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Sommario

Nell’era del mobile computing, la posizione di persone o cose è un’informazione im-
portante per una vasta gamma di applicazioni. Questo tipo di dato è peculiare sotto
molti aspetti, e pone nuove sfide dal punto di vista della sicurezza e della privacy.
Riguardo alla sicurezza, la diffusa tecnologia GPS si è rivelata piuttosto fragile. Gli
attacchi di spoofing della posizione sono facili da mettere in pratica contro ricevitori
di segnale GPS civile. Un attaccante relativamente sofisticato può ingannare un rice-
vitore e portarlo a misurare qualsiasi posizione desiderata. Questo può avere effetti
devastanti su sistemi “dependable” basati su misure GPS.

D’altra parte, una posizione è spesso riferita ad una persona. In questo caso, è
un dato personale, e la sua divulgazione indiscriminata può costituire una violazio-
ne della privacy. Inoltre, la posizione di una persona può rivelare informazioni ancora
più sensibili su di essa. L’enorme raccolta di posizioni di utenti da parte degli odier-
ni fornitori di servizi sta diventando una seria preoccupazione. L’opinione pubblica si
sta sensibilizzando sempre di più su questo problema. È facile immaginare che i for-
nitori di servizi del futuro dovranno essere fidati dal punto di vista della privacy. Le
compagnie che non sono fidate dai loro stessi clienti incontreranno serie difficoltà sul
mercato.

In questa tesi di dottorato, consideriamo una serie di problemi di sicurezza e di pri-
vacy riguardanti ai dati di posizione, e proponiamo soluzioni innovative. Prima di tutto,
affrontiamo il problema della misura sicura (non GPS) di posizioni. Studiamo le limi-
tazioni delle attuali tecnologie range-based di posizionamento sicuro, che utilizzano
protocolli distance-bounding eseguiti da nodi àncora terrestri. Un protocollo distance-
bounding permette di misurare un limite superiore sicuro alla distanza tra due disposi-
tivi. Ci concentriamo su un nuovo tipo di attacco, generalmente considerato fattibile in
letteratura: l’attacco di enlargement. Gli attacchi di enlargement mirano a far misurare
al protocollo distance-bounding una distanza maggiore di quella reale. Investighia-
mo la loro fattibilità ed il loro effetto contro protolli distance-bounding implementati su
standard IEEE 802.15.4a UWB. Basandoci sui risultati di questa analisi, proponia-
mo EMCD-ML, un algoritmo per il posizionamento sicuro che riduce sensibilmente il
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numero di nodi àncora necessari rispetto ai metodi allo stato dell’arte.
In secondo luogo, affrontiamo il problema della protezione della privacy nella dis-

seminazione e nell’uso dei dati di posizione. Proponiamo *-UniLO, un insieme di ope-
ratori che offuscano delle posizioni per scopi di privacy. Gli operatori *-UniLO sono
applicati dall’utente al dato di posizione prima di rilasciarlo al service provider. Essi
impediscono al provider di inferire altre informazioni sensibili dal dato di posizione, e
contemporaneamente mantengono la fruibilità del servizio. Affrontiamo anche i pro-
blemi correlati di: (i) gestire l’imprecisione nelle misure di posizione; (ii) offrire più livelli
di privacy contemporanei; (iii) difendersi contro avversari conoscenti la mappa; e (iv)
difendersi contro location server non fidati. Gli operatori *-UniLO offrono un livello di
sicurezza più alto rispetto ai metodi di offuscamento allo stato dell’arte.
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Abstract

Since computing has become mobile, the position of people or things is an important
piece of information for a plethora of applications. This kind of data is peculiar in
several ways, and poses new challenges from the point of view of security and privacy.
Regarding security, the broadly-used GPS technology has shown to be quite fragile.
Position spoofing attacks are easy to mount against civilian GPS receivers. A relatively
sophisticate attacker can deceive a receiver into measuring any desired position. This
can have devastating effects on “dependable” systems based on GPS measurements.

On the other hand, position is often referred to people. In this case, it is personal
data, and its indiscriminate disclosure can constitute a privacy violation. Moreover,
the position of a person can disclose even more sensitive information about her. The
huge collection of users’ positions by nowadays service providers is becoming a ma-
jor concern. Public opinion is getting more and more aware of this problem. It is easily
imaginable that future service providers will have to be trusted from a privacy stand-
point. Companies which are not trusted by their own costumers will have a hard time
on the market.

In this dissertation we consider a range of security and privacy problems related
to position data, and we propose novel solutions to them. First of all, we approach
the problem of secure (GPS-free) measurement of positions. We study the limits of
current secure positioning technologies based on ground anchor nodes, in particu-
lar those based on the standard IEEE 802.15.4a UWB. We investigate some rele-
vant security properties of such a standard, relative to the feasibility and the effect
of enlargement attacks. Basing on the results of this analysis, we propose novel ap-
proaches for secure positioning able to significantly improve the scalability in terms of
anchor nodes.

Secondly, we approach the problem of privacy preserving in the dissemination and
the usage of position data. We propose *-UniLO, a set of operators that obfuscate
positions for privacy purposes. *-UniLO operators can be applied to position data by
the user before its dissemination to the service providers. They do not permit the
provider to infer other sensitive information from position data, while still permitting
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the delivery of the service. We also approach the related problems of: (i) dealing
with imprecise location measurements; (ii) offering multiple contemporaneous levels
of privacy; (iii) defending against map-aware adversaries; and (iv) defending against
untrusted location servers. *-UniLO operators offer a higher security level with respect
to state-of-the-art obfuscation methods.
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Introduction

Positions are everywhere in modern computing. The possible usages of position infor-
mation are countless: from self-guidance of unmanned vehicles [31] to location-based
services [11, 35, 39], from location-based access control [7] to tracking of people or
goods [26]. The security and privacy problems posed by this kind of data are peculiar.
In this dissertation we approach some of them. Namely, we focus on the topics of
secure positioning [20, 62, 88, 100, 101] and location privacy [8, 37, 44, 48, 68].

Secure positioning aims at measuring the position of a device in presence of an
adversary trying to deceive the measurement process. We focus on range-based se-
cure positioning techniques [20, 100, 108], which are based on distance-bounding
protocols. Distance bounding [15, 16, 50] allows us to determine a secure upper
bound to the distance between two devices. We first approach the sub-problem of
enlargement attacks. Enlargement attacks aim at deceiving the distance bounding
into measuring a distance larger than the real one. They can follow a jam-and-replay
strategy or an overshadow strategy. We propose SecDEv, a distance bounding pro-
tocol able to withstand jam-and-replay strategies. Then, we study the feasibility of
overshadow strategies against distance bounding implemented on IEEE 802.15.4a
UWB [55]. Basing on the results of this analysis, we propose EMCD-ML, a method for
secure positioning based on the impossibility of the adversary to control the effect of
an overshadow attack. EMCD-ML sensibly reduces the necessary number of anchor
nodes with respect to state-of-the-art methods.

Location privacy aims at avoiding the disclosure of (precise) position data in
location-based services (LBSs). Privacy-preserving mechanisms can be various and
orthogonal to each other. We propose LbSprint, a software architecture to inte-
grate different privacy-preserving mechanisms by means of the standard language
XACML [73]. Then, we develop UniLO, a mathematical operator for location privacy.
UniLO reduces the precision of a position before its disclosure, in such a way that an
adversary cannot reconstruct original data. We also extend it to provide for multiple
contemporaneous levels of privacy. We show that UniLO surpasses state-of-the-art
obfuscation methods in terms of resistance against statistical attacks, while still per-

1



CHAPTER 1. INTRODUCTION

mitting the delivery of the service. Finally, we develop some advanced techniques
that further improve the resistance of UniLO in case of untrusted location servers,
map-aware adversaries and imprecise position measurements.

1.1 Structure of the dissertation

This dissertation is divided in a first part about distance bounding and secure posi-
tioning, and a second part about location privacy. It follows a brief description of each
chapter.

1.1.1 SecDEv: secure distance evaluation in wireless networks

The contribution of this chapter is twofold. First, we propose SecDEv, a secure
distance-bounding protocol for wireless channels that withstands enlargement attacks
based on jam-and-replay. By leveraging on the characteristics of radio frequency sig-
nals, SecDEv establishes a security horizon within which a distance is correctly mea-
sured and a jam-and-replay attack is detected. Second, we show how SecDEv im-
proves the scalability of secure positioning techniques. This chapter has been pub-
lished as a conference paper [32].

1.1.2 Feasibility of overshadow enlargement attack on IEEE 802.15.4a distance
bounding

In this chapter we analyze the feasibility of enlargement attacks through overshadow
strategies on 802.15.4a UWB distance-bounding protocols. We show that the over-
shadow strategies, generally considered feasible by the existing literature, are actually
difficult to carry out. Depending on the delay introduced by the adversary, there are
cases in which they have no effect or their effect is not controllable. This chapter has
been published as a journal paper [94].

1.1.3 EMCD-ML: secure positioning through enlargement miscontrol detection

In this chapter we propose EMCD-ML (Enlargement MisControl Detection MultiLater-
ation), a secure positioning algorithm which leverages on the adversary’s impossibil-
ity of controlling enlargement attacks. EMCD-ML guarantees low adversarial success
probability, while improving the scalability in terms of anchor nodes, with respect to
state-of-the-art solutions.

1.1.4 Integration of privacy protection mechanisms in location-based services

The contribution of this chapter is twofold. First we present LbSprint, a middleware ar-
chitecture for location-based services which integrates different privacy mechanisms
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1.1. STRUCTURE OF THE DISSERTATION

by means of the standard XACML language. The system administrator can configure
and extend the set of such mechanisms. Secondly, we present practical optimiza-
tions which considerably improves the performance of the XACML policy evaluation
process. This chapter has been published as a conference paper [34].

1.1.5 UniLO: a uniformity-based approach to location privacy

In this chapter, we propose UniLO, an obfuscation operator which offers high assur-
ances on obfuscation uniformity, even in case of imprecise location measurement.
We also deal with service differentiation by proposing three UniLO-based obfuscation
algorithms that offer multiple contemporaneous levels of privacy. Finally, we experi-
mentally prove the superiority of the proposed algorithms compared to the state-of-
the-art solutions, both in terms of utility and resistance against inference attacks. This
chapter has been partially published as a conference paper [33].

1.1.6 Advanced techniques for obfuscation-based location privacy

In this chapter we present an advanced obfuscation approach capable of dealing with
measurement imprecision, multiple levels of privacy, untrusted servers, and adversar-
ial knowledge of the map. We estimate its resistance against statistical-based deob-
fuscation attacks, and we improve it by means of three advanced techniques, namely
extreme vectors, enlarge-and-scale, and hybrid vectors.

3



4



2

SecDEv: secure distance evaluation in wireless
networks

Nowadays, many critical systems depend on position measurements. Some exam-
ples include robot guidance, geographic routing, etc. The security of these systems is
at risk if someone can cause the system to measure a false position (spoofing attack ).
Assuring security in the measurement of a position is not a trivial challenge. Secure
positioning systems [19, 62, 88, 100, 101] aim at correctly determining a position in
presence of a spoofer adversary. We focus on range-based secure positioning, which
acts by directly measuring distances (ranging) from a set of anchor nodes whose po-
sitions are known. A promising approach in this sense is to measure distances by
means of wireless distance-bounding protocols [15, 16, 50, 81]. A distance-bounding
protocol determines a distance between a verifier and a prover by measuring the
round-trip time between a request and an acknowledgment messages, both carrying
cryptographic quantities. They are usually realized on impulse-radio ultra-wide band
(IR-UWB) technology, which is capable of sub-meter precision in ranging operations.
Distance-bounding protocols are designed to resist to reduction attacks, i.e., an adver-
sary is not capable of causing the measurement of a shorter distance. On the other
hand, enlargement attacks are generally considered feasible by the literature. As a
result, current range-based secure positioning methods need additional tests and a
large number of anchor nodes [19, 100].

In this chapter we propose SECure Distance EValuation (SecDEv), a distance-
bounding protocol able to resist to enlargement attacks based on jam-and-replay tac-
tics [58, 96, 100]. SecDEv exploits the characteristics of wireless signals to establish a
security horizon within which a distance can be correctly evaluated (besides measure-
ment errors) and any adversarial attempt to play a jam-and-replay attack is detected.
We also show how SecDEv improves the scalability of secure positioning techniques
in terms of number of anchor nodes. This chapter has been published as a conference
paper [32].

The remainder of this chapter is organized as follows. In Section 2.1 we compare
SecDEv with other state-of-the-art solutions. In Section 2.2 we introduce a reference
distance-bounding protocol. In Section 2.3 we define the threat model. In Section 2.4
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CHAPTER 2. SECDEV: SECURE DISTANCE EVALUATION IN WIRELESS
NETWORKS

we introduce SecDEv as an improvement of the reference distance bounding. In Sec-
tion 2.5 we show how SecDEv improves the performance of secure positioning tech-
niques.

2.1 Comparison of SecDEv to the state of the art

Secure localization has a vast applicability in many technological scenarios, but it has
showed to be a nontrivial problem. The silver bullet is yet to be found.

Brands and Chaum [15] proposed distance-bounding protocols, in which a verifier
node measures the distance of a prover node. Distance-bounding protocols do not
determine the actual distance, but rather a secure upper bound on it. In this way, the
actual distance is assured to be shorter or equal to the measured one, even in pres-
ence of an adversary. These protocols were created to assure the physical proximity
between two devices, and consequently to contrast mafia fraud attack [30].

Hancke and Kuhn [50] fitted distance bounding protocols for RFId tags. Their pro-
posal deals with a variety of practical problems such scarce resources availability,
channel noise and untrusted external clock source. Though extensions for RFId’s are
possible, we focus on more resourceful devices. We assume the clock source is inter-
nal and trusted and the channel noise is corrected by FEC techniques.

Clulow et al. [22] focused on a wide variety of low-level attacks, which leverage on
packet latencies (e.g. preambles, trailers, etc.) and symbols’ modulations. PHY-layer
preambles are sent before the cryptographic quantities, in order to permit the receiver
to synchronize itself to the sender’s clock. The preamble of the response is fixed
and does not depend on the content of the challenge. A dishonest prover could thus
anticipate the transmission of the response preamble to reduce the measured dis-
tance. To deal with this problem, Rasmussen and Čapkun [83] proposed full-duplex
distance bounding protocols, in which the challenge and the response are transmitted
on separate channels. The prover receives the challenge and meanwhile transmits
the response. In this way, a dishonest prover cannot anticipate the transmission of the
response, without having to guess the payload. In the present chapter, we assume
the prover to be honest. This permits us to simplify our reference distance-bounding
protocol (cfr. Section 2.2). In particular we use a single channel in a half-duplex fash-
ion.

Flury et al. [41] and, more in depth, Poturalski et al. [81] analyze the PHY-protocol
attacks against impulse-radio ultra-wideband ranging protocols (IR-UWB), with partic-
ular attention to 802.15.4a [85], which is the de facto standard. These studies concen-
trate only on reduction attacks, and estimate their effectiveness in terms of meters of
distance reduction. We instead focus on the opposite problem, distance enlargement,
which requires different countermeasures.

Chiang et al. [19] proposed the first technique able to mitigate the enlargement
attack in case of dishonest prover. The verifier makes two power measurements of the
prover’s signal on two collinear antennas. Subsequently, it computes the difference
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2.2. REFERENCE DISTANCE-BOUNDING PROTOCOL

of the two measurements. Given the standard path-loss model, if the difference is
low, the signal source will be far away. Otherwise it will be near. The idea is that the
adversary cannot modify the way the signal attenuates over the distance, thus the
distance estimation is trusted. Obviously such proposal relies on the standard path-
loss model, which is poorly reliable. The authors claim that if the path loss exponent
varies between 2 and 4, an enlargement of more than twice the measured distance is
impossible. In this chapter, we focus on external adversaries. The problem of distance
enlargement in presence of internal ones is challenging as well, but falls outside our
present scope.

2.2 Reference distance-bounding protocol

A distance-bounding protocol allows a verifier (V) to “measure” the distance of a
prover (P). In its basic form, a distance-bounding protocol consists in a sequence of
single-bit challenge-response rounds [15]. In each round, the verifier sends a chal-
lenge bit to the prover that replies immediately with a response bit. The round-trip
time enables V to compute an upper-bound of the P distance. Then, the distance
is averaged on all rounds. Many variants of distance-bounding protocols have been
proposed in the literature [16, 50]. Here, we establish a reference distance-bounding
protocol, similar to those described in [81] for external adversaries. It involves a re-
quest message (REQ) from the verifier, an acknowledgment message (ACK) from
the prover, and a final signature message (SGN) from the prover. Such a reference
protocol is vulnerable to jam-and-replay attacks, as we will show in Section 2.3, and
SecDEv (cfr. Section 2.4) will overcome these vulnerabilities.

The request and the acknowledgement convey, respectively, a and b, which are
two independent, random and unpredictable sequences of bits. Note that, differently
from the original version of distance-bounding protocol, the request and the acknowl-
edgement are frames, rather than single bits. In fact, it is hard to transmit single bits
over an IR-UWB channel. This is due to TLC regulation, which poses strict limits to
the transmission power. In 802.15.4a [85], for example, every packet is preceded by
a multi-bit synchronization preamble. The signature authenticates the acknowledge-
ment and the request by means of a shared secret S. What follows is a formal de-
scription of the protocol.

REQ V −→ P : a

ACK P −→ V : b

SGN P −→ V : signS(a, b)

The quantities a, b and signS(·) are k-bit long. Therefore, the probability for an ad-
versary to successfully guess one of these quantities is 2−k. Such a probability gets
negligible for a sufficiently large value of k, which we call the security parameter.

The verifier measures the distance between itself and the prover, by measuring
the round-trip time T̂ between the request and the acknowledgement messages. With
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CHAPTER 2. SECDEV: SECURE DISTANCE EVALUATION IN WIRELESS
NETWORKS

Figure 2.1. Round-trip time

reference to Fig. 2.1, we denote by tstart the instant when the transmission of REQ
begins, and by tend the instant when the reception of ACK ends. We denote by Te the
time interval from the end of REQ reception, to the beginning of ACK transmission.
Since ACK does not depend on REQ, Te does not include any elaboration time. It
includes only the time for the antenna to switch from the receive mode to the transmit
mode and the necessary hardware delays. We assume Te to be small and known.
Dedicated hardware can fulfill these requirements. We further denote by Tpkt the
transmission time of the request and acknowledgement messages, and with Tp their
propagation time in the medium. The round-trip time will be:

T̂ = 2Tp = (tend − tstart)− 2Tpkt − Te (2.1)

Finally, we obtain a measure of the distance:

d̂ =
c · T̂
2

(2.2)

where c is the speed of light.
The distance measurement precision depends on the capability of measuring the

time interval with nanosecond precision. Localization systems based on IR-UWB can
achieve nanosecond precision of measured time of flight, and consequently a dis-
tance estimation with an uncertainty of 30 cm. Also, this feature of time precision are
available only with dedicated hardware.

IR-UWB protocols like 802.15.4a provides packets made up of two parts: a pream-
ble and a payload. The preamble permits the receiver to synchronize to the transmitter
and to precisely measure the time of arrival of the packet. The payload carries the in-
formation bits. In our protocol, a and b are transmitted in the payload part. We suppose
the last part of the payload to carry a forward error correction code (FEC), for example
some CRC bits.

In a non-adversarial scenario, the actual distance d will be equal to the measured
distance d̂. To deceive the measurement process, the adversary has to bring the
verifier to measure a fake round-trip time. That is, she must act in a way that the
verifier receives the acknowledgement at a different instant of time, while still receiving
the correct signature. The basic idea of distance-bounding protocol is that an external
adversary cannot deliver a copy of the legitimate acknowledgement before than the
legitimate one.
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2.3. THREAT MODEL

On the other hand, she can deliver a copy of the acknowledgement after the legit-
imate one. In other words, she can only enlarge the measured distance, not reduce
it. Thus, we are always sure that d ≤ d̂, i.e., the measured distance is a secure upper
bound for the actual distance.

2.3 Threat model

We assume that the adversary (M) is an external agent, meaning that she does not
know the shared secret (S) ant it cannot be stolen. Techniques like trusted hardware
and remote attestation can help defending against these possibilities [53]. The objec-
tive of M is to deceive the verifier into measuring an enlarged round-trip time:

T̂ = 2Tp +∆T (2.3)

in order to make it infer an enlarged measured distance:

d̂ =
c · T̂
2

= d+
c ·∆T

2
(2.4)

We do not deal with distance reduction attacks. Since our protocol is an enhance-
ment of the reference distance-bounding protocol of Section 2.2, it offers the same
guarantees against distance reduction attacks.

2.3.1 Adversary’s capabilities

M can eavesdrop, transmit or jam any signal in the wireless channel. The principle
of a jammer is to generate a radio noise at a power comparable or higher than the
legitimate one. In case of IR-UWB channels, a jammer could send periodic UWB
pulses, in such a way to disrupt the synchronization process [80]. Alternatively, she
could simply send random pulses in the payload part, in such a way the receiver
discards the packet as corrupted after the FEC test. In both cases, the goal of the
jammer is to disrupt the reception of the message.

M can transmit or jam selectively, in such a way that only a target node receives.
In the meanwhile, M can correctly eavesdrop other signals. To do this, she can place
a transmitting device nearby the receiver, and a listening one nearby the transmitter.
Alternatively, she can use a single device with two directional antennas. One of them
transmits to the receiver, while the other listens to the transmitter.

Another possibility is the overshadowing attack. In this attack, M injects a fake
signal with higher power than the original one. The original signal becomes entirely
overshadowed by the attacker’s signal. Ideally, original signal is treated as noise by
the receiver. In this chapter, we do not deal with this attack, and we focus only with
jam-and-replay attacks. The overshadowing attack is indeed interesting and deserves
a full analysis, that we are planning to do in future work. Here we only points out that
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CHAPTER 2. SECDEV: SECURE DISTANCE EVALUATION IN WIRELESS
NETWORKS

(a) Jam-and-replay on ACK. (b) Jam-and-replay on REQ.

Figure 2.2. Jam-and-replay attack

it is not simple to be performed in a real-world IR-UWB protocol. In fact, the verifier
does not receive only the fake signal, but the legitimate signal too. Even if the former
is much stronger in power, the latter is still a valid IR-UWB signal, which interferes
with the packet synchronization and reception. Sending an overshadowing signal is
probably not enough. The adversary should also attenuate the legitimate signal with
some complementary technique, such as electro-magnetic shields or similar.

We assume that M has no physical access to the prover or the verifier. This has
two consequences: (i) she cannot tamper with the nodes and steal their secret ma-
terial, and (ii) she cannot attenuate the wireless signals with electro-magnetic shields
or Faraday cages.

2.3.2 Jam-and-replay attacks

In the distance-bounding protocol of Section 2.2, the adversary can enlarge the mea-
sured round-trip time in the following way (Fig. 2.2a).

1. M listens to the radio channel, until she hears a REQ signal.
2. M waits for the ACK signal.
3. M jams the ACK signal and eavesdrop it in the meanwhile.
4. After a time ∆T , M replays it.

The adversary must replay the ACK signal selectively, in such a way that only the
verifier receives it. Otherwise, the prover will also receive the replayed signal, and
could infer that the protocol is under attack.

It is important to highlight that M has to wait for the legitimate ACK to end, before
starting the transmission. This is because she must avoid signal collision.

The adversary can perform a similar attack on the REQ signal (Fig. 2.2b). Even in
this case, M has to wait for the end of the legitimate REQ before starting her trans-
mission.

We state the following:

Proposition 1. In a jam-and-replay attack on REQ/ACK, the adversary must enlarge
the round-trip time of a quantity ∆T not smaller than Tpkt, i.e., ∆T ≥ Tpkt.
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2.4. SECDEV PROTOCOL

Proposition 1 represents the fundamental limitation of the jam-and-replay attacks.
SecDEv will leverage on this to withstand them. Note that this limitation comes from
the properties of the radio-frequency channel, and does not depend on how many
devices the adversary controls. For the sake of simplicity, Figg. 2.2a and 2.2b show a
single adversary.

2.4 SecDEv protocol

SecDEv is a distance-bounding protocol, which measures the correct distance be-
tween a verifier V and a prover P in presence of an adversary M performing a jam-
and-replay attack. It is similar to the reference distance-bounding protocol (cfr. Sec-
tion 2.2), except that the length of REQ and ACK do not depend only on the security
parameter, but also on a security horizon.

Let us consider the Equation 2.3 for a general enlargement attack and apply the
Proposition 1, we obtain the constraint T̂ ≥ 2Tp + Tpkt. Hence:

T̂ ≥ Tpkt (2.5)

Equation 2.5 assures us that a measured round-trip time smaller than Tpkt has
not been affected by any jam-and-replay attack. We can translate Tpkt in a distance
dM , that we call security horizon:

dM ,
cTpkt
2

(2.6)

In terms of distances, Equation 2.5 becomes:

d̂ ≥ dM (2.7)

Equation 2.7 is our test to distinguish between trusted and untrusted distance
measurements. V can extend the packet transmission time to enlarge the security
horizon (cfr. Eq. 2.6), in order to securely measure longer distances. Tpkt is enlarged
by introducing padding bits after the nounce. Padding bits have not to be unpre-
dictable. They can have a well-known value (e.g. all zeroes), since they serves only to
prolong the packet transmission time. V decides on the length of the REQ padding,
and P has to respond with the same padding length in the ACK. Therefore, both mes-
sages have the same length, to withstand both jam-and-replay on REQ and on ACK.

Let us explain the protocol in detail. We assume that the wireless channel is char-
acterized by the parameter tuple: {Tpre, Rpld, Te}. Tpre is the transmission time of
the preamble part. Rpld is the bit rate of the payload part. Te is the reaction time of
the prover node. In addition, we define the following triplet of protocol parameters:
{k, S, dM}. k is the security parameter. A higher value for k implies a higher security
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CHAPTER 2. SECDEV: SECURE DISTANCE EVALUATION IN WIRELESS
NETWORKS

Figure 2.3. SecDEv algorithm

level, but has an impact on power consumption, as we will see in the following. S is a
secret bit sequence shared between V and P. Its length is longer than or equal to k.
dM is the security horizon that distinguishes between trusted and untrusted measured
distances. If the actual distance d is longer than dM , the measured distance cannot
be trusted because it may be affected by a jam-and-replay attack. In such a case, the
protocol can be executed again with a longer dM . Alternatively, the distance d can
be first estimated in an insecure manner, and then securely confirmed with dM > d.
A higher value for dM allows us to measure longer distances, but has an impact on
power consumption.

We further define the following quantities. Npad and Nfec are respectively the
number of bits of the padding and the FEC code. Since the number of bits of a and b
is k, the total transmission time will be:

Tpkt = Tpre + (k +Npad +Nfec)/Rpld (2.8)

If with Npad = 0, the Tpkt identifies the minimum value of dM . Thus, if the actual
distance is smaller than this value, there is not need of padding bits. Otherwise, we
determine Npad with the following formula:

Npad =

⌈(
2dM
c
− Tpre

)
·Rpld

⌉
− k −Nfec (2.9)

Using the Equation 2.9, we can set every value of dM . Note that Tpkt grows with
dM . A larger security horizon causes longer messages, accordingly higher energy
consumptions per protocol execution. An implementer must choose dM as a trade-off
between ranging capabilities and power consumption.

Fig. 2.3 shows the algorithm executed by V. After the protocol execution, V tests
whether the measured distance is within the security horizon, that is, if d̂ < dM . If
this test fails, the measured distance is discarded as untrusted. Then, V tests the
length of the ACK padding. If it contains less bits than the REQ one, the measured
distance is discarded as untrusted. This is to avoid a jam-and-replay attack on REQ
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Figure 2.4. Verifiers required to cover an area

(cfr. Fig. 2.2b), in which M tries to lower ∆T by replaying REQ with a smaller padding.
In such a case, P will respond with an ACK with a smaller padding too, and the attack
will not pass the padding length test. Finally, V tests the validity of the cryptographic
signature.

2.5 Experimental results

We combined SecDEv with multilateration technique to securely localize the prover.
We analyzed the efficiency of this solution in terms of covered area and we compared
it with verifiable multilateration [100], which is the state-of-the-art technique for se-
cure positioning in wireless networks. Verifiable multilateration involves at least three
distance measurements from different verifiers. The distance measurements are per-
formed by means of distance bounding protocols, which are supposed to withstand
reduction attacks. Verifiable multilateration deals with possible enlargement attacks by
forcing an additional check to the final position estimation. In order to be trusted, the
position must be inside the polygon formed by the verifiers, otherwise it is discarded
as untrusted. Intuitively, this reduces the coverage area of the positioning technique.

In other words, classic multilateration is more scalable in terms of number of veri-
fiers needed to cover a specific area. To quantify this, we have tested the performance
of classic multilateration in terms of number of verifiers needed to cover a working
area, and we have compared our results with those of verifiable multilateration, taken
from [100]. We supposed that every verifier covers a circular area with radius 250m.

We neglect planned distributions [100], because in a real deployment, environ-
ment may impose constraints on the verifier positioning. Thus, we consider that the
verifiers are uniformly distributed over the area of interest.
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In order to evaluate the two techniques under the same conditions, our simulation
were performed on areas of variable sizes. The verifiers were uniformly distributed in
the area and in a boundary region outside the area, whose width was 10% of the area
width. We use the boundary region to avoid the boundary effects [100] in the verifiable
multilateration.

Fig. 2.4 shows how many verifiers are required to cover 95% and 90% of the work-
ing area. VM and CM curves are respectively verifiable multilateration with distance
bounding and classic multilateration with SecDEv. The number of verifiers is the av-
erage of 100 simulations with confidence intervals of 95% calculated for different val-
ues of working area from 0.5km2 to 4km2. The chart shows that classic trilateration
needs far less verifiers, because it has not the limitation of the verification triangles.
This gives strong motivation to fight distance enlargement attacks.
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3

Feasibility of overshadow enlargement attack on IEEE
802.15.4a distance bounding

In this chapter we make a preliminary analysis of the feasibility of enlargement attacks
through overshadow strategy against indoor 802.15.4a-based distance-bounding pro-
tocols. In an overshadow strategy, the adversary receives and retransmits a legitimate
packet with a certain delay and a stronger power. The legitimate packet gets thus
“overshadowed” by a delayed copy of it. In this way, the adversary tries to delay the
entire process of round-trip time measurement. In general, overshadow strategies are
considered feasible in the literature [100]. Instead, we show that they are not easy to
carry out and, depending on the delay introduced by the adversary, there are cases
in which they have no effect or their effect is not controllable. This chapter has been
published as a journal paper [94].

The remainder of this chapter is organized as follows. In Section 3.1 we de-
scribe the classic two-way ranging technique and we introduce our reference distance-
bounding protocol. In Section 3.2 we describe the 802.15.4a UWB ranging technique
and the receiver technology. In Section 3.3 we define the threat model. In Section 3.4
we analyze the overshadow attack strategies against 802.15.4a and their actual fea-
sibility.

3.1 Two-way ranging and distance bounding

Two-way ranging (TWR) is the most widely used procedure to estimate the distance
between two devices, i.e., a verifier (V) and a prover (P) in an asynchronous wireless
network [29]. The TWR procedure works as follows (cfr. Fig. 3.1). First, V sends a
request packet to P at time t0. P receives it at time t1, after a time of flight Tof =

dV,P/c, where dV,P is the distance between V and P and c is the speed of light.
After some delay Td, P replies with an acknowledgement packet at time t2. The reply
arrives at V at time t3 after Tof . The verifier can estimate Tof = (t3−t0−Td)/2, since
the value of Td is assumed known to V as well. Finally, the V-P distance is obtained
by dV,P = Tof · c.
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Figure 3.1. TWR procedure

In order for the TWR procedure to give an accurate distance estimate, P and V

must precisely measure the arrival times of the packets they receive. Wireless UWB
protocols provide nanosecond precision, leading to a sub-meter accuracy on distance
estimation.

The TWR procedure is not secure by itself. An external adversary can indeed
impersonate a legitimate prover and transmit a fake acknowledgment packet, thus
deceiving the verifier into measuring a false distance. A proposed solution is to imple-
ment a distance-bounding protocol [15] on the top of it. A simple example, proposed
in [81] for 802.15.4a-based systems, is the following:

REQ V −→ P : a

ACK P −→ V : b

SGN P −→ V : signS(a, b)

The request packet (REQ) and the acknowledgment packet (ACK) convey, respec-
tively, a and b, which are two independent and unpredictable sequences of bits. The
signature packet (SGN) authenticates the request and the acknowledgment by means
of a shared secret S. The verifier estimates the distance between itself and the prover,
by measuring the round-trip time between REQ and ACK packets. We use such a pro-
tocol as our reference distance-bounding protocol. The considerations we make about
the overshadow attack hold for more complex distance-bounding protocols as well.

3.2 IEEE 802.15.4a physical layer

We focus on the IEEE 802.15.4a standard [55] for TWR operations. IEEE 802.15.4a
introduces an impulse radio ultra-wide band (IR-UWB) PHY protocol capable of sub-
meter precision in TWR operations in indoor or urban environments. It has been the
first standardized UWB protocol for precise ranging, and it is one of the most probable
choices for future implementations of wireless distance-bounding protocols [81].

On the contrary, there is no such requirement for the SGN. So we are free to map it
into another UWB packet, as well as into a packet of a different protocol, e.g. “vanilla”
802.15.4. To better analyze the feasibility of overshadow-based enlargement attacks
against 802.15.4a UWB, it is necessary to explore the effects of such attacks from a
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physical-layer point of view. Thus, in the following we give some more details on the
structure of the transmitted signal prescribed by the 802.15.4a IEEE standard [55]
and on a characteristic ranging algorithm suited for it. The UWB packets are made
up of three major segments: a synchronization header (SHR), a physical-layer header
(PHR), and a data field. We begin by describing the SHR, which is used for the time-of-
arrival (TOA) estimation. The SHR consists of two blocks: a synchronization preamble
(SYNC) and a start-of-frame delimiter (SFD). The mathematical model of the signal
transmitted during the SHR is:

s (t) =

NSHR−1∑
i=0

aiψ (t− iTsym) (3.1)

where NSHR = NSY NC +NSFD, NSY NC and NSFD are the number of symbols in
the SYNC and SFD, respectively, and Tsym is the symbol duration. Symbols ai are
all equal to 1 during the SYNC while they take values {−1, 0,+1} during the SFD.
Finally, ψ(t) is expressed as:

ψ (t) ,
Kpbs−1∑
k=0

dkp (t− kTpr) (3.2)

where {dk}
Kpbs−1
k=0 is a perfectly balanced sequence with elements {−1, 0,+1}, p(t) is

an ultra-short causal pulse (monocycle) and Tpr , Tsym/Kpbs is the pulse repetition
period.

The transmitted signal s(t) arrives at the receiver through multiple propagation
paths (multipath channel), characterized by different attenuations and delays. Denot-
ing by h(t) the channel response (CR) to p(t)1, the received signal can be written
as

r (t) =

NSHR−1∑
i=0

Kpbs−1∑
k=0

aidkh (t− kTpr − iTsym − tTOA) + w (t) (3.3)

where w(t) is thermal noise. In the above equation, tTOA is the time-of-arrival instant
of the signal at the receiver and represents the parameter to be measured. It coincides
with t1 or t3 in the verifier-prover and prover-verifier channels, respectively, according
to the TWR procedure depicted in Fig. 3.1.

We consider a simple non-coherent energy-based receiver which guarantees high
ranging precision with low cost and low power consumption. Here, r(t) is first passed
through a band-pass filter (BPF), to remove the extra-band noise, and then is demod-
ulated in a square-law device followed by a low-pass filter (LPF).

The ranging operation is concerned with the estimation of the position, tPHR, of
the first peak of the first pulse of the PHR [55]. Such a peak represents the arrival

1 Without loss of generality, it is assumed that h(t) starts at t = 0.
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Figure 3.2. Fine timing acquisition procedure

of the ranging marker and is conventionally taken as the time of arrival of the en-
tire signal packet [55]. In fact, estimating tPHR is equivalent to estimate tTOA, since
tTOA = tPHR −NSHRTsym.

We consider the TOA-estimation procedure described in [29], but the conclusions
we draw are valid also with other threshold-based TOA estimation algorithms. In par-
ticular, TOA estimation is performed in the following three steps. The frame detection
step decides through energy measurements whether a packet is present or not. The
fine timing acquisition step produces a fine estimate of the arrival time tPHR with
an ambiguity of multiples of Tsym. Finally, the SFD detection step disambiguates the
estimate of tPHR through a correlation mechanism.

We write tPHR as a multiple of Tsym plus a fractional part τf ∈ [0, Tsym), i.e.,
tPHR = τf +NTsym. The fine timing acquisition phase and the SFD detection phase
deal with the estimation of τf and N , respectively.

We now focus on the fine timing acquisition procedure. Indeed, as we show later,
this is the only step of the ranging operation that the adversary can attack. The fine
timing acquisition scheme we analyze is described in detail in [29] and essentially con-
sists in the correlation of the signal y(t) at the output of LPF with Kpbs cyclic-shifted
versions of the sequence {d2k}

Kpbs−1
k=0 . This produces a Tsym-long signal, say SFE(t)

2, whose support is in the interval [0, Tsym), which is used for the estimation of τf .
Specifically, the estimation of τf is performed in two steps. In the first step (highest-
peak search) the position τHP of the maximum of SFE(t) is sought for. In the second
step (leading-peak search), starting from τHP we jump back by ∆back seconds and
proceed forward looking for the first time SFE(t) crosses a given threshold λ whose
value depends on the thermal noise. The distance of the crossing time from the be-
ginning of SFE(t) provides an estimate of τf . The fine timing acquisition procedure is
described in Fig. 3.2.

2 For t = m̃Tpr + ε̃, with 0 ≤ m̃ ≤ Kpbs− 1 and ε̃ ∈ [0, Tpr), SFE(t) coincides with S′(m̃, ε̃)
defined in [29].
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3.3 Adversary model

We consider an adversary (M) who wants to deceive the verifier into accepting a
specific enlarged distance measurement. Since the distance measurement is ob-
tained from a round-trip time measurement at V, the adversary’s aim is to enlarge
such a round-trip time measurement, by introducing a controlled delay. She tries to
obtain this by means of an overshadow strategy. Following this strategy, the adver-
sary eavesdrops and retransmits a legitimate UWB packet with a certain delay and
a stronger power. The legitimate signal and the adversarial one get thus overlapped
at the victim’s receiver. The idea at the basis of the attack is that the victim receiving
two signals, both characterized by the expected structure, will hook to the stronger
(malicious) one, thus obtaining an enlarged measurement of the round-trip time. Note
that the adversary must transmit its signal in such a way that only the victim receiver
is able to hear it. Otherwise, the presence of a malicious transmitter would be easily
detected. This attack is considered feasible by the literature [100].

The adversary can attack the prover (by overshadowing the REQ), as well as the
verifier (by overshadowing the ACK), as well as both. Without loss of generality, we
assume overshadowing of the REQ signal but the analysis holds also for the ACK-
overshadowing attack.

Finally, we observe that our adversary has no interest in jamming the legitimate
signal or a part of it. In fact, jamming would not avoid the prover from starting the TOA
estimation procedure, which is triggered by an energy threshold (cfr. Section 3.2). It
would only disturb the TOA measurement in a random way, causing delays which are
not controllable by the adversary.

3.4 Feasibility of the overshadow attack

First of all, we observe that an overshadow attack has not a harmful effect on the
frame detection procedure. It only produces the positive effect of increasing the en-
ergy measured by the receiver thus anticipating the estimation of the presence of the
packet.

The overshadow attack may have a harmful effect on the SFD detection. However,
it would result in a delay multiple of Tsym = 3968 ns [55]. Such a delay corresponds to
an enlargement of 595m, which is unrealistic for an indoor scenario. We assume that
the application layer employs threshold mechanisms to exclude enlargements longer
than 595m.

Now, we analyze the effects of the overshadow attack on the fine timing acquisition
procedure. We make the pessimistic hypothesis that M is synchronized with V and has
a perfect knowledge of the position of both P and V. Under these assumptions, M can
make its message to arrive at P with a controlled delay ∆T relative to the message
sent by V. Therefore, the signal received by P is:
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Figure 3.3. Overshadow attack. Full and empty marks represent the components of SFE(t)
associated to the signal transmitted by V and M, respectively.

r(t) = rV (t) + rM (t−∆T ) (3.4)

where rV (t) and rM (t) are the signals associated to V and M, respectively. The sig-
nal SFE(t) used by the fine timing acquisition algorithm (see Section 3.2) has the
shape shown in Fig. 3.3a. We have represented only the pulses above the threshold
to ease the drawing. In Fig. 3.3a we have introduced two new parameters: ∆pf and
∆h. Specifically, ∆pf represents the delay between the highest pulse and the first
pulse in rM (t), while ∆h represents the time dispersion of the propagation chan-
nel between verifier and prover. For the following discussion it is useful to define
∆S , ∆back − ∆pf . For ∆T < Tpr, three different cases are possible depending
on the value of ∆T .

1. ∆T ∈ [0, ∆S ] (Fig. 3.3a). In this case, the first pulse of the legitimate signal is cor-
rectly identified by the prover. The fine timing acquisition gives a correct estimate
of the TOA, i.e., τ̂f = τf , where τ̂f represents the estimate of τf . The overshadow
attack is ineffective.

2. ∆T ∈ (∆S , ∆S +∆h] (Fig. 3.3b). In this case, a non-first pulse of the legitimate
signal is identified as the first pulse, and thus the overshadow attack produces a
timing enlargement. However, this enlargement is not controllable by the adver-
sary since it depends on the propagation channels between V and P, and M and
P. Thus, we have τ̂f > τf but τ̂f 6= τf +∆T .
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Table 3.1. Mean Absolute Error of the Enlargement

case 1 case 2 case 3

regular adversary (no effect) 7.79m 0.15m

close adversary (no effect) 8.52m 0.14m

3. ∆T ∈ (∆S +∆h, Tpr) (Fig. 3.3c). In this case, the first pulse of the malicious
signal is identified as the first pulse, i.e., τ̂f = τf +∆T . This is the only situation
in which M is able to introduce a timing enlargement equal to ∆T .

The case ∆T ≥ Tpr can be dealt with in a similar manner. Note that ∆S and ∆h

depend on the channel, which is not deterministic. So, for a fixed ∆T , the occurrence
of each of the three cases will be expressed as a probability.

We simulated overshadow attacks to test their feasibility in a standard residential
scenario (CM1) [70]. The signal parameters are set as done in [29]. The performance
of the attacks has been assessed by measuring the mean absolute error (MAE) of
the enlargement, i.e. the difference between the achieved enlargement and the tar-
get enlargement. We simulated both a regular adversary, which experiences an M-
P channel following the CM1 model, and a close adversary, for which the M-P link
can essentially be characterized by a single, line-of-sight, component. We assumed a
signal-to-noise ratio Es/N0 = 30dB, where Es is the energy of a symbol, and N0 is
the noise spectral power density.

Table 3.1 shows the values of MAE in cases 2 and 3. As expected, the overshadow
attack is effective and controllable only when case 3 occurs, both for regular and for
close adversary. Observe that an attack with an uncontrollable effect could also be
useful for an adversary. However, this is not the case in trilateration-based positioning
in which the enlargement must be controllable in order the position to be spoofed in a
coherent manner.

Figs. 3.4 and 3.5 illustrate the probability of the above three cases as a function of
the target distance enlargement ∆D = ∆T · c/2, with the regular and the close adver-
sary, respectively. Experiments confirmed that a controllable attack (i.e., occurrence
of case 3) is impossible for many values of ∆D, and reaches the maximum probability
of 18% at ∆D = Tpr · c/2 = 19.2m. Such a probability does not increase in the case
of an adversary with a strong line-of-sight component.
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Figure 3.4. Probability of No Effect (NE), Uncontrollable Effect (UE) and Controllable Effect
(CE) cases with a regular adversary.
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Figure 3.5. Probability of No Effect (NE), Uncontrollable Effect (UE) and Controllable Effect
(CE) cases with a close adversary.
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4

EMCD-ML: secure positioning through enlargement
miscontrol detection

In this chapter, we estimate the controllability of an enlargement attack by PHY-level
simulations of the IEEE 802.15.4a UWB protocol in an indoor scenario. We deter-
mine the adversary’s best tactics to enlarge a ranging operation and estimate her
success probability. Then, we propose EMCD-ML (Enlargement MisControl Detection
MultiLateration), a secure positioning algorithm based on the difficulty of the adver-
sary to control the effect of enlargement attacks. EMCD-ML is based on the fact that
the adversary has a low probability to enlarge the distance measurements in such
a way to coherently spoof the position. Such a probability gets even lower in case of
more precise or more redundant multilateration systems. We show that it is possible to
establish a trade-off between security, namely probability of adversary success, and
performance, namely number of anchors, ranging operations, and coverage area. In
practice we can achieve a high level of security saving 93% of the anchor nodes with
respect to the state-of-the-art solutions.

With respect to Chapter 4, we consider a more powerful adversary, that improves
her overall success probability (i) by knowing the statistical channel characteristics,
and (ii) by attacking both the challenge and the response messages.

The remainder of the chapter is organized as follows. In Section 4.1 we compare
EMCD-ML with other state-of-the-art solutions. In Section 4.2 we introduce our sys-
tem model. In Section 4.3 we define the adversary and her capabilities. In Section 4.4
we analyze the effects of enlargement attacks against IEEE 802.15.4a UWB, and esti-
mate their success probabilities. In Section 4.5 we describe EMCD-ML. In Section 4.6
we evaluate EMCD-ML in terms of security and anchor-node scalability.

4.1 Comparison of EMCD-ML to the state of the art

Secure positioning systems are traditionally classified in range-based [19, 100, 108]
and range-free [62, 101]. Range-based systems rest on the ranging operation, i.e.
the measurement of the distance between two devices, typically the prover and an
anchor node whose position is known. On the contrary, range-free systems are not
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based on the (direct) measurement of geometric quantities. They deduce the position
from other, high-level information. Typical example is the hearing of beacon messages
from the prover node. Range-free systems are typically cheaper as they do not require
special hardware for distance measurements. However, they allow for a worse preci-
sion in the position estimation.

Our system is range-based, as it measures distances by means of IEEE 802.15.4a
UWB ranging. As a consequence, it requires specialized hardware, but it allows for a
more precise position estimation.

Hu et al. [54] proposed packet leashes, which is the first attempt to employ
distance-bounding-like techniques for secure location verification. Sastry et al. [88]
proposed the Echo protocol for secure location verification based on ultra-sound rang-
ing. Čapkun and Hubaux [100] and, independently, Zhang et al. [108] proposed verifi-
able multilateration. The system measures the distances from a set of trusted verifier
nodes by means of distance-bounding protocols. The position is computed by means
of multilateration, and it is considered secure if it lies inside the polygon formed by
the involved verifiers (in-polygon check ). Indeed, if the measured position has been
falsified, at least one of the distance-bounding protocols must have been exposed to
a distance-reduction attack, which is infeasible. Verifiable multilateration is capable of
resisting both to external adversaries and to dishonest provers, but fails in presence
of more-than-one colluding provers.

Chiang et al. [19] improves its resistance against such a threat by introducing the
concept of simultaneous multilateration. Simultaneous multilateration requires perfect
synchronization between the verifiers. The request messages are sent by the verifiers
in such a way to reach the prover simultaneously, and the prover sends back a single
broadcast acknowledgment. This solution increases the necessary number of collud-
ers to mount the attack, but does not eliminate the threat. Chandran et al. [17] give a
general impossibility result on this, stating that if the number of colluders grows linearly
with the number of verifiers, no range-based secure positioning methods are possi-
ble. In this chapter, we refer only to external adversaries. In presence of dishonest
provers, it is easy to mount and control enlargement attacks, so our countermeasure
is ineffective.

Another research track aims at securing the existing civilian GPS technology, ei-
ther by modifying the receivers [71], or by extending the protocol [103]. GPS can cover
only outdoor scenarios, and usually has a precision of 5–10 meters. We focus on lo-
calization based on UWB ranging, that offers outdoor as well as indoor coverage, and
can reach sub-meter precision.

On the related topic of distance-bounding protocols, several solutions have been
proposed [1, 15, 16, 25, 50], offering different properties in terms of security, efficiency,
and noise tolerance. Clulow et al. [22] first showed the theoretic possibility of PHY-
level attacks against distance bounding. Among others, they presented early detection
and late commit attacks. Both leverage on the fact that, in real-life PHY protocols,
cryptographic symbols are transmitted as long RF signals in order to decrease the
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probability of noise errors. The adversary can thus leverage on these idle times in
order to anticipate the request-acknowledgment mechanism, and to cause a reduction
on the measured distance.

Poturalski et al. [81, 41] conducted a deep study on PHY-level reduction attacks
against IEEE 802.15.4a UWB distance bounding. They evaluated the impact in terms
of reduction meters, and proposed a set of countermeasures to limit such an impact.
In the present chapter, we consider a distance-bounding protocol immune to reduction
attacks, and we focus on enlargement attacks.

The same authors [82, 80] studied also the feasibility and the impact of interfer-
ing attacks against the preamble, and proposed as a countermeasure a novel time-
of-arrival (ToA) estimation algorithm called PIDH (power independent detection with
Hamming distance). In the present chapter, we consider classic ToA-estimation al-
gorithms, namely jump-back-search-forward and search-back [29, 49]. We leave the
security analysis of EMCD-ML with non-classic ToA estimators for future works.

Chiang et al. [19] proposed the first method to mitigate the effects of enlargement
attacks in wireless distance bounding. Their method is based on signal strength differ-
ence, and requires that the verifier is equipped with a pair of antennas collinear with
the position of the prover. Our approach does not require multiple antennas, and it is
based on the difficulty to control an enlargement attack. Actually, the two countermea-
sures are orthogonal. They could be applied together to improve the overall security
of the system.

In Chapter 2 we presented a PHY-independent wireless distance-bounding pro-
tocol resisting to enlargement attacks based on a jam-replay strategy. In the IEEE
802.15.4a PHY protocol, a jam-replay attack would produce unrealistic enlargements
(hundreds of kilometers). This is due to the transmission time of a packet, which is on
the order of milliseconds. We focus on overshadow attacks, which are more feasible
to obtain a distance enlargement against IEEE 802.15.4a. In Chapter 3 we showed
that, in the IEEE 802.15.4a UWB ranging standard, an overshadow-based enlarge-
ment attack is poorly controllable by the adversary. In this chapter, we consider a more
powerful adversary, which improves her probability to control the attack (i) by knowing
the statistical characteristics of the channel, and (ii) by attacking both the challenge
and the response messages.

4.2 System model

Our system is a multilateration algorithm that determines the position X of a mobile
node in the 2-dimensional plane by measuring N ≥ 3 distances d1, . . . , dN of the
node from N anchor nodes, whose positions V1, . . . ,VN are known. Following the
terminology of distance bounding, we will call prover the mobile node, and verifiers
the anchor nodes. The multilateration algorithm finds X as the intersection of the
circumferences with centers Vi and radii di (ranging circumferences). In presence of
some imprecision, the measured distances d̂i will be affected by an error ei:
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d̂i = di + ei (4.1)

In such a case, the ranging circumferences will not intersect in a point. The measured
position X̂ will thus be the pseudo-solution in the least-squared-error sense:

X̂ = argmin
∑
i

ε2i (4.2)

‖X̂ −Vi‖ = d̂i − εi (4.3)

The multilateration process will give as output the measured position and a set of
N residuals ε1, . . . , εN . The residuals are an indirect estimation of the measurement
errors ei. High values of the residuals generally imply high errors. The opposite is not
true, because high errors could geometrically “compensate” each other in a single
point, and thus give low residuals. Table 4.1 shows the symbols used in this chapter
and their meaning.

4.2.1 Ranging operation

Each verifier measures the distance by means of a two-way ranging (TWR) oper-
ation. The verifier estimates the distance by measuring the round-trip time (TRTT )
between the transmission of a request packet and the reception of an acknowledge-
ment packet. If the response time (Tresp) of the prover is known, the distance can be
estimated by:

d̂i =
TRTT − Tresp

2
· c (4.4)

where c is the speed of light. The precision of the distance estimation depends on
the precision with which provers and verifiers estimate the packets’ time of arrival
(ToA). In multipath environments, this in turn highly depends on the bandwidth of the
employed radio signals. Ultra-wide band PHY protocols like IEEE 802.15.4a can reach
sub-meter precisions on the distance estimation.

The classic TWR procedure is not secure by itself. An adversary can indeed im-
personate a legitimate prover and transmit a fake acknowledgement packet, thus de-
ceiving the verifier into measuring a false distance (impersonation attack ). A way to
make it more secure is to implement a distance-bounding protocol [15] on the top
of it. A simple example of it, proposed in [81] for IEEE 802.15.4a and for external
adversaries only, is the following:

REQ V −→ P : a

ACK P −→ V : b

SGN P −→ V : signS(a, b)

The request packet (REQ) and the acknowledgment packet (ACK) convey respec-
tively a and b, which are two externally unpredictable sequences of bits. The signa-
ture packet (SGN) authenticates the request and the acknowledgment by means of a
shared secret S.
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Symbol: Description:
a Unpredictable bits generated by V
b Unpredictable bits generated by P
S Secret shared between V and P

signS(·) Signature operation
d Real distance between V and P
d̂ Measured distance between V and P
e Error on the measured distance

emax Maximum absolute error in the honest case
d′ Adversary’s objective distance
ectrl Attack control error
Pctrl Attack control probability
c Speed of light

TRTT Round-trip time
Tresp Prover’s response time
To Overshadow delay
T̂o Best-tactic overshadow delay
Te Total delay obtained by the adversary
τLP Real time of arrival
τ̂LP Estimated time of arrival
τHP Time of arrival of the highest peak
TJB Time jump of JBSF algorithm
TSB Time window of SB algorithm
λ Noise threshold

dsafe Maximum distance of sure reception
dms Minimal spoofing distance
Vi Position of the i-th verifier
X Position of the prover
X ′ Adversary’s objective position
X̂ Prover’s position measured by multilateration
εi Residuals of the multilateration

εmax Acceptance threshold on the residuals
Nmin Minimal number of verifiers

Table 4.1. Summary of the notation

This protocol avoids the impersonation attack, because the adversary cannot forge
the final signature unless she knows S. Moreover, it avoids reduction attacks, because
an adversary cannot predict and anticipate the transmission of a and b.

4.2.2 Basic security assumptions

We state two fundamental assumptions that should hold in order to detect enlarge-
ment attacks. The first one is that the prover and the verifier must mutually trust each
other in keeping secrets and behaving according to specifications. If this assumption
does not hold, we cannot be sure (for example) that the prover does not purpose-
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Figure 4.1. Multilateration spoofing

fully introduce delays in transmitting its acknowledgment, thus enlarging the distance
measurement.

The second assumption is that the prover and the verifier must hear each other.
Better stated, it must be possible to determine a distance of “safe reception” (dsafe),
such that, if the prover and the verifier stay within this distance, they surely receive
each others’ signals. If this assumption does not hold, it is easy for the adversary to
obtain and control a distance enlargement. She can simply replay with a controlled
delay a packet unheard by the legitimate receiver. This assumption also excludes that
the adversary is capable of artificially insulating a device, e.g. by means of a Faraday
cage.

A possible application that meets the basic assumptions is the automatic guidance
of transport robots for industrial scenarios [84]. The guidance algorithms rely on the
knowledge of the position of the robots. If an adversary is able to spoof a position, she
can deceive the guidance algorithm and cause severe damages to the system (colli-
sions, etc.). In this scenario, the robots are the provers whose positions are measured
by the anchor nodes. It is reasonable to suppose that the robot honestly execute the
protocol, and does not leak the shared secret S. It is also reasonable to suppose that
an adversary cannot shut a transport robot inside a Faraday cage, given its cumber-
some size.

4.3 Adversary model

We suppose the adversary is equipped with one or more devices, that are able to
communicate with each another. They can eavesdrop and transmit any signal in the
wireless channel. The adversary does not have any limitation on the transmission
power. The objective of the adversary is to spoof the position measured by the mul-
tilateration system. We denote by X ′ the false position, that is the position that the
adversary wants to make the system believe the prover is in. In order to do this, the

28



4.3. ADVERSARY MODEL

adversary has to attack a number of ranging operations and make them measure
false distances d′i. For each verifier Vi, the adversary chooses d′i in such a way the
multilateration process gives as output X ′ (Fig. 4.1a). Three cases are possible:

1. d′i < di. The distance measurement has to be reduced. The adversary has to
perform a reduction attack.

2. d′i = di. The distance measurement does not need to be attacked.
3. d′i > di. The distance measurement has to be enlarged. The adversary has to

perform an enlargement attack.

In this chapter, we consider the distance-bounding protocol as immune to reduction
attacks. Poturalski et al. [41, 81] showed that, theoretically, the impact of reduction
attacks on IEEE 802.15.4a can be indefinitely limited by tolerating decoding errors and
by enlarging the unpredictable sequences conveyed by the REQ and ACK payloads.
Given that reduction attacks are impossible, only false position requiring enlargement
attacks are feasible (Fig. 4.1b).

From now on, we will focus on the single enlargement attack against the single
ranging operation. We will thus omit the “i” subscripts on symbols to ease the notation.
We call objective enlargement (e′ ≥ 0) the distance enlargement that the adversary
wants to obtain:

e′ = d′ − d (4.5)

With her attack, the adversary tries to cause an anomalous measurement error, which
is as close as possible to her objective enlargement. In doing this, the adversary could
introduce an undesired attack control error (ectrl):

ectrl = e− e′ (4.6)

We call attack control probability (Pctrl) the probability that the attack is “controlled”,
i.e. that the attack control error is indistinguishable from an ordinary honest-case error.
More precisely, we assume a honest-case error limit (emax), such that, in the honest
case:

|e| ≤ emax (4.7)

The attack control probability is thus defined as:

Pctrl = Pr [|ectrl| ≤ emax] (4.8)

Enlargement attacks have been traditionally considered feasible by the literature.
However, in Chapter 3 we showed that the effect of the enlargement attack is poorly
controllable. In particular, the probability of controlling an enlargement depends on
how much the adversary wants to enlarge. Some objective enlargements are more
probable than others to succeed. As a result, some false positions will give to the
adversary more success probability than others.
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We distinguish two types of adversary, depending on the choice of the false po-
sition: predefined-objective adversary and free-objective adversary. The predefined-
objective adversary models an adversary which is given a predefined objective and is
not free of changing it. We model this by choosing X ′ at random among all the points
having a success probability greater than zero.

The free-objective adversary models an adversary which is not given a predefined
objective and is free of choosing the most convenient one. In this case, X ′ is chosen
to be the point with the greatest success probability. The free-objective adversary is
more powerful, and she has more chances to succeed.

Note that, without other constraints, a convenient choice for the false position
would be very close to the true one, or coincident with it in the extreme case. With
these “easy” false positions, the adversary would have a high probability to succeed
in her attack. However, such an attack would not be a true spoofing, but rather a sim-
ple degradation of the system precision. We force a minimal spoofing distance (dms)
between the false position and the true one:

‖X ′ −X‖ ≥ dms (4.9)

In other words, we assume the system to be tolerant to a precision degradation of dms
meters.

4.3.1 Overshadow attack

Since the distance measurement stems exclusively from the round-trip time, the ad-
versary’s aim is to enlarge it. The only way to do that is to delay the packet ToA
estimates at the verifier and/or at the prover. We suppose that the adversary mounts
an overshadow attack, in which she repeats a legitimate packet with a certain delay
and a higher power. In this way, the adversary tries to “overshadow” the legitimate
communication with a delayed copy of it.

More precisely, the adversary activates on the presence of a legitimate transmis-
sion. The IEEE 802.15.4a packet format comprises two parts: a preamble and a pay-
load. The preamble is constituted by periodic pulses with a fixed structure. It is used
for the estimation of the time of arrival. The payload follows instead a pulse-position
modulation, and carries the unpredictable bits. First, the adversary has to synchronize
with the ongoing communication. It takes some of the initial preamble symbols to do
that. Then, she starts transmitting the replayed copy (skipping those initial preamble
symbols). Such a replayed signal is temporized in such a way to arrive at the re-
ceiver shifted of a certain delay with respect to the legitimate one. With this action,
she delays the estimate of the packet’s ToA. During the successive payload phase,
the adversary replays a copy of it in the same way.

We note that the possibility to jam the honest signals does not really help the
adversary in her objective. While the jamming operation is effective in disrupting a
communication, it is not a destructive operation from the PHY-layer point of view. In
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fact, jamming does not impede the start of the ToA-estimation algorithm, which is
triggered by a threshold on the received energy (cfr. Chapter 3). It has only the effect
to perturb the result of the estimation in a random way. We suppose that the adversary
avoids jamming and follows a smarter strategy, that allows her to precisely control her
attack.

An adversary enjoying single-path channels toward the victim receivers is more
powerful, since she can control more precisely her attack. She can obtain this either
by deploying a transmitter very close to the victim receivers, or by using a highly
directive antenna toward them. We distinguish three types of adversaries, depending
on their capability of establishing single-path channels with the honest nodes. The
type-I adversary is the weaker one. She does not have any single-path channel with
honest nodes. The type-II adversary has a single-path channel with the prover, but
not with the verifiers. The type-III adversary is the strongest one. She has a single-
path channel with the prover and one with each verifier involved in the multilateration
algorithm.

4.3.2 Adversarial tactics

In the following, we will use the term “overshadow delay ” (To) for the timing difference
between the legitimate and the adversarial signals at the victim’s receiver. Further-
more, we will use the term “obtained delay ” (Te) for the round-trip-time enlargement
obtained by the adversary with her overshadow attack. The obtained distance en-
largement grows linearly with the obtained delay:

e = Te ·
c

2
(4.10)

Due to the ToA-estimation algorithm, the obtained delay will be different from the
overshadow delay in general. It is convenient for the adversary to introduce an over-
shadow delay that, with high probability, will cause an outcome delay correspondent to
her objective enlargement. Even better, she can overshadow both the REQ and ACK
messages, introducing two (possibly different) delays TR

o and T A
o . The total obtained

delay will be the sum of the delay obtained on REQ and the one obtained on ACK:

Te = TR
e + T A

e (4.11)

Formally, we define an adversarial tactic as a couple of overshadow delays:

〈TR
o , T

A
o 〉

Also, it could be convenient for the adversary not to attack one message. So, the
following ones are valid tactics too:

〈no-attack, T A
o 〉

〈TR
o , no-attack〉
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Figure 4.2. ToA estimation under attack

Given an objective enlargement, we define the best adversarial tactic 〈T̂R
o , T̂

A
o 〉 as the

one which maximizes the attack control probability:

〈T̂R
o , T̂

A
o 〉 = argmax〈T R

o ,T
A
o 〉 (Pctrl) (4.12)

4.4 Overshadow attacks against IEEE 802.15.4a UWB

We now study the feasibility of a controlled overshadow attack against IEEE 802.15.4a
UWB. The difficulty in controlling overshadow attacks is due to the way in which the
legitimate and the adversarial signals get combined and processed at the receiver.
This does not mean that obtaining an enlargement is impossible. Rather this means
that it is obtained with a precision worse than in the honest case.

To better understand the effects of an overshadow attack, we now give some de-
tails on physical-layer procedures for threshold-based UWB ranging algorithms, which
are the most widely used in UWB localization applications [29, 49, 28]. In particular,
we consider the “jump-back-search-forward” (JBSF ) and the “search-back ” (SB) al-
gorithms, which provide significantly different results from the security point of view.
From now on, we will focus on a single overshadow against a single message. Thus,
we will omit the “R” and “A” superscripts on symbols to ease the notation.

Both schemes operate in three steps (Figure 4.2). The frame detection step de-
cides through energy measurements whether a packet is present or not. The fine
timing acquisition step generates the waveform SFE(t) by computing a correlation
with a fixed template signal. The computation of the SFE(t) is a classic technique that
leverages on the periodicity of the modulation to improve the signal-to-noise ratio [29].
SFE(t) is used to perform the leading-peak search, which provides an estimate of the
time of arrival of the packet. The fine timing acquisition has an ambiguity of multiples of
the symbol interval, which is eliminated by the final start-of-frame delimiter detection
step. The JBSF and SB algorithms differ only for the leading-peak search. In partic-
ular, the JBSF criterion (Figure 4.3) starts from the maximum of SFE(t), say τHP ,
jumps back by TJB seconds and proceeds forward looking for the first time SFE(t)
goes beyond a given noise threshold λ. The value of the noise threshold is fixed on

32



4.4. OVERSHADOW ATTACKS AGAINST IEEE 802.15.4A UWB

t

!
HP

jump back

search forward

!

!
LP

S
FE
(t)

!
HP

"T
JB

Figure 4.3. Jump-back-search-forward procedure
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Figure 4.4. Search-back procedure

the basis of the thermal noise statistics. The distance of such a crossing time from
the beginning of SFE(t) provides an estimate of τLP , which is the parameter we are
interested in for the ranging operation. On the other hand, the SB criterion (Figure 4.4)
starts from τHP , and searches backward until SFE(t) goes below the noise threshold
and continues to be under for a time window of TSB seconds. The distance of such a
crossing time from the beginning of SFE(t) provides an estimate of τLP .

In order to determine the best adversarial tactics, we simulated the ToA-estimation
algorithms described above under an overshadow attack. The honest-case error limit
is supposed to be emax = 1ns · c2 = 15 cm. This is because in IEEE 802.15.4a
UWB the main error source is the time discretization, which has an 1 ns-size step.
We simulated a number of attacks introducing different overshadow delays over ran-
domly generated channels, and we measured their effects1. Then, for each objective
enlargement, we tested all the combinations of overshadow delays on the REQ and
the ACK messages, selecting the one giving the highest control probability. Due to
the symmetry between the REQ and the ACK transmissions, opposite tactics (e.g.
〈50 ns, 100 ns〉 and 〈100 ns, 50 ns〉) offer exactly the same control probability. Without

1 The UWB channels follow the standard statistical model for a residential scenario (CM1) [70].
The signal-to-noise ratio of the honest signal is 30dB.
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Figure 4.5. Best-tactic enlargement success probabilities against jump-back-search-forward
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Figure 4.6. Best-tactic enlargement success probabilities against search-back

loss in generality, we thus impose:

T̂R
o ≥ T̂ A

o (4.13)

Figures 4.5a and 4.6a show the best tactics of a type-III adversary against re-
spectively JBSF and SB ToA-estimation algorithms. For example, in order to cause an
enlargement of 10 meters against a JBSF algorithm, the best tactic is to overshadow
the REQ message with a 100.4-nanosecond delay and the ACK message with a 81.7-
nanosecond delay. Figures 4.5b and 4.6b show the control probabilities of such best
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Figure 4.8. Interference attack against search-back procedure

tactics for type-I, type-II, and type-III adversaries. For example, the probability to con-
trol a 10-meter enlargement attack for a type-III adversary against a JBSF algorithm
is 71.2%, whereas against a SB algorithm is 11.5%. Note that the two trends of the
attack control probability are roughly periodic, following the periodicity of the preamble
pulses.
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As we can see from the plots, the average attack control probability of JBSF algo-
rithm is higher than that of SB algorithm (73.0% versus 21.4% for a type-III adversary).
This is due to the characteristics of the UWB propagation channel, in particular to the
fact that the multipath echoes arrive at the receiver grouped into clusters. To explain
the results of Figures 4.5b and 4.6b it is useful to analyze the effects of the over-
shadow attack in detail. For the sake of simplicity, we assume that the adversary is
able to establish a single-path channel with the honest receiver. Anyway, the conclu-
sions keep valid with small variations also with a multipath adversarial channel. The
waveform SFE(t) has a component due to the legitimate signal, and a component
(the strongest one) caused by the adversarial transmission. This component arrives
To seconds after τLP (see Fig. 4.7). From Figure 4.7 it is clear that, if the delay To is
such that the jump falls within a cluster, the noise threshold will be crossed at the very
beginning of the search forward (since the echoes of a cluster are very close to each
other). In this situation, the leading-peak search provides a wrong estimate of τLP , i.e.
τ̂LP ≈ τHP − TJB . Thus, the adversary obtains an enlargement delay approximately
equal to To−TJB which is controllable since To and TJB are respectively a parameter
chosen by the adversary and a well-known system parameter. Obviously, the attack
control probability depends on the objective enlargement. Normally the echoes are
grouped at the beginning of the channel response, thus, small enlargements have
greater control probability (see Fig. 4.5b).

The same does not occur with the SB algorithm, as shown in Figure 4.8. Indeed,
differently from JBSF, with the SB scheme the enlargement attack is successful only if
the legitimate echoes are sufficiently sparse. This condition occurs with higher prob-
ability at the end of the channel response. Accordingly, as shown in Figure 4.6b, the
control probability takes significant values only for objective enlargements greater than
15 meters. Given its better properties in terms of security, we will employ exclusively
the SB algorithm on the receivers of our positioning system.

4.5 EMCD-ML

We introduce EMCD-ML (Enlargement MisControl Detection MultiLateration), a range-
based secure positioning system leveraging on the difficulty of the adversary to con-
trol the effect of the enlargement attacks. EMCD-ML is based on distance-bounding
operations on the IEEE 802.15.4a UWB protocol. The basic idea is that a position
measured in presence of an attacker will have a lower precision than one measured
in a honest scenario. So we can detect the presence of an attacker by means of the
residuals, which have large values in case of low precision.

In the honest case, a distance measured by a ranging operation will be the real
distance plus a measurement error:

d̂ = d+ e (4.14)
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In the presence of an attacker, it will be the objective distance plus an attack control
error:

d̂ = d′ + ectrl (4.15)

Due to the difficulty for the adversary to control precisely the outcome of her attack,
the expected value of ectrl is greater than that of e. Stemming from this, in case
of attack the least-squared-error solution of Equation 4.2 will probably produce high
residuals. To detect the presence of an attack, it is sufficient to discard those po-
sitions giving residuals beyond a certain acceptance threshold (εmax). The number
of verifiers involved in the multilateration affects the security of the system. Indeed,
the more verifiers are involved, the more enlargement attacks the adversary has to
control, and thus the lower probability she has to succeed. EMCD-ML establishes a
minimal number of verifiers (Nmin) to assure a given level of security.

Note that, although it is similar in the form, this countermeasure has an oppo-
site objective from verifiable multilateration [100]. Also in verifiable multilateration the
residuals are compared to a threshold and the measured position is discarded if they
are higher. However, in verifiable multilateration the residuals are large because the
adversary cannot perform reduction attacks. In EMCD-ML the residuals are large be-
cause the adversary cannot control enlargement attacks. This allows us to accept
honest positions also outside the polygon formed by the verifiers, that would be re-
jected by verifiable multilateration. As a result, EMCD-ML can cover the same area
with far less verifiers, and avoids the need of deploying additional verifiers at the bor-
ders of the deployment area.

Figure 4.9 shows a first version of the EMCD-ML algorithm. The discovery of
the reachable verifiers is done with an insecure beacon-based method (Figure 4.9,
Line 2). We accept positions which meet the in-polygon check condition of verifiable
multilateration [100] (Line 9). We accept also positions measured by means of at least
Nmin verifiers and whose residuals are lower than εmax (Line 17). We use the nota-
tion εmax(N) because the value of the threshold depends on the number of involved
verifiers.

4.5.1 Improving EMCD-ML by ranging repetition

It is possible to additionally improve the security of EMCD-ML by repeating each rang-
ing operation k times. We will thus obtain k distance measurements for each verifier
Vi: d̂

(1)
i , d̂

(2)
i , . . . , d̂

(k)
i . The repetition of the ranging operations has two consequences

in EMCD-ML. The first one is that the adversary has to carry on k overshadow attacks.
Even if the adversary introduces the same delays and the channels do not change
sensibly, each attack can cause quite a different enlargement. If the measured dis-
tances have an anomalous variation, the system can detect the attack.

The second consequence is that, by averaging the d̂(j)’s, we obtain smaller er-
rors in the honest case, and thus smaller residuals. This allows us to set a stricter
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1: procedure EMCD-ML(Nmin)
2: prover sends a broadcast beacon
3: V ← {Vi that answered the beacon}
4: for all Vi ∈ V do
5: perform distance bounding
6: d̂i ← measured distance
7: end for
8: 〈X̂, εi〉 ← multilaterate(V, d̂1, d̂2, . . . )
9: if X̂ ∈ polygon(V) and ∀i εi ≤ εmax(|V|) then

10: return X̂
11: end if
12: SV ←

{
Vi ∈ V : d̂i ≤ dsafe

}
13: if |SV| < Nmin then
14: return “insufficient security!”
15: end if
16: 〈X̂, εi〉 ← multilaterate(SV, d̂1, d̂2, . . . )
17: if ∃i εi > εmax(|SV|) then
18: return “overshadow attack detected!”
19: end if
20: return X̂
21: end procedure

Figure 4.9. EMCD-ML algorithm (first version)

acceptance threshold on the residuals, thus achieving a better probability of attack
detection. Note that the adversary does not increase her precision in the same way.
In fact, the attack control error is not zero-mean, because it depends mainly on the
channel response, that does not change sensibly from a repetition to another (a single
IEEE 802.15.4a ranging takes about 20 milliseconds [55]).

Figure 4.10 shows the improved version of EMCD-ML algorithm. The ranging rep-
etitions are performed on Line 5. The check on the anomalous variation of the mea-
sured distances is performed on Line 7. Now, we use the notation εmax(N, k) be-
cause the value of the threshold depends on the number of involved verifiers and on
the number of ranging repetitions. This version of EMCD-ML has a better resistance
in an adversarial scenario and a better precision in a honest one, but consumes more
energy since each ranging operation must be repeated k times.

4.6 Experimental evaluation

We evaluated the parameters and the properties of EMCD-ML by means of simula-
tions. Namely, we determined the residuals’ acceptance thresholds, the security level,
and the number of necessary verifiers to cover an area.
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1: procedure EMCD-ML(Nmin, k)
2: prover sends a broadcast beacon
3: V ← {Vi that answered the beacon}
4: for all Vi ∈ V do
5: perform distance bounding ×k times
6: d̂

(1)
i , . . . , d̂

(k)
i ← measured distances

7: if maxj(d̂
(j)
i )−minj(d̂

(j)
i ) > 2emax then

8: return “overshadow attack detected!”
9: end if

10: d̂i ← 1
k

∑
j d̂

(j)
i

11: end for
12: 〈X̂, εi〉 ← multilaterate(V, d̂1, d̂2, . . . )
13: if X̂ ∈ polygon(V) and ∀i εi ≤ εmax(|V|, k) then
14: return X̂
15: end if
16: SV ←

{
Vi ∈ V : d̂i ≤ dsafe

}
17: if |SV| < Nmin then
18: return “insufficient security!”
19: end if
20: 〈X̂, εi〉 ← multilaterate(SV, d̂1, d̂2, . . . )
21: if ∃i εi > εmax(|SV|, k) then
22: return “overshadow attack detected!”
23: end if
24: return X̂
25: end procedure

Figure 4.10. EMCD-ML algorithm (improved version)

4.6.1 Residuals’ acceptance threshold

In order to tailor the residuals’ threshold εmax, we simulated a number of multilat-
erations with IEEE 802.15.4a ranging. The positions of the prover and the verifiers
are taken at random. We tailored the acceptance thresholds in such a way to accept
99.9% of the honest-case position measurements. Table 4.2 shows the thresholds
with respect to the number of verifiers and the number of ranging repetitions2. We can
see that by repeating the ranging operations we can lower the threshold, while main-
taining the rate of accepted honest positions. As a side effect, the ranging repetition
improves the positioning precision also, as shown in Figure 4.11.

4.6.2 Security level

The success probability of the attack decreases with the growing of the verifiers in-
volved in the multilateration, and with the growing of the ranging repetitions. In order

2 Each estimation comes from 100,000 Monte Carlo runs. emax = 15 cm. dsafe = 40m.
99%-confidence intervals are within −2.8mm and +3.0mm for all the thresholds.
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ranging
repetitions:

number of verifiers:
3 4 5 6

1 13.17cm 14.93cm 15.81cm 16.45cm
2 10.02cm 11.29cm 12.17cm 12.50cm
4 7.24cm 8.29cm 8.83cm 9.16cm
8 5.25cm 5.94cm 6.43cm 6.63cm

16 3.69cm 4.22cm 4.55cm 4.74cm
32 2.58cm 2.98cm 3.23cm 3.37cm

Table 4.2. EMCD-ML residuals’ thresholds
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Figure 4.11. Precision of EMCD-ML
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Figure 4.12. Success probability of type-III predefined-objective adversary

to quantify the attack success probability, we simulated a type-III predefined-objective
adversary and a type-III free-objective adversary. The verifiers’ as well as the prover’s
positions are taken at random. Figure 4.12 shows the success probability of a type-III
predefined-objective adversary, with respect to the number of verifiers covering the
prover’s position and the number of ranging repetitions at each verifier3.

3 Each estimation comes from 5,000 Monte Carlo runs, dsafe = 40m, dms = 1m. 99%-
confidence intervals are displayed.
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Figure 4.13. Success probability of type-III free-objective adversary

success
probability:

min number
of verifiers:

min ranging
operations:

< 10−1 Nmin = 3 k = 16 Nmin = 4 k = 1
< 10−2 Nmin = 4 k = 8 Nmin = 5 k = 1
< 10−3 Nmin = 5 k = 16 Nmin = 6 k = 1
< 10−4 Nmin = 6 k = 4 Nmin = 6 k = 4
< 10−5 Nmin = 6 k = 16 Nmin = 6 k = 16

Table 4.3. EMCD-ML configuration parameters

Figure 4.13 shows the success probability of a type-III free-objective adversary
with respect to the number of verifiers covering the prover’s position, and the number
of ranging repetitions at each verifier4.

From this analysis, it is possible to tailor the parameters of EMCD-ML (Nmin and
k) in order to assure a given level of security. Table 4.3 shows possible configurations
to offer a given level of security against a type-III free-objective adversary. They are
chosen to minimize either the necessary verifiers (i.e. Nmin), or the total number of
ranging operations (Nmin · k).

4.6.3 Number of necessary verifiers

EMCD-ML permits us to cover the same area with less anchor nodes with respect
to verifiable multilateration, while maintaining a high level of security. From the al-
gorithm in Figure 4.10 we can see that, given a set of verifiers {Vi}, a point X is
covered by EMCD-ML iff one of the following conditions is true: (1) there exist at
least three verifiers within the communication range, and the triangle formed by them
containsX (enlargement presence detection); or (2) there exist at leastNmin verifiers
within dsafe distance (enlargement miscontrol detection). The first condition is present

4 Each estimation comes from 1,000 Monte Carlo runs. dsafe = 40m, dms = 1m. 99%-
confidence intervals are displayed.
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Figure 4.14. Coverage area comparison
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Figure 4.15. Needed verifiers for covering 90% of the area

also in verifiable multilateration [100]. The second condition gives additional coverage.
Figure 4.14 gives an example of this. The additional coverage lowers the number of
verifier nodes to deploy in order to cover a given area. Figure 4.15 shows the num-
ber of verifiers needed to cover 90% of a square area5. The verifiers are deployed
at random. We supposed Nmin = 5, in such a way to reach an adversarial success
probability of 10−3. We also supposed that dsafe is as long as the communication
range. It can be seen that EMCD-ML greatly improves the anchor-node scalability,
and it gets very near to the theoretical limit of the classic (insecure) trilateration. This
big difference (-93% to -71% of needed verifiers) is also due to the fact that verifi-
able multilateration cannot cover outside the polygon formed by the verifiers. Thus
covering the zones at the border of the deployment area is quite hard. To solve this
problem, in [100] the authors use a special deployment scheme. In this scheme, the
verifiers are randomly deployed in the area and also in an external band with width
equal to the communication radius. The verifiers are randomly deployed in the area to

5 Each estimation comes from 1,000 Monte Carlo runs. dsafe = 40m. 99%-confidence inter-
vals are displayed.
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Figure 4.16. Needed verifiers for covering 90% of the area (external deployment)

cover and in the external band. Figure 4.16 shows the number of randomly deployed
verifiers needed to cover 90% of a square area with this deployment scheme. It can
be seen that EMCD-ML improves the anchor node scalability also with this deploy-
ment scheme which is ad-hoc for verifiable multilateration (-22% to -20% of needed
verifiers).

43



44



5

Integration of privacy protection mechanisms in
location-based services

Due to the proliferation of tracking technologies, like GPS, the interest in location-
based services (LBSs) is growing fast. Nowadays, a plethora of technologies are
capable of localizing people: palm GPS, RFID, video cameras, and so on. Recent
studies [98] showed that users feel that the privacy risks of using LBSs still outweigh
the benefits. Therefore, in order to be accepted by users, LBSs must be trusted on the
standpoint of privacy [3, 10]. Protecting privacy in an LBS is not an easy task. Privacy
policies need be flexible, integrated, customizable and context-aware [12, 23, 97, 98].
Current solutions [40, 42, 61, 66, 97] focus on access control approach, i.e. the sys-
tem decides which information will be released and which not, basing on some au-
thorization rules. Such rules are context-aware, meaning that they take into account
the current date and time, the location of the user, and the situation of the user or
the system itself (e.g. the presence of alarms in a particular building, etc.). Though
access control is essential, the “permit-or-deny” logic behind it forces the users to
choose from having the service or having the privacy. Recent years have seen the
emergence of more flexible mechanisms [8, 33, 36, 48, 68]. Many applications prefer
anonymization approaches, in which the identity of the user is detached from the in-
formation. Many others prefer obfuscation approaches, in which the system artificially
degrades the precision of information before releasing it. In this way, users can tailor
their own trade-off between privacy and quality of service.

However, this may not be enough. For many services, a single mechanism is not
sufficient to meet the privacy requirements, which can be instead fulfilled only by a
proper integration of different protection mechanisms. Think about a simple find-the-
nearest-restaurant service. The user gives her position to a service provider in order to
get the name of the nearest restaurant which meets some requirements. How can we
protect the privacy of the user? Her identity is unnecessary, so the location information
could be anonymized. Also, the service provider does not need the exact position, so
an obfuscation algorithm could be applied.

The contribution of this chapter is twofold. First, we present LbSprint (Location-
Based Service PRivacy INTegrator), a middleware layer for privacy protection in
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location-based services. LbSprint supports multiple privacy-protection mechanisms,
allows system administrators to define new ones, and allows users to setup flexible
and context-aware privacy policies. LbSprint implements these features by means of
the XACML language capabilities [73]. Secondly, we present optimizations that con-
siderably improves the performance of the XACML policy evaluation. These contri-
butions apply to LBSs as well as on privacy-protection architectures in general. This
chapter has been published as a conference paper [34].

The rest of the chapter is organized as follows. Section 5.1 presents some re-
lated works, and underlines the differences from LbSprint. Section 5.2 explains the
system requirements and presents a typical use case. Section 5.3 includes a detailed
description of the system architecture and the privacy protection module. Section 5.4
analyzes the performance of the system and describes some optimizations to improve
it.

5.1 Comparison of LbSprint with the state of the art

To the best of our knowledge, the problem of privacy mechanism integration in LBSs
has not yet been addressed by research or industry.

Commercial LBSs have a poor support for privacy protection. See [98] for a com-
plete survey. The most known examples are maybe Foursquare [42], Loopt [66] and
Google’s Latitude [61]. Recent facts suggest that they will move towards a better pro-
tection of users’ privacy, especially after the diffusion of so-called “stalker apps” [5].

Yahoo!’s Fire Eagle [40] has been one of the first commercial LBS platforms pos-
ing particular attention to location privacy. Users are capable of specifying relatively
complex privacy policies in terms of who can access their locations and when. It gives
also support for obfuscation. Locations can be specified with several degrees of gran-
ularity (exact position, ZIP code, neighborhood, city, etc.). However, it does not offer
the possibility to integrate different privacy protection mechanisms and to define new
ones.

Locaccino [97] is a privacy-centric application for location sharing, based on the
Facebook platform. Its features came from some surveys the authors did to investigate
privacy preferences of people. Users can create simple policies specifying who, when
and where can see their location. Locaccino is focused on access control, and gives
to the users the option to permit or deny the access to their location. It poses little
focus on integration between privacy mechanisms. The authors chose not to include
any obfuscation mechanism, because surveys [23] showed that people do not use it
to protect their privacy. However, the obfuscation method investigated in such surveys
was quite an inflexible one. It gave the user the possibility to release either her exact
position, or the position with city-level granularity. In LbSprint, we take into account
more flexible obfuscation methods, that offer finer granularities. These methods are
suitable for a plethora of location-based services, as we will show in Section 5.2.
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From the research world, one of the first privacy-centric tracking systems has been
LocServ [72]. In LocServ, location-based applications make their location requests
and specify the privacy policies they will adopt in using such information. The users
provide for location data and specify their own privacy preferences, represented by
components called validators. Before releasing information to an application, LocServ
asks the correspondent validator whether the policy of the application is compatible
with the user’s preferences. A validator, during its decisional process, can consult the
user or other (possibly external) subordinate validators.

A related problem is the reliable communication of privacy policies [60]. Geopriv
is a standard developed by IETF, aimed at the representation and transmission of lo-
cation data [24]. The basic idea is that the privacy policies and the location data are
encapsulated in a unique entity, the location object. So they are always transmitted
together. The integrity of the location object is guaranteed by a digital signature. If
Alice wants to share her position, she will define a privacy policy, which specifies how
her location must be used and distributed. Each user able to read Alice’s position is
himself aware of the rules stated by Alice. Geopriv does not really forbid other users
to share Alice’s information. It just ensures that, if someone breaks a rule, he cannot
claim he was unaware of it. LbSprint focuses on the orthogonal problem of privacy
mechanism configurability and extensibility. Geopriv mechanisms are utilizable in Lb-
Sprint as well.

5.2 The case for integration of privacy protection mechanisms

The following is a use-case story which illustrates several location-based services in
an example scenario: an airport. Each service needs a customized mix of privacy
protection mechanisms.

John has to take a flight together with his little son, Tim. They reach the
airport and they get to the check-in area. Before leaving his luggage, John
subscribes to the track-my-luggage service. Such a service tracks the position
of John’s baggage for security purposes. See [26] for an example of this. John
is informed about it whenever he wants through his smartphone.

Once they checked-in, John and Tim want to have lunch. John prefers veg-
etarian food but he does not have time for searching a vegetarian restaurant.
So, he uses the find-the-nearest-restaurant service, which finds the nearest
vegetarian restaurant. After lunch, Tim wants to visit a toy shop he saw be-
fore. John lets him go, but he wants to track him position, because he does
not want him to get too far. To do this, John uses the track-a-child service. Af-
ter a while, John realizes that the boarding time is soon. He quickly reaches
Tim, because he knows his position, and they easily get to the gate.

For all the story time, John and Tim had used several other location-based
services. For example the track-for-safety service, which tracks John and
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Tim’s positions in order to help rescuers in case of fire, and the find-my-friends
service, a social service that informs John about the proximity of friends.

Also, the track-the-employees service is active on the airport. Such a ser-
vice allows an operator to track the position of the personnel for management
purposes.

Each of the above services requires a different mix of mechanisms for the pro-
tection of the privacy. Track-my-luggage needs only authorization, since only John is
allowed to know the location of his baggage. Permitting anyone else could be harmful
for the security (e.g. luggage stealing). Find-the-nearest-restaurant does not need to
know the exact position or the identity of John. Thus, John’s position is obfuscated and
John’s identity anonymized. The service provider is allowed to receive such a position,
other entities are not. Track-a-child requires authorization, as only John is permitted to
access the location of his son. However, a parent wants to know its children’s position
very precisely. So no obfuscation method is applied. Track-for-safety requires autho-
rization, because only rescuers can access passengers’ locations, but no anonymiza-
tion neither obfuscation, as they could hinder the emergency operations. However, the
passengers’ locations can be accessed only in a particular context, i.e. in case of a
fire alarm. Find-my-friends needs to know John’s identity and those of his friends, but
does not need their exact positions. Thus, John can decide whether to obfuscate or
not his own position. The service provider (i.e. the social network platform) is allowed
to receive such a position, other entities are not. Finally, track-the-employees needs
authorization, as only the personnel manager can access employees’ positions and
only during the working hours, and obfuscation. The current time and the presence of
alarms are examples of context attributes. Table 5.1 summarizes the privacy mecha-
nisms applied for each service. The “authorized receivers” column lists who is allowed
to receive location information. The “anonymization” and “obfuscation” columns tells
us whether the locations will be respectively anonymized and obfuscated.

Figure 5.1. LbSprint architecture
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Service type: Authorized receivers: Anonymized: Obfuscated:

Track-my-luggage the owner – –
Find-the-nearest-restaurant the service provider yes yes
Track-a-child the parents – –

Track-for-safety
the safety operators

– –
context: fire alarm on

Find-my-friends the service provider – optional

Track-the-employees
the personnel manager

– yes
context: working hours

Table 5.1. Summary of the privacy policies in use-case story

It follows that an effective location-based service middleware must support differ-
ent mechanisms for privacy protection as well as different ways of integrating them.

5.3 Architecture and implementation

Figure 5.2. LbSprint human-machine interface

LbSprint follows a centralized architecture, as shown in Figure 5.1. Every location
receiver first authenticates to LbSprint, and then asks for and receives location notifi-
cations. All communications are secure in terms of confidentiality, authenticity and in-
tegrity. Different receivers have different rights for accessing location data, as summa-
rized in Table 5.1. LbSprint supports various localization technologies: handheld GPS
and Wi-Fi positioning, RFID, CCTV (Close-Circuit TeleVision) [45]. The localization
sensors generate streams of raw location measurements, and send them to LbSprint
through a plethora of legacy protocols. Some sensors (GPS, Wi-Fi positioning, RFID)
provide for the identity of tracked users too. Some other (CCTV) does not, so that

49



CHAPTER 5. INTEGRATION OF PRIVACY PROTECTION MECHANISMS IN
LOCATION-BASED SERVICES

location measurements are associated to pseudonyms (e.g. urn:lbsprint:user001). An
adapter module converts the different formats of location measurements in a common
format (location data). A filter engine manipulates it, basing on a privacy policy. Finally,
the location data stream is forwarded to the receiver by means of the LbSprint proto-
col. LbSprint provides also for a human-machine interface (HMI), which visualizes the
location data on a map. The HMI is a web application which authenticates as a normal
receiver. Figure 5.2 shows a screenshot of it, taken from a practical implementation in
a company.

The LbSprint protocol is built over SOAP [104]. Through the entire architecture,
the location data is represented by an XML structure called Location (Figure 5.3).
A Location contains the position along with possible other meta-data, such as the
identity of the user, the sensor ID and type, and so on.

Figure 5.3. Example of Location

5.3.1 Filter engine

LbSprint uses the filter engine to protect the privacy of the users. The filter engine’s pri-
vacy policy is configurable by the system administrator and by the users. The privacy
policy takes into account many factors, including the context, and specifies different
privacy mechanisms, e.g. authorization, anonymization and obfuscation.

Figure 5.4 shows how the filter engine works. Before LbSprint sends a Location

A to a location receiver, it passes A to the policy enforcement point (PEP). The PEP
makes a filter strategy request to the policy decision point (PDP). The PDP is a mod-
ule which interprets the privacy policy and decides which manipulations must be ap-
plied on A (filter strategy ). The PEP applies the specified manipulations and releases
A′ as output. A filter strategy could force a complete filtering, that is the location data
is not disclosed at all (A′ = null). This corresponds to a denial of access. On the other
hand, a no filtering strategy releases the location data “as-is”, without manipulations
(A′ = A). Other filter strategies could apply one or more manipulation algorithms on
A, in order to anonymize it, obfuscate it, etc. Subsection 5.3.3 will show how users
can specify and configure such filter strategies.
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Figure 5.4. Workflow of the filter engine

5.3.2 Obfuscation methods

As a proof of concept, we provided LbSprint with two obfuscation mechanisms: gen-
eralization and UniLO (cfr. Chapter 6). They both replace an exact position with a
location area, which contains such a position but has a larger extension. The larger is
the location area, the less precise is the obfuscated location.

Generalization is based on a hierarchical description of the map (generalization
tree), which defines zones with different coarseness. For example, a generalization
tree applicable to a company could be the following: Exact position→ Room→ Sector
→ Building → Entire system. Generalization takes a parameter k and replaces the
exact position with a zone which is k levels away from the bottom of the generalization
tree. For instance, k = 0 corresponds to returning the exact position of the user
(Exact position), whereas k = 3 corresponds to returning the building in which the
user currently is (Building).

Figure 5.5. Perturbation example
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On the other hand, UniLO aims at generating circular location areas. The original
location data carries an indication of the precision radius of the sensor. For example,
r = 5m. UniLO takes a parameter r′ > r, for example r′ = 25m, and adds noise to
artificially increase the precision radius to r′. The noise is a random vector, which is
added to the original coordinates. Figure 5.5 shows an example of UniLO application.
X and r are respectively the original position and precision radius, whereas X′ and d

are the perturbed position and the random vector. The circle centered at X′ and with
radius r′ is the resulting location area. If the location is asked again, and the user is
still inside the same location area, the same location area is returned. This is in order
to avoid that someone intersects many location areas to find the true location of the
user. The random vector has a specific probability distribution, in order to generate
obfuscated locations as uniform as possible from the probabilistic standpoint. See
Chapter 6 for a detailed description of UniLO.

Generalization and UniLO cannot be applied together. Since no method is bet-
ter than the other, the policy writer must choose the most suitable method for each
case. Generalization is probably more intuitive. Nevertheless, it requires a hierarchical
specification of the map, which could be missing. On the other hand, UniLO is less in-
tuitive, but generates circular location areas. Circles have simpler shapes than rooms
or buildings, and they are easier to be processed by geometry-based algorithms.

We implemented two simple obfuscation algorithms and a simple anonymization
algorithm only to demonstrate the integration capabilities of the system. Many other
mechanisms exist [14], aimed at anonymity [44, 48, 67] or data obfuscation [8, 27, 36],
which could be integrated as well. The analysis of these techniques falls outside the
scope of this chapter.

5.3.3 Privacy policies

Figure 5.6. Privacy policy structure

A privacy policy comprises two parts: a user part and a system part (Figure 5.6).
The user part contains policies specific to single users. These can be written by the
users themselves or by the system administrator. The system part is written by the
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system administrator. The PDP tries first to apply the user part, in particular the pol-
icy of the user which location data refers to. If a user did not write her own policy, or
her policy does not apply to the case, the system part will be applied. If neither the
system part is applicable, a complete-filtering default rule will be applied. The system
administrator can install a new privacy protection mechanism. For example a new ob-
fuscation algorithm. In such a case, she must define the URI of the algorithm (e.g.
urn:lbsprint:my-obfuscation), its parameters, and finally provide a Java class imple-
menting the new algorithm. This makes our middleware extensible and configurable.

The receiver, the location, and the context are represented as collections of at-
tributes. Each attribute is a name-value pair. Each privacy policy is a list of privacy
rules. A simple privacy rule is composed of a target and a filter strategy. The target
is a boolean expression on (the attributes of) the location receiver, the location data,
and the context. It decides whether the rule is applicable or not. If it is applicable, the
corresponding filter strategy will be applied on location data. Otherwise, the next rule
will be evaluated, and so on. To fix the ideas, in the use-case story of Section 5.2, a
user could specify the following rule for the find-the-nearest-restaurant service:

“if the location receiver is find-the-nearest-restaurant, then apply anonymiza-
tion and UniLO obfuscation with r′ = 50m”

The “if” part represents the target, the “then” part represents the filter strategy.

Figure 5.7. Example of policy tree

In such a way, complex policies are represented by long lists of rules. Such a “flat”
schema is simple, but it is not modular. For example we may need to group all the rules
referring to a particular service type, in such a way to write more compact, modular,
readable policies. In addition, tree-shaped policies outperform flat ones, as shown in
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Section 5.4. For these reasons, LbSprint allows the administrator to define compound
privacy rules. Compound rules contain no filter strategy, instead they have a target
and a list of sub-rules, each of them can be both simple or compound. The list of sub-
rules cannot be empty. A compound rule is applicable only if its target evaluates to
true and at least one of its sub-rules is applicable. The filter strategy of the applicable
sub-rule will be the filter strategy of the entire compound rule. Compound rules allows
us to define tree-shaped policies, which perform better in terms of processing time.
An example of policy could be the following:

“if the location receiver is find-my-friends, then: if the privacy level is
medium, then apply a generalization of 1 level, otherwise if the privacy level
is high, the apply a generalization of 2 levels”

Figure 5.7 shows an example of policy, with a simple rule and a compound one.

Filter strategy: Final effect: Obligation: Parameter:
No filtering Permit - -
Complete filtering Deny - -
Anonymization Permit urn:lbsprint:anonymize -
Generalization Permit urn:lbsprint:generalize level (k)
UniLO Permit urn:lbsprint:unilo radius (r′ in meters)

Table 5.2. Filter strategies

The privacy policies are written in the XACML language [73]. XACML (eXtensi-
ble Access Control Markup Language) is an XML dialect standardized by the OASIS
consortium. It expresses extremely flexible rules for access control. We used SunX-
ACML, the off-the-shelf PDP provided by Sun Microsystems, written in the Java lan-
guage [92]. The XACML language allows every authorization decision to have only
two valid outcomes: “Permit” or “Deny”. In order to specify more complex filter strate-
gies, we used the XACML <Obligation> tag. Figure 5.8 shows the find-the-nearest-
restaurant simple rule of Figure 5.7, expressed in the XACML language. The attributes
of the location receiver, location data and context are referred by URIs, along with the
manipulation algorithms. The <PolicySet> tag represents either the entire privacy
policy, or a compound rule. A simple rule is represented by the <Policy> tag. A tar-
get is represented by the <Target> tag. A filter strategy is represented by the Effect

XML attribute and the <Obligation> tag. An Effect equal to Deny corresponds to
a complete filtering. The <Obligation> tags are used in XACML to dictate additional
duties that the PEP must fulfill before granting the authorization. For example sending
a notification email to the system administrator. We use such tags to specify (mixes of)
manipulation algorithms to be applied on location data. The algorithms are applied in
the same order of the corresponding <Obligation> tags. XACML allows us to spec-
ify the parameters of an obligation, by means of <AttributeAssignment> tags. We
use them as the parameters of the algorithm.
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Figure 5.8. A simple rule in the XACML language

Table 5.2 tells us how basic filter strategies are expressed in terms of final effect,
obligations and parameters. Mixed filter strategies, like “anonymization and gener-
alization” are expressed with the union of the relative obligations, as shown in Fig-
ure 5.8. In such a case, the manipulations are applied in order of appearance.

Note that our integration method can be seamlessly adapted to XACML extensions
focused on geographic data, like Geo-XACML [74]. For the sake of simplicity —and
without loss of generality— we refer to the basic XACML standard.

5.4 Performance

The PDP is queried for each Location flowing through the LbSprint architecture.
Therefore, it is a quite critical module for the system efficiency. Since our PDP is based
on XML, which is a textual representation, some performance-related concerns could
arise. We present a practical ready-to-use optimization that considerably improves the
performance of the policy evaluation process.

In XACML standard, the authorization requests and the authorization decisions
are represented by XML code. Such a code is usually sent to the PDP as an XML
string. This is the simplest approach, since the construction of the request involves
only string concatenations. The request is successively converted in a DOM (Docu-
ment Object Model) representation, and then in a PDP-specific internal representation
(Figure 5.9). The first conversion involves an XML parsing that is burdensome in terms
of computational resources. If the PEP and the PDP communicate locally, it is better
to send the filter strategy request directly in a DOM format. Such a DOM must be
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Figure 5.9. XML conversion

built node by node, by means of Java XML APIs. This requires more programming
complexity than just making XML string concatenations. However, it has a good effect
on performance.
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Figure 5.10. SunXACML time performance (flat policies)

We have conducted a series of tests aimed at evaluating the effect of such an opti-
mization. Time efficiency has been evaluated on synthetic privacy policies containing
up to 200 rules. Each target contained string matches and other comparisons on mul-
tiple attributes. Our experiments were carried out on a laptop PC running Windows
7 with 4Gb of memory and an Intel Core i7-Q720 processor, with 4 cores at 1.6GHz
and 6Mb cache. Figure 5.10 shows the trend of the time performance of the eval-
uation of a flat policy versus the number of rules. The efficiency improvement goes
from 40% (at 200 rules) to 60% (at 10 rules). In order to test the optimization effect
on compound rules, we reorganized the policy in a balanced k-ary tree with k = 10.
Non-leaf nodes represents compound rules, whereas leaves represents simple rules.
All the targets evaluate a numerical attribute. The targets of the compound rules test
it for being comprised inside a range. The targets of the simple rules test it for being
equal to a single value. If the target of a compound rule evaluates into false, those
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Figure 5.11. SunXACML time performance (tree policies)

of its children will not be evaluated. Thus, in a balanced tree, the number of target
evaluations will grow as log n, where n is the number of rules. The balanced tree is
the best-case structure from the performance standpoint, whereas the flat structure is
the worst case. Figure 5.11 shows the trend for such a hierarchical policy. From the
experiments, we see that the evaluation performance is roughly constant with respect
to the number of rules. This is because the time which the PDP takes to perform
rule-independent tasks (e.g. conversion from DOM representation to ad-hoc repre-
sentation) is preponderant with respect to the target evaluation time. The optimization
brings a uniform efficiency improvement of about 60%.

More optimizations are possible on the PDP, based on more complex techniques
like rule indexing, attribute numericalization, etc. [64, 99] Our optimization focuses on
PEP-PDP communication, rather than on PDP internal working. So it can be applied
in addition to such techniques, to obtain even more efficient policy decisions.
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6

UniLO: a uniformity-based approach to location
privacy

The retrieval of people’s location raises several privacy concerns, as it is personal,
often sensitive, information. The indiscriminate disclosure of such data could have
highly negative effects, from undesired location-based advertising to personal safety
attempts.

Samarati and Sweeney [86, 87] proposed the concept of k-anonymity : a system
offers a k-anonymity to a user if his identity is undistinguishable from at least k − 1

other users. k-anonymity concepts have been applied to location privacy [44, 48, 56,
93] by obfuscating the user’s position in such a way to confuse it with the positions of
other k − 1 users. Location k-anonymity offers high levels of privacy, because it pro-
tects the user’s identity. However, since k-anonymity does not permit the identification
of the user, it is not applicable in services in which the user authenticates, e.g. payable
services or location-based social networks. In addition, they require the presence of
k − 1 users in the proximity, that could be missing, and a central anonymizer, that
could not be fully trusted by the users.

A different and promising approach is data obfuscation [8, 68]. The aim is not to
reach anonymity, but rather to artificially reduce the precision of location data before
disclosing it. In this way, the service can still be delivered, but an adversary cannot
infer other sensitive information. We focus on obfuscation through noise perturba-
tion [37, 59], an approach that recently gained the attention of industry [95]. One of
the most underrated problems in the literature is how to choose a suitable noise to
effectively perturb data. We found that, if noise is not chosen properly, perturbation
will not resist to attacks based on statistical inference. In particular, an obfuscation
operator must offer a spacial uniformity of probability. Such a requirement is often
postulated, rather than fulfilled, by state-of-the-art perturbation methods.

We propose UNILO, a location obfuscation operator able to guarantee uniformity
even in the presence of imprecise location measurements. UNILO does not require a
centralized and trusted obfuscator. We deal with service differentiation by proposing
and comparing three UNILO-based obfuscation algorithms offering multiple contem-
poraneous levels of privacy. Finally, we experimentally prove that UNILO outperforms

59



CHAPTER 6. UNILO: A UNIFORMITY-BASED APPROACH TO LOCATION
PRIVACY

state-of-the-art perturbation algorithms both in terms of utility and resistance against
inference attacks. All the simulations scripts of the present chapter can be downloaded
from [90]. This chapter has been partially published as a conference paper [33].

The rest of the chapter is organized as follows. Section 6.1 analyzes some related
works and the differences with UNILO techniques. Section 6.2 introduces some basic
concepts concerning the system model and the terminology. Section 6.3 formally de-
scribes the agnostic adversary model, the concept of uniformity, and a way to quantify
it. Section 6.4 presents the basic UNILO operator and show its properties in terms
of uniformity. Section 6.5 presents the problem of offering multiple levels of privacy
and three algorithms to adapt UNILO in this sense. Section 6.6 presents an example
location-based service and evaluates UNILO algorithms in terms of utility. Section 6.7
evaluates UNILO algorithms in terms of resistance against inference attacks.

6.1 Comparison of UNILO to the state of the art

Approaches for location privacy can be roughly divided in identity-protection ap-
proaches and data-protection approaches. Identity protection avoids the re-identification
of anonymous users. k-anonymity and mix zones fall in this category. Data protection
avoids the disclosure of precise locations. Obfuscation and private information re-
trieval fall in this category.

6.1.1 Identity-protection approaches

Gruteser and Grunwald [48] first approached k-anonymity problem in location-based
services. The proposed solution involves the subdivision of the map in quadrants with
different granularities. The k-anonymity approach is broadly used in many research
works [44, 47, 56, 69, 93, 102]. However, since these methods do not permit the
identification of the user, they are not applicable in services in which the user authen-
ticates himself, e.g. payable services or location-based social networks. In addition,
they require the presence of k − 1 users in the proximity, that could be missing, and
a central anonymizer, that could not be fully trusted by users. Chow et al. [21] pro-
posed a method to reach k-anonymity without a centralized anonymizer, but it requires
burdensome peer-to-peer communication between mobile devices. Our approach is
orthogonal to k-anonymity, since it aims at protecting the position, rather than the
identity of the user.

[105] and [2] approach the problem of trajectory k-anonymity, offering methods to
protect user’s privacy in continuous tracking systems. Although it could be extended in
that sense, the present work focuses on single-position queries, as they encompass
a wide range of location-based applications.

A problem complementary to anonymity is pseudonym unlinkability in tracking
systems, usually approached with the technique of mix zones [13, 43, 77]. Mix zones
are areas of the map where users cannot be tracked and change their pseudonym.
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By carefully placing and dimensioning such mix zones it is possible to thwart the
adversary from linking two consecutive pseudonyms of the same user.

6.1.2 Data-protection approaches

Location obfuscation aims at reducing the precision of location data before disclosing
it. The research on this topic focused mainly on what kind of service can be delivered
with imprecise positions [18, 36, 68, 106]. The problem of generating such imprecise
positions in a proper way is often underrated. In particular, the uniformity of the obfus-
cation is often postulated, rather than evaluated. As a result, the proposed solutions
turn out to be poorly resistant against inference attacks.

Mascetti et al. [68] proposed a friend-proximity service based on imprecise posi-
tions. The obfuscation is achieved with a granularity-based technique, by releasing the
granule containing the true position. The drawback of granularity-based obfuscation is
that it produces non-circular, and often irregular, privacy areas. This is not compatible
with many legacy systems, which are designed to accept circular areas.

Ardagna et al. [8] proposed a set of obfuscation operators that perturb the loca-
tion: radius enlargement, radius restriction, center shift. These operators transform
a measurement area into an obfuscated one. Our approach guarantees both more
private and more useful obfuscated areas. More private because UNILO noise signifi-
cantly increases the uniformity of the resultant privacy areas. More useful because we
always guarantee that the privacy areas contain the user’s position. An LBS provider
can thus rely on more powerful assumptions and offer more quality of service. In
addition, in [8] the resistance against attacks relies on the fact that the adversary is
unaware of the privacy preference of the user. This could be an optimistic assumption,
which features a form of “security by obscurity” that should be avoided [89].

Krumm [59] surveyed many different obfuscation methods and applied them to
real-life GPS traces. The objective was to prevent an attacker from inferring users’
home positions. Krumm tried also a perturbation-based method, which involved noise
with a Gaussian-distributed magnitude. He found that this method requires a high
quantity of noise (σ = 5Km) in order to effectively prevent inference attacks. Our
approach offers higher levels of uniformity, and reduces the amount of noise needed
to resist to inference attacks.

Dürr et al. [37] proposed an obfuscation approach with multiple levels of privacy.
They build different “shares” which are random vectors concatenated to the user’s
position. They store the shares in different servers to avoid a single point of trust.
Each LBS provider reconstructs the position by “fusing” one or more shares from
one or more servers. The privacy level is proportional to the number of shares the
LBS provider is allowed to access. To build the shares, two possible algorithms are
used, offering different properties. The “a-priori share generation algorithm”, which
builds the shares from the larger one to the smaller one, and the “a-posteriori share
generation algorithm” which does vice versa. To the best of our knowledge, the “a-
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posteriori share generation algorithm” is the approach most similar to ours. However,
our obfuscation operators guarantee more resistance against inference attacks.

Inspired by differential privacy [38], Andrés et al. [6] introduced the concept of
ε-geo-indistinguishability. The idea is that the user obtains more privacy in the sur-
roundings of his true position, and less farther. To achieve this, they perturb the true
position with a 2-dimensional extension of the Laplacian noise. Such a noise is highly
non-uniform. As a consequence, geo-indistinguishability offers far less resistance to
inference attacks compared to UNILO.

A recent example of location obfuscation is the n-CD approach of [63]. Authors
proposed the generation of such concealed disks (CDs), whose combination gives an
obfuscated user’s position. The overlapping and random rotation of CDs preserves
unpredictability of the resulting obfuscation area (called “anonymity zone”). The CDs
are selected in such a way that their overlapping is consistent. The n-CD approach
does not guarantee multiple privacy levels. Moreover, the proposed privacy metric
considers only the resulting intersection area of the CDs, without analyzing the prob-
ability distribution of the target position within the anonymity zone.

Other notable obfuscation-based approaches are [18, 36, 106]. All these works
postulate uniformity rather than providing for it. In contrast, our approach offers guar-
antees on the obfuscation uniformity, even in presence of imprecise location measure-
ments.

Another research track [46, 52, 79] applies private information retrieval (PIR) tech-
niques to protect user’s location. The objective is to deliver the service without disclos-
ing the user’s location at all. These approaches offer high security, but they involve
complex cryptographic operations, which scale poorly at the server side. [78] and [57]
eliminates this problem by employing hardware PIR techniques. However, these solu-
tions require trusted hardware modules, which could be unavailable on many servers.

6.2 System model

In our system, a user is an entity whose location is measured by a sensor. A service
provider is an entity that receives the user’s location in order to provide him with a
location-based service. The user applies an obfuscation operator to location informa-
tion prior to releasing it to the service provider. The obfuscation operator purposefully
reduces the precision to guarantee a certain privacy level. Such a precision is defined
by the user and reflects his requirements in terms of privacy. The more privacy the
user requires, the less precision the obfuscation operator returns.

In the most general case, a location measurement is affected by an intrinsic er-
ror that limits its precision. Such an error depends on several factors including the
localization technology, the quality of the sensor, the environment conditions. If the
measurement error is small compared to the obfuscation, as it happens in profes-
sional GPS receivers, it can be approximated to zero. Otherwise, as it happens in
cheap GPS receivers mounted on smartphones, or in Wi-Fi and cellular positioning,
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we cannot neglect it [107]. This implies that the location cannot be expressed as a
geographical point but rather as a neighborhood of the actual location. We assume
that locations are always represented as planar circular areas, because it is a good
approximation for many location techniques [8, 76, 107]. A location measurement
(Fig. 6.1) can be defined as follows:

Definition 1 (Location measurement). Let X be the actual position of the user. A
location measurement is a circular area A0 = 〈X0, r0〉 ⊂ R2, where X0 is the center
and r0 is the radius, such that Pr [X ∈ A0] = 1 (Accuracy Property). We further call
X0 the measured position and r0 the precision radius.

Figure 6.1. Location measurement

The Accuracy Property guarantees that the location measurement actually con-
tains the user, or, equivalently, that the distance XX0 does not exceed r0. We assume
that r0 is constant over time. This means either that the precision does not change
over time, or that r0 represents the worst-case precision.

A user specifies his privacy preference in terms of a privacy radius r1 > r0, mean-
ing that he wishes to be located with a precision not better than r1. The privacy radius
is quite an easy metric to be understood by the users. This improves the overall us-
ability of the obfuscation system. The task of an obfuscation operator is to produce a
privacy area A1 with radius r1, appearing to the provider as a location measurement
with a lower precision.

Definition 2 (Privacy area). Let X be the actual position of the user. A privacy area is
a circular area A1 = 〈X1, r1〉 ⊂ R2, such that Pr [X ∈ A1] = 1 (Accuracy Property).
We further call X1 the obfuscated position and r1 the privacy radius.

Definition 3 (Obfuscation operator). Let A0 be a location measurement, and r1 > r0
a privacy radius. An obfuscation operator O transforms A0 into a privacy area A1:

A1 = O (A0) (6.1)

With reference to Fig. 6.2, in order to produce a privacy area A1, the obfuscation
operator applies both an enlargement and a translation of the location measurement
A0. The enlargement aims at decreasing the precision and thus achieving the desired
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Figure 6.2. Obfuscation and shift vector

privacy level r1. The translation is made through a randomly selected shift vector d1,
i.e., X0 + d1 = X1. Of course, the user has to keep the shift vector secret.

The enlargement and translation operations must be such that, when composed,
the resulting privacy area satisfies the Accuracy Property. The enlargement opera-
tion is straightforward, whereas the translation operation is more subtle. We state the
following:

Proposition 2. A privacy area A1 fulfills the Accuracy Property iff:

‖d1‖ ≤ (r1 − r0) (6.2)

Proof. The proof stems directly from geometrical considerations (cfr. Fig. 6.2). ut

6.3 Agnostic adversary and uniformity index

For the scope of the present chapter, every service provider receiving an obfuscated
position is a potential adversary. We assume the adversary knows the privacy area
and the precision radius. She aims at discovering the actual user’s position. Since it
cannot be known with infinite precision, the result of the attack will have a probabilistic
nature. From now on, we will use the notation fa|b to refer to the conditional probability
density function of the random variable a given the information b.

Three pieces of information could help the adversary: (1) the employed localization
technology; (2) the employed obfuscation operator; (3) other auxiliary information.
Such information pieces are modeled by three probability densities over space:

1. The density fX|A0
(Fig. 6.3a), which describes the actual position of the user

given a measurement of it. We have no control over this density but we can make
hypotheses on it. For example we can suppose it is normally distributed, as it
is usually done in GPS measurements [51]. Obviously, even the adversary can
make the same assumptions.
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(a) fX|A0
(b) fX0|A1

(c) fX|auxinfo

Figure 6.3. Adversarial information

2. The density fX0|A1
(Fig. 6.3b), which describes the measured position of the

user given an obfuscated version of it. We can control this density, and this is our
main weapon against the adversary. The adversary can compute this density by
analyzing the obfuscation operator. She starts from the inverse density fA1|X0

,
which describes the possible output of the obfuscation operator, and then applies
Bayesian inference. In obfuscation operators based on noise addition, fA1|X0

de-
pends on the distribution of d1, while fX0|A1

depends on the distribution of −d1.
3. The density fX|auxinfo (Fig. 6.3c), which describes the actual position of the user

given a set of auxiliary information about him. We have no control over this density
and it is even hard to make hypotheses on it. The adversary could have much or
little information. She could know where the user lives, works, his habits, etc. Or
she could know nothing particular about the user but still suppose that he follows
the overall population distribution in a given city at a given hour. On the extreme
end, an adversary who ignores any auxiliary information cannot conclude nothing.
So she has to assume that fX|auxinfo (x, y) is uniform over the whole world map.

Dealing with auxiliary information is a central problem in privacy topics [87, 38].
Some works in the literature [9, 91] make assumptions on auxiliary information that
is owned by the adversary, and enlarge the privacy areas to compensate it. This ap-
proach has some drawbacks. First of all, it does not respect the privacy preference
that the user specified in terms of privacy radius. Second, it requires that the system
knows the same auxiliary information that the adversary knows. In theory, there are
no limits to the quantity of auxiliary information the adversary can have. If an adver-
sary knew enough auxiliary information, fX|auxinfo would collapse into a Dirac delta. In
such a case, she could locate the user without needing any obfuscated position at all.

No obfuscation operator can make the adversary “forget” the auxiliary informa-
tion. Therefore, our true aim is to give her no additional information other than the
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simple one: “X is inside A1.” We model such a requirement with the concept of ideal
obfuscation:

Definition 4 (Ideal obfuscation).

fX|auxinfo,A1
(x, y) = fX|auxinfo,X∈A1

(x, y) (6.3)

An obfuscator which performs ideal obfuscation is an ideal obfuscator. Note that
“given A1” in the left term of Equation 6.3 differs from “given X ∈ A1” in the right
term. The former means that the adversary knows the privacy area generated by the
obfuscation operator. The latter means that the adversary knows that the user is inside
an area A1, not necessarily generated by an obfuscation operator. Intuitively, in order
Equation 6.3 to hold, the obfuscation operator should produce a privacy area in such
a way that the actual position is uniformly distributed inside it. We state the following:

Definition 5 (Uniformity Property). A privacy area A1 fulfills the Uniformity Property
iff fX|A1

(x, y) is uniform over A1. An obfuscator fulfills the Uniformity Property iff all
the produced privacy areas fulfill the Uniformity Property.

Theorem 1. An obfuscator which offers Uniformity Property is ideal.

Proof. From the definition of conditional probability, we have that:

fX|auxinfo,X∈A1
=

{ fX|auxinfo∫∫
A1
fX|auxinfo dxdy

in A1

0 outside
(6.4)

On the other hand, if Uniformity Property holds:

fX|A1
=

{
1

size(A1)
in A1

0 outside
(6.5)

Combining (6.5) with the auxiliary information:

fX|auxinfo,A1
=

fX|auxinfo · fX|A1∫∫
R2fX|auxinfo · fX|A1

dxdy

=

{ fX|auxinfo∫∫
A1
fX|auxinfo dxdy

in A1

0 outside

= fX|auxinfo,X∈A1
(6.6)

ut

Theorem 1 tells us that Uniformity Property is important regardless of the auxiliary
information the adversary has, because Uniformity Property gives her no additional
one.

No obfuscation system can provide uniformity against an adversary holding some
auxiliary information. This is because the adversary will always have a non-uniform

66



6.3. AGNOSTIC ADVERSARY AND UNIFORMITY INDEX

a-priori probability density of the user’s position. In order to study the uniformity of
a generic obfuscation operator, we have to suppose an adversary who ignores any
auxiliary information. From now here, we will call such an adversary the agnostic
adversary. The agnostic adversary is a purely theoretic one, because real-life adver-
saries usually own some auxiliary information. However: (a) the agnostic adversary
permits us to study the uniformity of obfuscation operators; and (b) if an obfuscation
operator enjoys Uniformity Property against an agnostic adversary, it also gives no
additional information to a real-life adversary, i.e. it is ideal.

6.3.1 Uniformity index

We use the agnostic adversary to measure the uniformity of a generic obfuscation
method. Basing on the measurement error’s density and the shift vector’s density, the
agnostic adversary computes the pdf fX|A1

(x, y) of the user’s position. After that, she
defines a confidence goal c ∈ (0, 1] and computes the smallest area Âc ⊆ A1 which
contains the user with a probability c. We call this area the smallest c-confidence area.

Definition 6 (Smallest c-confidence area).

Âc = arg min
A∈Ac

{size(A)} (6.7)

where:

Ac =
{
A|A ⊂ R2,Pr [X ∈ A|A1] = c

}
(6.8)

Pr [X ∈ A|A1] =

∫∫
A

fX|A1
(x, y) dxdy (6.9)

The smallest c-confidence area is the adversary’s most precise estimation of the
actual position, and it will cover the zones where fX|A1

(x, y) is more concentrated.
The adversary can find it by means of a Monte Carlo approach. First, she synthe-
sizes many “measurement-plus-obfuscation” operations, finding many couples with
the form:

〈actual position, obfuscated position〉

Then, she selects only those couples whose obfuscated position matches with the
one she wants to deobfuscate. The distribution of the selected actual positions fol-
lows fX|A1

(x, y). Finally, the adversary determines the smallest c-confidence area
by connecting the zones having highest concentrations. The smaller Âc, the more
precisely the adversary locates the user. A good obfuscation operator should keep Âc

as larger as possible. This is done by making the obfuscation as uniform as possible.
The best case occurs when the Uniformity Property is fulfilled, and the obfuscator is
ideal. This is not realizable in the general case, because we cannot force a particular
pdf inside the privacy area if we cannot control the pdf inside the measurement area,
which depends on the measurement error.

Another way to state the Uniformity Property is the following:
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Proposition 3. A privacy area A1 fulfills the Uniformity Property iff:

∀A ⊆ A1,Pr [X ∈ A|A1] =
size(A)

size(A1)
(6.10)

That is, each region of the privacy area contains the user with a probability pro-
portional to its size. In such a case:

size(Âc) = c · size(A1) (6.11)

Otherwise:
size(Âc) < c · size(A1) (6.12)

The uniformity can be quantified by means of Eq. 6.12, by measuring how much,
for a given c, size(Âc) gets close to c · size(A1). We define the following uniformity
index by fixing c = 90%:

Definition 7 (Uniformity index).

unif (A1) =
size(Â90%)

90% · size(A1)
(6.13)

The uniformity index ranges from 0% (worst case), if the user’s position is perfectly
predictable, to 100% (best case), if the user’s position is perfectly uniform. A uniformity
index of 100% is necessary and sufficient for the Uniformity Property.

The uniformity index is a sort of 2-dimensional extension of the “privacy metric”
used in [4] for data mining applications, except that our index is unit-less, because
normalized on the privacy area size. Therefore it measures the uniformity of obfus-
cation, rather than the quantity of privacy. Uniformity index is proportional to the lack
of precision of the attack. For example, if an obfuscation operator produces a privacy
area of 400m2 with a uniformity index of 80%, an agnostic adversary cannot find his
position (with 90% confidence) with more precision than 80% · 90% · 400 = 288m2.

6.4 UNILO obfuscation operator

UNILO (Uniform Location Obfuscation) adds to X0 a shift vector d1 = (µ cosϕ, µ sinϕ),
where µ is the magnitude and ϕ is the angle. µ and ϕ have the following probability
densities (Fig. 6.4):

fΦ (ϕ) =

{
1
2π ϕ ∈ [0, 2π)

0 otherwise
(6.14)

fM (µ) =

{
2µ/(r1 − r0)2 µ ∈ [0, r1 − r0]
0 otherwise

(6.15)

These densities produce shift vectors with magnitude less than or equal to r1 − r0,
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Figure 6.4. ϕ and µ pdf ’s of a UNILO vector

and a perfectly uniform spacial probability density. This produces a good level of uni-
formity of fX|A1

. However, remind that fX|A1
also depends on the measurement er-

ror’s density, over which we have no control. So fX|A1
will not be perfectly uniform in

the general case.
UNILO fulfills the following properties:

• Accuracy Property. The privacy area always contains the user (Theorem 2).
• High uniformity index. UNILO outperforms all the other noise shapes used in the

literature in terms of uniformity index, for all values of r1/r0.
• Uniformity Property as r0 → 0. With highly precise sensors, UNILO tends to be

an ideal obfuscator. (Theorem 3).

Theorem 2. UNILO fulfills Accuracy Property.

Proof. By construction, ‖d1‖ ≤ r1 − r0. Hence, from Prop. 2, Accuracy holds. ut

Theorem 3. As r0 → 0, UNILO fulfills Uniformity Property.

Proof. If r0 → 0, A0 will narrow to a point, with X ≡ X0, and the probability density
of the magnitude in Eq. 6.15 will become:

fM (µ) =

{
2µ/r21 µ ∈ [0, r1]

0 otherwise
(6.16)

To show the Uniformity, we have to pass from the polar representation to the Carte-
sian representation. So we have to transform the densities fM (µ), fΦ (ϕ) to the joint
density fX,Y (x, y). In order to perform this variable change, we equal the areas of
the rectangle spaced by dx and dy, and of the annulus sector spaced by dµ and dϕ:

dxdy =
(µ+ dµ)2 − µ2

2
dϕ = µ · dµdϕ (6.17)

Then, we equal the probabilities inside them:
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Figure 6.5. UNILO spatial distribution (2000 Monte Carlo runs)

fX,Y (x, y) dxdy = fM (µ) dµ · fΦ (ϕ) dϕ (6.18)

=

{
2µ/r21dµ · 1

2πdϕ µ ≤ r1
0 otherwise

(6.19)

From Equations 6.17 and 6.19, we have:

fX,Y (x, y) =

{
1
r21π

√
x2 + y2 ≤ r1

0 otherwise
(6.20)

which is spatially uniform in A1. ut

We will use the following notation:

d1 = UniLO(r1, r0) (6.21)

to say that d1 is a shift vector created by the UNILO operator with privacy radius r1
and precision radius r0. UNILO operator will be our basic block to build more complex
obfuscators.

We evaluated the uniformity index of UNILO on simulated location measurements.
The error on the location measurements was assumed to follow a Gaussian distribu-
tion, as it is usually done in GPS [51]. We truncated the distribution at r0 = 3σ, so
that no sample falls outside A0. Such a truncated Gaussian distribution differs from
the untruncated one for only 1% of samples. The tests aim at evaluating the uniformity
of UNILO with respect to the ratio r1/r0 (radius ratio).

Figure 6.5 shows the statistical distribution of X in A1 for different values of the
radius ratio. We note that the distribution tends to be perfectly uniform as r1/r0 →∞.
The inner areas are Â90%.

We compared UNILO with other state-of-the-art obfuscation noises1:

1 In case of unbounded noises (e.g. Gaussian), we fulfilled Accuracy Property by truncating
their magnitude at (r1 − r0). To make meaningful comparisons, we tailored the parameters
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Figure 6.6. unif (A1) wrt the radius ratio (500K Monte Carlo runs for each point)

• Gaussian noise, used for modeling 2-dimensional measurement errors.
• Krumm’s noise, used by Krumm to perturb GPS data [59]. Krumm’s noise has a

uniformly distributed angle and a magnitude drawn from a Gaussian distribution.
• Andrés’ noise, used by Andrés et al. [6]. This noise is a 2-dimensional extension of

the Laplacian noise, and it is used to achieve geo-indistinguishability. Refer to [6]
for further information.

• Dürr’s noise, used by Dürr et al. in their “a-posteriori share generation algo-
rithm” [37]. This is the simplest 2-dimensional noise: it has a uniformly distributed
angle and a uniformly distributed magnitude. We compare UNILO with this be-
cause it is the obfuscation method most similar to ours.

• Ardagna’s noise, used by Ardagna et al. in their location obfuscation operators [8].
These are a set of obfuscation operators that reduce/enlarge/shift the measure-
ment area to produce the privacy area. The user expresses his privacy preference
in terms of final relevance, which is assumed to be unknown by the adversary.
With “Ardagna’s noise” we refer here to the cumulative effect of (a) the random se-
lection of the final relevance, (b) the random selection of the obfuscation operator,
and (c) the random selection of the shift angle. These obfuscation operators do
not guarantee the Accuracy Property, and the user could be outside the privacy
area. Refer to [8] for further information.

Figure 6.6 shows the uniformity indexes of the noises. We can see that UNILO outper-
forms all the other noises for all the radius ratii. In the average case, Ardagna’s noise
is particularly easy to predict, because it has not been designed to thwart statistical
attacks. On the other hand, it enjoys quite a high uniformity for very small privacy
radii (r1 < 2r0). However, such an improved uniformity is obtained at the cost of vi-

in such a way to truncate always 1% of the samples. Namely, we tailored σ = (r1 − r0)/3
for Gaussian noise, σ = (r1 − r0)/2.6 for Krumm’s noise [59], and ε = 6.5/(r1 − r0) for
Andrés’ noise [6].
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olating the Accuracy Property, and thus possibly degrading the utility of the service.
Krumm’s and Gaussian noises are not so good at obfuscating. We believe this is the
reason why Krumm needed a surprisingly high quantity of noise (σ = 5Km) to ef-
fectively withstand inference attacks [59]. Andrés’ noise for geo-indistinguishability is
quite predictable too.

6.5 Multiple levels of privacy

A user may require different privacy radii for different services. He can require high
levels of privacy for some services, for instance a friend-finder service, and small lev-
els of privacy for others, for instance safety-related services. In general, an obfuscator
must offer a user a set ofN possible privacy radii, and must create a set ofN random
shift vectors, one for each privacy radius. The precision radius of the sensor can be
considered as the minimum privacy radius. In other words, the smallest privacy area
is the measurement itself.

Let ρ = {r0, r1, r2, · · · , rN}, with r0 < r1 < r2 < · · · < rN , be the privacy radius
set, i.e. the set of the privacy radii provided by the obfuscator. Then:

• {di : i = 1, 2, · · · , N} = δ is the shift vector set,
• {Xi = X0 + di : i = 1, 2, · · · , N} is the center set,
• {Ai = 〈Xi, ri〉 : i = 1, 2, · · · , N} is the privacy area set.

We will refer to ri−1 and ri+1 as, respectively, the previous and the successive privacy
radii of ri. The same convention holds for shift vectors and privacy areas. We will
use the notation Âci to refer to the smallest c-confidence area found by an agnostic
adversary able to access to the i-th privacy level.

6.5.1 On collusion attack

A subtle attack is possible when two or more service providers collude. Let us sup-
pose that a service provider knowing A1 colludes with a service provider knowing A2.
If the shift vectors are not chosen wisely, the adversaries can intersect A1 and A2

(Fig. 6.7) to find a smaller area containing the user. To avoid this possibility, an ob-
fuscator should force each privacy area to enclose all the smaller ones. We state the
following:

Definition 8 (Inclusion Property). A privacy area Ai (i ≥ 2) fulfills the Inclusion Prop-
erty iff Ai−1 ⊂ Ai. An obfuscator fulfills the Inclusion Property iff all the produced
privacy areas fulfill the Inclusion Property.

Obviously, in case of collusion we can fulfill only the privacy preference corre-
sponding to the smallest area known by the group of colluding adversaries.

If a privacy area must enclose the previous one, the distance between the centers
must not be larger than the radii difference. Formally:
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Figure 6.7. Collusion attack

Proposition 4. A privacy area Ai (i ≥ 2) fulfills the Inclusion Property iff:

‖di − di−1‖ ≤ (ri − ri−1) (6.22)

It is worth to stress that the Inclusion Property is not mandatory. In particular, it
can be released if both the system prevents service providers from accessing different
privacy levels, and different service providers do not collude. The Inclusion Property
lowers the uniformity index of the privacy areas.

6.5.2 UNILO for multiple levels of privacy

We will now adapt the basic UNILO operator for offering a set ρ ofN shift vectors. The
simpler solution is to apply N times UNILO, obtaining N shift vectors independent of
each other. Formally:

di = UniLO(ri, r0) ∀i (6.23)

We will refer to this solution as Independent Vectors UNILO (IV-UNILO). Figure 6.8
shows an example with ρ = {r0, r1 = 4r0, r2 = 16r0}.

IV-UNILO trivially fulfills the Accuracy Property for all the privacy areas. It also
offers a good level of uniformity, especially for large privacy radii (ri � r0). Figure 6.8
shows that A2 does not enclose A1. Thus, IV-UNILO does not fulfill the Inclusion
Property and does not defend against collusion.

6.5.3 VC-UNILO: Vector Chain UNILO

The idea of VC-UNILO is to fulfill Inclusion by assuring that the distance between
X1 and X2 never goes beyond (r2 − r1). To do this, we create d2 as the sum of d1

and an incremental vector d1,2, which is a random vector with maximum magnitude
(r2− r1). The incremental vector represents in fact the distance between X1 and X2.
The same procedure is repeated for d3 · · ·dN . In this way, we fulfill both Accuracy
and Inclusion, as stated by the following two Theorems:
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Figure 6.8. IV-UNILO example

Theorem 4. VC-UNILO fulfills the Accuracy Property for all the privacy areas.

Proof. We prove this by induction. From Theorem 2, A1 fulfills Accuracy. If Accuracy
holds for Ai−1, then ‖di−1‖ ≤ (ri−1 − r0). By construction ‖di−1,i‖ ≤ (ri − ri−1). It
follows that:

‖di‖ ≤ ‖di−1‖+ ‖di−1,i‖ (6.24)

≤ (ri−1 − r0) + (ri − ri−1) (6.25)

= (ri − r0) (6.26)

Hence, from Prop. 2, Accuracy Property holds for all privacy areas. ut

Theorem 5. VC-UNILO fulfills the Inclusion Property for all the privacy areas.

Proof. We consider the generic privacy area Ai. By construction, ‖di − di−1‖ =

‖di−1,i‖ ≤ (ri − ri−1). Hence, from Prop. 4, Inclusion Property holds for all privacy
areas. ut

For di−1,i we choose vectors created by UNILO operator:

di−1,i = UniLO(ri, ri−1) (6.27)

This is the simplest choice and still offers a good level of uniformity for Ai. To sum up,
VC-UNILO algorithm creates the shift vectors with the following formula:

di =

{
UniLO(r1, r0) i = 1

di−1 +UniLO(ri, ri−1) i > 1
(6.28)

The i-th shift vector is created by concatenating vectors, hence the name Vector
Chain. Figure 6.9 shows an example with ρ = {r0, r1 = 4r0, r2 = 16r0}.

VC-UNILO defends against collusion but offers a lower uniformity index than IV-
UNILO. The problem is that ‖di‖ (i > 1) has a low probability of being large. In fact,
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Figure 6.9. VC-UNILO example

di is the sum of two vectors (di−1 and di−1,i) and its magnitude gets close to the
maximum (ri) only if the vectors are aligned on the same direction and both have high
magnitudes. This is a very rare event. In the majority of cases, di will have a small
magnitude. So the user will be near the center with greater probability than near the
borders. This limits the uniformity of the resultant privacy area Ai.

Forcing di−1,i to have the same direction as di−1 is not a viable strategy, because
it would make the centers Xi, Xi−1 and X0 aligned. Therefore, an adversary know-
ing Ai−1 and Ai would automatically have a preferred direction where to find A0. In
general, di−1,i should be independent of the value of di−1.

6.5.4 DVC-UNILO: Discrete Vector Chain UNILO

The idea of DVC-UNILO is to improve the uniformity index of VC-UNILO by changing
the way the incremental vectors are built. We will first introduce the p-Partitionability
Property, which is a weaker form of Uniformity, and then present DVC-UNILO, which
offers such a property.

Ensuring the Uniformity Property is a hard problem, since it states that all the
possible regions of the privacy area contain the user with a probability proportional
to their size. A weaker requirement is to ensure this for at least some regions. We
define p-Partitionability Property, which states that at least p regions, which partition
the whole privacy area, have such a property. Formally:

Definition 9 (p-Partitionability Property). A privacy areaAi fulfills the p-Partitionability
Property iff the partition of equally-spaced concentric annuli P(Ai) = {α0, . . . , αp−1}
(Fig. 6.10) divides Ai in such a way that:

∀j, Pr [X ∈ αj |Ai] =
size(αj)

size(Ai)
(6.29)

DVC-UNILO fulfills the p-Partitionability of Ai by leveraging on the Accuracy of
Ai−1. With reference to Figure 6.10, suppose that A1 contains X and the magnitude
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Figure 6.10. p-Partitionability regions

Figure 6.11. µ pmf of a discrete UNILO vector (example of Fig. 6.10)

of d1,2 is equal to 5r1. Then, we can be sure that X is inside the annulus α2. If we
generate such a magnitude with probability 5/9, then X will be inside α2 with the same
probability, which is proportional to the size of α2. We can repeat the same reasoning
for the other annuli α0 and α1. The magnitude µ of the vector d1,2 becomes a discrete
random variable having the probability mass function (pmf ) shown in Figure 6.11. In
this way, A2 fulfills 3-Partitionability Property. Obviously this method is possible only if
2ri−1 divides exactly ri.

By generalizing the formula we obtain the following pmf for the magnitude of
di−1,i:

pM (µ) =

{
(8j + 4)

r2i−1

r2i
µ = (2j + 1)ri−1

0 otherwise
(6.30)

where j = 0 . . . p− 1, p =
ri

2ri−1
(6.31)

The pmf is depicted in Fig. 6.12. We call discrete UNILO vector a shift vector with
such a magnitude and a uniform angle. We will use the following notation:

di−1,i = D-UniLO(ri, ri−1) (6.32)

to say that di−1,i is a vector created by the discrete UNILO operator with privacy
radius ri and precedent privacy radius ri−1.
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Figure 6.12. µ pmf of a discrete UNILO vector

If 2ri−1 does not divide ri, DVC-UNILO will behave like VC-UNILO. The general
formula for creating shift vectors is the following:

di =


UniLO(r1, r0) i = 1

di−1 +D-UniLO(ri, ri−1) i > 1, ri = 2pri−1

di−1 +UniLO(ri, ri−1) otherwise

(6.33)

where p ∈ N

It is trivial to show that DVC-UNILO fulfills Accuracy and Inclusion Properties for all
the privacy areas, like VC-UNILO does. In addition, we state the following:

Theorem 6. For each privacy area Ai having i ≥ 2 and ri = 2pri−1, DVC-UNILO
fulfills p-Partitionability Property.

Proof. In the following, µ = ‖di−1,i‖, and µj = (2j + 1)ri−1. Let us compute the
probability Pr [X ∈ αj ].

Pr [X ∈ αj ] = (6.34)

= Pr [µ = µj ] · Pr [X ∈ αj |µ = µj ] + (6.35)

+ Pr [µ 6= µj ] · Pr [X ∈ αj |µ 6= µj ] (6.36)

If Ai−1 enjoys Accuracy Property and µ = µj , then the user will surely be in annulus
αj . Thus, Pr [X ∈ αj |µ = µj ] = 1. On the other hand, Pr [X ∈ αj |µ 6= µj ] = 0 for
the same reason. Hence:

Pr [X ∈ αj ] = Pr [µ = µj ] (6.37)

= (8j + 4)
r2i−1
r2i

(6.38)

=
size(αj)

size(Ai)
(6.39)

ut

DVC-UNILO is an improvement of VC-UNILO. It fulfills the Inclusion Property and
offers a better uniformity.
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Figure 6.13. unif (A2) with r1 = 10r0
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Figure 6.14. unif (Ai) with r1 = 10r0 and ri = 2ri−1

6.5.5 Uniformity analysis

We performed Monte Carlo simulations to compute the uniformity indexes of the pri-
vacy areas produced by IV-UNILO, VC-UNILO and DVC-UNILO under different con-
ditions. We also compared them with “a-posteriori share generation algorithm” by Dürr
et al. [37] which offers multiple levels of privacy with a perturbation approach. Dürr
used a noise uniform in angle and uniform in magnitude to obfuscate user’s positions.
Actually, Dürr’s algorithm dealt only with location measurements with infinite precision
(r0 = 0). To make meaningful comparisons, we adapted it to deal with finite-precision
localization technologies. This is easily done by creating shift vectors with maximum
magnitude equal to r1 − r0, as UNILO-based algorithms do. We simulated a local-
ization technology with r0 = (1/10)r1. Tests showed that our algorithms outperform
Dürr’s ones in terms of uniformity.

Figure 6.13 shows the uniformity index of the second-level privacy area A2 wrt
r2/r1, with a precise localization technology. Note that IV-UNILO gets closer to the
optimum than all the other methods. DVC-UNILO improves the performance of VC-
UNILO when r2/r1 is not too large. Dürr’s algorithm performs always worse than
UNILO-based algorithms.
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Figure 6.15. unif (A∞)

The performance of DVC-UNILO remains high at higher levels of privacy. Fig-
ure 6.14 shows the uniformity indexes of A1–A6 with ri = 2ri−1 (i > 1). The tests
revealed that all the four methods approach constant values at higher privacy lev-
els: 28.8% for Dürr’s algorithm, 39.2% for VC-UNILO, 70.4% for DVC-UNILO, and
100.0% for IV-UNILO. The asymptotic value of the uniformity index unif (A∞) de-
pends only on the algorithm employed and on the radius ratio ri/ri−1. Figure 6.15
shows unif (A∞) wrt the radius ratio. We can easily see that UNILO-based algorithms
outperforms Dürr’s obfuscation algorithm.

To sum up, in order to guarantee an optimal level of uniformity, the privacy radius
set must be configured wisely. In particular, it is always better to set the first privacy
radius far greater than the precision radius of the sensor (r1 � r0). In addition, if we
want to defend against collusion attacks, it is better to use DVC-UNILO and set each
privacy radius to be the double or quadruple of the previous one. In this way, we have
both a good granularity on the privacy radii, and a good uniformity index, which tends
to 70%–84% (with collusion resistance) or 100.0% (without collusion resistance) with
the growing of i.

6.6 Service example

UNILO operators have the advantage to be transparent to the service provider, in
the sense that a privacy area has the same properties as an ordinary measurement.
A service provider designed for receiving non-obfuscated inputs can be seamlessly
adapted for receiving UNILO-obfuscated inputs.

We will describe now an example social application, called “close friends”, in which
users share their obfuscated positions with their friends. Alice wants to find out which
of her friends are in her proximity. We define “being in the proximity of Alice” as “being
at a distance of 400 meters or less from Alice”. The service provider gathers the
obfuscated positions of Alice’s friends and sends them to Alice. While Alice knows
her own position, the locations of her friends are obfuscated. Suppose Bob is one of
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Figure 6.16. “Close friends” application

Alice’s friends. Since Alice does not know his exact location, the question “is Bob in
my proximity?” will necessarily have a probabilistic answer.

The problem can be modeled as depicted in Fig. 6.16. Alice builds a circle cen-
tered on its position and with 400 meters of radius (proximity area, PAlice), and com-
putes the intersection between that area and the privacy area of Bob (A1). If Bob
is inside this intersection, he will be in Alice’s proximity. The probability that such an
event happens is:

Pr [Bob ∈ PAlice] =

∫∫
PAlice∩A1

fX,Y (x, y) dxdy (6.40)

To make such a calculus, Alice should perform a statistical analysis of Bob’s position
and then compute numerically the integral. This operation is quite inefficient. However,
if A1 is assumed to be Uniform and Accurate, Eq. 6.40 will simplify in:

Pr [Bob ∈ PAlice] ≈
size(PAlice ∩A1)

size(A1)
(6.41)

Alice performs this calculus only for each friend whose X1 is nearer than r1 + 400m.
The others have no intersection, and thus 0% probability.

6.6.1 Utility analysis

We evaluated the utility of the presented obfuscation operators in our example “close
friends” application. Our utility metric is the mean uncertainty in the service’s answer.
We define the uncertainty as the absolute difference between the computed proximity
probability and the true answer, i.e. 1 if the friend is close, 0 otherwise. More formally,
if PAlice is the proximity area of Alice and Ai is the privacy area of Bob:

uncert(Ai) =

∣∣∣∣ size(PAlice ∩Ai)
size(Ai)

− prox(Bob)
∣∣∣∣ (6.42)

prox(Bob) =

{
1 if Bob is in the proximity
0 otherwise

(6.43)
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Figure 6.17. Uncertainty of “close friends” service (1000 Monte Carlo runs for each point)

Low values of uncertainty mean that the computed answers are close to the true
answers. In the simulations, Bob’s position is taken in Alice’s proximity with 50% prob-
ability. Locations are measured with r0 = 10m, and the privacy radii follow a geomet-
ric progression ρ = {100m, 200m, 400m, . . .}. Figure 6.17 shows the mean uncer-
tainty of Alice using the “close friends” service, versus the privacy preferences of her
friends. We can see that the uncertainty depends mainly on the size of the privacy
area, and only marginally on the obfuscation operator. For i > 5, corresponding to a
privacy radius r5 = 1.6Km, the obfuscated positions lose their utility in determining
the proximity. This suggests that for this kind of service, i ∈ [0, 5] is a suitable range
of privacy preferences.

Together with the utility, it is interesting to measure the error that Alice makes
in considering the privacy areas as uniform when they ar not. Many privacy-aware
services [8, 18] postulates the uniformity, rather than providing it. In practice, they use
an approximate calculus (Equation 6.41) instead of an exact one (Equation 6.40). The
impact of such an approximation can be quite high, if the obfuscation does not provide
for Uniformity and Accuracy Properties. We evaluated this by measuring the mean
service error, i.e. the mean absolute difference between the probability computed
with and without the approximation. More formally:

error(Ai) =

∣∣∣∣ size(PAlice ∩Ai)
size(Ai)

− Pr [Bob ∈ PAlice]

∣∣∣∣ (6.44)

Low values of service error mean that the computed proximity probabilities are close
to the real ones. We compared UNILO algorithms with other noises, namely Dürr’s
“a-posteriori share generation algorithm” [37], Krumm’s noise [59], and Ardagna’s ob-
fuscation operators [8]. Figure 6.18 shows the results of the simulations. We can see
that the service’s mean error depends mainly on the uniformity of the obfuscation
noise. IV-UNILO and DVC-UNILO perform near to the optimum of 0% error, as they
are highly uniform and they respect Accuracy Property. On the contrary, Ardagna’s
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Figure 6.18. Error of “close friends” service (1000 Monte Carlo runs for each point)

obfuscation performs particularly bad, because it respects neither Uniformity nor Ac-
curacy.

6.7 Inference adversary

In previous sections we used the concept of agnostic adversary to measure the unifor-
mity of an obfuscation operator. Now we introduce a more realistic adversary, which
owns auxiliary information (the map), and we show that a better uniformity improves
the resistance against such a threat.

The inference adversary tries to infer sensitive information from the user’s position
and other auxiliary information. Let us suppose that there is a “sensitive point” on the
map, in the sense that the proximity to that point can allow the adversary to infer sen-
sitive information about the user. An example of that could be a hospital for the cancer
treatment. If Bob sends his position from inside or from the close proximity of the hos-
pital, the adversary could easily infer his health condition. Such an adversary could
be the “close friends” service provider, or Alice herself. Let us suppose that Bob actu-
ally is in the hospital, and that the adversary knows his privacy area. The adversary
performs a statistical analysis of Bob’s position, knowing the localization technology
and the obfuscation operator employed. Then she uses her auxiliary information by
excluding those zones that cannot contain users (inside walls, rivers, etc.). The result
of this analysis is a probability distribution over the map. Finally, the adversary com-
putes the probability that Bob is in the hospital close proximity, say, inside a proximity
area Phospital of 200 meters of radius (cfr. Fig. 6.16). If such a probability is 50% or
more, the adversary successfully infers the health condition of Bob.

We evaluated the success probability of the inference adversary on a real map of
Pisa city center, extracted from public OpenStreetMap data [75]. Figure 6.19 shows
the probability that the adversary has in guessing the health condition of Bob wrt
his privacy radius. We can see that UNILO algorithms offer perfect protection even
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Figure 6.19. Success of inference attack (1000 Monte Carlo runs for each point)

for small privacy radii (400 meters for IV-UNILO and DVC-UNILO). Ardagna et al.’s
obfuscation offers no protection against inference attacks.
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7

Advanced techniques for obfuscation-based location
privacy

In this chapter we present an advanced location obfuscation system capable of deal-
ing with measurement imprecision, multiple levels of privacy, untrusted servers, and
adversarial knowledge of the map. We study its resistance against deobfuscation at-
tacks, and we improve it by means of three advanced techniques, namely extreme
vectors, enlarge-and-scale, and hybrid vectors. Our tests show that extreme vectors
can decrease the adversarial success probability by 22.50%, enlarge-and-scale tech-
nique by 31.74%, and hybrid vectors by 17.17%. The present chapter is both an inte-
gration and a follow-up of the share generation methods presented in [37], the tech-
nique to resist against map-aware adversaries presented in [91], and the obfuscation
technique for position measurement imprecision and single level of privacy presented
in Section 6.4. Such works have been improved in terms of resistance by means of
extreme vectors, enlarge-and-scale, and hybrid vectors.

The rest of the chapter is organized as follows. Section 7.1 describes in detail our
basic obfuscation system. Section 7.2 models our adversary and introduces a metric
to evaluate the resistance against deobfuscation attacks. Sections 7.3, 7.4, and 7.5
describe respectively extreme vectors, enlarge-and-scale, and hybrid vectors tech-
niques, and evaluate their relative resistance improvement on the basic obfuscation
system.

7.1 Basic obfuscation system

We describe here our basic obfuscation system, which follows the approach pre-
sented in [37], integrated with [91] for adversaries holding map information, and with
the obfuscation technique presented in Section 6.4 for measurement imprecision.

From now on, the notation:

A = circle(X, r)

will mean that A is a circle with center X and radius r. The real position of the user
is a point X ∈ R2. The measured position is a point Xm. The error radius (rm)
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quantifies the precision of the positioning technology. The circleAm = circle(Xm, rm)

contains the real position, and it is called the measurement area. We suppose that
the system knows the error radius. If the positioning technology does not give this
information, the system can suppose an error radius, basing on the average precision
of that technology.

By means of the obfuscation process, the user’s position is hidden inside an obfus-
cation area, with a larger size than the measurement area. The position of a user could
be contemporaneously accessed by many location-based services, and the user may
require different levels of privacy for them. For example, more obfuscation could be
suitable for less trusted services or for services requiring less precision.

A solution is to independently generate many obfuscation areas with different size,
and store them on a location server. The location server will in turn release to the
service provider the obfuscation area corresponding to its access rights. With n levels
of privacy, we generate n obfuscation areas:

A(k)
o = circle(X(k)

o , r(k)o ) with 0 ≤ k ≤ n− 1 (7.1)

where k is the precision index. The higher the precision index is, the more precise the
obfuscation area, and the lower the privacy level. More trusted service providers will
be allowed to access to obfuscation areas with higher precision indexes. We consider
the measurement area itself as the obfuscation area with precision index n:

A(n)
o = Am (7.2)

So we actually have n + 1 precision indexes, from 0 to n. The point X(k)
o is the k-th

obfuscated position, the radius r(k)o is the k-th obfuscation radius, and the area A(k)
o

is the k-th obfuscation area. The obfuscation radii follow a decreasing progression:

r(k)o =

{
r
(0)
o /n · (n− k) if 1 ≤ k ≤ n− 1

rm if k = n
(7.3)

This solution is simple and scalable. However, if the obfuscation areas are stored
in a single location server, the user is forced to trust such a server. We solve this prob-
lem by splitting the whole set of obfuscation areas in pieces (shares), and then stor-
ing them in several location servers, each of which is not required to be trustworthy.
The obfuscated positions are randomly generated by means of n concatenated ran-
dom vectors called obfuscation vectors (d(k)

o ). The obfuscation vectors form a chain
that connects all the obfuscated positions, from the 0-th one to the measured position
(Fig. 7.1). The largest obfuscation area constitutes the master share, and the n obfus-
cation vectors the refinement shares. The k-th obfuscation area can be reconstructed
by combining the master share with the first k refinement shares. The share combi-
nation is done by reducing the obfuscation radius (following Eq. 7.3) and composing
the obfuscation vectors:

X(k)
o = X(0)

o +

k∑
i=1

d(k)
o (7.4)
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Figure 7.1. Obfuscation scheme

The user generates the master share and the refinement shares, and distributes these

Figure 7.2. Architecture for multiple levels of privacy

n + 1 pieces of information to n + 1 location servers (Fig. 7.2). To grant a service
provider the access to the k-th obfuscation area, the user simply grants him access
to the first k + 1 location servers. The service provider retrieves the correspondent
shares, and compose them to obtain back the obfuscation area.

This obfuscation system enjoys the property that neither the service providers
nor the location servers have to be trusted by the user, as no one of these entities
has the complete set of information. If the master share and k refinement shares get
compromised, the adversary will know the position at the precision index k at most. In
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other words, the user’s privacy degrades gracefully with the number of compromised
shares.

7.1.1 Share generation methods

In [37], we used two possible methods for the generation of the shares: a-posteriori
share generation method, and a-priori share generation method. The a-posteriori one
first generates the refinement shares, and then the master share. The a-priori one
does vice versa.

Both methods use the concept of r-bounded uniform vector as a fundamental
building block.

Figure 7.3. Spacial probability distribution of an r-bounded uniform vector

Definition 10. An r-bounded uniform vector (Fig. 7.3) is a random vector d such that
‖d‖ ≤ r, and its spacial probability distribution is uniform inside circle(O, r), where
O indicates the axis origin.

In the a-posteriori method, the obfuscation vectors are generated as n indepen-
dent random vectors. Then, the 0-th obfuscated position is computed by subtracting
them to the measured position. The random vectors are bounded uniform vectors,
whose bounds are the following:

∥∥∥d(k)
o

∥∥∥ ≤ {r(0)o /n if 1 ≤ k ≤ n− 1

r
(0)
o /n− rm if k = n

(7.5)

Note that, on the contrary of the original algorithm from [37], the last obfuscation vec-
tor is bounded by r(0)o /n− rm (instead of r(0)o /n). Otherwise, depending on the mea-
surement error, the real position could lie outside the obfuscation areas. Algorithm 1
shows the a-posteriori share generation method.
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Algorithm 1 A-posteriori share generation method

1: procedure APOSTERIORI(Am, r
(0)
o , n)

2: for i = 1→ (n− 1) do
3: d

(i)
o ← (r

(0)
o /n)-bounded uniform vector

4: end for
5: d

(n)
o ← (r

(0)
o /n− rm)-bounded uniform vector

6: X
(0)
o ← Xm −

∑n
i=1 d

(i)
o

7: return
{
A

(0)
o ,d

(1)
o , . . . ,d

(n)
o

}
8: end procedure

The advantage of this algorithm is that the obfuscation vectors are generated in-
dependently, so that an adversary who knows some of them takes no advantage in
predicting the other ones. The main drawback is that the probability density of the
user position inside the 0-th obfuscation area is very biased, as shown in [37].

In the a-priori method, we first generate the 0-th obfuscation area by means of an
(r

(0)
o − rm)-bounded uniform vector d∗o, called master obfuscation vector. Note that,

on the contrary of the original algorithm from [37], the master obfuscation vector is
bounded by r(0)o − rm (instead of r(0)o ). Otherwise, depending on the measurement
error, the real position could lie outside the obfuscation area. Then, we generate the
refinement shares by means of a random decomposition of the master obfuscation
vector. More formally:

Definition 11. Given d∗o such that ‖d∗o‖ ≤ r
(n)
o − rm, we call random decomposition

of d∗o a set of random sub-vectors:{
d(1)
o ,d(2)

o , . . . ,d(n)
o

}
such that:

n∑
i=1

d(i)
o = d∗o (7.6)

and: ∥∥∥d(k)
o

∥∥∥ ≤ {r(0)o /n if 1 ≤ k ≤ n− 1

r
(0)
o /n− rm if k = n

(7.7)

Algorithm 2 shows an efficient way to implement the random decomposition with
bounded uniform sub-vectors. It generates the first n−1 vectors in such a way, at each
step, the remaining distance (l) is coverable by the remaining vectors (Alg. 2 Line 6).
The last vector is generated as a difference, to reach exactly the master obfuscation
vector (Line 7). Algorithm 3 shows the a-priori share generation method.

The main advantage of this algorithm is that the 0-th obfuscated position is gen-
erated directly, and not as a sum of previously generated random vectors. Thus, it is
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Algorithm 2 Random decomposition

1: procedure DECOMPOSE(d∗o, rm, r
(0)
o , n)

2: dsum = 0
3: for i = 1→ (n− 1) do
4: l← (n− i)r(0)o /n− rm
5: d

(i)
o ← (r

(0)
o /n)-bounded uniform vector,

6: such that: dist
(
dsum + d

(i)
o ,d∗o

)
≤ l

7: dsum ← dsum + d
(i)
o

8: end for
9: d

(n)
o ← d∗o − dsum

10: return
{
d
(1)
o , . . . ,d

(n)
o

}
11: end procedure

Algorithm 3 A-priori share generation method

1: procedure APRIORI(Am, r
(0)
o , n,M )

2: d∗o ← (r
(0)
o − rm)-bounded uniform vector

3: X
(0)
o ← Xm − d∗o

4:
{
d
(1)
o , . . . ,d

(n)
o

}
← decompose(d∗o, rm, r

(0)
o , n)

5: return
{
A

(0)
o ,d

(1)
o , . . . ,d

(n)
o

}
6: end procedure

possible to control it in such a way that the real user position gets uniformly distributed.
The disadvantage is that the obfuscation vectors generated by decomposition are not
probabilistically independent of each other. Thus, an adversary knowing one or more
of them is helped in predicting the others.

In summary, the a-priori method is less resistant in case of more powerful ad-
versaries, which already know some refinement shares. The a-posteriori method is
less resistant in case of less powerful adversaries, which know zero or few refinement
shares.

7.1.2 Enlarge-and-perturb method for map awareness

Until now, we took into consideration a user who moves completely free in space. In
the real life, people’s movements are constrained by the presence of walls, buildings,
and other obstacles. An adversary who owns information about the map where the
users are moving is more powerful. She can cut away from the obfuscation area the
zones where the user cannot be, thus finding a map-reduced obfuscation area, with
a smaller size. In order to guarantee a nominal level of privacy in the presence of a
map-aware adversary, the obfuscation system must be map-aware too.

For our present purposes, a map (M ) is a subset of the R2 space. A point is inside
the map if and only if it represents a possible position for the user. For the sake of
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simplicity, let us consider by now a single level of privacy (n = 1). We will generalize
to multiple levels afterwards. Let us suppose that r(0)o is the “nominal” obfuscation
radius desired by the user. The obfuscation system generates an obfuscation area
(A(0)

o ) whose size ((r(0)o )2 · π) is the nominal obfuscation precision. The adversary
computes a map-reduced obfuscation area:

A
(0)
M = A(0)

o ∩M (7.8)

which contains the real position of the user. In doing so, the adversary improves her
precision with respect to the nominal obfuscation precision:

size
(
A

(0)
M

)
≤ (r(0)o )2 · π (7.9)

We have thus to compensate somehow this “precision gain”.
In [91], we used a simple solution for this, that we call here enlarge-and-perturb.

Enlarge-and-perturb technique first enlarges the obfuscation radius, in such a way that
the size of the map-reduced obfuscation area is equal to the nominal one. Algorithm 4
shows an efficient way to do that. We employ a logarithmic search to minimize the
number of area intersections (Alg. 4, Line 10). The logarithmic search stops when the
map-reduced obfuscation area reaches the nominal size, with a tolerance (δA), that
we fixed to be 1% of the nominal size:

δA = 0.01 · r2o · π (7.10)

We indicate with r′(0)o and A′(0)o respectively the enlarged obfuscation radius and the
enlarged obfuscation area.

Enlarging the radius is obviously not enough, as the adversary could simply nar-
row it again. The second phase is in fact to perturb the obfuscated position with an
(r
′(0)
o − r(0)o )-bounded uniform vector. Figure 7.4 shows an example of enlarge-and-

perturb operation. dp is the perturbation vector, while X′o is the new obfuscated po-
sition after the perturbation. Note that, after having changed the obfuscated position,
the obfuscation area has changed as well. Therefore, we have to check again if the
size of the map-reduced obfuscation area has become smaller. If it has, we perform
an additional enlargement and an additional perturbation, and so on. In case of n > 1

levels of privacy, we repeat the whole procedure for each level. Algorithm 5 shows the
complete enlarge-and-perturb technique.

7.2 Adversary model

We consider an adversary who wants to deobfuscate a previously obfuscated posi-
tion, and derive the original position of the user from it. An obfuscation function cannot
be deterministically inverted, since it involves random noise. However, the adversary
can perform a statistical analysis, to find out the spatial probability distribution of the
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Algorithm 4 Radius enlargement algorithm
1: procedure ENLARGE(Xo, ro,M )
2: rlo ← ro
3: rhi ← ro
4: repeat// search for a higher bound to r′o:
5: rhi ←

√
2 · rhi

6: AM ← circle(Xo, rhi) ∩M
7: until size (AM ) ≥ r2o · π
8: loop// logarithmic search for r′o:
9: rmd ←

√
(r2lo + r2hi)/2

10: AM ← circle(Xo, rmd) ∩M
11: if

∣∣size (AM )− r2o · π
∣∣ ≤ δA then

12: return rmd

13: else if size (AM ) < r2o · π then
14: rlo ← rmd

15: else
16: rhi ← rmd

17: end if
18: end loop
19: end procedure

Algorithm 5 Enlarge-and-perturb technique

1: procedure ENLARGE-AND-PERTURB(A(0)
o ,d

(1)
o , . . . ,d

(n)
o ,M )

2: S ← {1, . . . , n}
3: for all i: r′(i)o ← r

(i)
o and X

′(i)
o ← X

(i)
o

4: repeat
5: for all i ∈ S do // Enlargement:
6: r

′(i)
o ← enlarge(X

′(i)
o , r

′(i)
o ,M)

7: end for
8: for i = 1→ n do // Perturbation:
9: dp ← (r

′(i)
o − r(i)o )-bounded uniform vector

10: d
′(i)
o ← d

(i)
o + dp

11: end for
12: for all i: compute X

′(i)
o and A′(i)o from d

′(i)
o

13: S ←
{
i : size

(
A
′(i)
o ∩M

)
< π ·

(
r
(i)
o

)2}
14: until S = ∅
15: return A′(0)o ,d

′(1)
o , . . . ,d

′(n)
o

16: end procedure
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Figure 7.4. Enlarge-and-perturb technique

Figure 7.5. Statistical analysis example

real position inside the obfuscation area. If such a distribution is uniform, the user’s po-
sition is unpredictable. Otherwise, if it presents pronounced concentrations (Fig. 7.5),
the adversary can suppose the user’s position is more likely to be in certain zones
than in others.

In order to measure the resistance against a statistical analysis, we have to quan-
tify the unpredictability of the user’s position, i.e. the uniformity of its probability dis-
tribution. Let us suppose that the adversary identifies an area (deobfuscation area),
which contains the user with a certain probability (deobfuscation probability ). The best
strategy for the adversary is to choose the deobfuscation area comprising the zones
with the highest probability concentrations. We fix the size of the deobfuscation area
to be 10% of the size of the obfuscation area. Figure 7.6 shows a single-dimension
analogy. The outer and the inner segments represent respectively the obfuscation
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Figure 7.6. Single-dimension analogy of deobfuscation area

area and the deobfuscation area. The red area under the probability distribution rep-
resents the deobfuscation probability. The adversary is free to move the deobfuscation
area in order to maximize the deobfuscation probability. Our resistance metric is the
maximal deobfuscation probability (Pdeobf ).

Definition 12. Given an obfuscation areaA(k)
o , the maximal deobfuscation probability

is:

Pdeobf = max
A10%

o

Pr
[
X ∈ A10%

o

]
(7.11)

where A10%
o is a deobfuscation area such that:

size
(
A10%
o

)
= 10% · size

(
A(k)
o

)
(7.12)

Such a metric depends on the probability distribution of the user’s position inside
the obfuscation area. If it is uniform, like in Figure 7.6a, then the maximal deobfus-
cation probability will be minimal. I.e., it will be exactly 10%, since we fixed the de-
obfuscation area to be 10% of the obfuscation area. This is the best case, when the
real position is completely unpredictable inside the obfuscation area. If the probability
density is not uniform, like in Figure 7.6b, the adversary will have a maximal deobfus-
cation probability greater than 10%. The bigger the maximal deobfuscation probability
is, the more predictable the user’s position.

7.2.1 Malicious provider and malicious server

We model two possible kinds of adversary: the malicious provider and the malicious
server. The malicious provider models a service provider which illegitimately tries to
gain more precision than she is permitted to have. In this case, the adversary knows
the master share and a set of kadv < n refinement shares she has the right to access.
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The refinement shares get compromised in order, i.e. d(1)
o , . . . ,d

(kadv)
o , because this is

the order in which the user grants the access to them. In case of two or more colluding
service providers, they will be modeled as a single adversary enjoying the widest
access privilege among the colluding entities. The malicious provider first combines
the shares and obtains the kadv-th obfuscation area. Then she tries to deobfuscate
such an area by means of statistical analysis.

On the contrary, the malicious server models a location server or a group of col-
luding location servers that want to use the shares they are storing for illegitimate pur-
poses. It models also an external adversary who hacks one or more location servers
and steals their shares. We consider the master share to be always compromised,
otherwise no statistical attack is possible. In addition, we assume that kadv < n re-
finement shares are compromised, with no particular order. In this case, the adver-
sary could miss one or more obfuscation vectors necessary to reconstruct the kadv-th
obfuscation area. However, we assume that she composes anyway the obfuscation
vectors she has, thus obtaining an alternative obfuscation area A∗o. If we call D the
set of the compromised obfuscation vectors, the adversary computes the alternative
obfuscation area in the following way:

A∗o = circle(X∗o, r
∗
o) (7.13)

X∗o = X(0)
o +

∑
D

d(i)
o (7.14)

r∗o =

{
r
(0)
o /n · (n− kadv) + rm if d(1)

o ∈ D
r
(0)
o /n · (n− kadv) otherwise

(7.15)

From the geometrical properties of the obfuscation vectors, the alternative obfuscation
area contains the user’s position. We assume the adversary performs the statistical
analysis over this obfuscation area.

7.3 Extreme vectors

As we said in Section 7.1, a-posteriori and a-priori share generation methods both
have some drawbacks that limit the unpredictability of the obfuscation. In particular,
the drawback of a-posteriori share generation method is that the probability density
of the real position inside the 0-th obfuscation area is very biased. Indeed, since we
add n independent random vectors to generate it, the 0-th obfuscated position will
follow the law of the Central Limit Theorem. As n grows, the real position of the user
will tend to follow a Gaussian probability distribution inside the 0-th obfuscation area.
Moreover, the larger n is, the more concentrated the probability at the center of the
area will be. As n→∞, the real position’s probability distribution tends to be a Dirac
delta.

On the other hand, the drawback of a-priori share generation method is that the
generated obfuscation vectors are not probabilistically independent of each other.
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Figure 7.7. Constrained random decomposition

In fact, especially if the length of the master obfuscation vector is close to the limit
r
(0)
o − rm, the sub-vectors will be constrained to be long and to follow the same direc-

tion (Fig. 7.7). In other words, the obfuscation vectors are correlated. An adversary
knowing one or more of them is helped in predicting the others.

We now introduce extreme vectors, an alternative to classic uniform vectors which
significantly alleviates both these drawbacks, thus improving the uniformity of both
obfuscation algorithms.

Figure 7.8. Spacial probability distribution of an r-bounded extreme vector

Definition 13. An r-bounded extreme vector (Fig. 7.8) is a random vector d such that
‖d‖ = r, and its spacial probability distribution is uniform on the border of circle(O, r).

Note that extreme vectors by themselves are more predictable than uniform ones,
because they are distributed on the circumference instead of inside the whole circle.
However, they enjoy two good properties:
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1. Uniform composition. A sum of extreme vectors is less predictable than a sum of
uniform vectors. This property can improve the resistance of a-posteriori share
generation method.

2. Uncorrelated decomposition. A random decomposition in extreme sub-vectors is
less correlated than a random decomposition in uniform vectors. This property
can improve the resistance of a-priori share generation method.

The reason for Property 1 is that extreme vectors help spreading the probability
distribution toward the borders of the obfuscation area. This avoids the concentration
at the center, thus improving the uniformity. More formally, an extreme vector has a
standard deviation (σ = 1/

√
2) higher than those of a uniform vector (σ = 1/2). Thus,

a sum of n extreme vectors will have a higher standard deviation too, and will converge
more slowly to a Dirac delta function. Table 7.1 shows the maximal deobfuscation

Table 7.1. Maximal deobfuscation probability of sums of vectors

vector kind: n = 1 n = 2 n = 3 n = 4
uniform 10% 29.36% 42.60% 53.18%
extreme 100% 20.54% 26.78% 29.22%

vector kind: n = 5 n = 6 n = 7 n = 8
uniform 62.12% 69.19% 75.02% 79.80%
extreme 37.49% 43.33% 48.56% 53.87%

probability of a sum of n uniform vectors and n extreme vectors1. It can be seen that
the sum of two or more extreme vectors is more uniform.

The reason for Property 2 is that extreme vectors contain less information by their
own. An adversary who knows one of the sub-vectors has no real advantage in guess-
ing the other ones. The fact that one sub-vector is long is not as informative as in the
case of uniform vectors. The output of a decomposition in extreme vectors is corre-
lated as well, but to a lesser extent. We will call a random decomposition in extreme
sub-vectors extreme random decomposition. Algorithm 6 shows an efficient way to
implement it. Note that the last sub-vector is not extreme, since it is computed as a
difference.

We use the Pearson’s correlation coefficient to measure the degree of correlation.
Such a coefficient is defined as:

ρX,Y =
Cov(X,Y )

σXσY
(7.16)

where X and Y are two random variables, Cov(X,Y ) is their covariance, and σX
and σY are their standard deviations. The closer the coefficient is to zero, the less
correlated the two variables. The following matrix contains the Pearson’s correlation

1 Each estimation stems from 100,000 vector sums.
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coefficients between the sub-vectors of a random decomposition2:

(
ρ
d

(i)
o ,d

(j)
o

)
=


1.00
0.33 1.00 −
0.33 0.61 1.00
0.32 0.60 0.80 1.00
0.32 0.60 0.79 0.91 1.00


The (i, j)-th element contains the Pearson’s correlation coefficient between the i-th
and the j-th sub-vectors. It can be seen that the first sub-vector is relatively little corre-
lated to the successive (first column). On the other hand, the last sub-vectors are very
correlated to each other (second to fourth columns), because they are constrained to
be long and follow the same direction. The following is the analogous matrix for an
extreme random decomposition:

(
ρ
d

(i)
o ,d

(j)
o

)
=


1.00
0.21 1.00 −
0.23 0.43 1.00
0.23 0.45 0.62 1.00
0.23 0.44 0.60 0.71 1.00


It can be seen that the correlation coefficients are always lower. Thus, an extreme
decomposition produces less correlated vectors.

Algorithm 6 Extreme random decomposition

1: procedure X-DECOMPOSE(d∗o, rm, r
(0)
o , n)

2: dsum = 0
3: for i = 1→ (n− 1) do
4: l← (n− i)r(0)o /n− rm
5: d

(i)
o ← (r

(0)
o /n)-bounded extreme vector,

6: such that: dist
(
dsum + d

(i)
o ,d∗o

)
≤ l

7: dsum ← dsum + d
(i)
o

8: end for
9: d

(n)
o ← d∗o − dsum

10: return
{
d
(1)
o , . . . ,d

(n)
o

}
11: end procedure

In the following, we will show how to employ extreme vectors in a-posteriori and
in a-priori share generation methods. We will refer to these unimproved methods as
vanilla versions. The modified versions, based on extreme vectors, will be the extreme
versions. Algorithm 7 shows the extreme a-posteriori share generation method. Note

2 Each estimation stems from 100,000 decompositions, with n = 5, rm = 10m, and r(0)o =
1Km.
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that the first n − 1 refinement shares are extreme vectors, while the last one is a
uniform vector. This is in order to maintain the uniformity of the (n− 1)-th obfuscation
area. Algorithm 8 shows the extreme a-priori share generation method.

Algorithm 7 Extreme a-posteriori share generation method

1: procedure X-APOSTERIORI(Am, r
(0)
o , n)

2: for i = 1→ n− 1 do
3: d

(i)
o ← (r

(0)
o /n)-bounded extreme vector

4: end for
5: d

(n)
o ← (r

(0)
o /n− rm)-bounded uniform vector

6: X
(0)
o ← Xm −

∑n
i=1 d

(i)
o

7: return
{
A

(0)
o ,d

(1)
o , . . . ,d

(n)
o

}
8: end procedure

Algorithm 8 Extreme a-priori share generation method

1: procedure X-APRIORI(Am, r
(0)
o , n)

2: d∗o ← (r
(0)
o − rm)-bounded uniform vector

3: X
(0)
o ← Xm − d∗o

4:
{
d
(1)
o , . . . ,d

(n)
o

}
← X-decompose(d∗o, rm, r

(0)
o , n)

5: return
{
A

(0)
o ,d

(1)
o , . . . ,d

(n)
o

}
6: end procedure

7.3.1 Evaluation of extreme share generation methods

We evaluated the resistance of the extreme share generation methods with n = 5

privacy levels. Figures 7.9 and 7.10 show the maximal deobfuscation probability of
extreme a-posteriori and a-priori methods compared to their vanilla counterparts,
against a malicious provider3. The master share is considered to be always compro-
mised. On the abscissas we have the number of compromised refinement shares, i.e.
the privacy level that the malicious provider has the right to access. As expected, the
extreme versions are always more resistant than the vanilla versions, independently
of the number of compromised refinement shares. In the a-posteriori approach, the
major improvement is in the lower privacy levels (22.50% for the 0-th privacy level).
In the a-priori approach, the resistance of the 0-th privacy level is already perfect,
thus cannot be furthermore improved. However, the probabilistic correlation between

3 Each estimation stems from 100 attack simulations, with n = 5, rm = 10m, r(0)o = 1Km.
Gaussian-distributed measurement errors are assumed.
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Figure 7.9. Resistance of vanilla and extreme a-posteriori share generation methods against
malicious provider
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Figure 7.10. Resistance of vanilla and extreme a-priori share generation methods against ma-
licious provider

the obfuscation vectors is significantly mitigated, and this has a positive effect on the
resistance in case of higher privacy levels (20.17% for the third privacy level).

Figures 7.11 and 7.12 show the maximal deobfuscation probability of extreme a-
posteriori and a-priori methods compared to their vanilla counterparts, against a ma-
licious server4. The location server holding master share is considered to be always
malicious. On the abscissas we have the number of malicious servers. For instance,
“three servers” means that the server holding the master share and other two (ran-
domly chosen) servers are malicious. As expected, the extreme versions are more
resistant than the vanilla versions, except when there are n − 1 malicious servers.
This is because the last non-compromised refinement share will be, with high proba-
bility, an extreme vector, which is poorly resilient by itself. However, this happens only
in a very pessimistic case, because all the servers except one have to be malicious.

4 Each estimation stems from 100 attack simulations, with n = 5, rm = 10m, r(0)o = 1Km.
Gaussian-distributed measurement errors are assumed.
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Figure 7.11. Resistance of vanilla and extreme a-posteriori share generation methods against
malicious server
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Figure 7.12. Resistance of vanilla and extreme a-priori share generation methods against ma-
licious server

We conclude that, by using extreme vectors instead of classic uniform vectors,
both share generation methods significantly improve their resistance, while maintain-
ing their general characteristics (i.e. to be more resistant for less powerful adversaries
for a-priori and vice versa for a-posteriori).

7.4 Enlarge-and-scale

We will now present enlarge-and-scale, a technique to significantly improve the unifor-
mity of obfuscation algorithms in case of map-aware adversaries. Enlarge-and-scale
is applicable to vanilla share generation methods, as well as to their extreme versions.
Like enlarge-and-perturb (cfr. Algorithm 5), enlarge-and-scale first enlarges the obfus-
cation radius (cfr. Algorithm 4). Then, instead of perturbing the center, it performs a
scaling of the obfuscation vector in accordance to the performed enlargement. For
the sake of simplicity, let us consider by now a single level of privacy (n = 1). Fig-
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Figure 7.13. Enlarge-and-scale technique

ure 7.13 shows an example of enlarge-and-scale operation. d′o is the scaled obfusca-
tion vector, while X′o is the new obfuscated position after the scaling operation. Like
in enlarge-and-perturb, after having moved the obfuscation area, we have to check
again if the size of the map-reduced obfuscation area has become smaller. If it has,
we perform an additional enlargement and an additional scaling, and so on.

This enlarge-and-scale approach is preferable to the enlarge-and-perturb ap-
proach, because it avoids repeated sums of random vectors that reduce the unpre-
dictability of the obfuscation. By scaling the existing obfuscation vectors, we do not
change their probabilistic properties, and therefore we obtain the same uniformity of
the map-free case.

The enlarge-and-scale technique is easily extensible in case of n > 1 privacy lev-
els, both for a-posteriori and a-priori methods, in the following way. After the user has
generated the master share and the refinement shares, he enlarges each obfusca-
tion radius. Then, he chooses the largest relative radius enlargement, and he applies
it to all the obfuscation areas. In the scaling phase, the user scales all the obfusca-
tion vectors, according to the performed enlargement. Finally, he checks whether all
the n map-reduced obfuscation areas have the nominal size or greater. If they have,
the algorithm ends. Otherwise, the user makes an additional enlarge-and-scale step,
and so on. Algorithm 9 shows the complete enlarge-and-scale technique. Note that
the last obfuscation vector is scaled by a different ratio (Alg. 9, Line 12). This is to
compensate the fact that the size of the measurement area is fixed, and cannot be
enlarged coherently to the other obfuscation areas.
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Algorithm 9 Enlarge-and-scale technique

1: procedure ENLARGE-AND-SCALE(A(0)
o ,d

(1)
o , . . . ,d

(n)
o ,M )

2: S ← {1, . . . , n}
3: for all i: r′(i)o ← r

(i)
o and X

′(i)
o ← X

(i)
o

4: repeat
5: for all i ∈ S do // Enlargement:
6: r

′(i)
o ← enlarge(X

′(i)
o , r

′(i)
o ,M)

7: end for
8: ρmax = maxi

{
r′(i)o

r
(i)
o

}
9: for i = 1→ n− 1 do // Scaling:

10: d
′(i)
o ← ρmax · d(i)

o

11: end for
12: d

′(n)
o ← ρmax·d(n)

o −rm
d

(n)
o −rm

13: for all i: compute X
′(i)
o and A′(i)o from d

′(i)
o

14: S ←
{
i : size

(
A
′(i)
o ∩M

)
< π ·

(
r
(i)
o

)2}
15: until S = ∅
16: return A′(0)o ,d

′(1)
o , . . . ,d

′(n)
o

17: end procedure

7.4.1 Evaluation of enlarge-and-scale technique

We evaluated the resistance of enlarge-and-scale technique against map-aware ad-
versaries, and we compared it to the performance of enlarge-and-perturb. We tested
both algorithms on synthetic Manhattan-like maps, with square-shaped buildings,
roads’ width equal to 10m, and a varying distance between parallel roads. The ob-
fuscation areas have been created by means of extreme a-priori share generation
method. However, the enlarge-and-scale technique is independent from the share
generation method, and the same results apply to the other presented methods as
well. First, we want to show that enlarge-and-scale does not produce larger obfus-
cation areas than enlarge-and-perturb, and thus it does not decrease the quality of
service. Figure 7.14 shows the average relative enlargement of the 0-th obfuscation
area (with n = 5 levels of privacy) versus the ratio of free space of the map5. Obvi-
ously, the less the free space is, the more the obfuscation areas have to be enlarged,
both in enlarge-and-scale and in enlarge-and-perturb methods. However, we can see
that both methods enlarge the obfuscation areas quite equally on every map. Thus,
enlarge-and-scale does not degrade the quality of service with respect to enlarge-
and-perturb.

5 Each estimation stems from 500 obfuscation simulations, with n = 5, rm = 10m, r(0)o =
1Km. Gaussian-distributed measurement errors are assumed.
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Figure 7.14. Enlargement ratio against walkable space ratio
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Figure 7.15. Maximal deobfuscation probability in case of map-aware adversary

Regarding the deobfuscation resistance, Figure 7.15 shows the maximal deobfus-
cation probability of a malicious provider knowing only the master share6. On the ab-
scissa we have the map’s free ratio, i.e. the percentage of walkable space in the map.
As expected, the enlarge-and-scale technique is more resistant than the enlarge-and-
perturb one. In particular, it has the same uniformity expected from a-priori share
generation in free space. This is because the scaling operation does not change the
probabilistic properties of the obfuscation vectors. It can be seen that the resistance
gain is particularly high for maps with a low walkable ratio (31.74% for walkable ratio
equal to 0.19).

To sum up, enlarge-and-scale technique is able to significantly improve the resis-
tance with respect to enlarge-and-perturb, because it avoids repeated sums of ran-
dom vectors. This resistance gain does not cause a degradation on the quality of the
service.

6 Each estimation stems from 10,000 attack simulations, with n = 5, rm = 10m, r(0)o =
1Km. Gaussian-distributed measurement errors are assumed.
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Figure 7.16. Case of non-negligible measurement error

7.5 Hybrid vectors

Every position measurement carries with itself an error, due to technological impreci-
sion. Different technologies have different precisions [65]. If the average position error
is very small, for example below 1–5 meters, as it happens in differential GPS or in
UWB positioning, we can approximate it to zero. Otherwise, if the measurement noise
is comparable to the obfuscation one, as it happens in smartphone’s cheap GPS re-
ceivers or in cellular positioning, we cannot neglect it. In this case, the obfuscation
system has to take into account the measurement imprecision in order to obfuscate
in a proper way.

For the sake of simplicity, let us consider by now a single level of privacy (n = 1).
We call error vector the vector dm = Xm −X (Fig. 7.16), i.e. the vector between the
measured and the real user’s position. The error vector is a random vector over which
the obfuscation system has no control. We assume that the error radius is tailored to
be always longer than or equal to the error vector:

‖dm‖ ≤ rm (7.17)

In this way, the real position always lies inside the measurement area. If a technology
exhibits a theoretically non-bounded error (e.g. a Gaussian one), the obfuscation sys-
tem can approximate it by truncation at rm = 3σ. In this way, only a negligible amount
of measurement samples will fall outside the measurement area.

We can think the error vector as an additional “obfuscation vector”. The system
has no control over this vector, but the adversary has to deobfuscate it anyway if she
wants to find the real position, which represents the true personal piece of informa-
tion. As a result of the presence of an error vector, even if the obfuscation vector
is uniform, the distribution of the real position will not be uniform (cfr. Chapter 6).
Since the obfuscation and the error vectors constitute a sum of random vectors (cfr.
Fig. 7.16), the extreme vectors turn out to be useful to improve the overall resistance.
However, using a simple extreme vector is not convenient this time, as it produces an
area with zero probability distribution at the center (red area in Fig. 7.17a). On the
other hand, adding a classic uniform vector fills the hole at the center but, as shown
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Figure 7.17. Using extreme vectors or uniform vectors for obfuscating imprecise position mea-
surements

in Section 6.4, it produces a lack of probability distribution close to the borders of the
obfuscation area (red area in Fig. 7.17b).

Our idea is to use a mix between a uniform vector and an extreme one, that we
call hybrid vector. An hybrid vector depends on a real parameter α ∈ [0, 1], that we
call extremeness.

Definition 14. An r-bounded hybrid vector with extremeness α ∈ [0, 1], is an r-
bounded uniform vector with probability α, or an r-bounded extreme vector with prob-
ability 1− α.

Note that with an extremeness equal to 0 we obtain a uniform vector, and with
an extremeness equal to 1 we obtain an extreme vector. The optimal extremeness
(αopt) is the one which maximizes the uniformity of the probability distribution, and it
is somewhere in the range [0, 1]. It depends on the probability distribution of the error
vector, and on the radius ratio (ρ), defined as:

ρ = r(0)o /rm (7.18)

A radius ratio close to one indicates that the measurement imprecision is of the same
magnitude order of the obfuscation noise. On the contrary, a radius ratio tending to
infinite indicates that the imprecision is negligible compared to the obfuscation noise.

Computing the optimal extremeness is burdensome for a resource-constrained
device, since it requires to simulate a deobfuscation attack for each value of extreme-
ness, and then choosing the one giving the best uniformity. We propose a heuristic
extremeness (αheur) that approximates the optimal one, given the radius ratio:

αheur =

{
k1(2ρ− k1)/ρ2 ρ ∈ (1, ρ1]

k2(2ρ− k2)/ρ2 ρ ∈ (ρ1,∞)

(7.19)

k1, k2, and ρ1 are parameters of the heuristic. Such a heuristic function is based on
geometrical considerations (Fig. 7.18). We divide the obfuscation area in two concen-
tric regions: an external one (A), and an internal one (B). The external region has a
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width proportional to the error radius, with a proportionality constant k. Then, we make
the (approximating) assumption that the real position will be in the external region if
and only if the obfuscation vector is extreme (Fig. 7.18, upper vector), and in the in-
ternal region if and only if it is uniform (Fig. 7.18, lower vector). This implies that the
external region contains the real position with a probability equal to the extremeness
of the obfuscation vector:

Pr [X ∈ A] = α (7.20)

Pr [X ∈ B] = 1− α (7.21)

Finally, we fix the extremeness in such a way that both regions contain a probabil-
ity proportional to their size. By imposing this, we improve the overall uniformity by
balancing the probability between the external and the internal regions. We used two
values for k (k1 or k2) depending on the range in which the radius ratio lies: (1, ρ1]
or (ρ1,∞). We noticed that this makes the heuristic closer to the optimal. As the ra-

Figure 7.18. Rationale behind the heuristic

dius ratio grows, the heuristic extremeness converges to zero. This is an expected
behaviour because, as the measurement imprecision becomes negligible, a uniform
obfuscation vector is more suitable. We consider two kinds of measurement error: (a)
the Gaussian error, typical of GPS; and (b) the uniform error, typical of cellular/Wi-Fi
positioning. We computed the best parameters of the heuristic for both error models,
i.e. the parameters which maximize the uniformity of the probability distribution, av-
eraged on the radius ratio. Table 7.2 shows the best parameters computed for the
Gaussian and for the uniform error models. These values minimize the maximal de-
obfuscation probability, averaged on the radius ratio.

In order to employ hybrid vectors with n > 1 levels of privacy, it is sufficient to use
them whenever an obfuscation vector is directly added to the error vector. In case of
a-posteriori share generation method, the first obfuscation vector will be generated as
hybrid. In case of a-priori share generation method, the master obfuscation vector will
be generated as hybrid.

107



CHAPTER 7. ADVANCED TECHNIQUES FOR OBFUSCATION-BASED LOCATION
PRIVACY

Table 7.2. Best parameters for the heuristic

Error shape: ρ1 k1 k2
Gaussian 2.4 1.22 0.35

Uniform 3.9 1.89 0.38

Figure 7.19. Resistance of uniform and hybrid obfuscation with Gaussian error model

Figure 7.20. Resistance of uniform and hybrid obfuscation with uniform error model

7.5.1 Evaluation of hybrid vectors

Figures 7.19 and 7.20 show the maximal deobfuscation probability under respectively
Gaussian and uniform error models, obfuscated by uniform vectors, by optimal hybrid
vectors, and by heuristic hybrid vectors. It can be noted that hybrid vectors always
overwhelm uniform ones in terms of obfuscation uniformity. They can reduce the max-
imal deobfuscation probability of 17.17% under Gaussian error model, and of 13.56%
under uniform error model. Also, the performance of the heuristic closely follows the
optimum. In the worst case, our heuristic increases the maximal deobfuscation prob-
ability of only 1.34% under Gaussian error model, and of 0.66% under uniform error
model.
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To sum up, hybrid vectors are capable of significantly improving the resistance
against statistical analysis in case of non-negligible measurement error. The heuristic
we presented permits to compute the value of the extremeness in an efficient way,
without losing resistance with respect to the optimum.
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Conclusions

In this Ph.D. dissertation we approached some security and privacy problems on posi-
tion data. Namely, we focused on the topics of secure positioning and location privacy.

Secure positioning aims at measuring the position of a device in presence of an
adversary trying to deceive the measurement process. We focused on range-based
secure positioning techniques, which are based on distance-bounding protocols. Dis-
tance bounding allows us to determine a secure upper bound to the distance between
two devices. We first approached the sub-problem of enlargement attacks. Enlarge-
ment attacks aim at deceiving the distance bounding into measuring a distance larger
than the real one. They can follow a jam-and-replay strategy or an overshadow strat-
egy. We proposed SecDEv, a distance bounding protocol able to withstand jam-and-
replay strategies. Then, we studied the feasibility of overshadow strategies against
distance bounding implemented on IEEE 802.15.4a UWB. Basing on the results of
this analysis, we proposed EMCD-ML, a method for secure positioning based on the
impossibility of the adversary to control the effect of an overshadow attack. EMCD-ML
sensibly reduces the necessary number of anchor nodes with respect to state-of-the-
art methods.

Location privacy aims at avoiding the disclosure of (precise) position data in
location-based services (LBSs). Privacy-preserving mechanisms can be various and
orthogonal to each other. We proposed LbSprint, a software architecture to integrate
different privacy-preserving mechanisms by means of the standard language XACML.
Then, we developed UniLO, a mathematical operator for location privacy. UniLO re-
duces the precision of a position before its disclosure, in such a way that an adversary
cannot reconstruct original data. We also extended it to provide for multiple contempo-
raneous levels of privacy. We showed that UniLO surpasses state-of-the-art obfusca-
tion methods in terms of resistance against statistical attacks, while still permitting the
delivery of the service. Finally, we developed some advanced techniques that further
improve the resistance of UniLO in case of untrusted location servers, map-aware
adversaries and imprecise position measurements.
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