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Abstract

In this thesis we discuss how to model a Water Distribution System(WDS) by
means of a surrogate graph p-Laplacian model, with 1 < p < 2.
We exhaustively discuss both numerical and theoretical aspects, within the frame-
work of graph based inverse problems, convex analysis and Legendre duality.
As an application of the proposed techniques, we extend the results that we
achieved on WDS modeling to a larger class of graph-based optimization prob-
lems.
The basic idea is that, starting mainly from data on pipe characteristics and
measurements of water pressure and water fluxes inside pipes, it is possible to
accurately determine an edge-based distribution of edges weights and p-values
on the edges so that the corresponding weighted p-Poisson equation can be effec-
tively used as a Digital Twin of the WDS under study. The successful completion
of this part required the determination and subsequent numerical solution of an
appropriately regularized inverse problem (a variant of Calderon’s inverse prob-
lem) defined on the WDS graph.
The peculiar characteristics of a WDS, whereby neighboring pipes have typically
the same edge-constant properties (read weights and p-values) required the use
of a Total-Variation (TV) based regularization.
Thus, on the second part of this thesis we focused on the variational character-
ization by duality methods of TV regularizers embedded in the solution of the
weighted p-Laplace inverse problem.
We discuss how to properly rewrite a convex energy functional into an equivalent
saddle point formulation, to tackle the problem of finding it’s minimizers from
an alternative and more performing perspective. We extensively study the case
of the p-Dirichlet energy for 1 < p < 2, and of the Total Variation energy as limit
case for p→ 1, including it’s application as a regularization term in various type
of inverse problems.
The derivation of these saddle point formulations is essentially based on the itera-
tion of the Legendre transform combined with ad-hoc substitutions and transfor-
mations of the involved variables. Indeed, this is a classical technique in convex
optimization theory and widely used in the variational formulation of partial dif-
ferential equations.
These resulting equivalent formulations based on duality theory, leads to a class of
saddle point problems that can be efficiently translated into accurate and robust
numerical methods based on variant of the Dynamic-Monge-Kantorovich(DMK)
equations developed earlier by the supervisors research group for the numeri-
cal solution of the L1 Optimal Transport problem. Moreover, we discuss both
theoretical aspects and numerical implementation of the proposed formulation
showing also the efficiency and robustness of the developed algorithms on both
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classical problems and real-world examples.
On the third part of the thesis we focus on the development of numerical schemes
for the nonlinear eigenvalue problem of p-Laplace operators on graphs with 1 < p.
The aim of this part is to provide a proper efficient numerical scheme in order to
use eigen-information of the p-Laplace operator governing the specific WDS to
develop Machine-Learning and surrogate models. A family of Energy functions,
inspired again by the DMK approach, whose critical points can be proved to
be variational eigenpairs of the p-Laplace operators, have been used to develop
gradient-flow algorithms for the numerical calculations of p-eigenpairs.
Unfortunately, only partial results have been achieved in this topic due to two
main difficulties inherently related to the nonlinear eigenvalue problem. On one
hand, the non-regularity of these energy functions in the presence of eigenpairs
with multiplicity greater than one may cause non-convergence of the developed
gradient-based method. The second important difficulty is related to the position-
ing of the found p-eigenpairs within the p-spectrum. Indeed, the interpretation
of the DMK equations deriving from the KKT conditions of the proposed energy
functions as an appropriate weighted linear Laplace eigenproblem allowed the
definition of an approximate ordering of the numerically calculated p-eigenpairs.
However, a complete solution of this problem is still elusive and is left of a matter
of future developments.
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Introduction

This thesis is focused on modeling a water distribution system (WDS) through
a surrogate p-Laplacian model. This problem can be genuinely connected to the
framework of graph based machine learning and graph based inverse problems
with PDE constraints.
Different techniques has been appositevely developed for the numerical solution
of this problem and collected into three main chapters, which can be related but
also be of independent interest.
For this reason, we provide here a brief introduction, summarizing the main
concepts and ideas which are then presented in details on the relative chapters
and their exhaustive introductions.
When dealing with the mathematical modeling of a Water Distribution System
(WDS), it is natural to consider a graph-theoretic setting, where features such as,
e.g., pipes, intersections, house services, tanks, pumps, and valves are effectively
represented by means of nodes, edges and their related properties. It is natural
to express the physical laws that govern the hydraulic dynamics of a WDS, such
as mass and momentum balances, localized and distributed energy losses, input
and control structures, demands, etc. via tools from the graph theory framework.
This is explained in some details for example in [141], with predominant emphasis
on topological characteristics for WDS reliability analysis.
Accurate modeling of an operational WDS is a complex task mostly attributable
to the non-stationarity of the system inputs. Indeed, a considerable number of
variables and parameters involved in the model may have changed during the
WDS lifespan because of, e.g., pipe degradation, valve malfunctioning, varied de-
mand, added connections, etc., and the model developed in the design phase may
not be accurate forcing a re-development of the simulation model. In general,
this development together with the tuning of the new parameters is problematic
especially because of the frequent lack of available data [38, 122]. Therefore, aim-
ing at recovering a detailed Physics-Based (PB) operational model of the WDS is
very often an unrealistic task. This suggests the idea to look for surrogate mod-
els, namely simplified-reality models that are relatively easy to tune and capable
of describing the dynamics of the WDS with sufficient (controlled) accuracy.
In the last decade, Artificial Intelligence (AI), alias Machine Learning (ML) and
all its derivatives such as deep or reinforced learning, has seen a dramatic devel-
opment and found extensive application in surrogate modeling of WDSs, espe-
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6 INTRODUCTION

cially within the field of leak detection [75, 86, 90]. These approaches are named
Data-Driven (DD) for their extraordinary ability to approximate data without
any knowledge of the underlying physical processes that generated the data. We
observe that pure DD methods, where the physics-based model is replaced by
machine/deep learning schemes trained on available data, turned out to be often
unsatisfactory as the dynamics of the WDS pressure is completely ignored [86].

In our view, the low prediction ability of ML-based surrogate modeling is es-
sentially based to the absence of physics in the modelling setting. Indeed, the
nonlinear regime governing a WDS increases the model sensitivity to parameter
variations and, as a consequence, the ill-conditioning of the related calibration
inverse problem. One of the founding ideas of this thesis is that the use of
a simplified but nonlinear surrogate model substantially reduces the danger of
over-parametrization and increases the prediction ability of calibrated surrogate
models in WDS simulations.

A typical nonlinear model problem extensively studied in the mathematical liter-
ature is the so-called weighted p-Laplacian operator, a nonlinear extension of the
classical Laplacian operator. To define this operator, one starts from the water
fluxes that are parallel to a pressure gradient and are characterized by a con-
ductivity constant w multiplied by the modulus of the pressure gradient raised
to the power p − 2. The mass balance arising from such fluxes produces the so-
called weighted p-Laplacian (or p-Poisson in the presence of a forcing function)
equation.

One of the goals of our work is to verify if and how a WDS can be effectively
described using a p-Laplacian-based surrogate modeling. For this purpose, we
recast standard WDS modeling approaches within the framework of a weighted
p-Laplacian operator. Once this has been established, we use synthetic and real
test cases to calibrate the weight w and power p to reproduce standard modeling
results and verify that the wanted prediction accuracy can be realized by the
proposed p-Laplace-based surrogate model.

Hence, in this thesis, we propose a surrogate Data-Based (DB) model for for the
simulation of operational WDSs, which lies in the middle between PB and DD
approaches. Indeed, we make extensive use of collected data for model calibration,
and we also take into account the physical aspect by considering a dynamics based
on the weighted graph p-Laplacian operator.

As a consequence, we find out that our task can be efficiency solved by introducing
a non-linear extension based on the graph p-Laplacian for the classical Calderon’s
inverse problem on graph [42].

Differently from the standard approach to this problem, which is essentially based
on harmonic extensions, medial graphs reduction and Schur complements, we
adopt the framework of the primal-adjoint method, typically used in parameter
estimation for the continuous based two dimensional Calderon’s problem [95],
[26]. This is ultimately due to the need of adopting a sufficiently flexible ap-
proach which leads us to easily include further constraints on our parameters to
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satisfy the physical lows governing a WDS i.e. the edges weights w must to be
positive and the exponents p should be such that 1.4 ≤ p ≤ 1.8. Due to the lack
of convexity of the Calderon’s inverse problem, over-parametrization typically
occurs and the consequential appearance of multiple solutions force the use of
Tikhonov-like regularization terms to arrive at a feasible solution [14, 30, 69].

A very efficient class of Tikhonov regularizers are based on the Total Variation
of the design parameters and naturally leads to solution in the space of bounded
variation functions BV. The Total Variation energy, due to it’s enhancing sparsity
property on the gradient, plays an important role in image denoising and signal
reconstruction [26], [33], [64], [104], [115]. In the case of WDS, the Total Variation
is particularly suitable as regularization term since it is natural, by construction,
that there are sequences of pipes with the same diameters and materials, so
that we are expecting to retrieve clustered parameters and the TV has optimal
clustering properties.

Taking inspiration from the Hazen-Williams water losses formulas in WDS, we
develop a Legendre duality based saddle point formulation for the p-Dirichlet
energy which, in the limit case when p = 1 naturally interconnects the space of
BV functions with the positive Radon measures. Thus, following the work of [18],
[55], [59] on the L1 Optimal Transport problem, we introduce a new variational
problem which leads us to reduce the computation of the Total Variation for a
function in BV as the computation of a saddle point for a Lagrangian function
that can be easily discretized with the standard methods of numerical analysis.

As a case of direct interest for this thesis, we state the discrete counterpart
on graph of the proposed saddle point method, where the differential structure
is given by the graph signed differences matrix. We then introduce an oppor-
tune smoothed version of our saddle point formulation for the Total Variation
energy which leads to a class of very efficient numerical solvers based on the
DMK(Dynamic-Monge-Kantorovich) scheme [54]. This smoothed formulation
can be easily incorporated as a continuous and differentiable approximation for
the TV Tikhonov regularization term in our WDS p-Laplacian inverse problem.

Furthermore, in the general case when 1 < p < 2, the proposed saddle point
numerical method can be efficiently recycled as a very fast iterative linear solver
for the p-Poisson problem on graphs.

As a consequence, all the proposed algorithms were implemented and integrated
in our numerical algorithm based on the Calderon’s p-Laplacian inverse problem
for the parameters identification of the edges weights w and the esponents p in
order to reproduce the piezometric heads distribution (pressure plus elevation)
and the water fluxes from synthetic pressures, fluxes and demands data measure-
ments.

In the Last part of this thesis, as an introduction for future developments, we
propose a new reformulation of the p-Laplacian eigenpairs in terms of constrained
weighted linear Laplacian eigenproblems. In particular, we show that from this
reformulation of the p-Laplacian eigenproblem it is possible to deduce novel nu-
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merical methods, which are essentially an extension of the iterative numerical
solver for the p-Poisson problem that we developed for our surrogate p-Laplacian
WDS model calibration.

Thus, summarizing, the content of the thesis can be divided into three main
topics that are related but that can also be of independent interest.

1. In the first part we introduce the mathematical aspects of WDS modeling,
the available data and the physical laws governing a pressurize network.
Then, we introduce the role of the graph p-Laplacian as the main governing
operator describing the dynamics of piezometric heads and fluxes giving a
certain demand distribution. We enphasize the role of the various compo-
nents of a WDS network such as tanks, reservoirs, pumps, valves, emitters,
and their mathematical translation which in the p-Laplacian framework are
essentially various type of boundary conditions. We then propose our pa-
rameter identification model which will be the core of our model calibration
inverse problem, extending the notion of the Dirichlet-to-Neumann map on
graphs and introducing a variant of the classical Calderon’s inverse prob-
lem. Then, we describe our primal-adjoint based approach and the role of
the Dirichlet-to-Neumann map to ensure the well posedness of the problem
proposing moreover a topological based Line Graph Tikhonov type regu-
larization, based on the graph Total Variation energy. Finally we present
some numerical results based on synthethic data.

2. In the second part of the thesis we describe the main tool that we use for
the numerical solution of our WDS data calibration model as for the p-
Laplacian PDE constraint and mainly for the TV based regularization.
In particular, we propose a duality based saddle point formulation for the
p-Dirichlet energy 1 < p < 2 and it’s limit case when p = 1, namely the
Total Variation energy, both in the continuous and in the discrete graph
based setting. We also discuss how to properly rewrite, with similar argu-
ments, a larger class of convex energy functionals into an equivalent saddle
point formulation with the ultimate goal to tackle the problem of finding
their minimizers from an alternative and more performing perspective.
Our initial idea is based by observing that iterating the Legendre trans-
form, and selecting opportunely the state and conjugate variables, we can
translate the p-Dirichlet energy into a classical weighted Laplacian mixed
formulation plus a mass term in the conductivity weight variable.
Then, we further show how to extend our saddle point formulation to a
larger class of convex discrete energies, providing also an example of ap-
plication to the minimal surfaces discrete energy. We also state theorems
and proofs for the most important results, essentially based on duality ar-
guments and some ad hoc extensions of classical convex analysis results in
[46]. Moreover, we propose novel numerical schemes based on the Dynamic-
Monge-Kantorovich(DMK) scheme first developed for the L1 optimal trans-
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port problem ([55], [58], [54], [59]), and opportunely modified for the prob-
lem of computing saddle points of the proposed energies reformulations.
The computation of these saddle points is proved to be equivalent to the
problem of computing minimizers for the original energies, showing also the
advantages of this approach.
As an application, we show how to use our proposed techniques to the
numerical solution of classical problems, such as an iterative numerical so-
lution to 1-harmonic Dirichlet problem and the p-Poisson Dirichlet problem
on graphs. We also show some other applications based on using the Total
Variation and the l1 norm as Tikhonov regularization terms in some discrete
optimization problems such as the classical ROF(Rudin-Osher-Fatemi) TV
denoising [104] and the compressed modes for the graph Laplacian [106].

3. In the third part of the thesis we discuss the problem of computing the
p-Laplacian eigenpairs. This matter has recently been investigated by dif-
ferent authors [21, 72, 139] leaving, however, several open problems. In the
thesis, we show that it is possible to compute the p-Laplacian eigenpairs as
the limit of sequences of weighted linear Laplacian eigenpairs. In partic-
ular, we observe that, for any p ∈ [2,∞], it is possible to reformulate the
p-Laplacian eigenvalue problem as a weighted Laplacian eigenvalue problem
with constraints on the weights. Based on the weighted linear reformula-
tion of the p-Laplacian eigenvalue problem, we introduce a family of energy
functions such that the cardinality of the family is equal to the dimension
of the graph N , and the variables of the functions are weights on the edges
and on the nodes of the graph. Enumerated the energy functions from 1
to N , we prove that any smooth saddle point of the k-th energy function
corresponds to a p-Laplacian eigenpairs. In addition, we prove that the
first energy function has a unique saddle point, possibly not smooth, which
always corresponds to the unique first eigenpair of the p-Laplacian. Finally,
based on the above results, we investigate novel numerical methods devoted
to compute p-Laplacian eigenpairs in both the cases p <∞ and p = ∞.
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1 Modeling WDS via the graph
p-Laplace operator

1.1 Introduction

When dealing with the mathematical modeling of a Water Distribution System
(WDS), it is natural to consider a graph-theoretic setting, in which features such
as, e.g., pipes, intersections, house services, tanks, pumps, and valves are ef-
fectively represented by means of nodes and edges and their related properties.
Once a WDS has been defined over a graph, its modeling can take advantage
of the vast literature on graph theory (see e.g. Kepner and Gilbert [85] for a
recent exposition). This comprises important tools such as discrete analogues
of differential operators (graph Laplacians and p-Laplacians), divergence theo-
rems, and integration by parts, as well as linear algebra and related numerical
algorithms addressing, e.g., the numerical solution of linear systems and calcu-
lation of eigenvalues and clustering. Within this framework, it becomes natural
to express the physical laws that govern the hydraulic dynamics of a WDS, such
as mass and momentum balances, localized and distributed energy losses, input
and control structures, demands, etc. This is explained in some details for ex-
ample in Yazdani and Jeffrey [141], with predominant emphasis on topological
characteristics of the graph aimed at WDS reliability analysis. The latter has
seen a number of recent contributions based on graph theory, among which we
would like to mention [29, 31, 65, 66, 73, 97, 98, 107, 114, 127, 137]. All these
works leverage on the recent advances in complex network and cluster analysis
to determine aqueduct vulnerability to unforeseen and extreme conditions. How-
ever, the exploitation of graph theory results for modeling the hydrodynamics
and simulating the dynamics of a WDS is not yet developed.

In the past years a wealth of WDS simulators have appeared in the specialized
literature and are routinely used in engineering practice for their design and anal-
ysis (see [10] for a recent review). Various simulation approaches and techniques
together with the accompanying optimization methods have been developed in
order to obtain accurate simulations of WDS dynamics subject to complex de-
mands, both in terms of design and operational strategies [39, 81, 124, 133, 144].
Among the available software [10], EPANET is a well-known package and a de-
facto standard for the design of a WDS. It allows a precise planning of the WDS
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structure and its hydraulic dynamics, including an accurate description of all
the components and corresponding parameters, and it finds widespread use in
the WDS community. In this thesis it is assumed to be the reference model
for WDSs. Accurate modeling of an operational WDS is a complex task mostly
attributable to the uncertainty and non-stationarity of the system parameters
and the forcings. Indeed, aging certainly causes changes in the behavior of WDS
components because of, e.g., pipe degradation, valve malfunctioning, varied de-
mand, added connections, etc. This leads to changes in the parameter values that
best model the changed behavior of the system components. Hence, the model
developed in the design phase cannot be accurate for the entire WDS lifespan
and re-development or re-calibration of the simulation model is often required.
In general, this development forces a re-calibration and the tuning of the system
parameters, and this is often problematic especially because of the frequent lack
of available data [38, 122]. Therefore, aiming at recovering a detailed Physics-
Based (PB) operational WDS model is often an unrealistic task. In order to
resolve this concrete issue, various surrogate indices have been proposed in the
few last years and employed in WDS least-cost management tasks [108, 112, 126].
The aim of theses surrogate indices is to summarize in only a few numbers the
status of the WDS. Along this direction, one of the first approaches can be traced
back to [132], where a resilience index was designed as surrogate metric to assess
the dependability of a WDS. More recently, a further index built upon Todini’s
ideas has been introduced in [116] and compared in [117, 125] to other reliability
indices, such as the flow entropy or the flow-uniformity indices [93, 100].

The idea of surrogate metric naturally suggests to look for surrogate models, or
digital twins. These are simplified-reality models that are relatively easy to tune
and capable of describing the dynamics of the WDS with sufficient (controlled)
accuracy. In the last decade, Artificial Intelligence (AI), alias Machine Learn-
ing (ML) and all its derivatives such as deep or reinforced learning, has seen a
dramatic development and found extensive application in surrogate modeling of
WDSs, especially within the field of leak detection [75, 86, 90]. These approaches
are named Data-Driven (DD) for their extraordinary ability to approximate data
without any knowledge of the underlying physical processes that generated the
data. However, we would like observe that pure DD methods, where the physics-
based model is replaced by machine/deep learning schemes trained on available
data, turned out to be often unsatisfactory as the dynamics of the WDS pressure
is completely ignored [86]. Indeed, being ML essentially based on articulated re-
gression mechanisms, the prediction accuracy essentially depends on the training
data. In a non-stationary regime, where training data do not contain enough
information or do not reflect the changes in the WDS properties, an ML-based
model can be accurate only for short extrapolation times. This is a common
problem of ML and current research in AI looks for so-called “Physics-Informed”
Machine Learning (PI-ML) to add to the outstanding regression capabilities of
ML some physical knowledge of the system at hand [119].
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In our view, the low prediction ability of ML-based surrogate modeling, traced
back in the previous paragraph (and in the relevant literature) to the absence of
physics in the modelling setting, can be related further to the role of the nonlin-
earities introduced in the mathematical modeling of friction and energy losses in
a WDS. Indeed, the nonlinear regime governing a WDS has to main effects. On
one hand, it increases the model sensitivity to parameter variations and, as a con-
sequence, the ill-conditioning of the related calibration inverse problem. On the
other hand, the observations used for calibration are not in general representative
the entire interval of variation of the variables driving the system dynamics. This
latter problem, while negligible in a linear model, becomes highly critical in the
nonlinear case. The most important consequence of this is the so called over-
parametrization of regression models, which leads typically to ill-conditioning
and multiple solutions of both the direct and inverse (calibration) models. This
forces the use of Tikhonov-like regularization terms to arrive at a computable
solution [14, 30, 69]. One of the founding ideas of this thesis is that the use of
a simplified but nonlinear surrogate model substantially reduces the danger of
over-parametrization and increases the prediction ability of calibrated surrogate
models in WDS simulations and their concrete development.

A typical nonlinear model problem extensively studied in the mathematical lit-
erature is the so-called weighted p-Laplacian operator, a nonlinear extension of
the classical Laplacian operator. To define this operator, one considers water
fluxes that are aligned to the pressure gradient, i.e., they are parallel and go in
the same direction of the pressure gradient. The magnitude of the fluxes are
characterized by a conductivity that is a nonlinear function of the pressure gradi-
ent. The resulting flux is equal to the product of a constant w multiplied by the
modulus of the pressure gradient raised to the power p−2 times the pressure gra-
dient. The mass balance arising from such fluxes produces the so-called weighted
p-Laplacian (or p-Poisson in the presence of a forcing function) equation. The
p-Laplace equation has mathematical properties that are similar to the linear
Laplace equation (p = 2) in terms of symmetry and dissipation properties that
provide well-posedness and well-conditioning of the related mathematical and
numerical formulations that can be easily related to those of the linear Laplace
operator. For these reasons, p-Laplace equations have been used extensively in
many different applications [20, 28, 47].

One of the goals of our work is to verify if and how a WDS can be effectively
described using a p-Laplacian-based surrogate modeling. For this purpose, we
recast standard WDS modeling approaches within the framework of a weighted
p-Laplacian operator. Once this has been established, we use synthetic and real
test cases to calibrate the spatial distributions of the weight w and of the power
p that best reproduce standard commercial simulations results (i.e., EPANET),
and verify that the desired prediction accuracy can be realized by the proposed
p-Laplace-based surrogate model.

In this chapter we propose a surrogate Data-Based (DB) model for for the sim-
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ulation of operational WDSs, and note that this approach can be position in
the middle between PB and DD approaches. Indeed, we make extensive use of
collected data for model calibration, and we also take into account the physi-
cal aspects by considering a dynamics based on the weighted graph p-Laplace
operator. More precisely, after motivating the introduction of such an operator
within this context, we show that it is possible to tune its two parameters, i.e.,
the value of the exponent p and the weight w, in such a way that the outputs
of an EPANET simulation can be reproduced within this simplified setting. We
test the accuracy of the proposed surrogate model by varying the number and
distribution of the data collected from the EPANET simulation in a small syn-
thetic aqueduct and in a real large scale aqueduct in the Veneto Region (Italy),
for which the design-phase EPANET model is available.

PB DDDB

This chapter is organized as follows. First the mathematical notation is estab-
lished by providing rigorous definitions of all the mathematical objects, including
the p-Laplace operator, that are needed. We note here that, since the p-Laplace
operator has been studied mostly within the context of PDEs, we use a notation
that derives from it and make several references to the continuous case in an
effort to make the presentation more streamlined. All the relevant properties of
the used operators are discussed and proved if necessary. This first section will be
followed by a description of a standard WDS model, discussing standard nomen-
clature and components of a WDS, including examples of typical equations used
for localized and distributed energy losses, and types of simulations that are typ-
ically performed. The third section contains a discussion on typical data that are
available to a WDS operators and what are the data that will be available in the
future by the introduction modern metering technologies. Section 5 is dedicated
to the discussion and mathematical formulation of the inverse problems used to
calibrate the p-Laplace based model. This will include the development of the
needed mathematical theory as well as of the numerical algorithms that will be
used to solve the problem. Finally, Section 6 will report the numerical examples
obtained on synthetic and real aqueducts.
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1.2 The p-Laplace operator and the graph setting

The p-Laplacian operator is a non-linear generalization of the well-known Lapla-
cian operator. This operator, restricted to the graph setting, has received renewed
interest in the last few years because of potential application to machine learning
and data science [20, 28, 47]. In the continuous case, the p-Laplacian takes the
form

∆p(·) = −div(|∇(·)|p−2∇(·)) .

The above equation is defined in an open domain Ω ⊂ Rn with Lipschitz boundary
and p ∈ R with 1 ≤ p <∞. Obviously, for p = 2 we recover the standard Laplace
operator. The p-Laplacian operator naturally arises from the Euler-Lagrange
equation of the p-Dirichlet energy on W 1,p(Ω), defined as:

Ep(φ) :=
Z
Ω

1

p
| ∇φ|p .

We are also interest in the p-Poisson problem, where given a profile function
g(x) : Γ −→ R defined on Γ = ∂Ω, and a forcing term f ∈ Lp

′
(Ω), we consider

the following variational problem:

inf
φ∈W 1,p

0 (Ω)

Z
Ω

1

p
| ∇φ+ φ̄|p −

Z
Ω
fφ , (1.2.1)

where φ̄ is a lifting function such that φ̄(x) = g(x), ∀x ∈ Γ. The Euler-Lagrange
equation for problem (1.2.1) is indeed equivalent to the well-known p-Poisson
PDE with Dirichlet boundary conditions:

∆pφ = f, x ∈ Ω,

φ(x) = g(x), x ∈ Γ.
(1.2.2)

The value of p determines the regime of the non-linear diffusive dynamics, i.e.,
sub-diffusive if p < 2 or super-diffusive if p > 2. In particular, we highlight the
following two limit cases and their sample applications.

• Case p → ∞: eq. (1.2.2) can be related to the PDE-based formulation
of the Monge-Kantorovich (MK) equations for the L1 Optimal Transport
problem, if the Euclidean distance is assumed as cost function for the opti-
mal transportation problem [51];

• Case p = 1: the p-Poisson problem relates to the 1-Laplacian operator
and the Total Variation (TV) energy. These lead to solutions belonging
to the space of Bounded Variation (BV) functions [50, 52]. This case will
be exhaustively studied in Chapter 2, where we will also study the inter-
dependence between the p-Laplacian operator and the so-called Dynamic
Monge Kantorovich (DMK) approach, which has been introduced in [55–57]
to obtain approximate solutions of the above MK problem.
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Although the detailed analysis of our adaptation of the DMK approach is post-
poned, at the end of this chapter we will present its fundamental role in providing
effective numerical tools for tackling the p-Laplacian inverse problem of interest.
In the graph-based setting, the p-Laplacian is defined to mimic the behavior of
the continuous counterpart. Before getting into details, we recall some important
ideas from the theory of graphs operators. We define a weighted directed graph
as a collection of edges, nodes, and edge weights, G = (E, V, ω), where E is the
set of m = |E| edges, V the set of n = |V | nodes, and ω is a weight defined on the
edges. Each edge ei ∈ E is characterized by the pair ei = vjvk, with vj , vk ∈ V ,
and we write ωi for the weight associated to the edge ei. On a graph, we can
define functions on nodes and functions on edges. We denote as H(V ) = Rn and
H(E) = Rm the Banach spaces of real-valued functions on V and E, respectively.
Therefore, we can directly use the vector notation h = [hv1 , ..., hvn ] ∈ H(V ),
and write hv = h(v) for the evaluation at v ∈ V , or, equivalently, the v-th
component of the vector h. With the same notation, we write qe = q(e) and
q = [qe1 , ..., qem ] ∈ H(E).
Assume that i ∈ {1, . . . ,m} is the index associated to an edge ei ∈ E and that
ku, kv ∈ {1, . . . , n} are the indices associated to u and v in V . We define graph
gradient operator ∇ : H(V ) −→ H(E) as the m × n signed incidence matrix
whose (i, j)-element is:

(∇)ij =


−1 if j = ku,

1 if j = kv,

0 otherwise.

.

Although the gradient matrix relies on the edge orientations, we point out that
such orientation is arbitrary and does not affect the construction of the operator.
Next, we define the graph divergence operator div : H(E) −→ H(V ) as the
negative adjoint of the gradient, or in other words:

div = −∇T ,

i.e., the negative transpose n×m matrix of ∇. Indeed, given h ∈ H(V ), q ∈ H(E)
and e = uv ∈ E, u, v ∈ V , direct calculations show that:

h 7→ (∇h)e = hv − hu, (1.2.3)

q 7→ (div q)u =
X
v∼u
e=uv

qe , (1.2.4)

where v ∼ u means that v is connected to u by an edge of the graph.
In analogy to the continuous case, we can define the weighted graph Laplacian
operator for a function h ∈ H(V ) as:

∆ωh := −div(ω ⊙∇h) = ∇TDiag(ω)∇h , (1.2.5)
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where ω ∈ H(E) is a weight function, Diag(ω) is the diagonal matrix with diag-
onal equal to c, and ⊙ is the Hadamard or entrywise product:

u⊙ v : Rn × Rn −→ Rn

(u⊙ v)i 7→ ui · vi i = 1, . . . , n .

Note that (1.2.5) is the matrix-vector product of the ω-weighted graph Laplacian
matrix

∆ω = ∇TDiag(ω)∇ ,

and the vector representation of the node function h ∈ H(V ).

The ω-weighted graph p-Laplacian operator, p > 1, can be defined as:

∆p,ωh := −div(ωp−1 ⊙ |∇h|p−2 ⊙∇h) = ∇TDiag(cp−1 ⊙ |∇h|p−2)∇h .

As done in the continuous case, we can associate to ∆p,ω a p-Dirichlet energy
and a p-Poisson problem on graphs. First, we recall that given q ∈ H(E) and
1 ≤ p <∞ we can define the edges-based p-norm as:

∥q∥lp :=

 X
e∈E

|qe|p
! 1

p

,

while in the limit case p = ∞ we can consider the l∞-norm

∥q∥l∞ := sup
e∈E

|qe| .

Letting p > 1 and ω ∈ H(E)+ be a positive weight function, we define the
weighted graph p-Dirichlet energy for a function h ∈ H(V ), hv <∞, ∀ v ∈ V as:

Ep,ω(h) :=
∥ω

p−1
p ⊙∇h∥plp

p
=
X
e∈E

ωp−1
e |(∇h)e|p

p
. (1.2.6)

Now we want to introduce the p-Poisson equation on graphs. Before we do
that, we need to define the boundary of a graph. Thus we consider a graph
G = (E, V ) and characterize the node and edge sets as the disjoint union of
internal and boundary sets [63]. In other words, given a proper subset B ⊂ V
of G, called the boundary, we have V = (VI ⊔ B) and E = (EI ⊔ EB) where
EI = {uv ∈ E : u, v ∈ VI} and EB = {uv ∈ E : u ∈ VI , v ∈ B}. Now, for given
functions f ∈ H(VI) and g ∈ H(B), we can introduce the following p-Poisson
problem:

(∆p,ω h)v = fv v ∈ VI

hv = gv v ∈ B,
(1.2.7)
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This problem can be given a variational formulation. Indeed, for a forcing term
f ∈ H(VI) and non-homogeneous Dirichlet boundary conditions on the graph
boundary B, we can consider the equivalent formulation:

inf
h∈HB

0 (V )

X
e∈E

ωp−1
e |(∇(h+ h̄))e|p

p
−
X
v∈VI

fvhv , (1.2.8)

where HB
0 (V ) := {h ∈ H(V ) | hv = 0, ∀ v ∈ B} and h̄ is a lifting function such

that h̄v = gv for all v ∈ B, and h̄v = 0 for all v ∈ VI . The Euler Lagrange equation
for (1.2.8) is indeed (1.2.7). Moreover, by virtue of the Poincaré inequality [91],
problem (1.2.8) is strictly convex and coercive, and therefore it admits a unique
minimizer. Thus (1.2.7) admits a unique solution.

We would like to remark that, in addition to the parameter p, ∆p,ω includes the
positive weight ω, which, analogously to the exponent p, is a function defined
on the edges of the graph and is introduced to ensures physical interpretability
when using the operator in modeling physical phenomena along the graph struc-
ture. Indeed, in many situations, the weighted p-Laplacian can be employed as
a surrogate of more complex non-linear operators. However, in order to obtain
an effective model, it is necessary to carry out a fine tuning of the parame-
ter functions p and ω. Thus, a non-linear inverse problem on graphs must be
solved [9, 76, 80, 101]. In the context of partial differential equations, inverse
problems are a well-established topic [8, 45, 68, 94] and are used for model-
parameter identification [26, 96, 118]. Typically, inverse problems are carried out
by minimizing the least squares of the difference between model solution and ex-
ternal observations (see [129] for an interesting discussion on linear or nonlinear
least squares in the field of inverse problems in water resources). To be able to use
a weighted p-Laplacian as a surrogate model of an aqueduct we need to address
this problem.

We now focus our attention to properties of the graph gradient and the graph
divergence operators that will be useful in the sequel. From (1.2.3), it is clear
that the kernel of the graph gradient matrix are the constant functions on the
nodes. On the other hand, from (1.2.4), we can easily see that a basis for the
kernel of the divergence operator consists of functions defined on the edges that
are constant on directed loops. As a consequence, denoting by 1̄ ∈ H(V ) the
unit constant function, we also have that for any f ∈ H(V ) for which there exists
q ∈ H(E) such that f = div q, then

⟨1̄, f⟩ = ⟨1̄,div q⟩ = −⟨∇ 1̄, q⟩ = 0 ,

where ⟨x, y⟩ = xT y is the standard scalar product between vectors in Rn. In
other words, we can write the following mass balance constraint:

f = div q =⇒
X
v∈V

fv = 0 . (1.2.9)
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An important tool that will be useful is the discrete counterpart of the divergence
theorem, given in the following Proposition.

Proposition 1.2.1. (Graph divergence theorem) Let G = (V,E) be a graph with
boundary set B. Given two node and edge functions ψ ∈ H(V ) and ϕ ∈ H(E),
then: X

v∈B
ψv(ϕ · ⃗⃗ν)v −

X
v∈VI

(div ϕ)vψv =
X
e∈E

ϕe(∇ψ)e ,

where, for any v ∈ B, the graph boundary normal flow map is defined as:

(v, ϕ) 7→ (ϕ · ν⃗)v := −(div ϕ)v, ∀ϕ ∈ H(E), ∀ v ∈ B.

Proof. The proof is obtained by means of the following direct computation:

−
X
v∈B

(div ϕ)vψv −
X
v∈VI

(div ϕ)vψv = ⟨∇T ϕ, ψ⟩ = ⟨ϕ,∇ψ⟩ =
X
e∈E

ϕe(∇ψ)e ,

from which the thesis follows.

Consider now the following general non-linear elliptic operator on graphs:

h 7→ ∇T Diag(α(h))∇h, h ∈ H(V ), α : H(V ) → H(E)+ .

From Proposition 1.2.1, we can introduce the following definition of the Dirichlet
to Neumann (DtN) map for a general graph elliptic operator.

Definition 1.2.2. (Dirichlet-to-Neumann map (DtN)) Let G(V,E) be a directed
graph with boundary B and let ∇ be the associated gradient matrix. Given some
Dirichlet boundary data g ∈ H(B), a forcing term f ∈ H(VI), and a sufficiently
smooth and positive map α : H(V ) → H(E)+ such that the following Poisson
problem admits a unique solution:

(∇T Diag(α(h))∇h)v = fv, v ∈ VI ,

hv = gv, v ∈ B ,

define the flux q ∈ H(E) as:

q := −Diag(α(h))∇hv .

Then for any v ∈ B the Dirichlet-to-Neumann (DtN) map is given by:

(gv) 7→ Λα(gv) := (−q · −→ν )v = (div q)v = (∇T Diag(α(h))∇h)v, ∀ v ∈ B .
(1.2.10)

Remark 1.2.3. Differently from the continuous case where the DtN map is con-
tinuous [3](even in the case of the p-Laplacian), surprisingly in the graph case we
loose many of the good properties of the continuous case. Indeed, the DtN map
is proven to be continuous only on circular, critical and planar graphs [42, Th.
4.4, p. 76].
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Note that, from (1.2.9) and Proposition 1.2.1, we have the graph-based counter-
part of the classical boundary conditions in elliptic PDE theory. In close analogy,
we can define the following boundary conditions:

• Dirichlet boundary conditions: this essentially corresponds to the im-
position of the grounding of the operator obtained by fixing hv = gv,
∀ v ∈ B, where g ∈ H(B) is the given Dirichlet data. Moreover, from
(1.2.9) and (1.2.10) we find immediately that the total flux injected or ex-
tracted in the graph domain by the forcing function must be balanced at
the Dirichlet nodes, i.e.:X

v∈B
Λα(gv) =

X
v∈B

(∇T Diag(α(h))∇h)v = −
X
v∈VI

fv ;

• Neumann or flux boundary conditions: in the continuous case these
conditions impose a boundary flux:

α(h(x))∇h(x) · −→ν = g(x), ∀x ∈ Γ = ∂Ω .

This condition can be translated to the graph setting by means of the
graph divergence theorem (Proposition 1.2.1). Indeed, as in the continuous
case, a Neumann boundary on a graph in the variational formulation is
implemented directly on the Lagrangian by moving the boundary fluxes to
the forcing term:

(Diag(α(h))∇h · −→ν )v = (∇T Diag(α(h))∇h)v = fv .

In the case of zero Neumann boundary conditions (no flow impermeable
boundary) eq. (1.2.9) requires the compatibility conditions that the forcing
term f must have zero-mean to guarantee the well-posedness of the problem.
The above equation has infinitely many solutions since the constant function
is in the kernel of the operator. The standard method to provide a unique
solution is to enforce zero mean to the solution, i.e.,

P
v∈V hv = 0;

• Robin type boundary conditions: another typical class of boundary
conditions are the (generalized) Robin or third type conditions, which in
the continuous setting can be written as:

α(h(x))∇h(x) · −→ν = γ(h(x))h(x) + g(x), ∀x ∈ Γ = ∂Ω.

By virtue of Proposition 1.2.1, given a map γ : H(V ) → H(B) and a
function g ∈ H(B), Robin type conditions in the graph can be written as:

(Diag(α(h))∇h · −→ν )v = (∇T Diag(α(h))∇h)v = γ(h)vhv + gv, ∀ v ∈ B.
(1.2.11)

In this case eq. (1.2.9) implies the following conservation equation:X
v∈B

(γ(h)vhv + gv) = −
X
v∈VI

fv.
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Figure 1.1: Sketch of a portion of the graph underlying a WDS model.

For further details concerning the theory of graph operators, we refer the inter-
ested reader to e.g. [42].

1.3 The WDS model

We can genuinely consider a WDS as a weighted directed graph G = (E, V, ω),
where edges are pipes and nodes are junctions. Positive edge weights ω embed the
pipe attributes, including length, diameter, roughness coefficient etc. Figure 1.1
shows a sketch of the graph underlying a portion of a WDS.

Aside from the graph structure and operators, in the WDS model we need to
consider the following functions:

• a flux function q ∈ H(E), [q] = L3/T , which represents the volume of
water that flows inside the pipe in unit time. This quantity is defined on
edges;

• a piezometric head function h ∈ H(V ), [h] = [L], which is defined as the
pressure (in meters of water column) plus the elevation from a reference
function. This quantity on a graph is defined on nodes;

• a forcing term f ∈ H(V ), [f ] = L3/T , which represents the global flux
entering or exiting the domain on the nodes, i.e.,

fu =
X
u∼v
e=uv

qe ,

This quantity is defined on nodes.

Next, we describe in more details how the main components of a WDS are mod-
eled in standard commercial softwares such as EPANET, and how the are re-
framed into our setting (cf. [1, §3.1]).

• Junctions are the points of a WDS where the pipes join and water can enter
or leave the network. They are the nodes of the underlying graph, whose
piezometric head is described by the function h. Moreover, the amount
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of water coming in or out, i.e. the required hydraulic demand on each
node must be balanced by the forcing term function f with the convention
(compatible with the graph divergence theorem) that fv > 0 if it represents
an inflow in the network, while fv < 0 if it represents an outflow.

• Pipes convey water from one junction in the network to another. Note
that each pipe is assumed to be full, i.e., it is always subject to a positive
pressure and no water surface develops. This implies that in each moment
the flux and the amount of water are uniform in all the regions of the pipe.
Pipes are the edges of G, and the flux of water flowing is quantified by the
flux function q.

• Reservoirs and Tanks. Reservoirs are used to model components such
as lakes and rivers and they represent an infinite source or sink of water
that is externally provided to the WDS. On the other hand, in tanks the
volume of stored water varies in time. In EPANET they are both modeled
as points (same as junctions). In our framework, both reservoirs and tanks
are represented as non-homogeneous Dirichlet boundary conditions that fix
the piezometric head at a node. Note that in principle tanks represent
a different type of boundary condition where the amount of stored water
changes in time. They are typically implemented as a nonlinear boundary
condition and take into account any transient that may occur in the WDS.
For simplicity we do not consider this type of boundary conditions and add
the hypothesis that the fluid is incompressible [82], that tanks behave as
reservoirs, and that the water demand is stationary. While the first as-
sumption is amply justified, the last two require careful definition of the
problems to be simulated by considering temporally averaged demands and
properly adapted data to absorb temporal variations in the tank. Never-
theless, we point out that it is easy in our framework to include also time
varying simulations and nonlinear boundary conditions.

• Pumps and valves are typical components of a WDS, which are repre-
sented in EPANET as links in the network. The effect of pumps is modeled
by imposing a proper Dirichlet condition on the piezometric head of the
related node connecting the pump to the rest of the network. This pres-
sure is easily calculated from the flow-pressure graph of the pump or, if
not available, by measuring the flux and using the DtN map. On the other
hand, valves can be modeled by removing the corresponding edge from the
underlying graph, or by assigning a very small value to its weight ω.

• The same surrogate procedure applies to various further theoretical and
empirical components that are involved in the EPANET hydraulic simu-
lations, as for examples minor head losses parameters and emitters.
Among them, emitters are modeled as junctions and are typically used
to reproduce leaks and local dissipative phenomena. The corresponding
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hydraulic demand or forcing term f is imposed to be dependent on the
pressure:

fv = cv|pressv|γv−2pressv + gv ,

where c is a positive node function which, roughly speaking, represents the
diameter of the leaking hole, pressv := hv − zv is the pressure, zv is the
elevation of the junction at the node, γv is an exponent parameter which
is typically set to be equal to 1.5 (a direct consequence of the classical
Bernoulli Principle), with possible minor corrections depending on the ma-
terials, and g is a fixed distributed minimum leakage rate. Note that in our
framework this is exactly a Robin type boundary condition as in (1.2.11).

In the analysis of a WDS two main types of simulations are typically considered:

• Demand Driven Analysis (DDA): this is the most used approach. One
fixes a distributed demand f on every node of the WDS, and then carries
out the simulation with proper Dirichlet boundary conditions for the piezo-
metric head at source junctions, typically represented as reservoirs or as
tanks;

• Pressure Dependent Analysis (PDA): in this approach, in addition
to the a distributed demand f , a minimum pressure is required on every
junction of the network. Tanks are typically used as nonlinear Dirichlet
boundary conditions and the simulation is carried out multiple times by in-
creasing the tank level of stored water (and consequently changing Dirichlet
data), until the minimum required pressure is satisfied.

1.3.1 The graph p-Laplacian mathematical model of a WDS

In this section we would like to motivate the introduction of the graph p-Laplacian
operator. A WDS model has to include distributed (edge) and localized (nodes)
energy losses due to friction in the pipe walls and the presence of junctions and
valves, respectively. These are typically simulated by imposing head losses given
by empirical power-law formulas commonly used in practice and justified by con-
siderations related to conservation of momentum (second Newton law). The main
principles governing the flow of water in a WDS are:

Momentum Balance − (∇h)e =
Leωe
DeCe

|qe|ne−1qe, ∀ e ∈ E, (1.3.1)

Mass Balance (div q)v = fv, ∀ v ∈ V, (1.3.2)

where ne ≥ 1 is the edge power law exponent, Le > 0 and De > 0 are the length
and the diameter of the pipe, Ce > 0 is the roughness coefficient (a unit-less
coefficient which depends mainly from age, material and diameter of the pipe),
and ωe > 0 is a weight on the edges which typically depends from the physical
properties of the pipe and the flux regime(turbulent, laminar, etc. [1]). We point
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out that in general the exponent n is chosen to be constant on the edges and,
considering for example the Hazen-Williams formulation [1, §12.1], it varies in
the interval ne ∈ [1.4, 2.5] for each e ∈ E.
By taking the absolute value on both sides of (1.3.1) and by setting ℓe := DeCe/Le
for all e ∈ E, we obtain:

|(∇h)e| =
ωe
ℓe

|qe|ne =⇒ |qe| = |(∇h)e|
1
ne

ωe
ℓe

− 1
ne

,

which implies:

−(∇h)e = |(∇h)e|
ne−1
ne

ωe
ℓe

1−ne−1
ne

qe .

By substituting ne = 1/(pe − 1), ∀ e ∈ E we then obtain:

qe = − ωe
ℓe

1−pe
|(∇h)e|pe−2(∇h)e .

Finally, letting we := ℓe/ωe, ∀ e ∈ E and substituting into (1.3.2), we obtain the
mixed dual formulation of our p-Laplacian-based surrogate model:

qe = −wp−1 ⊙ |∇h|p−2∇h

(div q)v = fv ,

or, putting together the two equations above, the standard formulation:

(∆p,wh)v = fv, (1.3.3)

where

∆p,wh = −div(wp−1 ⊙ |∇h|p−2∇h) = ∇T Diag(wp−1 ⊙ |∇h|p−2)∇h , (1.3.4)

is the weighted p-Laplacian operator with p ∈ (1.4, 1.7), for any edge of the graph
representing the WDS.
Boundary conditions need to be added to (1.3.1), (1.3.2) or equivalently to (1.3.4)
in order to get a well-posed mathematical problem.
We recall that the thesis of this chapter is that it is possible to retrieve a distri-
bution of p and ω parameters so that the p-Laplace operator in eq. (1.3.4) can be
effectively used as a surrogate model. To this aim we need to embed eq. (1.3.4)
within an inverse problem framework to calculate the distribution of p and ω
that best fit a given set of observed data. Our approach to the latter task will
be described in Sec. 1.5. Here, instead we reformulate our surrogate model as a
minimization problem suitable to be embedded in the inverse problem setting.
To this aim, we note that eqs. (1.3.1) and (1.3.2) are reminiscent of a mixed
dual formulation of the p-Laplace equation in (1.3.3) and is similar to the mixed
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FEM formulation for elliptic PDEs introduced in [43]. Thus, we introduce the
Lagrangian Lw,p : (H(V )×H(E)) → R:

Lw,p(h, q) := −
X
e∈E

1

p′e

|qe|p
′
e

we
−
X
e∈E

qe(∇h)e −
X
v∈V

fvhv , (1.3.5)

where p′e = pe
pe−1 is the conjugate exponent to p. If we > 0 for all e ∈ E,

eqs. (1.3.1) and (1.3.2) are exactly the Euler-Lagrange equations for the saddle
point problem:

inf
h∈H(V )

sup
q∈E

Lw,p(h, q) .

As will be seen in Sec. 1.5, this formulation needs to include a Tikhonov-like
regularization. In addition, this regularization are designed to ensure similar
accuracy in the reconstruction of both the piezometric head and the fluxes, which
typically converge at different speeds. For this reason we consider the following
regularized Lagrangian:

L
δq ,δw
w,p (h, q) := −

X
e∈E

1

p′e

|qe|p
′
e

we + δw
− 1

2

X
e∈E

δq|qe|2

we + δw
−
X
e∈E

qe(∇h)e −
X
v∈V

fvhv,

(1.3.6)
where and 0 < δq << 1 and 0 < δw << 1 are two regularization parameters. The
resulting saddle point problem becomes:

inf
h∈H(V )

sup
q∈E

L
δq ,δw
w,p (h, q) ,

and the corresponding regularized Euler-Lagrange equations read now as:(
(|qe|p

′
e−2 + δq)qe = −(we + δw)(∇h)e, ∀ e ∈ E

−(∇T q)v = fv, ∀ v ∈ V .
(1.3.7)

1.4 Available Data and general considerations

In the last years, the increased challenges mostly induced by climate change to
minimize water waste has prompted for a relevant improvement in the monitoring
of WDS. Several commercial devices are now available to measure water fluxes
and pressures along a WDS. Among them, we make extensive use of data collected
by smart meters, devices designed to independently measure both pressure and
water fluxes. These measurement systems can be placed in strategic points of
the network (e.g. pipes interconnections, valves, hydrants etc.) or directly on the
final user outlet. In the latter case, the instruments monitor the service pressure
and the user hydraulic demand several times per day, yielding a large dataset of
observations. The monitoring is typically associated to a district subdivision of
the municipal network. Namely, Water Industries typically subdivide the net-
work in small connected components with global inflow and outflow accurately
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Figure 1.2: Typical daily demand curve

measured[81]. This allows a tight control on the state of the “distrectualized”
portion of the WDS and the collection of a large number of data that can be
used to successfully seed an inverse procedure. For example, in the city of Milan
(IT), a relatively large quantity of smart meters are placed on the house services
connections, and a a relevant amount of data is now available[86]. Unfortunately,
generally only a small quantity of data is nowadays readily available, and for this
reason we will mainly use synthetic data generated from commercial software
simulations such as EPANET.

Another important measurement that is not readily available because Water
Companies typically treat it as classified, is water demand, which can be de-
fined as the total client consumption on one household junctions per unit time.
The reconstruction of the water demand as a function of time is complex. Typi-
cally, it is calculated as a time series on the basis of either design parameters or of
detailed measurements. When measurements are not available, an average water
consumption can be evaluated. A typical periodic daily demand profile (which
follows the daily habit of the users) is shown in Figure 1.2. A typical approach at
evaluating a water demand pattern is to measure the minimum night flow, which
represents the fixed water consumption of the network (possibly due to the pres-
ence of leaks) typically measured at 4am/5am when the user consumption is at
its minimum. Appropriately rescaling the daily measured district inflow or the
daily calculated demand and eventually averaging a number of daily patterns,
leads to an operational daily demand that can be used for modeling purposes.
This is what is known in literature as the FAVAD concept [123]. For our test
cases we will use a demand that is calculated using this latter approach.

After the definition of the water demand, the identification of the surrogate model
parameters can proceed on the basis of time measurements of pressure heads
and water fluxes appropriately distributed along the WDS network. Because of
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difficulties in having appropriate data, but most importantly because of confi-
dentiality problems, in our simulations we will employ data from an EPANET
model of the WDS at hand, which is thus assumed as the “true” solution. In the
next section, we will introduce our model parameter estimation approach which
is essentially based on a non-linear extension of the classical Calderon’s inverse
problem on graphs [42].

1.5 Retrieving p and w from the data

In this section we want to determine the distribution of the p and w parameters
so that the resulting weighted p-Laplacian model can be used as a surrogate
model of the WDS of interest. This task can be accomplished by solving an
inverse problem, i.e., by determining the p and w distribution that minimizes
the mismatch between measurements and simulation results. This can be framed
within the classical theory of inverse problems (see [131] for a standard reference
book) whose practical solution is typically very difficult and computationally
demanding. In order to simplify our problem, we need to exploit the fact that
our model is defined on a graph domain. Thus we start this section by describing
our main working choices.

The most important simplification that can be done in our setting is to design
our inverse problem as a Calderon-type problem. These are boundary inverse
problems that try to identify the parameter distribution in the interior of the do-
main from boundary data. They are used normally in a variety of applied fields
including geophysical prospection (e.g., electrical impedance/resistivity tomogra-
phy EIT/ERT, seismic imaging, geo-radar imaging) and medical imaging (e.g.,
electrocardiography, electroencephalography, EIT), among others. The main ad-
vantage of a Calderon problem, besides the fact that it has been thoroughly stud-
ied, is that, in dimension stricktly larger than one, its solution is unique, albeit
still severely ill-conditioned [12, 95, 136]. Indeed, for one-dimensional domains
Calderon problem is not well-posed, while it is well-posed for problems whose
dimension is greater or equal than two. Unfortunately, in a graph setting, [42],
Calderon problem is well-posed if and only if the graph is planar and “circular”,
i.e., the boundary nodes can be connected by edges that form a circle without
destroying the planarity. Intuitively, a graph can be imagined as an object that
is in between one and two dimensions. Thus, the well posedness of Calderon
problem is ensured by this conditions because it forces the graph to be embedded
in a plane, thus forming a “truly” two dimensional object.

The most important characteristic that allows our problem to be casted within
a Calderon boundary problem is that the boundary of a graph is just any subset
of nodes. Hence we can chose to define our boundary to include instrumented
nodes where measurements are available. This, together with the fact that in the
p-Laplacian based model we need to identify the spatial distributions of only two
parameters makes our task much more tractable.
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Given some boundary observations of pressure {ūm(x), x ∈ Γ,m = 1, ..., n} and
normal fluxes {γm(x), x ∈ Γ,m = 1, ..., n}, and given a known forcing term
{fm : Ω 7→ R, x ∈ Γ,m = 1, ..., n}, one looks to minimize following functional:

min
w∈(L∞(Ω))+

nX
m=1

Z
Γ
|w| ∇um|p−2∇um · n⃗− γm|2

s.t.

(
−∆p,wum = fm x ∈ Ω, m = 1, .., n

um(x) = ūm(x) x ∈ Γ = ∂Ω, m = 1, .., n

,

In a continuous setting and for the linear case p = 2, Calderon problem is known
to be non convex and, as already remarked, ill-posed. There are particular in-
stances, for example for the identification of the diffusion equation in dimension
d ≥ 3, Calderon inverse problem has a unique solution provided a sufficient num-
ber of boundary data are given[3]. In the graph setting, only a few results are
available and only for circular planar graphs [42]. In all other general cases, to
the author’s best knowledge, no uniqueness results are available. This is the rea-
son why multiple samples at each nodes are required and an opportune Tikhonov
regularization strategy will be proposed in what follows.

Our approach a direct extension to the non-linear setting of the linear graph
Calderon problem and are described as follows. Assume that the set of nodes is
partitioned into V = VI ∪B and VI ∩B = ∅, where VI is the set of internal nodes
and B is the set of boundary(sampling) nodes. At the same time, we also assume
that the set of edges is partitioned into E = EI ∪ ES and EI ∩ ES = ∅, where
EI are the internal edges(unsampled) and ES is the set of sampling fluxes edges.
We then define the following problem.

Problem 1 (p-Calderon problem). Let G = (E, V,w) be a weighted directed graph
with n = |V | nodes and m = |E| edges. Let B ⊂ V be the set of nb boundary
nodes where the piezometric head is sampled and ES the set of ms boundary edges
where fluxes are sampled. Suppose moreover that we are given a ni ×M matrix
F (VI) of known demand distributions on the ni = n − nb internal nodes. Here
we use the standard convention that F (VI)i,j > 0 if there is an inflow at node i
and sampling time j, while F (VI)i,j < 0 if it represents an outflow.

Our aim is to estimate the weight w ∈ H(E) and the exponent p ∈ H(E)) of a
weighted p-Laplace operator from the sample matrices given by:

• the nb ×M matrix H(B) (piezometric head measurements);

• the nb ×M matrix F (B) (boundary demand measurements);

• the ms ×M matrix Q(ES) (flux measurements).

Such matrices containM ≥ 1 multiple synchronized measurements taken at differ-
ent sampling times. Precisely, each column of H(B), F (B) and Q(ES) contains
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sampled piezometric heads at B, demand measurements at B, and flux measure-
ments at ES, respectively, at one of the M sampling times. We point out that
the further necessary condition of global mass balance must be satisfied:

nbX
i=1

F (B)i,j +

niX
i=1

F (VI)i,j = 0 , ∀ j = 1, . . . ,M . (1.5.1)

1.5.1 Computing gradients via the Primal-Adjoint method

Differently from the standard approach in [42] to this problem, which is essentially
based on harmonic extensions, medial graphs reduction and Schur complements,
we adopt the framework of the primal-adjoint method, typically used in parameter
estimation for the continuous based two dimensional Calderon’s problem [95],
[26]. This is ultimately due to the need of adopting a sufficiently flexible approach
which leads us to easily include further constraints on our parameters to satisfy
the physical laws governing a WDS. Namely, we require that the edges weights
w be positive and the exponent be in the range 1.4 ≤ p ≤ 1.8 or equivalently
2.25 ≤ p′ ≤ 3.5.
Instead of the weighted p-Poisson equation as governing non linear equation for
our parameter identification model, we will work with the conjugate exponent p′

and use the equivalent mixed formulation defined in (1.3.1) and (1.3.2). Moreover,
we will consider its regularized version defined in (1.3.7)
As already observed, there are various reasons that suggest to use this mixed
formulation. First, working separately for the fluxes and the piezometric heads
allows us to control better the accuracy between the simulated flux and heads
and the data measurements, which are collected with different instruments and
different measurement errors. Second, this formulation allows to compute easily
the gradients of our design parameters w and p′ since they are less interconnected
(the term wp−1 disappears) with the result that the derived numerical scheme is
far more easy to implement.
We denote as Ai,: and A:,j the i-th row and the j-th column of a given matrix
A. Moreover, we denote as H(V ) and F (VI) the n ×M matrices related to the
simulated piezometric heads and the imposed demands on the whole graph. The
m×M matrix Q(E) will contain the simulated fluxes. We introduce four injective
functions:

• ιVB : {1, . . . , nb} −→ {1, . . . , n},

• ιVI : {1, . . . , ni} −→ {1, . . . , n},

• ιES
: {1, . . . ,ms} −→ {1, . . . ,m},

• ιEI
: {1, . . . ,mi} −→ {1, . . . ,m}

where ni = |VI | and mi = |EI |, and, we recall, n = |V | and m = |E|. The
function ιVB (ιES

) maps the node vi ∈ B of the sample set (the edge ei ∈ ES)
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to the same node vιVB (i) ∈ V of the graph set (edge eιES
(i) ∈ E) set, and will

be useful to relate the sample matrices H(B), Q(ES), F (B) to the ones corre-
sponding to the whole graph introduced above. With the same notation, the
maps ιVI and ιEI

acts similarly on the internal nodes and internal edges re-
spectively. Three additional sample matrices are needed: the nb × M sample
matrix T (B) = {T (B)i,j = (−Q(E):,j · ν⃗)ιVB (i)} and the n × M divergence

matrix D(V ) = D(V )i,j = (−∇T Q(E):,j)i, and the m × M gradient matrix
∇H(E) = (∇H(E))i,j = (∇(H(V ):,j))i, where j = 1, . . . ,M refers to the number
of independent measurements and i indexes nodes or edges that can be on the
boundary or on the entire graph.

Problem 1 can now then be translated into the following discrete minimization
problem:

min
p,w

MX
j=1

 
1

2

nbX
i=1

T (B)i,j − F (B)i,j
2
+

1

2

msX
i=1

Q(E)ιES
(i),j −Q(ES)i,j

2
!

5

s.t. ∀ j = 1, ..,M

(1.5.2)

(|Q(E)i,j |p
′
i−2 + δq)Q(E)i,j = −(wi + δw)∇H(E)i,j for i ∈ {1, . . . ,m}

D(V )i,j = F (VI)ι−1
VI

(i),j for i /∈ ιVB ({1, . . . , nb})

H(V )ιVB (i),j = H(B)i,j for i = 1, . . . , nb

wi ≥ 0, 3.5 ≥ p′i ≥ 2.25 for i ∈ {1, . . . ,m}

1 >> δq > 0, 1 >> δw > 0
(1.5.3)

The two sums in the objective function (eq. (1.5.2)) are the difference between
the calculated and observed boundary fluxes and represent the consistency with
respect to the samples. The first addendum exploits the DtN map while the
second one requires a good approximation of the measured fluxes on edges.

Remark 1.5.1. Compared to the classical Calderón problem, the additional pa-
rameter p needs to be tuned Unfortunately, in this case, infinite solutions may
occur even in the case where both heads and fluxes are measures on all graph
nodes and edges. For this reason, multiple independent measurement for each
boundary node and edge are needed together with an appropriate regularization.

The minimization process is thus governed by the following extended Lagrangian:
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L(p′, w,H(V ), Q(E),Φ,Ψ,Ξ, δq, δw) :=

MX
j=1

 
1

2

nbX
i=1

T (B)i,j − F (B)i,j
2
+

1

2

msX
i=1

Q(E)ιES
(i),j −Q(ES)i,j

2

+
X

i/∈ιVB ({1,...,nb})

ψji D(V )i,j − F (VI)ι−1
VI

(i),j +

−
mX
i=1

ϕji (|Q(E)i,j |p
′
i−2 + δq)Q(E)i,j + (wi + δw)∇H(E)i,j +

+

nbX
i=1

ξji H(V )ιVB (i),j −H(B)i,j

!
.

(1.5.4)

where Φ = (ϕ1, . . . , ϕM ) ∈ [H(E)]M , Ψ = (ψ1, . . . , ψM ) ∈ [H(V )]M and Ξ =
(ξ1, . . . , ξM ) ∈ [H(B)]M are set of vectors of Lagrange multipliers for each mea-
surement. Note that by imposing ∂L

∂ϕj
= 0, ∂L

∂ψj = 0 and ∂L
∂ξj

= 0 for each

j = 1, . . . ,M we recover the primal equations (1.5.3).
The adjoint equations are defined by setting to zero the derivatives of L with
respect to the columns (H(V ):,j , Q(E):,j) for each j = 1, ...,M . To this aim,
define the set of vectors of test functions Θ = (θ1, . . . , θM ) ∈ [H(E)]M , P =
(ρ1, . . . , ρM ) ∈ [H(V )]M . Using Proposition 1.2.1, we first impose that for any
j = 1, ..,M the derivatives with respect to the fluxes are zero, i.e.:

∂L
∂Q(E):,j

·Θj = 0, ∀Θj ∈ H(E) .

This leads to:

−
nbX
i=1

T (B)i,j − F (B)i,j Nθ(B)i,j+

+

msX
i=1

Q(E)ιES
(i),j −Q(ES)i,j θjιES

(i) +

nbX
i=1

ψjιVB (i)Nθ(B)i,j+

+
mX
i=1

(∇ψj)iθ
j
i −

mX
i=1

(p′i − 1)|Q(E)i,j |p
′
i−2 + δq ϕjiθ

j
i = 0

,

where test functions are collected in the matrixNθ(B) = (Nθ(B))ij = (θj ·ν⃗)ιVB (i).
We now impose the annihilation of the partial derivatives with respect to the head:

∂L
∂H(V );,j

· ρj = 0, ∀ ρj ∈ H(V ) .

This yields:

−
X

i∈ιVB ({1,...,nb})

Nρ(V )i,jρ
j
i −

X
i/∈ιVB ({1,...,nb})

∇T (Diag(w) + δw1)ϕj
i
ρji +

nbX
i=1

ξji ρ
j
ιVB (i) = 0 ,



32 CHAPTER 1. WDS AND THE GRAPH p-LAPLACE OPERATOR

where the test functions together with the weights and the regularization term
are collected in matrix Nρ(V ) = (Nρ(V ))ij = ((Diag(w) + δw1)ϕj) · ν⃗)i.
Now we derive the adjoint equations. On the one hand, letting θj such that
(Nθ(B)):,j ≡ 0 and ρj such that ρji = 0, ∀ i ∈ ιVB ({1, . . . , nb}) we obtain the
following:

• on the edges in ES :

(p′i − 1)|Q(E)i,j |p
′
i−2 + δq ϕji+(∇ψj)i = Q(E)i,j−Q(ES)ι−1

ES
(i),j , ∀ i ∈ ιES

({1, . . . ,ms}) ;

• on the edges in EI :

(p′i − 1)|Q(E)i,j |p
′
i−2 + δq ϕji + (∇ψj)i = 0, ∀ i ∈ ιEI

({1, . . . ,mi}) ;

• on the internal nodes VI :

− ∇T (Diag(w) + δw1)ϕj
i
= 0, ∀ i /∈ ιVB ({1, . . . , nb}) .

On the other hand, assuming (Nθ(B)):,j has no zero elements, by virtue the
previous three equations, we have:

ψjιVB (i) = −F (B)i,j + T (B)i,j , ∀ i ∈ {1, . . . , nb} .

Note that this latter equation defines the Dirichlet boundary conditions on B for
the adjoint variable ψ. Finally, supposing that ρj has no zero elements on B we
obtain the compatibility condition:

ξji = Nρ(V )ιVB (i),j , ∀ i ∈ {1, . . . , nb}.

In summary, letting qj := Q(E):,j ∈ H(E), q̄j := Q(ES):,j ∈ H(ES), h
j :=

H(V ):,j ∈ H(V ), h̄j := H(B):,j ∈ H(B), f j := F (VI):,j ∈ H(VI), f̄
j := F (B):,j ∈

H(B), ∀ j = 1, . . . ,M , we have that the primal equations can be written in
compact form as:

|qje|p
′
e−2 + δq )qje = −(we + δw)(∇hj)e, ∀ e ∈ E

−(∇T qj)v = f jv , ∀ v ∈ VI

hjv = h̄jv, ∀ v ∈ B,

(1.5.5)

while the adjoint equations can be written as:

(p′e − 1)|qje|p
′
e−2 + δq ϕje + (∇ψj)e = qje − q̄je ∀ e ∈ ES

(p′e − 1)|qje|p
′
e−2 + δq ϕje + (∇ψj)e = 0 ∀ e ∈ EI

− ∇T (Diag(w) + δw1)ϕj
v
= 0 ∀ v ∈ VI

ψjv = −f̄ jv − (qj · ν⃗)v ∀ v ∈ B

. (1.5.6)
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By the standard theory of optimization via adjoints, we have that the derivative
of L with respect to the optimization parameter is exactly the partial derivative
of L with respect to (w, p′) computed on the solution (Q(E), H(V ),Φ,Ψ) of the
primal and adjoint equations. Thus, with simple computations we have:

d

dwi
L = ∂wiL = −

MX
j=1

ϕji ∇H(V )i,j ∀ i = 1, . . . ,m ;

d

dp′i
L = ∂p′iL = −

MX
j=1

ϕji log (|Q(E)i,j |) |Q(E)i,j |p
′
i−2Q(E)i,j ∀ i = 1, . . . ,m.

which can be rewritten in more compact form as:

d

dwe
L = ∂weL = −

MX
j=1

ϕje(∇hj)e ∀ e ∈ E, (1.5.7)

and

d

dp′e
L = ∂p′eL = −

MX
j=1

ϕje log(|qje|)qje|p
′
e−2qje ∀ e ∈ E. (1.5.8)

1.5.2 The role of the Dirichlet-to-Neumann map

In this section we discuss in more detail the role that the Dirichlet-to-Neumann
map plays in guaranteeing the consistency of the model with respect to the mea-
surements. Before delving into the discussion, we rewrite formally the primal and
adjoint equations in (1.5.5) and (1.5.6) by introducing new variables. Thus, let
µj ∈ H(E)+ j = 1, . . . ,M be the positive edge function such that:

µje = |qje|p
′
e−2 ∀ e ∈ E .

Then, the primal equations (1.5.5) can be rewritten as the following weighted
Laplacian system:

qje = −we + δw
µe + δq

(∇hj)e, ∀ e ∈ E

(∇T Diag
w + δw
µ+ δq

∇hj)v = f jv , ∀ v ∈ VI

hjv = h̄jv, ∀ v ∈ B,

. (1.5.9)

Analogously, the first two equations in (1.5.6) can be rewritten as:(
(p′e − 1)µje + δq ϕje + (∇ψj)e = qje − q̄je, ∀ e ∈ ES

(p′e − 1)µje + δq ϕje + (∇ψj)e = 0, ∀ e ∈ EI
. (1.5.10)
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We would like to remark here that the gradient (∇ψj)e of the adjoint variable ψ
j

in the above equation has dimension of a flux and must not be confused with the
gradient of the piezometric head (∇hj)e in eq. 1.5.9. Now, in the same manner
as before, we can introduce the variable q̃j defined as:(

q̃je = qje − q̄je, ∀ e ∈ ES

q̃je = 0, ∀ e ∈ EI
.

Then (1.5.10) rewrites as:

ϕje = − (∇ψj)e

(p′e − 1)µje + δq
+

q̃je

(p′e − 1)µje + δq
. (1.5.11)

These observations allow us to interpret the system of adjoint equations (1.5.6)
as the following weighted Laplacian system in the variable ψj :

∇T Diag
w + δw

(p′ − 1)µj + δq
∇ψj

v

= (∇T Diag
w + δw

(p′ − 1)µj + δq
q̃j)v ∀ v ∈ VI ,

(1.5.12)

ψjv = −f̄ jv − (qj · ν⃗)v ∀ v ∈ B .

We have now all the necessary tools to discuss the role of the Dirichlet-to-
Neumann map. We first observe that the DtN performs the task of transforming
head information into flux values, which can be compared with the actual de-
mand. When the demand is met by the DtN flux, the parameter identification
process terminates. The adjoint equation fulfills the task of driving the system
towards the correct identification. The second observation is that the DtN map
allows the simultaneous use of both sampled piezometric heads and fluxes by
incorporating into the objective function the difference between the measured
demand and the simulated DtN map and the difference between the simulated
fluxes and the sampled fluxes on internal edges, when this information is available.
Note that the DtN appears in the Dirichlet boundary conditions for ψj in the
previous equation. Thus the adjoint equation is “forced” by the mismatch be-
tween observed and simulated demand. Indeed, eqs. (1.2.9) and (1.2.10) tell us
that the solution (qj , hj) of the primal equation (1.5.9) satisfies:X

v∈B
(−qj · ν⃗)v =

X
v∈VI

f jv ∀ j = 1, . . . ,M ,

i.e., the total boundary flux at Dirichlet nodes must equate the total flux on
internal edges. At the same time, the mass balance equation (1.5.1) shows that
the total boundary flux must be equal to the total external demand:X

v∈B
(−qj · ν⃗)v =

X
v∈B

f̄ jv ∀ j = 1, . . . ,M .
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These two statements are simultaneously fulfilled only when the distributions of
the weight w and the exponent p are correctly identified, which occurs when the
residual flux at Dirichlet nodes is zero:

−f̄ jv − (qj · ν⃗)v = 0 ∀ v ∈ B . (1.5.13)

For a better understanding of the identification process, suppose for simplicity
that M = 1. In the case where |qj | ̸= 0 is nonzero, from (1.5.7), (1.5.8) we have
that (p∗, w∗) is a local minimizer for L if and only if ϕj ≡ 0. From the adjoint
equation (1.5.8) and from (1.5.11) we have that

ϕj ≡ 0 ⇐⇒ q̃j −∇ψj ≡ 0

if∇ψj ≡ 0 then ϕj ≡ 0 if and only if q̃j ≡ 0, which implies that the sampled fluxes
are captured exactly. On the other hand, ∇ψj ≡ 0 if the mismatch between the
observed demand and the DtN is constant, i.e.,

−f̄ jv − (qj · ν⃗)v = c , (1.5.14)

we have that for any v ∈ B

∇T Diag
w + δw

(p′ − 1)µj + δq
q̃j ≡ 0 . (1.5.15)

This implies that the procedure can terminate also when the difference between
observed and calculated demands is constant. Thus, we need to avoid working in
the kernel of the divergence operator to ensure that (1.5.15) is zero if and only if
q̃j ≡ 0. Since the kernel of the divergence operator corresponds to loops in the
graph, this suggests that the optimal sampling strategy is to measure the piezo-
metric head at every junction with topological degree greater than two. Observe
that, if no flux data are provided, then q̃j ≡ 0 and eq. (1.5.15) is automatically
satisfied. However, the price to pay in this case is that no information on internal
nodes are actually provided to the identification process, which then may become
less accurate. Since the objective function in problem (1.5.2) is equivalent to:

MX
j=1

X
v∈B

1

2
|(−qj · ν⃗)v − f̄ jv |2 +

X
e∈ES

1

2
|q̃je|2

 , (1.5.16)

these a posteriori considerations show that the minimization of (1.5.16), if suffi-
cient information are provided and |qj | ≠ 0, will naturally converge to a solution
(p∗, w∗) such that the condition (1.5.13) is satisfied and the sampled fluxes and
the consistency with respect to the data is preserved or equivalently the constant
c in (1.5.14) is zero and the adjoint variable ψj is constantly zero (see eqs. (1.5.15)
and (1.5.12)).
Observe that no ambiguities arise if we have at our disposal the measured fluxes
at all the boundary edges (i.e., edges that are incident to a boundary node). This
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situation occurs for example when modern smart meters measuring both water
pressure and flux are used at junctions. Indeed, in this case the condition q̃j ≡ 0
is equivalent to condition (1.5.13) and leads to far better results in our numerical
experiments.
In the case where the demand distribution f j is such that the flux qj is zero
(or near zero) in some edges (this is the case for example when no demand or a
very small demand is applied to a household service connection), then some bad
behavior arises in the minimization process since ∂p′jL can be approximately zero
without implying that ϕj to be close to zero in the corresponding edge. Thus the
identification procedure benefits dramatically from the use of multiple observa-
tions sets obtained from different demand distributions. This is easily obtained
using information at several times making sure that the demand distributions are
different. We finally observe that geometrical symmetries in the graph can also
become critical as multiple distribution of exponent p and w can lead to the same
minimizers of Problem (1). However, this is a rare situation in the real world
aqueducts.

1.5.3 The connection with the Extended Dynamic Monge Kan-
torovich approach

In Section 1.3 we have seen that the momentum and mass balance equations
(1.3.1) and (1.3.2) are equivalent to the graph weighted p-Poisson equation re-
ported in (1.3.3). These, in turn, are the Euler-Lagrange equations of the saddle
points of the Lagrangian defined in (1.3.5). We then introduced the Tikhononv
regularized Lagrangian (1.3.6) and the derived regularized momentum and mass
balance equations (1.3.7), which are the core of our primal adjoint approach de-
scribed in Section 1.5.1.
In this section, we discuss a gradient flow for the solution of Problem (1) inspired
by the Extended Dynamic Monge Kantorovich (EDMK) [57]. For the sake of
simplicity will use a compact notation as in eqs. (1.5.5) and (1.5.6). Thus, we
introduce the lifting function:

h̃j :=

(
0, v ∈ VI

h̄jv, v ∈ B
,

and consider the Lagrangian functional Lj
δq ,δw
w,p : (HB

0 (V ) × H(E)) → R defined
as:

Lj
δq ,δw
w,p (h0

j , qj) := −
X
e∈E

1

p′e

|qje|p
′
e

wje + δw
−1

2

X
e∈E

δq|qje|2

wje + δw
−
X
e∈E

qje ∇(h0
j + h̃j)

e
−
X
v∈V

f jvh0
j
v,

(1.5.17)
where HB

0 (V ) is as in eq. (1.2.8). We now introduce the saddle point problem:

inf
h0

j∈HB
0 (V )

sup
qj∈H(E)

Lj
δq ,δw
w,p (h0

j , qj) .
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The Euler-Lagrange equations for this saddle point problem are:
(|qje|p

′
e−2 + δq)q

j
e = −(we + δw) ∇(h0

j + h̃j)
e

∀ e ∈ E

−(∇T qj)v = f jv ∀ v ∈ VI

h0
j
v = 0, ∀ v ∈ B

, (1.5.18)

which are equivalent to the primal equations in (1.5.5) with the non homogeneous
Dirichlet boundary conditions absorbed in the definition of the lifting function.
As done in Section 1.5.2, we introduce the additional variable µj ∈ H(E)+,
j = 1, . . . ,M defined as:

µje := |qje|p
′
e−2 ∀ e ∈ E .

This intermediate variable has the important role of formally reducing the primal
equation into a system of equations involving a linear weighted Laplacian system.
Indeed, in this case eq.(1.5.18) becomes:

(µje + δq)q
j
e = −(we + δw)(∇(h0

j + h̃j))e ∀ e ∈ E

−(∇T qj)v = f jv ∀ v ∈ VI

h0
j
v = 0, ∀ v ∈ B

.

Obviously, this additional variable becomes an extra unknown of the problem.
The justification for the introduction of this new unknown will be provided in
Chapter 2, Section 2.4, where, by a Legendre duality argument, we introduce
an equivalent saddle point formulation for the p-Dirichlet energy on graphs that
naturally involves the variable µj . This allows also the definition of a varia-
tional formulation for the p-Poisson problem (1.2.8). The aim of this effort is to
can combine in one single optimization problem the solution of the weighted p-
Poisson equation and the minimization of the objective function of the parameter
identification problem.

Indeed, again, by duality, we can transform the p-Poisson variational problem into
a saddle point problem involving a minimization in two variables (the variable µ
and the variable hj , in our framework) and a maximization in a third variable,
which plays the role of the negative of the edge flux qj . After the introduction of
a Tykhonov regularization, by directly computing a maximizer it is possible to
remove the ”sup” from the problem thus arriving at a reduced optimality problem
involving a double minimization.

While these statements will find rigorous justification in the next chapter, in this
section we provide the description together with an intuitive rationalization of the
full procedure. We start this description by considering the p-Dirichlet energy
Ep,ω(φ) defined in eq. (1.2.6) restricting ourselves for simplicity to the case of
interest for aqueducts 1 ≤ p < 2 but with uniform weights ωe = 1, ∀ e ∈ E. Let
us introduce the family of Lagrangian functionals L

p
φ : (H(E)+ × H(E)) → R
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given by:

Lpφ(µ, σ) := −
X
e∈E

1

2
µe|σe|2 + σ · ∇φ+

2− p

2p

X
e∈E

µe
p

2−p φ ∈ H(V ) . (1.5.19)

It is possible to show (see Theorem 2.4.1) that the saddle point of the above
family of Lagrangian functional is exactly the p-Dirichlet energy Ep,ω(φ), i.e.:

Ep,ω=1(φ) = inf
µ∈H(E)+

sup
σ∈H(E)

Lpφ(µ, σ). (1.5.20)

The saddle point (µ∗, σ∗) is unique in the case 1 < p < 2 and it satisfies the
extremality relations:

µ∗eσ
∗
e = (∇φ)e, ∀ e ∈ E, 1 ≤ p < 2

µ∗e = |σ∗e |p
′−2 = |(∇φ)e|2−p, ∀ e ∈ E, 1 < p < 2

|σ∗e | ≤ 1, ∀ e ∈ E, p = 1

µ∗e|σ∗e |2 − µ∗e = 0, ∀ e ∈ E, p = 1

µ∗e = |(∇φ)e|, ∀ e ∈ E, p = 1.

In addition, for the case p = 1, it is possible to show that µ∗ is the unique
optimal density. It is now easy to see that it is possible to retrieve a posteriori
the standard duality identity:

Ep,ω=1(φ) = Lpφ(µ
∗, σ∗) = sup

σ∈H(E)
−
X
e∈E

1

p′
|σ∗e |p

′
+ σ∗ · ∇φ φ ∈ H(V ) .

This gives a strong motivation to consider also the variational formulation of the
p-Poisson problem. Thus, as in Section 1.2, given a forcing term f ∈ H(VI) and
non-homogeneous Dirichlet boundary conditions on a subset B ⊂ V , B ∩VI = ∅,
B ∪ VI = V , the variational formulation of the p-Poisson can be written as:

inf
φ∈HB

0 (V )

X
e∈E

|(∇(φ+ φ̄))e|p

p
−
X
v∈VI

fvφv , (1.5.21)

where, again for simplicity, we use uniform edge weights, ω = 1, and we recall that
HB

0 (V ) := {h ∈ H(V ) | hv = 0, ∀ v ∈ B}. To accommodate non-homogeneous
Dirichlet boundary condition we introduce the lifting function φ̄ such that φ̄v = gv
for all v ∈ B, and φ̄v = 0 for all v ∈ VI . Thus, eq. (1.5.21) can be re-written as:

inf
φ∈HB

0 (V )
Ep,ω=1(φ+ φ̄)−

X
v∈VI

fvφv .

Using eq. (1.5.20) we find immediately that the previous problem is equivalent
to the following saddle point problem:

inf
µ ∈ H(E)+

φ ∈ HB
0 (V )

sup
σ∈H(E)

−
X
e∈E

1

2
µe|σe|2+σ ·∇(φ+φ̄)−

X
v∈VI

fvφv+
1

2γ

X
e∈E

µγe , (1.5.22)
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where γ := p
2−p .

In the next Chapter, Theorem 2.9.1, we will show that for 1 < p < 2 the saddle
point ((φ∗, µ∗), σ∗) is unique and satisfies the following extremality equations:

µ∗eσ
∗
e = (∇(φ∗ + φ̄))e ∀ e ∈ E

−(div σ∗)v = fv ∀ v ∈ VI

φ∗
v = 0, ∀ v ∈ B

µ∗e = |σ∗e |p
′−2 = | ∇(φ∗ + φ̄)e|2−p ∀ e ∈ E .

From these conditions it follows that φ̃∗ := φ∗ + φ̄ is the unique solution of the
saddle point problem: 

|σ∗e |p
′
e−2σ∗e = (∇ φ̃∗)e ∀ e ∈ E

(∇T σ∗)v = fv ∀ v ∈ VI

φ̃∗
v = gv ∀ v ∈ B,

(1.5.23)

or equivalently of the p-Poisson problem:

(∆p,ω=1 φ̃
∗)v = fv v ∈ VI

φ̃∗
v = gv v ∈ B.

Now we introduce the Tikhononv regularized Lagrangian functional Lp,δ : (HB
0 (V )×

H(E)+ ×H(E)):

Lp,δ(φ, µ, σ) := −
X
e∈E

1

2
(µe + δ)|σe|2 + σ · ∇(φ+ φ̄)−

X
v∈VI

fvφv +
1

2γ

X
e∈E

µe
γ ,

(1.5.24)
where δ > 0 is a small Tikhononv parameter, and define our regularized func-
tional:

Lpδ(φ, µ) := sup
σ∈H(E)

Lp,δ(φ, µ, σ). (1.5.25)

Since now µ + δ > 0, the supremum in σ in (1.5.25) is in fact a maximum
(we have indeed strong concavity, differntiability and anti-coerciveness), and the
maximizer σ∗ satisfies

σ∗e =
∇(φ+ φ̄)e
µe + δ

∀ e ∈ E. (1.5.26)

Thus, computing Lp,δ(φ, µ, σ) at the maximizer σ∗, the functional Lpδ(φ, µ) sim-
plifies as follows:

Lpδ(φ, µ) =
X
e∈E

1

2

| ∇(φ+ φ̄)e|2

(µe + δ)
−
X
v∈VI

fvφv +
1

2γ

X
e∈E

µγe , (1.5.27)

which motivates the following double minimization problem in place of eq (1.5.22):

inf
φ ∈ HB

0 (V )

µ ∈ H(E)
+

Lpδ(φ, µ), (1.5.28)
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which is the Tikhonov regularization of the saddle point problem (1.5.22). It
is possible to show (see Chapter 2 Section 2.9), that Lpδ(φ, µ) is lower semi-
continuous, stictly convex and norm coercive in the pair (φ, µ) thus the existence
of a unique minimizer (φ∗, µ∗) is guaranteed.

Inspired by the DMK(Dynamic-Monge-Kantorovich) scheme in [55–57], we intro-
duce the following minimizing dynamics for (1.5.28):

σe(t) =
(∇(φ(t) + φ̄))e

µe(t) + δ
∀ e ∈ E

(∇T σ(t))v = (∆ 1
µ(t)+δ

(φ(t) + φ̄))v = fv ∀ v ∈ VI

φ(t)v = 0 ∀ v ∈ B

∂tµe(t) = µe(t)|σe(t)|2 − µe(t)
p

2−p µe(0) = µ0e > 0, ∀ e ∈ E.

(1.5.29)

As in [56, 59], a solution (φ∗, µ∗) of (1.5.28) is sought via a gradient descent
approach not applied directly to the functional Lpδ(φ, µ) but rather to its compo-
sition with the change of variable µ(t) = Ψ(ξ(t)) := ξ(t)2 and performing then a
pull-back of the descending dynamics on the original variable µ(t). It is possible
to see that such a dynamics can be interpreted as a descent dynamics that pre-
serves the positivity constraint on µ(t) (see Chapter 2, Section 2.7, Subsection
2.8.2 and Section 2.9 for full details).

We then propose an improved version ofthe dynamics in (1.5.29), which has been
observed to converge faster in our numerical experiments. This is derived by
composition with the map:

µe = Ψ(ξe) := |ξe|
2(2−p)

p , ∀ e ∈ E,

leading to the following new dynamics for the density µ in (1.5.29):

∂tµe(t) = µe(t)
4−3p
2−p |σe(t)|2 − µe(t), ∀ e ∈ E. (1.5.30)

The gradient descent approach applied to the computation of a minimizer has
to be intended as a long time solution (φ∗, µ∗) = limt→∞(φ(t), µ(t)) where
(φ(t), µ(t)) is a solution of the state-space initial value problem (1.5.29). There-
fore, it is necessary to introduce an opportune time discretization scheme and an
opportune stopping rule.
In Chapter 2, Section 2.7, three approaches of time discretization are presented:
the explicit Euler (EE) approach, a semi-implicit (SI) improvement and the im-
plicit Euler(or the Gradient Flow) approach.
We present here for completeness the first approach, i.e. the explicit one, which
would be used also in our numerical examples. Given a sequence ∆tk > 0 of time
steps, the approximation sequence µk

k=1,...,kmax
is given by the following set of
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equations:

(∆ 1

µk+δ

(φk + φ̄))v = 0, ∀ v ∈ VI

φkv = 0, ∀ v ∈ B

σke =
(∇(φk + φ̄))e

µke + δ
, ∀ e ∈ E

µk+1
e = µke +∆tk (µke)

4−3p
2−p |σke |2 − µke , k = 0, . . . , kmax, e ∈ E

µ0e = µ0e > 0, ∀ e ∈ E.

(1.5.31)

Hence at each time step, we only need to solve the lifted linear system

(∆ 1

µk+δ

(φk + φ̄))v = 0 ∀ v ∈ VI

φkv = 0 ∀ v ∈ B.
(1.5.32)

Some geometric considerations can be done on the updating scheme defined in
(1.5.31). Indeed, it is possible to interpret (1.5.31) as a type of projected gradient
descent. Thus, heuristically, if we start from an initial µ0 > 0 and a sufficiently
small initial time step, the positivity is preserved since we are moving in a de-
scent direction projected tangentially to the exponential map. Hence we converge
toward zero from a parallel direction to the axis µe = 0(see 2 Subsection 2.8.2).
The explicit Euler scheme (1.5.31) is therefore a linear iterative solver for the
p-Poisson problem. It has indeed several advantages. Observe that the variable
µ has the main role to absorb the non linearity induced by the factor |σ|p′−2 thus
reducing the non linear system (1.5.23) to the weighted laplacian in (1.5.32).
Moreover, multiple experiments shows that the derived numerical scheme exhibits
very good stability properties and can be placed somewhere in the middle be-
tween the augmented lagrangian approaches [13], [33], and the Newton method
for the p-Poisson problem.
On the other hand, differently from the Newton method where we have to invert
an Hassian matrix, here we only have to solve for a weighted laplacian linear
system with Dirichlet boundary conditions and perfom an integration step for
the dynamics of µ(t).
Aside from the very simple implementation of (1.5.31), having a structure which
depends upon inverting a graph laplacian matrix, which is naturally sparse and
symmetric, has the main advantage derived from the huge weaponry of the nu-
merical linear algebra(e.g. multi grid methods, preconditioning strategies etc.).
Observe that differently from the standard augmented lagrangian approach where
typically some variable substitutions are performed via Lagrange multipliers, here
the formal substitution µ = |σ|p′−2 is naturally given by the Legendre trans-
form(see Chapter 2 Sections 2.2, 2.5).
Furthermore, upon introducing the Tikhonov regularized Lagrangian (1.5.24) and
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the functional (1.5.25), the original saddle point problem (1.5.22) is reduced to a
differentiable and strictly convex double minimization problem, hence the second
order method derived from the implicit Euler time discretization is well defined,
improving drastically the performance of the numerical scheme. Moreover, dif-
ferently from the Newton method which needs a sufficient accurate initial guess
to converge, here we can benefit from the stability induced by (1.5.25) which acts
as a Lyapunov functional for the dynamics. Thus, starting with a sufficiently
small initial time step, the newton method applied to the implicit Euler time
discretization of (1.5.29) is guaranteed to converge(see [59] for details).
Last but not least, note that having a double minimization problem instead of
a saddle point problem, allows us to easily introduce further constraints on the
variable φ.

Let us now return to Problem (1) and equations (1.5.5).
It is now evident the similarity between the Tikhonov regularized lagrangians
(1.5.17), (1.5.24), the primal equations (1.5.5) and the first three equations in
(1.5.29):

(µe + δ)σe = (∇(φ+ φ̄))e, ∀ e ∈ E

(∇T σ)v = (∆ 1
µ+δ

(φ+ φ̄))v = fv, ∀ v ∈ VI

φv = 0, ∀ v ∈ B.

We are indeed motivated to introduce the following Lagrangian Lw,p,δw,δq : (HB
0 (V )×

H(E)+ ×H(E)) → R, ∀ j = 1, . . . ,M :

Lw,p,δw,δq(h0
j , µj , qj) :=

−
X
e∈E

1

2

µje + δq
we + δw

|qje|2 − qj · ∇(h0
j + h̃j)−

X
v∈V

f jvh0
j
v +

X
e∈E

2− pe
2pe(we + δw)

µje
pe

2−pe .

Note that here the variable qj ∈ H(E) plays the role of −σ in (1.5.24) while the
variable h0

j ∈ HB
0 (V ) plays the role of φ. Thus, we consider the functional:

Lw,pδw,δq
(h0

j , µj) := sup
qj∈H(E)

Lw,p,δw,δq(h0
j , µj , qj).

and with the same arguments as in (1.5.26)-(1.5.27) we have that there exists a
maximizer q∗j given by:

q∗je = −(we + δw)∇(h0
j + h̃j)e

µje + δq
, ∀ e ∈ E. (1.5.33)

Thus, computing Lw,p,δw,δq(h0
j , µj , qj) in the maximizer q∗j , the functional Lw,pδw,δq

(h0
j , µj)
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simplifies as follows:

Lw,pδw,δq
(h0

j , µj) =
X
e∈E

1

2

(we + δw)| ∇(h0
j + h̃j)e|2

(µe + δq)
−
X
v∈V

f jvh0
j
v+
X
e∈E

2− pe
2pe(we + δw)

µje
pe

2−pe ,

(1.5.34)
Consider now the following double minimization problem:

inf
h0

j ∈ HB
0 (V )

µ
j ∈ H(E)

+

Lw,pδw,δq
(h0

j , µj).

The KKT conditions for the minimizer (h∗0
j , µ∗j) ∈ (HB

0 (V )×H(E)+) of Lw,pδw,δq
(h0

j , µj)
satisfies: 

q∗je = − (we+δw)∇(h∗0
j+h̃j)e

µ∗je+δq
, ∀ e ∈ E

−|q∗je|2 + µ∗je
2

p′e−2 − ce(we + δw) = 0, ∀ e ∈ E

(∆ (w+δw)

(µ∗j+δq)

(h∗0
j + h̃j))v = f jv , ∀ v ∈ VI

h∗0
j
v = 0, ∀ v ∈ B

ceµ
∗j
e = 0, ce ≥ 0, ∀ e ∈ E,

Thus, µ∗j ē = 0 on some edge ē ∈ E if and only if

q∗jē = ∇(h∗0
j + h̃j)ē = 0,

and cē = 0, there is no other possibility.
On the other hand, if µ∗j ē > 0 we have that

µ∗j ē = |q∗jē|p
′
ē−2.

As a consequence, if

(h∗0
j , µ∗j) is a minimizer for Lw,pδw,δq

(h0
j , µj),

and q∗j is given by (1.5.33) then

(h∗0
j + h̃j , q∗j)

is a solution for the primal equations (1.5.5).
Therefore, defining:

hj := hj0 + h̃j ,

we have
hjv = h̄jv, v ∈ B,

and we can recycle the EDMK scheme (1.5.29) as a converging dynamics to
compute a solution of the primal equations (1.5.5).
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The corresponding dynamical system of (1.5.29) and (1.5.30) for a solution of the
primal equations, ∀ j = 1, . . . ,M , reads as follows:

qje(t) = −(we + δw)∇(hj(t))e
µje(t) + δq

, ∀ e ∈ E

(div qj(t))v = (∆ w+δw
µj(t)+δq

hj(t))v = f jv , ∀ v ∈ VI

hj(t)v = h̄jv ∀ v ∈ B

∂tµ
j
e(t) = µje(t)

4−3pe
2−pe |qje(t)|2 − µje(t), µje(0) = µj0e > 0, ∀ e ∈ E,

(1.5.35)

and the Explicit Euler scheme for (1.5.35) is given by:

(∆ w+δw

µj
k
+δq

hj
k
)v = 0, ∀ v ∈ VI

hj
k
= h̄jv, ∀ v ∈ B

qj
k
e =

(∇hj
k
)e

µjk + δq
, ∀ e ∈ E

µj
k+1
e = µj

k
e +∆tk (µj

k
e)

4−3pe
2−pe |qjke |2 − µj

k
e , k = 0, . . . , kmax, e ∈ E

µj
0
e = µj0e > 0, ∀ e ∈ E.

1.5.4 Total Variation Regularization

Since problem (1.5.2) is non convex, a regularization term is necessary in order to
select opportune local minimizers. A common choice is to add to the Lagrangian
L in (1.5.4) a Tikhonov penalty term. Typically, quadratic terms are added and
have the effect to smooth out the solutions, thus gaining stability and regularity.
A not common strategy is to add non differentiable term typically derived by the
l1 norm.
Among them a very important role is played by the total variation regularization.
This naturally lead to locally constant optimal solutions, see [26], [142], [33] for
an exhaustive treatment of total variation regularization.
The choice of this type of regularization fits well in the case of our problem since
our optimal parameters (w, p′) depends on the mechanical properties of the pipes,
such as the diameters, material and age. Typically the pipes are posed in sequence
with the same material and diameter, therefore, it is of central importance to find
such a method which promotes locally constant solutions on sequence of pipes
with the same properties.
Moreover, we can genuinely carry out the optimization procedure on less bound-
ary/sampling nodes since the the design parameters are ”hold together” by the
regularization.
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In graph theory we can take gradients only of functions defined on the nodes set
while our parameters (w, p′) are defined on the edges.
The common procedure is to consider a new graph obtained from the original
graph by connecting the middle points of adjacent edges, the so called ”Line-
Graph”. This is one of the most classical example of graph duality. Note that,
by definition, only the nodes of topological degree greater or equal than two in
the original graph, contributes to the construction of the line graph.
The gradient operator generated by the ”Line-Graph” is a matrix from the origi-
nal graph edges set to the ”Line-Graph” edges set, which has constant functions
on the original graph edges set as kernel see [121].
Therefore the strategy is to create a regularization defining the total variation of
our edge weight and exponent using the gradient derived from the ”Line-Graph”.
In figure (1.3) we can see an example of comparison between original graph and
”Line-Graph”. Given a graph G(V,E) we denote as L(G)(E, Y ) the ”Line-Graph”

Figure 1.3: (a) original graph(black) vs (b) derived line graph(red).

of G. Then L(G) has by definition m = |E| nodes, i.e. the number of original
edges and it is easy to see that the number of edges is given by:

|Y | =
X
v∈V

kv(kv − 1)

2
,

where kv is the topological degree of a node v ∈ V in the original graph G.
Thus, by construction, each node v of degree kv of the original graph G corre-
sponds to a kv fully connected clique in L(G).
Line graphs have been studied extensively and, among their well-known proper-
ties, Whitney’s uniqueness theorem states that the structure of G can be recovered
completely from its line graph L(G), for any graph other than a triangle or a star
network of four nodes [138]. Hence we don’t loose any information on the topo-
logical structure of the original graph.
As already observed, a single node v in G leads to a connected clique of kv(kv−1)

2
links in the line graph L(G)). This seems to suggest that the line graph L(G)
gives too much prominence to the high degree nodes of the original graph G. In
[53] an opportune topological weighting strategy is presented to overcome this
issue. The main idea is to define a weighted line graph whose links are scaled
by a factor of O (1/kv). This is motivated by the fact that each vertex v in the



46 CHAPTER 1. WDS AND THE GRAPH p-LAPLACE OPERATOR

original graph G contributes kv(kv−1)
2 edges to L(G) even though its importance

in the original graph could be estimated to be just kv. Thus, for any node v ∈ V
in the original graph G we define the adjacency of v as:

adjv := {e ∈ E | e = uv or e = vu}, ∀ v ∈ V.

With this definition we have that:

kv = |adjv| , v ∈ V.

Then, we consider the weighted line graph L(G)(E, Y, ωLG) such that for any
edge y ∈ Y :

ωLGy :=
1

kv − 1
, y = e1e2, (e1, e2) ∈ E, (e1, e2) ∈ adjv, v ∈ V.

and it’s weighted gradient matrix ∇LG : H(E) −→ H(Y ) is the |Y | ×m matrix
given by:

(∇LG)ij =


−ωLGyi if yi = ejek,

ωLGyi if yi = ekej ,

0 otherwise.

As a motivating example, consider the case of collaboration networks. Every
link(edge) in a collaboration network corresponds to a joint work between two
authors. Thus, the (kv − 1) normalization is justified by the desire that two au-
thors should be less connected if they wrote a joint paper with many co-authors
than a paper with few authors.
In the WDS framework, this translate to enhancing the connection between pipes
on the same topological line(i.e. in sequence of junctions with topological de-
gree equal to two), which is typically composed of pipes with the same prop-
erties(diameters, materials etc.), while considering as less connected the pipes
which lies in the adjacency of a cross junction(a junction between more than
two pipes), where it is most probable to have a connection between pipes with
different diameters and materials.
This kind of weighted gradient matrix fits well for our regularization purpose.
We will consider therefore the following new Lagrangian:

LTV (H(V ), Q(E), p′, w,Φ,Ψ,Ξ, Tkp′ , Tkw, δq, δw) := L(p′, w,H(V ), Q(E),Φ,Ψ,Ξ, δq, δw)+

+Tkp′∥∇LG p
′∥l1 + Tkw∥∇LGw∥l1

(1.5.36)
where L(p′, w,H(V ), Q(E),Φ,Ψ,Ξ, δq, δw) is the Lagrangian defined in (1.5.4)
and (Tkp′ , Tkw) are two positive small regularization parameters.
In Section 1.5.3 we have seen an equivalent saddle point formulation for the graph
p-Dirichlet energy. In Chapter 2, Sections 2.4, 2.8, 2.11 we extensively treat the
limit case p = 1, and we show that the same arguments as in Section 1.5.3 can



1.5. THE MODEL CALIBRATION 47

be applied to the general framework of TV and l1-norm regularization. Thus as
in (1.5.19), given a graph G(V,E) where we set for simplicity the edge weight fix
to one, we introduce the Lagrangian L1φ : (H(E)+ ×H(E)) → R as:

L1φ(µ, σ) := −
X
e∈E

1

2
µe|σe|2 + σ · ∇φ+

1

2

X
e∈E

µe, φ ∈ H(V ),

which is the Lagrangian in (1.5.19) for p = 1. In Chapter 2(see Theorem 2.4.1)
we show that the graph 1-Dirichlet energy or the graph Total Variation energy:

TV (φ) := E1(φ) = ∥∇φ∥l1

admits the following equivalent formulation:

TV (φ) = inf
µ∈H(E)+

sup
σ∈H(E)

L1φ(µ, σ).

Moreover, there exists a saddle point (µ∗, σ∗) for L1φ and it satisfies the extremality
relations:

µ∗eσ
∗
e = (∇φ)e, ∀ e ∈ E,

|σ∗e | ≤ 1, ∀ e ∈ E,

µ∗e|σ∗e |2 − µ∗e = 0, ∀ e ∈ E,

µ∗e = |(∇φ)e|, ∀ e ∈ E.

We then introduce the Tikhononv regularized Lagrangian:

L1,δ(φ, µ, σ) := −
X
e∈E

1

2
(µe + δ)|σe|2 + σ · ∇φ+

1

2

X
e∈E

µe,

where δ > 0 is a small Tikhononv parameter, and the functional:

L1
δ(φ, µ) := sup

σ∈H(E)
L1,δ(φ, µ, σ).

With the same arguments as in (1.5.26), L1
δ(φ, µ) simplifies as follows:

L1
δ(φ, µ) =

X
e∈E

1

2

|(∇φ)e|2

(µe + δ)
+

1

2

X
e∈E

µe,

and we consider the following minimization problem:

inf
µ∈H(E)+

L1
δ(φ, µ). (1.5.37)

Again, as in Section 1.5.3, we have that the KKT conditions for a minimizer (µ∗)
of (1.5.37) satisfies: (

− |(∇φ)e|2
(µ∗e+δ)

2 + 1− ce = 0, ∀ e ∈ E

ceµ
∗
e = 0, ce ≥ 0, ∀ e ∈ E.
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Thus, µ∗ē = 0 on some edge ē ∈ E if and only if:

|(∇φ)ē| ≤ δ, (1.5.38)

and if µ∗ē > 0 we have that

|(∇φ)ē| = µ∗ē + δ. (1.5.39)

Hence defining:

TVδ(φ) := inf
µ∈H(E)+

L1
δ(φ, µ), (1.5.40)

from (1.5.38), (1.5.39) we have:

TVδ(φ) = TV (φ) +O(δ).

We are indeed motivated to consider the following approximated Lagrangian in-
stead of the total variation regularized one in (1.5.36):

LδTV (p′, w, µp′ , µw, H(V ), Q(E),Φ,Ψ,Ξ, Tkp′ , Tkw, δq, δw, δµp′ , δµw) :=

= L(p′, w,H(V ), Q(E),Φ,Ψ,Ξ, δq, δw)+

+Tkp′
X
y∈Y

 
1

2

| ∇LG p
′|2y

µp′y + δµp′
+

1

2
µp′y

!
+ Tkw

X
y∈Y

 
1

2

| ∇LGw|2y
µwy + δµw

+
1

2
µwy

!
,

(1.5.41)
where Y is the edges set of the line graph L(G) of the original graph G. The main
advantage of considering (1.5.41) instead of using directly the total variation of
(p′, w) comes from (1.5.40). Indeed, having introduced the new positive densities
variables µp′ and µw which depend only on (p′, w), allows us to perform simulta-
neously the minimization in the quadruple (p′, w, µp′ , µw). Moreover, introducing
the regularization parameters (δµp′ , δµw) we have the necessary differentiability
to use our EDMK scheme for the total variation minimization. The algorithmic
issue and numerical implementation will be presented in full detail in the follow-
ing subsection.
Let us consider as an illustrative example the simplified problem:

min
w ∈ H(E)

+

µ ∈ H(Y )
+

F (w) + Tkw
X
y∈Y

 
1

2

| ∇LGw|2y
µwy + δµw

+
1

2
µwy

!
, (1.5.42)

where F : H(E) → R is a sufficiently smooth map.
Observe that we are in the same situation as in (1.5.28). The only difference
is that we have a double positivity constraint so that in general we can not
directly compute a minimizer in the variable w(differently from (1.5.28) where
w is substituted by φ without the positivity constraint). Nevertheless, since we
have a double minimization problem, we can consider a double ”gradient descent”
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approach in the pair (µw, w).
With the same arguments as in (1.5.29), by composing with the change of variable
(µw(t) = |ξ(t)|2, w = |ε(t)|2) to enforce the positivity and then performing a pull-
back of the descending dynamics on the original variables (µw(t), w(t)), we get
the following descending dynamics(see Chapter 2 Sections 2.8, 2.11):

σwy(t) =
(∇LGw(t))y
µwy(t) + δµw

, ∀ y ∈ Y,

∂tµwy(t) = µwy(t)|σwy(t)|2 − µwy(t), ∀ y ∈ Y,

µwy(0) = µw0y > 0, ∀ y ∈ Y,

∂twe(t) = we(t) −∂weF (w(t))− Tkw(∆
LG

1
µw(t)+δµw

w(t))e , ∀ e ∈ E,

we(0) = w0e > 0, ∀ e ∈ E.

where:

∆LG
1

µw(t)+δµw

:= ∇T
LGDiag

1

µw(t) + δµw
∇LG, ∀ t ≥ 0. (1.5.43)

We propose the following semi-implicit Proximal Forward-Backward Splitting
scheme(see [13],[40] for an exhaustive treatment):

σw
k
y =

(∇LGw
k)y

µwky + δµw
, ∀ y ∈ Y

µw
k+1
y = µw

k
y +∆tk(µw

k
y) |σwky |2 − 1 , k = 0, . . . , kmax, y ∈ Y

µw
0
y = µw0y > 0, ∀ y ∈ Y

w̃ke = wke −∆tk [Diag(wk)]∂wF (w
k)

e
, ∀ e ∈ E

1 +∆tkTkw[Diag(wk)]∆LG
1

µwk+δµw

wk+1 = w̃k, k = 0, . . . , kmax, e ∈ E

w0
e = w0e > 0, ∀ e ∈ E.

With similar arguments one can also consider the following problem:

min
p
′ ∈ H(E)

ae ≤ p
′
e ≤ be, e ∈ E

µ ∈ H(Y )
+

F (p′) + Tkp′
X
y∈Y

 
1

2

| ∇LG p
′|2y

µp′y + δµp′
+

1

2
µp′y

!
, (1.5.44)

where again, F : H(E) → R is a sufficiently smooth map.
In this example we have an interval constraint on the variable p′ for any edge
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e ∈ E. This kind of constraint can be treated in a similar way to the positivity
constraint as in the previous example, composing with the flux generated by
a sigmoidal vector field and considering the Lie derivative along that flux or
equivalently by composing with the change of variable:

p′e(t) = ae + (be − ae) cos
2 εe(t)√

be − ae
, e ∈ E,

and then performing a pull-back of the descending dynamics on the original
variable p′. We refer to Chapter 2 Subsection 2.8.2 for full details on the heuristics
behind this techniques.
The positivity constraint for the density µp′ is treated as for (1.5.42) by composing
with the quadratic map µp′(t) = |ξ(t)|2.
Thus we have the following descending dynamics for (1.5.44):

σp′y(t) =
(∇LG p

′(t))y
µp′y(t) + δµp′

, ∀ y ∈ Y,

∂tµp′y(t) = µp′y(t)|σp′y(t)|
2 − µp′y(t), ∀ y ∈ Y,

µp′y(0) = µp′0y > 0, ∀ y ∈ Y,

∂tp
′
e(t) = be − p′e(t) p′e(t)− ae

 
−∂p′eF (p

′(t))− Tkp′(∆
LG

1
µp′ (t)+δµp′

p′(t))e

!
, ∀ e ∈ E,

p′e(0) = p′0e > 0, ae < p′0e < be, ∀ e ∈ E.

where as in (1.5.43):

∆LG
1

µp′ (t)+δµp′
:= ∇T

LGDiag

 
1

µp′(t) + δµp′

!
∇LG, ∀ t ≥ 0.

Defining the vectors a ∈ H(E) and b ∈ H(E) as:

ae = ae, ∀ e ∈ E,

and

be = be, ∀ e ∈ E,
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the corresponding semi-implicit Proximal Forward-Backward Splitting scheme
reads as follows:

σp′
k
y =

(∇LG p
′k)y

µp′ky + δµp′
, ∀ y ∈ Y

µp′
k+1
y = µp′

k
y +∆tk(µp′

k
y) |σp′ky |

2 − 1 , k = 0, . . . , kmax, y ∈ Y

µp′
0
y = µp′0y > 0, ∀ y ∈ Y

p̃′
k
e = p′

k
e −∆tk [Diag((b− p′k)⊙ (p′k − a))]∂p′F (p

′k)
e
, ∀ e ∈ E 

1 +∆tkTkp′ [Diag((b− p′k)⊙ (p′k − a))]∆LG
1

µp′
k+δµp′

!
p′k+1 = p̃′

k
, k = 0, . . . , kmax, e ∈ E

p′
0
e = p′0e, ae < p′0e < be, ∀ e ∈ E.

1.5.5 The Algorithm

In the Subsection 1.5.3 we have seen how to integrate our EDMK scheme for the
p-Poisson problem, after an opportune regularization, to the solution of the pri-
mal equations (1.5.5), which are necessary to be solved, along with the adjoints
equations (1.5.6) in order to compute the derivative of the Lagrangian in (1.5.4)
with respect to the design parameters (p′, w).
In Subsection 1.5.4 we have seen how to use our EDMK scheme for the Total Vari-
ation regularization which allows us to easily integrate the physical constraints
on our design parameters. Moreover, upon introducing another further small reg-
ularization parameter, we show how to transform a Total Variation regularized
minimization problem into a simplified and well approximated problem. We then
provide two illustrative examples in (1.5.42) and (1.5.44) which will be used in
the construction of our minimizing scheme for Problem (1).
We now give some insights on the main tools, providing also a summary of the
main results shown in the previous sections. The main idea is to construct a de-
scending dynamics scheme by using the EDMK scheme as the main tool to solve
the primal equations along with the Total Variation regularization. We then pro-
pose an ”all-in-one” descending scheme which is essentially based upon observing
that we can interlace the EDMK scheme to compute an approximated descending
iteration, given by not directly solving the primal equations, but rather updat-
ing in synchronization both the EDMK and a gradient descent for the variables
(p′, w).
We propose moreover to scale the variable w by a factor O(DL ) where L is the
length of the pipe and D the internal diameter as in the original momentum and
mass balance equations (1.3.1), (1.3.2). This is useful to make w independent
from the length of the pipe. So that, as in Section 1.3, we define the hogenization
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edge weight l ∈ H(E)+ as:

le :=
CeDe

Le
, ∀ e ∈ E

where C is the roughness coefficient.
We will consider the following extended variational problem:

min
[p′,w,µp′ ,µw]

min
[H(V ):,j ,Q(E):,j ]

max
[ϕj ,ψj ,ξj ]

Lδ,lTV (p
′, w, µp′ , µw, H(V ), Q(E),Φ,Ψ,Ξ, Tkp′ , Tkw, δq, δw, δµp′ , δµw),

s.t.

3.5 ≥ p′ ≥ 2.25,

w ≥ 0,

µp′ ≥ 0,

µw ≥ 0,

where the Lagrangian Lδ,lTV is essentially the same as in (1.5.41), with the only
difference that we introduce the homogenization weight l as a scaling factor for
w:

Lδ,lTV (p
′, w, µp′ , µw, H(V ), Q(E),Φ,Ψ,Ξ, Tkp′ , Tkw, δq, δw, δµp′ , δµw) :=

= L(p′, w ⊙ l,H(V ), Q(E),Φ,Ψ,Ξ, δq, δw)+

+Tkp′
X
y∈Y

 
1

2

| ∇LG p
′|2y

µp′y + δµp′
+

1

2
µp′y

!
+ Tkw

X
y∈Y

 
1

2

| ∇LGw|2y
µwy + δµw

+
1

2
µwy

!
,

(1.5.45)
where L is the original Lagrangian defined in (1.5.4) that we used for the com-
putation of the primal equations, the adjoints equations and consequently the
derivative with respect of the design parameters (p′, w).
Observe that in (1.5.45) we don’t scale the variable w in the regularization term.
This is due by the fact that indeed having scaled w in L, which determines the
constraint equations(or the physics of the WDS) is enough to make it ”indepen-
dent” from the length of the pipe. As a consequence, the regularization has to be
applied without the scaling factor in order to benefit from the homogenization.
The variable p′ is naturally a dimensionless variable, therefore it doesn’t need to
be scaled by the length.
We refer to (1) and Subsection 1.5.1 for the definition of the variables Q(E),
Q(ES), H(V ), H(B), F (VI), F (B), Φ, Ψ, Ξ which will be involved in what fol-
lows, while Tkp′ , Tkw are the positive regularization(Tikhonov) parameters for
the approximated Total Variation regularization and δq, δw, δµp′ , δµw are also
small strictly positive regularization parameters.
Let qj := Q(E):,j ∈ H(E), q̄j := Q(ES):,j ∈ H(ES), h

j := H(V ):,j ∈ H(V ),
h̄j := H(B):,j ∈ H(B), f j := F (VI):,j ∈ H(VI), f̄

j := F (B):,j ∈ H(B),
∀ j = 1, . . . ,M .
With the same arguments(we only have multiplied w by l) as in Subsection 1.5.1,
we have that the primal equations(or the p-Poisson constraint equations) are
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given by: 
(|qje|p

′
e−2 + δq)q

j
e = −(wele + δw)(∇hj)e, ∀ e ∈ E

−(∇T qj)v = f jv , ∀ v ∈ VI

hjv = h̄jv, ∀ v ∈ B,

(1.5.46)

while the adjoint equations(or the Lagrange multipliers equations) are given by:
((p′e − 1)|qje|p

′
e−2 + δq)ϕ

j
e + (∇ψj)e = qje − q̄je, ∀ e ∈ ES

((p′e − 1)|qje|p
′
e−2 + δq)ϕ

j
e + (∇ψj)e = 0, ∀ e ∈ EI

−(∇T (Diag(w ⊙ l) + δw1)ϕj)v = 0, ∀ v ∈ VI

ψjv = −f̄ jv − (qj · ν⃗)v, ∀ v ∈ B.

(1.5.47)

Again, with the same arguments as in Subsection 1.5.1 we have that, once the
solutions qj , hj , ϕj , ψj of the primal and adjoints equation are computed for any
sampling time j = 1, . . . ,m, the derivative of L with respect of (p′, w) are given
by:

d

dwe
L = ∂weL = −

MX
j=1

ϕjele(∇hj)e, ∀ e ∈ E,

d

dp′e
L = ∂p′eL = −

MX
j=1

ϕje log(|qje|)|qje|p
′
e−2qje, ∀ e ∈ E.

In subsection 1.5.2 we have introduced the intermediate variable

µj ∈ H(E)+, ∀ j = 1, . . . ,m,

µje := |qje|p
′
e−2, ∀ e ∈ E,

which has the important role to formally reduce the primal equation into a
weighted laplacian system.
Indeed, introducing the variable µj we have that equations (1.5.46) becomes:

(µje + δq)q
j
e = −(wele + δw)(∇hj)e, ∀ e ∈ E

−(∇T qj)v = f jv , ∀ v ∈ VI

hjv = h̄jv, ∀ v ∈ B.

Since

(µje + δq) > 0, ∀ e ∈ E,

we have that formally:

qje = −wele + δw
µe + δq

(∇hj)e, ∀ e ∈ E,
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so that (1.5.46) is equivalent to the following(still non-linear) weighted laplacian
system:  ∇T Diag

w ⊙ l + δw
µj + δq

∇hj

v

= f jv , ∀ v ∈ VI

hjv = h̄jv, ∀ v ∈ B.

Moreover, if we introduce the variable q̃j such that:(
q̃je = qje − q̄je, ∀ e ∈ ES

q̃je = 0, ∀ e ∈ EI ,

then, from the first two equations in (1.5.47), we have that:

ϕje = − (∇ψj)e

(p′e − 1)µje + δq
+

q̃je

(p′e − 1)µje + δq
,

Thus, the system of adjoint equations (1.5.47) is equivalent as well to the following
weighted laplacian system in the variable ψj :(∇T Diag

w ⊙ l + δw
(p′ − 1)µj + δq

∇ψj)v = (∇T Diag
w ⊙ l + δw

(p′ − 1)µj + δq
q̃j)v, ∀ v ∈ VI

ψjv = −f̄ jv − (qj · ν⃗)v, ∀ v ∈ B.

(1.5.48)
The variable µj also appears in the derivative of L with respect to p′. Indeed
from (1.5.8) we have:

d

dp′e
L = −

MX
j=1

ϕje log(|qje|)|qje|p
′
e−2qje = −

MX
j=1

ϕje log(|qje|)qjeµje, ∀ e ∈ E.

It is clear that the variable µj plays the fundamental role to simplify all the com-
putations. It naturally appears in the primal equations, in the adjoint equations
and in the computation of the gradient for the variable p′. Moreover, in Subsec-
tion 1.5.3 we have presented an EDMK based ”Gradient Flow” like approach to
the solution of the primal equations which naturally involves the variable µj as
an iterative linear solver, once opportunely time discretized.
The strategy is therefore to perform an ”all-in-one” descending dynamics. This
is reasonable to think as a kind of Picard iteration.
Thus, the descending algorithm will be initialized with an initial distribution
of exponents p′0 ∈ H(E), 2.25 < p′0 < 3.5, an initial distribution of weights

w0 ∈ H(E)+ and the derived primal and adjoint solutions qj
0
, hj

0
, ϕj

0
, ψj

0
com-

puted solving the non-linear equations (1.5.46), (1.5.47) with the given initial
distributions (p′0, w0) and our EDMK scheme.
Once initialized, the algorithm will follows a pseudo-descent dynamics, where
instead of solving at every iteration the non-linear primal-adjoint equations for
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the computation of the derivative of the extended regularized Lagrangian LδTV ,
we will rather perform one integration step of the dynamics given by the EDMK
scheme for the primal equations in (1.5.35):

qje(t) = −(wele + δw)(∇hj(t))e
µje(t) + δq

, ∀ e ∈ E

(∆ w⊙l+δw
µj(t)+δq

hj(t))v = f jv , ∀ v ∈ VI

hj(t)v = h̄jv ∀ v ∈ B

∂tµ
j
e(t) = µje(t)

4−3pe
2−pe |qje(t)|2 − µje(t), µje(0) = µj0e > 0, ∀ e ∈ E,

(1.5.49)

where the initial value for µj , for any j = 1, . . . ,M in (1.5.49), is set to be equal
to:

µj0e = |qj0e|p
′
e−2, ∀ e ∈ E

and qj
0
is the flux solution of the primal equations given by the initial distribu-

tions (p′0, w0).
This type of pseudo-gradient descent method has some reminiscents of the one
introduced in [140].
If the Explicit Euler time discretization is used for (1.5.49) we have the following
iterative scheme for the solution of the primal equations:

(∆w⊙l+δw

µj
k
+δq

hj
k
)v = 0, ∀ v ∈ VI

hj
k
= h̄jv, ∀ v ∈ B

qj
k
e =

(wele + δw)(∇hj
k
)e

µjk + δq
, ∀ e ∈ E

µj
k+1
e = µj

k
e +∆tk (µj

k
e)

4−3pe
2−pe |qjke |2 − µj

k
e , k = 0, . . . , kmax, e ∈ E

µj
0
e = µj0e > 0, ∀ e ∈ E.

(1.5.50)
Thus, instead to compute a full solution of the primal equations which corre-
sponds to a steady state for (1.5.49), in the case where the explicit time dis-
cretization in (1.5.50) is used, we only need to solve for a weighted laplacian

system to compute the new approximated density µj
k+1

.
With the same arguments, once the solution of the linear adjoint equations

(1.5.48) given by the previous approximated density µj
k
is computed, we can also

compute an approximated descent direction(gradient) for the variables (p′, w).
In this way we have all the ingredients for an iterative(approximated) gradient
descent approach to the computation of the minimizing weights and exponents
distribution.
The reason behind this choice, a part from the numerical benefit to solve for a lin-
ear system instead of a non-linear equation, is essentially motivated by the fact
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that the dynamics in (1.5.49) admits the strictly convex Lyapunov functional
Lw,pδw,δq

defined in (1.5.34), hence the updating scheme converges to a solution

independently from the initial guess(starting point). As a consequence, we are
expecting that an iterative algorithm constructed in such a manner, will converge
to a solution if a sufficiently small initial time step is provided. Thus, initially
we still get a reasonably good approximation of the p-Poisson equation and the
approximated descent direction is not affected so much by the error derived by
not solving well the primal equations.
Once the minimization process starts to be near to a local minima, intuitively
the changing velocity of the approximated candidate minimizer at iteration k,
(p′k, wk), will slow down and the dynamics given by the EDMK scheme will
synchronizes as well, converging to a good approximated solution of the primal
equations.
For what concern the Total Variation regularization, observe that we are in the
same situation of examples (1.5.42), (1.5.44). Summing up all together, the al-
gorithm is composed by two parts:

• Initialization: Given an initial distribution of exponents and weights such
that 2.25 < p′0e < 3.5, w0e ≥ 0, ∀ e ∈ E, we compute a well approximated

solution (qj
0
, hj

0
), of the primal equations (1.5.46) with the EDMK scheme

(1.5.50) and a solution (ϕj
0
, ψj

0
) of the adjoint equations (1.5.47), relative

to the initial distribution (p′0, w0), for any j = 1, . . . ,M .
A practical method to select an initial distribution of parameters is to fix
the initial exponent

p′0e = 2.8524, ∀ e ∈ E,

as a good empirical guess given by the Hazen-Williams formula(see [1]),
and to fix a value w̃0 > 0 such that:

w0e := w̃0, ∀ e ∈ E, (1.5.51)

where the parameter w̃0 is computed by performing a dichotomic search un-
til we find the value which reasonable minimizes the relative error between
the sampled boundary demand f̃ jv and the initial Dirichlet-to-Neumann
map −(qj0 · ν⃗)v, for any v ∈ B.
We observed experimentally that it is not important the precise value of
w̃0 > 0 but rather the order of magnitude.
Since Problem (1) is not convex, we point out that this initialization process
is of fundamental importance for the performances and the stability of the
algorithm.
Other two fundamental parameters to be carefully setted are the regular-
ization parameters (Tkw, Tkp′). There are various techniques in order to
proper determine the regularization parameters. For the interested reader
we refer to [14, 26, 30, 69].



1.5. THE MODEL CALIBRATION 57

• Minimizing flow: The full descending ”all-in-one” scheme reads as an
opportune time discretization of the following dynamics:

(1.5.52)

primal

∀ j = 1, . . . ,M,

qje(t) = −(wele + δw)(∇hj(t))e
µje(t) + δq

, ∀ e ∈ E

∇T Diag
w(t)⊙ l + δw
µj(t) + δq

∇hj(t)
v

= f jv , ∀ v ∈ VI

hj(t)v = h̄jv ∀ v ∈ B

∂tµ
j
e(t) = µje(t)

4−3pe(t)
2−pe(t) |qje(t)|2 − µje(t), ∀ e ∈ E

µje(0) = µj0e > 0, ∀ e ∈ E

adjoint

∀ j = 1, . . . ,M,

q̃je(t) = qje(t)− q̄je, ∀ e ∈ ES

q̃je(t) = 0, ∀ e ∈ EI

ϕje(t) = − (∇ψj(t))e

(p′e(t)− 1)µje(t) + δq
+

q̃je(t)

(p′e(t)− 1)µje(t) + δq
, ∀ e ∈ E

(∇T Diag
w(t)⊙ l + δw

(p′(t)− 1)µj(t) + δq
∇ψj(t))v =

=(∇T Diag
w(t)⊙ l + δw

(p′(t)− 1)µj(t) + δq
q̃j(t))v

, ∀ v ∈ VI

ψjv(t) = −f̄ jv − (qj(t) · ν⃗)v, ∀ v ∈ B

w: descent + TVδ

σwy(t) =
(∇LGw(t))y
µwy(t) + δµw

, ∀ y ∈ Y

∂tµwy(t) = µwy(t)|σwy(t)|2 − µwy(t), ∀ y ∈ Y

µwy(0) = µw0y > 0, ∀ y ∈ Y
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∂twe(t) = we(t)

 MX
j=1

ϕje(t)le(∇hj(t))e − Tkw(∆
LG

1
µw(t)+δµw

w(t))e

 , ∀ e ∈ E

we(0) = w0e > 0, ∀ e ∈ E

p’: descent + TVδ

σp′y(t) =
(∇LG p

′(t))y
µp′y(t) + δµp′

, ∀ y ∈ Y,

∂tµp′y(t) = µp′y(t)|σp′y(t)|
2 − µp′y(t), ∀ y ∈ Y,

µp′y(0) = µp′0y > 0, ∀ y ∈ Y,

∂tp
′
e(t) = 3.5− p′e(t) p′e(t)− 2.5

 MX
j=1

ϕje(t) log(|qje(t)|)qje(t)µje(t)+

−Tkp′(∆LG
1

µp′ (t)+δµp′
p′(t))e

! , ∀ e ∈ E,

p′e(0) = p′0e > 0, ae < p′0e < be, ∀ e ∈ E.

We propose the following semi implicit time discretization for (1.5.52), which is
essentially the union of the schemes in (1.5.50) and examples (1.5.42), (1.5.44).
Thus given a sequence of time steps ∆tk, k = 0, . . . , kmax, the approximated

sequence of solutions (p′k, wk, µw
k, µp′

k, µj
k
, qj

k
, hj

k
, ϕj

k
, ψj

k
), is computed with

the following recurrent scheme:

(1.5.53)

primal

∀ j = 1, . . . ,M,

qj
k
e =

(wke le + δw)(∇hj
k
)e

µjk + δq
, ∀ e ∈ E

 
∇T Diag

 
wk ⊙ l + δw

µjk + δq

!
∇hj

k

!
v

= 0, ∀ v ∈ VI

hj
k
= h̄jv, ∀ v ∈ B

µj
k+1
e = µj

k
e +∆tk

 
(µj

k
e)

4−3pke
2−pke |qjke |2 − µj

k
e

!
, ∀ e ∈ E
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µj
0
e = µj0e > 0, ∀ e ∈ E

adjoint

∀ j = 1, . . . ,M,

q̃je
k
= qje

k − q̄je, ∀ e ∈ ES

q̃je
k
= 0, ∀ e ∈ EI

ϕje
k
= − (∇ψj

k
)e

(p′e
k − 1)µje

k
+ δq

+
q̃je
k

(p′e
k − 1)µje

k
+ δq

, ∀ e ∈ E

(∇T Diag

 
wk ⊙ l + δw

(p′k − 1)µjk + δq

!
∇ψj

k
)v =

= (∇T Diag

 
wk ⊙ l + δw

(p′k − 1)µjk + δq

!
q̃j
k
)v

, ∀ v ∈ VI

ψjv
k
= −f̄ jv − (qj

k · ν⃗)v, ∀ v ∈ B

w: descent + TVδ

σw
k
y =

(∇LGw
k)y

µwky + δµw
, ∀ y ∈ Y

µw
k+1
y = µw

k
y +∆tk(µw

k
y) |σwky |2 − 1 , ∀ y ∈ Y

µw
0
y = µw0y > 0, ∀ y ∈ Y

bw
k
e = wke +∆tk([Diag(wk)]

MX
j=1

ϕj
k ⊙ l ⊙∇hj

k
)e, ∀ e ∈ E

1 +∆tkTkw[Diag(wk)]∆LG
1

µwk+δµw

wk+1 = bw
k, ∀ e ∈ E

w0
e = w0e > 0, ∀ e ∈ E

p’: descent + TVδ

σp′
k
y =

(∇LG p
′k)y

µp′ky + δµp′
, ∀ y ∈ Y

µp′
k+1
y = µp′

k
y +∆tk(µp′

k
y) |σp′ky |

2 − 1 , ∀ y ∈ Y

µp′
0
y = µp′0y > 0, ∀ y ∈ Y
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bp′
k
e = p′

k
e+

−∆tk

hDiag((3.5− p′k)⊙ (p′k − 2.25))
i MX
j=1

ϕj
k ⊙ log(|qjk|)⊙ qj

k ⊙ µj
k


e

, ∀ e ∈ E

 
1 +∆tkTkp′ [Diag((3.5− p′k)⊙ (p′k − 2.25))]∆LG

1

µp′
k+δµp′

!
p′k+1 = bp′

k, ∀ e ∈ E

p′
0
e = p′0e, ∀ e ∈ E

2.25 < p′0e < 3.5, ∀ e ∈ E.

A stopping criteria must be chosen to terminate the algorithm. In our numerical
examples we will use the relative error stopping criteria. Indeed, when the Ini-
tialization process is done, we choose a stopping tolerance ε and let evolve the
iterative scheme in (1.5.53) until:

max

(
∥µjk+1 − µj

k∥l2
∆tk∥µjk∥l2

,
∥µk+1

w − µkw∥l2
∆tk∥µkw∥l2

,
∥wk+1 − wk∥l2
∆tk∥wk∥l2

,
∥µk+1

p′ − µkp′∥l2
∆tk∥µkp′∥l2

,
∥p′k+1 − p′k∥l2
∆tk∥p′k∥l2

)
< ε.

(1.5.54)
We point out that other far more performing numerical schemes can be developed
for the time discretization of the flow in (1.5.52), for example the Nesterov/Beck
and Teboulle’s acceleration [13] and the Implicit Euler scheme. This will be surely
a matter of future development. Nevertheless, good results can also be obtained
with the proposed scheme(which is quite simple to implement), once a sufficiently
small initial time step is provided. For example a good empirical time stepping
method is the following:

0 < ∆t0 << 1,

0 < α << 1,

∆tk+1 = (1 + α)∆tk, k = 0, . . . , kmax,

if ∆tk+1 > ∆max then ∆tk+1 = ∆max,

where the parameters (α,∆t0,∆max) have to be carefully selected to avoid insta-
bilities and possibly the failure of the convergence.

1.6 Numerical experiments

We conclude this chapter with some numerical experiments on a synthetic EPANET
WDS which corresponds to the digitalization of a real world test case. In partic-
ular, the test case is given by a portion of the WDS which supplies the area near
the city of Treviso, in North-East Italy. The model is composed by 204 nodes
and 214 edges and it is depicted in Figure (1.4). All pipes in the network are
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Figure 1.4: Test case WDS on the street map. The blue marker on the left
highlights the tank position.

constructed using diverse materials such as steel, cast iron, concrete, or plastic
and have varying diameters. The entire network is supplied by a single tank sit-
uated in the center left position (as identified by the blue marker in Figure 1.4).
An EPANET model is used, which has a demand distribution that is calibrated
by previous measurements to accurately reproduce the user’s daily consumption.

In our numerical experiments, we optimize the network with only one sampling
measurement (M = 1). This is ultimately done for the purpose of achieving clear
numerical results. When both parameters (p′, w) are used in the minimization,
using a single measurement may result in several local minimizers as there are
many degrees of freedom. As such, we will present two separate results obtained
through varying sampling strategies while keeping the exponent fixed and equal
to

p′e = 2.8524, ∀ e ∈ E,

as a good empirical found value(Hazen-Williams formula). Then we will present
a third test case that is identical to the first one, where we also optimize the
parameter p′. In all three tests, we calculate the optimal w using the method de-
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scribed in equations (1.5.53). Despite having only one measurement, we observe
the beneficial impact of TV regularization in selecting a locally constant distri-
bution of weights (and exponents in the third test) that can accurately replicate
the missing heads and fluxes data. Additionally, it is evident that the weight
distribution remains consistent across all three test cases when utilizing various
sampling strategies. As a result, it can be suggested that the TV regularization
approach selects ”good local minima”.

• Test case 1. house service meters bad scenario:
In this test case we consider an house service meters bad scenario where the
demand on the sampling nodes is very small, in average 1 liter per minute.
We suppose to have at disposal a single time measurement M = 1, and
to get available data only on the external nodes of the WDS, i.e. on the
37 leaves of the graphs and on the source node, which is the only tank.
Thus the boundary nodes B are composed by the leaves of the graph where
we know as collected data the sampling demand and the piezometric head.
No flux data are considered and no information is given on the internal
nodes except for the calibrated user demand distribution. The initialization
process is carried out by setting an initial fixed weight

w̃0 = 1e− 2,

as in (1.5.51).
We then set a fixed time step

∆tk = 1e− 1, k = 0, . . . , kmax,

and the regularization parameters δ

δq = δw = δµw = 1e− 8.

We empirically find that a good compromise is to set the TV regularization
parameter to

Tkw = 1e− 5.

Since we fix the exponent p′ we don’t need the regularization parameters
δµp′ and Tkp′ .

Finally we set a stopping tolerance ε = 1e−6 for the relative error stopping
criteria in Equation (1.5.54).

Surprisingly, even if the time measurement is only one and we don’t have
any internal node data, the Total Variation regularization works very well,
choosing a suitable w that can reproduce the missing measurements quite
well. As expected, since the demand data is proximal to be irrelevant,
most of the error is committed in reproducing the internal fluxes, which
are proximal to be zero, and nothing is known to synchronize the model on
these edges.
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In Figure 1.5 we can see the optimal weights distribution computed with
our EDMK based scheme (1.5.53), where it is evident the regularizing (BV
clustering) effect induced by the TV regularization. In Figures 1.6 and
1.7 we can see the comparison between the piezometric heads and fluxes
computed with EPANET, considered the ”real” reference values, and the
simulated or reconstructed ones computed with our scheme for the given
resulting optimal weight.

• Test case 2. Divergence kernel avoiding scenario:

In this test case we consider the same demand distribution and sampling
data as in Test case 1, with the same single time measurement M = 1. The
difference is the sampling strategy. In this case we assume that we have the
demand, the piezometric head, and the fluxes incident on the source node
(the tank) and on each node with a topological degree greater than 2. As
a result, the boundary sampling set B is composed of 54 nodes. As already
observed in Subsection 1.5.2, this sampling strategy is optimal in the sense
that it avoids in principle the lack of information on the loops of the graph
(which corresponds to the kernel of the divergence matrix), thus inducing
the optimality condition (1.5.15) to be satisfied. The initialization process
is carried out as in Test case 1, with the same initial value distribution
for the weight w, the same time step, the same regularization parameters
”δ”, Tkw and the same stopping tolerance ε = 1e− 6 for the relative error
stopping criteria in (1.5.54).

It is worth noting that we have more data in this test case. As a result,
we have a much better reconstruction of the fluxes at the internal edges.
In Figure 1.8 we can see the optimal weights distribution computed with
our EDMK based scheme (1.5.53), where also in this case we can see the
regularization effect induced by the TV regularization. In Figures 1.9, 1.10
we can see the comparison between the ”real” piezometric heads and fluxes
computed with EPANET and the simulated or reconstructed ones computed
with our scheme for the given resulting optimal weight. In Figure 1.11 we
can see the comparison between the optimal weights distribution for Test
case 1 and Test case 2. We can also see the coherent increasing localization
of the optimal weight given by Test case 2, where more data is available for
solving the inverse problem.

• Test case 3. Test case 1+ p′:

In this test case we consider the same exactly scenario and data of Test
case 1, with the difference that we optimize also in the parameter p′. The
initialization process is carried out exactly as in Test case 1, with the same
time step, ”δ” regularization parameters, initial weights distribution and
initial exponents distribution, set as the fixed p′ as in Test case 1, i.e.:

p′0e = 2.8524, ∀ e ∈ E.
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(a)

(b)

Figure 1.5: Test case 1, (a): optimal weight vs edge index (b) optimal weight
distribution on the graph
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(a)

(b)

Figure 1.6: Test case 1, (a): real (EPANET) piezometric head(green) VS simu-
lated piezometric head (red) (b) real (EPANET) flux(green) VS simulated flux
(red)
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(a)

(b)

Figure 1.7: Test case 1, (a): real(EPANET) heads[m] and fluxes[m3/s] in absolute
value VS (b): simulated(reconstruction) heads[m] and fluxes[m3/s] in absolute
value



1.6. NUMERICAL EXPERIMENTS 67

(a)

(b)

Figure 1.8: Test case 2, (a): optimal weight vs edge index (b) optimal weight
distribution on the graph
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(a)

(b)

Figure 1.9: Test case 2, (a): real(EPANET) piezometric head(green) VS simu-
lated piezometric head(red)
(b) real(EPANET) flux(green) VS simulated flux(red)
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(a)

(b)

Figure 1.10: Test case 2, (a): real (EPANET) heads[m] and fluxes[m3/s] in
absolute value VS (b): simulated (reconstruction) heads[m] and fluxes [m3/s] in
absolute value
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Figure 1.11: optimal weights distribution for Test case 1(red) vs Test case
2(green)
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In order to make the optimization in the further parameter p′ effective, we
relaxed a bit the Tikhonov regularization parameters and we set

Tkw = 5e− 6,

and
Tkp′ = 5e− 6.

This is necessary to ensure that the parameter p′ can evolve far enough
from the initial distribution p′0 to achieve effective evolution, although the
latter already provides a good approximation.

Finally we set a stopping tolerance ε = 1e−6 for the relative error stopping
criteria in (1.5.54). Surprisingly, even with just one time measurement, we
can accurately compute both the exponent and weight distributions, which
reflect a spatial distribution similar to that of Test case 1. Additionally, the
approximations of the missing internal fluxes are slightly better compared to
Test case 1. With such limited data, it is not feasible to expect a significant
increase in precision with the moving parameter p′.

In Figure 1.12 we can see the optimal weights distribution computed with
our EDMK based scheme (1.5.53). The most remarkable difference with
respect to Test case 1, is that this new computed optimal weights distri-
bution exhibits a ”peak” in the center, which corresponds to the edge with
the smallest flux of the entire WDS. This result is notable, given that the
edge in question is internal and there was no data on sampled heads and
fluxes in its immediate proximal vicinity. In Figure 1.13 we can see the
computed optimal exponents distribution. It is evident that the magnitude
differences between the optimal weights of Test case 1 and Test case 3 are
compensated by the distribution of the exponents p′, which is ”synchro-
nized” with the distribution of the weights. In Figures 1.14 and 1.15 we
can see the comparison between the ”real” piezometric heads and fluxes
computed with EPANET and the simulated or reconstructed ones com-
puted with our scheme for the given resulting optimal weight and optimal
exponent. Additionally, Figure 1.14 displays a comparison of the actual
flux, the simulated flux in Test case 1, and the simulated flux in Test case
3. Figure 1.16 presents a comparison of the optimal weights for each test
case. Additionally, Figure 1.17 depicts the spatial distribution of absolute
errors (in both edges and nodes) between simulated and real fluxes (edges)
as well as simulated and real heads (nodes) for each test case.
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(a)

(b)

Figure 1.12: Test case 3, (a): optimal weight vs edge index (b) optimal weight
distribution on the graph
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(a)

(b)

Figure 1.13: Test case 3, (a): optimal exponents vs edge index (b) optimal expo-
nents distribution on the graph



74 CHAPTER 1. WDS AND THE GRAPH p-LAPLACE OPERATOR

(a)

(b)

(c)

Figure 1.14: Test case 3, (a): real (EPANET) piezometric head(green) VS simu-
lated piezometric head(red)
(b) real(EPANET) flux (green) VS simulated flux (red)
(c) real(EPANET) flux (green) VS Test case 1 simulated flux(red) VS Test case
3 simulated flux(blue)
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(a)

(b)

Figure 1.15: Test case 3, (a): real(EPANET) heads[m] and fluxes[m3/s] in abso-
lute value VS (b): simulated(reconstruction) heads[m] and fluxes[m3/s] in abso-
lute value
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Figure 1.16: optimal weights distribution for Test case 1 (red) vs Test case 2
(green) vs Test case 3 (blue)
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(a)

(b)

(c)

Figure 1.17: Test case 1 (a), Test case 2 (b), Test case 3 (c): absolute value
error between real (EPANET) heads and simulated(reconstruction) heads on
the nodes[m] and absolute value error between real (EPANET) fluxes and simu-
lated(reconstruction) fluxes on the edges [m3/s]
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2 A duality based DMK approach
to the Total Variation Energy,
extensions and applications

2.1 Introduction

In this Chapter we discuss how to properly rewrite a convex energy functional
into an equivalent saddle point formulation, to tackle the problem of finding it’s
minimizers from an alternative and more performing perspective.
We extensively study the case of the p-Dirichlet energy for 1 < p < 2, and of
the Total Variation energy as limit case for p→ 1, including it’s application as a
regularization term in various type of inverse problems.
These saddle points formulations are obtained by duality techniques carried out
in two different frameworks: on directed graphs(or on Rm=#edges), and on a Lip-
schitz bounded domain of Rn.
There are various reasons that suggest to transform a minimization problem into
a saddle point problem. The most attracting feature of saddle point formulations
is that the higher degree of freedom can be used to enforce qualitative features of
the solution, even at a finite stage of discretization/approximation. This is the
case of the mixed FEM formulation of divergence form elliptic PDEs introduced
in [43], where the natural Hdiv regularity of the flux (i.e., the argument of the
divergence operator) is explicitly enforced in the discretization space. This regu-
larity property has a major importance in certain applications such as, e.g., when
the PDE is coupled with a transport equation driven by the flux itself. Indeed, a
discretization of the elliptic PDE not preserving at any finite stage such regularity
property would lead to the presence of numerical sources and sinks in the coupled
transport problem: the overall numerical scheme would become unstable.

In other cases, the second variable is introduced in the formulation of the problem
because of its physical relevance, or even because it is the real quantity of interest
in the particular application of the model. This is the case, for example, of linear
elasticity mixed model [4, 43] , where the introduction of the stress tensor as a
state variable may be used for the practical scope of checking the mechanical
admissibility of the stress for a given material.

In other cases there are two natural independent variables and so, the mixed

79
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formulation is the natural one. This is the case of the Stokes equations, where
the two variables are the velocity and the pressure.
Another example of the advantage of transforming a minimization problem into a
saddle point problem, is the case of non-linear inequality constraints optimization
problems. This kind of non-linear inequality constraints are very difficult to han-
dle, but, introducing an opportune positive Lagrange multiplier (see [46] p. 64
for full details), the initial minimization problem is transformed in a saddle point
problem. The advantage here is given by considering the dual problem obtained
by interchanging ”inf” with ”sup” that allows to transform the initial non-linear
inequality constraint into a positivity constraint, which is easier to handle. This
will be one of the reasons why we will introduce a saddle point formulation for
the total variation energy, as observed in Remark 2.3.9.
Saddle points reformulations for convex minimization problems arise not only
from Lagrange multipliers but also directly from iterating the Legendre trans-
form, which is the classical method of duality based on Lagrangians introduced
in [46], Chapter VI, Section 4.
All this techniques are at the basis of a large class of numerical algorithms for
convex optimization problems. Among them, methods based on Lagrange multi-
pliers and saddle points formulations are the well known augmented lagrangian
approaches [33], [13] and the split Bregman iteration method [104], [142], [106],
[64]. Another class of algorithms is the one based on Legendre duality, often re-
ferred to as the primal-dual algorithms or the Chambolle–Pock algorithms, which
are mainly used for non differentiable problems such as the total variation de-
noising in image and signal processing [146], [49], [32], [71] and recently also for
Reimannian manifolds optimization [15] and applications to deep learning and
reinforcement learning [102], [111], [103].
Our interest for a saddle point reformulation of the p-Dirichlet energy and the
Total Variation energy, is motivated also by a perhaps less noble justification,
which is in turn extremely effective from a practical perspective. Indeed, the
obtained saddle point problems closely resemble the one of the L1 optimal trans-
port [59]. As a matter of fact, this observation enables the use the techniques
originally developed in the context of L1 optimal transport, possibly after some
required adaptations.

The derivation of these saddle point formulations is essentially based on the itera-
tion of the Legendre transform combined with ad-hoc substitutions and transfor-
mations of the involved variables. Indeed, this is a classical technique in convex
optimization theory extensively treated in, e.g., [46], and widely used in the vari-
ational formulation of partial differential equations, see e.g., [43].
Due to the centrality of this technique in what follows, we wish to provide here
the most commonly encountered instance of this procedure. Consider a reflexive
Banach space (V, ∥ · ∥V ) and let (V ∗, ∥ · ∥V ∗) it’s dual space. Let < ·, · >V×V ∗

the duality pairing between V and V ∗. Let G : V → R be a convex and proper
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function, then we define the Legendre transform G∗ : V ∗ → R as

G∗ (φ∗) := sup
φ∈V

⟨φ,φ∗⟩V×V ∗ −G(φ).

It is a standard fact that in such a setting we can recover G by iterating the
Legendre transform:

G(φ) = G∗∗(φ) = sup
φ∗∈V ∗

⟨φ∗, φ⟩V ∗×V −G∗ (φ∗) .

Consider now a problem of the form

inf
φ∈V

F (φ) +G(φ), (2.1.1)

where F : V → R and G : V → R are proper, convex and lower semi-continuous
functions. We can use the Legendre transform to rewrite it as follows:

inf
φ∈V

(
F (φ) + sup

φ∗∈V ∗
⟨φ∗, φ⟩V ∗×V −G∗ (φ∗)

)
,

which is precisely the saddle-point problem:

inf
φ∈V

sup
φ∗∈V ∗

F (φ) + ⟨φ∗, φ⟩V ∗×V −G∗ (φ∗) . (P)

We may also consider the dual problem:

sup
φ∗∈V ∗

inf
φ∈V

F (φ) + ⟨φ∗, φ⟩V ∗×V −G∗ (φ∗) . (P∗)

and, possibly under some further regularity assumptions, try to show that the
solution of (P∗) is indeed a solution of (P).
Another commonly encountered problem is the following:

inf
φ∈V

F(φ) + G(∇φ), (2.1.2)

where ∇ : V → E is a linear continuous operator between Banach spaces and
G : E → R, F : V → R are again proper, convex and lower semi-continuous
functions. Also in this case, letting < ·, · >E∗×E be the duality pairing between
E and E∗, we can use the Legendre transform to rewrite it as follows:

inf
φ∈V

F(φ) + sup
σ∈E∗

⟨σ,∇φ⟩E∗×E − G∗ (σ) ,

which is called the Fenchel primal-dual saddle point formulation:

inf
φ∈V

sup
σ∈V ∗

F(φ) + ⟨σ,∇φ⟩E∗×E − G∗ (σ) .
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The dual problem, given by exchanging ”inf” with ”sup”, is the famous Fenchel-
Rockafellar duality formula:

sup
σ∈V ∗

inf
φ∈V

F(φ) + ⟨σ,∇φ⟩E∗×E − G∗ (σ) =

= sup
σ∈V ∗

−F∗(−∇T σ)− G∗ (σ) .

If V is a reflexive Banach space, the equivalence between problem (P) and (P∗)
is ultimately related to the existence of a saddle point. On the contrary, if the
reflexivity assumption is removed, the equivalence of (P) with (P∗) may be dras-
tically harder to be proven, or even not hold. This is the case for instance of the
space of functions of bounded variation (BV, for short). Note that, despite the
lack of reflexivity, BV functions play a pivotal role in many optimization problems
and come in to the play rather naturally in certain inverse problems where the
total variation is used as regularization term [26], [33], [64], [104], [115]. Various
problems arise when dealing with BV functions rather than Sobolev functions.
For instance, the characterization of the dual of the space of BV functions is still
an open problem, with obvious difficulties arising when trying to perform the
Gateaux differentiation or the Legendre transform of functionals defined on BV
spaces. Indeed, fine techniques has been developed to generalize the standard
objects and tools of classical functional analysis such as for example general-
ized differential operators, integration by parts formulas and traces operators.
This ultimately ends up with the connection between Radon measures and BV
functions, which is essentially based on the Riesz-Representation Theorem (Struc-
ture Theorem of BV functions, Anzellotti pairings, traces theorems, Dirichlet-to-
Neumann maps etc., see [17], [34], [52], [70] for details). In order to overcome
these problems, we will use a different strategy, which essentially relies upon the
interconnection of the space of BV functions with the positive Radon measures.
The main idea behind this approach comes directly from iterating the Legendre
transform and using a sligtly different approah to the one used for problem (2.1.1)
and problem (2.1.2). As an illustrative example of our proposed techniques, let
V := Rn, E := Rm, E∗ := E, and, with abuse of notation, let ∇ : V → E be a
linear operator. For a given φ ∈ V , φi < ∞, i = 1, ..., n, let h : R → R+ be a
positive, lower semi-continuous, convex and even function and f ∈ V a forcing
or loading term.
Consider the following type of energy:

E(φ) :=
mX
i=1

h((∇φ)i)− f · φ.

The function h can be in principle not differentiable, nevertheless, as for the
Fenchel-Rockafellar duality formula (2.1.2), we can always compute the Legendre
transform:

h∗(x∗) = sup
x∈R

x∗x− h(x),
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Is easy to see([46] p.62) that the Legendre transform for a function Γ : E → R
of the type Γ(y) =

Pm
i=1 γ(yi), γ : R → R, is exactly the sum of the Legendre

transforms for any single addendum, i.e. Γ∗(y∗) =
Pm

i=1 γ
∗(y∗i ).

Hence we have:

E(φ) =
mX
i=1

h∗∗((∇φ)i)− f · φ =
mX
i=1

sup
σi∈R

σi(∇φ)i − h∗(σi)− f · φ =

= sup
σ∈E

σ · ∇φ−
mX
i=1

h∗(σi)− f · φ. (2.1.3)

Since h is even, it is a known fact, see [87], that also h∗ is even. Let us suppose
that there exists a convex, lower semi-continuous function H : R → R such that:

h∗(x∗) =
1

2
H(|x∗|2), ∀x∗ ∈ R,

thus setting
1

2
H(·) = h∗ ◦

p
| · |,

we have that H is even, H∗ is even and hence there exists a function g : R → R
such that:

H∗(·) = g ◦ | · |.

Iterating again the Legendre transform we get:

H(|x∗|2) = H∗∗(|x∗|2) = supµ∈R µ|x∗|2 −H∗(µ) =

= supµ∈R µ|x∗|2 − g(|µ|) = (g ◦ | · |)∗(|x∗|2).

Observe now that, for any function g : R → R and ∀ y ≥ 0 we have that:

(g ◦ | · |)∗(y) = sup
µ≥0

µy − g(µ),

since:

sup
µ≥0

µy − g(µ) = sup
µ≥0

µy − g(|µ|) ≤ (g ◦ | · |)∗(y) ≤

(y≥0)

≤ sup
µ

|µ|y − g(|µ|) = sup
µ≥0

µy − g(µ).

Summing up all together, we have:

−
mX
i=1

h∗(σi) = −1

2

mX
i=1

H(|σi|2),
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and

−
mX
i=1

h∗(σi) = −
mX
i=1

sup
µi≥0

1

2
µi|σi|2 −

1

2
g(µi) =

= inf
µ∈E+

mX
i=1

−1

2
µi|σi|2 +

1

2
g(µi). (2.1.4)

Therefore, defining the Lagrangian LEφ : (E+ × E) → R as

LEφ(µ, σ) := −1

2

mX
i=1

µi|σi|2 + σ · ∇φ+
1

2

mX
i=1

g(µi),

from (2.1.3) and (2.1.4), we have that the original energy E(φ) is equivalent to
the following saddle point problem:

E(φ) = sup
σ∈E

inf
µ∈E+

LEφ(µ, σ)− f · φ, ∀φ ∈ V. (2.1.5)

If g is proper, convex and lower semi-continuous function, the saddle point prob-
lem in (2.1.5) is well defined.
Moreover, under some further regularity(coercivity) assumptions it is possible
to show that the Lagrangian LEφ admits at least a saddle point (µ∗, σ∗), for any
φ ∈ V (see Section 2.6). The existence of a saddle point implies also that the dual
problem:

inf
µ∈E+

sup
σ∈E

LEφ(µ, σ) , ∀φ ∈ V.

is finite and that

E(φ) = inf
µ∈E+

sup
σ∈E

LEφ(µ, σ)− f · φ, ∀φ ∈ V. (2.1.6)

This last saddle point formulation for E(φ) is far more convenient than (2.1.5).
Indeed, if we define the extended Lagrangian LE : (V × E+ × E) → R as

LE(φ, µ, σ) := LEφ(µ, σ)− f · φ,

by virtue of (2.1.6) the problem:

inf
φ∈V

E(φ),

is equivalent to:
inf
φ∈V

inf
µ∈E+

sup
σ∈E

LE(φ, µ, σ). (2.1.7)

Since we have a double minimization problem we can also minimize in the pair
(φ, µ) or interchange the order of minimization. Observe that for any given
positive µ the problem:

inf
φ∈V

sup
σ∈E

LE(φ, µ, σ) = inf
φ∈V

sup
σ∈E

−1

2

mX
i=1

µi|σi|2 + σ · ∇φ− f · φ, (2.1.8)
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has some reminiscent with the mixed FEM formulation for linear elliptic PDEs
introduced in [43].
In the common case of variational problems, where typically boundary conditions
are considered for the specific physical phenomena described by the energy E(φ),
the Euler-Lagrange equations for (2.1.8) involve a classical linear saddle-point
system of equations.
In some cases, the particular properties of the function g(µ) in LE(φ, µ, σ), implies
that an optimal µ∗ for (2.1.7) has to be necessary strictly positive. In that
case, assuming further regularity(strong convexity, norm coerciveness) of the map
µ 7→ LE(φ, µ, σ), we can show that there exists a δ > 0 such that problem (2.1.7)
is equivalent to:

inf
φ∈V

inf
µ ∈ E+

µi ≥ δ

sup
σ∈E

LE(φ, µ, σ). (2.1.9)

Thereofore, since µ is strictly positive, the ”sup” in (2.1.9) is indeed a maximum
∀µ ≥ δ(we have indeed strong concavity, differentiability and anti-coerciveness),
and the maximizer σ∗ is given by:

σ∗i :=
(∇φ)i
µi

, i = 1, . . . ,m. (2.1.10)

Introducing the functional:

LE(φ, µ) := sup
σ∈E

LE(φ, µ, σ),

and computing LE(φ, µ, σ) in the maximizer σ = σ∗ we get:

LE(φ, µ) =
mX
i=1

1

2

|(∇φ)i|2

µi
− f · φ+

1

2

mX
i=1

g(µi).

Thus problem (2.1.7) is equivalent to the following simplified double minimization
problem:

inf
φ ∈ V

µ ∈ E
+

LE(φ, µ), (2.1.11)

In the general case, we can not expect that the optimal density µ∗ is strictly de-
tached from zero. Nevertheless, if the Lagrangian LE satisfies some convex(concave)
and norm corciveness(anti norm coerciveness) hypothesis, we can prove the exis-
tence of at least a saddle point

((φ∗, µ∗), σ∗) ∈ ((V × E+)× E),

for LE.
Thus, in the general case, it is not possible to have a direct formula for σ∗ as in
(2.1.10) and the equivalence to the simplified problem (2.1.11).
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A possible solution to circumnavigate this issue is to introduce an ”artificial lower
bound” 0 < δ << 1 as a small Tikhononv regularization parameter. Indeed,
instead of LE, consider the following regularized Lagrangian:

LE,δ(φ, µ, σ) := −1

2

mX
i=1

(µi + δ)|σi|2 + σ · ∇φ− f · φ+
1

2

mX
i=1

g(µi), (2.1.12)

and the functional:
LE
δ(φ, µ) := sup

σ∈E
LE,δ(φ, µ, σ). (2.1.13)

Since now µ+δ > 0, the supremum in σ in (2.1.13) is in fact a maximum ∀µ ∈ E+,
and the maximizer σ∗ is given by the analogous formula to (2.1.10):

σ∗i =
(∇φ)i
µi + δ

, i = 1, . . . ,m.

Thus, computing LE,δ(φ, µ, σ) in σ = σ∗, the functional LE
δ(φ, µ) simplifies as

follows:

LE
δ(φ, µ) =

mX
i=1

1

2

|(∇φ)i|2

(µi + δ)
− f · φ+

1

2

mX
i=1

g(µi),

hence, if δ is sufficiently small, we are motivated to consider the following double
minimization problem:

inf
φ∈V

inf
µ∈E+

LE
δ(φ, µ), (2.1.14)

which is the Tikhonov regularization of the saddle point problem (2.1.7).
In either the cases, of the original saddle point problem (2.1.7) or the regularized
double minimization problem (2.1.14), the strong advantage of this formulation is
that we transform an original possibly non-linear and non differentiable problem,
to a quadratic optimization problem in the original variable φ, which involves an
elliptic structure of a weighted Laplacian-like operator.
The non-linearity is reabsorbed by introducing the density variable µ, the mass
term g(µ) and a positivity constraint which is reasonable easy to handle.
This is in some sense an example of the well known augmented lagrangian ap-
proach [13], [33]. Observe that differently from the standard augmented la-
grangian approach where typically some variable substitutions are performed via
Lagrange multipliers, here the introduction of the variable µ is naturally given
by the Legendre transform.
Relying upon these new formulations, and starting from the so-called Dynamic-
Monge-Kantorovich(DMK) scheme for the L1 optimal transport problem ([55],
[58], [54], [59]), we develop a number of numerical methods for the solution of a
rather large class of variational problems which can be traced back to the same
framework as problem (2.1.7) for an opportune energy functional.
Among them, we developed numerical methods for problems including, e.g., 1-
harmonic Dirichlet problem and the inhomogeneous Dirichlet problem for the
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p-Laplacian on graphs. Also, we develop other applications in inverse problems
based on the use of the total variation or the l1 norm as Tikhonov regularization
terms in certain discrete optimization problems such as the classical Rudin-Osher-
Fatemi(ROF) problem, or the TV denoising [104], and the compressed modes for
the graph Laplacian [106].
The derivation of these numerical schemes is based on rewriting a convex prob-
lem in a form that includes a term of the type (2.1.7) or the regularized version
(2.1.14), for which the DMK scheme was appositevely designed, as the linear
iterative solver derived by the time discretization of a dynamics of the type:

(µ(t) + δ)σi(t) = ∇(φ(t))i, i = 1, . . . ,m

∇T σ(t) = ∇T Diag
1

µ(t) + δ
∇φ(t) = f

∂tµi(t) = µi(t) |σi(t)|2 − ∂µg(µi(t)) , µi(0) = µ0i > 0, i = 1, . . . ,m,
(2.1.15)

where Diag(c) is the diagonal matrix which has the vector c ∈ E as diagonal.
The DMK scheme, in all of it’s variants, is essentially based on the numerical in-
tegration of a ”Gradient-Flow like” minimizing scheme, which involves, at every
iteration, the solution of a sparse, symmetric linear system and the updating of
a descent dynamics for the variable µ.
Thus, for certain aspects, it is a variant of the Newton method. It is moreover
quite easy to implement(if an explicit time discretization for the gradient flow is
used) for many applications, and it exhibits good stability properties.
Aside from the simple numerical implementation, having a structure which de-
pends upon inverting a symmetric and sparse matrix, has the main advantage
derived from the huge weaponry of the numerical linear algebra(e.g. multi grid
methods, preconditioning strategies etc.).
Furthermore, having introduced the Tikhonov regularized Lagrangian (2.1.12)
and the functional (2.1.13), the original saddle point problem (2.1.7) is reduced
to the differentiable and convex double minimization problem, hence the second
order method derived from the implicit Euler time discretization for the DMK
gradient flow like (2.1.15) is well defined, improving drastically the performance
of the numerical scheme. Moreover, differently from the Newton method which
needs a sufficient accurate initial guess to converge, here we can benefit from the
stability induced by LE

δ which acts as a Lyapunov functional for the dynamics.
Thus, starting with a sufficiently small initial time step, we can consider the pre-
vious iteration as an initial guess, and the newton method applied to the implicit
Euler time discretization of (2.1.15) is guaranteed to converge(see [59] for details).
Note that having a descending scheme such as (2.1.15) which is derived from a
gradient descent approach for a double minimization problem of the type (2.1.14),
allows us to easily introduce further constraints on the variable φ and also various
type of boundary conditions.
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2.1.1 Our study

For the reader’s convenience, we start with a brief overview of the results that
we prove in the next sections. This provides also the needed information on the
organization of the chapter.

In Section 2.2 we first introduce the p-Dirichlet energy Ep, 1 < p < 2, in an open
bounded Lipschitz domain Ω ⊂ Rn by setting

Ep(φ) :=
Z
Ω

1

p
| ∇φ|p, φ ∈W 1,p(Ω).

Since the classical Sobolev space W 1,p(Ω) is reflexive for any 1 < p < ∞, we
can make repeated use of all standard tools of convex analysis. Indeed, iterating
the Legendre transform upon different selections of the variables and conjugate
variables we derive the following Lagrangian:

Lpφ(µ, σ) := −
Z
Ω

1

2
µ|σ|2 +

Z
Ω
σ · ∇φ+

2− p

2p

Z
Ω
µ

p
2−p ,

and the following saddle point formulation for the p-Dirichlet energy of a function
φ ∈W 1,p(Ω)

Ep(φ) = sup
σ∈[W p′ (div,Ω)]

n
inf
µ ≥ 0

µ ∈ Lγ(Ω)

Lpφ(µ, σ),

where γ = p
2−p . The main result of Section 2.2 is Theorem 2.2.2, where we show

the existence and characterization of a saddle point and the equivalence between
the p-Dirichlet energy with its dual formulation, namely:

Ep(φ) = inf
µ ≥ 0

µ ∈ Lγ(Ω)

sup
σ∈[W p′ (div,Ω)]

n
Lpφ(µ, σ).

This result would be the basis for our saddle point formulation for the p-Poisson
energy minimization problem.
In Section 2.3 we extend the saddle point formulation for the p-Dirichlet energy
to the limit case when p = 1 and the space BV (Ω).
The main idea behind this come from observing that fixing a density µ∗ such that
supp(∇φ) ⊆ supp(µ∗), then we can formally write

σ∗ = arg max
σ

−
Z
Ω

1

2
µ∗|σ|2 +

Z
Ω
σ · ∇φ =⇒ µ∗σ∗ = ∇φ,

while on the other hand:

inf
µ≥0

Z
Ω
µ(1− |σ|2) =

(
0 |σ(x)| ≤ 1, ∀x ∈ Ω

−∞ otherwise.
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Thus, observing that by the structure theorem of BV functions, ∀φ ∈ BV (Ω)
there exists a positive radon measure µφ and a µφ-measurable vector field σφ
such that

µφσφ = ∇φ,

|σφ(x)| = 1,

for µφ − a.e. x ∈ Ω and

TV (φ) =

Z
Ω
dµφ,

taking inspiration from [17], we introduce the following Lagrangian L1
φ : (M+(Ω)×

C1
c (Ω)

n
) → R:

L1
φ(µ, σ) := −

Z
Ω

1

2
|σ|2dµ+

Z
Ω
σ · d[∇φ] +

1

2

Z
Ω
dµ,

and the following functional:

L∗
1(φ) := sup

σ∈[C1
c (Ω)]n

inf
µ∈M+(Ω)

L1
φ(µ, σ) , φ ∈ BV (Ω),

where M+(Ω) is the space of positive Radon measures on Ω.
It is easy to show(see (2.3.6)) that

L∗
1(φ) = TV (φ), ∀φ ∈ BV (Ω),

on the other hand, due to the lack of reflexivity we can not directly prove the
existence of a saddle point for L∗

1(φ).
Nevertheless, in Theorem 2.3.10 we show that the dual functional:

L1(φ) := inf
µ∈M+(Ω)

(
sup

σ∈[C1
c (Ω)]n

L1
φ(µ, σ)

)
, φ ∈ BV (Ω),

satisfies:
TV (φ) = L1(φ), φ ∈ BV (Ω),

and if we introduce the functional

Eφ(µ) := sup
σ∈[C1

c (Ω)]n
L1
φ(µ, σ),

the unique optimal measure

µ∗ = arg min
µ∈M+(Ω)

Eφ(µ),

is precisely the total variation measure:

µ∗ = | ∇φ|,
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and there exists a unique saddle point

(µ∗, σ∗µ∗) ∈ (M+(Ω), [L2
µ∗(Ω)]

n),

for L1
φ, where the optimal vector field σ∗µ∗ is the one given by the Structure The-

orem of BV functions.
The lack of a saddle point in the spaces (M+(Ω), C1

c (Ω)
n
) is ultimately do to

the fact that we can not found a proper topology which guarantees that the La-
grangian L1

φ has the necessary regularity to admits a maximizer(the supremum σ∗

indeed does not belong to the space C1
c (Ω)

n
, hence it can not be a maximizer).

Nevertheless, as soon as one introduce an opportune discretization everything is
well defined and reflexive and continuous. That is the reason why, as a case of
direct interest for this thesis, in Section 2.4 we state the finite dimension coun-
terpart on graphs of the results of Section 2.2 and Section 2.3. The graph-based
counterpart of the continuous gradient operator is given by the signed incidence
matrix, where the variable µ becomes a positive weight on the edges while the
variables σ and φ become functions on the edges and on the nodes respectively.
Let G = (E, V, ω) be a weighted, directed(i.e. every edge has a prescribed direc-
tion) graph, where E is the set of m = |E| edges, V the set of n = |V | nodes
and ω is a weight on the edges. We denote as H(V ) = Rn and H(E) = Rm

the Banach spaces of real-valued functions on V and E, respectively. The graph
gradient operator ∇ : H(V ) −→ H(E) is the m×n matrix of the weighted signed
differences i.e. for every φ ∈ H(V ), (∇φ)e = ωe(φvk −φvj ) if e ∈ E connects the
node vj to the node vk. Observe that it is necessary to work with directed graph
in order to define a gradient matrix.
The graph-based p-Dirichlet energy, p ≥ 1 is defined as:

Ep(φ) :=
∥∇φ∥plp

p
=
X
e∈E

|(∇φ)e|p

p
,

as for the continuous case we introduce a family of Lagrangians Lpφ : (H(E)+ ×
H(E)) → R for the graph p-Dirichlet energy, 1 ≤ p < 2:

Lpφ(µ, σ) := −
X
e∈E

1

2
µe|σe|2 + σ · ∇φ+

2− p

2p

X
e∈E

µe
p

2−p .

In Theorem 2.4.1 we show that:

Ep(φ) = inf
µ∈H(E)+

sup
σ∈H(E)

Lpφ(µ, σ), φ ∈ H(V ),

where H(E)+ := {µ ∈ H(E) | µe ≥ 0, ∀ e ∈ E} and we can prove the existence
of a saddle point (µ∗, σ∗) (unique in the case p > 1) which satisfies the following
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extremality relations:

µ∗eσ
∗
e = (∇φ)e, ∀ e ∈ E,

µ∗e = |(∇φ)e|2−p, ∀ e ∈ E,

|σ∗e | ≤ 1, ∀ e ∈ E, p = 1,

µ∗e|σ∗e |2 − µ∗e = 0, ∀ e ∈ E, p = 1.

As a direct generalization, in Section 2.6 we extend the same results for a general
linear operator Λ : V → E, V := Rn, E := Rm instead of the graph gradient
operator.
Thus we consider the following generalized p-Dirichlet energy:

EΛp (φ) :=
∥Λφ∥plp
p

,

and we define the Lagrangian L
p,Λ
φ : (E+ × E) → R:

Lp,Λφ (µ, σ) := −
mX
i=1

1

2
µi|σi|2 + σ · Λφ+

2− p

2p

mX
i=1

µ
p

2−p

i ,

then we have that:
EΛp (φ) = inf

µ∈E+
sup
σ∈E

Lp,Λφ (µ, σ).

For example, in the case where Λ := id, is the identity operator, we have the
following saddle point formulation of the discrete lp norm, 1 ≤ p < 2, for a vector
φ ∈ V :

1

p
∥φ∥plp = inf

ν∈V +
sup
σ∈V

−
nX
i=1

1

2
νi|σi|2 + σ · φ+

2− p

2p

nX
i=1

ν
p

2−p

i .

where V + := {ν ∈ V | νi ≥ 0, i = 1, ..., n}.
Also in this case, we have the existence of a saddle point (ν∗, σ∗) which exhibits
analogous extremality relations, see Theorem 2.5.1.
We then introduce a regularized version for the generalized family of Lagrangians
and saddle point formulations involving the operator Λ. In the framework of the
Tikhonov regularization consider the regularized Lagrangian:

Lp,Λ,δφ (µ, σ) := −
mX
i=1

1

2
(µi + δ)|σi|2 + σ · Λφ+

2− p

2p

mX
i=1

µ
p

2−p

i ,

and the following regularized saddle point formulation for the generalized p-
Dirichlet energy EΛp (φ):

LΛp,δ(φ) := inf
µ∈E+

sup
σ∈E

Lp,Λ,δφ (µ, σ). (2.1.16)
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where δ is a small positive regularization parameter.
If we introduce the functional

Lp,Λδ (φ, µ) := sup
σ∈E

Lp,Λ,δφ (µ, σ), (2.1.17)

then (2.1.16) rewrites as:

LΛp,δ(φ) = inf
µ∈E+

Lp,Λδ (φ, µ).

The parameter δ has the important role to guarantees the coercivity and the
differentiability of the map:

σ 7→ Lp,Λ,δφ (µ, σ), ∀φ ∈ V, ∀µ ∈ E+,

with the aim to directly compute a maximizer σ∗ for (2.1.17) and simplify (2.1.16),
while retaining a good approximation of the original saddle point formulation for
EΛp (φ), if δ is sufficiently small.
Since µ+ δ > 0, the supremum in (2.1.17) is in fact a maximum(we have indeed
strong concavity, differentiability and anti-coerciveness), and the maximizer σ∗

is given by:

σ∗i =
(Λφ)i
µi + δ

, i = 1, ...,m.

.
Hence, computing L

p,Λ,δ
φ (µ, σ) for σ = σ∗, the functional defined in (2.1.17) is

equal to:

Lp,Λδ (φ, µ) =

mX
i=1

1

2

|(Λφ)i|2

(µi + δ)
+

2− p

2p

mX
i=1

µ
p

2−p

i ,

and the regularized saddle point formulation in (2.1.16) simplifies as follows:

LΛp,δ(φ) = inf
µ∈E+

mX
i=1

1

2

|(Λφ)i|2

(µi + δ)
+

2− p

2p

mX
i=1

µ
p

2−p

i . (2.1.18)

The regularized problem makes evident that the existence of a minimizer µ∗ in
(2.1.18), depends only on the properties of the mass term

G(µ) :=
2− p

2p

mX
i=1

µ
p

2−p

i ,

since, if G is convex, lower semi-continuous, and coercive, the existence of a
minimizer µ∗ for the function:

εφ(µ) := Lp,Λδ (φ, µ), ∀φ ∈ V,
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is guaranteed.
Based on this observation on the mass term G, in Section 2.6 we consider the
case of a general discrete energy of the type:

E(φ) :=
mX
i=1

h((Λφ)i),

where h : R → R+ is a positive, lower semi-continuous, convex, and even function.
The goal of Section 2.6 is to extend our Legendre duality based approach, to the
computation of the opportune mass function G, such that the energy E(φ) can be
written in the form of a saddle point problem as we have done for the p-Dirichlet
energy.
In Theorem 2.6.1 we state sufficient and necessary conditions for the existence of
the following saddle point formulation:

E(φ) = inf
µ∈E+

sup
σ∈E

−1

2

mX
i=1

µi|σi|2 + σ · Λφ+
1

2

mX
i=1

g(µi),

where g : R → R+ is a positive, convex and proper function. Moreover we can
recover g from h by means of the following Legendre transform based formula:

1

2
(g ◦ | · |)∗ ◦ | · |2

∗
= h.

We provide moreover illustrative examples to recover the graph based TV energy
saddle point formulation of Section 2.4 and in Example 2.6.4 an application to
the Minimal Surfaces discrete type energy:

E(φ) :=

mX
i=1

p
1 + |(Λφ)i|2.

In Section 2.7 we see a first example of application of our proposed techniques in
the graph setting.
The main idea is the following. Roughly speaking, in the graph setting, consider
an energy E(φ), φ ∈ H(V ), and suppose that we are in the situation to be able to
provide a Lagrangian LE

φ : (H(E)+,H(E)) → R such that we have the following
saddle point formulation for E(φ):

E(φ) := inf
µ∈H(E)+

sup
σ∈H(E)

LE
φ(µ, σ), ∀φ ∈ H(V ).

Then, introducing the extended Lagrangian: LE : (V × E+ × E) → R as

LE(φ, µ, σ) := LEφ(µ, σ), ∀φ ∈ H(V ), µ ∈ H(E)+, ∀σ ∈ H(E).

the problem:
inf
φ∈V

E(φ),
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is equivalent to:

inf
φ∈V

inf
µ∈E+

sup
σ∈E

LE(φ, µ, σ).

Moreover, introducing a small regularization parameter δ, as we have done in
(2.1.18), we can possibly provide a simplified, convex and differentiable well ap-
proximated problem, by directly compute a maximizer σ∗ and reducing to a
double minimization of the type:

inf
φ∈V

E(φ) ≈ inf
φ ∈ V

µ ∈ E
+

LE
δ(φ, µ).

This last double minimization problem in φ and µ has the further numerical
advantage given by considering a minimization simultaneously in the pair (φ, µ)
and can be easily integrated in other more complex optimization problems where
the energy E(φ) appears, for example, as regularization term(e.g. TV denoise,
Lasso problems) as we will see in what follows.
Thus, in Section 2.7 we first consider the problem of computing 1-Harmonic
functions on graphs.
Thus, given a boundary Dirichlet nodes subset B ⊂ V and a profile function g ∈
H(B), we consider the problem of minimizing the graph Total Variation energy
with prescribed Dirichlet boundary conditions on B. Therefore, we consider the
following optimization problem:

inf
φ∈H(V )

X
e∈E

|(∇φ)e|

s.t. φv = gv v ∈ B.

(2.1.19)

The Euler-Lagrange equation for (2.1.19) involves the famous 1-Laplacian oper-
ator:

∆1(φ) = −div sign(∇φ) φ ∈ H(V ),

Where sign(∇φ) is defined in (2.4.9).
In the last years this problem, and the related eigenproblem, has been exhaus-
tively studied for it’s optimal spectral clustering properties in Machine Learning
[84], [72], [19], [35], [41], [44].
Then, we introduce an opportune lifting function:

φ̄v :=

(
0 v ∈ VI

gv v ∈ B
, (2.1.20)

where V = B ∪ VI , VI ∩B = ∅, and problem (2.1.19) simplifies as follows:

inf
φ∈HB

0 (V )

X
e∈E

| (∇(φ+ φ̄))e |,
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Where HB
0 (V ) := {φ ∈ H(V ) | φv = 0, ∀ v ∈ B}.

In Proposition 2.7.1 and Proposition 2.7.3, we introduce two preliminaries results
essentially based on extending two classical results in [46] which will leads us to
show how to integrate our saddle point formulation to solve the 1-Harmonic prob-
lem and other related problem which will be consider in the following sections.
Making use of our equivalent saddle point formulation for the graph Total Varia-
tion energy, for any φ̃ ∈ H(V ) we define the Lagrangian L1φ̃ : (H(E)+×H(E)) → R
as:

L1φ̃(µ, σ) := −
X
e∈E

1

2
µe|σe|2 + σ · ∇ φ̃+

1

2

X
e∈E

µe,

and the function:

L1(φ̃) := inf
µ∈H(E)+

sup
σ∈H(E)

L1φ̃(µ, σ).

Then we have the following equivalence:

inf
φ∈HB

0 (V )

X
e∈E

| (∇(φ+ φ̄))e | = inf
φ∈HB

0 (V )
L1(φ+ φ̄),

So that:

inf
φ∈HB

0 (V )

X
e∈E

| (∇(φ+ φ̄))e | = (2.1.21)

= inf
µ ∈ H(E)

+

φ ∈ HB
0 (V )

sup
σ∈H(E)

−
X
e∈E

1

2
µe|σe|2 + σ · ∇(φ+ φ̄) +

1

2

X
e∈E

µe (2.1.22)

In Theorem 2.7.4, by using Proposition 2.7.1 and Proposition 2.7.3, we are able to
prove the equivalence between problem (2.1.21) and problem (2.1.22). Moreover,
we can show that there exists at least a saddle point

((φ∗, µ∗), σ∗) ∈ HB
0 (V )×H(E)+)×H(E) ,

for problem (2.1.22), which satisfies the following ”Monge-Kantorovich” equa-
tions:

µ∗eσ
∗
e = (∇(φ∗ + φ̄))e , ∀ e ∈ E

(div σ∗)v = 0, ∀ v ∈ VI

φ∗
v = 0, ∀ v ∈ B

|σ∗e | ≤ 1, ∀ e ∈ E

|σ∗e | = 1, ∀ e ∈ E s.t. µ∗e > 0

µ∗e = | ∇(φ∗ + φ̄)e|, ∀ e ∈ E.

The existence of a saddle point and the corresponding ”Monge-Kantorovich”
equations motivated us to use the experience gained with the DMK scheme for
the L1 Optimal transport [54], [59] to tackle problem (2.1.22).
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In Section 2.7 we then introduce the DMK scheme for the computation of 1-
Harmonic functions underlying the analogies to the Optimal Transport problem
on graphs [54]. The proposed scheme can be placed in the framework of the
Gradient Flow approach [5] upon composing with the quadratic map:

µe = Ψ(ξ)e = ξ2e , ∀ e ∈ E.

thus the resulting scheme can be genuinely understood in the setting of the update
preserving schemes for the positivity constraint.
Then, we introduce the Lyapunov candidate functional:

L(φ, µ) := sup
σ∈H(E)

−
X
e∈E

1

2
µe|σe|2 + σ · ∇(φ+ φ̄) +

1

2

X
e∈E

µe,

and we will seek for a minimum in the pair (φ, µ) of the functional

inf
φ ∈ HB

0 (V )

µ ∈ H(E)
+

L(φ, µ).

As in [54] a solution will be sought via a gradient descent approach, not applied
directly to the functional L(φ, µ), but rather to its composition with the change
of variable µ = Ψ(ξ). The gradient descent approach applied to the computation
of a minimizer (φ∗, ξ∗) of L(φ,Ψ(ξ)) has to be intended as a long time solution
(φ∗, ξ∗) = limt→∞(φ(t), ξ(t)), where (φ(t), ξ(t)) is a solution of the following
state-space initial value problem:

µe(t) = Ψ(ξ(t))e, ∀ e ∈ E,

[Diagµ(t)]σ(t)−∇(φ(t) + φ̄) = 0,

(div σ(t))v = 0, ∀ v ∈ VI ,

φ(t)v = 0, ∀ v ∈ B,

∂tξe(t) = − [∂ξL(φ(t),Ψ(ξ(t)))]e = ξe(t)|σe(t)|2 − ξe(t), ∀ e ∈ E,

ξe(0) = ξ0e ̸= 0, ∀ e ∈ E.

(2.1.23)

Moreover, if ξ(t) is a solution of (2.1.23), the relation µ(t) = Ψ(ξ(t)) implies that:

∂tµe(t) = ∂ξΨ(ξ(t))e∂tξe(t) = ξe(t)∂tξe, ∀ e ∈ E,

thus µ(t) can be reinterpreted as a ”classical Gradient Descent” dynamics :

∂tµe(t) = µe(t)|σe(t)|2 − µe(t), µe(0) = µ0e > 0 ∀ e ∈ E. (2.1.24)

The dynamics in (2.1.23) involves the following saddle point linear system:

[Diagµ(t)]σ(t)−∇(φ(t) + φ̄) = 0,

(div σ(t))v = 0, ∀ v ∈ VI ,

φ(t)v = 0, ∀ v ∈ B,
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and hence the following saddle point matrix:

Diagµ(t) −∇
div 0

.

since 1-Harmonic functions are flat solution by the improving sparsity on the
gradient induced by the Total Variation energy and our optimal density µ∗ sat-
isfies µ∗ = | ∇(φ + φ̄)|, the variable µ(t) will inevitably go toward zero along
the descending dynamics, thus, this linear system will inevitably become very ill-
conditioned during the minimization flow. The strategy is therefore to consider an
appropriately small Tikhonov parameter δ > 0 to circumvent the ill-conditioning
but maintaining sufficient accuracy:

Diagµ(t) + δ −∇
div 0

.

Hence the δ-regularized version of (2.8.5) becomes equivalent to the following
reduced lifted linear system:

σe(t) =
(∇(φ(t) + φ̄))e

µe(t) + δ
, ∀ e ∈ E,

(∆ 1
µ(t)+δ

(φ(t) + φ̄))v = 0, ∀ v ∈ VI ,

φ(t)v = 0 ∀ v ∈ B.

(2.1.25)

It turns out that the linear system in (2.1.25) is derived by considering the reg-
ularized functional:

Lδ(φ, µ) : = sup
σ∈H(E)

−
X
e∈E

1

2
(µe + δ)|σe|2 + σ · ∇(φ+ φ̄) +

1

2

X
e∈E

µe

=
X
e∈E

1

2

| ∇(φ+ φ̄)e|2

(µe + δ)
+

1

2

X
e∈E

µe,

instead of L(φ, µ) and the following approximated problem:

inf
φ ∈ HB

0 (V )

µ ∈ H(E)
+

Lδ(φ, µ) = inf
φ ∈ HB

0 (V )

µ ∈ H(E)
+

X
e∈E

1

2

| ∇(φ+ φ̄)e|2

(µe + δ)
+

1

2

X
e∈E

µe. (2.1.26)

Using the KKT conditions is possible to show that a solution (φ∗, µ∗) for (2.1.26)
satisfies:

| ∇(φ∗ + φ̄)e| = µ∗e + δ, e ∈ E, µ∗e > 0

| ∇(φ∗ + φ̄)e| ≤ δ, e ∈ E, µ∗e = 0.

Thus the parameter δ controls well the accuracy and we are expecting to have
good approximations if δ is opportunely small.
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The corresponding version of the dynamics in (2.1.23), (2.1.24) for problem
(2.1.26) is:

σe(t) =
(∇(φ(t) + φ̄))e

µe(t) + δ
∀ e ∈ E

(∆ 1
µ(t)+δ

(φ(t) + φ̄))v = 0 ∀ v ∈ VI

φ(t)v = 0 ∀ v ∈ B

∂tµe(t) = µe(t)|σe(t)|2 − µe(t), µe(0) = µ0e > 0 ∀ e ∈ E.

(2.1.27)

In [59] it was shown that a solution µ∗ of the Optimal Transport counterpart of
(2.1.27) Γ-converges to a solution of the original problem when δ → 0.
We propose moreover three time discretization approaches for the dynamics in
(2.1.27) and some interesting numerical applications showing the convergence
rate and the stability of our numerical scheme.
In Subsection 2.8.2 we show an heuristics based on Lie derivatives along ad-
hoc chosen vector fields to reinterpret our update preserving scheme derived by
composing with the quadratic map, as a type of projected gradient descent. We
also propose a variant based on the logistic map to extend this technique to the
case of an interval constraint of the form a ≤ µ ≤ b.
The 1-Harmonic problem has to be considered as a starting point test problem
for this thesis . As a result, in virtue of the analoguous saddle point formulation
for the p-Dirichlet energy, in Section 2.9 we extend the DMK scheme for the
numerical solution of the graph p-Poisson problem, 1 < p < 2, with a given
loading term and Dirichlet boundary conditions:

(∆p φ)v = fv v ∈ VI

φv = gv v ∈ B.

where g ∈ H(B) is the Dirichlet profile function and f ∈ H(VI) is the loading or
forcing term.
As for the case of 1-Harmonic functions we will seek for a solution of the p-Poisson
problem by first introducing a lifting function φ̄ and looking for a minimizer of
the following problem:

inf
φ∈HB

0 (V )

X
e∈E

| (∇(φ+ φ̄))e |p

p
−
X
v∈VI

fvφv. (2.1.28)

Observing the similarity with the 1-Harmonic problem, we use our saddle point
formulation for the p-Dirichlet Energy and we introduce the following problem:

inf
µ ∈ H(E)

+

φ ∈ HB
0 (V )

sup
σ∈H(E)

−
X
e∈E

1

2
µe|σe|2 + σ · ∇(φ+ φ̄)−

X
v∈VI

fvφv +
1

2γ

X
e∈E

µγe , (2.1.29)

where γ = p
2−p .

In Theorem 2.9.5 we show that problem (2.1.28) is equivalent to (2.1.29) and
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that the exists a unique saddle point ((φ∗, µ∗), σ∗) which satisfies the following
equations:

µ∗eσ
∗
e = (∇(φ∗ + φ̄))e , ∀ e ∈ E

−(div σ∗)v = fv, ∀ v ∈ VI

φ∗
v = 0, ∀ v ∈ B

µ∗e = |σ∗e |p
′−2 = | ∇(φ∗ + φ̄)e|2−p, ∀ e ∈ E.

As a consequence, φ∗ is the unique solution of the p-Poisson problem.
Then, we consider the regularized functional:

Lpδ(φ, µ) :=

= sup
σ∈H(E)

−
X
e∈E

1

2
(µe + δ)|σe|2 + σ · ∇(φ+ φ̄)−

X
v∈VI

fvφv +
1

2γ

X
e∈E

µγe =

=
X
e∈E

1

2

| ∇(φ+ φ̄)e|2

(µe + δ)
−
X
v∈VI

fvφv +
1

2γ

X
e∈E

µγe ,

and the following double minimization problem:

inf
φ ∈ HB

0 (V )

µ ∈ H(E)
+

Lpδ(φ, µ),

which is the Tikhonov regularization of problem (2.1.29).
The corresponding derived version of the dynamics in (2.1.27) reads as follows:

σe(t) =
(∇(φ(t) + φ̄))e

µe(t) + δ
∀ e ∈ E

(∆ 1
µ(t)+δ

(φ(t) + φ̄))v = fv ∀ v ∈ VI

φ(t)v = 0 ∀ v ∈ B

∂tµe(t) = µe(t)|σe(t)|2 − µe(t)
p

2−p , µe(0) = µ0e > 0 ∀ e ∈ E.

(2.1.30)

We propose moreover, an improved version for the dynamics in (2.1.30) which
has been observed to converge faster in our numerical experiments and is derived
by composing with the map:

µe = Ψ(ξe) := |ξe|
2(2−p)

p , ∀ e ∈ E,

leading to the following new dynamics for the density µ in (2.1.30):

∂tµe(t) = µe(t)
4−3p
2−p |σe(t)|2 − µe(t), ∀ e ∈ E.

In Section 2.10 we further extend our DMK scheme to the numerical computation
of Minimal Surfaces on graphs with a given profile Dirichlet boundary conditions.
Thus we consider the following problem:

inf
φ∈HB

0 (V )

X
e∈E

p
1 + | ∇(φ+ φ̄)e|2. (2.1.31)
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Where we have selected a Dirichlet boundary subset B ⊂ V , a profile function
g ∈ H(B) and an appropriate lifting function φ̄ as in (2.1.20). We then briefly
show how to extend the DMK scheme presented in (2.1.27) and (2.1.30) for the
numerical solution of problem (2.1.31) providing moreover some numerical results.
After that, we show a very interesting application of the proposed techniques to
the numerical solution of the so called Obstacle Problem [92] which is one of
the most famous problem involving the Minimal Surfaces Energy. In the graph
setting, the Obstacle Problem is formulated as the problem to seek for the equi-
librium position of the membrane such that it lies above the body represented by
a function ϕ ∈ H(VI) with Dirichlet boundary conditions on a boundary subset
B ⊂ V . The problem can be formulated adding the further constraint φv ≥ ϕv,
∀ v ∈ VI to (2.1.31):

inf
φ ∈ HB

0 (V )

φv ≥ ϕv, ∀ v ∈ VI

X
e∈E

p
1 + | ∇(φ+ φ̄)e|2. (2.1.32)

As done for the 1-Harmonic case, we recast problem (2.1.32) as a doubled min-
imization problem in the variable φ and a density µ ≥ 0. Also for this case,
we propose a numerical scheme based on an extension of the DMK scheme in
(2.1.27), where we introduce two minimizing flows, one for the variable µ and
one for the variable φ, composing with the quadratic maps:

µe = ξ2e , ∀ e ∈ E

φv = ϕv + h2v, ∀ v ∈ VI ,

in order to preserve the constraints given an initial µ(0) > 0 and an initial
φv(0) > ϕv, ∀ v ∈ VI . Moreover, we show that introducing a semi implicit time
discretization approach the problem can be easily implemented. Finally, we pro-
vide a numerical example showing the convergence rate of our scheme and the
constraints preserving along the minimization flow.
In Section 2.11 we show an application of our techniques for the Total Variation
and the l1 norm regularization in optimization problems, with emphasis on the
graph setting applications. We first introduce the generalized Tikhonov regular-
ization approach in both the continuous and the discrete framework, showing also
a brief review on the common techniques in literature(Spilt Forward Backward
Proximal Map approach, Augmented Lagrangian approach, Bregman iteration
approach).
Then, we show in detail how to extend the EDMK scheme for the Total Variation
regularization on graphs.
The main idea is to consider the regularized functional introduced in Subsection
2.5.1, instead of the Total Variation energy. Thus we call:

TVδ(φ) := inf
µ∈H(E)+

X
e∈E

1

2

|(∇φ)e|2

(µe + δ)
+

1

2

X
e∈E

µe, φ ∈ H(V ),
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and we consider the following approximated general TV regularization problem:

min
φ∈H(V )

F (φ) + λTVδ(φ) =

= min
φ ∈ H(V )

µ ∈ H(E)+

F (φ) + λ

 X
e∈E

1

2

|(∇φ)e|2

(µe + δ)
+

1

2

X
e∈E

µe

!
. (2.1.33)

where F : V → R is a differentiable function and λ is a positive Tikhonov regu-
larization parameter.
We provide moreover illustrative examples on how to extend our EDMK scheme
for the numerical solution of a problem of the type as (2.1.33) in the unconstrained
case and in the case of positivity and interval constraints for the variable φ.
Then, we briefly show, as a direct extension, how to adapt these techniques on
the case where the Total Variation is substituted with the l1 norm as the regu-
larization term.
As an application, we show how to recover an EDMK scheme formulation for the
numerical solution of the 1-D signal TV denoising or the Rudin-Osher-Fatemi
problem, showing also a numerical example for a very noisy digital signal recon-
struction.
Finally, we show an application of the EDMK scheme for the l1 norm regular-
ization on a non common problem, namely the Compress Modes for the Graph
Laplacian operator, or the graph-based Sparse PCA [106].

2.2 The case 1 < p < 2

Consider an open Lipschitz domain Ω ∈ Rn. Given a parameter p ∈ R with
1 < p < 2 we define the p-Dirichlet energy on W 1,p(Ω) as:

Ep(φ) :=
Z
Ω

1

p
| ∇φ|p. (2.2.1)

We recall here the Legendre transform for a sufficiently regular function G(x):

G∗(x∗) = sup
x

Z
Ω
x∗x−G(x).

In particular if G is proper, lower semi-continuous and convex then is possible to
show that:

G(x) = sup
x∗

Z
Ω
xx∗ −G∗(x∗).

Consider now the p-Dirichlet energy (2.2.1) and observe that we can rewrite it
as:

Ep(φ) = G(∇φ)

G(x) : x 7→
Z
Ω

|x|p

p
.

(2.2.2)
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The Legendre transform G∗(x∗) is easy to compute and reads as follows:

G∗(x∗) =

Z
Ω

|x∗|p′

p′
,

where p′ = p
p−1 is the conjugate exponent.

The function G in (2.2.2) is clearly proper, lower semi-continuous and convex
therefore we can apply twice the Legendre transform obtaining the dual definition
of the p-Dirichlet energy :

E∗
p′(φ) := G∗∗(∇φ) = sup

σ
−
Z
Ω

|σ|p′

p′
+

Z
Ω
σ · ∇φ,

where σ ∈
h
W p′(div,Ω)

in
:= {v ∈ [Lp

′
(Ω)]n|div v ∈ Lp

′
(Ω)}.

Observe now that: Z
Ω

|σ|p′

p′
=
H(|σ|2)

2

H(y) =

R
Ω |y|

p′
2

p′

2

.

(2.2.3)

Since 1 < p < 2 we have that p′ > 2 and the function H in (2.2.3) is proper,
lower semi-continuous and convex. By applying twice the Legendre transform we
obtain:

H(y) = H∗∗(y) = sup
y∗

< y, y∗ > −
R
Ω |y∗|

p′
p′−2

p′

p′−2

. (2.2.4)

Evaluating (2.2.4) in y = |σ|2 and setting y∗ = µ ∈ L
p′

p′−2 (Ω) we get:

H(|σ|2) = sup
µ
< µ, |σ|2 > −

R
Ω |µ|

p′
p′−2

p′

p′−2

= sup
µ≥0

< µ, |σ|2 > −
R
Ω µ

p′
p′−2

p′

p′−2

,

(2.2.5)

where the constraint µ ≥ 0 follows by observing that if we call:

ε(µ, σ) :=< µ, |σ|2 > −
R
Ω |µ|

p′
p′−2

p′

p′−2

,

then clearly a supremum in µ of ε(µ, σ) exists ( proposition 1.2 p.35 of [46]),
the functional −ε(µ, σ) is convex (strictly since 2 < p′ < ∞) and lower semi-
continuous in µ moreover lim||µ||→∞−ε(µ, σ) = ∞. Obviously, the supremum in
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µ ≥ 0 is less or equal the unconstrained one, therefore it suffices to prove the
other inequality which is easy since :

sup
µ
ε(µ, σ) ≤ sup

µ
ε(|µ|, σ) = sup

µ≥0
ε(µ, σ).

Using (2.2.5) we obtain the following duality based definition of E∗
p′(φ):

L∗
p(φ) :

(2.2.5)
= sup

σ

"
− sup
µ≥0

Z
Ω

1

2
µ|σ|2 − 1

2

Z
Ω

µ
p

2−p

p
2−p

#
+

Z
Ω
σ · ∇φ

= sup
σ

inf
µ≥0

−
Z
Ω

1

2
µ|σ|2 + 1

2

Z
Ω

µ
p

2−p

p
2−p

+

Z
Ω
σ · ∇φ.

(2.2.6)

As often happens in optimization theory, one can also consider the dual problem
associated with L∗

p(φ). Since we are dealing with a saddle point problem, the
standard theory of duality in these cases (see for example [43] and [46] for an
exhaustive treatment) tells us that the dual problem is achieved by exchanging the
”inf” with the ”sup”, therefore formally we define the following dual functional:

Lp(φ) := inf
µ≥0

sup
σ

−
Z
Ω

1

2
µ|σ|2 +

Z
Ω
σ · ∇φ+

2− p

2p

Z
Ω
µ

p
2−p . (2.2.7)

For completeness we compute the dual of L∗
p(φ) with the standard techniques in

[46].

Set V =
h
W p′(div,Ω)

in
and Y = L

p′
2 (Ω). We remind also that σ ∈ V and

µ ∈ Y ∗.
From now on we will tacitly omit belonging to the Banach spaces inside the ”inf”
or the ”sup” when confusion doesn’t arise.
Consider now the functional L∗

p(φ), clearly we have:

L∗
p(φ) = −L̃∗

p(φ), (2.2.8)

where:

L̃∗
p(φ) := inf

σ∈V
sup
µ≥0

Z
Ω

1

2
µ|σ|2 − 1

2γ

Z
Ω
µγ −

Z
Ω
σ · ∇φ

= inf
σ∈V

Jφ(σ),

and

Jφ(σ) := sup
µ≥0

Z
Ω

1

2
µ|σ|2 − 1

2γ

Z
Ω
µγ −

Z
Ω
σ · ∇φ,

where we set for simplicity γ = p
2−p as in (2.2.7).

We focus our attention to L̃∗
p(φ). Define now the perturbation function Φ :

(V × Y ) → R̄ as:

Φ(σ, ρ) := sup
µ≥0

Z
Ω

µ(|σ|2 + 2ρ)

2
− 1

2γ

Z
Ω
µγ −

Z
Ω
σ · ∇φ, (2.2.9)
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where ρ ∈ Y is the perturbation parameter.
Clearly we have that:

Φ(σ, 0) = Jφ(σ).

We introduce now the Lagrangian L : (V × Y ∗) → R̄ as:

L(σ, µ) :=

Z
Ω

1

2
µ|σ|2 − 1

2γ

Z
Ω
µγ −

Z
Ω
σ · ∇φ− χµ≥0, (2.2.10)

where χµ≥0 is the indicator function:

χµ≥0 :=

(
+∞ µ ∈ {µ ≥ 0}C

0 µ ∈ {µ ≥ 0},

and the sets {µ ≥ 0}, {µ ≥ 0}C , are defined as

{µ ≥ 0} = {µ ∈ Y ∗ | µ ≥ 0 a.e. in Ω}

{µ ≥ 0}C = {µ ∈ Y ∗ | ∃A ⊆ Ω, L(A) > 0, µ < 0 a.e. in A}.

Observe that our perturbation function can be written in a more convenient way
using the Lagrangian function as:

Φ(σ, ρ) = sup
µ
< ρ, µ > +L(σ, µ)

= (−Lσ)∗(ρ),
(2.2.11)

where (−Lσ)∗ is the Legendre transform of the map −Lσ : µ 7→ −L(σ, µ).
Clearly the map −Lσ is lower semi-continuous, convex and proper ∀σ ∈ V .
Again, iterating the Legendre transform in (2.2.11) and evaluating in µ we get:

Φ∗
σ(µ) = −Lσ(µ) ∀σ ∈ V, (2.2.12)

and Φ∗
σ is the Legendre transform of the map Φσ : ρ 7→ Φ(σ, ρ). Consider the

Legendre transform of Φ∗(σ∗, ρ∗), we have that:

Φ∗(0, µ) = sup
σ∈V,ρ∈Y

< µ, ρ > −Φ(σ, ρ)

= sup
σ∈V

Φ∗
σ(µ) = sup

σ∈V
−Lσ(µ),

(2.2.13)

where the last equality comes from (2.2.12).
Now, by definition, the dual problem of L̃∗

p(φ) is:

(L̃p(φ)) := (L̃∗
p(φ))

∗ = sup
µ∈Y ∗

−Φ∗(0, µ) = sup
µ∈Y ∗

inf
σ∈V

L(σ, µ), (2.2.14)

whence the last equality in (2.2.14) comes from (2.2.13).
Observe that, by the definition of L̃∗

p(φ) in (2.2.8):

(L∗
p(φ))

∗ = −(L̃p(φ)),
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and finally:

(L∗
p(φ))

∗ = inf
µ∈Y ∗

sup
σ∈V

−L(σ, µ)

= inf
µ ∈ Y ∗

µ ≥ 0

sup
σ∈V

−
Z
Ω

1

2
µ|σ|2 +

Z
Ω
σ · ∇φ+

1

2γ

Z
Ω
µγ , (2.2.15)

which is precisely Lp(φ) defined in (2.2.7).
We investigate now the properties of the perturbation function Φ(σ, ρ).
We denote as Γ0(V × Y ) the set of functions (other than the constants +∞ and
−∞) from V × Y to R̄ which are pointwise supremum of a family of continuous
affine functions. We have the following Lemma:

Lemma 2.2.1. Φ(σ, ρ) ∈ Γ0(V × Y ) .

Proof. Observe that Φ(σ, ρ) is proper, lower semi-continuous and clearly convex
since it is a supremum of a family of convex functions, therefore Φ(σ, ρ) ∈ Γ0(V ×
Y ) by [46] Proposition 3.1 p.14.

Moving on, we define the following useful sets:

Ω|σ|2+2ρ≥0 = {x ∈ Ω | |σ(x)|2 + 2ρ(x) ≥ 0},
Ω|σ|2+2ρ<0 = {x ∈ Ω | |σ(x)|2 + 2ρ(x) < 0}.

Consider now problem (2.2.9), by a simple direct computation we have:

sup
µ≥0

Z
Ω|σ|2+2ρ≥0

µ(|σ|2 + 2ρ)

2
− 1

2γ

Z
Ω|σ|2+2ρ≥0

µγ =
1

2γ′

Z
Ω|σ|2+2ρ≥0

(|σ|2 + 2ρ)γ
′
,

(2.2.16)
where γ′ = γ

γ−1 .
Observe that defining:

Φ̃(σ, ρ) := sup
µ ≥ 0

µ(x) = 0, ∀ x ∈ Ω|σ|2+2ρ<0

Z
Ω

µ(|σ|2 + 2ρ)

2
− 1

2γ

Z
Ω
µγ −

Z
Ω
σ · ∇φ,

then clearly we have:

Φ̃(σ, ρ) ≤ Φ(σ, ρ). (2.2.17)

Obviously: Z
Ω|σ|2+2ρ<0

µ̄(|σ|2 + 2ρ)

2
− 1

2γ

Z
Ω|σ|2+2<0

µ̄γ < 0 , ∀ µ̄ ≥ 0,
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hence by splitting Ω = Ω|σ|2+2ρ≥0 ∪ Ω|σ|2+2ρ<0 we have:

Φ(σ, ρ) ≤ sup
µ≥0

Z
Ω|σ|2+2ρ≥0

µ(|σ|2 + 2ρ)

2
− 1

2γ

Z
Ω|σ|2+2ρ≥0

µγ −
Z
Ω
σ · ∇φ = Φ̃(σ, ρ).

(2.2.18)
Therefore, by (2.2.17),(2.2.18) and (2.2.16) our perturbation function becomes:

Φ(σ, ρ) =
1

2γ′

Z
Ω|σ|2+2ρ≥0

(|σ|2 + 2ρ)γ
′ −
Z
Ω
σ · ∇φ. (2.2.19)

Moreover, we have the following result.

Theorem 2.2.2. Let Ω ∈ Rn be an open Lipschitz domain and set p ∈ R with
1 < p < 2. For a given φ ∈ W 1,p(Ω) we define the Lagrangian Lpφ(µ, σ) :

(L
p

2−p (Ω)×
h
W p′(div,Ω)

in
) → R as:

Lpφ(µ, σ) := −
Z
Ω

1

2
µ|σ|2 +

Z
Ω
σ · ∇φ+

2− p

2p

Z
Ω
µ

p
2−p .

Then we have that:

Ep(φ) = inf
µ ∈ L

p
2−p (Ω)

µ ≥ 0

sup
σ∈[W p′ (div,Ω)]

n
Lpφ(µ, σ),

and the unique saddle point (µ∗, σ∗) for Lpφ(µ, σ) satisfies the following extremality
relations:

µ∗σ∗ = ∇φ (2.2.20)

µ∗ = |σ∗|p′−2 = | ∇φ|2−p.

Proof. Consider the functionals L∗
p(φ) and Lp(φ), defined in (2.2.6) and in (2.2.7),

respectively. We have already seen in (2.2.6) the equivalence between L∗
p(φ) and

Ep(φ) whence the unique solution σ∗ for (2.2.6) satisfies by construction:

|σ∗|p′−2σ∗ = ∇φ. (2.2.21)

It remains to show that Lp(φ) = L∗
p(φ) and that there exist a unique saddle point

for the Lagrangian Lpφ(µ, σ).
We point out that working with L̃∗

p(φ) as defined in (2.2.8), instead of L∗
p(φ) is

the same a part from a change of sign. Therefore, we will call (P), the primal
problem:

L̃∗
p(φ) = inf

σ

(
sup
µ≥0

−Lpφ(µ, σ)

)
(P),

and (P∗), the dual problem:

L̃p(φ) = sup
µ≥0

n
inf
σ

−Lpφ(µ, σ)
o

(P∗).
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Consider now the perturbation function Φ(σ, ρ) in (2.2.9). In Lemma 2.2.1 we
have already shown that Φ(σ, ρ) ∈ Γ0(V × Y ) and we have already state that
problem (P) have a solution and that it is finite, therefore, by [46] Propositions
2.1 p.51 and Corollary 2.1 p.52 it suffices to show that problem (P) is stable.
We will apply [46] proposition 2.3 p.52, all the hypothesis are satisfied, we only
have to show that there exists a σ0 ∈ V such that ρ 7→ Φ(σ0, ρ) is finite and
continuous at 0(∈ Y ).
Set:

σ0 = | ∇φ|p−1 sign(∇φ).

Clearly σ0 ∈ V where sign(∇φ) is the vector field given by the standard conven-
tion:

sign(∇φ)i =

(
(∇φ(x))i
|∇φ(x)| x ∈ Ω s.t. | ∇φ(x)| > 0

[−1, 1] x ∈ Ω s.t. | ∇φ(x)| = 0
i = 1, .., n.

Using (2.2.19), it is easy to see that:

Φ(σ0, 0) = −Ep(φ),

which is finite by hypothesis since φ ∈W 1,p(Ω) and clearly the map ρ 7→ Φ(σ0, ρ)
is continuous at ρ = 0.
This shows that problem (P) is stable, inf(P) = sup(P∗), and (P∗) has at least
one solution µ∗.
We will show now that the optimal couple (µ∗, σ∗) is a saddle point.
By [46] Proposition 2.4 p.53, the optimal couple (µ∗, σ∗) is linked by the ex-
tremality relation:

Φ(σ∗, 0) + Φ∗(0, µ∗) = 0. (2.2.22)

Using (2.2.10), (2.2.13) and (2.2.19), (2.2.22) becomes:

1

2γ′

Z
Ω
|σ∗|2γ′ −

Z
Ω
σ∗ · ∇φ = (2.2.23)

= inf
σ

Z
Ω

1

2
µ∗|σ|2 − 1

2γ

Z
Ω
µ∗γ −

Z
Ω
σ · ∇φ ≤(2.2.24)

≤
Z
Ω

1

2
µ∗|σ∗|2 − 1

2γ

Z
Ω
µ∗γ −

Z
Ω
σ∗ · ∇φ. (2.2.25)

Observe that if supp(| ∇φ|) ⊆ supp(µ∗) then a solution for (2.2.24) exists and it
satisfies (2.2.20), to see this it suffices to note that (2.2.24) is differentiable in σ
and strictly convex so that the solution is a zero of the first derivative. Moreover,
(2.2.20) is also a necessary condition, otherwise either supp(µ∗)∩supp(| ∇φ|) = ∅
or supp(µ∗)∩ supp(| ∇φ|) ⊂ supp(| ∇φ|) , therefore if that happens, there exists
an A ⊂ Ω such that µ∗(x) = 0 and | ∇φ|(x) > 0 ∀x ∈ A, moreover, ∀M > 0,
M ∈ R, there exists a σt = tσ̄, t > M , with σt(x) = 0, ∀x ∈ Ω \ A and
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R
A σt · ∇φ = t, implying that:

inf
σ

Z
Ω

1

2
µ∗|σ|2 − 1

2γ

Z
Ω
µ∗γ −

Z
Ω
σ · ∇φ ≤

≤
Z
Ω

1

2
µ∗|σt|2 −

1

2γ

Z
Ω
µ∗γ −

Z
Ω
σt · ∇φ ≤

≤ − 1

2γ

Z
Ω
µ∗γ −

Z
A
σt · ∇φ ≤ −t < −M, ∀M > 0.

Hence, (2.2.24) is equal to −∞ which is a contradiction since (2.2.23) is finite.
Finally, if we set µ∗ = |σ∗|p′−2 we have that (2.2.25) becomes (2.2.23) and the
inequality becomes an equality, thus µ∗ is unique and σ∗ is also a solution for
(2.2.24), where the necessary compatibility condition (2.2.20) becomes exactly
(2.2.21) showing also that µ∗ = | ∇φ|2−p.
This completes the proof.

Remark 2.2.3. It is clear that all the construction of the perturbation function
Φ(σ, ρ) and the Lagrangian L(σ, µ) heavily requires the reflexivity of the Banach
spaces involved, therefore all this arguments cannot be applied to the case p = 1.

We will see in the next section that the dual problem (2.2.7) in the limit case when
p = 1, once defined on opportune function spaces, has indeed some advantages
and can be used to formulate a new definition for the total variation of a function
in BV (Ω).

2.3 Equivalence between Total Variation Energy and
Lp in the limit case p = 1

2.3.1 Introduction and structure of the proofs

As in Section 2.2 we have seen the equivalence between the p-Dirichlet energy
and our dual definition L∗

p(φ) in the case where 1 < p < 2, one may wonder what
happens in the limit case where p = 1. Consider an open bounded Lipschitz
domain Ω ∈ Rn, we define the Total Variation for a function φ ∈ L1(Ω) as:

TV (φ) := sup

σ ∈ C1
c (Ω)

n

|σ(x)| ≤ 1 ∀x ∈ Ω

−
Z
Ω
φdiv σ, (2.3.1)

where we say that a function φ ∈ L1(Ω) belongs to the space BV (Ω) of bounded
variation functions if TV (φ) <∞.
It is a known fact ( [52] Structure Theorem of BV functions p.167) that if φ ∈
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BV (Ω) then:
∇φ ∈ [M(Ω)]n

∇φ = µφσφ

µφ ∈ M+(Ω)

σφ : Ω → Rn µφ −measurable

|σφ(x)| = 1 for µφ − a.e. x ∈ Ω,

(2.3.2)

where M(Ω) is the set of the signed Radon measures in Ω and M+(Ω) is the set
of the positive Radon measures in Ω.
As a consequence, the following formula by parts holds for the Total Variation of
φ ∈ BV (Ω):

TV (φ) = sup

σ ∈ C1
c (Ω)

n

|σ(x)| ≤ 1 ∀x ∈ Ω

Z
Ω
σ · d[∇φ]

= sup

σ ∈ C1
c (Ω)

n

|σ(x)| ≤ 1 ∀x ∈ Ω

Z
Ω
σ · σφdµφ , ∇φ = µφσφ ,

(2.3.3)

where in (2.3.3) we write d[∇φ] to enforce the fact that ∇φ is a vector valued
measure.
With abuse of notation we will write µφ := | ∇φ|, moreover, from the proof of the
structure theorem which relies on the proof of the Riesz representation theorem
(cf. [52] theorem 1 p.49) we call | ∇φ| the total variation measure of φ and :

TV (φ) =

Z
Ω
d| ∇φ|. (2.3.4)

Motivated by these facts we introduce our candidate definition of the 1-Dirichlet
Energy as:

L∗
1(φ) := sup

σ∈[C1
c (Ω)]n

inf
µ∈M+(Ω)

−
Z
Ω

|σ|2

2
dµ+

Z
Ω

dµ

2
+

Z
Ω
σ · d[∇φ]. (2.3.5)

It is straightforward to see that:

inf
µ∈M+(Ω)

Z
Ω

1− |σ|2

2
dµ =

(
0 |σ(x)| ≤ 1, ∀x ∈ Ω

−∞ ∃ x∗ ∈ Ω s.t. |σ(x∗)| > 1,
(2.3.6)

it suffices to observe that by the Lebesgue decomposition theorem for any µ ∈
M+(Ω) we can write µ = µac + µs, with µac << Ln, µac ≥ 0 and µs ⊥ Ln,
µs ≥ 0, implying that:

inf
µ∈M+(Ω)

Z
Ω

1− |σ|2

2
dµ = inf

µac ≥ 0

µs ≥ 0

Z
Ω

1− |σ|2

2
µacdx+

Z
Ω

1− |σ|2

2
dµs.
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Hence, (2.3.6) follows by observing that, if there exists a single point x∗ ∈ Ω ∩
{µs > 0} such that |σ(x∗)| > 1, then we can concentrate all the mass of µs on
x∗, while the thesis is obvious on {µac > 0}.
In conclusion, since we are looking for a supremum in σ in (2.3.5), by (2.3.6) we
have that:

L∗
1(φ) = TV (φ). (2.3.7)

Remark 2.3.1. Observe that the choice of the spaces for σ and µ is not only
motivated by the definition of the Total Variation of a function in BV (Ω). The
rigorous explanation comes directly from the definition of µ as the conjugate vari-
able of |σ|2 via Legendre transform (see (2.2.4)). The choice σ ∈ C1

c (Ω)
n
implies

that |σ|2 is a positive compact supported continuous scalar function. Since µ, as
a conjugate variable, must to live in the dual space of |σ|2 then by the Riesz-
Markov-Kakutani representation theorem we have that µ ∈ M+(Ω).

Consider now the candidate dual problem:

L1(φ) := inf
µ∈M+(Ω)

sup
σ∈[C1

c (Ω)]n
−
Z
Ω

1

2
|σ|2dµ+

Z
Ω
σ · d[∇φ] +

1

2

Z
Ω
dµ. (2.3.8)

The goal of this section is actually to prove that the dual problem defined in
(2.3.8) is precisely the Total Variation of φ.
We will proceed at steps introducing first a surrogate problem taking inspirations
from the results in [18] for the L1-Optimal Transport problem and finally showing
the equivalence selecting some ad hoc parameters. The proof of the equivalence
between our saddle point formulation and the Total Variation for a function
in BV (Ω) is based upon showing the equivalence between multiple variational
problems. We first consider the problem in (2.3.8) without the mass term 1

2

R
Ω dµ

defining the following functional:

Lφ(µ, σ) := −
Z
Ω

1

2
|σ|2dµ+

Z
Ω
σ · d[∇φ].

We then show that the well-posedness of the problem:

inf
µ∈M+(Ω)

sup
σ∈[C1

c (Ω)]n
Lφ(µ, σ), (2.3.9)

is ensured if we further constrain the measure µ to be such that | ∇φ| << µ.
Moreover we will show that the ”sup” becomes a ”max” if σ ∈ [L2

µ(Ω)]
n, this

result is shown in Proposition 2.3.2. This is a crucial part of the proof, even if the
relaxed problem where σ ∈ [L2

µ(Ω)]
n seems to be more complex since in that case

the variable σ lives in a manifold which depends upon µ, it adds the properties
to be a reflexive space and admits a candidate maximizer, thus leading us to
state some bounds to the original problem. Next we show that problem (2.3.9)
is equivalent to the problem without the further constraint | ∇φ| << µ, this is
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a consequence of Lemma 2.3.3 and Lemma 2.3.4. As a result, from Proposition
2.3.2 we have the following equivalence between variational problems:

inf
µ∈M+(Ω)

max
σ∈[L2

µ(Ω)]n
Lφ(µ, σ) = (2.3.10)

= inf
µ ∈ M+

(Ω)

| ∇φ| << µ

Z
Ω

1

2
|σφ|2dµ , µσφ = ∇φ .(2.3.11)

This result is shown in Corollary 2.3.5. After that, following the work in [18], we
introduce the fixed mass surrogate problem:

Tm(φ) = inf
µ ∈ M+

(Ω)Z
Ω

dµ = m

sup
σ∈[C1

c (Ω)]n
−
Z
Ω

1

2
|σ|2dµ+

Z
Ω
σ · d[∇φ],

(2.3.12)

which is essentially problem (2.3.9) where we add the further constraint on the
mass of the measure µ. From (2.3.10), (2.3.11) an homogeneity argument and
the Structure Theorem of BV functions, we can state some bounds from above
and below for (2.3.12) leading to the following equivalence:

Tm(φ) =
(TV (φ))2

2m
.

This result is shown in Theorem 2.3.7. An immediate corollary is that we have
an explicit formula which interconnects TV (φ) with Tm(φ) when the mass m =
TV (φ):

TV (φ) = 2TTV (φ)(φ).

This result is shown in Corollary 2.3.8.
This observation enables us to show the equivalence between TV (φ) and L1(φ).
Thus, in Theorem 2.3.10 we state the main result of this Section:

TV (φ) = 2TTV (φ)(φ) = L1(φ).

Moreover we can show that the optimal measure µ∗ for L1(φ) is precisely the total
variation measure, µ∗ = | ∇φ| and there exists a unique saddle point (µ∗, σ∗µ∗) ∈
(M+(Ω), [L2

µ∗(Ω)]
n) which is precisely the measure and vector field given by the

Structure Theorem of BV functions.

2.3.2 Main results and proofs

We now present the main results and proofs for this section.
Consider the following variational problem:

Tm(φ) = inf
µ ∈ M+

(Ω)Z
Ω

dµ = m

sup
σ∈[C1

c (Ω)]n
−
Z
Ω

1

2
|σ|2dµ+

Z
Ω
σ · d[∇φ].

(2.3.13)
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We have the following preparatory proposition:

Proposition 2.3.2. Let Ω be a bounded open Lipschitz domain in Rn, then ∀φ ∈
BV (Ω) we have that the problem:

inf
µ ∈ M+

(Ω)

| ∇φ| << µ

1

2

Z
Ω

d∇φ

dµ

2

dµ, (2.3.14)

is equivalent to:

inf
µ ∈ M+

(Ω)

| ∇φ| << µ

sup
σ∈[C1

c (Ω)]n
−
Z
Ω

1

2
|σ|2dµ+

Z
Ω
σ · d[∇φ]. (2.3.15)

Moreover, problem (2.3.15) is equivalent to the following:

inf
µ ∈ M+

(Ω)

| ∇φ| << µ

max
σ∈[L2

µ(Ω)]n
−
Z
Ω

1

2
|σ|2dµ+

Z
Ω
σ · d[∇φ],

where | ∇φ| << µ means that the measure | ∇φ| is absolutely continuous with
respect to µ, i.e. that there exists a µ-measurable, σφ : Ω → Rn, such that
∇φ = µσφ.
Moreover, µ∗ ∈ M+(Ω) is a solution for (2.3.14) iff it is a solution for (2.3.15).

Proof. Let σ ∈ C1
c (Ω)

n
and define σt = tσ, ∀ t ≥ 0, then the following inequality

holds: Z
Ω
σtσφdµ− 1

2

Z
Ω
|σt|2dµ ≤ 1

2

 Z
Ω

σ

∥σ∥[L2
µ(Ω)]n

· σφdµ

!2

,

and we have an equality for

t = t∗ :=

R
Ω σ · σφ

∥σ∥2
[L2

µ(Ω)]n
.

Hence:

sup
σ∈[C1

c (Ω)]n
−
Z
Ω

1

2
|σ|2dµ+

Z
Ω
σ · d[∇φ] =

= sup
σ∈[C1

c (Ω)]n
−
Z
Ω

1

2
|σ|2dµ+

Z
Ω
σ · σφdµ =

=
1

2
sup

σ∈[C1
c (Ω)]n

 Z
Ω

σ

∥σ∥[L2
µ(Ω)]n

· σφdµ

!2

=

=
1

2
sup

σ ∈
h
C1
c (Ω)

in
∥σ∥

[L2µ(Ω)]n
= 1

Z
Ω
σ · σφdµ

2

=
1

2
∥σφ∥2([L2

µ(Ω)]n)∗ . (2.3.16)
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Where the last equality in (2.3.16) follows by [61] Theorem 6.14. This shows that
(2.3.14) is equivalent and has the same solution of (2.3.15) since [L2

µ(Ω)]
n =

[L2
µ(Ω)]

n ∗
.

Finally, observe that completing the squares we have:

max
σ∈[L2

µ(Ω)]n
−
Z
Ω

1

2
|σ|2dµ+

Z
Ω
σ · d[∇φ] =

max
σ∈[L2

µ(Ω)]n

1

2
∥σφ∥2[L2

µ(Ω)]n − 1

2
∥σφ − σ∥2[L2

µ(Ω)]n =

= max
σ∈[L2

µ(Ω)]n

1

2
∥σφ∥2[L2

µ(Ω)]n − 1

2
∥σφ − σ∥2[L2

µ(Ω)]n =
1

2
∥σφ∥2[L2

µ(Ω)]n .

This shows the last assertion.

The next technical lemma will be used:

Lemma 2.3.3. Let Ω be a bounded open Lipschitz domain in Rn, and set

Lφ(µ, σ) := −
Z
Ω

1

2
|σ|2dµ+

Z
Ω
σ · d[∇φ], ∀φ ∈ BV (Ω),

where µ ∈ M+(Ω) and σ ∈ Y , Y = C1
c (Ω)

n
. If | ∇φ| is not absolutely continu-

ous with respect to µ, then:

sup
σ∈Y

Lφ(µ, σ) = +∞. (2.3.17)

As a consequence, the same holds for Y := [L2
µ(Ω)]

n.

Proof. Let B be the Borel σ-algebra of Ω and M+
|∇φ| := {µ ∈ M+(Ω) | |∇φ| <<

µ}. For any µ̄ /∈ M+
|∇φ| there exists an N ⊂ B such that µ̄(N) = 0 and

| ∇φ|(N) = m > 0.
Let M > 0, then for all δ > 0 there exists an open Aδ ⊂ Ω such that N ⊂ Aδ
and µ̄(Aδ) = δ. As a consequence, the following chain of inequalities holds:

sup
σ∈[C1

c (Ω)]n
Lφ(µ, σ) ≥ sup

σ∈[C1
c (Aδ)]

n
Lφ(µ, σ) ≥ sup

σ ∈
h
C1
c (Aδ)

in
|σ(x)| ≤ M ∀ x ∈ Ω

Lφ(µ, σ) ≥

≥ −1

2
δM2 + sup

σ ∈
h
C1
c (Aδ))

in
|σ(x)| ≤ M ∀ x ∈ Ω

Z
Ω
σ · d[∇φ] =

= −1

2
δM2 +M | ∇φ|(Aδ) ≥ −1

2
δM2 +M | ∇φ|(N) =

= −1

2
δM2 +Mm.
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Taking the limit for δ → 0 yields:

sup
σ∈[C1

c (Ω)]n
Lφ(µ, σ) ≥Mm ∀M > 0,

which implies (2.3.17).
Finally, observe that:

sup
σ∈[L2

µ(Ω)]n
Lφ(µ, σ) ≥ sup

σ∈[C1
c (Ω)]n

Lφ(µ, σ).

Therefore, the assertion also holds for σ ∈ [L2
µ(Ω)]

n.

We are now ready for the following Lemma.

Lemma 2.3.4. With the same definitions of Lemma 2.3.3, ∀φ ∈ BV (Ω), µ ∈
M+(Ω) and σ ∈ Y , Y := C1

c (Ω)
n
, we have that the problem:

inf
µ ∈ M+

(Ω)

| ∇φ| << µ

sup
σ∈Y

Lφ(µ, σ), (2.3.18)

is equivalent to

inf
µ∈M+(Ω)

sup
σ∈Y

Lφ(µ, σ). (2.3.19)

and µ∗ ∈ M+(Ω) is a solution for (2.3.18) iff it is a solution for (2.3.19).
Moreover, the same results hold if Y := [L2

µ(Ω)]
n and the ”sup” becomes a

”max”.

Proof. By Lemma 2.3.3, we have that (2.3.19) is equivalent and has the same
solutions to:

inf
µ∈M+(Ω)

sup
σ∈Y

Lφ(µ, σ) + χ|∇φ|<<µ, (2.3.20)

where χ|∇φ|<<µ is the indicator function of the set

M+
|∇φ| := {µ ∈ M+(Ω) | |∇φ| << µ},

χ|∇φ|<<µ :=

(
+∞ µ /∈ M+

|∇φ|
0 µ ∈ M+

|∇φ|.

Next, observe that (2.3.20) is precisely (2.3.18) since by the Structure Theorem
of BV functions the set M+

|∇φ| is non empty, therefore, µ∗ ∈ M+(Ω) is a solution

for (2.3.18) iff it is a solution for (2.3.19).
Finally observe that Lemma 2.3.3 holds if Y = [L2

µ(Ω)]
n hence we can apply the

same arguments. This complete the proof.

From Proposition 2.3.2 and Lemma 2.3.4 we have an immediate corollary:
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Corollary 2.3.5. With the same hypothesis as Proposition 2.3.4 we have:

inf
µ∈M+(Ω)

max
σ∈[L2

µ(Ω)]n
Lφ(µ, σ) = (2.3.21)

= inf
µ ∈ M+

(Ω)

| ∇φ| << µ

Z
Ω

1

2
|σφ|2dµ , µσφ = ∇φ .(2.3.22)

and µ∗ ∈ M+(Ω) is a solution for (2.3.21) iff it is a solution for (2.3.22).

Proof. The equivalence between the two problems is a simple consequence of
Proposition 2.3.2 and Lemma 2.3.4 where we have seen the equivalence between
problems (2.3.14), (2.3.15) and (2.3.19) for Y = [L2

µ(Ω)]
n.

Remark 2.3.6. Observe that in the proofs of of Proposition 2.3.2 and Lemma
2.3.4 no restrictions were used on the mass of µ, therefore we also have the
following equality:

inf
µ ∈ M+

(Ω)Z
Ω

dµ = m

max
σ∈[L2

µ(Ω)]n
Lφ(µ, σ) = inf

µ ∈ M+
(Ω)

| ∇φ| << µZ
Ω

dµ = m

Z
Ω

1

2
|σφ|2dµ , µσφ = ∇φ .

We are ready now to prove the following theorem:

Theorem 2.3.7. Let Ω be a bounded open Lipschitz domain in Rn and consider
the functional Tm(φ) defined in (2.3.13) then, for any φ ∈ BV (Ω), we have that:

Tm(φ) =
(TV (φ))2

2m
. (2.3.23)

Proof. The proof is a simple extension of the proof of Theorem 1 in [18].
For the sake of simplicity we define:

εφ(µ) := sup
σ∈[C1

c (Ω)]n
−
Z
Ω

1

2
|σ|2dµ+

Z
Ω
σ · d[∇φ].

Thus, Tm(φ) can be written as:

Tm(φ) = inf
µ ∈ M+

(Ω)Z
Ω

dµ = m

εφ(µ)

= inf
µ ∈ M+

(Ω)Z
Ω

dµ = m

sup
σ∈[C1

c (Ω)]n
−
Z
Ω

1

2
|σ|2dµ+

Z
Ω
σ · d[∇φ].

First observe that the infimum in Tm(φ) is in fact a minimum since εφ(µ) is lower
semi-continuous with respect to the weak∗-topology, convex and proper because
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it is a supremum of a family of weak∗-continuous affine functionals in M+(Ω)
which is a closed and convex subset of M(Ω).
Moreover, the set {µ ∈ M+(Ω) |

R
Ω dµ = m} is convex and compact in the

weak∗-topology, therefore, a minimum exists from the direct method of the cal-
culus of variations.
If TV (φ) = 0 then φ is constant a.e. and there is nothing to prove since Tm(φ)
is clearly zero.
In the more general case where TV (φ) > 0 we proceed as follows, first we show

that (TV (φ))2

2m is a lower bound for Tm(φ) and after that we will show that there

exists a particular admissible pair (µ̄, σ̄) such that (TV (φ))2

2m is also an upper bound
for Tm(φ).

• (≥) By homogeneity, ∀ t ≥ 0, t ∈ R and ∀µ ∈ M+(Ω),
R
Ω dµ = m, we have

that:

εφ(µ) ≥ sup
t ≥ 0

t ∈ R

sup
σ̄ ∈

h
C1
c (Ω)

in
|σ̄(x)| ≤ 1, ∀ x ∈ Ω

−mt
2

2
+ t

Z
Ω
σ̄ · d[∇φ] =

= sup
t ≥ 0

t ∈ R

−mt
2

2
+ t TV (φ) := sup

t ≥ 0

t ∈ R

g(t).

Finally, observe that the function g(t) is strictly concave and increasing for

t ≤ TV (φ)
m , therefore, the supremum is attained at t∗ = TV (φ)

m and after
evaluating at t∗ we find that:

εφ(µ) ≥
(TV (φ))2

2m
, ∀µ ∈ M+(Ω),

Z
Ω
dµ = m. (2.3.24)

Taking the infimum in µ on the left side of (2.3.24) we get:

Tm(φ) ≥
(TV (φ))2

2m
.

• (≤) From the structure theorem of BV functions (2.3.2) we have that ∀φ ∈
BV (Ω) there exists an opportune µ̃ ∈ M+(Ω) and a µ̃-measurable σ̃ :
Ω → Rn such that ∇φ = µ̃σ̃, | ˜σ(x)| = 1, µ̃-a.e. in Ω and, by (2.3.4),
TV (φ) =

R
Ω dµ̃.

Define now

µ̄ =
m

TV (φ)
µ̃,

and

σ̄ =
TV (φ)

m
σ̃.
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Observe that the space C1
c (Ω)

n ⊂ [L2
µ(Ω)]

n for any µ ∈ M+(Ω) and
clearly σ̄ ∈ [L2

µ(Ω)]
n, | ∇φ| << µ̄, µ̄σ̄ = ∇φ and

R
Ω dµ̄ = m then, by

Remark 2.3.6, we have the following chain of inequalities:

Tm(φ) ≤ inf
µ ∈ M+

(Ω)Z
Ω

dµ = m

max
σ∈[L2

µ(Ω)]n
Lφ(µ, σ) ≤

Z
Ω

1

2
|σ̄|2dµ̄ =

(TV (φ))2

2m
.

From Theorem 2.3.7 we have an immediate corollary:

Corollary 2.3.8. For any φ ∈ BV (Ω) we have that:

TV (φ) = 2TTV (φ)(φ). (2.3.25)

Proof. We have already seen in the proof of theorem (2.3.7) that if TV (φ) = 0
then Tm(φ) = 0, ∀m ≥ 0, while in the case where TV (φ) > 0 the results follows
directly by (2.3.23).

Remark 2.3.9. Corollary 2.3.8 characterizes the Total Variation of a function
in BV (Ω) reabsorbing the ”difficult” part in the standard definition (2.3.1), i.e.
the constraint |σ(x)| ≤ 1, ∀x ∈ Ω, by introducing a new variable µ and a mass
constraint. However, this does not make the problem tractable from the numer-
ical point of view since (2.3.25) requires a priori the knowledge of TV (φ). We
will show next that it is possible to circumvent this obstacle by introducing an
equivalent variational problem to (2.3.25) but without the mass constraint. This
new equivalent variational problem turns out to be exactly our dual formulation
functional L1(φ) defined in (2.3.8).

We are now ready to state the main Theorem of this section:

Theorem 2.3.10. Given a function φ ∈ BV (Ω), we have that:

TV (φ) = 2TTV (φ)(φ) = L1(φ). (2.3.26)

Moreover, if we define the Lagrangian L1
φ : (M+(Ω)× C1

c (Ω)
n
) → R:

L1
φ(µ, σ) := −

Z
Ω

1

2
|σ|2dµ+

Z
Ω
σ · d[∇φ] +

1

2

Z
Ω
dµ,

and the functional
Eφ(µ) := sup

σ∈[C1
c (Ω)]n

L1
φ(µ, σ),

then the unique optimal measure

µ∗ = arg min
µ∈M+(Ω)

Eφ(µ),
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is precisely the total variation measure:

µ∗ = | ∇φ|,

and there exists a unique saddle point

(µ∗, σ∗µ∗) ∈ (M+(Ω), [L2
µ∗(Ω)]

n),

for L1
φ, where the optimal vector field σ∗µ∗ is the one given by the Structure The-

orem of BV functions.

Proof. The proof works as the proof of Theorem 2.3.7, indeed we will show that:

TV (φ) ≤ L1(φ) ≤ 2TTV (φ)(φ).

• (≥) It follows from (2.3.7) and observing that clearly L∗
1(φ) ≤ L1(φ) since

”supinf”≤ ”infsup”, where L∗
1(φ) is defined in (2.3.5).

• (≤) From Corollary 2.3.8 we know that:

TTV (φ)(φ) =
TV (φ)

2
.

which implies that:

L1(φ) = inf
µ∈M+(Ω)

sup
σ∈[C1

c (Ω)]n
−
Z
Ω

1

2
|σ|2dµ+

Z
Ω
σ · d[∇φ] +

1

2

Z
Ω
dµ ≤

≤ inf
µ ∈ M+

(Ω)Z
Ω

dµ = TV (φ)

sup
σ∈[C1

c (Ω)]n
−
Z
Ω

1

2
|σ|2dµ+

Z
Ω
σ · d[∇φ] +

1

2

Z
Ω
dµ =

= TTV (φ)(φ) +
TV (φ)

2
= TV (φ).

This completes the proof of the first part of the theorem.
We will now consider the characterization of the optimal measure µ∗.
We have:

L1(φ) = inf
µ∈M+(Ω)

Eφ(µ) = inf
µ∈M+(Ω)

sup
σ∈[C1

c (Ω)]n
L1
φ(µ, σ).

Observe that Eφ(µ) is lower semi-continuous with respect to the weak∗-topology,
convex and proper because it is a supremum of a family of weak∗-continuous
affine functionals in M+(Ω) which is a closed and convex subset of M(Ω).
With the same arguments as in (2.3.24), ∀µ ∈ M(Ω), we have that:

Eφ(µ) ≥
(TV (φ))2

2
R
Ω dµ

+
1

2

Z
Ω
dµ >

1

2

Z
Ω
dµ ≥ 0. (2.3.27)
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From (2.3.27) we have that Eφ(µ) is bounded from below and ∀M > 0, the
set {µ | E(µ) < M} is a subset of the weak∗-compact set {µ |

R
Ω dµ ≤ 2M}

which implies that E(µ) is coercive with respect to the weak∗-topology. As a
consequence, a minimum exists by the direct method of the calculus of variation.
Next, set µφ := | ∇φ|. From the structure theorem of BV functions (2.3.2)
we have that there exists an opportune µφ-measurable σφ : Ω → Rn such that
∇φ = µφσφ, |σφ(x)| = 1, µφ-a.e. in Ω and, by (2.3.4), TV (φ) =

R
Ω dµφ.

From these facts we have:

Eφ(µφ) = sup
σ∈[C1

c (Ω)]n
−
Z
Ω

1

2
|σ|2dµφ +

Z
Ω
σ · σφdµφ +

1

2

Z
Ω
dµφ

= sup
σ∈[C1

c (Ω)]n
−
Z
Ω

1

2
|σ|2dµφ +

Z
Ω
σ · σφdµφ +

1

2
TV (φ) =

=
1

2
∥σφ∥2[L2

µφ (Ω)]n +
1

2
TV (φ) = TV (φ),

(2.3.28)

where the first and the second line of (2.3.28) follow by writing d[∇φ] = σφdµφ
and µφ being the Total Variation measure, while the third line of (2.3.28) follows
by (2.3.16).
As a consequence, from (2.3.26) and (2.3.28), we have that

µ∗ := µφ.

is a minimizer for Eφ(µ) and the pair:

(µ∗, σ∗µ∗ := σφ) ∈ (M+(Ω), [L2
µ∗(Ω)]

n),

given by the Structure Theorem of BV functions is a saddle point for L1
φ(µ, σ).

It remains to show that µ∗ is unique.
Suppose that there exists another minimizer for Eφ(µ) and call it µ̄. By Lemma
2.3.4, if µ̄ is a minimizer for Eφ(µ), then | ∇φ| << µ̄ and hence there exists a
µ̄-measurable σ̄ : Ω → Rn such that ∇φ = µ̄σ̄.
Now, with the same computations as in (2.3.28), and using the optimality con-
dition for µ̄ given by (2.3.26), we have the following chain of equalities:Z

Ω
|σ̄|dµ̄ = sup

σ ∈
h
C1
c (Ω)

in
|σ(x)| ≤ 1 ∀ x ∈ Ω

Z
Ω
σσ̄dµ̄ = sup

σ ∈
h
C1
c (Ω)

in
|σ(x)| ≤ 1 ∀ x ∈ Ω

Z
Ω
σ · d[∇φ]

= TV (φ) = E(µ̄) =

Z
Ω

|σ̄|2 + 1

2
dµ̄. (2.3.29)

Equating the first and the last term of (2.3.29) we have that |σ̄| = 1, µ̄-a.e.
and TV (φ) =

R
Ω dµ̄. This implies that µ̄ have the same properties of the total

variation measure µφ and therefore µ̄ = µφ, since by the Structure Theorem of
BV functions there exists a unique total variation measure.
As a consequence, also the vector field σ∗µ∗ is unique.
This completes the proof.
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2.4 The Counterpart on Graphs

In this section, taking inspiration from the continuous case, we will consider
the graph based discretized version of the p-Dirichlet Energy including the limit
case where p = 1. We will further states the discrete version of the results in
Section 2.2 and 2.3. We point out that in the discrete case everything is far more
easier, nevertheless, our duality based approach leads to very efficient numerical
algorithms based on the Dynmic Monge Kantorovich (DMK) scheme, originally
developed in [55] for the L1 Optimal Transport problem and in [54] for the graph
based counterpart.
We define a weighted directed graph as a collection G = (E, V, ω), where E
is the set of m = |E| edges, V the set of n = |V | nodes and ω is a weight
on the edges. Each edge ei ∈ E is characterized by the pair ei = vjvk, with
vj , vk ∈ V , and we write ωi for the weight associated to the edge ei. On a
graph, we can define functions on nodes and functions on edges. We denote as
H(V ) = Rn and H(E) = Rm the Banach spaces of real-valued functions on V
and E, respectively. We will write φv = φ(v) for the value in a node v ∈ V
of the vector φ = [φv1 , ..., φvn ] ∈ H(V ). With the same notation, we will write
σe = σ(e) for the value in an edge e ∈ E of the vector σ = [σe1 , ..., σem ] ∈ H(E).
We now introduce the graph gradient operator ∇ : H(V ) −→ H(E) as the m×n
matrix whose (i, j)-element is:

(∇)ij =


−ωi ei = vjvk, k ∈ {1, . . . , n}
ωi ei = vkvj , k ∈ {1, . . . , n}
0 otherwise.

Although the gradient matrix relies on a edge orientations, we point out that
such orientation is arbitrary and does not affect the construction of the operator
so that G can be still considered as undirected.
Next, we define the graph divergence operator div : H(E) −→ H(V ), which can
be expressed as:

div = −∇T ,

i.e., as the negative transposed n×m matrix of ∇.
In analogy to the continuous case, we define the weighted graph laplacian operator
for a function φ ∈ H(V ) as:

∆cφ := −div(c⊙∇φ) = ∇TDiag(c)∇φ,

where c ∈ H(E) is a weight functions on the edges set, ⊙ is the Hadamard
product:

u⊙ v : Rn × Rn → Rn

(u⊙ v)i 7→ ui · vi i = 1, . . . , n.

and
∆c = ∇TDiag(c)∇, (2.4.1)
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is the c-weighted graph laplacian matrix.
As a direct extension, we define p-Laplacian operator, p > 1, on graphs as:

∆pφ := −div(| ∇φ|p−2 ⊙∇φ) = ∇TDiag(| ∇φ|p−2)∇φ. (2.4.2)

Moreover, for a given σ ∈ H(E) and 1 ≤ p < ∞ we define the discrete edges
based p-norm as:

∥σ∥lp :=

 X
e∈E

|σe|p
! 1

p

,

where in the limit case p = ∞ we define the l∞-norm as:

∥σ∥l∞ := sup
e∈E

|σe|.

.
As in Section 2.2, we define the graph p-Dirichlet energy for a given p ≥ 1 and a
function φ ∈ H(V ), φv <∞, ∀ v ∈ V as:

Ep(φ) :=
∥∇φ∥plp

p
=
X
e∈E

|(∇φ)e|p

p
. (2.4.3)

From now on we will consider only finite functions φ ∈ H(V ) i.e. φv < ∞,
∀ v ∈ V .
In the limit case p = 1 we call the E1(φ) as the graph Total Variation energy of
φ.
Moving on, we define the edges based discrete counterpart of the Legendre trans-
form for a function ψ : H(E) → R̄ as :

ψ∗ : H(E) → R̄,

ψ∗(g∗) : = sup
g∈H(E)

< g∗, g >H(E)×H(E) −ψ(g)

= sup
g∈H(E)

g∗ · g − ψ(g)

= sup
g∈H(E)

X
e∈E

g∗ege − ψ(g).

In what follows we will tacitly omit belonging to the edges or nodes Banach spaces
inside the ”inf” or the ”sup” when confusion doesn’t arise.
With the same arguments as in Section 2.2, by applying twice the Legendre
transform we obtain the dual definition of the graph p-Dirichlet energy in the
case 1 < p < 2:

E∗p′(φ) := sup
σ∈H(E)

−
X
e∈E

|σe|p
′

p′
+ σ · ∇φ. (2.4.4)
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Since we have differentiability and strong concavity, the supremum in (2.4.4) is
indeed a maximum and is attained for the unique σ∗ such that:

|σ∗|p′−2 ⊙ σ∗ = ∇φ. (2.4.5)

Again, with the same arguments as in (2.2.5)-(2.2.6) we obtain the following
duality based saddle point reformulation of E∗p′(φ) (in the case 1 < p < 2 which
implies 2 < p′ <∞):

L∗p(φ) := sup
σ∈H(E)

inf
µ∈H(E)+

−
X
e∈E

1

2
µe|σe|2 +

2− p

2p

X
e∈E

µ
p

2−p
e + σ · ∇φ, (2.4.6)

where H(E)+ := {µ ∈ H(E) | µe ≥ 0, ∀ e ∈ E}, p := 2− p and for simplicity we
set γ = p

2−p .
By construction (see (2.2.5)-(2.2.6)), we have that σ̄ is a solution of (2.4.6) iff it is
a solution for (2.4.4) that is to say that it is unique and satisfies the extremality
relation (2.4.5).
In the limit case where p = 1 we have γ = 1 and we define the functional:

L∗1(φ) := sup
σ∈H(E)

inf
µ∈H(E)+

−
X
e∈E

1

2
µe|σe|2 +

1

2

X
e∈E

µe + σ · ∇φ. (2.4.7)

Observe that the density µ plays the role of a Lagrange multiplier for the con-
straint |σe|2 ≤ 1, ∀ e ∈ E or equivalently ∥σ∥l∞ ≤ 1.
As a consequence, L∗1(φ) is equivalent to the graph-based counterpart of (2.3.5)-
(2.3.7) :

L∗1(φ) = sup
σ ∈ H(E)

∥σ∥l∞ ≤ 1

σ · ∇φ = ∥∇φ∥∗l∞ = E1(φ), (2.4.8)

where the equality between L∗1(φ) and E1(φ) is given by observing that, since
H(E) = Rm, the l∞ norm is in duality with the l1 norm.
A solution σ∗ for (2.4.8) is one of the generalized signum functions for ∇φ:

σ∗ = sign(∇φ) =

(
(∇φ)e
|(∇φ)e| e ∈ E s.t. |(∇φ)e| > 0

[−1, 1] e ∈ E s.t. |(∇φ)e| = 0.
(2.4.9)

From (2.4.8) and (2.4.9), it makes sense to extend the definition of L∗p(φ) to the
case 1 ≤ p < 2.
Now, define the perturbation function Φ : (H(E)×H(E)) → R̄ as:

Φ(σ, ρ) := sup
µ∈H(E)+

X
e∈E

µe(|σe|2 + 2ρe)

2
− 1

2γ

X
e∈E

µγe − σ · ∇φ,

where ρ ∈ H(E) is the perturbation parameter.
As in the continuous case, we introduce the Lagrangian L : (H(E)×H(E)) → R̄
as:

L(σ, µ) :=
X
e∈E

1

2
µe|σe|2 −

1

2γ

X
e∈E

µγe − σ · ∇φ− χµ∈H(E)+ , (2.4.10)
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where χµ∈H(E)+ is the indicator function:

χµ∈H(E)+ :=

(
+∞ µ /∈ H(E)+

0 µ ∈ H(E)+.

Clearly we have that:

L∗p(φ) = sup
σ∈H(E)

inf
µ∈H(E)+

−L(σ, µ), (2.4.11)

moreover, it is useful to define:

L̃∗p := −L∗p(φ). (2.4.12)

As in (2.2.11)-(2.2.15), the dual problem associated to Φ is given by interchanging
the ”sup” with the ”inf” in (2.4.11), so that we define:

Lp(φ) := inf
µ∈H(E)+

sup
σ∈He

−L(σ, µ)

= inf
µ∈H(E)+

sup
σ∈H(E)

−
X
e∈E

1

2
µe|σe|2 + σ · ∇φ+

1

2γ

X
e∈E

µe
γ ,

(2.4.13)

and

L̃p(φ) := −Lp(φ).

We point out that differently from the continuous case, here we have all the
reflexivity necessary in the Banach spaces involved, therefore, all the construction
of the perturbation function, the Lagrangian and the dual problem Lp(φ) is well
defined in the case 1 ≤ p < 2.
Let’s focus our attention on the perturbation function Φ(σ, ρ), we have two cases:

• Case 1 < p < 2: it is easy to see, with simple computations, that in this
case we have the discrete counterpart of (2.2.19):

Φ(σ, ρ) =
1

2γ′

X
e∈E|σe|2+2ρe≥0

(|σe|2 + 2ρe)
γ′ − σ · ∇φ, (2.4.14)

where:

E|σe|2+2ρe≥0 = {e ∈ E | |σe|2 + 2ρe ≥ 0}.

• Case p = 1: In this case the density µ plays the role of a Lagrange multiplier
for the constraint |σe|2 + 2ρe ≤ 1, ∀ e ∈ E, thus, the perturbation function
becomes:

Φ(σ, ρ) =

(
−σ · ∇φ |σe|2 + 2ρe ≤ 1, ∀ e ∈ E

+∞ otherwise.
(2.4.15)
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As a consequence we have the following theorem.

Theorem 2.4.1. Let G = (E, V, ω) be a weighted directed graph and ∇ it’s gradi-
ent matrix. Set p ∈ R with 1 ≤ p < 2. For a given φ ∈ H(V ), φv <∞, ∀ v ∈ V ,
we define the Lagrangian L

p
φ : (H(E)+ ×H(E)) → R as:

Lpφ(µ, σ) := −
X
e∈E

1

2
µe|σe|2 + σ · ∇φ+

2− p

2p

X
e∈E

µe
p

2−p . (2.4.16)

Then, we have that:

Ep(φ) = inf
µ∈H(E)+

sup
σ∈H(E)

Lpφ(µ, σ),

and a saddle point (µ∗, σ∗)(unique in the case 1 < p < 2) for L
p
φ satisfies the

extremality relations:

µ∗eσ
∗
e = (∇φ)e, ∀ e ∈ E, 1 ≤ p < 2 (2.4.17)

µ∗e = |σ∗e |p
′−2 = |(∇φ)e|2−p, ∀ e ∈ E, 1 < p < 2

|σ∗e | ≤ 1, ∀ e ∈ E, p = 1 (2.4.18)

µ∗e|σ∗e |2 − µ∗e = 0, ∀ e ∈ E, p = 1 (2.4.19)

µ∗e = |(∇φ)e|, ∀ e ∈ E, p = 1. (2.4.20)

Moreover, even in the case p = 1, µ∗ is the unique optimal density.

Proof. First we point out that, with the same arguments as in Lemma 2.2.1, we
have that Φ(σ, ρ) ∈ Γ0(H(E)×H(E)).
In the case where 1 < p < 2 the thesis follows with the same proof of Theorem
2.2.2 where it suffices to substitute integrals with sums over the edges.
As a consequence, we show only the case p = 1.
Consider now the functionals L∗1(φ) and L1(φ) defined in (2.4.7) and (2.4.13) for
p = 1.
We have already seen in (2.4.8) the equivalence between L∗1(φ) and E1(φ) where a
solution σ∗ for (2.4.8) is given by (2.4.9), thus, |σ∗e | ≤ 1, ∀ e ∈ E which is (2.4.18).
We will show that L1(φ) = L∗1(φ) and that there exist a saddle point for L1φ(µ, σ).
As in the proof of Theorem 2.2.2, we will work with L̃∗1(φ) as defined in (2.4.12)
for p = 1 instead of L∗1(φ), since it is clearly the same a part from a change of
sign. Therefore, we will call (P), the primal problem:

L̃∗1(φ) = inf
σ

(
sup
µ≥0

−L1φ(µ, σ)

)
(P),

and (P∗), the dual problem:

L̃1(φ) = sup
µ≥0

n
inf
σ

−L1φ(µ, σ)
o

(P∗).
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From (2.4.8) and L∗1(φ) = −L̃∗1(φ) we have that the primal problem is:

inf
σ ∈ H(E)

∥σ∥l∞ ≤ 1

−σ · ∇φ (P).

Again, by (2.4.8) and L̃∗1(φ) = −L∗1(φ) we have that

inf(P) = −E1(φ).

For completeness we also write explicitly the dual problem:

sup
µ∈H(E)+

inf
σ∈H(E)

X
e∈E

1

2
µe|σe|2 −

1

2

X
e∈E

µe − σ · ∇φ (P∗).

Consider now the perturbation function Φ(σ, ρ) in (2.4.15). We have already state
that Φ(σ, ρ) ∈ Γ0(H(E)×H(E)) and that problem (P) have a solution and it is
finite, therefore, by [46] Propositions 2.1 p.51 and Corollary 2.1 p.52 it suffices to
show that problem (P) is stable.
First observe that Φ(σ, ρ) is nothing that a classical perturbation function for
a convex inequality constrained problem. By [46] Proposition 5.1 p.66, if there
exists a σ0 ∈ H(E) such that |σ0e|2 < 1, ∀ e ∈ E and Φ(σ0, 0) is finite, then
problem (P) is stable. Observe now that taking σ0 = 1

2 sign(∇φ) as in (2.4.9),
clearly |σ0e|2 < 1, ∀ e ∈ E and Φ(σ0, 0) = −1

2E1(φ) is finite.
This shows that problem (P) is stable, inf(P) = sup(P∗), and (P∗) has at least
one solution µ∗.
We will show now that an optimal pair (µ∗, σ∗) is a saddle point for L1φ(µ, σ).
By [46] Proposition 2.4 p.53, an optimal pair (µ∗, σ∗) is linked by the extremality
relation:

Φ(σ∗, 0) + Φ∗(0, µ∗) = 0. (2.4.21)

Using (2.4.15) we have that:

Φ(σ∗, 0) = −σ∗ · ∇φ.

On the other hand, in analogy to (2.2.13), we have:

Φ∗(0, µ) = sup
σ∈V

−L(σ, µ), (2.4.22)

where the Lagrangian L is defined in (2.4.10). Thus, from (2.4.22), we get:

−Φ∗(0, µ∗) = inf
σ∈V

L(σ, µ∗)
(2.4.10)
= inf

σ

X
e∈E

1

2
µ∗e|σe|2 −

1

2

X
e∈E

µ∗e − σ · ∇φ.
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As a consequence, (2.4.21) implies that:

−σ∗ · ∇φ = (2.4.23)

= inf
σ

X
e∈E

1

2
µ∗e|σe|2 −

1

2

X
e∈E

µ∗e − σ · ∇φ ≤ (2.4.24)

≤
X
e∈E

1

2
µ∗e|σ∗e |2 −

1

2

X
e∈E

µ∗e − σ∗ · ∇φ. (2.4.25)

Since σ∗ is optimal for (P) and µ∗ is optimal for (P∗), we have that |σ∗e | ≤ 1,
∀ e ∈ E and µ∗ ∈ H(E)+, thus:

µ∗e|σ∗e |2 − µ∗e ≤ 0, ∀ e ∈ E.

On the other hand, (2.4.23)≤(2.4.25) implies thatX
e∈E

µ∗e|σ∗e |2 − µ∗e ≥ 0, ∀ e ∈ E,

thus, since the addendums are all negative, we have (2.4.19).
As a consequence, (2.4.23)=(2.4.24)=(2.4.25) and σ∗ is a solution of (2.4.24) since
(2.4.23) is finite.
With the same arguments as in the proof of Theorem 2.2.2, observe that if {e ∈
E | |∇φ|e > 0} := supp(| ∇φ|) ⊆ supp(µ∗) := {e ∈ E | µ∗e > 0} then a solution
for (2.4.24) exists and it satisfies (2.4.17), to see this it suffices to note that
(2.4.24) is differentiable in σ and strictly convex so that the solution is a zero of
the first derivative. Moreover, (2.4.17) is also a necessary condition, otherwise
either supp(µ∗) ∩ supp(| ∇φ|) = ∅ or supp(µ∗) ∩ supp(| ∇φ|) ⊂ supp(| ∇φ|) ,
therefore if that happens, there exists an A ⊂ E such that µ∗e = 0 and | ∇φ|e > 0
∀ e ∈ A, moreover, ∀M > 0, M ∈ R, there exists a σt = tσ̄, t > M , with σte = 0,
∀ e ∈ E \A and

P
e∈A σte(∇φ)e = t, implying that:

inf
σ

X
e∈E

1

2
µ∗e|σe|2 −

1

2

X
e∈E

µ∗e − σ · ∇φ ≤

≤
X
e∈E

1

2
µ∗e|σte|2 −

1

2

X
e∈E

µ∗e −
X
e∈E

σte(∇φ)e ≤

≤ −1

2

X
e∈E

µ∗e −
X
e∈A

σte(∇φ)e ≤ −t < −M, ∀M > 0.

hence, (2.4.24) is equal to −∞ which is a contradiction since (2.4.23) is finite.
Setting

µ∗e = |(∇φ)e|, ∀ e ∈ E,

for any generalized signum solution σ∗ of (P) we have clearly that

µ∗ ⊙ σ∗ = ∇φ,
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and (2.4.19) is satisfied, therefore, the pair

(µ∗ = | ∇φ|, σ∗),

is a saddle point for L1φ(µ, σ).
Moreover, in virtue of (2.4.17) and (2.4.19) , µ∗ = | ∇φ| is the unique optimal
density, there are no other possibilities, since |σ∗e | ≤ 1, ∀ e ∈ E and by (2.4.19),
|σ∗e | = 1, ∀ e ∈ E s.t.µ∗e > 0, so that:

|(∇φ)e| = |µ∗eσ∗e | = µ∗e|σ∗e | ≥ µ∗e ∀ e ∈ E,

hence µ∗ is zero where | ∇φ| vanish and

|(∇φ)e| = µ∗e ∀ e ∈ E s.t.µ∗e > 0.

This completes the proof.

Remark 2.4.2. The extremality relations (2.4.17)-(2.4.20) are nothing that the
KKT conditions for the saddle points (µ∗, σ∗) of Lp(φ), 1 ≤ p < 2, which read as
follows: 

−|σ∗e |2 + µ∗e
2(p−1)
2−p − ce = 0, ∀ e ∈ E

µ∗eσ
∗
e = (∇φ)e, ∀ e ∈ E

ceµ
∗
e = 0, ce ≥ 0, ∀ e ∈ E.

(2.4.26)

where c ∈ H(E) is an opportune positive Lagrange multiplier.
Observe that in the case 1 < p < 2, since c ≥ 0, if µ∗ē = 0 on some edge ē, then
the first equation in (2.4.26) implies that σ∗ē = 0 and cē = 0, this is the unique
possible solution. On the edges where µ∗e > 0, the third equation gives that ce = 0.
Therefore, (2.4.26) implies that(

µ∗e = |σ∗e |
2−p
p−1 = |σ∗e |p

′−2 = |(∇φ)e|2−p, ∀ e ∈ E, 1 < p < 2

µ∗eσ
∗
e = (∇φ)e. ∀ e ∈ E, 1 < p < 2.

In the case p = 1, if µ∗ē = 0 on some edge ē, then the first equation in (2.4.26)
admits a solution iff |σ∗ē |2 − 1 ≤ 0. On the other hand, the third equation in
(2.4.26) implies that if µ∗ē > 0, then cē = 0 and hence |σ∗ē | = 1. At the end of
the story, (2.4.26) recovers the remaining extremality relation of Theorem 2.4.1
in the case p = 1:

|σ∗e | ≤ 1, ∀ e ∈ E, p = 1

|σ∗e | = 1, ∀ e ∈ E s.t. µ∗e > 0, p = 1

µ∗eσ
∗
e = (∇φ)e, ∀ e ∈ E, p = 1.

where the unique possible optimal density is µ∗e = |(∇φ)e|, ∀ e ∈ E.
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2.5 Generalizations to different discrete operators

In Section 2.4 we have seen how the techniques presented in Section 2.3 interlaces
with graph theory and more essentially with the natural differential structure on
graphs given by the graph gradient operator.
From a mathematical point of view, working on graphs or working with a linear
operator Λ : Rn → Rm is genuinely the same.
Motivated by this, we call V := Rn and E := Rm and we introduce the Λ based
p-Dirichlet energy for φ ∈ V , 1 ≤ p, as:

EΛp (φ) :=
∥Λφ∥plp
p

,

where for a g ∈ Rk we define ∥g∥lp :=
Pk

i=1 |gi|p
1
p
, and in the limit case p = ∞

we define the l∞-norm as ∥g∥l∞ := supi=1,..,k |gi|.
As a consequence, for a finite φ ∈ V , φi < ∞, i = 1, .., n, all the arguments in
Section 2.4 works and we introduce our duality based saddle point formulation
of EΛp (φ):

LΛp
∗
(φ) := sup

σ∈E
inf
µ∈E+

−
mX
i=1

1

2
µi|σi|2 + σ · Λφ+

2− p

2p

mX
i=1

µ
p

2−p

i , (2.5.1)

where p := 2− p, and E+ := {µ ∈ E | µi ≥ 0, i = 1, ...,m}.
The dual definition of (2.5.1) reads as follows:

LΛp (φ) := inf
µ∈E+

sup
σ∈E

−
mX
i=1

1

2
µi|σi|2 + σ · Λφ+

2− p

2p

mX
i=1

µ
p

2−p

i .

Theorem 2.4.1 rewrites as:

Theorem 2.5.1. Let V = Rn, E = Rm and Λ : V → E be a linear operator. Set
p ∈ R with 1 ≤ p < 2. For a given φ ∈ V , φi < ∞, i = 1, ..., n, we define the
Lagrangian L

p,Λ
φ : (E+ × E) → R as:

Lp,Λφ (µ, σ) := −
mX
i=1

1

2
µi|σi|2 + σ · Λφ+

2− p

2p

mX
i=1

µ
p

2−p

i .

Then, we have that

EΛp (φ) = LΛp
∗
(φ) = LΛp (φ) = inf

µ∈E+
sup
σ∈E

Lp,Λφ (µ, σ), (2.5.2)

and a saddle point (µ∗, σ∗)(unique in the case 1 < p < 2) for L
p,Λ
φ satisfies the
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extremality relations:

µ∗iσ
∗
i = (Λφ)i, i = 1, ...,m, 1 ≤ p < 2

µ∗i = |σ∗i |p
′−2 = |(Λφ)i|2−p, i = 1, ...,m, 1 < p < 2

|σ∗i | ≤ 1, i = 1, ...,m, p = 1

µ∗i |σ∗i |2 − µ∗i = 0, i = 1, ...,m, p = 1

µ∗i = |(Λφ)i|, i = 1, ...,m, p = 1.

Moreover, even in the case p = 1, µ∗ is the unique optimal density.

Proof. It suffices to observe that V plays the role of the nodes space, E plays
the role of the edges space and Λ plays the role of the graph gradient operator.
Thus, the proof is exactly the same of Theorem 2.4.1.

We have an immediate corollary.

Corollary 2.5.2. Let V = Rn and define the Lagrangian l
p
φ : (V + × V ) → R as:

lpφ(ν, σ) := −
nX
i=1

1

2
νi|σi|2 + σ · φ+

2− p

2p

nX
i=1

ν
p

2−p

i .

Set

lp
∗(φ) := sup

σ∈V
inf
ν∈V +

lpφ(ν, σ),

lp(φ) := inf
ν∈V +

sup
σ∈V

lpφ(ν, σ), (2.5.3)

where 1 ≤ p < 2. For a given φ ∈ V , φi <∞, i = 1, ..., n, we have that

1

p
∥φ∥plp = lp

∗(φ) = lp(φ) = inf
ν∈V +

sup
σ∈V

lpφ(ν, σ),

and a saddle point (ν∗, σ∗)(unique in the case 1 < p < 2) for l
p
φ satisfies the

extremality relations:

ν∗i σ
∗
i = φi, i = 1, ..., n, 1 ≤ p < 2

ν∗i = |σ∗i |p
′−2 = |φi|2−p, i = 1, ..., n, 1 < p < 2

|σ∗i | ≤ 1, i = 1, ..., n, p = 1

ν∗i |σ∗i |2 − ν∗i = 0, i = 1, ..., n, p = 1

ν∗i = |φi|, i = 1, ..., n, p = 1.

Moreover, even in the case p = 1, ν∗ is the unique optimal density.

Proof. Set Λ equal to the identity operator in Theorem 2.5.1.
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2.5.1 The regularized problem

In order to avoid ill-conditioning still maintaining sufficient accuracy, it is useful,
at least from the prospective of numerical applications, to consider a regularized
version for the functional defined in (2.5). In the framework of the Tikhonov
regularization, consider a small Tikhonov parameter δ > 0, δ << 1 and the
regularized Lagrangian for 1 ≤ p < 2 as:

Lp,Λ,δφ (µ, σ) := −
mX
i=1

1

2
(µi + δ)|σi|2 + σ · Λφ+

2− p

2p

mX
i=1

µ
p

2−p

i , (2.5.4)

We define the regularized saddle point formulation of EΛp as:

LΛp,δ(φ) := inf
µ∈E+

sup
σ∈E

Lp,Λ,δφ (µ, σ), ∀φ ∈ V. (2.5.5)

If we introduce the functional

Lp,Λδ (φ, µ) := sup
σ∈E

Lp,Λ,δφ (µ, σ), (2.5.6)

then (2.5.5) rewrites as:

LΛp,δ(φ) = inf
µ∈E+

Lp,Λδ (φ, µ).

The parameter δ has the important role to guarantees the coercivity and the
differentiability of the map:

σ 7→ Lp,Λ,δφ (µ, σ), ∀φ ∈ V, ∀µ ∈ E+,

with the aim to directly compute a maximizer σ∗ for (2.5.6) and simplify (2.5.5),
while retaining a good approximation of the original saddle point formulation
(2.5.2), if δ is sufficiently small.
Let’s focus our attention on the functional LΛp,δ(φ).
Since µ + δ > 0, the supremum in (2.5.6) is in fact a maximum(we have indeed
strong concavity, differentiability and anti-coerciveness), and the maximizer σ∗

is given by:

σ∗i =
(Λφ)i
µi + δ

, i = 1, ...,m. (2.5.7)

.
Hence, computing Lp,Λ,δφ (µ, σ) for σ = σ∗, the functional defined in (2.5.6) is equal
to:

Lp,Λδ (φ, µ) =
mX
i=1

1

2

|(Λφ)i|2

(µi + δ)
+

2− p

2p

mX
i=1

µ
p

2−p

i , (2.5.8)

and the regularized saddle point formulation in (2.5.5) simplifies as follows:

LΛp,δ(φ) = inf
µ∈E+

mX
i=1

1

2

|(Λφ)i|2

(µi + δ)
+

2− p

2p

mX
i=1

µ
p

2−p

i . (2.5.9)
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Moreover, if we introduce the function:

εφ(µ) := Lp,Λδ (φ, µ), ∀φ ∈ V,

we clearly have that:

εφ(µ) ≥
mX
i=1

1

2

|(Λφ)i|2

δ
+

2− p

2p

mX
i=1

µ
p

2−p

i , ∀µ ∈ E+. (2.5.10)

Thus, εφ(µ) is convex, lower semi-continuous and coercive in µ, for any φ ∈ V .
Therefore, the existence of a minimizer µ∗ for (2.5.9) is guaranteed.
The same arguments can be applied for the graph based p-Dirichlet energy
(2.4.13) and the discrete lp-norm (2.5.3).
In particular, in the same setting of Theorem 2.4.1, the regularized functional of
L1(φ) becomes:

L1,δ(φ) := inf
µ∈H(E)+

X
e∈E

1

2

|(∇φ)e|2

(µe + δ)
+

1

2

X
e∈E

µe, (2.5.11)

and in the same setting of Corollary 2.5.2, the regularized version of l1(φ) is:

l1,δ(φ) := inf
ν∈V +

nX
i=1

1

2

|φi|2

(νi + δ)
+

1

2

nX
i=1

νi. (2.5.12)

2.6 Extension to other types of discrete energies

In Section 2.5 we have seen how to generalize our saddle point formulation for
lp-norms type energies for general discrete linear operators.
In a similar fashion, one may wonder if the same techniques can be extended to
more general types of convex discrete energies.
Let V := Rn, E := Rm and Λ : V → E be a linear discrete operator. For a given
φ ∈ V , φi <∞, i = 1, ..., n, let h : R → R+ be a positive, lower semi-continuous,
convex, even function and consider the following type of energy:

E(φ) :=
mX
i=1

h((Λφ)i). (2.6.1)

Our goal is to state a sufficient and necessary condition in order to provide a
saddle point formulation for (2.6.1) as (2.4.6).
We have the following theorem.

Theorem 2.6.1. Let V := Rn, E := Rm and Λ : V → E be a linear discrete
operator. For a given φ ∈ V , φi < ∞, i = 1, ..., n, consider the energy E(φ) as
in (2.6.1). Define the Lagrangian L

E,Λ
φ : (E+ × E) → R as

LE,Λφ (µ, σ) := σ · Λφ− 1

2

mX
i=1

µi|σi|2 +
1

2

mX
i=1

g(µi).
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Then, we can write the following saddle point formulation:

E(φ) = sup
σ∈E

inf
µ∈E+

LE,Λφ (µ, σ), (2.6.2)

iff there exists a convex, proper and lower semi-continuous function g : R → R
such that the following Legendre duality relation holds:

1

2
(g ◦ | · |)∗ ◦ | · |2

∗
= h, (2.6.3)

where for a function γ : R → R, γ ◦ | · |(x) := γ(|x|) and γ ◦ | · |2(x) := γ(|x|2)
As a consequence:

E(φ) =
mX
i=1

1

2
(g ◦ | · |)∗ ◦ | · |2

∗
((Λφ)i) . (2.6.4)

Moreover, if g implies that there exists a σ0 ∈ E and a discrete norm ∥ · ∥ such
that:

ρ(µ) := σ0 · Λφ− 1

2

mX
i=1

µi|σ0i|2 +
1

2

mX
i=1

g(µi), (2.6.5)

is norm coercive i.e. lim µ ∈ E
+

∥µ∥ → ∞

ρ(µ) = +∞ and one of the following holds true:

• (a)
ε(σ) := inf

µ∈E+
LE,Λφ (µ, σ),

is concave, upper semi-continuous and norm anti-coercive, i.e. there exists
a discrete norm ∥ · ∥ such that lim∥σ∥→∞ ε(σ) = −∞

• (b)
sup
σ∈E

ε(σ) = sup
σ∈B

σ · Λφ+ J(σ),

where B ⊂ E is convex, closed, bounded, non empty and J is concave, upper
semi-continuous

then there exists a saddle point (µ∗, σ∗) for L
E,Λ
φ and we can interchange ”sup”

with ”inf” in (2.6.2):
E(φ) = inf

µ∈E+
sup
σ∈E

LE,Λφ (µ, σ). (2.6.6)

If furthermore, g is differentiable with derivative g′, a saddle point (µ∗, σ∗) for
L
E,Λ
φ satisfies the following extremality relations:

µ∗iσ
∗
i = (Λφ)i, i = 1, ...,m,

g′(µ∗i ) = |σ∗i |2, i = 1, ...,m, µ∗i > 0

−|σ∗i |2 + g′(0) ≥ 0, i = 1, ...,m, µ∗i = 0, g′(0) > 0

σ∗i = 0, i = 1, ...,m, µ∗i = 0, g′(0) = 0.
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In the case where the particular structure of g implies this as a necessary con-
dition and it is possible to know that g is differentiable on a convex and closed
neighborhood A ⊆ E+ of a solution µ∗, or g is differentiable and g′(0) < 0, then
µ∗i > 0, i = 1, ...,m.
In this case the extremality relations simplify to:

µ∗i > 0, σ∗i =
(Λφ)i
µ∗i

, (µ∗i )
2g′(µ∗i ) = |(Λφ)i|2 i = 1, ...,m. (2.6.7)

Proof. First we observe that the Legendre transform for a function Γ : E → R
of the type Γ(y) =

Pm
i=1 γ(yi), γ : R → R, is exactly the sum of the Legendre

transforms for any single addendum, i.e. Γ∗(y∗) =
Pm

i=1 γ
∗(y∗i ).

Moreover, observe that necessary the function h has to be convex and even since
the Legendre transform of an even function is even [87], thus otherwise, formula
(2.6.3) could not be satisfied for any mass function g.
Next, for any function g : R → R and ∀x ≥ 0 we have that:

sup
µ≥0

xµ− g(µ) = (g ◦ | · |)∗(x), (2.6.8)

since:

sup
µ≥0

xµ− g(µ) = sup
µ≥0

xµ− g(|µ|) ≤ (g ◦ | · |)∗(x) ≤

(x≥0)

≤ sup
µ
x|µ| − g(|µ|) = sup

µ≥0
xµ− g(µ).

Consider now the saddle point formulation (2.6.2). Summing up all together we
have:

sup
σ∈E

inf
µ∈E+

LE,Λφ (µ, σ) = sup
σ∈E

inf
µ∈E+

σ · Λφ− 1

2

mX
i=1

µi|σi|2 +
1

2

mX
i=1

g(µi) =

= sup
σ∈E

σ · Λφ− sup
µ∈E+

1

2

mX
i=1

µi|σi|2 −
1

2

mX
i=1

g(µi) =

(2.6.8)
= sup

σ∈E

mX
i=1

σi(Λφ)i −
1

2

mX
i=1

(g ◦ | · |)∗(|σi|2) =

=

mX
i=1

1

2
(g ◦ | · |)∗ ◦ | · |2

∗
((Λφ)i) . (2.6.9)

This shows that (2.6.2) holds true iff (2.6.3) holds and g, h are convex and
proper, otherwise we can not recover g from h since this require to apply twice
the Legendre transform to both of them. As a consequence, (2.6.4) follows directly
from (2.6.3) and (2.6.9).
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Now we treat the existence and characterization of a saddle point (µ∗, σ∗) for
L
E,Λ
φ .

If either (a) or (b) holds the problem

sup
σ∈E

inf
µ∈E+

LE,Λφ (µ, σ) ,

admits a solution and the existence of a saddle point (µ∗, σ∗) follows directly from
[46] Proposition 2.4 p.176.
This is essentially the stability of the primal problem (P) in Theorems 2.4.1 and
2.5.1, since if we define the perturbation function:

Φ(σ, ψ) := sup
µ∈E+

−σ · Λφ+

mX
i=1

µi|σi|2 + 2ψi
2

− 1

2

mX
i=1

g(µi).

where ψ ∈ E, clearly Φ(σ, ψ) is well define (g is convex and lower semi-continuous)
and Φ(σ, ψ) ∈ Γ0(E×E) (as in Lemma 2.2.1) because it is a supremum of a family
of convex functions, therefore, the existence of a σ0 ∈ E which makes ρ(µ) norm
coercive is exactly equivalent to the continuity of ψ 7→ Φ(σ0, ψ) in 0 (cf.[46]
Lemma 4.3 p. 183).
As a consequence, problem (2.6.2) is equivalent to (2.6.6), i.e. they have the same
optimal value E(φ), we can interchange ”inf” with ”sup” and there exists a saddle
point (µ∗, σ∗) for LE,Λφ .
Finally if g is differentiable, the KKT conditions for problem (2.6.6) reads as
follows: 

−|σ∗i |2 + g′(µi)− ci = 0, i = 1, ..,m

µ∗iσ
∗
i = (Λφ)i, i = 1, ...,m

ciµ
∗
i = 0, ci ≥ 0, i = 1, ...,m.

(2.6.10)

where c ∈ E is an opportune positive Lagrange multiplier.
In the case where µ∗j > 0 for an index 1 ≤ j ≤ m, the third equation gives that

cj = 0 and therefore the extremality relations are satisfied iff g′(µ∗j ) = |σ∗j |2.
On the other hand, since c ≥ 0, if µ∗j = 0 on some index 1 ≤ j ≤ m and g′(0) > 0,

(2.6.10) has a solutions iff −|σ∗j |2 + g′(0) ≥ 0. If g′(0) = 0, the only possible
solution is σ∗j = 0 and cj = 0 which holds iff (Λφ)j = 0. If g′(0) < 0, the first
equation in (2.6.10) has no solutions, thus necessary µ∗ > 0 and the extremality
relations simplify to (2.6.7). In the case where g implies that necessary a solution
µ∗ is such that µ∗i > 0, i = 1, ..,m and there exists a convex and closed neighbor-
hood A ⊆ E+ of µ∗ where g is differentiable, possibly restricting (2.6.6) on A, µ∗

becomes an interior critical point therefore the extremality relations simplify to
(2.6.7).

Remark 2.6.2. In virtue of the symmetrical role played by µ and σ, (a) and (b)
in Theorem 2.6.1 can be interchanged by the following:
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• (I) there exists a µ0 ∈ E+ and a discrete norm ∥ · ∥ such that:

ρ(σ) := σ · Λφ− 1

2

mX
i=1

µ0i|σi|2 +
1

2

mX
i=1

g(µ0i),

is norm anti-coercive i.e. lim∥σ∥→∞ ρ(σ) = −∞

• (II) g(µ) is norm coercive in E+, i.e. there exists a discrete norm ∥ ·∥ such
that

lim
µ ∈ E

+

∥µ∥ → ∞

g(µ) = +∞.

Note that if (II) holds, by the same homogeneity arguments as in (2.3.27) we
have:

ε(µ) := sup
σ∈E

σ · Λφ− 1

2

mX
i=1

µi|σi|2 +
1

2

mX
i=1

g(µi),

ε(µ) ≥ (∥Λφ∥l1)2

2
Pm

i=1 µi
+

1

2

mX
i=1

g(µi) >
1

2

mX
i=1

g(µi) ≥ 0.

Therefore,if g is norm coercive, also ε is norm coercive and the hypothesis of [46]
Porposition 2.4 p.176 are satisfied in the interchanged circumstances (see [46]
Remark 2.4 p.177).

We will now see two illustrative examples on how to use (2.6.3) to construct an
equivalent saddle point formulation.

Example 2.6.3 (Recovering the graph Total Variation Energy saddle point for-
mulation). Let G be a weighted directed graph and ∇ it’s gradient matrix. Our
spaces are therefore E = Rm and V = Rn where m = #edges, n = #nodes and
Λ = ∇.
The graph 1-Dirichlet energy or the graph Total Variation energy is:

E(φ) := ∥∇φ∥l1 =
mX
i=1

|(∇φ)i|,

whence h = | · | which is convex,proper, and even.
Formula (2.6.3) reads as follows:

1

2
(g ◦ | · |)∗ ◦ | · |2

∗
(x) = |x|.

The Legendre transform of h is:

h∗(x∗) = χ|x∗|≤1 = χ|x∗|2≤1 =

(
0 |x∗|2 ≤ 1

+∞ |x∗|2 > 1.
(2.6.11)



136 CHAPTER 2. DUALITY AND THE TOTAL VARIATION ENERGY

So that, using (2.6.11) we have:

1

2
(g ◦ | · |)∗(|x∗|2) = h∗(x∗) = χ|x∗|2≤1,

which implies that:
(g ◦ | · |)∗(y) = 2χy≤1 = χy≤1. (2.6.12)

Applying again the Legendre transform and evaluating in µ ≥ 0 we have:

g(µ) = (g ◦ | · |)(µ) = (g ◦ | · |)∗∗(µ) (2.6.12)
= (χ(·)≤1)

∗(µ) =

= sup
y
µy − χy≤1 = sup

q
µ(1− q)− χq≥0 =

= µ+ sup
q≥0

−µq = µ, ∀µ ≥ 0.

Hypothesis (2.6.5) and (b) of Theorem 2.6.1 are satisfied (see the proof of Theorem
2.4.1,it suffices to take σ0 = 1

2 sign(∇φ)). Observe that taking µ0 such that
µ0i = 1, i = 1, ...,m, having g clearly norm coercive, also hypothesis (I)-(II) of
Remark 2.6.2 are satisfied.
As a consequence we obtain that:

∥∇φ∥l1 = inf
µ∈E+

sup
σ∈E

−1

2

mX
i=1

µi|σi|2 + σ · ∇φ+
1

2

mX
i=1

µi,

which is exactly (2.4.13) for p = 1.
Moreover the extremality relations from Theorem 2.4.1 are the same of that from
Theorem 2.6.1.

Example 2.6.4 (Minimal Surfaces type energy). Let V = Rn, E = Rm and
Λ : V → E be a linear discrete operator. Consider now an energy of the type:

E(φ) :=
mX
i=1

p
1 + |(Λφ)i|2.

This kind of energy is derived as a discrete counterpart for the continuous min-
imal surfaces energy where in the continuous case Λ is replaced by the gradient
operator.
In this case we have h =

p
1 + | · |2 which is convex and proper.

Formula (2.6.3) reads as follows:

1

2
(g ◦ | · |)∗ ◦ | · |2

∗
(x) =

p
1 + |x|2.

The Legendre transform of h is easy to compute and is given by:

h∗(x∗) =

(
−
p

1− |x∗|2 |x∗|2 ≤ 1

+∞ |x∗|2 > 1.
(2.6.13)
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Using (2.6.13) we have:

1

2
(g ◦ | · |)∗(|x∗|2) = h∗(x∗) =

(
−
p

1− |x∗|2 |x∗|2 ≤ 1

+∞ |x∗|2 > 1,

which implies that:

(g ◦ | · |)∗(y) = γ(y) :=

(
−2

√
1− y y ≤ 1

+∞ y > 1.
(2.6.14)

Applying again the Legendre transform and evaluating in µ ≥ 0 we have:

g(µ) = (g ◦ | · |)(µ) = (g ◦ | · |)∗∗(µ) (2.6.14)
= γ∗(µ) =

= sup
y
µy − γ(y) = sup

y≤1
µy + 2

p
1− y =

=

(
1
µ + µ µ > 0

+∞ µ = 0
, ∀µ ≥ 0.

Consider now the function:

ρ(µ) = σ0 · Λφ− 1

2

mX
i=1

µi|σ0i|2 +
1

2

mX
i=1

(
1

µi
+ µi).

Taking σ0 such that σ0i =
1√
2

(Λφ)i√
1+|(Λφ)i|2

, i = 1, ...,m we have:

ρ(µ) =
1√
2

mX
i=1

|(Λφ)i|2p
1 + |(Λφ)i|2

− 1

4

mX
i=1

µi
|(Λφ)i|2

1 + |Λφ|2
+

1

2

mX
i=1

(
1

µi
+ µi)

≥ 1√
2

mX
i=1

|(Λφ)i|2p
1 + |(Λφ)i|2

+
1

4

mX
i=1

µi +
1

2

mX
i=1

1

µi
.

Hence, ρ(µ) is positive, bounded from below and taking as norm the infinity dis-
crete norm l∞ we have clearly that ρ(µ) → +∞ if ∥µ∥l∞ → ∞.
Next, observe that:

inf
µ∈E+

−1

2

mX
i=1

µi|σi|2 +
1

2

mX
i=1

(
1

µi
+ µi) =

=

(Pm
i=1

p
1− |σi|2 |σi|2 ≤ 1, i = 1, ...,m

−∞ otherwise,

so that defining Bl∞ := {σ ∈ E | |σi| ≤ 1, i = 1, ...,m} we get:

sup
σ∈E

inf
µ∈E+

−1

2

mX
i=1

µi|σi|2 + σ · Λφ+
1

2

mX
i=1

(
1

µi
+ µi) =

= sup
σ∈Bl∞

σ · Λφ+
mX
i=1

p
1− |σi|2.
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Therefore, hypothesis (2.6.5) and (b) of Theorem 2.6.1 are satisfied.
The effective domain of g is {µ ∈ E+ | µi > 0, i = 1, ...,m} but since we are
looking for an infimum in µ, by [120] Theorem 36.3 p.382, we obtain that:

E(φ) = inf
µ∈E+

sup
σ∈E

−1

2

mX
i=1

µi|σi|2 + σ · Λφ+
1

2

mX
i=1

(
1

µi
+ µi). (2.6.15)

Observe that µ∗ is necessary strictly greater then zero and g is differentiable in a
convex and closed neighborhood of µ∗, therefore the extremality relations reduce
to (2.6.7) and we have:

|(Λφ)i|2 = (µ∗i )
2g′(µ∗i ) = (µ∗i )

2 − 1, i = 1, ...,m

σ∗i =
(Λφ)i
µ∗i

, i = 1, ...,m,

which implies that the optimal pair (µ∗, σ∗) is unique and is given by:

µ∗i =
p

1 + |(Λφ)i|2, i = 1, ...,m

σ∗i =
(Λφ)ip

1 + |(Λφ)i|2
, i = 1, ...,m.

Moreover, since the optimal density µ∗ is strictly greater then 1, possibly restrict-
ing (2.6.15) on the set {µ ∈ E | µi ≥ δ > 0, δ < 1, i = 1, ...,m}, the minimizer
µ∗ remains the global minimizer, the ”sup” in σ becomes a ”max” and thus,
evaluating in σi =

(Λφ)i
µi

, we have the reduced formulation:

E(φ) = inf
µ∈E+

1

2

mX
i=1

|(Λφ)i|2

µi
+

1

2

mX
i=1

(
1

µi
+ µi).

2.7 A saddle point approach for 1-Harmonic functions
with given profile boundary data on Graphs

In this Section we will consider the problem of finding minimizers for the graph
Total Variation energy. As in Section 2.4, let G = (E, V, ω) be a weighted directed
graph, ∇ it’s gradient matrix and div = −∇T it’s divergence matrix. We denote
as H(V ) = Rn and H(E) = Rm the Banach spaces of real-valued functions on V ,
the nodes set, and E, the edges set, respectively.
Consider the graph p-Dirichlet energy, 1 ≤ p < 2, defined in (2.4.3).
The Euler-Lagrange equation for the p-Dirichle energy involves the graph p-
Laplacian operator defined in (2.4.2). In the limit case where p = 1 we define the
graph 1-Laplacian as:

∆1(φ) = −div sign(∇φ) φ ∈ H(V ),
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where sign(∇φ) is defined in (2.4.9). There is a wide literature about the graph
1-Laplacian operator mostly correlated to the graph 1-Laplacian eigenproblem
and the particular properties of the eigenvctors nodal domains (optimal cuts,
Cheeger constants) and their applications to machine learning for spectral clus-
tering [84], [72], [19], [35], [41], [44].
Here we will approach a different problem, namely we are interested to compute
graph 1-Harmonic functions with a given prescribed profile on a Dirichlet bound-
ary nodes subset B ⊂ V , V = B ∪ VI , VI ∩ B = ∅, where we denote as VI the
internal nodes.
We envisage that the same techniques can possibly be extended to the computa-
tion of 1-Laplacian eigenpairs.
Note that, since the graph Total Variation energy is not differentiable, subgradi-
ents need to be used, making its numerical minimization highly nontrivial. The
standard technique to circumnavigate this problem is to minimize the Total Vari-
ation energy using the Osher-Bregman Split iteration method [104], [64], [33]. We
can use the experience gained with the DMK scheme, see [59], to tackle this prob-
lem in a different way with the aim to develop alternative and more performing
numerical minimization strategies.
We are ready to state our problem. Given a boundary nodes subset B ⊂ V with
|B| = d < n and a profile function g ∈ H(B) = Rd we look at the following
variational problem:

inf
φ∈H(V )

X
e∈E

|(∇φ)e|

s.t. φv = gv, v ∈ B.

(2.7.1)

Introducing an appropriate lifting function φ̄ such that φ̄v = gv for all v ∈ B and
φ̄v = 0 for all v ∈ VI , problem (2.7.1) simplifies to:

inf
φ∈HB

0 (V )

X
e∈E

| (∇(φ+ φ̄))e |, (2.7.2)

where HB
0 (V ) := {φ ∈ H(V ) | φv = 0, ∀ v ∈ B}.

In the general case where φ̄ is not identically zero, we observe that a solution φ∗

of problem (2.7.2) exists by standard arguments because the objective function
is convex, lower semi-continuous and coercive, whence the coercivity is given by
observe that a discrete counterpart of the Poincaré inequality holds for the graph
p-Dirichlet energy, p ≥ 1, even for infinite graphs [91].
Before proceeding we need two preparatory propositions.

Proposition 2.7.1. Let (V, ∥ · ∥V ), (Y, ∥ · ∥Y ) be two reflexive Banach spaces.
Consider the Lagrangian L(u, σ) : (V × Y ) → R̄ such that, ∀u ∈ V , the map
σ 7→ L(u, σ) is concave, upper semi-continuous and, ∀σ ∈ Y , the map u 7→ L(u, σ)
is convex and lower semi-continuous.
Let A ⊆ V and B ⊆ Y be two convex and closed subsets and consider the saddle
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point problem:
inf
u∈A

sup
σ∈B

L(u, σ).

Suppose moreover that there exists a bounded map u 7→ σ̄(u) ∈ B, ∥σ̄(u)∥Y ≤ C1,
0 < C1 < +∞, ∀u ∈ A and a bounded map σ 7→ ū(σ) ∈ A, ∥ū(σ)∥V ≤ C2,
0 < C2 < +∞, ∀σ ∈ B, such that the following holds:

ρ(u) := L(u, σ̄(u)),

is bounded from below and norm coercive on A:

lim
u ∈ A

∥u∥V → ∞

ρ(u) = +∞, (2.7.3)

and
ψ(σ) := L(ū(σ), σ),

is bounded from above and norm anti-coercive on B:

lim
σ ∈ B

∥σ∥Y → ∞

ψ(σ) = −∞. (2.7.4)

Then, L admits at least a saddle point (u∗, σ∗) ∈ (A× B).

Proof. The proof is essentially an extension of the proof in [46] Proposition 2.2
p.173.
For a fixed δ > 0 let:

Aδ := {u ∈ A | ∥u∥V ≤ δ},
Bδ := {σ ∈ B | ∥σ∥Y ≤ δ}.

The sets Aδ and Bδ are closed convex and bounded, therefore, by [46] Proposition
2.1 p.171, there exists a saddle point (u∗δ , σ

∗
δ ) ∈ (Aδ × Bδ) for L:

L(u∗δ , σ) ≤ L(u∗δ , σ
∗
δ ) ≤ L(u, σ∗δ ), ∀u ∈ Aδ, ∀σ ∈ Bδ. (2.7.5)

Since ∥σ̄(u)∥Y ≤ C1, ∀u ∈ A and ∥ū(σ)∥V ≤ C2, ∀σ ∈ B, taking δ = max{C1, C2}
so that σ̄(u) ∈ Bδ, ∀u ∈ Aδ and ū(σ) ∈ Aδ, ∀σ ∈ Bδ, we also have:

L(u∗δ , σ̄(u
∗
δ)) ≤ L(u∗δ , σ

∗
δ ) ≤ L(ū(σ∗δ ), σ

∗
δ ). (2.7.6)

Now, the map ρ(u) is bounded from below on A, hence there exists a constant
α > −∞ such that:

α ≤ ρ(u∗δ) = L(u∗δ , σ̄(u
∗
δ)). (2.7.7)

On the other hand, since the map ψ(σ) is bounded from above on B, there exists
a constant β < +∞ such that:

L(ū(σ∗δ ), σ
∗
δ ) = ψ(σ∗δ ) ≤ β. (2.7.8)
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Thus, (2.7.6), (2.7.7), (2.7.8) implies also that:

ρ(u∗δ) = L(u∗δ , σ̄(u
∗
δ)) ≤ β < +∞ (2.7.9)

ψ(σ∗δ ) = L(ū(σ∗δ ), σ
∗
δ ) ≥ α > −∞ (2.7.10)

−∞ < α ≤ L(u∗δ , σ
∗
δ ) ≤ β < +∞ (2.7.11)

whence, in virtue (2.7.3) and (2.7.9), the family u∗δ is bounded independently of
δ, while from (2.7.4) and (2.7.10) the family σ∗δ is bounded independently of δ.
From (2.7.11) the numbers L(u∗δ , σ

∗
δ ) are also bounded, therefore, there exists a

sequence δj → ∞ such that:

L(u∗δj , σ
∗
δj
) → γ,

u∗δj → u∗ weakly in A,

σ∗δj → σ∗ weakly in B.

Thus, from (2.7.5), we have:

L(u∗, σ) ≤ lim inf
δj→∞

L(u∗δj , σ) ≤ lim inf
δj→∞

L(u∗δj , σ
∗
δj
) ≤ γ, ∀σ ∈ B,

and

L(u, σ∗) ≥ lim sup
δj→∞

L(u, σ∗δj ) ≥ lim sup
δj→∞

L(u∗δj , σ
∗
δj
) ≥ γ, ∀u ∈ A.

So that:

L(u∗, σ) ≤ γ ≤ L(u, σ∗) ∀u ∈ A, ∀σ ∈ B,

which implies that (u∗, σ∗) ∈ (A× B) is a saddle point of L.

Remark 2.7.2. In Proposition 2.7.1, we can relax the hypothesis on the bounded-
ness of the maps u 7→ σ̄(u) and σ 7→ ū(σ) supposing that there exists two convex,
lower semi-continuous, coercive functions f : B → R̄ and g : A → R̄ such that
f(σ̄(u)) ≤ C1, 0 < C1 < +∞, ∀u ∈ A and g(ū(σ)) ≤ C2, 0 < C2 < +∞, ∀σ ∈ B
since in this case for any fixed δ > 0 the sets:

Aδ := {u ∈ A | g(u) ≤ δ},
Bδ := {σ ∈ B | f(σ) ≤ δ},

are closed, convex and bounded, thus the proof is still valid with the same ar-
guments. For example, this is the case where instead of using the p-norm one
choose to use ∥ · ∥pp to enforce the boundedness of σ̄(u) or ū(σ).
Moreover, Proposition 2.7.1 is clearly still valid if (2.7.3) holds and there exists
a u0 ∈ A such that:

lim
σ ∈ B

∥σ∥Y → ∞

L(u0, σ) = −∞,
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or (2.7.4) holds and there exists a σ0 ∈ B such that:

lim
u ∈ A

∥u∥V → ∞

L(u, σ0) = +∞

, since ψ(σ) := L(u0, σ)( respectively ρ(u, σ0) := L(u, σ0) ) is concave, upper
semi-continuous and anti-coercive( respectively convex, lower semi-continuous
and norm coercive ) so that it attains a maximum( minimum ) on B( A ) and
hence it is bounded from above( below ).

The following result is a consequence of Proposition 2.7.1.

Proposition 2.7.3. Let (V, ∥ · ∥V ), (Y, ∥ · ∥Y ) be two reflexive Banach spaces.
Consider the Lagrangian L(u, σ) : (V × Y ) → R̄ such that the map σ 7→ L(u, σ) is
concave, upper semi-continuous ∀u ∈ V and the map u 7→ L(u, σ) is convex and
lower semi-continuous ∀σ ∈ Y .
Let A ⊆ V and B ⊆ Y be two convex and closed subsets and consider the saddle
point problem:

inf
u∈A

sup
σ∈B

L(u, σ).

Suppose that there exists a bounded map u 7→ σ̄(u) ∈ B, ∥σ̄(u)∥Y ≤ C1, 0 < C1 <
+∞, ∀u ∈ A such that:

ρ(u) := L(u, σ̄(u)),

is bounded from below and norm coercive on A:

lim
u ∈ A

∥u∥V → ∞

ρ(u) = +∞.

If the dual problem:

sup
σ∈B

F (σ) := sup
σ∈B

inf
u∈A

L(u, σ) (P∗),

admits a solution σ∗, then L admits at least a saddle point (u∗, σ∗) ∈ (A× B).

Proof. For any ϵ ≥ 0 consider the following perturbed Lagrangian:

Lϵ(u, σ) := L(u, σ)− ϵ∥σ∥Y .

From [46] Proposition 2.3 p.175, we have that there exists u0 ∈ A such that

lim
σ ∈ B

∥σ∥Y → ∞

Lϵ(u0, σ) = −∞,

all the hypothesis of Proposition 2.7.1 are satisfied (if necessary, see Remark
2.7.2), we thus have that there exists a saddle point (ûϵ, σ̂ϵ) ∈ (A×B) for Lϵ. In
particular we have:

L(ûϵ, σ)− ϵ∥σ∥Y ≤ Lϵ(ûϵ, σ̂ϵ) ≤ L(u, σ̂ϵ)− ϵ∥σ̂ϵ∥Y , (2.7.12)
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hence:
L(ûϵ, σ̂ϵ) ≤ max

σ∈B
inf
u∈A

L(u, σ) := α < +∞, ∀ ϵ ≥ 0, (2.7.13)

since by hypothesis there exists a solution of the dual problem (P∗).
On the other hand (2.7.12) and (2.7.13) imply that:

L(ûϵ, σ) ≤ L(ûϵ, σ̂ϵ) + ϵ∥σ∥Y ≤ α+ ϵ∥σ∥Y , ∀σ ∈ B. (2.7.14)

By computing (2.7.14) in σ̄ûϵ and observing that by definition ∥σ̄ûϵ∥Y ≤ C1 we
get:

ρ(ûϵ) ≤ α+ ϵC1.

This means that ρ(ûϵ) is bounded from above when ϵ → 0 and, since by (2.7.3)
ρ(u) is norm coercive, we have that:

ûϵ is bounded for ϵ→ 0.

Thus, there exists a sequence ϵj → 0 and û ∈ V such that:

ûϵj → û weakly in V.

From (2.7.12) and (2.7.13) we have that for any fixed σ ∈ B:

L(û, σ) ≤ lim inf
ϵj→0

L(ûϵj , σ) ≤ lim inf
ϵj→0

L(ûϵj , σ̂ϵj ) ≤ α.

This implies that:

inf
u∈A

sup
σ∈B

L(u, σ) ≤ sup
σ∈B

L(û, σ) ≤ α = max
σ∈B

inf
u∈A

L(u, σ), (2.7.15)

hence, since ”maxinf”≤”infsup”, all the inequalities in (2.7.15) are in fact equal-
ities, û is a minimizer and we have:

min
u∈A

sup
σ∈B

L(u, σ) = max
σ∈B

inf
u∈A

L(u, σ).

Thus, the existence of a saddle point (u∗, σ∗) ∈ (A×B) follows from [46] Propo-
sition 1.2 p.167.

We are now ready to state the main result of this section.
In Section 2.4 we have seen an equivalent saddle point formulation for the graph
Total Variation energy, therefore, from Theorem 2.4.1 we have the following re-
sult:

Theorem 2.7.4. For any φ̃ ∈ H(V ) define the Lagrangian L1φ̃ : (H(E)+ ×
H(E)) → R as:

L1φ̃(µ, σ) := −
X
e∈E

1

2
µe|σe|2 + σ · ∇ φ̃+

1

2

X
e∈E

µe,
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and the function:
L1(φ̃) := inf

µ∈H(E)+
sup

σ∈H(E)
L1φ̃(µ, σ).

For a given Dirichlet boundary subset B ⊂ V and a profile function g ∈ H(B)
define the lifting function φ̄ ∈ H(V ):

φ̄v :=

(
0 v ∈ VI

gv v ∈ B.

Then, we have the following equivalence:

inf
φ∈HB

0 (V )

X
e∈E

| (∇(φ+ φ̄))e | = inf
φ∈HB

0 (V )
L1(φ+ φ̄). (2.7.16)

So that:

inf
φ∈HB

0 (V )

X
e∈E

| (∇(φ+ φ̄))e | = (2.7.17)

= inf
µ ∈ H(E)

+

φ ∈ HB
0 (V )

sup
σ∈H(E)

−
X
e∈E

1

2
µe|σe|2 + σ · ∇(φ+ φ̄) +

1

2

X
e∈E

µe.(2.7.18)

Moreover there exists at least a saddle point

((φ∗, µ∗), σ∗) ∈ HB
0 (V )×H(E)+)×H(E) ,

and it satisfies the following ”Monge-Kantorovich” type equations:

µ∗eσ
∗
e = (∇(φ∗ + φ̄))e , ∀ e ∈ E (2.7.19)

(div σ∗)v = 0, ∀ v ∈ VI

φ∗
v = 0, ∀ v ∈ B

|σ∗e | ≤ 1, ∀ e ∈ E

|σ∗e | = 1, ∀ e ∈ E s.t. µ∗e > 0

µ∗e = | ∇(φ∗ + φ̄)e|, ∀ e ∈ E. (2.7.20)

and φ∗ is a minimizer for (2.7.17).

Proof. The equivalence in (2.7.16) is a direct consequence of Theorem 2.4.1 where
we have shown that for any φ̃ ∈ H(V ), E1(φ̃) = ∥∇ φ̃∥l1 = L1(φ̃), thus it suffices
to show that problem (2.7.18) admits a saddle point ((φ∗, µ∗), σ∗) and automat-
ically φ∗ is a minimizer for (2.7.17).
We will proceed at steps, first we will show the existence of a saddle point in the
space HB

0 (V )×H(E)+)×H(E) , then we will show that the KKT conditions
for a saddle point of problem (2.7.18) are precisely (2.7.19)-(2.7.20).
In the case where φ̄v = 0, ∀ v ∈ B there is nothing to prove and the solution is
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clearly φ∗ = 0, µ∗ = 0 and σ∗ = 0.
In the general case where φ̄ is not identically zero, the existence of a saddle point
for problem (2.7.18) is essentially based on showing that the hypothesis of Propo-
sition 2.7.3 are satisfied.
Define the following Lagrangian:

L(φ, µ, σ) := −
X
e∈E

1

2
µe|σe|2 + σ · ∇(φ+ φ̄) +

1

2

X
e∈E

µe. (2.7.21)

So that the primal problem (P) in (2.7.18) is equivalent to:

inf
µ ∈ H(E)

+

φ ∈ HB
0 (V )

sup
σ∈H(E)

L(φ, µ, σ) (P).

Consider the dual problem:

sup
σ∈H(E)

inf
µ ∈ H(E)

+

φ ∈ HB
0 (V )

L(φ, µ, σ) (P∗). (2.7.22)

Note that the density µ plays the role of a Lagrange multiplier for the constraint
|σ|e ≤ 1, ∀ e ∈ E and taking a variation ξ ∈ HB

0 , we have that for any ε ≥ 0:

σ · ∇(φ+ εξ + φ̄) = −
X
v∈VI

(div σ)v(φv + εξv)−
X
v∈B

(div σ)vφ̄v. (2.7.23)

Therefore, we obtain that:

inf
µ ∈ H(E)

+

φ ∈ HB
0 (V )

L(φ, µ, σ) =


−
P

v∈B(div σ)vφ̄v
|σ|e ≤ 1 ∀ e ∈ E

(div σ)v = 0 ∀ v ∈ VI

−∞ otherwise,

and the dual problem (2.7.22) is equivalent to the following constrained problem:

sup
σ ∈ H(E)

(div σ)v = 0,∀ v ∈ VI

∥σ∥l∞ ≤ 1

−
X
v∈B

(div σ)vφ̄v (P∗),

which has a solution since the set B := {σ ∈ H(E) | (div σ)v = 0, ∀ v ∈
VI , ∥σ∥l∞ ≤ 1} is non empty, convex, closed, bounded and the function g(σ) :=
−
P

v∈B(div σ)vφ̄v is linear.
Next, consider the map

φ 7→ σ̄(φ) :=
1√
2
sign(∇(φ+ φ̄)),
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with the standard convention as in (2.4.9) and the function:

ρ(φ, µ) := L(φ, µ, σ̄(φ)).

Clearly ∀φ ∈ HB
0 (V ) we have that

∥σ̄(φ)∥l∞ ≤ 1√
2
,

and

σ̄(φ) · ∇(φ+ φ̄) =
1√
2
∥∇(φ+ φ̄)∥l1 .

So that:

σ̄(φ) is bounded ∀φ ∈ HB
0 (V ).

It is therefore easy to see that:

ρ(φ, µ) = −
X
e∈E

1

2
µe|σ̄(φ)e|2 + σ̄(φ) · ∇(φ+ φ̄) +

1

2

X
e∈E

µe ≥

≥ 1√
2
∥∇(φ+ φ̄)∥l1 +

1

4

X
e∈E

µe ≥
c1√
2
∥φ+ φ̄∥l1 +

1

4

X
e∈E

µe ≥

≥ c1√
2
(∥φ∥l1 − ∥φ̄∥l1) +

1

4

X
e∈E

µe,

where c1 > 0 is the Poincaré constant.
This implies that

ρ(φ, µ) is positive and norm coercive,

in the product space (HB
0 (V )×H(E)+) equipped with the norm

∥(φ, µ)∥(HB
0 (V )×H(E)+) = ∥φ∥l1 + ∥µ∥l1 .

Thus, all the hypothesis of Proposition 2.7.3 are satisfied and there exists a saddle
point

((φ∗, µ∗), σ∗) ∈ (HB
0 (V )×H(E)+)×H(E) .

The KKT conditions for the saddle points ((φ∗, µ∗), σ∗) of (2.7.21), read as fol-
lows: 

−|σ∗e |2 + 1− ce = 0, ∀ e ∈ E

µ∗eσ
∗
e = ∇(φ∗ + φ̄)e, ∀ e ∈ E

(div σ∗)v = 0, ∀ v ∈ VI

φ∗
v = 0, ∀ v ∈ B

ceµ
∗
e = 0, ce ≥ 0, ∀ e ∈ E.

(2.7.24)
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where c ∈ H(E) is an opportune positive Lagrange multiplier.
As in Remark 2.4.2, from (2.7.24) we further have that:(

|σ∗e | ≤ 1, ∀ e ∈ E

|σ∗e | = 1, ∀ e ∈ E s.t. µ∗e > 0,

where the unique possible optimal density is

µ∗e = | ∇(φ∗ + φ̄)e|, ∀ e ∈ E.

This completes the proof.

2.8 The DMK scheme: from Optimal Transport to
1-Harmonic functions

In this section we will see how to use the Dynamic-Monge-Kantorovich(DMK)
scheme to tackle the problem of computing 1-Harmonic functions on graphs,
using the saddle point formulation developed in Section 2.7 for the 1-Dirichlet
energy. We will refer to the same Section 2.7 for the definitions of the graph-
based framework involved in what follows.
The existence of a saddle point

((φ∗, µ∗), σ∗) ∈ HB
0 (V )×H(E)+)×H(E) ,

for (2.7.18) characterized by the ”Monge-Kantorovich” like equations (2.7.19)-
(2.7.20) leads to very efficient numerical schemes which takes inspiration from
the Dynamic-Monge-Kantorovich Gradient Flow like scheme introduced in [54].
The connection between the Optimal Transport problem is evident from Section
2.3 and the analogies between (2.7.19)-(2.7.20) and the L1 optimal transport
relaxed Monge-Kantorovich equations in [18].
In [54] a numerical solution of the L1 optimal transport on graphs is given as
a minimization problem for an energy functional L(µ) : H(E)+ → R, where
the variable µ can be interpreted as a conductivity associated to the edges of
the graph. In our case, the energy functional L will be substituted by the saddle
point formulation defined in (2.7.18), more precisely we will consider the following
problem:

L(φ, µ) := sup
σ∈H(E)

−
X
e∈E

1

2
µe|σe|2 + σ · ∇(φ+ φ̄) +

1

2

X
e∈E

µe. (2.8.1)

and we will seek for a minimum in the pair (φ, µ) with homogeneous Dirichlet
boundary conditions for φ on some nodes boundary Dirichlet subset B ⊂ V and
φ̄ is an opportune lifting function as in (2.7.2). In this case, differently from the
problem in [54], the variable µ will play the reciprocal role of a conductivity, so
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that it is essentially a resistivity on the edges.
If φ∗ is a solution of (2.7.2) then by Theorem 2.7.4 the function:

φ̃ := φ∗ + φ̄, (2.8.2)

is a 1-harmonic solution with prescribed profile function g ∈ H(B), gv = φ̄v,
∀ v ∈ B and hence is a solution of the original problem (2.7.1).
As in [54] a solution will be sought via a gradient descent approach, not applied
directly to the functional L(φ, µ), but rather to its composition with the change of
variable Ψ : H(E) → H(E)+ given component-wise as µe = Ψ(ξ)e = ξ2e , ∀ e ∈ E.
The gradient descent approach applied to the computation of a minimizer (φ∗, ξ∗)
of L(φ,Ψ(ξ)) has to be intended as a long time solution

(φ∗, ξ∗) = lim
t→∞

(φ(t), ξ(t)),

where (φ(t), ξ(t)) is a solution of the following state-space initial value problem:

µe(t) = Ψ(ξ(t))e, ∀ e ∈ E,

[Diagµ(t)]σ(t)−∇(φ(t) + φ̄) = 0,

(div σ(t))v = 0, ∀ v ∈ VI ,

φ(t)v = 0, ∀ v ∈ B,

∂tξe(t) = − [∂ξL(φ(t),Ψ(ξ(t)))]e = ξe(t)|σe(t)|2 − ξe(t), ∀ e ∈ E,

ξe(0) = ξ0e ̸= 0, ∀ e ∈ E.

(2.8.3)

Moreover, if ξ(t) is a solution of (2.8.3), the relation µ(t) = Ψ(ξ(t)) implies that:

∂tµe(t) = ∂ξΨ(ξ(t))e∂tξe(t) = ξe(t)∂tξe, ∀ e ∈ E,

and remembering that ∀ e ∈ E, µe(t) = ξe(t)
2, we get that µ(t) can be reinter-

preted as a ”classical Gradient Descent” dynamics:

∂tµe(t) = µe(t)|σe(t)|2 − µe(t), µe(0) = µ0e > 0 ∀ e ∈ E. (2.8.4)

Even if the dynamics in (2.8.3) is not proven yet to effectively converge to a
minimizer, we point out that our conjecture is supported by several numerical
experiments.
In virtue of (2.7.19)-(2.7.20), a saddle point ((φ∗, µ∗), σ∗) for (2.7.18) is a station-
ary point of the dynamics in (2.8.3).
It is evident that the second, the third and the fourth equations in (2.8.3) are the
Euler Lagrange equations for the saddle point:

inf
φ∈HB

0 (V )
L(φ, µ) =

= inf
φ∈HB

0 (V )
sup

σ∈H(E)
−
X
e∈E

1

2
µe|σe|2 + σ · ∇(φ+ φ̄) +

1

2

X
e∈E

µe,
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and are genuinely a linear saddle point system.
The last two equations in (2.8.3) define the descent direction dynamics for the
variable ξ and therefore for the density µ = Ψ(ξ), where we have absorbed a
factor 2 by a time scaling.
It is clear that, in virtue of (2.7.19)-(2.7.20), a saddle point for (2.7.18) is a sta-
tionary point for (2.8.3), while the map Ψ has the effect of multiplying the original
gradient descent by ξ(t)(or by µ(t) if (2.8.4) is used). This further introduce a
fake stationary point when µ(t) touches zero in some edge thus preserving the
positivity of µ(t) if we start from an initial µ(0) sufficiently detached from zero.
We will see in subsection 2.8.2 the heuristics behind the choice of Ψ as an update
preserving scheme for the positivity constraint and extend this technique to the
case of an interval components-wise constraint.
Let’s focus our attention on the saddle point linear system in (2.8.3):

[Diagµ(t)]σ(t)−∇(φ(t) + φ̄) = 0,

(div σ(t))v = 0, ∀ v ∈ VI ,

φ(t)v = 0, ∀ v ∈ B.

(2.8.5)

Equation (2.8.5) is the Dirichlet lifted matrix system of the following saddle point
matrix:

Diagµ(t) −∇
div 0

,

which becomes singular if µē(t) = 0 on some edge ē ∈ E.
Since 1-Harmonic functions are naturally flat solutions by the sparsity enhanc-
ing properties of the Total Variation energy on the gradient, our optimal density
µ∗ = limt→∞ µ(t) will inevitably goes to zero in some edges, leading to very ill
conditioned linear systems. The strategy is therefore to consider an appropri-
ately small Tikhonov parameter δ > 0 to circumvent the ill-conditioning but
maintaining sufficient accuracy:

Diagµ(t) + δ −∇
div 0

.

Hence, the Tikhonov regularized version of (2.8.5) becomes equivalent to the
following reduced lifted linear system:

σe(t) =
(∇(φ(t) + φ̄))e

µe(t) + δ
, ∀ e ∈ E,

(∆ 1
µ(t)+δ

(φ(t) + φ̄))v = 0, ∀ v ∈ VI ,

φ(t)v = 0, ∀ v ∈ B.

(2.8.6)

This a posteriori considerations will make clear the role of the Tikhonov regular-
ized version of our saddle point formulation introduced in (2.5.11), indeed, taking
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inspiration by [59, 60], we consider the following approximation of the functional
defined in (2.8.1):

Lδ(φ, µ) := sup
σ∈H(E)

−
X
e∈E

1

2
(µe + δ)|σe|2 + σ · ∇(φ+ φ̄) +

1

2

X
e∈E

µe.

With the same arguments as in (2.5.7)-(2.5.8), Lδ(φ, µ) simplifies as:

Lδ(φ, µ) =
X
e∈E

1

2

| ∇(φ+ φ̄)e|2

(µe + δ)
+

1

2

X
e∈E

µe.

and we consider the following double minimization problem:

inf
φ ∈ HB

0 (V )

µ ∈ H(E)
+

Lδ(φ, µ). (2.8.7)

With the same arguments as in (2.5.10), we have that Lδ(φ, µ) is convex, lower
semi-continuous and coercive in the pair (φ, µ). Thus, the existence of a minimizer
(φ∗, µ∗) is guaranteed. Moreover, Lδ(φ, µ) is differentiable in (HB

0 (V )×H(E)+)
but is not strictly convex (the Hessian is zero), hence is not possible to state the
existence of a unique minimum couple. The KKT conditions for the minimizers
of Lδ(φ, µ) reads as follows:

− |∇(φ∗+φ̄)e|2
(µ∗e+δ)

2 + 1− ce = 0, ∀ e ∈ E

(∆ 1
µ∗+δ

(φ∗ + φ̄))v = 0, ∀ v ∈ VI

φ∗
v = 0, ∀ v ∈ B

ceµ
∗
e = 0, ce ≥ 0, ∀ e ∈ E.

(2.8.8)

The second and the third equations in (2.8.8) are exactly the reduced system
(2.8.6). If µ∗ē = 0 on some edge ē, then the first equation in (2.8.8) admits a
solution iff:

| ∇(φ∗ + φ̄)ē| ≤ δ.

On the other hand, the last equation in (2.8.8) implies that if µ∗ē > 0, then cē = 0
and hence:

| ∇(φ∗ + φ̄)ē| = µ∗ē + δ.

Thus, the parameter δ controls the accuracy from above, and we can expect to
have a good approximation if δ is sufficiently small.
The reduced system (2.8.6) is equivalent to the Euler-Lagrange equations for the
saddle point problem:

inf
φ∈HB

0 (V )
Lδ(φ, µ) =

= inf
φ∈HB

0 (V )
sup

σ∈H(E)
−
X
e∈E

1

2
(µe + δ)|σe|2 + σ · ∇(φ+ φ̄) +

1

2

X
e∈E

µe,



2.8. 1-HARMONIC AND EDMK 151

and the corresponding version of the dynamics in (2.8.3), (2.8.4) for problem
(2.8.7) is the following Extended-Dynamic-Monge-Kantorovich(EDMK):

(∆ 1
µ(t)+δ

(φ(t) + φ̄))v = 0, ∀ v ∈ VI ,

φ(t)v = 0, ∀ v ∈ B,

σe(t) =
(∇(φ(t) + φ̄))e

µe(t) + δ
, ∀ e ∈ E,

∂tµe(t) = µe(t)|σe(t)|2 − µe(t), µe(0) = µ0e > 0, ∀ e ∈ E.

(EDMK)

(2.8.9)
This dynamics would be the one that we will use in our numerical experiments.
In [59] it was shown that a solution µ∗ of the Optimal Transport counterpart of
(2.8.9) Γ-converges to a solution of the original problem when δ → 0.
We now describe three approaches for the time-discretization of (2.8.9):

• Explicit Euler [EE]:
The first approach is the explicit or forward Euler time-stepping where,
given a sequence ∆tk > 0, the approximation sequence µk

k=1,...,kmax
is

given by the following set of equations:

(∆ 1

µk+δ

(φk + φ̄))v = 0, ∀ v ∈ VI

φkv = 0, ∀ v ∈ B

σke =
(∇(φk + φ̄))e

µke + δ
, ∀ e ∈ E

µk+1
e = µke +∆tkµ

k
e |σke |2 − 1 , k = 0, . . . , kmax, e ∈ E

µ0e = µ0e > 0, ∀ e ∈ E.

(2.8.10)

Hence at each time step, we only need to solve the lifted linear system

(∆ 1

µk+δ

(φk + φ̄))v = 0, ∀ v ∈ VI ,

φkv = 0, ∀ v ∈ B.

A similar discretization scheme has been successfully adopted in [16, 54, 55].

• Semi Implicit Euler [SE]:
The second approach is the semi implicit Euler time-stepping where the
approximation sequence µk

k=1,...,kmax
is given by using an implicit time

discretization for the variable µ considering it as indipendent from the vari-
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able σ:

(∆ 1

µk+δ

(φk + φ̄))v = 0, ∀ v ∈ VI

φkv = 0, ∀ v ∈ B

σke =
(∇(φk + φ̄))e

µke + δ
, ∀ e ∈ E

µk+1
e =

µke
(1−∆tk (|σke |2 − 1))

, k = 0, . . . , kmax, e ∈ E

µ0e = µ0e > 0, ∀ e ∈ E

(2.8.11)

This discretization scheme remains still an explicit scheme but exhibits
better stability properties than the forward Euler scheme.

• Implicit Euler [IE]:
The third approach is the implicit or backward Euler time-stepping where
the approximation sequence µk = Ψ(ξk), φk

k=1,...,kmax
is given by looking

for a solution of the following problem:(ξk+1, φk+1) = arg min
ξ∈H(E)

arg min
φ∈HB

0 (V )

Lδ(φ,Ψ(ξ)) +
∥ξ − ξk∥2l2

2∆tk

ξ0e = ξ0e ̸= 0, ∀ e ∈ E

(2.8.12)

or equivalently:

(∆ 1

(ξk+1)2+δ

(φk+1 + φ̄))v = 0, ∀ v ∈ VI

φk+1
v = 0, ∀ v ∈ B

σk+1
e =

(∇(φk+1 + φ̄))e

(ξk+1
e )2 + δ

, ∀ e ∈ E

(1−∆tk |σk+1
e |2 − 1 )ξk+1

e = ξke , k = 0, . . . , kmax, e ∈ E

ξ0e = ξ0e ̸= 0, ∀ e ∈ E

µk+1
e = (ξk+1

e )2, ∀ e ∈ E

This discretization scheme requires the solution of nonlinear problems at
every time step thus it needs more computational effort respect the other
two approaches, but this is compensated by gaining stability and much
faster convergence rate, we refer to [54] for full details.

After choosing a time discretization for (2.8.9), we introduce a target tolerance
ϵµ and let evolve the dynamics until a prescribed stopping error is greater than
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Figure 2.1: Test case graph

the target tolerance. For example, a possible choice is the relative error stopping
rule:

errµk(µ
k+1) :=

∥µk+1 − µk∥l2
∆tk∥µk∥l2

≤ ϵµ (2.8.13)

we will see now some applications of our numerical scheme

2.8.1 Numerical examples

In our numerical examples we consider the graph generated by connecting the
points of a 2d-grid. In particular, we take the square [0, 1]× [0, 1], subdivide each
side in 15 points and connect every point to form a grid. After that, we add a
new point on every pixel center for increasing the precision as in figure 2.1. The
graph constructed in this way has a total number 421 nodes and 1204 edges. We
take as edge weight the reciprocal of the edge length, for any edge in the graph.
Working with a graph which can be interpreted as a discretization of a two
dimensional domain, leads us to make some a priori heuristc considerations.
Following [50], we can relate 1-Harmonic functions on a domain Ω ⊂ Rn to the
problem of finding surfaces with minimal mean-curvature and naturally, since the
sparsity of the gradient is promoted by the L1 norm, are flat solutions. Consider
for example a parametric surface on R3:

S(x, y) :=

 x

y

z = u(x, y)

 ,
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where u : Ω ⊂ R2 → R. Consider now the level set:

Γc := {x⃗ ∈ Ω|u(x⃗) = c}.

Then, by classical differential geometry arguments, the unit normal to Γc is noth-
ing that ν = ∇u

|∇u| and the mean curvature is H = div(ν) = −∆1(u), therefore,
1-Harmonic functions are locally zero mean curvature hypersurfaces.
As a consequence we are expecting to find numerical solutions which are a com-
pounds of locally flat hyperplanes.
We select as Dirichlet boundary set the subset of the nodes that lie on each side
of the squares:

B := {v ∈ V | vx = 0 or vx = 1 or vy = 0 or vy = 1},

where the symbols vx and vy state for the ”x” and the ”y” coordinate of the node
v. We then consider four different profile functions g ∈ H(B):

• Test Case 1:(Cross Vault) gv =
p

0.25− (vx − 0.5)2, vy = 0 or vy = 1

gv =
q

0.25− (vy − 0.5)2, vx = 0 or vx = 1.

• Test Case 2:(Tensile Structure)(
gv = (vx − 0.5) sign(vx − 0.5), vy = 0 or vy = 1

gv = (vy − 0.5) sign(vy − 0.5), vx = 0 or vx = 1.

• Test Case 3:(Separation of sets)

gv = 1, vx = 0 and vy ≥ 0.3 or vx ≤ 0.7 and vy = 1

gv = 0,

(vx = 0 and vy < 0.3) or

( vy = 0 or vx = 1) or

(vx > 0.7 and vy = 1).

Introducing the lifting function φ̄ such that:

φ̄v :=

(
0 v ∈ VI

gv v ∈ B,

we have all the ingredient for our DMK scheme.
In figures 2.2,2.3,2.4 we can see the comparison between the Harmonic solu-
tion (left) and 1-Harmonic solution (right) computed with our regularized DMK
scheme (2.8.9), using (2.8.10) Explicit Euler time discretization for test case 1
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Harmonic 1-Harmonic

Figure 2.2: Test case 1, Harmonic vs 1-Harmonic, Potential (nodes) µ (edges)

,2 and 3 respectively. We have decided to plot the figures in three dimensions
in order to enphasize the minimizing mean curvature properties of our solutions.
Test case 3 is particularly interesting since it shows the optimal cuts property
induced by the Total Variation minimization. The 1-Harmonic approximated so-
lution obtain with our DMK scheme is, as already observed in (2.8.2), given by
the sum:

φ̃ := φ∗ + φ̄,

where the pair (µ∗, φ∗) is a numerical solution obtained with (2.8.9). Thus we
plot on the nodes the value of the function φ̃, which in these figures is represented
by the third coordinate ”z”, and we give different colors to the edges depending
on the value of the variable µ∗, following the heat colour bar on the right side.
Finally, in figure 2.5 we show the convergence behaviour of our numerical algo-
rithm for test case 1 (the same results was observed for test case 2) . We plot in the
vertical axis the relative error as in (2.8.13) vs the number of iterations(horizontal
axis). We point out that the no time stepping rule were adopted, so that we
fixed a relative large time step ∆t = 0.5 and a small regularization parameter
δ = 1e− 10, in order to verify the robustness of our scheme. Thus, we choose an
initial µ0 > 0, and we let evolve the dynamics until errµk(µ

k+1) ≤ 1e − 8. As a
result we can observe a linear convergence rate without any oscillations. We will
further test the other time discretization approach (2.8.11), (2.8.12) as a matter
of future development.
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Harmonic 1-Harmonic

Figure 2.3: Test Case 2, Harmonic vs 1-Harmonic, Potential (nodes) µ (edges)

Harmonic 1-Harmonic

Figure 2.4: Test case 3, Harmonic vs 1-Harmonic, Potential (nodes) µ (edges)
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Figure 2.5: errµk(µ
k+1) vs number of iterations

2.8.2 An Heuristic approach to a feasible update preserving de-
scent dynamics for the positivity and interval constraints

In (2.8.3) and (2.8.4) we have introduced a dynamics which can be interpreted
as an update preserving descent dynamics for the positivity constraint.
From a practical point of view, considering the dynamics (2.8.4), it is clear that
it is equivalent to:

∂tµe(t) = −µe(t)∂µeL(φ(t), µ(t)), ∀ e ∈ E. (2.8.14)

The ones who have familiarity with Lie derivatives and dynamical systems can
recognize that (2.8.14) is the descent direction computed along the flow of the
identity map:

d

ds
Φsid(µe(t)) = Φsid(µe(t))

Φ0
id(µe(t)) = µe(t)

=⇒ Φsid(µe(t)) = µe(t)e
s ∀ e ∈ E.

and setting Φsid(µ(t)) ∈ H(E) such that Φsid(µ(t))e = Φsid(µe(t)) we have:

− d

ds s=0
L(φ(t),Φsid(µ(t))) =

= − [∂µeL(φ(t),Φsid(µ(t)))] Φsid(µe(t)) s=0
=

= −µe(t)∂µeL(φ(t), µ(t)) = ∂tµe(t), ∀ e ∈ E.

Thus heuristically if we start from an initial µ(0) > 0 the positivity is preserved
since we are moving in a descent direction projected tangentially to the exponen-
tial map so that we converge toward zero from a parallel direction to the axis



158 CHAPTER 2. DUALITY AND THE TOTAL VARIATION ENERGY

µe = 0.
It is obvious that the same arguments can be applied more generally to a problem
of the type:

inf
µ ∈ Rm

µ ≥ 0

mX
i=1

L(µi),

where L : R → R is a sufficiently smooth map. The induced minimizing scheme
reads as the following dynamics:

∂tµi(t) = −µi(t)∂µiL(µi(t)), i = 1, ...,m.

Furthermore, we can extend the idea of projecting along the flow of a map X :
R → R as follows:

d

ds
ΦsX(µi(t)) = X(ΦsX(µi(t)))

Φ0
X(µi(t)) = µi(t)

i = 1, ..,m,

and setting ΦsX(µ(t))i = ΦsX(µi(t)) we define:

∂tµi(t) := − d

ds s=0
L(ΦsX(µ(t))) =

= −X(µi(t))∂µiL(µ(t)), i = 1, ..,m. (2.8.15)

On the other hand, we can also try to reverse the process of finding what is the
opportune transformation µi(t) = Ψ(ξi(t)) such that:

∂tξi(t) = −∂ξiL(Ψ(ξi(t)),

and:

−X(µi(t))∂µiL(µ(t)) =

= ∂tµi(t) = ∂ξiΨ(ξi(t))∂tξi(t) =

= −∂ξiΨ(ξi(t))∂ξiL(Ψ(ξi(t)).

Observe that if Ψ and L are sufficiently smooth we have the following identities:

µi = Ψ(ξi),

∂ξiµi = ∂ξiΨ(ξi),

∂ξiL(Ψ(ξi)) = ∂ξiµi∂µiL(µi). (2.8.16)

Thus, dropping for simplicity the time dependence, 2.8.2 becomes:

X(µi)∂µiL(µi)
(2.8.16)
= (∂ξiµi)

2 ∂µiL(µi).
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Hence, we can retrieve the map Ψ by solving the following separable ODE:

dµi
dξi

=
p
X(µi).

Since the constants doesn’t play a role in (2.8.16), a solution is given by computing
a primitive of the following integral:

ξi = Ψ−1(µi) :=

Z
1p
X(µi)

dµi. (2.8.17)

For example, in the case of the map µi = ξ2i introduced in (2.8.4), from (2.8.14)
we have:

X(µi) = µi,

and (2.8.17) becomes:

ξi =

Z
1

√
µi
dµi = 2

√
µi,

thus dropping the scaling factor which can be eventually reabsorbed by a temporal
scaling we get:

µi(t) = Ψ(ξi(t)) = ξ2i (t).

This opens for multiple applications. A descending dynamics for the positivity
constraint µ ≥ 0 which will be used in our numerical experiments is the one given
by:

∂tµi(t) := −µi(t)
4−3p
2−p ∂µiL(µi(t)), i = 1, ..,m, 1 ≤ p < 2,

and it is easy to see from (2.8.17) that 2.8.2 is the dynamics derived by composing
with the map

µi(t) = Ψ(ξi(t)) := |ξi(t)|
2(2−p)

p . (2.8.18)

.
Another case of direct interest is the following optimization problem:

inf
µ ∈ Rm

ai ≤ µi ≤ bi

i = 1, ..,m

mX
i=1

L(µi).

Taking inspiration from (2.8.14), we consider the the flow generated by a logistic
map

X(yi) =
(bi − yi)(yi − ai)

bi − ai
,

d

ds
ΦsX(µi(t)) =

(bi − ΦsX(µi(t)))(Φ
s
X(µi(t))− ai)

bi − ai
Φ0
X(µi(t)) = µi(t)

i = 1, ..,m. (2.8.19)
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the solution of (2.8.19) is the following sigmoidal function:

ΦsX(µi(t)) =
bi − aie

γi(t)−s

1− eγi(t)−s
,

where:

γi(t) := log
µi(t)− bi
µi(t)− ai

.

It is easy to see that, ∀ i = 1, ..,m, we have:

ai ≤ µi(t) ≤ bi =⇒ ai ≤ ΦsX(µi(t)) ≤ bi,

lim
s→+∞

ΦsX(µi(t)) = bi,

lim
s→−∞

ΦsX(µi(t)) = ai.

The sigmoid function is well known in the framework of Deep Learning and is
often used as an activation function when some interval constraints needs to be
satisfied.
The derived projected descent dynamics as in (2.8.15) is the following:

∂tµi(t) = −(bi − µi)(µi − ai)

bi − ai
∂µiL(µi), i = 1, ...,m, (2.8.20)

which is clearly a descent dynamics if ai ≤ µi(t) ≤ bi. Differently from the case
of the positivity constraint, we suggest to not scale the time by reabsorbing the
factor 1

bi−ai , since it helps to improve the stability of the dynamics if an explicit
time discretization scheme is adopted.
Even in this case, the same heuristic geometric considerations can be done, since
if we start from a ai < µi(0) < bi the dynamics is projected tangentially to the
sigmoid function so that it will approach the asymptotes ai and bi from a parallel
direction to the axis µi = bi or µi = ai. Observe that the sigmoid function, and
especially it’s tangent map, acts as a barrier function for the dynamics.
We point out that multiple numerical experiments confirm our conjecture that the
dynamics in (2.8.20) can be interpreted as an update preserving scheme providing
a sufficiently small initial time step in the time discretization.
Finally, using (2.8.17), we can retrieve the composition map which generates
(2.8.20):

ξi =

Z s
bi − ai

(bi − µi)(µi − ai)
dµi,

and easy computations show that:

µi(t) = Ψ(ξi(t)) := ai + (bi − ai) cos
2 ξi(t)√

bi − ai
, i = 1, ...,m.

We point out that all these techniques have an analogy to the Multiplicative
Weights Update Method introduced in [7] which is often used in Machine Learning
and Online Optimization.
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2.9 Extended DMK(EDMK) scheme for the graph p-
Poisson problem in the case 1 < p < 2

In this section we extend the dynamics in (2.8.9) for the problem of solving a
p-Poisson equation on graphs, 1 < p < 2.
As in Section 2.4, let G = (E, V, ω) be a weighted directed graph, ∇ it’s gradient
matrix and div = −∇T it’s divergence matrix. We denote as H(V ) = Rn and
H(E) = Rm the Banach spaces of real-valued functions on V , the nodes set, and
E, the edges set, respectively.
As for the case of 1-Harmonic functions in Section 2.7, we will consider the
equivalent problem of minimizing the p-Dirichlet energy in the case 1 < p < 2.
Thus, given a non homogeneous Dirichlet boundary conditions on a boundary
subset B ⊂ V , B ∩ VI = ∅, B ∪ VI = V , some non homogeneous Dirichlet
boundary data g ∈ H(B) = Rd, and a loading term f ∈ H(VI), we look at the
following variational problem:

inf
φ∈H(V )

X
e∈E

|(∇φ)e|p

p
−
X
v∈VI

fvφv

s.t. φv = gv, v ∈ B.

(2.9.1)

The Euler Lagrange equation for (2.9.1) is the graph p-Poisson problem:

(∆p φ)v = fv, v ∈ VI

φv = gv, v ∈ B.
(2.9.2)

Moreover, in virtue of the Poincaré inequality, problem (2.9.1) is strictly convex
and coercive, therefore, it admits a unique minimizer.
Introducing an appropriate lifting function φ̄ such that φ̄v = gv for all v ∈ B and
φ̄v = 0 for all v ∈ VI , problem (2.9.1) simplifies to:

inf
φ∈HB

0 (V )

X
e∈E

| (∇(φ+ φ̄))e |p

p
−
X
v∈VI

fvφv,

where HB
0 (V ) := {φ ∈ H(V ) | φv = 0, ∀ v ∈ B}.

As for 1-Harmonic functions, in Section 2.4 we have seen an equivalent saddle
point formulation for the graph p-Dirichlet energy when 1 ≤ p < 2, therefore,
from Theorem 2.4.1 we have the following result:

Theorem 2.9.1. For any φ̃ ∈ H(V ) define the Lagrangian L
p
φ̃ : (H(E)+ ×

H(E)) → R as:

L
p
φ̃(µ, σ) := −

X
e∈E

1

2
µe|σe|2 + σ · ∇ φ̃+

2− p

2p

X
e∈E

µ
p

2−p
e ,
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and the following function:

Lp(φ̃) := inf
µ∈H(E)+

sup
σ∈H(E)

L
p
φ̃(µ, σ).

For a given Dirichlet boundary subset B ⊂ V and Dirichlet boundary data g ∈
H(B) define the lifting function φ̄ ∈ H(V ):

φ̄v :=

(
0, v ∈ VI

gv, v ∈ B.

Then, we have the following equivalence:

inf
φ∈HB

0 (V )

X
e∈E

| (∇(φ+ φ̄))e |p

p
−
X
v∈VI

fvφv = inf
φ∈HB

0 (V )
Lp(φ+φ̄)−

X
v∈VI

fvφv. (2.9.3)

So that:

inf
φ∈HB

0 (V )

X
e∈E

| (∇(φ+ φ̄))e |p

p
−
X
v∈VI

fvφv = (2.9.4)

= inf
µ ∈ H(E)

+

φ ∈ HB
0 (V )

sup
σ∈H(E)

−
X
e∈E

1

2
µe|σe|2 + σ · ∇(φ+ φ̄)−

X
v∈VI

fvφv +
1

2γ

X
e∈E

µγe ,(2.9.5)

where 1 < p < 2 and γ := p
2−p .

Moreover there exists a unique saddle point

((φ∗, µ∗), σ∗) ∈ HB
0 (V )×H(E)+)×H(E)

and it satisfies the following extremality equations:

µ∗eσ
∗
e = (∇(φ∗ + φ̄))e , ∀ e ∈ E (2.9.6)

−(div σ∗)v = fv, ∀ v ∈ VI

φ∗
v = 0, ∀ v ∈ B

µ∗e = |σ∗e |p
′−2 = | ∇(φ∗ + φ̄)e|2−p, ∀ e ∈ E. (2.9.7)

whence φ̃∗ := φ∗ + φ̄ is the unique solution of the p-Poisson problem (2.9.2).

Proof. The proof is essentially an extension of the proof for Theorem 2.7.4.
The equivalence (2.9.3) is a direct consequence of Theorem 2.4.1 where we have
shown that for any φ̃ ∈ H(V ), Ep(φ̃) = Lp(φ̃), thus it suffices to show that
problem (2.9.5) admits a saddle point ((φ∗, µ∗), σ∗) and automatically φ∗ is a
minimizer for (2.9.4).
First we will show the existence of a saddle point, then we will show that the
KKT conditions for a saddle point of problem (2.9.5) are precisely (2.9.6)-(2.9.7).
The existence of a saddle point for problem (2.9.5) is based on showing that the
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hypothesis of Proposition 2.7.3 are satisfied.
For simplicity define the following Lagrangian:

L(φ, µ, σ) := −
X
e∈E

1

2
µe|σe|2 + σ · ∇(φ+ φ̄)−

X
v∈VI

fvφv +
1

2γ

X
e∈E

µγe . (2.9.8)

So that the primal problem (P) in (2.9.5) is equivalent to:

inf
µ ∈ H(E)

+

φ ∈ HB
0 (V )

sup
σ∈H(E)

L(φ, µ, σ) (P).

Consider the dual problem:

sup
σ∈H(E)

inf
µ ∈ H(E)

+

φ ∈ HB
0 (V )

L(φ, µ, σ) (P∗). (2.9.9)

With the same arguments as in (2.4.14) and (2.7.23) we have that:

inf
µ ∈ H(E)

+

φ ∈ HB
0 (V )

L(φ, µ, σ) =

=

(
− 1

2γ′
P

e∈E |σe|2γ
′ −
P

v∈B(div σ)vφ̄v −(div σ)v = fv ∀ v ∈ VI

−∞ otherwise,

and the dual problem (2.9.9) is equivalent to the following constrained problem:

sup
σ ∈ H(E)

−(div σ)v = fv,∀ v ∈ VI

− 1

2γ′

X
e∈E

|σe|2γ
′ −
X
v∈B

(div σ)vφ̄v (P∗),

which has a unique solution since the set B := {σ ∈ H(E) | − (div σ)v = fv, ∀ v ∈
VI} is non empty, convex and closed and 2γ′ = p′ > 2 if 1 < p < 2, hence we
have strict concavity, upper semi-continuity and norm anti-coerciveness.
Next, consider the map:

φ 7→ σ̄(φ) :=
| ∇(φ+ φ̄)|p−1 ⊙ sign(∇(φ+ φ̄))

α∥∇(φ+ φ̄)∥p−1
lp

, 0 < α < +∞,

with the standard convention as in (2.4.9) and the function:

ρ(φ, µ) := L(φ, µ, σ̄(φ)).

It is immediate to see that ∀φ ∈ HB
0 (V ):

∥σ̄(φ)∥l2γ′ = ∥σ̄(φ)∥lp′ =
1

α
,
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and:

σ̄(φ) · ∇(φ+ φ̄) =
∥∇(φ+ φ̄)∥lp

α
.

Thus:
σ̄(φ) is bounded ∀φ ∈ HB

0 (V ).

equipped with the l2γ′ = lp′ norm and:

ρ(φ, µ) = −
X
e∈E

1

2
µe|σ̄(φ)e|2 + σ̄(φ) · ∇(φ+ φ̄)−

X
v∈VI

fvφv +
1

2γ
∥µ∥γlγ

Hölder
≥

≥
∥∇(φ+ φ̄)∥lp

α
− ∥f∥lp′∥φ∥lp −

1

2α2
∥µ∥lγ +

1

2γ
∥µ∥γlγ ≥

≥ 1

cpα
− ∥f∥lp′ ∥φ∥lp −

∥φ̄∥lp
cpα

− 1

2α2
∥µ∥lγ +

1

2γ
∥µ∥γlγ ,

where cp > 0 is the Poincaré constant.
Now, supposing that ∥f∥lp′ ̸= 0, taking α such that:

α <
1

cp∥f∥lp′
,

we have:
1

cpα
− ∥f∥lp′ ∥φ∥lp ≥ 0,

and

lim
∥φ∥lp→∞

1

cpα
− ∥f∥lp′ ∥φ∥lp = +∞.

If ∥f∥lp′ = 0 the same is true ∀α > 0.
Observing that γ > 1 if 1 < p < 2 we also have that:

lim
∥µ∥lγ→∞

− 1

2α2
∥µ∥lγ +

1

2γ
∥µ∥γlγ =

= lim
∥µ∥lγ→∞

 
1

2γ
− 1

2α2∥µ∥γ−1
lγ

!
∥µ∥γlγ = +∞.

As a consequence, ρ(φ, µ) is norm coercive in the product space (HB
0 (V )×H(E)+)

equipped with the norm

∥(φ, µ)∥(HB
0 (V )×H(E)+) = sup{∥φ∥lp , ∥µ∥lγ}.

Moreover the function g : R → R defined as:

g(t) :=
1

2γ
tγ − 1

2α2
t,
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admits the unique positive minimizer:

t∗ =
1

α2

1
γ−1

> 0, ∀α ̸= 0.

Summing up all together, we have found that:

ρ(φ, µ) is bounded from below and norm coercive.

Thus, all the hypothesis of Proposition 2.7.3 are satisfied and there exists a saddle
point ((φ∗, µ∗), σ∗) ∈ (HB

0 (V )×H(E)+)×H(E) .
The KKT conditions for the saddle points ((φ∗, µ∗), σ∗) of (2.9.8), read as follows:

−|σ∗e |2 + µ∗e
2(p−1)
2−p − ce = 0, ∀ e ∈ E

µ∗eσ
∗
e = ∇(φ∗ + φ̄)e, ∀ e ∈ E

−(div σ∗)v = fv, ∀ v ∈ VI

φ∗
v = 0, ∀ v ∈ B

ceµ
∗
e = 0, ce ≥ 0, ∀ e ∈ E.

(2.9.10)

where c ∈ H(E) is an opportune positive Lagrange multiplier.
Observe that if µ∗ē = 0 on some edge ē, then the first equation in (2.9.10) implies
that σ∗ē = 0 and cē = 0, this is the unique possible solution. On the edges where
µ∗e > 0, the last equation gives that ce = 0.
Therefore, (2.9.10) implies that(

µ∗e = |σ∗e |
2−p
p−1 = |σ∗e |p

′−2 = | ∇(φ∗ + φ̄)e|2−p, ∀ e ∈ E

µ∗eσ
∗
e = (∇φ)e, ∀ e ∈ E.

This last two equations imply also that:

σ∗e = | ∇(φ+ φ̄)e|p−1 sign(∇(φ+ φ̄))e, ∀ e ∈ E.

So that the remaining equations in (2.9.10):(
−(div σ∗)v = fv, ∀ v ∈ VI

φ∗
v = 0, ∀ v ∈ B,

are equivalent to the p-Poisson problem for φ̃∗ := φ∗ + φ̄:

(∆p φ̃
∗)v = fv, v ∈ VI

φ̃∗
v = γv, v ∈ B,

which, by virtue of the Poincaré inequality, admits a unique solution.
This shows that the optimal triplet ((φ∗, µ∗), σ∗) is unique, it satisfies the ex-
tremality relations (2.9.6)-(2.9.7) and φ̃∗ := φ∗ + φ̄ is the unique solution of the
p-Poisson problem (2.9.2).
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Remark 2.9.2. Observe that, exchanging sums we integrals, the proof of Theo-
rem 2.9.1 works also in the continuous case, with the same arguments.

We have now all the ingredients to extend our regularized DMK scheme (2.8.9).
Consider the regularized functional:

Lpδ(φ, µ) :=

= sup
σ∈H(E)

−
X
e∈E

1

2
(µe + δ)|σe|2 + σ · ∇(φ+ φ̄)−

X
v∈VI

fvφv +
1

2γ

X
e∈E

µγe =

=
X
e∈E

1

2

| ∇(φ+ φ̄)e|2

(µe + δ)
−
X
v∈VI

fvφv +
1

2γ

X
e∈E

µγe ,

where γ = p
2−p , 1 < p < 2, and consider the following double minimization

problem:
inf

φ ∈ HB
0 (V )

µ ∈ H(E)
+

Lpδ(φ, µ). (2.9.11)

With the same arguments as in (2.5.10) we have that Lpδ(φ, µ) is convex, lower
semi-continuous and coercive in the pair (φ, µ). Moreover, since γ > 1 if 1 < p <
2, the function Lpδ(φ, µ) is strictly convex in (HB

0 (V )×H(E)+) and the existence
of a unique minimizer (φ∗, µ∗) for (2.9.11) is guaranteed.
The KKT conditions for the minimizers of Lpδ(φ, µ) reads as follows:

− |∇(φ∗+φ̄)e|2
(µ∗e+δ)

2 + µγ−1 − ce = 0, ∀ e ∈ E

(∆ 1
µ∗+δ

(φ∗ + φ̄))v = fv, ∀ v ∈ VI

φ∗
v = 0, ∀ v ∈ B

ceµ
∗
e = 0, ce ≥ 0, ∀ e ∈ E

(2.9.12)

The second and the third equations in (2.9.12) are exactly the reduced system as
in (2.8.6). since c ≥ 0, if

µ∗ē = 0,

on some edge ē, then the first equation in (2.9.12) implies that

∇(φ∗ + φ̄)ē = 0,

and cē = 0, this is the unique possible solution.
On the other hand, the last equation in (2.9.12) implies that if

µ∗ē > 0,

then cē = 0 and hence

| ∇(φ∗ + φ̄)|2ē = (µ∗ē + δ)2µ∗ē
2(p−1)
2−p ,
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which also implies that µ∗ē ≈ |∇(φ∗ + φ̄)|2−pē +O(δ).
We are indeed motivated to introduce the corresponding version of the dynamics
in (2.8.9) as a good approximation:

(∆ 1
µ(t)+δ

(φ(t) + φ̄))v = fv, ∀ v ∈ VI ,

φ(t)v = 0 ∀ v ∈ B,

σe(t) =
(∇(φ(t) + φ̄))e

µe(t) + δ
, ∀ e ∈ E,

∂tµe(t) = µe(t)|σe(t)|2 − µe(t)
p

2−p , µe(0) = µ0e > 0, ∀ e ∈ E.

(EDMK)

(2.9.13)
where as in (2.8.9), the dynamics in (2.9.13) is derived by composing with the
quadratic map µe(t) = ξe(t)

2, ∀ e ∈ E and we refer to Section 2.8 for the time
discretization approaches.
As for the 1-Harmonic case, multiple experiments where done providing good sta-
bility and convergence properties. Another converging dynamics which exhibits
faster convergence rate and improved stability in our numerical experiments is
the one given in (2.8.18) derived by composing with the map:

µe(t) = Ψ(ξe(t)) := |ξe(t)|
2(2−p)

p , ∀ e ∈ E,

which leads to the following new dynamics for µ:

∂tµe(t) = µe(t)
4−3p
2−p |σe(t)|2 − µe(t), ∀ e ∈ E.

This kind of dynamics, in the Optimal Transport case, was observed experimen-
tally as describing the time evolution growing for some types of bacteria [55].

2.10 Generalized DMK(GDMK) scheme for the Min-
imal Surfaces problem

In this section we briefly describe how the DMK scheme (2.8.4) can be used
to tackle the particular case of the Minimal Surfaces problem. We have already
shown in Example 2.6.4 how to construct an equivalent formulation in the discrete
setting of the minimial surfaces type energy. We will first introduce the problem
in the continuous case and then state the discrete counterpart on graphs.
Consider an open bounded Lipschitz domain Ω ∈ Rn and set Γ = ∂Ω. Given a
profile function g(x) : Γ 7→ R we look at the following variational problem:

inf
φ∈C∞(Ω)

Z
Ω

p
1 + | ∇φ|2

s.t. φ(x) = g(x), x ∈ Γ.

(2.10.1)
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Problem (2.10.1) can be simplified by introducing the lifting function φ̄ such that
φ̄(x) = g(x) for all x ∈ Γ and considering the problem:

inf
φ∈C∞

c (Ω)

Z
Ω
|
p

1 + | ∇(φ+ φ̄)|2. (2.10.2)

The Euler-Lagrange equation for problem (2.10.1) is the well known Minimal
Surfaces PDE with fixed profile g:

−div
∇φp

1 + | ∇φ|2
= 0, x ∈ Ω

φ(x) = g(x), x ∈ Γ.

The discrete graph-based counterpart of (2.10.2) is the following problem:

inf
φ∈HB

0 (V )

X
e∈E

p
1 + | ∇(φ+ φ̄)e|2, (2.10.3)

where we have selected a Dirichlet boundary subset B ⊂ V , a profile function
g ∈ H(B), an appropriate lifting function φ̄ such that φ̄v = gv for all v ∈ B
and φ̄v = 0 for all v ∈ VI and considered a φ ∈ HB

0 (V ) where HB
0 (V ) := {φ ∈

H(V ) | φv = 0, ∀ v ∈ B}.
In Example 2.6.4 we have seen an equivalent saddle point formulation for the
discrete Minimal Surfaces energy, hence in the graph framework, ∀φ ∈ HB

0 (V ),
we have that:

E(φ) :=
X
e∈E

p
1 + | ∇(φ+ φ̄)e|2, (2.10.4)

Lφ(µ, σ) := −1

2

X
e∈E

µe|σe|2 + σ · ∇(φ+ φ̄) +
1

2

X
e∈E

(
1

µe
+ µe),

LMS(φ) = inf
µ∈H(E)+

sup
σ∈H(E)

Lφ(µ, σ),

and
E(φ) = LMS(φ), ∀φ ∈ HB

0 (V ).

moreover, as in Example 2.6.4, the unique saddle point (µ∗, σ∗) for Lφ(µ, σ) is
given by:

µ∗e =
p

1 + | ∇(φ+ φ̄)e|2, e ∈ E,

σ∗e =
∇(φ+ φ̄)ep

1 + | ∇(φ+ φ̄)e|2
, e ∈ E.

With the same arguments as in Theorems 2.7.4, 2.9.1 is possible to show that
problem (2.10.3) is equivalent to:

inf
φ∈HB

0 (V )
LMS(φ) =

= inf
φ ∈ HB

0 (V )

µ ∈ H(E)
+

sup
σ∈H(E)

−1

2

X
e∈E

µe|σe|2 + σ · ∇(φ+ φ̄) +
1

2

X
e∈E

(
1

µe
+ µe). (2.10.5)
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and there exists a unique optimal triplet (φ∗, µ∗, σ∗) for (2.10.5) which satisfies
the following extremality relations:

µ∗eσ
∗
e = (∇(φ∗ + φ̄))e , ∀ e ∈ E

−(div σ∗)v = 0, ∀ v ∈ VI

φ∗
v = 0, ∀ v ∈ B

µ∗e =
p

1 + | ∇(φ+ φ̄)e|2, ∀ e ∈ E.

As a consequence
φ̃ := φ∗ + φ̄,

is the unique solution of the graph Minimal Surfaces problem:

(∆ 1√
1+| ∇(φ̃|2

φ̃)v = 0, v ∈ VI

φ̃v = gv v ∈ B.
(2.10.6)

Moreover, since the optimal density µ∗ is strictly greater then 1, possibly restrict-
ing (2.10.5) on the set {µ ∈ H(E)+ | µi ≥ δ, δ < 1, i = 1, ...,m}, the minimizer
µ∗ remains the global minimizer, the ”sup” in σ becomes a ”max” and thus,
evaluating (2.10.4) in

σe =
∇(φ+ φ̄)e

µe
, ∀ e ∈ E,

we have:

LMS(φ, µ) :=
X
e∈E

1

2

| ∇(φ+ φ̄)e|2

µe
+

1

2

X
e∈E

(
1

µe
+ µe),

and (2.10.5) is equivalent to the reduced formulation::

inf
φ∈HB

0 (V )
LMS(φ) = inf

µ ∈ H(E)
+

φ ∈ HB
0 (V )

LMS(φ, µ) =

= inf
µ ∈ H(E)

+

φ ∈ HB
0 (V )

X
e∈E

1

2

| ∇(φ+ φ̄)e|2

µe
+

1

2

X
e∈E

(
1

µe
+ µe). (2.10.7)

The function LMS(φ, µ) is strictly convex and differentiable in the interior of
(HB

0 (V ) × H(E)+) thus, since the optimal densitity µ∗ > 0, the existence of a
unique minimizer (φ∗, µ∗) for (2.10.7) is guaranteed.
We are indeed motivated to introduce the corresponding version of the dynamics
in (2.8.9):

(∆ 1
µ(t)

(φ(t) + φ̄))v = 0, ∀ v ∈ VI ,

φ(t)v = 0, ∀ v ∈ B,

∂tµe(t) =
| ∇(φ(t) + φ̄)e|2 + 1

µe(t)
− µe(t), µe(0) = 1, ∀ e ∈ E.

(GDMK)

(2.10.8)
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Harmonic Minimal Surface

Figure 2.6: Test Case 1, Harmonic vs Minimal Surface, Potential (nodes) µ
(edges)

where as in (2.8.9), the dynamics in (2.10.8) is derived by composing with the
quadratic map µe(t) = ξe(t)

2, ∀ e ∈ E and we refer to Section 2.8 for the time
discretization approaches. Moreover, as we have already observed, the optimal
density µ∗ is strictly greater then 1, so that we propose to take as initial guess
µe(0) = 1, ∀ e ∈ E.
We now present some numerical experiments in the same first two test cases as for
the Total Variation Energy minimization(figures 2.2, 2.3). As for the 1-Harmonic
case, we have decided to plot the figures in three dimensions where on the nodes
we have the value of the function φ̃ = φ∗+φ̄, which in these figures is represented
by the third coordinate ”z”, and we give different colors to the edges depending
on the value of the variable µ∗, following the heat colour bar on the right side.
In figures 2.6,2.7 we can see the comparison between the Harmonic solution (left)
and Minimal Surfaces solution(right) computed with our Generalized DMK(GDMK)
scheme (2.10.8) and Explicit Euler time discretization scheme(see Section 2.8 for
details) for test case 1 and 2 respectively. Finally, in figure 2.8 we show the
convergence behaviour of our numerical algorithm for test case 1 (the same re-
sults was observed for test case 2). We plot in the vertical axis the relative
error as in (2.8.13) vs the number of iterations(horizontal axis). We point out
that the no time stepping rule were adopted, so that we fixed a relative large
time step ∆t = 0.5, an initial µ0 > 0, and we let evolve the dynamics until
errµk(µ

k+1) ≤ 1e− 8(as in (2.8.13). As a result, a greater convergence speed was
observed with respect to the 1-Harmonic case.
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Harmonic Minimal Surface

Figure 2.7: Test case 2, Harmonic vs Minimal Surface, Potential (nodes) µ (edges)

Figure 2.8: errµk(µ
k+1) vs number of iterations
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2.10.1 Application to the Obstacle Problem

One of the most famous application related to the Minimal Surfaces energy min-
imization is the Obstacle Problem, first introduced By Lions and Stampacchia in
[92]. The problem reads as follows. Consider an open bounded Lipschitz domain
Ω ∈ R2 and set Γ = ∂Ω. Consider moreover a body represented by

(x, y, z) ∈ R3 : z ≤ ϕ(x, y) .

As for the Minimal Surfaces energy minimization, let g(x) : Γ 7→ R be a Dirichlet
profile function. The Obstacle Problem is formulated as the problem to seek
for the equilibrium position of the membrane such that it lies above the body
represented by ϕ with Dirichlet boundary conditions on Γ. Namely, we look at
the following variational problem:

inf
φ∈C∞(Ω)

Z
Ω

p
1 + | ∇φ|2

s.t. φ(x) = g(x), x ∈ Γ

φ(x) ≥ ϕ(x), x ∈ Ω

(2.10.9)

This kind problem and it’s variants have multiple applications in Finance, Opti-
mal Control Theory and non-linear Elasticity Theory (see for example [89]).
The Euler-Lagrange equations for (2.10.9) reads as follows [2], [89]:

−div
∇φp

1 + | ∇φ|2
≥ 0, x ∈ Ω

φ ≥ ϕ, x ∈ Ω

−(φ− ϕ) div
∇φp

1 + | ∇φ|2
= 0, x ∈ Ω

φ(x) = g(x), x ∈ Γ

The graph-based counterpart of (2.10.9) is the following problem:

inf
φ ∈ HB

0 (V )

φv ≥ ϕv, ∀ v ∈ VI

X
e∈E

p
1 + | ∇(φ+ φ̄)e|2 (2.10.10)

where as in (2.10.3) we have introduced a lifting function φ̄v = gv, ∀ v ∈ B,
φ̄v = 0, ∀ v ∈ VI , g ∈ H(B) is the profile function and we imposed the further
constraint on the obstacle function ϕ ∈ H(VI).
In analogy to the continuous case, the Euler-Lagrange equations for (2.10.10) are:

(∆ 1√
1+| ∇(φ+φ̄)|2

(φ+ φ̄))v ≥ 0, v ∈ VI

φv ≥ ϕv, v ∈ VI

(φv − ϕv)(∆ 1√
1+| ∇(φ+φ̄)|2

(φ+ φ̄))v = 0, v ∈ VI

φv = 0, v ∈ B.

(2.10.11)
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We then consider our equivalent formulation of the Minimal Surfaces energy
minimization as in (2.10.7) and look at the following problem:

inf
µ ∈ H(E)

+

φ ∈ HB
0 (V )

φv ≥ ϕv, ∀ v ∈ VI

LMS(φ, µ) :=

= inf
µ ∈ H(E)

+

φ ∈ HB
0 (V )

φv ≥ ϕv, ∀ v ∈ VI

X
e∈E

1

2

| ∇(φ+ φ̄)e|2

µe
+

1

2

X
e∈E

(
1

µe
+ µe). (2.10.12)

Motivated by (2.10.6) and the doubled minimization problem of (2.10.12) , we
introduce the following GDMK minimization flow:

∂tφv(t) = −(φv(t) + φ̄v − ϕv)(∆ 1
µ(t)

(φ(t) + φ̄))v, ∀ v ∈ VI ,

φv(0) = φ0v > ϕv, ∀ v ∈ VI ,

φv(t) = 0, ∀ v ∈ B,

∂tµe(t) =
| ∇(φ(t) + φ̄)e|2 + 1

µe(t)
− µe(t), µe(0) = 1, ∀ e ∈ E.

(GDMK)

(2.10.13)
or equivalently:

∂tφ̃v(t) = −(φ̃v(t)− ϕv)(∆ 1
µ(t)

(φ̃(t)))v, ∀ v ∈ VI ,

φ̃v(0) = φ̃v0 > ϕv, ∀ v ∈ VI ,

φ̃v(t) = gv, ∀ v ∈ B,

∂tµe(t) =
|(∇ φ̃(t))e|2 + 1

µe(t)
− µe(t), µe(0) = 1, ∀ e ∈ E.

(2.10.14)

where g ∈ H(B) is the profile function. As in (2.8.9), the dynamics in (2.10.13)
and (2.10.14) are derived by composing with the quadratic maps

φ̃v(t) = φv(t) + φ̄ = ϕv + hv(t)
2, ∀ v ∈ VI ,

and

µe(t) = ξe(t)
2, ∀ e ∈ E.

Observe that a stationary point for (2.10.13) or (2.10.14) is a solution of the
original Euler-Lagrange equations (2.10.11).
As for the time discretization approach, we propose the following semi implicit
scheme for (2.10.14) which is quite easy to implement but it shows a relative
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slow convergence rate. Given a sequence ∆tk > 0, the approximation sequence
µk

k=1,...,kmax
, φ̃k

k=1,...,kmax
is given by the following set of equations:

1 +∆tk[Diag(φ̃k − ϕ)]∆ 1

µk
φ̃k+1 = φ̃k, ∀ v ∈ VI

φ̃k+1 = gv, ∀ v ∈ B

φ̃v
0 > ϕv, ∀ v ∈ VI

φ̃v
0 = gv, ∀ v ∈ B

µk+1
e = µke +∆tk

|(∇ φ̃k)e|2 + 1

µke
− µke , ∀ e ∈ E

µ0e = 1, ∀ e ∈ E

k = 0, ..., kmax.

(2.10.15)

Hence at each time step, we only need to solve the linear system

1 +∆tk[Diag(φ̃kv − ϕ)]∆ 1

µk
φ̃k+1 = φ̃k, ∀ v ∈ VI

φ̃k+1 = gv, ∀ v ∈ B.

We will now see an application of our proposed scheme in (2.10.15). We consider
the same test case graph as in figure 2.1. We then impose null homogeneous
Dirichlet boundary conditions on each side of the square and we considered the
following obstacle function ϕ:

ϕv = 0.8, 0.2 ≤ vx ≤ 0.4 and 0.2 ≤ vy ≤ 0.4

ϕv = 1.0, 0.6 ≤ vx ≤ 0.8 and 0.6 ≤ vy ≤ 0.8

ϕv = 0, otherwise.

In figure 2.9 we can see the comparison between the obstacle function ϕ(left) and
the numerical solution φ̃(right) computed with our semi implicit DMK scheme
(2.10.15). In figure 2.10 we can see the convergence behaviour of our numerical
algorithm for the proposed test case. We plot in the vertical axis the relative error
for the variable µ as in (2.8.13) vs the number of iterations(horizontal axis). In
the numerical simulation we used a fixed time step ∆t = 1e−2, an initial µ0 > 0,
φ̃0 > ϕ, and we let evolve the dynamics until errµk(µ

k+1) ≤ 1e−4(as in (2.8.13)).
Is clearly visible from figure 2.10 that two different linear convergence rates can be
observed. This convergence behaviour correspond to the synchronization along
the flow of the solution φ̃ on the two different peaks of the obstacle function
ϕ. Unfortunately, the algorithm is quite slow, nevertheless it exhibits a good
stability. We will further investigate the behaviour of the minimization flow in
(2.10.14) with other more efficient numerical schemes such as the Implicit Euler
scheme. Finally, in figure 2.11 we can see the value of the potential function φ̃
and the obstacle function ϕ corresponding to the same node index in the graph
showing that the constraint φ̃ ≥ ϕ is preserved during the minimization.



2.10. GDMK 175

Obstacle Function Numerical Solution

Figure 2.9: Obstacle vs Computed Solution, Potential (nodes) µ (edges)

Figure 2.10: errµk(µ
k+1) vs number of iterations
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Figure 2.11: φ̃(green) vs ϕ(red)

2.11 Application to the general framework of TV and
l1-norm regularization

Optimization Problems and Inverse Problems are nowadays very popular with
several applications in engineering and data analysis. Typically, inverse prob-
lems are ill-posed and admit infinite solutions. Analogously, non convex objec-
tive functions may admit multiple local extremal points drastically making their
identification difficult or even impossible.
A common strategy to overcome this problem is to add regularization terms to the
objective function. The aim of the regularization term is to gain convexity to im-
prove the identifiability of local minimizers and improving the well-conditioning
of the problem.
A very effective and challenging choice of regularizers are based on l1-norms
(compressed sensing, LASSO) or Total Variation of the optimization design pa-
rameters. The use of such regularization strategies is hampered by the difficulty
in finding efficient and robust numerical solution algorithms. In this Section
we will first introduce the problem of regularization in a very broad sense and
describe how to incorporate our techniques based on the DMK scheme for the
TV and l1-norm Tikhonov regularization. The reasons and motivations for this
section come not only from a case of direct interest for this thesis, but also as
an introduction for future developments with multiple applications in different
fields, for example Machine Learning and Deep Learning.
We will show moreover few interesting applications such as the classical problem
of 1-D signal TV-Denoising and the more particular problem of the compressed
sensing for the graph Laplacian partial eigenproblem, remarking the advantages
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of our proposed numerical algorithms with respect to the standard techniques
such as the Bregman-Split iteration [104], [64], [33], [115].

2.11.1 Introduction: Generalized Tikhonov Regularization in Vari-
ational Problems

Consider an open Lipschitz domain Ω ∈ Rn and a Banach space H(Ω) defined
on Ω. In the most general case, the Generalized Tikhonov Regularization for a
Variational Problem is the following optimization problem:

min
φ∈H(Ω)

Z
Ω
c(φ, ϵ(φ)) +

Z
Γ
N(φ, ϵ(φ)) + λ

Z
Ω
R(ϵ(φ))

s.t. g(φ) ≥ 0, in Ω

b(φ) = 0, in Γ = ∂Ω.

Where c is a cost function defined on Ω, N is a cost function defined on Γ = ∂Ω,
g is a linear or nonlinear constraint function, b define some boundary conditions,
ϵ is a linear operator between Banach spaces, R is a positive convex function (the
regularizer function) and λ is a positive parameter which controls the amount of
regularization desired.
It is clear that one can define any discrete optimization problem by opportunely
discretize a continuous variational problem.
For example, one can consider the following discrete kernel regression regularized
problem, which is clearly derived from a continuous one where the integrals have
become summations over a discrete samples set:

min
f

nX
i=1

| yi − f(xi) |2

2
+ λ

nX
i=1

| f(xi) |2

2

s.t. f(x) =
nX
i=1

cik(x, xi),

xi ∈ R2, i = 1, ..., n,

λ ≥ 0.

(2.11.1)

In this example the regularization term is nothing that the l2-norm squared of
the regression function f and is modulated by it’s Tikhonov parameter λ.
In figure 2.12 we can see the effect of the Tikhonov regularization for problem
(2.11.1) where we can clearly see that the regularization avoids the overfitting.
In this section we will focus our attention on a class of non common regularizers
derived from the l1-norm, namely the l1-norm of the design parameters which is
sometimes called the compressed sensing regularization and the Total Variation
(TV ) regularizer.
These choices of regularization functionals have the nice property to improve
the sparsity (compressed sensing) or to improve the local flatness (TV ) of the
optimal solutions.
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Figure 2.12: Samples (left), Overfitting (center), Regularized (right)

2.11.2 The classical framework in the discrete setting and the
Proximal Forward-Backward Splitting scheme

In this subsection we will first see probably the most common situation in the
framework of the Tichononv regularization for discrete problems and an overview
of a very interesting application of the proximal map operator.
We follow the work in [33] and [13].
Let V := Rn and consider the following optimization problem:

inf
φ∈V

F (φ) +G(φ),

where F : V → R is differentiable and G : V → R is ”simple” i.e. giving a certain
∆t > 0 it is easy to compute the proximal map operator:

prox(G) := (1 +∆t∂G)−1

where G is possibly not differentiable and ∂G is the subdifferential of G. It is
immediate to see that:

(1 +∆t∂G)−1(φ) = argmin
q

∥q − φ∥2l2
2∆t

+G(q),

which is nothing that the update scheme given by the Implicit Euler time dis-
cretization.
A typical example of ”simple” map, already encountered in Section 2.4 is the
indicator function of the l∞ unit ball:

χl∞(φ) :=

(
0, |φi| ≤ 1, i = 1, ..., n

+∞, otherwise.

and it is easy to see [33] that the proximal map is given by:

(1 +∆t∂χl∞)−1(φ) = ΠC(φ), φ ∈ V, (2.11.2)

where ΠC(φ) is the orthogonal projection on the l∞ unit ball

Bl∞ := {φ ∈ V | |φi| ≤ 1, i = 1, ..., n} .
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which is straightforward to compute and is given by:

ΠC(φ)i =
φi

max{1, |φi|}
, i = 1, . . . , n.

In the case where, as in the previous example, G is such that the proximal map
prox(G) is easy to invert, it is a common strategy to solves successively one step of
the gradient descent of F (in an explicit way), and one step of the gradient descent
of G(in an implicit way), in order to obtain a ”full” gradient descent of F + G.
This is the reason why the term ”forward-backwards” splitting was introduced in
[40]. Given a sequence ∆tk, the approximation sequence φk

k=1,...,kmax
is hence

given by the following recurrent scheme:

 φ0
i = φi0, i = 1, ..., n

φk+1 = (1 +∆tk∂G)
−1 φk −∆tk∇F (φk) , k = 0, ..., kmax.

(SPLIT-

FW-BW)

(2.11.3)
It is interesting to understand the intuitive idea behind it. Consider the following
quadratic map:

ψ 7→ QL(ψ,φ) = F (φ) + ⟨∇F (φ), ψ − φ⟩+ 1

2L
∥ψ − φ∥2l2 .

Since F is differentiable, for any fixed φ ∈ V , we have that [33]:

F (ψ) ≤ QL(ψ,φ), ∀ψ ∈ V. (2.11.4)

Thus the parabola QL(ψ,φ) approximates from above F (ψ). Now, let φ = φk

and replace the minimization of F , at step k, with the minimization of QL(ψ,φ
k)

with respect to q:
φk+1 := arg min

ψ
QL(ψ,φ

k),

which implies that:
φk+1 = φk − L∇F (φk), (2.11.5)

that is a step of the gradient descent algorithm with step L. This is a way to
interpret the ”forward-backward” scheme, and provides a natural way to extend
it to the minimization of F +G. Indeed, we can now let:

H∆tk(ψ,φ) = F (φ) + ⟨∇F (φ), ψ − φ⟩+ 1

2∆tk
∥ψ − φ∥2l2 +G(ψ),

and. by virtue of (2.11.4):

F (ψ) +G(ψ) ≤ H∆tk(ψ,φ), ∀φ ∈ V, ∆tk > 0.

So that letting φ = φk we consider the following updating scheme:

φk+1 = arg min
ψ

H∆tk(ψ,φ
k), (2.11.6)
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and by (2.11.2) and (2.11.5) we find that (2.11.6) is precisely the ”forward-
backward” splitting scheme (2.11.3).
In [33] Theorem 3.12 p.45 and in [13] it is shown that the scheme in (2.11.6) con-
verges to a minimizer of F +G with essentially the same convergent rate of the
classical gradient descent algorithm. Nevertheless, it has improved stability prop-
erties and we will make extensive use of this kind of techniques in our proposed
numerical algorithm based on the DMK scheme. Moreover, this scheme is quite
easy to implement and has the necessary flexibility to be adapted for the solu-
tion of multiple problems. As a consequence, several acceleration techniques have
been proposed during the years, where among them we remark the famous Nes-
terov/Beck and Teboulle’s acceleration [13] which reads as the following scheme
for the approximation sequence φk

k=1,...,kmax
:

φ0 = φ0

y1 = φ0

h1 = 1

φk = (1 +∆t∂G)−1 yk −∆t∇F (yk)

hk+1 =
1 +

p
1 + 4(hk)2

2

yk+1 = φk +
hk − 1

hk+1
φk − φk−1

k = 1, ..., kmax.

(Beck-Teboulle) (2.11.7)

furthermore, we have the following convergence rate result:

Theorem 2.11.1. [Beck and Teboulle [13], Theorem. 4.1]
For any minimizer φ∗ of F+G we have that the sequence φk

k=1,...,kmax
generated

by (2.11.7) satisfies:

F (φk) +Gφk)− (F (φ∗) +G (φ∗)) ≤
2 φ0 − φ∗ 2

∆t(k + 1)2
.

2.11.3 The Split-Bregman iteration for the Total Variation De-
noising problem

In this subsection we will see another famous algorithm which that can be placed
in the framework of the Augmented Lagrangian methods [33], the so called
Begman-Split iteration. This kind of algorithms, especially for the problem of
the Total Variation denoising, are typically employed in image restoration [104].
Nevertheless, we can consider the general framework based on graphs once ob-
served that we can always associate to every image the graph generated by con-
necting a pixel with it’s nearest ones upon selecting a neighborhood rule(for
example by connecting every pixel to the 4 nearest ones).
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Thus, let V = Rn, E = Rm and ∇ : V → E be a linear operator(for example
the graph gradient matrix if V is the nodes set and E the edges set). We then
consider the following constrained problem:

min
p = ∇φ

φ ∈ V

λ∥p∥l1 +
1

2
∥φ− b∥2l2 . (2.11.8)

where b represents a collection of noisy samples and λ is the Tychonov parameter.
Then, to enforce the constraint, we use an augmented Lagrangian approach,
which consists in introducing

L(p, φ, µ) = λ∥p∥l1 +
1

2
∥φ− b∥2l2 + ⟨µ, p−∇φ⟩+ α

2
∥p−∇φ∥2l2 ,

where α > 0 and µ ∈ E is a Lagrange multiplier for the constraint p = ∇ v.
The method consists then in minimizing alternatively L with respect to p, φ, and
maximizing with respect to µ :

φk+1 = arg min
φ

L(pk, φ, µk),

pk+1 = arg min
p

L(p, φk+1, µk),

µk+1 = µk +∆tk(p
k+1 −∇φk+1).

(ALM)

the minimization in the variable p, which involves the l1 norm decouples and has
a closed form as a vectorial shrinkage [104], [142], [64]:

pk+1
i =

α(∇φ)i − µi
|α(∇φ)i − µi|

max
|α(∇φ)i − µi| − λ

α
, 0 , i = 1, ...,m. (2.11.9)

In this case the change of variable p = ∇φ has the clear effect to simplify the
problem, removing the difficulties derived by the non differentiability of the l1
norm. A variant of the previous algorithm is the Bregman-Split iteration which
is based on the Bregman Distance. Consider the following optimization problem:

min
φ∈V

F (φ)

s.t.H(φ) = 0,

where F : V → R and H : V → R are two convex possibly not differentiable
functions and (V, ∥ · ∥V ) is a Banach space. We define the Bregman distance as:

Dp
F (φ,ψ) := F (φ)− F (ψ)− ⟨ρ, φ− ψ⟩, ρ ∈ ∂F (ψ),

where ∂F (ψ) is the subgradient:

∂F (ψ) := {ρ : F (φ) ≥ F (ψ) + ⟨ρ, φ− ψ⟩, ∀φ ∈ V }.

The Bregman distance is not a distance in the usual sense because it is not
symmetric. However, it does satisfy other distance-like properties following from
it’s definition and the convexity of F [64]:
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• Dp
F (φ,φ) = 0

• Dp
F (φ,ψ) ≥ 0

• Dp
F (φ,ψ) +Dp̃

F (ψ, ψ̃)−Dp̃
F (φ, ψ̃) = ⟨ρ− p̃, ψ − φ⟩.

Given a starting point v0 and a parameter γ > 0, the Bregman iteration algorithm
is given formally by the following iterative scheme:

φk+1 = arg min
φ

Dpk

F (φ,φk) + γH(φ), ρk ∈ ∂F (φk) (2.11.10)

In the case where H is differentiable, the sub-differential of H is it’s gradient
∇H, and the sub-differential of the Lagrangian

L(φ) := Dpk

F (φ,φk) + γH(φ)

is given by

∂φL(φ) = ∂φ F (φ)− F (φk)−
D
ρk, φ− φk

E
+ γH(φ) =

= ∂F − ρk + γ∇H.

Since from (2.11.10) φk+1 minimizes L(φ), the optimality condition for φk+1 is
given by:

0 ∈ ∂F (φk+1)− ρk + γ∇H(φk+1)

⇔ ρk − γ∇H(φk+1) ∈ ∂F (φk+1).

Therefore, ρk+1 ∈ ∂J(φk+1) can be selected as

ρk+1 = ρk − γ∇H(φk+1), (2.11.11)

and the Bregman iteration (2.11.10) with this selecting rule for ρk+1 becomes:

φk+1 = arg min
φ

Dρk

F (φ,φk) + γH(φ),

ρk+1 = ρk − γ∇H(φk+1),

φ0 = φ0,

ρ0 ∈ ∂J(φ0),

k = 0, . . . , kmax.

(Bregman-

iteration)

In the particular case where V = Rn and H is the residual of a linear system
involving the matrix A ∈ Rn×n and a known term f ∈ V :

H(φ) =
1

2
∥Aφ− f∥2l2 ,
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then, the Bregman iteration simplifies and is equivalent to the Augmented La-
grangian method [104], [142]:

φk+1 = arg min
φ

F (φ) +
γ

2
Aφ− f + ρk

2

l2

ρk+1 = ρk +Aφk+1 − f,

φ0 = φ0,

ρ0 = 0,

k = 0, . . . , kmax.

(2.11.12)

A variant of the Bregman iteration is the so called split Bregman iteration. Con-
sider again problem (2.11.8):

min
p = ∇φ

φ ∈ V

λ∥p∥l1 +
1

2
∥φ− b∥2l2 .

the idea is to apply the Bregman iteration (2.11.12) with the quadratic residual
function given by:

H(φ) =
1

2
∥∇φ− p∥2l2 ,

and the corresponding Bregman iteration as in (2.11.12) is given by:

(φk+1, pk+1) = arg min
(φ,p)

λ∥p∥l1 +
1

2
∥φ− b∥2l2 +

γ

2
∇φ− p+ ρk

2

l2

ρk+1 = ρk +∇φk+1 − pk+1,

φ0 = φ0,

ρ0 = 0,

k = 0, . . . , kmax.

(2.11.13)

This updating scheme is fully implicit, but, since it involves the non differentiable
term given by the l1-norm of p, we can not apply the Newton method to compute
the new iterates (φk+1, pk+1). To circumnavigate this problem, Osher et.al. [104]
proposed to ”split” the original implicit scheme (2.11.13) to the following semi-
implicit alternating sub-problems scheme:

• (p sub-problem): Given a fixed φ compute pk+1 by solving

pk+1 = arg min
p

λ∥p∥l1 +
γ

2
∇φ− p+ ρk

2

l2
,

as in (2.11.9), this problem as the closed solution as a vectorial shrinkage:

pk+1
i =

(∇φ)i − ρki
|(∇φ)i − ρki |

max |(∇φ)i − ρki | −
λ

γ
, 0 , i = 1, ...,m.
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• (φ sub-problem): Given a fixed p compute φk+1 by solving:

φk+1 = arg min
φ

1

2
∥φ− b∥2l2 +

γ

2
∇φ− p+ ρk

2

l2
,

the solution is given by solving a Laplacian system:

(1 + γ∆)φk+1 = b+∇T (p− ρk).

• (ρ update): Given a fixed φ and p we update the variable ρ as in (2.11.13):

ρk+1 = ρk +∇φ− p.

Summing up all together, the split Osher-Bregman iteration for the TV denoise
reads as the following alternating iteration:

pk+1
i =

(∇φk)i − ρki
|(∇φk)i − ρki |

max |(∇φk)i − ρki | −
λ

γ
, 0 ,

i = 1, . . . ,m,

(1 + γ∆)φk+1 = b+∇T (pk+1 − ρk),

ρk+1 = ρk +∇φk+1 − pk+1,

p0 = 0,

φ0 = 0,

ρ0 = 0,

k = 0, . . . , kmax.

(TV-Osher-

Bregman-

iteration)

(2.11.14)
For what concern the choice of the parameter γ, which strongly influence the
good behaviour of the algorithm, we refer to [64] for an exhaustive treatment.
This algorithm is quite fast, easy to implement and exhibits good stability prop-
erties. It is worthless to say that it is become the benchmark algorithm for TV
denoising in image processing. Moreover, since it is not a gradient based method,
it exhibits a lack of memory of the previous iterations, which is actually an ad-
vantage when it is used for example in non-convex optimization when multiple
local minima are present, since it naturally penalizes ”bad” local minima [106].
Unfortunely there are also several limitations. For instance, the update of the
parameter ρ given by the selecting rule (2.11.11), requires to be able to solve
the p sub-problem and the φ sub-problem, thus, this algorithm applies only on
simple cases. Moreover, this also implies that this algorithm can not be applied
in general if further inequality constraints on φ are considered, it can handle very
well only equality constraints(e.g. linear and non-linear equations constraints
involving the variable φ which have at least a direct method to compute a so-
lution). Finally, since the fully implicit scheme (2.11.13) can not be applied, we
can never expect to have a quadratic convergence rate given by a second order
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method, that’s the reason why we will introduce our EDMK scheme for the Total
Variation denoising problem.

2.11.4 The EDMK scheme for the Total Variation and l1 norm
regularization in the graph setting

In this subsection we will show how to integrate our EDMK scheme for the Total
Variation regularization for a general optimization problem on graphs, without
constraints and in particular case of the positivity constraint and the interval
constriant on the design variable. Moreover, we briefly show, as a direct extension,
that the same techniques can be applied for l1 norm regularization.
As in Section 2.4, let G = (E, V, ω) be a weighted directed graph, ∇ it’s gradient
matrix and div = −∇T it’s divergence matrix. We denote as H(V ) = Rn and
H(E) = Rm the Banach spaces of real-valued functions on V , the nodes set, and
E, the edges set, respectively.
In Section 2.4 we have seen an equivalent saddle point formulation for the graph
Total Variation energy or the 1-Dirichlet energy.
Thus, we recall the Lagrangian L1φ : (H(E)+ ×H(E)) → R defined in (2.4.16) for
p = 1 as:

L1φ(µ, σ) := −
X
e∈E

1

2
µe|σe|2 + σ · ∇φ+

1

2

X
e∈E

µe, φ ∈ H(V ),

In Theorem 2.4.1 we have shown that the graph 1-Dirichlet energy or the graph
Total Variation energy:

TV (φ) := E1(φ) = ∥∇φ∥l1

admits the following equivalent saddle point formulation:

TV (φ) = inf
µ∈H(E)+

sup
σ∈H(E)

L1φ(µ, σ). (2.11.15)

Moreover, there exists a saddle point (µ∗, σ∗) for L1φ and it satisfies the extremality
relations:

µ∗eσ
∗
e = (∇φ)e, ∀ e ∈ E,

|σ∗e | ≤ 1, ∀ e ∈ E,

µ∗e|σ∗e |2 − µ∗e = 0, ∀ e ∈ E,

µ∗e = |(∇φ)e|, ∀ e ∈ E.

In Subsection 2.5.1 we have introduced the Tikhononv regularized Lagrangian:

L1,δφ (µ, σ) := −
X
e∈E

1

2
(µe + δ)|σe|2 + σ · ∇φ+

1

2

X
e∈E

µe,
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which is (2.5.4) for Λ = ∇ and p = 1 and the parameter δ > 0 is a small
Tikhononv parameter.
Consider now the functional:

L1
δ(φ, µ) := sup

σ∈H(E)
L1,δφ (µ, σ).

With the same arguments as in (2.5.7),(2.5.8), L1
δ(φ, µ) simplifies as follows:

L1
δ(φ, µ) =

X
e∈E

1

2

|(∇φ)e|2

(µe + δ)
+

1

2

X
e∈E

µe,

so that, we consider the following approximated minimization problem instead of
the saddle point formulation for the Total Variation in (2.11.15):

inf
µ∈H(E)+

L1
δ(φ, µ). (2.11.16)

The KKT conditions for a minimizer (µ∗) of (2.11.16) satisfies:(
− |(∇φ)e|2

(µ∗e+δ)
2 + 1− ce = 0, ∀ e ∈ E

ceµ
∗
e = 0, ce ≥ 0, ∀ e ∈ E.

Thus, µ∗ē = 0 on some edge ē ∈ E if and only if:

|(∇φ)ē| ≤ δ, (2.11.17)

and if µ∗ē > 0 we have that

|(∇φ)ē| = µ∗ē + δ. (2.11.18)

Hence defining:
TVδ(φ) := inf

µ∈H(E)+
L1
δ(φ, µ),

from (2.11.17), (2.11.18) we have:

TVδ(φ) = TV (φ) +O(δ).

and the accuracy on the sparsity of the gradient is controlled from above by δ. We
are indeed motivated to consider the following approximated Total Variation as
an opportune well approximated TV regularizer for some optimization problem,
if δ is sufficiently small.
We have now all the ingredients for our EDMK scheme.
Let us consider the general situation of a Total Variation regularization for a
general optimization problem on graphs:

min
φ∈H(V )

F (φ) + λTV (φ),
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where F : H(V ) → R is a differentiable function and λ > 0 is the Tikhonov
regularization parameter.
We consider instead our regularized version:

min
φ∈H(V )

F (φ) + λTVδ(φ) =

= min
φ ∈ H(V )

µ ∈ H(E)+

F (φ) + λ

 X
e∈E

1

2

|(∇φ)e|2

(µe + δ)
+

1

2

X
e∈E

µe

!
. (2.11.19)

The main advantage of considering the approximated functional TVδ instead of
using the Total Variation, comes directly from (2.11.19). Indeed, having intro-
duced the positive density variable µ, allows us to perform simultaneously the
minimization in the pair (φ, µ). Moreover, the regularization parameters δ en-
sure the necessary differentiability for a simultaneous minimization with first or
second order methods.
We now describe how to apply our techniques in three typical situations.

• (Unconstrained TV regularization):
This is the most typical situation and corresponds to problem (2.11.19)
without adding any further constraint on φ. The proposed method is very
similar to the case of 1-Harmonic functions(see Section 2.8). Indeed, we
can subdivide in other two sub-cases:

– (Direct solvable problems) This is the case for example of the clas-
sical Total Variation denoising (2.11.8) where it is possible to directly
compute a solution of:

λ∆ 1
µ+δ

φ = −∂φF (φ), ∀µ ∈ H(E)+. (2.11.20)

The corresponding version of the dynamics in (2.8.9) for problem
(2.11.19) reads as follows:

λ∆ 1
µ(t)+δ

φ(t) = −∂φF (φ(t))

σe(t) =
(∇φ(t))e
(µe(t) + δ)

, ∀ e ∈ E, (EDMK1)

∂tµe(t) = µe(t)|σe(t)|2 − µe(t), µe(0) = µ0e > 0, ∀ e ∈ E.
(2.11.21)

As for the time discretization we propose for simplicity the Explicit
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Euler scheme:

λ∆ 1

µk+δ

φk = −∂φF (φk),

σke =
(∇(φk))e
µke + δ

, ∀ e ∈ E

µk+1
e = µke +∆tkµ

k
e |σke |2 − 1 , k = 0, . . . , kmax, e ∈ E

µ0e = µ0e > 0, ∀ e ∈ E.
(2.11.22)

We refer to Section (2.8) for other method of time discretization.

– (Double ”Gradient Flow” approach) This is the case for example
of complex inverse problems where the computation of the differential
∂φF requires the solution of adjoints equations(Lagrange multipliers),
thus, it is not possible to direct compute a solution of (2.11.20) but
indeed we don’t have any direct constraint on φ. Since (2.11.19) is a
double convex minimization problem, we propose a double descend-
ing dynamics. The corresponding EDMK scheme reads now as the
following double dynamics:

∂tφ(t) = −∂φF (φ(t))− λ∆ 1
µ(t)+δ

φ(t), φ(0) = φ0,

σe(t) =
(∇φ(t))e
(µe(t) + δ)

, ∀ e ∈ E, (EDMK2)

∂tµe(t) = µe(t)|σe(t)|2 − µe(t), µe(0) = µ0e > 0, ∀ e ∈ E.

As for the time discretization, taking inspiration from (2.11.3), we pro-
pose the following semi-implicit Proximal Forward-Backward Splitting
scheme, which exhibits far superior stability properties with respect
to the Explicit Euler scheme for this specific ”Double Gradient Flow”
approach(see [13],[40] for an exhaustive treatment):

φ̃k = φk −∆tk∂φF (φ
k),

1 + λ∆tk∆ 1

µk+δ

φk+1 = φ̃k, k = 0, . . . , kmax

φ0 = φ0,

σke =
(∇(φk))e
µke + δ

, ∀ e ∈ E

µk+1
e = µke +∆tkµ

k
e |σke |2 − 1 , k = 0, . . . , kmax, e ∈ E

µ0e = µ0e > 0, ∀ e ∈ E.
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• (Constrained TV regularization):
This application is not commonly found in literature, but in many practical
situations, for example when the Total Variation is used as a regularization
term in parameter identification inverse problems [26], there is the necessity
to satisfy some further constraints for the physical feasibility of the variables
involves in the optimization. Here we present two common situations often
found in practice: the positivity constraint and the interval constraint on
the design variable φ in (2.11.19).

– (The Positivity constraint) This problem corresponds to (2.11.19)
where we add the positivity constraint on φ, namely we consider the
following problem:

min
φ ∈ H(V )

φ ≥ 0

µ ∈ H(E)+

F (φ) + λ

 X
e∈E

1

2

|(∇φ)e|2

(µe + δ)
+

1

2

X
e∈E

µe

!
.

The approach to the EDMK scheme for this problem is the same as
in the double ”Gradient Flow” approach, with the only difference
that, as in (2.8.9), we compose with the change of variable (µ(t) =
|ξ(t)|2, φ(t) = |ε(t)|2) to enforce the positivity, and then we per-
form a pull-back of the descending dynamics on the original variables
(µ(t), φ(t))(as in Subsection 2.8.2). The EDMK dynamics is the fol-
lowing:

∂tφ(t)v = −φ(t)v ∂φF (φ(t)) + λ∆ 1
µ(t)+δ

φ(t)
v
, ∀ v ∈ V

φ(0)v = φ0v > 0, ∀ v ∈ V

σe(t) =
(∇φ(t))e
(µe(t) + δ)

, ∀ e ∈ E, (EDMK3)

∂tµe(t) = µe(t)|σe(t)|2 − µe(t), µe(0) = µ0e > 0, ∀ e ∈ E.

As in this case we propose the following semi-implicit Proximal Forward-
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Backward Splitting scheme:

φ̃k = φk −∆tk[Diag(φk)]∂φF (φ
k),

1 + λ∆tk[Diag(φk)]∆ 1

µk+δ

φk+1 = φ̃k, k = 0, . . . , kmax

φ0
v = φ0v > 0, ∀ v ∈ V

σke =
(∇(φk))e
µke + δ

, ∀ e ∈ E

µk+1
e = µke +∆tkµ

k
e |σke |2 − 1 , k = 0, . . . , kmax, e ∈ E

µ0e = µ0e > 0, ∀ e ∈ E.

– (The Interval constraint) This problem corresponds to (2.11.19)
where we add an interval constraint on φ of the type:

av ≤ φv ≤ bv, ∀ v ∈ V,

thus, we consider the following problem:

min
φ ∈ H(V )

av ≤ φv ≤ bv, ∀ v ∈ V

µ ∈ H(E)+

F (φ) + λ

 X
e∈E

1

2

|(∇φ)e|2

(µe + δ)
+

1

2

X
e∈E

µe

!
.

This kind of interval constraint can be treated in a similar way to the
positivity constraint, projecting the descending dynamics along the
flow generated by a sigmoidal vector field or equivalently by composing
with the change of variable:

φv(t) = av + (bv − av) cos
2 εv(t)√

bv − av
, v ∈ V,

and then performing a pull-back of the descending dynamics on the
original variable φ. We refer to Subsection 2.8.2 for full details on the
heuristics behind this techniques.
The positivity constraint for the density µ is treated as for (2.8.9) by
composing with the quadratic map µ(t) = |ξ(t)|2.
Thus, defining the vectors a ∈ H(V ) and b ∈ H(V ) as:

av = av, ∀ v ∈ V,

and
bv = bv, ∀ v ∈ V,
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we have the following descending EDMK dynamics:

∂tφ(t)v =

= −(bv−φ(t)v)(φ(t)v−av) ∂φF (φ(t)) + λ∆ 1
µ(t)+δ

φ(t)
v
, ∀ v ∈ V

φ(0)v = φ0v, bv > φ0v > av, ∀ v ∈ V

σe(t) =
(∇φ(t))e
(µe(t) + δ)

, ∀ e ∈ E, (EDMK4)

∂tµe(t) = µe(t)|σe(t)|2 − µe(t), µe(0) = µ0e > 0, ∀ e ∈ E.

As in this case we propose the following semi-implicit Proximal Forward-
Backward Splitting scheme:

φ̃k = φk −∆tk[Diag((b− φk)⊙ (φk − a))]∂φF (φ
k),

1 + λ∆tk[Diag((b− φk)⊙ (φk − a))]∆ 1

µk+δ

φk+1 = φ̃k,

φ0
v = φ0v > 0, bv > φ0v > av, ∀ v ∈ V

σke =
(∇(φk))e
µke + δ

, ∀ e ∈ E

µk+1
e = µke +∆tkµ

k
e |σke |2 − 1 , e ∈ E

µ0e = µ0e > 0, ∀ e ∈ E

k = 0, . . . , kmax.

Observe that in some sense the scheme in (2.11.21) is similar to the Osher-
Bregman split iteration (2.11.14), since also in that case we have to solve for
a linear laplacian system and update an iteration for some other variables.
The key point here in using the EDMK approach is not only the flexibility of
our scheme, that can be used to solve more general TV regularization scenarios,
but also, as observed for the EDMK scheme for 1-Harmonic functions, we can
benefit from the dynamics of µ which admits a candidate Lyapunov functional.
Thus here we can easily integrate an implicit time discretization scheme like the
Implicit Euler scheme defined in Subsection (2.8). Moreover we have also the
further advantage of the possibility to localize the effect of the Total Variation
denoise. For example, one of the problem of the TV denoise is commonly known
in literature as the ”staircase” phenomena. In the contest of the TV denoise of
images, this phenomena is much more evident when we have a region of the image
that is already ”clean”, but indeed, the classical split Bregman iteration has no
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possibility to concentrate the regularization in small prescribed area, unless to
consider only a portion of the image and thus loosing all the information on the
remaining parts. Consider a probability density k ∈ H(E):

0 ≤ ke ≤ 1, ∀ e ∈ E,

and the following modified version of (2.11.19):

min
φ ∈ H(V )

µ ∈ H(E)+

F (φ) + λ

 X
e∈E

1

2

|(∇φ)e|2

(µe + δ)
+

1

2

X
e∈E

keµe

!
.

The probability density here can be concentrated in the region where we want
more regularization, and set near zero in the regions where we don’t need any
regularization. This kind of Bayesian approach, known as the Space Variance
approach has been recently introduced in [115], with far more sophisticated ar-
guments.
Finally observe that by (2.5.12) we can easily extend all this results to the l1
norm regularization.
Thus as in (2.5.12) we introduce the regularized l1 norm:

l1,δ(φ) := inf
ν∈H(V )+

X
v∈V

1

2

|φv|2

(νv + δ)
+

1

2

X
v∈V

νv,

and instead of the following problem:

min
φ∈H(V )

F (v) + λ∥φ∥l1 ,

we consider the following approximated problem:

min
φ∈H(V )

F (v) + λl1,δ(φ) =

= min
φ ∈ H(V )

ν ∈ H(V )+

F (φ) + λ

 X
v∈V

1

2

|φv|2

(νv + δ)
+

1

2

X
v∈V

νv

!
. (2.11.23)

Also in this case we can introduce an EDMK scheme exactly as done for the TV
regularization.
Observe that in this case the corresponding equation to (2.11.20) is far more easy
to solve, it involves a diagonal matrix:

λDiag
1

ν + δ
φ = −∂φF (φ), ∀ ν ∈ H(V )+.

Thus the resulting EDMK scheme is far more easy to implement. We will see an
application of this approach in Subsection 2.11.6.
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2.11.5 The Discrete 1-D signal TV Denoising

In this subsection we will see an application of our EDMK scheme (2.11.21) for
the numerical solution of a classical denoising problem often denoted as the ROF
(Rudin-Osher-Fatemi) problem.
Given a noisy sampled digital signal b = [b1, ..., bn] ∈ Rn and a parameter λ > 0,
consider the following discrete optimization problem:

min
φ=[φ1,..,φn]∈Rn

1

2

nX
k=1

|φk − bk|2 + λ

n−1X
i=1

|φi+1 − φi|.

We can genuinely assign a differential structure to the collection of the n samples
b by introducing an appropriate graph based counterpart.
Consider the 1D-graph of n time samples G = (V,E), V = {t1, .., tn}, E =
{(ti, ti+1) | i = 1, .., n− 1}, then the 1D-ROF problem (2.11.5) rewrites as:

min
φ∈H(V )

1

2

X
v∈V

|φv − bv|2 + λ
X
e∈E

| (∇φ)e |.

As seen in Subsection 2.11.4, we will consider the following approximated opti-
mization problem:

min
φ∈H(V )

min
µ∈H(E)+

1

2

X
v∈V

|φv − bv|2 +
λ

2

X
e∈E

| (∇φ)e |2

µe + δ
+
λ

2

X
e∈E

µe.

Observe that we are exactly in the case of the ”direct solvable problems” of
Subsection 2.11.4 and the corresponding equation to (2.11.20) is the following:

1 + λ∆ 1
µ+δ

φ = b, ∀µ ∈ H(E)+.

thus, the resulting EDMK scheme as in (2.11.21) reads as follows:

1 + λ∆ 1
µ(t)+δ

φ(t) = b, ∀ v ∈ V,

∂tµe(t) = µe(t)
|(∇φ(t))e|2

(µe(t) + δ)2
−µe(t), ∀ e ∈ E,

µe(0) = µ0e > 0, ∀ e ∈ E.

We conclude this section with an application of our proposed EDMK scheme
(2.11.5) with the Explicit Euler time discretization (2.11.22), for the TV denoise
of a 128 samples very noisy digital signal (the noise is the 30 % of the original
clean signal). For the numerical simulation, we set a small parameter δ = 1e− 8,
a very large fixed time step ∆t = 0.8, and a Tikhonov parameter λ = 8.5. Then,
we let evolve the dynamics until:

errµk(µ
k+1) =

∥µk+1 − µk∥l2
∆tk∥µk∥l2

≤ 1e− 7
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In figure 2.13, we can see the comparison between the original clean signal (green),
the noisy added signal (grey) and the denoised signal (red) computed with our
EDMK solver (2.11.5).
In figure 2.14 we can see the convergence behaviour of errµk versus the relative
error of φ:

errφk(φk+1) :=
∥φk+1 − φk∥l2
∆tk∥φk∥l2

.

Even if the convergence is quite slow, we point out that qualitatively, there is
no difference as soon as the error errµk becomes less than 1e − 4. Nevertheless,
the convergence is stable even if the time step is large and also the Tikhononv
parameter λ.

Figure 2.13: original clean signal (green), noisy added signal (grey), denoised
signal (red)

2.11.6 Compressed Modes for the Graph Laplacian

Nowadays, in the era of big data, clustering and reducing order models techniques
play a very important role in data analysis.
Spectral clustering and PCA are widely used techniques in data analysis and
data mining, taking advantages from very efficient numerical algorithms directly
inherited from the huge weaponry of numerical linear algebra.
Despite that, when one has to deal with big data, such techniques suffer from the
lack of sparsity of their final outputs.
To overcome this problem, the compressed modes CM technique (often referred
in literature as Sparse PCA [72]) was early introduced by Osher et al. in [106] for
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Figure 2.14: errmu (blue) vs errphi(red)

the laplacian matrix as an l1 matrix norm Tikhonov-like regularization problem,
in order to compute a sparse orthonormal approximated basis for the partial
laplacian eigenvalue problem.
In this last subsection we will see an application of our EDMK technique for
the l1-norm in order to provide an alternative new algorithm to the standard
Bregman-Osher split iteration technique to solve the CM for the graph laplacian
problem.
Let G = (E, V ) be an undirected graph, where E is the set of m = |E| edges, V
the set of n = |V | nodes.
Set a number k of compressed modes and denote as U ∈ Rn×k, U:,j = uj , j =
1, .., k the orthonormal basis of the k approximated compressed eigenvectors, then
the CM for the graph laplacian problem is the following Tikhonov-like regularized
optimization problem:

min
U ∈ Rn×k

UTU = 1

1

2
U : ∆U + λ||U ||1,1, (2.11.24)

where A : B = tr(ATB) is the matrix scalar product, ||U ||1,1 :=
P

i , j |Uij | is the
l1,1 matrix norm and ∆ = ∇T ∇ is the graph laplacian matrix defined in (2.4.1)
with the weight c equal to 1 for simplicity, without loosing generality.
Since the l1,1 norm of a matrix is the sum of the l1-norm of it’s columns, we
can tackle problem (2.11.24) with our approximated regularized functional l1,δ
defined in (2.5.12). Thus, as already observed in (2.11.23), we will consider the
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following new optimization problem:

min
U ∈ Rn×k

UTU = 1

min
ν ∈ Rn×k

ν ≥ 0

1

2
U : ∆U +

λ

2
U : (νδ)

−∗ ⊙ U +
λ

2
ν : en×k, (2.11.25)

where ν ∈ Rn×k, νij ≥ 0, en×k ∈ Rn×k, en×kij = 1, νδ := ν + δen×k and

(A⊙B)ij := AijBij , A
−∗
ij = 1

Aij
.

Optimization on the Stiefel Manifold: A Feasible Update Preserving
Scheme

Problem (2.11.25) is an optimization problem on the Stiefel manifold of order k
defined as:

Sn×k := {U ∈ Rn×k |UTU = 1}, n ≥ k.

There is a wide literature about optimization on the Stiefel manifold, we will
apply here a very beautiful technique presented in [143].
Let f : Sn×k → R a differentiable function and consider the following optimization
problem:

min
U∈Sn×k

f(U).

The Stiefel manifold inherits the Frobenius norm induced by the matrix scalar
product, thus, it is natural to speak about the projection into it’s tangent space.
The most classical algorithm for optimization on the Stiefel manifold relies on
the projected gradient descent, namely we look at the following ODE:

∂t U = −PrjTUSn×k (∇U f(U)) , (2.11.26)

where PrjTUSn×k denotes the projection into the tangent space of the Stiefel
manifold at the point U and ∇U f(U) is the gradient of the function f given by
the Riesz representation theorem with respect to the matrix scalar product:.

Df(U) ·Ψ = ∇U f(U) : Ψ, ∀Ψ ∈ TUS
n×k.

The ODE in (2.11.26), once opportunely discretized, define a local descent di-
rection iteration scheme for the objective function f , but inevitably at every
iterations of the algorithm, the candidate minimizer for f ends outside the man-
ifold.
As a consequence, considering for example the Esplicit Euler discretization for
(2.11.26), the proper projected gradient descent iteration reads as follows:

Us+1 = PrjSn×k Us − dt PrjTUsS
n×k (∇U f(Us)) , (2.11.27)
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Figure 2.15: Projected Gradient(blue arrow) vs Update Preserving(red path)

where PrjSn×k is the minimum Frobenius norm projection into the the Steifel
manifold of order k that can be easily computed via SVD as ∀A ∈ Rn×k:

PrjSn×k(A) = ΦΨT ,

where A = ΦΛΨT is the SVD factorization.
The scheme defined in (2.11.27) is one of the most classical example of an update
non-preserving scheme. On the other hand, one might be interested in an update
preserving scheme, e.g. an optimization scheme that remains inside the manifold
at every iteration provided an initial point that lies inside the manifold.
Update preserving schemes are a case of direct interest for optimization on the
Stiefeld manifold and are performed mainly via Cayley transform.
Differently from the standard projected gradient descent scheme (2.11.27), update
preserving schemes moves ”zig-zagging” along a geodesic. In Figure 2.15 we can
see the difference between the projected gradient descent (blue arrow) and the
update preserving scheme (red path) in a standard situation.
Following the work in [143], the starting point for an update preserving scheme
on the Stiefel manifold is the projected gradient descent.
Using Lagrange multipliers or classical differential geometry arguments (see [143]
and [130] for an exhaustive treatment) it is easy to see that:

PrjTUSn×k (∇U f(U)) = H(U)U, ∀U ∈ Sn×k,

where:
H(U) = ∇U f(U)UT − U ∇U f(U)T ,

and clearly H(U) = −H(U)T .
As a consequence, the ODE in (2.11.26) rewrites as:

∂t U = −H(U)U. (2.11.28)
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Observe now that if we use the Crank-Nicolson like scheme (or the mid point
rule) to discretize (2.11.28) we have:

Us+1 = Us − dtH
Us+1 + Us

2

Us+1 + Us
2

. (2.11.29)

Rearranging (2.11.29) we obtain the following updating scheme:

Us+1 = 1 +
dt

2
H

Us+1 + Us
2

−1

1 − dt

2
H

Us+1 + Us
2

Us. (2.11.30)

Now, since

H
Us+1 + Us

2
= −H Us+1 + Us

2

T

,

by the Cayley Transform Theorem we have that if

UTs Us = 1,

then
UTs+1Us+1 = 1,

so that we remain inside the Stiefel manifold at every iteration.
The scheme in (2.11.30) can be further simplified as:

Us+1 = 1 +
dt

2
H (Us)

−1

1 − dt

2
H (Us) Us (2.11.31)

and also in this case we have an update preserving scheme.
In [143] it is shown that the scheme defined in (2.11.31) is a descent direction
scheme providing an opportune line search and time stepping policy. We will use
this technique in our proposed numerical solution.

Numerical Solution

Consider our regularized optimization problem (2.11.25) and call:

f(U, ν) =
1

2
U : ∆U +

λ

2
U : (νδ)

−∗ ⊙ U +
λ

2
ν : en×k, (2.11.32)

with the same notations as in (2.11.25). In order to use the minimization scheme
defined in (2.11.31) we need to compute the gradient of (2.11.32) with respect
to U in the frobenius norm and the projection of the gradient into the Stiefel
tangent space. It easy to see that:

∇U f(U, ν) = ∆U + λ(νδ)
−∗ ⊙ U,

H(U) = ∇U f(U, ν)U
T − U ∇U f(U, ν)

T ,
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Figure 2.16: Original Eigenvectors (left), Compressed Eigenvectors (right)

Therefore, our discretized EDMK scheme for problem (2.11.25) becomes:

1 +
dt

2
H (Us) Us+1 = 1 − dt

2
H (Us) Us

νs+1 = νs +∆ts νs ⊙ (νδ)
−∗
s ⊙ Us ⊙ Us − νs

UT0 U0 = 1

ν0 > 0.

For our numerical example, we consider the cyclic 1D-graph with n=128 nodes
G = (V,E), V = {v1, .., vn} and

E =

(
(vi, vi+1) i = 1, .., n− 1

(vn, v1) i = n

)
.

In Figure 2.16 we can see the comparison between some of the original cyclic 1D-
graph Laplacian matrix eigenvectors (the classical periodic sinusoidal functions)
and some of the compressed modes computed with our EDMK scheme for k = 20,
λ = 0.01.
As for the time discretization, we set a fixed time step ∆t = 1e − 3 and we let
evolve the dynamics until:

errνs(ν
s+1) = max

j=1,...,k

(
∥νs+1

:,j − νs:,j∥l2
∆ts∥νs:,j∥l2

)
≤ 1e− 3

In Figure 2.17 we can see the comparison between the original k smallest laplacian
eigenvalues and the k compressed eigenvalues i.e. the k smallest eigenvalues of
the matrix UT∆U for k = 20.
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Figure 2.17: Original eigenvalues vs Compressed eigenvalues



3 Computing the graph p-Laplacian
eigenpairs as constrained linear
eigenpair via gradient flow of
DMK dynamics

3.1 Introduction

The p-Laplace operator arises as a natural generalization of the Laplace-Beltrami
operator in variational problems involving the p-norm of the gradient of an objec-
tive function ∥∇f∥p. Its numerous applications make it one of the most studied
nonlinear operators both in the continuous and in the discrete settings In this
chapter we focus our the study on the spectrum of the p-Laplace operator defined
on graphs. The eigenpairs of a p-Laplacian are typically defined as the critical
points/values of the family of Rayleigh quotients given by

Rp(f) =
∥∇f∥pp
∥f∥p

,

where different norms at the denominator can be considered. The interest for
nonlinear eigenpairs are varied, including data filtering, clustering, and parti-
tioning, with other interesting applications in the field of optimal transportation
problems [22, 27]. Within the field of variational filtering methods, in [25, 27]
the authors show that the application of a nonlinear filter to a signal corresponds
to computing a denoised signal that is a spectral approximation of the original
one. Moreover, when using a regularizer of the form F (x) = ∥Ax∥1, possibly with
additional structural properties of the linear operator A, the spectral decomposi-
tion corresponds to a linear decomposition of the signal in terms of the nonlinear
eigenfunctions of the functional F (x).
Another remarkable application of the p-Laplacian spectrum can be found in data
clustering and partitioning. Indeed, different authors have addressed this problem
in both the discrete [20, 35, 36, 72, 74, 134] and the continuous settings [84,
109]. It has been proved that the variational eigenvalues of the 1-Laplacian, and
more generally the limit of the variational eigenvalues of the p-Laplacian as p
goes to 1, provide good approximations of the Cheeger constants of the domain.

201
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In particular for p < 2 such approximations improve the known relationships
between the Cheeger constants and the Laplacian eigenvalues already observed
by Cheeger himself [37]. We recall that Cheeger constants are used to quantify the
number of clusters in the domain. More precisely, they evaluate how well a subset
of the data can be splitted in a certain number of clusters. The smaller the k-th
Cheeger constant is, the better the data can be clustered in k disjoint subsets.
Considering the 1-Laplacian variational eigenvalues, it is possible to prove that
the 1-st and the 2-nd variational eigenvalues match exactly the 1-st and the 2-nd
Cheeger constants [35, 72, 74, 84, 109]. Moreover, the k-th variational eigenvalue
can be bounded, both from above and from below, in terms of the higher order
Cheeger constants with index “close” to k [36, 44, 134].

Analogous results relate the variational eigenvalues of the ∞-Laplacian with the
packing radii of the domain [22, 24, 48, 78, 79]. The k-th packing radius of the
domain is the largest radius that allows the inscription of k-disjoint balls in the
domain. As in the p = 1 case, it is possible to show that the 1-st and the 2-nd
variational eigenvalues of the ∞-Laplacian match the reciprocal of the first and
the second packing radii of the domain. Moreover, the k-th packing radius can
be approximated by the reciprocal of the k-th variational ∞-Laplace eigenvalue.

Despite the large number of applications, the study of the p-Laplacian eigenpairs
still presents several open problems. Indeed, a number of properties of the linear
(p = 2) Laplacian eigenfunctions are lost in the nonlinear (p ̸= 2) case, yielding
several critical issues and open problems. The first and probably most notable
difficulty is consequential to the fact that the cardinality of the p-Laplacian spec-
trum is not known and can exceed the dimension of the space [6, 44, 145]. This
clearly yields the loss of the notion of multiplicity of an eigenvalue and of inde-
pendence of the eigenfunctions.

The introduction of the variational eigenpairs allows to partially overcome these
difficulties. Variational eigenpairs are defined by a minmax theorem that gen-
eralizes the classical Rayleigh-Ritz characterization of the eigenvalues of a sym-
metric matrix. As a consequence, the cardinality of the variational eigenvalues
is always equal to the dimension of the space. Hence, the variational eigenval-
ues provide a partition of the p-Laplacian spectrum in non-empty subintervals.
The position of a general eigenvalue in one of these intervals has some nontriv-
ial implications as it affects the characteristic “frequency” of the corresponding
eigenfunction [44, 134] . In addition, it is possible to define a notion of multiplicity
for the variational eigenvalues which is consistent with the notion of multiplicity
in the linear case p = 2 [36, 44, 128].

Clearly, the numerical approximation of the p-Laplacian eigenpairs presents the
same difficulties in addition to the natural issues arising in all discretization
processes. Among these, we have identified two fundamental issues that need
to be addressed for the development of a robust and accurate numerical scheme
and that are not or only partially tackled in the literature : i) develop consistent
numerical algorithms, i.e., algorithms for which convergence toward solutions of
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the eigenequation can be proved; ii) classification of the approximated eigenpairs
in terms of the variational spectrum. Given the above mentioned difficulties and
uncertainties, a scheme for which the consistency in the above sense can not be
proved, may provide solutions that are not approximations of elements of the
sought spectrum. On the other hand, with regard to the second point, we would
like to observe that, to the best of our knowledge, no methods exist to identify
the variational eigenvalues within a set of eigenpairs.
Notwithstanding the above difficulties and driven by the continuously excalating
interest in data science, different algorithms for the numerical solution of the p
eigenproblem have been proposed in the last few years [23, 72, 139]. In [139], the
authors develop a scheme capable of computing a sequence of N eigenpairs as
follows. Given the subspace L spanned by the first k − 1 computed eigenfunc-
tions (L := span{f̃1, . . . , f̃k−1}), the k-th eigenpair is found solving the following
optimization problem:

λ̃k = min
g⊥L

localmax
f̃∈span{g,L}

Rp(f̃) .

If the computed f̃k ̸∈ L, the authors show that (f̃k, λ̃k) is a p-Laplacian eigenpair
and that, assuming local differentiability of the map g → localmax

f̃∈span{g,L}
Rp(f̃), the

eigenfunction f̃k has local minmax index of order k − 1. Here the local minmax
index is the number of local strictly decreasing directions of the p-Rayleigh quo-
tient. However, there is no theoretical evidence for the existence of a sequence
satisfying such properties. Indeed, with the exception of the smallest and largest
variational ones, the p-eigenvalues may not be local maxima of the p-Rayleigh
quotient on the linear subspace spanned by the corresponding eigenfunction (the
latter possibly augmented by some other unknown eigenfunctions with smaller
eigenvalues). The situation improves when looking for extremal eigenpairs. In-
deed, for the nonlinear power method and the gradient flow scheme proposed in
[72] and [23] to compute the extremal eigenpairs, it is possible to prove conver-
gence. However, no a-priori information is available about the position in the
spectrum of the approximated eigenpair. Moreover, neither method is suited to
compute a full sequence of eigenpairs.
In this chapter we propose an original numerical scheme for the calculation of the
eigenpairs of the p-Laplace operator and provide novel insights on the p-Laplacian
eigenvalue problem on graphs that contribute to overcome some of the above-
mentioned limitations of the previous efforts. In particular, we re-interpret the
graph p-Laplacian eigenvalue problem as a constrained linear weighted Laplacian
eigenproblem. The consequences of this reformulation are manifold. First, it
becomes possible to assign a linear index to every p-Laplacian eigenvalue λ by
simply assigning to it the corresponding index of the associated linear eigenvalue
problem. Second, we are able to prove that, for any eigenpair (λ, f), the linear
index of λ matches the Morse index of the p-Rayleigh quotient functional in
f , providing thus additional information about the behaviour of the p-Rayleigh



204 CHAPTER 3. THE GRAPH p-LAPLACIAN EIGENPROBLEM

quotient in a neighborhood of f . Based on this reformulation and inspired by the
Dynamical-Monge-Kantorovich method introduced in [55–58], we consider the
case of p ∈ (2,∞) and characterize the p-Laplacian eigenpairs as critical points
of a family of energy functions defined on the domains of node and edge weights.
Such energy functions are indexed from 1 to N , where N is the dimension of
the graph, and thus provide a natural indexing for the eigenpair approximations.
We are able to prove that the unique saddle point of the 1-st energy function
corresponds to the unique first p-Laplacian eigenpair. Moreover, we prove that
any differentiable saddle point of the k-th energy function corresponds to a p-
Laplacian eigenpair having linear index equal to k. We then derive gradient flows
for our energy functions and develop numerical algorithms for the computation
of p-Laplacian eigenpairs. From a numerical point of view, our methods compute
p-Laplacian eigenpairs as limits of sequences of linear eigenvalue problems, and
we can then exploit the vast literature available for this last problem. Note
that we are able to compute higher p-Laplacian eigenpairs without any prior
information about the lower ones. Indeed, the choice of the index of the energy
function prescribes a-priori the type of saddle point we converge to. Lastly,
considering the first energy function, since we know that its unique saddle point
corresponds to the unique 1-st p-Laplacian eigenpair, we can conclude that our
method converges exactly to that eigenpair.

We point out that the energy functions here introduced are well defined also in
the p = ∞ case. This leads us to conjecture the validity of our results also in the
case p = ∞. We support this conjectrue by different numerical tests. However,
the theoretical results that we prove in the case p ∈ (2,∞) cannot be extended
in a straightforward manner to the case p = ∞. This will be the subject for a
future work. We wish to conclude by observing that some very recent duality
results [22, 77, 135] relate the p-Laplacian eigenvalue problem on the nodes of the
graph to the q-Laplacian eigenvalue problem on the edges of the graph, where
p and q are conjugate exponents. In particular, in [77, 135] the authors prove
that there is a 1-to-1 correspondence between the non-zero eigenpairs of the node
p-Laplacian and the edge q-Laplacian. Thus, extending some of our results to the
edge q-Laplacian for q > 2, allows us to compute also the p-Laplacian eigenpairs
for p < 2. Finally, we observe that the conjecture about the q = ∞ case on
the edges of the graph corresponds to a conjecture about the graph 1-Laplacian
eigenvalue problem.

3.2 Preliminaries and Notation

Let G = (E, V, ω) be a non-oriented graph, where E is the set of edges, V is the
set of nodes, and ω is a weight defined on the edges of the graph. For each pair
of nodes u and v in V we have that the pair (u, v) is in E if and only if the pair
(v, u) is in E. Also the weights are unique on each edge, i.e., ωuv = ωvu. We
denote by K ∈ R|E|×|V | the weighted incidence matrix of the graph, i.e., for each
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w ∈ V :
K (u, v), w = ωuv δv(w)− δu(w) ,

where δx(·) denotes the indicator function of x. Then, having identified a subset
of the nodes B ⊂ V as the boundary of the graph, we say that the pair (λ, f)
is a p-Laplacian eigenpair with homogeneous Dirichlet boundary conditions if it
solves the following nonlinear equation:(

1
2 KT |K f |p−2 ⊙K f (u) = λ|f(u)|p−2f(u) ∀u ∈ V \B
f(u) = 0 ∀u ∈ B .

(3.2.1)

Then a simple argument allows to reformulate eq. (3.2.1) in terms of a gener-
alized p-Laplacian eigenvalue problem as in [44]. Consider Ẽ a subset of the
edges obtained by selecting a unique direction for any edge (if (u, v) ∈ Ẽ then

(v, u) ̸∈ Ẽ) and ∇ ∈ R|Ẽ|×|V \B| the submatrix of K obtained by sampling the
rows corresponding to Ẽ and the columns corresponding to V \B. Then for any
f ∈ H0(V ) = {f : V → R | f(u) = 0 ∀u ∈ B}, define f̃ := f |V \B the restriction
of f to the internal nodes. An easy computation shows that (λ, f) solves (3.2.1)
if and only if (λ, f̃) solves the following equation:

∇T |∇f̃ |p−2 ⊙∇f̃ (u) = λ|f̃(u)|p−2f̃(u) ∀u ∈ V \B .

In particular, some trivial computations allow to prove that any p-Laplacian
eigenpair with homogeneous Dirichlet boundary condition corresponds to a criti-
cal point/value of the following p-Rayleigh quotient defined on H(V \B) := {f :
V \B → R}:

Rp(f) =
∥∇f∥pp
∥f∥pp

=

P
(u,v)∈Ẽ |∇f(u, v)|pP
u∈V \B |f(u)|p

.

Thus, throughout the whole chapter, we define the p-Laplace operator, or p-
Laplacian, as follows:

Definition 3.2.1 (p-Laplace operator).

∆pf(u) := ∇T |∇f |p−2 ⊙∇f (u) f ∈ H(V \B), u ∈ V \B .

We remark that if B = ∅ our definition of ∆p matches the classical definition of
the p-Laplace operator by means of the incidence matrix [134]. On the other hand,
when B ̸= ∅ our p-Laplacian is included in the class of the generalized p-Laplace
operators considered in [44, 110]. In addition, we point out that whenever B ̸= ∅,
then Ker(∇) = {0}. In the sequel, given f ∈ H(V \ B) and the corresponding
f̄ ∈ H0(V ) for economy of notation and with a small abuse of notation, we write

∇f(u, v) = Kf̄(u, v) = ωuv f̄(v)− f̄(u)

even if (u, v) ̸∈ Ẽ. Note that in such a case, by definition of Ẽ, since only
∇f(v, u) is well defined we define ∇f(u, v) := −∇f(v, u) when (u, v) ̸∈ Ẽ. Then,
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the p-Laplace operator and the corresponding eigenvalue problem can be written
as:

∆pf(u) =
X
v∼u

ωuv|∇f(v, u)|p−2∇f(v, u) = λ|f(u)|p−2f(u) ∀u ∈ V \B .

(3.2.2)

We conclude this section by recalling the characterization of the first eigenpair of
the p-Laplace operator as the minimum and the minimizer of Rp [44, 74]:

Theorem 3.2.2 (from [74]). Let (f1, λ1) := (arg min,min)f∈H(V \B)Rp(f). Then:

1. λ1 is simple, meaning that the associated eigenfunction f1 is unique up to
scalar factors;

2. f1 is the only strictly positive eigenfunction, i.e. if f is an eigenfunction
of ∆p and f(v) > 0 for all v ∈ V \ B, then f = f1 up to a multiplicative
constant.

Finally, we adopt the following definition of a connected graph in the presence of
a boundary.

Definition 3.2.3 (Connected graph). Given the graph boundary B ⊂ V , we say
that the graph G is connected if the subgraph induced by V \B is connected.

If not otherwise stated, in this manuscript we always assume the graph to be
connected in the sense of the above definition.

3.3 An Equivalent Formulation of the p-Laplacian Eigen-
value Problem

In this section we consider a trivial reformulation of the p-Laplacian eigenvalue
problem in terms of a constrained weighted Laplacian eigenvalue problem. Using
such an equivalence, since the eigenvalues of the corresponding weighted Lapla-
cian are finite, it is possible to assign to every p-Laplacian eigenvalue, λ, a linear
index defined by the corresponding linear eigenavalue index. We prove that this
index, which is theoretically computable, matches the Morse index of Rp in f ,
where f is the p-Laplacian eigenfunction corresponding to λ. We stress the fact
that, here and in the following, we assume p > 2.

It is easy to observe that the pair (λ, f), solution of the p-Laplacian eigenequation
(3.2.2), is an eigenpair of the p-Laplace operator if and only if (λ, f) is an eigenpair
of the following constrained weighted Laplacian Dirichlet problem:

∆µf(u) = ∇Tdiag(µ)∇f (u) = λν(u)f(u) ∀u ∈ V \B
µ(uv) = |∇f(u, v)|p−2 ∀ (u, v) ∈ Ẽ

ν(u) = |f(u)|p−2 ∀u ∈ V \B
, (3.3.1)
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where µ ∈ M+(E) and ν ∈ M+(V \B), with M+(E) and M+(V \B) denoting
the spaces of non-negative measures defined on the edges and on the internal
nodes of the graph.

Definition 3.3.1.

M+(E) = {µ : Ẽ → R+, µ > 0} and M+(V \B) = {ν : V \B → R+, ν > 0} .

Before proceeding with the task of calculating the Morse index of the p-Laplacian
eigenpairs, we recall some facts about the linear Laplacian generalized eigenvalue
problem weighted in µ and ν. Let µ ∈ M+(E) and ν ∈ M+(V \ B), we de-
note by Diag(µ) and Diag(ν) the diagonal matrices with entries given by the
weights calculated on each edge and each node of the graph, i.e., Diag(µ) =
Diag({µ(uv), uv ∈ E}) and Diag(ν) = Diag({ν(u), u ∈ V }). Consider the linear
generalized eigenvalue problem

∆µf(u) = ∇T Diag(µ)∇f (u) = λDiag(ν)f(u) ∀u ∈ V \B . (3.3.2)

We point out that the (µ, ν)-weighted Laplacian eigenvalue problem (3.3.2) can
be degenerate if Ker(Diag(ν))∩Ker(∆µ) is non empty. In this case, there would
be only N − dim Ker(Diag(ν))∩Ker(∆µ) well defined, possibly infinite, eigen-
values. The previous statement is supported by the following discussion. First,
we recall that (λ, f) is a generalized eigenpair of (∆µ,Diag(ν)) if it satisfies the
eigenvalue equation

(∆µ − λDiag(ν)) f = 0 . (3.3.3)

From this definition it is obvious that, in the case Ker(Diag(ν)) ∩Ker(∆µ) ̸= ∅,
any value λ ∈ R is an eigenvalue corresponding to an eigenvector in Ker(Diag(ν))∩
Ker(∆µ). For this reason, we say that λ is a well defined eigenvalue if there exists
f ̸∈ Ker(Diag(ν))∩Ker(∆µ) satisfying (3.3.3) (in which case we can equivalently
ask f ⊥ (Ker(Diag(ν)) ∩ Ker(∆µ)). Theorem 8.7.1 of [67] ensures that there
exists a nonsingular matrix X such that the matrices XT∆µX and XT Diag(ν)X
are diagonal. Thus, the eigenvalues of (∆µ,Diag(ν)) are equal to the eigenvalues
of the pair (XT∆µX,X

T Diag(ν)X) =: (Diag(a, 0),Diag(b, 0)), where 0 is the
zero vector with dimension dim Ker(Diag(ν))∩Ker(∆µ) . Thus, the number of
well defined eigenvalues is N − dim(Ker(Diag(ν)) ∩ Ker(∆µ)) and their value is
{ai/bi}, possibly taking the value ∞ if, for some i, bi = 0. In this discussion we
use Theorem 8.7.1 of [67]:

Theorem 3.3.2 (Theorem 8.7.1 of [67]). Suppose that A and B are symmetric
matrices and define C(t) = tA+(1−t)B . If there exists t0 ∈ [0, 1] such that C(t0)
is nonnegative definite and Ker C(t0) = Ker(A) ∩ Ker(B) , then there exists a
nonsingular X such that both XTAX and XTBX are diagonal.

The well defined generalized eigenvalues can be characterized in terms of the
Rayleigh quotient. To this aim, we introduce the following weighted seminorms
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on the spaces H(Ẽ) := {G : Ẽ → R} and H(V \B):

∥g∥22,ν =
X
u

νu|g(u)|2, g ∈ H(V \B) and ∥G∥22,µ =
X

(u,v)∈Ẽ

µuv|G(u, v)|2, G ∈ H(Ẽ).

The 2-Rayleigh quotient weighted in µ, ν given by:

R2,µ,ν(g) =
∥∇g∥22,µ
∥g∥22,ν

g ∈ H(V \B) ,

is well defined on Ker(Diag(ν)) ∩ Ker(Diag(µ))
⊥

and takes values in [0,∞] .
Thus, the k-th well defined eigenvalue can be characterized as the solution of the
following saddle-point problem:

λ(µ,ν),k = min
A∈Ak

max
f∈A

R2,µ,ν(f) ,

where Ak := {A ⊂ R|V \B| ∩Ker⊥ Diag(ν) ∩∆µ | dim(A) ≥ k} .
In addition, we will be using the following expanded definition of multiplicity for
the well defined (µ, ν)-Laplacian eigenvalues:

Definition 3.3.3. Let λ be a (µ, ν)-weighted Laplacian eigenvalue. The multi-
plicity of λ is

mult(λ) = dim{f | ∆µf = λDiag(ν)f} .

Note that, this definition of multiplicity of λ takes into account not only the
number of times λ appears in the sequence of the well defined eigenvalues but
also the dimension of the subspace Ker(∆µ) ∩Ker(diag(ν)). It finds application
in the following result, whose straight-forward proof is provided in 3.6.

Lemma 3.3.4. Let (λ(µ,ν),k, f(µ,ν),k) be the k-th eigenpair of the generalized
(µ, ν)-Laplacian (3.3.2) and let m be the multiplicity of λ(µ,ν),k. Then:

MIf (R2,µ,ν) = k − 1 , MIf (−R2,µ,ν) = N − k −m+ 1 ,

where MIf (R2,µ,ν) denotes the Morse index of R2,µ,ν at f .

In essence, MIf (R2,µ,ν) is the number of decreasing local directions of R2,µ,ν

in f . More precisely the Morse index of a function ϕ at a point x, MIx(ϕ), is
defined as the dimension of the largest subspace in which the Hessian matrix of ϕ
at x is negative definite [see, e.g., 99]. We point out that, sometimes, the Morse
index is used only in relation to Morse functions, i.e. functions whose critical
points are all non degenerate, but, in general, this is not our case.
We return now to the p-Laplacian eigenproblem. Given an eigenpair (λ, f) and
the corresponding weights µ and ν, we immediately observe that

f ∈ Ker(Diag(ν))⊥ ⊂ Ker(∆µ) ∩Ker(Diag(ν))
⊥
.
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Moreover, if we assume w.l.o.g. that ∥f∥p = 1, then, by the definition of ν,
∥f∥2,ν = 1 . Thus, if we introduce the two spheres

Sp := {g ∈ H(V \B) | ∥g∥p = 1} and S2,ν := {g ∈ H(V \B) | ∥g∥2,ν = 1} ,

we can state that if f ∈ Sp, then necessarily f ∈ S2,ν .
Let Tf (Sp) and Tf (S2,ν) be the tangent spaces of the two spheres at point f . It
is not difficult to observe that

Tf (Sp) = {ξ | ⟨ξ, |f |p−2 ⊙ f⟩ = 0} = {ξ | ⟨ξ, ν ⊙ f⟩ = 0} = Tf (S2,ν) .

Considering Rp and R2,µ,ν as functions defined on the manifolds Sp and S2,ν , the
next Lemma shows that it is possible to compare the Morse indices of Rp and
R2,µ,ν at point f . This allows us to relate MIf (Rp) to the linear index of λ,
i.e., the position of λ in the spectrum of the associated linear eigenvalue problem,
∆µf = λDiag(ν)f .

Lemma 3.3.5. Given an eigenpair (λ, f) of the p-Laplacian and the weights ν =
|f |p−2 and µ = |∇f |p−2. Assume that (λ, f) = λ(µ,ν),k, f(µ,ν),k have multiplicity
m. Then:

MIf (Rp) = MIf (R2,µ,ν) = k − 1 ,

MIf (−Rp) = MIf (−R2,µ,ν) = N − k −m+ 1 .

Proof. To prove the lemma it is enough to show that ∀ ξ ∈ Tf (Sp) = Tf (Sν) we
have:

∂2

∂ϵ2
∥∇(f + ϵξ)∥pp
∥f + ϵξ∥pp ϵ=0

=
p(p− 1)

2

∂2

∂ϵ2
∥∇(f + ϵξ)∥22,µ
∥f + ϵξ∥22,ν ϵ=0

.

Because of the equivalence of the p-Laplacian and weighted Laplacian eigenvalue
problems, f is a critical point for both Rayleigh quotients Rp and R2,µ,ν , i.e.,
and hence their first derivative is zero:

0 =
∂

∂ϵ

∥∇(f + ϵξ)∥pp
∥f + ϵξ∥pp ϵ=0

=
p

∥f∥pp
⟨|∇f |p−2 ⊙∇f,∇ξ⟩ − ∥∇f∥pp

∥f∥pp
⟨|f |p−2 ⊙ f, ξ⟩

0 =
∂

∂ϵ

∥∇(f + ϵξ)∥22,µ
∥f + ϵξ∥22,ν ϵ=0

=
2

∥f∥22,ν
⟨µ⊙∇f,∇ξ⟩ −

∥∇f∥22,µ
∥f∥22,ν

⟨ν ⊙ f, ξ⟩

(3.3.4)
We note that, since ξ ∈ Tf (Sp) = Tf (Sν), we have:

∂

∂ϵ
∥f + ϵξ∥pp =

∂

∂ϵ
∥f + ϵξ∥22,ν = C⟨|f |p−2 ⊙ f, ξ⟩ = C⟨ν ⊙ f, ξ⟩ = 0 . (3.3.5)

and for any x, y ∈ R, we can calculate the first derivative of x+ ϵy:

∂|x+ ϵy|p−2(x+ ϵy)

∂ϵ
|ϵ=0 = (p−2)|x|p−3 (x)

2

|x|
y+|x|p−2y = (p−1)|x|p−2y . (3.3.6)
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Differentiating (3.3.4), using (3.3.5), and (3.3.6), and recalling that |f + ϵξ|p−2 ⊙
(f + ϵξ) and |∇(f + ϵξ)|p−2 ⊙ ∇(f + ϵξ)) are entrywise products, we obtain:

∂2

∂ϵ2
∥∇(f + ϵξ)∥pp
∥f + ϵξ∥pp ϵ=0

=
p(p− 1)

∥f∥pp
⟨|∇f |p−2 ⊙∇ξ,∇ξ⟩ − ∥∇f∥pp

∥f∥pp
⟨|f |p−2 ⊙ ξ, ξ⟩

∂2

∂ϵ2
∥∇(f + ϵξ∥22,µ
∥f + ϵξ∥22,ν ϵ=0

=
2

∥f∥22,ν
⟨µ⊙∇ξ,∇ξ⟩ −

∥∇f∥22,µ
∥f∥22,ν

⟨ν ⊙ ξ, ξ⟩

=
2

∥f∥pp
⟨|∇f |p−2 ⊙∇ξ,∇ξ⟩ − ∥∇f∥pp

∥f∥pp
⟨|f |p−2 ⊙ ξ, ξ⟩

(3.3.7)
which yields the desired equality. The conclusion follows from Lemma3.3.4 .

The results proved in this section show that, given a p-Laplacian eigenapair, the
linear index of the (µ, ν)-eigenvalue provides information about the behaviour of
the p-Rayleigh quotient in a neighborhood of the eigenfunction. However, it is
not clear at this time how to properly exploit this information. This property
will be used loosely in the next section but will be addressed more thoroughly in
a future work.

3.4 Nonlinear Eigenpairs as Critical Points of a Fam-
ily of Energy Functions

The previous section suggests to use the (µ, ν)-eigenvalue problem as much as
possible. For this reason, and taking inspiration from the energy function defined
in [57], we introduce the following family of energy functions Ep,k, defined on
M+(E) × M+(V \ B) and indexed by k, and such that their critical points
identify p-Laplace eigenpairs:

Ep,k(µ, ν) :=
1

λ(µ,ν),k
+ME,p(µ)−MV,p(ν) , (3.4.1)

where λ(µ,ν),k is the k-th well defined eigenvalue of the weighted Laplacian eigen-
value problem (3.3.2) and the “mass functions” MV,p(ν) ME,p(µ) are given by:

MV,p(ν) :=
p− 2

p

X
u∈V \B

ν
p

p−2
u , and ME,p(µ) :=

p− 2

p

X
(u,v)∈Ẽ

µ
p

p−2
uv .

We now first state the main results of this section and discuss their significance
while postponing their proof to the end of the section. The first theorem shows
that any differentiable saddle point of such energy functions corresponds to a
p-Laplacian eigenpair.

Theorem 3.4.1. Let (µ∗, ν∗) ∈ M+(E) × M+(V \ B) be a differentiable sad-

dle point of the function Ep,k(µ, ν). Then, λ
p
2

(µ∗,ν∗),k, f(µ∗,ν∗),k is a p-Laplacian
eigenpair.
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Observe that the hypothesis asking for (µ∗, ν∗) ∈ M+(E) × M+(V \ B) being
a differentiable saddle point of the function Ep,k(µ, ν) is equivalent to assuming
that λ(µ,ν),k is a simple eigenvalue of the generalized Laplacian eigenvalue prob-
lem (3.3.2). Indeed, since an eigenvalue is differentiable if and only if it is simple
[83], Lemma 3.3.5 shows that f(µ∗,ν∗),k is a p-Laplacian eigenfunction such that

MIf(µ∗,ν∗),k(Rp) = k − 1 MIf(µ∗,ν∗)(−Rp) = N − k.

The second theorem asserts that if the boundary of the graph is not empty,
B ̸= ∅, for k = 1 the hypothesis of differentiability can be removed. Indeed, Ep,1
has always a unique saddle point which corresponds to the unique first eigenpair
of the p-Laplacian.

Theorem 3.4.2. Let B ̸= ∅ then the function Ep,1(µ, ν) admits a unique saddle
point

(µ∗, ν∗) = arg max
ν∈M+(V \B)\{0}

arg min
µ∈M+(E)

Ep,1(µ, ν) .

Moreover, given λ(µ∗,ν∗),1 the first eigenvalue of the Laplacian eigenvalue problem
(3.3.2) weighted in (µ∗, ν∗), there exists an associated eigenfunction f(µ∗,ν∗),1 such

that the pair (λ
p
2

(µ∗,ν∗),1, f(µ∗,ν∗),1) equals the first p-Laplacian eigenpair.

Observe that the functions Ep,k may be in general not well defined on the bound-
ary of M+(E) × M+(V \ B) since the there could not exist k-well defined
eigenvalues. However, the function Ep,1 meets such kind of problems only for
(ν, µ) = (0, 0).
We would like also to remark that the assumption B ̸= ∅ is not restrictive. Indeed,
in the case B = ∅ the first p-Laplacian eigenpair is trivial as Ker(∇) = span{1}
where 1 is the constant function equal to 1 on the nodes of the graph.
We would like to remark that the differentiability hypothesis in the above theo-
rems is non trivial. Indeed, lack of continuity of the energy functions in (3.4.1)
may occur when both µ ∈ ∂M+(E) and ν ∈ ∂M+(V \B), where ∂M+(E) and
∂M+(V \ B) denote the boundary of M+(E) and M+(E). It is known [11]
that in this case the generalized Laplacian eigenvalues may no longer be contin-
uous. Moreover, the functions Ep,k(µ, ν) are not differentiable whenever λ(µ,ν),k
is not simple [83]. In Fig. 3.1 we provide an example of such degeneracies in a
p-Laplacian eigenpair problem.
Before proceeding with the proof of Theorem 3.4.1, we recall the following techni-
cal lemma. Assuming λ(µ,ν),k differentiable at the point (µ

∗, ν∗), the next Lemma
provides a classical characterization of the derivatives of λ(µ,ν),k with repect to µ
and ν.

Lemma 3.4.3. Let λ∗k = λ(µ,ν),k be differentiable in (µ∗, ν∗) and assume the
corresponding eigenfunction f∗k = f(µ,ν),k to be unique. Then:

∂µ (λ∗k)
−1 = −

|∇f∗k |2

(λ∗k)
2∥f∗k∥22,ν∗

and ∂ν (λ∗k)
−1 =

|f∗k |2

∥∇f∗k∥22,µ∗
.
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Figure 3.1: A graph with non-simple first eigenvalue. Assume νu = 1 ∀u ∈
V \ B, then the graph is symmetric and the first eigenfunction of ∆p, f[p,p],1, is
unique and necessarily agrees with the symmetry of the graph. This means that
∇f[p,p],1(3, 4) = 0 and thus the density µ = |∇f[p,p],1|p−2 of eq. (3.3.2) is zero on
the edge (3, 4), splitting G in two connected components. As a result, λ(µ,ν),1 is
not simple and Ep,1 is not differentiable.

Proof. The proof is straight-forward and uses the fact that if an eigenvalue is
differentiable, then it is necessarily simple [83]. Hence, if λ(µ,ν),k is differentiable
in µ0, then λ(µ0,ν),k is simple and the corresponding eigenfunction is uniquely
defined. Thus, by the chain rule, it is enough to show that:

∂µλ(µ,ν),k =
∂µuv fT(µ,ν),k∇

Tdiag(µ)∇f(µ,ν),k
2∥f(µ,ν),k∥22,ν

=
|∇f(µ,ν),k(u, v)|2

2∥f(µ,ν),k∥22,ν
.

To prove the last equality, we differentiate both terms of the eigenvalue equation
with respect to µ to obtain:

∂µ ∆µfk =∂µ λ(µ,ν),kdiag(ν)f(µ,ν),k

∂µ ∆µ f(µ,ν),k +∆µ∂µ f(µ,ν),k =∂µ λ(µ,ν),k diag(ν)f(µ,ν),k

+ λ(µ,ν),kdiag(ν)∂µ f(µ,ν),k .

Multiplying by f(µ,ν),k and using the identities ∆µf(µ,ν),k = ∆T
µf(µ,ν),k = λ(µ,ν),kf(µ,ν),k

and ∆µ = 1
2∇

Tdiag(µ)∇ we obtain:

fT(µ,ν),k∂µ ∆µ f(µ,ν),k + λ(µ,ν),kf
T
(µ,ν),k∂µ f(µ,ν),k =∂µ λ(µ,ν),k f

T
(µ,ν),kdiag(ν)f(µ,ν),k

+ λ(µ,ν),kf
T
(µ,ν),kdiag(ν)∂µ f(µ,ν),k

1

2
fT(µ,ν),k∇

Tdiag(euv)∇f(µ,ν),k =∂µ λ(µ,ν),k f
T
(µ,ν),kdiag(ν)f(µ,ν),k ,

where euv is the characteristic function of the edge (u, v). This concludes the proof
of the first part of the theorem. The second part is obtained analogously.

Now we are ready to present the proof of Theorem 3.4.1.

Proof of Theorem 3.4.1. The generalized k-th (µ, ν)-Laplacian eigenpair is a func-
tion of µ and ν. To simplify notation, when no ambiguity arises, in this proof
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we write λk and fk with no explicit reference to the dependence upon (µ, ν). In
addition, we write λ∗k := λ(µ∗,ν∗),k and f

∗
k := f(µ∗,ν∗),k, i.e., λ

∗
k and f

∗
k are the k-th

(µ, ν)-Laplacian eigenvalue and eigenfunction evaluated at optimality.
Thanks to Lemma 3.4.3, the KKT conditions for the saddle points of the energy
function Ep,k(µ, ν) can be written as:

−
|∇f∗k (u, v)|2

(λ∗k)
2∥f∗k∥22,ν∗

+ µ∗uv
2

p−2 − cuv = 0 ∀ (u, v) ∈ Ẽ

|f∗k (v)|2

∥∇f∗k∥22,µ∗
− ν∗v

2
p−2 + sv = 0 ∀ v ∈ V \B

cuvµ
∗
uv = 0 , cuv ≥ 0 ∀ (u, v) ∈ Ẽ

svν
∗
u = 0 , sv ≥ 0 ∀ v ∈ V \B

∆µ∗f
∗
k = λ∗kν

∗ ⊙ f∗k

, (3.4.2)

where Ẽ is the subset of the edges obtained by selecting a unique direction for
any edge (see Section 3.2). The constants {cuv}(u,v)∈Ẽ and {sv}v∈V \B are suitable
families of Lagrange multipliers. Since cuv ≥ 0, if µ∗uv = 0 the following equation

−
|∇f∗k (u, v)|2

(λ∗k)
2∥f∗k∥22,ν∗

− cuv = 0

admits only the solution ∇f∗k (u, v) = 0, cuv = 0 . Analogously ν∗v = 0 implies
f∗k (v) = sv = 0. Hence equation (3.4.2) yields:

µ∗ =
|∇f∗k |p−2

(λ∗k)
p−2∥f∗k∥

p−2
2,ν∗

ν∗ =
|f∗k |p−2

∥∇f∗k∥
p−2
2,µ∗

∆µ∗f
∗
k = λ∗kν

∗f∗k

. (3.4.3)

Now we can write:µ
∗ = cµ|∇f∗k |p−2

ν∗ = cν |f∗k |p−2
with

cµ = (λ∗k)
2−p∥f∗k∥

2−p
2,ν∗

cν = ∥∇f∗k∥
2−p
2,µ∗

.

Dividing the second equation in the previous expression by the first one we obtain:

cν
cµ

= λp−2
1

∥f∗k∥22,ν∗
∥∇f∗k∥22,µ∗

p−2
2

= (λ∗k)
p−2
2 .

Replacing the previously obtained expressions for µ∗ and ν∗ in the last equation
of (3.4.3), dividing by cµ, and using the ratio cν/cµ just calculated, we obtain:X

v∼u
ωuv|∇f∗k (v, u)|p−2∇f∗k (v, u) = (λ∗k)

p
2 |f∗k (u)|p−2f∗k (u) .
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Next, we now turn our attention to the proof of Theorem 3.4.2 and the neces-
sary preliminary results. The proof of the theorem is subdivided in two parts.
The first part works on the weighted [p, 2]-Laplacian eigenvalue problem and the
second part extends these results to the p-Laplacian (or [p, p]-Laplacian) eigen-
problem. Here we use square brackets to avoid confusion with the weighted (µ, ν)
generalized Laplacian eigenproblem used before. Because the [p, 2]-Laplacian is
of independent interest [23, 62, 105] we decided to subdivide these two parts into
two subsections. From know on, if not otherwise stated, we assume B ̸= ∅.

3.4.1 The [p, 2]-Laplacian Eigenvalue Problem

Let ν ∈ M+(V \ B) be a density on the nodes with ν ̸= 0 and consider the
following [p, 2]-Rayleigh quotient, which possibly can take the value +∞:

Rp,2,ν(f) =
∥∇f∥pp
∥f∥p2,ν

=
X

(u,v)∈Ẽ

|∇f(uv)|p/
X

u∈V \B

νu|f(u)|2
p
2 .

We assume Rp,2,ν to be defined on the domain H(V \B) and we name its critical
point equation the [p, 2]-Laplacian eigenvalue equation weighted in ν:

(∆pf)(u) = λ νu ∥f∥p−2
2,ν f(u) ∀u ∈ V \B , (3.4.4)

We provide now a characterization of the first eigenpair of the [p, 2]-Laplacian as
the minimal value and the minimum point of Rp,2,ν . In particular, we use the
notation (λ[p,2,ν],1, f[p,2,ν],1) to indicate the weighted 1-th [p, 2]-eigenpair, while we
will denote by (λ[p,p],1, f[p,p],1) the first eigenpair of the p-Laplacian discussed in
the preious sections (see Theorem 3.2.2). The next characterization of (λ[p,2,ν],1, f[p,2,ν],1)
is analogue to the one holding for the classical p-Laplacian proposed in [74] and
already reported in Thm 3.2.2. Also the proof of this characterization is very
similar to the one used in [74] for the classical p-Laplacian eigenvalue problem.
Before stating the characterization we recall the following maximum principle
from [110] that we use in the proof. We point out that our definition of the
p-Laplacian operator (see Def. 3.2.1), matches the definition of the generalized
p-Laplacian operator used in the maximum principle in [110]. For ths reason, we
report the theorem adapting the statement to our needs and notation.

Theorem 3.4.4 (from [110]). If f, g : V → R satisfy ∆pf(u) > ∆pg(u), then
f(u) ≥ g(u) for any u ∈ V \B.

Now we can prove that the first eigenvalue of the [p, 2]-Laplacian is simple and
positive and the corresponding unique first eigenfunction is the only one that is
strictly positive on all internal nodes.

Theorem 3.4.5. Let ν ̸= 0 and G be a connected graph. If (λ[p,2,ν],1, f[p,2,ν],1) is a
first eigenpair of the [p, 2]-Laplacian, then λ[p,2,ν],1 ≥ 0 and f[p,2,ν],1(u) > 0 ∀u ∈
V \B. Moreover λ[p,2,ν],1 is simple and f[p,2,ν],1 is the unique eigenfunction strictly
greater than zero on every internal node.
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Proof. Observe that, for ν ̸= 0, the Rayleigh quotient Rp,2,ν is always well defined
if we admit that it takes values in [0,∞]. Indeed, if B ̸= ∅ then Ker(∇) = ∅. If
B = ∅, then Ker(∇) = span(1), where 1 denotes the constant vector but for any
ν ̸= 0, 1 ̸∈ Ker Diag(ν) . In any case, for all f ̸= 0 we have that minRp,2,ν <∞.
Let f1 be a minimum point of Rp,2,ν such that ∥f1∥2,ν = 1. An easy calculation
shows that

Rp,2,ν(|f1|) ≤ Rp,2,ν(f1) ,

with equality if and only if f1 = ±|f1|. Thus we can assume that f1(u) ≥ 0 ∀u ∈
V \B. If f1(u) = 0 for some u ∈ V \B, then eq. (3.4.4) and the explicit expression
of ∆p in eq. (3.2.2) ensure that f1(v) = 0 for any v ∼ u. As a consequence of
the connectedness of the graph, this implies f1 = 0 for all u ∈ V \B, from which
∥f1∥2,ν = 0, contradicting the initial hypothesis.
Now we can prove the second part of the theorem. We start from the last
statement. Assume that there exists a positive eigenfunction f2 > 0 such that
Rp,2,ν(f2) = λ2 > λ1 = Rp,2,ν(f1). Then there exists t > 0 such that

λ2f2(u) > tλ1f1(u) ∀u ∈ V \B and ∃ u0 ∈ V \B s.t. tf1(u0) > f2(u0) .

Applying Theorem 3.4.4 to the functions tf1 and f2, we get a contradiction,
proving that only positive eigenfunctions are associated to the first eigenvalue.
We are left to prove that λ1 is simple, i.e., the uniqueness of the corresponding
eigenfunction f1. Assume that there exist two positive eigenfunctions f1 and f2
relative to λ1 with ∥f1∥2,ν = ∥f2∥2,ν = 1. Then, the function

g(u) = f21 (u) + f22 (u)
1
2 ,

has 2-norm given by ∥g∥p2,ν = 2
p
2 and its gradient satisfies:

∥∇g∥pp ≤ 2
p−2
2 ∥∇f1∥pp + ∥∇f2∥pp

with equality holding if and only if ∇f1(u, v) = ∇f2(u, v) ∀ (u, v) ∈ E. To prove
the last inequality, consider an edge (u, v) and use first the Cauchy Schwarz
inequality applied to the two vectors f1(u), f2(u) f1(v), f2(v) and then Jensen

inequality applied to the function x 7→ |x|
p
2 :

|∇g(v, u)|p = ωpuv f1(u)
2 + f2(u)

2
1
2 − f1(v)

2 + f2(v)
2

1
2
p

≤ ωpuv f1(u)− f1(v)
2
+ f2(u)− f2(v)

2
p
2

≤ ωpuv2
p−2
2 f1(u)− f1(v)

p
+ f2(u)− f2(v)

p

= 2
p−2
2 |∇f1(v, u)|p + |∇f2(v, u)|p

where, by convexity of the function |x|
p
2 , we have equality if and only if f1(u)−

f1(v) = f2(u)− f2(v). This means that

λ12
p
2 = λ1∥g∥p2,ν ≤ ∥∇g∥pp ≤ 2

p−2
2 ∥∇f1∥pp + ∥∇f2∥pp = λ12

p
2 ,
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implying that in any edge f1(u) − f1(v) = f2(u) − f2(v) and thus, by the con-
nectedness of the graph, and the assumptions on f1 and f2 yields f1 = f2.

Remark 3.4.6. Observe that the same argument provides a characterization also
for the first eigenpair of the (µ, ν)-Laplacian eigenvalue problem. In particular,
let µ ∈ E+ and let Gµ be the subgraph of G obtained by removing the edges where
µ = 0. Assume that Gµ is connected and observe that the first well defined
eigenvalue can be written as:

λ(µ,ν),1 = min
∥f∥ν=1

R2,µ,ν(f) .

The same proof of Theorem 3.4.5 shows that λ1(µ, ν) is simple and the cor-
responding eigenfunction f1 is uniquely characterized by the property of being
strictly positive on any node. Finally note that in the case Gµ is not connected,
even if the “if and only if” condition does not hold, it is still possible to show that
if we find a function f that satisfies the (µ, ν)-Laplacian eigenvalue equation and
that is strictly positive on the internal nodes, then necessarily the corresponding
eigenvalue is the first one, as the following corollary states.

Corollary 3.4.7. Given µ ∈ E+ ̸= 0 and ν ∈ V \ B+ with ν ̸= 0. If (λ, f) is
an eigenpair of the (µ, ν)-Laplacian such that f(u) > 0 for any v ∈ V \ B, then
λ = λ(µ,ν),1 .

Proof. The proof easily follows by observing that, even if the induced graph
has been disconnected: Gµ = ∪Gi, the (µ, ν)-spectrum is given by the union
of the (µ|Gi , ν|Gi)-spectra. Moreover, for any Gi where the (µ|Gi , ν|Gi)-Laplacian
eigenvalue problem is defined, i.e. (µ|Gi , ν|Gi) ̸= (0, 0), the first eigenfunction is
characterized by

f(µ|Gi ,ν|Gi ),1
(u) > 0 ∀u ∈ Gi .

Thus, if f is an eigenfunction on G and f > 0, necessarily f =
P

i αif(µ|Gi ,ν|Gi ),1
for some {αi > 0}i, i.e. f corresponds to the first eigenvalue on any connected
component.

The [p, 2]-Laplacian eigenproblem as a (µ, ν)-Laplacian eigenproblem

Analogously to the p-Laplacian eigenvalue problem discussed in Section 3.3, also
the [p, 2]-Laplacian eigenvalue problem can be reformulated in terms of a con-
strained weighted Laplacian eigenvalue problem. To this aim, we first rewrite the
eigenvalue equation (3.4.4) as:

∇T |∇f |p−2 ⊙∇f (u) = λ νu∥f∥p−2
2,ν f(u) ∀u ∈ V \B.

Dividing both terms by ∥f∥p−2
2,ν , it is straightforward to observe that (λ, f) is an

eigenpair of the [p, 2]-Laplacian if and only if (λ, f) is an eigenpair of the con-
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strained weighted Laplacian problem, i.e., it is solution of the following equation:
∆µf(u) := ∇T (Diag(µ)∇f) (u) = λνuf(u) ∀u ∈ V \B

µuv =
|∇f(u, v)|p−2

∥f∥p−2
2,ν

≥ 0 ∀ (u, v) ∈ Ẽ

3.4.2 Energy Function for the first eigenpair of the [p, 2]-Laplacian

In this section we introduce a convex energy function whose minimum can be
proved to correspond to the unique first eigenapair of the [p, 2]-eigenvalue problem
weighted in ν. The results and the techniques presented here are the starting
point to prove Theorem 3.4.11.

Given a fixed density ν ∈ M+(V \ B) with ν ̸= 0, consider the following energy
function:

L1,E(µ) =
1

λ(µ,ν),1
+ME,p(µ) = sup

∥f∥2,ν=1

∥f∥22,ν
∥∇f∥22,µ

+
p− 2

p

X
(u,v)∈Ẽ

µ
p

p−2
uv

= sup
∥f∥2,ν=1

P
u∈V \B

νuf(u)
2

P
(u,v)∈Ẽ

µuv|∇f(uv)|2
+
p− 2

p

X
(u,v)∈Ẽ

µ
p

p−2
uv

Observe that L1,E is the µ-only part in Ep,1 of eq. (3.4.1).

In the following Theorem we prove that the energy function L1,E(µ) admits a
unique minimizer, µ∗, and that the first eigenfunction of ∆µ∗ corresponds to the
unique first eigenpair of the [p, 2]-Laplacian.

Theorem 3.4.8. Let ν ∈ M+(V \B) with ν ̸= 0 and assume µ∗ is a minimum
point of L1,E(µ) on M+(E). Given λ∗1 = λ(µ∗,ν),1, there exist f∗1 a (µ∗, ν)-
eigenfunction associated to λ∗1 such that (λ∗1)

p−1, f∗1 , is the first [p, 2]-eigenpair,
i.e.:

(λ∗1)
p−1 = λ[p,2,ν],1 and f∗1 = f[p,2,ν],1 .

Moreover

L1,E(µ
∗) =

2p− 2

p
λ
− 1

p−1

[p,2,ν],1 .

Proof. Observe first of all that the function L1,E is strictly convex in M+(E)
and thus admits a unique minimum point. Moreover, using the characterization
of λ(µ,ν),1 by means of the (µ, ν)-Rayleigh quotient R2,µ,ν , the minimum problem
of the function L1,E can be written as a saddle point problem, i.e.:

min
µ∈M+(E)

L1,E = min
µ∈M+(E)

max
∥f∥2,ν=1

∥f∥22,ν
∥∇f∥22,µ

+
p− 2

p

X
(u,v)∈Ẽ

µ
p

p−2
uv .
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From the minmax inequality, we can write:

min
µ∈M+(E)

L1,E ≥ max
∥f∥2,ν=1

min
µ∈M+(E)

∥f∥22,ν
∥∇f∥22,µ

+
p− 2

p

X
(u,v)∈Ẽ

µ
p

p−2
uv . (3.4.5)

Now, for a fixed f with ∥f∥2,ν = 1, it is possible to compute the weight µf that
realizes the minimum:

µf = arg min
µ∈M+(E)

1

∥∇f∥22,µ
+
p− 2

p

X
(u,v)∈Ẽ

µ
p

p−2
uv .

Indeed, the KKT conditions for this constrained minimization problem are:−|∇f(u, v)|2

∥∇f∥4
µf

+ µfuv

2
p−2 − cuv = 0 ∀ (u, v) ∈ Ẽ

cuv ≥ 0 and cuvµ
f
uv = 0 ∀ (u, v) ∈ Ẽ

(3.4.6)

where {cuv} is a family of edge-wise Lagrange multipliers that implement the
non-negativity constraints.
Observe that if µfuv =, from the first equality in (3.4.6), then necessarily also
cuv = 0 and |∇f(u, v)| = 0. In particular, we see that µf satisfies the following
equality:

µfuv =
|∇f(u, v)|p−2

∥∇f∥2p−4
µf

∀ (u, v) ∈ Ẽ (3.4.7)

Multiplying eq. (3.4.7) by |∇f(u, v)|2 and summing over the edges we have:

∥∇f∥2p−2
µf

= ∥∇f∥pp . (3.4.8)

Thus, if we replace (3.4.8) and (3.4.7) in (3.4.5) we obtain the following lower
bound:

min
µ∈M+(E)

L1,E ≥ max
∥f∥ν=1

1

∥∇f∥p

p
p−1

+
p− 2

p

∥∇f∥pp
∥∇f∥2p

µf

= max
∥f∥ν=1

2p− 2

p
∥∇f∥

− p
p−1

p =
2p− 2

p
λ
− 1

p−1

[p,2,ν],1 .

On the other hand, consider the first [p, 2]-Laplacian eigenvalue λ[p,2,ν],1 and the
corresponding unique eigenfunction f[p,2,ν],1 with ∥f[p,2,ν],1∥ν = 1. Then, consider
µ∗ defined by:

µ∗ = λ
2−p
p−1

[p,2,ν],1|∇f[p,2,ν],1|
p−2 .

Corollary (3.4.7) implies that f[p,2,ν],1 is the first eigenfunction of the (µ∗, ν)-

eigenvalue problem with λ(µ∗,ν),1 = λ
1

p−1

[p,2,ν],1. Thus we can write:

min
µ∈M+(E)

L1,E(µ) ≤ L1,E(µ
∗) = λ−1

(µ∗,ν),1 +
p− 2

p
λ
− 1

p−1

[p,2,ν],1 =
2p− 2

p
λ
− 1

p−1

[p,2,ν],1 ,

which concludes the proof.
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Since, as mentioned before, the [p, 2] eigenvalue problem is of independent inter-
est, before going back to the classical p-Laplacian eigenvalue problem we conclude
this section by noting that, given a fixed density ν on the internal nodes, the class
of energy functions

Lk,E(µ) =
1

λ(µ,ν),k
+ME,p(µ)

can be used to characterize [p, 2]-Laplacian eigenpairs, in analogy with the (µ∗, ν∗)
case of Theorem 3.4.1. We collect this result in the following Theorem whose proof
is similar to the (µ∗, ν∗) case.

Theorem 3.4.9. Let µ∗ ∈ M+(E) be a differentiable minimizer of the function
Lk,E(µ). Then, (λp−1

(µ∗,ν),k, f(µ∗,ν),k) is a [p, 2]-Laplacian eigenpair.

3.4.3 From the [p, 2]-Laplacian to the p-Laplacian Eigenvalue Prob-
lem

This paragraph is dedicated to the proof of Theorem 3.4.2. To this aim, we start
by observing that, analogously to the equivalence of the p-Laplacian eigenvalue
problem with a generalized linear eigenvalue problem (eq. (3.3.1)), a pair (λ, f)
is an eigenpair of the p-Laplacian operator if and only if it satisfies the following
constrained weighted [p, 2]-Laplacian eigenvalue problem:∆pf(u) = λνu∥f∥p−2

2,ν f(u) ∀u ∈ V \B

νu = |f(u)|p−2

∥f∥p−2
2,ν

∀u ∈ V \B
.

In Section 3.4.1 we have proved that, given a nonsingular weight function ν on
the nodes, it is possible to characterize the first eigenpair of the [p, 2]-Laplacian
eigenvalue problem weighted in ν by the minimizer µ∗ν of the function L1,E(µ)
(see Theorem 3.4.8). Similarly, we introduce an energy function depending only
on the variable ν given by:

L1,V (ν) =
2(p− 1)

p
λ
− 1

p−1

[p,2,ν],1 −
p− 2

p

X
u∈V \B

ν(u)
p

p−2 .

Observe that for any ν ̸= 0, from Theorem 3.4.8, we have the following equality:

L1,V (ν) = L1,E(µ
∗
ν)−MV,p(ν) = Ep,1(µ∗ν , ν),

Moreover, since R−1
p,2,0(f) = 0 for any f ̸= 0, L1,V can be extended in zero so that

L1,V (0) := 0.
Now we want to show that there exists a unique critical point of L1,V and that
this critical point corresponds to the unique first eigenpair of the p-Laplacian
operator. We start our goal by collecting some preliminary results needed in the
proofs. First, in the next Lemma we address the differentiability of the function
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ν 7→ λ[p,2,ν],1. Note that similar results are available in the continuous case for
the regularity of the first p-Laplacian eigenfunction with respect to perturbations
of the domain [88].

Lemma 3.4.10. Let λ1 and f1 be the minimum value and the minimizer of
Rp,2,ν(f). Then the function λ1 : ν 7→ λ[p,2,ν],1 and its first derivatives are con-
tinuous, i.e., λ1 ∈ C1(M+(V \B) \ {0},R). Moreover:

∂λ1
∂ν

(ν0) = −p
2

λ1|f[p,2,ν0],1|2

∥f[p,2,ν0],1∥22,ν0
.

Proof. Recall the definition of the [p, 2, ν]-Rayleigh quotient:

Rp,2,ν(f) :=
∥∇f∥pp
∥f∥p2,ν

=

P
(u,v)∈Ẽ

|∇f(u, v)|p

P
u∈V \B

ν(u)|f(u)|2
p
2

Recall that, given ν ∈ M+(V \B) \ {0}, the first eigenvalue is characterized by

λ1(ν) := min
f

Rp,2,ν(f) = Rp,2,ν(fν,1, ν) .

The function that associates to a density ν the corresponding first eigenfunction,
fν := f[p,2,ν],1, of the [p, 2]-Laplacian weighted in ν, with ∥fν∥2,ν = 1 is well
defined by Theorem 3.4.5 and continuous by the continuity of minimizers.
Now consider the variation of λ1 near a point ν0 ∈ M+(V \ B) \ {0}. We have
the following inequality:

λ1(ν0)− λ1(ν) = Rp,2,ν0(fν0)−Rp,2,ν(fν)

≤ Rp,2,ν0(fν)−Rp,2,ν(fν) = ∂νRp,2,ν0(fν)(ν0 − ν) + o(∥ν0 − ν∥) ,

which implies

lim sup
ν→ν0

(λ1(ν0)− λ1(ν)− ∂νRp,2,ν0(fν0)(ν0 − ν))

≤ lim sup
ν→ν0

(∂νRp,2,ν0(fν)− ∂νRp,2,ν0(fν0)) (ν0 − ν) = 0 .

Similarly we can write:

λ1(ν0)− λ1(ν) = Rp,2,ν0(fν0)−Rp,2,ν(fν)

≥ Rp,2,ν0(fν0)−Rp,2,ν(fν0) = ∂νRp,2,ν0(fν0)(ν0 − ν) + o (∥ν0 − ν∥)

which implies:

lim inf
ν→ν0

(λ1(ν0)− λ1(ν)− ∂νRp,2,ν0(fν0)(ν0 − ν)) ≥ 0 .

∂νλ1(ν0) = ∂νRp,2,ν0(fν0) = −p
2

λ1(ν0)|fν0 |2

∥fν0∥22,ν0
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The next theorem asserts the there exists a unique maximum point ν∗ of the
function L1,V (ν), which is everywhere nonzero and it identifies the unique first
eigenpair of the p-Laplacian.

Theorem 3.4.11. The maximizer ν∗ of the function L1,V (ν) is unique and be-
longs to the interior of M+(V \B), i.e.,

ν∗ ∈ {ν : V \B → R | νu > 0 ∀u ∈ V \B} .

Moreover:

1. The first eigenpair λ[p,2,ν∗],1, f[p,2,ν∗],1 of the weighted [p, 2, ν∗]-Laplacian
is related to the first eigenpair of the [p, p]-Laplacian by:

λ
p

2(p−1)

[p,2,ν∗],1, f[p,2,ν∗],1 = λ[p,p],1, f[p,p],1 and L1,V (ν
∗) = λ

2
p

[p,p],1 .

2. No other internal critical points of the function L1,V (ν) exist.

Proof. Observe that the first nonzero eigenvalue of the [p, 2, ν]-Laplacian given
by:

λ[p,2,ν],1 = min
f ̸=0

∥∇f∥pp
∥f∥p2,ν

,

where the [p, 2]-Rayleigh quotient is admitted to take values in [0,∞] is always
well defined from Theorem 3.4.5
Hence we can write:

max
ν∈M+(V \B)

L1,V = max
f ̸=0

max
ν∈M+(V \B)

2p− 2

p

 
∥f∥p2,ν
∥∇f∥pp

! 1
p−1

− p− 2

p

X
u∈V \B

ν
p

p−2
u .

(3.4.9)
Assume f to be fixed and νf to realize the maxima:

νf ∈ arg max
ν∈M+(V \B)

2p− 2

p

 
∥f∥p2,ν
∥∇f∥pp

! 1
p−1

− p− 2

p

X
u∈V \B

ν
p

p−2
u .

Then since the last is a constrained maximum problem, by the KKT conditions,
there exist a family of Lagrange multipliers {cu}u∈V \B such that:R

− 1
p−1

p,2,νf
(f)

|f(u)|2

∥f∥2
2,νf

− (νfu)
2

p−2 + cu = 0 ∀u ∈ V \B

cuν
f
u = 0 and cu ≥ 0 ∀u ∈ V \B

.

In particular, since whenever νu = 0 necessarily also f(u) = c(u) = 0, The
previous equation yields:

νfu = Rp,2,νf (f)
− p−2

2(p−1)
|f(u)|p−2

∥f∥p−2
2,νf

∀u ∈ V \B . (3.4.10)
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Multiplying by |f(u)|2 and summing over u ∈ V \ B, the (2, νf ) seminorm of f
can be written as

∥f∥p
2,νf

= Rp,2,νf (f)
− p−2

2(p−1) ∥f∥pp = ∥f∥2p−2
p /∥∇f∥p−2

p . (3.4.11)

In particular, (3.4.10) and (3.4.11) yield the following expression for the p/(p−2)-
norm of νf : X

u∈V \B

(νfu)
p

p−2 =
∥f∥2p
∥∇f∥2p

(3.4.12)

Finally if we replace the expressions from (3.4.11) and (3.4.12) in (3.4.9), we can
now calculate the maximum of L1,V :

max
ν∈M+(V \B)

L1,V = max
f ̸=0

2p− 2

p

∥f∥2p−2
p

∥∇f∥2p−2
p

1
p−1−p− 2

p

∥f∥2p
∥∇f∥2p

= max
f ̸=0

∥f∥2p
∥∇f∥2p

= λ
− 2

p

[p,p],1

and since the 1st p-Laplacian eigenfunction f[p,p],1 realizes the maximum in f ,
from (3.4.10) the maximizer ν∗ satisfies:

ν∗ = λ
− 2(p−2)

p2

[p,p],1

|f[p,p],1|p−2

∥f[p,p],1∥
p−2
p

.

In addition we know that f[p,p],1(u) > 0 for any u ∈ V \ B (see Theorem 3.2.2),
thus ν∗ ∈ Int(M+(V \B)) and it is the unique maximizer. To conclude the proof,
we observe that if ν is a critical point of L1,V with ν ∈ Int(M+(V \ B)), then
from Lemma 3.4.10 we haveλ

− 1
p−1

[p,2,ν],1

|f[p,2,ν],1(u)|2

∥f[p,2,ν],1∥22,ν
− ν(u)

2
p−2 = 0 ∀u ∈ V \B

∆pf[p,2,ν],1 = λ1(p, 2, ν)∥f[p,2,ν],1∥
p−2
2,ν ν ⊙ f[p,2,ν],1

,

i.e.:

∆pf[p,2,ν],1 = λ
p

2(p−1)

[p,2,ν],1|f[p,2,ν],1|
p−2 ⊙ f[p,2,ν],1 .

But then, since f[p,2,ν],1 is the first [p, 2]-Laplacian eigenfunction, Theorem 3.4.5
ensures that f[p,2,ν],1(u) > 0 for all u ∈ V \ B, and thus f[p,2,ν],1 = f[p,p],1, i.e.
ν = ν∗.

These results lead directly to the proof of Theorem 3.4.2 .

Proof of Theorem 3.4.2. From Theorems 3.4.11 and 3.4.8 there exists a unique
(µ∗, ν∗), such that:

(µ∗, ν∗) = arg max
ν∈M+(V \B)\0

arg min
µ∈M+(µ)

1

λ1(µ, ν)
+Mp(µ)−Mp(ν) .
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Thus (µ∗, ν∗) is the only, possibly non-differentiable, saddle point of the function
Ep,1:

Ep,1(µ, ν) =
1

λ1(µ, ν)
+ME,p(µ)−MV,p(ν) .

Moreover µ∗ ∈ arg maxµ
1

λ(µ,ν∗),1
+ ME,p(µ), thus from Theorem 3.4.8 there

exists a first eigenpair f(µ∗,ν∗),1, λ(µ∗,ν∗),1 of the (µ∗, ν∗) eigenvalue problem
(3.3.2) such that

f(µ∗,ν∗),1, λ
p−1
(µ∗,ν∗),1 = f[p,2,µ∗],1, λ[p,2,µ∗],1

Finally, from Theorem 3.4.11,

f[p,2,µ∗],1, λ
p

2(p−1)

[p,2,µ∗],1 = f[p,p],1, λ[p,p],1 ,

which concludes the proof.

3.4.4 Discussion and open problems

We have observed that every p-Laplacian eigenpair can be considered as a linear
eigenpair of a properly weighted Laplacian eigenproblem. This characterization
allowed us to introduce a class of energy functions whose differentiable saddle
points correspond to p-Laplacian eigenpairs. Now it is thus natural to inves-
tigate numerical methods for the computation of p-Laplacian eigenpairs based
on gradient flows of the functions Ep,k(µ, ν) . In the next section we present
some preliminary numerical results showing that the these schemes actually de-
liver acceptable results in most situations. Nevertheless the problem of the lack
of regularity of the functions Ep,k(µ, ν) in case of eigenvalues with multiplicity
greater than 1 is still a stumbling block. Indeed, discontinuous energy functions
prevent the convergence of the numerical schemes in many situations. These
are evidenced by bounded oscillations of residuals and non-convergence of the
algorithm.

With this aim in mind, before addressing some numerical results, we would like
to add some notes and a short discussion on a number of open problems that
are worth addressing in future research. The first observation we would like to
mention is related to differentiable saddle points. Any p-Laplacian eigenpair (λ, f)
corresponding to a smooth saddle point of the k-th energy function can be fully
characterized in a neighborhood of f in terms of the behavior of the p-Rayleigh
quotient. Indeed, the fact that (µ∗, ν∗) is a differentiable saddle point implies that
the eigenvalue λ[µ∗,ν∗],k is simple, yieldingMIf (Rp) = k−1, MIf (−Rp) = N−k
by Lemma3.3.5. As a consequence, differently from the local min-max algorithm
presented in [139], with our approach we can compute directly a p-Laplacian
eigenpair (λ, f) such that MIf (Rp) = k − 1, MIf (−Rp) = N − k without the
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need of computing a whole sequence of p-Laplacian eigenpairs having linear index
in {1, . . . , k − 1} .
The second point we would like to stress is that the definition of the energy
functions Ep,k(µ, ν) can be easily extended to the case p = ∞ by setting p/p−2 =
1 in the expression of MV,p and ME,p. We will see in the next section some
preliminary numerical experiments supporting the validity of this observation
and the effectiveness of gradient flow numerical methods in the case p = ∞.
However, a more detailed study is needed to fully address this case, and this will
be proposed in the future.
Finally, we would like to recall a duality result presented in [77, 135] and relating
p-eigenpairs on the nodes to q-eigenpairs on the edges (p, q conjugate). This
result allows the extension of our approach to the case p ∈ [1, 2).
Consider the eigenvalue problem given by the critical point equation of the q-
Rayleigh quotient RE

q defined on the set of edge functions H(Ẽ) = {G : Ẽ → R}
as:

RE
q (G) :=

∥∇TG∥qq
∥G∥qq

.

Any critical pair (value,point) (η,G) of RE
q can be regarded as a q-eigenpair on

the edges. Note that (η,G) is a q-eigenpair if it satisfies the nonlinear eigenvalue
equation:

∇ ∇TG
q−2∇TG (uv) = η|G(uv)|q−2G(uv) ∀u ∈ V \B (3.4.13)

In [77, 135] the authors show by duality that the nonzero critical values and
points of RE

q correspond to the nonzero critical values and points of R̃p, where p
is the conjugate of q. In particular, the authors prove that if (λ, f) is an eigenpair

of ∆p with λ ̸= 0, then (λ
q
p , |∇f |p−2∇f) is a q-eigenpair on the edges. Viceversa,

if (η,G) is a q-eigenpair on the edges with η ̸= 0, then η
p
q , |∇TG|q−2∇TG is

a ∆p-eigenpair. Using these facts, it is straightforward to observe that equation
(3.4.13) can be reformulated in terms of a generalized eigenvalue problem defined
on the function space H(Ẽ). In particular we can consider the energy functions

EEk (ν, µ) =
1

ηk(µ, ν)
+Mq(ν)−Mq(µ) , (3.4.14)

where k ≥ dim(Ker(∇T )) and η[ν,µ],k is the k-generalized eigenvalue of the prob-
lem:

∇diag(ν)∇TG = ηµG .

Then, analogously to Thm. 3.4.1, it is trivial to observe that any differentiable
saddle point of EEk corresponds to an edge q-eigenpair and hence, by duality, to
a ∆p-eigenapair. Moreover, when p < 2, q > 2, properties of saddle points of the
functions (3.4.14) for q > 2 translate into properties of ∆p-eigenpairs for p < 2.
In particular, note that the conjecture about the validity of our strategy in the
q = ∞ case corresponds to the extremal case p = 1 .
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3.5 Numerical evaluation of the saddle points

The computation of the saddle points of the energy functions Ep,k(µ, ν) is a con-
strained critical point problem. To incorporate in our fomulation the positivity
constraint we follow the same procedure that turned out to be very successful
in the solution of the L1-Optimal Transport problem and discussed in [56, 113].
Thus, we perform the change of variable µ = σ21 and ν = σ22. Using the new
variables, the energy functions Ep,k(σ21, σ22) become well defined everywhere in
R|E| × R|V |. We thus define a dynamics for the variables (µ, ν) as the gradient
flow in the variables σ1 and σ2. To this aim we use the following time-derivatives:

µ̇ = 2σ1σ̇1 = −2σ1
∂Ep,k(σ21, σ22)

∂σ1
= −4σ21

∂Ep,k(µ, ν)
∂µ

= −4µ
∂Ep,k(µ, ν)

∂µ

and

ν̇ = 4ν
∂Ep,k(µ, ν)

∂ν
.

Writing explicitly the partial derivatives and neglecting constant multiplicative
factors, which turn out to be just an increase in the speed of the dynamics, we
end up with the following gradient flow system:

µ̇ = µ
|∇f[µ,ν],k|2

λ[µ,ν],k∥f[µ,ν],k∥2ν
− µ

2
p−2

ν̇ = ν
|f[µ,ν],k|2

∥∇f[µ,ν],k∥2µ
− ν

2
p−2

∆µf[µ,ν],k = λ[µ,ν],kf[µ,ν],k

.

We are then looking for the stationary equilibrium of the above dynamics. The
first two algebraic-differential equations are discretized by means of a simple
explicit Euler method with an empirically-determined constant time step size, τ .
The third purely algebraic equation is solved by diagonalization of the µ-weighted
linear Laplacian by means of standard Lapack routines. For simplicity, no effort
has been done to exploit sparsity of the graph-related matrices, which could
provide important computational efficiency improvements. Thus, when looking
for the k-th eigenpair, starting from given initial values µ0 = µ0k and ν0 = ν0k , the
n = 1, 2, . . . approximations are calculated by solving:

calculate (λn+1, fn+1) solving: ∆µnf = λ[µn,νn]f

calculate µn+1: µn+1 := µn + τµn
|∇fn+1|2

(λn+1)2∥fn+1∥2νn
− (µn)

2
p−2

calculate νn+1: νn+1 := νn + τνn

 
|fn+1|2

∥∇fn+1∥2µn
− (νn)

2
p−2

!
.

Convergence towards equilibrium is considered achived when the error, defined
as:

err = ∥∆pf
n+1 − (λn+1)

p
2 |fn+1|p−2fn+1∥∞ (3.5.1)
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Figure 3.2: Left panel: first six eigenfunctions as calculated by the proposed
method for p = 6. The graph nodes are randomly distributed with edge lengths
equal to the reciprocal of the weights. The nodal values of the eigenfunctions are
plotted with the color-code shown on the right of the figure for k = 1, . . . , 6 (top
to bottom). For each k the right panel reports the behavior of the error defined
in eq. (3.5.1) as a function of time steps (iterations) n.
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is below a given tolerance.
Figure 3.2 shows the experimental results obtained on a graph of 49 vertices with
weights randomly chosen between 0.1 and 1.1. The graph is plotted by distribut-
ing the nodes randomly in space with edge lengths equal to the reciprocal of the
weights. The results are relative to a value of p = 6. The first 6 eigenfunctions
(left panels) and relative convergence behaviour are reported. We note that con-
vergence towards equilibrium for k = 1 and k = 2 is smooth and fast. However,
for k = 3 strong oscillations when the error reaches 10−4 appear and convergence
is completely absent. For k > 3 the initial oscillations disappear quickly and
convergence of the discrete gradient flow proceeds smoothly after that.
We must recall here that for k = 1 Theorem 3.4.2 ensures that the energy function
Ep,1 has only one saddle point and the proposed algorithm is expected to converge.
However, for k > 1 nothing is known. In particular, if the eigenvalues are not
simple, the energy function loses continuity, and the ODE trajectories identified
by the gradient flow intersect, potentially leading to an oscillatory behaviour of
the discrete method.
For k = 3 the initial oscillations clearly noticeable in the convergence profile are
due to the jumping back and forth between energy levels relative to different
values of k of the numerically calculated trajectories. In this case the gradient
flow stagnates. In other cases we observe experimentally an oscillatory behaviour
which actually converges towards stationarity. This behaviour can be justified
empirically postulating that the time step becomes large enough to jump over
the discontinuity point and, by chance the numerical scheme picks an appropriate
trajectory and carries the calculations to convergence. However, unlike in the
linear (p = 2) case, we have no means at the moment to identify the position in
the spectrum towards which we converge.

3.6 Technical results

Proof of Lemma 3.3.4. Let us complete f to a ν and ∆µ-orthogonal basis by tak-
ing a basis of eigenfucntions, i.e. take {fi}Ni=1 as follows: {fi}

k−1
i=1 are eigenvectors

relative to the first k − 1 well defined eigenvalues, f = fk and {fi}k+m−1
i=k are

eigenvectors relative to λk, including a base of the subspace Ker(∆µ) ∩ Ker(ν),
{fi}Ni=k+m are the eigenvectors relative to the well defined eigenvalues λi > λk.
The eigenvectors relative to the well defined eigenvalues, except the base of

Ker(∆µ)∩Ker(ν), are chosen in Ker(∆µ)∩Ker(ν)
⊥
. Observe that Tf (S2,ν) =

span{fi}i ̸=k, indeed Tgf (S2,ν) = {ξ, |, ⟨ν ⊙ f, ξ⟩ = 0} , and {fi(µ, ν)}i is a ν-
othogonal base of the space. Hence, the following implications hold:

∂2

∂ϵ2
∥∇(f + ϵξ)∥22,µ
∥f + ϵξ∥22,ν ϵ=0

< 0 ⇐⇒ ξ ∈ span{fi(µ, ν)| i < k} ,

∂2

∂ϵ2
∥∇(f + ϵξ)∥22,µ
∥f + ϵξ∥22,ν ϵ=0

> 0 ⇐⇒ ξ ∈ span{fi(µ, ν)| i > k +m− 1} .
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To prove the last statement, let ξ =
P

i ̸=k αifi(µ, ν) and recall that if i ̸= j, then
⟨µ⊙∇fi,∇fj⟩ = 0 and ⟨ν ⊙ fi, fj⟩ = 0. Hence, using (3.3.7), we can provide the
following equality that allows easily to conclude the proof of the lemma:

∂2

∂ϵ2
∥∇(f + ϵξ∥22,µ
∥f + ϵξ∥22,ν ϵ=0

=
2

∥f∥22,ν

X
i ̸=k

X
j ̸=k

αiαj ⟨µ⊙∇fi,∇fj⟩ − λk⟨ν ⊙ fi, fj⟩

=
2

∥f∥22,ν

X
i ̸=k

α2
i ⟨µ⊙∇fi,∇fi⟩ − λk⟨ν ⊙ fi, fi⟩

In the last equality observe that if fi is an eigenfunction corresponding to an
eigenvalue λi with fi ̸∈ Ker diag(ν) ∩Ker ∆(µ) , then

⟨µ⊙∇fi,∇fi⟩ − λh⟨ν ⊙ fi, fi⟩ = ∥fi∥22,ν λi − λk ,

i.e., fi is an increasing or a decreasing direction of R2,µ,ν in f according to the
inequalities λi > λk or λi < λk. Moreover if fi ∈ Ker(∆µ) ∩ Ker diag(ν) it is
trivial to observe that fi is neither an increasing nor a decreasing direction of
R2,µ,ν in f , i.e.:

⟨µ⊙∇fi,∇fi⟩ − λh⟨ν ⊙ fi, fi⟩ = 0 .



Conclusions

In this thesis we have presented different new techniques for the numerical solu-
tion of a rather large class of problems.
Moreover, we have shown several numerical applications underlying the efficiency
and robustness of our proposed algorithms, not only for the identifiability of the
parameters governing the piezometric heads and water fluxes dynamics in WDS,
but also for other more general problems, coming from different fields of applica-
tion.
These ideas are strictly connected to the main purpose of this thesis, i.e. the
numerical modeling of WDS via the p-Laplace operator, and surprisingly all
the other applications proposed both in the second and in the third chapter,
are somehow related to the solution of similar problems, interconnected by the
EDMK scheme, in all of it’s variants.
This shows also the extremely power of convex duality to rewrite a complex
problem in a simplified one, which can be possibly solved with more performing
techniques.
Moreover, the high flexibility of our EDMK scheme leads also to apply our tech-
niques to non standard scenarios, where other methods fails to be opportunely
adapted. This is the case for example of the proposed scheme for the Total Vari-
ation regularization in presence of positivity and interval constraints, where the
standard techniques based on the Bregman iteration is in general not directly
usable.
Another advantage of our techniques in the framework of the WDS model cal-
ibration problem of Chapter 1 is that, differently from the standard approach
where is necessary a complete knowledge of all the pipes physical properties(e.g.
diameters, materials etc., see [81] and [86]), our proposed algorithm doesn’t re-
lies on any particular constitutive laws, but rather it is specifically designed to
retrieve the constitutive law governing WDS.
Observe that, working with a general weight w and exponent p for any edge, al-
lows us to perform the model calibration also in the case where partial diameters
and materials data are known. The Total Variation regularization, based on the
Line Graph(see Chapter 1 Section 1.5.4) automatically enforces a local constant
behaviour of the design parameters on the connected components of the graph.
Thus, it naturally reconstructs the missing data along the topology of the graph,
and leads us to genuinely carry out the model calibration also in the presence of

229
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partial data.
This is in some sense the strong idea which motivates and interlaces Chapter 1
with Chapter 2.
On the other hand, similar considerations can be done for the case of the p-
Laplacian eigenproblem in Chapter 3. In this case the connection with the WDS
problem is not only given by the p-Laplace operator itself, but also from the
necessity to provide some tools in order to further analyze the results, using for
example the eigenfunctions of the p-Laplacian operator given by the weights and
exponents distribution derived from the model calibration. This eigenfunctions
provide strong geometrical informations on the spatial distribution of the data
and will be used in future developments of kernel based method for reduced order
models and physical based data classification on WDS.
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Núñez. Fenchel duality theory and a primal-dual algorithm on riemannian
manifolds, 2020.

[16] V. Bonifaci. A laplacian approach to $$\ell 1$$-norm minimization.
Computational Optimization and Applications, 79(2):441–469, mar 2021.
doi: 10.1007/s10589-021-00270-x. URL https://doi.org/10.1007%

2Fs10589-021-00270-x.
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[86] B. Kizilöz. Prediction model for the leakage rate in a water distribution
system. Water Supply, 21(8):4481–4492, 06 2021. ISSN 1606-9749. doi:
10.2166/ws.2021.194. URL https://doi.org/10.2166/ws.2021.194.

https://doi.org/10.30632/PJV61N1-2020a3
https://www.sciencedirect.com/science/article/pii/S1877705816334051
https://www.sciencedirect.com/science/article/pii/S1877705816334051
http://eudml.org/doc/249207
https://doi.org/10.2166/ws.2021.194


BIBLIOGRAPHY 239

[87] Q. T. Kolt, S. J. Kilner, and D. L. Farnsworth. A table of legendre-
transformation pairs with methodologies for construction, authentication,
and approximation of pairs, 2022.

[88] P. D. Lamberti. A differentiability result for the first eigenvalue of the
p-Laplacian upon domain perturbation. In V. Lakshmikantham, R. Agar-
wal, and D. O’Regan, editors, Nonlinear analysis and applications: to V.
Lakshmikantham on his 80th birthday, volume 1, pages 741–754. Kluwer
Academic Publishers, 2003.

[89] P. Lee, T. Kim, and S. Kim. Accurate and efficient numerical solutions for
elliptic obstacle problems. Journal of Inequalities and Applications, 2017:
34, 02 2017. doi: 10.1186/s13660-017-1309-z.

[90] S.-S. Leu and Q.-N. Bui. Leak prediction model for water distribution net-
works created using a bayesian network learning approach. Water resources
management, 30(8):2719–2733, 2016.

[91] M. Levi, F. Santagati, A. Tabacco, and M. Vallarino. Poincaré
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[93] H. Liu, D. Savić, Z. Kapelan, M. Zhao, Y. Yuan, and H. Zhao. A diameter-
sensitive flow entropy method for reliability consideration in water distri-
bution system design. Water Resources Research, 50(7):5597–5610, 2014.
doi: https://doi.org/10.1002/2013WR014882. URL https://agupubs.

onlinelibrary.wiley.com/doi/abs/10.1002/2013WR014882.

[94] S. Lunz, A. Hauptmann, T. Tarvainen, C.-B. Schönlieb, and S. Arridge.
On learned operator correction in inverse problems. SIAM Journal on
Imaging Sciences, 14(1):92–127, 2021. doi: 10.1137/20M1338460. URL
https://doi.org/10.1137/20M1338460.

[95] R. Löhner and H. Antil. Revisiting calderon’s problem, 2019.

[96] F. Mantlik. Partial differential operators depending analytically on a pa-
rameter. Annales de l’Institut Fourier, 41(3):577–599, 1991. doi: 10.5802/
aif.1266. URL http://www.numdam.org/articles/10.5802/aif.1266/.

[97] N. Masuda and F. Meng. Dynamical stability of water distribution net-
works. Proceedings of the Royal Society A, 475(2230):20190291, 2019.

https://doi.org/10.1007%2Fs10476-023-0215-5
https://doi.org/10.1007%2Fs10476-023-0215-5
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160200302
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160200302
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013WR014882
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013WR014882
https://doi.org/10.1137/20M1338460
http://www.numdam.org/articles/10.5802/aif.1266/


240 BIBLIOGRAPHY

[98] F. Meng, G. Fu, R. Farmani, C. Sweetapple, and D. Butler. Topological
attributes of network resilience: A study in water distribution systems.
Water research, 143:376–386, 2018.

[99] J. Milnor. Morse theory.(am-51), volume 51. In Morse Theory.(AM-51),
Volume 51. Princeton university press, 2016.

[100] N. Moosavian and B. J. Lence. Flow-uniformity index for reliable-based
optimal design of water-distribution networks. Journal of Water Resources
Planning and Management, 146(3):04020005, 2020. doi: 10.1061/(ASCE)
WR.1943-5452.0001161. URL https://ascelibrary.org/doi/abs/10.

1061/%28ASCE%29WR.1943-5452.0001161.

[101] J. L. Mueller and S. Siltanen. Linear and nonlinear inverse problems with
practical applications. SIAM, 2012.

[102] O. Nachum and B. Dai. Reinforcement learning via fenchel-rockafellar du-
ality, 2020.

[103] T. M. Nguyen, T. M. Nguyen, N. Ho, A. L. Bertozzi, R. Baraniuk, and
S. Osher. A primal-dual framework for transformers and neural networks. In
The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=U_T8-5hClV.

[104] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin. An iterative reg-
ularization method for total variation-based image restoration. Multiscale
Modeling & Simulation, 4(2):460–489, 2005. doi: 10.1137/040605412.
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