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Abstract

Portfolio insurance strategies, designed to safeguard a minimum level of wealth while participating
in market gains, have become a linchpin of the asset management industry. The present research
work focuses on various portfolio insurance strategies, such as constant proportion portfolio insurance
(CPPI) strategy, time–invariant portfolio protection (TIPP) strategy, and proportional portfolio
insurance (PPI) strategy, offering insights into their advantages and addressing their critical issues,
including cash–locked positions and gap risk. In particular, the study explores modifications to the
latter baseline strategies, focusing on improving market participation and capital protection, in a
wide range of applications spanning from structured investment products with capital protection to
pension funds. Notably, a new variant of the TIPP strategy, the TIPP with guaranteed minimum
equity exposure (G–TIPP), is introduced, demonstrating its effectiveness in structured investment
products with capital protection. The thesis also addresses the shortcomings of existing PI strategies
in managing the accumulation phase of defined contribution (DC) pension funds, proposing an
innovative approach that simultaneously protects the fund’s members against market and longevity
risks. Finally, the study investigates the determination of optimal exogenous parameters of a modified
version of the PPI strategy in markets with frictions, such as jumps in risky asset dynamics. This
new PPI strategy is able to immunize the investor from gap risk P–a.s. over the entire investment
horizon. The present dissertation comprises five chapters, each contributing to the understanding
and advancements of PI strategies, offering valuable insights for academics and practitioners.
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Introduction and Overview

Portfolio insurance (PI) strategies are designed to guarantee a minimum level of wealth over a
fixed time horizon while simultaneously participating in the potential gains of a reference portfolio.
Despite their designation, PI strategies are not insurance contracts in which the investor pays a
risk transfer premium to an insurer to limit losses from unfavourable market conditions. On the
contrary, they are dynamic allocation strategies that can be pigeonholed into two main categories:
option-based portfolio insurance (OBPI) and constant proportion portfolio insurance (CPPI). The
OBPI strategy was pioneered after the seminal article by Black and Scholes [1973] while Leland
and Rubinstein [1976] suggested using options for portfolio hedging. After a decade, Perold [1986]
and Black and Jones [1988] developed the CPPI strategy. The latter is a simple dynamic allocation
mechanism that splits the investor’s wealth between two types of assets: a risky asset, such as a
market index, and a reserve asset, such as a bond or a bank account, according to the following
pre-established investment rule. First, the investor sets the floor, namely the present value of the
guarantee, and represents the capital to be protected for each instant of the management period.
Then, he/she invests an amount in the risky asset proportional to the cushion, defined as the
difference between the current portfolio value and the floor, provided that this difference is positive.
The proportionality factor is a positive constant, known as a multiplier, set at the beginning of the
management period according to the investor’s risk tolerance. Finally, since the CPPI strategy is
self-financing, the remaining wealth is invested in the reserve asset.
During the years, the CPPI strategy has been the subject of several generalizations. The first is
the so-called time-invariant portfolio protection conceived by Estep and Kritzman [1988]. The only
difference between the CPPI and the TIPP strategy lies in the floor’s rebalancing mechanism. The
TIPP floor is defined as the maximum between the standard CPPI floor and the maximum of the
historical TIPP portfolio values. Thanks to this particular floor’s definition, the TIPP can lock in
all past gains, and, unlike the CPPI, none of them are lost every time a market decline occurs. For
this reason, the TIPP is perceived as an improved version of the standard CPPI strategy, providing
better capital protection. The second generalization is the so-called proportional portfolio insurance
(PPI) strategy in which the multiplier is no longer constant, but is set to be time-varying, to better
adapt the strategy’s exposure to market fluctuations, see, e.g. Lee et al. [2008], Hamidi et al. [2009],
Ameur and Prigent [2014], Hamidi et al. [2014] and references therein.
Two crucial problems concerning PI strategies are the cash-locked positions and gap risk. Assuming
that the dynamics of the underlying risky asset evolve according to a geometric Brownian motion
and the rebalancing of the strategies occurs continuously over time, then the portfolio protection is
efficient P-a.s., that is, the strategies are always able to attain the guaranteed amount at maturity,
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see, e.g., Balder et al. [2009]. The only drawback within this framework is given by cash-locked
positions, i.e. situations where the portfolio value hits the floor. According to the PI investment
rule, from that moment on, the wealth is fully invested in the reserve asset until maturity, impeding
obtaining equity market participation. As argued in Balder et al. [2009] and Cont and Tankov [2009],
if we consider more realistic cases either allowing for discontinuities in the risky asset dynamics
or trading restrictions, PI strategies are affected by gap risk. The latter can be considered as
a particular case of the cash-locked position. A gap occurs when the portfolio manager cannot
rebalance the strategy, due to a sudden drawdown in the market, causing the portfolio value to fall
below the floor. The gap is the difference between the floor and the wealth. Thus, if a gap occurs,
the CPPI portfolio cannot deliver the promised capital protection and equity market participation
if the reference risky asset recovers. Part of the present thesis is focused on proposing modifications
to the baseline versions of PI strategies that can eliminate or at least mitigate the effect of gap risk
or cash-locked positions.
Despite such drawbacks, PI strategies gained momentum in the late eighties, after the collapse of the
Dow Jones Industrial Average of the New York Stock Exchange and the FT 30 of the London Stock
Exchange caused pension funds to withdraw. In particular, some authors, including Davis [2003],
noted ex-post that the presence of PI strategies would convince investors not to leave the market,
guaranteeing them the opportunity to benefit from the market upturn, an event that occurred just
a couple of years later. More recently, after the financial crisis of 2008 and the crisis in 2020 due to
COVID-19, we witnessed a substantial recovery of the equity market worldwide. However, these
strong turbulences destroyed the trust of the market participants. Many investors in the US, Europe
and Asia are increasingly interested in PI strategies due to their ability to provide capital protection
and equity markets in case of favourable market conditions. Nowadays, such strategies represent
a linchpin of the asset management industry, and their application area ranges from structured
investment products with capital protection to pension fund management.
Structured investment products with capital protection guarantee a predetermined amount of
initially invested capital plus participation in the stock market through options. More precisely,
to guarantee such a payoff at maturity, the issuer has to invest a certain percentage of the initial
wealth, the so-called protection level, in bonds and the remaining part, i.e. the risk budget, in
plain vanilla European call options written on a market index. The number of call options the
issuer can buy with the available risk budget is called the participation rate. Investors find these
products attractive when they offer a high protection level and participation rate. However, the
latter features are strongly correlated. Given an initial level of wealth, the only way to increase the
protection level is to reduce the participation rate and vice versa. Such a situation worsens in a
market characterized by low-interest rates and high volatility. The low interest rate level decreases
the risk budget, and high market volatility increases the price of European call options, substantially
reducing the participation rate. For this reason, some authors, including Albeverio et al. [2013, 2017],
substituted plain vanilla European call options written on the market index with options written
on PI strategies to keep a high participation rate regardless of the market conditions. However, as
argued by Albeverio et al. [2013], the major challenge in embedding PI strategies in a structured
product is cash-locked positions and gap risk. Indeed, after these events, the option written on the
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PI strategy will end up out of the money P-a.s., precluding the possibility of obtaining equity market
participation. To address the issue, Di Persio et al. [2020] modify the CPPI allocation mechanism
by including a further threshold, the guaranteed minimum equity exposure (GMEE). Such a new
version of CPPI with GMEE is labeled G-CPPI. Specifically, the exposure of this new G-CPPI
strategy is the maximum between the standard CPPI exposure and a predetermined percentage
(the GMEE) of the portfolio value. Thanks to such a modification, such a predetermined percentage
of the wealth remains invested in the risky asset even after a gap event or a cash-locked position,
guaranteeing to benefit from market participation and thus making CPPI suitable for inclusion
in a structured investment product with capital protection. The authors numerically show that
options on G-CPPI are cheaper than options written on the stock, meaning that, ceteris paribus,
the former increases the participation rate of structured investment products regardless of market
conditions. However, what is missing in the current literature is a critical comparison between
options written on G-CPPI and options written on other types of PI strategies that can be endowed
with the GMEE, such as the TIPP, in order to check whether it is possible to improve further the
attractiveness of structured investment products with capital protection.
A second application area of PI strategies is the accumulation phase of defined contribution (DC)
pension funds. In DC pension funds, the contributions payable by the workers are a pre-specified
percentage of their labour income. The amount of pension instalments after retirement depends on
the size of the accumulated contributions and the fund’s investment performance, meaning that
the fund’s member faces investment risk from market fluctuations. Despite such drawbacks, DC
funds have become increasingly popular over the last decades due to the financial unsustainability
of the defined benefits (DB) pension funds, especially in the presence of an ageing population.
Therefore, Battocchio and Menoncin [2004] and Gao [2008] studied optimal portfolio selection
problems, such as the DC fund delivering satisfactory benefits at the retirement date. However, such
investment solutions cannot provide downside protections, exposing the fund members to the risk of
receiving insufficient benefits after retirement. To overcome such drawbacks, Boulier et al. [2001],
Deelstra et al. [2003], Guan and Liang [2014], Chen et al. [2017] and Tang et al. [2018] employed PI
strategies in order to maximize the expected utility of the difference between the fund’s final wealth
and the price of a lifetime annuity at retirement. Such an annuity acts as a minimum guarantee.
However, the value of the annuity price is contingent on members’ survival probability, which, in
the aforementioned works, is modelled through a deterministic force of mortality. Hence, such an
approach ignores that the force of mortality can be stochastic, causing unexpected variations in the
survival probability and, thus, in the value of the guarantee at retirement. Therefore, the resulting
optimal PI strategy can only protect against investment risk and not against longevity risk. To the
best of our knowledge, a PI strategy that can simultaneously immunize the fund’s members from
the market risk and unexpected fluctuations in the average life expectancy of the fund’s participants
has never been designed.
The third research topic addressed in the present thesis is the determination of the optimal multiplier
in markets characterized by frictionalities, such as discontinuities into the dynamics of the underlying
risky asset. Portfolio insurers can be modelled as expected utility maximizers with the additional
constraint that the value of the PI strategy at maturity must be greater or equal to the guarantee.
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As Kingston [1989] argued, CPPI and PPI strategies result from an expected utility maximization
where the utility function is of the hyperbolic absolute risk aversion (HARA) type. As shown in
Black and Perold [1992], if the risky asset follows a geometric diffusion process with constant drift
and constant volatility, then the optimal PI strategy coincides with the CPPI one. In the latter
case, the optimal constant multiplier is equal to the product of the instantaneous Sharpe ratio
and the inverse of the investor’s risk aversion. Moreover, when the dynamic of the underlying
risky asset follows a geometric diffusion process with time-varying or stochastic volatility, under
specific assumptions of the volatility risk premium, the optimal PI strategy is the PPI one. In
such a framework, Zieling et al. [2014] found that the resulting time-varying optimal multiplier
is the sum of two components. The first is the myopic demand, expressed in terms of Merton’s
solution, and the second is the intertemporal hedging demand caused by the correlation between
the risky asset price and its volatility. However, the above considerations only apply in a frictionless
market under the assumption that rebalancing of the strategies occurs continuously. The optimality
of portfolio insurance strategies is hampered by the presence of jumps in the dynamics of the
underlying risky asset, since they induce gap risk with a positive probability. When gap risk arises
at some point in the investment horizon, the cushion becomes negative and, since the remaining
wealth is fully invested in the reserve asset, continues to remain negative until maturity. As a result,
the optimization problem above can no longer be solved, since the HARA utility function is no
longer defined for a negative value of the cushion. In response to such a problem, some authors,
including Ameur and Prigent [2014] and Hamidi et al. [2014], proposed alternative approaches to
dynamically set the multiplier based on conditional expectations of future market drops. However,
as discussed in Dichtl et al. [2017], such methods are entirely based on the forecasting ability of
the PI insurers and may fail to deliver an effective gap risk control. Therefore, the optimal design
of the PI strategy suitable to reach the guaranteed amount P-a.s. at maturity and provide equity
market participation when the market may experience downward jumps is still an open problem.
We aim to fill these gaps, introducing and developing new versions of PI strategies able to solve the
aforementioned drawbacks and, at the same time, be suitable within a risk management context.
The dissertation is divided into five chapters, organized as follows. In Chapter 1, we will recall
PI strategies’ main properties and their analytical foundations, which will be subject to further
elaboration in this thesis. Chapter 2 introduces a new exotic option written on a modified version
of the TIPP strategy to be used within structured investment products with capital protection.
Our approach suggests enriching the framework by including a threshold in the TIPP allocation
mechanism to ensure a guaranteed minimum equity exposure at any point of the investment time
horizon. We baptize such a new allocation mechanism G-TIPP. To test the goodness of our proposal,
we provide an in-depth analysis of the prices of such new exotic options, assuming a Heston-Vasicek
financial market model, and compare our results with other options used within structured products,
such as options on G-CPPI introduced by Di Persio et al. [2020]. Our approach represents an
interesting alternative for investors, as we numerically prove that options on G-TIPP have properties
that significantly increase the participation rate of structured investment products with capital
protection and, thus, their attractiveness on the market. The content of this chapter is based upon
a joint work with Prof. I. Oliva, Prof. L. Di Persio, and Dr. K. Wallbaum, recently published in
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Di Persio et al. [2023].
Chapter 3 concerns an optimal investment problem for a DC pension fund, which guarantees a
minimum retirement saving in the form of a target annuity by assuming randomness in interest rates,
labour income, and mortality. The fund manager aims to protect the retirement capital accumulation
against investment and longevity risks by implementing an ad hoc PI strategy. More precisely, the
manager considers the guaranteed lifetime annuity present value as the minimum wealth to hold at
retirement, investing the residual wealth in a portfolio given by the combination of a rolling bond, a
rolling longevity bond, and a stock. The goal is to determine the exogenous parameters of the PI
strategy such that the expected utility of the difference between the final wealth and the target
annuity value is maximized. We obtain a closed-form solution to the resulting stochastic optimal
control problem and provide a numerical application to investigate how investment optimality is
affected by longevity dynamics, highlighting the suitability of our proposal for defined contribution
scheme management. The findings of this analysis are the results of collaborative work with Prof. I.
Oliva, Prof. M. Di Giacinto, and Dr. M. Marino. The related paper is currently under review to an
international journal.
In Chapter 4, we investigate an optimal investment problem associated with PPI strategies in
the presence of jumps in the underlying dynamics. While PPI strategies are known to be free
of downside risk in diffusion modelling framework with continuous trading, see, e.g., Cont and
Tankov [2009], real market applications exhibit the non-negligible gap risk, which increases with
the multiplier value. To address this issue, this paper analyzes an optimal investment problem for
PPI strategies that maximize expected utility at maturity and, at the same time, minimize gap
risk, even when the cushion turns negative, by continuing to maintain a positive exposure to the
risky asset. In particular, two modifications to the standard literature have been introduced in
formulating the problem: (i) we propose a generalization of PPI that admits the negative value of
the multiplier (i.e. short-selling of the risky asset), and (ii) we consider a loss-averse investor whose
preferences are described by an S-shaped utility function. We address the optimization problem by
combining the worst-case martingale method with the concavification technique to simultaneously
account for jumps in the underlying risky asset dynamics and the non-concavity of utility function.
Our main results provide an algorithm for calculating the optimal multiplier in quasi-closed form,
making our results easily applicable from a practical point of view. Interestingly, we have shown
ex-post that the optimal multiplier is such that the gap risk never occurs P-a.s. over the entire
investment horizon. This last work results from a collaboration with Prof. I. Oliva and Prof. K.
Colaneri and has been submitted to an international journal for publication. Finally, the present
thesis considers a final discussion about the results achieved, emphasizing further suitable research
projects in the domain of PI strategies.
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Chapter 1

Some preliminaries on portfolio
insurance strategies

Portfolio insurance (PI) strategies were devised by Leland and Rubinstein [1976] and Brennan and
Schwartz [1976] after the stock market collapse in 1973-1974 that caused pension funds to withdraw.
In particular, the authors observed that PI strategies would induce investors not to leave the market,
allowing them to take advantage of the subsequent market upturn in 1975. Moreover, such PI
strategies came back after the great financial crisis of 2008 and, nowadays, represent a linchpin of
the asset management industry for institutional and retail investors. According to Grossman and
Villa [1989] and Basak [2002], PI strategies aim to secure a predetermined minimum level of wealth
G, the guaranteed amount, over a predetermined time horizon T and simultaneously guarantee
equity market participation in a market upturn. These goals are achieved by combining a risky asset
S, such as a market index, with a reserve asset P, such as a bond or a cash account. Depending on
the underlying investment rule and their rebalancing disciplines, PI strategies can be classified into
buy-and-hold (BH) strategy, stop-loss (SL) strategy, synthetic put strategy, and constant proportion
portfolio insurance (CPPI) strategy. This thesis focuses on the latter approach, namely the CPPI
strategy and its generalizations. We extensively review the main properties of the CPPI strategy
and its fundamental drawback, the so-called gap risk. The remainder of this chapter is organized
as follows. Section 1.1 provides a general overview of PI strategies. Section 1.2 delves into the
modelling aspects of the CPPI strategy in different market environments, providing an in-depth
analysis of gap risk and the metrics introduced in the literature for its quantification. Section 1.3
introduces the first extension of the CPPI strategy, namely the time-invariant portfolio protection
(TIPP) strategy, and provides historical simulations on real data to highlight their main differences.
Finally, Section 1.4 exploits the methodologies proposed in the literature to hedge against gap risk.

1.1 An overview of portfolio insurance strategies

We start by fixing a probability space (Ω,F ,F,P) and a finite time horizon T which coincides
with the maturity of PI strategies. We also introduce a complete and right-continuous filtration
F = {F(t), t ∈ [0, T ]}, representing the global information flow, and assume that all processes
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defined below are adapted to F. Each strategy mentioned above can be represented by a predictable
process αh =

{
αh(t), t ∈ [0, T ]

}
for all h ∈ {BH, SL, SP, CPPI}. More specifically, αh indicates

the percentage of the portfolio at time t invested in the risky asset S. Furthermore, since these
strategies are self-financing, meaning that money is neither injected nor withdrawn during the
investment time horizon [0, T ], the percentage of wealth invested in the reserve asset is given by
1 − αh for all h ∈ {BH, SL, SP, CPPI} . Hence, the portfolio value process dynamics satisfy


dW h(t)
W h(t) = αh(t)dS(t)

S(t) + (1 − α(t)) dP (t)
P (t) , t ∈ [0, T ],

W h(0) = wh
0 ,

(1.1)

for all h ∈ {BH, SL, SP, CPPI} . For each strategy under consideration, we characterize the
process αh.

Buy-and-hold strategy. One of the simplest ways to protect investors’ wealth from losses by
guaranteeing at least G at maturity T is the buy-and-hold (BH) strategy. Denote by G · P (0)
the present value of the guarantee at time t = 0, where, without loss of generality, P (0) is the
no-arbitrage price of a zero-coupon bond maturing at T . Then, the buy-and-hold strategy works
as follows: at time t = 0, the present value of the guarantee is invested in the bond P , and the
remaining part, that is, the surplus WBH(0) −G · P (0) is invested in the risky asset S. Therefore,
the percentage of wealth invested in the risky asset is given by

αBH(t) = W (0) −G · P (0)
WBH(t)

S(t)
S(0) , t ∈ [0, T ]. (1.2)

Although αBH in equation (1.2) is stochastic, this strategy is static, meaning that there are no
rebalancing decisions during the interval (0, T ]. As argued in Balder et al. [2009], if one abstracts from
the stochastic interest rate, this strategy reaches the guarantee G independently of the stochastic
processes that generate asset prices.

Stop-loss strategy. Another prominent example to protect a portfolio from losses is the stop-loss
(SL) strategy, see, e.g. Bird et al. [1988] for further details. This strategy works as follows: the
entire value of portfolio WSL =

{
WSL(t), t ∈ [0, T ]

}
is invested in the risk asset. This position is

held until the portfolio’s market value exceeds the present value of the capital to be protected G.
The present value of G is called the floor process F = {F (t), t ∈ [0, T ]} and is defined as

F (t) = G · P (t), t ∈ [0, T ]. (1.3)

Thus, the percentage of wealth invested in the risky asset αSL =
{
αSL(t), t ∈ [0, T ]

}
can be defined

as
αSL(t) = 1W SL(t)>F (t), t ∈ [0, T ]. (1.4)

Hence, the entire wealth is invested in S until the difference between the current portfolio value
WSL and the floor F is exhausted. Indeed, if the value of the portfolio reaches or falls below the
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floor value, that is if WSL(t) < F (t), the portfolio is fully invested into the bond P until the end of
the investment horizon T. Thus, as long as the portfolio does not fall below of the floor during the
entire investment horizon [0, T ], the final value of the strategy will be above the guaranteed amount
at maturity.

Synthetic put strategy. A third popular PI strategy is the synthetic put (SP) strategy devised
by Rubinstein and Leland [1981]. This strategy uses the Black and Scholes [1973] option pricing
formula to create a continuously adjusted synthetic put option on the risky asset S. Thus, for the
description of the strategy, we put ourselves in the Black and Scholes [1973] framework, assuming
that the dynamics of the risky asset S follow a geometric Brownian motion as in equation (1.12) and
that the price of the bond P grows at a constant interest rate r > 0. The idea behind the synthetic
put strategy is to combine the purchase of the risky asset S with the purchase of a European put
option on S. This is equivalent to buy a continuously adjusted portfolio consisting of the risky asset
S and the bond P . Hence, the percentage of wealth invested into the risky asset S for the synthetic
put strategy is given by

αSP (t) = S(t) · N (d1(t))
S(t) · N (d1) +K · e−r(T −t) · N (d2)

, t ∈ [0, T ], (1.5)

where K and T are the strike price of the synthetic European put option and the maturity of the
synthetic put options (which coincides with the maturity of the strategy), respectively, and N (·) is
the standard cumulative normal distribution function where

d1(t) =
ln(S(t)/K) +

(
r + σ2

2

)
(T − t)

σ
√
T − t

, t ∈ [0, T ],

and

d2(t) = d1(t) − σ
√
T − t, t ∈ [0, T ],

with σ > 0 indicating the constant volatility of the underlying risk asset S. This strategy requires
an increase (resp. a decrease) in the composition shares of the risky asset αSP if the price of the
risky asset increases (resp. decreases). In order to obtain the desired level of protection, the strike
price of the European put option must be set such that

K = G

WSP (0) · (S(0) + Put(0)) . (1.6)

It is worth noting that the solution to equation (1.6) has to be determined through an iterative
procedure since, it is necessary to know the strike price itself, to compute the no-arbitrage price of
the European put option at t = 0. Given the assumption of the Black and Scholes [1973] framework,
the portfolio must be readjusted continuously according to the rule depicted in equation (1.5) to
maintain the desired level of protection over the entire time horizon [0, T ].
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Constant proportion portfolio insurance strategy. In contrast to the synthetic put strategy,
the constant proportion portfolio insurance (CPPI) strategy is a dynamic protection strategy not
based on option pricing theory. The CPPI was proposed by Perold [1986], and later developed by
Black and Jones [1987, 1988] for equity instruments and Perold and Sharpe [1988] for fixed-income
instruments. For the CPPI strategy, the exposure to the risky asset S is a function of the cushion
C = {C(t), t ∈ [0, T ]}, defined as

C(t) := WCP P I − F (t). (1.7)

In particular, for each time t ∈ [0, T ], if WCP P I(t) > F (t), the exposure to the asset risky asset is
given by

m · C(t) = m ·
(
WCP P I(t) − F (t)

)
, (1.8)

where m > 0 is the multiplier that is an exogenous parameter set at time t = 0 by the investor
according to his/her risk aversion. If WCP P I ≤ F (t), the remaining portfolio value is entirely
invested in the bond P until the end of the investment horizon. Hence, the CPPI allocation rule
prescribes that the percentage of wealth invested in the risky asset is given by

αCP P I(t) = m ·

(
WCP P I(t) − F (t)

)+

WCP P I(t) , t ∈ [0, T ]. (1.9)

Remark 1.1.1. Equation (1.9) implies that the CPPI strategy may lead to short positions in the
reserve asset. Indeed, when the risky asset price S is high, or the price of the reserve asset P is low,
the exposure may become larger than the portfolio’s value. For this reason, in many commercial
applications, the CPPI strategy is usually implemented so that the holding in the risky asset varies
between 0% and 150% of the investment sum. In this case, equation (1.9) can be modified as

αCP P I(t) = min

m ·

(
WCP P I(t) − F (t)

)+

WCP P I(t) , Lmax

 , t ∈ [0, T ], (1.10)

where Lmax ∈ [0, 1.5] is the so-called maximum leverage factor set by the investor at t = 0, according
to his/her risk aversion.

Remark 1.1.2. In order to rule out all arbitrage opportunities, we assume that the guarantee
amount G cannot be reached by investing the initial wealth into the reserve asset P . Moreover,
assuming a constant risk-free rate r, the no-arbitrage condition reads as G ≤ W h(0)erT , h ∈
{BH, SL, SP, CPPI}. The guaranteed amount is chosen to be equal to a pre-specified percentage
of the initial investments, that is G = W h(0) · PL, where PL ∈ (0, 1] is an exogenous parameter
known as protection level.

Given the strategic decision to implement a PI strategy, a strand of literature addresses the question
of which particular strategy should be adopted. Several earlier studies evaluate and compare PI
strategies in terms of their risk-return profile. The first one can be attributed to Garcia and Gould
[1987], who argue that dynamic PI strategies cannot outperform static investment strategies such as
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buy-and-hold or constant mix. Then, using the Monte Carlo simulation approach, Benninga [1990]
compares the stop-loss, synthetic put, and CPPI strategies. The authors report that the stop-loss
strategy dominates the CPPI and synthetic put strategy in terms of both the expected terminal
wealth and the Sharpe ratio. Bird et al. [1990] documents that portfolio insurance strategies are
robust to various market conditions, including market crashes. Do [2002] compares the synthetic
put strategy with the CPPI strategy using simulation analysis. Although the author claims that
no strategy can be motivated from the point of view of loss minimization or gain participation,
the CPPI strategy seems dominant in terms of floor protection and insurance costs. Subsequently,
Cesari and Cremonini [2003] show that the relative performance of portfolio insurance strategies
strongly depends on market conditions. In particular, using various performance measures, such as
the downside deviation and the Sortino index, the authors show that the CPPI strategy dominates
all other portfolio insurance strategies in bear and sideway markets.
Thereafter, using the stochastic dominance criteria, Annaert et al. [2009] compare portfolio insurance
strategies with the buy-and-hold one. However, they cannot identify a stochastic dominance
relationship between portfolio insurance strategies and the benchmark given by the buy-and-hold
strategy. In particular, although all portfolio insurance strategies examined lead to lower returns
than the buy-and-hold strategy, the authors conclude that their accompanying lower risk sufficiently
compensates to make them attractive alternatives, at least for some investors.
Bertrand and Prigent [2011] argue that the Omega measure is the most adequate performance
measure to compare portfolio insurance strategies as it captures the entire empirical distribution
of their returns. Specifically, using a block-bootstrap simulation approach, the authors compare
the CPPI strategy with the synthetic put strategy, reporting a dominance of the CPPI strategy in
terms of the Omega ratio. Dichtl and Drobetz [2011] analyze portfolio insurance strategies within
the framework of cumulative prospect theory. Their simulation results indicate that a loss aversion
attitude makes most PI strategies preferred investment strategies, at least for a prospect theory
investor.
Finally, Dichtl et al. [2017] compare different PI strategies using bootstrap simulations and relatively
new risk-adjusted performance measures, such as the Farinelli-Tibiletti and Rachev ratios; see
Farinelli et al. [2008] and Biglova et al. [2004] for further details. In particular, the first ratio
considers the upper (resp. lower) partial moments of the portfolio insurance strategies’ return
distribution and measures positive (resp. negative) deviations from a predetermined target return.
The second one is the Rachev ratio, defined as the ratio between the expected tail return above
a given level and the expected tail loss below a given level. In particular, using these measures,
the authors find that classical portfolio insurance strategies, such as the CPPI and synthetic put
strategy, provide more downside protection than the simple stop-loss strategy and exhibit higher
risk-adjusted performance in many instances.
Thus, there is strong agreement in the financial literature that classical PI strategies provide strong
downside protection regardless of market conditions. However, it is unclear which strategy is best
to adopt among the ones we have presented. Indeed, it strongly depends on several factors, such as
the performance measures we decide to adopt to compare them, the market phase, and the type of
investor we are considering.
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1.2 Some modeling aspects of the CPPI strategy

1.2.1 Continuous-time CPPI strategy

To derive the basic properties of the continuous-time CPPI strategy, we consider a financial market
model in which investment trading activity occurs continuously, and there are no transaction costs
or taxes. Furthermore, we assume that in such a simplified market model, two assets are traded:
the bond P and the risky asset S. More precisely, we assume that the bond price P grows at a
constant risk-free rate r > 0, implying that its dynamics is given by

dP (t)
P (t) = rdt, t ∈ [0, T ],

P (0) = e−rT .

(1.11)

We assume that the evolution of the risky asset S, or the benchmark market index, is given by the
following geometric Brownian motion

dS(t)
S(t) = µdt+ σdZS(t), t ∈ [0, T ],

S(0) = s0,

(1.12)

where µ > r and σ > 0 are constants and ZS = {ZS(t), t ∈ [0, T ]} is a standard Brownian motion
w.r.t. (Ω,F ,F,P). As explained in Section 1.1, the basic idea behind the CPPI strategy is to obtain
at least the guaranteed amount at maturity G by investing for each time t ∈ [0, T ] a constant
multiple m > 0 of the current value of the cushion C into the risky asset S, provided the cushion is
positive, and the remaining wealth in the reserve asset P . In this case, since we have assumed that
the reserve asset evolves according to equation (1.11), the floor process in equation (1.3) can be
rewritten as

F (t) = G · e−r(T −t), t ∈ [0, T ], (1.13)

meaning that it evolves according to the following ODE
dF (t)
F (t) = rdt, t ∈ [0, T ],

F (0) = G · e−r·T .

(1.14)

Within this framework, it is possible to derive a closed-form expression for the cushion process C
and the corresponding CPPI portfolio value process as in the following proposition.

Proposition 1.2.1. If the bond price process evolves according to equation (1.11), and the risky
asset price dynamics S evolves according to equation (1.12), then the cushion process C evolves
according to 

dC(t)
C(t) = [r +m (µ− r)] dt+mσdZS(t), t ∈ [0, T ],

C(0) = WCP P I(0) − F (0),
(1.15)
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whose solution is

C(t) = C(0) · exp
{[
r +m (µ− r) − m2σ2

2

]
t+mσZS(t)

}
, t ∈ [0, T ]. (1.16)

Moreover, the corresponding CPPI portfolio value evolves according to the following SDE dWCP P I(t) = rF (t)dt+
(
WCP P I − F (t)

)
{[r +m (µ− r)] dt+mσdZS(t)} , t ∈ [0, T ],

WCP P I(0) = wCP P I
0 ,

(1.17)
where

WCP P I(t) = G ·e−r(T −t) +
(
WCP P I(0) −G · e−rT

)
exp

{[
r −m

(
r − σ2

2

)
− m2σ2

2

]
t

}(
S(t)
S(0)

)m

.

(1.18)

Proof. See, e.g., Black and Perold [1992] and Bertrand and Prigent [2005].

Equation (1.18) illustrates the basic properties of the CPPI strategy, which, under the assumption of
continuous time trading, is path-independent. In particular, for each time t ∈ [0, T ], the value of the
strategy consists of the present value of the guarantee G, i.e. the floor at time t, and a non-negative
part proportional to

(
S(t)
S(0)

)m
. In other words, the continuous-time CPPI strategy is equivalent to

take a long position in a zero-coupon bond with a nominal value equal to the guaranteed amount at
maturity T and investing the remaining wealth in a fictitious asset that has m times the excess
return and the volatility of S, and is perfectly correlated with S. Moreover, the CPPI strategy has
an additional degree of freedom compared to other portfolio insurance strategies introduced by
the multiplier m. In particular, it governs the strategy exposure to the risky asset over the entire
investment horizon, determining the shape of the strategy’s payoff at maturity. Indeed, as shown
in Figure 1.1 the payoff is linear for m = 1, and it is convex for m ≥ 2. In the latter case, the
CPPI strategy can be interpreted as a power claim and, most importantly, can obtain equity market
participation in case of favourable market conditions.

Figure 1.1 Payoff function of the CPPI strategy for different levels of multipliers.
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Regardless of the multiplier’s value, the portfolio protection given by the continuous-time CPPI
strategy is efficient with probability one. Hence, the CPPI portfolio’s terminal value will be at least
equal to the value of the guarantee at maturity P-a.s. One main issue in the continuous-time CPPI
strategy is the cash-lock event. As shown in Figure 1.2, this is happen when the portfolio wealth
hits the floor. Thus, according to the CPPI investment rule, from that moment until maturity, the
portfolio remains fully invested in the reserve asset with no possibility of recovery. In this case, even
if the guarantee G at maturity T is honoured, a cash-locked position prevents equity participation
in the subsequent market upturn and is therefore considered a critical risk.
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Figure 1.2 A simulated trajectory of the CPPI strategy exhibiting a cash-locked position for the following
market configuration and strategy’s parameters: µ = 0.085, r = 0.05, σ = 0.30, PL = 1, WCP P I(0) = 100,
and T = 1 year.

Moreover, CPPI managers widely recognize that the portfolio value may break the floor. The risk
of breaching the floor is referred to as gap risk. Indeed, the above considerations apply only in
an idealized setting under the continuity assumption imposed on the CPPI strategy’s rebalancing
frequency and the dynamics of the underlying risky asset S. In practice, both assumptions are
violated mainly for two reasons. The CPPI strategy is often written on an underlying risky asset
characterized by low liquidity, meaning that its rebalancing frequency is typically weekly or even
monthly; see Hirsa [2010] for more details. Hence, such trading restrictions make the risk of a
floor violation non-negligible. It is widely documented that price trajectories of risky assets involve
jumps; see, e.g., Andersen et al. [2002], Barndorff-Nielsen and Shephard [2006], Aït-Sahalia and
Jacod [2009]. Such discontinuities in the dynamics introduce a risk of breaching the floor even under
the assumption of continuous time trading.
The first point is discussed by Balder et al. [2009], who study the viability of the CPPI strategy
under the assumption of discrete-time rebalancing. As the next Section outlines, the authors analyze
a discretely rebalanced CPPI, maintaining the assumptions that the risky asset S evolves according
to a geometric Brownian motion and that the reserve asset P evolves at a constant risk-free rate r.
The second point is extensively addressed in Cont and Tankov [2009], which investigate the risks of
CPPI by exclusively relaxing the continuity assumption of price processes. We analyze such last
point more in-depth in Section 1.2.3.
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1.2.2 Discrete-time CPPI strategy

Defining the discrete version of the CPPI strategy requires advancing some preliminary assumptions.
First, as in Balder et al. [2009], we assume that the dynamics of the bond P and the risky asset
S are given by equations (1.11) and (1.12), respectively. Moreover, we assume the following
restriction on trading. Let πn̄ denote an equidistant refinement of the interval [0, T ], that is
πn̄ =

{
tn̄0 = 0 < tn̄1 · · · < tn̄n̄−1 < tn̄n̄ = T

}
, where tn̄k+1 − tn̄k = T

n̄ , for all k = 1, . . . , n̄− 1. To simplify
the notation, we omit the superscript n̄ and denote the set of trading dates π instead of πn̄. We
assume that trading is exclusively possible after tk ∈ π, implying that the number of shares held in
the risky asset S and in the bond P remains constant on the interval (tk, tk+1] for all k = 0, . . . , n̄−1.
However, the value of investments in the two assets changes as asset prices fluctuate.

Definition 1.2.2. An investment strategy (ϕS , ϕP ) is called discrete-time CPPI if

ϕS(t) = αCP P I(tk)WCP P I(tk)
S(tk) = max

{
mC(tk)
S(tk) , 0

}
, (1.19)

ϕP (t) = WCP P I (tk) − S(tk)ϕS(t)
P (tk) , (1.20)

for all t ∈ (tk, tk+1] and k = 0, . . . , n̄− 1, and the self-financing condition holds, that is

ϕS(tk)S(tk+1) + ϕP (tk)P (tk+1) = ϕS(tk+1)S(tk+1) + ϕP (tk+1)P (tk+1), (1.21)

for all k = 0, . . . , n̄− 1.

Also in this case, it is possible to derive an explicit expression for the cushion process C as follows.

Proposition 1.2.3. Let

ts := min
{
tk ∈ π|WCP P I(tk) − F (tk) < 0

}
, (1.22)

where ts = ∞ if the minimum is not attained. Then, the following holds

C (tk+1) = er(tk+1−min{ts,tk+1})
(
WCP P I(t0) − F (t0)

)min{s,k+1}∏
i=1

(
m

S(ti)
S(ti−1) − (m− 1) er T

n̄

)
, (1.23)

for all k = 0, . . . , n̄− 1.

Proof. See Balder et al. [2009].

Proposition 1.2.3 implies that, if ts < tn̄ = T, that is the CPPI portfolio falls below the floor in ts,

the corresponding price process WCP P I(ts) switches from

WCP P I(ts) =
(
WCP P I(0) − F (0)

) s∏
i=1

(
m

S(ti)
S(ti−1) − (m− 1)er T

n̄

)
+ F (ts), ∀s ≤ k (1.24)

to
WCP P I(ts) = WCP P I(tk)er(ts−tk), ∀s > k, (1.25)
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with k = 1, . . . , n̄−1. As shown in (1.25), when the gap risk occurs, the remaining value of the CPPI
portfolio is invested in the reserve asset, meaning that the strategy cannot honour the guarantee G
by realizing a loss equal to

(
WCP P I(ts) − F (ts)

)
. Moreover, as the portfolio is fully monetized, the

strategy can no longer capture equity market participation in the event of subsequent market rises.
Balder et al. [2009] analyze the gap risk by computing the shortfall probability and the expected
shortfall given default. Such risk measures, which determine the effectiveness of the discrete-time
CPPI strategy, can be defined and computed as follows.

Definition 1.2.4. The shortfall probability PSF denotes the probability that the CPPI portfolio
value is less than the guaranteed amount G at maturity, that is

PSF := P
(
WCP P I(T ) < G

)
= P (C(T ) < 0) . (1.26)

The expected shortfall given default ESF is the expected amount of wealth lost when a shortfall
occurs, that is

ESF := EP
[
G−WCP P I(T )|WCP P I(T ) < G

]
= EP [−C(T )|C(T ) < 0] . (1.27)

Proposition 1.2.5. Define E1 and E2 as

E1 := meµ T
n̄ N (d3) − er T

n̄ (m− 1) N (d4),

E2 := er T
n̄

[
1 +m

(
e(µ−r) T

n̄ − 1
)]

− E1,

with

d3 := d4 + σ

√
T

n̄
, d4 :=

ln
(

m

m− 1

)
+ (µ− r) T

n̄
− σ2

2
T

n̄

σ

√
T

n̄

. (1.28)

The shortfall probability and the expected shortfall given default are given by

PSF = 1 − (1 − N (−d4))n̄ , (1.29)

ESF =
−
(
WCP P I(0) − F (0)

)
e−r T

n̄E2
erT − En̄

1

1 − E1e
−r T

n̄

PSF
, (1.30)

respectively.

Proof. See Balder et al. [2009].

We conclude this Section with a sensitivity analysis of the risk measures. In particular, Figure
1.3 displays the shortfall probability and the expected shortfall given default as a function of the
exogenous parameters of the strategy, namely, the multiplier m, and the number of rebalances n̄ for
a given market configuration.
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Figure 1.3 Shortfall probability (left chart) and expected shortfall given default (right chart) for the
following market configuration and strategy’s parameters: µ = 0.085, r = 0.05, σ = 0.30, PL = 1,
WCP P I(0) = 100, and T = 1 year.

As expected, the probability of shortfall and the corresponding expected shortfall given default
increase as the multiplier increases, regardless of the number of rebalances in the interval [0, T ].
The most interesting result is the behaviour of these two risk metrics as a function of n̄ for a given
multiplier level. At first glance, one might be tempted to think that the shortfall probability is
monotonically decreasing as n̄ increases. However, as Figure 1.3 shows, this is only true once a
sufficiently large number of rebalances has been reached. Let n̄∗ be the number of rebalancings such
that the shortfall probability increases as n̄ increases for n̄ < n̄∗ and decreases as n̄ increases for
n̄ > n̄∗. Balder et al. [2009] argue that such a critical level n̄∗ furnishes fundamental information: it
can be interpreted as the minimum number of rebalancings required for the CPPI method to be
effective for m ≥ 2 in discrete time.

1.2.3 Continuous-time CPPI strategy in jump-diffusion models

In this Section, we discuss the effectiveness of CPPI strategy in the presence of jumps into the
dynamics of the risky asset S maintaining the assumption of continuous-time rebalancing. In
particular, we assume that the dynamics of S are driven by the following Lévy process

dS(t)
S(t−) = µdt+ σdZS(t) + dJS(t), t ∈ [0, T ],

S(0) = s0,

(1.31)

where JS(t) =
∑N(t)

j=1

(
eY S

j − 1
)

with N = {N(t), t ∈ [0, T ]} being an homogeneous Poisson process

with intensity λ̃ > 0. The jump sizes of log-returns
(
Y S

j

)
j∈N

is a sequence of i.i.d. random variables
with density function f, which is independent of ZS and N. Moreover, as in Section 1.2.1, we assume
that the reserve asset P evolves according to the constant risk-free rate r > 0, as in equation (1.11).
Let τ := inf

{
t ∈ [0, T ] : WCP P I(t) < F (t)

}
. Therefore, for any time t ≤ τ, the cushion dynamics

depicted in equation (1.15) can be rewritten as
dC(t)
C(t−) = [r +m (µ− r)] dt+mσdZS(t) +mdJS(t), t ≤ τ,

C(0) = c0.

(1.32)
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Denoting by C̄ =
{
C̄(t), t ∈ [0, T ]

}
the forward value of the cushion, that is C̄(t) = C(t)

P (t) , and

applying general Itô’s formula for semi-martingales (cf. Øksendal and Sulem [2019]) we obtain
dC̄(t)
C̄(t−)

= m (µ− r) dt+mσdZS(t) +mdJS(t), t ≤ τ,

C̄(0) = c̄0.

(1.33)

Defining L̃(t) := (µ− r) t+ σZ(t) +
∑N(t)

j=1

(
eY S

j − 1
)
, equation (1.33) can be rewritten as

dC̄(t)
C̄(t−)

= mL̃(t)dt, t ≤ τ, (1.34)

whose solution is given by
C̄(t) = c̄0 · E

(
mL̃

)
(t), t ≤ τ, (1.35)

where E denotes the Doléans-Dade stochastic exponential. After τ, according to the definition of
CPPI strategy, the remaining portfolio value is entirely invested in bond P in order to prevent
further losses, that is

WCP P I(t) = WCP P I(τ) · exp {r (t− τ)} , t ∈ (τ, T ]. (1.36)

From equation (1.36), the cushion process after gap-risk reads as follows

C(t) = WCP P I(τ) · exp {−r (t− τ)} − F (t), t ∈ (τ, T ], (1.37)

or
C̄(t) = WCP P I (τ)

G
exp {r (T − τ)} − 1, t ∈ (τ, T ]. (1.38)

Hence, we can introduce a new process C̄∗ = {C∗(t), t ∈ [0, T ]} defined as the stopped process of
C̃ by the stopping time τ , that is

C̄∗(t) = c̄0 · E(mL̃) (t ∧ τ) , t ∈ [0, T ], (1.39)

where t ∧ τ = min {t, τ} . Within this framework, it is possible to find closed-form risk measures
for evaluating gap-risk. In particular, as in Section 1.2.2, we can define and compute the shortfall
probability and the expected shortfall given default as in the following Propositions.

Proposition 1.2.6. The probability of breaching the floor is given by

PSF = P
(
∃t ∈ [0, T ] : WCP P I(t) < F (t)

)
= 1 − exp

{
−T

∫ ln(1− 1
m )

−∞
ν(x)dx

}
, (1.40)

where ν is the Lévy measure of the process L̃, that is ν(x) = λ̃f(x) for all x ∈ R \ {0} .

Proof. See Cont and Tankov [2009].
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The process L can be decomposed as follows

L̃(t) = L̃1(t) + L̃2(t), t ∈ [0, T ], (1.41)

where L̃1 =
{
L̃1(t), t ∈ [0, T ]

}
is a jump-diffusion process with Lévy measure ν(dx)1x>− 1

m
, and

L̃2 =
{
L̃2(t), t ∈ [0, T ]

}
is a piecewise constant trajectories whose jumps satisfy ν(dx)1x≤− 1

m
.

Denote by λ̃⋆ := λ̃
∫− 1

m
−∞ f(x)dx the jump intensity of L̃2, by τ the time of the first jump of L̃2, and

by L̃2 = ∆L̃2(τ) the size of the first jump of L̃2. Moreover, let ϕ̃(t) be the characteristic function of
the Lévy process log E(mL̃1)(t) and ψ̃(u) = 1

t ln ϕ̃t(u). The following result holds true.

Proposition 1.2.7. Assuming that ∫ ∞

1
xν(dx) < ∞,

then the expected shortfall given default is given by

ESF = E [C∗(T )|τ ≤ T ] =
λ̃∗ +m

∫− 1
m

−1 xν(x)dx
ψ̃(−i) − λ̃∗

(
e−λ̃∗T ϕ̃T (−i) − 1

)
. (1.42)

Proof. See Cont and Tankov [2009].

It is worth noting that equations (1.40) and (1.42) link the probability of the CPPI strategy falling
below the floor and the expected loss given default to both market parameters and exogenous
parameters that characterize the strategy, such as the multiplier m. Such a property makes PSF

and ESF fundamental risk management tools, providing a criterion for adjusting the multiplier
according to the investor’s risk aversion. Given the importance of gap risk measurement, the study
of Cont and Tankov [2009] has been subject to several generalizations. In particular, in order to
relax the assumption of time homogeneity, Weng [2013] generalizes the framework described by Cont
and Tankov [2009] by including regime-switching in the Lévy exponential process that drives the
dynamics of the underlying risky asset S, maintaining the assumption of trading in continuous time.
More recently, Buccioli and Kokholm [2018] measure the gap risk by considering the self-contagious
nature of asset prices. More precisely, to account for contagion while preserving the analytical
traceability of risk measures, the authors introduce self-exciting jumps in the dynamics of the risky
asset S employing the Hawkes [1971] process.

1.3 Time-invariant portfolio protection strategy

The standard results of CPPI strategies are based on the assumption that the floor F evolves like
the reserve asset P , see equation (1.14). However, this assumption is quite stringent, as it makes the
performance of the CPPI strategy highly price-dependent: any gain at any given time can be lost if
the underlying asset price falls. In order to solve this problem, Estep and Kritzman [1988] proposed
the time-invariant portfolio protection (TIPP) strategy, which is a modified version of the CPPI
equipped with a ratchet mechanism, able to lock in a certain proportion of the upward performance.
The TIPP is a self-financing strategy that dynamically allocates wealth between a reserve asset P
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and a risky asset S, similar to the CPPI. In particular, the TIPP allocation rule prescribes that the
percentage of wealth αT IP P =

{
αT IP P (t), t ∈ [0, T ]

}
invested in the risky asset is

αT IP P (t) = m ·

(
W T IP P (t) − F T IP P (t)

)+

W T IP P (t) , t ∈ [0, T ], (1.43)

where W T IP P =
{
W T IP P (t), t ∈ [0, T ]

}
is the TIPP wealth process, and F T IP P = {F T IP P (t), t ∈

[0, T ]} is the TIPP floor. The main difference between the CPPI strategy and the TIPP strategy
lies in the definition of the floor. Specifically, the TIPP floor is defined as the maximum between
the usual CPPI floor F and a predetermined percentage of the maximum historical value of the
TIPP portfolio W T IP P , that is

F T IP P (t) = max
{
F (t), PL · sup

s≤t
W T IP P (s)

}
, t ∈ [0, T ]. (1.44)

Hence, thanks to equation (1.44), the floor jumps up with the portfolio value to reduce exposure to
the risky asset when the market peaks. Indeed, this new floor adjustment has some consequences on
the allocation of the risky asset over time, especially in market scenarios where the risk-free interest
rates are very low and sudden rises and falls of the risky asset might occur. Such a background
sheds light on one of the main issues related to the use of CPPI: when the value of the risky asset
increases, the CPPI portfolio value increases accordingly. If the risk-free interest rate level is low,
then the growth rate of the CPPI portfolio will be higher than the corresponding growth rate
of the floor. This implies that, after a very short period, there is no longer significant portfolio
protection. Thanks to its particular floor definition, the TIPP allocation strategy overcomes such a
drawback. Indeed, the growth rate of the TIPP floor can be considered comparable to the portfolio
in each instant of time, even if the growth of the market index is sustained. Consequently, the
TIPP exposure to the risky asset will be generally lower than the CPPI ones, and it will change
more smoothly over time, furnishing better downside protection to the investor. However, in case
of favourable market conditions, the overall return of the TIPP strategy will be generally lower
w.r.t. the standard CPPI one. To better understand how the TIPP works and its advantages and
shortcomings compared to the use of the CPPI, we perform a simulation study comparing the
aforementioned strategies when the underlying risky asset is the MSCI World Net TR Eur index.
Since portfolio insurance strategies’ risk-returns are path-dependent, being also strongly influenced
by market conditions, we perform historical simulation studies over two different time windows.
The first one ranges from December 31, 2007, to December 28, 2017, while the second one covers
the period from June 29, 2012, to June 29, 2022. We select such time windows since a market crash
occurs either at the beginning (time window from December 31, 2007 to December 28, 2017) or at
the end (time window from June 29, 2012, to June 29, 2022) of the period under investigation. As
for the parameters’ strategies, we set a multiplier of m = 5, a protection level at 100% (resp., 90%)
of the capital initially invested for CPPI (resp., for TIPP), and a maximum leverage factor, Lmax,

equal to 100%. We also consider both daily and weekly rebalancing frequencies.
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1.3.1 Historical simulations in a early-falling-and-rising trend market

In this Section, we compare CPPI and TIPP strategies when the market shows an early falling and
rising trend. Results concerning portfolio evolution and corresponding risky asset exposures for each
investment strategy are displayed in Figure 1.4, w.r.t. different rebalancing disciplines. It is worth
noticing that the beginning of the period under investigation is characterized by an initial turbulent
phase due to the subprime crisis: at the beginning of 2009, the risky asset losses were approximately
equal to 50% of its initial value. Subsequently, we can see considerable growth for the risky asset. At
the end of 2014, the index gained more than 70% of its initial value, also showing a positive upward
trend that was confirmed until the end of the time window. Moreover, such a trend generates a
positive performance measured through an annualized total return and volatility equal to 8.24%
and 17.67%, respectively, over the entire 10-year time horizon and a 1-day maximum loss of −8.56%.
Hence, from the perspective of an investor whose goal is to minimize the risk of suffering losses, this
type of equity investment might be too volatile. For this reason, we focus on the CPPI allocation
strategy and its modified version, the TIPP. We start our analysis by considering the CPPI strategy
with a daily rebalancing frequency. From Fig. 1.4a, we notice that, at the very beginning, the
CPPI strategy exactly follows the trend of risky security: it exhibits a 100%-exposure to the risky
asset. However, when the market deteriorates (due to the US subprime crisis), the CPPI portfolio
flattens out on the floor. Such a circumstance sheds light on two main issues related to the CPPI
mechanism. The first one is related to the initial level of the floor, which depends on the investment
time horizon and the risk-free interest rate levels. Since we consider a 10-year frame with near-zero
interest rate levels, we observe that the fluctuation of the floor at the beginning of the reference
period will be strongly affected by this long time-to-maturity, whereby the floor will be significantly
lower than the initial investment value. This low floor level determines that the entire portfolio will
be invested in the risky asset, failing to guarantee protection, even in case the price of the risky asset
decreases. The second issue is that the CPPI floor is not indexed to the evolution of the risky asset
but depends exclusively on the risk-free rate level. As shown in Figure 1.4a, the risk-free interest
rate plummeted at the onset of the subprime crisis, causing the floor to rise rapidly. The sharp rise
in the floor, combined with the simultaneous fall in the market, causes the gap-risk event to occur,
indicating an irreversible situation: the exposure to the risky security falls to 0%, so the initial
investment will not be guaranteed at maturity. As a consequence of the drawbacks mentioned above,
the CPPI strategy reaches an annualized return equal to −3.89%. The situation remains completely
unchanged even if the frequency of rebalancing is reduced (weekly instead of daily observations), as
shown in Figure 1.4c. A first attempt to overcome such drawbacks is considering an alternative floor
definition. In other words, we move to the TIPP strategy. Looking at Figure 1.4b, we note that
the initial TIPP exposure is 50%. The TIPP exposure is far lower than the CPPI one. However,
after the market collapse, mainly because of the financial crisis, the exposure stands at 3% instead
of cancelling. Thus, when the market gets back on track, i.e., between early 2009 and the end of
2018, the risky exposure gradually widens without exceeding 50% of the value of the entire TIPP
portfolio. This behaviour of the TIPP mechanism, which is different from that of the CPPI strategy,
is because the TIPP floor does not depend on the investment’s time horizon, nor is it sensitive
to the level of interest rates. More precisely, the TIPP floor depends on the level of protection,
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(a) CPPI Daily with 1-daily rebalancing frequency
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(b) TIPP Daily with 1-daily rebalancing frequency
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(c) CPPI 1-week rebalancing frequency
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(d) TIPP 1-week rebalancing frequency

Figure 1.4 Historical simulation and investment exposures for the CPPI strategy (left charts) and the
TIPP strategy (right charts) linked to the MSCI equity index. The time window ranges between December
31, 2007, and December 28, 2017. At the top of each sub-figure, we show the investment strategies’ trend,
while at the bottom we depict the assets’ exposures.
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exogenously set to 90% of the initial investment, and on the risk index performance. Thus, at
the beginning of the investment horizon, when the risky asset loses value under the blows of the
financial crisis, the TIPP mechanism remains constant and never falls below 90%. As a result, the
initial exposure is much lower than the levels obtained with the CPPI strategy. Therefore, even if
a further sudden market crash occurs, the TIP strategy will be less exposed than the CPPI one.
Moreover, in the recovery phase, the TIPP floor gradually increases at a rate comparable to the
market, ensuring a slight but steady growth in exposure and, thus, in equity market participation.
Again, the behaviour described above remains unchanged even if we vary the rebalancing frequency,
as shown in Figure 1.4d.

1.3.2 Historical simulations in a late-falling-and-rising trend market

The analysis carried out in Section 1.3.1 suggests that introducing the TIPP strategy prevents gap
risk. Unfortunately, this is not always true: as an example, we proceed by running a study on a
different time horizon. More precisely, in this Section, we compare CPPI and TIPP strategies when
the market shows a falling and rising trend at the end of the period under investigation. The results
are depicted in Figure 1.5, where both the evolution of the portfolios and the corresponding exposure
to the risky asset for each investment strategy are shown based on different rebalancing disciplines.
This time horizon features two main characteristics: it depicts a long upward trend (from 2012 to
early 2020), ending in a turbulent phase due to the COVID-19 outbreak, while, on the other hand,
this decade is typified by constant risk-free interest rates close to zero. Because of these issues, the
CPPI strategy behaves in a very particular way. Since the floor remains almost constant throughout
the investment horizon and at low levels, the exposure to the risky asset is kept constant and equal
to 100%, perfectly matching the pure risky asset investment. Moreover, due to the low floor level,
the negative shock due to the pandemic outbreak does not affect the CPPI portfolio, guaranteeing
a total investment in the risky security (and a consequent maximum exposure), as shown in Figure
1.5a. Thus, although the performance of the CPPI strategy is very high within such a market
scenario, the level of protection the strategy should inherently provide is zero. Consequently, the
CPPI strategy fails to meet the demands of potential investors seeking hedging against market risk.
The same occurs with weekly rebalancing frequencies, as shown in Figure 1.5c. This issue is another
reason for replacing the CPPI strategy with the TIPP one. Indeed, inspecting Figure 1.5b, we note
that the TIPP portfolio no longer overlaps the risky security as with the CPPI portfolio. On the
contrary, it always stays close to the floor. Even though the floor was reached during the peak of
the crisis, the TIPP mechanism allows the portfolio to bounce off the floor (thanks also to a high
rebalancing frequency). This behaviour allows the investor to breathe a sigh of relief: as proof of
this, we note that the risky exposure is between 11% and 50% over the entire time horizon under
consideration, with one exception: a 4%-downward spike coinciding with the lockdown in most
European countries. After that, it nicely recovers to pre-Covid levels. Comparing the returns of the
two proposed strategies, we also notice that the annualized return of TIPP is equal to 3.12%, i.e.
slightly more than a quarter of the annualized return of CPPI (equal to 11.702%). In this case, the
overall return is less than the CPPI one, but it provides consistent protection. For this reason, even
when the interest rate level is zero, TIPP meets the needs of an investor whose only goal is to be
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(a) CPPI 1-day rebalancing frequency
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(b) TIPP 1-day rebalancing frequency
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(c) CPPI 1-week rebalancing frequency
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(d) TIPP 1-week rebalancing frequency

Figure 1.5 Historical simulation and investment exposures for the CPPI strategy (left charts) and the
TIPP strategy (right charts) linked to the MSCI equity index. The time window ranges between June 29,
2012, and June 29, 2022. At the top of each sub-figure, we show the investment strategies’ trend, while at
the bottom we depict the assets’ exposures.
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always hedged from adverse market trends. On the other hand, when we decide to rebalance the
portfolio once a week, we observe an even more extreme behaviour: the pandemic outbreak is once
again and even more effectively a turning point in TIPP investments, the latter being subject to the
gap risk. As shown in Figure 1.5d, the TIPP portfolio breaches through the floor. Consequently,
the strategy can no longer guarantee the initial investment. Moreover, the remaining portfolio shifts
entirely to the reserve asset, eliminating any equity market participation in the event of favourable
market conditions, such as the market rise in early 2022.

1.4 Hedging against gap risk

As discussed in Section 1.3, the TIPP strategy is more conservative than the CPPI strategy, making
it preferable for specific categories of investors. However, as shown in 1.5d, the TIPP is also subject
to gap risk when sudden market crashes occur. Taking the latter risk into account is essential for at
least two reasons. First, financial institutions issue this type of strategy by combining it with a
guarantee for investors. Therefore, even if the floor is breached, the issuer of the PI strategy must
pay the guaranteed amount at maturity to the investor who has suffered a loss. Secondly, pension
fund managers often use PI strategies to protect the contributions paid by the workers during the
accumulation phase of defined contribution pension funds. In the latter case, the occurrence of gap
risk could cause the wealth of pension funds to fall below the desired level, i.e. the present value
of pension obligations, making them underfunded; for more details, see Temocin et al. [2018]. For
these reasons, several gap risk hedging methodologies and several extensions of the CPPI strategy
have been proposed in the literature. In the present Section, we review some of them.

1.4.1 Option-based strategies for hedging gap risk

The issuer of portfolio insurance strategies usually incorporates a guarantee for the investor within
this type of product. Consider a CPPI portfolio invested over a finite time investment horizon [0, T ]
with T > 0, where the investors pay the initial value WCP P I(0) and are guaranteed to receive at
least the value G at time T . If the portfolio value WCP P I(T ) at time T is less than G, the issuer
pays to the investor the shortfall amount G−WCP P I(T ). Hence, the amount max

{
WCP P I(T ), G

}
such that

max
{
WCP P I(T ), G

}
= G+ max {C(T ), 0} = G+ C(T )1{C(T )>0} (1.45)

gives the final payoff for the investor, and the CPPI guarantor will be subject to a gap risk of
C(T )1{C(T )≤0}. In practice, the issuer usually provides this guarantee against fee payment at t = 0.
Such an initial fee is given by the present value of the CPPI loss, which, assuming a constant
risk-free rate, equals

PF ee = EQ
[
min {C(T ), 0} e−rT

]
, (1.46)

where Q is a risk-neutral probability measure. Given such a fee, the issuer constructs a hedging
strategy to protect against gap risk events using options written on the same risky asset of the CPPI
strategy. A first possible hedging strategy for CPPI can be constructed using short-maturity put
options. This hedging strategy is based on the consideration that breaching the floor is equivalent
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to the cushion becoming negative. Assuming that this event never occurred until time tk, using
equation (1.23), we have that

C(tk+1) < 0 ⇐⇒ m
S(tk+1)
S(tk) − (m− 1) er T

n̄ < 0, for all k = 0, . . . , n̄− 1. (1.47)

Hence, hedging gap risk is equivalent to forcing the quantity in equation (1.47) to be strictly greater
than 0. This can be done by buying at each rebalancing instant tk a put option written on the
same underlying of CPPI strategy with a strike price equal to

(
1 − 1

m

)
er T

n̄ S(tk) and maturity given
by the rebalancing frequency, that is T

n̄ . To hedge the entire CPPI portfolio, the issuer needs a
number of put options equal to the strategy’s total exposure to the risky asset, that is mC(tk)

S(tk) , for
all k = 0, . . . , n̄− 1. Thus, the discounted payoff of the puts at each rebalancing instant is given by

e−r T
n̄C(tk)

(
(m− 1)er T

n̄ −m
S(tk+1)
Stk

)+
, (1.48)

and the corresponding hedging cost reads as

Cost(tk) = m
C(tk)
S(tk)E

Q
[((

1 − 1
m

)
er T

n̄ S(tk) − S(tk+1)
)+ ∣∣∣∣F(tk)

]
, (1.49)

for all k = 0, . . . , n̄− 1. An alternative action for gap risk mitigation lies in using the Gap Option,
defined as follows.

Definition 1.4.1. Denote by
rS (tk) = S (tk)

S (tk−1) − 1

the standardize simple return of the risky asset S of the k-th period of the time interval [0, T ], α̃ the
return level which triggers the gap event, and τ α̃ the time of the first gap event that is

τ α̃ := inf
{
tk ∈ [0, T ] : 1 + rS (tk) ≤ α̃

}
,

for all k = 1, . . . , n. The Gap Option pays to its holder an amount f(1 + rS(τ)) at time τ α̃ if
τ α̃ ≤ T and 0 otherwise.

This kind of option, able to protect the investor against sudden and persistent market downside
moves, have been extensively studied within the CPPI strategy by Tankov [2010] and Jessen [2014].
More precisely, the authors argue that the issuer of the CPPI strategy has to purchase a Gap Option
whose threshold α̃ = (m−1)er T

n̄

m and whose payoff at τ α̃ < T is given by

f α̃(1 + rS(τ)) = α̃−
(
1 + rS(τ)

)
,

in order to immunize himself from gap risk.



1.4 Hedging against gap risk 21

1.4.2 Some generalizations of the CPPI strategy

Another strand of literature introduces several extensions of the CPPI strategy to eliminate or at
least mitigate the effects of gap risk. We briefly describe the most popular ones.

Proportional portfolio insurance strategies. The first extension is to allow the multiplier
to vary over time. This modification leads to the so-called proportional portfolio insurance (PPI)
strategies. As for CPPI, the PPI strategies are self-financing and dynamically allocate wealth
WP P I =

{
WP P I(t), t ∈ [0, T ]

}
between the risky asset S and the reserve asset P according to the

following allocation rule

αP P I(t) = m(t) ·

(
WP P I(t) − F (t)

)+

WP P I(t) , t ∈ [0, T ]. (1.50)

Differently from equation (1.9), the multiplier m = {m(t), t ∈ [0, T ]} is no longer constant and
fixed at time t = 0 based on the investor’s risk aversion but varies over time in order to better adapt
the strategy’s exposure to market fluctuations. Depending on how the portfolio manager sets the
multiplier, we can distinguish among several PPI strategies.
The first one is the exponential proportion portfolio insurance (EPPI) strategy, proposed by Lee
et al. [2008] that allows the multiplier to vary over time according to a pre-specified rule which
reads as

m(t) = η̄ + exp
{
â · ln

(
S(t)
S̃

)}
, t ∈ [0, T ], (1.51)

where η̄ > 1 is an arbitrary constant, and exp
{
â · ln

(
S(t)

S̃

)}
is the dynamic multiplier adjustment

factor (DMAF). More precisely, â is a constant parameter strictly greater than one that accounts
for the enlargement (resp. shrinkage) effect of DMAF in the case of bullish (resp. bearish) markets,
and S̃ is a reference level for the risky asset set at t = 0 by the fund manager. The authors argue
that a dynamic multiplier can enhance the convex nature of the CPPI strategy. Indeed, when the
stock price increases, becoming greater than the reference level S̃, the multiplier increases as well
leading to an increase in exposure and improving the upside capture of the strategy. By contrast,
when the stock price decreases relative to the reference level, the same happens for the multiplier,
reducing exposure and inducing a higher downside protection. Hence, thanks to this mechanism, the
EPPI strategy should be able to mitigate the probability of gap risk occurrence and simultaneously
provide equity market participation in the event of market upside.
However, as shown in Mancinelli and Oliva [2023] using a non-parametric simulation analysis,
the EPPI strategy can only provide better equity market participation in bull markets than the
CPPI and TIPP strategy and not better downside protection. Such a drawback is because such a
time-varying multiplier is set based on a pre-specified rule, and it is independent of expectations of
future market fluctuations. To accommodate the latter feature into the dynamic multiplier, several
authors, including Jiang et al. [2009], Hamidi et al. [2009], Ameur and Prigent [2014], Hamidi
et al. [2014], introduce the concept of conditional multiplier based on the following local quantile
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guarantee condition

P (C(tk+1) > 0|C(tk) > 0) = P
(
m(tk)S(tk+1)

S(tk) − (m(tk) − 1) > 0
)

≥ 1 − ε, (1.52)

for all k = 0, . . . , n̄− 1, where ε ∈ [0, 1] is an upper bound on the shortfall probability exogenously
set by the fund manager at t = 0. As shown in Hamidi et al. [2014], equation (1.52) implies an
upper bound m̄(tk) on the multiplier which is given by

m̄(tk) =
∣∣∣∣∣EP

[
S(tk+1)
S(tk)

∣∣∣∣F(tk)
]

− 1 +
√

Var
[
S(tk+1)
S(tk)

∣∣∣∣F(tk)
]
F̃−1

tk
(ε)
∣∣∣∣∣
−1

, (1.53)

where F̃tk
(·) is the cumulative distribution function of the standardized simple return rS(tk+1), for

all k = 0, . . . , n̄− 1. Then the fund manager sets the multiplier for each time instant tk in order to
not exceed the time-varying upper bound m̄(tk), which in this setup, affords the role of gap risk
control. However, as argued by Dichtl et al. [2017], the superiority of these strategies in hedging
against gap risk depends solely on the forecasting skills of the fund manager or, in other words, on
the methodologies used to estimate the upper bound m̄(tk) in equation (1.53).

CPPI with conditional floor. To hedge against gap risk or to avoid cash lock positions, Ameur
and Prigent [2011] and Ameur and Prigent [2018] introduce some modifications of the CPPI strategy
with dynamic floor evolving according to market conditions. In particular, the main idea behind
such a new strategy is to introduce a conditional floor that is always higher than the target floor F ,
which characterizes the guarantee constraint G at maturity. Unlike the target floor, the conditional
floor does not evolve according to the risk-free rate r. In contrast, it is set according to the fund
manager expectations of future market developments. In this framework, the authors distinguish
between two main operational methods. The first one, the margin-based CPPI strategy, prevents
cash-locked positions. If the market is bearish, the conditional floor is reduced, so the strategies’
exposure remains significantly positive. This reduction allows one to take advantage of potential
future market rises, whereas, for the standard CPPI method, the final portfolio value can be equal
only to the guaranteed amount G, leading to a return less than the riskless one. The second one
is the CPPI with a ratchet effect that allows to lock in part of the past gains whatever the future
significant market drawdowns. The working mechanism of the latter strategy is very similar to that
of TIPP. However, unlike TIPP, Floor reappraisal is no longer based on a pre-specified rule (see
equation (1.44)) but according to market fluctuations. More precisely, the floor is based on the
quantile condition depicted in equation (1.52), which Ameur and Prigent [2018] specifically adapt
to these two kinds of PI strategies.
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Chapter 2

Time invariant PI strategies in
structured products with GMEE

From the 2008 worldwide economic crisis, financial arenas have started to see an increase in
the equity market along with a related decrease in interest rate levels until a generalized drop
happened in 2018, then accompanied by abrupt volatility changes caused by the Covid Crisis in 2020.
Consequently, many investors are increasingly interested in investment products providing strong
capital protection at maturity. In particular, they have commenced looking at investment products
to protect their portfolios from significant losses and, at the same time, to offer participation in
equity (or equity indices) with an attractive participation rate. Structured investment products have
been offered in the market to address these needs. These products provide capital protection and
the opportunity to participate in equity markets through embedded financial derivatives. However,
designing a structured investment product combining high capital protection with high participation
is challenging because such features are highly correlated. Indeed, high capital protection negatively
affects the amount of the available risk budget and, consequently, the amount that can be invested
in financial derivatives. Moreover, the capital protection level is affected by market interest rates,
and the participation rate is affected by both interest rate levels and market volatility. However, as
argued by Allen and Gale [1994], Mouna and Anis [2016], and Albeverio et al. [2017], a combination
of a low interest rate and high market volatility leads to a meagre participation rate, making the
guarantee structure unattractive for investors.
For this reason, a provider of a structured investment product with capital protection is interested
in increasing the attractiveness of his/her product to an investor by simultaneously providing a high
protection level and market participation rate. Assuming that the protection level of a structured
investment product is fixed, the main factor affecting the participation rate is the price of the
embedded option. In order to obtain the above desirable features from the standpoint of a product
provider, the price of the embedded option should not depend significantly on the market volatility,
and it should decrease with decreasing market interest rate levels.
In the past, to obtain the above features, investment product providers replaced plain vanilla
European options with more complex exotic derivatives written on the same underlying risky asset,
such as barrier options or Asian options. More recently, a new family of structured investment
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products with capital protection emerged on the market. Their distinguishing characteristic is not
an embedded option with an exotic payoff but a plain vanilla option linked to a modified underlying
asset. In particular, traditional risky assets such as stock indices are replaced with volatility target
(VolTarget) strategies. Investment mechanisms of this nature have been extensively utilized in
portfolio management, as shown by Doan et al. [2018], and pension funds or annuity provisions,
as evidenced by Olivieri et al. [2022]. In the context of financial applications, Albeverio et al.
[2013] offer the first comprehensive analysis of the VolTarget strategies, characterizing them as the
underlying asset in an option embedded in a structured investment product.
In the present chapter, we continue the aforementioned line of research by considering options
written on particular dynamic asset allocation algorithms: the PI strategies. More precisely, we
focus on the TIPP strategy, described in Section 1.3. However, although the TIPP strategy can be
considered an improved version of the CPPI strategy, as argued in Dichtl et al. [2017] and shown in
Figure 1.5d, it is characterized by path dependency and subject to gap risk. Indeed, in extreme
market scenarios, when the value of a risky asset decreases significantly, the whole portfolio needs
to be invested into a riskless asset. As a result, the investor loses the possibility to participate
in potential upward movements of the risky asset. For this reason, the TIPP strategy cannot be
viewed as the underlying of a European option embedded in a structured investment product with
capital protection. Consequently, we propose modifying the standard TIPP strategy by adding an
investment threshold in the risky asset allocation, the so-called guaranteed minimum equity exposure
(GMEE). The GMEE has been introduced in Di Persio et al. [2020] within the CPPI framework to
buffer the problem of equity market participation when a cash-lock event or gap risk occurs. Also
in this case, we propose adding a guaranteed minimum equity exposure to the TIPP allocation
mechanisms to overcome the risk of low market participation in a V-shaped market environment.
Hence, for our approach, we introduce and evaluate suitable equity-linked instruments, namely
European-type OTC call options whose underlying is the TIPP strategy endowed with a GMEE
mechanism. We evaluate these new types of exotic options and compare them with plain vanilla
European call options and options written on G-CPPI. From a practical perspective, such a
comparison makes a roundup of the possible proposals that an advisor may present to his clients
according to the views on future market developments.
We present an accurate and comprehensive numerical analysis for option prices in a Vasicek-
Heston framework, involving different time horizons for option maturities and various rebalancing
frequencies without considering transaction costs. Our numerical findings, corroborated by an
in-depth sensitivity analysis, reveal that the TIPP strategy endowed with GMEE is the cheapest
procedure among those examined for short and medium time horizons, further confirming both the
effectiveness and the usefulness of our new approach.
The rest of the chapter is organized as follows. Section 2.1 introduces the new TIPP strategy with
guaranteed minimum equity exposure. In order to better clarify the advantages and shortcomings of
this new PI strategy and emphasize the role of GMEE, the main basic definitions and formulae are
supported by historical simulations. More general results are presented in Section 2.2, where the
theoretical framework for pricing plain vanilla options on the stock, the CPPI, the TIPP and the
new G-TIPP is described. Finally, Section 2.3 performs an in-depth numerical analysis using Monte
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Carlo simulations to highlight the differences between the aforementioned options and proposes a
detailed sensitivity analysis of our results concerning both market parameters and exogenous PI
strategies’ parameters.

2.1 TIPP with guaranteed minimum equity exposure

In the present Section, we propose a modified version of the TIPP strategy. In particular, as
discussed in Section 1.3, the floor that characterizes the TIPP strategy partially solves the problem
related to the cash locked position. Indeed, by exploiting the TIPP strategy, we can maintain a
pre-specified percentage of past gains. Therefore, even if the cash lock event occurs at time τ∗ < T,

the TIPP strategy can preserve the equity market participation obtained during the time interval
[0, τ∗). However, the problem of obtaining equity market participation persists for each t ∈ [τ∗, T ].
Moreover, introducing the TIPP strategy cannot solve the gap risk. Indeed, as shown in Figure
1.5d, in the face of sudden collapses in the price of risky assets, the value of the TIPP portfolio may
break the floor. In this case, even the TIPP may not return the guaranteed capital G at maturity
and retain all equity market participation accumulated until the gap risk occurs.
We solve the problem of obtaining equity market participation by adding a threshold into the
TIPP allocation mechanism called guaranteed minimum equity exposure (GMEE). We baptize
the resulting strategy time-invariant portfolio protection with guaranteed minimum equity exposure
(G-TIPP). As for the TIPP strategy, the G-TIPP is obtained by self-financing the investment
the reserve asset P and in the risky asset S. Therefore, the dynamics of the G-TIPP portfolio
WG−T IP P =

{
WG−T IP P (t), t ∈ [0, T ]

}
is given by


dWG−T IP P (t) = WG−T IP P (t)

[
αG−T IP P (t)dS(t)

S(t) +
(
1 − αG−T IP P (t)

) dP (t)
P (t)

]
, t ∈ [0, T ],

WG−T IP P (0) = wG−T IP P
0 ,

(2.1)
where

αG−T IP P (t) = max

min

Lmax, m ·

(
WG−T IP P (t) − F T IP P (t)

)+

WG−T IP P (t)

 , αmin

 , t ∈ [0, T ], (2.2)

with αmin ∈ [0, 1] being the guaranteed minimum equity exposure. Thanks to this new allocation
mechanism, we are sure that at least an αmin per cent of the G-TIPP remains invested into the
risky asset S even though gap risk or cash-locked position occurs. Therefore, our new strategy can
capture all potential market upturns by ensuring equity market participation.

Remark 2.1.1. The G-TIPP strategy can be seen as a generalization of the standard TIPP strategy.
Indeed, in the case of αmin = 0, the G-TIPP strategy collapses into the standard TIPP strategy.

Remark 2.1.2. The introduction of the guaranteed minimum equity exposure (GMEE) is not
exclusive to time-invariant strategies, as we have shown above. The construction of such an
allocation mechanism has recently been introduced in the literature in the case of CPPI strategies,



2.1 TIPP with guaranteed minimum equity exposure 26

see, e.g., Di Persio et al. [2020]. Here we do not provide the details of the CPPI strategy with
GMEE (which will be denoted as G-CPPI for the sake of notation uniformity). However, we deem
it appropriate to consider it, as it is used as an additional benchmark for derivative pricing, as we
will see in detail in Section 2.3.

In order to better understand how the G-TIPP strategy works and its advantages and shortcomings,
we perform a simulation study comparing such a new strategy with its standard version. Specifically,
we perform the simulation of the G-TIPP strategy on the same data used in Section 1.3 for the
historical simulation of the TIPP strategy. Moreover, to make this comparison meaningful, we set
the same exogenous parameters used for the TIPP simulation in Section 1.3.

2.1.1 Historical simulations of G-TIPP

As discussed in Sections 1.3.1 and 1.3.2, the TIPP strategy’s exposure to risky assets is generally
lower than that of the CPPI, varying more regularly over time and leading to a higher level of
protection. Furthermore, the historical simulation depicted in Figure 2.1d revealed that introducing
the TIPP algorithm instead of the CPPI one is insufficient to avoid gap risk. Such a drawback
implies the need to introduce the GMEE to make the TIPP suitable for inclusion in structured
investment products with capital protection. We simulate the TIPP with GMEE over the same
historical data used in Section 1.3 to highlight the effect of introducing such a new threshold. We
choose a value for the guaranteed minimum equity exposure equal to αmin = 30%. The results
are shown in Figure 2.1. We start by studying the 2007-2017 decade, assuming a daily portfolio
rebalancing, see Figure 2.1a. The guaranteed minimum equity exposure causes the exposure to the
risky asset of the G-TIPP to be higher than that of the standard TIPP. Such a more risky profile,
coupled with the market crash during the 2008 financial crisis, led to the G-TIPP strategy breaking
the floor. However, as shown in equation (2.2), the presence of the GMEE induces only transitory
gap events. Indeed, such an intrinsic mechanism of the TIPP logic with the GMEE ensures that a
pre-specified percentage of the portfolio always remains invested in the risky asset. Hence, when
the market recovers, the G-TIPP can capture equity market participation better than the TIPP,
resulting in a higher total return, see Table 2.1. The same pattern also occurs for the G-TIPP with
weekly rebalancing, as shown in Figure 2.1b. The role played by GMEE in defending investment
from preventing equity market participation is even more highlighted during the 2012-2022 decade.

Investment strategy MSCI World TIPP (d) G-TIPP (d) TIPP (w) G-TIPP (w)
Annualized return (%) 5.62 2.55 3.07 2.33 2.88

Max loss 1-day (%) −8.56 −1.54 −2.55 −1.89 −2.55
Annualized volatility (%) 17.67 4.79 6.10 4.91 6.15

Average Exposure (%) − 35.03 39.70 34.26 39.49
Maximum average exposure (%) − 50.00 50.00 50.00 50.00
Minimum average exposure (%) − 3.90 30.00 4.46 30.00

Table 2.1 Risk-return performances (in %) of MSCI World Net (Eur), TIPP strategy, G-TIPP strategy
with daily (d) and weekly (w) rebalance frequencies. The time window ranges from December 31, 2007,
to December 28, 2017.
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(a) G-TIPP with daily rebalancing frequency
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(b) G-TIPP with weekly rebalancing frequency
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(c) G-TIPP with daily rebalancing frequency
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(d) G-TIPP with weekly rebalancing frequency

Figure 2.1 Historical simulation and risky exposures for TIPP with GMEE, linked to MSCI equity index.
The time windows range between December 31, 2007, and December 28, 2017 (top charts), June 29, 2012,
and June 29, 2022 (bottom charts).

As shown in Figure 2.1d, the standard TIPP with weekly rebalance is subject to gap risk due to
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market turbulence at the start of the COVID-19 pandemic. Hence, from that moment on, the
exposure drops to zero, so the TIPP cannot capture the subsequent sharp rise in the market. This
is not the case for the G-TIPP because when the floor is broken, the GMEE is triggered, causing
30% of the portfolio to remain invested in the index. As a result, the G-TIPP portfolio turned
above the floor by capturing the market’s strong bullishness and ending the investment with a
strongly positive return. Therefore, the GMEE acts as a buffer and guarantees participation in bull
markets. For ease of reading, we summarise the strategies’ performances. More precisely, we report
the 2007-2017 analysis in Table 2.1 and the 2012-2022 analysis in Table 2.2.

Investment strategy MSCI World TIPP (d) G-TIPP (d) TIPP (w) G-TIPP (w)
Annualized return (%) 7.95 2.63 3.52 1.90 3.37

Max loss 1-day (%) −8.09 −1.57 −2.43 −2.19 −2.43
Annualized volatility (%) 14.74 4.68 5.46 4.36 5.56

Average Exposure (%) − 37.64 41.90 30.30 41.66
Maximum average exposure (%) − 50.00 50.00 50.00 50.00
Minimum average exposure (%) − 4.34 30.00 0 30

Table 2.2 Risk-return parameters (in %) of MSCI World Net (Eur), TIPP strategy and G-TIPP strategy
with daily (d) and weekly (w) rebalance frequencies. The time window ranges from June 29, 2012, to
June 29, 2022.

2.2 Option pricing with portfolio insurance strategies

The introduction of guaranteed minimum equity exposure within PI strategies solves the problem
of equity market participation when the market recovers after the occurrence of gap risk or a
cash-locked position. Indeed, as shown in Figures 2.1a and 2.1d, the G-TIPP can always go back
above the floor in a bull market. However, if the market continues to fall after the event that
generates the gap risk, the G-TIPP would realise a more significant loss than its standard version.
For this reason, to guarantee both equity market participation and strong capital protection at
maturity, we propose inserting the G-TIPP into a capital-guaranteed structured investment product.
The risky part of such an investment product will be a European call option written on the G-TIPP.
In the present Section, we describe structured investment products with guaranteed capital and
introduce a pricing model for options written on the G-TIPP.

2.2.1 Investments with capital protection and market participation

We start by fixing a finite investment time horizon T which coincides with the maturity of the
structured investment product with capital protection, and a probability space (Ω,F ,Q), where Q
represents a risk-neutral probability measure. We also introduce a complete and right-continuous
filtration F = {F(t), t ∈ [0, T ]}, representing the global information flow. In particular, we assume
that all processes are adapted to F.
A structured investment product with capital protection, say A = {A(t), t ∈ [0, T ]} , is designed so
that the initial investment V (0) is split into two parts: the first one is invested in ZBCs to ensure a
pre-specified capital protection level (PL), while what remains is invested in financial instruments
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allowing direct participation in a risky asset S = {S(t), t ∈ [0, T ]} , like e.g. an equity index. The
payoff at maturity T of such a structured investment product with capital protection is given by

A(T ) = max
{
V (0) · PL, V (0) · PL ·

(
1 + ξ · S(T ) − S(0)

S(0)

)}
, (2.3)

where ξ > 0 is the so-called participation rate; see, e.g., Albeverio et al. [2013] for further details. The
payoff in equation (2.3) shows that at maturity T, the investor will receive at least a pre-determined
percentage (PL) of the capital initially invested, or he/she will receive PL · V (0) plus a relative
return on the principal investment PL · V (0) in the risky asset S over the investment horizon [0, T ],
multiplied by the participation rate ξ, provided that the return on S is positive.
From (2.3), we find out that the higher the protection level, the higher the protection to the capital
initially invested V (0) in case of negative returns from the investment in an equity index. On the
other hand, a high participation rate ξ increases the overall payoff of the structured investment
product in case of positive returns from the risky asset investment. Thus, the issuer of a structured
investment product with capital protection considers his/her product to be attractive for the investors
if it either admits (i) a high capital protection level PL or (ii) a high participation rate ξ. However,
the features mentioned above are strongly interrelated: a high capital protection level negatively
affects the amount of the available risk budget, leading to a reduction in the participation rate ξ,
especially within low interest rate levels. Therefore, it is crucial to derive an explicit expression for
the participation rate. Using simple algebraic transformations, we can equivalently recast equation
(2.3) as

A(T ) = V (0) · PL+ V (0) · PL · ξ · max
{
S(T )
S(0) − 1, 0

}
(2.4)

The first term in equation (2.4), namely PL · V (0), is the zero-coupon bond value at maturity T,
while the second term is the payoff of a European call option linked to the underlying S, with
strike price V (0). Thus, to guarantee the payoff (2.4) at maturity T, the issuer of such a structured
investment product must invest at time t = 0 the amount PL · V (0) · P (0, T ) into the zero-coupon
bond. The remaining part of the initial investment V (0) represents the so-called risk budget (RB),
namely

RB = V (0) · (1 − PL · P (0, T )) . (2.5)

The risk budget is invested at t = 0 in a European call option with maturity T, underlying risky
asset S, and payoff that read as follows

gdp(x) = max
{
V (0)
S(0) x− V (0), 0

}
= V (0) · fdp(x), ∀x > 0, (2.6)

where
fdp(x) = max

{
x

S(0) − 1, 0
}
. (2.7)

In particular, assuming V (0) = S(0), the payoff function shown in equation (2.7) is that of a
European call option with underlying risky asset S, maturity T, which is at-the-money at t = 0. We
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denote by OS
gdp

=
{

OS
gdp
, t ∈ [0, T ]

}
(resp., OS

fdp
=
{

OS
fdp
, t ∈ [0, T ]

}
) the no-arbitrage price of the

European call option with the payoff function gdp (resp., fdp). From eq. (2.6), it follows that

OS
gdp

(t) = V (0) · OS
fdp

(t), t ∈ [0, T ]. (2.8)

Definition 2.2.1. The participation rate ξ is the number of units of the option with payoff gdp that
can be purchased, with the available risk budget, at time t = 0, given by

ξ = RB

OS
gdp

(0) . (2.9)

In particular, by substituting (2.5) and (2.8) into (2.9), we have that

ξ = 1 − PL · P (0, T )
OS

fdp
(0)

. (2.10)

From (2.10), we find that the participation rate can be increased by either increasing the risk
budget or decreasing the price of the embedded ATM-European call option. More precisely, we
observe that the former is mainly affected by the price of the ZCB maturing at T and the protection
level (PL), and the latter is primarily driven by stock volatility. Therefore, in a market scenario
characterized by low level interest rate levels (which correspond to high prices for the ZCBs) and
high volatility of the underlying risky asset, issuers can only maintain a considerable participation
rate ξ reducing the protection level PL. Unfortunately, such a choice would make these kinds of
structured products less attractive to the investor. To overcome the previous drawback, the issuer
could invest in derivative products, such that:

(C1) the price of the embedded option should not significantly depend on the volatility of the
underlying asset and

(C2) the price of the embedded option should decrease with a decreasing market interest rate, and
it should increase with an increasing market interest rate.

To meet (C1) and (C2), providing capital protection and guaranteeing market participation, we
introduce a new structured product in which the embedded option is written on the TIPP strategy
endowed with the guaranteed minimum equity exposure.

Remark 2.2.2. It is worth noting that the options on G-TIPP (as well as options on G-CPPI) are
not traded on the market. However, the latter can be bought by an investment bank or a re-insurance
partner, who guarantees the TIPP-GMEE strategy payoff. The issuer must achieve the latter by
implementing a dynamic hedging strategy (according to either CPPI or TIPP mechanism), also
considering the probability that the OTC option ends in the money or not. Hence, although the
TIPP-GMEE is not traded on a public exchange, it is a full-fledged derivative product that different
market participants and financial engineering groups can purchase .
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2.2.2 The model

We assume that the financial market consists of ZCBs with maturity T and a stock S. We model the
instantaneous interest rate r = {r(t), t ∈ [0, T ]} according to the Vasicek model, whose dynamics
under Q reads as  dr(t) = αr (βr − r(t)) dt+ σrdZr(t), t ∈ [0, T ],

r(0) = r0.
(2.11)

where αr > 0 is the speed of reversion, βr ∈ R is the long-run mean, and σr > 0 is the instantaneous
volatility of the interest rate. Moreover, Zr = {Zr(t), t ∈ [0, T ]} is a standard Brownian motion on
(Ω,F ,F,Q) .

Proposition 2.2.3. Let r = {r(t), t ∈ [0, T ]} be the instantaneous interest rate process with
dynamics (2.11). Then, the arbitrage-free t-price of a ZCB paying one unit of currency at its
expiration date T , denoted by P (t, T ), satisfies

P (t, T ) = exp {h1(t, T ) − h2(t, T )r(t)} , t ∈ [0, T ], (2.12)

where

h1(t, T ) :=
(
βr − σ2

r

2α2
r

)
[h2(t, T ) − (T − t)] − σ2

r

4αr
h2

2(t, T ),

h2(t, T ) := 1 − e−αr(T −t)

αr
.

Moreover, the ZCB price process satisfies the following backward stochastic differential equation
(BSDE) 

dP (t, T )
P (t, T ) = r(t)dt− σP (t, T )dZr(t), t ∈ [0, T ],

P (T, T ) = 1,
(2.14)

where σP (t, T ) := h2(t, T )σr > 0, t ∈ [0, T ], is the volatility of the ZCB price.

Proof. See Vasicek [1977].

The second asset in the financial market is a stock that evolves according to the Heston’s stochastic
volatility model, see Heston [1993] for further details. Its Q-dynamics read as

 dS(t) = S(t)r(t)dt+ S(t)
√
v(t)dZS(t), S(0) = s0 ≥ 0,

dv(t) = kv (θv − v(t)) dt+ σv

√
v(t)dZv(t), v(0) = v0 ≥ 0,

(2.15)

for every t ∈ [0, T ].Moreover, kv > 0 is the speed of reversion, θv > 0 is the long-run mean, and σv > 0
is the standard deviation of the variance process v = {v(t), t ∈ [0, T ]} . ZS = {ZS(t), t ∈ [0, T ]}
and Zv = {Zv(t), t ∈ [0, T ]} are standard Brownian motions on (Ω,F ,F,Q) such that

⟨dZS(t), dZv(t)⟩ = ρdt,
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where ρ ∈ [−1, 1] is the correlation coefficient. To ensure that v is strictly positive Q-a.s., we assume
that the Feller condition holds, that is 2kvθv ≥ σ2

v , for all t ∈ [0, T ]. Additionally, we assume that
Zr is independent of ZS and Zv.
We consider a European-type contingent claim with maturity T, underlying risky asset S, and payoff
function fdp given in (2.7). Since under the risk neutral measure Q, the discounted dynamics of the
risky asset S̃ =

{
S̃(t), t ∈ [0, T ]

}
, with

S̃(t) = exp
{

−
∫ t

0
r(s)ds

}
S(t), t ∈ [0, T ], (2.16)

is a martingale, then the no-arbitrage price at t = 0 of such a contingent claim is given by

OS
fdp

(0) = EQ
[
e−
∫ T

0 r(s)dsfdp (S(T ))
]

= EQ
[
fdp

(
S̃(T )

)]
, (2.17)

where EQ denotes the expectation w.r.t. the risk-neutral measure Q. For our purposes, in addition
to the derivatives whose underlying is given by the stock S, we consider additional contingent claims
with maturity T, whose underlying are the PI strategies introduced in Chapter 1 and Section 2.1,
namely the CPPI, TIPP, G-CPPI, G-TIPP strategies. To make the notation as concise as possible,
in the following we indicate with W h =

{
W h(t), t ∈ [0, T ]

}
the stochastic processes describing the

evolution of such portfolios, with h ∈ {CPPI, G− CPPI, TIPP, G− TIPP} .
As discussed in Section 1.2 and formally proved in Schied [2014], to adequately account for gap risk,
it is necessary, from a modelling perspective, to include discontinuities in the dynamics of stock S
or to allow for trading restrictions in the interval [0, T ]. In the present work, we consider the second
approach. Therefore, as in Balder et al. [2009] and Hamidi et al. [2014], we assume that strategies
can be rebalanced only at dates 0 = t0 < t1 < · · · < tn̄ = T. As a consequence, the PI strategies are
of buy-and-hold-type, for any t ∈ [tk, tk+1), k = 0, . . . , n̄. Hence, the portfolio process W h can be
written as

W h(t) = Eh(tk)
S(tk) S(t) + W h(tk) − Eh(tk)

P (tk, T ) P (t, T )

= ϕh
S(tk)S(t) + ϕh

P (tk)P (t, T ), t ∈ [tk, tk+1), k = 0, . . . , n̄,

where Eh(tk) represents the exposure to the risk asset S, and ϕh
S(tk) (resp., ϕh

P (tk)) represents the
shares of risky asset S (resp., the ZCBs P ) held in the portfolios for all t ∈ [tk, tk+1), such that

lim
t→tk

−
W h(t) = lim

t→tk
+
W h(t), k = 1, . . . , n̄, (2.18)

for h ∈ {CPPI, G− CPPI, TIPP, G− TIPP} . Finally, we consider the discounted dynamics of
the portfolio process W̃ h =

{
W̃ h(t), t ∈ [0, T ]

}
, that is

W̃ h(t) = exp
{

−
∫ t

0
r(s)ds

}
W h(t). (2.19)

Due to the continuity property (2.18), it is straightforward to show that the discounted value of
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portfolio process W̃ h is a martingale. Then, the no-arbitrage price of the contingent claim at time
t = 0, with maturity T , underlying W h, and payoff fdp given in equation (2.7) reads as follows

Õh
fdp

(0) = EQ
[
e−
∫ T

0 r(s)dsfdp

(
W h(T )

)]
= EQ

[
fdp

(
W̃ h(T )

)]
, (2.20)

for all h ∈ {CPPI, G− CPPI, TIPP, G− TIPP} .

Remark 2.2.4. Within this framework, the value of the G-TIPP portfolio can be explicitly written
as

WG−T IP P (t) =EG−T IP P (tk) · exp
{∫ t

tk

(
r(s) − v(s)

2

)
ds+

∫ t

tk

√
v(s)dZS(s)

}
+
(
WG−T IP P (tk) − EG−T IP P (tk)

)
· exp {h1(t, T ) − h2(t, T )r(t)}

exp {h1(tk, T ) − h2(tk, T )r(tk)} , (2.21)

where
EG−T IP P (tk) = max

{
min

{
Lmax ·WG−T IP P (tk),m · CG−T IP P (tk)

}
, αmin ·WG−T IP P (tk)

}
,

CG−T IP P (tk) =
(
WG−T IP P (tk) − FG−T IP P (tk)

)+
,

FG−T IP P (tk) = max
{
FG−CP P I(tk), PL · sups≤tk

WG−T IP P (tk)
}
.

(2.22)
for any t ∈ [tk, tk+1), k = 0, . . . , n̄. Analogously, the G-CPPI portfolio value reads as

WG−CP P I(t) =EG−CP P I(tk) exp
{∫ t

tk

(
r(s) − v(s)

2

)
ds+

∫ t

tk

√
v(s)dZS(s)

}
+
(
WG−CP P I(tk) − EG−T IP P (tk)

)
· exp {h1(t, T ) − h2(t, T )r(t)}

exp {h1(tk, T ) − h2(tk, T )r(tk)} , (2.23)

where
EG−CP P I(tk) = max

{
min

{
Lmax ·WG−CP P I(tk),m · CG−CP P I(tk)

}
, αmin ·WG−CP P I(tk)

}
,

CG−CP P I(tk) =
(
WG−CP P I(tk) − FG−CP P I(tk)

)+
,

FG−CP P I(tk) = PL ·WG−CP P I(0) · P (tk, T ).
(2.24)

for any t ∈ [tk, tk+1), k = 0, . . . , n̄. Moreover, by setting αmin = 0 in equations (2.22) and (2.24),
we obtain, as special cases, the standard TIPP and CPPI portfolio value processes, respectively.

2.3 Numerical results

In what follows, we rely on numerical methods to evaluate expressions (2.17) and (2.20), exploiting
parameter values provided in Albeverio et al. [2017], see Table 2.3, in order to illustrate the benefits
of using financial derivatives that are linked to portfolio insurance strategies. In particular, we
compare the values of the ATM European call options on risky asset S with the ATM European
call options when the underlying is either the CPPI strategy, the TIPP strategy, and their modified
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version, that is the G-CPPI and the G-TIPP strategies. More precisely, we consider Monte Carlo
simulations, according to the following scheme:

(i) given a daily partition π = {t0, t1, . . . , tn̄} of [0, T ], with ∆t = T

n̄
, we discretize the SDEs

depicted in equations (2.11) and (2.15) according to the Euler scheme, to obtain N̄ simulated
paths for the short-term interest rate r, the ZCB P with maturity T, and the underlying risky
asset S;

(ii) we simulate the trajectories of the PI strategies, according to the following discretization
scheme

W h
i (tk+1) = Ēh

i (tk)
Si(tk) · Si(tk+1) + W h

i (tk) − Ēh
i (tk)

Pi(tk, T ) · Pi(tk+1, T ),

Ch
i (tk+1) =

(
W h

i (tk+1) − F h
i (tk+1)

)+
,

Eh
i (tk+1) = max

{
min

{
Lmax ·W h

i (tk+1), m · Ch
i (tk+1)

}
, αmin ·W h

i (tk+1)
}
,

Ēh
i (tk+1) =

Eh
i (tk+1), if k + 1 ≡ 0 mod k̃,

Eh
i (tk), otherwise,

for all k = 0, . . . , n̄ − 1, i = 1, . . . , N̄ , and h ∈ {CPPI, G− CPPI, TIPP, G− TIPP} . k̃
represents the pre-specified fixed rebalancing frequency;

(iii) we compute the price of the ATM European call option by using the trapezoidal rule to
evaluate the stochastic discount factor (see Huynh et al. [2011]), that is

Oh
fdp

(0) = 1
N̄

N̄∑
i=1

exp
{

−
(

1
2ri(t0) +

n̄−1∑
k=1

ri(tk) + 1
2ri(tn̄)

)
∆t
}(

W h
i (tn̄) −W h

i (t0)
)+

, (2.25)

for all k = 0, . . . , n̄− 1, i = 1, . . . , N̄ , and h ∈ {CPPI, G− CPPI, TIPP, G− TIPP} .

Vasicek model Heston model

Parameter Value Parameter Value

αr 1.25 kv 1.25

βr 0.05 θv 0.04

σr 0.025 σv 0.2

- - ρ -0.5
Table 2.3 Parameters used in the numerical experiments for the Vasicek’s model and the Heston’s model.

We compare the option prices by considering different levels of the guaranteed minimum equity
exposure αmin and several maturities T. The results are displayed in Figure 2.2. Starting with an
initial volatility level of 20% and an initial interest rate equal to 0%, we observe that the European
call option prices written on stock are higher than the ones obtained by taking any portfolio
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insurance strategy as underlying, whatever the maturity T and the GMEE level αmin. Our results
show that using European call options linked to portfolio insurance strategies within structured
investment products with capital protection would lead to a significant increase in the participation
rate, for a given protection level and a given risk budget. Furthermore, looking at the European
call option prices written on portfolio insurance strategies, we notice that the TIPP options are
always cheaper than the CPPI ones. Such a result hold for any maturity T. Therefore, it is more
convenient to invest in a structured investment product with capital protection where the risky
component is given by a European call option written on the TIPP strategy. Indeed, according to
the reasoning described in Section 2.2.1, this improves the attractiveness for investors by increasing
the related participation rate (see equation (2.10)). Such a result still holds even when we consider
European call options associated with portfolio insurance strategies endowed with GMEE, i.e., the
G-TIPP and the G-CPPI. The option on G-TIPP is cheaper than the one written on G-CPPI. We
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Figure 2.2 Comparison among ATM call option pricing under different underlyings, maturities, and level
of guaranteed minimum equity exposure. The model parameters are: v0 = 20%, kv = 1.25, θv = v2

0 ,
σv = 0.2, ρ = −0.5 (Heston), r0 = 0.01, αr = 0.05, βr = 0.02, σr = 0.025 (Vasicek). The remaining
parameters associated to the portfolio insurance strategies are: Lmax = 100%, m = 4, PL = 90%,
αmin = {0.3, 0.4, 0.5, 0.7}. We performed 105 Monte Carlo simulations with S0 = 100.

further observe that the G-TIPP (resp. G-CPPI) call option price is slightly higher than the option
associated with the standard TIPP (resp. standard CPPI) logic. This is due to the introduction
of the GMEE threshold, which triggers a larger number of paths ending above the strike price at
maturity, leading to an increase in the corresponding option price at t = 0.
In conclusion, since the option written on G-TIPP solves the problem of obtaining an equity market
participation and simultaneously leads to a smaller decrease in the participation rate (compared to
G-CPPI) when it is used as underlying the European call option, it is more suitable to be included
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in a structured investment product with capital protection.

2.3.1 Sensitivity analysis w.r.t. the model parameters

Section 2.3 show that the highest participation rate is attained by considering structured products
where the risky component given by European ATM call options linked to the G-TIPP. Furthermore,
to confirm that this options is more suitable than those written on the risky asset S and G-CPPI to
be included in structured investment product with capital protection, we must verify that properties
(C1) and (C2) are fulfilled. The latter implies that the corresponding prices are less influenced by
the variance of the risky asset and more influenced by the interest rate levels. Hence, we evaluate
the prices of ATM call written on the risky asset S, the G-CPPI strategy, and the G-TIPP one for
different combinations of initial interest rate and variance. Moreover, we quantify the dependence of

Panel A: Option on pure risky asset
Initial interest rate (r0) Initial annual volatility (v0) RP Rv

0.10 0.20 0.30 0.40 0.50
0.01 10.31 14.98 18.73 22.32 25.13 1.44
0.03 11.19 15.69 19.85 22.71 25.95 1.32
0.05 12.10 16.93 20.37 23.44 26.54 1.19
0.07 12.99 17.33 20.97 24.42 27.46 1.11
0.10 14.37 18.76 22.30 25.52 28.46 0.98

RP Rr 0.39 0.25 0.19 0.14 0.13
Panel B: Option on G-CPPI

Initial interest rate (r0) Initial annual volatility (v0) RP Rv

0.10 0.20 0.30 0.40 0.50
0.01 4.76 6.83 8.48 10.01 10.93 1.29
0.03 6.05 8.05 10.02 11.09 12.45 1.06
0.05 7.42 9.75 11.19 12.40 13.67 0.84
0.07 8.83 10.82 12.42 14.03 15.21 0.72
0.10 10.91 12.92 14.52 15.99 17.05 0.56

RP Rr 1.29 0.89 0.71 0.60 0.56
Panel C: Option on G-TIPP

Initial interest rate (r0) Initial annual volatility (v0) RP Rv

0.10 0.20 0.30 0.40 0.50
0.01 4.05 5.63 6.84 7.98 8.91 1.20
0.03 5.15 6.66 8.01 8.94 9.97 0.94
0.05 6.36 7.94 9.03 10.01 11.04 0.73
0.07 7.68 8.98 10.13 11.18 12.19 0.59
0.10 9.88 11.00 12.01 12.99 13.89 0.41

RP Rr 1.44 0.96 0.76 0.63 0.56
Table 2.4 ATM call option prices on risky asset, G-CPPI and G-TIPP, for different values of initial interest

rate (r0) and initial annual volatility (v0). The model parameters are: kv = 1.25, θv = v2
0 , σv = 0.2,

ρ = −0.5 (Heston), αr = 1.25, βr = r0, σr = 0.025 (Vasicek). The remaining parameters associated to
the portfolio insurance strategies are: Lmax = 100%, m = 4, αmin = 30,% PL = 90%. We performed 105

MC simulations with S0 = 100.

option prices on both the initial variance level of the underlying risky asset and the initial interest
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rate level. To do this, as in Albeverio et al. [2017], we resort to the so-called relative range of option
prices (RPR). We first define the relative range of option prices for a fixed initial interest rate level
as

RPRv :=
Oh̃

fdp
(0; vmax

0 ) − Oh̃
fdp

(0; vmin
0 )

Oh̃
fdp

(0; vmin
0 )

, (2.26)

for h̃ ∈ {S, CPPI, G− CPPI, TIPP, G− TIPP}, where vmax
0 (resp., vmin

0 ) is the highest (resp.,
the smallest) variance level we consider in the numerical analysis. The results are depicted in the
last column of Table 2.4. We observe the following:

(i) the highest RPRv value is obtained for call options linked to the pure risky asset for any
initial interest rate. Therefore, we conclude that the options linked to portfolio insurance
strategies are less affected by the initial variance of the underlying risky asset;

(ii) the RPRv associated with G-TIPP options is always lower than the RPRv for G-CPPI options.
Such a result stems from the floor rebalancing mechanism within the G-TIPP strategy, which
implies a smaller exposure to the risky asset. Therefore, we get an overall lower variance for
the G-TIPP strategy than the G-CPPI one, making the G-TIPP options less affected by the
level of the initial variance.

We now study the connection between the option prices and the interest rate initial level. Looking at
Table 2.4, we note that option prices increase as the initial level of the interest rate rises, regardless
of the type of underlying and the initial level of variance. To quantify the dependence of the option
price on the interest rate levels, we compute the relative range of option prices for a fixed initial
variance level as

RPRr :=
Oh̃

fdp
(0; rmax

0 ) − Oh̃
fdp

(0; vmin
0 )

Oh̃
fdp

(0; rmin
0 )

, (2.27)

for h̃ ∈ {S, CPPI, G− CPPI, TIPP, G− TIPP}, where rmax
0 (resp., rmin

0 ) is the highest (resp.,
the smallest) interest rate level we consider in the numerical analysis. The results are depicted
in the last row of each panel in Table 2.4. In particular, for a fixed level of initial variance, the
lowest RPRr is attained for options on purely risky stocks. Therefore, the price of stock options
is much less sensitive to interest rate increases. We also observe that the RPRr associated with
options written on the G-CPPI strategy is better than those written the stock and lower than
those written on G-TIPP. Therefore, the option that best satisfies condition (C1) and (C2) and
simultaneously provides the highest participation rate is the one written on the G-TIPP. Thus,
introducing the G-TIPP in structured investment products with capital protection makes this
product more attractive for investors.

2.3.2 Sensitivity analysis w.r.t. the portfolio insurance strategies parameters

The results in Section 2.3.1 show that the G-TIPP option is better suited than those written on stock
and on G-CPPI to be included in structured investment product with capital protection. However,
the price of this type of option is highly influenced by the exogenous parameters characterizing the
strategy. To strengthen the results obtained in Section 2.3.1, we show that the lowest prices are
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achieved when we consider the G-TIPP strategy as underlying, regardless of the protection level,
the multiplier, or the rebalancing frequency, further proving that the properties (C1) and (C2) are
still preserved.

The role of the multiplier. We consider the European call option prices as a function of the
multiplier, for different values of the initial volatility. The results are depicted in Table 2.5.

Panel A: Option on pure risky asset
Multiplier (M) Initial annual volatility (v0) RP Rv

0.10 0.20 0.30 0.40 0.50
- 10.31 14.98 18.73 22.32 25.13 1.44

Panel B: Option on G-CPPI
Multiplier (M) Initial annual volatility (v0) RP Rv

0.10 0.20 0.30 0.40 0.50
4 4.76 6.83 8.48 10.01 10.93 1.29
5 5.65 7.81 9.41 10.80 11.91 1.11
6 6.36 8.49 9.96 11.22 12.21 0.92
10 7.69 9.49 10.64 11.72 12.55 0.63

Panel C: Option on G-TIPP
Multiplier (M) Initial annual volatility (v0) RP Rv

0.10 0.20 0.30 0.40 0.50
4 4.05 5.63 6.84 7.98 8.91 1.20
5 4.76 6.48 7.74 8.92 9.86 1.07
6 5.43 7.24 8.49 9.68 10.20 0.88
10 7.54 9.27 10.20 11.01 11.42 0.51

Table 2.5 ATM call option prices on pure risky asset, on the G-CPPI and the G-TIPP strategies, for
different values of multiplier (m) and initial annual volatility (v0). The model parameters are: kv = 1.25,
θv = v2

0 , σv = 0.2, ρ = −0.5 (Heston), αr = 1.25, βr = r0, σr = 0.025 (Vasicek). The remaining
parameters associated to the portfolio insurance strategies are: PL = 90%, Lmax = 100%, αmin = 30%.
We performed 105 MC simulations with S0 = 100.

As a preliminary comment, we observe that for any v0 value, the greater the multiplier, the more
expensive the European call option price, whatever the portfolio strategy involved. This is not
surprising, since the multiplier m is an amplifying factor for the risk budget, and directly affects
the risky exposure. However, we observe that G-TIPP options (Panel C) are always less expensive
than the G-CPPI one (Panel B) for each multiplier level considered. Therefore, this reinforces the
previous results: including the G-TIPP options within a structured investment product with capital
protection can increase the corresponding participation rate, regardless of the multiplier set at t = 0
by the fund manager. Furthermore, by analyzing the RPRv, we note that such an indicator is the
smallest when considering the G-TIPP strategy as underlying for the ATM European call option.
This implies that the option on G-TIPP is less affected by the variance levels of the underlying
risky, regardless of the multiplier value.

The role of the protection level. We consider the European call option prices as a function of
the initial volatility and the protection level of the strategies. The results are depicted in Table 2.6.
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Again, the protection level impacts the risk budget. In particular, the lower the protection level,

Panel A: Option on pure risky asset
Protection level (P L) Initial annual volatility (v0) RP Rv

0.10 0.20 0.30 0.40 0.50
- 10.31 14.98 18.73 22.32 25.13 1.44

Panel B: Option on G-CPPI
Protection level (P L) Initial annual volatility (v0) RP Rv

0.10 0.20 0.30 0.40 0.50
0.70 10.01 13.88 16.59 18.95 20.59 1.06
0.75 9.38 12.75 15.10 17.15 18.52 0.98
0.80 8.16 11.07 13.13 14.91 16.25 0.99
0.85 6.52 8.99 10.82 12.43 13.44 1.06
0.90 4.76 6.83 8.48 10.01 10.93 1.29

Panel C: Option on G-TIPP
Protection level (P L) Initial annual volatility (v0) RP Rv

0.10 0.20 0.30 0.40 0.50
0.70 10.01 13.88 16.59 18.94 20.57 1.06
0.75 9.29 12.60 14.87 16.91 18.24 0.96
0.80 7.48 10.13 11.98 13.64 14.82 0.98
0.85 5.71 7.77 9.26 10.61 11.65 1.04
0.90 4.05 5.63 6.84 7.98 8.91 1.20

Table 2.6 ATM call option prices on pure risky asset for different values of initial annual volatility
(v0). ATM call option prices on G-CPPI and G-TIPP for different values of protection level (PL) and
initial annual volatility (v0). kv = 1.25, θv = v2

0 , σv = 0.2, ρ = −0.5 (Heston), αr = 1.25, βr = r0,
σr = 0.025 (Vasicek). The remaining parameters associated to the portfolio insurance strategies are:
m = 4, Lmax = 100%, αmin = 30%. We performed 105 MC simulations with S0 = 100.

the greater the risk budget and the exposure to the risky asset. Therefore, the European call option
prices increase as the protection level decreases, whatever the portfolio insurance strategy involved.
Also in this case we observe that the European call options written on G-TIPP are (i) less affected
by the initial variance of the underlying risky asset, and (ii) the cheapest for any combination of
protection level and initial volatility. For this reason, also in this case they represent the best choice
among the contingent claims we have analyzed to be included in a structured investment product
with capital protection.

The role of the rebalancing frequency. We consider the European call option prices as a
function of the initial volatility and the rebalancing frequencies. The results are depicted in Table 2.7.
Up to now, we have only considered daily rebalancing for the portfolio strategies involved. However,
these assumptions might be violated in practice: due to transaction costs and liquidity constraints,
it is not always possible to re-balance the portfolio daily. For this reason, portfolio managers might
also consider lower re-balancing frequencies. However, a lower rebalancing frequency accentuates
the risk of a floor violation between two consecutive trading dates. Hence, we also consider different
frequencies for portfolio rebalancing: weekly (w), biweekly (2w), monthly (m), quarterly (3m), and
four-monthly (4m). We observe that the portfolio rebalancing frequency impacts the European
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Panel A: Option on pure risky asset
Rebalancing frequencies Initial annual volatility (v0) RPR

0.10 0.20 0.30 0.40 0.50
- 10.31 14.98 18.73 22.32 25.13 1.44

Panel B: Option on G-CPPI
Rebalancing frequencies Initial annual volatility (v0) RPR

0.10 0.20 0.30 0.40 0.50
d 4.76 6.83 8.48 10.01 10.93 1.29
w 4.80 6.89 8.60 10.22 11.19 1.33

2w 4.83 6.98 8.75 10.40 11.46 1.37
m 4.86 7.07 8.86 10.56 11.64 1.40

3m 4.96 7.32 9.18 10.93 12.18 1.45
4m 4.97 7.34 9.21 11.58 12.25 1.46

Panel C: Option on G-TIPP
Rebalancing frequencies Initial annual volatility (v0) RPR

0.10 0.20 0.30 0.40 0.50
d 4.05 5.63 6.84 7.98 8.91 1.20
w 4.06 5.64 6.86 8.01 8.96 1.21

2w 4.07 5.67 6.90 8.04 9.00 1.21
m 4.08 5.69 6.93 8.09 9.05 1.22

3m 4.15 5.82 7.12 8.33 9.33 1.25
4m 4.18 5.88 7.20 8.44 9.44 1.26

Table 2.7 ATM call option prices on G-TIPP and G-CPPI for different rebalancing disciplines (f) and
and initial annual volatility (v0). The model parameters are: v0 = 20%, kv = 1.25, θv = v2

0 , σv = 0.2,
ρ = −0.5 (Heston), r0 = 0.01, αr = 1.25, βr = r0, σr = 0.025 (Vasicek). The remaining parameters
associated to the portfolio insurance strategies are: PL = 90%, Lmax = 100%, m = 4, αmin = 30%.
The rebalancing frequency is daily (d), weekly (w), biweekly (2w), monthly (m). We performed 105 MC
simulations with S0 = 100.

option prices written on portfolio insurance strategies: options get cheaper as the rebalancing
frequency intensifies, due to the smaller premium required by the issuer. We focus on comparing
G-TIPP and G-CPPI option prices (Panel C and B, respectively). Our findings show that even using
different rebalancing disciplines, the G-TIPP call option is always lower-priced than the G-CPPI
one. Such a result might be clarified by considering the following reasoning: by construction, the
European option prices on portfolio insurance strategies heavily depend on the strategy’s risky
exposure, which is seen as a metric to evaluate the probability of gap risk or cash-lock event during
the investment time horizon. The latter increases as the rebalancing frequency decreases. As seen
in Section 2.1, the average exposure to the risky asset for the G-TIPP strategy is lower than for the
G-CPPI one. Hence, the gap risk, or a cash-lock event, is less likely to occur. This turns into a
lower price for G-TIPP. Even in this case, it is more convenient to include the G-TIPP within a
structured investment product capital as there will be an increase in the participation rate. This
property is fulfilled for any combination of the rebalancing frequency and the initial level of variance.
Furthermore, by looking at the corresponding RPRv we observe that the European options linked
to the G-TIPP strategy are less affected by the initial variance level of the underlying risky asset.
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Chapter 3

Pension fund with longevity risk: an
optimal portfolio insurance approach

Pension funds are financial intermediaries whose primary goal consists in guaranteeing an income to
participants during their retirement life. Accordingly, pension funds are linchpins in supporting
both retirees’ consumption and savings, and more in general, the growth of national economics. In
recent decades, economic cycles, financial market fluctuations, and the progressive ageing of the
population have involved challenges in pension funds’ management and sustainability.
The pension fund manager is responsible for handling financial resources over two different periods:
the accumulation and the decumulation phases. During the accumulation phase, contributions
are made, while the fund’s manager invests them to built up funds that will be available at the
retirement date. Once this date is reached, the decumulation period begins, meaning that the
accumulated funds are naturally employed to purchase life annuities for each retiree, ensuring
financial support throughout their remaining lifetime. It is worth noting that the accumulation
phase is affected by both the randomness in members’ labour income and the downside investment
risk, whilst the decumulation phase is exposed to longevity risk. Depending on the type of pension
scheme, the investment risk may be borne by either the fund or the member. Specifically, there
are two main categories of pension funds, namely, defined benefit (DB) and defined contribution
(DC) schemes. Nowadays, due to the financial unsustainability of DB systems, DC-based policies
represent the reference pension scheme. For further details, refer to Cocco and Gomes [2012]. The
present chapter focuses on the accumulation phase, leaving the interested reader to Blake [2006] for
a comprehensive overview of the economics of pension funds.
In DC schemes, contributions are predetermined, and benefits depend on the accumulated capital
until retirement. Consequently, the pension fund’s members bear the investment risks associated
with market fluctuations during the accumulation period, while the pension fund endures the
longevity risk during the decumulation phase. To dominate the uncertainties that impact the growth
of retirement capital, the fund’s manager needs to implement a suitable investment strategy taking
into account protection against adverse market conditions.
In the present chapter we are focused in deriving explicit optimal strategies for a defined contribution
pension fund within a continuous-time framework, accounting for the presence of a minimum
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guarantee. Our work contributes to the existing literature in three directions. From an actuarial
perspective, we incorporate the demographic risk factor during the accumulation phase in a DC
pension plan. From a financial standpoint, we adopt non-standard investment strategies throughout
the accumulation stage addressing specific investor purposes and providing a minimum guarantee.
From a numerical point of view, we screen different mortality scenarios to survey the impact of a
longer life expectancy on investment choices for DC pension funds. To the best of our knowledge,
this work brings together all of the above features into a unified study for the first time in the
literature.
A broad research arena on the optimal asset allocation problem with the presence of a minimum
guarantees for pension funds has been developed. For instance, Boulier et al. [2001] face the optimal
investment problem for DC pension plans considering both stochastic interest rates and the presence
of a minimum benefit guarantee. Employing the dynamic programming approach, the resulting
investment strategy maximizes the expected terminal utility of the surplus between the final wealth
of the fund and the guaranteed amount over a finite horizon. Deelstra et al. [2003] also take into
account a minimum guarantee for the terminal wealth of the fund in the context of asset-liability
management for a DC plan. Their objective is to maximize the expected utility of terminal wealth
over a finite horizon, when the contribution process is stochastic. Di Giacinto et al. [2011] take
the perspective of a fund manager aiming to maximize expected utility of wealth over an infinite
time horizon. In their analysis, they consider the constraint that the fund’s wealth must remain
above a “solvency level”, and explore the fund’s behavior when it reaches this minimum wealth
threshold. Their model is naturally stated as an optimal stochastic control problem with state and
control constraints, and analyzed using the dynamic programming approach. Han and Hung [2012]
focus on the optimal asset allocation problem in a DC pension fund when randomness in both
inflation and labour income is involved. The authors consider a minimum guarantee on purchasing
an inflation-linked annuity at retirement. Furthermore, the literature provides research works
wherein both a minimum guarantee and longevity dynamics influence optimal investment strategies.
Among others, Guan and Liang [2014, 2015], Sun et al. [2016], and Wang et al. [2021] examine
how the pension fund’s wealth is optimally allocated during the accumulation phase, when a target
annuity value serves as a minimum guarantee. The residual lifetime of the fund’s members is shaped
according to suitable deterministic mortality laws. Nevertheless, a stochastic mortality behaviour is
desirable to properly account for the longevity risk.
In a continuous-time framework, the stochastic force of mortality is typically modeled by affine
stochastic processes, exploiting their befitting properties for mortality analysis and their suitability
for the market-consistent evaluation of mortality/longevity-linked securities. See, e.g., Dahl [2004],
Biffis [2005], Luciano and Vigna [2005], Schrager [2006], Russo et al. [2011], Zeddouk and Devolder
[2020]. As the force of mortality is considered stochastic, and the minimum guarantee consists of a
target annuity value, longevity risk becomes a significant factor affecting the DC fund’s investments
during the accumulation period. The annuity value as well as the contribution payments depend on
the member’s lifetime and the fund’s manager has to acquire longevity-linked securities to hedge
against longevity risk and diversify the portfolio. The first insight into longevity-linked assets was
provided by Blake and Burrows [2001], afterwards deepened by Blake et al. [2006]. The authors
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introduced the so-called survivor or longevity bond, whose coupon amounts are defined according to
the number of survivors in a reference population. Currently, the longevity-linked securities market
is still evolving since the hedging offered by index-based products, such as longevity bonds, may
be limited by basis risk, credit risk, and liquidity risk. For further details, see, e.g., Blake et al.
[2019]. Most frequently, longevity-linked securities are traded over-the-counter (OTC), and they
are customized to fulfil the needs of the annuity provider. Alongside these agreements, the capital
market for such financial instruments is growing due to their usefulness in hedging longevity risk. See,
e.g., Ngai and Sherris [2011], Tsai et al. [2011], Blake et al. [2014], De Rosa et al. [2017]. In addition,
several research studies show the relevant role of longevity bonds in optimal investment problems
within a stochastic mortality framework. See, e.g., Menoncin [2008], De Kort and Vellekoop [2017],
Menoncin and Regis [2017], Agarwal et al. [2023].
Within the aforementioned setting, a crucial role is played by the investment strategy. A wide
strand of literature investigates dynamic portfolio insurance (PI) strategies in the accumulation
phase of DC pension schemes. The rationale behind such a choice is to protect the contributions
paid by the pension fund’s members to eliminate or reduce the impact of the risks above-mentioned,
while still allowing for equity market participation in favourable market conditions. An explicit
implementation of a PI strategy in the accumulation phase of a DC pension plan can be found
in Temocin et al. [2018]. Specifically, the authors employ the CPPI strategy in a pension plans
framework. By assuming a constant interest rate and a stock price dynamic driven by a geometric
Brownian motion, Temocin et al. [2018] derive the optimal multiplier maximizing the CRRA utility
of the terminal surplus, also known as the cushion, and intended as the difference between the
portfolio value and the guaranteed amount.
In the present chapter, we intend to generalize the framework proposed by Temocin et al. [2018],
deriving the optimal design of the PPI strategy for the accumulation phase of a DC pension scheme
in the presence of market/investment risk, interest rate risk, and longevity risk. Due to the presence
of these three sources of risk, the standard version of the PPI strategy cannot be applied, as it is
unable to hedge against adverse movements in the stochastic interest rate and the force of mortality.
To overcome this issue, we propose a modified version of the PPI strategy following the approach
outlined in the recent work of Chen et al. [2022]. By adopting a target lifetime annuity as the
guaranteed amount, the minimum portfolio value – the so-called floor – to be protected during the
entire investment horizon becomes no longer deterministic. Accordingly, the present value of the
guaranteed lifetime annuity is regarded as the investment strategy’s floor, while the residual wealth
is employed in a purpose-oriented diversified portfolio, namely, a combination of bonds, longevity
bonds, and stocks. We refer to our approach as purpose-oriented proportional portfolio insurance
(PO-PPI) strategy.
From the perspective of the fund’s manager, the goal is to determine the exogenous parameter
of the proposed PI strategy, known as the multiplier, along with the optimal composition of the
purpose-oriented portfolio surplus between the fund’s terminal wealth and the target annuity
value at retirement date. To obtain explicit solutions, we posit a CRRA-type expected utility
maximization problem over the terminal value of the cushion, that is, the surplus between the
fund’s terminal wealth and the target annuity value at retirement date. The associated wealth
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process fails to be self-financing, and consequently, we reformulate the problem in terms of an
equivalent single-investment process, in compliance with Boulier et al. [2001]. To solve the resulting
stochastic optimization problem, we apply standard dynamic programming techniques, and we
derive closed-form solutions both for the auxiliary and the original problems. Interestingly, the
resulting optimal multiplier is genuinely dynamic, different than the standard version of the CPPI.
Our theoretical proposal is supported by a comprehensive numerical application that focuses on
homogeneous cohorts in terms of gender, age, and economic status. As a baseline study, we run a
simulation analysis of the investment strategies as determined by setting the controls to the optimum,
namely, the optimal proportions of the fund’s wealth invested in each asset. Our findings indicate
that for both genders, optimality requires a switch in investment aptitude, which is consistent with
the financial life cycle theory.
The numerical experiments exhibit a two-mode behavior, depending on the time period under
consideration. As expected, in the early accumulation phase, the manager executes an aggressive
investment policy to boost capital accretion, investing primarily in bonds and longevity bonds.
As retirement approaches, a shift towards more conservative investments becomes essential to
preserve the accumulated capital. Remarkably, the baseline case highlights the role of the multiplier
in explaining gender-based differences in optimal investments. As the females have a longer life
expectancy than males, the value of their annuity becomes larger, increasing the floor value, and
consequently, reducing the cushion available for investments. Thus, the fund manager needs to
push the investment leverage via the multiplier to ensure that, at the retirement date, the accrued
amount provides at least the target annuity. The comparison between optimal gender-based
multipliers highlights a gap in quantifying the financial impact of the gender-based longevity gap on
retirement capital accumulation. More generally, the longer the fund member’s lifetime manifesting
in the decumulation phase, the greater the multiplier required during the accumulation phase. We
emphasize that our proposal allows us to establish a connection between the accumulation and
decumulation phases, meaning how future longevity dynamics influence the optimal PI strategy
through the multiplier. Such a result represents a novel contribution to the existing literature. To
investigate variations in optimal asset allocation, we further carry out a sensitivity analysis based on
changes in financial and mortality factors, namely, the risk aversion coefficient, the market price of
the longevity risk, the time to maturity of the rolling longevity bond, and the wage replacement ratio.
Finally, we examine the impact of the mortality phenomenon on optimal investment proportions by
considering both higher mortality and higher longevity scenarios. Our findings are in line with the
results stemming from comparable research works, such as Menoncin and Regis [2017] and Agarwal
et al. [2023], confirming the crucial role of longevity bonds in building and protecting the retirement
capital.
The remainder of this chapter is organized as follows. Section 3.1 builds the modelling setting of our
proposal. The stochastic models describing mortality, financial, and labour income dynamics, and
the mathematical representation of the pension scheme’s management are presented. In Section
3.2, we introduce the purpose-oriented PPI for a DC pension fund, and formulate and solve the
optimal asset allocation problem of the fund’s manager. Section 3.3 shows a numerical application
consisting of both simulation and sensitivity analysis about our theoretical framework.
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3.1 The model

We look at the challenge faced by a pension plan manager who has to determine investment strategy
decisions during the accumulation phase. The primary objective is to ensure that the pension
wealth remains sufficient to provide lifetime annuities for the surviving pension plan members
at retirement. The value of these annuities, which acts as a minimum guarantee, depends on
the remaining life expectancy of the pension plan members. As a result, the pension plan’s
wealth becomes vulnerable to uncertainties arising from both financial market dynamics and the
longevity risk of its members. Therefore, in line with previous research, such as Biffis [2005],
Ceci et al. [2020], we construct a combined financial-insurance market model by applying the
progressive enlargement of the filtration approach. Consider a complete probability space (Ω,F ,P)
equipped with a complete and right-continuous filtration F = {F(t), t ∈ [0, T ]}, where 0 < T < +∞,
represents the retirement date. Within this filtered probability, we introduce three independent
one-dimensional (F,P)-Wiener processes Zi = {Zi(t), t ∈ [0, T ]} , i = {r, λ, S}, representing the
sources of uncertainty driving the financial market dynamics and the mortality intensity of the
pension plan members. For further details refer to Section 3.1.1 and Section 3.1.2, respectively.
Furthermore, let FZi =

{
FZi(t), t ∈ [0, T ]

}
be the canonical filtrations of Zi, i = {r, λ, S}, with

FZi(t) := σ {Zi(z), 0 ≤ z ≤ t}, i = {r, λ, S}, for every t ∈ [0, T ], respectively. Additionally, we set
F̃ =

{
F̃(t), t ∈ [0, T ]

}
, where

F̃(t) := FZr (t) ∨ FZλ(t) ∨ FZS (t), t ∈ [0, T ].

We postulate that the reference filtration F completed by all P-null sets, i.e., F = F̃, characterizes
the information flow related to the financial market, without accounting for the survival time of
pension plan members.

3.1.1 The mortality model

We posit that the pension plan members form a cohort of n identical workers who share the same
age, gender, health, and social status. Let λ := {λ(t), t ∈ [0, T ]} be an F-adapted process on the
filtered probability space (Ω,F ,F,P), representing the mortality intensity of pension plan members.
It satisfies the condition E

[∫ t
0 λ(z)dz

]
< +∞, for every t ∈ [0, T ]. If we define p(t) as the number

of pension plan members who have survived from time 0 to t, we can express it as

p(t) = p0 · exp
{

−
∫ t

0
λ(z)dz

}
, t ∈ [0, T ],

where p0 =: p(0). Note that if we normalize p0 to one, then p(·) corresponds to the survival
probability of the pension plan members. We suppose that λ evolves according to a moving-target,
mean-reverting, square-root process. Its P-dynamics read as dλ(t) = ρλ (βλ(t) − λ(t)) dt+ σλ

√
λ(t)dZλ(t), t ∈ [0, T ],

λ(0) = λ0 > 0.
(3.1)
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Here ρλ > 0 is the speed of mean reversion of mortality intensity, βλ(·) is the long-run, time-
dependent, positive mean value of the mortality intensity, and σλ > 0 is the volatility of mortality
intensity. To ensure that λ is strictly positive P-a.s., we hypothesize that the extended Feller
condition holds, i.e., 2ρλβλ(t) ≥ σ2

λ, for every t ∈ [0, T ]. For further details refer to De Kort and
Vellekoop [2017]. Furthermore, as in Menoncin [2009], Zeddouk and Devolder [2020], in order for
λ to assume reasonable values, we require, for any t ∈ [0, T ], that its expected value equals the
corresponding deterministic Gompertz-Makeham mortality intensity. To achieve this goal, we set

βλ(t) = ϕλ + 1
bλ

( 1
bλ

1
ρλ

+ 1
)
e

ι+t−lλ
bλ , t ∈ [0, T ], (3.2)

where ι is the age of the pension plan members at t = 0, ϕλ > 0 quantifies the age-independent
component of mortality intensity, and lλ, bλ > 0 represent the modal value and the dispersion
parameter of the age-at-death distribution, respectively.
At this point, we construct a stochastic random time of death for the pension plan members.
Mimicking the reduced-form credit risk models, we adopt the canonical construction of defining
a random time using a specified hazard process. Given the F-mortality intensity process λ, the
corresponding F-hazard process within the time interval [0, T ] is

∫ t
0 λ(z)dz, for every t ∈ [0, T ]. By

introducing a random variable Θλ which follows a unit exponential distribution and is independent
on F(T ), we define the stochastic random time of death τλ as

τλ := inf
{
t ≥ 0 :

∫ t

0
λ(z)dz ≥ Θλ

}
.

By exploiting the P-independence on Θλ and the F(t)-measurability of the hazard process, for every
t ∈ [0, T ], we have

P(τλ > t|F(t)) = E [p(t)|F(t)] = P
(∫ t

0
λ(z)dz < Θλ

∣∣∣∣F(t)
)

= e−
∫ t

0 λ(z)dz, t ∈ [0, T ].

It is worth pointing out that the stochastic random time of death τλ is not a stopping time w.r.t.
the reference filtration F. Therefore, we have to introduce an enlarged filtration to satisfy the above
property. To this end, we introduce the death occurrence process Hλ =

{
Hλ(t), t ∈ [0, T ]

}
defined

as
Hλ(t) := 1{τλ≤t}, t ∈ [0, T ],

which records whether the pension plan member has died at every given time t ∈ [0, T ]. Accordingly,
we set FHλ(t) := σ

{
Hλ(z) : 0 ≤ z ≤ t

}
, for every t ∈ [0, T ] express the enlarged filtration G =

{G(t), t ∈ [0, T ]} as
G(t) := F(t) ∨ FHλ(t), t ∈ [0, T ].

Consequently, G is the smallest filtration containing F such that τλ is a G-stopping time. For
this reason, G incorporates information about both the financial market and the survival time
of pension plan members. By the canonical construction of the stochastic random time of death
τλ, we observe that: (i) every local (F,P)-martingale is also a local (G,P)-martingale (for further
details, see Brémaud and Yor [1978]), and (ii) the process H̃λ =

{
H̃λ(t), t ∈ [0, T ]

}
defined as
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H̃λ(t) := Hλ(t) −
∫ t∧τλ

0 λ(z)dz, t ∈ [0, T ] is a (G,P)-martingale.

3.1.2 The combined financial-insurance model

In the present section, we will construct a combined financial-insurance market model defined on
the filtered probability space (Ω,G,G,P) with G = G(T ). Our focus is on determining the price
processes of the financial assets within this market, which requires the characterization of the
risk-neutral probability measure Q equivalent to P on (Ω,G,G,P) . To achieve this, we define the
probability measure Q by setting

dQ
dP

∣∣∣∣
G(T )

:= Π(T ), P-a.s., such that EP[Π(T )] = 1,

where the Radon-Nikodým density process π = {π(t), t ∈ [0, T ]} satisfies the following stochastic
differential equation (SDE)

dΠ(t)
Π(t−) = −Ξr(t)dZr(t) − Ξλ(t)dZλ(t) − ΞS(t)dZS(t) + Φ(t)dH̃λ(t), t ∈ [0, T ],

π(0) = 1,
(3.3)

for some G-predictable processes Ξi = {Ξi(t), t ∈ [0, T ]}, i = {r, λ, S}, and Φ = {Φ(t), t ∈ [0, T ]}
such that Φ(t) > −1, for every t ∈ [0, T ]. Processes Ξi(·), i = {r, λ, S}, represent the market prices
of interest rate risk, systematic longevity risk, and stock price risk, respectively, while Φ(·) represents
the market price of idiosyncratic longevity risk. A straightforward application of Itô’s product
rule shows that the unique solution to (3.3) is Π(t) = Π1(t)Π2(t), where Π1 and Π2 are the unique
solutions to 

dΠ1(t)
Π1(t) = −Ξr(t)dZr(t) − Ξλ(t)dZλ(t) − ΞS(t)dZS(t), t ∈ [0, T ],

Π1(0) = 1,
(3.4a)

and  dΠ2(t) = Π2(t−)Φ(t)dH̃λ(t), t ∈ [0, T ],

Π2(0) = 1,
(3.4b)

given by

Π1(t) = exp
{

−
∫ t

0
Ξr(z)dZr(z) −

∫ t

0
Ξλ(z)dZλ(z) −

∫ t

0
ΞS(z)dZS(z)

−1
2

∫ t

0

(
Ξ2

r(z) + Ξ2
λ(z) + Ξ2

S(z)
)

dz
}
, t ∈ [0, T ],

and
Π2(t) = 1 +

∫ t

0
Φ(z)Π2(z−)dH̃λ(z), t ∈ [0, T ],
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respectively. A straightforward application of Girsanov’s theorem implies that the processes

ZQ
i (t) = Zi(t) +

∫ t

0
Ξi(z)dz, t ∈ [0, T ], i = {r, λ, S}, (3.5)

are (G,Q)-Brownian motions and the process

H̃λ,Q(t) = H̃λ(t) −
∫ t∧τλ

0
Φ(z)λ(z)dz = Hλ(t) −

∫ t∧τλ

0
(1 + Φ(z))λ(z)dz, t ∈ [0, T ],

is a (G,Q)-martingale. Following Luciano et al. [2012], Agarwal et al. [2023], we assume that
the idiosyncratic component of risk is diversifiable, implying a zero risk premium for individual
death occurrences. Consequently, in our framework the risk-neutral probability measure Q is given by

dQ
dP

∣∣∣∣
G(T )

= Π1(T ).

We suppose that the combined financial-insurance market consists of a cash account, a stock, a
rolling zero-coupon bond (ZCB), and a rolling longevity ZCB. The price process of the cash account
S0 = {S0(t), t ∈ [0, T ]} is described by the following ordinary differential equation (ODE)

dS0(t)
S0(t) = r(t)dt, t ∈ [0, T ],

S0(0) = 1,
(3.6)

where r = {r(t), t ∈ [0, T ]} is the instantaneous interest rate. Because of the investment horizon of
a DC pension scheme spans several decades, we model r using a square-root mean-reverting process.
In particular, its P-dynamics are given as follows dr(t) = αr (βr − r(t)) dt+ σr

√
r(t)dZr(t), t ∈ [0, T ],

r(0) = r0 > 0,
(3.7)

where βr > 0 is the long-run mean of the interest rate, αr > 0 is the speed of mean reversion, and
σr > 0 is the interest rate volatility. Furthermore, we assume that the Feller condition 2αrβr ≥ σ2

r

holds such that r(t) ≥ 0 P−a.s., for every t ∈ [0, T ]. As in Wang et al. [2021], we hypothesize that
the dynamics of the stock price process S = {S(t), t ∈ [0, T ]} are

dS(t)
S(t) = r(t)dt+ σS,r

√
r(t)

(
dZr(t) + ξr

√
r(t)dt

)
+ σS (dZS(t) + ξSdt) , t ∈ [0, T ],

S(0) = s > 0,
(3.8)

where σS,r > 0 measures the effect of interest rate volatility on the stock price and σS > 0 represents
the stock price volatility depending on factors different from the interest rate. We further assume
that: (i) the market price of interest rate risk Ξr(t) is proportional to the square root of the interest
rate, i.e., Ξr(t) = ξr

√
r(t) with ξr < 0, for every t ∈ [0, T ], and (ii) the market price of stock price

risk ΞS(t) is constant, namely ΞS(t) = ξS > 0, for every t ∈ [0, T ]. To manage the interest rate
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risk, we introduce ZCBs within the financial market and the following proposition provides the
corresponding arbitrage-free price.

Proposition 3.1.1. Let r = {r(t), t ∈ [0, T ]} be the instantaneous interest rate process with
dynamics (3.7). Then, the arbitrage-free t-price of a ZCB paying one unit of currency at its
expiration date s ≥ t, denoted by P (t, s), satisfies

P (t, s) = exp {h1(t, s) − h2(t, s)r(t)} , 0 ≤ t ≤ s,

where

h1(t, s) := 2αrβr

σ2
r

ln

 2kre

(αr + σrξr + kr) (s− t)
2

(αr + σrξr + kr)
(
ekr(s−t) − 1

)
+ 2kr

 , (3.9a)

h2(t, s) :=
2
(
ekr(s−t) − 1

)
(αr + σrξr + kr)

(
ekr(s−t) − 1

)
+ 2kr

, (3.9b)

and kr: =
√

(αr + σrξr)2 + 2σ2
r . Moreover, the P-dynamics of the ZCB price process satisfy


dP (t, s)
P (t, s) = r(t)dt− σP (t, s)

√
r(t)

(
dZr(t) + ξr

√
r(t)dt

)
, 0 ≤ t ≤ s,

P (s, s) = 1,
(3.10)

where σP (t, s) := h2(t, s)σr > 0, 0 ≤ t ≤ s, is the volatility of the ZCB price.

Proof. See [Cox et al., 1985, p. 393].

We notice that the time to maturity s − t, t ∈ [0, s] of the ZCB varies over time. Besides, as
argued in Boulier et al. [2001], the market is not able to provide a ZCB maturing at s for any
given time t ∈ [0, s]. To overcome such a drawback, we introduce a rolling ZCB with constant time
to maturity K, whose price process PK = {PK(t), t ∈ [0, T ]}, according to (3.10), exhibits the
following P-dynamics

dPK(t)
PK(t) = r(t)dt− σK

√
r(t)

(
dZr(t) + ξr

√
r(t)dt

)
, t ∈ [0, T ],

PK(0) = pK > 0,
(3.11)

where

σK =
2σr

(
ekrK − 1

)
(αr + σrξr + kr) (ekrK − 1) + 2kr

> 0

is the volatility of the rolling ZCB price. It is well-known that in a complete market a ZCB issued at
time t with a maturity of s can be replicated by investing in the rolling ZCB and the cash account
as follows

dP (t, s)
P (t, s) = σP (t, s)

σK

dPK(t)
PK(t) +

(
1 − σP (t, s)

σK

) dS0(t)
S0(t) , 0 ≤ t ≤ s.
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Similar to the approach applied for the interest rate risk, to manage the longevity risk we introduce
suitable longevity ZCBs within the financial market. Specifically, we adopt the definition provided
by De Kort and Vellekoop [2017], which can be stated as follows.

Definition 3.1.2. A longevity bond is a financial security that pays an amount

p(s) = exp
{

−
∫ s

0
λ(u)du

}
(3.12)

at its expiration date s > 0, that is, the expected fraction of survivors at time s among individuals
in a large reference population sharing a common mortality intensity.

If we assume that: (i) the mortality intensity of the pension plan members is given by (3.1), and (ii)
the market price of longevity risk Ξλ(t) is proportional to the square root of mortality intensity, that
is, Ξλ(t) = ξλ

√
λ(t), with ξλ < 0, for every t ∈ [0, T ], then the no-arbitrage price of the longevity

ZCB can be explicitly expressed as follows.

Proposition 3.1.3. Let λ = {λ(t), t ∈ [0, T ]} be the instantaneous force of mortality process with
dynamics (3.1). Then, the no-arbitrage t-price LB(t, s) of longevity ZCB issued at time t ∈ [0, s],
and expiring at s ≥ t is given by

LB(t, s) = exp
{

−
∫ t

0
λ(z)dz + h1(t, s) − h2(t, s)r(t) + η1(t, s) − η2(t, s)λ(t)

}
, 0 ≤ t ≤ s, (3.13)

where

η1(t, s) := −ρλ

∫ s

t
βλ(z)η2(z, s)dz, (3.14a)

η2(t, s) :=
2
(
ekλ(s−t) − 1

)
(ρλ + σλξλ + kλ)

(
ekλ(s−t) − 1

)
+ 2kλ

, (3.14b)

and kλ :=
√

(ρλ + σλξλ)2 + 2σ2
λ. Additionally, denoting by σLB

(t, s) := η2(t, s)σλ, 0 ≤ t ≤ s, the
P-dynamics of the longevity ZCB price process satisfy

dLB(t, s)
LB(t, s) =r(t)dt− σP (t, s)

√
r(t)

(
dZr(t) + ξr

√
r(t)dt

)
− σLB

(t, s)
√
λ(t)

(
dZλ(t) + ξλ

√
λ(t)dt

)
, 0 ≤ t ≤ s,

LB(s, s) =e−
∫ s

0 λ(z)dz.

(3.15)

Proof. For any t ∈ [0, T ], under the risk-neutral probability measure Q, the dynamics of the mortality
intensity process and the instantaneous interest rate process are, respectively, given by

dλ(t) = ρQλ

(
βQλ (t) − λ(t)

)
dt+ σλ

√
λ(t)dZQ

λ (t), t ∈ [0, T ],

dr(t) = αQ
r

(
βQr − r(t)

)
dt+ σr

√
r(t)dZQ

r (t), t ∈ [0, T ],
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where

ρQλ = ρλ + σλξλ,

βQλ (t) = ρλ

ϕλ + 1
bλ

( 1
ρλ

1
bλ

+ 1
)
e

ι+t−lλ
bλ

ρλ + σλξλ
, t ∈ [0, T ],

αQ
r = αr + σrξr,

βQr = αrβr

αr + σrξr
.

Now we consider a longevity ZCB as in Definition 3.1.2. Standard arguments ensure that its
risk-neutral value is

LB(t, s) = EQ
[
p(s)
p(0)e

−
∫ s

t
r(z)dz

∣∣∣∣G(t)
]

= EQ
[
e−
∫ s

0 λ(z)dze−
∫ s

t
r(z)dz

∣∣∣∣G(t)
]

= e−
∫ t

0 λ(z)dzEQ
[
e−
∫ s

t
(λ(z)+r(z))dz

∣∣∣∣G(t)
]
. (3.16)

We set NL(t, s) = EQ
[
e−
∫ s

t
(λ(z)+r(z))dz

∣∣∣∣G(t)
]
. Hence, to determine LB(t, s) we need to compute

NL(t, s). We notice that ÑL(t, s) = e−
∫ t

0 (r(u)+λ(u))duNL(t, s) is a martingale under Q. From Itô’s
formula we get

dÑL(t, s) =e−
∫ t

0 (r(z)+λ(z))dz
{[

− (λ(t) + r(t))N(t, s) + ∂

∂t
NL(t, s)dt+ ∂

∂r
NL(t, s)αQ

r

(
βQr − r(t)

)
+ σ2

r

2
∂2

∂r2N
L(t, s)r(t) + ∂

∂λ
NL(t, s)ρQλ

(
βQλ (t) − λ(t)

)
+ σ2

λ

2
∂2

∂λ2N
L(t, s)λ(t)

]
dt

+
(
∂

∂r
NL(t, s)σr

√
r(t)dZQ

r (t) + ∂

∂λ
NL(t, s)σλ

√
λ(t)dZQ

λ (t)
)}

.

(3.17)

Setting the dt term of (3.17) to zero leads to the following PDE

∂

∂t
NL(t, s)dt+ ∂

∂r
NL(t, s)αQ

r

(
βQr − r(t)

)
+ σ2

r

2
∂2

∂r2N
L(t, s)r(t)

+ ∂

∂λ
NL(t, s)ρQλ

(
βQλ (t) − λ(t)

)
+ σ2

λ

2
∂2

∂λ2N
L(t, s)λ(t) = (r(t) + λ(t))NL(t, s), (3.18)

with terminal condition NL(s, s) = 1. Since r(·) and λ(·) are driven by independent Brownian
motions, and since we assume affine dynamics for both interest rate and force of mortality, we are
able to obtain the solution to (3.18) as

NL(t, s) = eh1(t,s)−h2(t,s)r(t)eη1(t,s)−η2(t,s)λ(t), (3.19)
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with terminal conditions η1(s, s) = η2(s, s) = 0. From (3.18) and (3.19), we derive

(
∂

∂t
h1(t, s) − ∂

∂t
h2(t, s)r(t) + ∂

∂t
η1(t, s) − λ(t) ∂

∂t
η2(t, s)

)
−h2(t, s)αQ

r

(
βQr − r(t)

)
+σ2

r

2 h
2
2(t, s)r(t)

− η2(t, s)ρQλ
(
βQλ (t) − λ(t)

)
+ σ2

λ

2 η2
2(t, s)λ(t) = r(t) + λ(t).

By collecting r and λ above, we get the following two systems of ODEs
0 = ∂

∂t
h2(t, s) − αQ

r h2(t, s) − σ2
r

2 h
2
2(t, s) + 1,

0 = ∂

∂t
h1(t, s) − h2(t, s)αQ

r β
Q
r ,

(3.20a)


0 = ∂

∂t
η1(t, s) − ρQλβ

Q
λ (t)η2(t, s),

0 = ∂

∂t
η2(t, s) − ρQλ η2(t, s) − σ2

λ

2 η2
2(t, s) + 1,

(3.20b)

whose solutions are given by (3.9) and, (3.14), respectively. Substituting (3.19) into (3.16), we
obtain equation (3.13). Applying Itô’s Lemma to (3.13), we derive the Q-dynamics of the longevity
ZCB price satisfying

dLB(t, s)
LB(t, s) =

[
− λ(t) +

(
∂

∂t
h1(t, s) − h2(t, s)αQ

r β
Q
r

)
−
(
∂

∂t
h2(t, s) − αQ

r h2(t, s) − σ2
r

2 h
2
2(t, s)

)
r(t)

+
(
∂

∂t
η1(t, s) − η2(t, s)ρQλβ

Q
λ (t)

)
−
(
∂

∂t
η2(t, s) − η2(t, s)ρQλ − σ2

λ

2 η2
2(t, s)

)
λ(t)

]
dt

− σP (t, s)
√
r(t)dZQ

r (t) − η2(t, s)σλ

√
λ(t)dZQ

λ (t),

Setting σLB
(t, s) = η2(t, s)σλ and thanks to (3.20), the above Q-dynamics can be simplified as

follows
dLB(t, s)
LB(t, s) = r(t)dt− σP (t, s)

√
r(t)dZQ

1 (t) − σLB
(t, s)

√
λ(t)dZQ

2 (t), (3.21)

with final condition LB(s, s) = e−
∫ s

0 λ(z)dz. Hence, its corresponding P-dynamics are the ones
depicted in equation (3.15). The proof is now completed.

In accordance with the financial ZCB, we consider a rolling longevity ZCB LK1 = {LK1(t), t ∈ [0, T ]}
with constant time to maturity K1, whose P-dynamics satisfy

dLK1(t)
LK1(t) =r(t)dt− σK1

√
r(t)

(
dZr(t) + ξr

√
r(t)dt

)
− σLK1

√
λ(t)

(
dZλ(t) + ξλ

√
λ(t)dt

)
,

LK1(0) =lK1 > 0,
(3.22)

with

σK1 :=
2σr

(
ekrK1 − 1

)
(αr + σrξr + kr) (ekrK1 − 1) + 2kr

> 0,
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σLK1
:=

2σλ

(
ekλK1 − 1

)
(ρλ + σλξλ + kλ) (ekλK1 − 1) + 2kλ

> 0.

For further details, see, e.g., Menoncin [2008]. A longevity ZCB issued at time t and with maturity
s can be replicated using rolling bonds, rolling longevity bonds, and cash as follows

dLB(t, s)
LB(t, s) =

[
1 − σP (t, s)

σK
− σLB

(t, s)
σLK1

(
1 − σK1

σK

)] dS0(t)
S0(t)

+
(
σP (t, s)
σK

− σK1

σK

σLB
(t, s)

σLK1

)
dPK1(t)
PK1(t) + σLB

(t, s)
σLK1

dLK1(t)
LK1(t) , 0 ≤ t ≤ s ≤ T.

3.1.3 Contributions and benefits

In a DC pension plan, each member pays a flow to the pension account. Along the lines of Deelstra
et al. [2003, 2004], we assume that such flow consists of a lump sum at date t = 0, denoted by w0, and
a continuously paid premium, given by a constant percentage of their labour income. As in Guan
and Liang [2014] and Wang et al. [2021], we assume that the labour income of the representative
pension plan’s member is a stochastic process L = {L(t), t ∈ [0, T ]} with the following P-dynamics

dL(t)
L(t) = ζdt+ σL,r

√
r(t)

(
dZr(t) + ξr

√
r(t)dt

)
+ σL (dZS(t) + ξSdt) , t ∈ [0, T ],

L(0) = l0 > 0,

where ζ ∈ R is the labour income appreciation rate, while σL,r > 0 and σL > 0 are two factors
measuring the effects of the interest rate and the stock market risks on the labour income, respectively.
The instantaneous flow of contribution C = {C(t), t ∈ [0, T ]} of the representative pension plan’s
member is C(t) = γL(t), for every t ∈ [0, T ]. Here, γ ∈ (0, 1) is the constant percentage of the
labour income allocated to the pension plan/deposited into the pension account. Evidently, the
P-dynamics of his/her flow of contribution C are

dCL(t)
CL(t) = ζdt+ σL,r

√
r(t)

(
dZr(t) + ξr

√
r(t)dt

)
+ σL (dZS(t) + ξSdt) , t ∈ [0, T ],

CL(0) = γl0 =: cL.

(3.23)

In our framework, the aim of the pension plan manager is to determine the investment strategy
under the constraint that the pension plan wealth at retirement T exceeds the value of np(T ) lifetime
annuities, which play the role of a minimum guarantee, along the lines of Deelstra et al. [2003],
Di Giacinto et al. [2011], Han and Hung [2012], Guan and Liang [2014], Zhang et al. [2020] and Wang
et al. [2021], among others. For this purpose, we first set the flow of benefits level that the annuity
must provide. As in Wang et al. [2021], we assume that the flow of benefits b = {b(t), t ∈ [T, ω− ι]}
is

b(t) = bT · exp
{
j̃(t− T )

}
,

where bT > 0 is the benefit at retirement date, ω is the maximal survival age, ι is the age of the
individual as in (3.2), and j̃ ≥ 0 is the inflation rate associated with the cost of living. In such a
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framework, we only have to determine the level of bT . However, the level of benefit at retirement bT

and the contribution rate γ cannot be set separately: the pension plan members choose either the
contribution rate γ or bT , while the remaining parameter can be obtained via the so-called feasible
condition. Along the lines of El Karoui and Jeanblanc-Picqué [1998] and Deelstra et al. [2003, 2004],
the latter reads as

EQ
[∫ ω−ι

0
n (CL(z)1z<T − b(z)1z≥T ) e−

∫ z

0 r(q)dqp(z)dz
]

= 0. (3.24)

Condition (3.24) states that the expected present value of contribution streams, paid by the pension
plan members during the accumulation phase, must be equal to the expected present value of the
flow of benefits delivered by the annuity during the decumulation phase. With the aid of equation
(3.24), we are able to characterize a feasible pair (γ, bT ) of contribution rate γ and flow of benefits
bT at retirement date T by the following relation

γ

bT
=

∫ ω−ι
T ej̃(z−T )LB(0, z)dz∫ T

0 EQ
[
L(z)e−

∫ z

0 r(q)dqp(z)
]

du
. (3.25)

As in Agarwal et al. [2023], we assume that the annuity provider incorporates the mortality behaviour
of the pension plan members through the mortality intensity λ given in (3.1). Hence, the fair price
of the lifetime annuity at retirement date T is

B(T ) = EQ
[∫ ω−ι

T
b(z)e−

∫ z

T
r(q)dq p(z)

p(T )dz
∣∣∣∣G(T )

]
.

Remark 3.1.4. It is well known that annuity providers have different risk-neutral probabilities
regarding the mortality intensity process when compared to policyholders, see Biffis and Millossovich
[2006] for further details. To keep the picture as simple as possible, in the present work, we assume
that the annuity providers and the policyholders share the same risk-neutral probabilities, leaving the
study of the more general issue to future research.

Finally, we introduce the minimum guarantee used to purchase the lifetime annuities for surviving
members at retirement time T. In particular, its value at retirement time is given by

G(T ) = np(T )B(T ) = nEQ
[∫ ω−ι

T
b(z)e−

∫ z

T
r(q)dqp(z)dz

∣∣∣∣G(T )
]
. (3.26)

3.1.4 The PO-PPI strategy for the accumulation phase

We explore the investment strategy deployed by the pension fund manager during the accumulation
phase. In particular, starting from time t = 0 and until the retirement date T the pension
plan manager shall invest the total contributions’ streams according to a pre-specified allocation
mechanism. Since the aim of the pension plan manager is to obtain at least the guaranteed amount
G(T ) at time T , such an allocation mechanism should both preserve the wealth against downward
losses and offer equity market participation in case of favorable market conditions. To fulfil such
properties, we generalize the framework of Temocin et al. [2018] employing in the management of



3.1 The model 55

DC pension plan an allocation mechanism belonging to the PPI strategy. As shown in Section 1.4.2,
the PPI strategy is a dynamic allocation mechanism built upon the floor, which is the minimum
acceptable value of the total wealth during the accumulation phase. More precisely, it is the process
G = {G(t), t ∈ [0, T ]} given by the present value of the minimum guarantee G(T ) at the retirement
date T

G(t) = EQ
[
G(T )e−

∫ T

t
r(z)dz|G(t)

]
= n

∫ ω−ι

T
b(z)LB(t, z)dz, t ∈ [0, T ], (3.27)

whose P-dynamics read as

dG(t)
G(t) = r(t)dt− n

G(t)

(∫ ω−ι

T
b(z)σP (t, z)LB(t, z)dz

)√
r(t)

(
dZr(t) + ξr

√
r(t)dt

)
− n

G(t)

(∫ ω−ι

T
b(z)σLB

(t, z)LB(t, z)dz
)√

λ(t)
(

dZλ(t) + ξλ

√
λ(t)dt

)
, t ∈ [0, T ],

(3.28)

The exposure to the risky asset S is proportional to the cushion, that is, the difference between the
total wealth process WP P I = {WP P I(t), t ∈ [0, T ]} and the floor process. The proportionality factor
is the multiplier m which in the case of the PPI strategy is time-varying, i.e. m = {m(t), t ∈ [0, T ]} .
As the PPI strategy is self-financing, the remaining wealth is invested in the cash account S0. For
our purposes, we make the following assumptions.

Assumption 3.1.1. If a pension plan member dies before the retirement date T , their contributions
will no longer be paid out, and their heirs receive no benefits (see, [Agarwal et al., 2023, p. 13]);
in turn, the resources already accumulated are redistributed among the surviving members of the
pension plan. This can be seen as a form of cross-subsidization because the contributions of those
who die earlier are used to bolster the financial security of the surviving members.

Given Assumption 3.1.1 and, according to the PPI strategy, the wealth P-dynamics are given by
dWP P I(t) =m(t)

(
WP P I(t) −G(t)

) dS(t)
S(t) +

[
WP P I(t) −m(t)

(
WP P I(t) −G(t)

)] dS0(t)
S0(t)

+ np(t)CL(t)dt, t ∈ [0, T ],

WP P I(0) =n · w0 > 0.
(3.29)

In our modeling framework, the pension plan wealth is exposed to both longevity and interest rate
risks. Indeed, as shown in equations (3.26) and (3.27), the level of the minimum guarantee will
be higher than expected if (i) the actual survival rate of the pension plan members exceeds its
expectation or (ii) the actual level of interest rates is lower than expected. Therefore, given the
need to hedge against the aforementioned risks, the standard version of the PPI strategy can no
longer be used. To deal with the latter scenario, along the lines of Chen et al. [2022], we exploit a
modified version of the PPI strategy, termed purpose-oriented PPI (PO-PPI) strategy. The main
difference between PPI and PO-PPI is the underlying portfolio of risky assets to which the latter
is exposed. As shown in equation (3.29), the exposure of the PPI strategy is invested in a stock
market index. By contrast, the exposure of PO-PPI is invested in a purpose-oriented and diversified



3.1 The model 56

fund. More precisely, we consider a linear combination of assets related to the specific risks the
pension plan manager is intended to hedge against. According to the financial-insurance market
model proposed in Section 3.1, the diversified index is a linear combination of a rolling longevity
bond (to safeguard against longevity risk), a rolling bond (to protect against interest rate risk), and
a risky asset (to hedge against market/investment risk and provide an equity market participation
in case of favorable market conditions). Denoting by I = {I(t), t ∈ [0, T ]} the price process of the
purpose-oriented fund, the corresponding P-dynamics are

dI(t)
I(t) = αPK

(t)dPK(t)
PK(t) + αLK1

(t)dLK1(t)
LK1(t) + αS(t)dS(t)

S(t) , t ∈ [0, T ],

I(0) = i0,

where αi : [0, T ] × Ω → R, i = {PK , LK1 , S}, represents the share invested in the rolling ZCB, the
rolling longevity ZCB, and the stock, respectively, such that

αPK
(t) + αLK1

(t) + αS(t) = 1 P-a.s., ∀t ∈ [0, T ].

This means that given the investments in the rolling ZCB and rolling longevity ZCB, the allocation
to the risky asset is automatically determined. Thus, the P-dynamics of pension plan wealth
WP O−P P I =

{
WP O−P P I(t), t ∈ [0, T ]

}
, managed according to PO-PPI strategy, is given by



dWP O−P P I(t) = m(t)
(
WP O−P P I(t) −G(t)

) [
αPK

(t)dPK(t)
PK(t) + αLK1

(t)dLK1(t)
LK1(t) + αS(t)dS(t)

S(t)

]
+
[
WP O−P P I(t) −m(t)

(
WP O−P P I(t) −G(t)

)] dS0(t)
S0(t) + np(t)CL(t)dt, t ∈ [0, T ],

WP O−P P I(0) =n · w0 > 0.
(3.30)

Injecting equations (3.6), (3.8), (3.11), and (3.22) into equation (3.30), the wealth P-dynamics can
be rewritten as

dWP O−P P I(t) =WP O−P P I(t)r(t)dt+ np(t)CL(t)dt+m(t)
(
WP O−P P I(t) −G(t)

)
{ [(

1 − αPK
(t) − αLK1

(t)
)
σS,r − αPK

(t)σK − αLK1
(t)σK1

]
·
√
r(t)

(
dZr(t) + ξr

√
r(t)dt

)
− αLK1

(t)σLK1

√
λ(t)

(
dZλ(t) + ξλ

√
λ(t)dt

)}
+
(
1 − αPK

(t) − αLK1
(t)
)
σS (dZS(t) + ξSdt) , t ∈ [0, T ],

WP O−P P I(0) = n · w0 > 0
(3.31)

Set u(·) :=
(
αPK

(·), αLK1
(·),m(·)

)⊤
. For generic initial time t ∈ [0, T ], with WP O−P P I(t) = w,

r(t) = r, and λ(t) = λ, we define the set of admissible strategies Uad(t, w, r, λ) depending on the
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initial data (t, w, r, λ) ∈ [0, T ] × (0,+∞)3 as

Uad(t, w, r, λ) :=
{

u : [0, T ] × Ω → R3 | u(·) is progressively measurable w.r.t. (Ω,G,G,P) |

E
[∫ T

0
Σ(z)dz

]
< +∞, WP O−P P I(T ) ≥ G(T ) P-a.s.

}
,

where

Σ(t) := m2(t)
(
WP O−P P I(t) −G(t)

)2
{[(

1 − αPK
(t) − αLK1

(t)
)
σS,r − αPK

(t)σK − αLK1
(t)σK1

]2
·r(t) +

(
1 − αPK

(t) − αLK1
(t)
)
σ2

S + α2
LK1

(t)σ2
LK1

λ(t)
}
,

for every t ∈ [0, T ].

3.2 The optimization problem

The aim of the pension plan manager is to maximize the expected utility of the terminal cushion,
defined as the difference between the total wealth WP O−P P I(T ) and the minimum guarantee
G(T ) at the retirement date T. Additionally, we assume that the pension plan manager receives a
predetermined fraction of the terminal surplus WP O−P P I(T ) −G(T ) as remuneration. We further
assume that the fund manager’s preferences align perfectly with those of the surviving members
when maximizing the expected utility, and are described by a constant relative risk aversion (CRRA)
utility function U : (0,+∞) → R defined as

U(x) := x1−δ

1 − δ
, (3.32)

where δ > 0 and δ ≠ 1. The resulting stochastic optimal control problem can be naturally solved by
the dynamic programming method and stated as follows.

Problem 3.2.1. For generic initial data (t, w, r, λ) ∈ [0, T ] × (0,+∞)3

maximize J(t, w, r, λ; u(·)) := E
[ 1

1 − δ

(
WP O−P P I(T ) −G(T )

)1−δ
]

over u(·) ∈ Uad(t, w, r, λ).
(3.33)

Here E[·] denotes the conditional expectation w.r.t. G(t). Necessary and sufficient conditions for
WP O−P P I(T ) −G(T ) ≥ 0, which ensure the well-posedness of optimization problem 3.2.1, will be
outlined later.

3.2.1 Solution to the optimization problem

The optimization problem 3.2.1 is not a typical single investment problem due to the inclusion of
both the contributions’ stream paid by the pension plan members, which makes the dynamics of
the wealth process not self-financing, and the terminal wealth constraint. To address this challenge,
in the following we introduce an auxiliary process and recast an optimization problem equivalent
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to Problem 3.2.1. In line with the methodology employed by Han and Hung [2012], Guan and
Liang [2014], we replicate the inflow np(·)CL(·) according to the following procedure. Under the
assumption of the absence of arbitrage and market completeness, we may construct a fictitious
financial instrument that provides payments proportional to the expected fraction of surviving
pension plan members p(u) at time u ∈ [t, T ]. Of course, the proportionality factor is given by
nCL(u). The value of this asset at time t, t ≤ u ≤ T, will be denoted by D(t, u).

Proposition 3.2.2. The arbitrage-free t-price of a financial security issued a time t ∈ [0, s] and
paying a face amount equal to nCL(s)p(s) at time s ∈ [t, T ] is given by

D(t, s) = nCL(t) exp
{

−
∫ t

0
λ(z)dz + f2(t, s) − f1(t, s)r(t) + η1(t, s) − η2(t, s)λ(t)

}
, 0 ≤ t ≤ s ≤ T,

(3.34)
where

f1(t, s) :=
2
(
ekf (s−t) − 1

)
[αr + σr (ξr − σL,r) + kf ]

(
ekf (s−t) − 1

)
+ 2kf

, (3.35a)

f2(t, s) := ζ(s− t) + 2αrβr

σ2
r

ln

 2kfe
[αr+σr(ξr−σL,r)+kf ](s−t)

2

[αr + σr (ξr − σL,r) + kf ]
(
ekf (s−t) − 1

)
+ 2kf

 , (3.35b)

η1(t, s) := −ρλ

∫ s

t
βλ(z)η2(z, s)dz (3.35c)

η2(t, s) :=
2
(
ekλ(s−t) − 1

)
(ρλ + σλξλ + kλ)

(
ekλ(s−t) − 1

)
+ 2kλ

, (3.35d)

with
kf :=

√
[αr + σr (ξr − σL,r)]2 + 2σ2

r , kλ :=
√

(ρλ + σλξλ)2 + 2σ2
λ.

Moreover, the P-dynamics of D(t, s) satisfy

dD(t, s)
D(t, s) = r(t)dt+ (σL,r − f1(t, s)σr)

√
r(t)

(
dZr(t) + ξr

√
r(t)dt

)
− σLB

(t, s)
√
λ(t)

(
dZλ(t) + ξλ

√
λ(t)dt

)
+ σL (dZS(t) + ξSdt) , 0 ≤ t ≤ s ≤ T,

D(s, s) =ne−
∫ s

0 λ(z)dzCL(s).
(3.36)

Proof. Under the risk-neutral probability measure Q, the dynamics of the instantaneous flow of
contributions CL is given by

dCL(t)
CL(t) = ζdt+ σL,r

√
r(t)dZQ

r (t) + σLdZQ
S (t), t ∈ [0, T ].

The fundamental theorem of asset pricing allows to determine the risk-neutral value of the fictitious
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financial investment

D(t, s) = EQ
[
nCL(s)p(s)

p(0)e
−
∫ s

t
r(z)dz

∣∣∣∣G(t)
]

= nEQ
[
CL(s)e−

∫ s

0 λ(z)dze−
∫ s

t
r(z)dz

∣∣∣∣G(t)
]

= ne−
∫ t

0 λ(z)dzEQ
[
CL(s)e−

∫ s

t
(λ(z)+r(z))dz

]
. (3.37)

We set M(t, s) = EQ
[
CL(s)e−

∫ s

t
(λ(z)+r(z))dz

]
. Hence, to determine D(t, s), we need to compute

M(t, s). We notice that M̃(t, s) = e−
∫ t

0 (r(z)+λ(z))dzM(t, s) is a martingale under Q. From Itô’s
formula, we have

dM̃(t, s) =e−
∫ t

0 (r(z)+λ(z))dz
{[

− (r(t) + λ(t))M(t, s) + ∂

∂t
M(t, s) + ζCL(t) ∂

∂CL
M(t, s)

+ 1
2
(
r(t)σ2

L,r + σ2
L

)
C2

L(t) ∂2

∂C2
L

M(t, s) + αQ
r

(
βQr − r(t)

) ∂

∂r
M(t, s) + σ2

r

2 r(t)
∂2

∂r2M(t, s)

+ σrσL,rr(t)CL(t) ∂2

∂r∂CL
M(t, s) + ρQλ

(
βQλ (t) − λ(t)

) ∂

∂λ
M(t, s) + σ2

λ

2 λ(t) ∂
2

∂λ2M(t, s)
]
dt

+
[
CL(t) ∂

∂CL
M(t, s)

(√
r(t)σL,rdZQ

r (t) + σLdZQ
S (t)

)
+ σr

∂

∂r
M(t, s)

√
r(t)dZQ

r (t)

+ σλ
∂

∂λ
M(t, s)

√
λ(t)dZQ

λ (t)
]}

Setting the dt terms equal to zero, we obtain the following PDE

∂

∂t
M(t, s) + 1

2
(
r(t)σ2

L,r + σ2
L

)
C2

L(t) ∂2

∂C2
L

M(t, s) + σ2
r

2 r(t)
∂2

∂r2M(t, s)

+ σrσL,rr(t)CL(t) ∂2

∂r∂CL
M(t, s) + ρQλ

(
βQλ (t) − λ(t)

) ∂

∂λ
M(t, s) + ζCL(t) ∂

∂CL
M(t, s)

+ αQ
r

(
βQr − r(t)

) ∂

∂r
M(t, s) − (r(t) − λ(t))M(t, s) = 0, (3.38)

with terminal condition M(s, s) = CL(s). Being CL(t), r(t) and λ(t) affine processes, and thanks
to the independence of the Brownian motions driving the interest rate and the force of mortality
processes, the solution to (3.38) is

M(t, s) = CL(t)ef2(t,s)−f1(t,s)r(t)eη1(t,s)−η2(t,s)λ(t), (3.39)

with terminal conditions f1(s, s) = f2(s, s) = η1(s, s) = η2(s, s) = 0. From (3.38) and (3.39), we
derive(
∂

∂t
f2(t, s) − ∂

∂t
f1(t, s)r(t) + ∂

∂t
η1(t, s) − ∂

∂t
η2(t, s)λ(t)

)
+ ζ − αQ

r

(
βQr − r(t)

)
f1(t, s)

+ r(t)σ
2
r

2 f
2
1 (t, s) − r(t)σrσL,rf1(t, s) − ρQλ

(
βQλ (t) − λ(t)

)
η2(t, s) + λ(t)σ

2
λ

2 η2
2(t, s) − r(t) − λ(t) = 0,
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By collecting r and λ terms, we derive the following two systems of ODEs
0 = ∂

∂t
f1(t, s) −

(
αQ

r − σrσL,r

)
f1(t, s) − σ2

r

2 f
2
1 (t, s) + 1,

0 = ∂

∂t
f2(t, s) − αQ

r β
Q
r f1(t, s) + ζ,

(3.40)

and 
0 = ∂

∂t
η1(t, s) − ρQλβ

Q
λ (t)η2(t, s),

0 = ∂

∂t
η2(t, s) − ρQλ η2(t, s) − σ2

λ

2 η2
2(t, s) + 1,

(3.41)

whose solutions are given in (3.35). Injecting (3.39) in (3.37), we obtain the result depicted in
equation (3.34). Applying Itô’s Lemma to (3.34), we derive the Q-dynamics of D(t, s) which satisfy

dD(t, s)
D(t, s) = − λ(t)dt+

{
∂

∂t
η1(t, s) − ρQλβ

Q
λ (t)η2(t, s) −

(
∂

∂t
η2(t, s) − ρQλ η2(t, s) − σ2

λ

2 η2
2(t, s)

)
λ(t)

+ ∂

∂t
f2(t, s) − αQ

r β
Q
r f1(t, s) + ζ −

[
∂

∂t
f1 −

(
αQ

r − σrσL,r

)
f1(t, s) − σ2

r

2 f
2
1 (t, s)

]
r(t)

}
dt

+ (σL,r − f1(t, s)σr)
√
r(t)dZQ

r (t) − η2(t, s)σλ

√
λ(t)dZQ

λ (t) + σLdZQ
S (t).

Setting σLB
(t, s) = η2(t, s)σλ, and applying (3.41)-(3.40), the above Q-dynamics simplify as

dD(t, s)
D(t, s) = r(t)dt+ (σL,r − f1(t, s)σr)

√
r(t)dZQ

r (t) − σLB
(t, s)

√
λ(t)dZQ

λ (t) + σLdZQ
S (t), (3.42)

with final condition D(s, s) = ne−
∫ s

0 λ(z)dzCL(s). Hence, the corresponding P-dynamics are the ones
depicted in equation (3.36). This completes the proof.

Now, we can define K(t, T ) :=
∫ T

t D(t, z)dz, namely, the t-price of a coupon bond expiring in T and
paying an instantaneous coupon rate equal to np(·)CL(·) in the time interval [t, T ]. By applying the
Leibniz integral rule, we can further derive its P-dynamics, which is given by

dK(t, T ) = − np(t)CL(t)dt+ r(t)K(t, T )dt

+
(∫ T

t
D(t, z) (σL,r − f1(t, z)σr) dz

)√
r(t)

(
dZr(t) + ξr

√
r(t)dt

)

−
(∫ T

t
D(t, z)σLB

(t, z)dz
)√

λ(t)
(

dZλ(t) + ξλ

√
λ(t)dt

)
+K(t, T )σL (dZS(t) + ξSdt) , t ∈ [0, T ], (3.43)

Although K(·, T ) is not a financial security traded on the financial market, completeness of the
market allows the replication of its corresponding return process by a combination of the traded
assets.

Proposition 3.2.3. The process K(·, T ), can be replicated using a combination of cash, stock,
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rolling ZCB, and rolling longevity ZCB as follows

dK(t, T ) + np(t)CL(t)dt
K(t, T )

= dS0(t)
S0(t) ν

K
S0(t) + dPK(t)

PK(t) ν
K
PK

(t) + dLK1(t)
LK1(t) ν

K
LK1

(t) + dS(t)
S(t) ν

K
S (t), t ∈ [0, T ], (3.44a)

where


νK

S0
(t)

νK
PK

(t)

νK
LK1

(t)

νK
S (t)

 =



1 − νK
PK

(t) − νK
LK1

(t) − νK
S (t)

σL

σS

σS,r

σK
−
∫ T

t D(t, z) (σL,r − f1(t, z)σr) dz
σKK(t, T ) − σK1

∫ T
t D(t, z)σLB

(t, z)dz
σKσLK1

K(t, T )∫ T
t D(t, z)σLB

(t, z)dz
σLK1

K(t, T )

σL

σS


(3.44b)

are the shares invested in each asset.

Proof. By comparing (3.43) with (3.8), (3.11), and (3.22) we can straightforwardly obtain (3.44).

At this stage, we are able to replicate the present value of the minimum guarantee G(t) in (3.28).

Proposition 3.2.4. The present value of the minimum guarantee G is correlated with both the
interest rate process r and the mortality intensity process λ, and can be replicated using a combination
of cash, rolling ZCB, and rolling longevity ZCB as follows

dG(t)
G(t) = dS0(t)

S0(t) ν
G
S0(t) + dPK(t)

PK(t) ν
G
PK

(t) + dLK1(t)
LK1(t) ν

G
LK1

(t), t ∈ [0, T ], (3.45a)

where


νG

S0
(t)

νG
PK

(t)

νG
LK1

(t)

 =



1 − νG
PK

(t) − νG
LK1

(t)

n
∫ ω−ι

T b(z)σP (t, z)LB(t, z)dz
σKG(t) − nσK1

∫ ω−ι
T b(z)σLB

(t, z)LB(t, z)dz
σKσLK1

G(t)

n
∫ ω−ι

T b(z)σLB
(t, z)LB(t, z)dz

σLK1
G(t)


(3.45b)

are the shares allocated in each asset.

Proof. By juxtaposing (3.28) with both (3.11) and (3.22), we can easily derive (3.45).

Next, with the help of K(·, T ) and G(·), we can transform the non-self-financing constrained
optimization problem stated in Problem 3.2.1 into a single investment one, by defining the surplus
process Y = {Y (t), t ∈ [0, T ]} as

Y (t) := WP O−P P I(t) +K(t, T ) −G(t), t ∈ [0, T ],
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with P-dynamics
dY (t) = dWP O−P P I(t) + dK(t, T ) − dG(t), t ∈ [0, T ]. (3.46)

Injecting (3.28), (3.31), and (3.43) into (3.46), equation (3.46) can be rewritten as
dY (t)
Y (t) = r(t)dt−

(
σKαY,PK

(t) + σK1αY,LK1
(t) − σS,rαY,S(t)

)√
r(t)

(
dZr(t) + ξr

√
r(t)dt

)
− σLK1

αY,LK1
(t)
√
λ(t)

(
dZλ(t) + ξλ

√
λ(t)dt

)
+ σSαY,S(t) (dZS(t) + ξSdt) , t ∈ [0, T ],

Y (0) = WP O−P P I(0) +K(0, T ) −G(0),
(3.47a)

where


αY,S0(t)

αY,PK
(t)

αY,LK1
(t)

αY,S(t)

 =



1 − αY,PK
(t) − αY,LK1

(t) − αY,S(t)

m(t)(Y (t) −K(t, T ))αPK
(t) +K(t, T )νK

PK
(t) −G(t)νG

PK
(t)

Y (t)
m(t)(Y (t) −K(t, T ))αLK1

(t) +K(t, T )νK
LK1

(t) −G(t)νG
LK1

(t)
Y (t)

m(t)(Y (t) −K(t, T ))
(
1 − αPK

(t) − αLK1
(t)
)

+K(t, T )νK
S (t)

Y (t)


(3.47b)

are the shares allocated in cash, rolling ZCB, rolling longevity ZCB, and stock, respectively. By
construction, K(T, T ) = 0. This implies that the surplus at retirement date T fullfills Y (T ) =
WP O−P P I(T ) − G(T ), and thus the original constraint WP O−P P I(T ) ≥ G(T ) can be recast into
Y (T ) ≥ 0. In such a framework, the feasible pair (γ, bT ) fullfills by construction equation (3.25).
This is equivalent to say that

EQ
[∫ T

0
nCL(z)e−

∫ z

0 r(q)dq p(z)
p(0)dz

]
︸ ︷︷ ︸

:=K(0,T )

−EQ
[∫ ω−ι

T
nb(z)e−

∫ z

0 r(q)dq p(z)
p(0)dz

]
︸ ︷︷ ︸

:=G(0)

= 0, (3.48)

is satisfied, or equivalently Y (0) = WP O−P P I(0) > 0. As argued in Guan and Liang [2014] and
Agarwal et al. [2023], since the auxiliary surplus process (3.47a) is self-financing, then Y (0) > 0
is a necessary and sufficient condition to ensure the existence of investment strategies such that
Y (T ) ≥ 0. It is worth noting that the condition stated in equation (3.48) ensures that the set Uad

of admissible strategies is non-empty. Finally, let

ℓ : R3 −→ R3,
αPK

αLK1

m

 7−→ 1
Y


m(WP O−P P I −G)αPK

+KνK
PK

−GνG
PK

m(WP O−P P I −G)αLK1
+KνK

LK1
−GνG

LK1

m(WP O−P P I −G)(1 − αPK
− αLK1

) +KνK
S

 ,

and set uY (·) :=
(
αY,PK

(·), αY,LK1
(·), αY,S(·)

)⊤
. For generic initial time t ∈ [0, T ], with Y (t) = y,

r(t) = r, and λ(t) = λ, define the set of admissible strategies Ũad(t, y, r, λ) depending on the initial
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data (t, y, r, λ) ∈ [0, T ] × (0,+∞)3 as

Ũad(t, y, r, λ) :=
{

uY : [0, T ] × Ω → R3 | uY (·) = ℓ(u(·)), ∀u ∈ Uad(t, w, r, λ)
}
.

Then, we can transform the original Problem 3.2.1 into the following equivalent unconstrained
optimization problem.

Problem 3.2.5. For generic initial data (t, y, r, λ) ∈ [0, T ] × (0,+∞)3

maximize J̃(t, y, r, λ; uY (·)) = E
[

(Y (T ))1−δ

1 − δ

]
over uY (·) ∈ Ũad(t, y, r, λ) (3.49)

In this context, E[·] represents the conditional expectation w.r.t. G(t). To solve Problem 3.2.5, we
apply the dynamic programming method and define the value function as follows

V (t, y, r, λ) := sup
uY (·)∈Ũad(t,y,r,λ)

J̃(t, y, r, λ; uY (·)),

V (T, Y (T ), r(T ), λ(T )) := (Y (T ))1−δ

1 − δ
.

For every initial data (t, y, r, λ), let LuY be the infinitesimal generator of the diffusion processes
(3.47), (3.7), and (3.1), that is,

LuY v(t, y, r, λ) = 1
2y

2
[(
σKαY,PK

+ σK1αY,LK1
− σS,rαY,S

)2
r + σ2

LK1
λα2

Y,2 + σ2
Sα

2
Y,S

]
∂2

∂y2 v(t, y, r, λ)

+ 1
2σ

2
rr
∂2

∂r2 v(t, y, r, λ) + 1
2σ

2
λλ

∂2

∂λ2 v(t, y, r, λ)

− yrσr

(
σKαY,PK

+ σK1αY,LK1
− σS,rαY,S

) ∂2

∂y∂r
v(t, y, r, λ)

− yσλλσLK1
αY,LK1

∂2

∂y∂λ
v(t, y, r, λ)

+ y
[
r −

(
σKαY,PK

+ σK1αY,LK1
− σS,rαY,S

)
ξrr − σLK1

λξλαY,LK1
+ σSξSαY,S

]
· ∂
∂y
v(t, y, r, λ) + αr(βr − r) ∂

∂r
v(t, y, r, λ) + ρλ(βλ(t) − λ) ∂

∂λ
v(t, y, r, λ), (3.50)

where v is a function in C1,2([0, T )×(0,+∞)3;R)∩C0([0, T ]×(0,+∞)3;R). By standard arguments
of stochastic control (see, e.g., [Yong and Zhou, 1999, Chapter 4]), the Hamilton-Jacobi-Bellman
equation (HJB) associated to the auxiliary Problem 3.2.5 is

− ∂

∂t
v(t, y, r, λ) − sup

uY ∈R3
LuY v(t, y, r, λ) = 0, (t, y, r, λ) ∈ [0, T ) × (0,+∞), (3.51a)

subject to the terminal condition

v(T, y, r, λ) = y1−δ

1 − δ
, y ∈ (0,+∞), δ > 0 ∧ δ ̸= 1. (3.51b)

In the following, our aim is to characterize the value function as a solution to HJB equation (3.51)
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and identify the optimal control strategy. We begin by stating and proving the following lemma.

Lemma 3.2.6. Let

δ > max
{

σ2
rξ

2
r + 2σrξrαr + 2σ2

r

σ2
rξ

2
r + αr + 2σrξrαr + 2σ2

r

,
σλξλ (σλξλ + 2ρλ)

(σλξλ + ρλ)2 , 0
}
, (3.52)

and a, d, g ∈ C1([0, T ];R) such that

a(t) = 1
2δ (1 − δ)ξ2

S(T − t) + αrβr

∫ T

t
d(z)dz + ρλ

∫ T

t
βλ(z)g(z)dz, t ∈ [0, T ],

d(t) =
2Θ2

(
ekd(T −t) − 1

)
(−Θ1 + kd)

(
ekd(T −t) − 1

)
+ 2kd

, t ∈ [0, T ],

g(t) =
2Θ4

(
ekg(T −t) − 1

)
(−Θ3 + kg)

(
ekg(T −t) − 1

)
+ 2kg

, t ∈ [0, T ],

(3.53)

where

kd :=

√
Θ2

1 − 2σ2
rΘ2
δ

, kg :=

√
Θ2

3 − 2σ2
λΘ4
δ

,

Θ1 :=
(1 − δ

δ
ξrσr − αr

)
, Θ2 :=

(1 − δ

2δ ξ2
r + 1 − δ

)
, Θ3 :=

(1 − δ

δ
σλξλ − ρλ

)
, Θ4 := 1 − δ

2δ ξ2
λ.

Then, the following function

v(t, y, r, λ) = y1−δ

1 − δ
ψ(t, r, λ), (t, y, r, λ) ∈ [0, T ] × (0,+∞)3, (3.54a)

with
ψ(t, r, λ) := exp

{
a(t) + d(t)r + g(t)λ

}
, (t, r, λ) ∈ [0, T ] × (0,+∞)2, (3.54b)

is a classical solution to HJB equation (3.51).

Proof. It turns out that for the power utility functions of CRRA-type, as considered originally in
Merton [1969], we can find a smooth solution to HJB equation (3.51). We look for a candidate
solution of the form

v(t, y, r, λ) = y1−δ

1 − δ
ψ(t, r, λ), (t, y, r, λ) ∈ [0, T ] × (0,+∞)3,

and for some positive function ψ such that ψ(T, r, λ) = 1. Injecting this candidate into (3.50) and
taking the first order conditions, the following linear system results

σKr σK1r −σS,rr

σKσK1r σ2
K1
r + σ2

LK1
λ −σS,rσK1r

−σS,rσKr −σS,rσK1r σ2
S + σ2

S,rr



αY,PK

αY,LK1

αY,S
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= 1
y ∂2

∂y2 v(t, y, r, λ)

·


σrr

∂2

∂y∂r
v(t, y, r, λ) + ξrr

∂

∂y
v(t, y, r, λ)

σλσLK1
λ

∂2

∂y∂λ
v(t, y, r, λ) + σrσK1r

∂2

∂y∂r
v(t, y, r, λ) + (σK1ξrr + σLK1

ξλλ) ∂
∂y
v(t, y, r, λ)

−σrσS,rr
∂2

∂y∂r
v(t, y, r, λ) − (σSξS + σS,rξrr)

∂

∂y
v(t, y, r, λ)


.

Thus, the unique maximum point is attained at

ūY (t, r, λ) =


ᾱY,PK

(t, r, λ)

ᾱY,LK1
(t, r, λ)

ᾱY,S(t, r, λ)

 := arg max
uY ∈R3

LuY v(t, y, r, λ)

=



− σr

δσK

∂
∂rψ(t, r, λ)
ψ(t, r, λ) + σλσK1

δσKσLK1

∂
∂λψ(t, r, λ)
ψ(t, r, λ) + σK1ξλ

δσKσLK1

+ σS,rξS

δσKσS
− ξr

δσK

− σλ

δσLK1

∂
∂λψ(t, r, λ)
ψ(t, r, λ) − ξλ

δσLK1
ξS

δσS


. (3.55)

Plugging (3.55) into the HJB equation (3.51a), we then obtain

0 = ∂

∂t
ψ(t, r, λ) + (1 − δ)rψ(t, r, λ) + 1

2δ (1 − δ)rξ2
rψ(t, r, λ) + 1

δ
(1 − δ)rξrσr

∂

∂r
ψ(t, r, λ)

+ 1
2δ (1 − δ)ξ2

Sψ(t, r, λ) + 1
δ

(1 − δ)λσλξλ
∂

∂λ
ψ(t, r, λ) + 1

2δ (1 − δ)λξ2
λψ(t, r, λ)

+ 1
2δ (1 − δ)rσ2

r

∂
∂rψ

2(t, r, λ)
ψ(t, r, λ) + 1

2δ (1 − δ)λσ2
λ

∂
∂λψ

2(t, r, λ)
ψ(t, r, λ) + αr(βr − r) ∂

∂r
ψ(t, r, λ)

+ σ2
r

2 r
∂2

∂r2ψ(t, r, λ) + ρλ(βλ(t) − λ) ∂
∂λ
ψ(t, r, λ) + 1

2λσ
2
λ

∂2

∂λ2ψ(t, r, λ).

(3.56)

We conjecture that

ψ(t, r, λ) = exp {a(t) + d(t)r + g(t)λ} , (t, r, λ) ∈ [0, T ] × (0,+∞)2.

Substituting this into (3.56) and considering terminal condition (3.51b) results in a linear equation
in r and λ. Setting the coefficients of the terms r, λ and the independent term to zero yields that
the triplet of functions a, d, g ∈ C1([0, T ];R) must satisfy the following system of ODEs



ȧ(t) + 1
2δ (1 − δ)ξ2

S + αrβrd(t) + ρλβλ(t)g(t) = 0, t ∈ [0, T ],

ḋ(t) +
[1
δ

(1 − δ)ξrσr − αr

]
d(t) + σ2

r

2δ d
2(t) + 1 − δ + 1

2δ (1 − δ)ξ2
r = 0, t ∈ [0, T ],

ġ(t) +
(1
δ

(1 − δ)σλξλ − ρλ

)
g(t) + 1

2δσ
2
λg

2(t) + 1
2δ (1 − δ)ξ2

λ = 0, t ∈ [0, T ],

a(T ) = 0 d(T ) = 0 g(T ) = 0.
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Under the hypothesis that (3.52) holds, that is,

δ > max
{

σ2
rξ

2
r + 2σrξrαr + 2σ2

r

σ2
rξ

2
r + αr + 2σrξrαr + 2σ2

r

,
σλξλ (σλξλ + 2ρλ)

(σλξλ + ρλ)2 , 0
}
,

the unique solution to the above system is provided by equation (3.53). This completes the proof.

Now, we are ready to deliver a verification result and an optimal Markovian control strategy as a
byproduct.

Theorem 3.2.7. Consider a pension fund manager endowed with a CRRA utility function such
that the risk-aversion parameter is given by (3.52), i.e.,

δ > max
{

σ2
rξ

2
r + 2σrξrαr + 2σ2

r

σ2
rξ

2
r + αr + 2σrξrαr + 2σ2

r

,
σλξλ (σλξλ + 2ρλ)

(σλξλ + ρλ)2 , 0
}
.

Then, the function v defined in (3.54) with a, d, and g given by (3.53) is the value function V

associated to Problem 3.2.5, namely,

V (t, y, r, λ) = v(t, y, r, λ) = y1−δ

1 − δ
exp

{
a(t) + d(t)r + g(t)λ

}
.

Furthermore, for the initial data (t, y, r, λ) ∈ [0, T ] × (0,+∞)3, the control strategy given by

u⋆
Y (s)=


α⋆

PK
(s)

α⋆
LK1

(s)

α⋆
S(s)

=



− σr

δσK
d(s) + σK1σλ

δσKσLK1

g(s) + σK1ξλ

δσKσLK1

+ σS,rξS

δσKσS
− ξr

δσK

− σλ

δσLK1

g(s) − ξλ

δσLK1

ξS

δσS


, s ∈ [t, T ],

(3.57)
lies in Ũad(t, y, r, λ) and is unique. Accordingly, the surplus process Y ⋆(·; t, y, r, λ,u⋆

Y (·)) starting
from (y, r, λ) at t and controlled by u⋆

Y (·) is the optimal surplus trajectory and the unique solution
to the associated closed-loop equation.

Proof. For any initial data (t, y, r, λ) ∈ [0, T ] × (0,+∞) and uY (·) ∈ Ũad(t, y, r, λ), state equation
(3.47) admits a unique (strong) solution on (Ω,G,G,P) that we denote by Y (·; t, y, r, λ,uY (·)),
that is, the surplus process starting from (y, r, λ) at t and controlled by uY (·). Let Y (·) :=
Y (·; t, y, r, λ,uY (·)), r(·), and λ(·) be the unique solutions to the diffusion processes (3.1), (3.7),
and (3.47), respectively, and v the solution given in (3.54) to HJB equation (3.51). By applying
Dynkin’s formula to the function (t, y, r, λ) 7→ v(t, Y (t), r(t), λ(t)) with processes Y (·), r(·), and λ(·)
defined in (3.47), (3.7) and (3.1), respectively, we obtain

E [v(T, Y (T ), r(T ), λ(T ))]

= v(t, y, r, λ) + E
[∫ T

t

(
∂

∂t
v(t, Y (t), r(t), λ(t)) + LuY v(z, Y (z), r(z), λ(z))

)
dz
]
,
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that is,

E
[ 1

1 − δ
(Y (T ))1−δ

]
= v(t, y, r, λ) + E

[∫ T

t

(
− sup

uY ∈R3
LuY v(z, Y (z), r(z), λ(z)) + LuY v(z, Y (z), r(z), λ(z))

)
dz
]
.

Rearranging the terms we then have

v(t, y, r, λ) = J̃(t, w, r, λ; uY (·))

+ E
[∫ T

t

(
sup

uY ∈R3
LuY v(z, Y (z), r(z), λ(z)) − LuY v(z, Y (z), r(z), λ(z))

)
dz
]
. (3.58)

As equation (3.58) holds for every uY (·) ∈ Ũad(t, y, r, λ), and since supuY ∈R3 LuY v ≥ LuY v for every
uY ∈ R3, it follows that

v(t, x, r, λ) ≥ V (t, x, r, λ).

Consider now the feedback map corresponding to the maximization of the operator LuY v, with v

defined in (3.54). It is provided in (3.55) and results in the following related closed-loop equation

dY (s)
Y (s) = r(s)ds+

(
ᾱY,S(s, r(s), λ(s))σS,r − ᾱY,PK

(s, r(s), λ(s))σK

− ᾱY,LK1
(s, r(s), λ(s))σK1

)√
r(s)

(
dZr(s) + ξr

√
r(s)ds

)
− ᾱY,LK1

(s, r(s), λ(s))σLK1

√
λ(s)

(
dZλ(s) + ξλ

√
λ(s)ds

)
+ ᾱY,S(s, r(s), λ(s))σS

(
dZS(s) + ξSds

)
, s ∈ [t, T ],

Y (t) = W (t) +K(t, T ) −G(t) =: y, y ∈ (0,+∞),

(3.59)

which is linear and admits a unique and strictly positive solution Ȳ (·; t, y, r, λ). Accordingly, the
feedback strategy u⋆

Y (·) := (α⋆
Y,1(·), α⋆

Y,2(·), α⋆
Y,3(·))⊤ associated to the feedback map (3.55), i.e.,

u⋆
Y (s) =


α⋆

Y,PK
(s)

α⋆
Y,LK1

(s)

α⋆
Y,S(s)

 :=


ᾱY,PK

(s, r(s), λ(s))

ᾱY,LK1
(s, r(s), λ(s))

ᾱY,S(s, r(s), λ(s))



=



− σr

δσK
d(s) + σK1σλ

δσKσLK1

g(s) + σK1ξλ

δσKσLK1

+ σS,rξS

δσKσS
− ξr

δσK

− σλ

δσLK1

g(s) − ξλ

δσLK1

ξS

δσS


, s ∈ [t, T ]. (3.60)

is admissible, namely, u⋆
Y (s) ∈ Ũad(t, y, r, λ). Furthermore, by denoting Y ⋆(·) := Y ⋆(·; t, y, r, λ,u⋆

Y (·))
the surplus process starting from (y, r, λ) at t and controlled by u⋆

Y (·), the uniqueness of the
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solution to the closed-loop equation implies that Y ⋆(·) = Ȳ (·; t, y, r, λ). At this point, we observe
that the feedback control u⋆

Y (·) and surplus process Y ⋆(·) applied to (3.58) implies v(t, y, r, λ) =
J̃(t, w, r, λ; u⋆

Y (·)) and therefore

V (t, y, r, λ) ≥ J̃(t, y, r, λ; u⋆
Y (·)) = v(t, y, r, λ) ≥ V (t, y, r, λ).

This shows that v(t, y, r, λ) = V (t, y, r, λ), and as a byproduct, that the couple (u⋆
Y (·), Y ⋆(·))

constitutes the optimal strategy and the optimal surplus trajectory starting at (t, y, r, λ), respectively.
Finally, the uniqueness of the optimal strategy and the optimal surplus trajectory is a consequence
of both the characterization (3.60) and the uniqueness of the solution to the closed-loop equation
(3.59). This concludes the proof.

Finally, we are able to provide the optimal strategy u⋆(·) =
(
α⋆

PK
(·), α⋆

LK1
(·),m⋆(·)

)⊤
, for the

initial Problem 3.2.1.

Corollary 3.2.8. The optimal multiplier of the PO-PPI strategy and the optimal composition shares
of the purpose-oriented fund I are given by


α⋆

PK
(s)

α⋆
LK1

(s)

α⋆
S(s)

m⋆(s)

 =



Y ⋆(s)α⋆
Y,PK

(s) −K(s, T )νK
PK

(s) +G(s)νG
PK

(s)

(1 − α⋆
Y,S0

(s))Y ⋆(s) −
(
1 − νK

S0
(s)
)
K(s, T ) +

(
1 − νG

S0
(s)
)
G(s)

Y ⋆(s)α⋆
Y,LK1

(s) −K(s, T )νK
LK1

(s) +G(s)νG
LK1

(s)

(1 − α⋆
Y,S0

(s))Y ⋆(s) −
(
1 − νK

S0
(s)
)
K(s, T ) + (1 − νG

S0
(s))G(s)

Y ⋆(t)α⋆
S(s) −K(s, T )νK

S (s)
(1 − α⋆

Y,S0
(s))Y ⋆(s) −

(
1 − νK

S0
(s)
)
K(s, T ) +

(
1 − νG

S0
(s)
)
G(s)

(1 − α⋆
Y,S0

)Y ⋆(s) −
(
1 − νK

S0
(s)
)
K(s, T ) + (1 − νG

S0
(s))G(s)

Y ⋆(s) −K(s, T )



, s ∈ [t, T ].

(3.61)
The optimal proportions of the wealth invested into the cash account, the rolling ZCB, the rolling
longevity ZCB, and the stock, respectively, are given by


ᾱ⋆

S0
(s)

ᾱ⋆
PK

(s)

ᾱ⋆
LK1

(s)

ᾱ⋆
S(s)

 =



α⋆
Y,S0

(s)Y ⋆(s) − νK
S0

(s)K(s, T ) + νG
S0

(s)G(s)
Y ⋆(s) −K(s, T ) +G(s)

α⋆
Y,PK

(s)Y ⋆(s) − νK
PK

(s)K(s, T ) + νG
PK

(s)G(s)
Y ⋆(s) −K(s, T ) +G(s)

α⋆
Y,LK1

(s)Y ⋆(s) − νK
LK1

(s)K(s, T ) + νG
LK1

(s)G(s)
Y ⋆(s) −K(s, T ) +G(s)

α⋆
Y,S(s)Y ⋆(s) − νK

S (s)K(s, T ) + αG
Y,S(s)G(s)

Y ⋆(s) −K(s, T ) +G(s)


, s ∈ [t, T ], (3.62)

where Y ⋆(·) := Y ⋆(·; t, y, r, λ,u⋆
Y (·)) = Ȳ (·; t, y, r, λ), is the unique solution to the closed loop equation

(3.59), and Y ⋆(·; t, y, r, λ,u⋆
Y (·)) denotes the optimal surplus process starting from (y, r, λ) at t and

controlled by the optimal strategy u⋆
Y (·).

Proof. It results from a trivial computation taking into consideration (3.47b) and (3.57).



3.3 Numerical application 69

3.3 Numerical application

In the following, we delve into the proposed theoretical framework through a numerical application
to scrutinize how financial and mortality factors affect the optimal investment strategy during
retirement capital accumulation. As a baseline study, we provide a simulation analysis concerning
the optimal strategy (3.61) and the optimal proportion (3.62). Normalizing the fund size to n = 1,
the fund member is a ι = 40 years old person adhering to the pension plan at the time t = 0,
and he will retire at T = 25. The analysis is performed separately for male and female members,
highlighting gender-based differences in optimal investments induced by disparity in human lifespans.

Parameter Female Male

ρλ 0.9058 0.7460

ϕλ 0.00398 0.00138

bλ 10.97 13.59

lλ 85.18 76.36

σλ 0.0230911 0.0194941
Table 3.1 Parameters estimate for the instantaneous force of mortality.

The parameters characterizing the instantaneous force of mortality in (3.1) are obtained through
the estimation procedure proposed in Menoncin [2021], using the Human Mortality Database’s
cohort life tables of US males and females born in 1950. From the latter, we observe an extremal
age ω = 114. The resulting estimates of mortality intensity parameters are reported in Table 3.1.
We notice that females tend to live longer than males, also showing a higher speed of reversion to
the Gompertz-Makeham law-based mean. To some extent, we expect that the optimal investment
strategy for females is marked by higher proportions of wealth invested in each asset class, or larger
leverage effects, to support a greater retirement capital w.r.t. the male case.

Interest rate Stock Contributions

Parameter Value Parameter Value Parameter Value

βr 0.0621328 σS,r 0.0046306 ζ 0.04

αr 0.0904668 σS 0.14926 σL,r 0.05978

σr 0.0543625 ξS 0.1108301 σL 0.18

ξr -0.5590635 - - - -
Table 3.2 Parameters estimate for interest rate, stock and contribution processes.

According to our proposal, we assume the existence of a continuously-rolled ZCB with maturity
K = 10 years and a rolling longevity ZCB with maturity K1 = 10 years whose underlying is
the mortality intensity for the considered US male (or female) population. Parameters featuring
financial dynamics in (3.7) and (3.8) are taken from Menoncin and Regis [2017], while parameters
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shaping the contribution process in (3.23) stem from Han and Hung [2012], and are displayed in
Table 3.2. From the latter, we stress that a negative market price of the interest rate risk stems
from ξr = −0.5590635. Indeed, as argued in Menoncin [2021], the market price of interest rate risk
must be lower than 0: the semi-elasticity of any bond w.r.t. the interest rate is negative. Moreover,
the market price of longevity risk is defined according to ξλ = −0.1. Then, as in Menoncin [2021]
we assume that the rolling longevity bond has the same behaviour as the rolling bond, that is it
negatively responds to increases in λ(t), for every t ∈ [0, 25]. The opposite situation occurs for the
stock since ξS = 0.118301. As a risk aversion parameter, we adopt δ = 2.5, and a constant inflation
rate j̃ = 0, 1% is assumed. In addition, we pose bT = 750 so that, by the feasible condition (3.25),
we obtain γ = 0.0442 for males and γ = 0.0584 for females. Figure 3.1 depicts simulated paths for
the optimal controls over the accumulation period, distinguished by gender. As a general statement,
we observe that the behavior of optimal exposures appears to be gender-invariant. In particular,
looking at the multiplier, the optimal investment strategy appears aggressive in the early periods of
the accumulation phase, accelerating capital accumulation and contrasting the interest rate risk.
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Figure 3.1 Simulated optimal controls over the accumulation accumulation phase for US females (lhs) and
males (rhs). Sample paths are simulated according to the parameters gathered in Table 3.1 and Table
3.2. In addition, we recall that ξr = −0.5590635, ξλ = −0.1, ξS = 0.118301, K = K1 = 10, δ = 2.5 and
i = 0.1%. The Figure depicts paths ranging between the 0.5-quantile and the 0.95-quantile.
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Afterwards, the multiplier decreases, implying that the investment strategy becomes more conser-
vative compared to the early periods of the accumulation phase. In addition, when retirement is
approaching, the synthetic index’s exposure to the rolling longevity bond increases, implying that the
fund manager orients investments towards longevity risk coverage. Therefore, the optimal investment
strategy implies time-decreasing exposures to rolling bond and stock, as well as time-increasing
exposures to rolling longevity bond, and complementarily, to the cash account.
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Figure 3.2 Optimal proportions invested in risky assets and the risk-free asset for females (lhs) and males
(rhs). Adopting a top-down view, on the y-axis are considered the optimal share for the cash account S0,
the stock S, the rolling bond PK , and the rolling longevity bond PK1 .
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The above considerations apply to both males and females. Going deeper into the comparison
between genders, we note that optimal controls’ paths for females are greater than optimal exposures
for males and more volatile, due to the higher value of the diffusion parameter σλ (see Table 3.1).
The former evidence is particularly relevant for the optimal multiplier m⋆(·). As the females live
longer, the value of their annuity becomes larger than for males members. In terms of portfolio
insurance strategy, longevity increases the floor value, and consequently, reduces the cushion
available for investments. Then, the fund manager needs to boost the investment leverage, i.e. the
multiplier, to accrue at least the annuity value at the retirement date. The comparison between
optimal multipliers highlights a gender-based multiplier gap, measuring the financial impact of the
gender-based longevity gap on retirement capital accumulation. More generally, the longer the fund
member’s lifetime, manifesting in the decumulation phase, the greater the financial leverage needed
during the accumulation phase, and vice versa. The portfolio insurance strategy can capture such
a link between accumulation and decumulation phases through the multiplier, which financially
reflects the longer (or shorter) member’s lifespan.
Figure 3.2 concerns the simulated paths of the optimal investment proportions into the cash account,
the stock, the rolling bond, and the rolling longevity bond. It is interesting to note that our
optimal investment strategy requires a change in the fund manager’s aptitude in allocating wealth
among assets. In particular, in the early accumulation stage, the optimal asset allocation reflects
the aggressive investment aptitude of the fund manager. The optimal proportions employed in
the cash account are negative and time-increasing, as well as time-decreasing short positions (in
absolute value) on the stock are taken. In particular, the fund manager initially borrows money
and uses the stock to finance investment in both rolling bond and rolling longevity bond. As the
retirement date is approached, the optimal asset allocation becomes conservative, since the fund
manager aims to preserve the accumulated capital through investments in safer assets. Therefore,
the last accumulation years are characterized by short positions in the rolling bond to support
allocations in both cash account and rolling longevity bond. We observe that only the optimal
investment proportion in longevity bond are positive over the entire accumulation period. Such a
piece of evidence highlights, on one side, the need to contrast longevity impact on capital retirement
accretion and, on the other, the suitability of longevity bonds in building (and hedging) pension
savings. Comparing optimal investment proportions by gender, Figure 4.2 reflects the meaning
of the aforementioned gender-based multiplier gap. Since females live longer than males, their
optimal capital accumulation requires heavier short positions in cash account and stock in the early
stage, funding both rolling bond and rolling longevity bond long positions. Afterwards, when the
retirement is closer, a faster time increase in cash account occurs, and in contrast both rolling bond
and rolling longevity bond proportions decrease. Then, a greater optimal multiplier for females acts
mainly at the beginning of the accumulation stage, endorsing, together with short positions in cash
account and stock, the purchase of both rolling bond and rolling longevity bonds.

3.3.1 Sensitivity analysis

Along the lines of Menoncin and Regis [2017] and Agarwal et al. [2023], we perform a sensitivity
analysis examining how the relevant financial and mortality parameters affect the optimal proportion
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of wealth invested in both risky and risk-free assets. To this end, we consider as the base scenario
for optimal shares the median trajectory stemming from the previous simulation study (see Figure
3.2). Consequently, we conduct a numerical study to examine how the median-based optimality
varies according to changes in financial and mortality parameters.
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Figure 3.3 Sensitivity of optimal proportions for females (lhs) and males (rhs) with respect to the risk
aversion parameter δ. The base scenario is characterized by δ = 2.5.

Figure 3.3 shows the behaviour of the optimal investment proportions when the risk aversion
parameter increases, i.e. when δ = 2.5, 5, 7, 10. Using the CRRA utility function, we stress that
the δ parameter measures the fund’s manager risk aversion: a more risk-averse manager tends to
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allocate fund’s wealth into assets presenting lower risks and (possibly) higher guaranteed returns. As
a result, when δ grows, the fund manager is encouraged to augment both cash account and rolling
bond proportions, dropping rolling longevity bond shares. Such evidence holds for both genders and
involves the entire accumulation phase, although optimal shares in rolling longevity bonds remain
positive and approximately time increasing. Reflecting the conservative approach during the latest
accumulation times, also a higher risk-averse fund manager maintains short positions on the rolling
bond to support long positions on the rolling longevity bond and cash account.
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Figure 3.4 Sensitivity of optimal proportions for females (lhs) and males (rhs) with respect to the market
price of longevity risk. The base scenario is characterized by ξλ = 0.1.
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An additional insight from Figure 3.3 concerns the optimal proportions invested in stock, which
appears uncaring to changes in δ. Although this outcome could be surprising, it reveals, at the
same time, the importance of short positions in stock during the aggressive cycle of the optimal
investment strategy. To some extent, the fund’s manager is constrained in using the stock as a
leverage tool in financing bond allocations, independently of the risk aversion level.
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Figure 3.5 Sensitivity of optimal proportions for females (lhs) and males (rhs) with respect to the rolling
longevity bond maturity. The base scenario is characterized by K1 = 10.

Figure 3.4 represents the sensitivity of optimal proportions w.r.t. variations in the market price
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of longevity risk, which is defined according to ξλ = −0.1 in the base scenario. Then, we consider
two alternative values, namely, ξλ = −0.4 and ξλ = 0. It is straightforward to observe that both
cash account and stock shares are insensitive to changes in ξλ. Instead, the optimal weights for the
rolling longevity bonds grow with −ξλ, and the opposite situation occurs for the optimal shares
concerning the rolling bond. In particular, for ξλ = −0.4 the rolling longevity bond attractiveness
dramatically increases, meaning that such an asset is helpful to accommodate both the aggressive
and the conservative investment aptitude. As a result, the longevity bond is the asset dominating
the fund portfolio over the entire accumulation phase.
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Figure 3.6 Sensitivity of optimal proportions for females (lhs) and males (rhs) with respect to the wage
replacement ratio. The base scenario is characterized by wrr = 0.26.
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Obviously, the rolling bond shares exhibit opposing dynamics, making them a suitable asset for
financing long positions in longevity bonds. This trend also holds for the cash account as the
retirement date approaches. When ξλ = 0, the accumulation of retirement capital is governed by
larger allocations in the rolling bond, which gradually decrease over time to favor allocations in the
cash account as the fund approaches the retirement date. Despite the null risk premia, slight and
time-increasing longevity bond allocations are present for both males and females, highlighting the
relevance of longevity risk perceived by the fund manager.

5 10 15 20 25
-0.4

-0.2

0

0.2

0.4

0.6

5 10 15 20 25
-0.4

-0.2

0

0.2

0.4

0.6

5 10 15 20 25
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

5 10 15 20 25
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

5 10 15 20 25
-1

-0.5

0

0.5

5 10 15 20 25
-1

-0.5

0

0.5

5 10 15 20 25
0

0.5

1

1.5

2

5 10 15 20 25
0

0.5

1

1.5

2

Figure 3.7 Sensitivity of optimal proportions for females (lhs) and males (rhs) with respect to the "mortality
down" scenario and the "mortality up" scenario.
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In Figure 3.5 changes in optimal proportions to variations in the maturity of the rolling longevity
bond are considered. In this case, we aim to investigate how optimal shares vary according to
K1 = 5 or K1 = 15, where K1 = 10 is assumed for the base scenario. While for stock we do not
observe modifications, the remaining assets manifest optimal shares significantly altered. For the
longer longevity bond maturity, we record a substantially parallel shift for both cash account and
rolling bond proportions (ZCB and longevity ZCB): in the former case the shift is increasing, while
in the latter is decreasing. Then, with K1 = 15 the fund manager sets short positions in the rolling
bond to offset long positions in both the cash account and rolling longevity bond throughout the
entire accumulation phase. However, optimal proportions in the rolling longevity bonds are the
same for K1 = 10 and K1 = 15. As described in Agarwal et al. [2023], longer maturities result
in more uncertainty in the rolling longevity bonds, and the risk-averse manager prefers to avoid
exposing the capital accumulation to bonds with longer maturities. On the other hand, shortening
the time to maturity, the capital accumulation is shaped according to higher allocation in both
rolling bonds and rolling longevity bonds, requiring continuously short positions in the cash account.
We enrich our analysis by inspecting the sensitivity of optimal shares w.r.t. the so-called wage
replacement ratio, or simply replacement rate. The latter measures the pension fund’s capacity
to furnish a post-retirement income adequately commensurate to the pre-retirement one. At the
retirement date, the wage replacement ratio is

wrr = bT

L(T ) ,

and typically it ranges in (0, 1). Obviously, ratio values approaching 1 indicate the pension fund’s
ability to maintain pre-retirement living standards during retirement. Concerning our base scenario,
we record wrr = 0.26, revealing the need to investigate how the optimal proportions invested in
risk-free and risky assets change if the fund manager aims to increase such a ratio. Figure 3.6
represents how optimal shares vary according to increasing values of the replacement rate, namely,
wrr = 0.56 and wrr = 0.76. Fixing the median value for L(T ), a widening wrr requires rising
annuity installments, and consequently, a higher annuity value. Since the wrr is not linked to the
fund member’s longevity in our framework, the fund manager faces the need to guarantee a greater
annuity value by accelerating the capital accumulation. Then, as emerges from Figure 3.6, when the
wrr increases, the fund’s manager allocates more wealth in the rolling bond during the aggressive
phase of the accumulation period. Conversely, the optimal proportions in the rolling longevity bond
decrease, leverage effect through short positions in the stock. Looking at the conservative phase,
the optimal proportions invested in the rolling longevity bond continue to be relevant, meaning to
say that such an asset is the reference to protect retirement capital against longevity risk.
We conclude our numerical application by examining how the mortality phenomenon affects the
optimal proportions invested in risky and risk-free assets. In particular, we aim to isolate the
mortality impact by adding to the base scenario two alternatives: the “mortality down" scenario,
corresponding to the 0.5-quantile of the simulated mortality intensity process, and the “mortality
up" scenario, representing the 95-quantile. The former represents a scenario with higher longevity,
while the latter considers increasing mortality. All the other random sources are portrayed by their
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base scenario. Figure 3.7 summarizes the numerical results. As expected, for both genders, the
“mortality down" scenario is characterized by wider optimal shares in the rolling longevity bond
w.r.t. both the base scenario and the “mortality up" one. Indeed, the scenario with prominent
longevity involves the prevalence of the longevity risk upon the interest rate risk. Then, the fund’s
manager finances long positions in the rolling longevity bond, taking greater (in absolute value) short
position in the rolling bond. Moreover, the duration of the aggressive investment approach reduces,
implying lower (greater) short positions (in absolute value) in the stock (cash account). During
the conservative phase, the cash account also has a greater weight in the fund’s asset allocation.
Looking at the “mortality down” scenario, the opposite considerations hold.
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Chapter 4

On the optimal design of a new class
of Proportional PI strategy in a
jump-diffusion framework

PPI strategy can be seen as a generalized version of the standard CPPI strategy. Indeed, the
former is characterized by a multiplier m, which is no longer constant but time-varying, that
is, m = {m(t), t ∈ [0, T ]} , to provide better adaptability of the strategy’s exposure to market
fluctuations. As argued in Kingston [1989], the optimality of PPI strategies is defined for investors
endowed with a hyperbolic absolute risk aversion (HARA) utility function given by

UHARA(x) = (x−G)1−δ

1 − δ
, (4.1)

for δ > 0 and δ ̸= 1. PPI insurers aim to determine the multiplier to maximize the expected
HARA utility of terminal portfolio value under the constraint that the terminal portfolio value
exceeds or equals the guaranteed amount G. Equivalently, a PPI investor aims to determine the
optimal multiplier that maximizes the expected constant relative risk aversion (CRRA) utility
function, UCRRA(x) = x1−δ

1−δ , of the terminal cushion, under the constraint that the terminal cushion
is non-negative. This optimization problem has been solved by Zieling et al. [2014], under the
hypotheses that the market is frictionless and the dynamics of the underlying risky asset and the
reserve asset follow geometric Brownian motions. As discussed in Section 1.2.1, in this setup, the
portfolio protection is efficient P-a.s., which means that the constraint for the terminal cushion is
not binding, and the standard dynamic programming approach applies. The optimal time-varying
multiplier is the sum of two components: the myopic demand expressed in terms of the Merton
solution, and a strongly model-dependent intertemporal hedging demand. Moreover, if one considers
a market model with constant drift and volatility of the underlying risky asset, and constant
risk-free interest rate, then the optimal multiplier is also constant and given by the product of the
instantaneous Sharpe ratio and the inverse of the risk aversion parameter. In this case, the PPI
strategy collapses into CPPI strategy.
However, the above results only apply in frictionless market. Indeed, as soon as frictions are
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introduced, either in the form of unpredictable downward jumps appear in the dynamics of the
underlying (Cont and Tankov [2009]) or trading restrictions (Balder et al. [2009]), PI strategies fail
to meet one of their objectives, and may lead to the so-called gap risk with positive probability.
Technically, as shown in Section 1.2.3, the occurrence of gap risk is equivalent to the existence of a
critical time τ := inf

{
t ∈ [0, T ] : WP P I(t) ≤ F (t)

}
. Hence, under a standard PPI strategy, from τ

on, the residual wealth is entirely invested into the reserve asset, meaning that the corresponding
cushion process satisfies

(C(t))+ =

C(t), t ∈ [0, τ),

0, t ∈ [τ, T ].
(4.2)

To illustrate the effects of the gap risk on the portfolio insurers, we perform a historical simulation
of the CPPI strategy applied on the Standard and Poor 500 index from 2006 to 2013 with a constant
multiplier of 10. As shown in Figure 4.1, due to the sudden market collapse in 2008, the CPPI
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Figure 4.1 Historical simulations for the CPPI strategy.

strategy cannot be adequately rebalanced and thus falls below the floor. From that moment on,
the remaining wealth is entirely allocated to the risk-free asset meaning that the strategy is unable
to secure the guaranteed amount at maturity. Furthermore, although the Standard and Poor 500
nicely recovers from the beginning of 2009 onwards, the occurrence of gap risk makes the CPPI
strategy unable to get any equity market participation.
Hence, the unbroken popularity of portfolio strategies cannot be explained based on standard utility
theory. For this reason, a more recent strand of literature uses the positive framework of behavioural
finance to explain the widespread popularity of PI strategies. In particular, Dichtl and Drobetz
[2011] carried out an extensive empirical analysis showing that both CPPI and PPI strategies can
also be explained using the cumulative prospect theory (CPT) developed by Tversky and Kahneman
[1992]. The authors proved that PI investors are loss-averse and endowed with an S-shaped utility
function, which is concave for gains and convex for losses. As a consequence, portfolio insurers
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evaluate the investment outcome by the corresponding deviation from a reference point, coinciding
with the guaranteed amount at maturity, and assess potential gains and losses asymmetrically. In
the CPT framework, Escobar-Anel et al. [2020] study the optimal design of a variant of the CPPI
strategy, the so-called generalized behavioural portfolio insurance (GBPI) strategy. Unlike the
standard CPPI, the GBPI works even when the portfolio falls below the floor due to the gap risk.
After such an event, the GBPI maintains a positive exposure to the risky assets to limit potential
loss and reach the funded area. The authors show the proposed GBPI strategy to be optimal in a
CPT world, assuming a discrete-time rebalancing, a diffusive dynamics for the risky asset, and a
constant risk-free rate.
In the present chapter, we provide a criterion for determining the optimal multiplier of a new PPI
strategy to maximize the expected S-shaped utility of the terminal cushion at maturity. One of
the novelties of our work consists in extending the idea of Escobar-Anel et al. [2020] to maintain
a positive risky exposure even when the cushion becomes negative because of the gap risk. In
addition, we consider a more realistic market setting, allowing for downward jumps in the underlying
risky asset dynamics. We solve the optimization problem using a procedure based on the following
two steps. First we show the equivalence between the optimization problem with an S-shape
utility function with that of its concave envelop. Then we apply a modification of the so-called
martingale method, based on duality theory, where the original dynamic problem is transformed
into an equivalent static problem. Here the main difficulty arises to to market incompleteness, that
does not allow for a univocal characterization of the state price density. To deal with that we rely
on a technique developed by Michelbrink and Le [2012] which combines the martingale method and
worst case probability, and allows to determine PPI strategy, and the state price density by solving
a non-linear system of equations. Establishing sufficient conditions for both the existence and the
uniqueness of solutions of this system is very challenging, as argued in Michelbrink and Le [2012].
We discuss some cases where the optimized multiplier is unique and given in closed or quasi-closed
form. We also perform an accurate numerical analysis by using several specifications of jump size
distributions, providing remarkable results. In particular, we prove that the optimized multiplier of
the proposed PPI strategy is such that gap risk never occurs during the entire investment horizon.
The remainder of the chapter is organized as follows. In Section 4.1, we describe the market model
with jumps. The optimization problem is introduced in Section 4.2, also containing a discussion
about the concavification technique. Section 4.3 determines the optimal PPI strategy and discusses
a few examples where a (semi-)closed form of the optimal multiplier can be established. Finally, we
perform a numerical analysis in Section 4.4.

4.1 The financial market model

Let (Ω,F ,P) be a probability space and let T be a finite time horizon. Consider a one-dimensional
Brownian motion ZS = {ZS(t), t ∈ [0, T ]} , and a jump process described by an homogeneous
Poisson random measure N (dt,dy), independent of each other. We let ν (dy) be the σ-finite
compensator of N(dt, dy), with support in a measurable set E ⊆ R. Let F = {F(t), t ∈ [0, T ]} be a
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complete and right continuous filtration given by

F(t) := σ
{(
ZS(s), N

(
(0, s], Ā

))
| Ā ∈ B(E), s ∈ [0, t]

}
∨ N̄ ,

with F(T ) = F and F(0) being the trivial σ-algebra, where N̄ is the collection of all P-null sets
and B(E) is the Borel-σ-algebra on E. Next, we consider a financial market which consists of
a zero-coupon bond (ZCB) with price process P = {P (t), t ∈ [0, T ]} maturing at time T , and a
stock with price process S = {S(t), t ∈ [0, T ]}. We assume that a fund manager can buy and sell
continuously without restrictions or transaction costs. The ZCB price dynamics satisfies

dP (t)
P (t) = rdt, t ∈ [0, T ],

P (T ) = 1,
(4.3)

where r > 0 is the constant risk-free interest rate. The stock dynamics is assumed to follow a
geometric jump-diffusion process, that is

dS(t)
S(t−) = µdt+ σdZS(t) +

∫
E
γ(t, y)N(dt, dy), t ∈ [0, T ],

S(0) = s̃ > 0,
(4.4)

where µ ∈ R is the drift of the risky asset, σ ∈ R+ is the volatility of the risky asset, and γ(t, y) is
an F-adapted càdlàg σ-field accounting for the amplitude of jumps in the stock price. To ensure
non-negativity of the risky asset’s price, we assume that 1 +

∫
E γ(t, y)N(dt, dy) ≥ 0. Note that that

equation (4.4) admits a unique strong solution.
We consider a self-financing trading strategy π = {(π(t), 1 − π(t)) , t ∈ [0, T ]} where π(t) is the
fraction of portfolio value invested in the risky asset at time t (consequently, 1 − π(t) is the fraction
of wealth invested in the bond at time t). We assume standard integrability conditions on π,

E
[∫ T

0
|S(s)||π(s)|

(
|µ| +

∫
E

|γ(s, y)|ν(dy)
)

+ S2(s)π2(s)σ2ds
]
< ∞. (4.5)

Then, for all t ∈ [0, T ], the dynamics of the wealth process W̃π,P P I =
{
W̃π,P P I(t), t ≥ 0

}
is given

by

dW̃π,P P I(t)
W̃π,P P I(t−)

= [r + π(t) (µ− r)] dt+ π(t)σdZS(t) + π(t)
∫

E
γ(t, y)N(dt, dy), t ∈ [0, T ],

with W̃π,P P I(0) = w̃0 being the initial endowment. We assume that the exposure to the risky asset is
proportional to the cushion, that is m(t) · C̃m(t) for all t ∈ [0, T ], where C̃m(t) := W̃π,P P I(t) −F (t),
regardless of gap risk. Formally, we have the following definition.

Definition 4.1.1. An admissible strategy is an F-predictable process m = {m(t), t ∈ [0, T ]} such
that

(i) m(t) · C̃m(t) = π(t)W̃π,P P I(t), t ∈ [0, T ],
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(ii) the integrability condition in equation (4.5) is satisfied,

(iii) C̃m(t) ≥ −F (t) for all t ∈ [0, T ], and for every initial cushion c̃0 = w̃0 − G · P (0) > 0.
Equivalently, an admissible multiplier m satisfies W̃π,P P I(t) ≥ 0, for all t ∈ [0, T ], and for
every initial wealth w̃0.

We denote by M(c̃0) the set of all admissible multipliers m for a given initial cushion c̃0 > 0. This
set is non-empty, as an investor can always invest all his/her funds into the bond, that is m(t) = 0
for all t ∈ [0, T ]. By stretching the definition slightly, we refer to the strategy mentioned above as
PPI. In terms of the multiplier m, the PPI portfolio value process W̃π,P P I reads as

dW̃π,P P I(t) = dF (t) +
(
W̃π,P P I(t−) − F (t)

)
[r +m(t) (µ− r)] dt

+
(
W̃π,P P I(t−) − F (t)

) [
m(t)σdZS(t) +m(t)

∫
E
γ(t, y)N(dt, dy)

]
,

for every t ∈ [0, T ], with W̃π,P P I(0) = w̃0. As in Section 1.2, the floor process satisfies dF (t) =
rF (t)rdt, with F (T ) = G. Hence, the dynamics of the cushion process are

dC̃m(t)
C̃m(t−)

= [r +m(t) (µ− r)] dt+m(t)σdZS(t) +m(t)
∫

E
γ(t, y)N(dt, dy), t ∈ [0, T ],

C̃m(0) = c̃0.

(4.6)

4.2 The optimization problem

The presence of jumps in the dynamics of the underlying risky asset impedes the determination of
the optimal multiplier, even under broader definitions of PPI strategies. This is a mere consequence
of gap risk which may lead to negative values for the cushion process and hence does not permit
modelling the preferences of the insurer via a CRRA utility function. Therefore, in the present
work, we adopt the prospect utility theory to model the preference of the PI insurer. This choice
is justified by the findings of Dichtl and Drobetz [2011], who proved, through extensive numerical
analysis, that PI insurers’ behaviour is more appropriately described by the theory devised by
Tversky and Kahneman [1992]. In particular, Dichtl and Drobetz [2011] argue that PI insurers
evaluate their investment decisions regarding the potential losses and gains relative to a reference
level that coincides with the guaranteed amount at maturity. They also found that PI insurers are
loss-averse, perceiving losses and gains asymmetrically. More precisely, they evaluate the marginal
utility of potential losses higher than that of potential gains. Mathematically, such features could be
stylised via S-shaped utility functions. An S-shaped utility function on [0,+∞) defined as follows

U(x;G) =

U1 (x−G) , x ≥ G,

U2 (G− x) , 0 ≤ x < G,
(4.7)

where the guaranteed amount G is the reference point, U1(x) and U2(x) are strictly increasing,
strictly concave, continuously differentiable on [0,+∞) satisfying U ′

1(x) < U ′
2(x), Ui(0) = 0,

lim
x→+∞

Ui(x) = +∞, lim
x→0+

U ′
i(x) = +∞, lim

x→+∞
U ′

i(x) = 0, and 0 ≤ U ′
i(x) ≤ Mi

(
1 + xβi

)
, for all
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x ≥ 0, and for some constants Mi > 0, βi ∈ (0, 1), i = 1, 2, see Bian et al. [2011] for further details.
As in Dong and Zheng [2019], we choose U1(x) and U2(x) such that

U(x;G) =


(x−G)1−δ1

1 − δ1
, x ≥ G,

− λ̄
(G− x)1−δ2

1 − δ2
, 0 ≤ x < G,

(4.8)

where δi ∈ (0, 1), for i = 1, 2 and λ̄ > 1−δ2
1−δ1

. Hence, the fund’s manager aims to determine the
optimal multiplier of our new version of the PPI strategy in order to maximize the expected S-shaped
utility of the terminal wealth W̃π,P P I(t) over the guaranteed amount. His problem can be stated as
follows.

Problem 4.2.1. For the initial data (t, w̃) ∈ [0, T ] × (0,+∞),

Maximize J(t, w̃;m(·)) = Et,w̃
[
U
(
W̃π,P P I(T );G

)]
over all m(·) ∈ M (c̃) , (4.9)

where Et,w̃ denotes the conditional expectation given W̃π,P P I(t) = w̃.

Due to the special choice of the utility function, we do not restrict to consider strategies leading to
positive cushion. Even if the gap occurs during the investment horizon, the fund manager maintains
the exposure to the risky asset proportional to the negative cushion to minimize the difference
between the underfunded portfolio value and the guaranteed amount at maturity. Following Zieling
et al. [2014], we recast the optimization problem 4.2.1 in terms of the cushion as follows.

Problem 4.2.2. For the initial data (t, c̃) ∈ [0, T ] × (−∞,+∞),

Maximize J (t, c̃;m(·)) = Et,c̃
[
Ũ
(
C̃m(T );G

)]
over all m(·) ∈ M (c̃) , (4.10)

where Et,c̃ denotes the conditional expectation given C̃m(t) = c̃, and Ũ(· ;G) is an S-shaped utility
on [−G,∞) with reference point equal to zero, defined as

Ũ(x;G) =


x1−δ1

1 − δ1
, x ≥ 0,

− λ̄
(−x)1−δ2

1 − δ2
, −G ≤ x < 0.

From now on, we omit the dependence of the multiplier m in the notation of the cushion process to
help for readability. We define the value function corresponding to problem 4.2.2 as follows

v(t, c̃) := sup
m∈M(c̃)

J (t, c̃;m(·)) ,

v
(
t, C̃(T )

)
:= Ũ

(
C̃(T );G

)
.

(4.11)

4.2.1 The concavification

We approach the optimization problem 4.2.2 via the martingale method. Here, a few difficulties
arise due to the incompleteness of the market and the non-concavity of the utility function. We
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begin by addressing the problem that the objective function of the optimization problem depicted in
equation (4.10) is not concave in C̃. To overcome this issue, we apply the concavification technique,
see, e.g., Carpenter [2000] and Nicolosi et al. [2018]. Denote by a function f̄ c the concave envelope
of a function f̄ with domain D by

f̄ c := inf
{
g : D → R s.t. g is concave, g(x) ≥ f̄(x), ∀x ∈ D

}
.

Figure 4.2 represents Ũ as a function of the terminal cushion C̃(T ). This objective function is not
concave with respect to the decision variable C̃(T ). However, for each G > 0, Ũ(· ;G) exhibits a
concavification Ũ c(· ;G) illustrated by the dotted line in Figure 4.2. In particular, Ũ c replaces part
of the original function with a straight line from −G to another point, ĉ(G) > 0, at which the slope
of such a straight line equals the slope of Ũ . The following Proposition shows that for every G > 0,
the point ĉ(G) > 0 exists and is unique.

Figure 4.2 The solid line plots the utility Ũ(x), the dotted line is the concave envelope of Ũ(x). In this
plot we have used the parameters: δ1 = 0.3, δ2 = 0.5, λ̄ = 2.25 and G=100.

Proposition 4.2.3. Assume that λ̄

1 − δ2
>

1
1 − δ1

> 0 and δi ∈ (0, 1) for i = 1, 2. Then, for every
G > 0, there exists a unique point ĉ(G) > 0 which is the solution of the following equation

Ũ (ĉ(G);G) − Ũ(−G;G)
ĉ(G) +G

= Ũ ′ (ĉ(G);G) . (4.12)

Proof. Recall that Ũ(x;G) is differentiable for every x ̸= 0. Let us consider x ∈ (−∞, 0). Using the
condition stated in equation (4.12), we define the function

f(x) :=


−λ̄ δ2

1 − δ2
(−x)1−δ2 − λ̄

G

(−x)δ2
+ λ̄

G1−δ2

1 − δ2
, x ∈ (−∞, 0)

δ1
1 − δ1

x1−δ1 − G
xδ1 + λ̄

G1−δ2

1 − δ2
, x ∈ (0,∞).

(4.13)

We see that for x ∈ (−∞, 0) the function f(x) has a maximum at x = −G, with f(−G) < 0. Since
lim

x→−∞
f(x) = lim

x→0−
f(x) = −∞, there is no ĉ(G) ∈ (−∞, 0) such that f(ĉ(G)) = 0. If we consider
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x ∈ (0,+∞), since lim
x→0+

f(x) = −∞ and lim
x→+∞

f(x) = +∞, then there exists ĉ(G) > 0 such that
f(ĉ(G)) = 0. Moreover, since f ′(x) > 0 for all x ∈ (0,+∞), then ĉ(G) is also unique. This concludes
the proof.

The concavified function Ũ c(x;G) is given by

Ũ c(x;G) =


x1−δ1

1 − δ1
, x ≥ ĉ(G),

k̂x+ G

ĉ(G) +G

ĉ(G)1−δ2

1 − δ2
− λ̄

G1−δ1

ĉ(G) +G

ĉ(G)
1 − δ1

, −G ≤ x < ĉ(g),

where
k̂ = 1

ĉ(G) +G

(
ĉ(G)1−δ2

1 − δ2
+ λ̄G1−δ1

1 − δ1

)
,

is the slope of the tangent line (see, Figure 4.2) and ĉ(G) > 0 is the unique solution of equation (4.12).
Furthermore, Ũ c(x;G) ≥ Ũ(x;G) for all (x,G) ∈ [−G,+∞) × (0,+∞) and Ũ c (x;G) = Ũ (x;G) for
x = −G and for all x > ĉ(G).

Lemma 4.2.4. The optimal terminal cushion is achieved at C̃⋆(T ) ≥ ĉ(G).

Proof. We first show that the optimal terminal cushion C̃⋆(T ) never takes values on (−G, ĉ(G))
where the true and the concavified objective functions are different. Suppose that there is a set
Ω̄ ⊆ Ω such that Ũ

(
C̃⋆(T, ω);G

)
̸= Ũ c (C⋆ (T, ω) ;G), for all ω ∈ Ω, equivalently, C̃⋆(T, ω) takes

values in (−G, ĉ(G)) for all ω ∈ Ω̄. We also let P
(
C̃⋆(T ) < ĉ(G)

)
= q for some q ∈ (0, 1). We want

to show that, in this case, such C̃⋆(T ) is not optimal. For all ω ∈ Ω̄, there exists α(ω) ∈ (0, 1) such
that C̃⋆(T, ω) = α(ω) · (−G) + (1 − α (ω)) · ĉ(G). Now, define the random variable

Ĉ(T ) (ω) =


−G, if ω ∈ Ω1,

ĉ(G), if ω ∈ Ω̄ \ Ω1,

C̃⋆ (T, ω) , if ω ∈ Ω \ Ω̄.

We also assume that P
(
Ĉ(T ) = −G

)
= p1 for some p1 ∈ (0, q) and P

(
Ĉ(T ) = ĉ(G)

)
= q − p1.

Note that Ũ
(
Ĉ(T );G

)
= Ũ c

(
Ĉ(T );G

)
everywhere and that Ĝ is an admissible cushion. Moreover

E
[
Ũ(Ĉ(T );G)

]
= Ũ(−G;G)p1 + Ũ(ĉ(G);G)(q − p1) + E

[
Ũ(Ĉ(T );G)1Ω\Ω̄

]
.

On the other hand we also observe that

E
[
Ũ(C̃⋆(T );G)

]
= E

[
Ũ (−Gα+ ĉ(G)(1 − α);G)1Ω̄

]
+ E

[
Ũ(Ĉ(T );G)1Ω\Ω̄

]
. (4.14)

Hence if we choose p1 = 0 this implies that E
[
Ũ(Ĉ(T );G)

]
≥ E

[
Ũ(C̃⋆(T );G)

]
. Next we also

exclude that C̃⋆(T ) = −G. Indeed, if one implements the trivial strategy, i.e. that corresponding to
the multiplier m = 0, gets the terminal cushion C̃0(T ) = c̃0 · erT , which is non-negative since c̃0 ≥ 0
by construction. Comparing terminal cushions C̃⋆(T ) = −G P−a.s. and C̃0(T ) one would get that
E
[
Ũ(C̃⋆(T );G)

]
< E

[
Ũ(C̃0(T );G)

]
, which contradicts the optimality of C̃⋆(T ).
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Since C̃⋆(T ) ≥ ĉ(G), we can restrict to the case where Ũ c(y,G) = y1−δ1
1−δ1

. Hence, we can recast the
optimization problem 4.2.2 into the following equivalent one.

Problem 4.2.5. For the initial data (t, c̃) ∈ [0, T ] × (−∞,+∞)

Maximize J (t, c̃;m(·)) = Et,c̃


(
C̃(T )

)1−δ1

1 − δ1

 over all m(·) ∈ M (c̃) , (4.15)

where Et,c̃ denotes the conditional expectation given C̃(t) = c̃.

The value function corresponding to the latter equivalent problem is given by
v(t, c̃) = sup

m∈M(c̃)
J(t, c̃;m(·)),

v
(
t, C̃(T )

)
=

(
C̃(T )

)1−δ1

1 − δ1
.

(4.16)

4.3 The martingale approach under market incompleteness

Now, we are ready to tackle the second issue, i.e. the incompleteness of the market, which impedes
the resolution of optimization problem 4.2.5 via the standard martingale method. To overcome such
a drawback, we use a generalization of the martingale method that applies to incomplete markets.
In particular, we rely on the results of Michelbrink and Le [2012], suitably taylored to our setup.

Remark 4.3.1. Alternatively one could apply the dynamic programming approach, and characterize
the value of the optimization as the unique viscosity solution of the Hamilton-Jacobi-Bellman (HJB)
equation. Moreover uniqueness in the classical sense holds under additional conditions on the
parameters of the model (see, e.g. Pham [1998]). The optimal PPI strategy can only be expressed
in feedback form and the value function must be computed numerically. Therefore we resort to the
martingale method suitably combined with the worst case probability measure as described below,
which permits the simultaneous characterization of the state price density and the optimal PPI
strategy in terms of the solution of an implicit system.

First, we have to rewrite the dynamic optimization problem 4.2.5 into an equivalent static one.
Under the assumption of no arbitrage, there are infinitely many equivalent martingale measures
(EMMs) that can be characterized by the family of Radon-Nikodym densities ΠΞ so that

dQΞ
dP

∣∣∣∣
F(T )

= ΠΞ(t), (4.17)

parameterized by Ξ = (ΞS(t),ΞJ(t, y)). In particular, ΞS(t) and ΞJ(t, y) are the market prices of
risk for the diffusion and for jumps of the stock price, respectively. For the predictable process
ΞS = {ΞS(t), t ∈ [0, T ]}, and predictable random field ΞJ = {ΞJ(t, y), t ∈ [0, T ]}, we assume that
the process ΠΞ is a martingale and it is the solution of the SDE

dΠΞ(t)
ΠΞ(t−) = ΞS(t)dZS(t) −

∫
E

(1 − ΞJ(t, y)) (N(dt, dy) − ν(dt, dy)) , (4.18)
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for every t ∈ [0, T ], with ΠΞ(0) = 1. If ΞJ(t, y) > 0 for all y ∈ E and t ∈ [0, T ], it is well known
that ΠΞ(t) can be rewritten as

ΠΞ(t) = exp
{∫ t

0
ΞS(s)dZS(s) − 1

2

∫ t

0
(ΞS(s))2 ds

+
∫ t

0

∫
E

log ΞJ(s, y)N(ds, dy) +
∫ t

0

∫
E

(1 − ΞJ(s, y)) ν(dy)ds
}
, (4.19)

see, Theorem 4.61 of Jacod and Shiryaev [2013] for further details. By Girsanov’s Theorem, if ΠΞ(t)
is a P-martingale with expectation equal to one, we get that

ZQΞ
S (t) = ZS(t) −

∫ t

0
ΞS(s, r(s))ds, t ∈ [0, T ], (4.20)

is a Brownian motion under QΞ and the random measure defined by

NQΞ (dt, dy) = N (dt, dy) −
∫ t

0
ΞJ(s, y, r(s))ν(dy)ds, t ∈ [0, T ], (4.21)

is a compensated Poisson random measure under Q. To guarantee that ΠΞ is a martingale with
E
[
ΠΞ(t)

]
= 1, one could assume a generalization of the Novikov’s condition for jump-diffusion

processes, that is
E
{
e

1
2

∫ T

0 (ΞS(u))2du+
∫ T

0 (1−ΞJ (u,y))2du
}
< ∞,

see, e.g. Theorem 9 of Protter et al. [2008]. To summarize, we consider the following definition.

Definition 4.3.2. The vector process Ξ is an admissible market price of risk if it is predictable and
the following conditions hold

(i) ΞJ(t, y) > 0 for all y ∈ E and t ∈ [0, T ],

(ii) ΠΞ(t) defined by (4.19) is a martingale with expected value equal to one,

(iii) for all t ∈ [0, T ] it holds that

µ− r + σΞS(t) +
∫

E
γ(t, y)ΞJ(t, y)ν(dy) = 0, (4.22)

We let Θ be the set of all admissible market prices of risk.

Condition (iii) of Definition 4.3.2 ensures that the discounted stock price S(t)e−
∫ t

0 r(s)ds is a local
martingale under the corresponding new probability measure QΞ defined by equation (4.17).

Assumption 4.3.1. The set Θ is non-empty.

For every Ξ ∈ Θ, using the definition of the QΞ-Brownian motions, the QΞ-compensator of the
Poisson random measure and the condition (4.22), it can be easily seen that the process C̃QΞ defined
as

C̃QΞ(t) := C̃(t)e−rt, t ∈ [0, T ], (4.23)
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is a local QΞ-martingale. To obtain properties of C̃QΞ under the original probability P, we introduce
the state price density associated with Ξ ∈ Θ.

Definition 4.3.3. For Ξ = (ΞS(t),ΞJ(t, y)), the process defined by

HΞ(t) := ΠΞ(t)e−rt

is called the state price density associated with Ξ, where ΠΞ is defined by (4.19). The dynamics of
HΞ is given by

dHΞ(t)
HΞ(t−) = −rdt+ ΞS(t)dZS(t) −

∫
E

(1 − ΞJ(t, y)) Ñ(dt, dy),

for every t ∈ [0, T ]. For Ξ ∈ Θ, the process M defined by

M(t) := HΞ(t)C̃(t), t ∈ [0, T ], (4.24)

is a local P-martingale. Moreover, for all m ∈ M(c̃0), the following budget constraint holds

EQ
[
C̃(T )e−rT

]
≤ c̃0 or, equivalently, E

[
C̃(T )HΞ(T )

]
≤ c̃0,

with c̃0 := ṽ0 −G ·P (0, T ), see, e.g., Proposition 3.3 of Michelbrink and Le [2012]. Hence, the static
optimization problem equivalent to the Problem 4.2.5 is

max
C̃∈F(T )

E


(
C̃(T )

)1−δ1

1 − δ1

 , (4.25)

with budget constraint
E
[
C̃(T )HΞ(T )

]
≤ c̃0. (4.26)

For Ξ = (ΞS(t),ΞJ(t, y)), we define

XΞ(y) := y
− 1

δ1 E
[(
HΞ(T )

)1− 1
δ1

]
, y > 0, (4.27)

and consider the set Θ̃ ⊆ Θ of all change of measures for which XΞ(y) is finite. For a fixed c̃0 > 0
and Ξ ∈ Θ̃, we define the non-negative random variable YΞ as

YΞ :=
(
X −1(c)HΞ(T )

)− 1
δ1 (4.28)

As shown in Michelbrink and Le [2012], YΞ satisfies the property into the following Lemma.

Lemma 4.3.4. For any Ξ ∈ Θ̃, YΞ defined in equation (4.28) satisfies

(i) E
[
HΞ(T )YΞ

]
= c̃0,

(ii) E
[
min

(
Y 1−δ1

Ξ
1 − δ1

, 0
)]

> −∞,
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(iii) E


(
C̃(T )

)1−δ1

1 − δ1

 ≤ E
[
Y 1−δ1

Ξ
1 − δ1

]
for all m ∈ M (c̃0).

An immediate consequence of point (iii) of Lemma 4.3.4 is that

sup
m̃∈M(c̃0)

E


(
C̃(T )

)1−δ1

1 − δ1

 ≤ inf
Ξ∈Θ̃

E

Y 1−δ1
Ξ̃

1 − δ1

 , (4.29)

or in other terms, the expected utility of the auxiliary process outperforms or is at least equal to
the expected utility of any admissible multiplier.

Definition 4.3.5. A martingale measure QΞ obtained by equation (4.17) in terms of a Ξ̂ ∈ Θ̃ is
called optimal for the infimum problem defined in equation (4.29) if

E

Y 1−δ1
Ξ̂

1 − δ1

 = inf
Ξ∈Θ̃

E
[
Y 1−δ1

Ξ
1 − δ1

]
, (4.30)

where YΞ is defined by equation (4.28).

In the following, we link the optimal martingale measure QΞ defined by means of equation (4.30)
with the optimal multiplier which solve (4.16). First, we consider for any Ξ ∈ Θ̃ the martingale
MΞ defined as follows

MΞ(t) := E
[
HΞ(T )YΞ|F(t)

]
, (4.31)

such that MΞ(0) = c̃0 P−a.s. for every Ξ ∈ Θ̃. Then, in terms of MΞ, we have

C̃Ξ(t) := MΞ(t)
HΞ(t) , t ∈ [0, T ], Ξ ∈ Θ̃. (4.32)

To derive the optimal multiplier, and optimal market risk premiums, the martingale representation
coefficients of MΞ in equation (4.31) need to be computed. To do this, we first have to decompose
the state price density HΞ as in the following Proposition.

Proposition 4.3.6. For all Ξ ∈ Θ̃, the following decomposition holds

(
HΞ(t)

)− 1−δ1
δ1 = G

(
t,HΞ(t)

)
G̃ (t)

, t ∈ [0, T ], (4.33)

where the process G̃ is given by

G̃(t) = exp
{1 − δ1

δ1
r(T − t) +

∫ T

t

∫
E

[
−1 − δ1

δ1
(1 − ΞJ(s, y)) + (ΞJ(s, y))− 1−δ1

δ1 − 1
]
ν(dy)ds

+ 1
2

1 − δ1
δ2

1

∫ T

t
(ΞS(s))2 ds

}
, t ∈ [0, T ], (4.34)
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and the process G is a martingale given by

G
(
t,HΞ(t)

)
= exp

{
− 1 − δ1

δ1

∫ t

0
ΞS(s)dZS(s) − 1

2

(1 − δ1
δ1

)2 ∫ t

0
(ΞS(s))2 ds

+
∫ t

0

∫
E

ln
(

(ΞJ(s, y))− 1−δ1
δ1

)
N(ds, dy) −

∫ t

0

∫
E

[
(ΞJ(s, y))− 1−δ1

δ1 − 1
]
ν(dy)ds

}
, (4.35)

for every t ∈ [0, T ].

Proof. Since the process HΞ is Markovian, for all Ξ ∈ Θ̃, we can define the process

G
(
t,HΞ(t)

)
:= E

[(
HΞ(T )

)− 1−δ1
δ1 |F(t)

]
. (4.36)

The process G
(
t,HΞ(t)

)
is a martingale under P, therefore, it can be characterized as the solution

of the following PIDE

0 =∂G (t, h)
∂t

+ ∂G(t, h)
∂h

h

[
−r +

∫
E

(1 − ΞJ(t, y)) ν(dy)
]

+ 1
2
∂2G(t, h)
∂h2 h2 (ΞS(t))2

+
∫

E
(G(t, h+ y) −G(t, h)) ν(dy), (4.37)

with boundary condition
G (T, h) = h

− 1−δ1
δ1 . (4.38)

To solve the problem depicted in (4.37), we make the ansatz

G (t, h) = h
− 1−δ1

δ1 G̃ (t) , t ∈ [0, T ]. (4.39)

with G̃ (t) = eg1(t) for all t ∈ [0, T ] and g1(T ) = 0. Substituting this ansatz in equation (4.37), we
obtain the following ODE

0 = dg1(t)
dt + 1 − δ1

δ1
r −

∫
E

[1 − δ1
δ1

(1 − ΞJ(t, y)) − (ΞJ(t, y))− 1−δ1
δ1 + 1

]
ν(dy) + 1

2
1 − δ1
δ2

1
(ΞS(t))2 ,

whose well behaved solution up to time T , is given in equation (4.34). A sufficient condition for G
to be a martingale is that

E
{∫ T

0

(1 − δ1)2

δ2
1

(ΞS(s))2 ds+
∫ T

0

∫
E

∣∣∣∣ (ΞJ(s, y))− 1−δ1
δ1 − 1

∣∣∣∣ν(dy)ds
}
< +∞. (4.40)

Note that under the Novikov’s condition, the condition on ΞS is satisfied. Hence the right integrability
of ΞJ provides an additional sufficient condition for having Ξ ∈ Θ̃.

Proposition 4.3.7. Let aS(t) and aJ(t, y) be the unique martingale representation coefficients of
MΞ depending on Ξ ∈ Θ̃. Then, the dynamics of MΞ is given by

dMΞ(t) = aS (t) dZS(t) +
∫

E
aJ (t, y) (N (dt,dy) − ν (dy) dt) , t ∈ [0, T ], (4.41)
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where

aS (t) = −MΞ(t−)1 − δ1
δ1

ΞS(t),

aJ (t, y) = MΞ(t−)
[
(ΞJ(t, y))− 1−δ1

δ1 − 1
]
.

Proof. Thanks to the decomposition of the state price density HΞ given in Proposition 4.3.6, we
can rewrite XΞ(y) as follows

XΞ(y) = y
− 1

δ1 E
[(
HΞ(T )

)− 1−δ1
δ1

]
= y

− 1
δ1 ·G

(
0, HΞ(0)

)
.

We denote by ŷΞ the unique point such that XΞ(ŷΞ) = c̃0 for given c̃0. Then

ŷΞ =
(

c̃0
G (0, HΞ(0))

)−δ1

, (4.42)

and
YΞ =

(
c̃−δ1

0 HΞ(T )
)− 1

δ1 = c̃0
G (0, HΞ(0)) ·

(
HΞ(T )

)− 1
δ1 . (4.43)

Substituting equation (4.43) into equation (4.31), we obtain

MΞ(t) = E
[
HΞ(T ) · c̃0

G (0, HΞ(0)) ·
(
HΞ(T )

)− 1
δ1

∣∣∣∣F(t)
]

= c̃0
G (0, HΞ(0)) · E

[(
HΞ(T )

)− 1−δ1
δ1

∣∣∣∣F(t)
]

= c̃0
G (0, HΞ(0)) ·G

(
t,HΞ(t)

)
. (4.44)

By applying Itô’s formula on equation (4.44), we obtain the dynamics of MΞ(t) which reads as
follows

dMΞ(t)
MΞ(t−) = −1 − δ1

δ1
ΞS(t)dZS(t) +

∫
E

[
(ΞJ(t, y))− 1−δ1

δ1 − 1
]

(N(dt, dy) − ν(dy)dt) . (4.45)

By comparing equation (4.41) with equation (4.45) we obtain the result.

Then the following results characterizes the optimal multiplier and state price density, which in
turn determines the worst case martingale measure. For the optimal market price of risk Ξ̂ ∈ Θ̃,
the corresponding process C̃Ξ̂ defined by equation (4.32) gives the optimal cushion.

Theorem 4.3.8. Suppose that there exist a Ξ̂ ∈ Θ̃ and a multiplier m̂Ξ̂ ∈ M that satisfy


m (t)σ = −ΞS(t)

δ1
,

m (t) γ(t, y) = (ΞJ(t, y))− 1
δ1 − 1.

(4.46)

for all y ∈ E. Assume further that the SDE depicted in equation (4.6) has a solution for m = m̂Ξ̂.



4.3 The martingale approach under market incompleteness 94

Then m̂Ξ̂ is a solution to the optimization problem 4.16. The corresponding cushion process is given
by C̃(t) = C̃Ξ̂(t) P−a.s., for all t ∈ [0, T ], where C̃Ξ̂ is defined in equation (4.32).

Proof. To prove that C̃(t) = C̃Ξ̂(t) P-a.s, we have to show that both processes evolves according to
the same stochastic differential equation. Let Ξ̂ ∈ Θ̃ and m̂Ξ̂ ∈ M satisfy the system of equations
(4.46). It follows from equation (4.32) that the dynamics of C̃Ξ̂(t) satisfies

dC̃Ξ̂(t) = d
(
M Ξ̂(t)
HΞ̂(t)

)
, t ∈ [0, T ]. (4.47)

Applying Itô’s formula for jump-diffusion processes, and using equation (4.41), we have that,

d
(
M Ξ̂(t)
HΞ̂(t)

)
= M Ξ̂(t−)
HΞ̂(t−)

{
rdt+ ΞS(t)ΞS(t)

δ1
dt− ΞS(t)

δ1
dZS(t)

+
∫

E

[
(ΞJ(t, y))− 1

δ1 − 1
]

(N (dt, dy) − ΞJ(t, y)ν(dy)dt)
}
, (4.48)

for every t ∈ [0, T ]. It follows from equation (4.47), and equation (4.48) that

dC̃Ξ̂(t)
C̃Ξ̂(t−)

= rdt+ ΞS(t)ΞS(t)
δ1

dt− ΞS(t)
δ1

dZS(t)

+
∫

E

[
(ΞJ(t, y))− 1

δ1 − 1
]

(N (dt, dy) − ΞJ (t, y) ν(dy)dt) , (4.49)

for t ∈ [0, T ]. Substituting equation (4.46) into equation (4.49) and, recalling that Ξ̂ ∈ Θ̃ satisfies
equation (4.22), we obtain

dC̃Ξ̂(t) =C̃Ξ̂(t−)
[
r + m̂Ξ̂(t) (µ− r)

]
dt+ C̃Ξ̂(t−)m̂Ξ̂(t)σdZS(t) + C̃Ξ̂(t−)m̂Ξ̂(t)

∫
E
γ(t, y)N (dt, dy)

which coincides with the SDE in equation (4.6) satisfied by the cushion process that follows the
strategy m̂Ξ̂. Moreover, since C̃(0) = C̃Ξ̂(0) = c̃0, we conclude that C̃(t) = C̃Ξ̂(t) = c̃0, P-a.s., for
all t ∈ [0, T ]. Finally, we need to show that m̂Ξ̂ is a solution to 4.16. Thanks to Lemma 4.3.4 and
equation (4.29), we only need to show that

E


(
C̃(T )

)1−δ1

1 − δ1

 = E
[(
YΞ̂
)1−δ1

1 − δ1

]
, (4.50)

for m = m̂Ξ̂, which is true if C̃(t) = YΞ̂ P-a.s. The latter equality comes from the facts that
C̃(t) = C̃Ξ̂(t), for all t ∈ [0, T ], P-a.s., and that by construction of C̃Ξ̂.

In view of the absence of arbitrage (see equation (4.22)) we can characterize the the optimal
multiplier in terms of the market parameters only. That is, if the equation

µ− r − σ2δ1m(t) +
∫

E
γ(t, y) [m(t)γ(t, y) + 1]−δ1 ν(dy) = 0, (4.51)
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has a unique solution m̂Ξ̂(t) for every t ∈ [0, T ], then m̂Ξ̂(t) is the optimal multiplier. In the sequel
we discuss specific conditions under which the equation above has a unique solution and hence the
optimal multiplier is well defined. For the sake of simplicity, we further assume that the jump size
is time-independent, that is γ(t, y) = γ(y) for every t ∈ [0, T ]. In this case, the Girsanov kernel
Ξ with ΞS(t) := ΞS and ΞJ(t, y) := ΞJ(y) satisfies a simplified version of the condition stated in
equation (4.22) which is given by

µ− r + σΞS +
∫
R\{0}

γ(y)ΞJ(y)ν (dy) = 0. (4.52)

The optimal multiplier is no longer time-varying but constant and satisfies the following conditions
mσ = −ΞS

δ1
,

mγ(y) = (ΞJ(y))− 1
δ1 − 1.

(4.53)

Taking condition (4.52) on Ξ̂ into account, we get that the optimal multiplier m̂Ξ̂ can be characterized
as the solution of the equations

µ− r − δ1σ
2m+

∫
R\{0}

γ(y)
(1 + γ(y)m)δ1

ν (dy) = 0, (4.54)

Next we discuss the sufficient conditions for the existence and uniqueness of the solution of equation
(4.54). Let Φ ⊆ [−1,+∞) be the subset in which all jumps γ (·) lie. Furthermore, denote by
ϕ1 = infy∈R\{0} γ(y) and ϕ2 = supy∈R\{0} γ(y), the infimum and the supremum of the set Φ,
respectively. Since δ1 ∈ (0, 1), we observe that the optimal solution m̂Ξ̂, if it exists, has to
necessarily satisfy 1 + γ(y)m̂Ξ̂ > 0 for all y ∈ R \ {0}. The latter condition guarantees that the
corresponding cushion is non-negative at any time t ∈ [0, T ] (see equation (4.6)).

Proposition 4.3.9. Assume that the integrals

∫
R\{0}

γ(y)
(

1 − γ(y)
ϕ1

)−δ1

ν(dy), and
∫
R\{0}

γ(y)
(

1 − γ(y)
ϕ2

)−δ1

ν(dy), (4.55)

are well-defined or, at most, are ±∞. If the model parameters are such that

µ− r + δ1σ
2

ϕ2
+
∫
R\{0}

γ(y)
(

1 − γ(y)
ϕ2

)−δ1

ν (dy) ≥ 0, (4.56)

µ− r + δ1σ
2

ϕ1
+
∫
R\{0}

γ(y)
(

1 − γ(y)
ϕ1

)−δ1

ν (dy) ≤ 0, (4.57)

then there exists a unique m̂Ξ̂ that solves equation (4.54). Moreover:

(i) If −1 ≤ ϕ1, ϕ2 < 0, then m̂Ξ̂ ∈ (−∞,−1/ϕ1);

(ii) If 0 < ϕ1, ϕ2 ≤ +∞, then m̂Ξ̂ ∈ (−1/ϕ2,+∞);

(iii) If −1 ≤ ϕ1 < 0 < ϕ2 ≤ +∞, then m̂Ξ̂ ∈ (−1/ϕ2,−1/ϕ1).
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Proof. Let
(
ϕ̃1, ϕ̃2

)
be the range for the multiplier corresponding to each of the three cases (i)-(iii).

Given the optimality condition, we define

g (m) := µ− r − δ1σ
2m+

∫
R\{0}

γ(y)
(1 + γ(y)m)δ1

ν (dy) , (4.58)

whose first derivative g′ (m) is given by

g′ (m) = −δ1σ
2 − δ1

∫
R\{0}

γ2(y)
(1 + γ(y)m)1+δ1

ν (dy) . (4.59)

Since g′ (m) < 0, then there exists a unique point m̂Ξ̂ ∈
(
ϕ̃1, ϕ̃2

)
such that g

(
m̂Ξ̂

)
= 0 only if

g
(
ϕ̃2
)

≥ 0, and g
(
ϕ̃1
)

≤ 0. However, the latter relations are exactly the ones stated into the
proposition, and this concludes the proof.

Remark 4.3.10. In all cases, the optimal multiplier is such that the optimal terminal cushion is
non-negative in the whole time interval [0, T ], meaning that for our new version of PPI strategy
gap risk does not occur, even when the dynamics of S jumps. It is also worth mentioning that the
optimal multiplier may be negative, which implies that the optimal investment in the risky asset is
negative, equivalently selling short the asset. From a financial point of view, if the stock price shows
a downward trend, generated for instance by many negative jumps and a small or negative excess
return, then short-selling the asset may turn losses into profits.

4.4 Numerical analysis

In this Section, we propose a few numerical experiment where the results of Proposition 4.3.9 are
applied to compute the optimal multiplier m̂Ξ̂. We consider different specification of the jump size
distributions and we also run a sensitivity analysis on model parameters. We compare three cases:
(i) constant jump size; (ii) double exponential distribution of the jump sizes, namely, the Kou’s
model; (iii) Gaussian distribution of the jump sizes, i.e., the Merton’s model.

4.4.1 Optimal multiplier under a jump-diffusion model with constant jump size

Assume that the risky asset price process follows the dynamic

dS (t)
S (t−) = µdt+ σdZS(t) + γ̃dN(t), (4.60)

where N is an homogeneous Poisson process with intensity rate λ̃ > 0, and γ̃ ∈ [−1, 0) is the
constant negative jump size. The optimal multiplier m̂Ξ̂ is determined in the corollary below.

Corollary 4.4.1. In a market model where the risky asset price process is described by equation
(4.60), the optimal multiplier m̂Ξ̂ ∈ (−∞,−1/γ̃) is the unique solution of

µ− r − δ1σ
2m+ λ̃γ̃ (1 + γ̃m)−δ1 = 0. (4.61)
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Proof. To prove the result we note that ϕ1 = γ̃ ∈ (−1, 0), and ϕ2 = 0, so the optimal multiplier m̂Ξ̂
must take value in (−∞,−1/γ̃). We easily see that, g′(m) = −δ1σ

2 − δ1γ̃
2 (1 + γ̃m)−δ1 < 0, and

that

lim
m→−∞

µ− r− δ1σ
2m+ λ̃γ̃ (1 + γ̃m)−δ1 = +∞, lim

m→−γ̃−1
µ− r− δ1σ

2y+ λ̃γ̃ (1 + γ̃m)−δ1 = −∞,

which implies that m̂Ξ̂ exists and that it is the unique solution of equation (4.61).

We fix the model parameters according to Table 4.1. Then, we vary each of them (one by one) to
run a sensitivity analysis on the optimal multiplier. The numerical analysis is relatively easy to
obtain for the constant jump size due to the quasi-explicit form of the multiplier. Nevertheless, they
provide a useful comparison case study. Figure 4.3 shows that the multiplier is decreasing with

µ− r σ λ̃ γ̃ δ1 m̂Ξ̂

0.20 0.30 11 −0.03 0.60 −2.18
Table 4.1 Parameters of Jump diffusion model with negative constant jump size

respect to the jump intensity, the volatility and the risk aversion level, and it is increasing in the
excess return of the underlying risky asset and the jump size. What is interesting and deviates from
the classical results on PPI in the diffusion setting, is that the multiplier may be negative. Since the
optimal multiplier does not allow for negative cushion (see Remark 4.3.10), then having m̂Ξ̂(t) < 0
implies that the fund manager should short-sell the risky asset. Such behaviour occurs when the
intensity of negative jumps increases, or the jump size (in absolute value) becomes prohibitive, or
the excess return gets close to zero (or negative). Each of these effect pushes down the value of the
risky asset, and hence short-selling the asset may contrast with such a downward trend. We have
also represented the value function with respect to time to maturity and the initial cushion in left
chart of Figure 4.4. In particular, it is increasing with respect to both time and the initial value
of the cushion and concave. Most interestingly, we have numerically verified the theoretical result
that the gap risk does not occur. Indeed, in right chart of Figure 4.4 we have plotted the dynamic
portfolio values q0(t), q99(t) between P(W̃P P I(t) ≤ q0(t)) = 0 and P(W̃P P I(t) ≤ q99(t)) = 0.99 for
every t ≤ T . In particular, the zero quantile q0(t) is always above the floor value, as indicated in
the red dashed line.
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Figure 4.3 Sensitivity analysis for the optimal multiplier with respect to the jump-diffusion model with
constant negative jump size. The blue line is the value of the multiplier for the different values of the
parameter indicated under each panel and the red dot corresponds the value of the multiplier under the
parameter configuration in Table 4.1.
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Figure 4.4 Value function for the constant jump size, with respect to time to maturity and initial cushion
(left chart). Median (dotted line) and extreme scenarios for the portfolio value in case of constant jump
size. The shaded area represents the portfolio values between the zero and the 99% quantiles. The red
dashed line represents the level of the floor which is always below the zero quantile (right chart).
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4.4.2 Optimal multiplier under Kou’s and Merton’s models

Kou’s model assumes the following dynamics for the underlying risky asset S

dS(t)
S(t−) = µdt+ σdZS(t) + d

N(t)∑
j=1

(Vj − 1)

 , t ∈ [0, T ], (4.62)

where N is an homogeneous Poisson process with intensity rate λ̃ > 0, and {V1, V2, . . . } is a sequence
of independent and identically distributed random variables such that, for every j, log (Vj) is subject
to the following asymmetric double exponential density function

f(y) = pη+e
−η+y1y≥0 + (1 − p) η−e

η−y1y<0, (4.63)

where η+ > 1, is the parameter governing the severity of upward jumps, η− > 0 is the parameter
governing the amplitude of downward jumps, and p ∈ (0, 1) is the probability of an upward jump
to occur. By applying the result in Proposition 4.3.9, we derive the following condition for the
existence and uniqueness of the optimal multiplier that maximizes the expected utility of terminal
cushion.

Corollary 4.4.2. Assume that the stock price process follows the Kou’s model stated in equation
(4.62). If the model parameters satisfy

µ− r − pλ̃

1 − η+
− (1 − p) λ̃

1 + η−
≥ 0, (4.64)

µ− r − δ1σ
2 − pη+λ̃

(1 − δ1 − η+) (δ1 + η+) + (1 − p)η−λ̃

(1 − δ1 + η−) (δ1 − η−) ≤ 0, (4.65)

then there exists a unique optimal multiplier m̂Ξ̂ ∈ [0, 1] that can be found by solving

µ− r − δ1σ
2m+ λ̃

∫
R\{0}

ey − 1
[1 + (ey − 1)m]δ1

[
pη+e

−η+y1y≥0 + (1 − p) η−e
η−y1y<0

]
dy = 0. (4.66)

Proof. Since for Kou’s model the jump sizes are such that ϕ1 = −1 and ϕ2 = +∞, the optimal
multiplier m̂Ξ̂ if exists, lies in [0, 1]. Moreover, since also in this case g′(m) < 0 for all m ∈ [0, 1], the
condition for existence and uniqueness stated in Proposition 4.3.9 become g(0) > 0, and g(1) < 0.
Hence, we have to compute g(0) and g(1), and find the conditions on Kou’s model parameters such
that the latter inequalities are satisfied. The expressions for g(0) and g(1) are given by

g(0) = µ− r + λ̃

∫
R\{0}

(ey − 1)
(
pη+e

−η+y1{y≥0} + (1 − p) η−e
η−y1{y<0}

)
dy

= µ− r − pλ̃

1 − η+
− (1 − p) λ̃

1 + η−
,
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g(1) = µ− r − δ1σ
2 + λ̃

∫
R\{0}

(ey − 1) e−δ1y
(
pη1e

−η1y1{y≥0} + (1 − p) η2e
η2y1{y<0}

)
dy

= µ− r − δ1σ
2 − λ̃pη+

(1 − δ1 − η+) (δ1 + η+) + λ̃(1 − p)η−
(1 − δ1 + η−) (δ1 − η−) ,

respectively. Thus to guarantee that g(0) > 0, and g(1) < 1, the conditions stated in equation
(4.64) and equation (4.65) need to be satisfied. This ensures the existence and the uniqueness for
an optimal multiplier m̂Ξ̂ ∈ [0, 1], and concludes the proof.

As in the previous example we consider the set of parameters in table 4.2, and change their values
one by one. Figure 4.5 shows results that are consistent with the case of constant jump size.

µ− r σ λ̃ p η+ η− δ1 m̂Ξ̂

0.24 0.26 20 0.72 64.94 49.02 0.60 0.77
Table 4.2 Kou model parameters

We stress that, when η− increases, the expected size of negative jumps decreases. That would mean
smaller average downward moves of the risky asset price, suggesting a larger exposure to the risky
asset may be advantageous. The situation reverts for η+, that is, when the parameter governing
severity of positive jumps increases, upward moves become less pronounced, leading to a smaller
exposure. What is interesting in this case is that the optimal multiplier assumes value in [0, 1],
which, in virtue of the relation π(t)W̃P P I(T ) = m(t)C̃(t), translates into an investment strategy
where short-selling and borrowing from the bank account are not allowed (here we also used the
fact that C̃(t) < W̃P P I(t)). The value function for the optimization problem in Kou’s specification
shares the same features as the one depicted in Figure 4.4 for the constant jump size case. Hence,
for the sake of brevity, we have omitted it here. Figure 4.6 shows the extreme scenarios for the
portfolio values, and it confirms that the optimal investment strategy allows the portfolio value
process to stay well above the floor, indicated with the dotted red line.
Under Merton’s model the price process of the underlying risky asset is still defined as in equation
(4.62), with a different assumption on the jump size distribution. In particular, jump amplitudes
{V1, V2, . . . } are independent identically distributed random variables such that, for all j, log(Vj)
has normal density function

f(y) = 1√
2πσ2

J

exp
{

−(y − µJ)2

2σ2
J

}
, (4.67)

for constant parameters µJ ∈ R, and σJ > 0 representing the mean and the standard deviation
of jump size distribution, respectively. For this model, the parameters’ conditions for the optimal
multiplier to exist and be unique are as follows.
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Figure 4.5 Sensitivity analysis for the optimal multiplier with respect to Kou’s model parameters. The
blue line is the value of the multiplier for the different values of the parameter indicated under each panel
and the red dot corresponds the value of the multiplier under the parameter configuration in Table 4.2.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
90

100

110

120

130

140

150

160

Figure 4.6 Median (dotted line) and extreme scenarios for the portfolio value in case of Kou’s model. The
light blue area represents the portfolio values between the zero and the 99% quantiles. The red dashed
line represents the level of the floor which is always below the zero quantile.
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Corollary 4.4.3. Assume that the stock price process follows the Merton model. If the model
parameters satisfy

µ+ λ̃

(
exp

{
µJ + σ2

J

2

}
− 1

)
≥ 0, (4.68)

µ− σ2δ1 + λ̃

(
exp

{
(1 − δ1)µJ + (1 − δ1)2σ2

J

2

}
− exp

{
−δ1µJ + δ2

1σ
2
J

2

})
≤ 0, (4.69)

then there exists a unique optimal multiplier m̂Ξ̂ ∈ [0, 1] that solves

µ− r − δ1σ
2m+ λ̃

∫
R\{0}

ey − 1
[1 + (ey − 1)m]δ1

1√
2πσ2

J

exp
{

−(y − µJ)2

2σ2
J

}
dy = 0. (4.70)

Proof. The proof replicates the lines of that of Corollary 4.4.2.

We now fix the parameter according to the following values and perform a sensitivity analysis by
varying each of them. In Figure 4.7 we analyze the behaviour of the optimal multiplier with respect
to excess return, volatility, frequency of jumps in the underlying risky asset, and the investor’s
risk aversion. The results are comparable to those in the previous cases (i.e. constant jump sizes

µ− r σ λ̃ µJ σJ δ1 m̂Ξ̂
0.09 0.35 20 −0.01 0.15 0.60 0.22

Table 4.3 Merton’s model parameters

and the Kou model). The optimal multiplier increases with the parameter µJ , which indicates
higher exposure to the risky asset as the expected value of jumps sizes increases, for fixed volatility
σJ = 0.15. The optimal multiplier also increases with respect to standard deviation of the jump
size distribution. Indeed, when σJ is small, jump sizes tend to cluster around negative values.
Conversely, larger values of σJ lead to dispersion of jump sizes across a wider range, encompassing
positive values. As for Kou’s model, the optimal multiplier assumes value in [0, 1], implying that
our new investment strategy does not allow for short-selling nor borrowing from the bank account.
Since the value function has the same features as in the previous two specifications of jump size
distributions, we have not reported it. Furthermore, for comprehensive analysis, we display the
extreme scenarios of portfolio values in Figure 4.8. These scenarios highlight that the optimal
investment strategy effectively maintains the portfolio value above the floor, thereby mitigating gap
risk throughout the entire investment horizon [0, T ].
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Figure 4.7 Sensitivity analysis for the optimal multiplier with respect to Merton’s model parameters. The
blue line is the value of the multiplier for the different values of the parameter indicated under each panel
and the red dot corresponds the value of the multiplier under the parameter configuration in Table 4.3.
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Figure 4.8 Median (dotted line) and extreme scenarios for the portfolio value in case of Merton’s model
(right chart). The light blue area represents the portfolio values between the zero and the 99% quantiles.
The red dashed line represents the level of the floor which is always below the zero quantile.
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Conclusions

The present research investigates modified versions of Portfolio Insurance strategies to improve the
management of various types of risk. The studies confirmed our proposals’ suitability in hedging
against financial and longevity risks.
Looking at investigations in Chapter 2, we introduce a new type of portfolio insurance strategy,
namely the G-TIPP as an underlying asset for options embedded in structured investment products
with capital protection. Through detailed numerical simulations within the hybrid Heston-Vasicek
model, we obtain that European call options linked to G-TIPP strategies exhibit better characteristics
than options with pure risky securities and other PI strategies (such as G-CPPI) as underlying
assets. In particular, we find that European call options linked to G-TIPP are cheaper than those
linked to pure risky securities and G-CPPI, which leads to a significant increase in the participation
rate. Furthermore, we show that options on G-TIPP are less sensitive to market volatility. For all
these reasons, G-TIPP options in a structured investment product with capital protection make it
possible to maintain a relatively high participation rate (capital protection being equal), regardless
of market volatility and interest rate levels. Therefore, this new G-TIPP option represents an
attractive and appropriate approach to structured products. Hence, we expect portfolio solutions of
the latter types will spread widely over markets, especially in a market environment characterized
by low-interest rate levels and high volatility. Moreover, it is worth noting that G-TIPP options are
not traded on the market. Hence, the issuer can obtain the corresponding payoff by implementing
suitable dynamic hedging strategies. The construction of such hedging strategies is subject of our
ongoing research.
Looking at investigations in Chapter 3, we consider an optimal investment problem for a DC pension
fund, guaranteeing a target annuity value at retirement. Considering investment and longevity
risks, the fund manager implements a PO-PPI strategy during the accumulation period to maximize
the expected utility of the terminal surplus between the fund final wealth and the target annuity
value. We formulate the manager stochastic optimal control problem and solve it through an
auxiliary formulation. Then, closed-form expressions for optimal controls are derived, enabling a
numerical application to investigate the impact of both the financial and mortality parameters of
PO-PPI parameters and optimal asset allocations. In summary, our findings show that a PO-PPI
strategy allows for protecting the retirement saving accumulation, taking into account the longevity
behaviour characterizing the decumulation period. As longevity grows, the optimal investment
leverage increases to support guarantee protection. In addition, the risk-averse fund manager
considers the rolling longevity bond as a crucial asset in building and protecting the retirement
capital. Such an asset allows the hedge of longevity risk and, at the same time, diversifies the
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financial portfolio of the pension plan. Looking at investigations in Chapter 4, we consider the
problem of optimal design of a new version of PPI strategy in a mathematical setup where portfolio
dynamics may present downward jumps generated by, e.g., sudden market drawdown. Incorporating
such features in a market model brings gap risk with positive probability, as discussed, for instance,
by Cont and Tankov [2009]. Hence, a relevant task of a manager or an insurer is to hedge against
gap risk to be able to fulfil the liabilities at maturity. We attempted to provide a criterion for
determining the optimal PPI strategy that maximizes expected utility at maturity and, at the
same time, avoids or minimizes gap risk by keeping equity market participation during the trading
horizon, even when the cushion becomes negative. In the problem formulation, we introduced two
modifications to the standard setup. We proposed a generalized definition of the PPI strategy
that does not exclude negative values for the multiplier, and we described the manager preferences
via an S-shaped utility function. From a technical viewpoint, we have addressed the optimization
using a worst-case martingale approach and concavification to account for the features of the utility
function. Our main result provides a procedure for simultaneously computing the state price density
for the worst-case probability measure and the optimized multiplier in terms of the solution of a
system of equations. Unfortunately, there could be model parameter configurations for which the
solution of the system may not exist or may not be unique. In this case, it is hard to identify the
optimal PPI strategy. However, we discussed examples where the multiplier is given in closed or
quasi-closed form, making our results readily applicable in a risk management context. Interestingly,
in such examples, it can be explicitly proved that gap risk does not occur. Our next step in studying
PPI strategies includes enriching the structure of jumps by considering a portfolio with several
underlying assets subject to a common contagion factor.
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