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Preface

Allocation of assets in financial markets is a trade-off between expected gain
and potential risks, which should be estimated before making an investment
decision. Other financial activities, in as far as they are associated with
investing, also involve risk estimation: risk-management, trading, hedging,
option pricing, business valuation, etc.

A first approximation of portfolio risk is a variance of its return. Even
if distribution of returns is not Normal, but is some fat-tailed distribution,
variance of the portfolio may be considered as a scaling parameter of this
distribution. Variance, and consequently, risk of the portfolio may be de-
creased through diversification by mixing different asset types, securities of
the firms operating in different industries across different countries of the
world. Volatility of the portfolio is a function of covariance matrix of as-
sets, included in the portfolio. Correlation terms may completely change
the estimation of volatility and benefits of the diversification.

Estimation of covariance matrix, historically performed on daily data of
close prices on stock exchanges, became more precise with availability of
high-frequency intraday data. Forecasting models, based on high-frequency
data, such as HAR, provide better forecasts than models based on daily
data.

However, high-frequency data is observable only when trading occurs.
During the overnight periods, when stock exchanges are closed, for the most
of the assets high-frequency data is not available. So, for each assets data
is available for only about eight hours per each day, excluding holidays and
weekends. At the same time, prices of assets change even during the nights
and weekends, resulting in close-to-open overnight returns.

If all the assets are traded at one and the same stock exchange, there
exist about 8-hours periods of high-frequency data to estimate the intra-
day realized covariance matrix, and only overnight covariance should be
estimated with different methods. However, the largest stock exchanges are
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located throughout the world: in USA, UK, Japan and other countries. Due
to the difference in time zones, these eight hours are different for each assets,
leading to even smaller overlapping period, at which realized covariance of
assets can be estimated.

The present dissertation develops methods of the estimation of the whole
day covariance matrices based on available intraday high-frequency data.

In the first chapter, existing literature is reviewed. In empirically-oriented
literature, it is argued that overnight returns appear to follow different price
processes than returns within the trading day. In particular, overnight re-
turns have lower volatility, higher Sharp ratios, higher tail risk, and higher
correlations. Moreover, according to some studies, intraday and overnight
volatilities mutually influence each other. Methodological literature pro-
poses a number of models for univariate overnight realized volatility esti-
mations, as well as correction procedures for covariance estimation in asyn-
chronous markets based on daily data. Given the variety of existing ap-
proaches, it should be stated that there is an absence of high-frequency
based methods for a whole day covariance estimation (except for very naive
and noisy methods), both for synchronous and asynchronous case.

Chapter 2 and 3 of the present work fill this gap. In the second chapter
a new concept of linear algebra is defined: proportionality of positive semi-
definite symmetric matrices. It is based on existing concept of geometric
means of the matrices. Direct proportionality function Y(X) is defined as:

Y(X) = SXS (1)

where S is some positive semi-definite symmetric matrix, called ’scaling’
matrix.

The second chapter deals with the problem of estimation of the whole
day covariance, based on intraday realized covariance matrix and a vector of
overnight return. Assuming that overnight covariance is ’proportional’ (in a
sense of equation 1) to the intraday covariance, two conditionally unbiased
estimators are obtained: one based only on intraday realized covariance, and
the other one based only on overnight returns. They are weighted in a way,
allowing to decrease the noise of the resulting estimator.

The third chapter is devoted to covariance in asynchronous markets. In
this case, volatilities are estimated using regular methods, while the whole
day correlation is assumed to be a function of realized correlation during
overlapping period. A whole day correlation is obtained from ’rescaled’ (in
the sense of equation 1) covariance of overlapping period. A time series of
whole day covariance matrices was used as input to the forecasting models.
A bivariate extension of HAR model was proposed and compared with other
multivariate HAR specification and EWMA model.

Both estimators as well as forecasting model were tested on real high-
frequency data, and show a higher degree of precision then existing ap-
proaches.
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The main scientific novelty of the dissertation is as follows:

• matrix proportionality function was defined, and its properties were
examined,

• multivariate extension of Hansen & Lunde (2005) estimator was pro-
posed,

• this extension was adapted for the case of asynchronous markets,

• new bivariate extension of HAR model was suggested, that takes into
account both volatility spillovers and correlation-volatility dependence.

Methods proposed in the dissertation have high potential of practical ap-
plication both by researchers and practitioners. In as far as the developed
methods allow more precise estimation of the benefits of international diver-
sification, they will contribute to increasing efficiency of risk-management,
option pricing, asset allocation, and trading. Methods developed in this
dissertation allow researchers to obtain time series of the whole realized co-
variance matrices: on the basis of these time series, they can test different
empirical hypothesis of volatility structure, invent new forecasting models
and back-test them.
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CHAPTER 1

Overnight period in financial markets: survey of empirical
researches and statistical methods

The present paper is a review of the literature devoted to statistical
properties of overnight returns in financial markets. Particular atten-
tion was given to properties and estimators of variance and covariance
overnight return. Additionally was studied the problem that arises due
to the asynchronicity of overnight periods of stock exchanges located
in different time zones.

Keywords:

C58 Financial Econometrics
Overnight return
Asynchronous markets

1.1 Introduction
Prices of financial assets are observed due to the trading in the stock ex-
changes. However, the true price process continues even when stock ex-
changes are closed: that is why open prices are usually different from the
previous day close prices.

It it not necessary to assume that the price process is the same during
the trading hours and overnight period: properties of the overnight returns
are different from observed during the trading hours. This difference may

11



12 CHAPTER 1. LITERATURE REVIEW

be a consequence of both the fundamental differences in the latent true
price processes, as well as the trading noise during the day, which is ab-
sent at overnight period. Consequently, the study of statistical properties
of overnight returns will lead to better understanding of the asset pricing
mechanism also during the intraday period.

The difference between intraday and overnight periods is especially im-
portant from the practical point of view: for many practical applications,
such as risk-management, portfolio management, option pricing, it is neces-
sary to estimate the volatility of an asset or variance-covariance matrix of
a portfolio. There exist a lot of methods to compute realized variance or
covariance matrix during trading hours (see McAleer & Medeiros (2008) for
a review of realized volatility estimators). Absence of high-frequency data
during non-trading period makes impossible estimation of overnight realized
volatility, and consequently, creates handicaps for risk-management. Con-
sequently, various special methods are used to estimate the overnight and
whole day volatility. Especially notable situation arises when overnight peri-
ods on different stock exchanges do not concur. In this case even estimation
of covariance based on daily data provides biased result.

This paper presents a review of the literature connected to the particular
features of overnight returns. Special interest of the paper is an impact of
these features on the volatility and covariance estimation.

In this paper following notations are used. Daily return rt is a sum of
overnight return ron,t and intraday return rid,t. Their variances are σ2

t , σ2
on,t

and σ2
id,t respectively.

The remainder of the paper is organized as follows. Section 1.2 describes
stylized facts on overnight return. Section 1.3 is devoted to the overnight
variance and covariance estimation. Section 1.4 presents estimators of co-
variance in asynchronous markets. Section 1.5 is a conclusion.

1.2 Stylized facts about overnight return

1.2.1 Lower volatility during overnight

The fact that intraday and overnight prices follow different processes be-
comes clear by just comparing the variances of overnight and intraday re-
turns. Not only overnight volatility is several times lower in absolute terms.
Overnigth-to-intraday volatility ratio is even smaller in per hour terms, so,
a simple "

√
t-rule" can never be applied to overnight volatility estimation.

One of the early mention of low per hour overnight volatility was done in
the work of Fama (1965), where he mentioned, that volatility of weekend
return is only 22% higher than one of weekdays returns, while covers three
times larger chronological time.

French & Roll (1986) proposed three possible explanations of this
phenomenon: (1) arrival of public information is higher during the normal
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business hours, (2) private information arrives to market through trading
only when it is open, (3) noisy traders induce market volatility. They used
data of prices of all common stocks listed at NYSE and ASE (1963-1982).
The first test was a volatility at the election days: at this day stock exchanges
are closed, but the companies are open. Overnight volatility under the (1)
hypothesis should not be affected at all, while under (2) hypothesis it should
be postponed for the next trading day, at hypothesis (3) the decrease of the
volatility does not move to the next days. It turned out that during election
the variance ratio is slightly higher than during holiday (1.165 and 1.145
respectively), while weekly volatility ratio increases from 0.559 to 0.614. The
fact that volatility is still smaller than during normal business day rejects
public information hypothesis. While the difference between the volatility
ratio supports the private hypothesis, it is not high hight enough to reject
the noise hypothesis. The second test included autocorrelations: the first
order positive autocorrelation supports the noise (mispricing) hypothesis.
However, it does not totally explain the difference between overnight and
intraday volatility. So, the authors suggested to interpret this difference as
a cause of different factors.

The lower overnight volatility is combined with larger average overnight
return. At the first approximation it means, that night holding provides
higher return-to-risk ratio.

Cooper et al. (2008) used data for all the stocks included in S&P-
500 index, 14 ETF, 44 stocks of AMEX (1993-2006). They have found out,
that mean of overnight return is significantly positive, while intraday one
is slightly negative. The return of the first trading hour is negative, while
return at the last trading hour is positive, and these returns are significant.
As this effect remains throughout all stock exchanges, it is not linked to the
opening rule (see section 1.2.5).

This difference is not linked to information announcements, that happen
mainly during overnight period: exclusion of earning announcements did
not change the results. Neither it is explained by liquidity effects: for 2 out
of 6 liquidity measures, difference between night and day return is larger for
more liquid stocks. Finally, they regress the difference between overnight
and intraday return by a set of explanatory variables: dummy for trading at
Nasdaq, market capitalization, Amihud (2002) illiquidity measure, volume
of transactions, average trade size, bid-ask spread, and standard deviation.
Constant appeared significantly positive, showing that neither liquidity, nor
market risk explain the overnight premium.

Similar research was performed by Kelly & Clark (2011). They fo-
cused on ETF data (DIA, IWM, MDY, QQQQ, SPY, 1996-2006). To de-
crease the effect of opening price bias (see section 1.2.5), they used 5-min.
VWAP prices. After correction of overnight returns for risk-free rate, Sharp
ratio (mean-to-standard-deviation) was shown to be significantly higher dur-
ing overnight than intraday period for each of the ETF. The result holds af-
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ter fitting AR-GARCH(1,1) model with residuals follwing Student-t-skewed
distribution, and calculation of the Sharp ratio dividing expected return on
expected volatility. Overnight SR is significantly positive for all ETF, while
intraday SR is negative for all, but significant only for one ETF.

However, it was shown, that applying a long overnight - short intraday
trading strategy (correction for transaction costs, overnight interest rates
and dividends was made), does not overperform buy-and-hold strategy for
4 out of 5 ETFs. Even with zero transaction costs two ETFs show better
buy-and-hold return.

1.2.2 Higher tail risk during overnight

One of the possible explanation of high Sharp ratio may be in the wrong
definition of risk. The fact of lower overnight volatility, does not yet mean
that risk during overnight period is lower: kurtosis of overnight return is
higher than kurtosis of intraday return. So, defining risk not as a volatility,
but as a tail risk, may explain the overnight risk premium.

Riedel & Wagner (2015), used data for NASDAQ Composite, CAC
40, DAX 30 (1988-2010) and TOPIX (1990-2010) indices. They have con-
firmed that overnight volatility is smaller than intraday one, while kurtosis is
higher. Fitting AR(2)-TGARCH(1,1,1) for overnight and intraday returns
separately, they have shown, that overnight volatility especially depends
upon the previous squared overnight return (the corresponding coefficient
tends to be three times higher for overnight volatility than for intraday
volatility) (see section 1.2.6).

They assumed, that return exceedances (upper and lower tails sepa-
rately) have Generalized Pareto Distribution.

Ḡξ,β(y) =

(1 + ξ yβ )−
1
ξ if ξ 6= 0

e
− y
β if ξ = 0

(1.1)

Testing the equality of ξ to zero, they have shown that for intraday returns
ξ is not significantly different from zero, so, it is possible to explain the
exceedances by simple normal distribution with conditional volatility. At the
same time for 7 out of 8 overnight returns this coefficient was significantly
different from zero (the remaining is an upper tail of CAC). As a robustness
check, they have performed test of equality of ξ coefficients for overnight
and intraday returns, as well as overnight and whole day returns. It turnes
out that for all assets overnight, intraday and whole day tail indices are
significantly different. As a practical application they used VaR forecast.
They have shown, that overnight tail risk is higher than intraday one starting
from 2.5% VaR level in relative terms and for 0.1% even in absolute terms.

Consequently, there exists such a risk measure (in this case 0.1% VaR),
for which overnight risk is higher than intraday one.
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1.2.3 Higher correlation during overnight

Another difference between intraday and overnight is the increase of corre-
lation between stock return during non-trading period. Increase of correla-
tion decreases benefits of diversification, and consequently increases portfolio
risk.

First study of this fact was done by Pandey (2003). Using data of 30
stocks included in Sensex index of Mumbai Stock Exchange (1997-2001), he
has shown, that correlation is higher during the overnight period for 425 out
of 435 pairs of stocks.

In accordance with Boyer et al. (1997) theorem, conditional correlation
should be lower when the volatility is lower, even if unconditional correlation
remains the same. However, as the overnight volatility is lower, overnight
increase in correlation can not be considered spurious.

He provided a possible explanation of this phenomenon: overnight in-
formation is more probably related to the common factors, while intraday
trading is more driven by idiosyncratic (firm-specific) factors.

To test whether correlation increase during high-volatility period, the
sample was sorted by Sensex squared daily return. It turned out that for
all pairs of stocks (except one) both intraday and overnight correlations are
higher during the period of higher volatility.

To prove that intraday and overnight volatilities are driven by different
processes, GARCH(1,1) model with an overnight dummy was fitted.

σ2
t = ω + αr2

t−1 + βσ2
t−1 + γIon (1.2)

After exclusion of 3 stocks with missing data, and consequent estimation of
the equation, it turns out that γ coefficient is significantly negative for all
the stocks. It confirms, that overnight volatility is lower than intraday one.

After fitting Bivariate GARCH-BEKK model for pair of stocks returns,
for overnight and intraday returns separately, it was confirmed that average
conditional correlation is higher for overnight period than for intraday one.

1.2.4 Opposite facts for ADR

These stylized facts, however, apply only for the original stocks. If take into
consideration cross-listed depositary rights on this stocks, it turns out, that
overnight and intraday periods are switching, as an intraday period for ADR
is an overnight period for an original stock.

On a data of ADR prices on companies with highest capitalization in
China, Japan, South Korea, Taiwan and India (2004-2014), Leung & Kang
(2016) have shown, that non-overlapping ADR have higher overnight vari-
ance than intraday one. They have found that distribution of q = r2

on

r2
on+r2

id
is

U-shaped for the most of the ADR. It was also shown, that overnight cor-
relation of ADRs with SPDR S&P 500 ETF (SPY) is higher than intraday
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one. As a practical application they constructed a portfolio based on the
fact that return spread between ADRs and SPY is mean-reverting.

This inverse of stylized facts may be considered as one of the counter-
argument against noisy trading hypothesis of French & Roll (1986), and an
argument for the public information hypothesis. Under the private informa-
tion hypothesis, this fact shows, that there are more informed traders in the
country of stock origin.

1.2.5 Overnight ends several minutes after opening

Opening price is not always a price, at which everyone can buy the stock,
but frequently it has only an indicative sense. Tsiakas (2008) has com-
pared different methods of determining opening price and have shown, that
overnight-to-intraday volatility ratio depends upon the opening rule of the
stock exchange. For this reason, for example, Ahoniemi & Lanne (2013)
used either the price 5 minutes after opening, or a Special Opening Quote
as an opening price.

A more detailed study of this effect was performed by Heaton et al.
(2011). They have shown that opening price in Australian market does not
fully reflect overnight information. Due to asynchronous trading, returns of
American indices should explain overnight return of Australian index, but
not intraday one. They estimated the following equation:

lnSt,i − lnSt,i−1 = αi + β′iXt−1 + εt,i (1.3)

where the first term is a return of ASX for the period from time i − 1
to i at day t and Xt−1 is a vector of returns of commodity indices and
S&P-500. ’Full absorption time’ i∗ was defined as the first i for which βi
is non-significant. They used 15-minutes returns of ASX energy, industrial,
materials and market-wide indices as dependent variables and corresponding
commodities indices traded in UK and USA, as well as S&P-500 as explana-
tory variables. It was shown, that overnight information is absorbed at the
first 15 minutes after the market is open. Consequently, they made possible
estimation of the total overnight effect of international commodity prices.

1.2.6 Relation of overnight and intraday volatilities

Properties of overnight and intraday return of one and the same stocks are
interconnected.

Wang et al. (2009) studied stylized facts on overnight returns using
data of all 2215 stock traded at NYSE at the end of 2007 (1988-2007, 1000 to
5000 observations for each stock). As a contribution to the previous studies,
they have shown how intraday and overnight statistical properties are linked
across different stocks.
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First, they have studied a tail distribution. Assuming power law, expo-
nential and power law with exponential cut-off, they have performed good-
ness of fit test by Kolmogorov-Smirnov. For overnight return, exponential
distribution was rejected for three times more stocks than for intraday re-
turns. At the CDF plots overnight tails almost always decayed slower than
intraday tails. They have also shown that intraday tail exponent (coefficient
of the power law distribution) positively correlated with the whole day one,
and this correlation is stronger than for an overnight tail exponent.

By fitting the fluctuation function of detrended returns F (ε) = εα, they
have shown absence of autocorrelation in the residuals (α ≈ 0.5), but
a strong positive autocorrelation in short term absolute returns (average
ᾱ = 0.59 for overnight and ᾱ = 0.63 for intraday) and long term absolute
returns (ᾱ = 0.71 and ᾱ = 0.75 for overnight and intraday respectively). It
shows the slightly higher persistence of intraday volatility. It turns out that
autocorrelation coefficients of daily, overnight and intraday absolute returns
(a measure of volatility persistence) are positively correlated (seeing each
separate stock as an observation).

Finally, they have shown that overnight and intraday returns are neg-
atively correlated, however, this difference is not significant. Correlation
between intraday, overnight and the whole day return remained stable for
the whole period of study.

So, the study confirmed stylized fact of overnight tail risk, found the
positive correlation between intraday and overnight volatility persistence,
and stability of cross correlation coefficients between overnight, intraday
and the whole day returns.

Two periods GARCH models

This fact of mutual influence of intraday and overnight returns on each other
is used in construction of two periods volatility forecasting model - separate
forecast of intraday and overnight volatility.

Gallo (2001) estimated the influence of overnight return on the intraday
volatility. Using the data on 20 large caps stocks from NYSE (1994-1998,
1235 observations) the following equation was estimated:

ζ2
t

ht
= φ0 + φ1ηt + φ2ηtIηt<0 + φ3η

2
t + ut (1.4)

where ζt are residuals of equation rid,t = a + bron,t + ζt, ηt are residuals of
ron,t = c + drid,t−1 + ηt and ht is a volatility of ζt estimated using simple
GARCH(1,1) model. It turns out, that for 16 out of 20 stocks F-test shows
that overnight information significantly influence the intraday variance.

So, a new version of GARCH was estimated, that takes into account
overnight returns.

σ2
id,t = ω + α1ζ

2
t−1 + β1σt−1 + γζ2

t−1Iζt−1<0 + φη2
t (1.5)
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It turnes out, that for 14 stocks coefficient φ (accounting for overnight sur-
prises) is significantly different from zero. Additional result was that nega-
tive overnight return do not have significant impact on intraday volatility.

An out-of-sample forecast (testing sample: 2.10.1998-7.1.1999) exercise
has shown that Mean Absolute Error is lower in the GARCH specifications
that includes η2

t for all 200 assets, while RMSE is lower for GARCH models
without this term in 17 cases.

Tsiakas (2008) distinguished influence of four types of overnight return
on the daily volatility: weeknight (stock exchange opens the next day after
closure), holiday (one day after), weekend (two days after) and long weekend
(three days after).

Using data for FTSE-100, CAC-40, DAX-30, DJIA, S&P-500, NASDAQ-
100 indices (2000-2004), he has shown that overnight volatility ratios de-
pend upon the opening procedure of the stock exchange and range from 3%
(DJIA) to 41% (CAC-40) (see section 1.2.5).

He proposed the model of stochastic intraday volatility, that takes into
account overnight return, type of preceding overnight period, as well as
leverage effects.

σ2
id,t = µ+ γDrid,t−1 + γaD|rid,t−1|+ γNron,t−1 + φ(σ2

id,t−1 − µ) + εt (1.6)
γNron,t−1 = (γwnIwn + γweIwe + γholIhol + γlwIlw)ron,t−1 +

+(γawnIwn + γaweIwe + γaholIhol + γlwIlw)|ron,t−1| (1.7)

where Ii is a dummy variable for the type of overnight period. The equation
was estimated using Monte-Carlo-Markov-Chain algorithm.

It turned out, that overnight information increases the predictive perfor-
mance of both intraday return and volatility models. Distinguishing between
different types of overnight period leads to even more superior results, es-
pecially when taking into account leverage effect. Consequently the general
model outperform more parsimonious specification both in-sample and at
out-of-sample exercises at every stock exchange.

Additional finding was, that intraday returns have negative autocorrela-
tion, so the observed positive daily autocorrelation is an effect of overnight
positive autocorrelation.

Kang & Babbs (2012) presented a multivariate joint modelling of
overnight and intraday returns. Mean of the returns of each asset follows
autoregressive model:

ron,t = α0 + α1rid,t−1 + α2ron,t−1 + ηon,t (1.8)

rid,t = β0 + β1ron,t + β2rid,t−1 + ηid,t (1.9)

Overnight and intraday volatilities of the were modelled as GARCH process:

σ2
on,t = θ0 + θ1η

2
id,t−1 + θ2η

2
on,t−1 + θ3σ

2
on,t−1 (1.10)



1.2. STYLIZED FACTS ABOUT OVERNIGHT RETURN 19

σ2
id,t = δ0 + δ1η

2
on,t + δ2η

2
id,t−1 + δ3σ

2
id,t−1 (1.11)

Residuals of the model are assumed to have standardized Student’s t-distribution,
linked with two Student’s copulas: for overnight and intraday returns sepa-
rately. Correlation matrices of both copulas follow DCC dynamics.

Qn,t = Π0 + π1(ζcd,t−1ζ
′
cd,t−1) + π2(ζcn,t−1ζ

′
cn,t−1) + π3Qd,t−1 + π4Qn,t−1

(1.12)
Qd,t = Ψ0 + ψ1(ζcn,tζ ′cn,t) + ψ2(ζcd,t−1ζ

′
cd,t−1) + ψ3Qn,t + ψ4Qd,t−1 (1.13)

where ζ is a vector of realized quantiles of t-distribution. They have tested
their model on the data of returns of 9 S&PDR ETF investing in differ-
ent industries and as well as 6 currency and commodities funds. For most
funds they have found that intraday returns have non-significant constant,
but significant negative dependence of intraday return on overnight return.
Overnight returns was shown to have lower degrees of freedom (supporting
heavy-tails stylized fact, see section 1.2.2). Intraday volatility for 13 out of
15 funds is larger than overnight volatility. In constant conditional correla-
tion model, intraday copulas have higher degrees-of-freedom parameter and
lower correlations than overnight copulas. Dynamic conditional correlation
have higher likelihood; it turns out that overnight correlation influence next
day’s correlation, but depends mostly upon previous overnight correlations.
The model was applied to VaR, ES forecast as well as optimal portfolio
allocation for a CRRA utility function.

Asymmetric influence of overnight and intraday volatility

In two periods GARCH models overnight and intraday volatility usually
assumed to have symmetric influence on each other. However, it was shown
not to be true.

Blanc et al. (2014) studied how intraday and overnight volatilities in-
fluence on each other. They estimated GARCH model, in which coefficients
are the power-law functions of the lag number.

σ2
id,t = s2

d +
∞∑
τ=1

L1(τ)rid,t−τ +
∞∑
τ=1

K1(τ)r2
id,t−τ + 2

∞∑
τ=1

K2(τ)rid,t−τron,t−τ +

+
∞∑
τ=1

L2(τ)ron,t−τ +
∞∑
τ=1

K3(τ)r2
on,t−τ + 2

∞∑
τ=1

K4(τ + 1)rid,t−τ−1ron,t−τ(1.14)

σ2
on,t = s2

n +
∞∑
τ=1

L3(τ)ron,t−τ +
∞∑
τ=1

K5(τ)r2
on,t−τ + 2

∞∑
τ=1

K6(τ)rid,t−τron,t−τ +

+
∞∑
τ=1

L4(τ)rid,t−τ +
∞∑
τ=1

K7(τ)r2
id,t−τ + 2

∞∑
τ=1

K8(τ)rid,t−τ−1ron,t−τ(1.15)
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where Ki(τ) are exponentially truncated power-law kernel functions and
Li(τ) are simple exponential kernel functions.

The model was fitted to the data for normalized and deseasonalized
returns of 280 stocks included in S&P-500 index (2000-2009, 2515 observa-
tions), assuming universal dynamic for all the stocks (the same coefficients
of kernel functions for every asset).

It turns out, that overnight influence on the intraday volatility decays
quicker than overnight to overnight and intraday to both intraday and
overnight. Practically it means, that only the very last square overnight
return influence the intraday volatility.

They also have shown that the proposed predictive model provides higher
sum of pointwise log-likelihoods than plain ARCH, both on in-sample and
out-of-sample tests.

It was also shown the presence of U-shaped weekly seasonality of overnight
volatility: weekend and Thursday-to-Friday volatilities are higher than ones
in the middle of the week. Also the fact that overnight returns have higher
kurtosis (even after fitting the model) than intraday returns was confirmed.

1.3 Overnight volatility estimators

1.3.1 Estimators based on high-frequency intraday data

Adding squared overnight return

There exist many methods measuring intraday realized volatility. However,
due to absence of high-frequency data during overnight period, it is not
trivial to measure the whole day realized covariance.

The simplest way is to treat overnight return as just one regular obser-
vation and add a squared return to the intraday realized volatility.

σ2
t = σ̂2

id,t + r2
on,t (1.16)

where σ̂2
id,t is a realized volatility of intraday period and ron,t is an overnight

return.
The first time such estimator was introduced by Blair et al. (2001).

The target was to compare predictive abilities of ARCH model, implied
volatility and realized volatility. They used data for daily returns, 5-min.
returns and implied volatilities (VIX) of S&P-100 index. In-sample period
was 1987-1992 (1519 observations), an out-of-sample period 1993-1999 (1768
observations).

Compared predictive models were: linear combination of the three es-
timators, and these estimators separately. At in-sample analysis it turned
out, that implied volatility is the major explanatory variable, while realized
volatility adds only a small increment. On out of sample forecast of 1, 5,
10 and 20 days horizon, it was shown, that even while realized volatility
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increases 1 day ahead prediction, at larger horizons VIX fully explain the
variance.

Also, the same realized covariance estimator was used in the paper of
Becker et al. (2007), who studied the same question as Blair et al. (2001).
They used data for returns and volatility indices of S&P-500 (1990-2003,
3481 observations). Unlike the previous study they have compared VIX with
different specifications of GARCH, Stochastic volatility, ARMA-Realized
volatlity models. Fitting linear regression of volatility forecasts as indepen-
dent variables and VIX values as dependent variable, they received residuals
(after exclusion of non-significant variables) - a part of VIX not explainable
by volatility forecasting models. It turns out, that regression of residual VIX
by 1, 5, 10, 15, 22-days ahead realized volatility is not significant neither by
F-test nor by Hotelling test. It means that volatility index does not provide
any more information than volatility forecasting models.

In the multivariate framework treating overnight return simply as regular
observation will add an outer product of overnight return to the intraday
realized covariance matrix.

Vt = V̂id,t + ron,tr
′
on,t (1.17)

This estimator at first was used by de Pooter et al. (2008). They dis-
cussed the optimal sampling frequency for the intraday realized covariance
estimation at the example of 100 stocks included in S&P-100 index (1997-
2004). They have shown that optimal decay parameter of EWMA model
increases with the sampling frequency. Optimal sampling frequency for Min-
Variance and Mean-Variance portfolio optimisation ranges from 30 to 130
minutes. They have also shown that using two-scales estimator and lead-lag
bias correction decreases optimal frequency and increase performance of the
portfolios.

The same methodology was used by Ubukata (2009) and Becker et al.
(2015) for portfolio optimization.

Both in the univariate and multivariate estimators 1.16 and 1.17 overnight
term is a very noisy estimator of overnight volatility/covariance, as it is ob-
tained using only one observation.

Rescaling intraday realized volatility

Martens (2002) introduced another estimator of the whole day volatility
- rescaling of intraday realized variance.

σ2
t = (1 + s)σ̂2

id,t (1.18)

Here, parameter s is a share of overnight volatility in the whole day volatility.
He compared three methods: rescaling of intraday volatility (equation

1.18), adding a squared overnight return (equation 1.16) and 30-minute sam-
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pling from overnight trading. The latest, unfortunately is available not for
every asset.

On simulated data (data-generating process was GARCH 1,1) it was
shown, that in the absence of overnight trading the most precise measure of
the whole day volatility is a rescaled volatility (equation 1.18), while squared
overnight returns is a very noisy measure of overnight volatility. It provides
better forecasts for 1, 5 and 20 days ahead volatility. On a real data of
S&P-500 index futures (1990-1998, overnight trading data was available only
from 1994 year) the results were confirmed. He has also shown, that adding
both previous day realized volatility measures increases the performance of
GARCH(1,1) forecast.

Additionally he proposed a modelling of intraday and overnight volatility
as separate GARCH processes.

σ2
on,t = a1 + a2r

2
on,t−1 + a3σ̂

2
id,t−1 + a4σ

2
on,t−1 (1.19)

σ2
id,t = b1 + b2r

2
on,t + b3r

2
id,t−1 + b4σ

2
id,t−1 (1.20)

At the same time volatility of 5-min. intraday returns also follows GARCH(1,1)
process. For a one-day-ahead forecast, such specification provides increase
in performance comparing with daily GARCH(1,1) model.

Optimal weighting

Hansen & Lunde (2005) proposed a procedure of weighting two volatility
measures.

Assuming that whole day volatility is proportional to the intraday volatil-
ity, they have shown, that both rescaled realized volatility and squared
overnight return are unbiased estimators of the whole day integrated volatil-
ity (IV ):

IVt = E((1 + 1
s

)r2
on,t) = E((1 + s)σ̂id,t) (1.21)

They proposed the following realized volatility estimator for the whole day:

σ̃2
t = (1− ω)(1 + 1

s
)r2
on,t + ω(1 + s)σ̂2

id,t (1.22)

where weight ω is chosen in such a way to minimize the variance of the
resulting estimator. They have shown, that under the assumption of unbi-
asness this weight also minimizes mean square error. At the example of 30
stocks of DJIA it was shown that assumption of proportionality holds. In
other words, in this regression:

ln(
r2
on,t

σ̂2
id,t

) = α+ β′Zt + εt (1.23)
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α is significant, while β is not. Zt here is a list of instrumental variables. As
instrumental variables were used: days of the week and realized volatility
for the previous day. Only two out of 30 regressions provided significant β
at 5% confidence level. To test assumption of unbiasness of the estimator,
following regression was used:

ln( σ̃2
t

r2
on,t + σ̂2

id,t

) = α+ β′Zt + ut (1.24)

in which, β is significant only for 3 out of 30 stocks.
Ahoniemi & Lanne (2013) tested the different methods of dealing

with overnight return on a data for S&P-500 return index, as well as 30
stocks included in DJIA index (1994-2009, 3966 observations). Instead of
using biased opening price of index, they use either Special Opening Quote or
the value of the index 5 minutes after opening. Also they compare different
ways of computing s in equation 1.18: in one case average overnight volatility
was divided by average whole day volatility (computed on daily data), in
the other it is divided by the sum of average overnight and average intraday
realized volatility.

At an in-sample test, using MSE as a loss function, it was shown, that
using both Model Confidence test and Diebold-Mariano test Hansen-Lunde
weighting method provides statistically closer result for estimation of volatil-
ity of S&P-500 index. For single stocks, however, the best method was either
not to include overnight volatility at all, or to use a scaling estimator. At an
out-of-sample forecast exercise there were compared GARCH, GJR-GARCH
(Glosten et al. (1993)) and APARCH (Ding et al. (1993)) models. It turned
out that the choice of the model with the least MSE depends upon the un-
derlying whole day volatility estimator. This difference have the maximum
effect while forecasting S&P index, and decrease in single stock volatility
forecast.

1.3.2 Estimators based on returns of other assets

Due to the fact, that volatilities of different assets are interconnected, it
is possible to estimate an overnight volatility of one asset, using returns of
other assets.

Triacca & Focker (2014) have proposed an estimator based on Dy-
namic Factor Model. Assuming that overnight log-variances of different
assets follow generalized dynamic factor model:

log σ2
o,it − E(log σ2

o,it) = χit + ξit =
q∑
j=1

bij(L)ujt + ξit (1.25)

where χit is a common component, ξit is an idiosyncratic component, ujt are
common shocks, (L) is a lag operator, and bij is sensitivity of volatilities to
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factor shocks. Obtaining estimator of common component χ̂it through the
method based on generalized dynamic factor model proposed in Forni et al.
(2000), the resulting estimator for overnight volatility is:

σ2
o,it = exp( 1

T

T∑
t=1

log r2
o,it + 1.27 + χ̂it) (1.26)

The proposed estimator was tested on simulated data, in which overnight
returns have Student’s t-distribution and volatilities follow autoregressive
process as in Taylor (1989) but with leverage effect. It turns out, that
the proposed estimator has lower RMSE than squared overnight return.
As a practical example, they used data for stock prices of companies from
S&P100 index to predict overnight volatility of American Express, Bank of
New York, Intel Corporation and Merrill Lynch stocks. They have shown,
that the proposed estimator has smaller variance in comparison with squared
overnight returns.

If the dependence between an assets is known a priori, estimation be-
comes even simpler. For example, the value of stock market index depends
upon the assets it includes.

Petroni & Serva (2016) proposed to estimate the whole day standard
deviation of the index by averaging absolute returns of the stocks of which
this index is composed. Assuming that market return is equal to rt =
σtεt, where εt ∼ U [−

√
3,
√

3], in the case of equiweighted index volatility is
estimates as:

σ̂t = 1√
3N

N∑
α=1
|rα,t| (1.27)

Using the data of 65 stocks of Dow Jones (1973 - 2014) they have shown,
that estimated volatility is persistent (autocorrelation function of volatil-
ity decreases slowly), while the remainder εt is almost uncorrelated neither
with volatility nor absolute return of the index. It also turns out that εt is
uniformly distributed.

Through the idea of the paper is brilliant, there is a small concern about
residuals test: the estimator was applied in-sample, and that seems to be
a cause of uniform distribution of residuals, rather than properties of price
process.

Overnight and whole-day volatility estimations are used as input in fore-
casting models, as well as back-testing benchmark for them. However, it is
also possible to directly forecast the overnight and intraday volatilities as
two separate processes as models of section 1.2.6.

1.4 Asynchronous markets
In the case, when overnight periods are different in different markets, co-
variance computed on daily close-to-close returns has downward bias, as its
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expectation is only covariance during overlapping period.
Taking asynchronicity into account is especially important to distinguish

comovement and spillover effects.

1.4.1 Synchronous sampling

Sampling from overlapping trading hours

If there exists an overlapping period in stock exchanges, or at least an over-
lapping point, it is possible to measure synchronous prices even at asyn-
chronous markets, as long as intraday high-frequency data is available.

In such a way McAleer & Da Veiga (2008) used synchronous prices
observed at 16:00 GMT. They used European and USA data of S&P-500
(USA), FTSE-100 (UK), CAC-40 (France) and SMI (Switzerland) indices
(1990-2004 years, 3720 observations). They proposed a Portfolio Spillover
GARCH model in which volatilities of each asset depends not only upon
its past realization, but also realization of volatilities other assets. They
compared PS-GARCH model with VARMA-GARCH and CCC models in
forecasting Value-at-Risk for equally weighted portfolio of indices. It turnes
out, that even while spillover effect is significant, taking them into account
does not increase the performance of 1% VaR forecasting.

However, synchronous observations are not always available. For exam-
ple, Japan stock market opening hours do not overlap neither with American
nor with European intraday periods.

Weekly subsampling

Weekly returns have larger share of overlapping period. So, the asyn-
chronous bias of weekly observations may be neglected.

Berben & Jansen (2005) studied the increase of international corre-
lations. They used weekly returns of market and industrial indices of US,
UK, Germany and Japan (1980-2000). Volatilities were assumed to follow
GARCH(1,1), while correlation coefficient changing between two regimes.

ρt = ρ0(1− 1
1 + exp(−γ(st − c))

+ ρ1
1

1 + exp(−γ(st − c))
(1.28)

This model is called Smooth-Transition Correlation GARCH. The results
are: correlations between Japanese and other markets didn’t change. Cor-
relation between UK and US market increases, as well as German-UK and
German-US correlations. At industrial level UK-US correlation increased for
eight industries out of ten, while German-UK and German-US correlations
have changed at four industries out of ten.

Christiansen (2007) used weekly returns of governmental bonds to
study volatility spillover at the international sovereign bond markets. The
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data was represented by JPMorgan government bond indices for US and Eu-
rope as explanatory variable, and Belgium, France, Germany, Italy, Nether-
lands, Spain, Denmark, Sweden and UK as dependent variables. Data was
sampled each Wednesday (1988-2002 years, 777 observations). It turned
out that there exist a significant volatility spillover effect from US and Eu-
ropean index to the individual countries, but not the mean spillover from US
to European countries. EURO introduction increased the volatility spillover
effect.

In the same way Abad et al. (2010), studied integration of European
sovereign bond markets. They used Wednesday sampled returns of 10-year
Governement bonds of 13 EU-countries (except for Luxembourg and Greece)
(1990-2008 years). Testing the significance of integration coefficient (Bekaert
& Harvey, 1995), they have shown, that EMU countries have higher degree
of integration with German bond market, while non-EMU countries are more
integrated with world market (represented by US data).

1.4.2 Sum of the lagged covariances

One of the solution to the problem is summation of day-to-day covariance
with lagged covariances. It is easy to see, that equation 1.29 provides unbi-
ased estimation of the true covariance E(σ̂ij) = σij .

σ̂ij = 1
T − 1

T∑
t=1

ri,trj,t + 1
T − 2

T∑
t=2

ri,t−1rj,t + 1
T − 2

T∑
t=2

ri,trj,t−1 (1.29)

Disadvantage of such a solution, is that correlation coefficient ρ̂ij = σ̂ij√
σ2
i σ

2
j

is not bounded between -1 and 1. Consequently, the pair-by-pair estimation
of covariance matrix does not guarantee positive semidefiniteness.

The problem of asynchronous trading was at first discussed by Scholes
& Williams (1977). They pointed, that asynchronous observations take
place not only at asynchronous markets but also on illiquid market. The
target of the paper was estimation of β coefficient - sensitivity of an asset
return ra to the market return rM . They provided a following method to
ensure the consistency and unbiasness of the estimator: sum betas for all
possibly overlapping intervals. As long as there is at least one deal per day,
it is enough to add betas for previous and last days. From efficient market
hypothesis follows zero autocorrelation of market returns. However, in the
presence of non-zero autocorrelation it is enough to divide calculated beta
by one plus the double autocorrelation coefficient. The resulting estimator
of beta coefficient is presented in equation 1.30.

β̂ = β− + βunadj + β+

1 + 2γM
(1.30)
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where:
βunadj = cov(ra,t, rM,t)

σ2
M

(1.31)

β− = cov(ra,t, rM,t−1)
σ2
M

(1.32)

β+ = cov(ra,t, rM,t+1)
σ2
M

(1.33)

γM = cov(rM,t, rM,t−1)
σ2
M

(1.34)

The resulting estimator was tested on NYSE and ASE data (1963-1975).
It was shown that trading volumes at each day explain the difference between
β calculated on raw data and βtrue calculated using equation 1.30.

The paper of Scholes & Williams (1977) provided a huge impact on the
literature. Their method becomes very useful for estimation of covariances,
correlations and betas in the asynchronous stock markets. Moreover, as
asynchronous trading is observed also during the trading day, similar idea to
sum the products of all overlapping returns was used by Hayashi & Yoshida
(2005) for the intraday realized covariance estimation.

At RiskMetrics (1996) the problem of asynchronous markets was sep-
arated from the general case of nonsynchronous trading. It was shown
that correlation between close-to-close sampling 10-years Australian and US
government bonds is very underestimated in comparison with simultaneous
sampling (at 00:00 GMT). Following Scholes & Williams (1977) they sug-
gested to sum the covariance between market returns with the covariances
between return of lagged market returns, as in equation 1.29. Consequently
the adjusted correlation estimator is ρ̂ij = σ̂ij√

σ2
i σ

2
j

. After adjustment corre-
lation coefficient between USD and AUD bond increase from 0.305 to 0.560.

In the multivariate framework, however, the proposed method doesn’t
guarantee positive semi-definiteness of the covariance matrix. RiskMetrics
provides solution to this problem: to use linear combination of adjusted and
unadjusted covariance, setting to the latest as the largest possible weight
such that resulting estimator is positive semi-definite.

Vpsd = (1− ω)Vunadj + (ω)× V̂ (1.35)

where Vpsd is a positive semidefinite covariance matrix, Vunadj is a close-
to-close covariance matrix and V̂ is an unbiased covariance estimator, with
elements as in equation 1.29. The resulting covariance matrix is supposed
to follow Exponentially Weighted Moving Average Process (EWMA).

At the paper of Bergomi (2010) correlation in asynchronous markets
is discussed in respect of option trading. It was shown, that options, written
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on assets in different markets, should be priced with a synchronized correla-
tion that is a sum of current correlation between two assets and correlation
between lagged return of first asset and current return of the second, given
that first exchange is closed later. Unlike RiskMetrics or Scholes & Williams
(1977) only the overlapping returns are used. If market j is closed after the
market i, their unbiased correlation estimator is as in equation 1.36.

ρ̂ = corr(ri,t, rj,t) + corr(ri,t, rj,t−1) = ρs + ρa (1.36)

He calls ρs a ’synchronous’ correlation and ρa - an ’asynchronous’ correlation.
Through the example of Stoxx50, S&P500 and Nikkei indices it was

shown, that asynchronous term ρa becomes larger as the difference in trading
hours increases. There was performed a comparison between estimator 1.36
and usage of weekly sampling. Difference between correlation computed
using n-days sample and synchronized one is expected to be −ρa

n . A problem
of positive semi-definiteness of the covariance matrix was mentioned: in
case of serial correlation it can happen that ρ̂ > 1, but usage of ρ = 1 (a
theoretical boundary) leads to underpricing of correlation swaps.

1.4.3 Return synchronisation

Unlike the case of intraday asynchronous trading, observations at asyn-
chronous market at least have regular timestamps. Consequently, it is
possible to make an adjustment for asynchronous correlation and obtain
’synchronized’ prices and covariances. Practically Vector Moving Average
and Vector Auto-Regressive models are used to fit the data.

This approach was at first introduced by Burns et al. (1998). They
provided a synchronization procedure for asynchronous returns, variances
and correlations. They assume a moving average process for asynchronized
returns:

rt = εt +Mεt−1 (1.37)

where, ε ∼ N(0,Ω). From equation 1.37 follows that synchronized return is
described by:

r̃t = εt +Mεt (1.38)

covariance matrices of asynchronized covariances are

E(rtr′t) = Ω +MΩM (1.39)

E(rtr′t−1) = MΩ (1.40)

and consequently the synchronized covariance matrix of assets is:

E(r̃tr̃′t) = (I +M)Ω(I +M)′ (1.41)
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where Ω is a covariance matrix of ε. MatrixM is expected to be a triangular
with zero diagonal elements (given that assets are ordered by the time of ex-
change closure), as returns for non overlapping periods should not correlate.
Synchronized returns are fitted to the BEKK-GARCHmodel. Asynchronous
GARCH model was tested on G-7 market indeces (CAC, DAX, FTSE, MIL,
NIK, S&P, TTO). It was shown, that the residuals of the model have covari-
ance matrix almost equal to Identity, almost all their autocorrelations are
zeros, there are almost neither correlation in squared residuals nor leverage
effect.

Synchronisation procedure of Audrino & Bühlmann (2004) is similar
to Burns et al. (1998). Instead of MA(1) in this model asynchronized returns
follow AR(1) process.

rt = Art−1 + εt (1.42)

Consequently, synchronized returns are computed as follows:

r̃t = rt +A(rt − rt−1) (1.43)

From matrix A they excluded non-significant coefficients. Having synchro-
nized returns they fit CCC-GARCHmodel, in which volatilities follow GARCH
and correlation coefficient assumed constant. Real-data example included
DJIA, CAC40, DAX, BCI, CBS, FTAS, NIKKEI from 1990 to 1994 year.
It was shown that usage of synchronized returns for CCC-GARCH provides
better results in terms of out-of-sample likelihood difference test. Synchro-
nized models also forecast 1%, 5% and 10% Value-at-Risk more precisely.

The same modification of Burns et al. (1998) as Audrino & Bühlmann
(2004) was used by Scherer (2013): he changed MA(1) assumption to
AR(1). He has shown the practical importance of asynchronicity adjust-
ment, usually neglected by practitioners. Using data for indices returns:
S&P-500, DAX, NIKKEI (2007-2010), he compared three adjustment meth-
ods: VAR(1), VMA(1) and usage of weekly returns. Assuming that variance
of the portfolio follows IGARCH, 5% weekly Value-at-Risk was forecasted.
VAR(1) synchronisation method provides more close number of violations
to confidence level than usage of weekly returns.

Butler & Okada (2007) instead of using first-order models, used
VMA(2) model for asynchronous assets returns and EGARCH(2,2) for their
volatilities with constant correlation. At the example of returns of Morgan
Stanley Capital International stock market indices for Japan, US and UK
(1996 - 2002) they show non-significance of second-order term in VMA(2)
and significance of bivariate and second-order terms in EGARCH(2,2) re-
gressions. However in out-of-sample test of forecasting conditional mean and
two-days volatility second-order terms do not improve quality of prediction.

Comparison of RiskMetrics (1996) and Burns et al. (1998) models was
done by Martens & Poon (2001). They used close-to-close and syn-
chronous prices (16:00 London time) of S&P-500, FTSE-100 and CAC40
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indices (1990-1998 years, 1994 common trading days). Each model: expo-
nencially weighted moving average (EWMA) of Morgan (1996) and assy-
metric dinamic covariance (ADC) was fitted using both synchronous prices
and prices synchronized by corresponding method. It was shown, that cor-
relation between correlation parameters, obtained by synchronous and syn-
chronized data is only 0.247 for ADC and 0.451 for EWMA. On an out-
of-sample VaR forecast exercise there was illustrated that EWMA Morgan
(1996) model provides more volatile and more conservative 1% VaR fore-
casts than ADC Martens & Poon (2001). However, both model provide
significantly more violations than the confidence level.

1.4.4 Four phase models

In the same way, as it is possible to model intraday and overnight volatilities
separately (section 1.2.6), it is also possible to model the volatilities and
covariances at each of the phases separately. A phase here means a time
period at which no market opening or closure happens at any considered
stock exchange.

This model was applied by Golosnoy et al. (2015) to estimate volatil-
ity spillovers across NIKKEI 225, DAX, Dow Jones indices at 1996-2009.
Realized covariance/variance estimators were calculated separately for each
of the four periods: overlapping DAX-DJ (here denoted as V1), only DJ
(σ2), only NIKKEI (σ3) and only DAX (σ4). DAX-DJ covariance matrix is
assumed to follow Conditional Autoregressive Wishart process (introduced
in Golosnoy et al. (2012), a high-frequency adaptation of BEKK-GARCH
Engle & Kroner (1995)). In this model covariance matrix of DJ-DAX has
a Wishart distribution V1t ∼W (p1, V̂1t/p1), with average covariance matrix
as in equation 1.44.

V̂1t = G1G
′
1 +

q∑
i=1

Ai1Vt−1A
′
i1 +

p∑
i=1

Bi1V̂t−1B
′
i1 +

z∑
i=1

Di1V̄tD
′
i1 (1.44)

where G1 is a triangular 2 × 2 matrix, Ai1 and Bi1 are parameter 2 × 2
matrices, Di1 are 2 × 3 matrices and V̄t = diag(σ2t−1, σ3t−1, σ4t−1) is a
diagonal matrix of volatilities at other phases. Other volatilities are Gamma
distributed σit ∼ G(pi/2, 2σ̂it/pi).

σ̂it = gi + aiσi,t−1 + biσ̂i,t−1 + ciσj,τ + diσk,τ +
y∑
j=1

eiV
′

1τei (1.45)

where j, k = 2, 3, 4 6= i denote the other phase, and τ = t, t − 1 such that
only past information is included into equation.

They have added a crisis dummy (Aug.2007-Mar.2009) to the coefficients
of equations. It turned out that crisis of 2007-2009 volatility spillover across
markets increased, while the persistence of volatility decreased.
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1.5 Conclusion
In this paper there were reviewed articles devoted to different facts and
problems caused by overnight period. Several stylised facts about overnight
returns were selected. Overnight return has lower volatility, but positive
mean resulting in high Sharp ratio. This can partially be explained by its
higher tail risk. A common question in the literature is whether the differ-
ence between overnight and intraday return is caused by trading or difference
in arrived information. Some facts point to the latest: overnight correlations
are significantly higher than intraday one, it means that overnight informa-
tion is more referred to the whole marked rather than to specific companies.
Additional argument for the private information hypothesis is different be-
haviour of ADRs: if differences were caused mostly by trading noise, ADRs
would have shown the same behaviour as original stocks, however, overnight
return of ADRs has higher volatility and lower correlations than their intra-
day returns.

Absence of trading during overnight period causes difficulties in the
overnight volatility estimation. There are two approaches for overnight
volatility estimation: either to use intraday high-frequency data or to use
prices of other assets in the market. Alternative methodology is to directly
forecast overnight and intraday volatilities as separate, but correlated pro-
cesses.

If overnight periods at stock exchanges take place in different hours, the
observed open and close prices are non-synchronous. Consequently, direct
covariance estimation is biased toward zero. There are three solutions are
proposed: subsampling with lower frequency (a week or a month), adding
lagged cross-correlation terms to correlation estimator, and synchronisation
of returns via vector versions of Moving Average or Auto-Regressive models.
As in the case of overnight volatility, it is possible to divide the whole day
into 4 periods and estimate volatility and covariance matrix during this
periods separately.

There are many potential for the future research. Especially topical is
an estimation of overnight covariance matrix, for which, up to now exist
only a very naive approach - sum of intraday covariance matrix with an
outer product of overnight return vector. This topic is especially relevant
for the case of asynchronous markets, where the advantages of having high-
frequency data is not yet fully implemented.
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CHAPTER 2

Adding Overnight to the Daily Covariance

This paper proposes a new method of calculation the whole day co-
variance matrix that includes information from the overnight period.
Proposed estimator is a multivariate extension of scaling-and-weighting
estimator by Hansen & Lunde (2005), extended to the multivariate case.
For the scaling, a new concept of matrix proportionality is proposed.
Three ways of optimal weighting of matrices are introduced, each of
them exploit the theorem from the paper Hansen & Lunde (2005). New
method decreases the noise of the whole day covariance estimator in
comparison with existing approach: a sum of intraday realized covari-
ance and outer product of overnight returns. Performance of the two
estimators is compared using both simulated and real data.

Keywords:

C58 Financial Econometrics
G17 Financial Forecasting and Simulation
G32 Financial Risk and Risk Management
Overnight Realized Covariance
Matrix Geometric Mean

2.1 Introduction
Trading day consists of the period when assets are traded, a trading day, and
when they are not, an overnight period.This article is devoted to the calcu-
lation of covariance matrix for the whole day. There exist many methods of
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computing the realized covariance inside the day. However, the computation
of the covariance matrix for the whole day is not trivial.

Some of the researchers (Becker et al. (2015), de Pooter et al. (2008),
Ubukata (2009)) simply add the overnight return as another observation
(’naive’ estimator). This method has a disadvantage: as an overnight co-
variance is reconstructed only by one observation, the total estimator has
too higher variance. Due to the high noise of such estimator some authors
(Kyj et al. (2009)) do not include the overnight covariance at all. Kang
& Babbs (2012) model overnight and intraday covariances as separate pro-
cesses, connected through GARCH-copula model. However, their approach
does not take into account intraday data.

For univariate case, similar problems were already discussed. Hansen &
Lunde (2005) introduced the method of rescaling the intraday and overnight
variance to get two unbiased estimators, which are weighted to minimize
the variance of the resulting estimator. The same method is also used by
Fleming & Kirby (2011), Fuertes & Olmo (2013), and Ahoniemi & Lanne
(2013). Triacca & Focker (2014) proposed instead to estimate the overnight
variance based on the dynamic factor model.

In this paper the method of Hansen & Lunde (2005) is extended to the
multivariate case: overnight covariance is assumed to be directly propor-
tional to the intraday one, as in the univariate case, but the concept of
direct proportionality is extended to the multivariate case in such a way
that preserves positive semi-definiteness and symmetry of the matrix. Pos-
itive semi-definiteness of the covariance matrix is important in a number
of financial applications such as risk-management, option pricing, portfolio
optimization. Intraday covariance matrix and an outer product of overnight
returns are rescaled in order to obtain two conditionally unbiased estimators
for the whole day covariance. The resulting estimator is a weighted average
of those two estimators. Unlike simple addition of outer product to intraday
realized covariance, the proposed estimator is not suffered by great noise.

Practical application of the methodology will lead to more precise es-
timation of the whole day covariance matrix, and consequently to more
efficient risk-management, portfolio allocation, and option pricing.

The paper is organized in the following way. It consists of theoreti-
cal part, simulation study and empirical part. Theoretical part consists of
introduction to the problem, extension of proportionality for the multivari-
ate case, its application to the problem and propose of weighting procedure,
used to obtain whole day covariance matrix. In simulation study it is shown,
that proposed estimator is robust to misspecification of the model. Even if
overnight covariance has dependence structure different than assumed, the
proposed estimator is still closer to the true covariance then naive one. In
the empirical part of the paper, the proposed methodology is applied to the
real data. It is shown, that invented scaling-and-weighting estimator out-
performs existing ’naive’ one in a number of tests: normality of residuals,



2.2. WHOLE DAY COVARIANCE ESTIMATOR 35

value-at-risk forecast and minimum-variance portfolio allocation.

2.2 Whole day covariance estimator

2.2.1 Notations

In this paper vectors of returns rt are assumed to be independent and have
multivariate normal distribution with zero means: rt ∼ N(0,Vt), where Vt

is a covariance matrix. The whole day is divided into two periods: intraday,
in which assets are traded, and overnight, in which the stock exchange is
closed. Let rid,t ∼ N(0;Vid,t) be a return for the intraday period and
ron,t ∼ N(0;Von,t) for the overnight.

The normality assumption can be weakened: prices can follow any pro-
cess with finite covariance, for example a diffusion process with jumps, that
make a distribution of returns fat-tailed. For the construction of the whole
day covariance estimator it is only necessary, that realized covariance es-
timator V̂id, t is an unbiased estimator of

∫ 1
0 E(r(t)r(t)′)dt - some model-

independent true covariance. However, this assumption will be important
during testing of the performance of the proposed estimator in section 2.4:
true residuals are assumed to have Standard Normal distribution, Value-at-
risk is also assumed to be a quantile of Normal distribution.

The problem is to estimate the covariance matrix for the whole day
Vt = Vid,t + Von,t using the intraday realized covariance matrix V̂id,t and
an overnight realized covariance (calculated using the only overnight obser-
vation) V̂on,t = ron,tr′on,t.

2.2.2 Intraday covariance estimators

For the target of the paper - obtaining covariance estimator positive semi-
definite by construction - it is important that intraday realized covari-
ance estimator V̂id,t is positive semi-definite by construction. There exist
many positive semi-definite intraday realized covariance estimators: sub-
sampling (Barndorff-Nielsen & Shephard (2004)), bootstrapping (Dovonon
et al. (2013)), double subsampling (Zhang et al. (2005), Zhang (2011)).The
latest method is commonly applied for realized covariance estimation in em-
pirical papers. Many estimators are based on ’refresh-time’ synchronisation
procedure: this method is proposed in the paper of Barndorff-Nielsen et al.
(2011). Some improvements of the method were proposed by Christensen
et al. (2010), Boudt et al. (2014). Estimators, based on Bayesian statistics
are also positive semi-definite by construction. Estimators of Tsay & Yeh
(2004) and Peluso et al. (2015) have one basic idea - iteratively generate
missed observations and compute the covariance matrix based on them.

There are also estimators that do not guarantee positive semi-definiteness
covariance matrix by construction. Usually they are bivariate estimators.
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The covariance matrix in this case consists of pair-by-pair estimations. Even
if covariance matrix is not positive semi-definite, it is possible to find the
closest positive semi-definite matrix (see Higham (2002)). One of the most
frequently used non positive semi-definite estimator is a Hayashi & Yoshida
(2005) covariance estimator: a sum of the product of all returns time inter-
vals of which intersect. Hayashi-Yoshida estimator uses all the observations
and is unbiased estimator. Application of the estimator to the interpolated
data with rounded timestamps was proposed by Kanatani & Renó (2007)
and Corsi & Audrino (2012). Other estimators, that are not positive defi-
nite by construction are estimators of Aït-Sahalia et al. (2010), Hansen et al.
(2015).

In this paper intraday realized covariance will be estimated using two-
scale Zhang (2011) approach.

2.2.3 Naive estimator

Obvious unbiased estimator for Vt is just the sum of the two realized co-
variances for the intraday and overnight periods - a naive estimator.

V̂+
t = V̂id,t + V̂on,t (2.1)

However, the last term is a very noisy estimator of overnight covariance,
as it is obtained using only one observation. The idea of decreasing the
noisiness of the estimator is following: to create a two-step estimator of the
whole day covariance matrix. At the first step, there would be constructed
an estimator for the whole day covariance without considering overnight
covariance at all. Also, at the first step there would be constructed an esti-
mator for the whole day without considering the intraday realized covariance
at all. At the second step there would be taken a weighted average of them.

So, the first target is to estimate the whole day covariance matrix with-
out considering overnight return at all. It is natural in this case to think
about overnight covariance as some function of intraday realized covariance
matrix.

Assume that conditional expectation of unobserved overnight covariance
is a function of intraday covariance.

E(Von,t|Vid,t) = F (Vid,t) (2.2)

The function F : Sym+
n (R)→ Sym+

n (R) transforms n×n symmetric positive
semi-definite matrix into symmetric positive semi-definite one. The function
F should satisfy the following requirements:
• it should be possible to transform any covariance matrix into any other,
as it is not a priori known whether the correlation structure remains the
same inside the day and during overnight;
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• the function should have the least possible number of parameters to
estimate;
• in univariate case function should be equivalent to simple multiplication:
f(vt) = svt.
Shortly speaking, the function should rescale the matrix Vday by some

scaling matrix S in such a way, to get a for a positive semi-definite symmetric
estimation of Von as a result.

2.2.4 Matrix proportionality

In the univariate case direct proportionality y(x) = s2x may be defined as
such function, that preserves one and the same geometric mean of y and
x−1. In other words y(x) : s = g(y, x−1) = const. This definition of propor-
tionality is not common, however, it naturally extend proportionality for the
multivariate case. Geometric mean of positive semi-definite symmetric ma-
trices was already introduced by Pusz & Woronowicz (1975). For matrices
A and B it may be defined as an unique positive semi-definite symmetric
solution of the equation B = XA−1X or in explicit form:

G(A,B) = X = A1/2(A−1/2BA−1/2)1/2A1/2 (2.3)

In the literature on linear algebra it is usually denoted as A#B.
Consequently, matrix proportionality will be defined as such function,

that preserves one and the same geometric mean of one matrix and inverse
of another:

Von,t = FS(Vid,t) = SVid,tS (2.4)

where S is a positive semi-definite symmetric matrix, called ’scaling’ matrix.
It can be estimated as in equation 2.5.

Ŝ = V̄−1/2
id (V̄1/2

id V̄onV̄
1/2
id )1/2(V̄id)−1/2 (2.5)

where A1/2 is a matrix square root, defined as unique positive semi-definite
symmetric solution of equation A1/2A1/2 = A, V̄on is an average overnight
covariance matrix and V̄id is an average intraday covariance matrix. The
latest can be computed either as average intraday realized covariance matrix,
or, using daily time series of intraday returns.

Geometric means have a list of useful properties listed by Ando et al.
(2004) (ALM conditions). The function in equation 2.4 inherits these prop-
erties, which are especially valuable in the covariance estimation.
P1 Consistency with scalars. It is easy to see that in the univariate case

function 2.4 becomes von,t = |v̄on/v̄id|vid,t, that is equivalent to Hansen
& Lunde (2005) assumption. Proportion of determinants of the matrices
is also constant.
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P2 Joint homogeneity. If Vnew
on,t = αVon,t and Vnew

id,t = βVid,t, then Snew =√
α/βS. Consequently, estimation is invariant to the scale at which

covariance matrices are computed. For example, overnight covariance
matrix may be computed in per-hour terms.

P3 Permutation invariance. Given that S is symmetric, it does not matter
in which order assets are ranged, the resulting estimator will be the
same (up to permutation of assets), just like in case of regular covariance
matrix estimation.

P4 Monotonicity. If Vid,q ≥ Vid,t in Loewner ordering, then Von,q ≥
Von,t. From this property, for example, follows, that increase of intraday
volatility of any portfolio will cause increase of overnight volatility of
this portfolio and vice versa (properties (b) and (c) of Stepniak (1985)).

P5 Additivity. Von,t + Von,t+1 = S(Vid,t + Vid,t+1)S. In the limit, this
property allows to estimate scaling matrix Ŝ using equation 2.5. This
property correspond to continuity at Ando et al. (2004).

P6 Self-duality. Von = FS(Vid) ⇒ Vid = F−1
S (Von) This property means

that inverse function of 2.4 preserves the same structure and properties.
It also means that it is enough to estimate one matrix S to be able to
calculate both E(Vid,t|Von,t) and E(Von,t|Vid,t).
These properties, except for P5, directly follow from corresponding Ando

et al. (2004) properties by setting G(A,B−1) = const.

Interpretation of scaling matrix

One of the possible interpretation is that model 2.4 is a special case of BEKK
Engle & Kroner (1995) model. BEKK model is a multivariate generalization
of GARCH model, in which:

Vt = A +
∑
k

BkVt−1B′k +
∑
l

Clrtr′tC′l (2.6)

However, if we assume instead of equation 2.4 that:

Von,t =
∑
k

SkVon,tS′k (2.7)

some valuable properties will be lost. For k > 1 amount of parameters will
not be the smallest possible, as it is in univariate case. If S is not symmetric,
permutation invariance will not be hold, while it is natural to assume, that
ordering of assets should not influence estimation of their covariance matrix.
Otherwise, it would be necessary to assume some a priori ranking. Disad-
vantage of multivariate proportionality with respect to BEKK model is loss
of generality. Still, in multivariate proportionality model, like in BEKK, any
element of overnight covariance matrix σ2

on,ij is a linear combination of all
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elements σ2
id,lk of intraday covariance matrix, just with stronger restrictions

on parameters.
Another advantage of using multivariate proportionality is easiness of

interpretation of scaling matrix. If an overnight covariance matrix is pro-
portional to the intraday one, the matrix S is equal to some scalar mul-
tiplied by identity matrix S = sI. However, each asset may have different
ratio of overnight-to-intraday variance. In this case, if the correlation matrix
remains the same, and only variances are changing, the matrix S keeps be-
ing diagonal, but not necessary with the same coefficients on the diagonal.
Non-diagonal coefficients capture an approximate systematic difference in
correlations between overnight and intraday period: the fact that overnight
correlations are higher than during intraday.

2.2.5 Weighting

Once Ŝ estimator of S is obtained (equation 2.5), it is possible to get two con-
ditionally unbiased estimators for Vt from matrices V̂id,t - realized covari-
ance matrix for intraday period and V̂on,t = ron,tr′on,t - product of overnight
returns:

V̂t|id = V̂id,t + ŜV̂id,tŜ (2.8)

V̂t|on = Ŝ−1V̂on,tŜ
−1 + V̂on,t (2.9)

Estimator of the covariance for the whole day will also be unbiased:

V̂∼t = ωV̂t|id + (1− ω)V̂t|on (2.10)

where ω is a weighting coefficient that belongs to [0; 1].
Weighting coefficient should be chosen in order to minimize the expected

mean square error E(‖V̂t −Vt‖2). However true matrix of realized covari-
ance Vt is not observable.

In the paper of Hansen & Lunde (2005) it was proven, that in the uni-
variate case solution of the minimization problem E((V̂ − V )2) → min is
equal to the solution of the problem var(V̂ )→ min.

In the multivariate case the way of defining the distance between matrices
is not unique. Therefore there are many options of choosing ω.
• Minimize the squared Frobenius distance to the true matrix.
Frobenius norm on the space of matrices is one of the most frequently
used. It is defined as ‖A‖Φ =

√∑
i,j a

2
ij . It is possible to prove that

under the condition of unbiasness of V̂∼t the minimization problem
E(‖V̂∼t −Vt‖2Φ)→ min is equivalent to the sum of the elements’ vari-
ances minimization problem

∑
i,j var(ai,j) → min, what is similar to

the results of Hansen & Lunde (2005). In this case weighting coefficient



40 CHAPTER 2. OVERNIGHT COVARIANCE

ω is equal to:

ω∗Φ =
∑
ij var(v̂onij )−

∑
ij cov(v̂onij , v̂

day
ij )∑

ij var(v̂
day
ij ) +

∑
ij var(v̂onij )− 2

∑
ij cov(v̂onij , v̂

day
ij )

(2.11)

• Minimize the sum of squared variances error.
This problem is similar to the previous one, but includes only elements
on the main diagonal - variances and not includes covariances. It can be
written as E(‖diag(V̂t −Vt)‖2Φ) → min. Overnight covariance matrix
is built using only one observation and its rank is zero. Therefore it is
presumed to be a very noisy estimator. However, the covariances may
be less noisy than variances in this case: overnight correlation is always
equal to one by module. So, there is a sense not to take into account
variance of error of covariances.

ω∗diag =
∑
i var(v̂onii )−

∑
i cov(v̂onii , v̂

day
ii )∑

i var(v̂
day
ii ) +

∑
i var(v̂onii )− 2

∑
i cov(v̂onii , v̂

day
ii )

(2.12)

• Minimize the portfolio variance error.
As the covariance matrix is typically used in portfolio optimization or
in risk-management of the portfolio of assets, it may be reasonable to
minimize the mean squared error of the portfolio variance: E(w′V̂w−
w′Vw)2 → min where w is a vector of of weights of each asset in
portfolio. Disadvantage of this method is that the noisiness of overnight
covariance decreases greatly, therefore the weight of the V̂t|on may be
overestimated.

ω∗w =
var(w′V̂t|onw)− cov(w′V̂t|idw,w′V̂t|onw)

var(w′V̂t|onw) + var(w′V̂t|idw)− 2cov(w′V̂t|dayw,w′V̂t|onw)
(2.13)

2.2.6 Scaling-and-weighting estimator

To sum up, Scailng-and-weighing estimator of the whole day covariance
matrix may be computed using the following algorithm:
• calculate matrix Ŝ by equation 2.5 using average intraday and average
overnight covariance matrices for the previous days
• calculate weight ω∗ using one of the criteria 2.11 2.12 or 2.13
• estimate the covariance matrix V̂day

t for the current day using one of
the commonly used estimator (see section 2.2.2)
• compute the scaled-and-weighted estimator of covariance for the whole
day V̂∼t = ω∗(V̂id,t + ŜV̂id,tŜ) + (1− ω∗)(V̂on,t + Ŝ−1V̂on,tŜ

−1)
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2.3 Simulation study

The crucial assumption of the paper is that overnight covariance is a known
function of intraday one as in equation 2.4. In this section is shown, that
even if this assumption doesn’t hold, the proposed scaling-and-weighting
estimator is still a good approximation of the whole day covariance. So,
this estimator is robust to misspecification. It is shown, that at least it
outperforms the existing ’naive’ estimator (equation 2.1).

2.3.1 Data-generating process

The data generating process for the intraday covariance matrix is a mul-
tifactoral model. In this model the prices of the stocks are determined by
many factors, and the amount of factors exceeds the amount of stocks.

Vid = AFA′ (2.14)

Vid is a n×n covariance matrix of the stocks, F is a diagonal m×m matrix
of factor variances. So, A is a n ×m matrix that represents sensibility of
prices to the dynamic of factors.

At each period of time matrix A remains constant, while the matrix of
volatility of the factors changes. The dynamic of the volatility of each factor
follows Ornstein-Uhlenbeck process.

dfii = θ(µ− fii)dt+ σdWt (2.15)

It is a mean-reverting process, so, even if variance of factor is stochastic, it
is still a stationary process.

Overnight covariance is determined as a weighted sum of two models.
The first model assumes, that half of the factors remain constant during

the night. So, their volatility is zero. So, the matrix G is the same as F up
to some diagonal element gn

2 ,
n
2
and all other element are equal to zero. In

this case the overnight covariance is described by the following equation.

V1
on = AGA′ (2.16)

If the ’turned off’ elements of F represent factors that influence mostly only
one of the stock prices, while factors that remain ’turning on’ influence all the
stocks equally, the correlation during the night will be higher than during the
day. It is a realistic assumption, as the overnight news will more probably
be referred to the whole world or a country, while the news important for
the industry or one single firm will more probably appear during the day.

Another model is simpler, but more different to the initial assumption.
It just represent the fact, that correlation during the night is higher during
overnight period, without assumptions about reasons for it. In this model,
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variances of the stock remains the same as in equation 2.16. But the cor-
relation matrix is a weighted average of intraday correlation matrix and a
matrix of ones.

V2
on =

√
diag(V1

on)((1− s)Cid + sU)
√
diag(V1

on) (2.17)

Here Cid is an intraday correlation matrix, U is a matrix of ones and
s ∈ (0, 1) is a weight than represents the increase of the correlation during
overnight period.

The resulting true overnight covariance is an average of two models.

Von = wV1
on + (1− w)V2

on (2.18)

2.3.2 Properties of the simulations

In this simulations dimensionality of matrix Vid is 10 and amount of factors
is three times more. So, n = 10,m = 30.

Matrix A is composed by three n×n matrices, last of them is diagonal.
Each element of the matrix is determined by a random number ε that has
an Uniform distribution from zero to one.

A =

ε1,1 ... ε1,n ε1,n+1 ... ε1,2n hε1,2n+1 ... 0
... ... ... ... ... ... ... ... ...
εn,1 ... εn,n εn,n+1 ... εn,2n 0 ... hεn,3n

 (2.19)

The diagonal matrix represents individual factors, that affect only one
single stock. So, during the overnight period all the individual factors are
turned off, as well as a quarter of common factors. At the same time even
during the night amount of factors exceed amount of stocks.

As price of each stock depends upon 20 common factors and only one
individual, the latest is multiplied by constant h. In the basic simulation
this constant is set to be equal to 10. So, in average, two thirds of the stock
volatility is explained by common factors and one third by individual one.
During the overnight period, variance is explained only by common factors.
This leads to the significant increase in correlation during overnight period.

Vectors of parameters θ, µ, σ for equation 2.15 are also initialized in a
similar way.

θi = θ̃εi,θ (2.20)

µi = µ̃εi,µ (2.21)

σi = σ̃εi,σ (2.22)

In the basic scenario of simulations parameters are equal to: θ̃ = 0.02,
µ̃ = 2, σ̃ = 1.

Weight s is set to be 0.5, so, an overnight correlation lies just in the
middle between intraday correlation and 1.



2.3. SIMULATION STUDY 43

After generating the constant parameters the simulation is run for 1000
periods to get 2000 of ’true’ covariance matrices: for each day there is a true
intraday covariance matrix Vid,t and a true overnight covariance matrix
Von,t.

Estimator of intraday covariance matrix (realized covariance) and a vec-
tor of overnight returns are assumed to be observed with noise. Overnight re-
turn is a realization of multivariate Normal distribution ron,t ∼ N(0,Von,t).
Realized covariance estimator is modelled as a rescaled Wishart distribution
with l degrees of freedom, that represents the preciseness of the estimator.
V̂id,t ∼ W (1

lVid,t, l) In the standard scenario preciseness is set to 50, that
is an equivalent of 10 minute sampling for 8 hours of intraday trading. In
practice, realized covariance estimator are sampled at higher frequency. The
frequently used Zhang two-scale estimator may have a short grid of 1 minute.
However, the presence of noise and Epps effect decrease the preciseness of
the estimator, so, 50 degrees of freedom seems to be a realistic assumption.

Based on the simulation of 1000 observed realized covariances and overnight
returns two competing estimators are computed. For the scaling-and-weighting
estimator (V∼) the scaling matrix Ŝ and optimal weights are computed for
each day based on the previous 100 days observations.

The naive estimator (V+) is computed as a sum of realized covariance
V̂id,t and outer product of vector ron,t.

2.3.3 Results of the simulations

Two estimators were compared using the Standardized Loss Function ap-
proach of Diebold & Mariano (1995).

The loss function of estimators is defined as a Frobenius distance between
an estimator and a true covariance matrix.

LFsw = ||Vt − V ∼t ||Φ (2.23)

LFnv = ||Vt − V +
t ||Φ (2.24)

There would be tested the hypothesis that in average LFsw = LFnv , so,
there are no reason to prefer scaling estimator to the naive one. Consider
the following statistics.

τ = (L̄F sw − L̄Fnv)
√
n√

var(LFsw − LFnv)
(2.25)

As shown in Diebold & Mariano (1995) the statistics 2.25 has a Standard
Normal distribution. So, it is possible to test its equality to zero in order to
check the significance of the difference between two estimators.

In the table 2.1 the results of the simulations for different scenarios are
reported: value of τ statistics, and the percent of observations for which the
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loss function of naive estimator is less than loss function of scaling estimator.
The critical 1% level of τ -statistics is equal to 2.33.

In the basic scenario the scaling-and-weighting estimator significantly
outperforms the naive one.

Other scenarios were run it order to ensure the robustness of the esti-
mator to different specifications of data-generating process. Increase of the
mean-reverting coefficient µ ten times makes the variance process look more
similar to white noise process, while increase of σ allows the process to walk
far from its mean and on the finite sample look like Brownian motion. In-
creased variance of the factor volatility leads to the less precise estimation
of scaling matrix, and consequently lower the performance of the scaling-
and-weighting estimator. However, the difference is still highly significant,
so the estimator is robust to the high volatility of the volatility.

Choosing only one model of overnight return (w = 0, w = 1) only increase
the performance of the estimator. So, the scaling function fits the data well
even if the true process of increasing overnight correlation is different from
assumed.

The proposed estimator is robust also to the situation when the difference
between overnight and intraday correlation is not so high. If we set h = 1
it would mean that only about 5% of the stock variance is explained by
individual factor. It will decrease the difference in correlations to the values
about 0.05-0.1. Setting s = 0.1 we get the overnight correlation is only
10% more close to one then intraday one. However, the estimator is robust
to such changes even if they happen in both models. Even choosing only
one model with a small difference in the correlations does not decrease the
significance of the test.

The estimator is robust even to a decrease of preciseness of the realized
covariance estimator. If we set degrees of freedom equal to l = 15 that is
equivalent to 30 minutes sampling on one grid, the test statistics is still far
from zero and significant at 1% level.

However, unprecise realized covariance estimation together with a small
difference in correlation slightly decreases the performance of the estimator.
15 observations do not let to estimate the correlation coefficients with a
desired preciseness, so in 5.3% of cases it a ’naive’ estimator is closer to the
true covariance matrix. In average, difference between loss functions is still
significantly lower than zero.

So, using simulated data, it was shown, that the proposed estimator is
robust to misspecification and to the increased variance of the market volatil-
ity. It was also shown that the estimator is robust to the non-preciseness
of the realized covariance estimator and to the decrease of the difference
between intraday and overnight correlations, but the both can decrease the
performance of the proposed estimator: it is still necessary to have enough
observation to estimate the difference between overnight and intraday cor-
relation. In all the considered cases, the ’scaling-and-weighting’ estimator
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significantly outperforms ’naive’ summing estimator.

2.4 Empirical application

2.4.1 Data

Empirical validation was performed on the data from Russian stock mar-
ket. There was chosen nine stocks: Gazprom, Lukoil, Sberbank, Magnit,
Nornikel, Surgutneftegas, Novatek, VTB and Rosneft. These stocks have
the highest free-float capitalization. Weights of each stock in the MICEX
index exceed 4%. The sample covers companies from different industries:
oil&gas, metals&mining, banking and retail. The sample period was from
2009 to 2015 years.

Tick data on intraday stock prices was downloaded from website of "Fi-
nam" (www.finam.ru) - the largest broker in Russia.

For each of the day in the sample there were calculated realized covari-
ances using double subsampling estimator with 30-minute large scale and 1
minute small scale (see Zhang et al. (2005), de Pooter et al. (2008), Zhang
(2011)).

Then, for each year there was computed a scaling matrix S and an
optimal weight. To make an out-of-sample analysis, both the weight and
scaling matrix Ŝ were used from the previous year. Say, each estimator of
covariance matrix for 2010 year was computed with a scaling matrix and
weight of 2009 year and so on.

The problem with calculation of weights is that extreme observations
enter the average squared. So, an optimal weight may be very sensitive
to the one or two outlier. To decrease this effect, Hansen & Lunde (2005)
delete 1% of outliers when computing weights.

In this paper from 0 to 10% of the extreme observations were excluded.
In the Table 2.5 there are resulting weights.

Among three methods of weight computation, minimization of Frobenius
distance with 5 observations excluded (out of 250) has the least variance from
year to year. This weight was used in empirical testing.

Average scaling matrix is presented in table 2.4. The matrix is nearly
diagonal. However, each non-diagonal element is positive, what could not
happen if these elements were insignificant. Testing hypothesis about diag-
onal scaling matrix is equivalent to the test of equality of correlation matri-
ces. Using Larntz & Perlman (1985) test of equality of correlation matrix
it is possible to reject the hypothesis of equality of overnight and intraday
correlation matrices. Maximum difference between overnight and intraday
z-transformed correlations is equal to 0.69, while minimum difference is 0.29.
Given 1500 observations it corresponds to 18.75 and 7.86 valued of the test
statistics, what is far beyond the 1% critical 3.52 level. So, even if each non-
diagonal element of the scaling matrix is relatively small, the hypothesis
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that scaling matrix is diagonal is rejected.
In order to show, that scaling estimator V∼ (equation 2.10) is more pre-

cise then naive estimator V+ (equation 2.1), three tests will be performed:
normality of residuals, Value-at-Risk forecast, Minimum Variance portfolio
optimization. For all these tests a simple forecasting model will be assumed:

E(Vt+1|Vt) = Vt (2.26)

Such a parsimonious model is assumed in order to avoid model specific bias.
The target of empirical part of the present paper is not to provide the
better forecast of next day covariance matrix, but only to show that scaling
estimator is more precise then naive one. Usage of equation 2.26 implicitly
assumes, that more precise estimator of today covariance matrix is a better
forecast of tomorrow covariance matrix.

2.4.2 Residual test

If we multiply the inverse of the square root of the covariance matrix by
the vector of returns for this day, the resulting vector - vector of residuals
- will have standard Gaussian distribution. (Vt)−1/2rt ∼ N(0, I) So, better
estimator of the whole day covariance should provide residuals that are closer
to Standard Gaussian. This test in some variations is used in recent papers,
such Andersen et al. (2007), Peluso et al. (2015). It is noted, that even if in
reality presence of jumps leads to more fat-tailed distribution than Normal,
both estimators are equally suffered from this. So, in this section return
of the next day divided by the square root of covariance matrix of today,
following an out-of-sample model 2.26.

In the table 2.6 properties of the rescaled returns are shown. It is easy to
see, that scaling estimator V∼ provides residuals closer to Standard Gaus-
sian then naive estimator V+. Its variance is closer to 1, excess kurtosis
is closer to 0, consequently, Jarque-Bera test is lower. Autocorrelation of
residuals is also slightly closer to 0. Frobenious distance of covariance matrix
of residuals to identity I matrix is closer to 0, as well as one of correlation
matrix.

So, the residuals of the scaling estimator are more close to the stan-
dard Gaussian distribution then the residuals of naive estimator. It means
that the first estimator provides more accurate estimation of the whole day
covariance matrix.

2.4.3 Portfolio risk-management

One of the practical problem for which it is necessary to calculate the co-
variance matrix is a risk-management of a portfolio of stocks. There was
constructed a portfolio of each stock with the same weights 1/9. For each
day, there was calculated a covariance matrix using two competing methods.
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Then, each covariance matrix was assumed to be a prediction of the covari-
ance for the next day. The variance of the portfolio is: vt = w′Vt−1w where
w = (1/9, . . . , 1/9). Using this variance there was calculated Value-at-Risk
of 1%, 5%, and 10% level, as a quantile of Normal Gaussian distribution.

Assumption that tomorrow covariance is equal to the today realized co-
variance is too strong. So, as one can see from the table 2.7 the amount
of exceptions (days, at which return is lower then calculated Value-at-Risk)
for both estimators is much higher then confidence level. For the 1% each
Value-at-Risk estimator provides 3 to 14 exceptions per year that is higher
then expected 2.5 exceptions. However, for each year, the number of ex-
ceptions of scaling estimator is not higher then the number of exceptions of
’naive’ estimator.

With the increase of confidence level the number of exception is more
closer to the expected one. For 5% and 10% Value-at-Risk the number of
expected violations is 12.5 and to 25 (75 and 150 for the 6-year period).
And number of violations is still smaller if use a ’scaling’ estimator, rather
then ’naive’ one (except for one case of 5% VaR at 2013).

Unconditional Coverage Test by Kupiec (1995) shows, that number of
violations for all the cases significantly exceed the expected level. As it is
shown in the table 2.8, only for 10% Scaling VaR probability of exception is
not significantly larger than confidence level.

Test of equality of probabilities of binomial distributions shows (table
2.9), that there are no significant differences in number of exceptions between
Scaling and Naive estimators.

In order to show, that difference between two estimators is statistically
significant, Diebold-Mariano statistics 2.25 of different loss functions is pre-
sented at table 2.10.

If we use the fact of exception (I = Irt<V aR) as a loss-function (follow-
ing Lopez (1998)), then scaling-and-weighting estimator turns out to provide
significantly better value-at-risk forecast than naive estimator. This differ-
ence is significant at 5% level for 1% and 5% VaR, while for 10% VaR it is
significant even at 1% level. Significance of DM-test, while non-significant
UCT means, that even if difference between number of violations is too
small, violation of scaling VaR happens mostly in the same days when naive
VaR also violates.

Other loss functions for Value-at-Risk forecasts can be divided into "reg-
ulator’s" and "firm’s" loss functions (see Abad et al. (2015)).

Regulator’s loss functions penalize difference between VaR forecast and
realized return only in the case of VaR violence. So, regulator loss functions
look like LF = Irt<V aRf(rt, V aR), where f(rt, V aR) is some positive func-
tion, increasing with difference V aR− rt. In table 2.10 there are results for
the following loss functions. RQL is a Quadratic Lopez (1998) loss function
with f = 1 + (V aR− rt)2. As for daily returns quadratic difference is much
smaller then one, the DM-statistics for RQL is almost the same as statistic
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for indicator loss function. RL is a Linear loss function f = V aR−rt that is
equal to f = |V aR−rt| - a regulatory loss functions RC3 by Caporin (2008).
RQ is a Quadratic loss function proposed by Sarma et al. (2003) equal to
f = (V aR−rt)2. RC1 and RC2 are the Caporin (2008) loss functions, which
show magnitude of violation divided by VaR. For RC1 f = |1− | rtV aR ||, and
for RC2 f = (|rt|−|V aR|)2

|V aR| .
Firm’s loss functions penalise not only the exceptions, but also regular

difference, that represents opportunity cost for the firm. In other words
firm’s loss functions prevent firms from excess reserving. In general form
these loss functions look like LF = If(rt, V aR) + (1− I)g(rt, V aR).

FS is a firm’s Sarma et al. (2003) loss function, in which f is the same
as in RQ, while g = −βV aRt. FABL is a similar loss function by Abad
et al. (2015), with only difference that g = β(rt−V aR). In both cases Abad
et al. (2015) suggest to consider β as an interesting rate. In this paper this
coefficient is set to be β = 1.05

1
365 −1, that is equivalent of 5% interest rate.

Caporin (2008) suggested to use symmetric loss f = g for the Value-
at-Risk forecasts that pass Unconditional Coverage Test. However, in this
paper, only one out of six VaR forecasts have number of violations not
significantly different form the confidence level. So, the minimum of the
Caporin’s loss function is not guaranteed to be at the true VaR, at least
because they are independent from the confidence level. So, Caporin’s loss
functions were modified, and set f = 1−α

α g, where 1−α
α is equal to 99 for 1%

confidence level, 19 for 5% confidence level and 9 for 10% confidence level.
Note, that even after modification, none of the loss functions except

FC3Vm are consistent loss functions Gneiting (2011a), in the sense, that
their minimums are not the true quantile. However, the results of all func-
tions are presented at the table 2.10 for illustrative purposes. Even if "regu-
lator" loss functions are not consistent for quantile estimation, they provide
an indication of magnitude of VaR violations. "Firm" loss functions provide
an indication of cost to the firm to use one of the VaR prediction as a risk
measure.

As one can see from the table 2.10 for the majority of loss functions
the difference between two forecasts is significant. In all the cases scaling
estimator, proposed in this paper, provides a better Value-at-Risk forecast
than naive estimator, even in the cases, when this difference is not significant.
The most important in this table are first and last rows. The first row - is
a different way of measuring difference in number of exceptions, while the
last - is the only consistent loss-function.

To be precise, for 1% VaR the difference is not significant for the loss
functions that include quadratic term. It means that for both models 1%
VaR violations have large magnitude.

In total, out of 33 test statistics, 10 are significant at 1% confidence level,
12 are significant at 5% level, 5 are significant at 10% level, and only 6 are
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insignificant at 10% level.
So, parsimonious forecasting model provides better Value-at-Risk pre-

dictions if scaling estimator is used rather then ’naive’ one.

2.4.4 Portfolio minimum variance optimisation

Another test - is a comparison of performance of two portfolio managers that
minimize the variance of the portfolio using computed covariance matrices
as predictors for the next day covariance of the assets. In this framework
it is also assumed that the portfolio is rebalanced every morning at the
beginning of the trading day.

Unlike the previous case, the weights of the portfolio are calculated using
equation:

wt+1 = V−1
t i

i′V−1
t i

(2.27)

where i = (1, . . . , 1) is a unit vector. As estimator for Vt one portfolio
manager uses V̂∼t as defined in the equation 2.10 and another manager uses
V̂+
t from equation 2.1.
As you can see in the table 2.11 standard deviation of the portfolio

returns at each year is lower for scaling estimator then for ’naive’ estimator.
On the one hand, the difference is not significant if we use F-test of equality
of variances. But on the other hand, if these variances were completely
equal, we could expect about 50% at each year ’naive’ estimator outperforms
a ’scaling’ one. However, the scaling estimator provides better results for
every year. The probability of such event is 0.56 = 1/64. Moreover, if we
use Diebold & Mariano (1995) statistics (equation 2.25) for the loss function
LF = r2

t (simply test equality of the variances in different way) it will be
equal to -2.4, that is significant at 1% level.

Both methods do not produce a good predictor of the Value-at-Risk as
their violations rates are higher than a confidence interval. This is linked to
the fact, that noise in covariance estimator leads to the double mistake: one
when computing the weights of the portfolio, and another when computing
the variance of such portfolio. That leads to underestimation of the variance
of portfolio. However, Value-at-Risk calculated using the scaling estimator is
also more reliable than one, computed by the old method - ’naive’ estimator.
It has much less violations for almost every year at 1%, 5% and 10% level.
And this difference is even significant at 10% confidence level for 1% VaR
and 5% VaR, as it is show at table 2.12.

Moreover, applying the same loss functions based test of equality of VaR
forecasts as was applied for equiweighted portfolio, provides DM statistics
significantly negative at 1% level, except for one, that is still significant at
5% level.

So, the proposed estimator outperforms the existing one also in this test.
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Using scaling estimator rather than naive, investor will decrease the variance
of his portfolio, and also get more precise Value-at-Risk forecast.

2.5 Conclusion
In this paper the function of direct proportionality was extended to the
positive semi-definite symmetric matrices. This functions was used to rescale
intraday and overnight covariance matrices and receive two component of
the covariance estimation for the whole day. The resulting estimator is a
weighted sum of them.

At the simulation studies the invented estimator shows robustness to
the misspecification of the model. It is also robust to the situation when
the difference between overnight and intraday correlation is very small, and
robust to the noise of underlying realized covariance estimator, as long as it
allows to capture difference between overnight and intraday correlations.

In the test of residuals, the proposed estimator shows higher performance
than alternative typically used estimator - the sum of intraday and overnight
covariance matrix. In practical applications such as forecasting the portfo-
lio Value-at-Risk and minimization of portfolio variance, it also performs
significantly better.

The proposed method still can be improved in different ways. For ex-
ample it is possible to use shrinkage covariance estimation for the overnight
covariance (see e.g. Ledoit & Wolf (2004), Bai & Shi (2011)), before using
the method proposed in this paper. It may improve the overnight compo-
nent of the estimator making it strictly positive definite and decrease its
noise.

There is still a question unsolved in the paper, what the distribution
of the scaling matrix Ŝ is. Once the distribution will be known, it will be
possible to construct confidence interval for elements of these matrix, test
their equality to zero, and test some specific form of the matrix S, such as
diagonality or equality of all its diagonal terms.

2.6 Appendix
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Table 2.1: Results of the simulations

Scenario τ τ < 0
Standard -89 0.0%
θ = 0.2 -100 0.0%
σ = 10 -61 3.4%
θ = 0.2, σ = 10 -107 0.0%
w = 0 -118 0.0%
w = 1 -108 0.0%
s = 0.1 -118 0.0%
h = 1 -84 0.5%
h = 1, s = 0.1 -91 0.0%
w = 0, h = 1 -81 0.0%
w = 1, s = 0.1 -104 0.0%
l = 15 -74 0.0%
l = 15, h = 1, s = 0.1 -45 5.3%
l = 15, w = 0, h = 1 -62 0.1%
l = 15, w = 1, s = 0.1 -52 2.3%
σ = 10, l = 15, h = 1, s = 0.1 -54 0.8%

Table 2.2: Average Intraday Correlation Matrix

GAZP LKOH SBER MGNT GMKN SNGS NVTK VTBR ROSN
GAZP 100% 60% 62% 30% 49% 53% 47% 53% 61%
LKOH 60% 100% 50% 30% 47% 54% 47% 45% 59%
SBER 62% 50% 100% 28% 44% 48% 42% 56% 53%
MGNT 30% 30% 28% 100% 24% 29% 28% 24% 28%
GMKN 49% 47% 44% 24% 100% 44% 38% 40% 47%
SNGS 53% 54% 48% 29% 44% 100% 44% 43% 53%
NVTK 47% 47% 42% 28% 38% 44% 100% 36% 44%
VTBR 53% 45% 56% 24% 40% 43% 36% 100% 46%
ROSN 61% 59% 53% 28% 47% 53% 44% 46% 100%
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Table 2.3: Average Overnight Correlation Matrix

GAZP LKOH SBER MGNT GMKN SNGS NVTK VTBR ROSN
GAZP 100% 81% 87% 57% 72% 79% 73% 82% 82%
LKOH 81% 100% 77% 53% 68% 79% 71% 75% 79%
SBER 87% 77% 100% 57% 73% 77% 74% 87% 82%
MGNT 57% 53% 57% 100% 49% 55% 56% 57% 52%
GMKN 72% 68% 73% 49% 100% 69% 63% 72% 71%
SNGS 79% 79% 77% 55% 69% 100% 69% 76% 77%
NVTK 73% 71% 74% 56% 63% 69% 100% 72% 73%
VTBR 82% 75% 87% 57% 72% 76% 72% 100% 79%
ROSN 82% 79% 82% 52% 71% 77% 73% 79% 100%

Table 2.4: Average Scaling Matrix

35% 3% 5% 2% 2% 3% 2% 4% 2%
3% 34% 2% 1% 1% 3% 2% 2% 2%
5% 2% 36% 3% 4% 3% 4% 6% 4%
2% 1% 3% 33% 2% 2% 3% 3% 1%
2% 1% 4% 2% 40% 2% 2% 4% 3%
3% 3% 3% 2% 2% 32% 2% 4% 3%
2% 2% 4% 3% 2% 2% 35% 4% 3%
4% 2% 6% 3% 4% 4% 4% 33% 4%
2% 2% 4% 1% 3% 3% 3% 4% 33%
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Table 2.5: Optimal Weights of Rescaled Intraday Covariance Matrix

0 observations excluded 2009 2010 2011 2012 2013 2014 2015 Variance
Frobenius weight: 88% 97% 82% 94% 96% 68% 99% 0.01227
Trace weight: 91% 95% 86% 93% 97% 70% 98% 0.00950
Portfolio weight: 76% 98% 71% 94% 93% 51% 103% 0.03466
5 observations excluded 2009 2010 2011 2012 2013 2014 2015 Variance
Frobenius weight: 90% 88% 92% 90% 92% 91% 93% 0.00025
Trace weight: 89% 82% 91% 89% 93% 92% 93% 0.00149
Portfolio weight: 84% 81% 93% 83% 78% 81% 84% 0.00221
10 observations excluded 2009 2010 2011 2012 2013 2014 2015 Variance
Frobenius weight: 87% 86% 89% 87% 88% 91% 89% 0.00029
Trace weight: 84% 78% 86% 85% 87% 92% 88% 0.00167
Portfolio weight: 81% 78% 86% 80% 78% 70% 80% 0.00205
15 observations excluded 2009 2010 2011 2012 2013 2014 2015 Variance
Frobenius weight: 87% 85% 88% 84% 86% 89% 87% 0.00037
Trace weight: 82% 76% 87% 78% 85% 90% 85% 0.00257
Portfolio weight: 83% 72% 83% 73% 76% 78% 76% 0.00180
20 observations excluded 2009 2010 2011 2012 2013 2014 2015 Variance
Frobenius weight: 87% 84% 87% 83% 84% 88% 85% 0.00044
Trace weight: 82% 79% 83% 76% 78% 83% 81% 0.00069
Portfolio weight: 86% 62% 80% 72% 74% 75% 73% 0.00536
25 observations excluded 2009 2010 2011 2012 2013 2014 2015 Variance
Frobenius weight: 88% 81% 86% 83% 82% 87% 84% 0.00069
Trace weight: 83% 73% 84% 78% 71% 85% 79% 0.00312
Portfolio weight: 85% 58% 73% 71% 77% 73% 68% 0.00699

Table 2.6: Properties of the Distribution of Rescaled Returns

V ∼ V +

Variance 1.81 1.92
Excess Kurtosis 3.14 3.65
Jarque-Bera test 5565 7514
Autocorrelation 3.95% 4.04%
F-distance of covariance to I 7.07 8.96
F-distance of correlation to I 4.75% 4.88%
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Table 2.7: Value-at-Risk Violations for Portfolio of Equal Weights

Violations Consequent Violations
Scaling Naive Scaling Naive

Estimator Estimator Estimator Estimator
VaR 1%, 2010 8 9 0 0
VaR 1%, 2011 12 14 0 0
VaR 1%, 2012 8 10 0 0
VaR 1%, 2013 6 6 0 0
VaR 1%, 2014 6 7 0 1
VaR 1%, 2015 3 3 0 0
VaR 1%, 2010-2015 43 49 0 1
VaR 5%, 2010 15 17 0 0
VaR 5%, 2011 21 25 1 1
VaR 5%, 2012 19 21 0 1
VaR 5%, 2013 18 17 0 0
VaR 5%, 2014 16 19 2 1
VaR 5%, 2015 18 18 0 0
VaR 5%, 2010-2015 107 117 3 3
VaR 10%, 2010 25 25 2 2
VaR 10%, 2011 30 37 1 2
VaR 10%, 2012 24 27 2 4
VaR 10%, 2013 31 32 1 1
VaR 10%, 2014 29 30 4 3
VaR 10%, 2015 28 30 2 2
VaR 10%, 2010-2015 167 181 12 14

Table 2.8: Unconditional Coverage Test for Equiweighted Portfolio VaR
Forecasts

Value-at-Risk UCT χ-value prob.
V ∼ 1% VaR 35.1 0.0%
V + 1% VaR 48.8 0.0%
V ∼ 5% VaR 12.8 0.0%
V + 5% VaR 21.3 0.0%
V ∼ 10% VaR 2.1 15.0%
V + 10% VaR 6.7 0.9%
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Table 2.9: Test of Equality of Equiweighted Portfolio VaR Forecasts

Value-at-Risk z-stat. prob.
1% VaR -0.64 26.3%
5% VaR -0.69 24.4%
10% VaR -0.80 21.2%

Table 2.10: Diebold-Mariano Statistics for Equiweighted Portfolio Value-at-
Risk Forecasts

Loss Function 1% VaR 5% VaR 10% VaR
I -1.900 -1.828 -2.562
prob. 2.87% 3.38% 0.52%
RQL -1.900 -1.828 -2.562
prob. 2.87% 3.38% 0.52%
RL -2.336 -3.950 -3.512
prob. 0.97% 0.00% 0.02%
RQ -0.605 -1.632 -2.005
prob. 27.27% 5.13% 2.25%
RC1 -1.862 -3.307 -3.961
prob. 3.13% 0.05% 0.00%
RC2 -0.407 -1.500 -2.028
prob. 34.22% 6.68% 2.13%
FABL (YR = 5%) -0.314 -1.481 -1.895
prob. 37.67% 6.93% 2.90%
FS (YR = 5%) -0.268 -1.434 -1.838
prob. 39.45% 7.58% 3.30%
FC1Vm -1.743 -3.049 -3.738
prob. 4.07% 0.11% 0.01%
FC2Vm -0.113 -1.159 -1.899
prob. 45.50% 12.31% 2.88%
FC3Vm -1.885 -2.390 -1.399
prob. 2.97% 0.84% 8.09%
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Table 2.11: Properties of the Minimum-Variance Portfolio

V scaling V naive

Std.dev. of portfolio returns 2010 1.54% 1.58%
Std.dev. of portfolio returns 2011 2.03% 2.10%
Std.dev. of portfolio returns 2012 1.34% 1.37%
Std.dev. of portfolio returns 2013 1.14% 1.15%
Std.dev. of portfolio returns 2014 1.64% 1.67%
Std.dev. of portfolio returns 2015 1.56% 1.57%
Std.dev. of portfolio returns 2010-2015 1.57% 1.60%
VaR 1%, Number of Violations 2010 17 17
VaR 1%, Number of Violations 2011 24 35
VaR 1%, Number of Violations 2012 25 26
VaR 1%, Number of Violations 2013 18 23
VaR 1%, Number of Violations 2014 16 18
VaR 1%, Number of Violations 2015 18 20
VaR 1%, Number of Violations 2010-2015 118 139
Var 5%, Number of Violations 2010 33 39
Var 5%, Number of Violations 2011 46 49
Var 5%, Number of Violations 2012 40 41
Var 5%, Number of Violations 2013 32 40
Var 5%, Number of Violations 2014 30 37
Var 5%, Number of Violations 2015 34 35
Var 5%, Number of Violations 2010-2015 215 241
Var 10%, Number of Violations 2010 51 56
Var 10%, Number of Violations 2011 58 59
Var 10%, Number of Violations 2012 51 54
Var 10%, Number of Violations 2013 57 60
Var 10%, Number of Violations 2014 44 50
Var 10%, Number of Violations 2015 51 55
Var 10%, Number of Violations 2010-2015 312 334

Table 2.12: Test of Equality of Minimum Variance Portfolio Value-at-Risk
Forecasts

Value-at-Risk z-stat. prob.
1% VaR -1.37 8.5%
5% VaR -1.32 9.3%
10% VaR -0.97 16.4%
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Table 2.13: Diebold-Mariano Statistics for Minimum-Variance Portfolio
Value-at-Risk Forecasts

Loss Function 1% VaR 5% VaR 10% VaR
I -3.666 -3.933 -2.670
prob. 0.01% 0.00% 0.38%
RQL -3.666 -3.934 -2.670
prob. 0.01% 0.00% 0.38%
RL -5.206 -4.396 -4.823
prob. 0.00% 0.00% 0.00%
RQ -4.899 -6.291 -7.447
prob. 0.00% 0.00% 0.00%
RC1 -5.876 -7.181 -7.702
prob. 0.00% 0.00% 0.00%
RC2 -4.428 -5.239 -5.658
prob. 0.00% 0.00% 0.00%
FABL (YR = 5%) -2.979 -3.499 -1.888
prob. 0.14% 0.02% 2.95%
FS (YR = 5%) -2.985 -3.499 -3.711
prob. 0.14% 0.02% 0.01%
FC1Vm -5.85 -7.23 -8.03
prob. 0.00% 0.00% 0.00%
FC2Vm -4.34 -5.21 -5.83
prob. 0.00% 0.00% 0.00%
FC3Vm -6.178 -6.928 -6.845
prob. 0.00% 0.00% 0.00%
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CHAPTER 3

Asynchronous Markets: Estimation and Forecast of
Covariance Matrix

Estimation of the variance-covariance matrix is not a trivial exercise
if markets are asynchronous. This paper presents different methods of
estimation the whole day correlations using high-frequency data from the
overlapping period. Once covariance matrix estimates for each day are ob-
tained, forecasting models become available. Different HAR and EWMA
models were compared on FTSE-100 and NASDAQ data.

Keywords:

C58 Financial Econometrics
G17 Financial Forecasting and Simulation
G32 Financial Risk and Risk Management
Asynchronous markets

3.1 Introduction
Efficient asset allocation demands risk and return estimates to be as precise
as possible. In order to predict variance of the portfolio, Value-at-Risk, or
other risk measures, it is necessary to estimate variance-covariance matrix
of the asset returns. Consequently, covariance matrix is necessary in asset-
management, for mean-variance or minimum variance portfolio optimiza-
tion. Even estimation of fundamental value of the firm through discounted
cash flow models uses beta coefficient obtained from covariance matrix. So,
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virtually any aspect of risk-return estimation in financial markets involves
forecast of covariance matrix.

Investment portfolios of companies and individuals may consist not only
of domestic assets, but also include assets on international financial market.
Stock exchanges, at which these assets are traded, may be located at different
time-zones and have different trading hours. This causes asynchronicity
problem, making estimation of covariance matrix not trivial.

For daily data the question was already discussed in the literature.
In order to avoid asynchronicity problem some authors (González (2016),
Chalmers et al. (2001)), compare only synchronous markets. Other (Berben
& Jansen (2005), Christiansen (2007), Abad et al. (2010)) use weekly returns
to decrease bias. Some methods are based on summation of product of all
overlapping returns (Scholes & Williams (1977), Morgan (1996), Bergomi
(2010), Sotiropoulos (2016). However, these methods do not guarantee pos-
itive semidefiniteness of the covariance matrix. Another approach is syn-
chronization of the data through VAR or VMA model (Burns et al. (1998),
Audrino & Bühlmann (2004), Butler & Okada (2007), Scherer (2013)).

The target of the paper is to estimate and forecast the whole day co-
variance matrix for a case of asynchronous markets, based on the intraday
high-frequency data.

The main part of the paper is divided into two parts: estimation and
forecast. In the first part, four estimators of correlation matrix are intro-
duced and tested on real data. In the second part, a new version of HAR
model is introduced, that takes into account both volatility spillovers and
increasing correlation during high volatility periods. The performances of
different HAR and EWMA models are compared on real data of market
indices from LSE and NASDAQ. Main parts are followed by conclusion,
bibliography and appendix.

3.2 Estimation

3.2.1 Notations

Asynchronous markets are such markets, that have different trading hours.
They are usually located at different time zones. Two stock exchanges can
have a common trading period, like LSE and NYSE, or do not overlap at
all, like NYSE and NIKKEI. The present paper is focused on the first case,
when two stock exchanges have an overlapping period.

A picture 3.1 is a sketch illustrating two partially overlapping asyn-
chronous markets: LSE and NASDAQ. At time t (14:30 UTC) NASDAQ
opens and both stock exchanges are open. At time t+a (16:30 UTC) trading
day of LSE ends and only NASDAQ is open until t+ b (21:00 UTC). From
t+b to t+c (next day 08:00 UTC) both stock exchanges are closed. Finally,
from t+ c to t+ 1 only LSE is open.
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Figure 3.1: Illustration of asynchronous stock exchanges

LSE // //

NASDAQ // //

time t t+ a t+ b t+ c t+ 1

For definiteness, in the present paper we consider opening of NASDAQ
as a beginning and ending point of the whole day.

Let us define pt = (plt, pnt ) as a vector of logarithm of asset prices at time
t, where the first asset is traded in London and second in New-York. So,
logreturn for period [t; t+ i] is:

rt:t+i = pt+i − pt (3.1)

Assume that logreturns are Normally distributed with zero mean and
some covariance matrix.

rt:t+i ∼ N(0,Vt:t+i) (3.2)

The target of the paper is to estimate the covariance matrix for the whole
day V̂t = V̂t:t+1.

The assumption of normality can be weakened. In the present paper it is
neither used in estimation, nor in forecast of covariance matrix, but only in
the empirical tests: Value-at-Risk forecasts and Minimum-variance portfolio
optimization.

3.2.2 Volatilities estimation

One approach is decomposition of covariance matrix into variances and cor-
relations (see for example Engle (2002)).

Vt =
(

σ2
11,t ρtσ11,tσ22,t

ρtσ11,tσ22,t σ2
22,t

)
(3.3)

Separate estimates of volatilities and correlation coefficient eliminate the
asynchronicity problem for volatility estimation.

Estimation of the whole day volatility based on the intraday high-frequency
data was already discussed in the literature (Hansen & Lunde (2005), Ahoniemi
& Lanne (2013), Triacca & Focker (2014)). The present paper uses the
method proposed in Hansen & Lunde (2005). Assuming that overnight
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volatility is proportional to intraday one, it is possible to define volatility
estimator as a linear combination of intraday realized variance and overnight
squared return.

σ̂2
11,t = ω1(1 + s1)(σ̂2

11,t:t+a+ σ̂2
11,t+c:t+1) + (1−ω1)( 1

s1
+ 1)(r2

l,t+a:t+c), (3.4)

σ̂2
22,t = ω2(1 + s2)(σ̂2

22,t:t+b) + (1− ω2)( 1
s2

+ 1)(r2
n,t+b:t+1), (3.5)

where σ̂2
ii,T is a realized volatility at the time interval T , si is a ratio between

average overnight and intraday volatilities, and ωi is chosen in such a way to
minimize the variance of the whole day volatility estimator. Here, intraday
realized volatility for LSE consists of two parts: one belongs to the next
calendar day.

3.2.3 Correlation estimators

It is natural to use data from overlapping period for the whole day correla-
tion estimation. However, whole day correlation appears to be higher then
correlation during overlapping period. The present section proposes sev-
eral methods of obtaining correlation coefficient, for simplicity called: RS -
scaling, ρL - linear, ρP - proportional and RN - naive.

Scaling overlapping covariance matrix

Obtaining overnight covariance from the intraday realized covariance matrix
is possible by multivariate rescaling defined in section 2.2.4. This method
can be extended for the case of asynchronous markets. In comparison with
section 2.2.4it is enough to take only correlation coefficient from it, neglect-
ing the variances.

RS
t = diag(SV̂opS)−

1
2 SV̂opS diag(SV̂opS)−

1
2 (3.6)

where V̂op = V̂t:t+a is a realized covariance matrix from overlapping pe-
riod and scaling matrix S = GM(V̄, V̄−1

op ) is a geometric mean (see Pusz
& Woronowicz (1975), Ando et al. (2004), Iannazzo (2016)) of average co-
variance matrix V̄ = 1

T

∑T
t=1 rtr′t and inverse of the average overlapping

covariance matrix V̄op = 1
T

∑T
t=1 V̂op,t.

This method guarantees that obtained correlation matrix will be positive
semi-definite.

Linear regression of z-transformed correlations

The first approximation of functional dependence is a linear function. As-
sume, that whole day correlation ρt is a linear function of correlation ρop,t =
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σ during overlapping period.

ρt = a+ bρop,t + εt (3.7)

However, linear dependence does not guarantee that correlation coefficient
will belong to the interval [−1; 1]. A solution is to use Fisher’s z-transformation.

z(ρ) = 0.5 log(1 + ρ

1− ρ) (3.8)

Z-transformed correlation belongs to interval [−∞; +∞] and close to orig-
inal correlation at low values of ρ. Assuming linear dependence between
z-transformed whole day correlation and z-transformed overlapping correla-
tion it is possible to fit the model:

z(ρLt ) = α+ βz(ρop) + εt (3.9)

As ρt is not directly observable, one of the solutions is to use ρ̄(m)
t obtained

from average covariance matrices for m days: V̄(m)
t = 1

m

∑t
i=t−m rir′i. In

this paper optimal m was found by simulations (see Appendix, section 3.5).

Proportional z-transformed correlation

A modification to the previous approach is to use proportional function
instead of linear at equation 3.9.

z(ρPt ) = γz(ρop) + εt (3.10)

Both linear and proportional methods, however, guarantee positive semi-
definiteness of the covariance matrix only for a case of two assets.

Naive estimator

The last approach is to treat a return out of overlapping period as one of
the observation for realized covariance estimation.

VN
t = V̂op + rt+a:t+1r′t+a:t+1 (3.11)

RN
t = diag(VN

t )−
1
2 VN

t diag(VN
t )−

1
2 (3.12)

Disadvantage of this method is very high noise of correlation coefficient, as
the major part of the covariance matrix 3.11 is constructed using only one
observation.
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3.2.4 Empirical validation

Data

Four methods were applied to the returns of FTSE-100 and NASDAQ in-
dices. One minute sampled valued of indices were downloaded from www.finam.ru,
one of the major Russian broker. To calculate intraday realized volatilities
and ovelapping realized covariance matrices two scale estimator ((Zhang
et al. (2005), Zhang (2011))) was used with 5-minute large grid and 1-minute
small grid.

Data sample for 2012-2016 years consists of 1146 overlapping days. The
first two years (452 observations) were considered as training sample and
the last three years (694 observations) as control sample. All weights ω and
scaling coefficients s for Hansen & Lunde (2005) volatilities were calculated
using only training sample. The same is applied to calculation of parameters
for correlation estimators: α, β, γ,S.

Average Frobenius Error and Root mean squared error

In order to choose the best estimator there was designed a simple out-of-
sample test: forecast of the tomorrow covariance matrix. Frobenius error is
defined as a Frobenius distance between covariance matrix forecast and an
outer product of return vector AFE = 1

T−1
∑T−1
t=0 ||rt+1r

′
t+1−Vt||Φ . A one-

day-ahead return was chosen due to the fact, that the large part of ’Naive’
estimator is an outer product of a large part of return vector, so, it will
mistakenly provide the lowest error.

As one can see from the table 3.2, the lowest AFE is obtained while using
’Scaling’ estimator. The difference between FE of estimators is very small,
so Diebold & Mariano (1995) test was applied to ensure that the difference
is significant (table 3.3). It turns out, that ’Scaling’ estimator provides
significantly lower error in comparison with alternatives. Consequently, in
the following part, covariance matrices obtained using this method will be
used in dynamic covariance modelling.

Another common measure of out-of-sample forecast preciseness is a Root
Mean-Squared Error (Lopez &Walter (2000)). It is a root of average squared
Frobenius distance. This measure is more sensitive to the outliers. The
differences between RMSE, however, was not significant between any esti-
mators.

3.3 Forecast

3.3.1 Covariance forecasting models

Estimated covariance matrices can be used as an input for the forecasting
models. In this section there would be provided an empirical example of
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such a forecast.
Heterogeneous Autoregressive models were introduced by Corsi (2009).

HAR represents volatility forecast as a linear combination of previous day,
weekly and monthly volatilities. This model captures number of stylized
facts, such as persistence of the volatility, fat tails of return distribution and
self-similarity on different time horizons.

One of the multivariate approach is HAR-DRD model Oh & Patton
(2016). In this model variance-covariance matrix is decomposed into vari-
ances and correlation matrix. Each variance follow univariate HAR process.
In order to reduce influence of outlying observations and to guarantee posi-
tive variances, logarithm of variances is used. Correlation matrix in the same
time, follows dynamic conditional correlation (DCC) model Engle (2002). In
bivariate case this model is:

vlt = αl + βl1v
l
t−1 + βl2v

l
w + βl3v

l
m + εlt (3.13)

vnt = αn + βn1v
n
t−1 + βn2v

n
w + βn3v

n
m + εnt (3.14)

ρt = αρ + βρ1ρt−1 + βρ2ρw + βρ3ρm + ερt (3.15)

where: vt = log(σ2
t ), xw = 1

4
∑t−5
i=t−2 xi, xm = 1

15
∑t−22
i=t−6 xi.

In the present paper, another extension of HAR is proposed, Bivariate
Heterogeneous Autoregressive model (B-HAR), which includes both volatil-
ity spillovers and correlation-volatilities dependence.

vt = a + BHARvHAR,t + εt (3.16)

where, vt = (vlt, vnt , z(ρt)) is a vector of dependent variables, a = (αl, αn, αz)
are intercepts, vHAR,t = (vlt−1, v

l
w, v

l
m, v

n
t−1, v

n
w, v

n
m, zt−1, zw, zm) is a vector

of independent variables, and BHAR is a matrix of coefficients:

BHAR =

βlly βllw βllm βlny βlnw βlnm βlzy βlzw βlzm
βnly βnlw βnlm βnny βnnw βnnm βnzy βnzw βnzm
βzly βzlw βzlm βzny βznw βznm βzzy βzzw βzzm


(3.17)

Coefficients βlly, βllw, βllm, βnny, βnnw, βllm, βzzy, βzzw, βzzm represent sim-
ple multivariate HAR model, with only difference from HAR-DRD in z-
transformation of correlations. Coefficients βlny, βlnw, βlnm, βnly, βnlw, βnlm
capture effect of volatility spillovers over the international markets. Other
coefficients are used to include the relationship between correlation and
volatilities.

In the present paper, the proposed model is called Bivariate HAR, as
it guarantees positive semi-definiteness of the covariance matrix only in the
case of two assets.

The effect of correlation increase at high-volatility times is not neces-
sary direct. Longin & Solnik (2001) model tail dependence and Solnik &
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Watewai (2016) use regime switching model with jumps. Consequently, it
is possible to add other terms in BHAR model. However, there are already
30 parameters in the model (including constants), so, jumps and leverage
effects were not included in the current model.

In order to decrease amount of parameters, another model is introduced
with only 13 parameters: Bivariate restricted HAR (Br-HAR). In this model
is assumed that all volatility spillovers take place only in short time inter-
vals, such as one day, but not one week or one month. The same applies to
correlations. Moreover, only volatilities are assumed to influence the corre-
lation but not vice versa. The Br-HAR model is the same as in equation
3.16, but the matrix B is different, as in equation 3.18.

BBrHAR =

βlly βllw βllm βlny 0 0 0 0 0
βnly 0 0 βnny βnnw βnnm 0 0 0
βzly 0 0 βzny 0 0 βzzy βzzw βzzm


(3.18)

3.3.2 Full-sample analysis

In this section the significance of the coefficients will be studied on the full
sample.

Following Corsi (2009) coefficients were estimated by standard OLS re-
gression with Newey-West correction. The results of the estimation are
provided in table 3.4.

All standard HAR coefficients are significant at 1% level and positive.
It turns out, that volatility spillovers in fact is a short-term process: weekly
spillover coefficients are not significant, while monthly are negative. The
last fact may be interpreted either as overparametrization of autoregres-
sive model, or that volatility spillover effect depends not upon increase in
volatility per se, but upon increase of daily volatility above average monthly
level.

Fengler & Gisler (2015) have shown, that covariances are relevant in the
estimation of volatility spillovers. The present paper instead decompose the
covariance into correlation and volatilities. It turns out, that increase in
correlation does not provide a spillover effect to volatility on international
markets, however, increase of volatility causes increase in correlations.

Note, that significant and interpretable coefficients are only those, that
were included in Br-HAR model.

3.3.3 Out-of-sample forecast

In this section there would be compared a forecasting performance of B-
HAR, Br-HAR, HAR-DRD, and a parsimonious Exponentially Weighted
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Moving Averages model with standard decay rate λ = 0.06. So, there would
be compared models with 30, 16, 12 and 0 fitted parameters.

As an input to the models ’Scaling’ estimations of the whole day covari-
ance matrix were used (see section 3.2.3). Data is described at section 3.2.4.
All the regression coefficients, as well as scaling matrix for ’Scaling’ esti-
mator are estimated on training 2-years sample and tested on the following
3-years sample.

There were performed three tests: forecasting error, prediction of Value-
at-Risk for equiweighted portfolio and Minimization of Variance of a port-
folio.

Root mean squared error

As it is shown at tables 3.5 and 3.6, B-HAR model provides significantly
lower Average Frobenius Error then any other compared models. Restricted
version of the model, however, is not significantly better. On the other
hand, Br-HAR provides significantly lower Root Mean Squared Error then
all compared models, while RMSE of B-HAR is not significantly lower.

3.3.4 Value-at-Risk forecast

In this section compared models are used in Value-at-Risk forecast. Value-
at-Risk is modelled a 1%, 5% or 10% quantile of normal distribution with
zero mean and forecasted covariance of equiweighted portfolio.

For each computed forecast there was calculated number of exceptions,
as well as a sum of loss functions for each day. There was a piecewise linear
loss function used, defined as in equation 3.19

PWLF (α, V aRt, rt) = (IV aRt<rt − α)(V aRt − rt) (3.19)

where α is a VaR confidence level and I is an indicator function of VaR
violation. It was shown by Gneiting (2011b), Gneiting (2011a) that the
function in equation 3.19 is a consistent scoring function for Value-at-Risk
forecast.

It turns out that ougmented B-HAR and Br-HAR models almost do not
provide significantly superior VaR forecast in comparison with simpler HAR-
DRD model. Only for 5% VaR forecast Br-HAR model provides significantly
better prediction then HAR-DRD.

EWMA turns out to be a more conservative model then different spec-
ifications of HAR. Even while it provides lower VaR violation rate, it sig-
nificantly underperforms at the 5% and 10% loss function test. It means
that lower VaR violation rate is achieved not by more precise covariance es-
timation, but due to its overestimation. However, for 1% VaR average loss
function is slightly lower, due to the fact, that real returns violate normality
assumption.
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Minimum variance portfolio

The next test is a prediction of minimal variance of the portfolio. Weights
for such a portfolio are obtained with equation 3.20.

wt = V̂−1
t i

i′V̂−1
t i

(3.20)

where V̂t is a covariance matrix forecast and i is a vector of ones.
The more precise is the covariance matrix estimation, the lower is the

variance of the constructed minimum variance portfolio.
There were reported standard deviations of the portfolios, as well as

DM-tests, in which squared min-variance portfolio return were used as a
loss function.

In table 3.13 is shown that Bivariate HAR models provide lower vari-
ance of min-variance portfolio. However, Diebold-Mariano test (table 3.14)
shows, that this difference is not statistically significant.

3.4 Conclusion

In this paper there was introduced a method of obtaining whole day realized
covariance matrix estimation for asynchronously traded assets, based on
intraday high-frequency data.

This method suggests to separately evaluate variances and correlation
matrix. For estimation of the whole day variances there exist an estimator
of Hansen & Lunde (2005). In the present paper was proposed to obtain the
whole day correlation matrix from rescaled overlapping covariance matrix.

There were also proposed two alternatives for bivariate data: correlation
coefficient for the whole day is obtained by linear or proportional function
of z-transformed overlapping correlation.

These estimators were tested on real high-frequency data of FTSE-100
and NASDAQ indices using Frobenius distance to outer product of returns
and RMSE. It turns out, that average Frobenius distance of covariance ma-
trix estimator to the outer product of next day return is significantly lower
if Scaling estimator is used.

Realized covariance estimators, obtained with the proposed method, may
be successfully used as an input to the models of covariance forecast. Con-
sequently, the proposed methodology have a potential impact in practical
applications, such as risk-management, portfolio allocation and derivatives
pricing. Potential scientific impact is also promising: estimator of the whole
day covariance that is both based on intraday data and applicable for the
asynchronous markets will be useful in studies of cross-border volatility
spillovers, as well as changing of correlation structure between markets.
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In order to illustrate the practical applicability of the estimator, there
was used a forecasting exercise. Different specifications of multivariate HAR
as well as EWMA model were used to forecast VaR and construct Minimum-
Variance portfolio. Using out-of-sample exercise, it was shown, that even
while more sophisticated models (with 30 and 16 parameters for 2 assets)
provide significantly smaller Average Frobenious Distance or Root Mean
Square Error then simple HAR-DRD (with 12 parameters), this difference
becomes insignificant in practical exercise, such as VaR forecast and Min-
Variance portfolio optimisation. All HAR models, however, significantly
outperform EWMA covariance forecast.

Methodology, proposed in the present paper has a potential for improve-
ment. Future researches are necessary to construct an estimator of realized
covariance in the case, when there are no overlapping period at all - for ex-
ample, NIKKEY trading hours don’t intersect with European and American
stock exchanges.

3.5 Appendix I

Optimal correlation averaging

In order to estimate α, β, γ in the equations 3.9 and 3.10 it is necessary
to have a sample of two variables: correlations during overlapping period
and correlations for the whole day. However, only the first variable can
be directly assigned to each day. For this reason, the equation 3.9 will be
estimated using sample of moving average correlations for several days.

Let m be number of days for which correlations are averaged. So, the
first variable will be the correlation coefficient obtained from the sum of m
covariance matrices, while the second will be obtained from the sum of m
outer product of daily returns.

Using Monte-Carlo simulations, number m will be chosen in such a way,
to minimize mean squared error of coefficient estimations.

Monte-Carlo simulations were organized in the following way. As a co-
variance matrix of overlapping periods were taken realized covariance esti-
mations from real data (FTSE-100 and NASDAQ 2013-2014). Daily returns
were generated from Multivariate Normal Distribution with artificially con-
structed covariance matrix: its diagonal elements (variances) were obtained
from intraday realized volatilities, while correlation coefficient was calcu-
lated using the function 3.9.

In each scenario there was taken different parameters of α, β and vari-
ances of ε. The values of the parameters were the following: α = {0, 0.1, 0, 5}, β =
{0.5, 0.9, 1, 1.1, 1.5, 2}, S.d.(ε) = {0, 0.05, 0.5}. Each of the 54 scenarios
was run for 10 000 times. At each scenario estimation of values α and
β were computed using average correlations for m periods, where m =
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{2, 3, 4, 5, 10, 20, 50}. The result of estimation are presented in the table
3.1.

Table 3.1: Simulation results: mean squared error for different averaging
period

m (averaging period) 2 3 4 5 10 20 50
Mean squared error 3.52 2.51 2.45 2.51 2.95 3.46 4.69

The least mean-squared error is achieved at m = 4. This value of m is
used at the estimation of coefficients on real data.

3.6 Appendix II

Table 3.2: Average frobenius distance of covariance matrix estimator to the
outer product of next day return

V S V L V P V N

AFE×10000 2.584 2.598 2.595 2.615
RMSE ×1000 1.198 1.198 1.198 1.199

Table 3.3: DM-test of equality of AFE for different covariance estimators

V S V L V P

V L ***5.325
V P ***4.462 *-1.293
V N *1.622 0.879 1.003
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Table 3.4: Full-sample OLS estimation of BHAR parameters

vL vN z

vLt−1 0.362 0.293 0.070
(prob.) (0.0%) ( 0.0%) ( 0.0%)
vLw 0.413 -0.054 -0.038

(0.0%) ( 34.9%) ( 11.4%)
vLm 0.151 -0.166 -0.024

(0.2%) ( 0.4%) ( 35.6%)
vNt−1 0.120 0.423 0.043

(0.0%) ( 0.0%) ( 0.1%)
vNw -0.070 0.151 -0.035

(19.3%) ( 0.9%) ( 12.4%)
vNm -0.127 0.179 -0.015

(3.1%) ( 1.0%) ( 57.8%)
zt−1 0.027 0.016 0.138

(73.6%) ( 85.9%) ( 0.0%)
zw -0.095 0.135 0.387

(46.8%) ( 31.6%) ( 0.0%)
zm 0.135 0.041 0.375

(39.0%) ( 80.2%) ( 0.0%)
c -1.516 -1.832 0.104

(0.1%) ( 0.1%) ( 61.1%)

Table 3.5: AFE and RMSE of next day covariance matrix forecasts

B-HAR Br-HAR HAR-DRD EWMA
AFE×10000 2.309 2.323 2.326 2.618
RMSE×1000 1.168 1.167 1.169 1.174

Table 3.6: DM-test of equality of AFE for different covariance forecasts

B-HAR Br-HAR HAR-DRD
Br-HAR ***2.818
HAR-DRD ***3.151 0.622
EWMA ***10.679 ***10.647 ***10.724

Table 3.7: DM-test of equality of RMSE for different covariance forecasts

B-HAR Br-HAR HAR-DRD
Br-HAR ***-2.520
HAR-DRD 0.994 *1.438
EWMA ***11.856 ***12.020 ***11.955
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Table 3.8: Percentage of VaR exceptions

B-HAR Br-HAR HAR-DRD EWMA
1% VaR 2.31% 2.17% 2.46% 2.17%
5% VaR 8.09% 7.66% 7.95% 5.64%
10% VaR 12.57% 12.28% 12.14% 10.40%

Table 3.9: VaR Average Loss Function

B-HAR Br-HAR HAR-DRD EWMA
1% VaR LF (×1000) 0.4829 0.4784 0.4789 0.4740
5% VaR LF (×1000) 1.1991 1.1908 1.1971 1.2388
10% VaRLF (×1000) 1.8553 1.8551 1.8568 1.9159

Table 3.10: DM-test for 1% VaR LF equality

B-HAR Br-HAR HAR-DRD
Br-HAR *-1.349
HAR-DRD -1.139 0.151
EWMA -0.466 -0.253 -0.296

Table 3.11: DM-test for 5% VaR LF equality

B-HAR Br-HAR HAR-DRD
Br-HAR **-1.660
HAR-DRD -0.414 *1.297
EWMA **1.862 ***2.428 **2.163

Table 3.12: DM-test for 10% VaR LF equality

B-HAR Br-HAR HAR-DRD
Br-HAR -0.049
HAR-DRD 0.309 0.387
EWMA ***2.420 ***2.662 ***2.585

Table 3.13: Standard Deviation of MinVariance portfolios

B-HAR Br-HAR HAR-DRD EWMA
σ 0.993% 0.993% 1.005% 1.025%

Table 3.14: DM-test for equality of variances of MinVariance portfolios

B-HAR Br-HAR HAR-DRD
Br-HAR -0.073
HAR-DRD 0.964 1.067
EWMA *1.542 *1.480 *1.229
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