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One might say we ought to make the human better.
That is impossible, so we will make the robot more foolproof.

—Isaac Asimov, The Naked Sun



Abstract

This thesis advances the field of control of humanoid robots, focusing on brain-
inspired approaches to the problem.

Human beings are able to negotiate complex environments thanks to their ad-
vanced bodies and brains. The human body is a complex machine that is able to
perceive the world through different sensors modalities and to perform fine complex
motions with a high number of strong, redundant, compliant actuators. However,
humans would not be able to perform such feats if it were not for the orchestration
performed by the nervous system, and especially by the brain. The human brain
is the most advanced of the animal kingdom and is capable of displaying cognitive
capabilities as well as motor control strategies. In particular, the main feature of the
human brain is being capable to process the massive amount of sensory information
received and to use it to perform both cognitive and motor tasks, often at the same
time. Concerning, motion control, the brain is able not only to generate descend-
ing motor signal to the muscles that perform coordinated fine movements, but also
to combine proprioceptive and exteroceptive sensory information to adapt move-
ments depending on different conditions, in a predictive and anticipative fashion.
Predicting changes in the environment and reacting accordingly is a must-have fea-
ture for robots that need to interact with an unstructured and dynamic environment
that has been built by humans for themselves. And such is the case for humanoid
robots, that are supposed to be employed either as service assistants and in search
and rescue scenarios.

This works focus on control strategies that take inspiration from the human brain
and that show some of these predictive and adaptive capabilities. This has been
achieved by employing neuro-controllers, controllers that embed algorithms mimick-
ing the role of brain areas, specifically related to the task at hand. In particular,
two technologies have been considered to implement neuro-controllers: machine
learning approaches and Spiking Neural Networks (SNN). The formers have been
widely used in different contexts, from artificial intelligence to data mining, and for
many years in robotics to complement classic control approaches. In the context of
this work, two different controllers have been developed that make use of machine
learning methods: a predictive visual tracking architecture and a gaze stabilization
controller provided with sensory-motor anticipation. Conversely, SNN have been
mostly used in neuroscientific context to perform detailed simulations of the human
brain. Albeit their use in robotics have been limited, there is a rising interest in this
kind of neural simulations that can take the bioininspiration of robotic controllers to
the next level. Due to research in neuro-controllers with SNN being in its infancy,
the robotics community lacked effective tools to develop them. As part of this work,
in the framework of the Human Brain Project, a contribution to the development of
a comprehensive tool for the modelling and testing of neuro-controllers embedding
SNN (the Neurorobotics Plaform) has been given. Moreover, this tool has been em-
ployed to show the effectiveness of the approach with simple examples that include
a basic neuro-controller for visual tracking and controller relying on a retinal model
for visual perception. This thesis also shows preliminary results toward the imple-
mentation of complex control architectures with SNN, focusing on developing low
level translation mechanism for actuators and sensors based on simulation of the
spinal cord circuitry.
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Chapter 1

Introduction

This thesis is a contribution to the field of control of humanoid robots. Driven by bio-
inspiration, it explores the use of different neuroscientific concepts to create novel
control strategies for different tasks.

1.1 Challenges of humanoid robotics

The field of humanoid robotics is an important branch of biomimetic robotics which
ultimate goal is to create machines that not only resemble human beings but that
are also intelligent and able to act, reason and interact like and possibly with hu-
mans (Fukuda, Dario, and Yang, 2017). Such robots would be extremely versatile
and could quickly permeate a society that has already accepted the presence of spe-
cialized service robots, such as the ones for vacuum cleaning (J. L. Jones, 2006) and
mowing (Prassler et al., 2016), as well as self-driving cars (Broggi et al., 2016). In
particular, humanoid robots could in principle take advantage of their morphology
to handle objects that are made to fit human hands or to navigate environments that
have been built by humans for themselves (Brooks et al., 2004). Therefore, it easy
to see how humanoid robots can assist or even replace humans in so-called 3D-jobs
(dirty, dangerous and demanding), with potential applications like service in do-
mestic environments, emergency operation in hazardous areas or spatial exploration
(Fitzpatrick et al., 2016).

However, humanoid robots have yet to prove really effective in unstructured
environments. In 2015, the finals of the DARPA Robotics Challenge (DRC) saw 23
teams competing to have their humanoid robot perform the different tasks in a sim-
ulated disaster response scenario. The competition was motivated by the accident
of the Fukushima Daiichi nuclear reactor, hit by a tsunami in 2001. The team had
to teleoperate the robots, through degraded communication channels, in order to
perform diverse tasks such as driving a car, turning a valve, drilling a hole in the
wall with a tool, walking over uneven terrain or climbing steps (Krotkov et al.,
2017). In practice, the DRC provided a benchmark of the capabilities of state-of-
the-art humanoid robots in unstructured environments. The results of this challenge
highlighted that there is still a long way to go before humanoids can reliably and au-
tonomously operate in such conditions. In particular the most evident problems of
the participating robots were the slowness and the non-capability of recovery after
faults. One common cause for the two issues is the lack of autonomy and adap-
tivity to unexpected situations. In fact, it appears that, while the motion execution
itself was performed slowly primarily to avoid falling, some robots were inactive
during 74% of the time, waiting for the operators to gain situational awareness and
carefully plan the course of action (Fallon et al., 2015). This was because even the
smallest changes in the area layout or tiny errors in motion planning led to catas-
trophic failures (Guizzo and Ackerman, 2015).
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Clearly, there is a need for robots that, even if not capable of deciding the action
to take in complete autonomy, have some degree of adaptation in performing the
task at hand so that unexpected changes in the conditions do not result in failures.
Given that a non-athletic human could complete all tasks 20 times faster than the best
competing robot, there are more aspects of the human body and behaviour that were
neglected when designing the competing robots. From the hardware point of view,
most of the robots employed completely rigid joints with few exceptions such as the
ATLAS, the WALKMAN (Tsagarakis et al., 2016) and the Hydra robots (Kaminaga
et al., 2010). A more compliant joint structure, albeit more complex to control, would
enhance the robots with some hardware adaptation to small, unexpected forces or
slightly different foot contact points. From the control side, the robots should be able
to anticipate both external situations as well as proprioceptive sensory information
in order to quickly adapt their behaviour without the need for operator intervention.
As the human brain is particularly well versed in predicting and adapting, it is natu-
ral to consider beneficial the inclusion of brain-inspired mechanisms, that originated
from neuroscientific findings, into robotic control loops.

1.2 Neuroscience and robotics

As we get more insights on the inner working of biological system, these become a
fruitful source of inspiration for roboticists (Iida and A. J. Ijspeert, 2016). In partic-
ular, in the past years there have been many synergies between the fields of neuro-
science and robotics, beneficial for both sides. This is especially true for humanoid
robots that have served as physical embodiments for neuroscientific theories emerg-
ing from studies of the human brain. In fact, there were humanoid robotic platform
that were built to support research in different aspects of cognition such as the iCub
for studies on cognition (Metta, Sandini, et al., 2008) and the SABIAN for studies on
human-like motions (Muscolo et al., 2012).

Conversely, many control architectures inspired from brain functionalities have
been employed for various tasks, with different degrees of bio-inspiration and bio-
mimetism, giving birth to the so-called neuro-controllers. One of the early examples of
this kind of controllers was an artificial neural network with a brain-like hierarchical
architecture for the control of the trajectory of a robotic manipulator (Miyamoto et
al., 1988). In (Reeke, Sporns, and Edelman, 1990), a learning mechanism based on the
theory of neuronal group selection enabled the Darwin III robot to perform different
behaviours such as pattern recognition and sensorimotor coordination. Cox and col-
leagues have employed a mechanism similar to the neuromodulation of the mam-
malian brain to implement behaviours such as attention and action selection (Cox
and Krichmar, 2009). More complete brain-inspired models have also been used
as neuro-controllers such as the rat hippocampus (Burgess, Donnett, and O’Keefe,
1998) or rat basal ganglia (Fox et al., 2009).

In parallel, advancements in computational neuroscience led to the development
of tools for detailed simulations of spiking neural networks (SNNs), that, differently
from artificial neural networks, consist of unit that mimic the neural dynamics and
the activity of synapses. Although such networks are more computationally expen-
sive to simulate, there is the benefit of being able to tap into vast model literature de-
livered by neuroscientific research. This, combined with birth of hardware platforms
dedicated to the simulation of such networks (neuromorphic hardware), has led to
a new wave of neuro-controllers that include more realistic models of the human
nervous system, simulated through spiking neural networks (Knoll and Gewaltig,
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2016). Although the research can still be considered in its infancy, few examples can
be already found in literature. For instance, in (Lund, Webb, and Hallam, 1998) a
spiking model of cricket phonotaxis was evaluated on a mobile robot, while a spik-
ing neural network with spike timing dependant plasticity was employed to learn
to control of a 4 degrees of freedom robotic arm (Bouganis and Shanahan, 2010).
Clearly, spiking neural network are more well suited to be coupled with muscu-
loskeletal systems (Sreenivasa, Ayusawa, and Nakamura, 2016) or muscle-like actu-
ation mechanisms (Richter et al., 2016).

1.3 Models of prediction and adaptation

As stated in Section 1.1, many robots lack predictive and adaptive capabilities that
are essential to negotiate unstructured environments. In fact, human beings are un-
consciously able to predict changes in their sensory systems (Berthoz, 2002), by using
internal models that provide representations of their own bodies as well as exter-
nal object dynamics (Johansson, 1998; Miall and Wolpert, 1996; Nguyen-Tuong and
Peters, 2011). Three types of internal models emerged by neuroscientific findings
(Miall and Wolpert, 1996): forward models, that are able to predict future sensory in-
formation from past perceptions and planned actions; environment models predict the
dynamics of external objects or agents; inverse models provide the actions needed to
reach a desired state, given the actual one. There is evidence that the brain area re-
sponsible for learning and storing internal models is the cerebellum (Wolpert, Miall,
and Kawato, 1998). In humans, internal models do not only provide inputs to the
brain areas involved in motion generation, but they effectively work in parallel with
them. In fact, the primary motor cortex is incorporated into the cerebrocerebellar
loops that connect it with recurrent connection with the cerebellar hemisphere (Ito,
2012).

In robotics, predictors similar to these internal models have been used to imple-
ment anticipatory sensory motor systems. For instance, in (Gross et al., 1999) and
(Hoffmann, 2007) forward models were used to predict visual information on mo-
bile robotic platforms. On the other hand environment models were for instance em-
ployed to catch flying objects (Bäuml et al., 2011; Kim and Billard, 2012; Kober, Glis-
son, and Mistry, 2012). In all these works, internal models are only used to perform
anticipated actions, maintaining a strict sequentiality between (anticipated) percep-
tion and the planning of the action. These architectures have an intrinsic flaw that
should be addressed by the system: if the internal model is not accurate, the predic-
tion cannot be trusted. Inaccuracy of forward and inverse internal models can occur
for various reason including unexpected loads or faults. In such cases, the model
must be able to dynamically adapt to the new conditions, or the control will be in-
accurate. In the case of environmental models, inaccuracies could occur because the
external object dynamics is not predictable. In this case, these simple architectures
will not work.

A more advanced technique technique that exploit forward models is model pre-
dictive control (MPC), in which a forward model is used to compute future states of
the system, at every control step, with the goal of optimizing the control signals with
respect to some constraints (Camacho and Alba, 2013). This kind of controller has
been successfully employed in conjunction with the zero moment point technique
for biped walking (Wieber, 2006; Diedam et al., 2008), to perform whole-body con-
trol (Koenemann et al., 2015) or balancing tasks (Henze, Ott, and Roa, 2014). Due to
the fact that the prediction is dynamically adjusted by being recomputed online at
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every step, these models can deal with unexpected sensory inputs to some extent.
However, to deal with inaccuracies of the internal model, more robust techniques
like min-max MPC (Scokaert and Mayne, 1998) or multi-stage MPC (Lucia, Finkler,
and Engell, 2013). These often involve the introduction of uncertainties in the op-
timization procedures which can lead to exponential growth of the problem and,
consequently, higher computational costs.

An alternative approach, generally more computationally efficient, can be found
in control systems based on the principle of the expected perception (EP). In this archi-
tecture, predictions are compared with actual sensory data to get a measure of the
accuracy of the prediction. If the prediction is accurate there is no need for corrective
actions, while if there is a mismatch the sensory feedback will be used to to compute
the corrections and the new predictions (Datteri et al., 2003). EP-based controllers
have been implemented for different applications. For instance it has been used to
enhance a robotic manipulator with the ability to grasp an object by predicting the
tactile image that would be perceived (Laschi, Asuni, Teti, et al., 2006; Laschi, Asuni,
Guglielmelli, et al., 2008). In (Moutinho et al., 2011) EP has been used to locate un-
expected objects in a cluttered scene by comparing the predicted camera image with
the actual one. Finally in (Cauli et al., 2016), an EP-based architecture was developed
for reaching moving targets.

EP-based architecture clearly show a certain degree of adaptation due to the cor-
rective actions that can be taken if the prediction is inaccurate. But again, if the
internal model becomes inaccurate for any reason, there is no way for the system to
use the prediction. Therefore, architectures such as the EP or MPC should be used
in conjunction with internal models capable of online adaptation to new circum-
stances. While several generic implementations of adaptive internal models exist
(Tolu, Vanegas, Luque, et al., 2012; Luque et al., 2011), they have almost exclusively
been used to implement simple tasks and were never embedded in more complex
systems controlling multiple degrees of freedom in conjunction with EP-like mech-
anisms. Moreover, none of the discussed models has been proven to work in case of
drastic changes in the predicted dynamics by using feedback to adjust the internal
model and continue again with predictive behaviour. To provide a concrete advance-
ment over the state of the art, the developed models will be specifically developed
to address to perform such feats.

1.4 Goals

The main goal of this thesis is to make steps towards addressing the problems de-
scribed previously such as the lack of adaptiveness when dealing with humanoid
robots in unstructured environments. In particular the focus is on the prediction of
both external circumstances and of proprioceptive feedback and how this predic-
tions can be used to adjust the behaviour of the robot, resulting in adaptive con-
trollers.

Given that prediction and adaptability are mechanism observable in human be-
haviour and thus generated by the human brain, and given the effectiveness of using
brain-inspired mechanisms to develop control strategies, it is only natural to have
resorted to the use of neuro-controllers for developing the models presented in this
thesis. In particular, both artificial neural networks and spiking neural networks
have been employed.
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Finally, by using adaptive internal models implemented through neural methods
or learning mechanisms in general, in conjunction with EP-like adjustment mecha-
nisms, the models developed will be able to deal with drastic changes in the pre-
dicted internal or external states or unpredictable dynamics, by recovering the pre-
dictive behaviour when possible.

In a first phase the research focused on two tasks that make use of prediction
to produce adaptive behaviours and that together contribute to improve the visual
capabilities of robots: smooth pursuit and gaze stabilization. The former is the act of
following a moving target with foveal vision and prediction of the target dynamics
must be employed in order to follow the target with no lag. Humans are capable
of following both predictable and unpredictable targets, thus a model that employ
prediction as well as a switching mechanism to distinguish between the two is pre-
sented in Chapter 2. Gaze stabilization, the reflexive act of maintaining the image
stable on the retina by compensating for external motions is an essential feature for
robots capable of locomotion. As opposed to the smooth pursuit, it relies on the
prediction of sensory feedback (also called sensory-motor anticipation) provided by
cerebellar internal models to fully cancel the disturbances. A comprehensive model
of gaze stabilization that include all the contributing reflexes is presented in Chapter
3.

While the usage of artificial neural network in robotics is a well established tech-
nology and was thus used to develop complete complex controllers, there is no
definitive answer on how to couple a spiking neural simulation with a robotic plat-
form. For this reason, before trying to develop complex controllers with detailed
brain models, it was necessary to develop both software tools and low-level mecha-
nisms for this coupling. In particular, in the framework of the Human Brain Project
Subproject 10 - Neurorobotics1, a contribution was given to the development of sim-
ulation platform that couples physical and neural simulations, the Neurorobotics
Platform. A description of this piece of software and the preliminary results ob-
tained with it will be presented in Chapter 4. The main conceptual issue when trying
to connect robots with SNNs is how to translate analogue information from sensors
into electric signals such as spikes and, vice versa, how to convert neural activity
into actuation signals. While in many cases researches relies on tailor-made conver-
sions, in Chapter 5, a possible general approach, inspired by the mammalian spinal
cord, is presented.

1www.humanbrainproject.eu
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Chapter 2

Prediction of and adaptation to
external motions: smooth pursuit

As a fist example of a task where prediction and adaptation play an important role,
visual tracking of a moving target was considered. This task not only involve predic-
tion of the target motion, in order to follow it without delay, but also an adaptation
to changes in target dynamics.

2.1 Introduction

Following a moving target with a foveal vision is one of the essential tasks of hu-
mans and humanoid robots. Humans accomplish this task through a combination
of two forms of eye movements: saccade and smooth pursuit. Saccades are high
velocity gaze shifts that bring the image of an object of interest onto fovea. The pur-
pose of smooth pursuit eye movements is to minimize the retinal slip, i.e. the target
velocity projected onto the retina, stabilizing the image of the moving object on the
fovea. This cannot be achieved by a simple visual negative feedback controller due
to the long delays (around 100 ms in the human brain), most of which are caused
by visual information processing. During maintained smooth pursuit, the lag in eye
movement can be reduced or even cancelled if the target trajectory can be predicted
(Fukushima et al., 1990; Wells and G. R. Barnes, 1998; Whittaker and Eaholtz, 1982).
The first model of the pursuit system, consisting in a very simple model of the fixa-
tions system, was built by Dallos and Jones (Dallos and R. Jones, 1963). This model
was designed to demonstrate the importance of including delays in the control of the
eye movement during pursuit. One of the first models of pursuit systems was built
by Robinson and colleagues (D. A. Robinson, J. Gordon, and S. Gordon, 1986) who
designed a model of the pursuit including three feedback loops. The outer feedback
loop computed a velocity error (difference between the target velocity and the eye
velocity) and the two other feedback loops (a positive one and a negative one) en-
sure that the model could reproduce adequately the ringing settling to a steady state.
If the model of Robinson and colleagues could simulate the pursuit behaviour when
the target has a constant velocity, it does not include a prediction term that would
allow it to simulate pursuit of periodic target. In a complete study of the prediction

This chapter has been adapted from the articles:
Vannucci, L., E. Falotico, N. Di Lecce, P. Dario, and C. Laschi (2015). “Integrating feedback and

predictive control in a Bio-inspired model of visual pursuit implemented on a humanoid robot”. In:
Lecture Notes in Computer Science. Vol. 9222, pp. 256–267.

Falotico, E., L. Vannucci, N. Di Lecce, P. Dario, and C. Laschi (2015). “A bio-inspired model of visual
pursuit combining feedback and predictive control for a humanoid robot”. In: Proceedings of the 17th
International Conference on Advanced Robotics, ICAR 2015, pp. 188–193.
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mechanisms in human smooth pursuit, Barnes and Asselman (G. Barnes and Assel-
man, 1991) proposed a model including a predictive component and could also sim-
ulate, to a certain extent, head-unrestrained pursuit. Later, Krauzlis and Lisberger
(Krauzlis and Lisberger, 1994) prosed a model conposed of three pathways that sim-
ulate pursuit behaviour when tracking targets with constant velocity. An important
biologically plausible smooth pursuit controller has been proposed by Shibata and
Schaal (Shibata, Tabata, et al., 2005). This controller learns to predict the visual target
velocity in head coordinates, based on on-line learning of the target dynamics. The
models proposed by Shibata and Schaal and improved in (Zambrano et al., 2010)
results in a good solution to represent predictive behaviour in the smooth pursuit
eye movement.
Although the presented systems may consistently represent specific features of the
smooth pursuit eye movement, they do not consider to integrate the major charac-
teristics of visually guided and predictive control of the smooth pursuit. The first
instance of a model integrating these aspects of the pursuit dynamics in a coher-
ent model has been proposed by Orban de Xivry and colleagues (Xivry et al., 2013).
They proposed that the brain circuitry generating the smooth pursuit eye move-
ment implements the functional equivalent of two Kalman filters (for feedback and
predictive control) whose output are optimally combined. Their model aims at re-
producing the eye dynamics during the switching between feedback and predicting
control and it has a memory based on previous values of the target velocity. The eye
controller, designed specifically for the human eye and the memory approach makes
this model not reproducible on a robotic platform. The model proposed in this work,
inspired in part by their observations (Xivry et al., 2013), aims at producing a model,
suitable for a robotic implementation, able to combine feedback and predictive con-
trol.
From a robotic point of view, few works focus on the implementation of the smooth
pursuit eye movement and none accounts for integrating the characteristics previ-
ously described. Shibata and colleagues suggested a control circuits for the inte-
gration of the most basic oculomotor behaviours (Shibata, Vijayakumar, et al., 2001)
including the smooth pursuit eye movement. This model, based on the prediction of
target dynamics did not consider a feedback control. The same consideration can be
applied to the model of smooth pursuit and catch-up saccade (Falotico, Zambrano,
et al., 2010) or occlusions (Falotico, Taiana, et al., 2009) implemented on the iCub
robot. Also a model previously developed based on a neuro-controller (Vannucci et
al., 2014), did not include a feedback control, but only prediction based on a Kalman
filter.
The objective of this work is to investigate the applicability of smooth pursuit func-
tional principles derived from neuroscience research on humanoid robots (Dario et
al., 2005), in order to achieve a human-like visual pursuit able to: (i) use prediction
for a zero-lag visual tracking, (ii) use a feedback based control for “unpredictable"
target pursuit and (iii) combine these two approaches in order to guarantee a stable
visual pursuit. In the next sections the model will be presented as well as its compo-
nents in detail, together with two different implementations for the iCub humanoid
robot. In order to validate the general model, two different inverse dynamics con-
trollers (IDC) were implemented. In the past two approaches have been used to im-
plement IDCs for oculomotor control: one that uses classic techniques to identify the
eye plant parameters and build suitable controllers (Viollet and Franceschini, 2005)
and one that uses neuro-controllers capable of adapting to the eye plant without
having to identify its parameters (Lenz et al., 2008; Franchi et al., 2010). Thus, two
different implementations are proposed: the first one, working in the velocity space,
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uses a backstepping-based controller to generate velocity motor commands for the
eye movements and the other one uses a bio-inspired neuro-controller to generate
position motor commands for eye-neck coordinated movements.

2.2 Smooth Pursuit Model

FIGURE 2.1: Model of the controller, with the predictive pathway and
the switching mechanism highlighted in red.

The overall schema of the controller can be seen in Figure 2.1. The model consist
of two main pathways: a sensory pathway (Visual Processing), where the camera
image is processed to get sensory information about the target, and a predictive
pathway (Predictor) where the sensory information is used to predict future states of
the target.

Input coming from the sensory pathway (a target reference TRsens and an error
reference ERsens) can be used to implement a classic feedback controller that is able
to make the robot follow a moving target but with a certain delay.

On the other hand, input coming from the predictive pathway (a predicted target
reference TRpred and a predicted error reference ERpred) can be used to anticipate the
movement of the target and overcome the said delay, making the robot follow the
target with zero lag. But the predictor will not perform well when the target velocity
is unpredictable or when there is a change in the target motion. In such cases, the
feedback controller will perform better. Thus, a proper switching mechanism is in-
troduced to smoothly change between the input coming from the two pathways at
the appropriate time (Weighted Sum).

In the end, the smoothed error reference ER is given to a controller capable of
generating the appropriate motor commands for the Robot.

2.2.1 Predictor

In order to implement a model capable of predicting the target reference at future
steps, a simple linear model has been chosen: Rosenblatt’s single layer perceptron
(Rosenblatt, 1958). To use this kind of model to predict future values of the signal a
temporal sliding window of size d containing past values of the signal are given as
an input along with the current value (Weigend, Huberman, and Rumelhart, 1990).
A linear activation function was employed, as shown in Figure 2.2.

The output of the network at step t, for a given input signal x is:

out(t) =
d

∑
i=0

x(t− d) · wd (2.1)



Chapter 2. Prediction of and adaptation to external motions: smooth pursuit 9

FIGURE 2.2: The single layer perceptron with the tap delay input.

The model was trained by an on-line version of the Widrow-Hoff rule (Widrow
and Hoff, 1960), where the target value is the signal anticipated by p and η is the
learning rate.

∆w(t) = η · (x(t + p)− out(t)) · x(t) (2.2)

Using the on-line version of the learning algorithm gives the possibility of using
the model without doing any previous training phase, as the perceptron will adapt
the weights for the prediction during the execution phase. In order to move the
signal towards 0 and thus facilitate learning, the mean observed value up to time t
was subtracted from the signal.

FIGURE 2.3: Prediction of a sinusoidal signal that changes amplitude
and frequency, with added noise, simulated in MATLAB Simulink.

After choosing the parameters η and d, the model proved capable of predicting
periodic signals, even with noise, as it is shown in Figure 2.3. The model was also
able to quickly adapt to variations in frequency and amplitude of the signal and
decay. In the overall control scheme the predictive model is used to predict future
values of the target reference (TRpred) starting from the current value of TRsens. Then,
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the predicted error reference is computed as follows, where is g is an appropriate
function of the sensors:

ERpred(t) = TRpred(t)− g(sensors(t)) (2.3)

While such a simple model is not capable to fully learn non-linear motion pat-
terns and in fact can only interpolate the pattern with a linear regression, in oder to
anticipate a target, predicting this linearized interpolation is enough, if the predic-
tion is updated in an on-line fashion.

2.2.2 Weighted Sum

The control system must be able to automatically switch between the sensory and
predictive pathways. In order to do so in a smooth manner, a weighted sum of the
error references coming from the two pathways is performed:

ER(t) = (1− α(t))ERsens(t) + α(t)ERpred(t) (2.4)

where, for each t, α(t) ≤ 1. At each control step, α is chosen as a measure of how
much the prediction has been accurate in the last 100 steps:

α(t) = f (max{err(t), ..., err(t− 100)}) (2.5)

where, err(t) is the error of the predictor at time t and f is a threshold function. In
order to make the function α more smooth, f was implemented as a spline function,
interpolating between these points:
{(0, 1), (0.04, 0.9), (0.08, 0.5), (0.184, 0.1), (0.4, 0)} (Figure 2.4).

FIGURE 2.4: The α switching parameter as a function of the maximum
prediction error.

Finally, to compute the error of the predictor at each step, its output is delayed
by the same number of steps of the ahead prediction and then confronted with the
input signal:

err(t) =
|TRsens(t)− TRpred(t− p)|

maxTR−meanTR
(2.6)

where maxTR and meanTR are, respectively, the maximum observed value and
the observed mean value of TRsens.
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As such, if the prediction is accurate enough the system will smoothly transition
to take advantage of it, while, on the other hand, if the signal becomes unpredictable,
it will revert to using only the sensory pathway. This can be seen in Figure 2.5, where
it can be observed how the value of α changes according to the prediction accuracy,
for both a predictable and a non-predictable input signals.

FIGURE 2.5: Prediction accuracy detection changes the value of α, by
making it increase when the signal is predictable and decrease when

it is not. Signals simulated in MATLAB Simulink.

2.3 Implementation

In order to validate the proposed model two different robotic implementations were
tested on the iCub robot, using the simulator given with the iCub libraries. The iCub
head (Beira et al., 2006) contains a total of 6 DOFs: 3 for the neck (pan, tilt and swing)
and 3 for the eyes (an independent pan for each eye and a common tilt). The visual
stereo system consists of 2 cameras with a maximal resolution of 640X480 pixels.

The first implementation has a backstepping-based controller as IDC receiving a
velocity target reference to control the pan of the eyes through velocity motor com-
mands, while the second has a neuro-controller receiving position target reference
and to perform a full eye-head coordination through a joint position control.

A version of the backstepping-based controller was also implemented in MAT-
LAB Simulink for a preliminary assessment of the smooth pursuit model. Moreover,
the backstepping-based version was also employed on a physical iCub head to prove
the effectiveness of the approach with real robotic platforms.

2.3.1 Backstepping-based controller as IDC

In this implementation the incoming reference is the velocity of the target on the
horizontal axis and the error signal is the retinal slip, that is the speed of the target
velocity projected in the eye reference frame. These values are computed by the
Visual Processing module as follows:

TRsens(t) = ERsens(t) + θ̇(t) (2.7)

where θ̇ is the current velocity of the pan joint. In the predictive pathway the
retinal slip is computed from the predicted target velocity:
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ERpred(t) = TRpred(t)− θ̇(t) (2.8)

The smoothed error reference is then given to a controller, the objective of which
is to cancel the dynamics of the eye plant. The system model of the eye plant is a
second order transfer function given by

G(s) =
1

Js2 + Bs
=

k
s2 + as

(2.9)

where J is the inertia of the system and B is the damp, with k = 1/J and a = B/J.
The system input is a velocity reference and its output is a position measurement.
In particular, the velocity reference is the target velocity (TR) and its output is the
position of the eye. For the system parameters, those estimated through an identifi-
cation methodology on the simulated robot were used. The system can be expressed
by the state-space function such as:

θ̇ = x2

ẋ2 = ku− ax2

θ = x1

(2.10)

The IDC that can negate the delay of such a plant is implemented using the
backstepping technique, a design methodology for the construction of a robust feed-
back control law through a recursive construction of a Control Lyapunov Function
(CLF). The proposed backstepping is based on (Kokotovie, 1992) and involves the
inclusion of an integrator to the input of linear servo-motor model with a known
feedback-stabilizing control law, and so the stabilizing approach is known as inte-
grator backstepping. In particular, the integrator backstepping law provides suitable
velocity commands and the possibility to exploit “good" non-linearities while “bad"
non-linearities can be dominated by adding non-linear damping. The standard SISO
model is: {

ẋ = f (x) + g(x)u = F(x, u)
f (0) = 0

(2.11)

where x ∈ IRn and u ∈ IR. The existence of a differentiable feedback control law
u = Γ(x), with Γi(0) = 0 and of a CLF V(x) : IRn → IR such that LFV(x) ≤ 0 are
assumed. Hence, the augmented system with an integrator is given by:{

ẋ = f (x) + g(x)ν = F(x, ν)

ν̇ = u
(2.12)

where f (x) is the drift function of the model and u is the input command. If LFV(x)
is negative definite, then the CLF becomes:

Ve(x, ν) = V(x) +
1
2
[ν− Γ(x)]2 (2.13)

where the function V(x) is the possible CLF that fulfils other constraints. A feedback
control u = Γ(x, ν) exists such that the equilibrium point (x, ν) = (0, 0) is globally
asymptotically stable. The possible control that satisfies the assumption (2.13) is:

u = −λ(ν− Γ(x)) +
∂Γ(x)

∂x
g(x)ν− ∂V(x)

∂x
g(x) (2.14)
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with λ > 0. This control can be replaced in the CLF directional derivative obtaining:

LFVe(x) = LFV(x)− λ[ν− Γ(x)]2 (2.15)

where LFV(x) is the directional derivative of the possible other constraints. Then,
the overall CLF is defined negative. Therefore, the expanded Lyapunov candidate
is:

V =
1
2
(ER)2 (2.16)

where in this case the retinal slip is computed as ER = (TR− x2). The time deriva-
tive of Lyapunov candidate (2.16) can be derived as:

V̇ = (ER)( ˙ER) = ER( ˙TR− ku + ax2) (2.17)

and after some easy algebraic computations, the control input for the motor can be
rewritten as listed below:

u =
1
k
[ ˙TR + ax2 + λ(ER)] (2.18)

The values of λ is strictly positive and is defined on the basis of the desired con-
vergence velocity of the algorithm. In this case, the control law does not include
the derivative terms as in (2.14) as it could represent a possible noise source. The ab-
sence of derivative terms is balanced by the presence of the constant λ. Furthermore,
replacing (2.18) in the CLF derivative (2.17) the asymptotic stability of Lyapunov
candidate is demonstrated:

V̇ = −λ(ER)2 ≤ 0. (2.19)

2.3.2 Neuro-controller as IDC

In this implementation, the pieces of information gathered from the Visual Processing
are the target position in the 3D space as the target reference and the difference be-
tween the target position and the gaze fixation point. The current gaze fixation point
(g f p) was computed by using a direct kinematics function K, so, if θ are the values
of the head joints, then, for the sensory and predictive pathways:

ERsens(t) = TRsens(t)− g f p(t) (2.20)
ERpred(t) = TRpred(t)− g f p(t) (2.21)

g f p(t) = K(θ(t)) (2.22)

The smoothed ER signal is given to a neuro-controller capable of moving the
current gaze fixation point to compensate for the error in the 3D space with a coordi-
nated movement of both the robot eyes and neck joints, including eye vergence. This
controller, presented in (Vannucci et al., 2014) as an improved version of (Asuni et al.,
2005), makes use of two different bio-inspired neural models: a Growing Neural Gas
for associative learning of motion patterns and a biologically recurrent neural net-
work that generates the position motor commands. The neuro-controller employed
is depicted in Figure 2.6.

The capability of this controller is to move the current gaze fixation point (g f p)
of the robot towards the target point. The core part of this controller is the Sensory-
Motor Map, which is a network able to respond to a stimulus by activating some
specific units. This is similar to the functioning of the somatosensory cortex in the
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FIGURE 2.6: The neuro-controller employed as an inverse dynamics
controller.

human brain: a stimulus reaches the cortex and the section dedicated to respond to
that stimulus activates. In this case, the stimulus, or input, is the normalized error
reference combined with the proprioceptive feedback:

p(t) =
(

ER(t)
||ER(t)||2

, θ(t)
)

(2.23)

This map is represented by a neural model capable of learning how to distin-
guish between different inputs, the Growing Neural Gas (Fritzke, 1995) (GNG). The
Neural Gas model (Martinetz, Schulten, et al., 1991) (NG) is similar to a Kohonen’s
map (Kohonen, 2001), but has the benefit of not having a fixed topology. The main
difference between the GNG and the NG is that in the first model the network of
units grows dynamically during the training phase, instead of being of a fixed size
decided beforehand. The output of such network is the activated unit, or winning
unit:

gng(p) = arg min
s∈A

||p− ws||2 (2.24)
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where A is the set of units and ws is the weight vector of the s-th unit. For each
unit s, its topological neighbourhood is defined as

Ns = {u ∈ A|(s, u) ∈ E} (2.25)

where E is a dynamically built subset of A× A.
After a stimulus is given to the Sensory-Motor Map, this will then respond by

generating the motor commands that will move the gaze fixation point towards the
desired position. This is done by passing the activation signal through a series of
units specifically trained by a motor babbling algorithm to generate these motor
commands. The r units represent the agonist and antagonist activations for each
motor. Thus, the number of these units is double the number of the actual actuators
so that the couple r2i, r2i+1 are the agonist and antagonist units for the i-th motor,
also called rE

i , rI
i , which stand for the excitatory and inhibitory stimuli for the i-th

actuator. Their activation is computed as:

ri = xi + zwi +

∑
k∈Nw

νzki

|Nw|
(2.26)

where w is the index of the winning unit, zki is a weight coming from the k-th unit
of the GNG, ν is a proper constant and xi is a random activation coming from x units
population, only present during the training phase. The a units are responsible for
the generation of the actual motor commands that have to be sent to the actuators,
starting from the excitatory and inhibitory stimuli coming from the r population.
At each control step the new output values are computed in terms of a difference
between current and previous step values:

dai

dt
= ε(||o(t + j)− g f p(t)||2) · (rE

i − rI
i ) · g(rE

i , rI
i , ai(t− 1)) (2.27)

where ε(d) is a function of the distance between the target and the current gaze
fixation point defined as

ε(d) =
{

v · d during the execution phase
ε during the training phase

(2.28)

with an appropriate speed parameters v and ε, and

g(rE, rI , ψ) =

{
ψmax − ψ if (rE − rI) ≥ 0
ψ if (rE − rI) < 0

(2.29)

where ψmax is the maximum angle of the joint.
The training for this controller is performed in two phases, both unsupervised:

• in the first phase only the sensory-motor map is trained;

• in the second, the motor babbling learning is performed, the newly trained
map is used in the global architecture to train the z connections.

The z connections are trained by using Grossberg’s Outstar Law (Grossberg,
1976):

dzki

dt
= γ · ck · (−δzki + ri) (2.30)
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where γ is the learning rate and δ is a decay parameter. At a given step, only
the connections going out from the winner units and its neighbours are updated,
otherwise the update would not be related to the recently performed movement.
This is done by defining:

ck =

{
1 if k is the winner unit w or k ∈ Nw
0 else

(2.31)

For the training of the neuro-controller, the process started by training the sen-
sory motor-map, namely the growing neural gas. To do this a training set of 100000
input patterns was created and then given in input ten times to the GNG. After the
training ended, the resulting network had 3695 units.

The selection of the hyperparameters for the controller (γ, δ, ε, ν) is critical and
greatly impacts the performance. To appropriately choose such parameter, a model
selection procedure was implemented. During this procedure, the performance of
the resulting model was measured by computing its mean speed of reaching on a
training set D of 20 target points:

v =
1
|D| ∑

i∈D

si

ti
(2.32)

where si the starting distance of the target and ti the number of control step used
to reach it. The model selection was performed on these values for the hyperparam-
eters:

• γ ∈ {0.005, 0.01, 0.015, 0.02};

• δ ∈ {0.0005, 0.001, 0.0015, 0.002};

• ε ∈ {0.1, 0.3, 0.05};

• ν ∈ {0.1, 0.3, 0.5}.

The best results on the validation set were obtained by a model with a mean
speed of 0.055 meters/step and the following values for the hyperparameters:

γ = 0.005 δ = 0.002 ε = 0.1 ν = 0.1

All the training phase was done using the iCub simulator.

2.4 Results

To assess the effectiveness of the adaptive smooth pursuit model, an initial set of
preliminary assessment was performed by implementing the backstepping-based
controller on MATLAB Simulink. This allowed testing in a more controlled environ-
ment, where sensor noise could be adjusted to various intensities or nullified.

In order to test the robotic implementations, two kinds of tests have been per-
formed on both of them.

In the first test, the reference signal switches from a sinusoidal wave to another,
after a certain period of time (Figure 2.7). This test is performed in order to show
the capability of the model to adapt to a change in frequency and amplitude of the
signal.
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FIGURE 2.7: Trial executions showing the iCub robot pursuing a tar-
get. Left images show the horizontal task for the first implementation,
while the right ones show the circular motion used in the second im-

plementation. The red line shows the target motion.

In the second test, the reference signal switches to a random, unpredictable one.
This test is performed in order to demonstrate that the model is still able to follow
an unpredictable signal even if with some delay.

For both implementations the tests were performed on the iCub simulator where
a ball was moved inside the simulated environment and then tracked from the cam-
era images. It should be noticed that the objective of this work is not to provide a
comparison among the two controllers performances, but to asses the model through
these controller implementations.

Finally, in order to ensure the usefulness of the approach for realistic scenarios,
tests of the backstepping-based version of the controller were performed on a phys-
ical iCub robotic head. In this case a pendulum whose length could be changed was
employed to give a periodic motion to the target.

In all cases, only information from one camera was employed, thus binocular
vision was not exploited. Nonetheless, while in the backstepping based implemen-
tation the eyes perform the same motion and only one is actually centring the target,
the neuro-controller is capable of controlling the eyes vergence and thus to centre
the target with both eyes.

2.4.1 Preliminary validation

In this experiments, performed on the Simulink implementation, the backstepping-
based controller had to follow a sinusoidal motion target with a peak-to peak ampli-
tude of 16 degrees for 7 seconds. The performance of the model were tested at var-
ious angular frequencies (1/8πrad/s, 1/4πrad/s, 1/2πrad/s, πrad/s , 3/2πrad/s,
2πrad/s) and noise levels (0%, 4%, 8%). It should be noticed that keeping the motion
peak-to-peak amplitude fixed (16deg) and incresing the frequency result in an am-
plitude changing of the peak-to-peak target velocity from 6.3 deg/s (for the angular
frequency of 1/8πrad/s) to 100 deg/s (for the angular frequency of 2πrad/s). Figure
2.8 and Figure 2.9 show the performance of the controller with two different noise
levels (0%, 8%). The eye velocity is completely aligned in time after two seconds
(when the system starts “trusting" the predictor output) for the trial with no noise
and the error is almost nullified (|RS| < 0.15deg/s). In the other trial, the controller
needs more time to reduce the error and, in this case, the retinal slip remains higher
than 2 deg/s. To evaluate the performance trend, the Mean Squared Error (MSE)
during the last second of the trial for the considered conditions of angular frequency
and noise levels was computed and compared at different frequencies (Figure 2.10).
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FIGURE 2.8: Performance of the model during a task with a sinu-
soidal motion with an angular frequency of 3/2π rad/s.

FIGURE 2.9: Performance of the model during a task with a changing
target motion with an angular frequency of 3/2π rad/s and 8% noise

level. The target dynamics is showed without the added noise

FIGURE 2.10: MSE for the considered trials. In case of trial with no
noise the MSE is less than 1.
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2.4.2 Results for the Backstepping-based controller as IDC

Using this implementation, the two kinds of tests were performed by moving the
ball on the horizontal axis, with a sinusoidal motion. The retinal slip and the joint
velocity are computed by applying a least-squares algorithm (Janabi-Sharifi, Hay-
ward, and C.-S. Chen, 2000). The parameters used for the predictor in these tests
were: prediction step p = 5, tap delay d = 50 and learning rate η = 0.5. The param-
eters for the controller were found empirically as: k = 25.14, a = 30.43, λ = 60.

Results for the signal switching task can be seen in Figure 2.11. The initial fre-
quency of the movement was 0.25Hz with an amplitude of 0.1m, and it can be ob-
served that the value of α increases, meaning that the prediction becomes more accu-
rate. The maximum peak-to-peak value of the retinal slip decreases from 8 deg/s to
3 deg/s. When the motion changes in both frequency and amplitude (0.125Hz and
0.15m), after 26 seconds, the value of α suddenly decreases towards zero, resulting
in an higher retinal slip. After a certain period of time, the prediction is again accu-
rate, therefore the value of α increase again and the eye velocity aligns again with
the target one, resulting in an maximum retinal slip peak-to-peak value of 3 deg/s.

FIGURE 2.11: Results for a frequency and amplitude changing task,
in the backstepping-based implementation. The left plot shows the
reference velocity and the eye velocity, while the right plot shows the
velocity error and the value of α. Values of α close to 1 correspond
to a strong contribution of the prediction in the control loop, values

close to 0 correspond to a pure feedback control.

During the initial phase of the second task, the motion has the same frequency
and amplitude as the previous one, but after 26 seconds it changes to a random one
(Figure 2.12). After the change, the value of α suddenly decrease towards zero, but
the eye is still able to reach the target velocity, even with some delay. During this
second phase, the mean peak-to-peak value of the error is 6.86 deg/s.

2.4.3 Results for the Neuro-controller as IDC

For the neural implementation the test were performed by moving the ball on two
axes, both the horizontal and vertical, with a sinusoidal motion on each. The pa-
rameters used for the predictor in these tests were: prediction step p = 5, tap delay
d = 50 and learning rate η = 0.5.

The same values for the frequency and amplitude of the movements used for the
other implementation were used for this one.

Figure 2.13 shows the results for the first task. During the first phase of the
motion the position error decreases from a maximum peak-to-peak amplitude of
0.04m to 0.2m on both axes. After the change of frequency and amplitude at 26s, the
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FIGURE 2.12: Results for a task with a switch to a random signal,
in the backstepping-based implementation. The left plot shows the
reference velocity and the eye velocity, while the right plot shows the

velocity error and the value of α.

value of α decreases and then grows again, meaning that the predictor adjusted for
the new signal. The error then decreases again under 0.02m on both axes.

FIGURE 2.13: Results for the neural implementation on a signal
switching task. The top plots show the reference position and the
gaze position on both the horizontal and the vertical axes, while the
bottom plots show the position error and the value of α for both axes.

Also in this implementation the second task starts with an initial motion phases
equal to the previous one (Figure 2.14). Again, after the change, the value of α sud-
denly decreases, but the robot is still able to follow the target, with a maximum
peak-to-peak amplitude of the error of 0.05m on each axis.

2.4.4 Results on the physical robot

Due to the higher sensory and actuation delays of the physical robot, a higher pre-
diction step than the one used in simulation had to be employed (p = 12), with a
tap delay of d = 40 and a learning rate of η = 0.25. Again, the parameters for the
controller were found empirically as: k = 57.41, a = 40.34, λ = 80.
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FIGURE 2.14: Results for the neural implementation task with a
switch to random motion. The top plots show the reference position
and the gaze position on both the horizontal and the vertical axes,
while the bottom plots show the position error and the value of α for

both axes.

An example of a basic trial with a frequency of swings of circa 0.4Hz can be
observed in Figure 2.15. Due to the lower learning rate and higher prediction step
employed, the predictor takes more time to learn the target motion. This, in turn,
affects the switching mechanism that is slow in trusting the prediction and switch
to the predictive pathway. Nonetheless, the model is able to employ the predictive
information to cancel the delay and reduce the retinal slip below 4deg/s. It should
be noticed that the amplitude of the motion during these trials reduces over time
due to air resistance of the pendulum.

FIGURE 2.15: Results for a constant frequency task, in the
backstepping-based implementation, on the real robotic platform.
The left plot shows the reference velocity and the eye velocity, while

the right plot shows the velocity error and the value of α.

Much like in simulation, the adaptive switching mechanism works on the phys-
ical robot, as show by the experimental trial reported in Figure 2.16. In this test
the motion started with a frequency of 0.5Hz and then it was manually switched to
0.3Hz, while also changing the amplitude. It can be observed that the model still
take more time than in simulation to switch to the predictive pathway, but it can



Chapter 2. Prediction of and adaptation to external motions: smooth pursuit 22

cancel the delay, immediately recognize the change in dynamics of the target and
adapt relatively fast to the new motion.

FIGURE 2.16: Results for frequency and amplitude changing task, in
the backstepping-based implementation, on the real robotic platform.
The left plot shows the reference velocity and the eye velocity, while

the right plot shows the velocity error and the value of α.

2.5 Conclusions

In this chapter, a model able to integrate the major characteristics of visually guided
and predictive control of the smooth pursuit was presented. This model is inspired
by neuroscientific findings and make use of neural methods to predict the dynamics
of the target motion. The model also include an automatic switching mechanism
that let the system automatically adapt to changes in the target motion. To vali-
date the general model, two different controllers were implemented. The first one,
working in the velocity space, uses a backstepping-based controller to generate ve-
locity motor commands for the eye movements. The other one is based on a bio-
inspired neuro-controller able to generate position motor commands for eye-neck
coordinated movements. The obtained results, tested on on the iCub simulator and
on a physical roboti, show that both the proposed implementations can guarantee a
stable visual pursuit switching from predictive to feedback control.
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Chapter 3

Prediction as sensory-motor
anticipation: gaze stabilization

Contrary to what was presented in Chapter 2, where a model based on the predic-
tion of external dynamics was shown, in this chapter prediction of sensory feedback
and internal states will be investigated. This will be achieved by the development
of a gaze stabilization model based on cerebellar internal models capable of provid-
ing sensory-motor anticipation, that is prediction of proprioceptive feedback and/or
internal states.

3.1 Introduction

Gaze stabilization is fundamental in everyday activities. The way it compensates the
movements of the other part of the body as the torso, especially during basic move-
ments like walking or running, is crucial to give a stable reference frame for the two
essential perceptual systems for detection of self-motion relative to space: the visual
and vestibular systems. Vision is the most useful sensor for many animals to pro-
vide information about the surrounding environment. The vestibular information
operates to create an inertial guidance system determining the spatial orientation in
order to coordinate movements and balance. Two kind of reflexes, which rely on
the output of the inertial system and are used to keep the image stable on the retina,
exist: the vestibulo-ocular reflex (VOR), which stabilizes the visual axis to minimize
retinal image motion and the vestibulocollic reflex (VCR), which stabilizes the head
in space through the activation of the neck musculature in response to vestibular
inputs.

3.1.1 VOR - From neuroscientific evidences and models to robotic con-
trollers

The VOR compensates for head movements that would perturb vision by turning
the eye in the orbit in the opposite direction of the head movements (G. Barnes,
1993). VOR works in conjunction with the opto-kinetic reflex (OKR), which is a

This chapter has been adapted from the articles:
Vannucci, L., E. Falotico, S. Tolu, V. Cacucciolo, P. Dario, H. H. Lund, and C. Laschi (2017). “A

comprehensive gaze stabilization controller based on cerebellar internal models”. In: Bioinspiration &
biomimetics 12.6, p. 065001.

Vannucci, L., E. Falotico, S. Tolu, P. Dario, H. Lund, and C. Laschi (2016). “Eye-head stabilization
mechanism for a humanoid robot tested on human inertial data”. In: Lecture Notes in Computer Science
9793, pp. 341–352.

Vannucci, L., S. Tolu, E. Falotico, P. Dario, H. Lund, and C. Laschi (2016). “Adaptive gaze stabi-
lization through cerebellar internal models in a humanoid robot”. In: Proceedings of the IEEE RAS and
EMBS International Conference on Biomedical Robotics and Biomechatronics. Vol. 2016-July, pp. 25–30.
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feedback mechanism for moving the eye at the same speed as the observed scene.
Together they keep the image stationary on the retina, with VOR compensating for
fast movements and OKR for slower ones (Schweigart et al., 1997). The VOR in-
volves six extraocular muscles, each pair acts around a single rotation axis. When a
rotation of the head is detected, the semicircular canals get activated by head rota-
tion and send their impulses via the vestibular nerve, through the vestibular nuclei,
to the extraocular muscles (an inhibitory signal to the muscles on one side and an
excitatory signal to the muscles on the other side). The result is a compensatory
movement of the eyes. The neural control circuitry of the horizontal VOR has been
studied intensively since it involves only three neuron reflex arc and the cerebellar
flocculus (Ito, 1984) which is also known to be involved in the OKR. The VOR is
an adaptive mechanism which changes with experience. The vestibulocerebellum is
considered to be responsible for this learning. Several studies confirm that the cere-
bellum is essential for motor learning to correct the VOR in order to ensure accurate
eye movement. To test this hypothesis, Ito and colleagues (Ito, Nisimaru, and M.
Yamamoto, 1977) studied the influence of a stimulation applied to the inferior oli-
vary or to the optic tract to the vestibulo-ocular reflex. In healthy rabbit, an olivary
stimulation induced a depression of the discharge sent by the semicircular canals.
In parallel with the electrophysiological studies, authors tested the effect of a lesion
on the VOR. Using spectacles that reversed left and right direction on cats, Robinson
(D. Robinson, 1976) showed that cats are able to adapt their VOR gain to achieve
a stable vision. When the flocculus, paraflocculus and some parts of the vermis
were removed, Robinson (D. Robinson, 1976) reported no more long- or short-term
adaptation. An interesting hypothesis on cerebellar motor learning, based on an
experimental study of the rabbit cerebellum, was proposed by Ito (Ito, 2000) who
followed the Marr-Albus model (Marr and Thach, 1991; Albus, 1971). According
to Ito, the adjustment of the relative strengths of the direct excitatory and indirect
inhibitory pathways adaptively modulates the gain of the VOR. Ito asserted that the
modulation could be influenced by messages of retinal image slip and the role of the
cerebellum is to store the motor memory for the changes in VOR gains. Miles and
Lisberger (Miles and Lisberger, 1981) proposed an alternative model. They stated
that the role of the cerebellum was not to store memories but rather to compute an
instructive signal to guide the plasticity process.
One of the first neuroscientific models of VOR has been proposed by Schmid et al.
(Schmid, Stefanelli, and Mira, 1971) based on human recordings with the aim to
compare the frequency response of their model to the human behavior. Galiana
and Outerbridge (Galiana and Outerbridge, 1984) published a bilateral model of the
VOR based on the anatomy of the main neuronal connections present in the cen-
tral VOR pathway. The model can reproduce the activity of the different popula-
tions of neurons when a subject is rotating in the dark. Gomi and Kawato (Gomi
and Kawato, 1992) proposed a model based on the simultaneous adaptation of VOR
and OKR, and compared it with the biological data. Finally, Green and Angelaki
(Green and Angelaki, 2004) proposed model based on a neural network that com-
bines the sensory information from otoliths and semicircular canals simulating the
response along the three rotational axes (yaw, pitch and roll). Other models focus
on the visual-vestibular interaction ((Lau et al., 1978) (Schmid, Buizza, and Zam-
barbieri, 1980) (G. Barnes, 1993). Lau and colleagues (Lau et al., 1978) published
a VOR model with a linear interaction between the vestibular and the visual com-
ponent. With this simple model, they simulated the behaviour of the VOR in the
dark, in the light, with a head-fixed target and with a target oscillation added to the
scillating chair. The model of Lau et al. (Lau et al., 1978) was built to reproduce all
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the experimental conditions for a single oscillation frequency of 0.05Hz. After that,
Schmid et al. (Schmid, Buizza, and Zambarbieri, 1980) updated the model of Lau
et al. (Lau et al., 1978) and integrated non-linear elements to better represent the
behaviour of the visual-vestibular interaction on a larger range of target velocities.
Barnes (G. Barnes, 1993) proposed a model that includes three loops to reproduce
the visual modulation during pursuit and the non-visual modulation of the VOR. In
this model, a central control triggers either an enhancement or a decrease of the VOR
response to model a volitional control of the VOR. All these models aim to validate
human experiments or try to replicate the neural circuits involved in this tasks, but
are not suitable for the implementation on robotic platforms.
Two biological models of the VOR have been proposed and tested on robotic plat-
forms. Shibata and Shaal (Shibata, Vijayakumar, et al., 2001) propose to use a feed-
back error learning strategy in conjunction with a receptive field weighted regres-
sion algorithm to implement the VOR and its internal model on a humanoid robot.
Porrill and colleagues (Porrill, Dean, and Stone, 2004) presented a model for the
VOR that is capable of working on three rotational axes and that includes an in-
ternal model and provide an implementation on Matlab. This model has also been
implemented on a robotic platform simulating the eye movements (Lenz et al., 2008)
. In robotics literature some other controllers inspired by the VOR can be found
(Viollet and Franceschini, 2005; Franchi et al., 2010). Viollet and Franceschini de-
veloped a gaze controller that includes a feedforward component inspired by the
VOR, but lacking any sensory-motor corrective module. Finally, in (Franchi et al.,
2010), a decorrelation model replicating the VOR, that is implemented with a Recur-
sive Least Square algorithm, is shown to be working on a robotic simulator. Panerai
and colleagues presented a bio-inpired controller based on an inertial sensory ap-
paratus and images of space-variant resolution (Panerai and Sandini, 1998; Panerai,
Metta, and Sandini, 2000; Sandini, Panerai, and Miles, 2001). Among all these con-
trollers, only Shibata and Schaal (Shibata, Vijayakumar, et al., 2001) replicated the
OKR mechanism and showed the cooperation between ocular movements.

3.1.2 VCR - From neuroscientific evidences and models to robotic con-
trollers

The VCR stabilizes the head based on the inertial input space by generating a com-
mand that moves the head in the opposite direction to that of the current head-in-
space displacement. When the head is rotated in the plane of a semicircular canal,
the canal is stimulated and the muscles are activated. Thanks to this stimulation, a
compensatory rotation of the head along the same axis is produced. Each canal acti-
vation produces an appropriate reflex response. The VCR controls a complex mus-
culature that includes more than 30 muscles controlling pitch, roll and yaw rotations
(B. W. Peterson et al., 2001). The system could be considered underdetermined be-
cause there are more muscles than rotation axes. One consequence of this property is
that the same head movement can be produced by the activation of different muscle
patterns: this is the case for voluntary head movements, but not for the VCR where
a particular head motion is related to a stereotyped muscle activation pattern (B. W.
Peterson et al., 2001).
The neuroscientific studies conducted on human patients during locomotion evi-
dence the contribution of the VCR for the head stabilization. During a normal
straight walking the head moves mainly in the sagittal plane, rotating around the
pitch axes in a range of 0.3− 8◦ and translating between 0.8− 9 cm (Pozzo, Berthoz,
and Lefort, 1990; J. Bloomberg et al., 1992). During fixed-gaze treadmill walking,



Chapter 3. Prediction as sensory-motor anticipation: gaze stabilization 26

that is at fixed velocity, the coordination between the head and the trunk is depen-
dent on the events in a gait cycle (Mulavara, Verstraete, and J. J. Bloomberg, 2002),
although the trunk already damps many oscillation acting as a low pass filter (Ka-
vanagh, Barrett, and Morrison, 2006), the role of the reflexes is still essential. The
neural pathways mediating this reflex are as yet uncertain. Despite this, the involve-
ment of the cerebellum in the vestibulo spinal reflexes, including the VCR, is well
known (Cullen and Roy, 2004; Manzoni et al., 1994). For a complete review about
the role of vestibular system in posture control and involvement of the cerebellum
in stabilization tasks refer to (Cullen, 2012). Task involving visual fixation lead to
an improvement of head-in-space stabilization in humans (Goldberg and Cullen,
2011) due to increased VCR contributions (Forbes, Bruijn, et al., 2013). Rather it is
still unclear whether a suppression of the VCR occurs in voluntary head movements
(Forbes, Siegmund, et al., 2014). Although there are many physiological models of
the VOR and many robotic implementations, it is not really the same for the VCR.
The existent models have incomplete characteristics or are not suitable for a robotic
implementation. The current state of art provides two main important models for
the aforementioned reflex. Both consider the VCR as a simple negative feedback, but
recent studies (Forbes, Bruijn, et al., 2013) demonstrates the engagement of the cen-
tral nervous system in the modulations of feedback gains. This means that the sim-
ple feedback is not enough to explain the mechanisms involved in head stabilization
and that some feedforward contribution is present.
A model of VCR has been proposed by Peng (Peng, Hain, and B. Peterson, 1996)
in 1996. They presented a control model of yaw head rotations during perturba-
tions of the torso, which for the first time combine a model of the human head with
neural feedback controllers representing the vestibulocollic and the cervicocollic re-
flexes. The parameters of the model are extracted directly from anthropomorphic,
biomechanical and physiological studies. The model proposed by Goldberg and col-
leagues (Goldberg and Cullen, 2011) is nearly the same as the previous one but in
addition there is the contribution of the voluntary control.
In robotics, some head stabilization models already exist. Yamada and colleagues
(Yamada, Mori, and Hirose, 2007) proposed a method for controlling the neck of a
snake-like robot in order to stabilize the head against undulations. The controller is
based on the rejection of the disturbance of the body on the head using a continuous
model. The model proposed by Marcinkiewicz (Marcinkiewicz et al., 2009), imple-
mented on the AIBO robot, uses a machine learning algorithm able to learn how to
compensate for head rotations in the absence of stabilization mechanisms. Gay and
colleagues (Gay, Santos-Victor, and A. Ijspeert, 2013) proposed a head stabilization
system for a bipedal robot during locomotion controlled by the optical flow informa-
tion. It is based on Adaptive Frequency Oscillators to learn the frequency and phase
shift of the optical flow. Although the system can successfully stabilize the head
of the robot during its locomotion, it does not take in consideration the vestibular
inputs.

The closest to the neuroscientific findings of the VCR are the works proposed by
Kryczka and colleagues (Kryczka, Falotico, Hashimoto, H. Lim, et al., 2012; Kryczka,
Falotico, Hashimoto, H.-O. Lim, et al., 2012; Falotico, Cauli, Hashimoto, et al., 2012).
They proposed an inverse jacobian controller (Kryczka, Falotico, Hashimoto, H. Lim,
et al., 2012; Kryczka, Falotico, Hashimoto, H.-O. Lim, et al., 2012) based on neuro-
scientific results (Falotico, Laschi, et al., 2011) and an adaptive model based on a
feedback error learning (FEL) (Falotico, Cauli, Hashimoto, et al., 2012) able to com-
pensate the disturbance represented by the trunk rotations. A comparison between
these models of head stabilization is provided in (Falotico, Cauli, Kryczka, et al.,
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2017).

3.1.3 Objectives and rationale

All the presented models try to reproduce specific aspects of the gaze stabilization
behaviour, but none of them can provide a comprehensive model of gaze stabiliza-
tion, integrating eye stabilization (OKR and VOR) together with head stabilization
(VCR). Some robotic controllers provide mechanisms involving eyes and head, but
they usually consider a unique kinematic chain (neck-eyes) with the aim of stabi-
lize the image on the retina (Roncone et al., 2014; Habra and Ronsse, 2016) without
any learning mechanism involved. With the aim of providing an efficient regulation
of the gaze system, in this work a complete model of gaze stabilization based on
the coordination of VCR and OKR/VOR is presented. By inspiration on the afore-
mentioned cerebellar theories, an adaptive learning mechanism is integrated in the
model. This model is tested on a humanoid robot on three sets of experiments. The
first set of experiments focused on the controller response to a set of disturbance fre-
quencies along the vertical plane. The second shows the performances of the system
under three-dimensional disturbances. The last set of experiments was carried out
to test the capability of the proposed model to stabilize the gaze in locomotion tasks.

Moreover, in addition to showing how the adaptive learning mechanism can be
used to improve the performances of gaze stabilization while executing a specific
task that is long enough to allow for a proper learning phase, it is shown how such
mechanism can be employed to perform learning even when the trials are short or to
create a more general controller capable of adapting to various execution tasks. This
is implemented through an offline learning technique that allows to create training
sets, upon which learning is performed, and then to store the internal model param-
eters after learning for later use in a modified version of the stabilizing controller.
This also allows the proposed method to be used in short, but repeatable (up to a
certain degree of similarity) task, such as biped locomotion.

This is the first time that such a comprehensive control model, with its offline
learning capability, is employed for the gaze stabilization on a physical humanoid
robot.

3.2 Gaze Stabilization controller

The VOR-OKR-VCR stabilization system comprises feedforward and feedback con-
trollers and learning networks that provide corrective control signals through inter-
nal models. The overall architecture of the controller is shown in Figure 3.1.

3.2.1 Internal model

The implementation of the internal model aims at replicating the functionalities
of the cerebellum and was proposed in (Tolu, Vanegas, Luque, et al., 2012; Tolu,
Vanegas, Garrido, et al., 2013). It comprises a machine learning algorithm, Locally
Weighted Projection Regression (LWPR) (Vijayakumar and Schaal, 2000), that mod-
els the cerebellar granular layer (mossy fibers and granule cells), and a linear readout
modelling the integration of information performed by the Purkinje cells, denoted as
Purkinje Layer (PL). Both the LWPR algorithm and the linear readout can be trained
by feedback signals (climbing fibers). Given the control architecture of the subsys-
tems, the internal models act as inverse dynamic models that take as an input the
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FIGURE 3.1: The proposed Gaze Stabilization controller. All three
subsystems consist of a feedforward or feedback controller and the
relative internal model, whose components, LWPR and PL, contribute
in the generation of the motor commands, by providing appropriate
corrections. The training signals for the PL and LWPR are the output
of the feedforward or feedback controller and the total motor com-

mand, respectively.

reference and the current state of the robot, and produce the desired motor com-
mand that minimize the output of the feedforward or feedback component (Tolu,
Vanegas, Luque, et al., 2012). This, in turn, is dependent on both the sensory delays
and the robot dynamics itself, so the internal model is able to provide motor com-
mands that compensate for these delays, therefore improving the performances of
stabilization system.

The LWPR is a non-linear regression model that divides the input space into a set
of receptive fields. Each one has a centre ck and an extension defined by a positive
definite distance matrix Dk. The activation of each receptive field k in response to an
input x and its output are expressed by

pk(x) = exp
(
−1

2
(x− ck)

TDk(x− ck)

)
, (3.1)

yk(x) = wk · x + εk, (3.2)

where wk and εk are the weight vector and bias associated with the k-th linear model.
With every new input, the centre and the distance matrix associated with the as-
signed receptive field are updated.

The global output of the LWPR is given by the weighted mean of all the outputs
yk of the linear local models created:

y(x) = ∑N
k=1 pk(x)yk(x)

∑N
k=1 pk(x)

. (3.3)

By employing localized linear models, the LWPR algorithm lowers the compu-
tational cost and enable the possibility for online, real-time learning.

The activation response of the LWPR, pk, is used to compute the output of the
Purkinje Layer:

z(x) = ∑
k

rk pk(x), (3.4)
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where r is a set of weights that can be trained with an update rule derived from
(Porrill and Dean, 2007):

δrk = −βe(x)pk(x), (3.5)

where β is a positive learning rate and e(x) is the error signal for the current input.
The output of the internal model is the sum between the output of the LWPR and

of the PL:
u(x) = y(x) + z(x). (3.6)

3.2.2 Vestibulocollic reflex subsystem

In this subsystem, the feedforward controller (evcr) provides velocity motor com-
mands that stabilize the head against disturbances originated by torso movements.
The output of the internal model (uvcr) is added to the motor command in order to
provide corrective sensory-motor signals, thus increasing the performances of the
system. The VCR Feedforward Controller is implemented as a PD controller, and its
output is computed as a function of the inertial readings (orientation as Euler angles,
In, and rotational velocities, ˙In):

evcr = kp · (−In)− kd · (− ˙In). (3.7)

Albeit the choice of using a PD controller to model the Feedforward component of
the reflexes is not biologically inspired, the aim of this work is a robotic application,
therefore such simplification can still be considered appropriate in this context. The
internal model receives as input the current and the desired angular position and
velocity of the robot head, and it is trained with the output of the feedforward con-
troller and the resulting motor command. The desired angular position and speed
can be computed as the current intensity of the external disturbance. This can be es-
timated using readings coming from the inertial measurement unit and the encoder
values, using only direct kinematics functions. The disturbance vector can be com-
puted as d = In − ˜In, i.e. by subtracting the expected angular rotations given by
the encoder values ( ˜In) from the inertial readings (In). ˜In = [ϕ, ϑ, ψ] are the Euler
angles for the rigid roto-translation matrix K(θh) from the root reference frame to the
inertial frame, computed as:

ϕ = atan2(−K(θh)2,1, K(θh)2,2), (3.8)
ϑ = asin(K(θh)2,0), (3.9)
ψ = atan2(−K(θh)1,0, K(θh)0,0). (3.10)

The angular velocity of the disturbance can be estimated as follows:

ḋ = ˙In− ˙̃In = ˙In− J(θh) · θ̇h, (3.11)

where J is the geometric Jacobian from the root reference frame to the inertial frame.

3.2.3 Vestibulo-ocular reflex subsystem

The VOR subsystem receives in input the head angular position and velocity signals,
acquired through the inertial measurement unit (In, ˙In), and use them to generate
appropriate velocity motor commands that compensate for head motion. As for the
VCR subsystem, it comprises of a feedforward controller, implemented as a PD, and
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an internal model. The output of the PD controller can be computed as

evor = kp · (−In) + kd · (− ˙In) + uokrtot, (3.12)

where uokrtot is the output of the OKR subsystem, employed as compensatory signal
(Shibata, Vijayakumar, et al., 2001). The VOR internal model receives as inputs the
desired eye rotations (i.e. inertial angular positions and velocities), along with the
current eye encoder values (θe and θ̇e). As in the VCR subsystem, the learning signals
are the output of the feedforward controller and the generated motor command.

3.2.4 Opto-kinetic reflex subsystem

The position error of the visual target, computed as its angular position on the hori-
zontal and vertical axes in the camera reference frame (u, v), and the retinal slip, its
derivative (u̇, v̇) are used by the OKR subsystem to keep the camera image stable.
The angular position is extracted from the camera image using colour filtering, cen-
troid computation and a conversion from pixels to angles. This information is used
to compute the output of the feedback controller:

eokr = kp · (u, v) + kd · (u̇, v̇). (3.13)

As in the previous cases, the learning signals for the OKR internal model are the
output of the feedback controller and the generated motor command. The inputs to
the model are the current eye state and the sum of the eye position and velocity and
the tracked target position and velocity, that are the absolute value of the camera
image motion in the eye reference frame.

3.2.5 Offline learning

While the proposed model is capable of online, real-time learning, this is not suitable
for every situation. In fact, once the internal model has been learnt, it could be used
on subsequent trials in order to avoid the training phase. Moreover, the training
could be performed offline, either by collecting a set of trials that can be used as
a training set or by generating a random disturbance. The first approach can be
useful to train the controller for a specific task which is too short to allow online
learning, while the second one can be employed to expose the controller to a wider
range of disturbances, creating a more generic, adaptive controller which can be later
employed under different disturbances. Once the learning phase is over, the LWPR
and PL parameters can be stored and used in a new trial in order to avoid having to
perform the learning again. In particular, the parameters that have to be saved for
the LWPR are the number of receptive fields, the distance matrices Dk, the weight
vectors wk and the biases εk, while for the PL the vector of weights r must be saved.

After the learning phase, the contribution of the non internal model term (feed-
forward or feedback controller) to the resulting motor command tends to be null
(Tolu, Vanegas, Luque, et al., 2012). Thus, in the offline learning case, the feedback
controllers for the subsystems can be not used simplifying the control scheme as
shown in Figure 3.2.

3.3 Experimental setup

In order to assess the performances of the proposed model, four different kinds of
experiments have been performed:
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FIGURE 3.2: The modified Gaze Stabilization for the execution after a
learning phase.

• stabilization of artificially generated disturbances;

• stabilization of 3D disturbances;

• stabilization of locomotion disturbance;

• stabilization of human inertial data.

In the first case, the iCub robotic head was mounted on a oscillating platform
capable of generating disturbances through periodic motion (see Figure 3.3a). The
Inertial Measurement Unit (IMU), mounted in the centre of the head, is an XSens
MTx unit. Inertial measurements, with an angular accuracy on the roll and pitch
axis of 2 degrees can be sampled with a 100Hz frequency, while the dragonfly 2
camera was set to send images with a resolution of 320x240 pixels and at frame rate
of 60Hz.

The oscillating platform is a custom built device that generates periodic distur-
bances and it consists in an aluminium plate connected to a rigid external frame by
two coaxial bearings. The device to be tested is placed on the plate and anchored
mechanically. The plate is then connected to a rigid mechanism that transforms the
continuous rotation of a crank, actuated by a DC motor, through a slide mechanism,
to the periodical oscillation of the plate (Figure 3.3b). The platform can only pro-
vide disturbances on a single rotational axis, and the rotation of the plate (γ) can be
expressed as a function of the crank angle (δ):

sin(γ) =
R · sin(δ)√

(R · sin(δ))2 + (L− R · cos(δ))2
, (3.14)

where R is the distance from the motor axis and the pin joint linking the disk and
the slider and L is the distance between the axis of the motor and the axis of rotation
of the platform. By construction these parameters are set to R = 2cm and L = 20cm.

Due to the limitations of the platform, that provides disturbances on a single
rotational axis, only the pitch axis could be considered for the experiments, thus
only rotations around the y axis of the inertial reference frame.

In order to verify that the controller is capable of working also for disturbances
on all rotational axes, experiments were also performed on the iCub robotic simula-
tor (Tikhanoff et al., 2008). In this case, the disturbance is provided by moving the
robot torso.
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(a)

(b)

FIGURE 3.3: The oscillating platform. In (a) the iCub head mounted
on the platform, with its inertial reference frame is shown. The trans-
mission of motion from the DC motor to the oscillating platform is

depicted in (b).

For the stabilization of locomotion disturbance, the SABIAN humanoid robot, in
a straight walking task, was employed. This robot has an iCub robotic head mounted
on the body of the WABIAN-2 humanoid robot (Ogura et al., 2006), that has 7 DOF
in each leg and 2 DOF in the waist, with a bio-inspired range of motion. These make
the robot able to perform human-like walking, with stretched knees and raising the
hip, in contrast with most humanoid robots that walk with the knees bent. As the
iCub head encoders do not provide velocity information, a smooth differentiation
technique was employed to compute the velocity of joints. This introduced a sensory
delay of around 100ms. To align all sensory feedback, the position, inertial and
visual information was also delayed accordingly.

Finally, to assess the effectiveness of the stabilization capabilities of the proposed
model rejecting the torso disturbance measured in real walking tasks, human inertial
data relative to locomotion tasks was collected. The experiments were conducted on
a human subject with no visual and vestibular impairments. An inertial measure-
ment unit (IMU) was placed on the back of the subject, near T10, the tenth vertebra
of the thoracic spine, as depicted in Figure 3.4. The IMU used was an Xsens MTi ori-
entation sensor1, that incorporates an on-board sensor fusion algorithm and Kalman
filtering. The inertial unit is able to produce the current orientation of the torso at
a frequency of 100Hz. Three different tasks were performed by the subject: straight
walking (25m), circular walking and straight running (25m). The circular walking
was carried out by asking the subject to walk with a circular pattern, without any
indication of the pattern on the ground. Such task was executed both on normal and
soft ground, provided by placing a foam rubber sheet on the ground. The foam had

1https://www.xsens.com/products/mti/
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a density of 40kg/m3 and the sheet measured 103x160x15cm. All tasks were per-
formed with bare feet. Due to the fact that the inertial readings relative to the yaw
rotational axis (rotation around z) can often be inaccurate because of drifting, it was
decided not to use such readings. Moreovoer, in order to prevent drifts of the sensor
measurements on the other two rotational axis (pitch and roll, rotations around y
and x respectively), each trial lasted less than one minute with a reset of the rota-
tional angle at the beginning of the trial (Bergamini et al., 2014). The recorded data
was then employed to move the torso of the iCub robot in simulation, reproducing
human locomotion.

FIGURE 3.4: Placement of the inertial measurement unit on the sub-
ject.

3.4 Results

During all the experiment the main measure of error considered is the movement
of the camera image (retinal slip). Human vision is considered stable if such error
is below 4deg/s (Collewijn, Martins, and Steinman, 1981). In order to compute the
retinal slip, and to generate the input for the OKR subsystem, a target was placed in
the field of view of the robot camera. The other measure of performance considered
is the inertial orientation of the head, read through the IMU.

3.4.1 Stabilization on the oscillating platform

During these trials, the robotic head was mounted on the oscillating platform that
was controlled in order to produce different disturbance motions. In particular the
frequency of the periodic disturbance ( f ) was varied during the tests.

In a first set of trials, due to their length and repeatability, no information about
the learnt internal models was retained, thus the online learning phase of the LWPR
and the linear readout always started from scratch at the beginning of the trial. Dur-
ing these tests, the frequency of motion was changed in an increasing fashion, thus
providing trials of increasingly disturbance speed. During these trials, the target was
kept static in front of the platform. Due to the target being static, the OKR subsystem
does not provide substantial contributions during these trials, thus it was disabled.
This also improves learning times, as the OKR output can slow down the learning,
especially at high frequencies. Results for f ranging from 0.3Hz up to 1.5Hz can be
found in Table 3.1 where, for each frequency, the Root Mean Square (RMS) value of
the disturbance speed ḋp (deg/s), inertial sensor readings, Inp (deg) and ˙Inp (deg/s),
and the position and velocity of the target on the camera image on the vertical axis,
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v (deg) and v̇ (deg/s), are presented. In order to avoid having the results influenced
by the instability of the initial learning phase, the RMSs were computed only on the
last 5 of the 14 total seconds of the trials. It can be observed that the controller is able
to stabilize the image on the camera against disturbances generated by motion fre-
quencies up to 1Hz. After that, the retinal slip (v̇) increases over 4deg/s. However,
by comparing the magnitude of the disturbance and the retinal slip, it emerges that
the controller is able to reduce it to one third even for frequencies up to 1.4Hz, thus
providing a substantial contribution towards a stable camera image. An example
of such trials (for f = 1Hz) can be seen in Figure 3.5. It can be observed that, after
an unstable learning phase at the beginning, the magnitude of the error is reduced
dramatically over time, in both the velocity and position spaces. At the same time,
the control signal coming from the internal model, especially from the LWPR com-
ponent, increases, while the output of the feedforward controller (FFC) is reduced
towards zero. This implies a switch to a sensory-motor compensatory motion that is
able to almost nullify the disturbance.

TABLE 3.1: Results for disturbances provided by the oscillating plat-
form at various frequencies.

f ḋp Inp ˙Inp v v̇
0.30 9.46 0.32 1.16 0.29 0.94
0.50 15.79 0.17 1.40 0.30 1.06
0.70 18.58 0.18 1.78 0.34 1.01
0.85 22.54 0.32 3.33 0.48 0.99
1.00 25.66 0.78 7.31 1.15 2.20
1.20 29.62 0.78 11.17 2.61 7.94
1.40 34.98 1.21 15.74 2.06 9.44
1.50 39.70 2.59 28.68 3.55 27.16

It is also relevant to stress the importance of the combination of VCR and VOR
subsystems during these tasks: in fact, as shown in Table 3.1, while the VCR sub-
system is able to provide a substantial contribution towards stabilization, reflected
in the low inertial readings RMS values, it is only thanks to the added contribution
of the VOR subsystem that full stabilization is achieved in some cases. Moreover, if
employed separately, the VCR and VOR subsystems cannot achieve the same per-
formances, as depicted in Figure 3.6, where the results for trials where only one of
the two subsystems was active are shown. It can be observed that each of the two
subsystems work and is able to reduce the error generated by the disturbance. How-
ever, the RMS value for the retinal slip is respectively 7.86deg/s and 4.01deg/s for
the VOR and VCR subsystems. Thus, only with the combination of the two, a stable
camera image is ensured.

In order to simulate the drifting motion that elicits the OKR response, the target,
placed in front of the platform, was moved with a sinusoidal motion on the vertical
axis with a frequency of 0.15Hz and a peak-to-peak amplitude of 15deg in the cam-
era reference frame, while the frequency of the disturbance was kept at 1.0Hz. The
behaviour of the system during this trial is shown in Figure 3.7. It can be noticed
that the controller is able to stabilize the image on the camera and almost no trace
of the target movement can be observed in the position or velocity space plots. The
RMS value of the retinal slip in this trial is 3.69deg/s, thus the camera image is kept
stable, even if the error is increased, compared to the trial with a static target.
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FIGURE 3.5: Execution trial for f = 1Hz. Results for the inertial read-
ings and camera error in the velocity and position spaces are on the
upper half, while the contributions of the feedforward controllers
(FFC) and the internal model components (LWPR and PL), for both

the VCR and VOR, are on the lower half.

In a second set of tests, the offline learning strategy was employed to create a
more general controller that can work on different disturbances. To achieve this, a
training phase of 150s was performed. During this phase, the platform was moved
with a sinusoidal signal whose frequency randomly varied over time. The motion
was generated by varying the voltage applied to the motor using a colored noise
signal (low-pass filtered white noise) with a maximum voltage of 3V. This led to
frequencies of motion up to 1.2Hz. Figure 3.8 shows the behaviour of this learn-
ing phase. It can be observed that, after an initial phase of circa 50 seconds where
the learning occurs, the RMS of the inertial and camera measures, averaged over
time bins of 3s, remain stable and no further improvements are noticeable. By per-
forming a similar trial with the learnt internal models (Figure 3.8, bottom row), we
can observe that initial unstable phase has disappeared and that the disturbance is
immediately compensated. After learning, the controller was employed with the
learnt internal models on a test trial in which a sinusoidal signal whose frequency
gradually increased every 5 seconds was applied to the platform. Figure 3.9 shows
the behaviour of the RMS during such trial, averaged over time bins of 1s. Being
already trained, the system is able to immediately stabilize the disturbance and the
performances do not significantly decrease when the signal changes frequency. By
comparing the behaviour of the same task in the online learning scenario, it can be
noticed that in the latter case the performances are inferior as the system needs to
learn after each frequency change and it has not enough time to properly do so.
Therefore, a long offline training phase provides a viable solution to create more
general controllers capable of adaptation to different tasks.
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FIGURE 3.6: Execution trial for f = 1Hz with only one of VCR or VOR
subsystem active.

3.4.2 Stabilization of 3D disturbances

Due to the movements of the oscillating platform being limited to only one rotational
axis, stabilization of disturbances applied on all three axes could only be done in
simulation.

In these tests, sinusoidal disturbances were applied to the three joints of the torso
to produce a three-dimensional disturbance. In this case, the VCR is able to provide
stabilizing motor commands on all three rotational axes, while VOR and OKR can
only stabilize on the pitch and yaw rotational axes, as the robot eye joints do not
rotate around the roll axis. Results for f ranging from 0.3Hz up to 1.5Hz can be
found in Table 3.2, where the same terminology of Table 3.1 is used and r, y, u are
the roll axis, yaw axis and horizontal axis of the camera image, respectively. It can
observed that, while the inertial reference frame is stabilized by the VCR, the image
on the camera appear to be not stable. This is because the combination of all the
three rotational movements produces a linear motion of the head in space, whose
effects cannot be canceled by the controller, as linear measurements are not taken
into account as inputs. This motion is particularly evident on the horizontal axis.
This disturbance can only be partially canceled by the OKR, especially at high fre-
quencies.

An example of trial, for f = 1Hz, can be seen in Figure 3.10, where the distur-
bances, as well as the errors, on all rotational axes are shown. In accordance to the
results observed for the oscillating platform, after an initial unstable phase, where
learning occurs, both the inertial measurements and the camera errors decrease.
While full stability of the camera image cannot be achieved due to the translation
of the head caused by the torso movements, the disturbance is greatly reduced by
the controller.

3.4.3 Stabilization during locomotion

The effectiveness of the controller was also tested in a realistic situation by employ-
ing the biped humanoid robot SABIAN for a walking task consisting of 8 steps in a
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FIGURE 3.7: Execution trial for f = 1Hz with elicitation of the OKR
through a vertical movement of the target.

TABLE 3.2: Results for disturbances provided by moving the robot
torso on three axes, in simulation.

f ḋp Inr ˙Inr Inp ˙Inp Iny ˙Iny u u̇ v v̇
0.30 13.34 0.18 0.69 0.51 1.26 0.14 0.53 4.83 2.26 2.29 0.85
0.50 22.32 0.31 1.80 0.39 1.94 0.13 0.53 4.83 3.81 2.29 1.59
0.70 31.10 0.30 1.99 0.23 1.66 0.13 0.95 4.79 5.30 2.30 2.60
0.85 37.69 0.30 2.25 0.51 3.13 0.17 1.35 4.80 7.56 2.27 3.22
1.00 44.26 0.60 3.90 0.31 2.71 0.03 0.54 4.84 8.13 2.31 4.31
1.20 52.83 0.13 1.96 0.42 3.89 0.09 1.92 4.84 11.21 2.29 4.59
1.40 61.40 0.12 2.19 0.13 2.44 0.17 2.70 4.84 15.24 2.29 5.83
1.50 65.52 0.53 5.95 0.56 6.22 0.30 4.32 4.83 17.54 2.30 6.18

straight line (the step length was 160mm, step width 120mm, step time 1s). The
walking control system of the WABIAN/SABIAN is composed by two modules
phases (H.-O. Lim, Y. Yamamoto, and Takanishi, 2002; Yamaguchi et al., 1999; H.-O.
Lim, Kaneshima, and Takanishi, 2002). The first module uses a pattern generator
that calculates the trajectory of the end-effectors (feet) and generates an ideal Zero
Moment Point (ZMP) and the motion pattern of the lower limbs before the begin-
ning of the walking task. The second module is active during the walking task,
for the dynamic balance of the robot, providing corrections for leg and waist mo-
tions (Torso Position Control) according to the difference between the current and
the ideal value of the ZMP positions (H.-O. Lim, Ogura, and Takanishi, 2006; Yam-
aguchi et al., 1999; Hashimoto et al., 2012; Kang et al., 2012). In order to compute
the camera error and the retinal slip, a target was placed in front of the robot, at the
same height as the robot head. The target was kept static during these trials, thus the
OKR module have been disabled. During a walking task, oscillations are produced
on all three rotational axes, thus a stabilizing mechanism is needed for pitch, roll
and yaw disturbances. However, due to the drifting of the IMU readings, it was not
possible to perform stabilization on the yaw rotational axis. Therefore, the VCR was
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FIGURE 3.8: Offline learning with a randomly generated movement
applied to the oscillating platform. The disturbance used for the train-
ing is shown on the top, the trend of the RMS of the disturbance and
error signals during the training phase is show in the middle, while
the behaviour of a similar trial, performed after training, is shown on

the bottom.

only employed on the pitch and roll axes. Moreover, the robot eyes cannot rotate
around the roll axis, thus VOR compensation is provided only on the pitch axis.

Due to the shortness of the execution, each step lasts around one second for a
total of 8 seconds, it was impossible for the internal models to have enough time
to properly learn the motion dynamics. In addition, the disturbance in the velocity
space had some considerable peaks probably due to the impulsive acceleration the
head is subject to (see not stabilized gaze in Figure 3.11), that could slow down the
learning. These two reasons make the online learning disadvantageous for such a
short task. Thus, the offline learning strategy was employed by creating a training
set consisting in inertial data recorded during 4 locomotion trials. All the collected
data were glued together to create a new offline task lasting 32 seconds. Then, the
controller was executed on such trial and the learnt internal models were saved. Fi-
nally, the modified version of the controller for the execution phase was employed
on a new walking task. A comparison between a stabilized walk and a non stabi-
lized one can be seen in Figure 3.11. When the stabilization is employed the camera
and inertial errors are significantly reduced in both the velocity and position spaces.
Table 3.3 presents the results for two kinds of tests. In the first one the Torso Position
Control (TPC) was active (as for the the trials used for the learning). In the other
task the TPC was disabled producing a stronger disturbance on the head, but the
gaze stabilization controller was able to effectively reject the disturbance also in this
case. In particular, the RMS values for the camera errors, presented in Table 3.3 (Inr
and ˙Inr denote the inertial angular position and velocity along the roll axis), indicate
a significant reduction of error while the controller is employed. In particular, the
retinal slip value is lower than 4deg/s thus demonstrating the effectiveness of the
proposed stabilization mechanism on a realistic task.
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FIGURE 3.9: Comparison of the execution of the same trial by a con-
troller trained with offline learning and another performing online
learning. The frequency of the disturbance increases every 5 seconds.

TABLE 3.3: Comparison between camera and inertial RMS values in
the stabilized and non-stabilized cases, in two different trials (with

active and non-active TPC control).

tr. stab. TPC Inp ˙Inp Inr ˙Inr v v̇

1
yes yes 0.19 1.62 0.33 1.46 0.29 3.23
no yes 0.47 3.06 0.61 2.59 0.76 6.58

2
yes no 0.38 1.68 0.88 2.84 0.27 3.34
no no 1.91 5.85 0.94 4.12 0.78 8.20

3.4.4 Stabilization of human inertial data

The stabilization model was tested on the data coming from the three different loco-
motion tasks (straight walking, circular walking and straight running). Due to the
fact that the collected inertial data related to the yaw rotational axis was not consid-
ered, the eye-head stabilization model has been simplified, so that no stabilization
on the yaw axis was performed. Moreover, given that the robot eyes cannot influ-
ence stabilization on the roll rotational axis, due to the fact that only tilt and pan
motors are present, only disturbance on the pitch axis was compensated by the VOR
model. Finally, as no data was recorded relative to the OKR, the relative subsystem
was disabled.

For each task, a comparison between the same task performed with and without
the stabilization model will be presented. The values of the gains of the PD con-
trollers were set to kp = 5.0, kd = 0.1 for the VCR model and to kp = 1.0, kd = 0.1 for
the VOR model, for all trials.

Results for the compensation of the disturbance of straight walking inertial data
can be found in Table 3.4, where the Root Mean Square (RMS) values for inertial
readings and target position and speed are presented. In this and subsequent tables,
Inp, ˙Inp are the inertial readings for rotation (deg) and rotation speed (deg/s) on
the pitch axis, Inr, ˙Inr are the inertial readings for rotation (deg) and rotation speed
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FIGURE 3.10: Stabilization of a sinusoidal motion with a frequency
of 1Hz applied on all three rotational axes, in simulation. Results for
pitch, head and roll are on the top, middle and bottom rows, respec-

tively.

(deg/s) on the roll axis, v, v̇ are the position of the target on the camera image (deg)
and its speed (retinal slip, deg/s).

TABLE 3.4: Results for straight walking data.

trial Inp ˙Inp Inr ˙Inr v v̇
no stabilization 2.06 11.36 2.05 11.56 3.66 8.88

stabilization 0.84 14.71 0.22 3.45 2.71 3.30

Figures 3.12, 3.13 and 3.14 show the behaviour of the task, showing the target
position and retinal slip, inertial data for the pitch rotational axis and inertial data
for the roll axis, respectively. From these results it can be noticed that while the roll
disturbance is almost completely compensated by the VCR model, the magnitude of
the rotational velocity on the pitch axis is too high to be fully compensated by the
said model, that only provides an improvement in the position space. Nevertheless,
the VOR subsystem is still able to maintain the camera image stable, with a mean
vertical retinal slip lower than 4deg/s. Moreover, Figure 3.12 also shows a compar-
ison between the full stabilization model and a simplified model with only the PD
controllers. While the PD only implementation is able to reduce the error on the
camera, it is outperformed by the complete model, thus proving the effectiveness of
the latter.

Two sets of data were collected for circular walking tasks: one for normal ground
and one for soft ground. Results for both cases are presented in Table 3.5. As in the
straight walking case, the disturbance on the pitch axis cannot be fully compensated
by the VCR alone, but thanks to the VOR module, the vision remains stable.

Walking on soft ground produces a greater disturbance, especially in the velocity
space. Despite the higher disturbance, compared to the normal ground task, the
model is still able to stabilize the head and the camera image, achieving stable vision.
The behaviour of this task can also be observed in Figure 3.15.
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FIGURE 3.11: Stabilization during a straight walking task (with active
TPC control), comparison between stabilized and non stabilized gaze.

FIGURE 3.12: Stabilization task with data from a straight walking
task, target position (top) and retinal slip (bottom).

During the last experiment, data from the straight running was used to move the
robot torso. From Table 3.6 it can be observed that the model is not able to achieve
a complete compensation of the disturbance, due to the high rotational velocities on
the two axes. Nevertheless, the mean retinal slip is reduced to a quarter of the one
of the trial with no stabilization. Thus, the model provides a viable solution even for
disturbances of this magnitude, as it is also shown in Figure 3.16.
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FIGURE 3.13:
Stabilization task
with data from a
straight walking
task, inertial posi-
tion data (top) and
inertial velocity
(bottom), pitch

axis.
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FIGURE 3.14:
Stabilization task
with data from a
straight walking
task, inertial posi-
tion data (top) and
inertial velocity
(bottom), roll axis.

TABLE 3.5: Results for circular walking data on normal and soft
ground.

ground trial Inp ˙Inp Inr ˙Inr v v̇
normal no stabilization 3.35 14.03 2.11 6.36 3.61 12.86
normal stabilization 0.49 6.34 0.17 2.84 0.88 1.85

soft no stabilization 3.09 16.00 3.89 10.95 4.23 15.15
soft stabilization 0.46 6.35 0.24 3.07 2.74 3.56

TABLE 3.6: Results for straight running data.

trial Inp ˙Inp Inr ˙Inr v v̇
no stabilization 3.14 45.36 1.77 16.28 3.49 25.96

stabilization 1.06 43.03 0.53 10.78 1.61 6.36

3.5 Conclusions

In this work a complete neuro-controller for the stabilization of the gaze that is based
on the coordination of VCR, VOR and OKR in conjunction with cerebellar inter-
nal models, implemented through machine learning approaches, was presented and
validated through an implementation on a humanoid robotic platform. The model
was tested on a robotic head mounted on an oscillating platform capable of generat-
ing periodic disturbances and on a complete humanoid robot during a locomotion
task. Results on the oscillating platform show that the model is able to keep the cam-
era image stable while the disturbance is applied. The coordination of the VCR and
VOR components proves beneficial for the overall performances and the controller
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FIGURE 3.15: Stabilization task with data from a circular walking task
on soft ground, target position (top) and retinal slip (bottom).
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FIGURE 3.16: Stabilization task with data from a straight running
task, target position (top) and retinal slip (bottom).

is able to cope with drifts of the camera image thanks to the OKR subsystem. More-
over, tests performed during robotic locomotion trials prove the effectiveness of the
approach in realistic scenarios. Experiments also shown that the internal models do
not have to be learnt online during the execution of the task but can be generated by
employing offline training and then stored to be used on real task. Finally, results
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also show that the model is able to compensate for disturbances recorded on human
subject locomoting, and that the system performs well in almost all trials, with the
exception of the straight running task, albeit being able to improve the stabilization
by reducing the retinal slip to a quarter of the one from the task were no stabilization
was present. The model still has some limitations, and could be improved in some
aspects. Due to the fact that only rotational information is used by the controller,
disturbance produced by linear translations cannot be compensated. However, the
controller could be in principle be extended to take also these inputs into account.
Another simplification introduced was to align all sensory feedback in time intro-
ducing a fixed delay. In a more biologically accurate system, the delays could be
different for every sensory pathway and could also be non constant. Enabling the
OKR in some circumstances can significantly increase the learning times, therefore
it should be only activated if its contribution could really be helpful in stabilizing
the camera image. A possible improvement in this direction could be an automatic
switching mechanism that enable the OKR when its contribution is required. Over-
all, this work has proven that the coordination of the three aforementioned reflex
can increase the performances of gaze stabilization on physical humanoid robotic
platforms and than can provide a fundamental component for visually-guided loco-
motion.
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Chapter 4

A framework for connecting robots
and neural simulations

This chapter reports on the development of a software tool that enable the synchro-
nization and data exchange between physical and neural simulations as well as pro-
viding the necessary graphic user interfaces to develop and run experiments. This
tool is the Neurorobotics platform developed as part of the Human Brain Project SP
10 - Neurorobotics.

Clearly, the development of the Neurorobotics Platform was a very collaborative
effort, and the personal contribution was limited to the design and implementation
of the Closed Loop Engine synchronization mechanism and of the appropriate inter-
faces towards the robotics side and physical simulations as well as to the design and
implementation of the experiments presented. However, for the sake of complete-
ness, also other parts of the platform will be described.

4.1 Introduction

Developing neuro-inspired computing paradigms that mimic nervous system func-
tions is a well-established field of research that fosters our understanding of the hu-
man brain. The brain is a complex structure and designing models that can mimic
such a structure is particularly difficult. Modelling brain function requires under-
standing how each subsystem (sensory, motor, emotional, etc.) works, how these
subsystems interact with each other, and, as a whole, how they can generate com-
plex behaviours in the interaction with the environment. Moreover it is well known
that during development the brain is moulded by experience and the environment
(Benefiel and Greenough, 1998; Briones, Klintsova, and Greenough, 2004). Thus,
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studying and validating models of brain function requires a proper embodiment of
the brain model as well as a dynamic and rich sensory environment in which the
robot-brain ensemble can be embedded and then be exposed to a realistic sensory-
motor task. Since advanced brain models are too complex to be simulated in real
time, the researcher is faced with a dilemma. Either the brain model is simplified
until it can be simulated in real time. In this case, the brain model can be embed-
ded in a physical robot, operating in the real world, but the complexity of the brain
models that can be studied is highly limited. Or the complexity of the brain model is
maintained. In this case, there are no limits on the brain models, however, it is now
no longer possible to embed the brain into a real world task. Rather, the embodiment
has to be simulated as well.

While, from one side, adequate tools exist to simulate either complex neural net-
work models (Gewaltig and Diesmann, 2007) or, on the other, robots and their envi-
ronments (Koenig and Howard, 2004), there is so far no tool that allows researchers
to easily connect realistic brain models to a robot and embed it in a sensory rich
environment model.

Such a tool would require the capability of orchestrating and synchronizing both
simulations as well as managing the exchange of data between them. The goal of
such simulations is to study and quantify the behaviour of models of the brain. As
a consequence, we do not only need a complex, realistic experimental environment,
but we also need a controllable and measurable setup where stimuli can be gener-
ated and responses can be measured. In fact, real environment complexity and pa-
rameters are intrinsically difficult or even impossible to control. In addition, models
of brain functions, designed to properly reproduce brain activity at different levels
could not be executed in real-time due to complex neuron dynamics and the size
of the network (Kunkel et al., 2014). This is the reason why it is proposed to use
a digital simulator implementing realistic scenarios. The main restriction proposed
is to have a simulator that could run at a “slower” time (depending on the needed
computational time of the brain) and also that the time can be sampled in discrete
intervals without compromising the simulation quality.
The idea behind this approach is providing a tool chain, which grants researchers ac-
cess to simulation control as well as state-of-the-art tools such as models of robot and
brain and methods to connect them in a proper way (i.e. connecting spiking neural
networks to robotic sensors and actuators). A first approach used to connect spiking
neural networks and robots has been presented by (Gamez, Fidjeland, and Lazdins,
2012). iSpike is a C++ library that provides an interface between spiking neural
network simulators and the iCub humanoid robot. It uses a biologically-inspired
approach to convert the robot’s sensory information into spikes that are passed to
the neural network simulator, and it decodes output spikes from the network into
motor signals that are sent to control the robot. Another communication interface
named CLONES (Voegtlin, 2011) between a neural simulator (BRIAN, (Goodman
and Brette, 2008)) and SOFA, a physics engine for biomedical applications (Allard et
al., 2007), has been developed using shared memory and semaphores. The most sim-
ilar system to iSpike and CLONES is the interface that was created for the CRONOS
and SIMNOS robots (Gamez, Newcombe, et al., 2006) which encoded visual and
proprioceptive data from the robots into spikes that were passed to a spiking neu-
ral network simulated in SpikeStream. Spiking motor output from the network was
transformed back into real values that were used to control the robots. This system
was used to develop a spiking neural network that controlled the eye movements of
SIMNOS, learnt associations between motor output and visual input, and used mod-
els of imagination and emotion to avoid negative stimuli. All these systems provide
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an interface towards specific robotic platforms able to deal with spiking/digital in-
puts and convert them appropriately. Together with robotic platform restrictions,
they do not provide a framework for the conversion, allowing the user to write his
own transfer function. A more generic system which permits dealing with simulated
robotic platforms is AnimatLab (Cofer, Cymbalyuk, Reid, et al., 2010). AnimatLab
currently has two different neural models that can be used. One is an abstract firing
rate neuron model, and the other is a more realistic conductance based integrate-
and-fire spiking neural model. It is also possible to add new neural and biomechan-
ical models as plug-in modules. There are several different joint types, and a host
of different body types that can be used. Although AnimatLab does not provide a
comprehensive set of neurons and learning models, some behavior implementation
based on this tool is available such as locust jumping (Cofer, Cymbalyuk, Heitler,
et al., 2010) or dominant and subordinate crayfish (Issa et al., 2012). Despite some of
the mentioned tools represents a good attempt to connect artificial brains to robots,
these are not very common in the robotic and neuroscientific communities likely due
to the limitations underlined (robotic platform restrictions, lack of a framework for
conversions). For the proposed framework it was decided to rely on widely used
simulators for the brain models as well as for robots and environments. This strate-
gic choice should allow to easily attract users of these platforms. These simulators
were embedded in a comprehensive framework that allows the user to design and
run neurorobotic experiments. In line with the described approach, (Weidel, Duarte,
et al., 2015; Weidel, Djurfeldt, et al., 2016) proposed to couple the widely used neu-
ral simulation tool NEST (Gewaltig and Diesmann, 2007) with the robot simulator
Gazebo (Koenig and Howard, 2004), using the MUSIC middleware (Djurfeldt et al.,
2010).

Here, the first release of the HBP Neurorobotics Platform is described. This piece
of software offers scientists and technology developers a set of tools, allowing them
to connect brain models to detailed simulations of robot bodies and environments
and to use the resulting neurorobotic systems in in-silico experiments and technology
development. The Neurorobotics Platform (NRP) also provides a comprehensive
development framework including editors for creating experiments, environments,
and brain and robot models. These tools are accessible via the web allowing them
to use the platform without tedious installation of software packages. Moreover,
through the web, researchers can collaborate and share their models and experi-
ments with their colleagues or with the scientific community.

Although the capabilities to model virtual robots and environments already ex-
ist as confirmed by the mentioned works, and although various labs have created
closed-loop set-ups with simple brain models (Ros et al., 2006; Denoyelle et al., 2014),
this platform is the first to allow the coupling of robots and detailed models of the
brain. This makes it possible to perform experiments exploring the link between
low-level brain circuitry and high-level function.
The aim of this platform is twofold: from one side, the platform can be used to test
neuroscientific models of brain areas, or even reconstruction of these areas based on
neurophysiological data; on the other side, roboticists can take advantage of such a
platform to develop more biologically inspired control architectures. The physical
and neural simulation are properly synchronized and they exchange data through
transfer functions that translate sensory information coming from the robot (camera
image, encoders, etc.) into input for the brain (current and spikes) from one side and
the network output into motor commands from the other. Additionally, the plat-
form also provides a web interface, so that it can be easily accessed and used from a
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broader user base. From this web interface the user can also access the editors that
are used to construct experiments from scratch and run the experiments without any
software installation, benefiting from the available computing and storage platforms
that have been made available to support the NRP. Therefore, the NRP provides a
complete framework for neurorobotics experiment design and simulation. One of
the pillars of the NRP development is the reuse and extension of existing software,
thus many components were implemented using suitably chosen existing software.

4.2 Platform Requirements

4.2.1 Functional Requirements

In order to obtain the functional requirements for the NRP, at first it was determined
which features are needed for the creation of a neurorobotic experiment. In that,
software engineering concepts and terminologies were followed to itemize platform
features as requirements (IEEE, 1998). These features can be divided into two cate-
gories: design features and simulation features, each with its own functional require-
ments.

During the design of a neurorobotic experiment, the user should be able to define
all of its properties and this includes:

• the design of a suitable Robot model, by defining both kinematic and dynamic
properties as well as the appearance, either from scratch or from pre-existing
models;

• the possibility to create a rich Environment models in which the robot can op-
erate, by using a library of objects;

• the design of a Brain model, either from scratch or by selecting an existing
model, that will be coupled to the robot;

• Brain-Body Integration, in order to specify how the brain model and the robot
should be coupled in terms of sensory and motor data exchange to create a
Neurobot;

• the capability to change dynamic properties of the Experiment itself, like defin-
ing events that can be triggered during the simulation and appropriate re-
sponse behaviors.

When all properties are defined, the simulation can start. During the execution,
the NRP should provide:

• World maintenance and synchronization mechanisms in order to not only simulate
both the physics and neural models, but to synchronize the two simulations
and exchange data between them, providing a closed-loop control mechanism,
as defined in the design phase. It must be possible to start, pause, stop and
reset the simulation. The simulation should react to the triggered events pre-
viously defined;

• a proper Interactive visualization of the running simulation, comprising a GUI
and utilities to see details of the simulation like brain activity or robot param-
eters. Moreover, the user should be able to live edit and interact with the simu-
lation once it is started, using the same design features described above.

An overview of the platform functionalities is shown in Figure 4.1.



Chapter 4. A framework for connecting robots and neural simulations 49

4.2.2 Non-Functional Requirements

Several non-functional requirements were also defined:

• usability and user experience – the platform should be easily accessible to a wide
range of users that possibly have no experience in either the neuroscientific or
robotic fields. This should be achieved by an user-centric design with intuitive
tools and a consistent user experience. Moreover, the platform should also
provide an additional user level in order for expert users to have more detailed
design capabilities;

• open source – the NRP should rely on existing building blocks, and in particular
on open source ones, as the platform has to be released to a wide audience.

• interoperability – each software component that allows to save or load data
should use, wherever possible, well-known data formats.

• software quality – in order to ensure software quality, the development of the
platform should follow software engineering practices such as keeping a task
tracking system, using version control with code review and continuous builds,
and employing standard software development methodologies.

4.2.3 Integration with other HBP Platforms

The NRP is one of six platforms developed in the Human Brain Project. In addition
to the Neurorobotics Platform, the HBP develops a Neuroinformatics Platform, a Brain
Simulation Platform, a High Performance and Data Analytics Platform, a Neuromorphic
Computing Platform and a Medical Informatics Platform. Most of these offer their ser-
vices through the web and are built on top of a common set of APIs and services,
called HBP Collaboratory Portal. It provides the following services:

• Authentication, access rights and user profiles. The users are provided with a
Single Sign-On mechanism so they can use the same credentials to access every
HBP platform.

• Document repository. The users has access to a document repository in which
they can store and manage their projects. It supports one of NRP’s require-
ment, namely the possibility for the users to share their models (brain, connec-
tions, environment, robots or experiments) with team members.

• Collaboratory API. A web based application with associated libraries allow-
ing every platform’s web interface to have the same look and feel, and to be
implemented as a plugin within the Collaboratory Portal.

All the HBP platform should provide some level of integration among each other.
For this reason, short-term future development plans include the integration of the
Neurorobotics Platform with the Brain Simulation Platform and the Neuromorphic
Computing Platform, while in the long term integration with the High Performance
Computing and Analytics Platform will also be provided.

The Brain Simulation Platform aims at providing scientists with tools to recon-
struct and simulate scaffold models of brain and brain tissue using data from within
and outside the HBP. The Brain Simulation Platform will be integrated with the NRP
for simulating brain models at various detail levels. Moreover, alongside the Brain
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Simulation Platform, scaffold brain models will be gathered and they will be avail-
able for usage in the platform.

The Neuromorphic Computing Platform provides remote access to large-scale
neuromorphic computing systems built in custom hardware. Compared to tradi-
tional HPC resources, the neuromorphic systems offer higher speed (real-time or
accelerated simulation time) and lower energy consumption. Thus, the integration
of the platform will provide an alternative neural simulation backend more suitable
for simulations that require a high computational burden, such as in experiments
involving plasticity and learning.

4.3 Software Architecture

The Neurorobotics Platform is based on a three layers architecture, shown in Fig-
ure 4.2.
The layers, starting from the one furthest from the user, are the following:

1. the software components simulating the neurorobotics experiment;

2. the REST server or Backend;

3. the Experiment Simulation Viewer (ESV), a graphical user interface, and the Robot
Designer, a standalone application for the design of physical models.

The first layer comprises all the software components which are needed to sim-
ulate a neurorobotics experiment. The World Simulation Engine (WSE) is responsible
for simulating robots and their environment. The Brain Simulator is responsible to
simulate the neural network that controls the robot. The Closed Loop Engine (CLE)
implements the unique logic of each experiment and orchestrates the interaction be-
tween the two simulators and the ESV.

The second layer contains the REST server, also referred to as Backend, which
receives requests from the ESV and forwards them to the appropriate components
which implements the requested service, mainly through ROS. The REST server thus
acts as a relay between the graphical user interface (the frontend) and the various
simulation engines needed for the neurorobotics experiment. For practical reasons,
the services provided by the REST server are tightly coupled with the high level
functionality shown in the ESV GUI. Thus any graphical control interacting with
the REST server has a corresponding service. Actions which change the state of the
simulations, such starting, stopping or pausing a simulation, are implemented as a
single parametric service.

The ESV is the web-based graphical user interface to all neurorobotics experi-
ments. Using the ESV, the user can control and visualize neurorobotics experiments.
The ESV also provides a number of editors to configure the experiment protocol as
well as the parts of the experiment such as the environment, the brain model, the
connection between brain and robots (Brain Interface and Body Integrator). The Robot
Designer is a tool that was developed to allow the process of designing robot mod-
els that can be included in simulation setups executable on the NRP. This tool is
developed as a plugin for the 3d modeling tool Blender 3D.

4.3.1 Brain Simulator

The goal of the Brain Simulator is to simulate a brain circuit, implemented with a
spiking neural network (SNN).
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FIGURE 4.1: Functional overview of the Neurorobotics Platform. Us-
ing the design/editing features of the platform, the user is able to
create a neurorobotic experiment comprising of a brain model inte-
grated with a robotic body (Neurobot) that interacts in a dynamic
environment. The experiment is then simulated by a synchronized
neural-physics simulation and the results can be displayed in an in-

teractive fashion.

Several simulators for SNNs exist, with different levels of detail, ranging from
more abstract point neuron simulations, that consider neural networks as directed
graphs, to the morphologically accurate ones where the properties of axons and den-
drites are taken into account.

Inside the NRP, the simulator currently supported is NEST (Gewaltig and Dies-
mann, 2007), a point neuron simulator with the capability of running on high perfor-
mance computing platforms, that is also one of the simulation backends of the Brain
Simulation Platform. NEST is supported through the use of the PyNN abstraction
layer (Davison et al., 2008) that provides the same interface for different simulators
and also for neuromorphic processing units, i.e. dedicated hardware for the simula-
tion of SNN such as SpiNNaker (Khan et al., 2008), provided by the Neuromorphic
Computing Platform. Both NEST and PyNN provide convenient mechanisms to de-
sign neural networks. Furthermore, they are among the most used tools in the neu-
roscientific community. On the other hand, the only APIs they provide are written
in Python, which heavily constraints the choice of the language to use for interacting
with them.

4.3.2 World Simulator

In order to have realistic experiments, the accurate brain simulation must be coupled
with a detailed physics simulation. The World Simulator component aims at deliver-
ing a realistic simulation for both the robot and the environment in which the robot
interacts.

Gazebo was chosen as the physics simulator. It offers a multi-robot environment
with an accurate simulation of the dynamics, in particular gravity, contact forces
and friction. This dynamic simulation can be computed with different supported
software libraries like ODE (Drumwright and al., 2010) and Bullet (Coumans et al.,
2013).

Any communication with the simulated robot and control of the simulation itself
is done through the Robot Operating System (ROS) (Quigley et al., 2009) which is
natively integrated with Gazebo.
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FIGURE 4.2: Architectural overview of the platform. From left to
right, three layers can be distinguished: the user interface (Experi-
ment Simulation Viewer), the services connecting the user interface to
the simulations (implemented in the Backend) and the internal com-
putations, comprising the two simulations and the synchronization

between them.

ROS is a widely used middleware in the robotics community and provides C++
and Python APIs to the user.

4.3.3 Brain Interface and Body Integrator

The Brain Interface and Body Integrator (BIBI) plays a crucial role in the NRP, as it is
the component that implements the connection between the robot and brain simu-
lations. The main feature of the BIBI is the Transfer Function framework. A Transfer
Function (TF) is a function that translates the output of one simulation into a suitable
input for the other. Thus, two main types of transfer functions can be identified: The
Robot to Neuron TFs translate signals coming from robot parts such as sensor read-
ings and camera images into neuron signals such as spikes, firing rates or electric
currents; the Neuron to Robot TFs convert neural signals from individual neurons or
groups of neurons into control signals for robot motors. Thus, these two kinds of
transfer functions close the action-perception loop by filling the gaps between the
neural controller and the robot. This is illustrated in Figure 4.3.

The TFs also extend beyond the previously described two types. For example,
the robot-brain-robot loop can be short-circuited in order to bypass the brain sim-
ulation and use only a classical robotic controller, thus resulting in a Robot to Robot
TF. This allows the comparison between a classical and a neural implementation of a
robotic controller with the same set-up, by simply switching from a transfer function
to another. Moreover, the data coming from both simulations can be sent out of the
loop (to a monitoring module) where it can be live plotted, elaborated, stored or ex-
ported for data analysis with external tools (Robot to Monitor and Neuron to Monitor
TFs).

In order to provide a proper abstraction layer towards the simulators, generic
interfaces are provided, that are then implemented by specific adapters. From the
robot simulator side, the interface is modelled following the publish-subscribe de-
sign pattern (Gamma et al., 1995), where, from one side, sensory information is ex-
pected to be published by the robotic simulator and the Robot to Neuron TF sub-
scribes to the subject, receiving the data, while on the other side the Neuron to Robot
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CLE+BIBI

Neuron to Robot
Transfer Functions

Robot to Neuron
Transfer Functions

Brain Simulator World Simulator

FIGURE 4.3: Closed action perception loop as performed by the Brain
Interface and Body Integrator. Sensory data from the robotic simula-
tion is transformed into spikes and current amplitudes inside a robot
to neuron transfer function and sent to the neural simulation. Con-
versely, measurement on the spiking neural network are converted
into motor commands inside a neuron to robot transfer function and

sent to the robot, closing the action-perception loop.

TF publishes motor commands and the simulator is expected to subscribe and ex-
ecute them. This pattern is used by many robotics middlewares such as ROS and
YARP (Metta, Fitzpatrick, and Natale, 2006), thus there is minimal work required in
order to implement the adapters in such cases. In the current implementation of the
NRP, ROS Topic adapters have been implemented. From the brain simulation side,
the TFs provide stimuli and measurements by using Devices. Devices are abstract
entities that have to be connected to the neural network, either to a single neuron or
to a neuron population. Among such entities, there are spike generators and current
generators (for the input side), and spike recorders, population rates recorders, and
leaky integrators (for the output side). In the current implementation, devices are
implemented as wrappers around PyNN objects instances, providing general inter-
faces towards different neural simulators.

The TF framework is implemented using the Python programming language,
where the business logic of each TF resides in a function definition. A library of
commonly used transfer functions, including common image processing primitives
and simple translational models for motor command generation, is provided along-
side with the framework. Information about the TF connections is specified via a
custom Domain Specific Language (DSL) implemented with Python decorators that
specify the type of transfer function, the device types and the neuron which they
are connected to, and the topics that the TF should subscribe to, or on which topic
the TF should publish (Hinkel, Groenda, Vannucci, et al., 2015; Hinkel, Groenda,
Krach, et al., 2016). An example of a transfer function implementation is displayed
in Listing 1.

@nrp.MapRobotSubscriber("camera", Topic(’/robot/camera ’, sensor_msgs.msg.Image))
@nrp.MapSpikeSource("red_left_eye", nrp.brain.sensors [0:3:2] , nrp.poisson)
@nrp.MapSpikeSource("red_right_eye", nrp.brain.sensors [1:4:2] , nrp.poisson)
@nrp.Robot2Neuron ()
def eye_sensor_transmit(t, camera , red_left_eye , red_right_eye ):

image_results = hbp_nrp_cle.tf_lib.detect_red(image=camera.value)

red_left_eye.rate = image_results.left
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red_right_eye.rate = image_results.right

LISTING 4.1: An example of transfer function code, translating an
image into spike rates.

In this example, it can be seen that through the use of the decorators DSL several
properties are specified, such as the type of TF (Robot to Neuron), the devices to-
wards the brain simulation (spike generators firing with Poisson statistics attached
to the neuron population) and the input coming from the robotic simulation (camera
image published through a ROS topic). It can also be noticed that the actual business
logic is implemented inside the function, and in particular, the image is processed
with a color detection filter implemented as part the TF library provided alongside
the platform.

The choice of Python for the TF framework was the most natural one, given the
fact that both the chosen physics and neural simulators provide Python APIs. Con-
sequently, the rest of the server side NRP components have been written in Python.
In principle, this could raise performance issues when compared with languages
like C++. It was chosen to avoid fine tuning of the performance of the developed
components, as currently the bottlenecks of a simulation reside in the physics and
neural simulators. This choice has also the advantage of simplifying considerably
the development process.

Internally, the complete BIBI configuration, comprising the transfer functions,
the robot model and the brain model, is stored as an XML file. Each transfer func-
tion can be saved either as Python code in an XML tag or can be constructed from
custom XML elements which are later parsed in order to generate the equivalent
Python code. The second way of describing these functions is better suited for the
automatic generation of such XML files, via graphical editors that could be used also
by scientists with no experience in Python.

4.3.4 Closed Loop Engine

The Closed Loop Engine (CLE) is responsible for the control of the synchronization as
well as for the data exchange among the simulations and the TFs. The purpose of the
CLE is to guarantee that both simulations start and run for the same timestep, and
also to run the TFs that will use the data collected at the end of the simulation steps.
Figure 4.4 shows a sequence diagram of a typical execution of a timestep: after the
physics and neural simulations have completed their execution in parallel, the TFs
receive and process data from the simulations and produce an output which is the
input for the execution of the next step. The idea behind the proposed synchroniza-
tion mechanism is to let both simulations run for a fixed time step, receiving and
processing the output of the previous steps and yielding data that will be processed
in the future steps by the concurrent simulation. In other words, data generated by
one simulation in the current timestep cannot be process by the other simulation un-
til the next one. This can be read as the TFs introducing a delay of sensory perception
and motion actuation greater than the simulation timestep.

The use of MUSIC for the synchronization was excluded in this first release, even
if it was shown to be working by (Weidel, Duarte, et al., 2015; Weidel, Djurfeldt, et
al., 2016), in order to ease the communication between brain and world simulations
without introducing any middle layer. Moreover, relying on the already existing
Python APIs for the communication with the two simulators, had the effect of sim-
plify the development process.
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Besides orchestrating running simulations, the CLE is also responsible of spawn-
ing new ones, by creating new dedicated instances of the World Simulator and the
Brain Simulator, and a new instance of the orchestrator between the two.

Simulation Control

During its life cycle, each simulation transitions through several states, as depicted
in Figure 4.5. At the beginning, a simulation is in state created and it will switch to
state initialized once the CLE is instantiated. Up to this point, no simulation steps
have been performed yet. Once the simulation is started, the CLE will start the inter-
leaving cycle, that can be temporarily interrupted by pausing the simulation (paused)
or preemptively terminated by stopping the simulation (stopped). If any error oc-
curs during the execution or during the transitions between states, the simulation
will pass automatically to the state halted. The reset transition can be considered
parametrized, as it allows restoring to their initial status separate parts of the simu-
lation singularly. Currently, the resettable parts in a simulation are the robot pose,
the brain configuration and the environment.

World sim.R-to-N TFCLE N-to-R TF Brain sim.

Simulate(dt)
Simulate(dt)

Call-TF()
GetStatus()

Call-TF()
GetStatus()

Update()

Update()

FIGURE 4.4: Synchronization between the components of a simula-
tion, as orchestrated by the CLE. In a first phase, the two simulations
are run in parallel. Afterwards, each transfer function gathers data
from simulations and compute the appropriate inputs for the next

simulation step.

Thanks to the possibility of pausing and restarting the closed loop cycle dur-
ing the simulation execution, it was possible to add features that modify simulation
properties at run-time, without the need to restart the simulation from scratch. These
features include support for transfer function adding, editing and removal, brain
model and environment editing. Using these features, it is possible to test different
configurations of the simulation and immediately see the effects of them, without
having to wait for a complete restart.

From the point of view of the implementation, the timestep of the physics sim-
ulation is sent to Gazebo through a ROS service call, while the brain simulation is
directly run for the desired timestep with a PyNN call, as it can be observed from the
architecture depicted in Figure 4.6. Access to ROS service calls and PyNN calls rela-
tive to the control of the simulation are achieved by implementing generic adapters
interfaces, performing a client-server interaction. Hence, in principle, a CLE instance
can interact with different simulators than the ones currently supported (Gazebo and



Chapter 4. A framework for connecting robots and neural simulations 56

created initialized started paused

stopped

halted

initialize
pausestart

stop

stop
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FIGURE 4.5: Lifecycle of a simulation in the NRP. During a normal
cycle, the simulation will start from the created state, passing through
initialized as soon as the resources are instantiated, then going through
the started state once the execution is initiated, and finally in the
stopped state. During the execution the simulation can be paused at
any time, while if any error occurs during the normal lifecycle the

simulation is halted.

NEST). This abstraction layer, besides providing the possibility to change with rela-
tive ease the underlying simulators, simplifies the update process of the simulators,
by limiting the number of files that need to be changed in response to a possible API
update.

Transfer functions
manager

ROS adapters PyNN adapters

Gazebo simulator

PyNN library

NEST simulator

ROS topics & services
/gazebo/spawn_sdf_light
/gazebo/spawn_sdf_model
/gazebo/get_world_properties
/gazebo/set_model_state
/gazebo/delete_model
/gazebo/delete_light
/gazebo/delete_lights
/gazebo/get_lights_name

  

PyNN

pyNest

CLE

Simulation
controller
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interface
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FIGURE 4.6: Architectural overview of the CLE and of the commu-
nication layers. The CLE orchestrates the two simulations and per-
forms the data exchange through generic adapter interfaces. It also
provides two interfaces, one for controlling an ongoing simulation
and one for providing a new one, by instantiating a neural simulator
and a physics simulator. In the current implementation, adapters for
accessing Gazebo physics simulation via ROS and for accessing NEST
neural simulation via PyNN are provided. In particular, robot data is
accessed through ROS services and topics and the physics simulation

is controlled through ROS services.

State machines for simulation control

In real experiments, it is often the case that the environment changes in response
to occurring events, generated by the behavior of the subject, by the experimenter
or automatically generated (i.e. timed events). Thus, in order to reproduce this
behavior, the possibility to generate events that can influence the environment was
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added to the platform. In particular, the user can interact with some objects without
having to interrupt the simulation, like changing the brightness of lights or screen
colors, and an event system is provided. The event system is implemented with
a state machine that is programmable by the user. In the current implementation,
support for timed events is provided, allowing the user to program changes in the
environment that have to occur at specific points in time.

The event system is managed by the State machines manager, implemented using
the SMACH state machine framework (Bohren and Cousins, 2010) that is already
integrated into ROS. Using such a framework, it is possible to program timed events
that directly call Gazebo services in order to modify the environment.

4.3.5 Backend

The Backend is the component connecting the user interface to the core components
of the platform, exposing a web server implementing RESTful APIs on the user in-
terface end point and forwarding processed user requests via ROS on the other end
point. This component is the first handler for user requests. In case they could not
be completely managed within the backend, they are forwarded either to the CLE or
to the State machines manager, that will eventually complete the request processing,
interacting, if necessary, with the simulators. An overview of the Backend architec-
ture and of the interaction with other components is depicted in Figure 4.7.

Actions provided by the backend to the user interface (ESV) include experiment
listing and manipulation, simulation listing, handling and creation, and gathering
of backend diagnostic and information.

Every available experiment on the platform is identified by a name and a group
of configuration files, including a preview image to be showed on the ESV and files
representing environment, brain, state machines and BIBI, where neural populations
and transfer functions are stored. Experiment listings and manipulation APIs allow
the user to list all the available experiments on the server as well as retrieving and
customize singularly the configuration files of the experiment.

In the NRP setting, a simulation is considered as an instance of one of the avail-
able experiments. In order to create a new simulation, the user has to proceed in a
different way depending on whether the NRP is accessed within or outside of the
Collaboratory Portal. If users are accessing from the Collaboratory Portal, they are
able to clone the configuration files related to one of the available experiments on
the Collaboration storage they are using, and instantiate that local copy of the ex-
periment. The backend allows users to overwrite said configuration files as well as
saving CSV recordings of simulation data directly on the storage. In case a user is not
working from the Collaboratory Portal, they can instantiate an experiment choosing
directly from the experiment list, and they can edit it without having to instantiate a
local copy.

Once a simulation is created, the backend allows the user to retrieve and change
its current state according to the simulation lifecycle depicted in Figure 4.5, by inter-
facing with the CLE. Other APIs provide functionalities for retrieving and editing at
runtime the brain configuration, the state machines and the transfer functions, del-
egating again the task to the CLE. Furthermore, information about the simulation
metadata, brain populations and environment configuration is available through
dedicated APIs.

For diagnostic purposes, the backend provides some APIs for retrieving the er-
rors which have occurred on the server as well as the version of the backend itself
and the CLE.
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FIGURE 4.7: Architectural overview of the Backend. User inputs com-
ing from the ESV are sent to the Backend via REST APIs. These re-
quest are then dispatched to the CLE or to the State machine man-
ager that will handle them by forwarding the appropriate commands

to Gazebo.

4.3.6 Experiment Simulation Viewer

The Experiment Simulation Viewer is the user interface to the NRP. It is implemented
as a web based application, developed using a modern web software stack exploit-
ing established open source software. The ESV is currently integrated in the Collab-
oratory Portal (see Figure 4.8a) using the Collaboratory APIs. By building it using
standard web technologies, cross-platform support, also for mobile devices, is en-
abled. The downside of this choice is the added complexity of using translation
layers, albeit lightweight ones, for the interaction with server side components.

The ESV simulation interface embeds a 3D view that allows the user to see and
navigate through the virtual environment, and a user bar for simulation control (e.g.
for playing, pausing, resetting, or stopping the ongoing simulation). It also provides
means for editing objects by altering their attributes, and monitoring brain activity
and the state of the embodiment, on a running simulation. Furthermore, the simu-
lation interface hosts the tools that allow the user to design and edit an experiment,
explained in depth in Section 4.3.6. Any modifications to the running simulation can
be exported either on the user computer or saved on Collaboratory storage.

User Interface

Entering the ESV, the user is presented with a list of available experiments (see Fig-
ure 4.8a). For each experiment, the user can choose to launch a new simulation, or to
join an already launched one as a spectator; it is also possible to launch an instance
of an existing simulation while uploading a custom environment in which it will be
executed, thus replacing the original one.

The user starting a simulation is called the “owner” of that simulation whereas
any other user is called a “watcher”. The owner has full control over his simulation,
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(a)

(b)

FIGURE 4.8: The Experiment Simulation Viewer. Through the Col-
laboratory Portal, depicted in (a), the user can choose between sev-
eral predefined experiments or create his own experiment based on
templates. Some of the features of the Collaboratory Portal such as a
navigation pan and a group chat are shown. (b) shows the ESV Main
View, where an experiment is being executed. The user interface at
the bottom allows the user to interact with the simulation and dis-
plays information about simulation time. Some widgets, togglable
from the user bar, allow the user to monitor brain activity in term of

spike trains or joint values of the simulated robot.

being able to start, pause, stop or reset the simulation and interact with the environ-
ment while it is running. Other features like monitoring or navigation into the scene
are accessible to both owners and watchers.

Of particular interest are the monitoring features (Figure 4.8b). The Spike Mon-
itor plots a spike train representation of the monitored neurons in real-time. Moni-
tored neurons must be specified by transfer functions, as described in Section 4.3.3.
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The Joint Monitor plots a line chart representation of the joints properties of the
robot in real-time. For every joint selected, properties like position, velocity and
effort can be chosen.

The goal of these monitoring tools is to get live insights on how the simulation
performs. Both spike data and joint data can also be saved in CSV format for further
off-line analysis.

Architecture

In order to have a coherent user interface and experience throughout, all the tools
developed in the Human Brain Project, including the NRP User interface are imple-
mented as Web applications. An architectural overview is shown in Figure 4.9.

The application framework of choice is AngularJS1. AngularJS is a Model View
Controller (MVC) Web Framework for developing single-page applications. Using
AngularJS services, the interaction with the NRP Backend, which provide the API
for the simulation control, is realized via standard REST calls.

The Rendering of the 3D view of the virtual environment is performed by Gzweb,
Gazebo’s WebGL client. It comprises two main parts: gz3d and gzbridge, which
are, respectively, responsible for visualization and for communicating with Gazebo’s
backend server gzserver.

To enable the communications with the CLE and Gazebo via ROS, the ESV em-
ploys roslibjs, a JavaScript library. Roslibjs in turn interacts via WebSockets with
rosbridge, a tool providing a JSON API to ROS functionality for non-ROS programs.

ESV core

gz3d

roslibjs

Backend

gzbridge Gazebo

rosbridge

CLE

websocket

websocket Gazebo API

/monitor/spike_recorder
/ros_cle_simulation/status
/ros_cle_simulation/cle_error

ROS

ROS

Angular JS

Angular JS

GUI

Joint states
Robot control channels
Robot sensor channels
Custom scene control

ESV

REST

ROS

FIGURE 4.9: Architectural overview of the ESV and its outgoing com-
munications. The ESV core interacts with the Backend via REST APIs
to control the simulation. Two websocket channels bypass the Back-
end and allow the ESV to interact directly with Gazebo and the CLE.
The gzbridge channel is used for gathering information about the
scene rendering. The rosbridge channel is used for collecting infor-
mation related to brain spikes and joint angles, that is shown on
appropriate monitoring widgets in the GUI, and to get information

about simulation status and possible errors.

Editors

In order to design the experiment to be simulated, the NRP provide the user with
a complete array of tools. All these tools are seamlessly integrated into the ESV
application, thus switching between simulation and editing is a very fast process:

1https://www.angularjs.org/

https://www.angularjs.org/
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the user can immediately simulate the modified experiment, and if not satisfied,
directly modify it again. Thanks to these tools, it is possible to configure all the
aspects of an experiment:

• Environment:
The purpose of the Environment Editor is to allow the user of the platform to
set up the scene in which the simulation will run, either starting from scratch
or editing one from an existing experiment. While running the environment
editor, the user is able to move (e.g. translate or rotate) or delete existing objects
in the scene, or to place new objects by choosing them from a list of models.
The modified scene can be exported as into the Simulation Description Format
(SDF)2, for later reuse.

• Transfer Functions:
The Transfer Functions (TFs) describe how to transform simulator specific sen-
sory data (such as image, joint angles, forces, etc.) to spiking activity for neural
network simulation and vice versa. TFs are defined as Python scripts exploit-
ing the DSL described in Section 4.3.3. From within the editor, the user can
create and edit TFs as well as save them to and load them from files. Every
uploaded transfer function is checked for syntax errors, and several restric-
tion for Python statements are applied for security reasons. Furthermore, the
user can log TFs’ data to files using the standard Comma Separated Values
(CSV) format. Like for the other editors, the edited TFs can be downloaded
and stored.

• Brain:
The Brain Editor allows the user to upload and edit custom brain models as
PyNN scripts (Davison et al., 2008). The PyNN script describing the brain
model used in the current experiment, is shown in a text editor featuring
Python keyword and syntax highlighting. It is also possible to define popula-
tions (i.e. sets of neurons indices) that can be referred to in transfer functions.
Edited brain models can be saved.

• Experiment Workflow:
The workflow is specified in Python code exploiting SMACH and the Exper-
iment Workflow Editor allow to create such state machines, as well as saving
them for later reuse.

As for the editing of the robot model, the development from scratch of a custom
software (either web or desktop) for modeling and designing a robot is an enormous
undertaking, so it was decided to adopt existing solutions. In particular, no rea-
sonable web solutions were found, and adapting existing solutions for web would
require a considerable effort which would not be counterbalanced by the possible
benefits. It was then chosen to use Blender3 (a powerful and extendable open source
software) among the existing modeling softwares, due to its availability for a wide
range of platforms with a simple installation process. The robot designer is thus pro-
vided as a Blender plugin that provide users with an easy-to-use user interface that
allows the construction of robot models and defining kinematic, dynamic and geo-
metric properties.

2http://sdformat.org/
3https://www.blender.org/
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Repository total lines tests line coverage branch coverage
CLE 2944 147 88% 100%

Backend 3045 239 93% 100%
Frontend (ESV) 2427 455 95% 87%

ExperimentControl 455 46 96% 100%

TABLE 4.1: Summary of quality control statistics for the NRP reposi-
tories, at the time of the first public release.

4.4 Software development methodology

The NRP is developed within the Scrum agile software development framework (Schwaber
and Beedle, 2002). The basic unit of development, in Scrum parlance, is called a
Sprint. It is a timeboxed effort, that is restricted to a specific duration of either two or
three weeks. This methodology provides a reactive environment, able to deal with
changing requirements and architectural specifications.

The Scrum process includes daily stand-up meetings, where each team of devel-
opers discusses about how they are working to meet the sprint goals. At the end
of the sprint, a review meeting is held; the whole NRP team is present, and the
members make demonstrations of the software in stable development status. Each
completed task provides a new feature to the user, without breaking compatibility
with the current code base. Thus, at the end of each sprint, there is a new shippable
platform that provides new features.

The NRP software process uses industry standards for quality control. The ac-
ceptance criteria of the version control system includes the necessity of a code re-
view by, at least, a second programmer, while a continuous integration system en-
sures that new code does not introduce regressions by executing a set of unit tests.
Moreover, code coverage criteria ensures that at least 80% of the code is covered dur-
ing tests and coding standards are enforced by automatic static code analysis tools
(PEP8 and Pylint). Each build in the continuous integration system also produces
the software documentation documenting the APIs and comprising software usage
examples. A summary of quality control statistics regarding the main NRP reposi-
tories, at the time of the first public release, is presented in Table 4.1. No repository
has PEP8 or Pylint errors.

4.5 Use cases for the Neurorobotics Platform

In order to assess the functionalities of the NRP, some experiments were designed.
These experiments, albeit simple in nature, aim at demonstrating various features
of the platform. The first use case is just a proof of concept: a very simple brain
model is connected to a robot via TFs in order to have a complete action-perception
loop performing a visual tracking task. Results show that the two simulations are
properly synchronized and the experiment is correctly performed.

The second one demonstrates the extensibility of the framework: an already ex-
isting computational model of the retina was integrated inside the platform and used
to perform bio-inspired image processing. This experiments also moves towards
finding generic translation mechanism that can be used as Transfer Functions.
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FIGURE 4.10: Tracking architecture as implemented inside the NRP.

4.5.1 Basic Proof of Concept: Visual Tracking

As an example to demonstrate the applicability of spiking neural networks for move-
ment generation, a tracking experiment that shows how a humanoid robot can be
controlled by an “artificial brain” was implemented. In particular, the focused was
put on a visual tracking task. A humanoid robot stands in front of a blue screen
with a moving green circle which is the target of the tracking. The robot reaches and
follows such a target using only eye movements. In this task it uses only horizontal
eye movements, but the same controller can be easily extended to the vertical axis.
The humanoid robot used for this task was the iCub robot.

Materials and methods

The available sensors in the model are two 320X240@60Hz cameras for the eyes and
encoders for each joint. In order to control each joint a gazebo plugin was written
using the Gazebo API. Each joint is controlled by two PID, one for positions and
one for velocities, both implemented using the Gazebo API library functions. The
plugin publish the encoders values to a ROS topic and subscribe to other ROS topics
to receive position and velocity commands. The cameras were implemented using
the standard Gazebo camera plugin.

During the experiments the eye version was controlled in position. This virtual
joint is directly connected with the eye pan real joints. The gains used for the velocity
PID controller of each eye pan joint were the following:

P = 2.0, I = 0.1, D = 0.003

To implement a controller for the aforementioned task, information about the tar-
get position is extracted from the camera image and then sent to a controller which
generates appropriate motor commands to move the gaze towards the target.

To implement such a model in the Neurorobotics Platform, the target extraction
must be implemented as Robot to Neuron transfer function, while the controller
must be implemented as a brain model plus an appropriate Neuron to Robot transfer
function (Figure 4.10).

In the Robot to Neuron transfer function the sensory data coming from the robot
is translated into an input for the brain model: in this case the input is the camera
image. From this image, the target position is extracted via a simple colour filtering.
Then, only information about the fact that the object is in the left or right side of the
image is sent to the brain. In order to do this, the angle of the object in the camera
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FIGURE 4.11: Brain network. Neurons 0 to 4 are input neurons, while
6 and 7 are output neurons.

reference frame is flattened into this kind of information with a sigmoidal logistic
function:

r =
1

1 + eα
(4.1)

where α is the angle of the object in the camera reference frame and r is closer to
0 the more the object is on the left and closer to 1 the more the object is on the right.

This information is sent to the brain by using two Poisson spike generators which
rates are computed as follows:

r1 = 1000 · r (4.2)
r2 = 1000 · (1− r) (4.3)

The brain model was implemented as a network of 8 adaptive exponential inte-
grate and fire neurons (Brette and Gerstner, 2005), connected as depicted in Figure
4.11.

Neurons 0 to 3 receive input from the first spike generator coming from the robot
to neuron transfer function, while only neuron 4 receives input from the second
spike generator.

The neurons labelled as 6 and 7 are the output neurons that will send the output
to the neuron to robot transfer function. Given the network configuration, these neu-
rons codify the direction towards which the eye should move. The synaptic weights
of the different connections were hand-tuned to produce the best experiment results.

In the Neuron to Robot transfer function, the output neurons are connected to two
leaky integrators, implemented with inhibited integrate and fire neurons. Thus, the
input of this transfer function are the two membrane potential of said neurons, v1
and v2.

The motor command given to the robot is then computed as a sum between the
current eye position and a displacement given by a function of v1 and v2:

u = θ + f (v1, v2) (4.4)

where θ is the eye joint angle and f is defined as

f (v1, v2) = k− 2 · v2 − v1 + 0.03
0.09

· k (4.5)

where k is a parameter defining the absolute maximum displacement.
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FIGURE 4.12: Controller performance in the step response (target on
the left (top) and target on the right (bottom). The considered target
positions are: 9 degrees (left), 14 degrees (middle), 25 degrees (right).

During simulations, a value of k = 0.5 was used. The value of u is then sent to
the robot as a position motor command for eye vergence.

Results

Two experiments were performed: a step response movement and the actual visual
tracking task.

In the step response task, the controller had to reach a static target from a starting
position (eye version equal to 0). Figure 4.12 shows the eye motion needed to reach a
static target positioned on the left side (Figure 4.12, top) and on the right side (Figure
4.12, bottom) of the camera image, at a rotation distance of 9,14 and 25 degrees (eye
rotation needed in order to centre the target in the camera image). It can be observed
that the time needed to reach the target is dependent on the motion amplitude (less
than 1 second for 9 degrees and almost 2 seconds for 25 degrees motion). In addition
it should be noticed that the performances of the proposed controller do not depend
on the motion side (the time needed to reach the target on the left and on the right is
not statistically different). The mean square error (comparing eye position and target
position) in the last second of the trial ranges from 0.06 for the left motion with an
amplitude of 14 degrees to 0.14 of the left motion with an amplitude of 9 degrees.
There is no relationship between the mean squared error and the motion direction
or the motion amplitude.

In the visual tracking, the robot had to follow a target displayed on a screen mov-
ing with a sinusoidal motion (see Figure 4.13). The performances of the model were
tested at various frequencies (from 0.1 to 0.3 Hz), with an amplitude of 18 degrees.
It can be observed that the model is able to pursue the target. Figures 4.14 and 4.15
show the pursuit of the target, for oscillation frequencies of 0.2Hz and 0.3Hz, by
comparing the target and current eye horizontal positions in time. In addition, the
robot is able to follow the target at 0.2Hz with just a delay but without any reduction
in amplitude (the eye motion amplitude compared to the target one), while at 0.3Hz
the performance deteriorates. The mean square error increases from 0.36 at 0.1Hz to
0.46 at 0.2Hz and 0.72 at 0.3Hz.
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FIGURE 4.13: Snapshots of the iCub performing visual pursuit inside
the Neurorobotics Platform.

FIGURE 4.14: Target and eye alongside the x axis during an oscillation
frequency of 0.2Hz.

FIGURE 4.15: Target and eye alongside the x axis during an oscillation
frequency of 0.3Hz.
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4.5.2 Integration of Bio-inspired Models: Retinal Vision

In order to have full biologically inspired closed loop controllers, the transfer func-
tions should also make use of neuroscientific models of sensor information pro-
cessing from one side and motion generation on the other. This also provide more
reusable translation approaches for sensory information, compared to tailor-suited
ones, like the one presented in the previous example. As a first step in this direction,
a retina simulator was included in the NRP as a robot to neuron transfer function.
This allowed to create a more complex controller for the eye that employ the red-
green opponency mechanism (Dacey and Packer, 2003).

Integrating the retina simulation platform in the NRP

The model chosen for the integration was COREM, a computational framework
for realistic retina modelling (Martínez-Cañada et al., 2015; Martínez-Cañada et al.,
2016), that provides a general framework capable of simulating customizable retinal
models. In particular, the simulator provides a set of computational retinal microcir-
cuits that can be used as basic building blocks for the modelling of different retina
functions: one spatial processing module (a space-variant Gaussian filter), two tem-
poral modules (a low-pass temporal filter and a single-compartment model), a con-
figurable time-independent non-linearity and a Short-Term Plasticity (STP) function.

The original retina codebase (Martínez-Cañada et al., 2015) was implemented as
a stand-alone program. So the first step towards the embedding in the NRP has been
to isolate all the core functionalities of the model in a separate module, that could be
used as a library. The original executable has been kept as a “frontend” application
depending on such library.

In order to have a retina model involved in the robot control inside a NRP sim-
ulation, it is necessary to forward the camera image or the robot to the retina, get
the retina output information so it can be processed in a SNN, and finally decode
the SNN output to control the robot. All these steps must take place inside transfer
functions.

The whole retina model is written in C++, whereas all the NRP backend, includ-
ing transfer function related business logic, is written in Python. Thus, to allow the
NRP to send input to the retina and get output from it, the functions in the retina li-
brary involved in these processes have been wrapped with Python bindings, making
them accessible from Python code.

Retina based controller

The retina-NRP interaction was tested by creating a custom experiment on the plat-
form performing a visual tracking task with a humanoid robot. Since the controller
employs the red-green opponency mechanism, an environment in which a simu-
lated iCub humanoid robot will have to track a green ball moving horizontally on a
red background was created.

In the experiment, images from one of the two cameras mounted on the robot
eyes are sent to the retina simulator. Retinal output is then gathered and one hor-
izontal stripe of the output image (320 pixels from a 320x240 image), intersecting
the target, is forwarded to a neural network, where the spikes are filtered in order
to avoid any undesired false detection. Finally, spike trains coming from the SNN
are translated in a motion command for the robot eyes, making them following the
target. An overview of the controller is shown in Figure 4.16. Using a single cam-
era of the robot reduces the computational times as only one retina model can be
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employed but it does not permit to control the vergence of the two eyes. Therefore,
albeit both eyes perform the same motion, the tracking is actually only monocular.

The retina circuit, implemented with the framework described above, is com-
posed of two symmetric subcircuits processing independently the input image. In
the first layer we can find simulated L-cones and M-cones, receiving the initial im-
age. Output from the photoreceptors is then forwarded to the two different subcir-
cuits, namely the L+M− circuit and the L−M+ circuit.

The L+M− circuit (L−M+ description can be derived by symmetry) sums the
output signals from the two cones, giving a positive weight to L-cones and a neg-
ative weight to M-cones. Combined cones signal is processed by simulated hori-
zontal, bipolar, amacrine and ganglion cells. Every simulated ganglion cell is then
sensible to a red center on green background within its receptive field. The high
level result is a sensitivity to borders on a static image, which is slightly accentuated
around borders between red and green objects for both circuits. In case of moving
images instead, ganglion cells in the L+M− are particularly sensitive, due to their
temporal characteristics, to green objects appearing in receptive fields that were ear-
lier impressed by red objects. Thus, the output is information about the changing
of colour in the image. This peculiarity will be exploited to infer the position of an
object by combining responses from the two circuits.

The brain model used in the experiment comprises 1280 integrate and fire neurons
(Brette and Gerstner, 2005), organized in two layers. The first layer acts as a current
to spike converter, it has been designed for taking current intensities value coming
from the retina ganglion layer to spikes, while the second one filters the spiking
ganglion output to remove noise such as the one produced by the motion of the
eyes. In the second layer, every neuron, except the “side” ones, gather information
from 7 subsequent neurons on the first layer, acting as a local spike integrator.

Every layer embeds two independent populations of 320 neurons, processing
separately output from the two different ganglion cell layers of the retina circuit, so
there is a one to one correspondence between considered pixels and neurons in a
single first layer population. Thus, neurons from 1 to 320 will get input from the
first ganglion circuit and forward spikes to neurons from 641 to 960, and neurons
from 321 to 640 will get input from the second ganglion circuit and forward spikes
to neurons from 961 to 1280.

The summation occurring in the second layer, together with linearly decreasing
synapse weights from the center of the image to the periphery, serves as a filter for
avoiding undesired spikes in peripheral regions of sight.

The robot controller is implemented by means of two transfer functions, one robot
to neuron and one neuron to robot.

In the robot to neuron TF, the image on the eye camera of the robot is collected
and forwarded to the retina library, updating its status. Outcome from the gan-
glion layers of the retina circuit are processed, then current values for a strip of pixel
containing the target are transmitted to the two populations in the first layer of the
brain.

Output spikes from the second brain layer are then processed by the second TF
with the following steps:

3Neuron image from Amelia Wattenberger, released under Creative Commons License 3.0
https://thenounproject.com/term/neuron/79860/
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FIGURE 4.16: Block diagram of the implemented robot controller. The
retina model, implementing the red-green opponency circuitry, pro-
cess the images and outputs information about the perceived changes
of colour in the pixels (green over red and vice versa). The brain
model converts the analogue output of ganglion cells into spikes and

filters it to remove noise.

• Spike counts for every neuron on the two output population are gathered in
two collections SC1 and SC2, that are represented as two functions

SC1, SC2 : [1, 320]→N

where [1, 320] is a discrete set, representing a neural population.

• As higher stimulation of ganglions correspond to higher spike frequency in
the brain, one clearly distinguished frequency maximum per population is ex-
pected, the first one corresponding to the pixel where the ball enters the recep-
tive field in the first ganglion layer and the other to the pixel where the ball
leaves the receptive field in the second ganglion layer. Since one neuron per
pixel on an horizontal stripe of pixels is being used, the two maxima will cor-
respond to two column indexes of the original image, which can be called p1
and p2. For each population, the said column index is obtained by computing
first the maximum neural spike rate, then taking the first neuron index with
that spike rate.

In formulas, p1 and p2 are defined as

p1 = min{arg max
x
{SC1(x)}}

p2 = min{arg max
x
{SC2(x)}}
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• The estimate of the target center the value can be taken as

p̄ =
p1 + p2

2

• The estimated position of the ball p̄ is then converted to an estimated angle p̊
with respect to the eye center with the equation

p̊ = − arctan
(

p̄− 160
160

)
• The eye position angle command e̊ct+1, depending on the current eye position

e̊t is computed as follows
e̊ct+1 = e̊t + 0.2p̊

where the constant 0.2 is determined empirically and prevents quick eye move-
ments that could result in the target loss from the robot sight.

Results

As a first assessment, the controller has been validated by testing only its target de-
tection capabilities without any actuation on the robot. The experiment was started
with a slightly different neuron to robot transfer function which didn’t send any
control message back to the robot and with the target ball moving with a sinusoidal
trajectory with a cycle frequency of 0.5Hz, covering almost half the field of vision of
the camera. During the experiment, data about both target perceived location and
the neural network response was collected and it is reported in Figure 4.17.

At the beginning of the simulation, the robot suddenly moves to a default posi-
tion, while the controller responsible for the upright position starts. For this reason,
the camera image during the first 2 seconds of simulation may be affected by this
movement and thus its elaboration may provide wrong results. In Figure 4.17a we
can observe how the estimated target position, after the robot stabilization, follows
a sinusoidal trend. The target position is plotted with a dashed line as a reference.
Sensitivity of different ganglion inputs can be noticed in the first half of the spike
plot of Figure 4.17b, where the first population spikes in correspondence to the tar-
get entering the receptive field and the second spikes when the target leaves the
receptive field. The filtering action of the second neural layer can be observed in the
second half of the spike plot.

Finally, experiments were performed where the controller was producing mo-
tion commands, with the same setup of the previous experiment. The controller was
tested with a target moving with a sinusoidal trajectory (Figure 4.18a) and with a
random linear trajectory (Figure 4.18b), namely a linear trajectory changing direc-
tion (left or right) randomly every second. For the same reasons explained in the
previous test, the controller needs to wait for the robot stabilization before starting
actuating the eye. It can be observed how the target estimation is still effective even
with a moving eye, which validates the choice of a retina simulator as a data source
for the controller.

Hardware implementation

An implementation of the same experiment was also carried out on the physical
iCub platform using neuromorphic hardware (SpiNNaker) to simulate the neural
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FIGURE 4.17: The computed ball position (a) and the brain response
(b) for a ball with sinusoidal motion moving at 0.5Hz, robot eyes still.

network. This experiment served as reality check to see whether such a controller
could actually be implemented on real robotic platforms. To perform the experiment
a similar setup was created by placing the robot in front of a red screen where an im-
age of the green target was displayed and moved. Due to the high processing power
demand of the COREM simulator, it was impossible to process images at 30Hz, as
given by the camera, thus the frame rate of the retinal processing was slowed down
to 20Hz, so that the real time constraints could be met. To perform the synchroniza-
tion between the neuromorphic hardware and the physical robot a lightweight, real
time, version of the CLE was implemented.

A comparison of the same trial performed in simulation and on the physical
robot can be observed in Figure 4.19. We can observe that a similar behaviour is
occurring, and that, even if the target estimation is much noisier in the hardware
case, the tracking is still achieved. This proves that a translational phase, after the
more rapid prototyping done in the NRP, is achievable.

4.6 Further developments

The features detailed in the previous sections describe the first release of the Neu-
rorobotic Platform. The development of the platform is still ongoing, in order to
provide even more simulation capabilities and features to the end user.

As a personal contribution, the possibility of connecting physical robots with the
NRP was implemented. This required creating an optional running mode that runs
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FIGURE 4.18: Tracking results with sinusoidal (a) and random linear
(b) trajectories.
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FIGURE 4.19: Comparison between the tracking performed on the
simulator and on the physical robot, eye position (a) target estimation

(b).

the CLE in real time, if the computational burdens of the neural simulation and of
the TF are not excessive, that avoid running the physical simulation step, and that
can be interfaced with other robotic middleware such as YARP.

Another relevant development that is still ongoing is the integration of the SpiN-
Naker neuromorphic hardware. Currently, connection to the board is implemented
with a start and stop modality, much like for NEST, thus realtime capabilities are
hindered. However, a so-called "free running" mode is under discussion.
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Other development plans include integration with the Brain Simulation Platform
and the Neuromorphic Computing Platform, as described in Section 4.2.3, as well as
an extension of the CLE that will be able to orchestrate distributed brain simulations,
giving it the potential to simulate larger brain models in shorter times, that will lead
to the integration with the High Performance and Data Analytics Platform.

While the retina model inclusion in the NRP provides a generic translation mech-
anism for images, it still has some deficiencies with respect to the biological plausi-
bility. In particular, the processing is not space-variant, thus no foveal vision mech-
anism is present. To mimic this, log-polar images could be employed effectively
(Capurro, Panerai, and Sandini, 1997; Traver and Bernardino, 2010).

4.7 Conclusions

This chapter presented the first release of the HBP Neurorobotics Platform, devel-
oped within the EU Flagship Human Brain Project. The NRP provides scientists
for the first time with an integrated toolchain for in silico experimentation in neuro-
robotics, that is, to simulate robots with neuro-controllers including spiking neural
networks in complex environments. In particular, the NRP allows researchers to de-
sign simulated robot bodies, connect these bodies to brain models, embed the bodies
in rich simulated environments, and calibrate the brain models to match the specific
characteristics of the robot’s sensors and actuators. The resulting set-ups can permit
to replicate classical animal and human experiments in silico, and ultimately to per-
form experiments that would not be possible in a laboratory environment. The web
based user interface allows to avoid software installation and the integration within
the HBP collaboratory portal gives access to storage and computing resources of the
HBP. Users can run experiments alone or in team and this can foster collaborative
research allowing the sharing of models and experiments.
In order to demonstrate the functionalities of the platform two experiments were
performed: a simple visual tracking task and a more complex visual tracking em-
bedding a retina model implemented on the iCub humanoid robot. These use cases
make it possible to assess the applicability of the NRP in robotic tasks as well as in
neuroscientific experiments. Furthermore, these experiments gave insights into the
development of TFs or, more in general, of translation mechanisms to convert infor-
mation exchanged between the physical and neural systems.
The final goal of the NRP is to couple robots to detailed models of the brain, which
will be developed in the HBP framework. It will be possible for robotics and neu-
roscience researchers to test state of the art brain models in their research. At the
current stage, the results achieved with the NRP demonstrate that it is possible to
connect simulations of simple spiking neural networks with simulated robots. Fu-
ture work will focus on the integration of the mentioned neural models. In addition
to this, the integration of high-performance computing clusters and neuromorphic
hardware will also be pursued in order to improve execution time of spiking neural
networks replicating detailed brain models.
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Chapter 5

Towards biomimetic
neuro-controllers: a comprehensive
spinal cord model

This chapter presents a preliminary work towards a complete biomimetic neuro-
controller that should embed detailed simulations of brain areas and that could
be implemented by relying on tools such as the Neurorobotics Platform described
in Chapter 4. In particular this work focus on the development a generic mecha-
nism for the translationof sensory information into neural activity and, vice versa,
of neural activity into actuation command. The conversion is implemented through
a model mimicking the circuitry of the mammalian spinal cord.

5.1 Introduction

In recent years, the development of action-perception closed loops that include bi-
ologically inspired neural network has risen at a rapid pace (Knoll and Gewaltig,
2016). These closed loops can be useful in both robotics and neuroscience. From a
robotic perspective, these neural networks contribute to the creation of a new class of
robotic controllers that could be capable of dealing with the increasing complexity of
physical systems, some of which are built with hardware compliance (Tsagarakis et
al., 2016) or muscle-like actuation mechanisms (Nakanishi et al., 2012). On the neu-
roscientific side, such loops could provide the necessary input/output connections,
in a rich environment, for detailed, full-scale neural simulations that model a spe-
cific part of the nervous system, such as the cerebral cortex (Potjans and Diesmann,
2014). However, to close these loops, it is crucial to find ways to connect physical or
simulated embodiments (i.e., robots or musculoskeletal systems) to these networks
that mimic neural behaviors. In particular, one must find ways to translate sensory
information into neural activity (i.e., spikes or synaptic currents) to connect sensors
to brain model simulations, and, vice versa, neural activity into actuator commands,
providing spike-based or neuromorphic translations.

In most animals, motor commands from the brain cortex are not directly sent
to the muscles, but they are transmitted through a series of hierarchically orga-
nized neural circuits (Kandel et al., 2000). At the lowest level of this hierarchy lies
the spinal cord. In it, information gathered from different sensory pathways (pro-
prioceptive and exteroceptive, such as muscle spindles, Golgi tendon organs and
mechanoreceptors) is collected and sent to the cortical areas, and motor commands

Part of this chapter has been adapted from the article:
Vannucci, L., E. Falotico, and C. Laschi (2017). “Proprioceptive Feedback through a Neuromorphic

Muscle Spindle Model”. In: Frontiers in Neuroscience 11, p. 341.
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modulated by the brain stem are directly sent to α-motoneurons connected to the
muscle fibers. Thus, we can consider the spinal cord as the place where the trans-
lation between the physical sensors and actuators is performed in vertebrate ani-
mals. Moreover, it contains neural circuits that activate and mediate a variety of
basic somatic reflexes that contribute to the regulation of movements. Therefore, as
the spinal cord is a such fundamental mechanism, it is only natural to consider to
model it in order to develop a fundamental building block that should be embedded
in complete action-perception closed loops with biomimetic neural controllers.

Several biologically realistic models of the spinal cord have been developed and
tested in closed loop simulations with musculoskeletal embodiments. Stienen and
colleagues (Stienen et al., 2007) developed a fairly complete model that includes Ia,
Ib and II sensory afferents, both monosynaptic and polysinaptic reflexes as well as
Renshaw cells, improving a previous work by Bashor (Bashor, 1998). The model
was tested with a musculoskeletal model consisting of a generic antagonistic couple
of muscles, thus lacking a realistic validation scenario. Cisi and Kohn developed a
web-based framework for the simulation of generic spinal cord circuits with associ-
ated muscles, that aims at replicating realistic experimental conditions (i.e. electrical
stimulation) (Cisi and Kohn, 2008). Sreenivasa and colleagues developed a specific
neuro-musculoskeletal system, upper limb with biceps and triceps, and validated it
against human recordings (Sreenivasa, Ayusawa, and Nakamura, 2016). In (Moraud
et al., 2016), a simple spinal cord model of the rat, lacking any descending stim-
uli, was developed in order to study how such circuitry can correct the gait after
a spinal cord injury and embedded in a closed loop simulation with biomechan-
ical hindlimbs. All of the mentioned works model different aspects of the spinal
circuit, however, none of them considers the modulation of spinal reflexes by γ-
motoneurons, that adjust the muscle spindle’s sensitivities over the wide range of
lengths and velocities that occur during different tasks, a fundamental mechanism
for proprioception (Banks, 1994). Moreover, these model were tested primary for
the generation of reflex motions, and not as intermediate levels of more complex
controller such as ones capable of generating voluntary movements.

The aim of this work is to improve on the existing spinal cord models in order
to create a generic, comprehensive network, that can be used for biomimetic neural
controllers and prove the feasibility of the overall approach by testing it on differ-
ent embodiments, both robotics and musculoskeletric, with simulated descending
inputs from the brain areas.

5.1.1 Proprioceptive feedback and muscle spindles

The brain receives and integrates information from different sensory pathways: pro-
prioceptive, exteroceptive, and introceptive ones. In particular, proprioceptive feed-
back is crucial when performing voluntary movements, and its malfunction can pos-
sibly produce severe impairments such as dystonia (Kaji et al., 1995). Therefore, in
the context of developing closed loops, it is necessary to properly translate propri-
oceptive sensory information gathered from the embodiments into a neural activity
suitable for the brain model employed.

For physical robotic applications, it is suitable to embed hardware neuromor-
phic sensors that can natively transmit information as spike trains. Such solutions
have been proved effective to translate visual information, for example by employ-
ing dynamic vision sensors to learn how to perform obstacle avoidance (Stewart
et al., 2016) or to give input to vision systems integrating different eye movements
(Mulas, Zhan, and Conradt, 2015; Vasco et al., 2016) and to process auditory stimuli
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(Gomez-Rodriguez et al., 2007; Chan, Jin, and Schaik, 2012). However, no hardware
mechanism for event-based proprioceptive feedback has been developed.

Several software solutions for generating spiking activity from proprioceptive
information in closed loops have been developed. They can fall into one of two
categories depending on how the translation is achieved: custom or biologically in-
spired ones. The first approach usually relies on tailor-made translations, specific for
the tasks to be solved. In (Bouganis and Shanahan, 2010), proprioceptive feedback
from the encoders of iCub arm joints is translated in the firing rate of a population
of neurons by dividing the range of the joints into bins and assigning a firing rate
normally distributed around the neuron encoding the current joint angle. Casellato
and colleagues converted visual and sensory information on a state and an error sig-
nal that were then translated into a firing activity through radial basis functions for
the control of a robotic arm, using a spiking network embedding a cerebellar model
that included a learning mechanism (Casellato et al., 2014). A similar model was
also used to control a single joint of a musculoskeletal robot (Richter et al., 2016).
Folgheraiter and Gini presented a model of low-level reflexes for a tendon-driven
hand in which analogue values for the sensors are translated into firing rates in a
proportional fashion (Folgheraiter and Gini, 2004).
In contrast, biologically inspired translation approaches are developed by imple-
menting simulations of sensory processing mechanisms found in animals, and are
therefore more suitable for sending spiking activity to more realistic models of the
nervous system. However, very few examples of this type exist in the current state
of the art. Among these, a simple model of the muscle spindle activity has been
employed to perform this translation in a closed loop between a musculoskeletal
simulation and a neural model replicating low-level reflexes (Sreenivasa, Ayusawa,
and Nakamura, 2016). A more complex model of the muscle spindle, albeit not com-
pletely spike-based, has been used to close the loop with a cadaver finger to create a
neuromechanical system (Niu et al., 2017) and with a musculoskeletal simulation to
study control of the human posture (Elias, Watanabe, and Kohn, 2014).

To provide a fully spike-based, biologically inspired translation model, it ws
decided to rely on insights from biology and neuroscience. In mammals, propri-
oceptive information is transmitted to the central nervous system from the Golgi
tendon and muscle spindle organs. In particular, the muscle spindles are the main
source of proprioceptive feedback for spinal sensorimotor regulation and servocon-
trol. This specialized type of fiber is found inside muscles, lying along extrafusal
fibers, and provide information about the length and velocity of the muscle. Sev-
eral models of afferent activity coming from muscle spindles have been developed
over the years. Many of these model the firing rate of the afferent fibers as a poly-
nomial function of the muscle stretch and stretch speed (Matthews and Stein, 1969;
W. Chen and Poppele, 1978; Houk, Rymer, and Crago, 1981; Hasan, 1983; Proc-
hazka and Gorassini, 1998). These works can be classified in three groups: models
based on linear transfer functions (Matthews and Stein, 1969; W. Chen and Poppele,
1978), models based on curve fitting relying on non-linear transfer functions (Houk,
Rymer, and Crago, 1981; Hasan, 1983), and non-linear models relying on biological
evidence of the muscle spindle (Otten, Scheepstra, and Hulliger, 1995). An interest-
ing comparison of the firing prediction of these models, evaluated according to the
hamstring spindle primary afferent firing recorded during normal stepping in cats,
has been proposed by (Prochazka and Gorassini, 1998). The authors include in this
work also a new hybrid model able to fit neurophysiological data more closely. All
the mentioned works, albeit efficient and easy to implement, are incomplete, as they
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lack two important features: response to fusimotor stimulation and distinction be-
tween primary and secondary afferent activity. In particular, fusimotor stimulation
from γ-motoneurons changes the spindle’s relative sensitivities over the wide range
of lengths and velocities that occur during different tasks (Banks, 1994). Neurosci-
entific evidence indicates that this could be used in detecting changes in the desired
trajectory of the intended movements, such as in locomotion (Ellaway, Taylor, and
Durbaba, 2015). For these reasons, recently, more complex spindle models that in-
clude fusimotor modulation of the afferent responses have been developed (Lin and
Crago, 2002; Maltenfort and R. Burke, 2003; Mileusnic et al., 2006). In the work pro-
posed in (Maltenfort and R. Burke, 2003), the authors developed a computational
model of the primary afferent activity considering the response to combinations of
stretching during mixed dynamic and static fusimotor effects without considering
secondary afferent activity. In (Lin and Crago, 2002), the model is more comprehen-
sive, considering primary and secondary activities, but because of the high number
of free parameters that must be tuned, it is not suitable to be integrated on different
embodiments.

In this work a completely spike-based, biologically inspired mechanism for the
translation of proprioceptive feedback is proposed. This mechanism implements a
computational model of muscle spindle activity. In particular, the proposed model is
based on (Mileusnic et al., 2006), as it is shown to be complete, including fusimotor
activation and primary and secondary afferent activities, and is suitable for an im-
plementation in closed loops (Niu et al., 2017). In principle, such a model should be
used in conjunction with a detailed spiking simulation of neural pathways descend-
ing from the central nervous system that include γ-motoneuron activations. How-
ever, the original model is completely rate based. Therefore, it was extended to cope
with such a spiking input, and a spike trains generation mechanism for the output
of the model was added, developing a fully spike-based system. To provide a solid
building block that could be used in both simulated environments and real-time
scenarios, it was decided to integrate it in a spiking simulation and to implement
it for a commonly used spiking neural simulator, NEST (Gewaltig and Diesmann,
2007), and for a neuromorphic hardware platform, SpiNNaker (Khan et al., 2008).
To prove the correctness of the two implementations, a validation and a compari-
son have been performed. Finally, to prove the effectiveness of the proposed model
in translating sensory information, experiments in which it has been coupled with
simulated or physical systems are presented.

5.2 Muscle spindle model

The muscle spindle organ consists of three types of intrafusal fibers: bag1 and bag2,
which are longer and nuclear, and the shorter chain type (Boyd, 1981). These types
of fibers react differently to the two different types of fusimotor activations, and their
activity is combined to produce primary and secondary afferent activity (Figure 5.1).
Activity of dynamic γ-motoneurons only affects bag1 fibers, while the sensitivity
of bag2 and chain fibers is regulated by static γ-motoneurons. The firing rate of
primary afferent (Ia) is a combination of all the fiber activity, while only bag2 and
chain fibers contribute to the secondary afferent (II) rate. Because of the anatomy,
Ia afferent endings carry information to the central nervous system that depends on
both the length and stretch speed of the muscle, while II afferent endings provide
information relative mostly to the length.
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FIGURE 5.1: Biological model of the muscle spindle. The three intra-
fusal fiber types receive different fusimotor stimulations (static and
dynamic) and produce primary (Ia) and secondary (II) afferent activ-

ities. Adapted from (Proske, 1997).

In (Mileusnic et al., 2006), the authors propose modelling all intrafusal fiber types
with the same function, with different parameters based on physiology. This func-
tions have two inputs: the fascicle length L (and its derivatives L̇, L̈) and the relevant
fusimotor activation level ( fdynamic, fstatic). The fiber model consists of a sensory (SR)
and polar (PR) regions, modeled as a pure elastic element and as a spring with a
parallel active contractile element, respectively. From these models, given the in-
puts, one can compute the tension of the whole fiber T through a second-order dif-
ferential equation. Once the tension is computed, the contribution of the fibers to
the afferent rates can be obtained as follows:

ratebag1(t) = G ·
[

T(t)
KSR − (LSR

N − LSR
0 )

]
(5.1)

ratebag2(t), ratechain(t) = G ·

 X · Lsec
LSR

0
·
[

T(t)
KSR − (LSR

N − LSR
0 )
]
+

+(1− X) Lsec
LSR

0

(
L(t)− T(t)

KSR − LSR
0 − LPR

N

) (5.2)

A complete description of all the parameters found in Equations 5.1 to 5.8 and
their values, which differ for every type of fiber, can be found in (Mileusnic et al.,
2006), Table I. For a more detailed discussion of how the fibers are modeled, refer to
(Mileusnic et al., 2006), from which Equations 5.1-5.4, 5.6-5.7 were adapted. The con-
tributions are then combined to generate the firing rates of primary and secondary
afferents:

rateI I(t) = ratebag2(t) + ratechain(t) (5.3)

rateIa(t) =

{
ratebag1(t) + S · rateI I(t) if ratebag1(t) > rateI I(t)
rateI I(t) + S · ratebag1(t) if ratebag1(t) < rateI I(t)

(5.4)

therefore computing the secondary afferent rate as the direct sum of bag2 and
chain activities, and the primary as a weighted sum between the three, which models
the partial occlusion effect described in neuroscientific experiments. Such rates can
be used to compute inter-spike time intervals to generate discrete spike events in a
spiking neural simulator.

Because of the computation of T(t) as a second-order differential equation, the
original model is not well suited for the integration in applications where infor-
mation regarding acceleration is unavailable or very noisy. This is because even a
medium level of noise can lead to instability while performing a double integration.
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To avoid this, the model was simplified by setting L̈ = 0. The impact of this change
is small, as the mean difference between the afferent firing rates with and without
acceleration, computed on a Simulink implementation of the original model, was
lower than 1% in most cases. This simplifies the tension equation for the polar and
sensory regions, which can now be rewritten as follows:

T(t) =


KSR ·

(
L(t)− LPR(t)− LSR

0

)
for sensory region

β(t) · C ·
(

LPR(t)− R
)
· sign

(
˙LPR(t)
)
·
∣∣∣ ˙LPR(t)

∣∣∣a +
+KPR ·

(
LPR(t)− LPR

0
)
+ Γ(t)

for polar region

(5.5)
where β and Γ depend on the current fusimotor activation:

β(t) = β0 + β1 · fdynamic(t) + β2 · fstatic(t) (5.6)
Γ(t) = Γ1 · fdynamic(t) + Γ2 · fstatic(t) (5.7)

Given that the tension of the two region of the fiber is the same, Equation 5.5 can
be rearranged into a first-order differential equation:

Ṫ(t) = L̇(t)− signpow

T(t)− KPR ·
(

L(t)− LSR
0 −

T(t)
KSR − LPR

0

)
− Γ(t)

β(t) · C ·
(

L(t)− LSR
0 −

T(t)
KSR − R

) , a

 · KSR

(5.8)
where

signpow(x, a) = sign(x) · |x|a (5.9)

After this rearrangement we have a model, Equation 5.8, whose only inputs are
L, L̇, fdynamic, and fstatic. Information coming from actual sensors can thus be pro-
cessed to generate L and L̇, in units of the rest fascicle length L0, to provide dynamic
input to the model.

5.2.1 Spiking fusimotor input and parameter identification

In (Mileusnic et al., 2006), fdynamic and fstatic activations with values between 0 and 1
are computed from the actual fusimotor frequencies γdynamic and γstatic using a bio-
chemical Hill-type equation from analogue values of the firing rates, in conjunction
with low-pass filtering. However, this solution relies on the instantaneous firing
rates of γ-motoneurons. Such rate, in a spiking neural network simulation, cannot
be accurately computed without introducing delays, as using the inter-spike interval
can lead to very noisy results in case of irregular spike trains, while averaging it over
time bins would make the rate smoother but it would introduce delays. Therefore,
this type of computation is not suitable to be integrated in a spiking neural network
that simulates the activity of γ-motoneurons. In fact, the spindle model should re-
ceive spike events and integrate them to compute the activation levels of fusimotor
activity. To do so, it was decided to employ a spike integration mechanism, adding
spikes with an instantaneous response and exponential decay, similarly to an expo-
nential synapse model. The actual spike response r was scaled with respect to the
current value of the activation f to keep the results between 0 and 1:
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ḟ (t) =
(

e−
1
τ − 1

)
· f (t) + r · (1− f (t)) · u(t) (5.10)

u(t) =

{
1 if a spike is received at time t
0 if no spikes are received at time t (5.11)

where r is the maximum impulse response and τ is the decay time. In the ref-
erence model, the activation level for chain fibers was not implemented with a low-
pass filter but as a direct saturation function of the static γ-motoneuron firing rate.
However, as already stated, it is not possible to compute the instantaneous firing
rate during spiking network simulations, so employed the same spike integration
technique for the fusimotor activation of chain fibers. Another possible approach
to spike integration is to employ α-shaped responses. This leads to similar results;
however, such a spike integration technique cannot be implemented with the SpiN-
Naker APIs, as they currently only support exponential synapses.

Then, a model selection procedure was employed to select the maximum impulse
response r and decay time τ for the spike integration mechanism (Equation 5.10). In
the original model, the activation level of fusimotor activation under constant γ-
motoneurons activity rose and stabilized at a certain maximum value. Therefore, a
dataset of these maximum values was created, using the Hill-type activations, for
different frequencies of motoneurons firing rates: {10, 50, 75, 100, 150}spikes/s. The
model selection procedure was then performed on all the different combinations of
values for r and τ ranging in 0.01 ≤ r ≤ 0.4 and in 100ms ≤ τ ≤ 500ms, with dis-
crete sampling. To evaluate the parameters, the spike integration was simulated at
a given frequency for 3s, and the percentage error of the obtained maximum activa-
tion levels compared with those in the dataset (magnitude error) was computed. As
it reported in (Mileusnic et al., 2006), fusimotor activation reaches 90% of the max-
imum value in 343ms for fdynamic and in 471ms for fstatic. To match this property,
another criterion evaluated was the obtained percentage at these specific points in
time and computed the discrepancies with 90% (shape error). During the parameter
identification procedure, input for the spike integration was simulated by generat-
ing spikes at fixed intervals, which produced a regular oscillation in the computed
activations. To limit the effect of these oscillations on the selection procedure, er-
rors were computed on a smoothed activation. For each parameter combination, the
magnitude and shape errors were summed up and averaged on the different fre-
quencies of the dataset. At the end of the procedure, these values had the smallest
average percentage error (7%):

rdynamic = 0.08, τdynamic = 310ms
rstatic = 0.09, τstatic = 425ms

These values provide accurate results for the fusimotor activity ranging from
30spikes/s to 150spikes/s, while they tend to make the spike integration mecha-
nism underestimate f for lower stimulation frequencies and to overestimate it for
higher ones. For the static activation level of the chain fiber, fstatic was scaled, rel-
ative to bag2, by a factor equal to the mean scaling factor between the maximum
levels of the original model at the same stimulation frequencies of the dataset. The
averaged scaling factor was 0.829. A comparison between the original activations
and those obtained with the spike integration procedure can be seen in Figure 5.2,
where constant dynamic and static fusimotor activities (γdynamic = 75spikes/s and
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γstatic = 50spikes/s) are converted into the corresponding fusimotor activation lev-
els.
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FIGURE 5.2: A comparison between activation levels obtained with
the Hill-type equations (with low pass filtering) and those obtained
with the spike integration procedure for a constant dynamic fusimo-
tor stimulation of 75spikes/s and a static stimulation of 50spikes/s.
The regular oscillation of the activation levels in the spike integra-
tion case is produced by the input spike trains, that were generated

at fixed time intervals.

5.3 Spinal cord model

To develop the final model, an incremental approach was followed, starting from
a circuit for a single muscle, adding heteronymous pathways from synergistic mus-
cles in the same group, and finally inhibitory connections between antagonistic pairs
(Figure 5.3).

5.3.1 Spinal neurons for a single muscle

For a single muscle, a network with muscle spindles providing Ia and II afferent
fibres activity, a pool of α-motoneurons and excitatory II-interneurons was consid-
ered (Stienen et al., 2007; Moraud et al., 2016). Ia afferents directly provide excita-
tory inputs to the α-motoneurons (monosynaptic stretch reflex mechanism), while
the II afferents output is mediated by a set of interneurons before reaching the α-
motoneurons, creating a disynaptic reflex. The α-motoneurons receive an input from
a spike generator that represent the descending motor command, while two addi-
tional spike sources simulate the activity of dynamic and static γ-motoneurons that
regulates the spindle sensitivity. All other neurons are instead modelled as leaky in-
tegrate and fire neurons. Distribution of parameters for the α-motoneurons that in-
fluence the recruitment order and fibre strength (membrane capacitance, membrane
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FIGURE 5.3: Spinal cord model for a muscle system with two syn-
ergistic muscles and one antagonist, such as the biceps-brachialis-
triceps system. Heteronymous and inhibitory connections are high-

lighted with different colors.

time constant, maximum twitch force, time to peak force) are taken from (Sreenivasa,
Ayusawa, and Nakamura, 2016):

Di = [dmax − dmin · log(N − i)] · DSF (5.12)
Ci = πD2

i · csp f (5.13)
τi = τmax − (Di − τadj) · τslp (5.14)
Fi = [pmax − pmin · log(N − i)] · FSF (5.15)

Ti =
[
smin −

ssl

N
i
]
· TSF + smin (5.16)

where i is the index of the α-motoneuron in the pool, N is the size of the pool and
the others are free parameters that have to be adjusted for every muscle.

5.3.2 Muscle activation model

In order to compute the actual muscle activation from the motoneurons activity, a
special spike integration unit that sums the fibres twitches was implemented. The
spikes were integrated using the discrete time equations of (Cisi and Kohn, 2008)
with a non-linear scaling factor from (Fuglevand, Winter, and Patla, 1993) that pre-
vents the activation to grow indefinitely:
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ai(t) = 2e
−δt
Ti · ai(t− 1)− e

−2δt
Ti · ai(t− 2) + Fi · g(t) ·

δt2

Ti
e

1−δt
Ti · u(t) (5.17)

where δt is the integration time, and u(t) and g(t) are the spike function and the
non-linear scaling, defined as:

u(t) =

{
1 if a spike is received at t
0 if no spikes are received at t (5.18)

g(t) =

{
1 if Ti/ISIi < 0.4
1−e−2(Ti/ISII )

3

Ti/ISII
otherwise

(5.19)

where ISIi is the observed inter-spike interval of α-motoneuron i. Moreover, the
activation can be scaled between 0 and 1 by dividing by the maximum theoretical
value:

ai,max = lim
t→+∞
ISIi→0

ai(t) = Fi

δt3

T2
i

(
1− e−2

(
Ti
δt

)3
)
· e
(

1− δt
Ti

)

1− 2e−
δt
Ti + e−2 δt

Ti

(5.20)

Therefore, the output of the twitch integration module is an activation value in
[0; 1] that is suitable for both muscle models, including Hill-type, and physical actu-
ators. An example of twitch integration, with Ti = 0.03s, Fi = 10mN and constant
stimulation frequencies can be seen in Figure 5.4 where it can be observed that at
low frequencies the individual twitches can still be seen, while at higher stimulation
the twitches fuse into a tetanic contraction. Moreover, thanks to the non-linear scal-
ing, the activation reaches a maximum value and higher stimulation frequencies do
not produce any effect, in accordance with the contractile properties of real muscle
fibres.

The motor pool and muscle spindles were actually subdivided into different pop-
ulations connected to different bundles of the same muscle (e.g. short and long head
of biceps). However, it was assumed that the same descending signals provide in-
puts to all bundles of the same muscle, and that the feedback connections involve
all bundles, meaning for instance that Ia afferents of a bundle are connected the α-
motoneuron pool of another one.

5.3.3 Network for synergistic and antagonistic muscles

In humans and other animals, a contribution to the stretch reflex of a muscle is
also given by the afferent fibres of synergistic muscles, through heteronymous con-
nections (Chalmers and Bawa, 1997). Such connections, from Ia afferents and II-
interneurons of a muscle to the α-motoneurons of the other are less strong and less
common, thus in the current implementation it was decided to limit them to only
60% of the total motoneuron population, maximum recorded value in humans, and
to scale the weights by 0.6, compared to ones of the homonymous.

Finally, in order to implement the polysynaptic inhibition reflex, two populations
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FIGURE 5.4: Twitch integration of constant stimulations with differ-
ent frequencies, Ti = 0.03s, Fi = 10mN.

of Ia-interneurons were added to the network. Those receive inputs from all Ia affer-
ents of synergistic muscles and provide inhibition to the α-motoneurons of the an-
tagonistic muscles. Moreover, as the activation of a muscle should provoke an inhi-
bition of its antagonist (Pierrot-Deseilligny and D. Burke, 2005), the Ia-interneurons
also receive low-gain positive inputs from the corresponding descending pathways.

5.4 Implementation

The muscle spindle model was implemented into two commonly available simula-
tion platforms: NEST and SpiNNaker. NEST is a point-neuron simulator for spiking
neural networks with an extendible comprehensive library of different neuron and
synapse models, including plasticity mechanisms, already described in Chapter 4 as
it a fundamental part of the Neurorobotics Platform. SpiNNaker, however, offers a
hardware platform with a massively parallel set of low-energy cores, and it focuses
on real-time simulations. Currently, the library of neural models and synapses is
limited, but the provided APIs ease the development of new ones. In the experi-
ments, a SpiNN-5 board with 48 chips, each one with 18 cores, was employed.

For NEST, the implementation proceeded by using the provided APIs to create
a new neural model that can be simulated alongside other neuron types and receive
spike events. The fiber tension for each type of fiber was computed by performing a
discrete fixed-step integration of Equation 5.8. Fusimotor activation was computed
by the aforementioned spike integration (Equation 5.10). Spikes are transmitted to
the spindle model through two different synapse types, representing dynamic and
static efferent fibers, to separate the incoming spike events. After the computation of
the Ia and II afferent rates, actual spikes are generated using a Poisson distribution
for the inter-spike interval, employing the existing NEST utilities. Because in NEST
simulation every neuron model can have only one output channel, a single spindle
unit cannot produce both primary and secondary afferent activities. To overcome
this limitation, a Boolean flag to the model that can be used to switch between the
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two afferent types was used, that defaulted to primary. As a consequence, if one
wants to simulate a certain number n of complete muscle spindles, he should create
2n units and set the appropriate flags for half of population. Another possibility,
equivalent in terms of produced output and performances, would have been to de-
velop two separate models for primary and secondary activity. However, it was de-
cided to pursue the first strategy to provide a uniform interface with the SpiNNaker
model, where the two choices are not equivalent, as described in the next paragraph.
At the end of the implementation, the model was available both from the SLI inter-
face and from PyNEST, and its parameters, such as the fiber length and speed, can
be set using standard NEST calls. However, as with any other NEST model param-
eter, to set it to a new value, the simulation must be stopped and resumed after the
change.

The same procedure was employed for the implementation on the SpiNNaker
neuromorphic hardware, using a fixed-step integration of Equation 5.8 and spike in-
tegration for the fusimotor activation as in Equation 5.10. Spikes can be transmitted
to this model via two custom synapse receptors, labeled dynamic and static. Because
of the limitations of the ARM chips of the board, it was necessary to implement
fixed-point arithmetic functions for the implementation of Equation 5.8, such as di-
vision and exponentiation. The fiber length and speed can be injected into a running
simulation by using a customized version of a spike live injector model found in
the SpiNNaker library. In this way, information can be sent without stopping the
simulation, fulfilling the real-time constraint of the whole system. To maximize the
performance of the model and ensure real-time execution of the simulation, in every
population of spindles, which should be relative to a single muscle, the fiber tension
was computed for a single spindle unit, comprising all fiber types. Even if this de-
creases the accuracy of the simulation, this does not compromise the plausibility of
the model, as it is equivalent to assuming that the central nervous system provides
the same fusimotor stimulation for all spindles in a muscle. After the computations,
the resulting Ia and II afferent rates were employed to generate spikes with Poisson
inter-spike intervals from all spindle units. The random process was emulated using
an approximation of a homogeneous Poisson process (Heeger, 2000):

P{spike during δt} = rate · δt (5.21)

where δt is the duration of a simulation time step. This approach was suitable
because of the fixed time bins (the simulation steps) and of the small δt (1ms). At the
end of the implementation procedure, the model, developed in C, could be instan-
tiated from the SpiNNaker PyNN frontend (Davison et al., 2008). As for the NEST
implementation, a Boolean flag to switch between primary and secondary afferent
activity was added. In this case, developing two different models for primary and
secondary activity would have a negative impact, as SpiNNaker allows us to sim-
ulate only homogeneous populations on its cores. This implies that primary and
secondary afferents spindle models, relative to the same muscle, would be split into
two populations, thus duplicating the fiber tension computation and forcing the user
to create additional customized spike injectors.

The muscle activation model was, for the time being, only implemented in NEST
as a custom node able to integrate the twitches from a population of α-motoneurons.
As such, the different twitches amplitudes and time constants can be set as parame-
ters to the model.

Moreover, a generic implementation of the spinal circuitry was developed so
that different muscle sets can be easily created by specifying parameters such as the
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number of motoneurons, spindles and interneurons, values for Equations 5.12-5.16,
and the antagonistic relationship between muscles. Moreover, the implementation
allows to easily scale the number of total neurons by automatically adjusting the
synaptic weights accordingly. This allows a faster testing phase in which the accu-
racy of the network is not severely compromised.

5.5 Results for the muscle spindle implementation

To assess the effectiveness of the proposed model, several experimental trials were
performed. In particular, the NEST and SpiNNaker implementations were validated
against a MATLAB Simulink simulation, comparable with the one performed in
(Mileusnic et al., 2006). Then, the model was employed to translate sensory informa-
tion from different simulated and physical robotics systems, proving the generality
of the approach. In all the experiments, the parameter values were kept unchanged
from the one reported in (Mileusnic et al., 2006), which are optimized on cat soleous
muscle recordings. However, the same anatomical structure exists in all mammals;
therefore, because of the accurate representation of the anatomy of the model by
changing the parameter values one could in principle reproduce the different prop-
erties of the various muscles. In the implementations, the possibility to change such
parameters was left open by providing the appropriate NEST and PyNN interfaces.

5.5.1 Validation

As the first step, a MATLAB Simulink model of Equations 5.1-5.11 was developed,
whose results were directly, albeit empirically, comparable with those reported in
(Mileusnic et al., 2006). Then, the results were compared, in terms of afferent rates,
of the two different implementations, with the Simulink reference by executing the
same tasks in terms of fiber stretch and fusimotor stimulations. After the execution,
the spike trains were recorded, and the rate was computed by sorting them into bins
of fixed time intervals (30ms) and counting them to compute the average rate for the
bin.

In particular, a simple stretch was simulated, with the fiber length remaining con-
stant at 0.95L0 for 1.1s, stretching at 0.11L0/s for 1.1s, and then remaining constant
at 1.08L0 for the final 1.1s. The same stretch was repeated under different fusimotor
drives (γdynamic = 70spikes/s and γstatic = 70spikes/s). To provide the fusimotor
stimulations in NEST and SpiNNaker simulations, Poisson spike generators were
connected to the appropriate synapses types. Conversely, in the Simulink imple-
mentation, activities of γ-motoneurons were simulated by generating uniformly dis-
tributed spike trains. The number of muscle spindles simulated on NEST was 200,
resulting in 400 simulated nodes, and 100 on SpiNNaker (200 nodes) because of
memory per core limitations.

Results for this validation procedure can be found in Figure 5.5, where the re-
sponse of the muscle spindle models, in terms of both computed spike rates and
spike trains are shown. When no fusimotor stimulation is present, the spindle activ-
ity is null when the muscle is contracted; then, it starts to increase when the stretch
begins and continues to rise as the stretch continues, and finally, it decreases and
stabilizes at a certain level. Because there is no fusimotor stimulation, the activity
of primary and secondary afferents is very similar. However, under a γdynamic stim-
ulation of 70spikes/s, Ia and II activities are radically different. In fact, primary af-
ferents, the only ones affected by dynamic γ-motoneurons, have a greatly increased
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response, especially during the elongation phase, showing an increased sensibility
to stretch speed. In contrast, static γ-motoneurons provide an overall increase in sen-
sitivity of both Ia and II afferents, providing sensory feedback even when the muscle
is contracted, as shown for γstatic = 70spikes/s. From the results, we can confirm
that the effects of γ-motoneuron stimulation during the simulations are in agree-
ment with the spindle anatomy. Moreover, the results, in terms of computed spike
rate, of the NEST and SpiNNaker implementations are very similar to the Simulink
implementation, even if they are more noisy, thus proving their correctness. Finally,
by comparing these results with those presented in (Mileusnic et al., 2006) for a sim-
ilar trial, we can observe that the removal of the second-order terms and the spike
integration did not change the results significantly, as the behaviors of the firing rate
responses are preserved.

0 0.5 1 1.5 2 2.5 3

time (s)

0

50

100

150

200

250

ra
te

 (
s
p

ik
e

s
/s

)

primary afferent, no γ

Simulink
NEST
SpiNNaker

0 0.5 1 1.5 2 2.5 3

time (s)

0

50

100

150

200

250

ra
te

 (
s
p

ik
e

s
/s

)

primary afferent, γ
dynamic

 = 70 spikes/s

Simulink
NEST
SpiNNaker

0 0.5 1 1.5 2 2.5 3

time (s)

0

50

100

150

200

250

ra
te

 (
s
p

ik
e

s
/s

)

primary afferent, γ
static

 = 70 spikes/s

Simulink
NEST
SpiNNaker

0 0.5 1 1.5 2 2.5 3

time (s)

0

50

100

150

200

250

ra
te

 (
s
p

ik
e

s
/s

)

secondary afferent, no γ

Simulink
NEST
SpiNNaker

0 0.5 1 1.5 2 2.5 3

time (s)

0

50

100

150

200

250

ra
te

 (
s
p

ik
e

s
/s

)

secondary afferent, γ
dynamic

 = 70 spikes/s

Simulink
NEST
SpiNNaker

0 0.5 1 1.5 2 2.5 3

time (s)

0

100

150

200

250

ra
te

 (
s
p

ik
e

s
/s

)

secondary afferent, γ
static

 = 70 spikes/s

Simulink
NEST
SpiNNaker

0 0.5 1 1.5 2 2.5 3

time (s)

0

100

200

s
p

in
d

le
 I

D

population activity, no γ

0 0.5 1 1.5 2 2.5 3

time (s)

0

100

200

s
p

in
d

le
 I

D

population activity, γ
dynamic

 = 70 spikes/s

0 0.5 1 1.5 2 2.5 3

time (s)

0

100

200

s
p

in
d

le
 I

D

population activity, γ
static

 = 70 spikes/s

FIGURE 5.5: Comparison between the different implementations
(Simulink, NEST, and SpiNNaker) for a stretching task with differ-
ent fusimotor activities (no activity, dynamic at 70spikes/s, and static
at 70spikes/s). The rows correspond to the different fusimotor activa-
tions. The first column shows the Ia afferent activity, in terms of spike
rates, the second II afferent activity, and the third the raster plots of
the neural population relative to the task, as produced by SpiNNaker.
Spindles 0-99 simulate Ia activity, while spindles 100-199 simulate II
activity. To improve visibility in the raster plots, only activity of 20%

of the units of the spindle populations is displayed.

The mean simulation time for the NEST implementation was 7.51s on an i7-
2760QM processor, implying a real-time factor of 0.44. The low real-time factor is
due to the fact that the simulation must be stopped and restarted to set the values
of L and L̇. To compare the performance of the NEST model with those of other
commonly used neural models, a continuous simulation of 100 primary afferents
under constant dynamic fusimotor stimulation of 100spikes/s for 1 second was per-
formed, with L = 1 and L̇ = 0, which resulted in an execution time of 0.48 seconds.
By comparison, under the same stimulation, 100 leaky integrate and fire models had
an execution time of 0.06s and 100 adaptive leaky integrate and fire models run for
0.81s. Therefore, the execution time of the NEST implementation falls between those
of commonly used neural models. In contrast, simulations on SpiNNaker were able
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to run in real time, and 200 spindle models (primary and secondary) could be simu-
lated by a single core, using only 1% of the maximum theoretical capabilities of the
hardware.

5.5.2 Sensory translation experiments

Once validated, the model can be used to translate proprioceptive feedback from
robotic systems, both simulated and physical. In the tests, it was employed to con-
vert information coming from motor encoders into afferent activity, but the same
mechanism can be applied to translate proprioceptive information from more realis-
tic biomechanical models, such as musculoskeletal simulations, or different sensors,
such as physical stretch sensors.

First, the model was tested by embedding the NEST implementation in the Neu-
rorobotics Platform. To do this, the NEST spindle model had to be integrated in
the list of possible devices and then the transfer functions for the specific setups
had to be developed. In particular, the spindle neural models was connected to
two different robotic embodiments: an iCub robot and a simulated mouse body. In
principle, every joint connecting two links can be considered actuated by an agonist-
antagonist pair of muscles. Therefore, sensory information should be translated in
terms of stretches of such muscles. This is demonstrated on a simulated iCub robot,
where spindle model is employed to translate information received from the elbow
encoder into afferent activities for an antagonistic pair of simulated muscles. The
stretch and speed of the simulated muscles were computed geometrically, as a func-
tion of the encoder values (θ(t), θ̇(t)) and of kinematic parameters of the links (arm
and forearm, cf. Figure 5.6). Assuming, for simplicity, that the muscles are attached
in the middle point of the two links and that 0 ≤ θ(t) ≤ 2π, the stretch and speed
for the agonist and antagonist muscles can be computed as follows:

Lago(t) =

√
l2
1
4
+

l2
2
4
− l1l2

2
cos(θ(t)) (5.22)

˙Lago(t) =
l1l2
4 sin(θ(t)) · θ̇(t)

Lago(t)
(5.23)

Lant(t) =
l1
2
+

l2
2
+ 2s · sin

(
π − θ(t)

2

)
(5.24)

˙Lant(t) = −2s · cos
(

π − θ(t)
2

)
· θ̇(t) (5.25)

This system of equations can be employed on any two-link, asymmetric system
(e.g., thigh-leg), by simply changing the kinematic parameters of the links or the
attachment point of the two muscles.

To test it, a simulated iCub robot was placed inside a virtual room, where the
experiment took place. A sinusoidal motion with a peak-to-peak amplitude of 45
degrees and a frequency of 0.2Hz was given to the elbow motor to simulate a rhyth-
mic co-activation of the two muscles and an alternation of stretching and elongating
of the corresponding spindles. The motion was centered on what was considered
the resting position for the computation of L0, 125degrees, an angle where none of
the two simulated muscles is completely stretched (Figure 5.6). To stress the differ-
ence between primary and secondary afferent endings, fusimotor activation was set
to γdynamic = 70spikes/s during the trial. The activity of the spindles during this
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FIGURE 5.6: Simulated agonist-antagonist muscle pair for a two-link
system and its application to the elbow joint of the iCub robot (left).
The length of the two muscles can be expressed as a function of the
kinematic parameters of arm and forearm and of the current joint an-

gle.
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FIGURE 5.7: Afferent activity for the agonist-antagonist pair during a
sinusoidal movement of the iCub elbow (top). Computed rates for Ia
and II activities are shown in the middle, and the raster plot for the
two muscle populations is on the bottom. To improve visibility in the
raster plot, only activity of 25% of the units of the spindle populations

is displayed.

trial are shown in Figure 5.7. It can be observed that the activity is not symmetric, as
expected from the geometrical translation model employed, but that afferent rates
values correctly alternate between the two simulated muscles, following the elbow
motion. Moreover, Ia activity is higher than II, thanks to the dynamic fusimotor
drive. Because no static fusimotor activity is present, when the fibers are contracted,
there is no activity to be recorded. The computational burden of the simulation of
200 spindle models, combined with the physical simulation, resulted in a real-time
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factor of the whole coordinated simulations of 0.16.
To consider a different link system, the spindle model was connected to simu-

late the afferent activities of muscles connected to a three-link kinematic chain, the
shoulder-neck-head link system of a simulated mouse body, inside the Neurobotics
Platform. The model consists of a rigid skeleton actuated by rotational joints, cov-
ered with deformable skin. The subset of interest of the skeletal model can be seen
in Figure 5.8, where the relevant kinematic parameters are shown.
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FIGURE 5.8: Simulated muscles for a symmetric three-link system
and its application to the virtual mouse neck. The length of the mus-
cle can be expressed as a function of the kinematic parameters of the

three links and of the current two joint angles between them.

Compared to the previous case, this link system is symmetric, so the same equa-
tions can be used to compute L(t) and L̇(t) by just changing the sign of θ(t) and
θ̇(t). Moreover, in this case, the muscle is attached to the first and third links. To
simplify the equations, it was assumed the angle between the first two links (α) to be
constant. However, small modifications are needed to consider it variable in time.
The length and speed of the muscle spindles can be computed using the following
equations:

a =

√
l2
1
2
+ l2

2 − l1 · l2 · cos(α) (5.26)

β = arccos

 a2 + l2
2 −

(
l1
2

)2

2 · a · l2

 (5.27)

L(t) =

√
l2
3
2
+ a2 − a · l3 · cos

(
θ(t) +

π

2
− β

)
(5.28)

L̇(t) =
a·l3
2 sin

(
θ(t) + π

2 − β
)
· θ̇(t)

L(t)
(5.29)

For this experiment, the mouse head was not moved directly, but relied on an
existing setup where the mouse moved its head as part of a Braitenberg-like exper-
iment: the mouse is placed in a Y-maze with two displays placed at the end of the
corridors, and the mouse should look at the red one, away from the blue one, using
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FIGURE 5.9: Afferent activity for the neck muscle pair during a screen
viewing experiment. The head motion during the trial is on top, com-
puted rates for Ia and II activities are shown in the middle, and the
raster plot for the two muscle populations is on the bottom. To im-
prove visibility in the raster plot, only activity of 25% of the units of

the spindle populations is displayed.

a trivial neural model. The two screens switched states every 6 seconds, and the
motion relies only on visual information, particularly on the percentage of red pix-
els in the camera image. The fact that the relevant joint is not explicitly controlled
provides a more realistic scenario. The spindle activities was recorded during such
a trial, again providing dynamic fusimotor drive (γdynamic = 70spikes/s) to enhance
the differences between Ia and II activity. Results for the experiment can be found
in Figure 5.9, where it can be observed that the activities of the spindles of the two
muscles are symmetric and out of phase, in correspondence with the head motion.
The controller does not provide smooth movements of the head, so the activity of
the spindle models is noisy, especially in the presence of momentary and sudden
changes in the fiber stretch speed. However, the activity of the two muscles and of
the two different afferent types are clearly distinguishable from one another. It can
be noticed that, because of the low range of motion, the firing rate of II afferents is
very low. In addition, the stretching speeds are very low, but rates of the Ia afferents
are still high thanks to the dynamic fusimotor activity. Finally, activity for contracted
spindles is close to null, except for activity generated by the noisy input. In this case,
the real-time factor of the coordinated simulation was 0.17.

To show the real-time capabilities of the SpiNNaker implementation, the spin-
dle model was employed on a physical robotic platform. A three-link system was
considered as starting from the shoulder link up to the head of an iCub robot, ac-
tuated by the neck roll joint. Because the the link system has the same structure as
the previous case, the translation could be performed by using Equations 5.26-5.29,
changing the kinematic parameters to match the iCub kinematics (Figure 5.10).

To actually send the translated encoder values to SpiNNaker, as well as to re-
trieve live spiking activity from the simulation, a proper real-time data exchange
middleware was developed in C++. The joint speed cannot be directly retrieved
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FIGURE 5.10: Simulated muscles for the iCub neck roll using the
three-link system previously described for the mouse head.

from the motor, so it was necessary to compute it. To test the robustness of the spin-
dle model against input noise, a simple single-step differentiation was employed.
The neck roll joint was then moved in a sinusoidal fashion, with a peak-to-peak
amplitude of 30degrees and a frequency of 0.5Hz, but the maximum stretch was
maintained for 1 second on every side, by keeping the head still when it reached the
maximum range of motion, resulting in a motion with a period of 4s. During this
trial, fusimotor activity was kept at γdynamic = 80spikes/s and γstatic = 40spikes/s.
Results for this trial can be found in Figure 5.11. As expected, the activities of the two
sets of spindles are symmetric, out of phase from each other, and in sync with the
motion. It is interesting to notice how Ia and II activities for the same muscle differ
only during the actual motion part, while they tend to be almost the same when the
head is still. Therefore, a model of the central nervous system, by properly activating
γ-motoneurons, could really be able to discriminate between motion and different
stretch levels. Moreover, thanks to static fusimotor activation, the spindles are over-
all more sensitive, and even when they are contracted, some activity is present. For
the simulation of this model, to simulate the 200 spindles, divided into two neural
populations, two cores of the SpiNN-5 board were used and thus only 0.2% of its
maximum theoretical capabilities.

These results validated the neuromorphic muscle spindle model in isolation. Af-
ter this phase this model was used as a building block to implement the more com-
plex spinal cord model.

5.6 Results for the spinal cord model

The spinal cord model was then embedded in closed loop simulations with different
embodiments: two musculoskeletal systems (human and mouse) and a humanoid
robotic platform.



Chapter 5. Towards biomimetic neuro-controllers: a comprehensive spinal cord
model

93

0 2 4 6 8 10 12

-20

0

20
jo

in
t 
a
n

g
le

 (
d
e

g
re

e
s
)

0 2 4 6 8 10 12
0

100

200

300

ra
te

 (
s
p

ik
e
s
/s

) Ia r

II r

Ia l

II l

0 2 4 6 8 10 12

Time (s)

0

50

100

150

200

N
e
u
ro

n
 I

D

FIGURE 5.11: Afferent activity for the neck muscle pair simulated on
the iCub robotic platform. The head motion during the trial is on top,
computed rates for Ia and II activities are shown in the middle, and
the raster plot for the two muscle populations is on the bottom. To
improve visibility in the raster plot, only activity of 25% of the units

of the spindle populations is displayed.

5.6.1 Stretch reflex simulation

As a first validation step, a stretch reflex experiment similar to the one presented
in (Sreenivasa, Ayusawa, and Nakamura, 2016) was replicated. In (Sreenivasa, Ayu-
sawa, and Nakamura, 2016), a muscular model composed of biceps and triceps (with
2 and 3 fibre bundles respectively) was employed. The same model, enriched with
the brachialis synergistic muscle, was used in this case. The musculoskeletal simu-
lation was performed using the dynamic simulator sDims (Nakamura et al., 2005).
Figure 5.12 shows a 3D visualization of the muscle model considered.

The closed loop connections and synchronization between NEST and sDims was
performed using a custom framework, that executed a parallel simulation step of
5ms before any data exchange. While the same parameters for the α-motoneurons
and the same number of spindles were employed, the number of interneurons were
chosen by scaling those found in (Bashor, 1998). Population sizes for the brachialis
muscle were adapted from (Takeichi, 2015). A summary of the population sizes can
be found in Table 5.1.

TABLE 5.1: Population sizes for the spinal cord circuit for the biceps-
brachialis-triceps system. * indicates a shared population between

biceps and brachialis.

muscle α spindles II-inter Ia-inter
biceps 774 320 897 1821*

brachialis 681 256 789 1821*
triceps 1571 520 1821 1687
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FIGURE 5.12: The muscle system considered as represented by the
dynamic simulator sDims, with the corresponding skeletal structure.

Muscle forces for the musculoskeletal simulation are computed from the activa-
tions employing a Hill-type muscle model that computes the total force as the sum
between active and passive elements (Sreenivasa, Ayusawa, and Nakamura, 2016;
Stroeve, 1999; Buchanan et al., 2004):

F(t) = Fmax

(
fv( ˙L(t)) fl(L(t))a(t) + fp(L(t))

)
(5.30)

where Fmax is the absolute maximum force of the muscle, L(t) and ˙L(t) are the
current muscle length and stretch speed and fv, fl , fp are the components propor-
tional to muscle stretch speed, length and passive elasticity, defined as

fv(L̇) =


0 if L̇ < Vmax
Vsh(Vmax+L̇)
Vsh(Vmax−L̇) if Vmax ≤ L̇ < 0
VshVshlVmax+Vml L̇

VshVshlVmax+L̇ if L̇ ≥ 0
(5.31)

fl(L) = e−
(

L−L0
Lcesh

)2

(5.32)

fp(L) =
e10
(

L
L0
−1
)

e5 (5.33)

where L0 is the muscle rest length and the others are constant parameters de-
scribed in (Stroeve, 1999). An example of the resultant force for an activation level
of 1 and Fmax = 1 can be seen in Figure 5.13.

In the experimental trial, a descending signal was given to all muscles so that
they reached an activation level of around 0.25. After 0.5 seconds, a stretch on the
biceps and brachialis muscles was simulated by artificially lengthening the muscle
for 100ms and shortening again for 100ms, as if it were hit by a stretch hammer used
in clinical trial. In Figure 5.14, by comparing the top row, where the reflex is disabled,
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FIGURE 5.13: Force generated by the Hill-type muscle model for a =
1, Fmax = 1.

with the middle row where is enabled, it can be observed that all reflexes are prop-
erly elicited. In particular, after 500ms, when the lengthening occurs, activity of the
muscle spindles of the biceps and brachialis increase. As a consequence, the stretch
reflex mechanism is activated and the firing rate of corresponding II-interneurons
and α-motoneurons rises. Moreover, activity of the α-motoneurons of the triceps
decrease due to the inhibitory polysynaptic pathway. If the same experiment is per-
formed while providing dynamic fusimotor drive to the muscle spindles, we can
observe that the response is a sharper reflex, that is with increased neural activity
but less duration (Figure 5.14, last row).

5.6.2 Control of a robotic platform

To explore the possibility of using this kind of biologically inspired networks for the
control of robotic platforms, the neuro-musculoskeletal described before was con-
nected to a simulated robotic platform. A model of the iCub humanoid robot for
the physical simulator Gazebo was modified in order to receive torque commands
instead of position ones for the elbow joint. Changing the physical model from hu-
man to robotic was almost seamless, as the spinal network was kept the same as
before, while the musculoskeletal system was just scaled to match the size of robot
links. The dynamic simulator sDims was then used, at each simulation step, to com-
pute the resulting torque at the elbow joint, given the current muscle forces. Such
torque was then given to the robot as a motor command. After the physical simula-
tion step, the elbow encoder values (angle, speed, acceleration) were given back to
the sDims model to compute the new muscle lengths, closing the loop (Figure 5.15).

As a test of how the spinal cord circuitry can affect the behaviour of the control, a
test in which a constant control signal was given to the α-motoneurons and a pertur-
bation was applied to the robot forearm was performed. In particular, a weight was
dropped on the forearm of the robot provoking a sudden change in the lengths and
stretch speeds of biceps and brachialis muscles, eliciting a stretch reflex response.
Results for this trials are shown in Figure 5.16, where it can be observed that, while
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FIGURE 5.14: Simulated stretch reflex with a human musculoskeletal
model. In the raster plots, only 10% of the whole populations are

shown.

the controller without the reflex enabled is still able to recover from the perturba-
tion, when the reflex is enabled, there is a peak in the joint torque in response to the
perturbation that leads to a faster recovery.

5.6.3 Mouse musculoskeletal model

Finally, the spinal cord model was tested on a different musculoskeletal embod-
iment: a mouse forearm model, simulated with the OpenSim dynamic simulator
(Delp et al., 2007) in a local install of the Neurorobotics Platform (Figure 5.17). The
model includes three antagonistic pairs of muscles for three degrees of freedom.
Therefore, a spinal cord model for such a pair was created and replicated three times.
Parameters for the model were taken from (Moraud et al., 2016). For this trial there
was no need to manually compute the Hill model, as the simulated muscle actuators
already expected an input between 0 and 1. While no quantitative results have been
gathered yet, the first tests conducted confirm that it is possible to reach different
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FIGURE 5.15: Closed loop architecture with NEST, sDims and the
simulated robot.

FIGURE 5.16: Comparison between perturbation responses without
and with the stretch reflex enabled. The joint torque is displayed on

the left, while the joint angle is on the right.

limb configurations, with different joint trajectories, in terms of speeds and accel-
erations, depending on the descending signals, and that the control is stable. This
proves that the generality of the spinal cord model make it applicable for different
embodiments.

5.7 Conclusions

In this chapter, a comprehensive model of spinal cord was developed and integrated
in closed loop simulations with different embodiments, both musculoskeletric and
robotic, as a first step towards more complex biologically inspired controllers.

The spinal cord circuit make use of a neuromorphic muscle spindle model able
to produce biologically-realistic firing activity. The mechanism, that emulates the
dynamic of muscle spindles under stretch and γ-motoneuron activation, was imple-
mented on two different simulators: NEST, a commonly employed spiking neural
network simulator, and SpiNNaker, a neuromorphic hardware platform. The model
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FIGURE 5.17: The mouse musculoskeletal model in the Neurorobotics
Platform, controlled through the spinal cord model.

was obtained by modifying an already existing muscle spindle model (Mileusnic et
al., 2006) in order to take perform spike integration to compute the fusimotor drives
and to simplify the computation.

Results show that the spinal circuitry is capable of delivering appropriate motor
commands to the agent, and that the spinal reflexes work properly. The model is
also highly configurable and can be easily adapted to different scenarios.

Preliminary tests confirm that it is in principle possible to have a stable control
with such a model, by giving appropriate descending inputs to α and γ-motoneurons.
Therefore, the research should proceed into developing higher-level controllers that
mimic functionalities of the sensory-motor cortex.

Finally, it has been shown that this model of control can be employed, with-
out much additional effort, on robot platforms. This opens the possibility of creat-
ing neuro-controllers that can be tuned on human musculoskeletal recordings and
ported with just a few adjustments to robotic platforms. This porting should be in
principle seamless on robots with muscle-like actuation mechanisms, and can be
greatly beneficial, as no effectively proven methods for controlling such robots exist
yet. However, the feasibility of this approach must be proved first on real robotic
platforms in real-time scenarios.
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Chapter 6

Concluding remarks

This thesis presented some advancements in the field of humanoid robotics and in
particular to the area of brain-inspired control. Motivated by the inability of state-
of-the-art robots to perform realistic tasks in unstructured scenarios due to their lack
of adaptability, this work make some steps towards overcoming these limitation.
By employing neuro-controllers with artificial neural networks models able to ex-
ploit prediction to automatically adapt the behaviour of the robot were developed.
Moreover, some foundational work for the integration of more sophisticated spiking
neural networks was laid out.

6.1 Summary of the contributions

The major contributions can be summarized as follows:

• An adaptive visual pursuit model (Chapter 2):
A novel smooth pursuit controller was developed and implemented. The
model is able to combine sensory and predictive information through a switch-
ing mechanism to achieve zero lag tracking when the target motion is pre-
dictable while automatically adapting to changes in the target dynamics. The
switching mechanisms enables the system to follow the target even when the
trajectory is not predictable, with some delay. The controller was tested both
in simulation and on a physical robotic platform.

• A complete gaze stabilization system (Chapter 3):
By integrating different reflexive behaviours, a comprehensive gaze stabiliza-
tion model was developed and implemented. The system includes the vestibu-
locollic reflex, the vestibulo-ocular reflex and the opto-kinetic reflex, and is able
to move both eye and head joints in coordination, with the aim of better stabi-
lizing the gaze. Every reflex make use of sensory-motor anticipation through
cerebellar internal models and the system is able to automatically adapt to
different disturbance dynamics without significantly changing the control pa-
rameters. The controller is also capable of offline learning. The system was
tested in simulation and on physical robots: with a oscillating platform pro-
viding periodic disturbances and during biped locomotion.

• A syncing mechanism between neural and robotic simulations (Chapter 4):
As a contribution to the development of the Neurorobotics Platform of the
Human Brain Project, the synchronization mechanism between the physical
and neural simulations was designed and implemented, as well as the proper
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interfaces towards the robotic middleware. This contributed to the public re-
lease of this piece of software that grants neuroscientist and roboticists work-
ing with spiking neural networks and robotic systems an integrated environ-
ment where to test their models. Furthermore, preliminary validation of the
system through simple yet complete neuro-controllers was provided.

• A comprehensive spinal cord network (Chapter 5):
As a step towards a generic intermediate level between robotic systems and
detailed brain simulations, a fairly complete spinal cord model was developed.
The model includes type Ia and II sensory afferents from muscle spindles, α-
motoneuron pools, a model of muscle twitches integration and the synaptic
connections enabling mono and polysynaptic reflexes. The model was tested
with both robotic and musculoskeletal embodiments.

6.2 Perspectives

To conclude this thesis, future research steps and possible directions to follow are
discussed.

One short term results could be the integration of the smooth pursuit model with
the gaze stabilization system, to achieve a more complete and coordinated control of
the gaze. Wile this could be seen as trivial at a first glance, it would actually mean
the development of an integration mechanism capable of coordinating the two that
employs a set of inhibitory signals suppressing the stabilization reflexes during vol-
untary pursuit movements. Thus, this will require embedding more cognitive mech-
anisms in the system. An even more complex system could be created by integrating
more eye movements such as saccades.

A more challenging step would be to develop more biologically realistic mod-
els of pursuit and stabilization using spiking neural networks. This would require
translation mechanism such as the muscle spindle and muscle activation models de-
scribed in Chapter 5 also for the vestibular system and detailed models of involved
brain areas, some of which already exists (i.e. cerebellar microcircuit). The out-
come of this work could be a more realistic system that mimics human behaviour
just by means of the properties of the subsystems that constitute it and not because
some adjustments were added to reproduce the observed behaviour. For instance,
in a biomimetic gaze stabilization system, the fact that the vestibulocollic reflex is
much slower than the vestibulo-ocular reflex, should be intrinsically modelled by
the lower number of synapse of the reflex arc in the second case, without the need
to artificially add delays to reproduce the observed behaviour.

Another challenging objective would be to give meaningful inputs to the spinal
cord model via a spiking neural network implementing sensory motor maps of the
cerebral cortex relative to arm coordination and control, in order to perform tasks
such as reaching and grasping. This would involve at least receiving and integrating
proprioceptive and exteroceptive sensory informations in a model of the somatosen-
sory cortex and a model of the motor cortex for the movement generation and exe-
cution. Such a system could automatically provide human-like movement execution
and, more importantly, would be directly usable on non-conventional robotic plat-
forms such as those with tendon-driven or muscle-like actuation mechanisms. The
architecture could then be incrementally improved with cerebellar model for smooth
and well timed movement execution as well as basal ganglia models for action se-
lection.
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A different research direction that is already ongoing as part of the Human Brain
Project is to employ models such as the retina simulator presented in Chapter 4 or
the spinal cord not to implement neuro-controllers, but to reproduce neuroscientific
experiments. In particular, the spinal cord model will be employed to simulate a
stroke rehabilitation experiment on mice in conjunction with a data driven recon-
struction of the whole mouse brain, in the Neurorobotics Platform. This should
provide a more robust assessment of the validity of the model. If successful, repro-
ducing real experiments in simulated environments could be disruptive and greatly
fasten neuroscientific research.
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