
Doctoral Dissertation
Doctoral Program in Electrical, Electronics and Communications Engineering

(36th cycle)

Accelerating Quantized DNNs
with Dedicated Hardware
Accelerators and RISC-V

Processors Using
Precision-Scalable Multipliers

Luca Urbinati
* * * * *

Supervisors
Prof. Casu, Mario R.

Prof. Lavagno, Luciano

Politecnico di Torino
July 1st, 2024

This thesis is licensed under a Creative Commons License, Attribution - Noncommercial-
NoDerivative Works 4.0 International: see www.creativecommons.org. The text
may be reproduced for non-commercial purposes, provided that credit is given to
the original author.

I hereby declare that, the contents and organisation of this dissertation constitute
my own original work and does not compromise in any way the rights of third
parties, including those relating to the security of personal data.

. .
Luca Urbinati

Turin, July 1st, 2024

www.creativecommons.org

Summary

Mixed-Precision Quantization (MPQ) and Transprecision Computing (TC) rep-
resent two valuable techniques used to optimize Deep Neural Networks (DNNs)
inference. They aim at minimizing the number of activation and weight bits for
each DNN layer during training, and dynamically adjusting the numerical preci-
sion during runtime, respectively. Their goal is to find an optimal balance between
accuracy, latency, and energy consumption. Implementing MPQ and TC in prac-
tice necessitates the use of Precision-Scalable (PS) and reconfigurable hardware.
This aspect constitutes the primary topic of this thesis. Given that Deep Learn-
ing (DL) algorithms essentially involve scalar multiplications and dot products for
executing convolutions and matrix multiplications, our attention is on PS multi-
pliers. Specifically, we focus on two main categories of PS multiplier architectures,
Sum-Apart (SA) and Sum-Together (ST), and we integrate them into the Multiply-
and-Accumulate (MAC) units of DNN accelerators and low-power extreme-edge
RISC-V processors. In these multipliers, N multiplications are computed in paral-
lel in a Single Instruction Multiple Data (SIMD) fashion, with operands on 16/N
bits, where N = 1, 2, 4. While SA multipliers keep the results separate from each
other, ST multipliers accumulate the results of low-precision multiplication inter-
nally, eliminating the need for an external adder. Consequently, they enable support
for MPQ and TC and, at the same time, accelerate MAC operations by a factor of
up to N compared to conventional full-precision 16-bit multipliers.

Our study provides a comprehensive comparison of the main ST multipliers in
the literature. We begin with an overview of State-of-the-Art (SoA) ST multiplier
architectures. Next, we introduce three new designs: one optimizing the critical
path of a Baugh-Wooley (BW) ST multiplier, another derived from High-Level
Synthesis (HLS), and the third based the Booth architecture. We evaluate their
performance, power, and area (PPA) characteristics across a wide clock frequency
range, after normalizing all the architectures to support 16, 8, and 4 bits of preci-
sion. The key finding reveals no single winner that satisfies all PPA scenarios, but
rather a set of optimal ST multipliers depending on specific PPA constraints.

Our research also contributes to the advancement of ST-based DNN hard-
ware accelerators by proposing implementations for 2D-Convolution (2D-Conv),
Depth-wise Convolution (DW-Conv), and Fully-Connected (FC) layers. These

3

Application-Specific Integrated Circuit (ASIC) are PS and can be reconfigured at
runtime to support operands at 16-, 8-, and 4-bit. We explain their working prin-
ciples and architectures, and illustrate the design flow. Through extensive HLS-
driven design space exploration (DSE), we analyze trade-offs between latency, area,
and power, exploring various hardware parameters to identify Pareto-optimal ac-
celerators. Furthermore, we demonstrate the benefits of our ST-based accelerators
over those equipped with fixed-precision 16-bit multipliers, i.e., standard accelera-
tors. The results of executing the four Machine Learning Performance (MLPerf)
Tiny networks quantized in mixed-precision (MP), using SoCs integrating ST-based
accelerators tailored to different PPA scenarios (i.e., low-area, low-power, and low-
latency), show: an average inference latency speedup, across the four models, of
1.46x, 1.33x, and 1.29x, respectively; a reduced average energy reduction in most
of the cases; and a marginal area overhead of 0.9%, 2.5%, and 8.0%, compared
to SoCs equipped with standard accelerators. In conclusion, our study offers a
complete analysis of ST-based accelerators within the context of SoCs, while high-
lighting future improvements to address identified inefficiencies.

Considering that SA and ST multipliers have typically been proposed separately
in the literature, in this study we introduce a novel class of PS multipliers named
Sum-Together/Apart Reconfigurable (STAR), capable of working in both SA and
ST modes within a single design. We develop four STAR multiplier architectures,
including designs based on established Divide-and-Conquer (D&C) and Sub-word
Parallel (SWP) families, as well as those based on three mutually exclusive dat-
apaths (3-way) and separate SA and ST multipliers with multiplexed outputs.
Comparative analysis in terms of PPA, conducted in a 28-nm technology, identifies
STAR SWP as optimal for low-power and low-area requirements, STAR 3-way as
the most suitable for high-performance scenarios, and STAR D&C as competitive
for mid-range PPA requirements. These results offer valuable insights for designers
aiming to implement efficient multipliers tailored to specific design targets.

Lastly, we integrate a STAR multiplier into the MAC unit of a low-power
extreme-edge RISC-V processor for the first time, enabling support for MP-quan-
tized DNNs. Specifically, we replace the default 16-bit multiplier inside the Multi-
plier/Divider unit of the Ibex processor with a 16-bit STAR SWP BW multiplier
and introduce new MAC instructions, including standard 32-bit MAC and 16/8/4-
bit MAC operations in ST/SA mode. The comparison between our modified Ibex
processor and the original one unveils an acceleration up to 5.8× in FC, 3.7× in 2D-
Conv, and 2.8× in DW-Conv quantized layers. Additionally, in a 28-nm technology
with target clock frequencies of 200 and 600 MHz, the area and power consumption
of the proposed solution are 0.015 and 0.017 mm2, and 1.5 and 4.3 mW, respectively,
with a limited overhead within 10% and 3% with respect to the original Ibex. In
summary, with notable acceleration gains for typical quantized DNN layers and
minimal overhead in terms of area and power consumption, our STAR MAC unit
presents a viable option for efficient DL inference in resource-constrained devices.

4

Acknowledgements

Every doctoral journey is unique and unrepeatable. I am grateful for what
I have experienced in my path, despite its ups and downs, as it has allowed me
to delve into one of the most important fields of our time: electronics applied to
artificial intelligence. In my own small way, I have been able to contribute to
the advancement of human knowledge. In this regard, I express my gratitude to
my supervisor for guiding my research direction, assisting in planning activities
and meeting deadlines, enhancing research outcomes, and traveling to national and
international conferences to present our work. Above all, I am thankful for his belief
in me when he proposed me to pursue a doctoral degree. I also extend my thanks
to all the students I had the pleasure of supervising, for their valuable contributions
to my research field through their experimental theses. I especially want to express
my gratitude to my friends and colleagues Bernardita Štitić and Edward Manca.
Furthermore, I am grateful that this journey has shaped me not only as a researcher
but also as a person, allowing me to live some of the most beautiful years of my
life with serenity and to seek the path to my success. Now, I am ready to embrace
new adventures, both professional and personal, with greater self-awareness and a
clearer vision of the person I aspire to become.

6

To everyone who has
been part of my PhD
journey

Contents

List of Tables 10

List of Figures 12

1 Introduction 15
1.1 Motivations . 15
1.2 Thesis Contributions and Organization 17

2 Related Work 21
2.1 Precision-Scalable Multipliers and MAC Units 21
2.2 Precision-Scalable DNN Hardware Accelerators 23
2.3 RISC-V Processors with Precision-Scalable Hardware Support . . . 25

3 Precision-Scalable Multipliers: Sum-Together (ST) Multipliers 29
3.1 ST Multipliers . 29

3.1.1 SoA ST multipliers . 31
3.1.2 Booth ST: a radix-4 Booth ST multiplier 35
3.1.3 BW-ADD: a Baugh-Wooley ST multiplier with an improved

final adder . 38
3.1.4 HLS ST: an ST multiplier derived from HLS 39

3.2 Experimental Results . 40
3.2.1 PPA Comparison of ST Multipliers 40

4 High-Level Design of ST-Based DNN Hardware Accelerators 43
4.1 Background . 43

4.1.1 Deep Neural Networks’ Quantization 43
4.1.2 MLPerf Tiny Benchmark . 46

4.2 ST-based Hardware Accelerators . 48
4.2.1 Working Principle . 48
4.2.2 Accelerators Architecture . 50

4.3 Accelerators Design Flow . 62
4.3.1 MP Quantization and Fine Tuning 64
4.3.2 Minimization of UIQ Variables Bitwidth 69

8

4.3.3 Generation of hardware accelerators 71
4.4 Experimental Results . 72

4.4.1 DSE of ST-based Accelerators 72
4.4.2 Performance on MP-quantized MLPerf Tiny Models 78

5 Precision-Scalable Multipliers: Sum-Together/Apart Reconfigurable
(STAR) Multipliers 83
5.1 STAR Architectures . 84
5.2 STAR Sub-word Parallel Baugh-Wooley Design 86
5.3 Experimental Results . 91

5.3.1 Power, Performance and Area Comparison of STAR Multipliers 91

6 Accelerating Quantized DNN Layers on RISC-V with a STAR
MAC Unit 95
6.1 Ibex: The Baseline RISC-V Processor 95
6.2 The Fast MULT/DIV unit of the small Ibex 97
6.3 The novel STAR MAC unit integrated in the small Ibex 98

6.3.1 STAR BW Multiplier . 100
6.3.2 STAR MAC unit . 103

6.4 Experimental Results . 109
6.4.1 Implementation Results . 109
6.4.2 Performance on Quantized DNN layers 109

7 Conclusion and Future Work 113
7.1 Conclusion . 113
7.2 Future Work . 116

A Integer-only DNN kernels for 2D- and DW-Conv 119

B Mixed-precision results of MLPerf Tiny models 123

C Published Papers and Awards 129

Acronyms 133

Bibliography 135

9

List of Tables

3.1 Supported precision configurations and operations of the reference
ST multiplier of Fig. 3.1. The last three configurations correspond
to dot-product operations at low precision. 30

4.1 Description of accelerators’ parameters related to the tiles (Part I and
Part II) and accelerators’ internal buffers sizes (Part III). The values
of the parameters explored during the DSE of Sec. 4.4.1, denoted by
the DSE entry, are listed in Table 4.2. 52

4.2 Hardware configuration knobs explored in the DSE of Sec. 4.4.1, in-
cluding maximum tiles size, HLS directives, and implementation con-
straints. 53

4.3 Performance of MLPerf Tiny models (column 1) on the correspond-
ing Perf test sets (Sec. 4.1.2), using AUC for FC-AutoEncoder and
accuracy for the other three models, for their FP (column 3), MP
(column 4) and MP with optimal C/C++ bitwidths (column 5) ver-
sions. 68

4.4 Minimum bitwidths (row 2) of the C/C++ variables (row 1) resulting
from the ablation study. The notation follows the format <integer
bits>.<fractional bits>. 69

4.5 For loops of the high-level C/C++ descriptions Lsts. 4.1–4.2 for
which we disable pipelining in order to allow Catapult HLS to find
a schedulable design. We use the loop index as a reference to the loop. 73

4.6 Latency speedup and energy reduction of the four MP-quantized
MLPerf Tiny models executed using accelerators that satisfy differ-
ent PPA constraints in low-area, low-power, or low-latency. We use
the harmonic mean for the mean of the speedups and the arithmetic
mean for the mean of the energies. 80

5.1 Operating modes of STAR. 85
6.1 New MAC instructions and number of required clock cycles. 99
6.2 Logic synthesis results of Orig., Orig. + MAC and STAR-based. . . 109
6.3 Average speedup (i.e., ratio between clock cycles) of STAR-based vs

Orig. (column 2) and of STAR-based vs Orig. + MAC (column 3),
for three DNN layers for different features and weights bitwidths. . 111

10

B.1 MP-quantized model of MobileNetV1Tiny (using QKeras’ syntax
and with the new QActivation layer implementing affine uniform
quantization). 123

B.1 MP-quantized model of MobileNetV1Tiny (using QKeras’ syntax
and with the new QActivation layer implementing affine uniform
quantization) (continued). 124

B.1 MP-quantized model of MobileNetV1Tiny (using QKeras’ syntax
and with the new QActivation layer implementing affine uniform
quantization) (continued). 125

B.2 MP-quantized model of FC-AutoEncoder (using QKeras’ syntax and
with the new QActivation layer implementing affine uniform quan-
tization). 125

B.3 MP-quantized model of ResNetV1Tiny (using QKeras’ syntax and
with the new QActivation layer implementing affine uniform quan-
tization). L marks the left branches, R the right ones. 126

B.4 MP-quantized model of DS-CNN (using QKeras’ syntax and with
the new QActivation layer implementing affine uniform quantization).127

11

List of Figures

1.1 Mixed-Precision Quantization (MPQ) (a) and Transprecision Com-
puting (TC) paradigm (b). Images taken from [18] and [10], respec-
tively. 16

1.2 Computing schema of a 4-bit SA multiplier (first row) and a 4-bit
ST multiplier (second row). Images derived from [25]. 16

3.1 Reference ST multiplier. The 16-bit inputs (A and B) are partitioned
in 4-bit chunks to enable multiple operations, as defined by the 3-bit
configuration input (CONFIG) and shown in Table 3.1. The X/·
symbol indicates that the multiplier is capable of multiplication and
dot-product operations, depending on the configuration. Image taken
from [28]. 30

3.2 Our version of BW ST [25]: architecture overview (left), PPM re-
configuration (right). Image taken from [28]. 31

3.3 Our version of ST multiplier [41]: 16-bit high-precision multiplier
(left), 8-bit and 4-bit low-precision dot-product units (middle, right).
Image taken from [28]. 32

3.4 Our version of D&C ST [49]: four FUs with four 4-bit BitBricks
each, interconnected by shift-and-add logics. 33

3.5 (a) 16-bit, (b) 8-bit, and (c) 4-bit operating modes of our version of
[49]. Images modified from [33]. 34

3.6 Our version of ST multiplier [48]: four 8-bit Booth multipliers inter-
connected by muxes ending with an adder tree. Image taken from
[28]. 35

3.7 Radix-4 Booth ST (as in [26, 28]): reconfiguration logic (blue), 16-bit
Booth multiplier (white and gray). Image taken from [28]. 36

3.8 Alignment of PPi partial products for CONFIG 16×16/16×8 (a),
8×8/8×4 (b) and 4×4 (c). Images taken from [26]. 37

3.9 HLS ST derived from HLS (as in [28]): four multipliers and three
adders interconnected by a network of muxes and concatenations.
Image taken from [28]. 39

3.10 DSE of the SoA and newly proposed ST multipliers. Image taken
from [28]. 41

12

4.1 Working principle of our ST-based DNN accelerators: 2D-Convolution
(2D-Conv), Depth-wise Convolution (DW-Conv) and Fully-Connected
(FC). Image modified from [28]. 49

4.2 General architecture of the ST-based accelerators (bottom right),
HLS flow (bottom left), and pseudo-code of the high-level C/C++
description (top) that produces the general architecture. Image
taken from [28]. 51

4.3 Memory addressing and concatenating logic acting on the four 4-
bit memory banks of the internal input buffer (IBUF_A/B/C/D)
of DW-Conv, already filled by an external DMA. Grey banks are
unused in the corresponding configuration. Image derived from [40]. 61

4.4 Accelerators design flow. Image taken from [28]. 63
4.5 AutoQKeras search results. Image taken from [23]. 65
4.5 AutoQKeras search results. Image taken from [23]. 66
4.5 AutoQKeras search results. Image taken from [23]. 66
4.5 AutoQKeras search results. Image taken from [23]. 67
4.6 Results of DSE in Latency vs Area (LA). Points with black and red

labels are Pareto points in LA and Latency vs Power, respectively.
Image taken from [28]. 74

4.7 Results of DSE in Latency vs Power (LP). Points with black and
red labels are Pareto points in Latency vs Area and LP, respectively.
Image taken from [28]. 75

4.8 Example of a complete DSE for 2D-Conv. Image taken from [28]. . 76
5.1 STAR-enabled reconfigurable MAC for 2D/DW Convolution. Image

from [27]. 84
5.2 The proposed STAR (a) Naive and (b) SWP (BW) architectures.

Images taken from [27]. 86
5.3 The proposed STAR 3-way architecture. Image taken from [27]. . . 87
5.4 The proposed STAR D&C architecture. Image taken from [27]. . . . 88
5.5 STAR SWP (BW) operating modes. Partial product matrix (top

square) and output (bottom rectangle). Right shift for ST modes
only (d)-(e). Images taken from [27]. 88

13

5.6 STAR SWP (BW): PPM with two 8-bit RCAs (top), PPM blocks
(bottom), carry propagation “stopper” (bottom right). Each block
receives specific binary values (marked with letters from a to i in
the block itself) in P and I: a single letter represents logic values
for P , while two letters for I and P , respectively (e.g., c/d means
I = c, P = d). White and grey blocks, similar to a standard BW,
have an extra AND gate to control the propagation of PPs. Red
blocks guarantee the PP inversion and, together with blue and green
ones, the generation of logic 1. The “stoppers” (marked with “X”)
halt the carry propagation of the low-precision results in SA mode,
based on the binary values m and d received in M . All binary values
depend on CONFIG. Image from [27]. 93

5.7 PPA comparison of STAR architectures. Image taken from [27]. . . 94
6.1 The small version of the Ibex core: two-stage pipeline, low-power,

RV32IMC RISC-V ISA. Image taken from [54]. 96
6.2 Overview of the original Fast MULT/DIV unit of the Ibex core.

Image taken from [117]. 97
6.3 PPM of the STAR BW multiplier (a), three versions of PPM blocks

(b-d), and carry propagation blocking strategy (e). Images taken
from [31]. 101

6.4 The five operating modes of the STAR BW multiplier, where the
top square of each configuration is the BW PPM and the bottom
rectangle is the multiplier’s output. Images taken from [31]. 102

6.5 The STAR MAC unit implemented in the Ibex core. The STAR BW
Multiplier is the one reported in Fig. 6.3. Image taken from [31]. . . 103

6.6 Schematics describing: (a) the input multiplexers (of Fig. 6.5) and
(b) the ALU REG UPDATE block. Images taken from [31]. 104

6.7 The operations performed by STAR MAC at each ICC for (a) MAC,
(b) MACH, MACHU, and MACHSU, (c) MACyST, (d) MACySA,
and (e) MACySAH instructions (y ∈ {4,8,16}). 105

6.7 The operations performed by STAR MAC at each ICC for (a) MAC,
(b) MACH, MACHU, and MACHSU, (c) MACyST, (d) MACySA,
and (e) MACySAH instructions (y ∈ {4,8,16}). 106

6.8 Schematics of: (a) MAC REG UPDATE and (b) C GEN blocks.
Images taken from [31]. 108

6.9 Two examples of STAR MAC used in 2D-Conv and DW-Conv layers:
MAC16{ST/SA} in the upper part, MAC8{ST/SA} in the lower
part. Image taken from [31]. 110

14

Chapter 1

Introduction

1.1 Motivations
In recent years, Deep Learning (DL) at the edge has gained significant momen-

tum due to the promising prospect of deploying intelligent systems on resource-
constrained devices [1, 2]. In this context, quantization emerged as a pivotal tech-
nique for reducing memory footprint and bandwidth, saving energy, and performing
faster Deep Neural Networks (DNNs) inference, by reducing the precision of the
numerical representation of weights and feature maps [1, 3].

Recently, there has been a surge of interest in academia and industry towards
Mixed-Precision Quantization (MPQ) [4]. By leveraging the distinct sensitivities to
quantization exhibited by each DNN layer [5, 6], MPQ searches for the minimum
number of activation and weight bits for each layer to strike an optimal trade-off
between accuracy, latency, and energy consumption [7–9]. Strictly related to MPQ,
there is also the so-called Transprecision Computing (TC) paradigm, which aims
at reconfiguring the numerical format (precision) and the accuracy of computation
at run time to boost energy efficiency [10].

The implementation of MPQ and TC requires solving two problems. On one
hand, the number of possible activation-weight bitwidth combinations for imple-
menting MPQ grows exponentially in the number of layers and bitwidth precision
considered, resulting in a huge search space [11]. Even though there are already sev-
eral solutions addressing this problem [9, 11–19], and new methodologies that try to
solve loss and gradient problems when training networks quantized at low-precision
[2, 20–22], this is still an open research problem since the current methods are ei-
ther slow and computationally demanding [11], or relatively faster but sub-optimal
[14]. On the other hand, since the optimal combination of bits for weights and ac-
tivations may vary across applications and even within the same application across
different phases, such as DNNs quantized in mixed-precision (MP) [23], the im-
plementation of MPQ and TC requires Precision-Scalable (PS) and reconfigurable
hardware. Moreover, since the operations at the core of DL algorithms, such as

15

Introduction

(a) MPQ. (b) TC.

Figure 1.1: Mixed-Precision Quantization (MPQ) (a) and Transprecision Computing
(TC) paradigm (b). Images taken from [18] and [10], respectively.

convolutions and matrix multiplications, are essentially scalar multiplications and
dot products, recent research efforts have focused on developing PS multipliers
[24–28], Precision-Scalable Multiply-and-Accumulate (PSMAC) units [25, 29–31],
specialized DNN accelerators [24, 25, 28, 29, 32–40], and microprocessors (MCUs)
[31, 41–45], tailored to quantized Machine Learning (ML) workloads.

This second problem is the one addressed in this thesis. In particular, we focus
on a) two of the main categories of PS multiplier architectures, Sum-Apart (SA)
(also known as Sum-Separate [25]) and Sum-Together (ST); and b) their integration
within the PSMAC units of DNN accelerators and low-power extreme-edge RISC-
V processors. Bit-serial architectures, like those proposed in [8, 36, 45], represent
another interesting active area of research [29]; however, they will not be discussed.

Sum-Apart
(SA)

Multiplier

Sum-Together
(ST)

Multiplier

High-precision operands Low-precision operands

 Reconfiguration

 Reconfiguration

Figure 1.2: Computing schema of a 4-bit SA multiplier (first row) and a 4-bit ST multi-
plier (second row). Images derived from [25].

16

1.2 – Thesis Contributions and Organization

Now, we offer a concise overview of the SA and ST multiplier architectures [25].
Fig. 1.2 shows the computing schema of a 4-bit SA multiplier (first row) and a 4-bit
ST multiplier (second row). Contrary to a standard multiplier, which merely mul-
tiplies the two high-precision operands together, SA and ST multipliers can also be
reconfigured to split the two high-precision inputs into sub-words, for computing N
low-precision multiplications in parallel between the pairs of sub-words having the
same color. In other words, SA and ST multipliers behave like standard multipli-
ers, when processing high-precision operands (“High-precision operands” column
in Fig. 1.2), or like sub-word parallel multipliers, when processing low-precision
operands (“Low-precision operands” column in Fig. 1.2).ST multipliers perform the
product of the two red and two blue sub-words in parallel and then,internally, accu-
mulate the results of these low-precision multiplications within the multiplier itself,
thereby eliminating the need for an external adder, but requiring a right shift oper-
ation to align the final result to the least-significant bit (LSB) position.Conversely,
SA multipliers keep these low-precision multiplication results separate from each
other, i.e., apart, and may need an external adder in case the specific computation
requires the accumulation of these partial results. In general, they perform N = 1
multiplication when operating at full precision (e.g., on 16 bits); whereas they carry
out N = 2 or 4 parallel dot-products (for ST multipliers) or parallel multiplications
(for SA multipliers) using low-precision operands (e.g., on 8 or 4 bits) at reduced
precision. In other words, the bitwidth precision of the operands is inversely propor-
tional to N (e.g., 16/N bits). Since these multipliers work in a Single Instruction
Multiple Data (SIMD) fashion, they exhibit an higher throughput compared to
conventional full-precision multipliers, leading to faster DNN inference when used
in PSMAC units [29]. Moreover, ST multipliers contribute to further speeding up
Multiply-and-Accumulate (MAC) operations thanks to their sum together feature.
Indeed, a MAC unit that relies on the ST multiplier saves N−1 MAC additions
when compared to conventional MAC units that rely on conventional non-ST mul-
tipliers. As a result, the overall latency is reduced by a factor up to 1/N .

To sum up, due to their runtime reconfigurability and parallel processing, SA
and ST multipliers enable support for MPQ and TC and, at the same time, accel-
erate MAC operations. Therefore, they have recently found application in MAC
units [25, 27, 30, 37, 41, 46], hardware accelerators [24, 25, 28, 33, 35, 37, 39, 40,
46, 47] and microprocessors [31, 41–44].

1.2 Thesis Contributions and Organization
This thesis presents a collection of works in the field of PS multipliers and their

implementation within dedicated hardware accelerators and RISC-V processors for
quantized DNN acceleration. The contributions of this thesis encompass five topics,
each discussed in a dedicated chapter ranging from Chapter 3 to Chapter 6, whereas

17

Introduction

Chapter 2 covers the related work and Chapter 7 the conclusion and future work.

• Chapter 3. For the first time, our study undertakes a comprehensive com-
parison of all the main ST multipliers documented in the literature [25, 41,
48, 49]. Initially, we outline the architectures of the State-of-the-Art (SoA)
ST multipliers. Next, we evaluate their performance, power, and area (PPA)
characteristics [24, 28]. While our research shares similarities with the most
comprehensive work on PSMAC architectures [29], we expand upon that by
introducing five additional ST multipliers to the comparison, three of which
proposed by us [26, 28]. The first, named BW-ADD, is an enhanced version
of the Baugh-Wooley (BW) [50] ST multiplier of [25]. It utilizes a modified
final adder to shorten the critical path of the original Ripple Carry Adder
(RCA). The second design, which we call HLS ST, is derived from High-Level
Synthesis (HLS). Indeed, one of our objectives is to assess the capability of
HLS in generating a competitive ST multiplier in terms of PPA when com-
pared to manually-designed Register-Transfer Level (RTL) implementations.
Lastly, we present Booth ST, a novel ST multiplier [26] based on the Booth
architecture [50], the first of its kind in the SoA, which features a lightweight
reconfiguration logic. This comparison provides a broader perspective and
valuable insights into the landscape of ST-based architectures.

• Chapter 4. We enrich the collection of accelerators that rely on ST multipliers
by proposing three different implementations for the most common DNN lay-
ers: 2D-Convolution (2D-Conv), Depth-wise Convolution (DW-Conv), and
Fully-Connected (FC). Furthermore, we illustrate their working principle,
hardware architecture, and how to obtain them using HLS. Specifically, we
present a complete overview of our accelerators design flow, from C/C++
to final hardware implementation. Differently from the DNN accelerators
of the SoA, we also incorporate the hardware support for uniform integer
quantization (UIQ) [1, 51, 52] to quantize the output activations. Then, we
conduct an extensive design space exploration (DSE) of our ST-based ac-
celerators using HLS, examining the Latency vs Area and Power vs Area
trade-offs. We explore various hardware parameters, including MAC paral-
lelism, clock frequency, and the specific implementation type of ST multiplier
to be employed in the accelerators’ MAC units. The results of this DSE serve
System-on-Chip (SoC) designers to identify the best combination of hard-
ware configuration knobs for a given PPA target. Lastly, we showcase the
benefits achieved by our ST-based accelerators in terms of reduced latency
and energy consumption, by comparing them to accelerators equipped with
non-ST fixed-precision 16-bit multipliers, which we refer to as standard ac-
celerators and standard multipliers, respectively. To conduct this assessment,
we integrate the accelerators into SoCs under three distinct scenarios (low-
area, low-power, and low-latency). As a case study, we execute the models

18

1.2 – Thesis Contributions and Organization

of the MLPerf Tiny benchmark [53], pre-emptively quantized in MP using a
customized version of QKeras [14] for which we open-source the code [28].

• Chapter 5. We propose a new class of multipliers, named Sum-Together/Apart
Reconfigurable (STAR), which can be reconfigured to operate either in SA
mode or ST mode [27, 31]. This represents a novelty in the literature, as
SA and ST multipliers have traditionally been proposed as alternative imple-
mentations [25]. We believe that having PS multipliers supporting both SA
and ST modes in a single design could be advantageous in various scenarios,
such as within the MAC units of RISC-V cores [31] or PS hardware acceler-
ators [27]. In fact, they enable a more efficient utilization of the hardware
resources, which can be dynamically shared to perform different tasks. For
instance, we show how a STAR-based MAC unit could be used in a single
hardware accelerator for executing either 2D or Depth-wise (DW) Convo-
lutions depending on the operating mode of STAR. Moreover, we develop
four STAR multiplier architectures, each accommodating N = 1 full-precision
multiplication, or N = 2, 4 parallel multiplications in SA or ST mode, with
operands at 16/N bits [27]. Among these architectures, two are based on the
established Divide-and-Conquer (D&C) and Sub-word Parallel (SWP) fami-
lies [29]. In particular, for the SWP approach we consider a BW architecture
for which we provide a detailed explanation. The third solution, inspired
from [41], adopts a 3-way approach: it comprises three mutually exclusive
datapaths, each featuring one 16-bit, two 8-bit, and four 4-bit multipliers,
respectively. The fourth architecture consists of two separate multipliers, one
SA and one ST, with multiplexed outputs. Finally, we compare them in terms
of PPA by varying the clock frequency target over a wide range to identify the
best solutions for low-power and low-area, high-performance, and mid-range
PPA requirements.

• Chapter 6. We are the first to integrate STAR in the MAC unit of a low-
power extreme-edge RISC-V processor to support quantized neural networks
with variable reduced precision [31]. Specifically, we replace the default 16-bit
multiplier inside the MULT/DIV unit of the Ibex processor [54] with a 16-bit
STAR BW multiplier and add new MAC instructions which are not available
in the original MULT/DIV unit: standard 32-bit MAC and 16/8/4-bit MAC
operations in ST/SA mode. Next, we compare our new Ibex processor with
the original one in terms of area and estimated power. We also evaluate
the achieved performance speedup when running a set of quantized 2D-Conv,
DW-Conv and FC layers.

19

20

Chapter 2

Related Work

Some of the work described in this chapter was also previously published in [24,
27, 28, 31, 40].

2.1 Precision-Scalable Multipliers and MAC Units
In the literature, various proposals for the implementation of ST multipliers

can be found. Although the definition of ST mode was initially introduced with the
SWP BW ST multiplier by [25], earlier works had already proposed reconfigurable
multipliers capable of supporting both single high-precision multiplications and
parallel low-precision dot-products [37, 41, 42, 48, 49].

In their work [41, 42], the authors introduced SIMD extensions to the Instruction
Set Architecture (ISA) of a RISC-V processor, incorporating sub-word parallel
multipliers and low-precision dot-product units to accelerate quantized DNNs.

In [37], the authors proposed a general-purpose systolic array for DL, consisting
of reconfigurable Fusion Units (FUs) that utilize low-precision multipliers, called
BitBricks, by dynamically combining their outputs or maintaining them separate
through a network of combinational logic. A similar approach is used by [30, 32,
34], as well as their precursor [49]. On the other hand, [33] introduced a novel MAC
unit termed bit-split-and-combination (BSC) that addresses the issue of memory
bandwidth explosion [29] of the D&C MAC units of [37] when operating at the
lowest supported precision. This is achieved by gating some of the BitBricks as in
the SWP approach of [25].

In [48], the authors introduced a complex reconfigurable fixed-point multiplier,
originally intended for digital signal processing (DSP) applications, which has many
functionalities including ST multiplications.

The most comprehensive study on PSMACs is documented in [29]. It offers
a thorough review and benchmarking of the SoA PSMAC architectures and cat-
egorizes them into SWP [25, 35], D&C [37, 46], and bit-serial [36, 55, 56]. The

21

Related Work

first category includes architectures capable of operating in either full-precision
or reduced-precision mode by selectively gating their arithmetic logic cells. The
second consists of architectures composed of many low-precision multipliers (e.g.,
4-bit) that, when properly combined using shift-add logic, function as higher pre-
cision multipliers (e.g., 16-bit). The architectures of the third type process input
operands serially and perform add-shift operations repeatedly at every clock cycle,
resulting in a number of cycles for a complete multiplication operation that depends
on the bit-width of the operands [36, 56].

Moreover, in [55] the authors extended the concept of bit-serial to multi-bit
serial, meaning that the inputs of the PSMAC are fed to the multiplier in multi-bit
chunks rather than one-by-one. For example, for a 4-bit serial MAC the weights
are fed 4 bits at a time, requiring two clock cycles forn an 8-bit computation. As
per the taxonomy outlined in [29], it is important to note that ST architectures can
be either SWP or D&C.

In contrast, our study not only evaluates the ST multipliers analyzed in [29],
namely the 16-bit Baugh-Wooley ST multiplier from [25] and the FU from [37],
but also includes the SWP ST multipliers from [48] and the D&C ST multiplier
from [49]. Additionally, we examine the SWP dot-product unit integrated into
the RISC-V core described in [41], which functions as a full-fledged ST multiplier.
Moreover, we add to the comparison our three newly proposed ST multipliers (BW-
ADD [28], HLS ST [28], Booth ST [26]). Another distinction from [29] is our
methodology of evaluation: we compare ST multipliers as independent components
rather than as PSMAC unit subcomponents. Detailed analyses of the SoA ST
multiplier architectures and their PPA comparison are presented in Sec. 3.1 and
Sec. 3.2, respectively.

Concerning STAR multipliers, we are pioneers in introducing this concept,
with only a few related works available.

In their study presented in [25], the authors examined the individual advan-
tages of SA and ST approaches. They conducted a comparison between two FC
accelerators, one utilizing SA multipliers and the other employing ST multipliers,
both implemented with a BW architecture. The evaluation encompassed factors
such as energy consumption, speed, and area utilization. The results highlighted
the pros and cons of both approaches without determining a clear winner for every
objective.

A non-recent paper [48] introduced a fixed-point SWP DSP unit capable of
functioning in both SA and ST modes, although these terms did not exist yet at
the time. However, this unit is considerably more complex than our design, as it
comprises not only a single SWP and reconfigurable multiplier, but also incorpo-
rates four standard 16×16 Booth multipliers, three configurable 33-bit adders, and
two saturation logics. Moreover, it supports a range of precisions from 32 down to
8 bits, indicating its broader applicability to regular DSP tasks rather than being

22

2.2 – Precision-Scalable DNN Hardware Accelerators

specifically tailored for ML workloads which usually require 8 or less bits. Con-
sequently, we opt to exclude it from our analysis of STAR architectures (Chapter
5).

Building on the proven effectiveness and benefits of SA and ST multipliers
demonstrated in previous research [25], we describe the different types of STAR
architectures (Secs. 5.1–5.2) and compare them in terms of PPA (Sec. 5.3) [27]. In
comparison to [25], we also use a wider clock frequency range from 0.4 to 2.0 GHz.

2.2 Precision-Scalable DNN Hardware Accelera-
tors

A decade ago, during the initial era of DNN accelerators [57], inference pre-
dominantly relied on MAC units equipped with fixed-precision multipliers. For
example, renowned accelerators like DaDianNao [58], EIE [59], and Eyeriss [60]
employed 16-bit multipliers in their MAC units.

Nowadays, propelled by advanced training strategies [20], a new generation of
DNN accelerators has emerged, showcasing PS datapaths to support feature maps
and weights at reduced precision.

Here, we provide a concise overview of PS accelerators based exclusively on
SA or ST multipliers [25, 33, 35, 37, 46, 47].

The Envision accelerator, as described in [35], is a convolutional neural network
processor equipped with a MAC unit based on a SWP SA BW multiplier which
supports one 16-bit, two 8-bit, or four 4-bit multiplications.

In [25], the authors presented two engines for accelerating FC layers. The first
implementation employs SA MAC units, while the second one integrates ST MAC
units; both of them leverage SWP BW multipliers for their operations. Compared
to [35], these engines support also eight 2-bit multiplications.

In their paper [37], the authors introduced a systolic array D&C ST architecture
for, known as Bit Fusion, designed for general-purpose DL applications. This archi-
tecture is composed of FUs, each of which dynamically assembles and disassembles
2-bit BitBricks to accommodate various input/weight pair bit precisions, including
8/2, 4/4, 2/8, and 8/8 configurations.

DNPU, introduced by [46], is a RISC-based SoC with accelerators for convolu-
tion, dense and recurrent layers. The paper also proposed a D&C SA reconfigurable
multiplier based on look-up tables (LUTs), which is capable of supporting 16, 8,
and 4 bits.

[33, 47] introduced PS systolic accelerators inspired from [37] which are com-
posed of BSC MAC units (Sec. 2.1) supporting operands on 8, 4, and 2 bits.

Other PS accelerators are documented in the literature. For instance, [61] pro-
posed a pipelined PS SIMD MAC unit to accelerate mixed-precision General Matrix
Multiply (GEMM) operations using binary segmentation [62] applied to a 16-bit

23

Related Work

fixed-precision multiplier; the accelerator proposed by [38] targets primarily train-
ing and supports Floating-Point (FP) at 16- or 8-bit precision. However, they
fall beyond the scope of this thesis since we deal with combinational PS multi-
pliers, and inference accelerators supporting operands with fixed-point datatype
representation, respectively. Interested readers about DNN hardware accelerators
are encouraged to explore the following surveys and papers: [29] extensively com-
pares PSMAC units within PS accelerators, including bit-serial accelerators like [36,
56, 63]; the authors of [64, 65] designed serial and partially serial accelerators for
RISC-V based SoCs; [66, 67] offer insights into both academic and commercial ac-
celerators, whereas [68, 69] provide an annual overview of commercial accelerators
only. Furthermore, PS accelerators tailored for Field Programmable Gate Array
(FPGA) applications, like the one discussed in [70], are beyond the scope of this
thesis, as our focus is exclusively on Application-Specific Integrated Circuit (ASIC)
solutions.

Our research on PS DNN accelerators stands out from the SoA in several key
aspects:

• Firstly, to the best of our knowledge, we are pioneers in the design of 2D-Conv
and DW-Conv accelerators utilizing ST multipliers [39, 40].

• Additionally, inspired from previous research [25], we revisit the ST-based FC
accelerator, to offer a comprehensive suite of ST-based accelerators catering
to diverse DNN layers [24, 28].

• We provide detailed insights into the working principles (Sec. 4.2.1) and hard-
ware architecture (Sec. 4.2.2) of our ST-based accelerators. We also comment
on the design methodology employed in their realization (Sec. 4.3) [24, 28]. By
elucidating these aspects, we aim to contribute to the broader understanding
of ST accelerator architectures, offering implementation aspects, and ana-
lyzing advantages and disadvantages of using them to accelerate quantized
DNNs.

• An additional distinguishing feature of our work is the integration of support
for UIQ [51, 52] within our accelerators, a novel contribution not addressed
in any of the previously cited accelerators. In this regard, we propose an
accelerator design flow that includes the minimization of fixed-point variable
bitwidths required by UIQ formulas (Sec. 4.3.2).

• We leverage HLS techniques to derive our ST-based accelerators (Sec. 4.3.3), a
method not used by any of the previously cited ASIC accelerators that support
precision scalability. This strategic choice allows us to conduct rapid DSEs,
identifying optimal solutions in terms of latency, area, and power consumption
(Sec. 4.4.1).

24

2.3 – RISC-V Processors with Precision-Scalable Hardware Support

• Furthermore, we compare latency and energy consumption of ST-based accel-
erators when running MP-quantized DNNs [28] against standard accelerators
(Sec. 4.4.2). This comparative study represents a novel exploration within
the existing literature, shedding light on the advantages offered by ST-based
accelerators in real-world applications.

2.3 RISC-V Processors with Precision-Scalable
Hardware Support

General-purpose processors offer unmatched flexibility compared to ASIC or
FPGA-based accelerators for implementing DL algorithms. They are capable of ac-
commodating a wide range of DNNs, including those yet to emerge in the literature
[71]. However, their versatility comes with limitations, e.g., higher inference time,
due to their general-purpose ISA, limited computational and memory resources,
and constraint energy budget [72]. Additionally, many existing embedded MCUs
do not support sub-byte computation, i.e., SIMD instructions, which prevent them
to fully exploit the MPQ and TC paradigms [73, 74]. For example, to run a DNN
model quantized with 4-bit integers (INT4) on a standard MCU with commodity
hardware, such model is typically mapped to the nearest supported precision, such
as 8-bit integers (INT8). This means extending the quantized data to match the
supported data type and compute one data at a time, resulting in wasted time and
suboptimal computational efficiency. Even though packing multiple low-precision
operands in the same memory word may save some memory space, the intended
benefit in terms of computation time is not achieved [45]. Therefore, new processor
architectures supporting quantized ML workloads and TC on Internet-of-Things
(IoT) and sensor-node devices are needed.

The RISC-V is an open-source and royalty-free ISA that emerged as a robust
alternative to proprietary ISAs. Due to its modular and extensible design, and the
explicit support of domain-specific custom extensions, it became soon a reference for
both industrial and academic processors over the last decade [75]. RISC-V imple-
mentations range from simple and energy-efficient cores, e.g., [41], to those oriented
to High-Performance Computing (HPC), e.g., [76–78]. This thesis specifically fo-
cuses on low-power extreme-edge RISC-V processors, with a particular emphasis
on the Ibex core [54], for which we modify the internal multiplication unit to enable
PS support. A comprehensive explanation of our work, along with a summary of
the Ibex core, will be provided in Chapter 6.

Now, let us briefly summarize the main RISC-V processors that integrate novel
PS hardware resources along with dedicated low-precision arithmetic instructions.

Ri5cy [41] served as the initial inspiration for our research endeavors. It is an

25

Related Work

open-source 32-bit RISC-V core that implements the full RV32IMC ISA1. The core
features a multiplication unit comprising various components, including a standard
32-bit integer multiplier, a 32-bit fixed-point multiplier, and two SWP dot-product
units. These dot-product units are implemented with two 17-bit multipliers or four
9-bit multipliers, respectively, followed by a 32-bit adder that sums the interme-
diate products through a compression tree. They accept two 16-bit or four 8-bit
operands, respectively, packed into one 32-bit register, and an optional third input
register used for the accumulation. The dot-product units perform up to four mul-
tiplications with accumulations simultaneously in a single clock of latency. Unlike
our approach, Ri5cy is designed and optimized to operate in a multi-core cluster
environment, targeting high-performance DSP-oriented applications [79]. This is
evident from the numerous parallel low-precision multipliers within its multiplica-
tion unit. In contrast, our approach utilizes a low-power extreme-edge core [54]
(Secs. 6.1–6.2) modified to integrate a single PS STAR multiplier (Sec. 6.3) [31].
This multiplier can be reconfigured to perform multiple low-precision SWP multi-
plications, with or without accumulation. By leveraging the concept of hardware
re-utilization, our approach is tailored for small embedded devices.

In [42], the same authors of [41] improved the multiplication unit of Ri5cy by
adding the support for low-bitwidth SIMD arithmetic instructions at 4- and 2-bit
precision. They followed the same principle to their previous work: integrating an
additional set of multipliers and an adder tree for each new supported format. The
resulting core can execute 8 or 16 operations per cycle at 4- and 2-bit precision,
respectively. Although this enhancement incurs additional area overhead, it does
not affect the critical path of the design. Furthermore, they introduce all possible
permutations of asymmetric MP opereations (e.g., 16×8, 16×4, 16×2, 8×16, etc.),
along with a custom instruction that simultaneously executes the dot-product while
loading an operand for the next operation.

Alternative approaches to SWP for low-precision MAC units in RISC-V cores
include D&C [43, 44] and bit-serial [45].

In [43] the authors proposed a D&C MAC unit that works in SA mode and
aims to be integreated into a 32-bit microprocessor such as [41]. The unit handles
classical multiplications as well as MAC operations for operands in powers of 2
ranging from 2 to 32 bits. It leverages the D&C strategy using 256 independent
2-bit multipliers as BitBricks.

This recent work [44] presented a re-configurable tightly-coupled DNN co-processor,
seamlessly integrated into a Parallel Ultra-Low-Power (PULP) cluster2. Structured

1RV 32IMC stands for 32-bit base RISC-V instruction set (RV 32) (which is the base set
for a 32-bit processor that includes only simple operations, such as jump/branch management,
addition, interrupt callback, load/store, shift, logical, memory ordering), with integer (I) and
multiplication/division instructions (M).

2PULP is an open-source RISC-V computing platform meticulously engineered to prioritize

26

2.3 – RISC-V Processors with Precision-Scalable Hardware Support

as a systolic array consisting of sixteen PS processing elements (PEs), the proposed
co-processor performs inference using various integer fixed-point data types, ranging
from INT16 to INT2, and supports training with FP16 precision. Indeed, each PE
is capable of performing four/eight/sixteen parallel MAC operations on 8/4/2 bits,
respectively, or computing a single FP16/INT16 MAC. At the heart of each PE lies
a PS multiplier which comprises a 16-bit multiplier, utilized for both inference and
training, along with four 8-bit PS multiplier trees, solely employed for inference.
A tree is a full-fledged D&C multiplier like the one discussed in [49]. Training is
a distinguishing feature of this work compared to others, like [42], which instead
utilize the Arithmetic Logic Unit (ALU) instead of a custom FP multiplier. There
are also other solutions for training in low-precision on MCUs, e.g., [81, 82], but
this thesis focuses only on inference.

Regarding bit-serial approaches, in their research outlined in [45], the authors
introduced fine-grained PSMAC operations thanks to a bit-serial 16-bit multiplier
and a vector extension to the RISC-V ISA. Their design allows to vary weights
from 1 to 16 bits, while maintaining activations at a constant 16-bit precision.

While the D&C approach requires a larger and more intricate multiplier struc-
ture, resulting in suboptimal area utilization, and the serial approach inherently
compromises performance for finer bitwidth granularity, our research opts for a
balanced alternative: the SWP approach.

There are also SoCs integrating PS hardware accelerators and RISC-V proces-
sors in the same chip [61, 83–86]; however, we concentrate our efforts solely on
individual processors rather than more complex systems.

For interested readers, we provide references to some surveys covering the lat-
est research progress on RISC-V ISA extensions [87], efficient acceleration of DL
inference on resource-constrained edge devices [72], and the field of TinyML [88].

high energy efficiency. It comprises eight RISC-V cores, a heterogeneous cluster interconnect for
memory access, dataflow, and custom co-processors control [80].

27

28

Chapter 3

Precision-Scalable Multipliers:
Sum-Together (ST) Multipliers

Some of the work described in this chapter was also previously published in [24,
26–28].

3.1 ST Multipliers
The new ST multipliers that we introduce, as well as all the others that we

analyze in this manustript, have I/O signals and behave as the reference compo-
nent described in Fig. 3.1 and Table 3.1. Depending on the CONFIG configura-
tion signal: a) this multiplier can perform one 16×16/16×8 multiplication, or two
8×8/8×4 or four 4×4 dot-products in parallel, using the signed operands packed
in the 16-bit inputs A and B; b) a subset or the entire 32 bits of the multiplier’s
output P contain the operation result.

We focus on these precisions for the following reasons. In applications that
require utmost accuracy, a common choice is to use 16 bits to quantize activa-
tions and weights. Some examples are safety-critical applications, such as image
segmentation in foggy environments for autonomous driving [7]; others are image
processing applications that work with high-resolution satellite images, or high dy-
namic range (HDR) images and super-resolution [89]. 8 bits is the default precision
to quantize DNNs while avoiding performance degradation [89] and is therefore the
most commonly used. When smaller bitwidths for inputs and weights are needed,
quantization techniques targeting 4 bits already provide an acceptable tradeoff be-
tween model size reduction and retain performance for most applications [1, 90].
Instead, when dealing with extreme low-bit quantization (< 4 bits), existing meth-
ods incur a serious accuracy loss compared to the baseline, unless very extensive
tuning and hyperparameter search is performed. Hence, this is still an active line
of research [1]. In light of these motivations, we work with ST multipliers that

29

Precision-Scalable Multipliers: Sum-Together (ST) Multipliers

X •/

CONFIG

[15:12] [11:8] [7:4] [3:0]

32

[15:12] [11:8] [7:4] [3:0]

3

P

16

A

4 4 4 4

16

B

4 4 4 4

Figure 3.1: Reference ST multiplier. The 16-bit inputs (A and B) are partitioned in
4-bit chunks to enable multiple operations, as defined by the 3-bit configuration input
(CONFIG) and shown in Table 3.1. The X/· symbol indicates that the multiplier is
capable of multiplication and dot-product operations, depending on the configuration.
Image taken from [28].

Table 3.1: Supported precision configurations and operations of the reference ST multi-
plier of Fig. 3.1. The last three configurations correspond to dot-product operations at
low precision.

CONFIG ST multiplier’s output
16×16
(000b) P[31:0] = A[15:0]×B[15:0]

16×8
(100b) P[31:0] = A[15:0]×B[7:0]

8×8
(010b) P[16:0] = A[15:8]×B[7:0] + A[7:0]×B[15:8]

8×4
(011b) P[16:0] = A[15:8]×B[3:0] + A[7:0]×B[11:8]

4×4
(001b) P[9:0] = A[15:12]×B[3:0] + A[11:8]×B[7:4] + A[7:4]×B[11:8] + A[3:0]×B[15:12]

support operands with precision between 16 and 4 bits.
Regarding the asymmetric configurations (i.e., 16×8 and 8×4), we support them

because they enable efficient packing of lower-precision operands, such as DNN
weights, without compromising the precision of other operands, like DNN acti-
vations. Thus, they contribute to reducing the memory footprint of ML models.
These configurations are used in SoA ML accelerators and processors [29, 42], and
can also be found in commercial ML frameworks such as TensorFlow Lite Micro

30

3.1 – ST Multipliers

 A[15:0]

P[31:0]

right shift & ext

BW PPM

&

B[15:0] = 4x4 BW multiplier

•••

valid

7b 17b 8b

valid

10b 10b 12b

valid

16b 16b16b
••• ••••••

••• ••• •••

•••
•••

••• •••

valid valid

16x16 / 16x8 8x8 / 8x4 4x4

P[31:0]

P[31:0] P[31:0]

(a)

Figure 3.2: Our version of BW ST [25]: architecture overview (left), PPM reconfiguration
(right). Image taken from [28].

(TFLM)1.
In the following, we first describe the architectures of the SoA ST multipliers

as proposed in the literature and emphasize the differences between these and our
re-implemented versions. Indeed, since the original SoA ST multipliers support a
broad range of bitwidths for input and weights, we introduce minor modifications
to align their configurations with the reference ST mentioned in Table 3.1. This is
important to guarantee fair comparisons in all our experiments of Sec. 3.2. Lastly,
we present the three newly proposed ST multipliers.

3.1.1 SoA ST multipliers
The original SWP BW ST multiplier of [25] is composed of a reconfigurable

partial product matrix (PPM) and a final RCA [50]. The PPM can be reconfigured
to compute one 16×16 multiplications or 16/m dot-products at m = 8, 4, or 2 bit
precision in parallel. Our re-implementation of [25] (made with a structural RTL
description) is reported on the left side of Fig. 3.2. From top to bottom, it has
the same architecture of the original version. We also draw, for clarity, the output
concatenation block (&), which merges the least significant output bits coming from
the PPM with the most significant ones exiting from the final adder. However, in

1An example of a TFLite Micro kernel for 2D-convolution supporting asymmetric configura-
tions: https://github.com/tensorflow/tflite-micro/blob/main/tensorflow/lite/micro/
kernels/conv.cc. Accessed on: Jan 19, 2024.

31

https://github.com/tensorflow/tflite-micro/blob/main/tensorflow/lite/micro/kernels/conv.cc
https://github.com/tensorflow/tflite-micro/blob/main/tensorflow/lite/micro/kernels/conv.cc

Precision-Scalable Multipliers: Sum-Together (ST) Multipliers

A[15:0]

B[15:0]

A[15:8]

P[31:0]

A[7:4] A[3:0]

B[15:12]

B[11:8]

B[7:4]

B[3:0]

A[11:8]A[15:12]

B[7:0]

B[15:8]

A[7:0]

ext ext

16x16/16x8 8x8/8x4 4x4

Figure 3.3: Our version of ST multiplier [41]: 16-bit high-precision multiplier (left), 8-bit
and 4-bit low-precision dot-product units (middle, right). Image taken from [28].

our version we introduce the following modifications. First, we remove the 2-bit
support from the PPM, since we use precision between 4 and 16 bits as motivated
before. This can be seen from the precision of the main building block of the PPM,
which is a 4×4 BW multiplier. Second, in low-precision configurations, we right
shift the final output to the LSB position, sign-extending it to 32 bits (right shift &
ext block). On the right side of Fig. 3.2, we illustrate how the PPM is reconfigured
in the five operating modes of Table 3.1. In the 16×16 and 16×8 modes, all the
partial products (PPs) of the PPM contribute to the multiplier’s output P and the
result is represented on 32 bits, making valid—i.e., yellow in Fig. 3.2—the entire
result P . At lower precision, only the yellow PPs on the left-to-right diagonal
of the PPM remain active and behave like two 8×8 (8×8 / 8×4 in Fig. 3.2) or
four 4×4 (4×4 in Fig. 3.2) BW multipliers, respectively. These PPs produce the
valid (yellow) output bits of P , which are less than 32 in this case and require the
alignment to the LSB position. The remaining grey PPs are gated, using AND
gates [25], and generate the invalid (grey) output bits.

The multiplication units of Ri5cy [41] and [42] have been already discussed
in Sec. 2.3. In our work, we implement the high-precision fixed-point multiplier

32

3.1 – ST Multipliers

right shift & ext

<<4

<<4

A[7:4] A[3:0]

<<2
<<4 <<2

<<2
<<4 <<2

A[3:0]

0

A[3:0]

<<2
<<4 <<2

P[31:0]

A[11:8]

A[7:4]

A[3:0]

A[15:12] A[11:8]

B[15:12]

B[11:8]

A[7:4]

0

B[7:4]

B[3:0]

A[7:4]

B[3:0]

B[7:4]

Fusion Unit (FU)

<<8

4x4

4x4 others

others

0

16x16/
16x8others

A[15:12]

0

16x16/
16x8others

A[11:8]

0

A[11:8]

<<2
<<4 <<2

A[15:12]

A[15:12]

B[7:4]

0

4x4

4x4 others

others

B[11:8]

B[15:12] B[15:12]

B[11:8]

B[3:0]

B[15:12]

B[11:8]

B[7:4]

B[3:0]
= 4-bit BitBrick

Figure 3.4: Our version of D&C ST [49]: four FUs with four 4-bit BitBricks each, inter-
connected by shift-and-add logics.

and the two low-precision dot-product units of [41] as three mutually exclusive
datapaths in a single design, scaling their precision to 16, 8 and 4 bits, respectively.
Our re-implementation, illustrated in Fig. 3.3, uses a behavioral RTL description,
as the authors declared that it gives the synthesizer the maximum optimization
freedom [41].

The FU of Bit Fusion [37] dynamically composes and decomposes 2-bit multipli-
ers (called BitBricks) through a shift-and-add logic. It supports one 8×8, two 4×8,
four 4×4, four 2×8, eight 2×4, sixteen 2×2 input/weight multiplications in one
clock cycle. Several optimizations to the original work of [37] are proposed in [32]
and [30], which reduce complexity and reconfigurability overhead of the shift-and-
add logic at the expense of a lower number of supported input/weight precisions
(2x2, 4x4, 8x8). However, the ancestor of all these D&C architectures is the recon-
figurable and parallel inner-product processor of [49]. This uses larger BitBricks on
4 or 8 bits and a higher input precision. In fact, each of the two input operands

33

Precision-Scalable Multipliers: Sum-Together (ST) Multipliers

(a) (b) (c)

Figure 3.5: (a) 16-bit, (b) 8-bit, and (c) 4-bit operating modes of our version of [49].
Images modified from [33].

can accommodate one 64-bit, four 32-bit, sixteen 16-bit, or sixty-four 8-bit items.
It also maintains a fixed bitwidth for the two input operands, ensuring a constant
memory bandwidth across different configurations. This contrasts with the D&C
architectures in [30, 32, 37], which suffer from memory bandwidth explosion at re-
duced precision, as noted in [29]. Among these D&C ST multipliers we implement
the FU from [49] for a fair comparison with the other SoA ST multipliers on
an equal memory bandwidth basis, avoiding the problem of bandwidth explosion.
In particular, we re-implement it with 4-bit BitBricks to support 16, 8 and 4-bit
precision, as shown in Fig. 3.4: four FUs based on four 4-bit BitBricks each, inter-
connected by shift-and-add logic. We also right-shift its output to the LSB position
and sign-extend it to 32 bits in low-precision modes (right shift & ext block as in
[25]). Fig. 3.5 illustrates how our re-implementation of the D&C ST multiplier in-
spired from reference [49] is reconfigured in the main operating modes outlined in
Table 3.1. While at full-precision all the FUs are enabled and contribute to the
multiplier’s output (Fig. 3.5a), at low-precision the FUs and BitBricks outside the
left-to-right diagonal are progressively disabled/gated (Fig. 3.5b–c).

The reconfigurable fixed-point multiplier of [48] targets DSP applications
and consists of four 16-bit Booth multipliers (without final adder), a configurable
partial-products compression array and three configurable 33-bit adders. It sup-
ports symmetric (one 32×32, two 16×16 or four 8×8) and asymmetric (two 16×32)
signed/unsigned multiplication operations, and dot product/double dot product op-
erations (one or two 16×16 ± 16×16 with saturation, one or two 16×16 ± 16×16 + 16
without saturation, and one 8×8 + 8×8 + 8×8 + 8×8). In our version of [48], we
remove the extra logic that is not strictly necessary to implement the reference
ST multiplier behavior, such as the saturation logic or the subtraction in the dot-
products. Next, we change the way the dot product is computed for all precisions.
For example, in configuration 8×8 we swap the lower part with the upper part of

34

3.1 – ST Multipliers

= 8x8 Booth multiplier
 (without final adder)

B[7:0] B[3:0]

16x8
8x8

8x416x16
4x4

ext

A[7:0] A[3:0]

others 4x4

ext

A[15:12]

ext

16x8 4x416x16

ext

8x4

ext

B[15:12]

8x8

B[11:8]A[15:8]
B[15:8]

16x8 4x416x16
8x4

0B[15:8] B[7:4]

8x8
16x8 4x416x16

8x4

ext

0A[7:0] A[7:4]

8x8
16x8 4x416x16

0B[7:0] B[11:8]

8x8
16x8 4x416x16

ext

0A[15:8] A[11:8]

8x8

ext

32

{16'b1,
C0[15:0]}

C0[31:0] C1[31:0] C2[31:0] C3[31:0]

P0

32

{16'b0,
C0[31:16],

1'b0}

P1

4x4

others 16x16

others

A1 B1A0 B0 A2 B3 A4 B4

{7'b1,
D,

C1[15:0],
8'b0}

16x16
D

B1[7]

A1[7]

1

{16'b1,
C1[15:0]}

32

P2

others16x16

{7'b0,
C1[31:16],

8'b0}

{15'b0,
C1[31:16],

1'b0}

32

P3

others16x16

{8'b1,
C2[15:0],

8'b0}
{16'b1,

C2[15:0]}

32

P4

others 16x16

{7'b0,
C2[31:16],

8'b0}

{15'b0,
C2[31:16],

1'b0}

32

P5

others16x16

{C3[15:0],
16'b0}

{16'b1,
C3[15:0]}

32

P6

others16x16

{C3[30:16],
17'b0}

{15'b0,
C3[31:16],

1'b0}

32

P7

P[31:0]

8x48x4 others

 ADDER TREE

Figure 3.6: Our version of ST multiplier [48]: four 8-bit Booth multipliers interconnected
by muxes ending with an adder tree. Image taken from [28].

operand B: A[15:8]×B[15:8] ± aL[7:0]×bL[7:0] of[48] becomes A[15:8]×B[7:0] +
A[7:0]×B[15:8], as reported in Table 3.1. We also scale down maximum and mini-
mum precision to 16 and 4 bits, respectively. The resulting architecture, shown in
Fig. 3.6, features four 8-bit Booth multipliers connected by a network of multiplex-
ers ending with an adder tree.

At last, within all SoA ST multipliers that do not natively support the asym-
metric configurations 16×8 and 8×4 (i.e., [25, 41, 49]), we add a sign-extension logic
(not shown in Fig. 3.2–3.6 for better readability) that extends the lower precision
operand B to either 16 or 8 bits before the actual multiplication operation. For this
reason, zero-padding of the low-precision operands is not necessary in any configu-
ration, as these operands always fully utilize all the parallelism of the multipliers’
inputs A and B.

As a final note, we implement all of these SoA ST multipliers as signed.

3.1.2 Booth ST: a radix-4 Booth ST multiplier
We propose a novel ST multiplier with a Booth architecture [50] that supports

operands at 16-, 8-, and 4-bit precision as the reference ST multiplier in Table 3.1.
Fig. 3.7 illustrates Booth ST: it is composed of a lightweight reconfiguration logic
(drawn in blue) placed between the two input operands and a standard Radix-4
16-bit Booth multiplier (drawn in white and gray), featuring a Wallace’s reduction

35

Precision-Scalable Multipliers: Sum-Together (ST) Multipliers

A[15:0]

B[15:0]

<<1

PP0[16:0]

PP7[16:0]

PP6[16:0]

PP5[16:0]

PP4[16:0]

PP3[16:0]

PP2[16:0]

PP1[16:0]

PP0

PP1

PP2

PP3

PP4

PP5

PP6

PP7

EXT

X1[2:0] X2[2:0] X3[2:0] X4[2:0] X5[2:0] X6[2:0] X7[2:0]

RADIX-4

ENCODER
BOOTH

Y5[15:0]

Y4[15:0]

Y3[15:0]

Y2[15:0]

Y1[15:0]

Y0[15:0]

P[31:0]

P[31:0]

[4:2]

COMPRESSOR

TREE

&

FINAL

ADDER

&

RIGHT

SHIFT

&

X0[2:0]

888 8

S[7:0]

SELECTOR
BOOTH

3 3

16x16

4x4_bar

3 3 3 33 3

0

A[3]

A[2]

A[1]

A[4]

A[5] A[7]

A[6] A[8]

A[9] A[11]

A[10]

A[13]

A[12]

A[15]

A[14]A[0]

NEG[i]

DOUBLE[i]

SINGLE[i]

PPi[16:0]

{1’bE, Yi[15:0]}

1

0

Xi[1]

Xi[2]

SINGLE[i]

DOUBLE[i]

NEG[i]

Xi[0]

NEG[7:0]DOUBLE[7:0]SINGLE[7:0]

CONFIG[2]

CONFIG[1]

CONFIG[0]

11

10

01

00

11

10

01

00

{12’bE, B[3:0]}

{8’bE, B[7:0]}

{12’bE, B[3:0]}

B[15:0]

{8’bE, B[7:0]}

B[15:0]

{8’bE, B[7:0]}

{12’bE, B[3:0]}

{8’bE, B[7:0]}

{8’bE, B[7:4], 4’b0}

11

10

01{B[15:12], 12’b0}

{B[15:8], 8’b0}

{4’bE, B[11:8], 8’b0}

11

10

01

00

{4’bE, B[11:8], 8’b0}

{[B15:8], 8’b0}

{4’bE, B[11:8], 8’b0}

B[15:0]

{8’bE, B[7:0]}

B[15:0]

{8’bE, B[7:0]}

00

Y7[15:0]

Y6[15:0]

1

0

1

1

1

0

0

0

Figure 3.7: Radix-4 Booth ST (as in [26, 28]): reconfiguration logic (blue), 16-bit Booth
multiplier (white and gray). Image taken from [28].

tree with 4:2 compressors and a Carry Propagate Adder with Prefix Network [50].
The main difference with respect to the majority of SoA ST multipliers is that

our design does not require a dedicated adder to sum the low-precision products to-
gether, but it exploits the normal alignment of PPs within the multiplier structure.
In fact, as shown in Fig. 3.8 for configuration 16×16/16×8 (Fig. 3.8a), 8×8/8×4
(Fig. 3.8b), and 4×4 (Fig. 3.8c), the bits of the output P (yellow circles) are ob-
tained by vertically summing the full-colored circles representing the bits of the
eight PPs (PP0–PP7). These full-colored bits are the result of the products be-
tween input operands with the same color, whereas the half-colored bits are gated
by the reconfiguration logic.

36

3.1 – ST Multipliers

P = A[15:0] x B[15:0]

PP7

PP6

PP5

PP4

PP0

PP1

PP2

PP3

234567891113 1 010121415

A

B

P

(a)

PP3

234567891113 1 010121415

B

PP0

P

A

P = A[15:8] x B[7:0] + A[7:0] x B[15:8]

PP1

PP2

PP7

PP6

PP5

PP4

(b)

PP1

234567891113 1 010121415

P

B

A

P = A[15:12] x B[3:0] + A[11:8] x B[7:4] + A [7:4] x B[11:8] + A[3:0] x B[15:12]

PP0

PP7

PP6

PP5

PP4

PP3

PP2

(c)

Figure 3.8: Alignment of PPi partial products for CONFIG 16×16/16×8 (a), 8×8/8×4
(b) and 4×4 (c). Images taken from [26].

Through the configuration signal CONFIG, the reconfiguration logic controls:
1) How the bits of operand A are properly composed to form X0-X7 input triplets
for the encoder; 2) How the sub-words of operand B are arranged and presented
to the Y0-Y7 inputs of the selector, including the sign extension of the low-precision
operands packed in B in case of asymmetric configurations; 3) Which half-colored
bits of Fig. 3.8 should be gated; 4) The number of positions to right-shift the output

37

Precision-Scalable Multipliers: Sum-Together (ST) Multipliers

Listing 3.1: The C/C++ source code of the HLS ST multiplier.
1 # include <ac_int .h>
2

3 int32 st_multiplier_function (uint3 CONFIG ,
4 int16 A, B) {
5 int32 P;
6 if (CONFIG == 4) { // 16x8
7 P = A*B.slc <8 >(0);
8 } else if (CONFIG == 2) { // 8x8
9 P = A.slc <8 >(8)*B.slc <8 >(0) + A.slc <8 >(0)*B.slc <8 >(8);

10 } else if (CONFIG == 3) { // 8x4
11 P = A.slc <8 >(8)*B.slc <4 >(0) + A.slc <8 >(0)*B.slc <4 >(8);
12 } else if (CONFIG == 1) { // 4x4
13 P = A.slc <4 >(12)*B.slc <4 >(0) + A.slc <4 >(8)*B.slc <4 >(4) +
14 A.slc <4 >(4) *B.slc <4 >(8) + A.slc <4 >(0)*B.slc <4 >(12);
15 } else { // 16 x16
16 P = A*B;
17 }
18 }

to the LSB position.
We implement the architecture of this Booth ST multiplier with a structural

description [26].

3.1.3 BW-ADD: a Baugh-Wooley ST multiplier with an
improved final adder

In the light of the preliminary PPA results of the comparison of SoA ST mul-
tiplier of our previous work [24, 26], carried out in a 28-nm CMOS technology at
0.9V, we observed that the BW ST multiplier [25] was particularly area-efficient at
clock frequencies lower than 600 MHz in the area vs clock period plot. At higher
frequencies, the long diagonal critical path of the BW array and the carry chain of
the final 16-bit RCA, highlighted by the purple dotted line in Fig. 3.2, are responsi-
ble for a significant area degradation [24], since the logic synthesizer uses logic gates
with larger driving strength and/or super-low threshold to meet the stricter timing
constraints. Thus, in [28] we address this problem by letting the logic synthesizer
select the most suitable final adder implementation that meets the specified timing
constraints with the minimum area, rather than forcing it to use an RCA. We name
this multiplier BW-ADD. With this change, we expect a lower multiplier’s area at
high frequency, while remaining unaltered at low frequency, compared to [25].

38

3.1 – ST Multipliers

E[23]E[31:24]

16x16 16x8 8x8 8x4 4x4

ext ext ext

F[16]G[12] H[9]

ext ext

E[23]

16x16/16x8 8x8 8x4 4x4

ext ext

F[16]G[12] H[9]

ext ext

E[22:0]

16x16/16x8 8x8 8x4 4x4

ext

F G H

ext ext

&
8 1 23

P[31:0]

B[15:8]

A[7:0]

F[16:0]

B[7:4]B[11:8] A[7:0]A[11:8]

ext
B[11:8]B[15:12]

A[7:4] A[3:0]

G[12:0] H[9:0]

E[7:0]

E[11:0]

16x8
4x4

8x8
8x4

16x16
16x8
4x4

8x816x16
8x4

A[14:7] A[15]

16x8 4x4
8x8
8x416x16

ext

16x8 4x48x8
8x416x16

A[6:0]

ext

A[14:8]

E[15:0]

A[15]

&

E[31:0]

8 71

16x8
4x48x816x16

ext
8x4

ext

B[3]B[7]B[15:8] B[7] B[3]

16x8 4x48x8
8x416x16

B[6:4] B[3]

16x8 4x48x8
8x416x16

ext

B[3:0]

&
1 38 4

A[15:12]

Figure 3.9: HLS ST derived from HLS (as in [28]): four multipliers and three adders
interconnected by a network of muxes and concatenations. Image taken from [28].

3.1.4 HLS ST: an ST multiplier derived from HLS
As we present in Sec. 4.2, we use HLS to generate the RTL of our PS DNN

accelerators based on ST multipliers starting from a high-level description. To
infer a specific implementation of an ST multiplier in the accelerators’ MAC units,
we force the HLS tool to import its RTL implementation. Usually, this RTL is
described manually, as in the case of the previously presented ST multipliers of
Secs. 3.1.1–3.1.3. As an alternative, we decide to describe the ST functionality at
a high-level and let the HLS tool, which in our work is Siemens Catapult, create
automatically its RTL. The source code of this new ST multiplier, which we name
HLS ST, is listed in Lst. 3.1. To easily access bit fields from integer data types, we
use the method slc available in the Catapult C++ library ac_int.h (line 1): for
example, A.slc<4>(12) is a 4-bit sub-field from bit 15 down to bit 12 of the int16
signal A (line 12).

By inspecting the RTL generated by the HLS tool, which corresponds to the

39

Precision-Scalable Multipliers: Sum-Together (ST) Multipliers

schematic in Fig. 3.9, we notice that it contains one 16-bit, two 8-bit and two 4-
bit multipliers, three adders with 8/12/16-bit bitwidth precision, and a network of
multiplexers and concatenation blocks (&) that unpacks the 16-bit input operands,
distributes them to the multipliers and merges their low-precision results into the
final 32-bit output. Moreover, the result of low-precision configurations is already
aligned to the rightmost LSB position.

3.2 Experimental Results

3.2.1 PPA Comparison of ST Multipliers
To compare all the ST multipliers considered in our analysis and identify the

best in PPA, we synthesize their RTL descriptions using Synopsys Design Compiler
(DC), on a 28-nm CMOS technology at 0.9 V, after adding I/O registers.

Fig. 3.10 reports the results of area and power vs clock period obtained by
varying the target clock frequency from 0.5 to 1.5 GHz in ten steps. The solutions
with the lowest area or power for a given target clock period represent Pareto-
optimal points and are connected by a solid black line representing the Pareto
front. In both plots, we exclude the right-most outliers to prevent the compression
of the left and most significant solutions. The reported power is an average of
three values obtained when the multipliers are configured in 16-bit mode (16×16
and 16×8), 8-bit mode (8×8 and 8×4) and 4-bit mode (4×4).Power is calculated
using random input bits evenly distributed between zero and one. Although this
approach may not faithfully represent realistic ML workloads, it still allows for
a valid comparative analysis. It is important to note that, by subtracting a fixed
quantity between [t1; t2] = [0.06; 0.09] ns from the clock period (where t1 is the sum
of the minimum setup and clock-to-output times, and t2 is the sum of the maximum
setup and clock-to-output times among all the ST multipliers, respectively), we can
approximate the delay of a multiplier. This information is useful when we want to
include an ST multiplier into a pipeline stage with other components.

In the area vs clock period graph, the Booth design [26] shares the primacy
with [25] at 500 MHz (2 ns), then outperforms the other designs from 600 (1.67 ns)
to 1400 MHz (0.71 ns) thanks to its low reconfigurability overhead compared to a
standard Booth multiplier, as discussed in [26].

The design of [41] is instead Pareto-optimal in area only at 1500 MHz (0.67 ns).
The reason lies in the heuristics of the logic synthesizer. Due to the behavioral
description of this ST multiplier, the tool has greater freedom in selecting the best
implementation for the internal multipliers and adders in terms of area and timing.
As the clock constraint tightens, the tool progressively discovers more area-efficient
solutions. Conversely, when the constraint is less stringent, the optimization process
halts earlier upon finding solutions that satisfy the desired clock period.

40

3.2 – Experimental Results

BW [25]

D&C [49]

Booth [26] (ours)

[41]

[48]

HLS ST [28] (ours)

BW-ADD [28] (ours)

Pareto front

 0.67
 0.71

 0.77
 0.83

 0.91

 1

 1.11

 1.25

 1.43

 1.67

 2

 1000 1125 1250 1375 1500 1625 1750 1875 2000

C
lo
c
k

 P
e
ri
o
d

 (
n
s
)

Area (μm2)

 0.67
 0.71

 0.77
 0.83

 0.91

 1

 1.11

 1.25

 1.43

 1.67

 2

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Clock
freq.
(MHz)

C
lo
c
k

 P
e
ri
o
d

 (
n
s
)

Power (mW)

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

Figure 3.10: DSE of the SoA and newly proposed ST multipliers. Image taken from [28].

Our new BW-ADD is among the best in area in the low-frequency range, being
second best from 700 (1.43 ns) to 800 MHz (1.25 ns), closer to the Pareto front than
the original BW [25]. Our results confirm that the BW architecture, although very

41

Precision-Scalable Multipliers: Sum-Together (ST) Multipliers

efficient at low frequencies, is not suitable for higher frequencies[50], even with a
faster adder, due to the inherently long critical paths of its BW PPM.

Solutions based on dedicated multipliers for each configuration (like [48], [41],
HLS ST) are inefficient in area because of the redundant logic gates not shared
among different operating modes. In other words, their internal multipliers operate
in a mutually-exclusive manner based on the specific operating mode. Instead,
single high-precision multipliers working in a SWP manner (like [25], BW-ADD
and [26]) have a higher utilization ratio of their logic gates, which is reflected in a
lower area, especially when the timing constraint is not too strict.

The D&C [49] is the second to last in terms of area, which is most likely due to
the shift-and-add logic that connects the low-precision multipliers.

In the power vs clock period graph, all solutions are in general very close. The
most relevant results are the following: from 500 to 800 MHz, the optimal ST
multipliers are those with a BW architecture (e.g., [25] and BW-ADD); from 1000
to 1300 MHz, [26] progressively dominates over [49] and [48]; at high frequencies
[41] turns out to be the most power efficient.

To sum up this comparison of ST multipliers, the optimal solutions depend on
the PPA constraints: [26] offers the best trade-off in area vs clock period for most
of the frequencies, [25] and BW-ADD prove to be Pareto-optimal in power at low
frequencies, whereas [26] and [41] are the best in both area and power at high
frequencies.

42

Chapter 4

High-Level Design of ST-Based
DNN Hardware Accelerators

Some of the work described in this chapter was also previously published in [24,
28, 39, 40].

4.1 Background

4.1.1 Deep Neural Networks’ Quantization
The quantization of DNNs is now a common practice that decreases the nu-

merical precision of weight parameters and activation values of neural networks
layers. This process reduces the model size, lowering memory requirements to store
weigths and activations, as multiple low-precision feature maps and weights can
be efficiently packed into the same memory word [52]. For the same reason, it
also reduces data transfers costs. Additionally, quantization can improve infer-
ence latency, throughput and energy by taking advantage of high-throughput inte-
ger instructions, such as SIMD instructions in microprocessors [42], or specialized
hardware operators like SWP ST multipliers [26].

In our work we focus on UIQ, even though various other quantization tech-
niques exist [1]. This choice is driven by the simple mathematical formulation, the
availability in common ML frameworks (e.g., TensorFlow Lite (TFLite)), its effi-
cient mapping on existing hardware (e.g., on 8-bit MCUs), and thus its widespread
adoption on embedded devices for non-extreme quantization (> 2 bits) [1, 51,
89]. Moreover, when it comes to ASIC implementation, integer/fixed-point math
pipelines are more efficient in terms of silicon area and power consumption when
compared to FP ones [91], not to mention the faster execution times. In the fol-
lowing, we introduce the UIQ mathematical background in the context of DNNs,
borrowing some definitions from [51, 52]. Notice that, since we target ST-based ac-
celerators only for the inference phase of DNNs, our focus is on UIQ for inference,

43

High-Level Design of ST-Based DNN Hardware Accelerators

and not for training.

Uniform Integer Quantization

Given a set of real numbers in the real range [α, β] (e.g., a tensor with a high-
precision FP format like FP32), UIQ maps each x ∈ [α, β] to an integer value
xq ∈ [αq, βq] represented uniformly on b bits, where [αq, βq] is the quantized range:
for asymmetric or symmetric signed integers it is equal to [−2b−1, 2b−1 − 1] or
[−2b−1 − 1, 2b−1 − 1], respectively; for unsigned integers it is [0, 2b − 1]. The process
of quantization is defined as:

xq = clip
(︃

round
(︂1

s
x + z

)︂
, αq, βq

)︃
(4.1)

where s is the scaling factor, z is the zero-point (i.e., the integer value to which
the real value zero is exactly represented), round is the rounding function (e.g.,
round-to-nearest), and clip keeps the output range within the quantized range by
saturating the outliers. In turn, s and z are defined from the chosen real and
quantized ranges as:

s = β − α

βq − αq

(4.2)

z = round
(︂βαq − αβq

β − α

)︂
(4.3)

The opposite operation, which brings back xq to the real range, is defined as:

x̂ = s(xq − z) (4.4)

where x̂ is the closest real value (but not necessarily equal) to the original x, because
rounding and clipping functions may introduce an irrecoverable error.

The quantization mapping discussed so far, with asymmetric ranges and z /= 0,
is known as affine quantization. Instead, when both ranges are symmetric, z be-
comes zero and (4.1) performs only the scale transformation. In this case, the
quantization mapping is commonly known as scale or symmetric [92] quantization.
Moreover, when s is a unique scalar value for all the channels of a tensor, quan-
tization is referred to as per-layer ; instead when s is a one-dimensional vector of
scalars, each corresponding to a different channel of a tensor, quantization is called
per-channel.

Integer-only DNN kernels

Now consider the expression of an FC layer:

Yk = bk +
C∑︂

c=1
XcWc,k ∀ k ∈ [1, K] (4.5)

44

4.1 – Background

where X ∈ RC is the input vector of neurons, W ∈ RK×C is the weight matrix,
b ∈ RK is the bias array, Y ∈ RK is the output array, C and K are the number of
input and output activations processed by the FC layer, respectively. By applying
(4.4) to each of the four real variables in (4.5), setting their own quantized ranges a
priori, and moving the quantized output array Yq,k to the left hand side, we obtain
the quantized FC expression valid for the k-th output activation:

Yq,k = zY⏞⏟⏟⏞
(a)

+ sb

sY

(bq,k − zb)⏞ ⏟⏟ ⏞
(b)

+sXsW

sY

⎡⎣(︄ C∑︂
c=1

Xq,cWq,c,k

)︄
⏞ ⏟⏟ ⏞

(c)

−
(︄

zW

C∑︂
c=1

Xq,c

)︄
⏞ ⏟⏟ ⏞

(d)

−
(︄

zX

C∑︂
c=1

Wq,c,k

)︄
⏞ ⏟⏟ ⏞

(e)

+ CzXzW⏞ ⏟⏟ ⏞
(f)

⎤⎦ ∀ k ∈ [1, K]
(4.6)

where Xq, Wq, bq, Yq are the integer values; sX , sW , sb, sY are the scaling factors;
and zX , zW , zb, zY are the zero-points, associated with X, W , b, Y , respectively.
Term (c) in (4.6) is the integer dot product, i.e., the core of the computation,
instead term (d) introduces an overhead that causes a performance penalty. Both
of them must be computed online because they depend on Xq, which is known only
at runtime. On the contrary, terms (a), (b), (e), and (f) are constant, thus can be
computed offline. Notice that in case of scale quantization for weights and affine
quantization for activations, which is a common practice in the literature [51, 52],
zW and zb become null, and so also terms (d) and (f), while (b) simplifies. This
is also our assumption in this work. The result of (4.6), before being assigned to
Yq, is also rounded and clipped to fit the desired output quantized range of Yq (not
shown in the formula for better readability).

The mathematical derivations of the integer-only kernels for 2D- and DW-Conv
closely follow that of FC. We report them in Appendix A. Hereafter, we will refer
to (A.2), (A.4), and (4.6) as the UIQ formulas.

Now we focus on the integration of the rectified linear unit (ReLU) into the
expressions of the integer-only kernels. In fact, to optimize inference on DNNs
in embedded devices, some adjacent DNN layers can be typically combined into
a single one. This operation, called Layer Fusion, is usually performed between
convolutional/fully-connected layers and the Batch Normalization (BN) or activa-
tion layers (e.g., ReLU), and can be applied to both FP and quantized models.
Since our ST-based accelerators support layer fusion with ReLU, as elaborated in
Sec. 4.2.2, we explain here the fusion process considering an FC layer with a sub-
sequent ReLU layer. We choose ReLU because it stands out as the most common
activation function when it comes to efficient hardware implementations of DNNs.
By applying the ReLU non-linearity to the FP output Yk of (4.5), we derive the

45

High-Level Design of ST-Based DNN Hardware Accelerators

expression of the FP FC-ReLU fused layer:

Rk =
⎧⎨⎩0 if Yk < 0

Yk if Yk ≥ 0
∀ k ∈ [1, K] (4.7)

where Rk is the k-th output of the ReLU layer. By repeating the same steps that
brought to the derivation of (4.6) from (4.5)—applying (4.4) to each real variable
of (4.7), setting their quantized ranges, and moving the quantized ReLU output
Rq,k to the left hand side—we obtain the quantized FC-ReLU fused layer valid for
the k-th ReLU element:

Rq,k =
⎧⎨⎩zR if T < 0

zR + sR · T if T ≥ 0
∀ k ∈ [1, K] (4.8a)

where

T = sb(bq,k − zb) + sXsW

⎡⎣(︄ C∑︂
c=1

Xq,cWq,c,k

)︄

−
(︄

zW

C∑︂
c=1

Xq,c

)︄
−
(︄

zX

C∑︂
c=1

Wq,c,k

)︄
+ CzXzW

⎤⎦. (4.8b)

sR and zR are the scaling factor and the zero-point associated to Rq,k, whereas
all the other variables are the same of those that appear in (4.6). Notice that Rq,k

undergoes a round-and-clip operation, not shown for clarity in (4.8), to fit into the
desired quantized range of the ReLU layer.

The expressions for the quantized 2D-Conv-ReLU and DW-Conv-ReLU fused
layers can be obtained through the same steps shown here for the quantized FC-
ReLU.

4.1.2 MLPerf Tiny Benchmark
The Machine Learning Performance (MLPerf) is a widely recognized set of

benchmarks in the field of ML created by the collaborative effort of more than fifty
organizations from both academia and industry. In particular, the Tiny benchmark
[53] is a suite of four lightweight ML models representing real-world applications:
Visual Wake Words (VWW), Image Classification (ImgClass), Keyword Spotting
(KS), and Anomaly Detection (AD). MLPerf Tiny was designed to assess the perfor-
mance of edge devices and ultra-low-power tiny ML systems with a limited energy,
memory and/or computational power budget (such as mobile phones, MCUs, IoT
devices), by measuring accuracy, latency and energy during inference on those four
ML models. In this respect, MLPerf Tiny is also a competition that encourages
innovation in the field of Tiny ML [88]. For these reasons, each application not only
comes with its own dataset for development and testing, but also with a dedicated
performance evaluation dataset (Perf test set).

46

4.1 – Background

Visual Wake Words

The VWW dataset [93] is a collection of 109619 96×96 RGB images divided
into 53140/56479 images which contain persons/not-person. It is derived from the
Microsoft Common Objects in Context (MSCOCO) 2014 dataset [94] which has
been pre-processed1 to resize the images and to assign them to the person class
when a person occupy at least 2.5% of the frame [53]. The use-case of this dataset
is for a device to wake up when a person is present, covering smart doorbell and
occupancy applications. The model to use with this dataset is a smaller version
of MobilenetV1 [95], that we define MobileNetV1Tiny, with 96×96 input image
resolution, alpha = 0.25 (i.e., the number of channels in each layer is reduced down
to 25% of the original), and two output classes (person and no person). According
to [53], the FP MobileNetV1Tiny reaches about 86% of accuracy across the Perf
test set of 1000 images and should reach at least 80% after quantization and other
optimizations.

Image Classification

The IC benchmark uses the Canadian Institute for Advanced Research, 10
classes (CIFAR-10) dataset [96], which consists of 60000 32×32 RGB images belong-
ing to 10 unique classes of 6000 images each. The use-case is for compact vision sys-
tems, including manufacturing, IoT sensor nodes, and autonomous agents and ve-
hicles. The model to use is a custom ResNetV1 [97], that we define ResNetV1Tiny,
which has no pooling layer after the first convolutional layer, fewer residual stacks,
and lower dimension of filters and convolution strides than the original ResNetV1.
The FP model of ResNetV1Tiny achieves 86.5% of accuracy across the 200 Perf test
images and should retain at least 85% after quantization and other optimizations
[53].

Keyword Spotting

The KS benchmark is derived from the Speech Commands v2 dataset [98], a
collection of 105,829 English words spoken by 2,618 persons with various accents2.
It contains twelve classes: ten with keywords (down, go, left, no, off, on, right, stop,
up, yes), one with background noises and one with silence. By default the audio
feature representation used in this benchmark is the Mel-Frequency Cepstral Coef-
ficients (MFCC), a technique that converts audio signals to the frequency domain

1The pre-processing script, buildPersonDetectionDatabase.py can be found in the GitHub
repository from Silicon Labs https://github.com/SiliconLabs/platform_ml_models/tree/
master/eembc/Person_detection. Accessed on: Mar 9, 2024.

2Speech Commands v2 is also directly available in TensorFlow: https://www.tensorflow.
org/datasets/catalog/speech_commands. Accessed on: Jan 19, 2024.

47

https://github.com/SiliconLabs/platform_ml_models/tree/master/eembc/Person_detection
https://github.com/SiliconLabs/platform_ml_models/tree/master/eembc/Person_detection
https://www.tensorflow.org/datasets/catalog/speech_commands
https://www.tensorflow.org/datasets/catalog/speech_commands

High-Level Design of ST-Based DNN Hardware Accelerators

(Mel Spectrogram) using the Mel scale, which is a non-linear frequency perceptual
scale of pitches judged by listeners to be equal in distance from one another. The
Mel spectrogram is then transformed using a Discrete Cosine Transform to obtain
the MFCCs which can be used to train the neural network [53]. The use-case is
for human-machine interaction, including wakeword detection and remote control
of smart devices by voice. The benchmark’s target network is the small Depth-wise
Separable Convolutional Neural Network (DS-CNN) of [99]. According to [53], the
FP model of DS-CNN has 92.2% accuracy on the 1000 utterances of the Perf test
set and should not fall below 90% after quantization and other optimizations.

Anomaly Detection

This benchmark uses one of the six machine types present in the dataset of
the 2020 edition of Detection and Classification of Acoustic Scenes and Events
(DCASE) competition [100], the toy-car machine type (ToyADMOS [101]), which
contains single-channel 10-seconds length audio samples recorded from seven dif-
ferent toy cars (1000 each) mixed with environmental noise. The use-case is early
detection of machine anomalies, a common industrial problem. The model of this
benchmark is the reference implementation of DCASE2020 which is an FC-based
autoencoder [100] (thus, we name it FC-AutoEncoder). Encoder and decoder have
four FC layers of 128 neurons with BN layers and ReLU activation, the bootle-
neck layer has 8 neurons, input and output layers have 640 neurons. Since the
audio is too long for the model, it is pre-processed and divided into a log-mel-
spectrogram with 128 bands of 32 ms of length. Then, the model processes five
bands at a time (128x5=640) with a sliding window approach [53]. Differently
from the other MLPerf Tiny models, the main metric used in AD is not accuracy,
but the Area Under The Receiver Operating Characteristics Curve (AUC). The FP
FC-AutoEncoder has an AUC of 0.88, whereas after quantization and optimizations
it should reach at least 0.85.

4.2 ST-based Hardware Accelerators

4.2.1 Working Principle
We now illustrate the working principle of our three DNN accelerators integrat-

ing ST multipliers in their MAC units. Fig. 4.1 shows the different access patterns
(red) that the 2D-Conv, DW-Conv and FC accelerators use to read data from the
activation (blue) and weight (orange) tensors, and how these data are packed in
the 16-bit inputs of the ST multipliers.

48

4.2 – ST-based Hardware Accelerators

2D-Conv DW-ConvST Configuration FC

• • •
• •

• • •
• •

• • •
• •

• • •
• •

• • •
• •

• • •
• •

• • •
• •

• • •
• •

• • •
• •

• • •
• •

• • •
• •

• • •
• •

1 2 3 4

C

1 2 3 4

C

1 2 3 4

C

1 2 3 4

C

• • •
• •

• • •
•

• • •
• •

• • •
• •

1 2 3 4

C

1 2 3 4

C

• • •
• •

• • •
•

• • •
• •

• • •
• •

1 2 3 4

C

1 2 3 4

C

• • •
• •

• • •
• •

• • •
• •

• • •
• •

• • •
• •

• • •
• •

1 2 3 4

C

1 2 3 4

C
• • •

• •

• • •
•

• • •
• •

• • •
• •

1 2 3 4

C

1 2 3 4

C

X •/

CONFIG
16x16 / 16x8

N = 1 1 1

X •/

CONFIG
8x8 / 8x4

N = 2 1 2 21

X •/

CONFIG
4x4

N = 4 3 4

1 2 3 4

1 2

• • •
• •

• • •
•

• • •
• •

• • •
• •

1 2
34 5 67 8 9 1 2

34 5 67 8 9 • • •

• • •
• •

• • •
•

• • •
• •

• • •
• •

1 2 34 5 67 8 9 1 2 34 5 67 8 9

• • •
• •

• • •
•

• • •
• •

• • •
• •

1 2 34 5 67 8 9 1 2 34 5 67 8 9

• • •
•

• • •
• •

• • •
•

• • •
• •

• • •
•

• • •
• •

Figure 4.1: Working principle of our ST-based DNN accelerators: 2D-Convolution (2D-
Conv), Depth-wise Convolution (DW-Conv) and Fully-Connected (FC). Image modified
from [28].

2D-Conv Accelerator

For every orange filter with C kernels, a MAC unit of the 2D-Conv accelerator
performs the multiplication of the C channels of the blue input tensor with the
corresponding weight kernels, and the channel-wise accumulation of these multipli-
cations. At full precision (N = 1), the ST multiplier within the MAC unit processes
activations and weights from one input channel at a time. Instead, at lower preci-
sion the ST multiplier is fed with pairs of activation/weight data from two (N = 2)
or four (N = 4) input channels at a time. This process is highlighted in red in the
second column of Fig. 4.1 and allows to exploit the dot-product feature of the ST
multiplier resulting in ideally fewer MAC cycles, which scale as C/N , and lower
latency, which scales as 1/N .

DW-Conv Accelerator

In DW-Conv, every output channel is the result of the convolution between the
corresponding blue input channel and orange weight kernel, with no accumulation
along the channel dimension, as it happens instead in the 2D-Conv case. Therefore,
we need to use the ST multiplier in a different way than for 2D-Conv: we can

49

High-Level Design of ST-Based DNN Hardware Accelerators

accumulate the partial products between the N = 1, 2, or 4 input/weight pairs
from the receptive field of the input tensor and the corresponding weight kernel.
This new dataflow is reported in red in the third column of Fig. 4.1.

Compared to 2D-Conv, this accelerator has an overhead that affects the reduc-
tion of both MAC cycles and latency, as we show later in Sec. 4.4.2. This is because
the number of accumulations is given by the square of the kernel size (K2), which
is not a multiple of N at lower precision (i.e., N = 2 or 4). Let us consider the 3×3
kernel of Fig. 4.1 as an example. With N = 2 or 4, we need five or three iterations,
respectively, to accumulate the products of input activations and kernel weights.
In the last iteration, however, only one input pair is within the receptive field of
the kernel. As a result, we need to feed the ST multiplier with zeros in place of
the missing low-precision operands, but this clearly results in under-utilization of
the ST hardware. The number of MAC cycles for DW-Conv is ⌈K2/N⌉ and the
latency reduction scales as ⌈K2/N⌉/K2, which typically is greater than 1/N , with
this overhead decreasing as K increases [40].

FC Accelerator

The working principle of this accelerator is shown in the last column of Fig. 4.1.
To compute each element of the green output activation array (e.g., the one high-
ligted in red), a MAC unit computes the dot product between the blue array of C
input activations and one row of the orange weight matrix. The ST multiplier in
the MAC unit takes N pairs at a time from the two arrays and either multiplies
them in high-precision mode (N = 1), or performs a dot-product in low-precision
mode (N = 2, or 4). Similarly to 2D-Conv, C/N subsequent accumulations are
needed to complete the calculation. The process is repeated for every row of the
weight matrix, until the green output activation array is complete. As a result,
the number of MAC cycles and the corresponding latency scale as C/N and 1/N ,
respectively, like in the 2D-Conv case.

4.2.2 Accelerators Architecture
Our ST-based DNN accelerators share the same general architecture, outlined

in the grey rectangle of Fig. 4.2. It consists of four parts as illustrated later in
Secs. 4.2.2–4.2.2: internal buffers (for input, weight, and output data), memory
addressing and concatenating logics, reconfigurable ST-based PSMAC array, quan-
tization logic and ReLU. We obtain this architecture using the flow on the left side
of Fig. 4.2, starting from a high-level C/C++ description of the ST-based accel-
erator (C/C++ (top) block) and using HLS techniques to generate the final RTL
implementation. We provide a full description of this flow in Sec. 4.3.3.

Even though it is not the focus of our work, we assume that the three accelerators
share an on-chip global buffer (not shown in Fig. 4.2), as shown for example in [60]

50

4.2 – ST-based Hardware Accelerators

(a)

⌥
void st_based_accelerator(IBUF[], WBUF[], OBUF[], CONFIG) {

L1: outermost loops (pipelined) { // (2D-Conv , DW-Conv)

L2: OBUF[] reset loop , executed when neeeded (1st tile)

L3: outer loop on input channels (2D-Conv), kernel \

(DW-Conv), or input activations (FC) (pipelined) {

read A from IBUF[] // (2D-Conv , FC)

L4: innermost loop (unrolled) {

read A from IBUF[] // (DW-Conv)

read B from WBUF[]

P = st_multiplier_function(CONFIG , A, B);

OBUF[output_index] += P;

}

if (L3 index == (L3 max iterations / N)) {

break;

}

}

L5: quantization and ReLU loop (pipelined), executed \

when needed (last tile) {

Eq. (A.2) for 2DConv , (A.4) for DWConv , (4.6) for FC

}

}

}

(ST)

RTL/

Constraints

Implem.

C/C++

(top)
C/C++

Hardware
configuration

knobs

HLS

Output double buffers

& concatenating logic
Memory addressing

Reconfigurable ST-based PSMAC array

Input/Weight double buffers

Quantization logic and ReLU

1

acc

2

acc

#partitioning

acc

M

ST-based Accelerator

#unrolling

&
#pipelining

#partitioning

Figure 4.2: General architecture of the ST-based accelerators (bottom right), HLS flow
(bottom left), and pseudo-code of the high-level C/C++ description (top) that produces
the general architecture. Image taken from [28].

51

High-Level Design of ST-Based DNN Hardware Accelerators

Table 4.1: Description of accelerators’ parameters related to the tiles (Part I and Part II)
and accelerators’ internal buffers sizes (Part III). The values of the parameters explored
during the DSE of Sec. 4.4.1, denoted by the DSE entry, are listed in Table 4.2.

Param.
name Description 2D-Conv DW-Conv FC

Part I: Maximum tiles dimensions

IH / IW Input tile height / width 18 22 –
KH / KW Weight tile height / width 7 5 –
OH / OW Output tile height / width 18 22 –
IC / IA Input tile channels / activations DSE – DSE
OC / OA Output tile channels / activations DSE DSE DSE

Part II: Maximum tiles sizes

IS Input tile size IH × IW × IC IH × IW × IC IA

WS Weight tile size KH × KW × IC × OC KH × KW × OC OA × IA

OS Output tile size OH × OW × OC OH × OW × OC OA

Part III: Accelerators’ internal buffers sizes

IBS Input buffer (IBUF) size KH × KW × 4 KH × KW × 1 128
WBS Weight buffer (WBUF) size KH × KW × 4 × OC KH × KW × 1 × OC OA × 128
OBS Output buffer (OBUF) size 1 × 1 × OC 1 × 1 × OC OA

and other more recent papers on ML SoCs [85, 102]. In particular, we assume
that the global buffer is large enough to store at least two tiles (two is for double
buffering) of each of the three relevant tensors involved in the execution of a single
accelerator: input activation, weight, and output activation tensor. Indeed, we
assume that the complete tensors have been fragmented in tiles [103] to exploit
data locality in this on-chip global buffer. Moreover, we assume that an on-chip
embedded processor invokes each accelerator to process those tiles one at a time.

Table 4.1 shows the maximum tiles dimensions (Part I) and the maximum tiles
sizes (Part II) that would be stored in the global buffer. We determined these
dimensions through a statistical analysis of the layer shapes of the most common
DNNs for edge devices [39, 40] that are available in public Model Zoos for computer
vision applications, such as TensorFlow [104] [105], Intel [106] [107], Xilinx [108],
and Nvidia [109] [110]. These networks include the well-known families of ResNet,
MobileNet, and EfficientNet. Based on our survey, we select 18 and 22 as the
input tile height/width (IH / IW) and output tile height/width (OH / OW)
dimensions for 2D- and DW-Conv, respectively, because these values represent a
reasonable trade-off between area of the global buffer and number of iterations over
the tiles required by the accelerators to complete the DNN layers [39, 40]. Height
and width of weight tiles (KH / KW) are instead 7 and 5 for 2D- and DW-Conv,
respectively, to ensure that the accelerators support the majority of DNNs (e.g.,
ResNetV1 uses 7×7 kernels).

52

4.2 – ST-based Hardware Accelerators

Table 4.2: Hardware configuration knobs explored in the DSE of Sec. 4.4.1, including
maximum tiles size, HLS directives, and implementation constraints.

Hardware config.
knob HLS directive 2D-Conv DW-Conv FC

IC / IA {4, 8, 16, 32} – {256, 512, 1024}

OC / OA {4, 8, 16, 32} {2, 4, 8, 16, 32} {8, 16, 32}

PSMAC array
parallelism (M) =
= Unroll loop oc / oa

unroll
<unrolling factor (UF)> OC OC OA

Partition IBUF
interleave
<# of interleaved memories> no OC no

Partition WBUF
interleave
<# of interleaved memories> OC OC OA

Partition OBUF
interleave
<# of interleaved memories> OC OC OA

Map the
st_multiplier_function
to ST multiplier IP

map_to_operator
<component name (X)>

yes → IP mode, X = {[25], [26], [41], [49], [48],
BW-ADD, HLS ST } /

/ no → Inline mode, i.e.,
the st_multiplier_function is inlined

Target clock frequency [100 ÷ 1000] MHz, 10 steps

Regarding the input tile channels (IC)/input tile activations (IA) and output
tile channels (OC)/output tile activations (OA), we vary their size during the DSE
of ST-based accelerators as discussed in Sec. 4.4.1. The values explored are in the
first two rows of Table 4.2, which also contains HLS directives and implementation
constraints that we let vary during the DSE. We call these variables hardware
configuration knobs because they affect how the RTL is synthesized by the HLS
tool. We use 32 as maximum value for IC and OC because we found that the
number of input and output channels of activations and weight tensors of common
DNNs are often divisible by this value. For the FC accelerator, we select values of
IA and OA starting from those used in [25], which were 256 and 8, respectively.
Then, we add values in a power-of-two fashion to expand the spectrum of solutions
for our design space and to ensure that the area covered by all three accelerators
ranges approximately from a minimum to a maximum in the same manner. We
will describe the remaining hardware configuration knobs later in this section.

Let us now comment on the pseudo-code at the top of Fig. 4.2. It is a concise
version of the high-level C/C++ description that produces the general architecture
of the ST-based accelerators using HLS techniques. We first refer to this simpli-
fied code to highlight the commonalities between the high-level descriptions of the
various accelerators. Then, we provide specific details on how the key parts of this
code translate into the high-level C/C++ pseudo-codes of the three accelerators,
reported in Lsts. 4.1, 4.2, and 4.3, for 2D-Conv, DW-Conv, and FC, respectively.

53

High-Level Design of ST-Based DNN Hardware Accelerators

After a series of pipelined outermost loops L1–L3, the accelerator reads acti-
vations from the internal input buffer (IBUF) and prepares the first operand A
for the ST multiplier through the memory addressing and concatenating logic. For
2D-Conv and FC, this operation takes place before the innermost loop L4; however,
in the case of DW-Conv, it occurs within L4 because there is no input channels
loop in the DW-Conv algorithm. Then, in L4 the accelerator reads weights from
the internal weight buffer (WBUF) and fills the second operand B. Subsequently,
it performs the multiplication/dot-product operation using the ST multiplier con-
figured via CONFIG and accumulates the result in the internal output buffer
(OBUF). The latter keeps stored the result of the previous tile iteration, or is reset
in L2 when the accelerator processes the initial input-weight pair of tiles of a layer
execution (see the RESET signal in Lsts. 4.1–4.3).

Since L4 is unrolled, the HLS tool synthesizes it by generating the array of M
parallel reconfigurable ST-based PSMAC units shown in Fig. 4.2. To comply with
the working principle presented in Sec. 4.2.1, loop L3 needs to terminate earlier
in low-precision configurations: this happens when the index of L3 reaches its
maximum number of iterations (L3max) divided by N , where L3max corresponds to
the number of input channels for 2D-Conv, the product of the kernel dimensions for
DW-Conv, or the number of sinput activations for FC, of the current tile execution.
This is implemented by variables ic_lim, k_lim, and ia_lim in Lsts. 4.1, 4.2, and
4.3, respectively. As the number of iterations of loop L3 decreases at reduced
precision, the remaining readings from IBUF and WBUF are not performed.
Thus, there is no need to fill with zeros the unused parts of these buffers. A break
condition is also present at the end of each of the other for loops to guarantee the
processing of tiles with dimensions smaller than the maximum values reported in
Table 4.1 (i.e., leftovers handling). However, these break conditions have not been
reported in the pseudo-codes to enhance clarity.

Finally, only when the accelerator creates the last output tile, OBUF under-
goes quantization using the corresponding UIQ formula (i.e, Eq. (A.2) for 2D-Conv,
(A.4) for DW-Conv, (4.6) for FC), followed by ReLU (when needed), preparing the
output for the computation of the next layer. Otherwise, OBUF keeps accumulat-
ing the partial result/output inside the accelerator to avoid data transfers in the
external memory, thus following an output-stationary dataflow [60].

Our accelerators are latency-insensitive and stall until input data (i.e., features
and weights) is not available in the internal buffers. However, when the inputs are
ready, the accelerators complete their execution in a fixed amount of time.

Below we delve into the details of each architectural block of the ST-based
accelerator illustrated in Fig. 4.2, highlighting the key differences between the three
accelerators.

54

4.2 – ST-based Hardware Accelerators

Listing 4.1: Pseudo-code of our ST-based 2D-Conv accelerator.
1 # include <ac_int .h>
2
3 # pragma map_to_operator "X"
4 int32 st_multiplier_function (uint3 CONFIG , int16 A, B){...}
5
6 void conv2d (
7 int4 IBUF_A [IS], IBUF_B [IS], IBUF_C [IS], IBUF_D [IS],
8 int4 WBUF_A [WS], WBUF_B [WS], WBUF_C [WS], WBUF_D [WS],
9 ac_int <28 , true > OBUF[OS],

10 uint3 CONFIG , uint1 RESET) {
11 int ic_lim ;
12 if (CONFIG ==(8 x8 || 8x4)) { ic_lim = IC /2 -1; }
13 else if (CONFIG ==4 x4) { ic_lim = IC /4 -1; }
14 else { ic_lim = IC -1; }
15
16 # pragma pipeline_init_interval 1
17 for (int oh =0; oh <OH; oh ++) {
18 # pragma pipeline_init_interval 1
19 for (int ow =0; ow <OW; ow ++) {
20 # pragma pipeline_init_interval 1
21 for (int oc =0; oc <OC; oc ++) {
22 if (RESET ==1) { OBUF[OC *(OH*oh+ow)+ oc] = 0; }
23 }
24 # pragma pipeline_init_interval 1
25 for (int ic =0; ic <IC; ic ++) {
26 # pragma pipeline_init_interval 1
27 for (int kh =0; kh <KH; kh ++) {
28 # pragma pipeline_init_interval 1
29 for (int kw =0; kw <KW; kw ++) {
30 // Memory addressing and concatenating logics for A
31 int A_idx = IC *(IW *(oh+kh)+(ow+kw))+ ic;
32 int4 A_HH = IBUF_A [A_idx];
33 int4 A_HL = IBUF_B [A_idx];
34 int4 A_LH = IBUF_C [A_idx];
35 int4 A_LL = IBUF_D [A_idx];
36 int16 A = ((A_HH < <12)&0 xF000) | ((A_HL < <8)&0 x0F00) |
37 ((A_LH << 4)&0 x00F0) | (A_LL &0 x000F);
38 # pragma unroll OC
39 for (int oc =0; oc <OC; oc ++) {
40 // Memory addressing and concatenating logics for B
41 int B_idx = OC *(IC *(KH*kh+kw)+ ic)+ oc;
42 int4 B_HH = WBUF_A [B_idx];
43 int4 B_HL = WBUF_B [B_idx];
44 int4 B_LH = WBUF_C [B_idx];
45 int4 B_LL = WBUF_D [B_idx];
46 int16 B = ((B_HH < <12)&0 xF000) | ((B_HL < <8)&0 x0F00) |
47 ((B_LH << 4)&0 x00F0) | (B_LL &0 x000F);
48 // Reconfigurable ST - based PSMAC array
49 int28 P = st_multiplier_function (CONFIG ,A,B);
50 OBUF[OC *(OH*oh+ow)+ oc] += P;
51 } // oc
52 } // kw
53 } // kh
54 if (ic == ic_lim) { break ; }
55 } // ic
56 # pragma pipeline_init_interval 1
57 for (int oc =0; oc <OC; oc ++) {
58 // Quantization logic (Eq. A.2) and ReLU (when needed)
59 ...
60 }
61 } // ow
62 } // oh
63 }

55

High-Level Design of ST-Based DNN Hardware Accelerators

Listing 4.2: Pseudo-code of our ST-based DW-Conv accelerator.
1 # include <ac_int .h>
2
3 # pragma map_to_operator "X"
4 int32 st_multiplier_function (uint3 CONFIG , int16 A, B){...}
5
6 void dwconv (
7 int4 IBUF_A [IS], IBUF_B [IS], IBUF_C [IS], IBUF_D [IS],
8 int4 WBUF_A [WS], WBUF_B [WS], WBUF_C [WS], WBUF_D [WS],
9 ac_int <28 , true > OBUF[OS],

10 uint3 CONFIG , uint1 RESET) {
11 int k_lim ,i0 ,i1 ,i2 ,i3 ,j0 ,j1 ,j2 ,j3;
12 if (CONFIG ==(8 x8 || 8x4)) { k_lim = (KH*KW)/2; }
13 else if (CONFIG ==4 x4) { k_lim = (KH*KW)/4; }
14 else { k_lim = (KH*KW) -1; }
15
16 # pragma pipeline_init_interval 1
17 for (int oh =0; oh <OH; oh ++) {
18 # pragma pipeline_init_interval 1
19 for (int ow =0; ow <OW; ow ++) {
20 # pragma pipeline_init_interval 1
21 for (int oc =0; oc <OC; oc ++) {
22 if (RESET ==1) { OBUF[OC *(OH*oh+ow)+ oc] = 0; }
23 }
24 # pragma pipeline_init_interval 1
25 for (int k=0; k<KH*KW; k++) {
26 # pragma unroll OC
27 for (int oc =0; oc <OC; oc ++) {
28 // Memory addressing and concatenating logics for A
29 i0 ,i1 ,i2 ,i3 = LUT_i (CONFIG ,k);
30 j0 ,j1 ,j2 ,j3 = LUT_j (CONFIG ,k);
31 int4 A_HH = IBUF_A [OC *(IN_W *(oh+i0)+(ow+j0))+ oc];
32 int4 A_HL = IBUF_B [OC *(IN_W *(oh+i1)+(ow+j1))+ oc];
33 int4 A_LH = IBUF_C [OC *(IN_W *(oh+i2)+(ow+j2))+ oc];
34 int4 A_LL = IBUF_D [OC *(IN_W *(oh+i3)+(ow+j3))+ oc];
35 int16 A = ((A_HH < <12)&0 xF000) | ((A_HL < <8)&0 x0F00) |
36 ((A_LH << 4)&0 x00F0) | (A_LL &0 x000F);
37 // Memory addressing and concatenating logics for B
38 int4 B_HH = WBUF_A [OC *(KH*i3+j3)+ oc];
39 int4 B_HL = WBUF_B [OC *(KH*i2+j2)+ oc];
40 int4 B_LH = WBUF_C [OC *(KH*i1+j1)+ oc];
41 int4 B_LL = WBUF_D [OC *(KH*i0+j0)+ oc];
42 int16 B = ((B_HH < <12)&0 xF000) | ((B_HL < <8)&0 x0F00) |
43 ((B_LH << 4)&0 x00F0) | (B_LL &0 x000F);
44 if ((k== k_lim)&&(CONFIG ==(8 x8 || 8x4)|| CONFIG ==4 x4)) {
45 // Force two or three 4-bit chunks of a and b
46 // to zero in place of the missing elements
47 ...
48 }
49 // Reconfigurable ST - based PSMAC array
50 int28 P = st_multiplier_function (CONFIG ,A,B);
51 OBUF[OC *(OH*oh+ow)+ oc] += P;
52 } // oc
53 if (k== k_lim) { break ; }
54 } //k
55 # pragma pipeline_init_interval 1
56 for (int oc =0; oc <OC; oc ++) {
57 // Quantization logic (Eq. A.4) and ReLU (when needed)
58 ...
59 }
60 } // ow
61 } // oh
62 }

56

4.2 – ST-based Hardware Accelerators

Listing 4.3: Pseudo-code of our ST-based FC accelerator (inspired by [25]).
1 # include <ac_int .h>
2
3 # pragma map_to_operator "X"
4 int32 st_multiplier_function (uint3 CONFIG , int16 A, B){...}
5
6 void fc(int4 IBUF1_A [IS /2] , IBUF2_A [IS /2] ,
7 int4 IBUF1_B [IS /2] , IBUF2_B [IS /2] ,
8 int4 IBUF1_C [IS /2] , IBUF2_C [IS /2] ,
9 int4 IBUF1_D [IS /2] , IBUF2_D [IS /2] ,

10 int4 WBUF1_A [WS /2] , WBUF2_A [WS /2] ,
11 int4 WBUF1_B [WS /2] , WBUF2_B [WS /2] ,
12 int4 WBUF1_C [WS /2] , WBUF2_C [WS /2] ,
13 int4 WBUF1_D [WS /2] , WBUF2_D [WS /2] ,
14 ac_int <28 , true > OBUF[OS],
15 uint3 CONFIG , uint1 RESET) {
16 int ia_lim ;
17 if (CONFIG ==(8 x8 || 8x4)) { ia_lim = IA /4 -1; }
18 else if (CONFIG ==4 x4) { ia_lim = IA /8 -1; }
19 else { ia_lim = IA /2 -1; }
20
21 # pragma pipeline_init_interval 1
22 for (int oa =0; oa <OA; oa ++) {
23 if (RESET ==1) { OBUF[oa] = 0; }
24 }
25 # pragma pipeline_init_interval 1
26 for (int ia =0; ia <IA /2; ia ++) {
27 // Memory addressing and concatenating logics for A1 , A2
28 int a_idx = ia;
29 int4 A1_HH = IBUF1_A [a_idx], A2_HH = IBUF2_A [a_idx];
30 int4 A1_HL = IBUF1_B [a_idx], A2_HL = IBUF2_B [a_idx];
31 int4 A1_LH = IBUF1_C [a_idx], A2_LH = IBUF2_C [a_idx];
32 int4 A1_LL = IBUF1_D [a_idx], A2_LL = IBUF2_D [a_idx];
33 int16 A1 = ((A1_HH < <12)&0 xF000) | ((A1_HL < <8)&0 x0F00) |
34 ((A1_LH << 4)&0 x00F0) | (A1_LL &0 x000F);
35 int16 A2 = ((A2_HH < <12)&0 xF000) | ((A2_HL < <8)&0 x0F00) |
36 ((A2_LH << 4)&0 x00F0) | (A2_LL &0 x000F);
37 # pragma unroll OA
38 for (int oa =0; oa <OA; oa ++) {
39 // Memory addressing and concatenating logics for B1 , B2
40 int b_idx = OA*ia+oa;
41 int4 B1_HH = WBUF1_A [b_idx], B2_HH = WBUF2_A [b_idx];
42 int4 B1_HL = WBUF1_B [b_idx], B2_HL = WBUF2_B [b_idx];
43 int4 B1_LH = WBUF1_C [b_idx], B2_LH = WBUF2_C [b_idx];
44 int4 B1_LL = WBUF1_D [b_idx], B2_LL = WBUF2_D [b_idx];
45 int16 B1 = ((B1_HH < <12)&0 xF000) | ((B1_HL < <8)&0 x0F00) |
46 ((B1_LH << 4)&0 x00F0) | (B1_LL &0 x000F);
47 int16 B2 = ((B2_HH < <12)&0 xF000) | ((B2_HL < <8)&0 x0F00) |
48 ((B2_LH << 4)&0 x00F0) | (B2_LL &0 x000F);
49 // Reconfigurable ST - based PSMAC array
50 int28 P1 = st_multiplier_function (CONFIG ,A1 ,B1);
51 int28 P2 = st_multiplier_function (CONFIG ,A2 ,B2);
52 int28 P1_plus_P2 = P1+P2;
53 OBUF[oa] += P1_plus_P2 ;
54 } // oa
55 if (ia == ia_lim) { break ; }
56 } // ia
57 # pragma pipeline_init_interval 1
58 for (int oa =0; oa <OA; oa ++) {
59 // Quantization logic (Eq. 4.6) and ReLU (when needed)
60 ...
61 }
62 }

57

High-Level Design of ST-Based DNN Hardware Accelerators

Internal Buffers

Part III of Table 4.1 reports the accelerators’ internal buffers sizes. These follow
the same ordering of the parameters used by the tile sizes in Part II. For IBUF and
WBUF of 2D- and DW-Conv we choose the minimum sizes that allow to compute
1×1×OC output elements. In particular, we size IBUF of 2D-Conv to store 4
input channels, to allow ST multipliers to operate in all precision configurations.
For WBUF we choose the kernel dimensions of 7 and 5, following the weight tile
dimensions of Part I. For FC we size IBUF to store 128 activations and OBUF to
store OA output elements, to have a buffer area comparable with that of the other
two accelerators. The internal buffers use double buffering to ensure uninterrupted
operations by the accelerators while fetching new data from the global buffer. Thus,
from the accelerators’ point of view, the whole memory hierarchy composed of global
buffer and internal buffers behaves as a unified virtual memory that they can access
transparently.

The internal input and weight buffers are organized in four 4-bit memory banks,
named IBUF_A/B/C/D and WBUF_A/B/C/D, respectively, to enable reading
low-precision data according to the memory access patterns shown in Fig. 4.1. This
is visible from the int4 datatype in the function signatures of Lsts. 4.1–4.3. The
output buffer is organized in 28-bit banks to match the bitwidth of the accumulators
in the PSMAC array, as we will see in Sec. 4.2.2.

To guarantee the proper accelerators’ execution, the internal buffers are filled by
an external Direct Memory Access (DMA) engine following the working principle il-
lustrated in Fig. 4.1. For 2D-Conv, in configurations 16×16 and 16×8, one element
of the input and weight tiles, once read from the global buffer, is extended to 16-bit
(if needed) and split into four 4-bit chunks. Each input and weight chunk is then
stored, from the most to the least significant, into IBUF_A-D and WBUF_A-D, re-
spectively. In configurations 8×8 and 8×4, two input and two weight elements from
the channels dimension of the corresponding tiles are extended to 8-bit (if needed)
and split into 4-bit chunks. The chunks of the first input and the first weight are
stored in IBUF_A-B and WBUF_C-D, respectively; the chunks of the second input
and the second weight are stored in IBUF_C-D and WBUF_A-B, respectively. The
4-bit chunks are always stored from most to least significant. In the 4×4 case, four
input and four weight elements from the channels dimension of the corresponding
tiles are all extended to 4-bit (if needed), and then packed in IBUF_A/WBUF_D,
IBUF_B/WBUF_C, IBUF_C/WBUF_B, and IBUF_D/WBUF_A, respectively.

For the FC accelerator, the process to fill the memory banks is similar to that
of 2D-Conv. However, the number of the 4-bit memory banks is twice that of 2D-
Conv (see lines 6–13 in Lst. 4.3) for a reason clarified in Sec.4.2.2. In configurations
16×16 and 16×8, two consecutive activations from the input tile and two consecu-
tive weights from the same row of the weight tile are read from the global buffer,
extended to 16-bit (if needed) and split into four 4-bit chunks. From the most to

58

4.2 – ST-based Hardware Accelerators

the least significant, the four chunks of the two inputs are stored into IBUF1_A-
D and IBUF2_A-D, while those of the two weights are stored into WBUF1_A-D
and WBUF2_A-D, respectively. In configurations 8×8 and 8×4, four consecutive
activations and weights are read along the input array and the same weight matrix
row, respectively. Then, they are all extended to 8-bit (if needed) and each is split
into two 4-bit chunks. The two chunks of the four inputs are stored in this order:
IBUF1_A-B, IBUF1_C-D, IBUF2_A-B, and IBUF2_C-D, whereas those of the
four weights are stored in this order: WBUF1_C-D, WBUF1_A-B, WBUF2_C-D,
and WBUF2_A-B. 4-bit chunks are always stored from most to least significant.
In the 4×4 case, eight pairs of consecutive inputs and weights are read, extended
to 4-bit (if needed), and stored in the internal memory banks as follows:

• 1st in IBUF1_A/WBUF1_D,

• 2nd in IBUF1_B/WBUF1_C,

• 3rd in IBUF1_C/WBUF1_B,

• 4th in IBUF1_D/WBUF1_A,

• 5th in IBUF2_A/WBUF2_D,

• 6th in IBUF2_B/WBUF2_C,

• 7th in IBUF2_C/WBUF2_B,

• 8th in IBUF2_D/WBUF2_A.

Filling the memory banks of DW-Conv for configurations 16×16 and 16×8
follows the same steps of 2D-Conv. However, for low-precision operating modes
the filling process is different. For configurations 8×8 and 8×4, two consecutive
input elements from the receptive field of the activation tile and two consecutive
weights from the corresponding kernel of the weight tile are extended to 8-bit (if
needed) and split into 4-bit chunks. The chunks of the first and second inputs
are stored in IBUF_A-B, whereas those of the first and second weights are stored
in WBUF_C-D, leaving IBUF_C-D and WBUF_A-B unused. For configuration
4×4, four consecutive input elements from the receptive field of the activation tile
and four consecutive weights from the corresponding kernel of the weight tile are
extended to 4-bit (if needed) and then stored in IBUF_A and WBUF_D only,
leaving the other banks unused.

The data organization discussed above for the three accelerators is important
as it enables the partitioning of the internal buffers into smaller memory banks
(through the HLS directive interleave). This ensures that each bank contains all
the data required by a single PSMAC unit to compute its own channel/activation
output elements independently. In this way, the PSMAC array can compute M

59

High-Level Design of ST-Based DNN Hardware Accelerators

output channels/activations in parallel, as we show in detail in Sec. 4.2.2. How-
ever, to provide the input operands of ST multipliers in the PSMAC array in one
clock cycle for all configurations, as it happens for 2D-Conv and FC, the memory
organization of DW-Conv requires that IBUF_B and WBUF_C have two reading
ports, and IBUF_A and WBUF_D have four reading ports, whereas all the other
banks still have one reading port. As implementing four ports in SRAM ASIC tech-
nology would be critical, we decide to use latch-based memories for IBUF_A and
WBUF_D. For the remaining internal buffers of DW-Conv (IBUF_C, IBUF_D,
WBUF_A, and WBUF_B), and the internal buffers of the other two accelerators,
we use SRAM ASIC memories. The type of memory to use in the accelerators
can be specified in the HLS tool. However, the tool does not generate the actual
memories, but the interface signals and protocols towards them. The designer is in
charge of actually creating those memories and physically connecting them to the
accelerators. We limit ourselves to the generation of the interface signals. How-
ever, in our PPA experiments of Sec. 4.4.1, we take into account the area and power
consumption of the accelerators internal buffers.

Memory Addressing and Concatenating Logic

These two logic circuits are designed to implement the working principles out-
lined in Sec. 4.2.1. Depending on the type of accelerator and selected configuration
(as depicted in Fig. 4.1), the first is responsible for preparing the addresses to prop-
erly access IBUF and WBUF and retrieve the four 4-bit data from each memory
bank (e.g., lines 31–35 and 41–45 of Lst. 4.1 for operand A and B, respectively).
The second organizes these data into the 16-bit input operands of the ST multipli-
ers through shift-and-mask operations (e.g., lines 36–37 and 46–47 of Lst. 4.1). For
DW-Conv, these logic circuits are a bit more complex. Indeed, a pair of LUTs is
required to retrieve the proper indexes, pre-computed offline, based on the values of
CONFIG and k, where k is the iteration counter of the loop over the kernel (line
25 of Lst. 4.2). Moreover, as already discussed in Sec. 4.2.1, DW-Conv requires that
two or three 4-bit chunks of A and B are filled with zeros in place of the missing
low-precision operands, in the last kernel iteration for N = 2 or N = 4, respectively
(lines 44–48 of Lst. 4.2). We report in Fig. 4.3 an example of the behavior of the
memory addressing and concatenating logic acting on the four 4-bit memory banks
of the internal input buffer (IBUF_A/B/C/D) of DW-Conv, already filled by an
external DMA. Similar approaches apply for WBUF and the internal buffers of the
other two accelerators.

Reconfigurable ST-based PSMAC array

The PSMAC array of our ST-based accelerators contains M MAC units, as
shown in Fig. 4.2. Each MAC unit works on a distinct output channel/activation,

60

4.2 – ST-based Hardware Accelerators

1

c) 4x4

a) 16x16,
16x8

4b 4b4b

=>
HH HL LH LL

4b 4b 4b 4b
HH HL LH LL

4b

4b 4b 4b 4b

A

b) 8x8, 8x4

4b 4b

4b 4b

4b

& =>
HH LH HL LL

4b 4b 4b 4b
HH HL LH LL

4b

4b 4b

A

4b

IBUF_A

4b

4b

IBUF_C

4b

4b

IBUF_D

4b

4b

IBUF_B

4b

& & & =>
HH HL LH LL

4b 4b 4b 4b
HH HL LH LL

A

KW

Figure 4.3: Memory addressing and concatenating logic acting on the four 4-bit memory
banks of the internal input buffer (IBUF_A/B/C/D) of DW-Conv, already filled by an
external DMA. Grey banks are unused in the corresponding configuration. Image derived
from [40].

processing a different filter for 2D-Conv, kernel for DW-Conv, or row of the weights
matrix for FC.

The PSMAC array parallelism (M), as listed in Table 4.2, corresponds to the
unrolling factor applied to the innermost loops of the accelerators’ high-level code
through the HLS directive unroll. Specifically, M is equal to OC for 2D- and DW-
Conv, and to OA for FC. This causes the HLS tool to fully unroll the innermost
loops (line 39 for Lst. 4.1, 27 for Lst. 4.2 and 38 for Lst. 4.3), because the unrolling
factor matches their upper bound, thus replicating M times the ST-multiplier and
the accumulation adder. As introduced in Sec. 4.2.2, to fully leverage this paral-
lelism, we partition the internal buffers into M memory banks, enabling the PSMAC
units to access their required data concurrently. For this purpose, we use the in-
terleave directive with OC (for 2D- and DW-Conv) or OA (for FC) as argument.
Table 4.2 also shows that the partitioning is not required for IBUF of 2D-Conv
and FC since operand A is read outside the innermost unrolled loop (lines 31–37

61

High-Level Design of ST-Based DNN Hardware Accelerators

in Lst. 4.1, lines 28–36 in Lst. 4.3).
For 2D- and DW-Conv, each MAC unit consists of one 16-bit ST multiplier

(see the function call st_multiplier_function), one 28-bit adder and one 28-bit
accumulation register (P) (lines 49–50 and lines 50–51 in Lsts. 4.1 and 4.2). For FC,
we got inspired from [25], thus each MAC unit comprises two 16-bit ST multipliers
(to process two activation/weight pairs in parallel), two 28-bit adders (to sum the
outputs of the two multipliers and accumulate this result, respectively), and one
28-bit accumulation register (P1_plus_P2) (lines 50–53 in Lst. 4.3). This is also
the reason why we have twice the input and weight buffers at the interface (lines
6–13 in Lst. 4.3).

The bitwidth of adders and accumulation registers is the result of the ablation
study discussed in Sec. 4.3.2.

Quantization and ReLU Block

This block implements the UIQ formulas (A.2), (A.4), and (4.6) (with zW = 0
and zb = 0 [51, 52]) into 2D-Conv, DW-Conv and FC, respectively. For an efficient
hardware implementation, we convert the division by the output scaling factor sY

into a multiplication by its inverse. Additionally, we minimize the bitwidth of the
C/C++ variables of the UIQ formulas through the ablation study described in
Sec. 4.3.2. When the accelerator has processed the last pair of input/weight tiles
needed to complete a specific output tile, the accumulated results in the PSMAC
array are ready to be quantized using the UIQ formulas. In fact, the accumulated
results correspond to term (c) in all the UIQ formulas (A.2), (A.4), and (4.6). The
remaining variables of the UIQ formula are passed to the accelerator as inputs
because they can be computed offline.

Furthermore, this block implements layer fusion between UIQ formulas and
ReLU as described in Sec. 4.1.1. Thus, when ReLU is needed, the accelerators
can be configured to execute it in hardware. The related pseudo-code, omitted
for simplicity, would be at lines 58, 57, and 59 of Lst. 4.1, Lst. 4.2, and Lst. 4.3,
respectively.

Finally, all accelerators support per-layer quantization for activations, and per-
layer or per-channel quantization for weights, as the latter offers superior perfor-
mance for DNN quantization, as shown in [52, 89].

4.3 Accelerators Design Flow
To obtain our ST-based hardware accelerators, we use the design flow outlined

in Fig. 4.4. It consists of the following three steps, which are analyzed in detail in
Secs. 4.3.1–4.3.3:

A) MP Quantization and Fine Tuning. Quantizing a set of DNN models

62

4.3 – Accelerators Design Flow

Generation of Hardware Accelerators

Reduced
Train/Val sets

HLS C/C++ code (Lsts.4.1–4.3) and
hardware configuration knobs (Table 4.2)

FP models

New FP models

Final MP models
(Appendix B and Table 4.3)

• Goal: minimize bitwidth
of accelerators' C/C++
fixed-point variables
involved in UIQ formulas
implementation
• Constraint: max test
metric degradation
(e.g., –0.05%).

Implementing UIQ formulas with
the optimal bitwidths (Table 4.4)

DSE of accelerators and PPA
comparisons (Figs. 4.5–4.6)

Insertion of QActivation layers
(implementing Eqs.4.1–4.4) & BN folding

MP research & Fine-tuning
with AutoQKeras

Reduce bitwidths of C/C++ variables
involved in UIQ formulas & Inference

Generation of hardware accelerators using
high-level and logic synthesis (Fig. 4.2)

Replace QKeras layers with the
corresponding accelerators' HLS code

Final MP models with C/C++ layers

(Sec.4.3-A)

Minimization of UIQ Variables Bitwidth

L

A

P

• Goal: maximize validation
metrics and minimize total
bits of models
• Constraint: INT16/8/4 for
weights and activations,
INT31/16 for biases, 16-bit
reference modelConvergence? No

Yes

Fine-tuning with QKeras

Tentative MP models

Exceeding max
degradation?

No

Yes

Calibration
subsets &

Full Test sets

(Sec.4.3-B)

MP Quantization and Fine Tuning

(Sec.4.3-C)

Figure 4.4: Accelerators design flow. Image taken from [28].

in MP is the first step of the proposed flow. For this work, we choose as
case study the MLPerf Tiny benchmark [53] because its four networks are
well-suited for edge devices, which are the main target for our accelerators.
Specifically, we quantize activations and weights of its models on 16-, 8- or
4-bit integers, the same precisions supported by our ST-based accelerators.

63

High-Level Design of ST-Based DNN Hardware Accelerators

B) Minimization of UIQ Variables Bitwidth. The second step is an abla-
tion study aimed at optimizing the hardware accelerators using an iterative
approach. In this process, we gradually reduce the bitwidth of the C/C++
fixed-point variables of the UIQ formulas, and, for every bitwidth selection,
we evaluate the performance of the MP-quantized models, obtained from step
A), on their test sets. This process ends by reporting the minimum bitwidths
for which the models do not exceed a user-defined degradation threshold.

C) Generation of Hardware Accelerators. Using the optimal bitwidth pre-
cision determined in step B), we perform a DSE in both latency vs area and
latency vs power for each accelerator. In the exploration we vary many hard-
ware configuration knobs, as listed in Table 4.2, including HLS directives (e.g.,
pipelining and unrolling) and type of ST multiplier for the PSMAC array.

4.3.1 MP Quantization and Fine Tuning
We build the first step of our design flow on top of QKeras [14], a Keras exten-

sion tailored for quantization tasks. It provides drop-in replacement for some layers
to transform a FP Keras model into a quantized one. It supports quantization-
aware training by implementing fake-quantized layers and straight through estima-
tor for back propagation. Since QKeras supports affine uniform quantization for
weights but not for activations, we create a new activations layer class to implement
Eqns. (4.1)–(4.4), resulting in a new version of QKeras for integer-arithmetic-only
inference. This new version behaves similarly to TFLite [51], but, differently from
TFLite, it also supports precisions lower than 8 bits for activations and weights.
We release this modified version of QKeras on GitHub as open-source code [111].
As we show in Tables B.1–B.4 in Appendix B for the four MLPerf Tiny models, we
insert the new activation layer (called QActivation) before and after each Conv2D,
DepthwiseConv2D, and Dense layer.

For the bit-width exploration, we use AutoQKeras [14], an extension of QKeras
that employs Bayesian Optimization to determine the optimal number of bits for
each DNN layer. We constrain weights and activations to INT16, INT8, or INT4
bits, and biases to INT313 or INT16, since it is well known that quantizing biases to
lower precisions significantly hurts model performance [51, 89]. We configure Au-
toQKeras to maximize a score function that is the product of the validation metric
of the quantized model (bounded between 0 and 1) and the total bit reduction
with respect to a 16-bit flat reference model (i.e., a model with all activations and
weights quantized to INT16 and biases quantized to INT31). The total number
of bits of a model is the sum of the products between the number of activation-
s/weights of each layer and the number of bits used to represent them. In our

3INT31 (31 bits) is the maximum precision supported by QKeras.

64

4.3 – Accelerators Design Flow

(a) MobileNetV1Tiny.

Figure 4.5: AutoQKeras search results. Image taken from [23].

case study, we use the validation accuracy as validation metric for all MLPerf Tiny
models except for FC-AutoEncoder, whose output metric is the mean squared error
loss between input and output predictions (MSEloss). To map the +inf–0 range of
the MSEloss to the 0–1 range of the other validation metrics (as required by Au-
toQKeras), we create the following custom validation metric for the autoencoder:
1/(1 + MSEloss/10).

For each network, we use AutoQKeras to iteratively sample from the search
space a different combination of feature map, weight, and bias bitwidths for each
layer. Then, we let AutoQKeras fine-tune the resulting MP network for a few epochs
starting from pre-trained FP weights, when available, to shorten the bitwidth explo-
ration; otherwise, we let it train the model from scratch. The training is performed
using QKeras’ quantization-aware training engine. In our case study, since we can
rely on the pre-trained weights provided by the MLPerf Tiny repository [112], we
follow the first approach. To further speed up the exploration, we use subsets of
the full training and validation sets, together with early stopping.

Figs. 4.5a–4.5d report: in the first subplot, the AutoQKeras’ score (Val_score);
in the second subplot, the validation accuracy (or custom validation metric for
FC-AutoEncoder) reached by the tentative MP models discovered by AutoQKeras
at each search iteration (Trial Number); in the third subplot, the total number of
bits (Total Bits) of the tentative MP models. Points within 1% of the maximum
achieved score, along with their corresponding points in the second and third sub-
plots, are highlighted in red. The total bits achieved by the 16-, 8-, and 4-bit flat

65

High-Level Design of ST-Based DNN Hardware Accelerators

(b) ResNetV1Tiny.

Figure 4.5: AutoQKeras search results. Image taken from [23].

(c) DS-CNN.

Figure 4.5: AutoQKeras search results. Image taken from [23].

reference models (i.e., models with all activations and weights quantized to INTX,
where X = 16, 8, 4, and biases quantized to INT31) are marked by blue horizontal
lines. We interrupt AutoQKeras’ search when the score reaches convergence, i.e.,
stabilizes around a fixed value. This happens approximately after 200, 400, 100,

66

4.3 – Accelerators Design Flow

(d) FC-AutoEncoder.

Figure 4.5: AutoQKeras search results. Image taken from [23].

and 200 search iterations for MobileNetV1Tiny, ResNetV1Tiny, DS-CNN, and FC-
AutoEncoder, respectively, as visible from the x-axes of Figs. 4.5a–4.5d. Finally, we
select the four MLPerf Tiny MP models that give the best scores, as pointed out by
the pink labels (best_trial) in the first subplot of Figs. 4.5a–4.5d, and we conclude
by fine-tuning them with the default settings of the training scripts included in
the MLPerf Tiny GitHub repository [112]. For the exploration, computational re-
sources were provided by HPC@POLITO, a project of Academic Computing within
the Department of Control and Computer Engineering at the Politecnico di Torino4.

In Sec. 4.2.2, we did not discuss the hardware implementation of BN arithmetic,
which we decide not to support in our accelerators to keep lightweight designs.
This is not a limitation because BN parameters can be efficiently folded offline
into the weights of adjacent convolutional layers, or into the scaling factors and
bias of the affine quantization formulas, using a technique known as BN folding
[52]. BN folding is a standard procedure for accelerating DNN inference in em-
bedded devices, as BN parameters remain constant after training. To ensure that
applying BN folding to the final MP models obtained from AutoQKeras’ explo-
ration would not result in folded weights exceeding the supported bitwidths of
our accelerators (16, 8, 4 bits), we proactively provide the FP models to Auto-
QKeras with pre-folded weights since the beginning of the exploration. Thus, we

4HPC@PoliTo: https://hpc.polito.it. Accessed on: Jan 19, 2024.

67

https://hpc.polito.it

High-Level Design of ST-Based DNN Hardware Accelerators

Table 4.3: Performance of MLPerf Tiny models (column 1) on the corresponding Perf
test sets (Sec. 4.1.2), using AUC for FC-AutoEncoder and accuracy for the other three
models, for their FP (column 3), MP (column 4) and MP with optimal C/C++ bitwidths
(column 5) versions.

MLPerf Tiny
Model

MLPerf Tiny
Quality

Target [53]

[Top-1
Acc./AUC]

FP Model

[Top-1
Acc./AUC]

MP Model
(vs FP)

[Top-1
Acc./AUC]

MP Model with
optimal C/C++
bitwidth (vs FP)

[Top-1
Acc./AUC]

Tot. Bits
Reduction
(vs 16-bit

flat)

[%]

MobileNetV1Tiny 80.00 86.00 85.00 (−1.00) 85.00 (−1.00) −52.25
ResNetV1Tiny 85.00 88.50 87.50 (−1.00) 87.50 (−1.00) −52.91
DS-CNN 90.00 92.10 90.00 (−2.10) 90.40 (−1.70) −62.56
FC-AutoEncoder 85.00 88.71 87.51 (−1.20) 87.13 (−1.58) −70.85

replace QConv2D + BatchNormalization with QConv2DBatchnorm, and QDepth-
wiseConv2D + BatchNormalization with QDepthwiseConv2DBatchnorm. At the
time of our experiments QKeras did not support BN-fused layers for FC layers
(i.e., QDenseBatchnorm was not yet available). Thus, in our case study we do not
apply BN folding to FC-AutoEncoder, as shown in the architecture of the final MP
FC-AutoEncoder model (Table B.2, Appendix B).

The final MP-quantized MLPerf Tiny models are reported in Appendix B. Their
FP and MP performance on the corresponding Perf test sets, using AUC (for FC-
AutoEncoder) and accuracy (for the other three models), are provided in columns
4 and 5 of Table 4.3, respectively. To ensure a solid FP baseline for our comparison
with MP models, we re-evaluate the performance of the FP models in our software
environment, rather than blindly relying on the values reported in [53] (86, 86.5,
92.2, 88.0, for MobileNetV1Tiny, ResNetV1Tiny, DS-CNN, FC-AutoEncoder, re-
spectively). For this task, we use the pre-trained weights and test scripts provided
by the MLPerf Tiny repository.

The test datasets of ResNetV1Tiny, FC-AutoEncoder, and DS-CNN are the
Perf test sets available on the MLPerf Tiny GitHub repository [112]. Regarding
MobileNetV1Tiny, its Perf dataset is not publicly available: only a list of 1000
indexes is provided without an extraction script. We managed to retrieve the 1000
corresponding images with a custom script [23], but we raised a GitHub issue5

warning that some of these indexes were pointing to images used for training,
potentially leading to an overestimation of the resulting test accuracy. However,

5Open issue about the lack of the Perf test set for MobileNetV1Tiny on the MLPerf Tiny
GitHub repository: https://github.com/mlcommons/tiny/issues/135. Accessed Mar 9, 2024.

68

https://github.com/mlcommons/tiny/issues/135

4.3 – Accelerators Design Flow

Table 4.4: Minimum bitwidths (row 2) of the C/C++ variables (row 1) resulting from
the ablation study. The notation follows the format <integer bits>.<fractional bits>.

∑︁C
c=1 Xq,cWq,c,k zX

∑︁C
c=1 Wq,c,k sXsW sbbq,k 1/sY zY v1q,k v2q,k v3q,k

28.0 28.0 4.24 3.6 18.0 18.0 29.0 33.6 34.6

by running inference on the FP MobileNetV1Tiny model with these 1000 images,
we obtained accuracy results similar to those reported in the MLPerf Tiny paper
[53]. Therefore, for our experiments we continued to use these 1000 images as the
Perf test set for MobileNetV1Tiny.

In Table 4.3 we also report the total bits reduction of MP models against their
16-bit flat quantized counterparts (column 7), which are the reference models used
by AutoQKeras for guiding the minimization of its objective function, as discussed
earlier.

The results show that the MP models exhibit approximately a 1%–2% decrease
in accuracy compared to their FP counterparts while still meeting the MLPerf
Tiny Quality Targets (column 3), which correspond to the performance that the
models should retain after quantization and other optimizations [53]. Moreover,
the total bits reduction (column 7) is greater than 50% for all models, confirming
the effectiveness of the MP optimization performed by AutoQKeras.

4.3.2 Minimization of UIQ Variables Bitwidth
Meeting the hypothetical constraint of zero computational errors in UIQ for-

mulas would require mathematical operators (i.e., multipliers and adders) with
excessively large bitwidths, due to the propagation of the bit precision through
the involved mathematical operations. This would result in an impractically large
accelerator area or could even prevent the HLS tool from generating feasible so-
lutions. Therefore, in this second step of the design flow, we perform an ablation
study to optimize the hardware accelerators by reducing the bitwidth of the C/C++
variables used in the UIQ formulas.

Let us consider the UIQ formula (4.6) of FC, with zW = 0 and zb = 0, as our
reference. The same reasoning holds for the UIQ formulas of the other accelerators.
The variables that we consider for the ablation study are listed in the column header
of Table 4.4. The first six are the actual variables shown in the UIQ formula,
whereas the last three are the intermediate results v1q,k, v2q,k, v3q,k obtained from

69

High-Level Design of ST-Based DNN Hardware Accelerators

the decomposition of (4.6) in (4.9)–(4.12):

v1q,k =
⎡⎣ C∑︂

c=1
Xq,cWq,c,k − zX

C∑︂
c=1

Wq,c,k

⎤⎦ (4.9)

v2q,k = sXsW · v1q,k (4.10)
v3q,k = sbbq,k + v2q,k (4.11)
Yq,k = clip(round(zY + s−1

Y v3q,k), αq, βq) (4.12)

where Yq,k is the k-th output element, with k ∈ [1, K], quantized on INTy bits
(y = 16, 8, or 4) on the integer quantized range [αq, βq] = [−2by−1 + 1, 2by−1 − 1],
and all other variables are those introduced alongside (4.6) in Sec. 4.1.1. In our
accelerators we implement each of these variables as a fixed-point or as an integer
number.

Our ablation study aims at optimizing the hardware accelerators using an it-
erative hardware-software co-design approach. As a preliminary step, we replace
the invocations of the low-level TensorFlow routines inside the QKeras QConv-
2DBatchnorm, QDepthwiseConv2DBatchnorm, and QDense layer classes, with the
invocations of the HLS C/C++ code that describes the corresponding accelerator.
Then, we start by performing a statistical analysis of the maximum and mini-
mum values taken by each variable. This analysis involves running inference on
the MP-quantized models obtained in the previous step of the flow. The infer-
ence is performed on small calibration subsets extracted from the corresponding
test sets. In this way, we determine the least number of bits of the integer part
of each fixed-point variable that retains the maximum MP performance (i.e., AUC
for FC-AutoEncoder, or accuracy for the remaining MLPerf Tiny models). After-
wards, with these numbers of integer bits as starting point, we perform a bitwidth
exploration of the C/C++ variables of the UIQ formulas (including intermediate
variables v1, v2 and v3): we iteratively decrease the number of fractional and/or
integer bits, considering one C/C++ variable at a time, and evaluate the effect on
the test metric of the considered models by performing inference on their full test
sets (the Perf test sets for MLPerf Tiny models). We stop the exploration when it
is no longer possible to reduce precision without a reduction greater than a certain
threshold in the performance metric of at least one of the analyzed DNNs. In our
case study, we set a threshold of 0.5% with respect to the MP-quantized test met-
rics in column 5 of Table 4.3. In the future, we plan to find these optimal bitwidths
automatically through hardware-aware training [113].

The so-obtained optimal bitwidths for the MLPerf Tiny benchmark are in Table
4.4, whereas the inference results on the MP-quantized MLPerf Tiny models, ob-
tained by invoking the accelerators in software with these bitwidths, are reported
in column 6 of Table 4.3. From these results we observe that: FC-AutoEncoder
has an additional penalty of 0.38% against the FP model; MobileNetV1Tiny and
ResNetTiny show no further accuracy loss; for DS-CNN, there is even a slight

70

4.3 – Accelerators Design Flow

improvement of 0.4%, which is a positive side effect of the quantization process
that may occasionally occur [52]. We use these optimal values to synthesize the
accelerators in the third step of the accelerators design flow (Sec. 4.3.3).

4.3.3 Generation of hardware accelerators
In the last step of our design flow, we generate the ST-based accelerators using

HLS as shown in the left part of Fig. 4.2. The procedure consists of two steps. The
first performs the actual HLS process by invoking Siemens Catapult (HLS block)
with the following three inputs:

1. The top C/C++ high-level description of the ST-based accelerator to generate
(C/C++ (top) block). It reflects the pseudo-codes of Lsts. 4.1-4.3;

2. The description of the ST multiplier type to use in the PSMAC array (RTL/-
C/C++ (ST) block): an RTL Intellectual Property (IP) block (IP mode) or
an inlined C/C++ function (Inline mode). The distinction between the two
modes will be explained later in this subsection.

3. A set of hardware configuration knobs, sampled from Table 4.2, and a set
of HLS constraints and directives, e.g., clock frequency, unrolling, pipelining,
partitioning (hardware configuration knobs block).

The second step (Implem. block) involves the logic synthesizer, in our case Synopsys
DC, which receives two inputs:

1. The RTL of the accelerator generated by the HLS tool;

2. A set of implementation constraints and usual logic synthesis directives, e.g.,
clock frequency and clock uncertainty, input/output ports delays, driving/load-
ing cells, compilation strategy.

We use the HLS directives to perform several optimizations. As mentioned
in Secs. 4.2.2 and 4.2.2, we fully unroll the innermost loops in Lsts. 4.1–4.3 with
the unroll directive and partition in banks the accelerator’s memories with the
interleave directive. This combination infers the M parallel MAC units in the
PSMAC array and ensures parallel data accesses. For all the other loops we set the
Initiation Interval to 1 to pipeline their execution and increase the accelerator’s
throughput. When the HLS tool is not able to find a suitable schedule of the
operations that satisfies the timing constraint, we remove pipelining from the outer-
most loops (more details in Sec. 4.4.1). The clock frequency constraint is common
to both high-level and logic synthesis. In the HLS tool, we set a clock uncertainty
constraint of 50% through the Clock Overhead directive, which divides the target
clock period in half to take into account the next steps of the flow that might

71

High-Level Design of ST-Based DNN Hardware Accelerators

increase the delay, such as routing [114]. This technique helps reduce the critical
paths in the generated RTL by pushing Catapult to insert additional control steps.
As a consequence, the logic synthesizer can achieve the desired timing with smaller
logic gates. In the logic synthesis process, we use conventional methods to set
margins on the clock period.

Concerning the kind of ST multiplier used in the MAC array (RTL/C/C++
(ST) block), we have two options. The first is to let the HLS tool map the C/C++
function of the ST multiplier in the high-level description (st_multiplier_function)
to one of the seven RTL descriptions reported in Table 4.2. For this we use the
directive map_to_operator (e.g., line 3 of Lst. 4.1), followed by the name of the
multiplier’s RTL top-level entity that we want to use X = {[25], [26], [41], [49], [48],
BW-ADD, HLS ST }. In other words, each ST multiplier type is treated as an IP
block called Catapult C Optimized Reusable Entity (CCORE) that the tool uses in
place of the st_multiplier_function function call. In this case, the ST multiplier
code is not synthesized along with the accelerator during the HLS process, but is
rather instantiated as a component in the generated accelerator’s RTL code. We
call this first option IP mode in Table 4.2. The second option, explored in [28] and
not in [24], is to let the tool inline the C/C++ function of the ST multiplier in
the top high-level description of the accelerator, so that it gets synthesized along
with the rest of the accelerator. We call this second option Inline mode in Table
4.2. In this case, we just have to comment out the map_to_operator directive
from the accelerator’s C/C++ top function. Based on Catapult’s documentation
[114], implementing a function that is called multiple times as a CCORE (in our
case the st_multiplier_function function subject to the unroll directive) is expected
to improve design regularity and reduce the shared logic of multiplexers, leading
to a better area efficiency. However, we experiment also with function inlining
because the advantages of using CCOREs are not always guaranteed and are design-
dependent. For example, the operators inside of the CCORE (e.g., multipliers) will
not be available for sharing with any other operator of the same type outside the
CCORE’s boundaries.

4.4 Experimental Results

4.4.1 DSE of ST-based Accelerators
We perform a DSE in area, power and latency on a 28-nm CMOS technology

for the three ST-based accelerators. We use the HLS flow described in Sec. 4.3.3
and vary hardware configuration knobs, implementation constraints, accelerators’
internal buffers, and maximum tile sizes, according to the values in Table 4.2. We
also vary the target clock frequency (last row of Table 4.2) in ten steps from 100 to
1000 MHz, which we verified being the maximum clock frequency reachable by all

72

4.4 – Experimental Results

Table 4.5: For loops of the high-level C/C++ descriptions Lsts. 4.1–4.2 for which we
disable pipelining in order to allow Catapult HLS to find a schedulable design. We use
the loop index as a reference to the loop.

Hw. Acc. Loop
Index OC ST mul. type Clock Freq.

[MHz]

2D-Conv oh, ow 4, 8, 16, 32 all ≥ 200

DW-Conv oh, ow, k 8 HLS ST Inline ≥ 1000

DW-Conv oh, ow, k 16 HLS ST Inline ≥500

DW-Conv oh, ow, k 16 not HLS ST Inline ≥ 600

DW-Conv oh, ow, k 32 all ≥ 500

the accelerators, and the kind of ST multiplier used in the MAC array, for which we
have the IP mode or the Inline mode (HLS ST Inline in the keys of Figs. 4.6–4.7),
as explained in Sec. 4.3.3.

Despite the suboptimal performance of certain ST multipliers, as indicated by
our findings in Sec. 3.2.1, we still incorporate all types of ST multipliers into the DSE
of ST-based accelerators to verify whether the ranking observed at the multiplier
level remains consistent at the accelerator level.

As introduced in Sec. 4.2, when the HLS tool fails to meet the target clock fre-
quency, we disable pipelining from some of the outer-most loops of the accelerators.
In Table 4.5 we report the combinations of accelerator type, clock frequency value,
OC value, ST multiplier type, and loop name for which we disable pipelining.

Area and power of the accelerators are measured through DC, with the same
methodology of Sec. 3.2.1. The latency of each accelerator point is determined by
multiplying the execution time required by the accelerator to process one tile by the
total number of tiles into which a reference DNN layer is divided. Such reference
layer depends on the accelerator type and is represented by the following (input ten-
sor, weight tensor) pair: (16×16×256, 3×3×256×256) for 2D-Conv; (112×112×32,
3×3×32) for DW-Conv; (1024, 1000×1024) for FC. The first is the most frequent
layer among the selected DNNs for edge devices (Sec. 4.2.2); the second is the first
depth-wise layer of MobileNetV1 [95]; the third is rather arbitrary because FC lay-
ers vary significantly from one network to another. In any case, by experimenting
with many other tensors sizes, we obtain very similar DSE trends as those reported
in Figs. 4.6–4.7, which can be therefore extended to any DNN layer. Furthermore,
we plot the results normalized so as to make them layer-independent.

Figs. 4.6-4.7 do not report the results of the entire DSE, but only the Pareto-
optimal points. To obtain the two figures, we project these points from the tri-
dimensional PPA space to two bi-dimensional spaces of Latency vs Area (LA)

73

High-Level Design of ST-Based DNN Hardware Accelerators

BW [25]
D&C [49]
Booth [26] (ours)

[41]
[48]
HLS ST [28] (ours)

BW-ADD [28] (ours)
HLS ST Inline [28] (ours)
Pareto front

0.0001

0.001

0.01

0.04
0.1

0.4
1

0.02 0.04 0.06 0.08 0.1 0.2

N
or
m
al
iz
ed

La
te
nc
y

(m, n = IC, OC)2D-Convolution

0.01

0.04

0.1

0.4

1

0.01 0.02 0.04 0.06 0.08 0.1 0.14 0.2

N
or
m
al
iz
ed

La
te
nc
y

(n = OC)Depth-wise Convolution

0.001

0.01

0.04

0.1

0.4

1

0.02 0.04 0.06 0.08 0.1 0.2

N
or
m
al
iz
ed

La
te
nc
y

Clock
freq.
(MHz)

Area (mm2)

100

200

300

400

500

600

700

800

900

1000

(m, n = IA, OA)Fully-Connected

168
32

16

16
32

32

32, 4

4, 4

512, 4

1024, 4

1024, 4

1024, 4

1024, 8

1024, 8

1024, 16

1024, 32

1024, 32
1024, 32

512, 4

256, 4

1024, 4
512, 8

1024, 8

1024, 16

512, 32

1024, 32

1024, 32

1024, 32

32

32

16, 4
32, 4

32, 4

32, 16

32, 8
32, 8

32, 16

32, 32

32, 32

32, 4

16, 4

8, 4

4, 4

32, 8
32, 8

32, 16

32, 16

32, 32

32, 32

8

4

2

2

4

42

484
84

32

32

1024, 16

512, 16

A

A

A

L

L

L

B
C

32

D

512, 32

2

E
F

H

G

1024, 32

2

Figure 4.6: Results of DSE in Latency vs Area (LA). Points with black and red labels
are Pareto points in LA and Latency vs Power, respectively. Image taken from [28].

74

4.4 – Experimental Results

BW [25]
D&C [49]
Booth [26] (ours)

[41]
[48]
HLS ST [28] (ours)

BW-ADD [28] (ours)
HLS ST Inline [28] (ours)
Pareto front

0.0001

0.001

0.01

0.04
0.1

0.4
1

1 2 4 6 8 10 20 40 60 100

N
or
m
al
iz
ed

La
te
nc
y

(m, n = IC, OC)2D-Convolution

0.01

0.04

0.1

0.4

1

0.6 0.8 1 2 4 6 8 10 20 40 60

N
or
m
al
iz
ed

La
te
nc
y

(n = OC)Depth-wise Convolution

0.001

0.01

0.04

0.1

0.4

1

1 2 4 6 8 10 20 40 60 100

N
or
m
al
iz
ed

La
te
nc
y

Clock
freq.
(MHz)

Power (mW)

100

200

300

400

500

600

700

800

900

1000

(m, n = IA, OA)Fully-Connected

2

4

8

16

32

32

2

32

4, 4

32, 4

32, 8

32, 32

32, 4

32, 4

32, 32

512, 4

512, 8

1024, 8

512, 16

512, 4

1024, 4

1024, 4

1024, 16

1024, 32

1024, 32

16

2

4

8, 4

16, 4

32, 8

32, 8
32, 16

32, 16

32, 4

16, 4

32, 4

32, 16

32, 32

32, 32

256, 4

512, 32

1024, 32

1024, 32

1024, 32

1024, 8

1024, 32

1024, 4

8

32 32
32

3216

1024, 16

4, 4

32, 32

32, 32

32, 32
32, 32

32, 32

C

B

D

P

P

1024, 32512, 32

1024, 32

1024, 32

P

F
E

G
H

Figure 4.7: Results of DSE in Latency vs Power (LP). Points with black and red labels
are Pareto points in Latency vs Area and LP, respectively. Image taken from [28].

75

High-Level Design of ST-Based DNN Hardware Accelerators

BW [25]
D&C [49]
Booth [26] (ours)

[41]
[48]
HLS ST [28] (ours)

BW-ADD [28] (ours)
HLS ST Inline [28] (ours)

0.0001

0.001

0.01

0.04

0.1

0.4

1

 0.02 0.04 0.06 0.1 0.2

N
o
rm
a
li
z
e
d

 L
a
te
n
c
y

Full Design Space Exploration for 2D-Conv

Area (mm2)

 1 2 4 6 10 20 40 60 100

Clock
freq.
(MHz)

Power (mW)

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

Figure 4.8: Example of a complete DSE for 2D-Conv. Image taken from [28].

and Latency vs Power (LP), respectively. An illustrative example of a complete
DSE for the 2D-Conv accelerator is instead reported in Fig. 4.8, which shows the
extensive range of design variations explored. The points in Fig. 4.6 connected
by the solid line (the Pareto front) and labeled in black are LA-optimal (Pareto-
optimal in the LA space), whereas those labeled in red are LP-optimal, that is,
they belong to the Pareto front in the Latency vs Power plot in Fig. 4.7. These
labels denote the number of input/output channels for 2D-Conv (m, n = IC, OC),
output channels for DW-Conv (m = OC), or input/output activations for FC (m,
n = IA, OA) used to generate the corresponding accelerator point, according to
the notation introduced in Table 4.1. In a dual manner, Fig. 4.7 reports the LA
and LP projections on the same Latency vs Power graph: this time the black labels
identify the LP-optimal points, whereas the red labels mark the LA-optimal ones.

We observe that the majority of optimal points in the LA space are suboptimal
in the LP space, and vice versa. Consider an SoC designer aiming to allocate an area
of 0.06 mm2 for a 2D-Conv accelerator. The designer might select solution (B) with
(32, 8) input/output channels pair optimized at 400 MHz, achieving a normalized
latency of 0.007, and using IP [26] as ST multiplier. However, for the same latency,
the power-optimal choice becomes solution (C) with (32, 16) input/output channels
pair optimized at 100 MHz, having IP [25]. Note that (C) uses 1.6x more area than
(B), whereas (B) consumes around 2.5x more power than (C).

There are also a few points that are optimal in both LA and LP projections:
for instance, the DW-Conv accelerator (D), designed for low latency, featuring a 32

76

4.4 – Experimental Results

channels and operating at 400 MHz with HLS ST Inline.
The designer can also optimize the trade-off in the PPA space by choosing

solutions that are LA(LP)-optimal and sit close to the LP(LA) Pareto front. For
example, solution (E) with (1024, 4) activations pair, with normalized latency 0.23
and IP [26] at 100 MHz is LA-optimal, but is also very close to the LP Pareto
point marked with (F) and using HLS ST Inline, with 18% of power overhead.
Conversely, LP-optimal solution (G), with (1024, 32) activations pair and IP [49],
is also a valid solution in the LA space with only 8% area overhead with respect to
the nearest LA Pareto point (H), which uses HLS ST as IP.

More in general, from Figs. 4.6–4.7 we observe that:

• The DSE and the PPA results are especially sensitive to two main variables
that control the PSMAC array parallelism: OC and OA. As such parallelism
increases, the number of MAC units and the size of weight and output mem-
ories increase. This leads to an increase of area and power, but more output
channels/activations can be simultaneously computed, thanks to the higher
number of MAC units, thus reducing latency considerably.

• As expected, very low clock frequencies (≤ 200 MHz) have to be preferred
when low area and/or low power are the goals. On the other hand, medium-
high clock frequencies are necessary to achieve higher performance.

• The majority of Pareto points for 2D-Conv and FC have always large values
of IC and IA, respectively. In fact, increasing these values reduces the overall
latency by decreasing the number of tiles NT and increasing the size of each
tile ST (= IS, WS, or OS according to Table 4.1). This is because, even
though the product NT × ST is constant, as NT decreases the overall latency
decreases in the same proportion, since fewer tiles correspond to fewer times
that the accelerator is executed; at the same time, each execution has a
latency that increases less than proportionally as ST increases. This is visible
in Lst. 4.1 and Lst. 4.3: the latency contribution of the loops that do not
depend on IC or IA is amortized by the increased latency of the loops that
depend on those variables.

• There is a strong correlation between the Pareto-optimal ST multipliers of
Fig. 3.10 and the types of ST multipliers used in the dominating accelerators
in Figs. 4.6–4.7.
This is evident especially in the LA space, where a large percentage of the
accelerators that sit on the Pareto front (75% for 2D-Conv, 93% for DW-
Conv, 80% for FC) have a PSMAC array based on the ST multiplier that we
proposed in [26], the dominant point in the Clock Period vs Area subplot of
Fig. 3.10. A few Pareto points, however, are based on BW-ADD and HLS
ST, which are indeed sub-optimal in the top graph of Fig. 3.10 but sit close

77

High-Level Design of ST-Based DNN Hardware Accelerators

to the Pareto front. This is because sometimes the optimization heuristics of
the logic synthesizer manage to obtain slightly better results with those ST
multipliers. Notice that in Fig. 4.6 no Pareto-optimal accelerators are based
on the ST multipliers that are largely sub-optimal in the top graph of Fig. 3.10
([41], [49], [48]).
Similarly, in the LP space, since in the Clock Period vs Power graph at the
bottom of Fig. 3.10 the ST multipliers are all very close to the Pareto front,
the dominant accelerators present a more heterogeneous distribution of ST
multiplier’s types and the choice of the best IP depends on the designer’s
actual PPA constraints.

• Accelerators with ST multipliers designed manually in RTL are not always
the best choice. In fact, there are accelerators with HLS-based ST multipliers
or fully-obtained from a C/C++ description (HLS ST Inline) that belong to
the Pareto front. In particular, there are some design points using HLS ST
in the LA space, and many more using HLS ST Inline in the LP space.

To conclude, the outcomes of the accelerators’ DSE do not reveal a single winner,
but rather a wide variety of Pareto-optimal solutions, offering SoC designers the
flexibility to choose the most suitable implementation aligned with their target,
being low area, low power, or high performance. We will see a practical example
in the following subsection.

4.4.2 Performance on MP-quantized MLPerf Tiny Models
In this section, we showcase the benefits in latency and energy achieved by

ST-based accelerators when running inference on the four MLPerf Tiny models,
quantized in MP as discussed in Sec. 4.3.1. This is achieved through a compara-
tive analysis against standard accelerators. These accelerators use standard 16-bit
multipliers and sign-extend to 16 bits both activations and weights when quantized
with a lower precision.

We carry out this comparison in three different constrained PPA scenarios: low-
area, low-power, and low-latency, the latter being defined with a significantly larger
area constraint than the first.

For each scenario, from the DSE plots of Figs. 4.6–4.7 we select a set of ST-
based accelerators to be integrated in a hypothetical SoC with the global buffer
and an embedded processor. The set comprises one 2D-Conv, one DW-Conv and
one FC accelerator, all having the lowest latency while satisfying the given area or
power constraint. The processor orchestrates the sequential execution of each layer
of the MP-quantized MLPerf Tiny models exploiting tensor tiling and the trans-
parent memory transfers to/from the external memory due to the double buffering
mechanism (as explained in Sec. 4.2.2). In particular, for synchronization between

78

4.4 – Experimental Results

embedded processor and accelerators, the double buffering mechanism ensures a
smooth and synchronized execution of two subsequent tensor tiles. This method
involves utilizing double buffers, enabling the immediate start of the next tile’s
execution without delay, as the required data for the subsequent tile is already
available thanks to the DMA engine. The latter is initialized by the processor
at the start of a layer execution and operates concurrently with the accelerator
to fill the double buffers with activation and weight data for the next tile. Upon
completion of the last tile of a layer, the processor receives an interrupt from the
accelerator and configures the DMA for the acceleration of the next layer. Addi-
tionally, at the start of a layer execution, the processor configures the accelerator
to the required precision via the CONFIG signal (see Lsts. 4.1–4.3). We decide
to let the processor compute the pooling layers, which, in the case of MLPerf Tiny
networks, exclusively consist of average pooling. However, we could have also used
DW-Conv with all weights set at 1/K2. In general, other pooling methods, such as
those developed by [115], could be used and potentially implemented in hardware
to further enhance performance. To ensure a fair comparison, an equivalent SoC
is created with three standard accelerators. These are synthesized using the same
configuration knobs of the three selected ST-based accelerators (refer to Table 4.2),
except that the ST-multipliers are replaced by standard ones, so that the acceler-
ators have the same latency in terms of number of clock cycles of the ST-based
accelerators when these are configured at the highest precision (16×16).

The execution latency of an MP-quantized MLPerf Tiny model is calculated
as the sum the execution latency of the accelerated layers (2D-Conv, DW-Conv
and FC layers), neglecting the execution time of the remaining layers which are
executed in software.

The execution latency of a layer is calculated by multiplying the number of
tiles, into which a layer is decomposed, by the execution latency required by the
corresponding accelerator to process one tile. Therefore, the actual latency speedup
is the ratio of the execution latency of an MP-quantized MLPerf Tiny model ac-
celerated using standard accelerators and the execution latency of the same model
accelerated using our ST-based accelerators.

We are also interested in the theoretical latency speedup, calculated as the ratio
of the execution latency of an MP-quantized MLPerf Tiny model accelerated using
standard accelerators and the execution latency of the model accelerated using
ideal ST-based accelerators. These ideal accelerators are hypothetically capable
of accelerating their entire execution latency by a factor N , including the latency
required by the filling and draining phases of pipelined loops. Since these phases
are not scalable in precision, ideal accelerators are actually unattainable in reality.
On the contrary, in our ST-based accelerators only some for loops are accelerated
by a factor N , as seen in Lsts. 4.1–4.3: the loop on the input channels for 2D-Conv,
the loop on the kernels for DW-Conv and the loop on the input activations for FC.
All the other for loops, and the filling and draining phases of the pipelined ones,

79

High-Level Design of ST-Based DNN Hardware Accelerators

Table 4.6: Latency speedup and energy reduction of the four MP-quantized MLPerf Tiny
models executed using accelerators that satisfy different PPA constraints in low-area,
low-power, or low-latency. We use the harmonic mean for the mean of the speedups and
the arithmetic mean for the mean of the energies.

Scenario,
PPA Constraint,

Selected
Accelerators

(Label Figs. 4.6–4.7)

MLPerf Tiny
Model

Theoretical
Latency
Speedup

Actual
Latency
Speedup

Actual
Energy

Reduction
[%]

Low-area,
< 0.03 mm2,

A

MobileNetV1Tiny 1.51x 1.28x -15.79
ResNetV1Tiny 1.58x 1.51x -25.59
DS-CNN 2.42x 1.61x -30.14
FC-AutoEncoder 1.61x 1.48x -21.25
Mean 1.72x 1.46x -23.19

Low-power,
< 3 mW,

P

MobileNetV1Tiny 1.46x 1.17x -9.27
ResNetV1Tiny 1.57x 1.43x -11.47
DS-CNN 2.29x 1.34x -11.35
FC-AutoEncoder 1.59x 1.43x -31.38
Mean 1.68x 1.33x -15.87

Low-latency,
< 0.12 mm2

L

MobileNetV1Tiny 1.47x 1.16x 14.20
ResNetV1Tiny 1.55x 1.39x -2.33
DS-CNN 2.29x 1.30x 7.32
FC-AutoEncoder 1.55x 1.34x -6.81
Mean 1.66x 1.29x 3.10

represent an overhead for the actual execution of the ST-based accelerator when
compared with the ideal one (as we partially discussed in Sec. 4.4.1). Thus, the
theoretical speedup, compared with the actual one, allows us to seize the impact of
these computational overheads. Moreover, the theoretical speedup of a DNN model
depends on the model architecture and on how deeply its layers are quantized.

Regarding the energy consumption of an MLPerf Tiny model, we estimate it as
the sum of the products between the execution latencies of each accelerated layer
and the average power consumption of the corresponding accelerator.

In Table 4.6 we report latency speedup (theoretical and actual) and energy

80

4.4 – Experimental Results

reduction for the MP-quantized MLPerf Tiny models executed by accelerators sat-
isfying these PPA constraints: low-area (< 0.03 mm2), low-power (< 3 mW), and
low-latency (< 0.12 mm2). We mark the selected accelerators with letters A, P , L
for the three scenarios, respectively, in both Table 4.6 and Figs. 4.6–4.7. For each
scenario, we select three accelerators operating at the same clock frequency (but
the frequency can vary across different scenarios).

The results of Table 4.6 show that our ST-based accelerators speed up inference
on the four MLPerf Tiny models in all scenarios, with an actual latency speedup
of 1.46x for low-area, 1.33x for low-power, and 1.29x for low-latency, calculated as
the harmonic mean of the speedup of the four networks in each scenario.

As for the gap between theoretical and actual speedups, we notice that in every
scenario this is more evident for MobileNetV1Tiny and DS-CNN. In fact, these are
the only networks using the DW-Conv accelerator, whose speedup improves as the
kernel size increases, as seen in Sec. 4.2.1. Since the kernel in these models is always
3×3, the contribution of the accelerated DW-Conv layers to the speedup is limited.

The average energy reduction across the four models in the low-area and low-
power scenarios is −23% and −16%, respectively. In the low-latency scenario the
benefit in energy is less evident and sometimes even unfavourable for ST-based
accelerators. This is because the selected ST-based accelerators for this scenario
(marked with L in Fig. 4.6) process many output channels in parallel thanks to
the unrolling directive. This implies that part of the reconfiguration logic of ST-
based accelerators is replicated, increasing the area and power overhead of ST-based
accelerators against standard ones, which do not have the reconfiguration logic.
In particular, ST-based DW-Conv accelerator is the one with the most complex
reconfiguration logic of the three ST-based accelerators. Not surprisingly, the two
models for which the energy of ST-based accelerators actually increases compared
to standard ones are MobileNetV1Tiny and DS-CNN.

These results suggest that ST multipliers are well-suited for 2D-Conv and FC,
but not for DW-Conv. However, we have already planned to tackle these ineffi-
ciencies by developing a new PS DW-Conv accelerator based on an SA multiplier
(Sec. 1.1). The new working principle of the SA-based DW-Conv accelerator would
allow to multiply one high-precision, or two/four low-precision elements from the
input and weights channels in parallel, without summing them together, but main-
taining the multiplication results separate to adhere to the DW-Conv algorithm.

Finally, we estimate the area overhead of SoCs equipped with ST-based acceler-
ators against SoCs using standard accelerators, for the three scenarios. Other than
the three accelerators (internal buffers included), we include a small processor (i.e.,
Zero-Riscy [54], cache included) and the SRAM-based global buffer. The results
show that SoCs with ST-based accelerators exhibit a limited area overhead of 0.9%
in the low-area scenario, 2.5% in the low-power one, and 8.0% in the low-latency
one, compared to the standard counterparts.

81

82

Chapter 5

Precision-Scalable Multipliers:
Sum-Together/Apart
Reconfigurable (STAR)
Multipliers

Some of the work described in this chapter is taken from [27], which has been
published in the proceedings of the Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), March 25–27, 2024, Valencia, Spain.

As previously discussed in Sec. 1.2, STAR represents a new family of PS multi-
pliers capable of operating in either SA mode or ST mode. This versatility, enabled
by the dynamic allocation of hardware resources within the multiplier, opens up
various potential applications, including integration within MAC units or hardware
accelerators tailored for DL workloads. For instance, in Fig. 5.1, we show how a
STAR-based MAC unit can be used in a single hardware accelerator to enable the
support for both 2D and DW convolutions [24, 28]. For 2D-Conv (Fig. 5.1(a)),
the STAR multiplier is configured in ST mode to multiply and accumulate pairs
of low-precision feature maps (light blue) and weights (orange) by reading them
channel-wise [39]. An external accumulator further sums up the partial results
of the STAR unit until the entire input tensors are scanned and the specific ele-
ment of the output tensor (green) is computed. For DW-Conv (Fig. 5.1b), instead,
the STAR multiplier is configured in SA mode to perform multiple low-precision
products in parallel (without internal accumulation) between features and weights
belonging to different channels, according to the DW-Conv algorithm [40]. In this
case the external accumulator is reconfigured, depending on the precision, to keep
the accumulated results of the multiplications in N = 2 or 4 separate elements.
STAR could also be used in ST mode for Fully-Connected layers, as described in
[24, 25, 28].

83

Precision-Scalable Multipliers: Sum-Together/Apart Reconfigurable (STAR) Multipliers

• • •
• •

• • •
• •

• • •
•

• • •
• •

• • •
• •

• • •
• •

• • •
•

• • •
• •

• • •
• •

• • •
• •

• • •
•

• • •
• •

• • •
• •

• • •
• •

• • •
•

• • •
• •

STAR in ST mode: 2D Convolution MAC STAR in SA mode: DW Convolution MAC

8x8/8x4 ST

+

STAR

17b

8x8/8x4 SA

16b 16b

+

STAR

+

+

STAR

10b

4x4 ST

8b 8b

STAR

++ + +
8b 8b

4x4 SA

(a) (b)

Figure 5.1: STAR-enabled reconfigurable MAC for 2D/DW Convolution. Image from
[27].

5.1 STAR Architectures
In this section we propose four STAR multiplier architectures, shown in Figs. 5.2–

5.4, which support the configuration modes reported in Table 5.1. A and B are the
16-bit input operands, O is the 32-bit output, and CONFIG is the control signal
used to select the operating mode (not shown in Figs. 5.2–5.4 for better readability).
In addition to symmetric configurations (i.e., 16×16, 8×8, and 4×4), STAR mul-
tipliers also support asymmetric ones (i.e. 16×8 and 8×4) which are implemented
by properly sign-extending operand B, as shown in Figs. 5.2–5.4 in the dashed-
line blocks. Should the support for asymmetric configurations be unnecessary, its
removal is immediate.

Before delving into the details of STAR architectures, it is worth recalling the
taxonomy of [29], which further divides the SA and ST multipliers into SWP and
D&C classes (Sec. 2.1). The first class comprises multipliers that can work in full-
or reduced-precision mode by disabling specific arithmetic logic cells, like BW mul-
tipliers [25, 35] and Booth-based ones [26]. Instead, the elements of the second class
are composed by many low-precision multipliers (e.g. 4-bit) that can be combined
by means of shift-add logic to form higher precision multipliers (e.g. 16-bit), like
[49] and [37].

84

5.1 – STAR Architectures

Table 5.1: Operating modes of STAR.

CONFIG STAR output

16×16 O[31:0] = A[15:0]×B[15:0]

16×8 O[31:0] = A[15:0]×B[7:0]

4×4 ST O[21:12] = A[3:0]×B[15:12] + A[7:4]×B[11:8] + A[11:8]×B[7:4] + A[15:12]×B[3:0]

8×8 ST O[24:8] = A[7:0]×B[15:8] + A[15:8]×B[7:0]

8×4 ST O[24:8] = A[7:0]×B[11:8] + A[15:8]×B[3:0]

4×4 SA

O[31:24] = A[15:12]×B[15:12]
O[23:16] = A[11:8]×B[11:8]
O[15:8] = A[7:4]×B[7:4]
O[7:0] = A[3:0]×B[3:0]

8×8 SA O[31:16] = A[15:8]×B[15:8]
O[15:0] = A[7:0]×B[7:0]

8×4 SA O[31:16] = A[15:8]×B[11:8]
O[15:0] = A[7:0]×B[3:0]

The STAR architecture in Fig. 5.2a is based on a naive approach, which con-
sists of multiplexing the outputs of two multiplier components, one SA and one
ST, using CONFIG as control signal. We create two RTL implementations using
this architecture: one called ST+SA SWP (BW), where the two components are
SWP multipliers inspired from the ST and SA BW schemes introduced in [25]; the
other one called ST+SA D&C, where the two components are two D&C multipliers
inspired from [49] to avoid the explosion of the input memory bandwidth [29]. In
particular, we re-implement [49] with 4-bit multipliers as basic building blocks.

Fig. 5.2b illustrates a SWP STAR architecture. We name it STAR SWP (BW)
because we employ a BW multiplier approach. The block shift & ext is used to align
the output of ST operations to the least significant position [25] and to extend its
sign to 32 bits.

The STAR architecture in Fig. 5.3 is called 3-way and is inspired by the dot-
product unit of the RISC-V core of [41]. It consists of three datapaths activated by
signal CONFIG in a mutually exclusive way: one 16-bit multiplier for configurations
16×16 and 16×8, two 8-bit multipliers and one adder for configurations 8×8 and
8×4, and four 4-bit multipliers and three adders for configuration 4×4. The blocks
named ext, located after the last adders of the 8-bit and 4-bit datapaths, sign-
extend the low-precision outputs to 32 bits in case of ST operations, while the “&”
blocks concatenate them in case of SA operations. We create only one instance of
this architecture, letting the logic synthesizer choose the best implementation of
the various multipliers.

85

Precision-Scalable Multipliers: Sum-Together/Apart Reconfigurable (STAR) Multipliers

ext ext

Bint[7:0] Bint[15:8]

B[11:8]

Bint[15:0]

ext

B[3:0] B[15:8]B[7:0]A[15:0]

O[31:0]

ST SA

ST SA

(a)

A[15:0]

O[31:0]

shift & ext

ST SA

Fig. 5.4

ext ext

Bint[7:0] Bint[15:8]

B[11:8]

Bint[15:0]

ext

B[3:0] B[15:8]B[7:0]

(b)

Figure 5.2: The proposed STAR (a) Naive and (b) SWP (BW) architectures. Images
taken from [27].

The fourth STAR architectures in Fig. 5.4 is named STAR D&C because it
is derived from the D&C architecture of [49], which we discussed in Sec.3.1.1 and
Fig. 3.5.

In Sec. 5.2 we provide a detailed explanation of the design of STAR SWP (BW),
while for the other STAR architectures the presented schematics are already self-
explanatory.

5.2 STAR Sub-word Parallel Baugh-Wooley De-
sign

To support all the previously defined operations, STAR SWP (BW) operates
in five different modes, which are illustrated in Figs. 5.5a–e. The upper square in
each subfigure represents the BW partial products matrix (PPM), while the lower

86

5.2 – STAR Sub-word Parallel Baugh-Wooley Design

A[15:0] A[15:8]

O[31:0]

A[7:4] A[3:0]

B[15:12]

B[11:8]

B[7:4]

B[3:0]

A[11:8]A[15:12]B[7:0]

ext

B[3:0]
B[7:0]

B[11:8]

ext

B[15:8]

A[7:0]

ext

ST SA ST SA

ext ext

Bint[15:0]

Bint[7:0]

Bint[15:8]

&

&&

&

B[15:0]

Figure 5.3: The proposed STAR 3-way architecture. Image taken from [27].

part shows the 32-bit output. According to the selected operating mode, some PPs
become active (yellow squares) and contribute to generate the valid output bits
(yellow), whereas other PPs are inactive (grey squares) and do not contribute to
the final 32-bit result.

The PPM of STAR SWP (BW) is detailed in Fig.5.6 (top). Like any standard
BW, each block computes the PP between a different pair of bits of the two 16-
bit input operands using an AND gate. Then, through a Full Adder (FA), it
compresses the output of the AND gate together with the input sum Si and carry
Ci bits coming from the previous row of PPs, and it provides the output sum So and
carry Co bits to the blocks of the next row of the PPM. The sixteen So bits exiting
from the right-most column of the PPM represent the least significant part of the
multiplier’s output. The most significant part is instead obtained by compressing,
through a 16-bit RCA, the So and Co output bits exiting from the last row of the
PPM. To deal with signed numbers, a standard BW inverts the PPs of the left-most
column and of the last row [50]. This is accomplished by substituting the AND
gate with a NAND gate, in each of these blocks. Moreover, to perform the BW
algorithm as in [50], the addition of logic 1s is required: this is done via Si inputs
of the first row and the left-most column.

To derive STAR SWP (BW) from a standard BW multiplier, we add few logic

87

Precision-Scalable Multipliers: Sum-Together/Apart Reconfigurable (STAR) Multipliers

shift & ext

0

A[15:12]

0

0

<<4

<<4

<<2
<<4 <<2

A[7:4] A[3:0]

<<2
<<4 <<2

A[15:12]

Bint[15:12]

<<2
<<4 <<2

0

A[3:0]

0

0

A[3:0]

<<2
<<4 <<2

O[31:0]

0

<<8
0

A[11:8]

A[7:4]

A[3:0]A[11:8]0

Bint[3:0]

Bint[3:0]
Bint[7:4]

A[11:8]

A[15:12]

Bint[7:4]

Bint[11:8]
Bint[15:12]

A[15:12] A[11:8]

Bint[11:8]

Bint[15:12]

Bint[11:8]

A[7:4]

Bint[15:12]

Bint[11:8]

0

Bint[7:4]
Bint[3:0]

A[7:4]

Bint[3:0]
Bint[7:4]

ST SA

ST SA

ext ext

B[7:0]

Bint[7:0] Bint[15:8]

B[11:8]

Bint[15:0]

ext

B[3:0] B[15:8]&

&
&ST SA

Figure 5.4: The proposed STAR D&C architecture. Image taken from [27].

4
4

4
4

16
8

8 4
4
4

8

8

O2 O1O O4 O3 O2 O1 O OX X X X

8b 8b 8b 8b16b16b32b

4

O

10b 10b 12b7b 17b 8b

X OX

(d) 8-bit ST (e) 4-bit ST(b) 8-bit SA (c) 4-bit SA(a) 16-bit

Figure 5.5: STAR SWP (BW) operating modes. Partial product matrix (top square) and
output (bottom rectangle). Right shift for ST modes only (d)-(e). Images taken from
[27].

gates to each block of the PPM, resulting in the five different versions shown in
Fig. 5.6 (bottom). The reconfiguration of these blocks is achieved through the
binary control signals P and I, which are generated from a decoding logic acting
on CONFIG, the signal controlling the operating mode as in Table 5.1. Each block
of the PPM receives specific binary values for P and I, according to the letters

88

5.2 – STAR Sub-word Parallel Baugh-Wooley Design

reported in the block itself (see Fig. 5.6, top): when a block contains a single letter,
it receives only logic values for P (in fact, white and grey blocks do not have
input I); when a block contains two letters, it receives logic values for I and P ,
respectively (e.g., c/d means I = c, P = d).

As shown in Fig. 5.5, depending on the selected operating mode, the output
of each block requires potentially to be turned off in order not to contribute to
the final result. For this reason, we add an AND gate in all blocks to control the
propagation of PPs towards the internal FAs, gating it (P = 0) or letting it pass
(P = 1). The white and grey blocks shown in Fig. 5.6 (bottom), are almost identical
to those of a standard BW, with the exception of this AND gate.

When dealing with signed operations at reduced precision, we need to guarantee
the PP inversion in the left-most and bottom blocks of all the 8-bit and 4-bit sub-
precision multipliers inside the PPM array, as well. These blocks are the red ones
in Fig. 5.6 (top), with details of the internal logic in Fig. 5.6 (bottom): we add an
XOR gate to invert the internal PP (I = 1), or leave it unchanged (I = 0).

In red blocks we can also force the input of their internal FAs to be logic 1,
regardless the actual value of the PP, using a proper control signal configuration
(i.e. P = 0 and I = 1). This feature can be exploited to add the 1s required by
the BW algorithm in place of the Si inputs of the PPM blocks in the top row and
left-most column, thus saving resources and reducing the propagation path of these
inputs [50]. However, the red blocks do not cover all the positions that would be
required by the insertion of the logic 1s. For this reason we have blue blocks and
green blocks (see Fig. 5.6, bottom), in which an OR gate can force the input of the
FA to be a logic 1 (when I = 1).

In case of SA operations, the carry chains connecting the MSB bit of a sub-word
result to the LSB of the next one need to be interrupted. For this reason, we add
a few AND gates in selected positions to stop the propagation with control signal
M = 0, as shown in Fig. 5.6g. These AND gates also affect the carry chain of the
16-bit RCA, which is halved in two independent 8-bit RCAs when needed. The
“X” symbols in Fig. 5.6 (top) mark the positions of these AND gates. Notice the
letter associated to each diagonal of “X” symbols, which corresponds to the signal
associated to the M inputs of the AND gates of that diagonal. Like P and I, M
is derived from CONFIG by the decoding logic and the letters m and d in Fig. 5.6
(top) correspond to the logic values associated to the green and violet “X” symbols,
respectively.

In the following, we explain in detail how P , I and M enable the reconfiguration
of STAR SWP (BW).

89

Precision-Scalable Multipliers: Sum-Together/Apart Reconfigurable (STAR) Multipliers

16-bit multiplications

For 16×16 and 16×8 multiplications, the PPM is configured to work as in a
standard full-precision BW multiplier [50]. In particular, all the blocks are config-
ured with P = 1 ({a, b, c, d} = 1), and all but the red blocks in the left-most column
and the last row are configured with I = 0 ({e, f, g, h, i, j} = 0). These red blocks
instead have to invert the PPs, having I = 1 ({c, k} = 1). Finally, the addition of
logic 1s, required by signed operations [50], is introduced through the carry-in sig-
nal of the right 8-bit RCA (k = 1) and through the most significant FA of the left
8-bit RCA (a = 1), as clear in Fig. 5.6 (top).

Sum-Apart multiplications

In SA mode, the STAR SWP (BW) multiplier is configured to operate as two
or four sub-word parallel BW multipliers.

In the 4×4 configuration, the yellow squares of the PPM in Fig.5.5c correspond
to the four groups of 4 × 4 = 16 blocks (64 blocks in total) in the right-to-left diag-
onal of the PPM array in Fig. 5.6 (top). These four diagonal squares can be seen
as four independent 4-bit BW multipliers. The 16 blocks inside each of these 4-bit
multipliers are configured with P = 1 (a = 1) and I = 0 (j = 0), except for the red
blocks in the left-most column and in the last row, having I = 1 ({g, h} = 1). The
other blocks in the grey squares in Fig. 5.5c are gated, thus have P = 0 ({b, c, d} = 0),
and become inactive. To perform the addition of 1s required by the BW algorithm
[50], we use some of these inactive blocks, since they do not need to propagate the
internal PPs when in SA mode. In particular, we use the red, blue and green blocks
with magenta borders in Fig. 5.6 (top), which can add a 1 in the FAs chain with
I = 1 ({g, h} = 1, i = 0). All the other inactive blocks have I = 0 ({c, e, f, i, j, k} = 0)
thus they do not add any 1. In positions where no inactive blocks are available, we
exploit the Si inputs of the blocks in the left-most column of the PPM and the input
of the most significant FA of the left-most 8-bit RCA ({a, g} = 1, i = 0). Finally,
to keep the four 8-bit multiplication results separated in the final 32-bit result, we
have to interrupt the propagation of the carry-out bits in all the positions marked
by the green and violet “X” symbols in Fig.5.6 (top) ({d, m} = 0), as explained
before.

In the 8×8 and 8×4 cases, the two yellow squares of the PPM in Fig.5.5b
correspond to the two groups of 8 × 8 = 64 blocks (128 blocks in total) in the right-
to-left diagonal of the array in Fig.5.6 (top). Also in this case, these two squares can
be seen as independent 8-bit BW multipliers. The 64 blocks inside each 8-bit BW
are configured with P = 1 ({a, b} = 1) and I = 0 ({g, j} = 0), while the red blocks
in the left-most column and the last row receive I = 1 ({h, i} = 1). Inactive blocks
require P = 0 ({c, d} = 0). To add logic 1s, we use again the blue and green blocks
present in inactive positions, with magenta border in Fig. 5.6 (top), by setting
I = 1 ({i, h} = 1, g = 0), while other blocks have I = 0 ({c, e, f, i, j, k} = 0). When

90

5.3 – Experimental Results

no inactive blocks are available, we use the Si inputs of the blocks in the left-most
column and of the most significant FA of the left 8-bit RCA ({a, i} = 1, g = 0).
Finally, to maintain the two independent 16-bit multiplication results, we gate the
carry-out bits in all the positions marked by the violet “X” symbols in Fig.5.6 (top)
(d = 0, m = 1).

Sum-Together multiplications

In ST mode, STAR SWP (BW) always operates in sub-word parallel mode,
but the active yellow squares of the PPM are mirrored with respect to SA mode,
as shown in Figs.5.5d–e. This implies that the output sum bits So of one yellow
square, propagating diagonally from left to right, can be used as inputs for the next
yellow square, hence allowing the addition of the low-precision multiplications and
ultimately achieving a dot-product operation.

Like in SA mode, blocks belonging to the yellow squares can be seen as inde-
pendent BW multipliers. These blocks are configured with P = 1 and I = 0, except
for the red blocks in the left-most column and in the last row, having I = 1 (precise
signal assignment is now trivial and left to the reader). The blocks belonging to the
grey squares are gated, thus have P = 0 to make them inactive. As in SA mode,
we use some of these inactive blocks to accomplish the 1s addition required for
signed operations. In this case, we use blue and green blocks with orange borders,
as visible in Fig. 5.6 (top), which propagate, given I = 1, a logic 1 to the internal
FAs. The remaining inactive blocks receive I = 0.

As explained in Sec. 5.1, ST operations need to align the final result to the LSB
position [29]. Indeed, the shift & ext block in Fig. 5.2b is used to right-shift the
result by 8 bits for 8×8 and 8×4 operations (Figs. 5.5d), and by 12 bits for 4×4
operation (Figs. 5.5e).

5.3 Experimental Results

5.3.1 Power, Performance and Area Comparison of STAR
Multipliers

To rank the STAR solutions and establish the best PPA trade-off, we synthesize
their RTL description after adding I/O registers using Synopsys DC and target-
ing a 28-nm CMOS technology. Fig. 5.7 reports the results of area and power vs
clock period (displayed at the top and bottom, respectively), obtained by varying
the target clock frequency from 0.4 to 2 GHz. The clock period also takes the re-
configuration time into account, allowing to change configuration at every cycle.
Pareto-optimal points represent the solutions with lowest area or power for a given
target clock period. The reported power is an average of eight values obtained
when the multipliers are configured in 16-bit mode (16×16 and 16×8), ST mode

91

Precision-Scalable Multipliers: Sum-Together/Apart Reconfigurable (STAR) Multipliers

(8×8, 8×4, and 4×4 ST) and SA mode (8×8, 8×4, and 4×4 SA). For simplicity,
the power is determined by applying random input bits evenly distributed between
zero and one. While this may not be representative of realistic ML workloads, it
still allows for a correct relative comparison. In the future, we plan to use distribu-
tions derived from quantized DNNs to provide more accurate estimates of absolute
power consumption.

In the area vs clock period graph of Fig. 5.7, we observe that STAR SWP is
Pareto-optimal in the low frequency range up to 0.8 GHz (1.25 ns) with runners-up
STAR D&C and STAR 3-way. This is because in this range the BW implementation
manages to effectively share the logic gates among all the operating modes in the
best possible way, while the other solutions have redundant gates that result in
larger area. The lower area, and so also lower capacitance, results in lower power
for a given clock period, making STAR SWP Pareto-optimal also in power vs clock
period up to 0.9 GHz (1.11 ns), as clear in the power vs clock period graph of
Fig. 5.7.

In the range 0.9–1.1 GHz, both STAR D&C and STAR 3-way become Pareto-
optimal in terms of area vs clock period, with STAR SWP third-best. This is
because the BW implementation has longer critical paths, which is well known for
BW multipliers in general [50] and results in larger gates to satisfy tighter frequency
constraints.

In the same middle range, more precisely between 1.0 and 1.3 GHz, the STAR
D&C solution manages to obtain the best trade-off in power vs clock period.

In the upper frequency range, STAR 3-way emerges without any contenders
and achieves the best area and power. This is because the synthesizer freely selects
the best implementation for the three types of multipliers, recovering area in the
smallest 4×4 ones with shorter paths and using effectively gate sizing for the larger
16×16 one.

As expected, naively combining ST and SA solutions (ST+SA) is not effective
and results in Pareto-dominated solutions both in area and power vs clock period.
For a fair comparison, we do not analyze ST-only or SA-only designs because they
do not support all the STAR configurations.

To summarize, the results of this exploration allow designers to choose the best
implementation according to the design target. For low-power and low-area, a
STAR SWP solution is the most appropriate implementation. At the other end of
the spectrum, for high-performance designs, the best choice is STAR 3-way. In the
middle, also STAR D&C can become competitive with STAR 3-way, especially in
terms of power.

92

5.3 – Experimental Results

d d d d

d d d d

d d d d

c/d e/d e/d e/d

c c c c

c c c c

c c c c

c c c c

c c c c

c c c

c c c c

k/c j/c j/c j/c

e/d d d d

e/d d d d

e/d d d d

j/d f/d f/d f/d

i/b b b b

i/b b b b

i/b b b b

i/b b b b

g/a a a a

g/a a a a

g/a a a a

a g/a g/a g/a

h/a a a a

h/a a a a

h/a a a a

a h/a h/a h/a

b b b g/b

b b b b

b b b b

i/b i/b i/b h/b

b b b b

b b b b

b b b b

b b b b

g/a a j/a a

g/a a a a

g/a a a

a g/a g/a g/a

a a a a

a a a a

a a a a

a a a a

b b b b

b b b b

b b b

b j/b g/b

f/d d d d

f/d d d d

f/d d d d

j/d e/d e/d e/d

c c c i/c

c c c c

c c c c

c c c c

j/c e/c c c

j/c c c c

j/c c c c

k/c e/c g/c

e/d d d g/d

e/d d d d

e/d d d d

c/d d h/d

8-bit RCA8-bit RCA

i

g

a

m

k

a

b

b

c d

FULL ADDER

AND

AB

AND

Ci PSi

Co So

FULL ADDER

NAND

AB

AND

Ci PSi

Co So

FULL ADDER

AB

Co

OR

P

AND

So

Si Ci I

NAND
FULL ADDER

So

AND

AB PSi

AND
M

Ci

Co

FULL ADDER

AND

AB

Co

OR

P

AND

I

So

Si Ci

FULL ADDER

AND

AB

XOR

P

AND

ISi Ci

Co So

m d

c

Figure 5.6: STAR SWP (BW): PPM with two 8-bit RCAs (top), PPM blocks (bottom),
carry propagation “stopper” (bottom right). Each block receives specific binary values
(marked with letters from a to i in the block itself) in P and I: a single letter represents
logic values for P , while two letters for I and P , respectively (e.g., c/d means I = c,
P = d). White and grey blocks, similar to a standard BW, have an extra AND gate to
control the propagation of PPs. Red blocks guarantee the PP inversion and, together
with blue and green ones, the generation of logic 1. The “stoppers” (marked with “X”)
halt the carry propagation of the low-precision results in SA mode, based on the binary
values m and d received in M . All binary values depend on CONFIG. Image from [27].

93

Precision-Scalable Multipliers: Sum-Together/Apart Reconfigurable (STAR) Multipliers

STAR SWP (BW) [27] (ours)

ST+SA SWP (BW) [25]

STAR D&C [27] (ours)

ST+SA D&C [49]

STAR 3-way [27] (ours)

Pareto front

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

 2.5

 1000 1250 1500 1750 2000 2250 2500 2750 3000

C
lo
c
k

 P
e
ri
o
d

 (
n
s
)

Area (μm2)

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

 2.5

.2 .3 .4 .5 .6 .7 .8 .9 1 2 3

Clock
freq.
(MHz)

C
lo
c
k

 P
e
ri
o
d

 (
n
s
)

Power (mW)

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

Figure 5.7: PPA comparison of STAR architectures. Image taken from [27].

94

Chapter 6

Accelerating Quantized DNN
Layers on RISC-V with a STAR
MAC Unit

Some of the work described in this chapter was also previously published in [31].
In this chapter, we convert a fixed-precision RISC-V processor, known as Ibex

[54], into a PS core by replacing the original standard multiplier with a STAR BW
one. After discussing the hardware design of the original core and the modification
that led to the new PS solution, we assess the execution time, area, and power of
the new PS processor compared to the original one by executing various quantized
2D-Conv, DW-Conv and FC layers.

6.1 Ibex: The Baseline RISC-V Processor
The Ibex processor, formerly known as Zero-riscy [54], is an in-order single-

issue processor that adheres to the RV32I RISC-V base set [116]. It is available
in four different versions: micro, small, maxperf and maxperf-pmp-bmfull. In the
micro and small variants, the core features a two-stage pipeline. The first stage
handles data fetching operations from memory, while the second stage encompasses
all other operations, including writeback. Conversely, the maxperf and maxperf-
pmp-bmfull versions have a three-stage pipeline, with the writeback phase occurring
in the third stage. Moreover, the four versions differ in their RISC-V ISA support.
The micro variant supports the RV32E base set1 with the C-extension for having
compressed instructions on 16 bit, aimed at reducing the code size. The small and
maxperf variants support the RV32I base set with the M- and C-extensions. The

1RV 32E stands for 32-bit base RISC-V ISA (RV 32), with a specific variation for embedded
systems (E): the number of registers is reduced from the 31 to 15 register.

95

Accelerating Quantized DNN Layers on RISC-V with a STAR MAC Unit

CSR

IF Stage

IM

ID Stage EX Block

Prefetch
Buffer

In
st

ru
ct

io
n

M
em addr_o

rdata_i 32 ID
EX

Comp
Decoder

Decoder

Controller

Reg File

ALUOpA

OpB

MULT
DIV

RdA
RdB

Wr

IM
PC

RF

RF
IM

LSU

D
at

a
M

em

addr_o

wdata_o
rdata_i

Ibex Core

OpA
OpB

32

32

IM

debug_req_i

Figure 6.1: The small version of the Ibex core: two-stage pipeline, low-power, RV32IMC
RISC-V ISA. Image taken from [54].

M-extension adds instructions related to multiplication and division operations.
The maxperf-pmp-bmfull also supports the B-extension, which provides support for
operations involving bit-level manipulation, such as bit insertion, masking, bit test,
rotation, funnel shift, bit permutation, among others. Lastly, the small version
lacks a dedicated branch target ALU and integrates a small Multiplier/Divider
(MULT/DIV) unit named Fast (fast-netlist in [54]). On the other hand, the maxperf
and maxperf-pmp-bmfull versions include the branch target ALU and feature a
larger and faster MULT/DIV unit named SingleCycle.

In our study, we focus on the small version of the Ibex core, in particular on its
Fast MULT/DIV unit [54]2. Readers interested in the SingleCycle MULT/DIV unit
can refer to [117], while those interested in all the other parts of the processor can
visit the Ibex official reference [118]. The small Ibex is an area-optimized RISC-V
core designed to target arithmetic-control mixed applications. It implements the
RV32IMC instruction set architecture. Fig. 6.1 provides a simplified overview of
its microarchitecture, which comprises two pipeline stages: the Instruction Fetch
(IF) and the Instruction Decode and Execute (IDE) stage. The IF stage interacts
with the instruction memory subsystem and includes a prefetch buffer for collecting
data from the instruction memory, handling compressed instructions, and gener-
ating the instruction address and program counter values. It also features a First
In First Out (FIFO) buffer to store instructions when the subsequent stage is not
ready to process them. The IDE stage is responsible for decoding instructions,
reading operands from the register file, preparing operands for the ALU and the
multiplier unit, and executing instructions. The register file is a 2-read-1-write

2The version of the Ibex used in our work can be found at https://github.com/lowRISC/
ibex/tree/8db89a9dfc0cb08371d079cfc76e83d9ffc66480. Accessed on: Mar 9, 2024.

96

https://github.com/lowRISC/ibex/tree/8db89a9dfc0cb08371d079cfc76e83d9ffc66480
https://github.com/lowRISC/ibex/tree/8db89a9dfc0cb08371d079cfc76e83d9ffc66480

6.2 – The Fast MULT/DIV unit of the small Ibex

Figure 6.2: Overview of the original Fast MULT/DIV unit of the Ibex core. Image taken
from [117].

latch-based register file. The ALU consists of essential hardware resources to sup-
port the RV32IMC ISA, including a 32-bit adder, a 32-bit shifter, and a logic unit.
The 32-bit adder performs additions, subtractions, and comparisons, and is shared
with the data address generation unit, branch engine, and divider. Instructions in-
voling branches, multiplications, divisions, loads and stores are executed iteratively,
causing the next instruction to stall until completion.

6.2 The Fast MULT/DIV unit of the small Ibex
The Fast version of Ibex’s MULT/DIV unit is depicted in Fig. 6.2. It includes

a single signed 17-bit multiplier, which handles all the multiplication instructions
of the RISC-V RV32IM ISA, that are MUL, MULH, MULHU, and MULHSU. It is

97

Accelerating Quantized DNN Layers on RISC-V with a STAR MAC Unit

implemented with 17 bits, rather than the more common 16-bit version, to accom-
modate all potential multiplication scenarios with a single multiplier, supporting
signed×signed, unsigned×unsigned, and signed×unsigned/unsigned×signed oper-
ations. Indeed, when dealing with 16-bit operands, unsigned values are zero-
extended to 17 bits, while signed values are sign-extended. The MULT/DIV unit
also includes a 33-bit adder, which takes the output of the multiplier and the con-
tent of ALU REG as inputs. The latter is the output register of the ALU. This
register is re-used by the MULT/DIV unit to accumulate the multiplier’s partial
results over time, allowing for 32-bit multiplications to be completed in multiple
clock cycles. A finite state machine (FSM) controls the operation of the MULT/-
DIV unit and generates the 2-bit signal STAGE, which indicates the iteration clock
cycle (ICC) of the FSM. During each ICC of a 32-bit multiplication, the appropriate
16-bit chunks from the 32-bit operands A and B, after being sign- or zero-extended
depending on the multiplication type (i.e., signed/unsigned), are selected by a cou-
ple of input multiplexers controlled by the STAGE signal and sent to the 17-bit
multiplier. The resulting product is fed to the 33-bit adder, where it is eventually
accumulated with the previous partial results stored in ALU REG. The selection of
the values to be stored in the ALU REG and delivered to the adder is determined
by a minimal combinational logic (COMB LOGIC) based on STAGE and the in-
struction type. This process continues until the 32-bit multiplication is completed.
As illustrated in Fig. 6.7, the number of ICCs required depends on the instruction
type: for the MUL instruction, which returns the lower 32 bits of the resulting 64
bits through the 32-bit OUT signal (Fig. 6.2), the computation takes three clock
cycles; for MULH, MULHU, or MULHSU instructions, which return the upper 32
bits of the result, it takes four clock cycles. Specifically, MULH returns the upper-
part if both operands are signed, MULHU if they are both unsigned, and MULHSU
if the first operand is signed and the second is unsigned.

6.3 The novel STAR MAC unit integrated in the
small Ibex

We replace the 17-bit multiplier within the Fast MULT/DIV unit of the Small
Ibex processor with our SWP STAR multiplier, as depicted in Fig. 6.3 and discussed
in Sec. 6.3.1. This substitution results in a novel STAR MAC unit, showcased in
Fig. 6.5 and analyzed in Sec. 6.3.2. The STAR multiplier executes one 16-bit mul-
tiplication, or N=2, 4 parallel low-precision multiplications with 16/N-bit operands
for both SA/ST operating modes. The STAR MAC unit still supports all multipli-
cation instructions of the RISC-V RV32IM ISA and preserves the iterative approach
of the original MULT/DIV unit, requiring multiple ICCs to complete an instruc-
tion. Moreover, it supports MAC operations, which are not available in the original
MULT/DIV unit. Specifically, we add a standard 32-bit MAC instruction, which

98

6.3 – The novel STAR MAC unit integrated in the small Ibex

Table 6.1: New MAC instructions and number of required clock cycles.

Instruction Operation Clock
Cycles

MAC O[31:0] = A[31:0]×B[31:0] + D[31:0] 3

MAC16ST O[31:0] = A[15:0]×B[31:16] + A[31:16]×B[15:0] + D[31:0] 2

MAC8ST O[23:0] = A[7:0]×B[31:24] + A[15:8]×B[23:16] +
+ A[23:16]×B[15:8] + A[31:24]×B[7:0] + D[31:8]

2

MAC4ST

O[19:0] = A[3:0]×B[31:28] + A[7:4]×B[27:24] +
+ A[11:8]×B[23:20] + A[15:12]×B[19:16] +
+ A[19:16]×B[15:12] + A[23:20]×B[11:8] +
+ A[27:24]×B[7:4] + A[31:28]×B[3:0] + D[31:12]

2

MAC16SA O[31:0] = A[15:0]×B[31:16] + D[31:0] 2

MAC8SA O[15:0] = A[7:0]×B[23:16] + D[15:0]
O[31:16] = A[15:8]×B[31:24] + D[31:16]

2

MAC4SA

O[7:0] = A[3:0]×B[19:16] + D[7:0]
O[15:8] = A[7:4]×B[23:20] + D[15:8]
O[23:16] = A[11:8]×B[27:24] + D[23:16]
O[31:24] = A[15:12]×B[31:28] + D[31:24]

2

MAC16SAH O[31:0] = A[31:16]×B[15:0] + D[63:32] 2

MAC8SAH O[15:0] = A[23:16]×B[7:0] + D[47:32]
O[31:16] = A[31:24]×B[15:8] + D[63:48]

2

MAC4SAH

O[7:0] = A[19:16]×B[3:0] + D[39:32]
O[15:8] = A[23:20]×B[7:4] + D[47:40]
O[23:16] = A[27:24]×B[11:8] + D[55:48]
O[31:24] = A[31:28]×B[15:12] + D[63:56]

2

MACSET MAC REG[63:0] = {A[31:0], B[31:0]} 1

takes 3 clock cycles, and custom low-precision ST/SA MAC instructions (MACySA
and MACyST, y ∈ {4,8,16}), which exploit the STAR multiplier and take 2 clock
cycles. All the new MAC instructions are reported in Table 6.1, where A and B
are the two-input operands, D is the value to accumulate, and O is the output of
the STAR MAC unit. We report only the MAC instructions that support signed
operands because these are the instructions that will be used in the benchmarks
of quantized DNN layers discussed in Sec. 6.4. However, we have also defined and
implemented the equivalent MAC instructions (MACHSU and MACHU) of the cor-
responding unsigned RV32IM MUL instructions (MULHSU and MULHU). We will
not provide further details regarding MACHSU and MACHU instructions in this
thesis. For additional information, the interested readers can refer to [117], which
covers the encoding of the new instructions, modifications to the decode unit, and

99

Accelerating Quantized DNN Layers on RISC-V with a STAR MAC Unit

customization of the GCC compiler for recognizing the new assembly instructions.

6.3.1 STAR BW Multiplier
The core of our STAR MAC unit is the 16-bit STAR multiplier, whose BW ar-

chitecture is depicted in Fig. 6.3. Its design resembles the one of STAR SWP (BW),
previously described in Fig.5.6 (top), Sec. 5.2; however, it now supports unsigned
and MAC operations, too. In particular, the latter are performed by accumulating
a third input, denoted as C, within the architecture during the multiplication pro-
cess of inputs A and B (explained later). In addition, note that SA instructions
now multiply different subwords of A and B compared to STAR SWP (BW). For
example, MAC16SA now performs the operation A[15:0]×B[31:16], whereas in STAR
SWP (BW) it was A[15:0]×B[15:0]. This optimization reduces the number of input
multiplexers and increases their reuse among SA and ST operations.

Let us recap the functionalities of STAR applied to a BW architecture and
discuss how the new features affect the previous design.

STAR BW consists of a 16×16 PPM that works as a typical BW multiplier [50]:
each block receives a pair of bits from the two input operands, computes the partial
product (PP) between them using an AND gate; then it generates the output sum
So and carry Co bits by compressing the PP, along with the input sum Si and input
carry Ci bits, using a FA. The sum bits propagate diagonally, while the carry bits
propagates vertically, connecting all the blocks of the PPM (not shown in Fig. 6.3a
for better clarity).

To support low-precision SA and ST operating modes, in addition to the stan-
dard full-precision 16-bit multiplication, the PPM requires to be reconfigured in one
of the five ways illustrated in Fig. 6.4, where the top square of each configuration
represents the PPM and the bottom rectangle corresponds to the final 32-bit result
R of the STAR multiplier. The PPs in the yellow areas of the PPM contribute to
generate the yellow bits of R, while the PPs in the grey areas are gated and do
not contribute to it. To obtain this behavior, we create three configurable blocks
(white, red and blue, Fig. 6.3b–d) by adding few logic gates controlled by signals
P (propagate) and I (invert), and we place them in specific positions in the STAR
PPM.

As shown in Fig. 6.4, depending on the STAR configuration, any block of the
PPM could be potentially be gated. Thus, each block of the STAR PPM must
have the possibility of blocking the PP propagation. For this reason all the three
configurable blocks have an AND gate which stops the propagation of the PP
towards the FA when P = 0.

To support signed operations, we need to take into account two aspects. The
first is that the PPs belonging to the blocks in the left-most column and bottom
row of a typical BW PPM have to be inverted. Since in any ST/SA configuration
of STAR each yellow square of Fig. 6.4 behaves like an independent low-precision

100

6.3 – The novel STAR MAC unit integrated in the small Ibex

8-bit RCA8-bit RCA

HA

C31

C15C14C13C12 C11C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0

C29
C30

C28

C25
C26
C27

C24

C21
C22
C23

C20

C17
C18
C19

C16

FA

FA

FAFA

FAHA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

HA

FA

C33 C32

R0
R1
R2
R3

R4
R5
R6
R7

R8
R9
R10
R11

R12
R13
R14
R15

R16R17R18R19R20R21R22R23R24R25R26R27R28R29R30R31R32R33

(a)

FULL ADDER

AND

AB

AND

Ci PSi

Co So

(b)

FULL ADDER

AND

AB

XOR

P

AND

SiCi

Co So

I

(c)

FULL ADDER

AND

AB

Co

OR

P

AND

So

SiCi I

(d)

FULL ADDER

So

AND

AB PSi

AND
M

Ci

Co

(e)

Figure 6.3: PPM of the STAR BW multiplier (a), three versions of PPM blocks (b-d),
and carry propagation blocking strategy (e). Images taken from [31].

BW multiplier, we need to guarantee the PP inversion in all the left and bottom
blocks of these sub-precision multipliers, as well. For this task, we conceive the

101

Accelerating Quantized DNN Layers on RISC-V with a STAR MAC Unit

32-bit, or
16-bit ST/SA

(CONF = MUL32, or
 CONF = MUL16{ST/SA})

16

R

32b

8

8

R2 R1

16b16b

8-bit SA

(CONF = MUL8SA)

R4 R3 R2 R1

8b 8b 8b 8b

8

8

R X

24b 8b 20b 12b

R X

4

4
4

44
4

4
4

4-bit SA

(CONF = MUL4SA)

8-bit ST

(CONF = MUL8ST)

4-bit ST

(CONF = MUL4ST)

(a) (b) (c) (d) (e)

Figure 6.4: The five operating modes of the STAR BW multiplier, where the top square
of each configuration is the BW PPM and the bottom rectangle is the multiplier’s output.
Images taken from [31].

red block (Fig. 6.3c), which inverts the output of the PP when I = 1 via an XOR
gate. The second aspect is the insertion of logic 1s in specific positions of the PPM
to accomplish the BW algorithm [50]. Typically, the insertion of these 1s occurs
through the Si inputs of the top and left-most blocks of the BW PPM as it happens
for i and g in the PPM of Fig.5.6 (top), Sec. 5.2. However, we decide to use those
inputs to add the third operand of the MAC operation, i.e., the 34-bit signal C
(as cleared later). Hence, when possible, we generate these 1s using the inactive
red blocks (with P = 0 and I = 1) inside the PPM. When not possible, we insert
the blue blocks (Fig. 6.3d), which use an OR gate to force the PP to be logic 1
(again with P = 0 and I = 1). Compared to the previous PPM shown in Fig.5.6
(top), Sec. 5.2, we also replace the green blocks with more generic red ones and
substitute the white block in the bottom left corner with a red one to enable STAR
to perform unsigned operations. For what concerns the orange FAs placed on the
left side of the PPM and of the pink ones at the bottom-left corner, we will explain
their purpose later in Sec. 6.3.2.

The final output of STAR BW is the concatenation of the eighteen bits at the
output of the RCA (R[33:16]), which compresses the So and carry Co bits of the
last row of the PPM, and the sixteen So bits exiting from the rightmost column of
the PPM (R[15:0]). To guarantee that R is separated in two or four independent
subwords for 8-bit and 4-bit SA operations, we have to interrupt the propagation
of the carry between two consecutive low-precision multiplications. Therefore, we
insert a few AND gates, controlled by signal M (Fig. 6.3e), between two vertically
adjacent blocks, as shown in Fig. 6.3a by the X symbols. We also add an AND gate
between the two 8-bit RCAs.

102

6.3 – The novel STAR MAC unit integrated in the small Ibex

A

C

SHIFTER

••••••
8-bit adder

STAR BW Multiplier Fig.6.3

10-bit adder

•••

O

ALU REG
34 bit

ALU REG
UPDATE

MAC REG
UPDATE

MAC REG
64 bit

CONCAT

STAGE
CONF

MAC_CTRL

OUTHLn

AH=A[31:16] AL=A[15:0]

B

BH=B[31:16] BL=B[15:0]

C
GEN

SIGN

2b

1b2b

3b

2b

1b

32b

34b

32b32b

34b

1b

R

S 32b

A_int B_int

CONCAT_out

Figure 6.5: The STAR MAC unit implemented in the Ibex core. The STAR BW Multi-
plier is the one reported in Fig. 6.3. Image taken from [31].

Finally, signals P and I are generated by a combinational logic that uses the
following control signals: CONF, a 3-bit signal indicating the actual operation type
(SA/ST at 32/16/8/4 bits); OUTHLn, a single bit indicating which part (32-bit
high/low) of the 64-bit final result has to be returned by the instruction (note: SA
operations can have multiple separate results in the 32-bit high/low of the result,
according to Table 6.1); SIGN, a bit indicating if the instruction works with signed
or unsigned operands; and STAGE. Note that the first three signals come directly
from the instruction opcode.

6.3.2 STAR MAC unit
Like in the original MULT/DIV unit, the 32-bit input operands A and B come

from the register file. The proper upper and lower 16-bit chunks from A and B are
selected by the input multiplexers depending on the ICC. However, in our MAC
STAR unit these two multiplexers are controlled not only by STAGE, but also by
CONF because we have to deal with ST and SA instructions (Fig. 6.6a).

For MUL instructions, at each ICC the combinational logic ALU REG UPDATE

103

Accelerating Quantized DNN Layers on RISC-V with a STAR MAC Unit

ALU REG UPDATEINPUT MULTIPLEXERS

(a) (b)

1

0

R[31:0]

ALU_REG_q[15:0]

R[15:0]
[31:16]

[15:0]

OUTHLn

1

0

== MUL16SA ? 1 : 0

== MUL8SA ? 1 : 0

== MUL4SA ? 1 : 0

== MUL32 ? 1 : 0

STAGE

[1:0]

0

1
R[31:0]

ALU_REG_q[31:0]
1

0 R[33:32]

[33:32]

[31:0]

00

01

10

11

CONF

CONF

OR

S[31:0]

ALU_REG_d[33:0]

R[31:0]

1

0

== MUL32 ? 1 : 0

STAGE

00

01

10

11

CONF

A_int[15:0]

A[15:0]

A[31:16]

00

01

10

11

B_int[15:0]

[1:0]

B[15:0]

B[31:16]

Figure 6.6: Schematics describing: (a) the input multiplexers (of Fig. 6.5) and (b) the
ALU REG UPDATE block. Images taken from [31].

in Fig. 6.5 selects which subword of R to store in the register ALU REG for the next
ICC. In fact, the content of ALU REG is used by the multiplier in the subsequent
ICC to continue the iterative multiplication process (as clarified later). ALU REG
UPDATE takes as inputs the multiplier’s output R, the SHIFTER’s output S and
the content of ALU REG, and is controlled by STAGE, OUTHLn and CONF (the
first two are present also in the original MULT/DIV unit), as reported in Fig. 6.6b.

For MAC instructions, we introduce the 64-bit accumulation register MAC
REG, along with the combinational logic MAC REG UPDATE responsible for
its updating. During MAC instructions, the contents of MAC REG and ALU REG
are both used by the STAR multiplier in the subsequent ICC to continue the itera-
tive multiply and accumulate process. Indeed, ALU REG serves the same purpose
as in the MUL instructions case, which is to temporarily store R to use it in the
next ICC, whereas MAC REG is used to store the partial accumulated value. MAC
REG UPDATE, whose schematic is reported in Fig. 6.8a, behaves similarly to ALU
REG UPDATE : it takes R, the content of ALU REG and the concatenation of A
and B (i.e., the output of the CONCAT block, which is called CONCAT_out) to
update ALU REG according to STAGE, CONF and MAC_CTRL control signals.

For both MUL and MAC instructions, the third input C to the STAR BW

104

6.3 – The novel STAR MAC unit integrated in the small Ibex

+

=

O

ICC1

ICC2

ICC3

1b

D[15:0]

=

+
=

+

16b 16b 16b 16b

ICC4

A[15:0] x B[15:0]

A[15:0] x B[31:16]

A[31:16] x B[15:0]

D[31:16]

(a) MAC

+

=

O

1b

D[15:0]

=

+
=

+

16b 16b 16b 16b

A[15:0] x B[15:0]

A[15:0] x B[31:16]

A[31:16] x B[15:0]

D[31:16]D[47:32]D[63:48]MAC REG

ALU REG

D[47:32]D[63:48]

D[63:48]

(b) MACH, MACHU, and MACHSU

STAR MUL

LEGEND

A[31:16] x B[31:16]

2bEXT
D[63:48]

=

+

2b

CARRY OUT

Figure 6.7: The operations performed by STAR MAC at each ICC for (a) MAC, (b)
MACH, MACHU, and MACHSU, (c) MACyST, (d) MACySA, and (e) MACySAH in-
structions (y ∈ {4,8,16}).

multiplier comes from the combinational logic C GEN. The schematic of C GEN is
reported in Fig. 6.8b. Through control signals MAC_CTRL (a 2-bit signal which
indicates if the current instruction is a MAC (01b), a MACSET (11b), or a MUL
(00b)), STAGE and CONF, C GEN selects ALU REG in case of standard MUL
operations, or the proper sub-words of MAC REG and ALU REG in case of MAC
operations.

Fig. 6.7 illustrates in detail which operations are performed by STAR MAC at
each ICC for MAC (Fig. 6.7a), MACH (Fig. 6.7b), MACyST (Fig. 6.7c), MACySA
(Fig. 6.7d), and MACySAH (Fig. 6.7e) instructions (y ∈ {4,8,16}). The blue rounded-
edge rectangles show the 16-bit subwords of A and B processed by the STAR multi-
plier at each ICC. The green and orange sharp-edge rectangles are MAC REG and
ALU REG, respectively. The bits generated by STAR at each ICC are always saved
in a portion (16 bits) or the entire content (32 bits) of ALU REG (as shown by
the arrowheads) and return in input to STAR at the next ICC through C in order
to get the expected final MAC result. Only when the generated bits represent the

105

Accelerating Quantized DNN Layers on RISC-V with a STAR MAC Unit

+

O

D[15:0]

=

+
=

+

16b 16b 16b 16b

A[31:16] x B[15:0]

A[15:0] x B[31:16]

D[31:16]

(c) MACyST

ICC1

ICC2

+

O

D[15:0]

=

+
=

+

16b 16b 16b 16b

A[31:16] x B[15:0]

A[15:0] x B[31:16]

D[31:16]D[47:32]D[63:48]

D[47:32]D[63:48]

(d) MACySA

+

O

D[15:0]

=

+
=

+

16b 16b 16b 16b

A[31:16] x B[15:0]

A[15:0] x B[31:16]

D[31:16]D[47:32]D[63:48]

D[47:32]D[63:48]

(e) MACySAH

ICC1

ICC2

Figure 6.7: The operations performed by STAR MAC at each ICC for (a) MAC, (b)
MACH, MACHU, and MACHSU, (c) MACyST, (d) MACySA, and (e) MACySAH in-
structions (y ∈ {4,8,16}).

final MAC results, they are saved in MAC REG, allowing the next MAC operation
to start with the previously accumulated result already stored in MAC REG. In
particular, for 32-bit MAC instructions the result is accumulated in MAC REG up

106

6.3 – The novel STAR MAC unit integrated in the small Ibex

to 32-bit precision, while for 32-bit MACH, MACHSU, MACHU instructions the
result is accumulated up to 64-bit precision. For SA instructions, instead, MAC
REG stores the accumulated results in separate data chunks: two 32-bit chunk for
MAC16SA, four 16-bit chunks for MAC16SA, or eight 8-bit chunks for MAC4SA.
For ST instructions, results are accumulated and stored with a precision of 32, 24,
or 20 bits for MAC16ST, MAC8ST, or MAC4ST, respectively.

At the last ICC, each instruction returns the output O as final result, which cor-
responds to the 32 LSBs coming from the output of ALU REG UPDATE (Fig. 6.5).
This means that while MACySA computes the complete 64-bit result and stores
it in MAC REG, it only returns the lower 32 bits (Fig. 6.7d). To return the up-
per 32 bits, which remain stored in MAC REG, the user needs to use MACySAH
(Fig. 6.7e) with both A and B set to zero. The output of ALU REG UPDATE
can be: S for MAC8ST and MAC4ST operations, or R for MAC16ST and all the
other non-ST operations (as visible in Fig. 6.6b). In fact, in the former case the
SHIFTER is used to get rid of the 8 or 12 invalid LSBs of R (as reported in grey
in the result of Fig. 6.4d–e).

Thanks to Fig. 6.7a–b, we are now able to explain the purpose of the orange
and pink FAs placed on the left and bottom-left sides of the PPM of the STAR
BW multiplier. These FAs enable the correct accumulation of C inside the PPM.
For MAC, MACH, MACHU, and MACHSU instructions, the 32-bit multiplication
result between A and B needs to be summed with C. Thus, one or two carry
output bits are produced at ICC1, ICC2 and ICC3, as highlighted in purple in
Fig. 6.7a–b. In order to have the correct final MAC result, these bits need to be
accumulated along the ICCs. In particular, these bits also need to be sign extended
before accumulation at ICC4 during MACH, MACHU, and MACHSU instructions.
Therefore, in the STAR BW multiplier we place a column of orange FAs and we
insert these carry bits in the their available input (not shown in Fig. 6.3a for better
readability). Furthermore, having these two more bits to sum requires a longer
RCA. This is the reason for the two additional pink FAs that extend the left RCA
from 8 to 10 bits.

Regarding the MACSET instruction (Table 6.1), it is commonly used to ini-
tialize MAC REG with the value of CONCAT_out at the beginning of a software
routine that requires a series of MAC instructions. CONCAT_out is the concate-
nation of A and B as shown in Fig. 6.5. Therefore, through this instruction, the
user can initialize MAC REG with operand D passing it through A and B signals.

107

A
ccelerating

Q
uantized

D
N

N
Layers

on
R

ISC
-V

w
ith

a
STA

R
M

A
C

U
nit

MAC REG UPDATE C GEN

(a) (b)

1

0
[63:16]

[15:0]

== MUL16SA ? 1 : 0

== MUL8SA ? 1 : 0

== MUL4SA ? 1 : 0

== MUL32 ? 1 : 0

STAGE

[1:0]

0

1

1

0R[31:0]

00

01

10

11

CONF OR

CONCAT_out[63:0]

R[15:0]

MAC_REG_q[63:16]

1

0

MAC_REG_q[31:0]

[63:32]R[31:0]

MAC_REG_q[63:32]
[31:0]

MAC_REG_q[31:0]

== MUL32 ? 1 : 0

MAC_REG_q[15:0]

[63:32]

[31:16]0

1R[15:0]

MAC_REG_q[31:16]

[15:0]

MAC_REG_q[63:32]

MAC_CTRL[0]

0

1R[31:0]

MAC_REG_q[63:32]

[31:0]

MAC_REG_q[31:0]

[63:32]

CONF

MAC_CTRL[0]
MAC_CTRL[1]

MAC_REG_q[63:0]

MAC_REG_q[63:32]

[31:0]

[63:32]

CONF

MAC_REG_d[63:0]

1

0

1

0

== MUL32 ? 1 : 0

STAGE
[1:0]

0

1

00

01

10

11

CONF

0

1

32'h00000000

MAC_REG_q[63:32]

0

1

== MUL32 ? 1 : 0CONF

0

1

1

0

MAC_REG_q[31:0]

ALU_REG_q[31:0]

[15:0]
ALU_REG_q[31:16]

[31:16]
16'h0000

MAC_REG_q[47:32]

1

0
[31:16]

[15:0]ALU_REG_q[31:16]

ALU_REG_q[31:0]

16'h0000

OUTHLn1

0
16'h0000

MAC_REG_q[63:48]
ALU_REG_q[33:32]

[33:32]

[31:0]
C[33:0]

[15:0]

ALU_REG_q[31:16]

[31:16]

MAC_CTRL[0]

MAC_REG_q[31:0]

== MUL16SA ? 1 : 0

== MUL8SA ? 1 : 0

== MUL4SA ? 1 : 0

CONF

OR

MAC_CTRL[0]

Figure 6.8: Schematics of: (a) MAC REG UPDATE and (b) C GEN blocks. Images taken from [31].

108

6.4 – Experimental Results

Table 6.2: Logic synthesis results of Orig., Orig. + MAC and STAR-based.

Ibex type
Clk.
Freq.

[MHz]

Area
[µm2]

Area
vs

Orig.

[%]

Area
vs

Orig.+
MAC

[%]

Power
[mW]

Power
vs

Orig.

[%]

Power
vs

Orig.+
MAC

[%]

Orig. 200 14241 1.46
Orig.+MAC 200 14658 +2.9 1.50 +2.7
STAR-based 200 15299 +7.4 +4.4 1.50 +2.7 +0.0
Orig. 600 15135 4.17
Orig.+MAC 600 15588 +3.0 4.27 +2.4
STAR-based 600 16528 +9.2 +6.0 4.29 +2.9 +0.5

6.4 Experimental Results
The results presented in this chapter are preliminary, with further experiments

currently ongoing.

6.4.1 Implementation Results
The possibility to perform parallel low-precision MAC operations, due to the

STAR MAC unit, enables the acceleration of quantized DNN layers on the modified
Ibex core (which we call call STAR-based). To have a fair comparison in area, power
and execution latency of DNN layers, we decide to slightly modify the original
Ibex (Orig.) to add the support to MAC instructions, resulting in a third Ibex
implementation (which we name Orig. + MAC).

We synthesize all the three Ibex versions on a 28-nm technology (0.9 V) at 200
and 600 MHz, two tight constraints for this processor according to the original work
[54]. The results of area and estimated power are reported in Table 6.2. As we can
see, STAR-based has limited area and power overheads compared to Orig.: around
7% and 3% at 200 MHz and around 9% and 3% at 600 MHz. When compared to
Orig. + MAC, the area overhead decreases even further: around 4% at 200 MHz,
and 6% at 600 MHz, while the power overheads drop almost to 0%.

6.4.2 Performance on Quantized DNN layers
Then, we evaluate the performance of STAR-based vs Orig. + MAC on these

quantized layers: FC, 128-256 input and 32 output neurons; 2D-Conv, 32-128 in-
put channels (inch.), 8x8 feature map (fmap.), 3x3 kernel (kern.) and 4 output
channels (outch.); DW-Conv, 16-64 channels (ch.), 16x16 feature map size and 3x3

109

Accelerating Quantized DNN Layers on RISC-V with a STAR MAC Unit

16b16b 16b
16b

• • •
• •

• • •
• •

• • •
•

• • •
• •

• • •
• •

• • •
• •

• • •
•

• • •
• •

• • •
• •

• • •
• •

• • •
•

• • •
• •

• • •
• •

• • •
• •

• • •
•

• • •
• •

STAR MAC in ST mode: 2D-Conv STAR MAC in SA mode: DW-Conv

(a) (b)

8x8
ST

SHIFTER

STAR BW

8b
8b

8b
8b

8b
8b

16x16
ST

SHIFTER

STAR BW

16b16b 16b
16b

8x8
SA

STAR BW

8b
8b

8b
8b

8b
8b

16x16
SA

STAR BW

Figure 6.9: Two examples of STAR MAC used in 2D-Conv and DW-Conv layers:
MAC16{ST/SA} in the upper part, MAC8{ST/SA} in the lower part. Image taken
from [31].

kernel. We assume that the low-precision operands are already packed/prearranged
in memory in such a way that the instructions listed in Table 6.1 can be directly
executed without incurring any costs due to operand reordering. To exploit the
acceleration provided by STAR at reduced precision, we code these layers with an
output-stationary dataflow [60]. We use MACyST instructions for FC/2D-Conv
and MACySA instructions for DW-Conv (y ∈ {4,8,16}) because the former layers
require the accumulation along the input channels/neurons dimension, while the
latter does not [24, 28]. In this regard, Fig. 6.9 shows two examples, for 2D-Conv
(MAC16ST and MAC8ST, Fig. 6.9a) and DW-Conv (MAC16SA and MAC8SA,
Fig. 6.9b), on how low-precision input features (light blue) and weights (orange)
are read from the corresponding tensors and packed in the two 32-bit input reg-
isters of the STAR MAC unit to produce the output features (green). Both the
approaches can be easily extended to MAC4{ST/SA} instructions and to the FC
layer [24, 28]. Furthermore, to have a fair comparison between the STAR-based and
Orig. + MAC cores, we ensure that the code of each DNN layer for both cores fea-
tures an equal number of memory accesses. As a result, the comparison exclusively
highlights the computational advantages stemming from the new STAR MAC unit.

The results of the average speedup, i.e., the ratio between the clock cycles, of
STAR-based vs Orig. + MAC for these three DNN layers at different features and

110

6.4 – Experimental Results

Table 6.3: Average speedup (i.e., ratio between clock cycles) of STAR-based vs Orig.
(column 2) and of STAR-based vs Orig. + MAC (column 3), for three DNN layers for
different features and weights bitwidths.

DNN layers Instruction

Avg. Speedup
STAR-based

vs.
Orig.

(y = 16, 8, 4)

Avg. Speedup
STAR-based

vs.
Orig.+MAC
(y = 16, 8, 4)

FC (128-256 input, 32 output) MACyST 2.0x, 3.3x, 5.8x 1.7x, 2.7x, 4.5x

2D-Conv (32-128 inch.,
8x8 fmap., 3x3 kern., 4 outch.) MACyST 1.6x, 2.3x, 3.7x 1.4x, 1.9x, 3.0x

DW-Conv (16-64 ch.,
16x16 fmap., 3x3 kern.) MACySA 1.4x, 1.9x, 2.8x 1.3x, 1.6x, 2.3x

weights precision is reported in the last column of Table 6.3. For the 16-, 8-, and
4-bit cases, respectively, the average speedup for FC is 1.7×, 2.7× and 4.5×; for
2D-Conv is 1.4×, 1.9× and 3.0×; for DW-conv is 1.3×, 1.6× and 2.3×.

We also report the average speedup of STAR-based vs Orig. for the same DNN
layers in the second column of Table 6.3. We ensure, once again, that the code of
these DNN layers has the same number of memory accesses for both processors for
a fair comparison. For this comparison, the average speedup for the 16-, 8-, and
4-bit cases is, respectively, 2.0×, 3.3× and 5.8× for FC; 1.6×, 2.3× and 3.7× for
2D-Conv; is 1.4×, 1.9× and 2.8× for DW-Conv.

111

112

Chapter 7

Conclusion and Future Work

7.1 Conclusion
With our research, we delved into the realm of Precision-Scalable (PS) hard-

ware architectures, focusing on multipliers/Multiply-and-Accumulate (MAC) units,
Application-Specific Integrated Circuit (ASIC) accelerators, and processors tai-
lored for Transprecision Computing (TC) and/or computing Deep Neural Networks
(DNNs) quantized in mixed-precision (MP) at the edge. The main findings of this
thesis are outlined below.

• In Chapter 3, we provided a comprehensive comparison of the main Sum-
Together (ST) multipliers documented in the literature [28].

A) We outlined the architectures of the State-of-the-Art (SoA) ST multi-
pliers.

B) We expanded upon previous work by proposing three new designs. The
first, named BW-ADD, shortens the critical path of the Ripple Carry
Adder (RCA) of the original Baugh-Wooley (BW) ST multiplier [25].
The second, HLS ST, is derived from High-Level Synthesis (HLS) [28].
The third, called Booth ST, is the first ST multiplier based on the Booth
architecture [26, 50].

C) We evaluated their performance, power, and area (PPA) characteristics
with a design space exploration (DSE) in a 28-nm technology in the [0.5,
1.5 GHz] clock frequency range, after normalizing their architectures to
support 16, 8, and 4 bits of precision.

The results showed that:

– BW-ADD is among the best in area in the low-frequency range, confirm-
ing that the BW architecture is not suitable for higher frequencies, even
with a faster adder, due to its inherently long critical paths;

113

Conclusion and Future Work

– Solutions based on dedicated multipliers for each configuration (like [48],
[41], HLS ST) are inefficient in area due to redundant logic gates, unlike
single high-precision multipliers working in a Sub-word Parallel (SWP)
manner ([25], BW-ADD and Booth ST), which have a higher utilization
ratio of their logic gates, resulting in lower area, especially with less
stringent timing constraints;

– Booth ST offers the best trade-off in area vs clock period for most fre-
quencies;

– [25] and BW-ADD are Pareto-optimal in power at low frequencies;
– Booth ST and [41] are the best in both area and power at high frequen-

cies.

In summary, the optimal ST multiplier solutions depend on the PPA con-
straints.

• In Chapter 4, we focused on ST-based Deep Learning (DL) accelerators for
the three most common layers of DNNs: 2D-Convolution (2D-Conv), Depth-
wise Convolution (DW-Conv), and Fully-Connected (FC) [28]. These ASIC
accelerators are PS and can be reconfigured at runtime to support operands
at 16-, 8-, and 4-bit. Here are the main contributions:

A) We provided detailed insights into the working principles, hardware ar-
chitectures, and HLS design flow that we used to derive the three ST-
based accelerators for ASIC.

B) In contrast to existing PS DNN accelerators, we integrated hardware
support for uniform integer quantization (UIQ) [51]. Moreover, in our
design flow, we included the minimization of the bitwidths of the fixed-
point variables required by the UIQ formulas.

C) We showcased the Pareto-optimal accelerators resulting from the HLS-
driven DSE in Latency vs Area and Latency vs Power spaces. We con-
ducted a rich DSE for each type of ST accelerator thanks to HLS, varying
many parameters including: memory sizes, parallelism, clock frequency,
and ST multiplier implementation in the accelerators’ MAC units.

D) Lastly, we demonstrated the pros and cons of our ST-based accelerators
integrated into a System-on-Chip (SoC) with different design require-
ments: low-area, low-power, and low-latency. We reported the achieved
latency speedup and energy reduction in the inference of Machine Learn-
ing Performance (MLPerf) Tiny models [53] quantized in MP [111] as a
case study, along with the area overheads of ST-based accelerators, when
comparing against SoCs with equivalent accelerators based on non-ST
fixed-precision 16-bit multipliers (named standard accelerators).

114

7.1 – Conclusion

– The results of the DSE allow designers to select the best type of ST
multiplier in conjunction with the optimal configuration of hardware
parameters for a given target in the PPA space.

– The results of the execution of the four MP-quantized MLPerf Tiny net-
works, using SoCs integrating ST-based accelerators tailored to differ-
ent PPA scenarios (i.e., low-area, low-power, and low-latency), revealed:
an average inference latency speedup, across the four models, of 1.46x,
1.33x, and 1.29x, respectively; a reduced average energy reduction in
most of the cases; and a marginal area overhead of 0.9%, 2.5% and 8.0%
compared to SoCs equipped with standard accelerators.

To sum up, our work provides a comprehensive understanding of ST-based
accelerators’ performance in an SoC context, paving the way for future en-
hancements and solutions to identified inefficiencies.

• In Chapter 5, we introduced a novel class of multipliers termed Sum-To-
gether/Apart Reconfigurable (STAR), capable of operating in both SA and
ST modes within a single design [27]. This is a novelty for the literature
as Sum-Apart (SA) and ST multipliers have been proposed as stand-alone
implementations until now [29].

A) We developed four STAR multiplier architectures, accommodating 16,
8 and 4 bits of operand precision. These architectures include variants
based on established Divide-and-Conquer (D&C) [37, 49] and SWP fam-
ilies [25], as well as innovative designs incorporating a 3-way approach
(i.e., three mutually exclusive datapaths) [41, 42] and separate SA and
ST multipliers with multiplexed outputs [27].

B) We compared them in terms of PPA in a 28-nm technology across the
[0.4 to 2] GHz clock frequency range to identify the best solutions for
different PPA requirements.

The main findings are:

– STAR SWP emerges as the most suitable choice for low-power and low-
area designs;

– STAR 3-way excels in high-performance scenarios;
– STAR D&C presents a competitive option for mid-range PPA require-

ments.

Our results identify optimal solutions catering to different design requirements
which offer valuable insights for designers seeking to implement efficient mul-
tipliers tailored to specific design targets.

115

Conclusion and Future Work

• In Chapter 6, to support quantized DNNs in low-power extreme-edgeCPUs,
we proposed STAR MAC, a PS MAC unit based on a modified BW architec-
ture that operates at a variable reduced precision [31].

A) We integrated it in a small RISC-V processor called Ibex [54]. Specif-
ically, we replaced the default 16-bit multiplier inside the Multiplier/-
Divider (MULT/DIV) unit of that processor with a 16-bit STAR BW
multiplier;

B) We added new MAC instructions which were not available in the original
MULT/DIV unit: standard 32-bit MAC and 16/8/4-bit MAC operations
in ST/SA mode;

C) We compared our new Ibex processor with the original one (Orig.) and
with a modified version of the latter that supports standard 32-bit MAC
operations (Orig.+MAC). Comparisons are in terms of area, estimated
power, and performance speed up on a set of quantized 2D-Conv, DW-
Conv and FC layers.

The results that we obtained show:

– An acceleration up to 5.8× in FC layers, 3.7× in 2D-Conv layers, and
2.8× in DW-Conv layers, with respect to Orig., and up to 4.5× in FC
layers, 3.0× in 2D-Conv layers, and 2.3× in DW-Conv layers, against
Orig.+MAC ;

– Values of area and power estimates in a 28-nm technology with 200 and
600 MHz target clock frequency of 0.015 and 0.017 mm2, and 1.5 and
4.3 mW, respectively, with a limited overhead within 10% and 3% with
respect to Orig., and within 6% and 3% against Orig.+MAC.

These results make our proposed STAR MAC a promising solution for en-
abling inference of MP-quantized DNNs on resource-limited devices.

7.2 Future Work
As future work, we have planned the following activities:

• SA-based DW-Conv hardware accelerator: As discussed at the end
of Chapter 4, the ST-based DW-Conv accelerator has several inefficiencies.
Therefore, we decide to develop a new PS DW-Conv accelerator based on
an SA multiplier. This accelerator will allow for the parallel multiplication of
low-precision input and weight elements along the channels dimension without
summing them together, while maintaining separate multiplication results
according to the DW-Conv algorithm.

116

7.2 – Future Work

• STAR-based 2D/DW-Conv hardware accelerator: The aim is to create
a new PS hardware accelerator that leverages STAR in its MAC unit. As
mentioned at the beginning of Chapter 5, we believe that integrating a single
engine for 2D/DW-Conv will yield greater efficiency in terms of area and
power consumption compared to maintaining two separate accelerators—an
ST-based 2D-Conv and an SA-based DW-Conv—due to enhanced resource
sharing between the two operating modes.

• SoC design with PS accelerators and tensor tiling: In Chapter 4, we
conducted experiments with a hypothetical SoC, assuming a global buffer
and efficient tensor tiling management by the processor. Moving forward, our
plan involves integrating our ST-based accelerators into a more realistic SoC
using the ESP tool from Columbia University [119], along with implementing
tensor tiling management similar to that described in [103]. As part of our
experiments, we aim to evaluate pros and cons of different approaches, such
as processor-managed tiling versus accelerator-managed tiling, in terms of
hardware resource utilization and inference time. Additionally, we intend
to integrate the RISC-V processor discussed in Chapter 6 into the SoC to
evaluate trade-offs of executing a quantized DNN layer in software on the PS
processor, in hardware using the corresponding PS accelerator, or with an
interleaved approach that mixes the first two.

• Accelerators place and route, and smart DSE for accelerators and
SoCs: The DSE that we conducted in Chapter 4 for ST accelerators was done
using a grid-search and manual approach. We believe that a smarter selection
of knobs could lead to new Pareto-optimal solutions and enrich the Pareto
front. However, the search space could be very large, making manual explo-
ration time-consuming and prone to suboptimal solutions. To address this, we
are considering Bayesian Optimization (BO) [120] as a potential candidate,
implemented by tools like Spearmint [121]. Furthermore, we plan to extend
the DSE beyond logic synthesis to include place and route for more accurate
area and power consumption estimates. Similarly, we aim to perform a DSE
at the SoC level, exploring knobs that impact not only individual accelera-
tor designs but also the entire SoC architecture. Lastly, in contrast to more
traditional BO approaches, we envision integrating neural architecture search
(NAS) into the Bayesian Optimization tool to make hardware-software co-
design or joint optimization [113]. For instance, we could explore the optimal
combination of bit precision along with hardware knobs for accelerators and
SoC to achieve an efficient final implementation. Recent research conducted
by our group [113] has demonstrated that a unified approach, integrating
both software and hardware optimization, yields superior results compared
to disjoint approaches where NAS and hardware parameter optimization are
conducted separately.

117

Conclusion and Future Work

• Automatic framework for mapping MP-quantized DNNs from QK-
eras to TFLite Micro targeting the STAR-based Ibex processor:
While the results obtained for our PS processor in Chapter 6 are promis-
ing, they only pertain to the execution of individual layers rather than entire
DNNs in MP. To evaluate the true benefits of the STAR approach at network
level, we are developing an open-source automated framework to execute MP
networks with TFLite Micro on our STAR-based Ibex RISC-V core. How-
ever, since TFLite does not support quantization below 8 bits, we plan to use
the modified version of QKeras described in Sec. 4.2.2 to create MP DNNs
with 16, 8, and 4 bits. Subsequently, we will modify the execution kernels
(i.e., low-level C/C++ routines) of the 2D-Conv, DW-Conv, and FC layers
defined in TFLite Micro to invoke the STAR instructions presented in Chap-
ter 6. Lastly, we will use the framework to convert the MP-quantized DNNs
from QKeras to the flatbuffer format of TFLite, enabling the execution of any
given MP network on our STAR-based RISC-V processor.

118

Appendix A

Integer-only DNN kernels for 2D-
and DW-Conv

In this appendix, we use the notation of Table 4.1. As mentioned in Sec. 4.1.1,
the quantized kernels of 2D- and DW-Conv are derived similarly to FC. Let us start
from non-quantized 2D-Conv:

Yoh, ow, oc = boc +
(︄

IC∑︂
ic = 1

KH∑︂
kh = 1

KW∑︂
kw = 1

Xoh+i, ow+j, ic · Wkh, kw, ic, oc

)︄
∀ oh ∈ [1, OH], ow ∈ [1, OW], oc ∈ [1, OC]

(A.1)

X ∈ RIH×IW ×IC is the tensor of input activations, W ∈ RKH×KW ×IC is the weight
one, b ∈ ROC is the bias array, Y ∈ ROH×OW ×OC is the output tensor; (IH, IW)
and (OH, OW) are the dimensions of the input and output tensors, IC and OC the
number of input and output channels, and KH and KW the kernel dimensions.
To quantize it, we first apply (4.4) to each real variable in (A.1). Next, setting
their own quantized ranges and moving the quantized output array Yoh, ow, oc to the
left hand side, we obtain the quantized 2D-Conv expression in (A.2) valid for the

119

Integer-only DNN kernels for 2D- and DW-Conv

(oh, ow, oc)-th output element:

Yq, oh, ow, oc = zY⏞⏟⏟⏞
(a)

+ sb

sY

(bq, oc − zb)⏞ ⏟⏟ ⏞
(b)

+sXsW

sY

⎡⎣(︄ IC∑︂
ic=1

KH∑︂
kh=1

KW∑︂
kw=1

Xq, oh+kh, ow+kw, ic · Wq, kh, kw, ic, oc

)︄
⏞ ⏟⏟ ⏞

(c)

−
(︄

zW

IC∑︂
ic = 1

KH∑︂
kh = 1

KW∑︂
kw = 1

Xq, oh+kh, ow+kw, ic

)︄
⏞ ⏟⏟ ⏞

(d)

−
(︄

zX

IC∑︂
ic = 1

KH∑︂
kh = 1

KW∑︂
kw = 1

Wq, kh, kw, ic, oc

)︄
⏞ ⏟⏟ ⏞

(e)

+ (IC · KH · KW) · zXzW⏞ ⏟⏟ ⏞
(f)

⎤⎦

∀ oh ∈ [1, OH], ow ∈ [1, OW], oc ∈ [1, OC]

(A.2)

Xq, Wq, bq, Yq are the integer values; sX , sW , sb, sY are the scaling factors; and zX ,
zW , zb, zY are the zero-points, associated with X, W , b, Y , respectively. The right-
hand side of (A.2) is rounded and clipped to fit the desired output quantized range
of Yq before being assigned to Yq (not shown in the formula for higher readability).
The meaning of terms (a)–(f) is the same as those in the UIQ formula for FC,
as discussed in Sec. 4.1.1. Compared to (4.6), to compute an output element, the
single summation within terms (c), (d) and (e) is replaced with three summations:
the indexes of two of them span from 1 to the kernel dimensions KH and KW ,
whereas the index of the third spans from 1 to IC. Moreover, the constant C in
term (f) is replaced with the product of the three upper bounds of the summations.

The expressions of a non-quantized DW-Conv layer and its integer-quantized
version are in (A.3) and (A.4), respectively. For (A.3), X, Y , and b are the same
tensors of 2D-Conv, except that IC = OC; W , instead, is a weight tensor with
shape KH × KW × OC. Eq. (A.4) is derived from (A.3) with the same steps used
for FC and 2D-Conv. It differs from (A.2) in the number of summations (two

120

Integer-only DNN kernels for 2D- and DW-Conv

instead of three) and in the absence of the IC constant in term (f).

Yh, w, oc = boc +
(︄

KH∑︂
kh = 1

KW∑︂
kw = 1

Xoh+kh, ow+kw, oc · Wkh, kw, oc

)︄
∀ oh ∈ [1, OH], ow ∈ [1, OW], oc ∈ [1, OC]

(A.3)

Yq, oh, ow, oc = zY⏞⏟⏟⏞
(a)

+ sb

sY

(bq, oc − zb)⏞ ⏟⏟ ⏞
(b)

+sXsW

sY

⎡⎣(︄ KH∑︂
kh=1

KW∑︂
kw=1

Xq, oh+kh, ow+kw, oc · Wq, kh, kw, oc

)︄
⏞ ⏟⏟ ⏞

(c)

−
(︄

zW

KH∑︂
kh = 1

KW∑︂
kw = 1

Xq, oh+kh, ow+kw, oc

)︄
⏞ ⏟⏟ ⏞

(d)

−
(︄

zX

KH∑︂
kh = 1

KW∑︂
kw = 1

Wq, kh, kw, oc

)︄
⏞ ⏟⏟ ⏞

(e)

+ KH · KW · zXzW⏞ ⏟⏟ ⏞
(f)

⎤⎦

∀ oh ∈ [1, OH], ow ∈ [1, OW], oc ∈ [1, OC]

(A.4)

As discussed in Sec. 4.1.1 for (4.6), in this thesis we assume that zW = 0 and
zb = 0 for (A.2) and (A.4) as well.

121

122

Appendix B

Mixed-precision results of MLPerf
Tiny models

Tables B.1–B.2 report the architecture of the MP-quantized MLPerf Tiny mod-
els obtained in the first step of our accelerators design-flow of Sec. 4.3.1. The last
two columns show the number of bits for activation/weight and bias, respectively.

Table B.1: MP-quantized model of MobileNetV1Tiny (using QKeras’ syntax and with
the new QActivation layer implementing affine uniform quantization).

QKeras Layer Output
Shape

Activation /
Weight Bits

(INT)

Bias
Bits

(INT)
0 InputLayer 96, 96, 3
1 QActivation 96, 96, 3 4
2 QConv2DBatchnorm + ReLU 48, 48, 8 4 31
3 QActivation 48, 48, 8 16
4 QDepthwiseConv2DBatchnorm + ReLU 48, 48, 8 16 31
5 QActivation 48, 48, 8 16
6 QConv2DBatchnorm + ReLU 48, 48, 16 16 31
7 QActivation 48, 48, 16 8
8 QDepthwiseConv2DBatchnorm + ReLU 24, 24, 16 8 31
9 QActivation 24, 24, 16 16
10 QConv2DBatchnorm + ReLU 24, 24, 32 16 16
11 QActivation 24, 24, 32 16
12 QDepthwiseConv2DBatchnorm + ReLU 24, 24, 32 8 31
13 QActivation 24, 24, 32 4
14 QConv2DBatchnorm + ReLU 24, 24, 32 4 31
15 QActivation 24, 24, 32 8
16 QDepthwiseConv2DBatchnorm + ReLU 12, 12, 32 4 16

Continued on next page

123

Mixed-precision results of MLPerf Tiny models

Table B.1: MP-quantized model of MobileNetV1Tiny (using QKeras’ syntax and with
the new QActivation layer implementing affine uniform quantization) (continued).

QKeras Layer Output
Shape

Activation /
Weight Bits

(INT)

Bias
Bits

(INT)
17 QActivation 12, 12, 32 8
18 QConv2DBatchnorm + ReLU 12, 12, 64 8 31
19 QActivation 12, 12, 64 8
20 QDepthwiseConv2DBatchnorm + ReLU 12, 12, 64 8 16
21 QActivation 12, 12, 64 16
22 QConv2DBatchnorm + ReLU 12, 12, 64 8 16
23 QActivation 12, 12, 64 8
24 QDepthwiseConv2DBatchnorm + ReLU 6, 6, 64 8 31
25 QActivation 6, 6, 64 16
26 QConv2DBatchnorm + ReLU 6, 6, 128 16 31
27 QActivation 6, 6, 128 8
28 QDepthwiseConv2DBatchnorm + ReLU 6, 6, 128 8 31
29 QActivation 6, 6, 128 4
30 QConv2DBatchnorm + ReLU 6, 6, 128 4 31
31 QActivation 6, 6, 128 16
32 QDepthwiseConv2DBatchnorm + ReLU 6, 6, 128 8 31
33 QActivation 6, 6, 128 8
34 QConv2DBatchnorm + ReLU 6, 6, 128 8 16
35 QActivation 6, 6, 128 16
36 QDepthwiseConv2DBatchnorm + ReLU 6, 6, 128 16 16
37 QActivation 6, 6, 128 8
38 QConv2DBatchnorm + ReLU 6, 6, 128 4 16
39 QActivation 6, 6, 128 16
40 QDepthwiseConv2DBatchnorm + ReLU 6, 6, 128 16 31
41 QActivation 6, 6, 128 16
42 QConv2DBatchnorm + ReLU 6, 6, 128 8 16
43 QActivation 6, 6, 128 8
44 QDepthwiseConv2DBatchnorm + ReLU 6, 6, 128 8 16
45 QActivation 6, 6, 128 8
46 QConv2DBatchnorm + ReLU 6, 6, 128 8 16
47 QActivation 6, 6, 128 8
48 QDepthwiseConv2DBatchnorm + ReLU 3, 3, 128 8 16
49 QActivation 3, 3, 128 16
50 QConv2DBatchnorm + ReLU 3, 3, 256 8 31
51 QActivation 3, 3, 256 16
52 QDepthwiseConv2DBatchnorm + ReLU 3, 3, 256 8 16
53 QActivation 3, 3, 256 8
54 QConv2DBatchnorm + ReLU 3, 3, 256 4 31

Continued on next page

124

Mixed-precision results of MLPerf Tiny models

Table B.1: MP-quantized model of MobileNetV1Tiny (using QKeras’ syntax and with
the new QActivation layer implementing affine uniform quantization) (continued).

QKeras Layer Output
Shape

Activation /
Weight Bits

(INT)

Bias
Bits

(INT)
55 QActivation 3, 3, 256 4
56 AveragePooling2D 1, 1, 256
57 QActivation 1, 1, 256 4
58 Flatten 256
59 QDense 2 4 16
60 QActivation 2 4
61 Softmax 2

Table B.2: MP-quantized model of FC-AutoEncoder (using QKeras’ syntax and with the
new QActivation layer implementing affine uniform quantization).

Layer type Output
Shape

Activation /
Weight Bits

(INT)

Bias
Bits

(INT)
0 InputLayer 640
1 QActivation 640 4
2 QDense + BatchNormalization + ReLU 128 4 16
3 QActivation 128 16
4 QDense + BatchNormalization + ReLU 128 8 16
5 QActivation 128 8
6 QDense + BatchNormalization + ReLU 128 4 16
7 QActivation 128 4
8 QDense + BatchNormalization + ReLU 128 4 31
9 QActivation 128 4
10 QDense + BatchNormalization + ReLU 8 4 31
11 QActivation 8 16
12 QDense + BatchNormalization + ReLU 128 16 16
13 QActivation 128 8
14 QDense + BatchNormalization + ReLU 128 4 31
15 QActivation 128 8
16 QDense + BatchNormalization + ReLU 128 8 31
17 QActivation 128 8
18 QDense + BatchNormalization + ReLU 128 8 16
19 QActivation 128 16
20 QDense 640 8 16
21 QActivation 640 16

125

Mixed-precision results of MLPerf Tiny models

Table B.3: MP-quantized model of ResNetV1Tiny (using QKeras’ syntax and with the
new QActivation layer implementing affine uniform quantization). L marks the left
branches, R the right ones.

Layer type Output
Shape

Connected
to

Activation /
Weight Bits

(INT)

Bias
Bits

(INT)
0 InputLayer 32, 32, 3
1 QActivation 32, 32, 3 0 16
2 QConv2DBatchnorm + ReLU 32, 32, 16 1 16 31
3 QActivation 32, 32, 16 2 8
4 QConv2DBatchnorm + ReLU 32, 32, 16 3 8 31
5 QActivation 32, 32, 16 4 16
6 QConv2DBatchnorm 32, 32, 16 5 16 31
7 QActivation 32, 32, 16 6 8
8 Add 32, 32, 16 7, 3
9 ReLU 32, 32, 16 8

10 L QActivation 32, 32, 16 9 8
11 L QConv2DBatchnorm + ReLU 16, 16, 32 10 L 8 16
12 L QActivation 16, 16, 32 11 L 8
13 L QConv2DBatchnorm 16, 16, 32 12 L 8 16
14 L QActivation 16, 16, 32 13 L 8
10 R QActivation 32, 32, 16 9 8
11 R QConv2D 16, 16, 32 10 R 8 16
12 R QActivation 16, 16, 32 11 R 8
15 Add 16, 16, 32 14 L, 12 R
16 ReLU 16, 16, 32 15

17 L QActivation 16, 16, 32 16 8
18 L QConv2DBatchnorm + ReLU 8, 8, 64 17 L 8 31
19 L QActivation 8, 8, 64 18 L 8
20 L QConv2DBatchnorm 8, 8, 64 19 L 4 31
21 L QActivation 8, 8, 64 20 L 4
17 R QActivation 16, 16, 32 16 8
18 R QConv2D 8, 8, 64 17 R 8 16
19 R QActivation 8, 8, 64 18 R 8
22 Add 8, 8, 64 21 L, 19 R
23 ReLU 8, 8, 64 22
24 AveragePooling2D 1, 1, 64 23
25 QActivation 1, 1, 64 24 16
26 Flatten 64 25
27 QDense 10 26 8 31
28 QActivation 10 27 16
29 Softmax 10 28

126

Mixed-precision results of MLPerf Tiny models

Table B.4: MP-quantized model of DS-CNN (using QKeras’ syntax and with the new
QActivation layer implementing affine uniform quantization).

Layer type Output
Shape

Activation /
Weight Bits

(INT)

Bias
Bits

(INT)
0 InputLayer 49, 10, 1
1 QActivation 49, 10, 1 16
2 QConv2DBatchnorm + ReLU 25, 5, 64 16 31
3 Dropout 25, 5, 64
4 QActivation 25, 5, 64 8
5 QDepthwiseConv2DBatchnorm + ReLU 25, 5, 64 8 16
6 QActivation 25, 5, 64 8
7 QConv2DBatchnorm + ReLU 25, 5, 64 4 31
8 QActivation 25, 5, 64 8
9 QDepthwiseConv2DBatchnorm + ReLU 25, 5, 64 8 16
10 QActivation 25, 5, 64 8
11 QConv2DBatchnorm + ReLU 25, 5, 64 4 16
12 QActivation 25, 5, 64 8
13 QDepthwiseConv2DBatchnorm + ReLU 25, 5, 64 4 16
14 QActivation 25, 5, 64 4
15 QConv2DBatchnorm + ReLU 25, 5, 64 4 16
16 QActivation 25, 5, 64 16
17 QDepthwiseConv2DBatchnorm + ReLU 25, 5, 64 16 31
18 QActivation 25, 5, 64 4
19 QConv2DBatchnorm + ReLU 25, 5, 64 4 16
20 QActivation 25, 5, 64 4
21 Dropout 25, 5, 64
22 AveragePooling2D 1, 1, 64
23 QActivation 1, 1, 64 16
24 Flatten 64
25 QDense 12 8 31
26 QActivation 12 16
27 Softmax 12

127

128

Appendix C

Published Papers and Awards

Journal papers (related to this thesis):

• Urbinati, Luca and Casu, Mario R., “High-Level Design of Precision-Scalable DNN Ac-
celerators Based on Sum-Together Multipliers,” IEEE Access, vol. 12, pp. 44163-44189,
2024.
doi: 10.1109/ACCESS.2024.3380472.

Conference papers (related to this thesis):

• Manca, Edward, Urbinati, Luca and Casu, Mario R., “STAR: Sum-Together/Apart Re-
configurable Multipliers for Precision-Scalable ML Workloads,” Accepted for publication
in Proc. of Design, Automation & Test in Europe Conference & Exhibition (DATE), Va-
lencia, Spain: IEEE, 2024.

• Manca, Edward, Urbinati, Luca and Casu, Mario R., “Accelerating Quantized DNN
Layers on RISC-V with a STAR MAC Unit,” in Proc. of SIE 2023, in Lecture Notes in
Electrical Engineering, vol. 1113: Springer Nature Switzerland, pp. 43–53, 2024.
doi: 10.1007/978-3-031-48711-8_6.

• Urbinati, Luca and Casu, Mario R., “Design-Space Exploration of Mixed-precision DNN
Accelerators based on Sum-Together Multipliers,” in Proc. of 18th Conference on Ph.D Re-
search in Microelectronics and Electronics (PRIME), Valencia, Spain: IEEE, pp. 377–380,
2023.
doi: 10.1109/PRIME58259.2023.10161835.

• Urbinati, Luca and Casu, Mario R., “A Reconfigurable Multiplier/Dot-Product Unit
for Precision-Scalable Deep Learning Applications,” in Proc. of SIE 2022, Pizzo, Italy, in
Lecture Notes in Electrical Engineering, vol. 1005: Springer Nature Switzerland, pp. 9–14,
2023.
doi: 10.1007/978-3-031-26066-7_2.

• Urbinati, Luca and Casu, Mario R., “A Reconfigurable 2D-Convolution Accelerator for
DNNs Quantized with Mixed-Precision,” in Proc. of Applications in Electronics Pervading
Industry, Environment and Society (ApplePies), Genoa, Italy, in Lecture Notes in Electrical
Engineering, vol. 1036: Springer Nature Switzerland, pp. 210–215, 2023.
doi: 10.1007/978-3-031-30333-3_27.

129

https://doi.org/10.1109/ACCESS.2024.3380472
https://doi.org/10.1007/978-3-031-48711-8_6
https://doi.org/10.1109/PRIME58259.2023.10161835
https://doi.org/10.1007/978-3-031-26066-7_2
https://doi.org/10.1007/978-3-031-30333-3_27

Published Papers and Awards

• Urbinati, Luca and Casu, Mario R., “A Reconfigurable Depth-Wise Convolution Module
for Heterogeneously Quantized DNNs,” in Proc. of Int. Symp. on Circuits and Systems
(ISCAS), Austin, TX, USA: IEEE, pp. 128–132, 2022.
doi: 10.1109/ISCAS48785.2022.9937753.

Awards (related to this thesis):

• Gold Leaf Certificate for our work titled “Design-Space Exploration of Mixed-precision
DNN Accelerators based on Sum-Together Multipliers” [24], recognized as one of the top
10% papers presented at the 18th International Conference on PhD Research in Microelec-
tronics and Electronics (PRIME), held in Valencia, Spain, from June 18th to 21st, 2023.

Supervised M.Sc. Theses:

• Bueno Pacheco, Diego R, “Efficient Tiling Architecture for Scalable CNN Inference: Lever-
aging High-Level Design and Embedded Scalable Platform (ESP),” Master’s Thesis. Su-
pervisors: Mario R. Casu and Luca Urbinati. Politecnico di Torino, 2023.
https://webthesis.biblio.polito.it/29513/.

• Manca, Edward, “Design of a Novel Precision Scalable Multiplier to Improve Quantized
Neural Network Computation on a Low-Power RISC-V Processor,” Master’s Thesis. Su-
pervisors: Mario R. Casu and Luca Urbinati. Politecnico di Torino, 2023.
https://webthesis.biblio.polito.it/27724/.

• Terlizzi, Marco A, “Mixed-precision Quantization and Inference of MLPerf Tiny DNNs on
Precision-Scalable Hardware Accelerators,” Master’s Thesis. Supervisors: Mario R. Casu
and Luca Urbinati. Politecnico di Torino, 2023.
https://webthesis.biblio.polito.it/26664/.

• Perenno, Federico, “High-Level Design of 2D-Convolution Accelerators for AI Leveraging
Embedded Scalable Platform (ESP),” Master’s Thesis. Supervisors: Mario R. Casu and
Luca Urbinati. Politecnico di Torino, 2022.
https://webthesis.biblio.polito.it/25415/.

• Capodicasa, Riccardo, “High-level design of a Depthwise Convolution accelerator and SoC
integration using ESP,” Master’s Thesis. Supervisors: Mario R. Casu and Luca Urbinati.
Politecnico di Torino, 2022.
https://webthesis.biblio.polito.it/25410/.

130

https://doi.org/10.1109/ISCAS48785.2022.9937753
https://drive.google.com/file/d/1hl6impfGVO7mDqKxuAUgT7FR-OFxa7BL/view?usp=sharing
https://webthesis.biblio.polito.it/29513/
https://webthesis.biblio.polito.it/27724/
https://webthesis.biblio.polito.it/26664/
https://webthesis.biblio.polito.it/25415/
https://webthesis.biblio.polito.it/25410/

Acronyms

2D-Conv 2D-Convolution. 3, 18, 114

AD Anomaly Detection. 46

ALU Arithmetic Logic Unit. 27

ASIC Application-Specific Integrated Circuit. 4, 24, 113

AUC Area Under The Receiver Operating Characteristics Curve. 48

BN Batch Normalization. 45

BO Bayesian Optimization. 117

BSC bit-split-and-combination. 21

BW Baugh-Wooley. 3, 18, 113

CCORE Catapult C Optimized Reusable Entity. 72

CIFAR-10 Canadian Institute for Advanced Research, 10 classes. 47

D&C Divide-and-Conquer. 4, 19, 115

DC Design Compiler. 40

DCASE Detection and Classification of Acoustic Scenes and Events. 48

DL Deep Learning. 3, 15, 114

DMA Direct Memory Access. 58

DNNs Deep Neural Networks. 3, 15, 113

DS-CNN Depth-wise Separable Convolutional Neural Network. 48

DSE design space exploration. 4, 18, 113

DSP digital signal processing. 21

DW Depth-wise. 19

DW-Conv Depth-wise Convolution. 3, 18, 114

FA Full Adder. 87

FC Fully-Connected. 3, 18, 114

FIFO First In First Out. 96

131

Acronyms

FP Floating-Point. 24

FPGA Field Programmable Gate Array. 24

FSM finite state machine. 98

FUs Fusion Units. 21

GEMM General Matrix Multiply. 23

HDR high dynamic range. 29

HLS High-Level Synthesis. 3, 18, 113

HPC High-Performance Computing. 25

IA input tile activations. 53

IBUF internal input buffer. 54

IC input tile channels. 53

ICC iteration clock cycle. 98

IDE Instruction Decode and Execute. 96

IF Instruction Fetch. 96

ImgClass Image Classification. 46

IoT Internet-of-Things. 25

ISA Instruction Set Architecture. 21

KS Keyword Spotting. 46

LA Latency vs Area. 73

LP Latency vs Power. 76

LSB least-significant bit. 17

LUTs look-up tables. 23

MAC Multiply-and-Accumulate. 3, 17, 113

MCUs microprocessors. 16

MFCC Mel-Frequency Cepstral Coefficients. 47

ML Machine Learning. 16

MLPerf Machine Learning Performance. 4, 46, 114

MP mixed-precision. 4, 15, 113

MPQ Mixed-Precision Quantization. 3, 15

MSCOCO Microsoft Common Objects in Context. 47

MULT/DIV Multiplier/Divider. 96, 116

NAS neural architecture search. 117

132

Acronyms

OA output tile activations. 53

OBUF internal output buffer. 54

OC output tile channels. 53

Perf test set performance evaluation dataset. 46

PEs processing elements. 27

PPA performance, power, and area. 3, 18, 113

PPM partial product matrix. 31

PPs partial products. 32

PS Precision-Scalable. 3, 15, 113

PSMAC Precision-Scalable Multiply-and-Accumulate. 16

RCA Ripple Carry Adder. 18, 113

ReLU rectified linear unit. 45

RTL Register-Transfer Level. 18

SA Sum-Apart. 3, 16, 115

SIMD Single Instruction Multiple Data. 3, 17

SoA State-of-the-Art. 3, 18, 113

SoC System-on-Chip. 18, 114

ST Sum-Together. 3, 16, 113

STAR Sum-Together/Apart Reconfigurable. 4, 19, 115

SWP Sub-word Parallel. 4, 19, 114

TC Transprecision Computing. 3, 15, 113

TFLite TensorFlow Lite. 43

TFLM TensorFlow Lite Micro. 30

UIQ uniform integer quantization. 18, 114

VWW Visual Wake Words. 46

WBUF internal weight buffer. 54

133

Bibliography

[1] Amir Gholami et al. “A Survey of Quantization Methods for Efficient Neural
Network Inference”. In: Low-Power Computer Vision: Improve the Efficiency
of Artificial Intelligence. 1st. New York, NY, USA: Chapman and Hall/CRC,
2022. Chap. 1.2.12, pp. 14–17. doi: 10.1201/9781003162810.

[2] Itay Hubara et al. “Quantized Neural Networks: Training Neural Networks
with Low Precision Weights and Activations”. In: Journal of Machine Learn-
ing Research 18.1 (2017), pp. 6869–6898.

[3] George K. Thiruvathukal et al. “Low-Power Computer Vision”. In: Chapman
and Hall/CRC, 2022. Chap. Improve the Efficiency of Artificial Intelligence.
doi: 10.1201/9781003162810.

[4] Mariam Rakka et al. “Mixed-Precision Neural Networks: A Survey”. In:
arXiv (2022). 2208.06064.

[5] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. “Fixed point optimiza-
tion of deep convolutional neural networks for object recognition”. In: Proc. Int.
Conf. Acoustics, Speech and Signal Processing (ICASSP). South Brisbane,
QLD, Australia: IEEE, 2015, pp. 1131–1135. doi: 10.1109/ICASSP.2015.
7178146.

[6] Bert Moons et al. “Energy-efficient ConvNets through approximate comput-
ing”. In: Proc. Winter Conf. on Applications of Computer Vision (WACV).
Lake Placid, NY, USA: IEEE, 2016, pp. 1–8. doi: 10.1109/WACV.2016.
7477614.

[7] Tim Hotfilter et al. “Leveraging Mixed-Precision CNN Inference for In-
creased Robustness and Energy Efficiency”. In: Proc. 36th Int. System-on-
Chip Conference (SOCC). Santa Clara, CA, USA: IEEE, 2023, pp. 1–6. doi:
10.1109/SOCC58585.2023.10256738.

[8] Junnosuke Suzuki et al. “Pianissimo: A Sub-mW Class DNN Accelerator
With Progressively Adjustable Bit-Precision”. In: IEEE Access 12 (2024),
pp. 2057–2073. doi: 10.1109/ACCESS.2023.3347578.

[9] Karina Vasquez et al. “Activation Density based Mixed-Precision Quantiza-
tion for Energy Efficient Neural Networks”. In: arXiv (2021). 2101.04354.

135

https://doi.org/10.1201/9781003162810
https://doi.org/10.1201/9781003162810
https://arxiv.org/abs/2208.06064
https://doi.org/10.1109/ICASSP.2015.7178146
https://doi.org/10.1109/ICASSP.2015.7178146
https://doi.org/10.1109/WACV.2016.7477614
https://doi.org/10.1109/WACV.2016.7477614
https://doi.org/10.1109/SOCC58585.2023.10256738
https://doi.org/10.1109/ACCESS.2023.3347578
https://arxiv.org/abs/2101.04354

BIBLIOGRAPHY

[10] Cristiano A. I. Malossi et al. “The transprecision computing paradigm: Con-
cept, design, and applications”. In: Proc. Design, Automation & Test in
Europe Conference & Exhibition (DATE). Dresden, Germany: IEEE, 2018,
pp. 1105–1110. doi: 10.23919/DATE.2018.8342176.

[11] Zhen Dong et al. “HAWQ-V2: Hessian Aware trace-Weighted Quantization
of Neural Networks”. In: arXiv (2019). 1911.03852.

[12] Qian Lou et al. “AutoQ: Automated Kernel-Wise Neural Network Quanti-
zation”. In: arXiv (2020). 1902.05690.

[13] Ahmed T. Elthakeb et al. “ReLeQ : A Reinforcement Learning Approach
for Automatic Deep Quantization of Neural Networks”. In: IEEE Micro 40.5
(2020), pp. 37–45. doi: 10.1109/MM.2020.3009475.

[14] Claudionor N. Coelho et al. “Automatic heterogeneous quantization of deep
neural networks for low-latency inference on the edge for particle detectors”.
In: Nature Machine Intelligence 3.8 (2021), pp. 675–686. doi: 10.1038/
s42256-021-00356-5.

[15] Qigong Sun et al. “Effective and Fast: A Novel Sequential Single Path Search
for Mixed-Precision Quantization”. In: arXiv (2021). 2103.02904.

[16] Zhang Zhaoyang et al. “Differentiable Dynamic Quantization with Mixed
Precision and Adaptive Resolution”. In: arXiv (2021). 2106.02295.

[17] Zhi-Gang Liu and Matthew Mattina. “Learning low-precision neural net-
works without Straight-Through Estimator(STE)”. In: arXiv (2019). 1903.
01061.

[18] Kuan Wang et al. “HAQ: Hardware-Aware Automated Quantization With
Mixed Precision”. In: Proc. Conf. on Computer Vision and Pattern Recog-
nition (CVPR). Long Beach, CA, USA: IEEE, 2019, pp. 8604–8612. doi:
10.1109/CVPR.2019.00881.

[19] Bichen Wu et al. “Mixed Precision Quantization of ConvNets via Differen-
tiable Neural Architecture Search”. In: arXiv (2018). 1812.00090.

[20] Jungwook Choi et al. “Accurate and Efficient 2-bit Quantized Neural Net-
works”. In: Proc. of Machine Learning and Systems. Vol. 1. Stanford, Cali-
fornia, 2019, pp. 348–359.

[21] Stefan Uhlich et al. “Mixed Precision DNNs: All you need is a good parametriza-
tion”. In: arXiv (2020). 1905.11452.

[22] Shuchang Zhou et al. “DoReFa-Net: Training Low Bitwidth Convolutional
Neural Networks with Low Bitwidth Gradients”. In: arXiv (2018). 1606.
06160.

136

https://doi.org/10.23919/DATE.2018.8342176
https://arxiv.org/abs/1911.03852
https://arxiv.org/abs/1902.05690
https://doi.org/10.1109/MM.2020.3009475
https://doi.org/10.1038/s42256-021-00356-5
https://doi.org/10.1038/s42256-021-00356-5
https://arxiv.org/abs/2103.02904
https://arxiv.org/abs/2106.02295
https://arxiv.org/abs/1903.01061
https://arxiv.org/abs/1903.01061
https://doi.org/10.1109/CVPR.2019.00881
https://arxiv.org/abs/1812.00090
https://arxiv.org/abs/1905.11452
https://arxiv.org/abs/1606.06160
https://arxiv.org/abs/1606.06160

BIBLIOGRAPHY

[23] Marco Alessio Terlizzi. “Mixed-precision Quantization and Inference of MLPerf
Tiny DNNs on Precision-Scalable Hardware Accelerators”. MA thesis. Turin,
Italy: Politecnico di Torino, 2023. url: https : / / webthesis . biblio .
polito.it/26664/.

[24] Luca Urbinati and Mario R. Casu. “Design-Space Exploration of Mixed-
precision DNN Accelerators based on Sum-Together Multipliers”. In: Proc. 18th
Conf. on Ph.D Research in Microelectronics and Electronics (PRIME). Va-
lencia, Spain: IEEE, 2023, pp. 377–380. doi: 10.1109/PRIME58259.2023.
10161835.

[25] Linyan Mei et al. “Sub-Word Parallel Precision-Scalable MAC Engines for
Efficient Embedded DNN Inference”. In: Proc. Int. Conf. on Artificial Intel-
ligence Circuits and Systems (AICAS). Hsinchu, Taiwan: IEEE, 2019, pp. 6–
10. doi: 10.1109/AICAS.2019.8771481.

[26] Luca Urbinati and Mario R. Casu. “A Reconfigurable Multiplier/Dot-Product
Unit for Precision-Scalable Deep Learning Applications”. In: Proc. of SIE
2022. Pizzo, Italy: Springer Nature Switzerland, 2023, pp. 9–14.

[27] Edward Manca, Luca Urbinati, and Mario R. Casu. “STAR: Sum-Together/Apart
Reconfigurable Multipliers for Precision-Scalable ML Workloads”. In: Ac-
cepted for publication in Design, Automation & Test in Europe Conference
& Exhibition (DATE). Valencia, Spain: IEEE, 2024.

[28] Luca Urbinati and Mario R. Casu. “High-Level Design of Precision-Scalable
DNN Accelerators Based on Sum-Together Multipliers”. In: IEEE Access 12
(2024), pp. 44163–44189. doi: 10.1109/ACCESS.2024.3380472.

[29] Vincent Camus et al. “Review and Benchmarking of Precision-Scalable Multiply-
Accumulate Unit Architectures for Embedded Neural-Network Processing”.
In: IEEE Trans. Emerg. Sel. Topics Circuits Syst. (JETCAS) 9.4 (2019),
pp. 697–711. doi: 10.1109/JETCAS.2019.2950386.

[30] Wenjie Li et al. “Low-Complexity Precision-Scalable Multiply-Accumulate
Unit Architectures for Deep Neural Network Accelerators”. In: IEEE Trans.
Circuits Syst. II Express Briefs (TCAS-II) 70.4 (2023), pp. 1610–1614. doi:
10.1109/TCSII.2022.3231418.

[31] Edward Manca, Luca Urbinati, and Mario R. Casu. “Accelerating Quantized
DNN Layers on RISC-V with a STAR MAC Unit”. In: Proc. of SIE 2023.
Noto, Italy: Springer Nature Switzerland, 2024, pp. 43–53. doi: 10.1007/
978-3-031-48711-8_6.

[32] Wenjian Liu, Jun Lin, and Zhongfeng Wang. “A Precision-Scalable Energy-
Efficient Convolutional Neural Network Accelerator”. In: IEEE Trans. Cir-
cuits Syst. I Regul. Pap. (TCAS-I) 67.10 (2020), pp. 3484–3497. doi: 10.
1109/TCSI.2020.2993051.

137

https://webthesis.biblio.polito.it/26664/
https://webthesis.biblio.polito.it/26664/
https://doi.org/10.1109/PRIME58259.2023.10161835
https://doi.org/10.1109/PRIME58259.2023.10161835
https://doi.org/10.1109/AICAS.2019.8771481
https://doi.org/10.1109/ACCESS.2024.3380472
https://doi.org/10.1109/JETCAS.2019.2950386
https://doi.org/10.1109/TCSII.2022.3231418
https://doi.org/10.1007/978-3-031-48711-8_6
https://doi.org/10.1007/978-3-031-48711-8_6
https://doi.org/10.1109/TCSI.2020.2993051
https://doi.org/10.1109/TCSI.2020.2993051

BIBLIOGRAPHY

[33] Wei Mao et al. “An Energy-Efficient Mixed-Bitwidth Systolic Accelerator
for NAS-Optimized Deep Neural Networks”. In: IEEE Trans. VLSI Syst.
30.12 (2022), pp. 1878–1890. doi: 10.1109/TVLSI.2022.3210069.

[34] Sungju Ryu et al. “BitBlade: Energy-Efficient Variable Bit-Precision Hard-
ware Accelerator for Quantized Neural Networks”. In: IEEE Journal of
Solid-State Circuits 57.6 (2022), pp. 1924–1935. doi: 10.1109/JSSC.2022.
3141050.

[35] Bert Moons et al. “DVAFS: Trading computational accuracy for energy
through dynamic-voltage-accuracy-frequency-scaling”. In: Proc. Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE), 2017. Lau-
sanne, Switzerland: IEEE, 2017, pp. 488–493. doi: 10.23919/DATE.2017.
7927038.

[36] Sayeh Sharify et al. “Loom: Exploiting Weight and Activation Precisions to
Accelerate Convolutional Neural Networks”. In: Proc. 55th Design Automa-
tion Conference (DAC). San Francisco, CA, USA: IEEE, 2018, pp. 1–6. doi:
10.1109/DAC.2018.8465915.

[37] Hardik Sharma et al. “Bit Fusion: Bit-Level Dynamically Composable Ar-
chitecture for Accelerating Deep Neural Network”. In: Proc. 45th Int. Symp.
on Computer Architecture (ISCA). Los Angeles, CA, USA: IEEE, 2018,
pp. 764–775. doi: 10.1109/ISCA.2018.00069.

[38] Yvan Tortorella et al. “RedMule: A Mixed-Precision Matrix-Matrix Opera-
tion Engine for Flexible and Energy-Efficient On-Chip Linear Algebra and
TinyML Training Acceleration”. In: arXiv (2023). 2301.03904.

[39] Luca Urbinati and Mario R. Casu. “A Reconfigurable 2D-Convolution Ac-
celerator for DNNs Quantized with Mixed-Precision”. In: Proc. Applications
in Electronics Pervading Industry, Environment and Society (ApplePies).
Genoa, Italy: Springer Nature Switzerland, 2023, pp. 210–215. doi: 10 .
1007/978-3-031-30333-3_27.

[40] Luca Urbinati and Mario R. Casu. “A Reconfigurable Depth-Wise Convolu-
tion Module for Heterogeneously Quantized DNNs”. In: Proc. Int. Symp. on
Circuits and Systems (ISCAS). Austin, TX, USA: IEEE, 2022, pp. 128–132.
doi: 10.1109/ISCAS48785.2022.9937753.

[41] Michael Gautschi et al. “Near-Threshold RISC-V Core With DSP Exten-
sions for Scalable IoT Endpoint Devices”. In: IEEE Trans. VLSI Syst. 25.10
(2017), pp. 2700–2713. doi: 10.1109/TVLSI.2017.2654506.

[42] Angelo Garofalo et al. “XpulpNN: Enabling Energy Efficient and Flexible
Inference of Quantized Neural Networks on RISC-V Based IoT End Nodes”.
In: IEEE Trans. Emerg. Topics Comput. 9.3 (2021), pp. 1489–1505. doi:
10.1109/TETC.2021.3072337.

138

https://doi.org/10.1109/TVLSI.2022.3210069
https://doi.org/10.1109/JSSC.2022.3141050
https://doi.org/10.1109/JSSC.2022.3141050
https://doi.org/10.23919/DATE.2017.7927038
https://doi.org/10.23919/DATE.2017.7927038
https://doi.org/10.1109/DAC.2018.8465915
https://doi.org/10.1109/ISCA.2018.00069
https://arxiv.org/abs/2301.03904
https://doi.org/10.1007/978-3-031-30333-3_27
https://doi.org/10.1007/978-3-031-30333-3_27
https://doi.org/10.1109/ISCAS48785.2022.9937753
https://doi.org/10.1109/TVLSI.2017.2654506
https://doi.org/10.1109/TETC.2021.3072337

BIBLIOGRAPHY

[43] Guillaume Devic et al. “Highly-Adaptive Mixed-Precision MAC Unit for
Smart and Low-Power Edge Computing”. In: Proc. 19th Int. New Circuits
and Systems Conference (NEWCAS). Toulon, France: IEEE, 2021, pp. 1–4.
doi: 10.1109/NEWCAS50681.2021.9462745.

[44] Longwei Huang et al. “A Precision-Scalable RISC-V DNN Processor with
On-Device Learning Capability at the Extreme Edge”. In: arXiv (2023).
2309.08186.

[45] Risikesh RK, Sharad Sinha, and Nanditha Rao. “Variable Bit-Precision Vec-
tor Extension for RISC-V Based Processors”. In: Proc. 14th Int. Symp.
on Embedded Multicore/Many-core Systems-on-Chip (MCSoC). Singapore:
IEEE, 2021, pp. 114–121. doi: 10.1109/MCSoC51149.2021.00024.

[46] Dongjoo Shin et al. “14.2 DNPU: An 8.1TOPS/W reconfigurable CNN-
RNN processor for general-purpose deep neural networks”. In: Proc. Int.
Solid-State Circuits Conference (ISSCC). San Francisco, CA, USA: IEEE,
2017, pp. 240–241. doi: 10.1109/ISSCC.2017.7870350.

[47] Zicheng He et al. “Agile Hardware and Software Co-Design for RISC-V-
Based Multi-Precision Deep Learning Microprocessor”. In: Proc. 28th Asia
and South Pacific Design Automation Conference (ASPDAC). Tokyo, Japan:
ACM, 2023, pp. 490–495. doi: 10.1145/3566097.3567871.

[48] Xinyue Zhang, Zhaolin Li, and Qingwei Zheng. “Design of a configurable
fixed-point multiplier for digital signal processor”. In: Proc. Asia Pacific
Conf. on Postgraduate Research in Microelectronics & Electronics (PrimeA-
sia). Shanghai, China: IEEE, 2009, pp. 217–220. doi: 10.1109/PRIMEASIA.
2009.5397407.

[49] Rong Lin. “Reconfigurable parallel inner product processor architectures”.
In: IEEE Trans. VLSI Syst. 9.2 (2001), pp. 261–272. doi: 10.1109/92.
924037.

[50] Neil Weste and David Money Harris. “CMOS VLSI Design”. In: 4th. Read-
ing, MA, USA: Addison-Wesley, 2011.

[51] Benoit Jacob et al. “Quantization and Training of Neural Networks for
Efficient Integer-Arithmetic-Only Inference”. In: Proc. Conf. on Computer
Vision and Pattern Recognition (CVPR). Salt Lake City, UT, USA, 2018,
pp. 2704–2713.

[52] Hao Wu et al. “Integer Quantization for Deep Learning Inference: Principles
and Empirical Evaluation”. In: arXiv (2020). 2004.09602.

[53] Colby R. Banbury et al. “MLPerf Tiny Benchmark”. In: arXiv (2021). 2106.
07597.

139

https://doi.org/10.1109/NEWCAS50681.2021.9462745
https://arxiv.org/abs/2309.08186
https://doi.org/10.1109/MCSoC51149.2021.00024
https://doi.org/10.1109/ISSCC.2017.7870350
https://doi.org/10.1145/3566097.3567871
https://doi.org/10.1109/PRIMEASIA.2009.5397407
https://doi.org/10.1109/PRIMEASIA.2009.5397407
https://doi.org/10.1109/92.924037
https://doi.org/10.1109/92.924037
https://arxiv.org/abs/2004.09602
https://arxiv.org/abs/2106.07597
https://arxiv.org/abs/2106.07597

BIBLIOGRAPHY

[54] Pasquale Davide Schiavone et al. “Slow and steady wins the race? A compar-
ison of ultra-low-power RISC-V cores for Internet-of-Things applications”.
In: Proc. 27th Int. Symp. on Power and Timing Modeling, Optimization
and Simulation (PATMOS). Thessaloniki, Greece: IEEE, 2017, pp. 1–8. doi:
10.1109/PATMOS.2017.8106976.

[55] Vincent Camus, Christian Enz, and Marian Verhelst. “Survey of Precision-
Scalable Multiply-Accumulate Units for Neural-Network Processing”. In:
Proc. Int. Conf. on Artificial Intelligence Circuits and Systems (AICAS).
Hsinchu, Taiwan: IEEE, 2019, pp. 57–61. doi: 10 . 1109 / AICAS . 2019 .
8771610.

[56] Jinmook Lee et al. “UNPU: An Energy-Efficient Deep Neural Network Ac-
celerator With Fully Variable Weight Bit Precision”. In: IEEE J. Solid-
State Circuits (JSSC) 54.1 (2019), pp. 173–185. doi: 10.1109/JSSC.2018.
2865489.

[57] Kh Shahriya Zaman et al. “Custom Hardware Architectures for Deep Learn-
ing on Portable Devices: A Review”. In: IEEE Transactions on Neural Net-
works and Learning Systems 33.11 (2022), pp. 6068–6088. doi: 10.1109/
TNNLS.2021.3082304.

[58] Yunji Chen et al. “DaDianNao: A Machine-Learning Supercomputer”. In:
Proc. 47th Int. Symp. on Microarchitecture. Cambridge, UK: ACM/IEEE,
2014, pp. 609–622. doi: 10.1109/MICRO.2014.58.

[59] Song Han et al. “EIE: Efficient Inference Engine on Compressed Deep Neu-
ral Network”. In: Proc. 43rd Int. Symp. on Computer Architecture (ISCA).
Seoul, Korea (South): ACM/IEEE, 2016, pp. 243–254. doi: 10.1109/ISCA.
2016.30.

[60] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. “Eyeriss: A Spatial Archi-
tecture for Energy-Efficient Dataflow for Convolutional Neural Networks”.
In: Proc. 43rd Int. Symp. on Computer Architecture (ISCA). Seoul, Korea
(South), 2016, pp. 367–379. doi: 10.1109/ISCA.2016.40.

[61] Enrico Reggiani et al. “Mix-GEMM: An efficient HW-SW Architecture for
Mixed-Precision Quantized Deep Neural Networks Inference on Edge De-
vices”. In: Proc. Int. Symp. on High-Performance Computer Architecture
(HPCA). Montreal, QC, Canada: IEEE, 2023, pp. 1085–1098. doi: 10.1109/
HPCA56546.2023.10071076.

[62] Victor Pan. “How to Multiply Matrices Faster”. In: ed. by Victor Pan. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1984. isbn: 978-3-540-39058-9. doi:
10.1007/3-540-13866-8_9.

140

https://doi.org/10.1109/PATMOS.2017.8106976
https://doi.org/10.1109/AICAS.2019.8771610
https://doi.org/10.1109/AICAS.2019.8771610
https://doi.org/10.1109/JSSC.2018.2865489
https://doi.org/10.1109/JSSC.2018.2865489
https://doi.org/10.1109/TNNLS.2021.3082304
https://doi.org/10.1109/TNNLS.2021.3082304
https://doi.org/10.1109/MICRO.2014.58
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/HPCA56546.2023.10071076
https://doi.org/10.1109/HPCA56546.2023.10071076
https://doi.org/10.1007/3-540-13866-8_9

BIBLIOGRAPHY

[63] Amine Bermak and Dominique Martinez. “A compact multi-chip-module
implementation of a multi-precision neural network classifier”. In: Proc. Int.
Symp. on Circuits and Systems (ISCAS). Vol. 3. Sydney, NSW, Australia:
IEEE, 2001, 249–252 vol. 2. doi: 10.1109/ISCAS.2001.921294.

[64] Arpan Suravi Prasad et al. “Siracusa: A 16 nm Heterogenous RISC-V SoC
for Extended Reality With At-MRAM Neural Engine”. In: IEEE Journal of
Solid-State Circuits (2024), pp. 1–15. doi: 10.1109/JSSC.2024.3385987.

[65] Francesco Conti et al. “Marsellus: A Heterogeneous RISC-V AI-IoT End-
Node SoC With 2–8 b DNN Acceleration and 30%-Boost Adaptive Body
Biasing”. In: IEEE J. Solid-State Circuits (JSSC) 59.1 (2024), pp. 128–142.
doi: 10.1109/JSSC.2023.3318301.

[66] Biagio Peccerillo et al. “A survey on hardware accelerators: Taxonomy,
trends, challenges, and perspectives”. In: Journal of Systems Architecture
129 (2022), p. 102561. doi: 10.1016/j.sysarc.2022.102561.

[67] Christoffer Åleskog, Håkan Grahn, and Anton Borg. “Recent Developments
in Low-Power AI Accelerators: A Survey”. In: Algorithms 15.11 (2022). doi:
10.3390/a15110419.

[68] Albert Reuther et al. “AI and ML Accelerator Survey and Trends”. In:
Proc. High Performance Extreme Computing Conference (HPEC). Waltham,
MA, USA: IEEE, 2022, pp. 1–10. doi: 10.1109/HPEC55821.2022.9926331.

[69] Albert Reuther et al. “Lincoln AI Computing Survey (LAICS) Update”. In:
arXiv (2023). 2310.09145.

[70] Yaman Umuroglu, Lahiru Rasnayake, and Magnus Själander. “BISMO: A
Scalable Bit-Serial Matrix Multiplication Overlay for Reconfigurable Com-
puting”. In: Proc. 28th Int. Conf. on Field Programmable Logic and Appli-
cations (FPL). Dublin, Ireland: IEEE, 2018, pp. 307–3077. doi: 10.1109/
FPL.2018.00059.

[71] Mohammad Hossein Askari Hemmat et al. “Quark: An Integer RISC-V Vec-
tor Processor for Sub-Byte Quantized DNN Inference”. In: Proc. Int. Symp.
on Circuits and Systems (ISCAS). Monterey, CA, USA: IEEE, 2023, pp. 1–
5. doi: 10.1109/ISCAS46773.2023.10181985.

[72] Md. Maruf Hossain Shuvo et al. “Efficient Acceleration of Deep Learning
Inference on Resource-Constrained Edge Devices: A Review”. In: Proceedings
of the IEEE 111.1 (2023), pp. 42–91. doi: 10.1109/JPROC.2022.3226481.

[73] Gianmarco Ottavi et al. “A Mixed-Precision RISC-V Processor for Extreme-
Edge DNN Inference”. In: Proc. Computer Society Annual Symposium on
VLSI (ISVLSI). Limassol, Cyprus: IEEE, 2020, pp. 512–517. doi: 10.1109/
ISVLSI49217.2020.000-5.

141

https://doi.org/10.1109/ISCAS.2001.921294
https://doi.org/10.1109/JSSC.2024.3385987
https://doi.org/10.1109/JSSC.2023.3318301
https://doi.org/10.1016/j.sysarc.2022.102561
https://doi.org/10.3390/a15110419
https://doi.org/10.1109/HPEC55821.2022.9926331
https://arxiv.org/abs/2310.09145
https://doi.org/10.1109/FPL.2018.00059
https://doi.org/10.1109/FPL.2018.00059
https://doi.org/10.1109/ISCAS46773.2023.10181985
https://doi.org/10.1109/JPROC.2022.3226481
https://doi.org/10.1109/ISVLSI49217.2020.000-5
https://doi.org/10.1109/ISVLSI49217.2020.000-5

BIBLIOGRAPHY

[74] Théo Dupuis et al. “Sparq: A Custom RISC-V Vector Processor for Efficient
Sub-Byte Quantized Inference”. In: Proc. Northeast Workshop on Circuits
and Systems (NEWCAS). Edinburgh, United Kingdom: IEEE, 2023, pp. 1–
5. doi: 10.1109/NEWCAS57931.2023.10198172.

[75] Enfang Cui, Tianzheng Li, and Qian Wei. “RISC-V Instruction Set Archi-
tecture Extensions: A Survey”. In: IEEE Access 11 (2023), pp. 24696–24711.
doi: 10.1109/ACCESS.2023.3246491.

[76] Matheus Cavalcante et al. “Ara: A 1-GHz+ Scalable and Energy-Efficient
RISC-V Vector Processor With Multiprecision Floating-Point Support in
22-nm FD-SOI”. In: IEEE Trans. VLSI Syst. 28.2 (2020), pp. 530–543. doi:
10.1109/TVLSI.2019.2950087.

[77] Víctor Soria-Pardos et al. “Sargantana: A 1 GHz+ In-Order RISC-V Pro-
cessor with SIMD Vector Extensions in 22nm FD-SOI”. In: Proc. 25th Eu-
romicro Conference on Digital System Design (DSD). Maspalomas, Spain:
IEEE, 2022, pp. 254–261. doi: 10.1109/DSD57027.2022.00042.

[78] Chuanning Wang et al. “A Scalable RISC-V Vector Processor Enabling Ef-
ficient Multi-Precision DNN Inference”. In: arXiv (2024). 2401.16872.

[79] Eric Flamand et al. “GAP-8: A RISC-V SoC for AI at the Edge of the
IoT”. In: 2018 IEEE 29th International Conference on Application-specific
Systems, Architectures and Processors (ASAP). Milan, Italy: IEEE, 2018,
pp. 1–4. doi: 10.1109/ASAP.2018.8445101.

[80] Francesco Conti et al. “PULP: A Ultra-Low Power Parallel Accelerator for
Energy-Efficient and Flexible Embedded Vision”. In: Journal of Signal Pro-
cessing Systems 84.3 (2016), pp. 339–354. doi: 10.1007/s11265-015-1070-
9.

[81] Davide Nadalini et al. “Reduced Precision Floating-Point Optimization for
Deep Neural Network On-Device Learning on MicroControllers”. In: arXiv
(2023). 2305.19167.

[82] Donghyeon Han et al. “Energy-Efficient DNN Training Processors on Micro-
AI Systems”. In: IEEE Open Journal of the Solid-State Circuits Society 2
(2022), pp. 259–275. doi: 10.1109/OJSSCS.2022.3219034.

[83] Ivan Miro-Panades et al. “SamurAI: A 1.7MOPS-36GOPS Adaptive Versa-
tile IoT Node with 15,000× Peak-to-Idle Power Reduction, 207ns Wake-Up
Time and 1.3TOPS/W ML Efficiency”. In: Proc. Symposium on VLSI Cir-
cuits. Honolulu, HI, USA: IEEE, 2020, pp. 1–2. doi: 10.1109/VLSICircuits18222.
2020.9163000.

142

https://doi.org/10.1109/NEWCAS57931.2023.10198172
https://doi.org/10.1109/ACCESS.2023.3246491
https://doi.org/10.1109/TVLSI.2019.2950087
https://doi.org/10.1109/DSD57027.2022.00042
https://arxiv.org/abs/2401.16872
https://doi.org/10.1109/ASAP.2018.8445101
https://doi.org/10.1007/s11265-015-1070-9
https://doi.org/10.1007/s11265-015-1070-9
https://arxiv.org/abs/2305.19167
https://doi.org/10.1109/OJSSCS.2022.3219034
https://doi.org/10.1109/VLSICircuits18222.2020.9163000
https://doi.org/10.1109/VLSICircuits18222.2020.9163000

BIBLIOGRAPHY

[84] Davide Rossi et al. “Vega: A Ten-Core SoC for IoT Endnodes With DNN
Acceleration and Cognitive Wake-Up From MRAM-Based State-Retentive
Sleep Mode”. In: IEEE Journal of Solid-State Circuits 57.1 (2022), pp. 127–
139. doi: 10.1109/JSSC.2021.3114881.

[85] Gianmarco Ottavi et al. “Dustin: A 16-Cores Parallel Ultra-Low-Power Clus-
ter With 2b-to-32b Fully Flexible Bit-Precision and Vector Lockstep Exe-
cution Mode”. In: IEEE Trans. Circuits Syst. I Regul. Pap. (TCAS-I) 70.6
(2023), pp. 2450–2463. doi: 10.1109/TCSI.2023.3254810.

[86] Angelo Garofalo et al. “Darkside: A Heterogeneous RISC-V Compute Clus-
ter for Extreme-Edge On-Chip DNN Inference and Training”. In: IEEE
Open Journal of the Solid-State Circuits Society 2 (2022), pp. 231–243. doi:
10.1109/OJSSCS.2022.3210082.

[87] Enfang Cui, Tianzheng Li, and Qian Wei. “RISC-V Instruction Set Archi-
tecture Extensions: A Survey”. In: IEEE Access 11 (2023), pp. 24696–24711.
doi: 10.1109/ACCESS.2023.3246491.

[88] Partha Pratim Ray. “A review on TinyML: State-of-the-art and prospects”.
In: Journal of King Saud University - Computer and Information Sciences
34.4 (2022), pp. 1595–1623. doi: 10.1016/j.jksuci.2021.11.019.

[89] Raghuraman Krishnamoorthi. “Quantizing deep convolutional networks for
efficient inference: A whitepaper”. In: arXiv (2018). 1806.08342.

[90] Xiao Sun et al. “Ultra-Low Precision 4-bit Training of Deep Neural Net-
works”. In: Proc. Advances in Neural Information Processing Systems. Ed.
by H. Larochelle et al. Vol. 33. Online: Curran Associates, Inc., 2020, pp. 1796–
1807.

[91] Mark Horowitz. “1.1 Computing’s energy problem (and what we can do
about it)”. In: Proc. Int. Solid-State Circuits Conf. Digest of Technical
Papers (ISSCC). San Francisco, CA, USA: IEEE, 2014, pp. 10–14. doi:
10.1109/ISSCC.2014.6757323.

[92] Alessandro Pappalardo et al. “QONNX: Representing Arbitrary-Precision
Quantized Neural Networks”. In: arXiv (2022). 2206.07527.

[93] Aakanksha Chowdhery et al. “Visual Wake Words Dataset”. In: arXiv (2019).
1906.05721.

[94] Tsung-Yi Lin et al. “Microsoft COCO: Common Objects in Context”. In:
Proc. 13th European Conference on Computer Vision (ECCV). Zurich, Switzer-
land: Springer International Publishing, 2014, pp. 740–755. isbn: 978-3-319-
10602-1.

[95] Andrew G. Howard et al. “MobileNets: Efficient Convolutional Neural Net-
works for Mobile Vision Applications”. In: arXiv (2017). 1704.04861.

143

https://doi.org/10.1109/JSSC.2021.3114881
https://doi.org/10.1109/TCSI.2023.3254810
https://doi.org/10.1109/OJSSCS.2022.3210082
https://doi.org/10.1109/ACCESS.2023.3246491
https://doi.org/10.1016/j.jksuci.2021.11.019
https://arxiv.org/abs/1806.08342
https://doi.org/10.1109/ISSCC.2014.6757323
https://arxiv.org/abs/2206.07527
https://arxiv.org/abs/1906.05721
https://arxiv.org/abs/1704.04861

BIBLIOGRAPHY

[96] Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech.
rep. Toronto, ON, Canada: University of Toronto, 2009. url: https://www.
cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

[97] K He et al. “Deep Residual Learning for Image Recognition”. In: Proc. Conf.
on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA,
2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.

[98] Pete Warden. “Speech Commands: A Dataset for Limited-Vocabulary Speech
Recognition”. In: arXiv (2018). 1804.03209.

[99] Yundong Zhang et al. “Hello Edge: Keyword Spotting on Microcontrollers”.
In: arXiv (2017). 1711.07128.

[100] Yuma Koizumi et al. “Description and Discussion on DCASE2020 Challenge
Task2: Unsupervised Anomalous Sound Detection for Machine Condition
Monitoring”. In: arXiv (2020). 2006.05822.

[101] Yuma Koizumi et al. “ToyADMOS: A Dataset of Miniature-Machine Oper-
ating Sounds for Anomalous Sound Detection”. In: Proc. Workshop on Appli-
cations of Signal Processing to Audio and Acoustics (WASPAA). New Paltz,
NY, USA: IEEE, 2019, pp. 313–317. doi: 10.1109/WASPAA.2019.8937164.

[102] Li Zhang et al. “A fine-grained mixed precision DNN accelerator using a
two-stage big–little core RISC-V MCU”. In: Integration 88 (2023), pp. 241–
248. doi: https://doi.org/10.1016/j.vlsi.2022.10.006.

[103] Alessio Burrello et al. “DORY: Automatic End-to-End Deployment of Real-
World DNNs on Low-Cost IoT MCUs”. In: IEEE Trans. Comput. 70.8
(2021), pp. 1253–1268. doi: 10.1109/TC.2021.3066883.

[104] TensorFlow. TensorFlow Hub. https://tfhub.dev. Accessed on: Mar 9,
2024.

[105] TensorFlow. TensorFlow Lite example apps. https://www.tensorflow.
org/lite/examples. Accessed on: Mar 9, 2024.

[106] Intel. Neural Compute Application Zoo. https://movidius.github.io/
ncappzoo/. Accessed on: Mar 9, 2024.

[107] Intel. OpenVINO Model Zoo. https://docs.openvino.ai/2023.2/model_
zoo.html. Accessed on: Mar 9, 2024.

[108] AMD Xilinx. Vitis AI Model Zoo. https://docs.xilinx.com/r/en-
US/ug1414-vitis-ai/Vitis-AI-Model-Zoo. Accessed on: Mar 9, 2024.

[109] NVIDIA. NVIDIA NGC Catalog. https://catalog.ngc.nvidia.com/
models. Accessed on: Mar 9, 2024.

[110] NVIDIA. Jetson Model Zoo. https://elinux.org/Jetson_Zoo#Model_
Zoo. Accessed on: Mar 9, 2024.

144

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1804.03209
https://arxiv.org/abs/1711.07128
https://arxiv.org/abs/2006.05822
https://doi.org/10.1109/WASPAA.2019.8937164
https://doi.org/https://doi.org/10.1016/j.vlsi.2022.10.006
https://doi.org/10.1109/TC.2021.3066883
https://tfhub.dev
https://www.tensorflow.org/lite/examples
https://www.tensorflow.org/lite/examples
https://movidius.github.io/ncappzoo/
https://movidius.github.io/ncappzoo/
https://docs.openvino.ai/2023.2/model_zoo.html
https://docs.openvino.ai/2023.2/model_zoo.html
https://docs.xilinx.com/r/en-US/ug1414-vitis-ai/Vitis-AI-Model-Zoo
https://docs.xilinx.com/r/en-US/ug1414-vitis-ai/Vitis-AI-Model-Zoo
https://catalog.ngc.nvidia.com/models
https://catalog.ngc.nvidia.com/models
https://elinux.org/Jetson_Zoo#Model_Zoo
https://elinux.org/Jetson_Zoo#Model_Zoo

BIBLIOGRAPHY

[111] Luca Urbinati. qkeras-mod. https://github.com/LucaUrbinati44/qkeras-
mod.git. Accessed on: Mar 9, 2024.

[112] RISC-V. MLPerf Tiny benchmark GitHub repository. https://github.
com/mlcommons/tiny/tree/master/benchmark. Accessed on: Mar 9, 2024.

[113] Mohammad Amir Mansoori and Mario R. Casu. “Multi-objective Frame-
work for Training and Hardware Co-optimization in FPGAs”. In: Proc. Ap-
plications in Electronics Pervading Industry, Environment and Society (Ap-
plePies). Genoa, Italy: Springer Nature Switzerland, 2023, pp. 273–278.
isbn: 978-3-031-30333-3.

[114] Mentor Graphics. “Catapult Synthesis User and Reference Manual”. In:
(2018).

[115] Kasem Khalil et al. “Designing Novel AAD Pooling in Hardware for a Con-
volutional Neural Network Accelerator”. In: IEEE Trans. VLSI Syst. 30.3
(2022), pp. 303–314. doi: 10.1109/TVLSI.2021.3139904.

[116] RISC-V. Releases - Riscv/Riscv-Bitmanip. https://github.com/riscv/
riscv-bitmanip/releases/. Accessed on: Mar 9, 2024.

[117] Edward Manca. “Design of a Novel Precision Scalable Multiplier to Improve
Quantized Neural Network Computation on a Low-Power RISC-V Proces-
sor”. MA thesis. Turin, Italy: Politecnico di Torino, 2023. url: https://
webthesis.biblio.polito.it/27724/.

[118] ETH Zurich and University of Bologna. Ibex: An embedded 32 bit RISC-V
CPU core. https://ibex-core.readthedocs.io/en/latest/. Accessed
on: Mar 9, 2024.

[119] Davide Giri et al. “Accelerator Integration for Open-Source SoC Design”.
In: IEEE Micro 41.4 (2021), pp. 8–14. doi: 10.1109/MM.2021.3073893.

[120] Stewart Greenhill et al. “Bayesian Optimization for Adaptive Experimental
Design: A Review”. In: IEEE Access 8 (2020), pp. 13937–13948. doi: 10.
1109/ACCESS.2020.2966228.

[121] Eduardo C. Garrido-Merchán and Daniel Hernández-Lobato. “Predictive
Entropy Search for Multi-objective Bayesian Optimization with Constraints”.
In: Neurocomputing 361 (2019), pp. 50–68. issn: 0925-2312. doi: 10.1016/
j.neucom.2019.06.025.

145

https://github.com/LucaUrbinati44/qkeras-mod.git
https://github.com/LucaUrbinati44/qkeras-mod.git
https://github.com/mlcommons/tiny/tree/master/benchmark
https://github.com/mlcommons/tiny/tree/master/benchmark
https://doi.org/10.1109/TVLSI.2021.3139904
https://github.com/riscv/riscv-bitmanip/releases/
https://github.com/riscv/riscv-bitmanip/releases/
https://webthesis.biblio.polito.it/27724/
https://webthesis.biblio.polito.it/27724/
https://ibex-core.readthedocs.io/en/latest/
https://doi.org/10.1109/MM.2021.3073893
https://doi.org/10.1109/ACCESS.2020.2966228
https://doi.org/10.1109/ACCESS.2020.2966228
https://doi.org/10.1016/j.neucom.2019.06.025
https://doi.org/10.1016/j.neucom.2019.06.025

BIBLIOGRAPHY

This Ph.D. thesis has been typeset by means
of the TEX-system facilities. The typeset-
ting engine was pdfLATEX. The document
class was toptesi, by Claudio Beccari, with
option tipotesi=scudo. This class is avail-
able in every up-to-date and complete TEX-
system installation.

146

	List of Tables
	List of Figures
	Introduction
	Motivations
	Thesis Contributions and Organization

	Related Work
	Precision-Scalable Multipliers and MAC Units
	Precision-Scalable DNN Hardware Accelerators
	RISC-V Processors with Precision-Scalable Hardware Support

	Precision-Scalable Multipliers: Sum-Together (ST) Multipliers
	ST Multipliers
	SoA ST multipliers
	Booth ST: a radix-4 Booth ST multiplier
	BW-ADD: a Baugh-Wooley ST multiplier with an improved final adder
	HLS ST: an ST multiplier derived from HLS

	Experimental Results
	PPA Comparison of ST Multipliers

	High-Level Design of ST-Based DNN Hardware Accelerators
	Background
	Deep Neural Networks' Quantization
	MLPerf Tiny Benchmark

	ST-based Hardware Accelerators
	Working Principle
	Accelerators Architecture

	Accelerators Design Flow
	MP Quantization and Fine Tuning
	Minimization of UIQ Variables Bitwidth
	Generation of hardware accelerators

	Experimental Results
	DSE of ST-based Accelerators
	Performance on MP-quantized MLPerf Tiny Models

	Precision-Scalable Multipliers: Sum-Together/Apart Reconfigurable (STAR) Multipliers
	STAR Architectures
	STAR Sub-word Parallel Baugh-Wooley Design
	Experimental Results
	Power, Performance and Area Comparison of STAR Multipliers

	Accelerating Quantized DNN Layers on RISC-V with a STAR MAC Unit
	Ibex: The Baseline RISC-V Processor
	The Fast MULT/DIV unit of the small Ibex
	The novel STAR MAC unit integrated in the small Ibex
	STAR BW Multiplier
	STAR MAC unit

	Experimental Results
	Implementation Results
	Performance on Quantized DNN layers

	Conclusion and Future Work
	Conclusion
	Future Work

	Integer-only DNN kernels for 2D- and DW-Conv
	Mixed-precision results of MLPerf Tiny models
	Published Papers and Awards
	Acronyms
	Bibliography

