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Abstract

In this thesis we discuss how to model a Water Distribution System(WDS) by
means of a surrogate graph p-Laplacian model, with 1 < p < 2.

We exhaustively discuss both numerical and theoretical aspects, within the frame-
work of graph based inverse problems, convex analysis and Legendre duality.

As an application of the proposed techniques, we extend the results that we
achieved on WDS modeling to a larger class of graph-based optimization prob-
lems.

The basic idea is that, starting mainly from data on pipe characteristics and
measurements of water pressure and water fluxes inside pipes, it is possible to
accurately determine an edge-based distribution of edges weights and p-values
on the edges so that the corresponding weighted p-Poisson equation can be effec-
tively used as a Digital Twin of the WDS under study. The successful completion
of this part required the determination and subsequent numerical solution of an
appropriately regularized inverse problem (a variant of Calderon’s inverse prob-
lem) defined on the WDS graph.

The peculiar characteristics of a WDS, whereby neighboring pipes have typically
the same edge-constant properties (read weights and p-values) required the use
of a Total-Variation (TV) based regularization.

Thus, on the second part of this thesis we focused on the variational character-
ization by duality methods of TV regularizers embedded in the solution of the
weighted p-Laplace inverse problem.

We discuss how to properly rewrite a convex energy functional into an equivalent
saddle point formulation, to tackle the problem of finding it’s minimizers from
an alternative and more performing perspective. We extensively study the case
of the p-Dirichlet energy for 1 < p < 2, and of the Total Variation energy as limit
case for p — 1, including it’s application as a regularization term in various type
of inverse problems.

The derivation of these saddle point formulations is essentially based on the itera-
tion of the Legendre transform combined with ad-hoc substitutions and transfor-
mations of the involved variables. Indeed, this is a classical technique in convex
optimization theory and widely used in the variational formulation of partial dif-
ferential equations.

These resulting equivalent formulations based on duality theory, leads to a class of
saddle point problems that can be efficiently translated into accurate and robust
numerical methods based on variant of the Dynamic-Monge-Kantorovich(DMK)
equations developed earlier by the supervisors research group for the numeri-
cal solution of the L1 Optimal Transport problem. Moreover, we discuss both
theoretical aspects and numerical implementation of the proposed formulation
showing also the efficiency and robustness of the developed algorithms on both



classical problems and real-world examples.

On the third part of the thesis we focus on the development of numerical schemes
for the nonlinear eigenvalue problem of p-Laplace operators on graphs with 1 < p.
The aim of this part is to provide a proper efficient numerical scheme in order to
use eigen-information of the p-Laplace operator governing the specific WDS to
develop Machine-Learning and surrogate models. A family of Energy functions,
inspired again by the DMK approach, whose critical points can be proved to
be variational eigenpairs of the p-Laplace operators, have been used to develop
gradient-flow algorithms for the numerical calculations of p-eigenpairs.
Unfortunately, only partial results have been achieved in this topic due to two
main difficulties inherently related to the nonlinear eigenvalue problem. On one
hand, the non-regularity of these energy functions in the presence of eigenpairs
with multiplicity greater than one may cause non-convergence of the developed
gradient-based method. The second important difficulty is related to the position-
ing of the found p-eigenpairs within the p-spectrum. Indeed, the interpretation
of the DMK equations deriving from the KKT conditions of the proposed energy
functions as an appropriate weighted linear Laplace eigenproblem allowed the
definition of an approximate ordering of the numerically calculated p-eigenpairs.
However, a complete solution of this problem is still elusive and is left of a matter
of future developments.
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Introduction

This thesis is focused on modeling a water distribution system (WDS) through
a surrogate p-Laplacian model. This problem can be genuinely connected to the
framework of graph based machine learning and graph based inverse problems
with PDE constraints.

Different techniques has been appositevely developed for the numerical solution
of this problem and collected into three main chapters, which can be related but
also be of independent interest.

For this reason, we provide here a brief introduction, summarizing the main
concepts and ideas which are then presented in details on the relative chapters
and their exhaustive introductions.

When dealing with the mathematical modeling of a Water Distribution System
(WDS), it is natural to consider a graph-theoretic setting, where features such as,
e.g., pipes, intersections, house services, tanks, pumps, and valves are effectively
represented by means of nodes, edges and their related properties. It is natural
to express the physical laws that govern the hydraulic dynamics of a WDS, such
as mass and momentum balances, localized and distributed energy losses, input
and control structures, demands, etc. via tools from the graph theory framework.
This is explained in some details for example in [141], with predominant emphasis
on topological characteristics for WDS reliability analysis.

Accurate modeling of an operational WDS is a complex task mostly attributable
to the non-stationarity of the system inputs. Indeed, a considerable number of
variables and parameters involved in the model may have changed during the
WDS lifespan because of, e.g., pipe degradation, valve malfunctioning, varied de-
mand, added connections, etc., and the model developed in the design phase may
not be accurate forcing a re-development of the simulation model. In general,
this development together with the tuning of the new parameters is problematic
especially because of the frequent lack of available data [38, 122]. Therefore, aim-
ing at recovering a detailed Physics-Based (PB) operational model of the WDS is
very often an unrealistic task. This suggests the idea to look for surrogate mod-
els, namely simplified-reality models that are relatively easy to tune and capable
of describing the dynamics of the WDS with sufficient (controlled) accuracy.

In the last decade, Artificial Intelligence (AlI), alias Machine Learning (ML) and
all its derivatives such as deep or reinforced learning, has seen a dramatic devel-
opment and found extensive application in surrogate modeling of WDSs, espe-

5



6 INTRODUCTION

cially within the field of leak detection [75, 86, 90]. These approaches are named
Data-Driven (DD) for their extraordinary ability to approximate data without
any knowledge of the underlying physical processes that generated the data. We
observe that pure DD methods, where the physics-based model is replaced by
machine/deep learning schemes trained on available data, turned out to be often
unsatisfactory as the dynamics of the WDS pressure is completely ignored [86].
In our view, the low prediction ability of ML-based surrogate modeling is es-
sentially based to the absence of physics in the modelling setting. Indeed, the
nonlinear regime governing a WDS increases the model sensitivity to parameter
variations and, as a consequence, the ill-conditioning of the related calibration
inverse problem. One of the founding ideas of this thesis is that the use of
a simplified but nonlinear surrogate model substantially reduces the danger of
over-parametrization and increases the prediction ability of calibrated surrogate
models in WDS simulations.

A typical nonlinear model problem extensively studied in the mathematical liter-
ature is the so-called weighted p-Laplacian operator, a nonlinear extension of the
classical Laplacian operator. To define this operator, one starts from the water
fluxes that are parallel to a pressure gradient and are characterized by a con-
ductivity constant w multiplied by the modulus of the pressure gradient raised
to the power p — 2. The mass balance arising from such fluxes produces the so-
called weighted p-Laplacian (or p-Poisson in the presence of a forcing function)
equation.

One of the goals of our work is to verify if and how a WDS can be effectively
described using a p-Laplacian-based surrogate modeling. For this purpose, we
recast standard WDS modeling approaches within the framework of a weighted
p-Laplacian operator. Once this has been established, we use synthetic and real
test cases to calibrate the weight w and power p to reproduce standard modeling
results and verify that the wanted prediction accuracy can be realized by the
proposed p-Laplace-based surrogate model.

Hence, in this thesis, we propose a surrogate Data-Based (DB) model for for the
simulation of operational WDSs, which lies in the middle between PB and DD
approaches. Indeed, we make extensive use of collected data for model calibration,
and we also take into account the physical aspect by considering a dynamics based
on the weighted graph p-Laplacian operator.

As a consequence, we find out that our task can be efficiency solved by introducing
a non-linear extension based on the graph p-Laplacian for the classical Calderon’s
inverse problem on graph [42].

Differently from the standard approach to this problem, which is essentially based
on harmonic extensions, medial graphs reduction and Schur complements, we
adopt the framework of the primal-adjoint method, typically used in parameter
estimation for the continuous based two dimensional Calderon’s problem [95],
[26]. This is ultimately due to the need of adopting a sufficiently flexible ap-
proach which leads us to easily include further constraints on our parameters to
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satisfy the physical lows governing a WDS i.e. the edges weights w must to be
positive and the exponents p should be such that 1.4 < p < 1.8. Due to the lack
of convexity of the Calderon’s inverse problem, over-parametrization typically
occurs and the consequential appearance of multiple solutions force the use of
Tikhonov-like regularization terms to arrive at a feasible solution [14, 30, 69].

A very efficient class of Tikhonov regularizers are based on the Total Variation
of the design parameters and naturally leads to solution in the space of bounded
variation functions BV. The Total Variation energy, due to it’s enhancing sparsity
property on the gradient, plays an important role in image denoising and signal
reconstruction [26], [33], [64], [104], [115]. In the case of WDS, the Total Variation
is particularly suitable as regularization term since it is natural, by construction,
that there are sequences of pipes with the same diameters and materials, so
that we are expecting to retrieve clustered parameters and the TV has optimal
clustering properties.

Taking inspiration from the Hazen-Williams water losses formulas in WDS, we
develop a Legendre duality based saddle point formulation for the p-Dirichlet
energy which, in the limit case when p = 1 naturally interconnects the space of
BV functions with the positive Radon measures. Thus, following the work of [18],
[55], [59] on the L' Optimal Transport problem, we introduce a new variational
problem which leads us to reduce the computation of the Total Variation for a
function in BV as the computation of a saddle point for a Lagrangian function
that can be easily discretized with the standard methods of numerical analysis.

As a case of direct interest for this thesis, we state the discrete counterpart
on graph of the proposed saddle point method, where the differential structure
is given by the graph signed differences matrix. We then introduce an oppor-
tune smoothed version of our saddle point formulation for the Total Variation
energy which leads to a class of very efficient numerical solvers based on the
DMK (Dynamic-Monge-Kantorovich) scheme [54]. This smoothed formulation
can be easily incorporated as a continuous and differentiable approximation for
the TV Tikhonov regularization term in our WDS p-Laplacian inverse problem.
Furthermore, in the general case when 1 < p < 2, the proposed saddle point
numerical method can be efficiently recycled as a very fast iterative linear solver
for the p-Poisson problem on graphs.

As a consequence, all the proposed algorithms were implemented and integrated
in our numerical algorithm based on the Calderon’s p-Laplacian inverse problem
for the parameters identification of the edges weights w and the esponents p in
order to reproduce the piezometric heads distribution (pressure plus elevation)
and the water fluxes from synthetic pressures, fluxes and demands data measure-
ments.

In the Last part of this thesis, as an introduction for future developments, we
propose a new reformulation of the p-Laplacian eigenpairs in terms of constrained
weighted linear Laplacian eigenproblems. In particular, we show that from this
reformulation of the p-Laplacian eigenproblem it is possible to deduce novel nu-
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merical methods, which are essentially an extension of the iterative numerical
solver for the p-Poisson problem that we developed for our surrogate p-Laplacian
WDS model calibration.

Thus, summarizing, the content of the thesis can be divided into three main
topics that are related but that can also be of independent interest.

1. In the first part we introduce the mathematical aspects of WDS modeling,
the available data and the physical laws governing a pressurize network.
Then, we introduce the role of the graph p-Laplacian as the main governing
operator describing the dynamics of piezometric heads and fluxes giving a
certain demand distribution. We enphasize the role of the various compo-
nents of a WDS network such as tanks, reservoirs, pumps, valves, emitters,
and their mathematical translation which in the p-Laplacian framework are
essentially various type of boundary conditions. We then propose our pa-
rameter identification model which will be the core of our model calibration
inverse problem, extending the notion of the Dirichlet-to-Neumann map on
graphs and introducing a variant of the classical Calderon’s inverse prob-
lem. Then, we describe our primal-adjoint based approach and the role of
the Dirichlet-to-Neumann map to ensure the well posedness of the problem
proposing moreover a topological based Line Graph Tikhonov type regu-
larization, based on the graph Total Variation energy. Finally we present
some numerical results based on synthethic data.

2. In the second part of the thesis we describe the main tool that we use for
the numerical solution of our WDS data calibration model as for the p-
Laplacian PDE constraint and mainly for the TV based regularization.

In particular, we propose a duality based saddle point formulation for the
p-Dirichlet energy 1 < p < 2 and it’s limit case when p = 1, namely the
Total Variation energy, both in the continuous and in the discrete graph
based setting. We also discuss how to properly rewrite, with similar argu-
ments, a larger class of convex energy functionals into an equivalent saddle
point formulation with the ultimate goal to tackle the problem of finding
their minimizers from an alternative and more performing perspective.
Our initial idea is based by observing that iterating the Legendre trans-
form, and selecting opportunely the state and conjugate variables, we can
translate the p-Dirichlet energy into a classical weighted Laplacian mixed
formulation plus a mass term in the conductivity weight variable.

Then, we further show how to extend our saddle point formulation to a
larger class of convex discrete energies, providing also an example of ap-
plication to the minimal surfaces discrete energy. We also state theorems
and proofs for the most important results, essentially based on duality ar-
guments and some ad hoc extensions of classical convex analysis results in
[46]. Moreover, we propose novel numerical schemes based on the Dynamic-
Monge-Kantorovich(DMK) scheme first developed for the L! optimal trans-



INTRODUCTION 9

port problem ([55], [58], [54], [59]), and opportunely modified for the prob-
lem of computing saddle points of the proposed energies reformulations.
The computation of these saddle points is proved to be equivalent to the
problem of computing minimizers for the original energies, showing also the
advantages of this approach.

As an application, we show how to use our proposed techniques to the
numerical solution of classical problems, such as an iterative numerical so-
lution to 1-harmonic Dirichlet problem and the p-Poisson Dirichlet problem
on graphs. We also show some other applications based on using the Total
Variation and the [; norm as Tikhonov regularization terms in some discrete
optimization problems such as the classical ROF(Rudin-Osher-Fatemi) TV
denoising [104] and the compressed modes for the graph Laplacian [106].

3. In the third part of the thesis we discuss the problem of computing the
p-Laplacian eigenpairs. This matter has recently been investigated by dif-
ferent authors [21, 72, 139] leaving, however, several open problems. In the
thesis, we show that it is possible to compute the p-Laplacian eigenpairs as
the limit of sequences of weighted linear Laplacian eigenpairs. In partic-
ular, we observe that, for any p € [2,00], it is possible to reformulate the
p-Laplacian eigenvalue problem as a weighted Laplacian eigenvalue problem
with constraints on the weights. Based on the weighted linear reformula-
tion of the p-Laplacian eigenvalue problem, we introduce a family of energy
functions such that the cardinality of the family is equal to the dimension
of the graph N, and the variables of the functions are weights on the edges
and on the nodes of the graph. Enumerated the energy functions from 1
to N, we prove that any smooth saddle point of the k-th energy function
corresponds to a p-Laplacian eigenpairs. In addition, we prove that the
first energy function has a unique saddle point, possibly not smooth, which
always corresponds to the unique first eigenpair of the p-Laplacian. Finally,
based on the above results, we investigate novel numerical methods devoted
to compute p-Laplacian eigenpairs in both the cases p < oo and p = .
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1 Modeling WDS via the graph
p-Laplace operator

1.1 Introduction

When dealing with the mathematical modeling of a Water Distribution System
(WDS), it is natural to consider a graph-theoretic setting, in which features such
as, e.g., pipes, intersections, house services, tanks, pumps, and valves are ef-
fectively represented by means of nodes and edges and their related properties.
Once a WDS has been defined over a graph, its modeling can take advantage
of the vast literature on graph theory (see e.g. Kepner and Gilbert [85] for a
recent exposition). This comprises important tools such as discrete analogues
of differential operators (graph Laplacians and p-Laplacians), divergence theo-
rems, and integration by parts, as well as linear algebra and related numerical
algorithms addressing, e.g., the numerical solution of linear systems and calcu-
lation of eigenvalues and clustering. Within this framework, it becomes natural
to express the physical laws that govern the hydraulic dynamics of a WDS, such
as mass and momentum balances, localized and distributed energy losses, input
and control structures, demands, etc. This is explained in some details for ex-
ample in Yazdani and Jeffrey [141], with predominant emphasis on topological
characteristics of the graph aimed at WDS reliability analysis. The latter has
seen a number of recent contributions based on graph theory, among which we
would like to mention [29, 31, 65, 66, 73, 97, 98, 107, 114, 127, 137]. All these
works leverage on the recent advances in complex network and cluster analysis
to determine aqueduct vulnerability to unforeseen and extreme conditions. How-
ever, the exploitation of graph theory results for modeling the hydrodynamics
and simulating the dynamics of a WDS is not yet developed.

In the past years a wealth of WDS simulators have appeared in the specialized
literature and are routinely used in engineering practice for their design and anal-
ysis (see [10] for a recent review). Various simulation approaches and techniques
together with the accompanying optimization methods have been developed in
order to obtain accurate simulations of WDS dynamics subject to complex de-
mands, both in terms of design and operational strategies [39, 81, 124, 133, 144].
Among the available software [10], EPANET is a well-known package and a de-
facto standard for the design of a WDS. It allows a precise planning of the WDS
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12 CHAPTER 1. WDS AND THE GRAPH p-LAPLACE OPERATOR

structure and its hydraulic dynamics, including an accurate description of all
the components and corresponding parameters, and it finds widespread use in
the WDS community. In this thesis it is assumed to be the reference model
for WDSs. Accurate modeling of an operational WDS is a complex task mostly
attributable to the uncertainty and non-stationarity of the system parameters
and the forcings. Indeed, aging certainly causes changes in the behavior of WDS
components because of, e.g., pipe degradation, valve malfunctioning, varied de-
mand, added connections, etc. This leads to changes in the parameter values that
best model the changed behavior of the system components. Hence, the model
developed in the design phase cannot be accurate for the entire WDS lifespan
and re-development or re-calibration of the simulation model is often required.
In general, this development forces a re-calibration and the tuning of the system
parameters, and this is often problematic especially because of the frequent lack
of available data [38, 122]. Therefore, aiming at recovering a detailed Physics-
Based (PB) operational WDS model is often an unrealistic task. In order to
resolve this concrete issue, various surrogate indices have been proposed in the
few last years and employed in WDS least-cost management tasks [108, 112, 126].
The aim of theses surrogate indices is to summarize in only a few numbers the
status of the WDS. Along this direction, one of the first approaches can be traced
back to [132], where a resilience index was designed as surrogate metric to assess
the dependability of a WDS. More recently, a further index built upon Todini’s
ideas has been introduced in [116] and compared in [117, 125] to other reliability
indices, such as the flow entropy or the flow-uniformity indices [93, 100].

The idea of surrogate metric naturally suggests to look for surrogate models, or
digital twins. These are simplified-reality models that are relatively easy to tune
and capable of describing the dynamics of the WDS with sufficient (controlled)
accuracy. In the last decade, Artificial Intelligence (AI), alias Machine Learn-
ing (ML) and all its derivatives such as deep or reinforced learning, has seen a
dramatic development and found extensive application in surrogate modeling of
WDSs, especially within the field of leak detection [75, 86, 90]. These approaches
are named Data-Driven (DD) for their extraordinary ability to approximate data
without any knowledge of the underlying physical processes that generated the
data. However, we would like observe that pure DD methods, where the physics-
based model is replaced by machine/deep learning schemes trained on available
data, turned out to be often unsatisfactory as the dynamics of the WDS pressure
is completely ignored [86]. Indeed, being ML essentially based on articulated re-
gression mechanisms, the prediction accuracy essentially depends on the training
data. In a non-stationary regime, where training data do not contain enough
information or do not reflect the changes in the WDS properties, an ML-based
model can be accurate only for short extrapolation times. This is a common
problem of ML and current research in Al looks for so-called “Physics-Informed”
Machine Learning (PI-ML) to add to the outstanding regression capabilities of
ML some physical knowledge of the system at hand [119].
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In our view, the low prediction ability of ML-based surrogate modeling, traced
back in the previous paragraph (and in the relevant literature) to the absence of
physics in the modelling setting, can be related further to the role of the nonlin-
earities introduced in the mathematical modeling of friction and energy losses in
a WDS. Indeed, the nonlinear regime governing a WDS has to main effects. On
one hand, it increases the model sensitivity to parameter variations and, as a con-
sequence, the ill-conditioning of the related calibration inverse problem. On the
other hand, the observations used for calibration are not in general representative
the entire interval of variation of the variables driving the system dynamics. This
latter problem, while negligible in a linear model, becomes highly critical in the
nonlinear case. The most important consequence of this is the so called over-
parametrization of regression models, which leads typically to ill-conditioning
and multiple solutions of both the direct and inverse (calibration) models. This
forces the use of Tikhonov-like regularization terms to arrive at a computable
solution [14, 30, 69]. One of the founding ideas of this thesis is that the use of
a simplified but nonlinear surrogate model substantially reduces the danger of
over-parametrization and increases the prediction ability of calibrated surrogate
models in WDS simulations and their concrete development.

A typical nonlinear model problem extensively studied in the mathematical lit-
erature is the so-called weighted p-Laplacian operator, a nonlinear extension of
the classical Laplacian operator. To define this operator, one considers water
fluxes that are aligned to the pressure gradient, i.e., they are parallel and go in
the same direction of the pressure gradient. The magnitude of the fluxes are
characterized by a conductivity that is a nonlinear function of the pressure gradi-
ent. The resulting flux is equal to the product of a constant w multiplied by the
modulus of the pressure gradient raised to the power p— 2 times the pressure gra-
dient. The mass balance arising from such fluxes produces the so-called weighted
p-Laplacian (or p-Poisson in the presence of a forcing function) equation. The
p-Laplace equation has mathematical properties that are similar to the linear
Laplace equation (p = 2) in terms of symmetry and dissipation properties that
provide well-posedness and well-conditioning of the related mathematical and
numerical formulations that can be easily related to those of the linear Laplace
operator. For these reasons, p-Laplace equations have been used extensively in
many different applications [20, 28, 47].

One of the goals of our work is to verify if and how a WDS can be effectively
described using a p-Laplacian-based surrogate modeling. For this purpose, we
recast standard WDS modeling approaches within the framework of a weighted
p-Laplacian operator. Once this has been established, we use synthetic and real
test cases to calibrate the spatial distributions of the weight w and of the power
p that best reproduce standard commercial simulations results (i.e., EPANET),
and verify that the desired prediction accuracy can be realized by the proposed
p-Laplace-based surrogate model.

In this chapter we propose a surrogate Data-Based (DB) model for for the sim-
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ulation of operational WDSs, and note that this approach can be position in
the middle between PB and DD approaches. Indeed, we make extensive use of
collected data for model calibration, and we also take into account the physi-
cal aspects by considering a dynamics based on the weighted graph p-Laplace
operator. More precisely, after motivating the introduction of such an operator
within this context, we show that it is possible to tune its two parameters, i.e.,
the value of the exponent p and the weight w, in such a way that the outputs
of an EPANET simulation can be reproduced within this simplified setting. We
test the accuracy of the proposed surrogate model by varying the number and
distribution of the data collected from the EPANET simulation in a small syn-
thetic aqueduct and in a real large scale aqueduct in the Veneto Region (Italy),
for which the design-phase EPANET model is available.

This chapter is organized as follows. First the mathematical notation is estab-
lished by providing rigorous definitions of all the mathematical objects, including
the p-Laplace operator, that are needed. We note here that, since the p-Laplace
operator has been studied mostly within the context of PDEs, we use a notation
that derives from it and make several references to the continuous case in an
effort to make the presentation more streamlined. All the relevant properties of
the used operators are discussed and proved if necessary. This first section will be
followed by a description of a standard WDS model, discussing standard nomen-
clature and components of a WDS, including examples of typical equations used
for localized and distributed energy losses, and types of simulations that are typ-
ically performed. The third section contains a discussion on typical data that are
available to a WDS operators and what are the data that will be available in the
future by the introduction modern metering technologies. Section 5 is dedicated
to the discussion and mathematical formulation of the inverse problems used to
calibrate the p-Laplace based model. This will include the development of the
needed mathematical theory as well as of the numerical algorithms that will be
used to solve the problem. Finally, Section 6 will report the numerical examples
obtained on synthetic and real aqueducts.
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1.2 The p-Laplace operator and the graph setting

The p-Laplacian operator is a non-linear generalization of the well-known Lapla-
cian operator. This operator, restricted to the graph setting, has received renewed
interest in the last few years because of potential application to machine learning
and data science [20, 28, 47]. In the continuous case, the p-Laplacian takes the

form
Ap(-) = —div([V()P2V ().,

The above equation is defined in an open domain 2 C R™ with Lipschitz boundary
and p € R with 1 < p < co. Obviously, for p = 2 we recover the standard Laplace
operator. The p-Laplacian operator naturally arises from the Euler-Lagrange
equation of the p-Dirichlet energy on W1P(Q), defined as:

1
£,() = /Q P

We are also interest in the p-Poisson problem, where given a profile function
g(z) : T — R defined on T' = 99, and a forcing term f € L¥' (), we consider
the following variational problem:

. 1 _
inf /\Vsow\p—/gﬂp, (1.2.1)

peWP(Q) Ja P

where @ is a lifting function such that @(z) = g(z), Vo € I'. The Euler-Lagrange
equation for problem (1.2.1) is indeed equivalent to the well-known p-Poisson
PDE with Dirichlet boundary conditions:

App=f, xecfl,

o(x) =g(z), =z=el. (122)

The value of p determines the regime of the non-linear diffusive dynamics, i.e.,
sub-diffusive if p < 2 or super-diffusive if p > 2. In particular, we highlight the
following two limit cases and their sample applications.

e Case p — oo: eq. (1.2.2) can be related to the PDE-based formulation
of the Monge-Kantorovich (MK) equations for the L' Optimal Transport
problem, if the Euclidean distance is assumed as cost function for the opti-
mal transportation problem [51];

e Case p = 1: the p-Poisson problem relates to the 1-Laplacian operator
and the Total Variation (TV) energy. These lead to solutions belonging
to the space of Bounded Variation (BV) functions [50, 52]. This case will
be exhaustively studied in Chapter 2, where we will also study the inter-
dependence between the p-Laplacian operator and the so-called Dynamic
Monge Kantorovich (DMK) approach, which has been introduced in [55-57]
to obtain approximate solutions of the above MK problem.
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Although the detailed analysis of our adaptation of the DMK approach is post-
poned, at the end of this chapter we will present its fundamental role in providing
effective numerical tools for tackling the p-Laplacian inverse problem of interest.
In the graph-based setting, the p-Laplacian is defined to mimic the behavior of
the continuous counterpart. Before getting into details, we recall some important
ideas from the theory of graphs operators. We define a weighted directed graph
as a collection of edges, nodes, and edge weights, G = (E,V,w), where E is the
set of m = |E| edges, V the set of n = |V| nodes, and w is a weight defined on the
edges. Each edge e; € F is characterized by the pair e; = vjvg, with v;, v, € V,
and we write w; for the weight associated to the edge e;. On a graph, we can
define functions on nodes and functions on edges. We denote as H (V) = R™ and
H(E) = R™ the Banach spaces of real-valued functions on V' and FE, respectively.
Therefore, we can directly use the vector notation h = [hy,, ..., hy,| € H(V),
and write h, = h(v) for the evaluation at v € V, or, equivalently, the v-th
component of the vector h. With the same notation, we write g. = ¢(e) and
q= [Qeu A QE7rL] S H(E)

Assume that ¢ € {1,...,m} is the index associated to an edge e¢; € F and that
ky,ky, € {1,...,n} are the indices associated to u and v in V. We define graph
gradient operator V : H(V) — H(E) as the m x n signed incidence matrix
whose (i, j)-element is:

—1 if § = ky,
(V)i =<1 ifj =k,

0 otherwise.

Although the gradient matrix relies on the edge orientations, we point out that
such orientation is arbitrary and does not affect the construction of the operator.
Next, we define the graph divergence operator div : H(E) — H(V) as the
negative adjoint of the gradient, or in other words:

div = - V7,

i.e., the negative transpose n x m matrix of V. Indeed, given h € H(V), ¢ € H(E)
and e =uv € E, u,v € V, direct calculations show that:

hs (Vh)e = hy — ha, (1.2.3)
g (dive)u = D g, (1.2.4)

where v ~ v means that v is connected to u by an edge of the graph.
In analogy to the continuous case, we can define the weighted graph Laplacian
operator for a function h € H(V) as:

Ayh = —div(w ® Vh) = VI Diag(w)Vh, (1.2.5)
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where w € H(E) is a weight function, Diag(w) is the diagonal matrix with diag-
onal equal to ¢, and © is the Hadamard or entrywise product:
u®v:R"xR" — R"
(u®v); = u; - v; i=1,...,n.

Note that (1.2.5) is the matrix-vector product of the w-weighted graph Laplacian
matrix

A, = VI Diag(w)V,

and the vector representation of the node function h € H(V).
The w-weighted graph p-Laplacian operator, p > 1, can be defined as:

Apuh = —div(w’ ' © | VAP 2 © Vh) = V! Diag(c"' © | VA[P2)Vh.

As done in the continuous case, we can associate to A, a p-Dirichlet energy
and a p-Poisson problem on graphs. First, we recall that given ¢ € H(E) and
1 < p < 0o we can define the edges-based p-norm as:

1
P
lall, = (z\qe@ |

ecE

while in the limit case p = oo we can consider the [,,-norm
allioe = sup [ge] -
eclE

Letting p > 1 and w € H(F)" be a positive weight function, we define the
weighted graph p-Dirichlet energy for a function h € H(V'), hy < 00, Vv € V as:

—1

lw'® @V h|P
lp o

Epw(h) == .

3y W (V h)el? . (1.2.6)

eclk p
Now we want to introduce the p-Poisson equation on graphs. Before we do
that, we need to define the boundary of a graph. Thus we consider a graph
G = (E,V) and characterize the node and edge sets as the disjoint union of
internal and boundary sets [63]. In other words, given a proper subset B C V
of G, called the boundary, we have V. = (V; U B) and F = (E; U Ep) where
Er={uwv € E:u,v e Vi}and Egp = {uv € E : uw € Vi,v € B}. Now, for given
functions f € H(V;) and g € H(B), we can introduce the following p-Poisson
problem:

(Apuh)y=1fu veV;

(1.2.7)
h'u = g'U RS B7
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This problem can be given a variational formulation. Indeed, for a forcing term
f € H(V;) and non-homogeneous Dirichlet boundary conditions on the graph
boundary B, we can consider the equivalent formulation:

p—1 A p
inf S (ViR Pl > foho, (1.2.8)

B
hery (V) eclk p veEV]

where HE (V) := {h € H(V) | h, =0, Yv € B} and h is a lifting function such
that h, = gy forallv € B, and h, = 0 for all v € V;. The Euler Lagrange equation
for (1.2.8) is indeed (1.2.7). Moreover, by virtue of the Poincaré inequality [91],
problem (1.2.8) is strictly convex and coercive, and therefore it admits a unique
minimizer. Thus (1.2.7) admits a unique solution.

We would like to remark that, in addition to the parameter p, A, ., includes the
positive weight w, which, analogously to the exponent p, is a function defined
on the edges of the graph and is introduced to ensures physical interpretability
when using the operator in modeling physical phenomena along the graph struc-
ture. Indeed, in many situations, the weighted p-Laplacian can be employed as
a surrogate of more complex non-linear operators. However, in order to obtain
an effective model, it is necessary to carry out a fine tuning of the parame-
ter functions p and w. Thus, a non-linear inverse problem on graphs must be
solved [9, 76, 80, 101]. In the context of partial differential equations, inverse
problems are a well-established topic [8, 45, 68, 94] and are used for model-
parameter identification [26, 96, 118]. Typically, inverse problems are carried out
by minimizing the least squares of the difference between model solution and ex-
ternal observations (see [129] for an interesting discussion on linear or nonlinear
least squares in the field of inverse problems in water resources). To be able to use
a weighted p-Laplacian as a surrogate model of an aqueduct we need to address
this problem.

We now focus our attention to properties of the graph gradient and the graph
divergence operators that will be useful in the sequel. From (1.2.3), it is clear
that the kernel of the graph gradient matrix are the constant functions on the
nodes. On the other hand, from (1.2.4), we can easily see that a basis for the
kernel of the divergence operator consists of functions defined on the edges that
are constant on directed loops. As a consequence, denoting by 1 € H(V) the
unit constant function, we also have that for any f € H (V') for which there exists
q € H(F) such that f = divq, then

<Lf> = <LdiVQ> = _<VLCI> :O,

where (r,y) = 2Ty is the standard scalar product between vectors in R™. In
other words, we can write the following mass balance constraint:

f=divg = Y f,=0. (1.2.9)

veV
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An important tool that will be useful is the discrete counterpart of the divergence
theorem, given in the following Proposition.

Proposition 1.2.1. (Graph divergence theorem) Let G = (V, E) be a graph with
boundary set B. Given two node and edge functions ¥ € H(V) and ¢ € H(E),

then:
Z %(@5 : 73:)1) - Z (diV ¢)v¢v = Z ¢e(v w)e >

vEB veVr ecE

where, for any v € B, the graph boundary normal flow map is defined as:
(v,0) = (¢ V)y :=—(dive)y, V¢ € H(E), VveB.
Proof. The proof is obtained by means of the following direct computation:
=D (dive)ythy — > (dive)uthy = (VI §,90) = (6, YY) = > ¢e(V ),
veB veEV] e€E

from which the thesis follows. O
Consider now the following general non-linear elliptic operator on graphs:
h— VT Diag(a(h))Vh, heHV), a:HV)—HE)T.

From Proposition 1.2.1, we can introduce the following definition of the Dirichlet
to Neumann (DtN) map for a general graph elliptic operator.

Definition 1.2.2. (Dirichlet-to-Neumann map (DtN)) Let G(V, E) be a directed
graph with boundary B and let V be the associated gradient matriz. Given some
Dirichlet boundary data g € H(B), a forcing term f € H(Vr), and a sufficiently
smooth and positive map o : H(V) — H(E)' such that the following Poisson
problem admits a unique solution:

(V! Diag(a(h)) Vh)y = fo, v eV,
hy = ¢y, vEDB,
define the flur ¢ € H(E) as:
q := — Diag(a(h)) V hy .
Then for any v € B the Dirichlet-to-Neumann (DtN) map is given by:

(gv) = Aoz(gv) = (_q : 7)1} = (div Q)v = (VT Diag(a(h)) \ h)’lh VveB.
(1.2.10)

Remark 1.2.3. Differently from the continuous case where the DtN map is con-
tinuous [3](even in the case of the p-Laplacian), surprisingly in the graph case we
loose many of the good properties of the continuous case. Indeed, the DtN map
is proven to be continuous only on circular, critical and planar graphs [42, Th.

44, p. 76].
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Note that, from (1.2.9) and Proposition 1.2.1, we have the graph-based counter-
part of the classical boundary conditions in elliptic PDE theory. In close analogy,
we can define the following boundary conditions:

e Dirichlet boundary conditions: this essentially corresponds to the im-
position of the grounding of the operator obtained by fixing h, = g,
Vv € B, where g € H(B) is the given Dirichlet data. Moreover, from
(1.2.9) and (1.2.10) we find immediately that the total flux injected or ex-
tracted in the graph domain by the forcing function must be balanced at
the Dirichlet nodes, i.e.:

> Aalge) = Y (VT Diag(a(h) Vh)y = — Y fu:

veEB vEB veEV]

¢ Neumann or flux boundary conditions: in the continuous case these
conditions impose a boundary flux:

a(h(z))Vh(z) -7 =g(x), Veel =00.

This condition can be translated to the graph setting by means of the
graph divergence theorem (Proposition 1.2.1). Indeed, as in the continuous
case, a Neumann boundary on a graph in the variational formulation is
implemented directly on the Lagrangian by moving the boundary fluxes to
the forcing term:

(Diag(a(h)) Vh- V), = (V! Diag(a(h)) V h)y = fo.

In the case of zero Neumann boundary conditions (no flow impermeable
boundary) eq. (1.2.9) requires the compatibility conditions that the forcing
term f must have zero-mean to guarantee the well-posedness of the problem.
The above equation has infinitely many solutions since the constant function
is in the kernel of the operator. The standard method to provide a unique
solution is to enforce zero mean to the solution, i.e., > -y hy = 0;

¢ Robin type boundary conditions: another typical class of boundary
conditions are the (generalized) Robin or third type conditions, which in
the continuous setting can be written as:

a(h(z)) V h(z)- T =~y(h(z))h(z) + g(z), Vzel =0

By virtue of Proposition 1.2.1, given a map v : H(V) — H(B) and a
function g € H(B), Robin type conditions in the graph can be written as:

(Diag(a(h)) V h-7), = (VT Diag(a(h)) V h)y = y(h)vhy + go, Yv € B.
(1.2.11)
In this case eq. (1.2.9) implies the following conservation equation:

Z(’Y(h)vhv +gv) = - Z fv-

veEB veVr
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Figure 1.1: Sketch of a portion of the graph underlying a WDS model.

For further details concerning the theory of graph operators, we refer the inter-
ested reader to e.g. [42].

1.3 The WDS model

We can genuinely consider a WDS as a weighted directed graph G = (E,V,w),
where edges are pipes and nodes are junctions. Positive edge weights w embed the
pipe attributes, including length, diameter, roughness coefficient etc. Figure 1.1
shows a sketch of the graph underlying a portion of a WDS.

Aside from the graph structure and operators, in the WDS model we need to
consider the following functions:

e a flux function ¢ € H(E), [¢] = [L?/T], which represents the volume of
water that flows inside the pipe in unit time. This quantity is defined on
edges;

e a piezometric head function h € H(V'), [h] = [L], which is defined as the
pressure (in meters of water column) plus the elevation from a reference
function. This quantity on a graph is defined on nodes;

e a forcing term f € H(V), [f] = [L?/T], which represents the global flux
entering or exiting the domain on the nodes, i.e.,

Ju= ZQea

u~v
E=UvV

This quantity is defined on nodes.

Next, we describe in more details how the main components of a WDS are mod-
eled in standard commercial softwares such as EPANET, and how the are re-
framed into our setting (cf. [1, §3.1]).

e Junctions are the points of a WDS where the pipes join and water can enter
or leave the network. They are the nodes of the underlying graph, whose
piezometric head is described by the function h. Moreover, the amount
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of water coming in or out, i.e. the required hydraulic demand on each
node must be balanced by the forcing term function f with the convention
(compatible with the graph divergence theorem) that f,, > 0 if it represents
an inflow in the network, while f, < 0 if it represents an outflow.

Pipes convey water from one junction in the network to another. Note
that each pipe is assumed to be full, i.e., it is always subject to a positive
pressure and no water surface develops. This implies that in each moment
the flux and the amount of water are uniform in all the regions of the pipe.
Pipes are the edges of G, and the flux of water flowing is quantified by the
flux function gq.

Reservoirs and Tanks. Reservoirs are used to model components such
as lakes and rivers and they represent an infinite source or sink of water
that is externally provided to the WDS. On the other hand, in tanks the
volume of stored water varies in time. In EPANET they are both modeled
as points (same as junctions). In our framework, both reservoirs and tanks
are represented as non-homogeneous Dirichlet boundary conditions that fix
the piezometric head at a node. Note that in principle tanks represent
a different type of boundary condition where the amount of stored water
changes in time. They are typically implemented as a nonlinear boundary
condition and take into account any transient that may occur in the WDS.
For simplicity we do not consider this type of boundary conditions and add
the hypothesis that the fluid is incompressible [82], that tanks behave as
reservoirs, and that the water demand is stationary. While the first as-
sumption is amply justified, the last two require careful definition of the
problems to be simulated by considering temporally averaged demands and
properly adapted data to absorb temporal variations in the tank. Never-
theless, we point out that it is easy in our framework to include also time
varying simulations and nonlinear boundary conditions.

Pumps and valves are typical components of a WDS, which are repre-
sented in EPANET as links in the network. The effect of pumps is modeled
by imposing a proper Dirichlet condition on the piezometric head of the
related node connecting the pump to the rest of the network. This pres-
sure is easily calculated from the flow-pressure graph of the pump or, if
not available, by measuring the flux and using the DtN map. On the other
hand, valves can be modeled by removing the corresponding edge from the
underlying graph, or by assigning a very small value to its weight w.

The same surrogate procedure applies to various further theoretical and
empirical components that are involved in the EPANET hydraulic simu-
lations, as for examples minor head losses parameters and emitters.
Among them, emitters are modeled as junctions and are typically used
to reproduce leaks and local dissipative phenomena. The corresponding
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hydraulic demand or forcing term f is imposed to be dependent on the
pressure:
fU = C’U|press'l)”yvi2p,ressv + g'U 9

where c is a positive node function which, roughly speaking, represents the
diameter of the leaking hole, press, := h, — z, is the pressure, z, is the
elevation of the junction at the node, -, is an exponent parameter which
is typically set to be equal to 1.5 (a direct consequence of the classical
Bernoulli Principle), with possible minor corrections depending on the ma-
terials, and g is a fixed distributed minimum leakage rate. Note that in our
framework this is exactly a Robin type boundary condition as in (1.2.11).

In the analysis of a WDS two main types of simulations are typically considered:

e Demand Driven Analysis (DDA): this is the most used approach. One
fixes a distributed demand f on every node of the WDS, and then carries
out the simulation with proper Dirichlet boundary conditions for the piezo-
metric head at source junctions, typically represented as reservoirs or as
tanks;

e Pressure Dependent Analysis (PDA): in this approach, in addition
to the a distributed demand f, a minimum pressure is required on every
junction of the network. Tanks are typically used as nonlinear Dirichlet
boundary conditions and the simulation is carried out multiple times by in-
creasing the tank level of stored water (and consequently changing Dirichlet
data), until the minimum required pressure is satisfied.

1.3.1 The graph p-Laplacian mathematical model of a WDS

In this section we would like to motivate the introduction of the graph p-Laplacian
operator. A WDS model has to include distributed (edge) and localized (nodes)
energy losses due to friction in the pipe walls and the presence of junctions and
valves, respectively. These are typically simulated by imposing head losses given
by empirical power-law formulas commonly used in practice and justified by con-
siderations related to conservation of momentum (second Newton law). The main
principles governing the flow of water in a WDS are:

L
Momentum Balance — (Vh), = Detée lge|™ qe, Vee E, (1.3.1)
evYe
Mass Balance (divg), = f,, VveV, (1.3.2)

where ne > 1 is the edge power law exponent, L. > 0 and D, > 0 are the length
and the diameter of the pipe, C. > 0 is the roughness coefficient (a unit-less
coefficient which depends mainly from age, material and diameter of the pipe),
and w, > 0 is a weight on the edges which typically depends from the physical
properties of the pipe and the flux regime(turbulent, laminar, etc. [1]). We point
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out that in general the exponent n is chosen to be constant on the edges and,
considering for example the Hazen- Williams formulation [1, §12.1], it varies in
the interval n. € [1.4,2.5] for each e € E.

By taking the absolute value on both sides of (1.3.1) and by setting ¢, := D.C./L.
for all e € E, we obtain:

1

We e 1 [ we\ ne
(7] = 2l = lael = (V)1 () 7

e

which implies:

_ne—1

ne—1 We Ne
(VA= (TR ()

e

By substituting n, = 1/(pe — 1), Ve € E we then obtain:

we 1_pe 9
= (%) IS

Finally, letting w, := £¢/we, Ve € E and substituting into (1.3.2), we obtain the
mixed dual formulation of our p-Laplacian-based surrogate model:

ge = —wP PO | VAP 2Vh
(diV Q)v = fu,

or, putting together the two equations above, the standard formulation:

(Ap,wh)v = fo, (1.3.3)

where
Apwh = —div(w?™' © | VAP 2V h) = V! Diag(w?™ ' © |VAa[P"3)Vh, (1.3.4)

is the weighted p-Laplacian operator with p € (1.4,1.7), for any edge of the graph
representing the WDS.

Boundary conditions need to be added to (1.3.1), (1.3.2) or equivalently to (1.3.4)
in order to get a well-posed mathematical problem.

We recall that the thesis of this chapter is that it is possible to retrieve a distri-
bution of p and w parameters so that the p-Laplace operator in eq. (1.3.4) can be
effectively used as a surrogate model. To this aim we need to embed eq. (1.3.4)
within an inverse problem framework to calculate the distribution of p and w
that best fit a given set of observed data. Our approach to the latter task will
be described in Sec. 1.5. Here, instead we reformulate our surrogate model as a
minimization problem suitable to be embedded in the inverse problem setting.
To this aim, we note that egs. (1.3.1) and (1.3.2) are reminiscent of a mixed
dual formulation of the p-Laplace equation in (1.3.3) and is similar to the mixed



1.4. AVAILABLE DATA 25

FEM formulation for elliptic PDEs introduced in [43]. Thus, we introduce the
Lagrangian Ly, , : (H(V) x H(E)) — R:

Lw,p(h, Q) = Z lw - Z QE(V h)e - Z fuhv s (135)

/
w
cep Pe We ecE veV

where p, = ]% is the conjugate exponent to p. If w. > 0 for all e € F,

egs. (1.3.1) and (1.3.2) are exactly the Euler-Lagrange equations for the saddle
point problem:
inf supLy.,(h,q).
heH (V) qu wp(q)

As will be seen in Sec. 1.5, this formulation needs to include a Tikhonov-like
regularization. In addition, this regularization are designed to ensure similar
accuracy in the reconstruction of both the piezometric head and the fluxes, which
typically converge at different speeds. For this reason we consider the following
regularized Lagrangian:

61176111 e i |q€’p:E _ 1 5q‘Qe’2 o o
vap (h? Q) L Z p/e we +6w 2 Z we +6w qu(v h)e Z fvhv,

ecl eclF ecl veV
(1.3.6)

where and 0 < §; << 1 and 0 < §,, << 1 are two regularization parameters. The
resulting saddle point problem becomes:

inf sup Liﬁ’gw (h,q),
heH(V) qEE

and the corresponding regularized Euler-Lagrange equations read now as:

(’qe‘pé72 + 5q)Qe = _(we + 5w)(v h)ea Vee FE (1 5 7)
~(V' )y = fo, YveV. -

1.4 Available Data and general considerations

In the last years, the increased challenges mostly induced by climate change to
minimize water waste has prompted for a relevant improvement in the monitoring
of WDS. Several commercial devices are now available to measure water fluxes
and pressures along a WDS. Among them, we make extensive use of data collected
by smart meters, devices designed to independently measure both pressure and
water fluxes. These measurement systems can be placed in strategic points of
the network (e.g. pipes interconnections, valves, hydrants etc.) or directly on the
final user outlet. In the latter case, the instruments monitor the service pressure
and the user hydraulic demand several times per day, yielding a large dataset of
observations. The monitoring is typically associated to a district subdivision of
the municipal network. Namely, Water Industries typically subdivide the net-
work in small connected components with global inflow and outflow accurately
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Figure 1.2: Typical daily demand curve

measured[81]. This allows a tight control on the state of the “distrectualized”
portion of the WDS and the collection of a large number of data that can be
used to successfully seed an inverse procedure. For example, in the city of Milan
(IT), a relatively large quantity of smart meters are placed on the house services
connections, and a a relevant amount of data is now available[86]. Unfortunately,
generally only a small quantity of data is nowadays readily available, and for this

reason we will mainly use synthetic data generated from commercial software
simulations such as EPANET.

Another important measurement that is not readily available because Water
Companies typically treat it as classified, is water demand, which can be de-
fined as the total client consumption on one household junctions per unit time.
The reconstruction of the water demand as a function of time is complex. Typi-
cally, it is calculated as a time series on the basis of either design parameters or of
detailed measurements. When measurements are not available, an average water
consumption can be evaluated. A typical periodic daily demand profile (which
follows the daily habit of the users) is shown in Figure 1.2. A typical approach at
evaluating a water demand pattern is to measure the minimum night flow, which
represents the fixed water consumption of the network (possibly due to the pres-
ence of leaks) typically measured at 4am/5am when the user consumption is at
its minimum. Appropriately rescaling the daily measured district inflow or the
daily calculated demand and eventually averaging a number of daily patterns,
leads to an operational daily demand that can be used for modeling purposes.
This is what is known in literature as the FAVAD concept [123]. For our test
cases we will use a demand that is calculated using this latter approach.

After the definition of the water demand, the identification of the surrogate model
parameters can proceed on the basis of time measurements of pressure heads
and water fluxes appropriately distributed along the WDS network. Because of
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difficulties in having appropriate data, but most importantly because of confi-
dentiality problems, in our simulations we will employ data from an EPANET
model of the WDS at hand, which is thus assumed as the “true” solution. In the
next section, we will introduce our model parameter estimation approach which
is essentially based on a non-linear extension of the classical Calderon’s inverse
problem on graphs [42].

1.5 Retrieving p and w from the data

In this section we want to determine the distribution of the p and w parameters
so that the resulting weighted p-Laplacian model can be used as a surrogate
model of the WDS of interest. This task can be accomplished by solving an
inverse problem, i.e., by determining the p and w distribution that minimizes
the mismatch between measurements and simulation results. This can be framed
within the classical theory of inverse problems (see [131] for a standard reference
book) whose practical solution is typically very difficult and computationally
demanding. In order to simplify our problem, we need to exploit the fact that
our model is defined on a graph domain. Thus we start this section by describing
our main working choices.

The most important simplification that can be done in our setting is to design
our inverse problem as a Calderon-type problem. These are boundary inverse
problems that try to identify the parameter distribution in the interior of the do-
main from boundary data. They are used normally in a variety of applied fields
including geophysical prospection (e.g., electrical impedance/resistivity tomogra-
phy EIT/ERT, seismic imaging, geo-radar imaging) and medical imaging (e.g.,
electrocardiography, electroencephalography, EIT), among others. The main ad-
vantage of a Calderon problem, besides the fact that it has been thoroughly stud-
ied, is that, in dimension stricktly larger than one, its solution is unique, albeit
still severely ill-conditioned [12, 95, 136]. Indeed, for one-dimensional domains
Calderon problem is not well-posed, while it is well-posed for problems whose
dimension is greater or equal than two. Unfortunately, in a graph setting, [42],
Calderon problem is well-posed if and only if the graph is planar and “circular”,
i.e., the boundary nodes can be connected by edges that form a circle without
destroying the planarity. Intuitively, a graph can be imagined as an object that
is in between one and two dimensions. Thus, the well posedness of Calderon
problem is ensured by this conditions because it forces the graph to be embedded
in a plane, thus forming a “truly” two dimensional object.

The most important characteristic that allows our problem to be casted within
a Calderon boundary problem is that the boundary of a graph is just any subset
of nodes. Hence we can chose to define our boundary to include instrumented
nodes where measurements are available. This, together with the fact that in the
p-Laplacian based model we need to identify the spatial distributions of only two
parameters makes our task much more tractable.
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Given some boundary observations of pressure {u,,(z),z € I',m = 1,...,n} and
normal fluxes {v,(z),z € T';m = 1,...,n}, and given a known forcing term
{fm : Q= R,z eT,m=1,...,n}, one looks to minimize following functional:

n

min W[V U [P72 NV iy, - 77— Y|
Lo > 1019 02 V=
y —Apwltm =fm z€Q m=1,..,n ’
s.t.
U () =Up(zr) 2€l'=00, m=1,.,n

In a continuous setting and for the linear case p = 2, Calderon problem is known
to be non convex and, as already remarked, ill-posed. There are particular in-
stances, for example for the identification of the diffusion equation in dimension
d > 3, Calderon inverse problem has a unique solution provided a sufficient num-
ber of boundary data are given[3]. In the graph setting, only a few results are
available and only for circular planar graphs [42]. In all other general cases, to
the author’s best knowledge, no uniqueness results are available. This is the rea-
son why multiple samples at each nodes are required and an opportune Tikhonov
regularization strategy will be proposed in what follows.

Our approach a direct extension to the non-linear setting of the linear graph
Calderon problem and are described as follows. Assume that the set of nodes is
partitioned into V = V; U B and V; N B = (), where V7 is the set of internal nodes
and B is the set of boundary(sampling) nodes. At the same time, we also assume
that the set of edges is partitioned into E = E; U Eg and E; N Es = (), where
E; are the internal edges(unsampled) and Ejg is the set of sampling fluxes edges.
We then define the following problem.

Problem 1 (p-Calderon problem). Let G = (E,V,w) be a weighted directed graph
with n = |V| nodes and m = |E| edges. Let B C V be the set of n, boundary
nodes where the piezometric head is sampled and Eg the set of ms boundary edges
where fluxes are sampled. Suppose moreover that we are given a n; X M matrizc
F(Vr) of known demand distributions on the n; = n — ny internal nodes. Here
we use the standard convention that F(Vi);; > 0 if there is an inflow at node i
and sampling time j, while F(V7); ; < 0 if it represents an outflow.

Our aim is to estimate the weight w € H(E) and the exponent p € H(E)) of a
weighted p-Laplace operator from the sample matrices given by:

e the ny, x M matriz H(B) (piezometric head measurements);
e the ny, x M matriz F(B) (boundary demand measurements);
o the ms x M matriz Q(Eg) (flur measurements).

Such matrices contain M > 1 multiple synchronized measurements taken at differ-
ent sampling times. Precisely, each column of H(B), F(B) and Q(Es) contains
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sampled piezometric heads at B, demand measurements at B, and flux measure-
ments at Eg, respectively, at one of the M sampling times. We point out that
the further necessary condition of global mass balance must be satisfied:

ny n;
Y F(B)ij+Y F(Vi)ij=0, Vj=1,... M. (1.5.1)
=1 i=1

1.5.1 Computing gradients via the Primal-Adjoint method

Differently from the standard approach in [42] to this problem, which is essentially
based on harmonic extensions, medial graphs reduction and Schur complements,
we adopt the framework of the primal-adjoint method, typically used in parameter
estimation for the continuous based two dimensional Calderon’s problem [95],
[26]. This is ultimately due to the need of adopting a sufficiently flexible approach
which leads us to easily include further constraints on our parameters to satisfy
the physical laws governing a WDS. Namely, we require that the edges weights
w be positive and the exponent be in the range 1.4 < p < 1.8 or equivalently
2.25 < p/ < 3.5.

Instead of the weighted p-Poisson equation as governing non linear equation for
our parameter identification model, we will work with the conjugate exponent p’
and use the equivalent mixed formulation defined in (1.3.1) and (1.3.2). Moreover,
we will consider its regularized version defined in (1.3.7)

As already observed, there are various reasons that suggest to use this mixed
formulation. First, working separately for the fluxes and the piezometric heads
allows us to control better the accuracy between the simulated flux and heads
and the data measurements, which are collected with different instruments and
different measurement errors. Second, this formulation allows to compute easily
the gradients of our design parameters w and p’ since they are less interconnected
(the term wP~! disappears) with the result that the derived numerical scheme is
far more easy to implement.

We denote as A;. and A.; the i-th row and the j-th column of a given matrix
A. Moreover, we denote as H(V') and F (V) the n x M matrices related to the
simulated piezometric heads and the imposed demands on the whole graph. The
mx M matrix Q(F) will contain the simulated fluxes. We introduce four injective
functions:

o vy, {l,...,m} —{1,...,n},
o vy, {l,...,n;} — {1,...,n},
o ipg:{l,...,ms} — {1,...,m},
o g, {l,...,m;} —{1,...,m}
where n; = |V;| and m; = |E;|, and, we recall, n = |V| and m = |E|. The

function vy, (tgg) maps the node v; € B of the sample set (the edge e; € Eg)



30 CHAPTER 1. WDS AND THE GRAPH p-LAPLACE OPERATOR

to the same node Uy (i) € V' of the graph set (edge €y (i) € E) set, and will

be useful to relate the sample matrices H(B),Q(Fs), F(B) to the ones corre-
sponding to the whole graph introduced above. With the same notation, the
maps ty, and tg, acts similarly on the internal nodes and internal edges re-
spectively. Three additional sample matrices are needed: the n, x M sample
matrix T(B) = {T(B)i; = (—Q(E).; - V)i, i)y and the n x M divergence
matrix D(V) = D(V);; = (= VT Q(E).;)i, and the m x M gradient matrix
VH(E) = (VH(E));; = (V(H(V).;));, where j = 1,..., M refers to the number
of independent measurements and 7 indexes nodes or edges that can be on the
boundary or on the entire graph.

Problem 1 can now then be translated into the following discrete minimization
problem:

M ny ms
i3 (330 T =T 535 (00810, - TE0)')
j=1 i=1 i=1

5
st.Vj=1,..,. M
(1.5.2)

(1Q(E)i 1" 2 4 69)Q(E)i; = —(wi + 6,) VH(E);; fori € {1,...,m}
D(V)ij=F(VD) 16y, fori¢ ({1 .m})

H(\V )y (i) =H(B)ij fori=1,...,ny

g (i
w; >0,35>p,>225 forie{l,...,m}

1>>0,>0,1>>6,>0
(1.5.3)
The two sums in the objective function (eq. (1.5.2)) are the difference between
the calculated and observed boundary fluxes and represent the consistency with
respect to the samples. The first addendum exploits the DtN map while the
second one requires a good approximation of the measured fluxes on edges.

Remark 1.5.1. Compared to the classical Calderdn problem, the additional pa-
rameter p needs to be tuned Unfortunately, in this case, infinite solutions may
occur even in the case where both heads and flures are measures on all graph
nodes and edges. For this reason, multiple independent measurement for each
boundary node and edge are needed together with an appropriate reqularization.

The minimization process is thus governed by the following extended Lagrangian:
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L, w,H(V),Q(E),®,V,=, 4, 0b,) =

M ny =
) (é > @B~ FB),) + 53 (AP s ~ QBs)s)

=1 =1

b Y (DW - P, )+

ity (L)) (1.5.4)

—Zczﬂ(i@ )i P72+ 8)Q(E)sg + (wi+6,) VH(E); )+
+Z€]( Jovg i ‘_H(B)"J>>'

where ® = (¢',...,0M) € [H(EM, ¥ = (¢1,..., M) € [H(V)]M and E =

(€L, ... &M) € [H(B)]M are set of vectors of Lagrange multipliers for each mea-
surement. Note that by imposing 885] = 0, gfj = 0 and gg 0 for each
j=1,..., M we recover the primal equations (1.5.3).

The adjoint equations are defined by setting to zero the derivatives of £ with
respect to the columns (H(V).;, Q(F).;) for each j = 1,..., M. To this aim,
define the set of vectors of test functions © = (0',...,0M) ¢ [H(E)]M, P =
(p',...,pM) € [H(V)]M. Using Proposition 1.2.1, we first impose that for any
7 =1,.., M the derivatives with respect to the fluxes are zero, i.e.:

oL

O .07 =0,V0! € H(E).

This leads to:

_ Z (T(B)i; — F(B)i;) No(B)i;+

. TLb .
+ Z (Q LES @(Es)m) GZES(i) + Z; @bva(i)N@(B)i,j'f' )

3

+ (VU = 3 (0 = DIQUE) P +4,) 616 = 0

i=1 i=1

where test functions are collected in the matrix Ny(B) = (Ng(B));; = (67 ~17)LVB (i)-

We now impose the annihilation of the partial derivatives with respect to the head:
— =0,V V).

This yields:

’iELVB ({1,‘..,77,1)}) i%LVB ({1,...,77,[,})
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where the test functions together with the weights and the regularization term
are collected in matrix N,(V) = (N,(V));; = ((Diag(w) + d,1)¢7) - 7);.

Now we derive the adjoint equations. On the one hand, letting 67 such that
(Ng(B)).; = 0 and p’ such that p! = 0, Vi € ty,({1,...,n5}) we obtain the
following;:

e on the edges in Fg:
(h = DIQUE P72 + 8, ) 61+(V ), = QUE)=Q(Es), 21y j» Vi € pg({L,- . ma));
e on the edges in E:
(= DIQUE P72+ 64) 6] + (V)i =0, Vi€ um,({1,....mi}):

e on the internal nodes V7:
— (VT (Diag(w) + 6u1) &), =0, Vi ¢ iy ({1 mp}).

On the other hand, assuming (Ny(B)).; has no zero elements, by virtue the
previous three equations, we have:

W . =—F(B); +T(B)ij, Yie{l,...,m}.

vy () —

Note that this latter equation defines the Dirichlet boundary conditions on B for
the adjoint variable 1. Finally, supposing that p’ has no zero elements on B we
obtain the compatibility condition:

fj = NP(V)

)

Vie {1,...,nb}.

LVB (Z) Jo

In summary, letting ¢/ := Q(E).; € H(E), ¢ = Q(Es).; € H(Es), b/ =

H(V).; € H(V), b/ := H(B).; € H(B), fi:== F(Vy).; € H(V}), ff :== F(B).; €

H(B), Vj = 1,...,M, we have that the primal equations can be written in
compact form as:

(12 4 8, ))af = ~(we + 8)(V W)y Ve € B
_(vT qj)v — 1]1'7 Yo e ‘/I (1.5.5)
h% = B%, Yov e B,

while the adjoint equations can be written as:
(0= DIl 2 +6,) L+ (V) =al —@ Vee Bs
(= DIl =2 +6,) 6+ (V) =0 Yee B oo

- (VT (Diag(w) + d,,1) gb])v =0 VveV;
vh=—fl— (7 YveB
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By the standard theory of optimization via adjoints, we have that the derivative
of £ with respect to the optimization parameter is exactly the partial derivative
of £ with respect to (w,p") computed on the solution (Q(E), H(V), ®, V) of the
primal and adjoint equations. Thus, with simple computations we have:

d
dw,-

M
L=0uL==> ¢IVH(V);; Vi=1,. m;
7j=1

M
d ' - .
pr i > 8110g (IQ(E)i ) 1Q(E)i; P Q(E); Yi=1,...,m.
7 j=1

which can be rewritten in more compact form as:

M
d o
pu— = — ] E 1. .
L= 0, ;MW ). Veek, (1.5.7)
and
d Mo o
L= L= > ¢llog(lgl)gl e ¢l VeeE. (1.5.8)

Jj=1

1.5.2 The role of the Dirichlet-to-Neumann map

In this section we discuss in more detail the role that the Dirichlet-to-Neumann
map plays in guaranteeing the consistency of the model with respect to the mea-
surements. Before delving into the discussion, we rewrite formally the primal and
adjoint equations in (1.5.5) and (1.5.6) by introducing new variables. Thus, let
W € H(E)Y j=1,..., M be the positive edge function such that:

pl=lgll"™® VeeE.

Then, the primal equations (1.5.5) can be rewritten as the following weighted
Laplacian system:

J—= (VR Vee E
de Le +6q (V )67 €€
S . .
(V" Diag (w + ) Vh)y=fi, YoeV (1.5.9)
+ dq
hi =hi, YuveB,
Analogously, the first two equations in (1.5.6) can be rewritten as:
(e =Vl +6¢) oL+ (V') = ¢l — @, Vee Bs (1.5.10)
(e = Dl +0q) 6L+ (V) =0, Ve€ By -
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We would like to remark here that the gradient (V /7). of the adjoint variable 1/
in the above equation has dimension of a flux and must not be confused with the
gradient of the piezometric head (V h/). in eq. 1.5.9. Now, in the same manner
as before, we can introduce the variable ¢/ defined as:

@ =q¢ -, VYeeEg
Gl =0, Vee E;

Then (1.5.10) rewrites as:

j ~J
(V wj)e + qe

6= — . —
(pt =Dy +0q (P — Dz + 9,

(1.5.11)

These observations allow us to interpret the system of adjoint equations (1.5.6)
as the following weighted Laplacian system in the variable v7:

T w + Oy N o W + 6y »
(770 (73, ) ), = e (e ) 0 e
(1.5.12)

P =—=Fl— (¢ D) VueB.

We have now all the necessary tools to discuss the role of the Dirichlet-to-
Neumann map. We first observe that the DtN performs the task of transforming
head information into flux values, which can be compared with the actual de-
mand. When the demand is met by the DtN flux, the parameter identification
process terminates. The adjoint equation fulfills the task of driving the system
towards the correct identification. The second observation is that the DtN map
allows the simultaneous use of both sampled piezometric heads and fluxes by
incorporating into the objective function the difference between the measured
demand and the simulated DtN map and the difference between the simulated
fluxes and the sampled fluxes on internal edges, when this information is available.
Note that the DtN appears in the Dirichlet boundary conditions for 17 in the
previous equation. Thus the adjoint equation is “forced” by the mismatch be-
tween observed and simulated demand. Indeed, egs. (1.2.9) and (1.2.10) tell us
that the solution (¢’, h’/) of the primal equation (1.5.9) satisfies:

SN op= D f Vi=1,...,M,

vEB veVr

i.e., the total boundary flux at Dirichlet nodes must equate the total flux on
internal edges. At the same time, the mass balance equation (1.5.1) shows that
the total boundary flux must be equal to the total external demand:

Z(_qj.,y)U:ng Vi=1,...,M.

veEB vEB
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These two statements are simultaneously fulfilled only when the distributions of
the weight w and the exponent p are correctly identified, which occurs when the
residual flux at Dirichlet nodes is zero:

—fl—(¢ - V)y=0 YveB. (1.5.13)

For a better understanding of the identification process, suppose for simplicity
that M = 1. In the case where |¢/| # 0 is nonzero, from (1.5.7), (1.5.8) we have
that (p*,w*) is a local minimizer for £ if and only if ¢/ = 0. From the adjoint
equation (1.5.8) and from (1.5.11) we have that

P=0 — F-V=0

if Va7 = 0 then ¢/ = 0 if and only if ¢ = 0, which implies that the sampled fluxes
are captured exactly. On the other hand, V47 = 0 if the mismatch between the
observed demand and the DtN is constant, i.e.,

(¢ D) =c, (1.5.14)
we have that for any v € B
) W+ Oy ;
VIiDiag | ———2 )@ =0. 1.5.15
g((p’—l)w+5q>q ( )

This implies that the procedure can terminate also when the difference between
observed and calculated demands is constant. Thus, we need to avoid working in
the kernel of the divergence operator to ensure that (1.5.15) is zero if and only if
¢’ = 0. Since the kernel of the divergence operator corresponds to loops in the
graph, this suggests that the optimal sampling strategy is to measure the piezo-
metric head at every junction with topological degree greater than two. Observe
that, if no flux data are provided, then @ = 0 and eq. (1.5.15) is automatically
satisfied. However, the price to pay in this case is that no information on internal
nodes are actually provided to the identification process, which then may become
less accurate. Since the objective function in problem (1.5.2) is equivalent to:

M

> le(—qj-ﬁ)v—fil“r > Lar), (1.5.16)
2 2

j=1 \veB ecEg

these a posteriori considerations show that the minimization of (1.5.16), if suffi-
cient information are provided and |¢/| # 0, will naturally converge to a solution
(p*, w*) such that the condition (1.5.13) is satisfied and the sampled fluxes and
the consistency with respect to the data is preserved or equivalently the constant
cin (1.5.14) is zero and the adjoint variable 1)/ is constantly zero (see egs. (1.5.15)
and (1.5.12)).

Observe that no ambiguities arise if we have at our disposal the measured fluxes
at all the boundary edges (i.e., edges that are incident to a boundary node). This
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situation occurs for example when modern smart meters measuring both water
pressure and flux are used at junctions. Indeed, in this case the condition ¢ = 0
is equivalent to condition (1.5.13) and leads to far better results in our numerical
experiments.

In the case where the demand distribution f7 is such that the flux ¢/ is zero
(or near zero) in some edges (this is the case for example when no demand or a
very small demand is applied to a household service connection), then some bad
behavior arises in the minimization process since 9,,; £ can be approximately zero
without implying that ¢’ to be close to zero in the corresponding edge. Thus the
identification procedure benefits dramatically from the use of multiple observa-
tions sets obtained from different demand distributions. This is easily obtained
using information at several times making sure that the demand distributions are
different. We finally observe that geometrical symmetries in the graph can also
become critical as multiple distribution of exponent p and w can lead to the same
minimizers of Problem (1). However, this is a rare situation in the real world
aqueducts.

1.5.3 The connection with the Extended Dynamic Monge Kan-
torovich approach

In Section 1.3 we have seen that the momentum and mass balance equations
(1.3.1) and (1.3.2) are equivalent to the graph weighted p-Poisson equation re-
ported in (1.3.3). These, in turn, are the Euler-Lagrange equations of the saddle
points of the Lagrangian defined in (1.3.5). We then introduced the Tikhononv
regularized Lagrangian (1.3.6) and the derived regularized momentum and mass
balance equations (1.3.7), which are the core of our primal adjoint approach de-
scribed in Section 1.5.1.

In this section, we discuss a gradient flow for the solution of Problem (1) inspired
by the Extended Dynamic Monge Kantorovich (EDMK) [57]. For the sake of
simplicity will use a compact notation as in egs. (1.5.5) and (1.5.6). Thus, we
introduce the lifting function:

i}/]— 0, UGV]
' B{,, veB '’

and consider the Lagrangian functional Ljiff“’ : (HE(V) x H(E)) — R defined
as:

L% (hyd, ¢f) = _Zl‘qg’pé _125‘?|qg|2 =Y dl (V(hoj+ﬁj)) > fihl
r FPewl 40y 27wl on TH e I
(1.5.17)

where HE (V) is as in eq. (1.2.8). We now introduce the saddle point problem:

inf sup szfigw(hoj,qj).
hol EME (V) i eH(E) ’
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The Euler-Lagrange equations for this saddle point problem are:

(|qg|pé—2 + 5‘1)(]2 = —(we + 0w) (V(hoj + iLj)>e Veec F
~(VT )y =f] YveV (1.5.18)
ho) =0, YveEB

which are equivalent to the primal equations in (1.5.5) with the non homogeneous
Dirichlet boundary conditions absorbed in the definition of the lifting function.
As done in Section 1.5.2, we introduce the additional variable p/ € H(E)*,
j=1,..., M defined as:

pli= gl VeeE.
This intermediate variable has the important role of formally reducing the primal
equation into a system of equations involving a linear weighted Laplacian system.
Indeed, in this case eq.(1.5.18) becomes:

(1 + 0@ = —(we + 8,,)(V(he? + 1)) Vec E
_(Vqu)Ung VUEV[.
ho) =0, YveB

Obviously, this additional variable becomes an extra unknown of the problem.
The justification for the introduction of this new unknown will be provided in
Chapter 2, Section 2.4, where, by a Legendre duality argument, we introduce
an equivalent saddle point formulation for the p-Dirichlet energy on graphs that
naturally involves the variable p/. This allows also the definition of a varia-
tional formulation for the p-Poisson problem (1.2.8). The aim of this effort is to
can combine in one single optimization problem the solution of the weighted p-
Poisson equation and the minimization of the objective function of the parameter
identification problem.

Indeed, again, by duality, we can transform the p-Poisson variational problem into
a saddle point problem involving a minimization in two variables (the variable p
and the variable h/, in our framework) and a maximization in a third variable,
which plays the role of the negative of the edge flux ¢/. After the introduction of
a Tykhonov regularization, by directly computing a maximizer it is possible to
remove the ”sup” from the problem thus arriving at a reduced optimality problem
involving a double minimization.

While these statements will find rigorous justification in the next chapter, in this
section we provide the description together with an intuitive rationalization of the
full procedure. We start this description by considering the p-Dirichlet energy
E,w(p) defined in eq. (1.2.6) restricting ourselves for simplicity to the case of
interest for aqueducts 1 < p < 2 but with uniform weights w, = 1, Ve € E. Let
us introduce the family of Lagrangian functionals L : (H(E)" x H(E)) — R
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given by:

L2 (1, 0) : Z ue\ael +0- v¢+7zuezp e H(V). (1.5.19)
eEE p eck

It is possible to show (see Theorem 2.4.1) that the saddle point of the above
family of Lagrangian functional is exactly the p-Dirichlet energy E, ., (¢), i.e.:

Epuw—i(p) = inf L2 (1, 1.5.20
pw=1() e;{r;Emes;?E) &, o). (1.5.20)

The saddle point (u*,0*) is unique in the case 1 < p < 2 and it satisfies the
extremality relations:
weos =(V)e, VeecE, 1<p<2
e =1ol" = (V)| ™, VeePE, 1<p<2
los] <1, VeeE, p=1
pelos)? —p; =0, VeeE, p=1
pe =1(Vlel, VeeE, p=1.
In addition, for the case p = 1, it is possible to show that p* is the unique

optimal density. It is now easy to see that it is possible to retrieve a posteriori
the standard duality identity:

Bt (9) = L(u",0%) = sup — 3 ol 40"V g e (V).
cEH(E) cR p
This gives a strong motivation to consider also the variational formulation of the
p-Poisson problem. Thus, as in Section 1.2, given a forcing term f € H(V;) and
non-homogeneous Dirichlet boundary conditions on a subset B C V, BNV} = (),
B UV, =V, the variational formulation of the p—Poisson can be written as:

inf Z v SO+ ?) Z fueow, (1.5.21)

B
ety (V) ep veV;

where, again for simplicity, we use uniform edge weights, w = 1, and we recall that
HE(V) .= {h € H(V) | hy = 0, Yv € B}. To accommodate non-homogeneous
Dirichlet boundary condition we introduce the lifting function ¢ such that ¢, = g,
for all v € B, and ¢, = 0 for all v € V7. Thus, eq. (1.5.21) can be re-written as:

inf E,,—1(¢+ f
PEHB (V) pws1(p ) ,U;I v

Using eq. (1.5.20) we find immediately that the previous problem is equivalent
to the following saddle point problem:

inf sup _Z ,U/e|0'e| +o- v 30"_90 va%Jr*ZMe, 1522
neH(E) weuB) (g e v ik

peHEWV)
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where v := 2%
In the next Chapter, Theorem 2.9.1, we will show that for 1 < p < 2 the saddle
point ((¢*, u*), o) is unique and satlsﬁes the following extremality equations:

ot = (V(p' +@)), VeecE
*(leU*)U:fv \v/ve‘/[

©5y =0, YveDB

gt =0 P 2 = | V(" + @)e|*? VeckE.

From these conditions it follows that ¢* := ¢* + @ is the unique solution of the
saddle point problem:

02207 = (V") Ve B
(VT O-*)v = fv Yv e VYI (1523)
% Vv e DB,

or equivalently of the p-Poisson problem:

(Apw=1¢")o = fo veEV]
Py =gy vEB.

Now we introduce the Tikhononv regularized Lagrangian functional LP9 : (HE (V) x

H(E)™ x H(E)):

1
L (g, 1,0) o= =D 5 (pe +0)loef + 0 V(g +¢) - vasow—zﬂe ,

ecE veV] eeE'
(1.5.24)

where § > 0 is a small Tikhononv parameter, and define our regularized func-
tional:

LY (@, p) == sup LPO (@, i, o). (1.5.25)
oc€H(E)
Since now p + d > 0, the supremum in ¢ in (1.5.25) is in fact a maximum
(we have indeed strong concavity, differntiability and anti-coerciveness), and the
maximizer o* satisfies
«_Vip+9)

€
o, =——— Veck. 1.5.26
= (15.26)

Thus, computing LP° (i, 4, o) at the maximizer o*, the functional £5 (i, 1) sim-
plifies as follows:

1| V(g
LYem) =) 2‘( = > fow + 5 Z 1l (1.5.27)
eck He veVr eGE

which motivates the following double minimization problem in place of eq (1.5.22):

inf  LY(p, p), (1.5.28)

pEHF(V)
neHE"T
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which is the Tikhonov regularization of the saddle point problem (1.5.22). It
is possible to show (see Chapter 2 Section 2.9), that L£5(¢,p) is lower semi-
continuous, stictly convex and norm coercive in the pair (¢, i) thus the existence
of a unique minimizer (¢*, u*) is guaranteed.

Inspired by the DMK (Dynamic-Monge-Kantorovich) scheme in [55-57], we intro-
duce the following minimizing dynamics for (1.5.28):

(Vi) +¢))e
pe(t) + 0

(V7 o)y =(A_1_(e() +¢)o=fo YveV: (1529

o(t)y =0 VveB

oe(t) = Vee E

P

Otpie(t) = :ue(t)‘ge(t)F — pe(t)2?  pe(0) = po >0, Vec€E.

As in [56, 59], a solution (¢*,u*) of (1.5.28) is sought via a gradient descent
approach not applied directly to the functional /jg (¢, 1) but rather to its compo-
sition with the change of variable u(t) = W(£(t)) := £(t)? and performing then a
pull-back of the descending dynamics on the original variable p(t). It is possible
to see that such a dynamics can be interpreted as a descent dynamics that pre-
serves the positivity constraint on u(t) (see Chapter 2, Section 2.7, Subsection
2.8.2 and Section 2.9 for full details).

We then propose an improved version ofthe dynamics in (1.5.29), which has been
observed to converge faster in our numerical experiments. This is derived by
composition with the map:

2(2—p)

/,Le:\I/(fe) = ‘56‘ P ) veeEa

leading to the following new dynamics for the density p in (1.5.29):

4—3p

Bupte(t) = pe(t) 77 oe()]? — pe(t), Ve € B. (1.5.30)

The gradient descent approach applied to the computation of a minimizer has
to be intended as a long time solution (¢*,un*) = limy_o(p(t), 1u(t)) where
(p(t), u(t)) is a solution of the state-space initial value problem (1.5.29). There-
fore, it is necessary to introduce an opportune time discretization scheme and an
opportune stopping rule.

In Chapter 2, Section 2.7, three approaches of time discretization are presented:
the explicit Euler (EE) approach, a semi-implicit (SI) improvement and the im-
plicit Euler(or the Gradient Flow) approach.

We present here for completeness the first approach, i.e. the explicit one, which
would be used also in our numerical examples. Given a sequence Aty > 0 of time

steps, the approximation sequence (uk) k—1 k. is given by the following set of
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equations:

(A1 (" +@)y=0, YoeV;

uk+s

©" =0, YveB

k_ (V" +9))e
Oe =" 35 » VeEE (1.5.31)

pg +0

4-3p
pett = ul + Aty ((uk) = |of|* — u’é) , k=0,... kma, e €E

e

1 = o, >0, VecE.
Hence at each time step, we only need to solve the lifted linear system

(A1 (" +@)=0 YveV;
uh+s (1.5.32)
cpf =0 VveB.

Some geometric considerations can be done on the updating scheme defined in
(1.5.31). Indeed, it is possible to interpret (1.5.31) as a type of projected gradient
descent. Thus, heuristically, if we start from an initial z° > 0 and a sufficiently
small initial time step, the positivity is preserved since we are moving in a de-
scent direction projected tangentially to the exponential map. Hence we converge
toward zero from a parallel direction to the axis p. = O(see 2 Subsection 2.8.2).
The explicit Euler scheme (1.5.31) is therefore a linear iterative solver for the
p-Poisson problem. It has indeed several advantages. Observe that the variable
i has the main role to absorb the non linearity induced by the factor |(7V[’/*2 thus
reducing the non linear system (1.5.23) to the weighted laplacian in (1.5.32).
Moreover, multiple experiments shows that the derived numerical scheme exhibits
very good stability properties and can be placed somewhere in the middle be-
tween the augmented lagrangian approaches [13], [33], and the Newton method
for the p-Poisson problem.

On the other hand, differently from the Newton method where we have to invert
an Hassian matrix, here we only have to solve for a weighted laplacian linear
system with Dirichlet boundary conditions and perfom an integration step for
the dynamics of p(t).

Aside from the very simple implementation of (1.5.31), having a structure which
depends upon inverting a graph laplacian matrix, which is naturally sparse and
symmetric, has the main advantage derived from the huge weaponry of the nu-
merical linear algebra(e.g. multi grid methods, preconditioning strategies etc.).
Observe that differently from the standard augmented lagrangian approach where
typically some variable substitutions are performed via Lagrange multipliers, here
the formal substitution y = \a]p/_2 is naturally given by the Legendre trans-
form(see Chapter 2 Sections 2.2, 2.5).

Furthermore, upon introducing the Tikhonov regularized Lagrangian (1.5.24) and
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the functional (1.5.25), the original saddle point problem (1.5.22) is reduced to a
differentiable and strictly convex double minimization problem, hence the second
order method derived from the implicit Euler time discretization is well defined,
improving drastically the performance of the numerical scheme. Moreover, dif-
ferently from the Newton method which needs a sufficient accurate initial guess
to converge, here we can benefit from the stability induced by (1.5.25) which acts
as a Lyapunov functional for the dynamics. Thus, starting with a sufficiently
small initial time step, the newton method applied to the implicit Euler time
discretization of (1.5.29) is guaranteed to converge(see [59] for details).

Last but not least, note that having a double minimization problem instead of
a saddle point problem, allows us to easily introduce further constraints on the
variable ¢.

Let us now return to Problem (1) and equations (1.5.5).

It is now evident the similarity between the Tikhonov regularized lagrangians
(1.5.17), (1.5.24), the primal equations (1.5.5) and the first three equations in
(1.5.29):

(e +0)oe = (V(p+@))e, VeeE
(Vo) =(AL (¢4 @)s=fo, YvEV

pto

wpy =0, VYveB.

We are indeed motivated to introduce the following Lagrangian L¥P9w % ; (HE (V) x
H(E)T xH(E)) - R, Vj=1,...,M:

LW:P:0w,0q (hoj 'uj7 qj) —

—Zl“e”qw? NCEIORD WETED O

. _Pe
J 2—pe .
2 We + Oy

et veV

w€+6 l’Le

Note that here the variable ¢ € H(F) plays the role of —¢ in (1.5.24) while the
variable ho’ € HEF (V') plays the role of . Thus, we consider the functional:

LyPs (ho',p?) = sup LUPO0a(hel i, g).
¢ EH(E)

and with the same arguments as in (1.5.26)-(1.5.27) we have that there exists a
maximizer ¢*/ given by:

Japi
_ (we + 5w)v(h0 +h )e’ Vec E. (1533)
/'Lje + 5‘1

*J
e

q

Thus, computing L¥P%9% (ho? 117 ¢7) in the maximizer ¢*/, the functional Lg (ho w)



1.5. THE MODEL CALIBRATION 43

simplifies as follows:

S 1w+ 8 V! + ). g~ >y
h _ Jh J 2—pe
q( 0 7“ ) = ) (,ue + (S vevf 0v+ /’Le ;

uH

(1 5. 34)
Consider now the following double minimization problem:

inf L7 q(ho ).

hol e wPvy T

uw e H(E)T

The KKT conditions for the minimizer (h#, u*7) € (HE (V) xH(E)T) of L5 (ho W)
satisfies:

L (wetda) V(AR
q*.; - H*jeJrgq ) Veec FE
A 2
—|q*2* + p* 72 — co(we + 6,) =0, Ve€E
(A (wrsw) (h*] + hj))v = £l Yo eV
(u*T+6q)
hé{; =0, YveB
Lce™ e =0, ¢ >0, VecE,

Thus, #*/, = 0 on some edge é € E if and only if
¢l =V (hy +h)e =0,

and ce = 0, there is no other possibility.
On the other hand, if ©*/; > 0 we have that

— | 4T P2
= |q"|Pe".
As a consequence, if

(hg?, 11*7) is a minimizer for Ly (ho 1),

and ¢*/ is given by (1.5.33) then

(hg’ +h7,q)
is a solution for the primal equations (1.5.5).
Therefore, defining: ‘ S

B =k} + 1,
we have S

Rl =h], wveB,

and we can recycle the EDMK scheme (1.5.29) as a converging dynamics to
compute a solution of the primal equations (1.5.5).
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The corresponding dynamical system of (1.5.29) and (1.5.30) for a solution of the

primal equations, Vj = 1,..., M, reads as follows:
. Sw) V(R (t
qg(t):—(we—i_.w) ( ())6’ Vec E
:u]e(t) + 6‘1

(divg? () = (A _wisy B (1)) = fI, YveV;

3 (0464 v (1.5.35)
B (t), =h) YveB
. . 4—3pe . . . .
Ouel(t) = pl(8) 7 gl (O — (1), pd(0) = g, > 0, Ve€E,
and the Explicit Euler scheme for (1.5.35) is given by:

(A w+w hjk)’l} = 07 Vo € ‘/I

#jk+5q
W' =1l YueB
ik
; V W
J’; _ %7 Vec E
W+ 0y
k41 L -k 4—3pe L -k
Mje - :U’]e + Atk ((/’LJE) 2pe ‘qje‘2 - /’LJe> ) k= O’ T kmax’e ek

M’S =y, >0, Ve€ckE.

1.5.4 Total Variation Regularization

Since problem (1.5.2) is non convex, a regularization term is necessary in order to
select opportune local minimizers. A common choice is to add to the Lagrangian
L in (1.5.4) a Tikhonov penalty term. Typically, quadratic terms are added and
have the effect to smooth out the solutions, thus gaining stability and regularity.
A not common strategy is to add non differentiable term typically derived by the
{1 norm.

Among them a very important role is played by the total variation regularization.
This naturally lead to locally constant optimal solutions, see [26], [142], [33] for
an exhaustive treatment of total variation regularization.

The choice of this type of regularization fits well in the case of our problem since
our optimal parameters (w,p’) depends on the mechanical properties of the pipes,
such as the diameters, material and age. Typically the pipes are posed in sequence
with the same material and diameter, therefore, it is of central importance to find
such a method which promotes locally constant solutions on sequence of pipes
with the same properties.

Moreover, we can genuinely carry out the optimization procedure on less bound-
ary /sampling nodes since the the design parameters are "hold together” by the
regularization.
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In graph theory we can take gradients only of functions defined on the nodes set
while our parameters (w,p’) are defined on the edges.

The common procedure is to consider a new graph obtained from the original
graph by connecting the middle points of adjacent edges, the so called ”Line-
Graph”. This is one of the most classical example of graph duality. Note that,
by definition, only the nodes of topological degree greater or equal than two in
the original graph, contributes to the construction of the line graph.

The gradient operator generated by the ” Line-Graph” is a matrix from the origi-
nal graph edges set to the ”Line-Graph” edges set, which has constant functions
on the original graph edges set as kernel see [121].

Therefore the strategy is to create a regularization defining the total variation of
our edge weight and exponent using the gradient derived from the ”Line-Graph”.
In figure (1.3) we can see an example of comparison between original graph and
”Line-Graph”. Given a graph G(V, E) we denote as L(G)(E,Y) the ”Line-Graph”

(@)
Figure 1.3: (a) original graph(black) vs (b) derived line graph(red).

of G. Then L(G) has by definition m = |F| nodes, i.e. the number of original
edges and it is easy to see that the number of edges is given by:

’Y’ _ Z kv(kv - 1)7

2
veV

where k, is the topological degree of a node v € V' in the original graph G.
Thus, by construction, each node v of degree k, of the original graph G corre-
sponds to a k, fully connected clique in L(G).

Line graphs have been studied extensively and, among their well-known proper-
ties, Whitney’s uniqueness theorem states that the structure of G can be recovered
completely from its line graph L(G), for any graph other than a triangle or a star
network of four nodes [138]. Hence we don’t loose any information on the topo-
logical structure of the original graph.

As already observed, a single node v in G leads to a connected clique of w
links in the line graph L(G)). This seems to suggest that the line graph L(G)
gives too much prominence to the high degree nodes of the original graph G. In
[53] an opportune topological weighting strategy is presented to overcome this
issue. The main idea is to define a weighted line graph whose links are scaled
by a factor of O (1/k,). This is motivated by the fact that each vertex v in the
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original graph G contributes k“(kg —1) edges to L(G) even though its importance

in the original graph could be estimated to be just k,. Thus, for any node v € V
in the original graph G we define the adjacency of v as:

adj, :={e € E|le=wore=vu}, YveV.
With this definition we have that:
kvz|a’dj1}|7 UEV

Then, we consider the weighted line graph L(G)(E,Y,w"”®) such that for any
edge y € Y:

y = Y= e (e1,e2) € E, (e1,e2) € adjy, v e V.
o

and it’s weighted gradient matrix Vg : H(E) — H(Y) is the |Y| x m matrix
given by:

LG —
—wy, if y; = ejex,
(Vig)ij = QWi if yi = exey,
0 otherwise.

As a motivating example, consider the case of collaboration networks. Every
link(edge) in a collaboration network corresponds to a joint work between two
authors. Thus, the (k, — 1) normalization is justified by the desire that two au-
thors should be less connected if they wrote a joint paper with many co-authors
than a paper with few authors.

In the WDS framework, this translate to enhancing the connection between pipes
on the same topological line(i.e. in sequence of junctions with topological de-
gree equal to two), which is typically composed of pipes with the same prop-
erties(diameters, materials etc.), while considering as less connected the pipes
which lies in the adjacency of a cross junction(a junction between more than
two pipes), where it is most probable to have a connection between pipes with
different diameters and materials.

This kind of weighted gradient matrix fits well for our regularization purpose.
We will consider therefore the following new Lagrangian:

£TV(H(V)7 Q(E)7p,’ wa (I)a \Ija E7 Tkp’v Tk’Lw 5(17 510) = ﬁ(pla ’UJ, H(V)’ Q(E)v <I>, \IJ7 Ev 6(17 5111)"_
+Tky | Ve o'l + Thol Vigwlly
(1.5.36)
where L(p',w,H(V),Q(E),®,V,E,d,,0,) is the Lagrangian defined in (1.5.4)
and (Tky,Tk,) are two positive small regularization parameters.
In Section 1.5.3 we have seen an equivalent saddle point formulation for the graph
p-Dirichlet energy. In Chapter 2, Sections 2.4, 2.8, 2.11 we extensively treat the
limit case p = 1, and we show that the same arguments as in Section 1.5.3 can
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be applied to the general framework of TV and li-norm regularization. Thus as
in (1.5.19), given a graph G(V, E) where we set for simplicity the edge weight fix
to one, we introduce the Lagrangian L}, : (H(E)" x H(E)) — R as:

1 1

1 o 2

Ly(u,0) = =D sheloe +0- Vo + 53 pe, 9 €HV),
ecE ecE

which is the Lagrangian in (1.5.19) for p = 1. In Chapter 2(see Theorem 2.4.1)
we show that the graph 1-Dirichlet energy or the graph Total Variation energy:

TV(e) :=Ei(p) = Vel
admits the following equivalent formulation:

TV(p) = inf sup LI(u,0).
(?) REH(E)* geH(E) ol1:9)

Moreover, there exists a saddle point (u*, o*) for L}D and it satisfies the extremality
relations:

peoe = (Vple, Ve€E,
lo¥| <1, Vee€kFE,
pilok? —ui =0, Ve€FE,
pe =(Vy)l, VeekE.

We then introduce the Tikhononv regularized Lagrangian:

1 1
LY 0) == (e +O)|ocf +0- Vot pe,
eckE ecl

where 0 > 0 is a small Tikhononv parameter, and the functional:

Li(p,p) == sup L“(¢p,p,0).
c€H(E)

With the same arguments as in (1.5.26), £}(¢, 1) simplifies as follows:
1[(Ve)l* | 1
E}S(@?/”)sz +7Z/*L€7
e€E2 (pe +9) 2eeE
and we consider the following minimization problem:

inf Lo, p). 1.5.37
peint ) Loleon) (1.5.37)

Again, as in Section 1.5.3, we have that the KKT conditions for a minimizer (u*)
of (1.5.37) satisfies:

(nE+6)?

_‘(VW)eF_i_l_Ce:O’ veeE
Cets =0, ¢ >0, Vee E.
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Thus, p*; = 0 on some edge € € F if and only if:

e

[(V p)el <6, (1.5.38)
and if p*; > 0 we have that
I(V@)e| = pz + 6. (1.5.39)
Hence defining:
TVi(e):= _imf L (e, 1), (1.5.40)

from (1.5.38), (1.5.39) we have:
TVs(p) = TV () + O(9).

We are indeed motivated to consider the following approximated Lagrangian in-
stead of the total variation regularized one in (1.5.36):

E%V(p/7wnu’p’a/'LwaH(V)7Q(E)7¢7\IlvE’7Tkp’7Tkw75Q75’w75}Lp/75Mw) =
=L, w,HV),Q(E),®, ¥, Z,5,0,)+

1| Via?'l; 1| Vigwl? 1
i Z( ‘|‘5u/+2 vy FThe 2 |5 +ghuy )

(1.5.41)

where Y is the edges set of the line graph L(G) of the original graph G. The main
advantage of considering (1.5.41) instead of using directly the total variation of
(p,w) comes from (1.5.40). Indeed, having introduced the new positive densities
variables 1,y and fi,, which depend only on (p/, w), allows us to perform simulta-
neously the minimization in the quadruple (p/, w, iy, pwy). Moreover, introducing
the regularization parameters (5%,,5%) we have the necessary differentiability
to use our EDMK scheme for the total variation minimization. The algorithmic
issue and numerical implementation will be presented in full detail in the follow-
ing subsection.

Let us consider as an illustrative example the simplified problem:

1|Viguwl;
min  F(w) + Tk Y42 : 1.5.42
w € H(E)T Z <2Mwy + 5 wa ( )
yey
e )t

where F': H(FE) — R is a sufficiently smooth map.

Observe that we are in the same situation as in (1.5.28). The only difference
is that we have a double positivity constraint so that in general we can not
directly compute a minimizer in the variable w(differently from (1.5.28) where
w is substituted by ¢ without the positivity constraint). Nevertheless, since we
have a double minimization problem, we can consider a double ” gradient descent”
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approach in the pair (f,, w).

With the same arguments as in (1.5.29), by composing with the change of variable
(pw(t) = |€(#)2, w = |e(t)|?) to enforce the positivity and then performing a pull-
back of the descending dynamics on the original variables (., (t), w(t)), we get
the following descending dynamics(see Chapter 2 Sections 2.8, 2.11):

(Vigw(t))y
,U'wy(t) + 5”10 ’

Oettawy (1) = by (D)|0wy (D) = pwy (), Vy €Y,

Hwy(0) = g, >0, Vy €Y,

Twy(t) = Vy ey,

Dpwe (t) = we(t) <—8weF(w(t)) — Tk, (ALC w(t))e> , YeeR,

Hw (t)+5p.w

we(0) = wp. >0, Vee€kFE.

where:

1

ALG .= V7. Di —_—
L T VG w‘g(uw(maw

Hw (i)+6y,w

) Vig, Vt>0. (1.5.43)

We propose the following semi-implicit Proximal Forward-Backward Splitting
scheme(see [13],[40] for an exhaustive treatment):

( k_ (Vic wk)

VyeY
wy — Mwy+6w Y

Nwlyf—i_l = Mw]gj + Atk(ﬂw’;) (’Uwy|2 B 1) kE=0,... ., knax,y €Y
:u”w()y > 0 vy € Y
wk _ w — Aty ([Dlag(wk )] 0w F'(w )) , YVee F

<1 + Atkaiw [Diag( ALG > k‘ - 07 ey kmaXa ec E

Hwk+5uw

w wp, >0, Vee F.

With similar arguments one can also consider the following problem:

1 |Viep'?
min ) + Thy Z( Vierly | Wy), (1.5.44)

plle H(E) yey 2/,Lp y + 6“ ’ 2
e < p, <be, e € E

weHmt

where again, F': H(FE) — R is a sufficiently smooth map.
In this example we have an interval constraint on the variable p’ for any edge
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e € F. This kind of constraint can be treated in a similar way to the positivity
constraint as in the previous example, composing with the flux generated by
a sigmoidal vector field and considering the Lie derivative along that flux or
equivalently by composing with the change of variable:

pL(t) = ac + (be — ac) cos? <\/%> , eek,

and then performing a pull-back of the descending dynamics on the original
variable p’. We refer to Chapter 2 Subsection 2.8.2 for full details on the heuristics
behind this techniques.

The positivity constraint for the density i,y is treated as for (1.5.42) by composing
with the quadratic map uy (t) = |£(2)[?.

Thus we have the following descending dynamics for (1.5.44):

Vv '(t
Up’y(t) _ ( LGP( ))y
/‘p’y(t) + 5#,,/
Bupiyy () = piyr, (D)o, (O = i, (), Yy €Y,
Up’y(o) = Koy >0, Vyey,

, Vyey,

Ope(t) = (be — PL(1)) (PL(t) — ac) <8ng(p'(t)) - Tkp/(Amp’(t))e> , Ve€kE,

P (0)=py, >0, ac <py, <be, VecE.
where as in (1.5.43):

1

— | Vg, Vt>0.
:U’p’ (t) —|— 5Np’ )

ALG 1 = ng Dlag
Mp/<t)+5,up/
Defining the vectors a € H(E) and b € H(E) as:

ae = Qe, Ve € F,

and

b = be, Ve € E,
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the corresponding semi-implicit Proximal Forward-Backward Splitting scheme
reads as follows:

( k (VLG p,k)y

Oy, = , VyeY
Py Mp’l;+5ﬂp/ y

/’Lp/l;+1 — Mp,]; =+ Atk(ﬂp’l;) (’O'p/ZP _ 1) , k = 0’ ey kma)uy cY

,uplg = Hp'g, > 0, VyeY

Pe=1¢ - Mty (IDiag((b — ) © (0 — )]y F(Y)) | VeeE

e

(1 + Aty Tky [Diag((b — p'*) © (p* — 2))]A ) P =P k=0, knave € E

Mp/kJréup,

0
e =100 ae <Py, <be, VecE.

1.5.5 The Algorithm

In the Subsection 1.5.3 we have seen how to integrate our EDMK scheme for the
p-Poisson problem, after an opportune regularization, to the solution of the pri-
mal equations (1.5.5), which are necessary to be solved, along with the adjoints
equations (1.5.6) in order to compute the derivative of the Lagrangian in (1.5.4)
with respect to the design parameters (p/, w).

In Subsection 1.5.4 we have seen how to use our EDMK scheme for the Total Vari-
ation regularization which allows us to easily integrate the physical constraints
on our design parameters. Moreover, upon introducing another further small reg-
ularization parameter, we show how to transform a Total Variation regularized
minimization problem into a simplified and well approximated problem. We then
provide two illustrative examples in (1.5.42) and (1.5.44) which will be used in
the construction of our minimizing scheme for Problem (1).

We now give some insights on the main tools, providing also a summary of the
main results shown in the previous sections. The main idea is to construct a de-
scending dynamics scheme by using the EDMK scheme as the main tool to solve
the primal equations along with the Total Variation regularization. We then pro-
pose an ”all-in-one” descending scheme which is essentially based upon observing
that we can interlace the EDMK scheme to compute an approximated descending
iteration, given by not directly solving the primal equations, but rather updat-
ing in synchronization both the EDMK and a gradient descent for the variables
(', w).

We propose moreover to scale the variable w by a factor (’)(%) where L is the
length of the pipe and D the internal diameter as in the original momentum and
mass balance equations (1.3.1), (1.3.2). This is useful to make w independent
from the length of the pipe. So that, as in Section 1.3, we define the hogenization
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edge weight [ € H(E)™ as:

le := , VeeFE

where C' is the roughness coefficient.
We will consider the following extended variational problem:

min min max L7y w, py s poo, HV ), Q(E), @, 9, 2, Ty, Tk, 0q, 0w, 0y, , O
[P sty i) [HL(V): 5.Q(B). 5] [7 67 9] v ot H(V), QE), Hr
3.5>p >2.25,
w >0,
s.t.
pp =0,
IMUJZO7

where the Lagrangian [,gllv is essentially the same as in (1.5.41), with the only
difference that we introduce the homogenization weight [ as a scaling factor for
w:

LD w0, 1y ooy HV), QUE), @, 9,2, Thyy, Thi, 8g, 80,0y Gp) o=

=L, wolLHV),Q(E),®, ¥,E,8,0d,)+
1| Vigp'l; 1 1|Vigwf?
Ty 3 <2ﬂp/y+5,up/ Tk py) wy%;/(wwﬁ& * “wy)’

(1.5.45)

where L is the original Lagrangian defined in (1.5.4) that we used for the com-

putation of the primal equations, the adjoints equations and consequently the

derivative with respect of the design parameters (p’, w).

Observe that in (1.5.45) we don’t scale the variable w in the regularization term.

This is due by the fact that indeed having scaled w in £, which determines the

constraint equations(or the physics of the WDS) is enough to make it ”indepen-

dent” from the length of the pipe. As a consequence, the regularization has to be

applied without the scaling factor in order to benefit from the homogenization.

The variable p’ is naturally a dimensionless variable, therefore it doesn’t need to

be scaled by the length.

We refer to (1) and Subsection 1.5.1 for the definition of the variables Q(E),

Q(Es), H(V), H(B), F(Vy), F(B), ®, ¥, = which will be involved in what fol-

lows, while Tk, Tk, are the positive regularization(Tikhonov) parameters for

the approximated Total Variation regularization and dq, 0, 6%,, Ou,, are also
small strictly positive regularization parameters.

Let ¢ := Q(E).; € H(E), ¢ = Q(Es).; € H(Es), M = H(V).; € H(V),
W = H(B).; € H(B), f/ := F(V1).; € H(V1), [/ := F(B),; € H(B),
Vi=1,...,M.

With the same arguments(we only have multiplied w by [) as in Subsection 1.5.1,
we have that the primal equations(or the p-Poisson constraint equations) are

)7
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given by:

(|qg|pé—2 + 5Q)qg = _(wele + 5w)(v hj)ea Vee E
~(Vigh),=fl, YveV (1.5.46)

v

hi =hi, VoveB,

while the adjoint equations(or the Lagrange multipliers equations) are given by:
(Pl = DIgIP=" +0)¢L + (V')e = ¢} — G, Ve € Es

(0. = DIgl[P > + 86l + (Vi) =0, VeeEy

— (VT (Diag(w © 1) 4 6,1)¢"), =0, Yv e V;
Yl = —fl — (¢ - ¥),, YoveB.

(1.5.47)

Again, with the same arguments as in Subsection 1.5.1 we have that, once the
solutions ¢/, h7, ¢’, 17 of the primal and adjoints equation are computed for any
sampling time j = 1,...,m, the derivative of £ with respect of (p',w) are given
by:

d

dw,

M
L=0uL==> ¢ll(Vhi)., VecE,

J=1

d
dp,

M
L=0yL==> ¢llog(lgd))lgll” 3¢, VeeE.
7j=1

In subsection 1.5.2 we have introduced the intermediate variable
e HEYY, Vi=1,...,m,
pli=|gll=?, VeeF,
which has the important role to formally reduce the primal equation into a

weighted laplacian system.
Indeed, introducing the variable p/ we have that equations (1.5.46) becomes:

(4 +00)g = —(wele + 8,)(V W), VeeE
_(quj)v = 5, YveV;
hi =hi, YoveB.
Since
(Wl +84) >0, VeekE,
we have that formally:

_wele + Oy
e + 0

¢ = (Vh?)., Ve€E,
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so that (1.5.46) is equivalent to the following(still non-linear) weighted laplacian

system:
<VTDiag <w®+w> vw) —fi, YoeV;
w + 6‘1 v
hl =h!, YveB.
Moreover, if we introduce the variable ¢/ such that:
@ =q -, VecEs
¢ =0, Ve e by,

then, from the first two equations in (1.5.47), we have that:

(Ve @
P, — Db +0,  (ph— Dk + 6,

o=
Thus, the system of adjoint equations (1.5.47) is equivalent as well to the following
weighted laplacian system in the variable v7:

w®l+(5w
(P = 1)p? + 04

w® 1+ 6y ) i
-_— , YveV
W—nwa,) T e
¢g:—fg—(qj~ﬁ)v, Vv e B.
(1.5.48)
The variable 1/ also appears in the derivative of £ with respect to p’. Indeed
from (1.5.8) we have:

(VT Diag < ) V), = (VT Diag (

M M

ol == S oltoa( el el = = Y- olloallallalil Ve P
J=1 J=1

It is clear that the variable 7 plays the fundamental role to simplify all the com-
putations. It naturally appears in the primal equations, in the adjoint equations
and in the computation of the gradient for the variable p’. Moreover, in Subsec-
tion 1.5.3 we have presented an EDMK based ” Gradient Flow” like approach to
the solution of the primal equations which naturally involves the variable y/ as
an iterative linear solver, once opportunely time discretized.
The strategy is therefore to perform an ”all-in-one” descending dynamics. This
is reasonable to think as a kind of Picard iteration.
Thus, the descending algorithm will be initialized with an initial distribution
of exponents p; € H(E), 2.25 < p; < 3.5, an initial distribution of weights
wo € H(E)T and the derived primal and adjoint solutions ¢’ O, hi 0, & 0, I 0 com-
puted solving the non-linear equations (1.5.46), (1.5.47) with the given initial
distributions (pf, wo) and our EDMK scheme.
Once initialized, the algorithm will follows a pseudo-descent dynamics, where
instead of solving at every iteration the non-linear primal-adjoint equations for
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the computation of the derivative of the extended regularized Lagrangian E‘sTV,
we will rather perform one integration step of the dynamics given by the EDMK
scheme for the primal equations in (1.5.35):
gty = —Wele TOIVED)e g
1w o(t) + &g
(A wortsy hj(t))v =fl, YveW

v

13 ()14 (1.5.49)
B (t), =h! YveB
. . 4—3pe . . . .
Qupl (t) = pl(t) = |gl (D) = pl(t), pl(0) = pp, >0, Ve€E,
where the initial value for p/, for any j = 1,..., M in (1.5.49), is set to be equal
to:

ph, =772, VeeE
and ¢’ % is the flux solution of the primal equations given by the initial distribu-
tions (pj, wo).
This type of pseudo-gradient descent method has some reminiscents of the one
introduced in [140].
If the Explicit Euler time discretization is used for (1.5.49) we have the following
iterative scheme for the solution of the primal equations:

ik
( (Aworrsnh? )y =0, YveV;
RLEEE

W*=h, voeB
b (Wele + 60)(V 15,

q] = - y Vee E
‘ M]k‘qu
k41 Je -k 4—3pe -k s
:u]e = :u’je + Atk ((M]e> 2mpe ‘q]e‘Z - M]e> ) k= 07 Tt km&X7e €eE
L ;ﬂg:;ﬂoe>0, Vee L.

(1.5.50)
Thus, instead to compute a full solution of the primal equations which corre-
sponds to a steady state for (1.5.49), in the case where the explicit time dis-
cretization in (1.5.50) is used, we only need to solve for a weighted laplacian
system to compute the new approximated density p’ s
With the same arguments, once the solution of the linear adjoint equations
(1.5.48) given by the previous approximated density p i computed, we can also
compute an approximated descent direction(gradient) for the variables (p’,w).
In this way we have all the ingredients for an iterative(approximated) gradient
descent approach to the computation of the minimizing weights and exponents
distribution.
The reason behind this choice, a part from the numerical benefit to solve for a lin-
ear system instead of a non-linear equation, is essentially motivated by the fact
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that the dynamics in (1.5.49) admits the strictly convex Lyapunov functional
E?f 5, defined in (1.5.34), hence the updating scheme converges to a solution
independently from the initial guess(starting point). As a consequence, we are
expecting that an iterative algorithm constructed in such a manner, will converge
to a solution if a sufficiently small initial time step is provided. Thus, initially
we still get a reasonably good approximation of the p-Poisson equation and the
approximated descent direction is not affected so much by the error derived by
not solving well the primal equations.

Once the minimization process starts to be near to a local minima, intuitively
the changing velocity of the approximated candidate minimizer at iteration k,
(p'*, w*), will slow down and the dynamics given by the EDMK scheme will
synchronizes as well, converging to a good approximated solution of the primal
equations.

For what concern the Total Variation regularization, observe that we are in the
same situation of examples (1.5.42), (1.5.44). Summing up all together, the al-
gorithm is composed by two parts:

e Initialization: Given an initial distribution of exponents and weights such
that 2.25 < pj, < 3.5, woe > 0, Ve € E, we compute a well approximated
solution (¢’ 0, h7 0), of the primal equations (1.5.46) with the EDMK scheme
(1.5.50) and a solution ((ﬁjo,wjo) of the adjoint equations (1.5.47), relative
to the initial distribution (pj,wo), for any j =1,..., M.

A practical method to select an initial distribution of parameters is to fix
the initial exponent
Ph, = 2.8524, Vee€E,

as a good empirical guess given by the Hazen-Williams formula(see [1]),
and to fix a value Wy > 0 such that:

Woe = Wy, Ve€EER, (1.5.51)

where the parameter w is computed by performing a dichotomic search un-
til we find the value which reasonable minimizes the relative error between
the sampled boundary demand f2 and the initial Dirichlet-to-Neumann
map — (g} - ¥),, for any v € B.

We observed experimentally that it is not important the precise value of
wp > 0 but rather the order of magnitude.

Since Problem (1) is not convex, we point out that this initialization process
is of fundamental importance for the performances and the stability of the
algorithm.

Other two fundamental parameters to be carefully setted are the regular-
ization parameters (T'k,, Tk, ). There are various techniques in order to
proper determine the regularization parameters. For the interested reader
we refer to [14, 26, 30, 69].
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e Minimizing flow: The full descending ”all-in-one” scheme reads as an
opportune