugs and also not preserving the sequential equivalence, a property often desired by

many programmers. Also, the selection of the appropriate parallel pattern together

with a correct implementation of the sequential wrapper code and the right choice of

the scheduling policy are all critical aspects for obtaining the best performance.

To alleviate the effort required by the programmer, the FastFlow library provides

the ParallelFor, ParallelForReduce and the ParallelForPipeReduce patterns

implemented on top of FastFlow building blocks to simplify the parallelization of

loops with independent iterations. The approach followed for implementing these

patterns mimics the one proposed by other parallel programming frameworks such as

OpenMP [102, 84], Intel TBB [282] and Cilk [51]. In the following, we will refer to

ParalleFor* as a wider class that includes all three patterns and their implementa-

tions.

9.2.1 Pattern definition and implementation

The FastFlow ParallelFor* patterns can be used to parallelize loops having inde-

pendent iterations.

The class interface provides a set of parallel for methods, which differ in the

number of arguments and for the signatures of the body function. The loop body

may be a standard function or a C++ lambda-function. A single ParallelFor*

object instance can be used as many times as needed, for example inside a sequential

loop or in multiple invocations with different loop body provided via C++ lambdas.

Nested invocations of the ParallelFor* methods are not supported.
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Let us consider the ParallelFor class. Its constructor accepts three (optional)

arguments:

ParallelFor(const long maxnworkers=FF_AUTO,

bool spinWait=false,

bool spinBarrier=false);

The first argument is the maximum number of Workers that can be used in one

single invocation of the parallel for method, i.e. this is the maximum parallelism

degree of the pattern. The default value uses all available cores of the platform where

it is executed. The second argument configures the non-blocking concurrency mode

between two different invocations of the object methods. This means that the RTS

threads are not suspended at the end of the computation. The third parameter con-

figures the non-blocking barrier implementation. These two last flags are important

mainly for performance reasons when the pattern is used inside an iterative loop, i.e.

when the ParalleFor is called multiple times.

In the following snippet of code, a few usage examples of the parallel for methods

are shown. The bofyF* functions provide different signatures of the loop body; first

and last define the iteration range; step the step size of the iterating index; grain

and nworkers define the number of iterations assigned to a Worker and the number

of Workers used, respectively.

ParallelFor pf; // object instance

auto bodyF1=F(const long i);

auto bodyF2=F(const long i, const int worker-id);

auto bodyF3=F(const long begin,const long end,const int worker-id);

pf.parallel_for(first,last,bodyF1);

pf.parallel_for(first,last,bodyF1,nworkers);

pf.parallel_for(first,last,step,bodyF1,nworkers);

pf.parallel_for(first,last,step,grain,bodyF1,nworkers);

pf.parallel_for_thid(first,last,step,grain,bodyF2, nworkers);

// explicit management of internal loop on sub-partitions

pf.parallel_for_idx(first,last,step,grain,bodyF3,nworkers);
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The methods parallel for thid and parallel for idx are just two “lower-

level” interfaces of the parallel for method, that allow us to access, from within

the loop body, the worker-id of the Worker executing the body function, and to

directly execute (by means of a user-defined local loop) the loop iteration range

assigned to the Worker, respectively. In the parallel for idx version, the local

iteration range is given by the interval (begin, end) determined by the arguments

of the body function bodyF3. These lower-level versions greatly increase the flexibility

of the pattern and they can also be used for debugging purposes.

Figure 9-1: Building blocks implementation of the ParallelFor, ParallelForReduce (a)
and of the ParallelForPipeReduce (b).

The ParallelFor and ParallelForReduce patterns are implemented using a farm

building block while the ParallelForPipeReduce is implemented using a two-stage

pipeline whose first stage is a farm and the second stage is a sequential multi-input

node (see Figure 9-1, left-hand side and right-hand side, respectively). The Par-

allelForPipeReduce pattern has been effectively used in the parallelization of the

PWHATSHAP framework [60].

Dot product example. The dot product performs a pairwise multiplication of two

vectors of the same length and then sums up the intermediate result, i.e. given A and

B of length N : d =
∑N

i A[i] ·B[i]. This simple kernel, part of the BLAS library, can

be implemented by using a ParallelForReduce pattern as sketched in Code 24.

The ParallelForReduce object producing a double-precision result (stored in the

sum variable), is create at line 5 with nworkers Workers. The SpinWait flag is
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1 # include <ff/ff.hpp>

2 # include <ff/parallel_for.hpp>

3 using namespace ff;

4 initVectors(A,B);

5 ParallelForReduce<double> pfr(nworkers,(nworkers<ff_numCores()));

6 auto Fsum = [](double& v,const double& elem) {v += elem;};

7 double sum{0.0};

8 pfr.parallel_reduce(sum, 0.0,

9 0, vectorLength,1,chunksize,

10 [&](const long i,double& sum) {sum += A[i]*B[i];},

11 Fsum);

Code 24: FastFlow program computing the dot product of two vectors using the
ParallelForReduce pattern.

enabled only if the number of Workers is greater than the number of machine cores.

The loop body (line 10) is executed in parallel by all Workers. Each one updates a

local per-Worker reduction variable executing the product operation between elements

of index i. The final reduce function, defined at line 6 and executed sequentially,

updates the reduction variable sum with the partial results computed by all Workers.

The chunksize (line 9 defines the number of consecutive iterations assigned to each

Worker (i.e. the computation granularity).

Iteration scheduling. The loop iterations are assigned to the Workers according

to a static or dynamic scheduling policy. Three distinct iteration scheduling policies

are currently implemented in the ParallelFor* patterns, two static policies and one

dynamic.

1. static scheduling: the iteration space is (almost) evenly partitioned in large

contiguous chunks, and then they are statically assigned to Workers, one chunk

for each worker.

2. round-robin scheduling with interleaving k: the iteration space is stati-

cally divided among all active Workers in a round-robin way using a stride of k.

For example, to execute 10 iterations (from 0 to 9) using 2 Workers and a stride

k = 3, then the first Worker executes iterations 0, 1, 2, 6, 7, 8 while the second
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Worker executes iterations 3, 4, 5, 9. The default static scheduling is obtained

by setting a stride k = iterationspace/nworkers.

3. dynamic scheduling with chunk size k: in this case no more than k con-

tiguous iterations at a time are dynamically assigned to be computed to one

of the active Workers. As soon as a Worker completes the computation of one

chunk of iterations, a new chunk (if available) is selected and assigned to the

Worker. The FastFlow RTS tries to select as many contiguous chunks as possible

in order to better exploit spatial locality. This allows having a good trade-off

between iterations affinity and workload balancing.

Figure 9-2: Example of the different iteration scheduling strategies provided by the
ParallelFor* patterns.

The three iteration scheduling policies are exemplified in Figure 9-2. By default,

the static scheduling is used for all ParallelFor* patterns. In general, the scheduling

policy is selected by specifying the grain parameter of the parallel for method.

If the grain parameter is not specified or if its value is zero, then the default static

scheduling is selected. If grain is greater than zero, then the dynamic scheduling is

selected with k = grain. Finally, to use the round-robin scheduling with interleaving
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k a value less than zero has to be set for the grain parameter.

9.2.2 Evaluation

In this section, we evaluate the performance of the ParallelFor* implementations,

we consider both simple benchmarks (the dot product and an unbalanced parallel

loop computation) as well as complex applications coming from the PARSEC 2.0

benchmark suite [47].

Simple benchmarks. The first benchmark we consider, is the well-known dot prod-

uct operation. We tested the kernel on both the Xeon and KNL platforms, comparing

the FastFlow ParallelForReduce implementation with both an OpenMP #pragma-

based parallel-for with static scheduling and Intel TBB parallel reduce implementa-

tions of the same kernel. The OpenMP version is the one offered by the gcc compiler

version 6.4.0 and 7.3.0 for the two platforms, respectively. The Intel TBB versions

used are the version 4.1 for the Xeon platform and the one shipped with Intel Parallel

Studio XE 2017 for the KNL platform.

The results obtained for vectors of size 100 million double precision elements, are

shown in Figure 9-3 (the time refers to 10 consecutive iterations of the dot product).

To have a fair comparison among different versions, all of them use the same number

of RTS threads. This means that both the OpenMP version as well as the TBB

version use a number of threads that is equal to the number of Workers plus one (i.e.

n.ofWorkers+1 in the figures). On the Xeon platform, the FastFlow implementation

is initially slower than the other two implementations because of the different number

of real executors. Starting from 20 Workers, where the execution time is about the

same for the three versions (163ms, 178ms and 167ms for OpenMP, TBB and FastFlow,

respectively), the FastFlow implementation obtains slightly better results (see also

the detailed results reported in the right-hand side of Figure 9-3). In Figure 9-4 are

shown the results obtained running the dot product benchmark on the KNL platform.

Also in this platform, the three versions obtain very similar results with a maximum

speedup value of 86, 85 and 81 for OpenMP, TBB and FastFlow, respectively (the
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Figure 9-3: Left:) Execution time (log scale, milliseconds) of the dot product com-
putation repeated 10 times of two vectors of 100 million double precision elements
executed on the Xeon platform. Right:) Detailed execution times (milliseconds) close
to the minimum value.
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tation repeated for 10 iterations of two vectors of 100 million double precision elements
executed on the KNL platform. Right:) Zoom of the execution times (milliseconds)
around the minimum value.

sequential execution time on the KNL platform is 4.48s). On the right-hand side of

Figure 9-4 it is shown the execution time in the range 160 − 208 Workers where all

versions obtain the minimum value.

In the left-hand side of Figure 9-5 is shown the comparison of the execution time

obtained by the ParalleForReduce (PF) and ParallelForPipeReduce (PFPR) of the

dot-product benchmark on the Xeon platform. For this simple application, there is

no benefit in performing the reduce part in pipeline with the map part. Therefore
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Figure 9-5: Left:) Comparison between the ParallelForReduce (PFR) and the Paral-
lelForPipeReduce (PFPR) using the dot product benchmark on the Xeon platform.
Right:) Execution time of the unbalanced loop benchmark on the KNL platform.
Comparison between the ParallelFor pattern version with and without the active
scheduler and the OpenMP version using the dynamic scheduling.

the ParallelForPipeReduce version obtains slightly worse results. However, up to 24

Workers, the two implementations obtain similar results (the difference is less than

2%), then the extra threads used to execute the reduce part introduce only overhead

with no benefit.

To evaluate the overhead of the dynamic scheduling policy implemented by the

ParallelFor* patterns, we used a simple synthetic benchmark. A function F is applied

to all elements of a vector A. The vector has N elements in which only a small subset

of entries have a high computational cost while the remaining elements have zero

computation time. The most expensive entries (having different cost granularities) are

all placed at the beginning of the vector. In this simple test, assigning more than one

iteration to one Worker may result in a significant load unbalancing. The best strategy

(among those available) is to use the dynamic scheduling with a computation grain of

1 iteration. We compare the FastFlow pattern against the OpenMP version using the

dynamic scheduling by setting the environment variable OMP SCHEDULE="dynamic,1".

The results obtained on the KNL platform are reported in the right-hand side of

Figure 9-5. As can be seen, the dynamic scheduling of the ParallelFor* pattern

obtains almost the same results as the one implemented in the OpenMP RTS up

to 80 Workers, and then it exhibits a more stable trend with increasing number of
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Workers.

PARSEC applications. PARSEC [47] (Princeton Application Repository for Shared-

Memory Computers)1 is a collection of various multi-threaded programs with high sys-

tem requirements that have been widely used to test the performance of multi/many-

cores. It covers a wide set of application domains comprising 13 programs from dif-

ferent areas of computing. Each application is provided with several input sets. The

native dataset is representative of a realistic execution scenario of each application.

Here we consider a sub-set of PARSEC applications belonging to the data parallelism

domain and on large data structures logically partitioned among multiple threads

(blackscholes, bodytrack, facesim, fluidanimate, raytrace, streamcluster).

All PARSEC benchmarks have been implemented using FastFlow parallel patterns

in De Sensi et al. [129]. The six benchmarks considered here can all be parallelized

using one or more ParallelFor* patterns. For all kernels tested is available a native

PThreads implementation, when available we compare to the OpenMP and Intel TBB

versions shipped with the benchmark suite.

blackscholes. The application belongs to the Intel RMS benchmark suite (Recogni-

tion, Mining and Synthesis). It performs pricing for a portfolio of European options

by numerically solving the Black-Scholes partial differential equations. The PThreads

implementation divides the portfolio into work units, one for each available thread.

Then, each thread calculates the prices for the options in its work unit. This algo-

rithm is iterated multiple times to obtain the final estimation of the portfolio. This

benchmark is an iterative data-parallel computation that can be implemented by

using a ParallelFor within a sequential loop.

bodytrack. This application is aimed at tracking the body pose of a human subject

by analyzing videos collected by multiple cameras. A frame contains one image from

each camera. bodytrack has basically two phases that are executed for each frame.

In the first phase, three kernels are executed for each image. After this phase, two

additional kernels are applied a number of times on the frame. Before applying a

1We refer to the PARSEC version 3.0: http://parsec.cs.princeton.edu/overview.htm
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kernel, we need to ensure that the previous kernel is terminated. Accordingly, we can

exploit parallelism only within each kernel. The PThreads version is implemented by

using a thread pool, which can execute different kernels. The execution starts in the

main thread and, for each frame, when a kernel needs to be executed the main thread

sends a command to the pool with an identifier corresponding to the kernel type. The

threads in the pool will then start to process chunks of the frame with the specified

kernel. To keep the load balanced, the chunks are not statically partitioned. Each

thread, after the processing of the current chunk, accesses a shared variable (using

a lock) to get the identifier of the next chunk, and updates such variable. In the

pattern-based implementation, the application can be parallelized by using multiple

ParallelFor.

facesim. It is an Intel RMS application simulating the motion of human faces. It

applies the iterative Newton-Raphson algorithm over a sparse matrix. At every time

step, different kernels are executed on a mesh (some kernels are executed multiple

times within a single time step). The PThreads version uses a thread pool which, at

every time step, executes different kernels on the mesh. Every time a kernel is found

during the execution, it is executed by the thread pool, where each thread works on

a statically assigned portion of the mesh. As for the bodytrack application, facesim

can be parallelized using multiple ParallelFor sequences repeated several times.

fluidanimate. It is another Intel RMS benchmark that uses an extension of the

Smoothed Particle Hydrodynamics method to simulate an incompressible fluid. At

every time step, the application executes nine kernels to compute the position of the

fluid particles at the next time step. As in other benchmarks, the sequence of kernels is

sequential while parallelism can be safely exploited within each kernel region. In the

PThreads implementation the three-dimensional space is statically divided among

the threads. Each thread applies each kernel on its space partition. A barrier is

executed by all the threads between two successive kernels. In the pattern-based

implementation each kernel can be implemented as a ParallelFor pattern.

raytrace. This application consists in a graphical render aimed at generating ani-
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mated 3D scenes by using a hierarchical grid raytracing algorithm. A kernel is exe-

cuted at each frame. In the PThreads version the kernel is parallelized by partitioning

the 3D scene among the threads. The work is dynamically partitioned and, similarly

to the bodytrack PThreads implementation, once a thread finishes to process a par-

tition, it gets another one in order to keep the load balanced. The application can

be modeled as a single ParallelFor iterated a fixed number of times. Differently

from blackscholes, the computation is extremely unbalanced and a good dynamic

scheduling of the partitions is of great importance.

streamcluster. It is an application that solves the online clustering problem over

incoming streaming data. The program consists in a sequence of loops whose itera-

tions can be executed in parallel. Different loops are executed sequentially by using

barriers, and they are interleaved by serial regions of code whose length impacts the

overall speedup. The computational kernel consists of two phases. The first iterates

a composition of a Map+Reduce and a number of Map instances (that are in turn

iterated multiples times). The second phase, working on different data, repeats the

same steps exactly one time. In the FastFlow implementation, the Map+Reduce in-

stances are implemented with a ParallelForReduce pattern while the Map instance

with a ParallelFor.

Figure 9-6 shows the speedup on the KNL platform of the six PARSEC appli-

cations considered. The time measured is the one spent in the so-called region of

interest (ROI), which includes all parts sensitive to the parallelization. This ap-

proach is commonly adopted when comparing different parallelizations of the same

application. Each program has been run multiple times, and the average results are

the ones used to compute the speedup. All the benchmarks have been executed with

the original parameters provided by PARSEC.

Except for the blackscholes applications, for all other ones the PThreads ver-

sions do not obtain the best speedup. In all cases tested, the FastFlow ParallelFor*

patterns provide a very good level of speedup that is comparable to the one obtained

by the OpenMP and TBB implementations which provide quite optimized implemen-
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Figure 9-6: Speedup of some data-parallel benchmarks of the PARSEC suite.

tation of the parallel-for pattern.

For fluidanimate, streamcluster and facesim, the Pthreads version performs

poorly. For fluidanimate, this is mainly due to the different implementation of the

barrier provided by the various frameworks. A barrier is executed after each parallel

327



kernel. This performance difference is remarkable only at high concurrency levels.

Regarding streamcluster, the parallelization based on the ParallelFor pattern al-

lows us to simplify the code and remove synchronizations leading to a performance

improvement up to 40% on the KNL platform. Finally, in the PThreads version of

facesim, when a parallel kernel is found during the execution, one abstraction of a

mesh partition is inserted for each thread in a shared queue, accessed by all threads

and protected by locks. Instead, in the FastFlow implementation, a partition is stat-

ically assigned to each thread without any need to access any shared data structure,

thus achieving better speedup.

Platforms Version BS BD FC FL RT SC

Xeon

PThreads 29.4 7.9 7.3 10.6 23.9 9.8
FastFlow 28.8 8.3 10.9 10.9 23.9 12.6

TBB 26.5 9.2 - 10.9 - 13.4
OpenMP 29.4 7.8 - - - -

KNL

PThreads 131.3 10.6 12.1 22.2 74.4 15.7
FastFlow 120.3 12.1 20.6 35.1 74.4 25.5

TBB 117.4 13.2 - 35.4 - 26.0
OpenMP 120.2 11.9 - - - -

Power

PThreads 31.5 8.5 6.5 9.8 - 5.4
FastFlow 39.8 10.3 10.9 15.1 - 8.2

TBB 35.5 9.0 - 11.0 - 7.5
OpenMP 34.1 9.0 - - - -

Table 9.1: Best speedup figures on all platforms considered. BS (blackscholes),
BD (bodytrack), FC (facesim), FL (fluidanimate), RT (raytrace), SC

(streamcluster). The raytrace benchmark can not be compiled on the IBM Power
platform due to some architecture specific assembler instructions.

In Table 9.1 are reported the best speedup figures on the three platforms described

in Table 6.1. Small differences and discrepancies in the results between different ver-

sions of the same benchmark and between different architectures are due to differences

in the compiler, architecture and by the intrinsic differences and optimizations in the

RTS of the frameworks used

To conclude, the ParallelFor* patterns provided by the FastFlow library exhibits

a comparable level of performance compared to state-of-the-art implementations,

328



namely OpenMP and Intel TBB. This demonstrates the good level of performance

and flexibility of the FastFlow building blocks again. Moreover, though the usabil-

ity of the OpenMP pragma-based approach is undoubtedly superior, the FastFlow

library provides a comparable level of usability of other high-level library-based ap-

proaches with the advantage of simpler code refactoring and thus wider design space

possibilities [129].

9.3 Macro Data-Flow

The Data-Flow programming paradigm models a parallel program as a directed

acyclic graph (DAG) where nodes are operations while edges model data dependen-

cies. Operations are functional units of computation that are executed as soon as all

input data elements are present.

Parallelism can be expressed at the finest granularity level (i.e. simple instruc-

tions). This is at the expense of considerable complexity in the development of the

implementation model, specifically, in the management of data dependencies and

storage space (where operands and meta-data are maintained) and in the efficient

detection and scheduling of the firable (ready to be executed) instructions. As a

consequence, real hardware implementations of this paradigm usually provide lower

scalability and performance if compared to the control-driven execution model [319].

Instead of expressing parallelism at the instruction level, portions of the sequen-

tial code having pure functional dependencies between input parameters and output

results, are considered Macro Data-Flow (MDF) instructions. The resulting MDF

program is therefore represented as a graph whose nodes are coarse-grained computa-

tional kernels and edges read-after-write data dependencies. The execution of a MDF

program starts with the assignment of the input data (“tokens” in data flow jargon)

to the first node in the MDF graph. The RTS is in charge of executing the MDF

graph by scheduling fireable macro-instructions (i.e. tasks) to a set of anonymous

executors (usually called Workers) and managing data dependencies.

Stream parallelism and data parallelism are handled in different ways. Stream
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parallelism is managed by creating, for each item appearing on the input stream, a

new “fresh” copy of the MDF graph and passing the input element as the input token

of the graph. Therefore stream parallelism derives from the execution of fireable in-

structions from different graph instances. This requires labeling of graph instructions

with additional tags [116]. Data parallelism is managed by inserting into the graph

instructions which decompose their input data structure(s) into multiple disjoint data

sets and direct these data sets to a number of independent MDF instructions com-

puting partial results which are eventually directed to another instruction which has

as input the partial results and then computes the final result [69].

From the RTS standpoint, the following three points represent important aspects

for an efficient implementation of a MDF interpreter:

Construction of the task graph: In the general case the task graph could be very

large and its generation time can affect the overall computation time. In addition,

the memory required to store the entire graph may be very large. To alleviate these

issues, a widely used solution consists in generating the graph during the computation,

such that only a “window” of the graph is maintained in memory. This also allows

overlapping tasks computation with the graph generation.

Handling task dependencies: It is possible to identify two main operations on the

task graph: 1) update data dependencies after the completion of previously scheduled

tasks; 2) determine ready (fireable) tasks to be executed. These operations have to

be executed in parallel with tasks computation.

Scheduling of ready tasks: A task having all input dependencies resolved may

be selected for execution. This selection needs to be performed in a smart way con-

sidering that two main optimizations can be applied in this phase when targeting

multi-core architectures: i) locality optimization in order to better exploit cache level

hierarchies, and ii) parallelism optimization in order to maintain the number of ready

tasks as big as possible during the execution to prevent stalls. The first optimization

is based on the observation that graph edges represent data dependencies, so that if

task i unlocks execution of task j, then they share at least one of the dependencies.
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Executing task j on the same processor that has executed task i, increases the prob-

ability that the common data reside in the cache hierarchy. A common approach to

exploit this data locality is to maintain ready queues per processor, and implement

a work-stealing scheduler. The second optimization relies on the fact that a graph

node with a higher degree of output edges, might unlock a larger number of tasks.

Following this principle, a possible heuristic is to select with higher priority among

all fireable tasks those that have the highest number of outgoing edges. This can be

accomplished by ordering fireable tasks with respect to the degree of the related node

on the graph.

Finally, to reduce memory consumption, in-place computation is generally used on

shared memory platforms. This implies that, the graph has to be enriched by ad-

ditional anti-dependencies (write-after-read) between tasks for removing the need of

costly copies of the original data structure. This at the price of a possible lower

parallelism between MDF instructions.

The FastFlow MDF pattern [20, 69], implemented by the C++ class ff mdf, aims

to provide the programmer with a high-level implementation of the Macro Data-

Flow model working both on a stream of elements and on a single data-parallel

computation. The pattern hides all complex implementation details related to the

scheduling of fireable tasks and the efficient management of data dependencies. It

can also be used as one of the stages of a pipeline pattern (ff Pipe) or as a Worker

of a farm pattern (ff Farm and ff OFarm).

9.3.1 Pattern definition and implementation

A MDF interpreter is logically composed of three distinct entities: i) one entity

generating the tasks by executing the user algorithm that eventually produces the

instructions for building the task graph; ii) a scheduler that manages the data depen-

dencies among tasks and schedules ready ones to a pool of executors; iii) a pool of

anonymous Workers (i.e. the real MDF interpreters) executing the tasks and notify-

ing their completion (i.e. partial results) to the scheduler. The generated tasks and

331



the partial results of the computation can be modeled as a stream of data elements

containing references to data stored in the shared memory.

The scheduler receives, in a non-deterministic way, both new tasks coming from

the task generator and also completed tasks coming from the set of Workers. The

task-graph of MDF instructions can be generated either statically or dynamically. For

a very large graph, the entire static generation of all the graph is not feasible. From

the sequential order in which tasks are generated by executing the user’s algorithm,

the scheduler computes a partial ordering that ensures computation correctness, and,

by evaluating data dependencies among tasks, it adds the corresponding node/edge

to the DAG structure. A completed task coming from one of the workers may either

activate new tasks ready to be scheduled for execution or trigger the termination

condition.

Building blocks implementation. The FastFlow implementation of MDF pat-

tern uses a two-stage pipeline composition: the first stage is a sequential building

block that executes the user’s algorithm and produces a stream of tasks in output;

the second stage is a farm building block where the Emitter executes the code of

the scheduler and the Workers are the anonymous MDF interpreters. The Emitter

node performs the pre-processing of the input tasks received by the first stage of the

pipeline, and it builds the task-graph structure. The Workers are standard sequential

building blocks which compute the results and route them back to the Emitter node

through a feedback channel. On the left-hand side of Figure 9-7 is shown the logical

schema of the building block implementation of the MDF pattern.

The user of the FastFlow MDF pattern has to provide a kernel code which generates

macro-instructions. Input and output data of each macro-instruction must be clearly

identified. As an example, in the right-hand side of Figure 9-7 is shown the simplified

code of a simple example that uses the ff mdf parallel pattern for computing in

parallel C[i] = A[i] +B[i] where i ∈ [0..N [. In this example, there are N independent

tasks. The programmer provides a function (the function Algo in Figure 9-7) which

describes the sequential algorithm that will be executed by the tasks generator stage

(i.e. the first stage of the pipeline). The AddTask procedure (implemented by the
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1 void Fun(int a, int b, int* c) {*c=a+b;}

2 void Algo(Parameters& P) {

3 auto mdf = P.mdf;

4 for(int k=0;k<P.N;k++) {

5 param_info _1={ID1+k, INPUT};

6 param_info _2={ID2+k, INPUT};

7 param_info _3={ID3+k, OUTPUT};

8 std::vector<param_info> pr{_1,_2,_3};

9 mdf->AddTask(pr,Fun,P.A[k],P.B[k],&P.C[k]);

10 }

11 }

12 int main() {

13 Parameters P{ ...};

14 ff_mdf mdf(Algo,P,nworkers);

15 if (mdf.run_and_wait_end()<0) return -1;

16 }

Figure 9-7: Left:) Building blocks used to implement the MDF pattern. Right:)
A simplified example on how to instantiate and execute the FastFlow MDF pattern
executing the tasks produced by the user’s function Algo implementing a simple
parallel loop.

MDF pattern) is used to produce a new task each time it is invoked. In the example,

the macro-instruction is given by the function Fun (line 1). For each parameter of the

task function, the user must specify a unique identifier and its mode. The identifier

can be, for example, the memory pointer of the parameter. The mode specifies the

directionality of the parameter: INPUT or OUTPUT. A special mode, called VALUE,

is required for those parameters that are directly evaluated inside the task generator

and do not concur to the DAG construction. All tasks generated via the AddTask

function are packed and sent to the Emitter node, which creates the corresponding

task-graph node.

In the MDF implementation, only the Emitter node of the farm building block

works on the DAG, so that neither critical sections nor cache invalidations overhead

is spent on updating the graph structure. The Worker threads receive tasks from the

Emitter and then they send back the notification that the task has completed. The

Emitter node non-deterministically receives completed task notifications from the set

of Workers and new macro instructions, produced by the AddTask function, from the
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1 task_t* svc(task_t* task) {

2 if (fromInput(task)) {

3 insertTask(task);

4 schedule_tasks();

5 if (graphSize()>Threshold) {

6 // stop receiving from previous stage

7 input_active(false);

8 }

9 return GO_ON;

10 } // from previous stage

11 handleCompletedTask(task);

12 schedule_task();

13 // restart receiving from previous stage

14 if (graphSize()<Threshold) input_active(true);

15 if (noMoreTasks()) return EOS;

16 return GO_ON;

17 }

Code 25: Pseudo-code executed by the MDF task scheduler.

first stage of the pipeline. Since the memory required to store the entire DAG may

be huge, the Emitter maintains in the main memory only the active portion of the

DAG data structure implemented with an hash-table. When the number of generated

graph nodes reaches a predetermined threshold (that can be tuned by the user), the

input channel coming from the first stage of the pipeline is temporarily disabled; this

way the graph generation is halted and the Emitter handles only completed tasks

coming from the Workers. When the number of available instructions falls below

the threshold, the farm input channel is enabled. The pseudo-code executed by the

Emitter node for handling tasks is sketched in Code 25.

Worker nodes receive tasks through a request-reply custom scheduling policy sim-

ilar to the default on-demand protocol provided by the farm building block. This

policy ensures good workload balancing without using more complex work-stealing

techniques. When multiple fireable tasks are available, they are enqueued in a per-

Worker local queue managed by the Emitter. The queue is implemented as a priority

queue where the task priority is computed on the basis of the number of its forward

dependencies in the DAG. When a new task has to be scheduled to one of the Workers,
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the one with higher priority is extracted from the queue and sent to the Worker.

By using the proposed implementation schema, the RTS overhead is bound mainly

into the two sequential stages: the task generator node and the farm Emitter. While

on the one hand this approach may, in principle, limit the scalability of the pattern

with a large number of graph nodes, on the other hand, it allows us to simplify the

design and debugging of the implementation and to produce a solution with reduced

programming effort.

1 void Chol(fComplex *A,int nb,int bs){

2 for(int k=0;k<=(nb-1);k++) {

3 for(int i=0;i<=(k-1); i++)

4 CHERK(&A[k*bs*bs*nb+k*bs],

5 &A[k*bs*bs*nb+i*bs],

6 &A[k*bs*bs*nb+k*bs]);

7 CPOTF2(&A[k*bs*bs*nb+k*bs],

8 &A[k*bs*bs*nb+k*bs]);

9 for(int j=(k+1);j<=(nb-1);j++){

10 for(int i=0;i<=(k-1);i++)

11 CGEMM(&A[k*bs*bs*nb+i*bs],

12 &A[j*bs*bs*nb+i*bs],

13 &A[j*bs*bs*nb+k*bs],

14 &A[j*bs*bs*nb+k*bs]);

15 CTRSM(&A[k*bs*bs*nb+k*bs],

16 &A[j*bs*bs*nb+k*bs],

17 &A[j*bs*bs*nb+k*bs]);

18 }

19 }

20 }

Figure 9-8: Left:) Cholesky factorization algorithm (left-looking variant, complex
single-precision data). Right:) Resulting DAG of the factorization of a 4 × 4 tile
matrix.

Cholesky factorization examples. In the right-hand side of Figure 9-8 is sketched

the sequential Cholesky factorisation algorithm using the left-looking variant and op-

erating on single precision complex data elements (i.e. float-based complex called

fComplex). The function names are the ones used in the BLAS library. On the left-

hand side of the same figure is shown the Cholesky graph instructions for a 4×4 time
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matrix.

The algorithm in Figure 9-8 is executed by the task generator stage. Instead of

direct BLAS function calls, a macro instruction is generated by using the AddTask

function in the same way reported in the example in Figure 9-7. For example, the

CPOTF2 call at line 7 produces a macro instruction generated as follows:

param_info _1={(uintptr_t)(&A[k*bs*bs*nb+k*bs]),INPUT};

param_info _2={(uintptr_t)(&A[k*bs*bs*nb+k*bs]),OUTPUT};

Param.push_back(_1); Param.push_back(_2);

mdf->AddTask(Param,CPOTF2,&A[k*bs*bs*nb+k*bs],&A[k*bs*bs*nb+k*bs]);

9.3.2 Evaluation

In this section, we evaluate the performance of the Macro Data-Flow parallel pattern.

The first test we consider the implementation of a parallel loop to compare with the

ParallelFor pattern. As test case, we used the loop showed in the right-hand side

of Figure 9-7 where the function Fun executes a synthetic computation of a few

thousands of clock cycles. The number of iterations is N = 10, 000. The second

kernel tested is the matrix multiplication (C = A×B) by using Strassen’s algorithm.

The algorithm splits the A,B and C matrices in four disjoint parts (sub-matrices)

and executes intermediate operations on the four parts to compute the final C matrix.

The operations and the dependencies graph of the Strassen’s algorithm is shown in

Figure 9-9.

The results of the first two tests, parallel loop and Strassen, on the Xeon multi-

core are reported in Table 9.2 left-hand side and right-hand side, respectively. For

the parallel loop test, the MDF implementation obtains performance figures close

to the ones obtained by the “specialized” ParallelFor pattern. For the Strassen

algorithm, the maximum speedup that is expected to obtain simply executing the

macro-instructions in parallel is about seven (there are seven matrix multiplication

macro-instructions, see the DAG in Figure 9-9). The MDF version obtains a speedup

of about six using seven Workers. Then, we tested the case in which the single macro-
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Figure 9-9: Dependencies instruction graph of the sequential Strassen’s algorithm for
the matrix multiplication C = A×B.

par.
degree

PF MDF

1 500.2 505.3
8 62.4 62.9
16 31.3 31.5
24 20.8 23.3

Matrix
size

seq MDF MDF+PF

2Kx2K 40.7 6.7 1.3
4Kx4K 341.8 56.2 10.8

Table 9.2: Left:) Execution time (in seconds) on the Xeon platform obtained by
a ParallelFor implementation (PF) and by the MDF implementation of the same
parallel loop. Right:) Strassen algorithm execution time (in seconds) on the KNL
platform for different size of the matrices. Comparison between the sequential version
(seq) the MDF and a second MDF implementation in which intermediate operations
are executed using a ParallelFor (MDF+PF).

instruction is parallelized using a ParallelFor (MDF+PF in Table 9.2). In particular,

we used seven Workers for the MDF pattern and 16 Workers for the ParallelFor

pattern. The result obtained is a speedup of more than 30×, demonstrating that

pattern composition may produce a performance boost without the need to devise

more complex solutions. Indeed, in Section 9.4.2 we will see that the Strassen’s

algorithm can also be efficiently parallelized by using the Divide&Conquer pattern

and a recursive algorithm.

A more complex test, is the Cholesky factorization algorithm (see also Sect 9.3.1).

We consider dense matrices of single precision complex elements and elementary

BLAS operations are executed using the Intel MKL library shipped with the In-
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Figure 9-10: Left:) Cholesky factorisation execution time (milliseconds) for a matrix
of 2K with a block size of 128 varying the parallelism degree. Right:) Best execution
time varying the matrix size. The block size is fixed to 256 for all cases.

tel Parallel Studio XE 2017. In this case, we compare with a specialized numerical

library optimized for multi-cores: the PLASMA library [71]. Specifically, we consider

the static version of the PLASMA library which uses the left-looking Cholesky decom-

position (the same version presented in Section 9.3.1) as it was determined to be the

best for the static scheduler [142]. The results of the execution on the Xeon platform

are reported in Figure 9-10. In the left-hand side of the figure is shown the execution

time (in seconds) for a “small” matrix of size 2K ×2K and tiles of 128× 128. On the

right-hand side is shown the best execution time obtained using all machine cores,

varying the size of the matrices. The performance of the MDF version is almost the

same as the specialized PLASMA library using static scheduling.

We executed the same test on the KNL platform using a higher number of cores.

The scalability for a matrix of 16K×16K is shown in the left-hand side of Figure 9-11.

In this case the MDF version scales like the static PLASMA library up to 24 Workers

and then it slows down obtaining a maximum scalability of 30.5 versus a scalability of

37 of the PLASMA version. The main motivation of this difference is that the static

scheduler of the PLASMA version has a lower parallel overhead than the dynamic

scheduler of the MDF pattern that with high parallelism degree has higher impact.

The number of tasks scheduled by the MDF scheduler for different matrix sizes is
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Figure 9-11: Left:) Scalability of the MDF version vs the PLASMA static version
considering a matrix of 16K and a block of 512 × 512. Right:) Table reporting the
number of tasks for different matrix sizes of the Cholesky factorization considering a
blocks of 256× 256 and 512× 512.

reported in the right-hand side of Figure 9-11.

By considering all tests executed, the MDF pattern demonstrated good scala-

bility. It also demonstrates that it is possible to build complex and efficient parallel

patterns by properly assembly FastFlow building blocks and defining smart scheduling

strategies by leveraging the farm Emitter.

An obvious extension of the MDF pattern implementation, consist in to use the

all-to-all building block to parallelize the two sequential stages of the current version,

i.e. task generator and scheduler, to improve the scalability with high parallelism

degree.

9.4 Divide&Conquer

Divide & Conquer (DC) is a well-known recursive problem-solving strategy that di-

vides the original problem into smaller sub-problems of the same type, each one solved

recursively. Then, sub-problem solutions are properly combined to obtain the solu-

tion of the original problem. The idea is that finding the solution of sub-problems

and combining their results is easier to do than trying to solve the entire problem

directly. The strategy consists of two main steps applied at each level of recursion:
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• a divide phase in which the problem is divided into sub-problems having the

same type and a smaller size;

• a conquer phase in which the solutions of the sub-problems are merged to

obtain the final solution of the initial problem.

A vast set of problems in different application domains can be solved with this

method, typical examples are sorting algorithms (e.g., Mergesort). DC algorithms

have been widely investigated given their intrinsic nature to be suitable for parallel

computations. The executions on different sub-problems are usually independent and

can be performed in parallel. In addition, DC algorithms tend to be cache oblivious

[50], i.e. they can take advantage of both shared and private caches by having good

spatial and/or temporal locality.

Despite their pronounced tendency to parallelism, the efficient parallel implemen-

tations of DC algorithms require a particular expertise in parallel programming and a

good knowledge of parallel programming tools and frameworks to obtain the desired

level of performance on today’s multi-/many-core architectures. The FastFlow DC

pattern [109], implemented by the C++ class ff DC, aims to provide to non-expert

parallel programmers a high-level, ready-to-use implementation of parallel DC al-

gorithms on multi-core platforms, having performance comparable with hand-made

parallelizations.

9.4.1 Pattern definition and implementation

To instantiate the ff DC pattern the programmer has to provide the data type of

the input problem and the type of the output result as template arguments. In the

following we will refer to them as ProblemType and ResultType respectively. In the

description, we consider them as different types, although they can coincide. To be

utilized in the interface, the types must provide a default constructor. In addition,

the programmer must provide the input object and the output object where the final

result will be stored. These parameters are easily identifiable from the sequential

code and, as indicated by Mattson et al. [241], they are sufficient to fully characterize
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the algorithm behavior:

• a divide function takes as input a problem and produces a set of sub-problems.

It has the following interface:

void divide(const ProblemType &p, std::vector<ProblemType> &subps);

The function fills out the subps vector container passed by reference.

• a condition to test whether a problem is a base case problem:

bool cond(const ProblemType &p);

• a seq function for solving the base case problem. It takes as input a problem

and produces the corresponding result. Both of them are passed by reference:

void base(const ProblemType &p, ResultType &res);

• a combine function that builds the result of a problem starting from the solution

of its sub-problems:

void combine(std::vector<ResultType>& subres, ResultType &res);

In a DC sequential algorithm, the recursion continues until the sub-problems can

be solved directly. In a parallel program, it is typically more convenient to stop

recursion at an optimal level of computation granularity and solve the problem se-

quentially. This may result in a better use of the memory hierarchy and lower the

impact of the parallelization overhead. However, it may also limit the number of

concurrent activities. The optimal cutoff size depends both on the specific problem

and on target architecture as studied in recent research work [157]. In the current

version of the FastFlow DC pattern, this value has to be provided by the programmer.

The different functional parameters must be provided as std::function, i.e. they

can be any callable C++ object such as function pointer, lambda expression or func-

tion objects. An example of instantiation of the DC interface is shown in Code 26.
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1 // functions aliases

2 using divide_f_t=std::function<void(const ProblemType&,

3 std::vector<ProblemType>&)>;

4 using combine_f_t=std::function<void(std::vector<ResultType>&,

5 ResultType&)>;

6 using base_f_t=std::function<void(const ProblemType&, ResultType&)>;

7 using cond_f_t=std::function<bool(const ProblemType&)>;

8 // D&C pattern constructor

9 template <typename ProblemType, typename ResultType>

10 ff_DC(const divide_f_t& divide, const combine_f_t& combine,

11 const base_f_t& base, const cond_f_t& cond,

12 const ProblemType& p, ResultType& res, int par_degree)

Code 26: DC pattern interface.

The programmer provides the reference to the starting problem (p), i.e. the input

of the original algorithm, and a reference to the final result (res) where the result will

be stored at the end of the parallel processing. Furthermore, the programmer may

indicate also the desired number of parallel executors (par degree) that by default

is set to the number of available CPU cores. The call to the compute() method on

the DC object will start the computation. Once returned, the result will be found in

the res variable.

Mergesort examples. The advantage of using a high-level pattern-based approach

is that all the parameters required to instantiate the pattern can be easily derived

from the sequential algorithm. In addition, all the details concerning the parallel

implementation are completely hidden from the programmer. As an exemplification,

in Code 27 it is shown how to express the standard Mergesort algorithm using the

DC pattern. To use the DC interface the programmer defines a Problem type that

encapsulates the information needed to describe the problem. For the Mergesorte

algorithm two iterators indicating the vector portion to be sorted, are sufficient.

Besides, the same definition can be used as the Result type.

In the divide phase the problem of sorting an n-element sequence is divided into

the problem of sorting two sub-sequences of n/2 elements (line 2 of Code 27). The

combine phase is essentially managed by the merge function (lines from 12 to 20). In
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1 struct Problem { std::vector<long>::iterator left,right; };

2 void divide(const Problem &p,std::vector<Problem> &subps) {

3 std::vector<int>::iterator mid=p.left+(p.right-p.left)/2;

4 Problem a,b;

5 a.left=p.left; a.right=mid; subps.push_back(a);

6 b.left=mid; b.right=p.right; subps.push_back(b);

7 }

8 void seq(const Problem &p, Result &ret) {

9 ret=p; std::sort(ret.left,ret.right);

10 }

11 void merge(std::vector<Result>& res,Result& ret) {

12 long size=res[1].right-res[0].left;

13 std::vector<long> tmp(size);

14 std::vector<long>::iterator i=res[0].left, mid=res[0].right; j=mid;

15 for(long k=0;k<size;k++) //merge in order

16 if(i<mid && (j>=res[1].right *i<=*j))

17 tmp[k]=*i; i++;

18 else tmp[k]=*j; j++;

19 std::copy(tmp.begin(),tmp.end(),res[0].left);

20 ret.left =res[0].left; ret.right=res[1].right;

21 }

22 bool cond(const Problem &p) { return (p.right-p.left<=CUT_OFF); }

23 int main() {

24 ... // load vector V that has to be sorted

25 Problem p(V.begin(),V.end());

26 Result res;

27 ff_DC<Problem,Result> dc(divide,merge,seq,cond,p,res,par_degree);

28 if (dc.run_and_wait_end()<0) return -1;

29 }

Code 27: DC implementation of the Mergesort algorithm.

this case, the programmer has to properly build the problem and the result data struc-

tures. Furthermore, in the parallel implementation, we have to consider the case that

eventually the sub-problems generated by the divide function become small enough

that they can be computed sequentially. Therefore, it could be more convenient to

stop the recursion before reaching the base case of the sequential algorithm. This

is captured in the cond function: the sequential version is used when the remaining

size of the vector to be sorted has length smaller than a given cutoff parameter (e.g.,

2, 000 elements) (line 22). The DC pattern is instantiated in the main function by
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using the ff DC interface and setting also the number of threads (par degree) to use

in the run-time for the parallel execution (line 28).

1 void DC(const ProblemType &p,ResultType &ret) {

2 if(!cond(op)) { //not the base case

3 //divide

4 std::vector<ProblemType> ps;

5 divide(p,ps);

6 std::vector<ResultType> res(ps.size());

7 //conquer, recursive phase

8 for(size_t i=0;i<ps.size();i++)

9 DC(ps[i],res[i]);

10 combine(res,ret); //combine results

11 return;

12 }

13 seq(p,ret); //base case

14 }

Figure 9-12: Left:) Building blocks used to implement the DC pattern. Right:) Re-
cursive algorithm executed in parallel by the DC pattern.

Implementation with building blocks. The implementation of the DC pattern

is based on the MDF implementation described in Section 9.3. In particular, it has

been implemented as a dynamic macro data-flow interpreter processing direct acyclic

graphs (DAG) of tasks generated at run-time. In this case, differently from the

MDF case which implements a more general execution model, the algorithm that is

parallelized with the DC pattern is fixed and it is the one sketched in the right-hand

side of Figure 9-12. Tasks are created at each recursive call: independent calls can

go through the recursion tree in parallel but they have to be synchronized before

performing the combine phase, in order to be sure that all the partial results have

been computed.

Its run-time is in charge of scheduling tasks to the processing units as they be-

come available (fireable), i.e. all input data-dependencies are satisfied. For Divide &

Conquer algorithms the DAG can be identified by considering the recursion tree. To

guarantee the correctness, proper DAG dependencies are enforced among the graph

nodes representing the sub-problems and the ones representing the partial results.
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The management of the DAG is handled by a scheduler node which maintains only

the part of the DAG that is needed for the computation. Task already computed are

removed and memory deallocated. The building blocks structure of the DC pattern is

a farm without Collector (see the left-hand side of Figure 9-12). The Emitter node is

the scheduler node which manages the hash table implementing the DAG. Feedback

channels between the Workers and the Emitter are used to notify the completion of

operations assigned to the Worker.

9.4.2 Evaluation

In this section, we consider three different Divide & Conquer algorithms: the Merge-

sort, the Quicksort and the Strassen’s matrix multiplication (simply called Strassen)

algorithms. Besides being very well-known, these problems fully characterize the va-

riety of possible situations that may occur in divide and conquer algorithms. The

Mergesort algorithm is characterized by a divide phase with a negligible computation

cost, while most of the running time is spent in the combine phase. The Quick-

sort algorithm is symmetric compared to Mergesort. The combine phase is totally

absent and the entire work is essentially performed in the divide phase. Finally,

in the Strassen algorithm both the divide and combine phases represent relatively

coarse-grain computations. In the Strassen algorithm, differently from the other two

algorithms, at each recursion step the problem is divided into seven sub-problems,

rather than just two.

The DC pattern has been implemented by using a task-based approach in Intel

TBB and OpenMP and also by using the FastFlow building blocks described in the

previous sections. In the OpenMP and TBB versions, tasks are created at each re-

cursive call. Independent calls can go through the recursion tree in parallel and they

are synchronized before performing the combine phase to ensure that all the partial

results have been computed. In the OpenMP implementation recursive calls of the

algorithm described in Figure 9-12 have been annotated as #pragma omp task, the

synchronization is implemented as #pragma omp taskwait to wait for task comple-

tion. In the TBB implementation, explicit calls to the low-level tbb::task class have
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Figure 9-13: DC-based Mergesort and Quicksort algorithms implementation using
TBB, OpenMP and FastFlow backends. Problem size: 100 million (100M) of integers
elements.

been used to generate tasks and to synchronize their completion.

The programs are tested with different sizes of the input data: Mergesort and

Quicksort are tested with arrays having a size equal to 10M, 20M, 50M and 100M

integer elements. Strassen is tested using square dense matrices of double-precision

elements having sizes equal to 1K×1K, 2K×2K, 4K×4K and 8K×8K.

The target platform used for the experiments is the Xeon server described in Ta-

ble 6.1. The Turboboost and Hyperthreading facilities have been disabled. Concerning

the libraries, for OpenMP we use the implementation provided with gcc 6.4.0, for

the Intel TBB we used version 4.1. All the measurements are performed multiple

times and average values are shown: in general, the difference between the standard

deviation and the average values reported is less than 3.5%.

Figure 9-13 shows the total execution time (or completion time) of the sorting

algorithms with the biggest input data instances using different parallelism degrees.

With parallelism degree equal to one, the FastFlow backend usually has a completion

time higher than the OpenMP and TBB versions, however, it approaches the other

two solutions as the parallelism degree increases. In the Mergesort case, FastFlow

obtains the best time, while OpenMP obtains the worst. The TBB implementation is

the best option for the Quicksort problem: we argue that this is due to the TBB task
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Figure 9-14: Best execution time for the DC pattern varying the problem size.

scheduler, which is known to be able to efficiently handle situations of unbalanced

computations. This is exactly the situation characterizing Quicksort, where the divide

phases can produce sub-problems with substantially different sizes. The Mergesort

and Quicksort plots show a plateau when we use a parallelism degree equal or greater

to 12 − 14, which means that the performance does not steadily increase if we use

more cores. The main reason for this behavior is due to the fact that the sorting

problems are essentially memory-bound, hence the overall scalability of the parallel

implementation using many cores is bounded by the memory bandwidth provided

by the machine. Figure 9-14 shows the best completion time of the three RTSs by

varying the problem size.

The completion time for the Strassen algorithm when using the biggest matrix

size (8K) and by varying the problem size is shown in Figure 9-15. The TBB im-

plementation of the Strassen algorithm exhibits the best completion time for large

problem size, while OpenMP and FastFlow perform similarly, both slightly slower

than the TBB version. The Strassen implementation provides a better scalability

than the one obtained by the sorting algorithms. This is mainly due to the fact

that the Strassen algorithm has a more balanced ratio between memory bandwidth

requirements and CPU utilization.

In general, all the implementations of the DC pattern behave similarly. This

demonstrates that the FastFlow RTS is able to provide similar performance figures to
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Figure 9-15: Left:) DC-based Strassen algorithm implementation for the maximum
problem size 8K square matrix of double precision elements. Right:) Best execution
time varying the problem size.

the ones offered by task-based run-times. However, the centralized scheduler used by

the FastFlow implementation (the farm’s Emitter) suffers scalability problems when

the size of the problem and the number of available cores increases. As for the MDF

pattern, the new all-to-all building block can be used to parallelize the centralization

point, i.e. the DC scheduler.

9.5 Summary

In this chapter, we presented three non-streaming parallel patterns implemented on

top of FastFlow parallel building blocks: the ParallelFor, the Macro Data-Flow and

the Divide & Conquer patterns. We demonstrated that the FastFlow building blocks

can be used to build not only streaming patterns but also efficient and ready-to-use

task-based parallel patterns with good performance features.

The usability of the three patterns has been assessed using well-known algorithms

and applications. The performance of the FastFlow implementations has been com-

pared to state-of-the-art frameworks that offer either the same parallel pattern or

specialized implementation of the kernel considered or providing lower-level mecha-

nisms suitable to implement the pattern tested.

The experimental results demonstrate that the performance achieved by the three
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patterns presented is close to and in a few cases better than the ones offered by state-

of-the-art implementations. The results obtained demonstrate the high flexibility of

the FastFlow building blocks whose low parallel overhead and enhanced composabil-

ity and customizability allow the user to implement new efficient parallel components

with performance result as good as state-of-the-art parallel systems, but with imple-

mentation, flexibility, performance portability, and software engineering advantages.

We believe that the FastFlow programming model based on the proper compo-

sition of parallel building blocks presents a clear methodology for building parallel

components capable of providing the programmer with the right level of abstraction

to develop efficient and flexible solutions.
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Chapter 10

Summary and Future Directions

With the broad diffusion of multi-core systems in almost all market segments, sev-

eral industrial and research tools have been proposed for targeting efficient parallel

software development on multi/many-cores (we discussed some of these recent pro-

posals in Chapter 3). All of them, in different ways, are aiming at overcoming the

limitations of the traditional low-level parallel programming models based on the mix

of “threads & locks” mechanisms. Unfortunately, the majority of currently available

parallel programming frameworks are either not high-level enough for the standard

programmers or not flexible enough to be used in different application domains. Some

proposals provide the user with mechanisms that we consider “low-level” abstractions

such as pragma-based task annotations. Others promote programming models that

allow implementing quite efficient programs, but they do not provide high-level ab-

stractions for non-expert parallel programmers (e.g., Actor-based models). The ones

that offer high-level parallel patterns capable of solving well-known classes of prob-

lems are mainly thought for parallel application developers, and typically they are

not flexible enough to introduce ad hoc optimizations. Moreover, they are not easily

extensible to allow the implementation of newer and more powerful high-level parallel

components by RTS programmers.

In our vision, what is currently missing in the landscape of parallel programming

frameworks and tools, is a common and widely accepted software layer of well-defined,

highly-efficient and portable parallel components that can be used as common RTS
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to cover the usability needs and the performance requirements of different application

domains. That would simplify parallel programming also for expert parallel program-

mers, allowing them to concentrate on developing suitable DSLs and ready-to-use

parallel solutions instead of (re-)implementing new RTSs.

In this thesis, we try to fill this gap by proposing a new design and also some im-

portant new features of the FastFlow parallel programming library targeting shared-

memory systems. The new design completes and strengthens the work we started in

2010 when we made available the initial version of the FastFlow library. Through-

out this dissertation, we presented “the FastFlow way” to harness parallel program-

ming and tackling the issues mentioned previously. The FastFlow library is based on

the structured parallel programming methodology and its layered software design tar-

gets both RTS programmers and domain-expert applications programmers by offering

them suitable parallel abstractions and sharing a common programming methodology.

Our main contribution in this direction is the proposal of a reduced set of sequential

and parallel building blocks, mimicking the RISC model of microprocessor architec-

tures, that can be used both as fundamental components for building higher-level

frameworks and also as useful parallel components that can be customized, connected

with other building blocks, and nested for developing efficient parallel applications. In

addition to building blocks, the FastFlow library provides a set of ready-to-use high-

level parallel patterns built on top of building blocks that seamlessly integrate with

them allowing non-expert parallel programmers to design a parallel version of their

problem quickly and efficiently. FastFlow applications are defined according to the

data-flow compositions of building blocks connected by bounded or unbounded FIFO

channels carrying streams of data references. Shared-memory FastFlow channels are

considered state-of-the-art and are one of the distinguishing features of the library we

developed (communication channels are discussed in Chapter 6). Data-flow streams

and parallel building blocks are first class citizens in the FastFlow library, and they

are the two fundamental ingredients of the FastFlow parallel programming model.

The FastFlow library stands out over other solutions mainly for its demonstrated

extensibility and flexibility in targeting different application domains and for offering
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both suitable abstractions for building high-level parallel patterns as well as efficient

mechanisms for building RTSs. Such remarkable features, do not come at the expense

of efficiency and performance, instead, as we demonstrated with several benchmarks

and applications throughout this dissertation, they are aligned with (and in some cases

better than) state-of-the-art mainstream parallel frameworks. The careful design of

the library and its efficient low-level mechanisms (e.g., communication channels),

together with a clear separation between the RTS code and the business logic code,

allowed us to build the right mix of flexibility, programmability, and performance.

In light of the continuous evolution of multi/many-core platforms, performance

portability is another crucial aspect we considered in this work. To this end, our

contribution was to introduce to the FastFlow library a new software component

called concurrency graph transformer, which offers the essential mechanisms to re-

structure and optimize the data-flow concurrency graph produced by patterns and

building blocks compositions. Straightforward yet effective graph transformations are

transparently and automatically provided to the FastFlow user through optimization

flags (e.g., farm fusion and farm combine – presented in Chapter 8). Such trans-

formations aim at reducing the number of graph’s nodes and eliminating potential

bottlenecks introduced by the compositions and nesting of building blocks having

employing mediator nodes. The API provided by the transformation component al-

lows the programmer to implement ad hoc building blocks transformations capable

of accommodating the efficient execution of FastFlow applications on different target

platforms.

Finally, throughout this dissertation, we extensively tested and assessed both low-

level mechanisms and building blocks as well as the concurrency graph transforma-

tions by using simple kernels and notable parallel use-cases. We discussed and tested

some high-level parallel patterns available in the library, i.e. ParallelFor, Macro Data-

Flow and Divide & Conquer, which are built on top of the building block components

we have developed. The experimental results demonstrate the high versatility and

the good performance of the FastFlow parallel programming library.

In the following, we briefly recap the main results achieved:
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• A thorough description of the FastFlow parallel library presenting its parallel

programming model and its implementation design (Chapter 4).

• The definition and implementation of bounded and unbounded FIFO channels

implemented by using Single-Produce Single-Consumer (SPSC) FIFO queues

(Chapter 6).

• The implementation of both blocking and non-blocking concurrency control

mechanisms for accessing the communication channels connecting two concur-

rent FastFlow nodes. The proposed protocol allows to dynamically switch the

concurrency mode between passive waiting (blocking) and active waiting (non-

blocking) of run-time threads. This is particularly relevant for long-running

data streaming computations with wide input rate fluctuations (Chapter 6).

• The definition and implementation of a RISC-like set of parallel building blocks.

Specifically, we have defined and implemented: a new parallel component called

all-to-all modeling the shuffle communication pattern; the new sequential node

combiner and a rich set of new composition and combining rules for the building

blocks (Chapters 5, 7).

• A new FastFlow concurrency graph transformation software component. This

component allows to statically (and in some cases automatically) introduce

graph transformations capable of optimizing the FastFlow concurrency graph

describing the application enabling performance portability and increasing re-

source usage efficiency (Chapter 8).

• The implementation of concurrency throttling mechanisms in the farm build-

ing block that enable the development of sophisticated policies to dynamically

change the concurrency level of the farm’s Workers with the aim to increase

either the sustained input rate or to reduce the power consumption by reducing

the number of threads when the non-blocking concurrency control policy is used

(Chapter 7).

• A thorough experimental validation of the proposed building blocks to sup-
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port the efficient implementation of well-known parallel patterns, namely the

ParallelFor, the Divide&Conquer and the Macro-DataFlow patterns (Chap-

ters 6, 7, 8, 9).

Future research directions

There are several research directions worth investigating on the basis of what we have

already developed in the FastFlow library. In the following, we briefly highlight some

of them.

• Starting from the concurrency graph transformation mechanisms implemented

in the new FastFlow concurrency graph transformation component, it would be

interesting to implement a performance-model-driven static optimization com-

ponent capable to automatically restructure and optimize (possibly guided by

user’s hints) the graph of nodes on the target platform. By using post-mortem

data analysis of the execution metrics collected by the RTS on previous runs,

the new component may derive suitable graph transformations with the aim

of satisfying user-defined objectives such as for example to balance the service

time among nodes or to reduce power consumption.

• An interesting research challenge consists in working on dynamic transforma-

tions of the concurrency graph describing the FastFlow application. The mech-

anisms we designed in the graph transformation software layer are thought to

manage the graph statically before starting the parallel execution of nodes (i.e.

at compile-time). However, the same graph transformations can be in principle

introduced at run-time, not only as we have already done by enabling con-

currency throttling of Workers in the farm building block (see Section 7.3.2),

but also to merge and then restore stages and distinct parallel building blocks

while the application is running. That would allow enlarging the optimization

space: to better accommodate different performance needs of long-running ap-

plications, and to tackle dynamic resource variations typical of IoT and Fog

environments.
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• Developing new high-level parallel patterns targeting new application domains.

Notably, there is a deluge of machine learning and deep learning algorithms

used in many different applications. Studying both the workloads and the char-

acteristics of these algorithms might lead to a definition of common components

implemented by using the proposed building blocks and to “standardized” so-

lutions to be provided to the applications programmer. However, even the

implementation of fully general models of computation such as the BSP model

targeting multi-cores is interesting and worth adding to the FastFlow list of

high-level parallel patterns.

• In this dissertation, we concentrated on shared-memory systems. An interest-

ing extension of this work would be to target distributed systems. We have

already developed a distributed version of the FastFlow library, but that was

a proof-of-concept, preliminary implementation and lots of work still have to

be done. Primarily, it would be interesting to extend the building blocks par-

allel programming approach together with the concurrency graph transforma-

tions/optimizations policies to distributed memory systems with the aim of

defining a unified framework offering the same programming model for both

shared-memory as well as distributed-memory systems.
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Par4all: From convex array regions to heterogeneous computing. In IMPACT 2012: Second
International Workshop on Polyhedral Compilation Techniques HiPEAC 2012, 2012.

[31] Henrique Andrade, Bura Gedik, and Deepak Turaga. Fundamentals of Stream Processing.
Cambridge University Press, 2014. Cambridge Books.

[32] Joe Armstrong. The development of erlang. SIGPLAN Not., 32(8):196–203, August 1997.

[33] S. Arnautov, P. Felber, C. Fetzer, and B. Trach. Ffq: A fast single-producer/multiple-consumer
concurrent fifo queue. In 2017 IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS), pages 907–916, May 2017.

[34] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry Hus-
bands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John Shalf, Samuel Webb
Williams, and Katherine A. Yelick. The landscape of parallel computing research: A view
from berkeley. Technical Report UCB/EECS-2006-183, EECS Department, University of Cal-
ifornia, Berkeley, Dec 2006.

[35] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt Keutzer, John Kubia-
towicz, Nelson Morgan, David Patterson, Koushik Sen, John Wawrzynek, David Wessel, and
Katherine Yelick. A view of the parallel computing landscape. Commun. ACM, 52(10):56–67,
October 2009.

[36] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier. StarPU:
A Unified Platform for Task Scheduling on Heterogeneous Multicore Architectures. Concur-
rency and Computation: Practice and Experience, Special Issue: Euro-Par 2009, 23:187–198,
February 2011.
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[290] Tobias Schüle. Embedded multicore building blocks parallel programming made easy, 2015.
Embedded World 2015 Conference. Last accessed June 2018: https://embb.io/downloads/

EMBB_Embedded-World_2015.pdf.

[291] H. Schweizer, M. Besta, and T. Hoefler. Evaluating the cost of atomic operations on modern
architectures. In 2015 International Conference on Parallel Architecture and Compilation
(PACT), pages 445–456, Oct 2015.

[292] A. Secco, I. Uddin, G. P. Pezzi, and M. Torquati. Message passing on infiniband rdma for
parallel run-time supports. In 2014 22nd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, pages 130–137, Feb 2014.

[293] Daniele De Sensi, Tiziano De Matteis, and Marco Danelutto. Simplifying self-adaptive and
power-aware computing with nornir. Future Generation Computer Systems, 87:136 – 151,
2018.

[294] Nir Shavit and Dan Touitou. Software transactional memory. Distributed Computing, 10(2):99–
116, Feb 1997.

375

https://redis.io
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://embb.io/downloads/EMBB_Embedded-World_2015.pdf
https://embb.io/downloads/EMBB_Embedded-World_2015.pdf


[295] K. Siddique, Z. Akhtar, E. J. Yoon, Y. Jeong, D. Dasgupta, and Y. Kim. Apache hama: An
emerging bulk synchronous parallel computing framework for big data applications. IEEE
Access, 4:8879–8887, 2016.

[296] Mahendra Pratap Singh and Manoj Kumar Jain. Article: Evolution of processor architecture
in mobile phones. International Journal of Computer Applications, 90(4):34–39, March 2014.

[297] David B. Skillicorn and Domenico Talia. Models and languages for parallel computation. ACM
Comput. Surv., 30(2):123–169, June 1998.

[298] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra. MPI-The
Complete Reference, Volume 1: The MPI Core. MIT Press, Cambridge, MA, USA, 2nd.
(revised) edition, 1998.

[299] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on Memory Consistency and
Cache Coherence. Morgan & Claypool Publishers, 1st edition, 2011.

[300] P. Stenstrom, T. Joe, and A. Gupta. Comparative performance evaluation of cache-coherent
numa and coma architectures. In [1992] Proceedings the 19th Annual International Symposium
on Computer Architecture, pages 80–91, May 1992.

[301] Robert Stephens. A survey of stream processing. Acta Informatica, 34(7):491–541, 1997.

[302] Thomas Sterling, Donald J. Becker, Daniel Savarese, John E. Dorband, Udaya A. Ranawake,
and Charles V. Packer. Beowulf: A parallel workstation for scientific computation. In In
Proceedings of the 24th International Conference on Parallel Processing, pages 11–14. CRC
Press, 1995.

[303] Michel Steuwer and Sergei Gorlatch. Skelcl: Enhancing opencl for high-level programming
of multi-gpu systems. In Victor Malyshkin, editor, Parallel Computing Technologies, pages
258–272, Berlin, Heidelberg, 2013. Springer.

[304] Michel Steuwer, Philipp Kegel, and Sergei Gorlatch. Skelcl - a portable skeleton library for
high-level gpu programming. In Proceedings of the 2011 IEEE International Symposium on
Parallel and Distributed Processing Workshops and PhD Forum, IPDPSW ’11, pages 1176–
1182, Washington, DC, USA, 2011. IEEE Computer Society.

[305] Arvind K. Sujeeth, Kevin J. Brown, Hyoukjoong Lee, Tiark Rompf, Hassan Chafi, Martin
Odersky, and Kunle Olukotun. Delite: A compiler architecture for performance-oriented em-
bedded domain-specific languages. ACM Trans. Embed. Comput. Syst., 13(4s):134:1–134:25,
April 2014.

[306] Arvind K. Sujeeth, Tiark Rompf, Kevin J. Brown, HyoukJoong Lee, Hassan Chafi, Victo-
ria Popic, Michael Wu, Aleksandar Prokopec, Vojin Jovanovic, Martin Odersky, and Kunle
Olukotun. Composition and reuse with compiled domain-specific languages. In Giuseppe
Castagna, editor, ECOOP 2013 – Object-Oriented Programming: 27th European Conference,
Montpellier, France, July 1-5, 2013. Proceedings, pages 52–78. Springer, 2013.

[307] Herb Sutter. The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobbs journal, 30(3):202–210, 2005. Last accessed February 2018:
http://www.gotw.ca/publications/concurrency-ddj.htm.

[308] Kun Tan, He Liu, Jiansong Zhang, Yongguang Zhang, Ji Fang, and Geoffrey M. Voelker. Sora:
High-performance software radio using general-purpose multi-core processors. Commun. ACM,
54(1):99–107, January 2011.

[309] Rajeev Thakur, William Gropp, and Ewing Lusk. On implementing mpi-io portably and with
high performance. In Proceedings of the Sixth Workshop on I/O in Parallel and Distributed
Systems, IOPADS ’99, pages 23–32, New York, NY, USA, 1999. ACM.

376



[310] William Thies, Michal Karczmarek, and Saman Amarasinghe. Streamit: A language for
streaming applications. In R. Nigel Horspool, editor, Compiler Construction, pages 179–196,
Berlin, Heidelberg, 2002. Springer.

[311] M. Torquati, G. Mencagli, M. Drocco, M. Aldinucci, T. De Matteis, and M. Danelutto. On
Dynamic Memory Allocation in Sliding-Window Parallel Patterns for Streaming Analytics.
The Journal of Supercomputing, Sep 2017. (In press).

[312] Massimo Torquati. Single-Producer/Single-Consumer Queues on Shared Cache Multi-Core
Systems. Technical Report TR-10-20, Università di Pisa, Dipartimento di Informatica, De-
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