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Abstract

This thesis explores the under-researched area of introductory concurrent programming and data
systems education. The lack of pedagogy poses a significant challenge to educators. While
these topics are often perceived as complex and require a strong foundation in programming, this
thesis presents innovative teaching units based on constructionist learning theory, specifically
designed for students with no prior knowledge. It proposes a series of interventions based on
domain-specific, real-world and collaborative learning approaches aimed at undergraduate com-
puter science students. In particular, an introduction to concurrency is presented using Sonic Pi,
a musical domain-specific language, to intuitively introduce concurrency concepts by exploiting
the natural connection between multi-threading and live music coding, through code comprehen-
sion and code composition tasks designed to address and explore common concurrency miscon-
ceptions. A collaborative learning approach, namely “think-pair-share”, is advocated to promote
engagement and deeper understanding of logical database design. In addition, an educational
Python package based on the Pandas library is presented to simplify data-centric computing ped-
agogy by providing a less complex notional machine while retaining familiar Pandas-like syntax.
Finally, a variety of teaching experiences and proposals are provided to inspire and guide educa-
tors. Through these units, the thesis provides suggestions and recommendations for teachers and
researchers, offering experiences and formats to effectively equip students with essential skills
in introductory concurrent programming and introductory data systems. By demonstrating inno-
vative pedagogical approaches, this thesis contributes to bridging the gap in this critical area of
computer science education.

Keywords: Concurrency, concurrent programming education, data education, pedagogy, com-
puter science education, Sonic Pi, collaborative learning, data science, Python, data-centric pro-
gramming.
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Chapter 1

Motivation and Research Goals

Concurrent programming and data systems are two fundamental areas of computer science (CS).
They are essential to the development of modern software systems, which often need to be able
to handle multiple concurrent tasks and access and manage shared data.

Typically, concurrency is perceived as a complex topic that requires a strong programming foun-
dation [137]. This often leads to its exclusion from introductory courses at both university and
school level [154], even though many computational thinking tools implicitly use and implement
concurrent behaviour [167].

Data education is fundamental to a wide range of programmes such as CS, Data Science (DS),
Information Systems and beyound. Since the 1970s, the database research community has been
actively debating the appropriate placement and best practices for teaching data systems concepts
in curricula. This crucial discussion has gained particular momentum in recent years due to the
emergence of DS, a relatively young discipline potentially facing a shortage of qualified teachers
at school level.

Within the ACM CS2023 curriculum [96], the field of data systems is referred to as “Data Man-
agement” (DM) and is recognised as a fundamental area of knowledge within CS1. It encom-
passes not only relational database systems, but also the broader role of data within an organi-
sation. This includes, but is not limited to, the data lifecycle, the social and legal considerations
surrounding data collection, and the use of advanced technologies for big data analytics such
as NoSQL databases, cloud-based databases, MapReduce, and similar frameworks. This the-
sis deliberately uses the term “Data Science education” to reflect its broader scope compared
to traditional data systems education. While data systems education emphasises the infrastruc-
ture and management of data, DS education encompasses a broader range of topics, including
programming languages for DS, data visualisation and data storytelling.

1ACM CS2023 curriculum
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Despite the critical importance of data in the modern digital world, the field of introductory data
education remains relatively under-researched. The same applies to concurrency, in particular
related to multi-core programming. This pedagogical deficiency poses a significant challenge to
educators, hampering their ability to effectively teach these concepts to students.

A recent project by the Italian national working group developing the new 60-credit qualification
course for CS teachers in secondary schools (teacher class A-41, “Percorso Formativo Abilitante
da 60 CFU”) illustrates this need. They produced a document entitled “Syllabus Proposal for Ital-
ian Teacher Training for Class A041”2, which outlines the planned curriculum for the Class A41
teacher training programme in Italy. This initiative highlighted a significant gap in pedagogical
resources and tools specifically designed for teaching data systems and concurrency. This is in
stark contrast to the abundance of readily available materials and extensive pedagogical research
dedicated to introductory programming and computational thinking.

Motivated by the identified gap, this dissertation addresses under-researched areas of CS edu-
cation at the introductory level, with a particular focus on concurrent programming and data
systems. We propose novel innovative approaches to teaching these topics.

Our research has utilised the resources available to us, including both financial and human cap-
ital. This included the Innovative Teaching Project (detailed in section Teaching Innovation
Project) and the participation of first year students enrolled in our undergraduate CS programme.
By focusing primarily on first-year students (with the exception of the experiment within the
Introduction to Databases course, which involved second-year students with no prior experience
of data modelling), we have attempted to address the needs of teaching at the high school level
as well. It is important to recognise that further research is needed to develop fully validated
materials specifically tailored for high school students, and possibly integrated into a dedicated
programming and data systems education course for school teachers. While a comprehensive
solution remains elusive, this research serves as a stepping stone to addressing the identified
educational gap. In particular, we raised the following questions:

• How can we introduce the concept of concurrency to students with minimal programming
experience, in a way that is both engaging and promotes a deep understanding of its bene-
fits and challenges?

• How can active and collaborative teaching methods be used to enhance data education to
improve learning outcomes and student engagement?

• How can we foster data science thinking to students?

Recognising the breadth of data education, which encompasses various data-related fields, this
dissertation focuses specifically on database education and introductory DS education in the

2Syllabus Proposal for Italian Teacher Training for Class A041
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areas of data modelling, programming, data visualisation and data analysis. Additionally, it ex-
plores introductory concurrent programming, with a particular emphasis on addressing common
students misconceptions. The thesis is expected to make a significant contribution to the field
of CS and data education by providing valuable suggestions, experiences and innovative teach-
ing formats to help students acquire these essential skills effectively. To achieve this goal, the
following research question guide the course of this dissertation:

RQ Can innovative teaching methods significantly improve student learning outcomes in in-
troductory concurrent programming and data management courses?

In order to explore this question in more detail, each chapter examines a number of subquestions.
These explore specific aspects of the main research question in greater depth. Specifically:

• Chapter 4: Does the use of Sonic Pi help the students face common misconceptions and
mistakes in concurrent programming? Do misconceptions and mistakes in Sonic Pi corre-
spond to misconceptions and mistakes in traditional concurrent programming languages?
Can we apply knowledge transfer from Sonic Pi to more traditional programming lan-
guages such as C and C++?

• Chapter 5: Is collaborative learning effective, in terms of learning outcomes, for the differ-
ent skills to be acquired in an introductory university database course?

While the core research experiments in this thesis are aimed at undergraduate CS students, we
have also conducted outreach activities aimed at secondary school students, which have yielded
promising initial results. These outreach efforts have the potential to inform the design and
inspiration of future initiatives for this younger demographic. Ultimately, promoting a broader
understanding of computing and the diverse career paths it offers in secondary schools could
guide and inspire future generations of computer scientists and data enthusiasts. This, in turn,
could lead to a more informed student body entering universities, potentially reducing dropout
rates - a challenge faced by many institutions, including our own.

In addition, these outreach efforts may also help to break down negative stereotypes that hinder
perceptions of CS and discourage students from pursuing careers in the field. Common stereo-
types include the portrayal of computer scientists as socially awkward, overly competitive, and
predominantly male [102]. In addition, there are misconceptions that programming is an excep-
tionally difficult endeavour, accessible only to those with a perceived “geek gene” [132].

It is important to acknowledge that while dropout rates and stereotypes are not directly addressed
by the research questions of this thesis, they were a key motivation for the establishment of the
Innovative Teaching Project at our university, which provided financial support for our experi-
ments. This project, established with the aim of strengthening teaching and improving student
learning and engagement through innovative pedagogy, serves as the broader context from which

11



the experiments presented in this thesis emerged. In essence, these experiments were conceived
within the framework of the project, but were specifically designed to address the identified gap
in the CS educational landscape.

Contributions

It should be clear that it is not possible to provide definitive answers to such broad research ques-
tions, especially within the narrow confines of a PhD thesis. Moreover, behind these questions lie
a number of variables that influence educational experiments, many of which defy categorisation
or quantification.

Ethical considerations also constrained our research approach. We deliberately chose not to use
randomised controlled trials, a common research methodology, due to the potential for ethical
dilemmas and the desire to maintain a natural learning environment for all participants. While
these limitations may limit the generalisability of our findings, they do not diminish the value of
our research. Instead, they serve as a stark reminder of the intricate complexities of education and
the need for continued research and refinement of teaching practices. In particular, we believe
that our findings can serve as a beacon for other educators and researchers, providing support
and inspiration in the field of CS and data education.

In what follows, we briefly present the key suggestions derived from our research:

• Several programming practices and educational tools have an inherent constructionist
flavour (e.g., visualisation, sharing, creative construction of an artefact, etc.) that can be
used to introduce concepts that facilitate and promote a learning-by-doing approach.

• Constructivist learning environments should be cultivated, where students can collaborate,
share ideas, reflect, and receive formative feedback, thereby strengthening their metacog-
nitive and soft skills.

• Integrating domain-specific and real-world applications into the learning process can tailor
the curriculum to students’ interests and learning styles. This can increase student motiva-
tion, engagement and learning.

• Integrating domain-specific tools like Sonic Pi into the classroom can not only increase
motivation, but also make learning more natural and intuitive, leading to deeper under-
standing.

• Using the notional machine as a central learning objective. This approach emphasizes un-
derstanding the underlying mechanisms rather than just syntax. It influences every aspect
of instruction, from language choice and abstraction level to addressing misconceptions.

12



• Recognising DS as a discipline distinct from CS, with its own methodologies and mindset
(“data thinking”).

Within this framework, the thesis specifically contributes an innovative Python library specifi-
cally designed to introduce data science concepts to beginners using a simplified notional ma-
chine, an introduction to the data science lifecycle using real-world data, a collaborative learning
approach to database logical design, and a teaching format to introduce concurrency using the
music domain of Sonic Pi, a digital music creation software.

Thesis Overview

This section provides a detailed outline of each chapter of the thesis. The latter is divided into
three main parts:

• Part I: Introduction and Background. This part provides a comprehensive overview of the
current landscape for teaching both concurrency and data-related topics in CS. It begins by
laying a solid pedagogical foundation in Chapter 2, providing the reader with the necessary
knowledge to understand the subsequent chapters. Chapter 3 looks at the state of the art
in data education, with a particular focus on databases and introductory data science. It
introduces data science as a new discipline and a distinct way of thinking, known as “data
thinking”, and contrasts it with computational thinking.

• Part II: Innovating Concurrency and Data Education. The second part explores the core
contribution of this thesis. Chapter 4 then presents a proposal for teaching concurrent pro-
gramming through music using Sonic Pi and a collaborative methodology that specifically
addresses common misconceptions about concurrency. Chapter 5 then presents an inno-
vative experiment using a collaborative methodology for database logical design, while
Chapter 6 presents a Python library that we have specifically designed to facilitate the
introduction of programming with data-centric pedagogy.

• Part III: Teaching experiences and Educational Proposals. The third part of the thesis
builds on the insights and findings of the previous chapters. It presents a series of carefully
designed experiments and concrete proposals aimed at advancing the field of CS and data
education. Chapter 7 presents three different approaches (including the data-centricity) to
introduce Python programming; Chapter 8 presents an experience with high school stu-
dents to introduce data literacy through data visualisation using Tableau software. Finally,
Chapter 9 proposes a formal 6-credit course to introduce DS fundamentals to students with
no CS background.

13



Teaching Innovation Project

From the 2019/2020 academic year, our University has launched a Teaching Innovation Project,
in line with the initiatives promoted by the University Committee for Teaching Innovation
(CIDA)3. The aim is to support courses that wish to experiment with new teaching and evaluation
strategies and innovative technologies in order to strengthen students’ learning, engagement and
intrinsic motivation to learn (see e.g. [30]). The project consists of a number of phases:

• Course redesign: it involves the redefinition of the objectives, contents, and teaching
methodologies of one or more courses.

• Teacher training: it provides teachers with the knowledge and skills necessary to imple-
ment the chosen teaching and evaluation strategies.

• Support for the creation of teaching materials: it helps teachers in creating innovative
teaching and evaluation materials.

• Support for the delivery of teaching: it assists teachers in using innovative teaching
methodologies in the classroom.

Our CS department has been involved in the project since the first year of experimentation.
Initially, three courses were involved: Introduction to Programming (CS1), Algorithms and Data
Structures, and Calculus. In subsequent years, the experimentation was extended to several
other courses, such as Algebra and Logic, Computer Architecture, Concurrent and Distributed
Programming, and Databases.

In particular, within the CS1 course, we initially experimented with the team-based learning
teaching methodology and Sonic Pi to introduce students to more advanced topics and to increase
motivation, engagement and curiosity, as well as soft skills such as teamwork. This experiment
formed the basis of the experiments presented in this dissertation.

Note on Human Participants

Participants in the experiments of this thesis gave their consent to the use of the data presented
(e.g., solutions to the proposed exercises) for scientific research purposes only. Concerning eth-
ical issues, the requirement for approval was waived by the research ethics committee of our
University for activities proposed within modules dedicated to innovative teaching methods de-
signed with the support of the University teaching and learning center, such as those presented
in this chapter. The reason is that the sole goal of these modules is to improve the learning

3https://unige.it/ateneo/comitato-linnovazione-didattica-ateneo-cida
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of students through specific training activities strictly related to the topics of the courses, and
the corresponding research aims at measuring their effectiveness. Data privacy and retention is
ensured by collecting and maintaining anonymised data.
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Chapter 2

A Constructionist Approach to
Programming

This chapter focuses on the pedagogical and methodological foundations of computer program-
ming education, which forms the theoretical basis of our teaching experiments presented in the
following chapters. In particular, the chapter consists of a brief introduction to constructionism
and creative thinking, computational thinking, and mental model theory in programming, intro-
ducing the notion of notional machine and misconceptions. The chapter aims to give the reader
the basis for understanding the following experiments, which focus on pedagogy in the context
of concurrent programming.

2.1 Computational Thinking: The Contributions of Papert
and Wing

Computational thinking (CT) has become an essential skill for all, to the point that it can be
considered the fourth fundamental skill alongside “reading, writing, and arithmetic” [194]. Vari-
ous definitions of CT have emerged over time [70, 44], some definitions emphasize its ties to CS
[126], while others highlight its broader applicability. Others have given a definition very closely
related to coding [24]. This diversity poses challenges for educators aiming to integrate CT ef-
fectively into teaching practices. In this section, we focus on two definitions given by Seymour
Papert, the father of constructionism, and Jeanette Wing, the pioneer of modern computational
thinking. It is based on the results published by Lodi and Martini in [106].

The origins of the term can be traced back to Papert’s book “Mindstorms” in 1980, which empha-
sised the role of computers in understanding abstract mathematical concepts [130], even those
that Piaget constructivists considered rigidly confined to the formal operational stage.
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“Their [of people using computers for providing mathematically rich activities] vi-
sions of how to integrate computational thinking into everyday life was insufficiently
developed”. [130]

The focus of Mindstorms is not on “thinking” per se, but rather on constructing concrete versions
of abstract ideas using computers as powerful meta-tools for understanding the world.

In 2006, Jeanette Wing’s seminal essay, “Computational Thinking” [194], brought the term CT
to prominence. She advocated for the importance of “thinking like a computer scientist” in
various fields, emphasizing the benefits of CT beyond the realm of programming. Following her,
numerous efforts have been made to refine and elaborate on this concept, especially within K-12
education [44]. In 2008, Wing herself provided a more precise definition, often referred to as the
“Cuny, Snyder, Wing” definition:

”The thought processes involved in formulating problems and their solutions so that
the solutions are represented in a form that can be effectively carried out by an
information-processing agent.” [195]

This definition extends beyond well-structured problems to encompass complex real-life issues
with undefined or immeasurable solutions [164]. Wing emphasized that CT is a fundamental
component of CS, where its abstractions can be executed by computational agents. This shift
from merely “solving problems” to “effectively solving problems and making something perform
computations for us” distinguishes CT from other disciplines.

According to Wing, the key elements of CT are abstraction and automation, as “computing is the
automation of our abstractions” [195]. She acknowledges overlaps between CT and other forms
of thinking, such as logical and algorithmic thinking [196]. CS abstractions, as per Wing, can
be “animated” without physical manifestation, with executable models being discrete, efficient,
and scalable across abstraction levels. These characteristics set CS models apart from other
scientific models. Additionally, CS offers linguistic support through programming languages for
its abstractions, enabling systematic definition and facilitating the transition between abstraction
levels leading to physical execution [105].

Thinking Concurrently

Although “concurrency” is not explicitly mentioned in any of the CT definitions, “parallelism”
is present as early as in Wing’s definitions and in many others [104]. In [196], Wing recognised
the significant overlapping or inclusions between CT and other types of thinking, including par-
allel thinking. Furthermore, the computational concept “parallelization” (or, sometimes, “paral-
lelism”) is explicitly included in several definitions of CT, such as those proposed by ISTE &
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CSTA [83], Google1, and Brennan and Resnick [24]. Parallelism is considered to be one of the
operational approaches to CT widely used by computer scientists. These definitions emphasise
the ability to simultaneously process smaller tasks of a larger task to achieve a common goal
more efficiently.

In essence, the role of concurrent thinking in CT is to efficiently manage multiple tasks that
occur simultaneously, allowing us to break down complex problems into smaller, manageable
tasks that can be performed simultaneously (decomposition). By thinking concurrently, we can
design algorithms and systems that make full use of these resources (abstraction), leading to
more efficient and faster solutions (evaluation). Moreover, thinking concurrently is not just about
making code run faster. It’s also about making systems more responsive (pattern recognition:
identifying opportunities for parallelization in different problem types).

Many CT tools, such as Scratch2 and Alice3, which express their designers’ view of how a
selected set of CS concepts should be introduced, go beyond simply teaching concepts. In fact,
they use a model of concurrent behaviour as a hidden message that shapes how users learn and
interpret concurrency-related ideas [167]. These meta-messages act as a guiding principle within
the tool and may facilitate future learning of complex concurrency concepts.

2.2 Learning Theories and Paradigms

This section introduces constructionist learning theory and the creative learning method, which
are the pedagogical foundations of the teaching experiments presented in this dissertation. It also
introduces two educational programming languages that embody these approaches, namely Logo
and Scratch.

2.2.1 Constructionism

Constructionism is a learning theory developed by South African mathematician and computer
scientist Seymour Papert, co-inventor of the LOGO programming language, which builds on
the foundations of constructivism. While constructivism emphasises the active construction of
knowledge through individual experience and interaction with the environment, constructionism
places a particular emphasis on learning through the concrete act of creating artefacts. At the
heart of constructionism is the belief that learning is most effective when learners are actively
involved in constructing meaningful objects (“whether it’s a sandcastle on the beach or a theory

1Google Computational Thinking Concepts Guide
2https://scratch.mit.edu
3http://www.alice.org
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of the universe” [130]). This process of creation involves the use of “building materials”, both
concrete and abstract, as learners transform their ideas into tangible expressions.

For example, Papert notes that as a child he was obsessed with gears and used mental models
of how gears worked as a tool for understanding the world, even complex abstract mathematical
concepts [130]. In this context, Papert emphasises the importance of “objects to think with” and
believes that learners need these objects in order to assimilate new knowledge into their existing
mental models. Computers play a central role in this by providing a platform for the creation of
virtual worlds (called microworlds) in which learners can engage with different topics, such as
“Mathland” for mathematics, allowing learners to manipulate and visualise abstract ideas in a
concrete form, even those that Piaget’s constructivist saw as rigidly confined to the formal op-
erational stage. Papert believed that computers and programming would revolutionise education
by creating constructivist environments, similar to the traditional Brazilian “samba schools” that
were fundamental to the preparation of the Rio Carnival, rendering traditional school systems
obsolete and empowering learners in areas such as mathematics, physics and probability from a
computational perspective [106]. All of this is present in Papert’s reference to “samba schools
of computation” [130].

In summary, constructionism emphasises the value of learning by making, promoting personal
relevance and meaningful projects aligned with learners’ interests. Collaboration is encouraged
to construct knowledge collectively, fostering problem-solving skills and social interaction. Re-
flective thinking and iterative processes are central, guiding learners to analyze and improve
their work. Technology serves as a facilitative tool, enabling exploration and enhancing learning
outcomes.

2.2.1.1 LOGO and Syntonic Learning

LOGO is an educational programming language designed by Seymour Papert, Wally Feurzeig
and Cynthia Solomon in 1967 for primary school children. It is a multi-paradigm adaptation
of Lisp and has a graphical environment. In particular, LOGO’s emphasis on the creation and
manipulation of graphical objects was perfectly in line with the principles of constructionism,
enabling learners to construct their own understanding through the process of creation. Indeed,
the programming instructions in LOGO were directed to a virtual “turtle” (or a physical turtle
robot), a small triangle that could move around the screen and leave a trail. Specifically, each
instruction corresponded to an action to be given to the turtle. By drawing graphical patterns
with the turtle, students could develop an understanding of 2D geometry. Figure 2.1 shows some
introductory examples of turtle programs from the book “Turtle Geometry” [3]. In addition, they
might even discover profound mathematical truths, such as that a circle can be approximated by
several straight segments [3].

For Papert, students could identify with the turtle itself and promote body syntonic learning.
Papert identifies three types of syntonicity: body syntonic, ego syntonic and culturally syntonic.
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Figure 2.1: Some examples of Turtle programs.

The first refers to the awareness of body movement; ego refers to the idea that children engage in
tasks or games that have personal meaning for them; cultural refers to engaging students in tasks
that are consistent with the child’s cultural context and environment. In his book Mindstorms he
stated:

“The Turtle circle incident illustrates syntonic learning. This term is borrowed from
clinical psychology and can be contrasted to the dissociated learning already dis-
cussed. Sometimes the term is used with qualifiers that refer to kinds of syntonicity.
For example, the Turtle circle is body syntonic in that the circle is firmly related to
children’s sense and knowledge about their own bodies. Or it is ego syntonic in that
it is coherent with children’s sense of themselves as people with intentions, goals,
desires, likes, and dislikes. A child who draws a Turtle circle wants to draw the
circle; doing it produces pride and excitement.” [130].

What Papert describes is the harmony between the child’s understanding of how to draw a circle,
what a circle is, and how to tell the turtle to do the same. In the case of body syntonicity, the
physical movements of the child and the machine are in harmony. The turtle acts as a bridge be-
tween the student and geometry, acting as what Papert called a “transitional object” [131]. While
the child has spatial awareness, they may struggle to articulate their knowledge of geometry. The
turtle represents a mathematical entity that is not overly abstract, allowing students to relate to
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it. As the turtle moves in a similar way to the child, the child can use familiar descriptions and
communicate with it through the computer.

Researchers have identified a link between syntonic learning and constructivist learning theory
[188]. According to Papert, if the learning experience is too challenging or difficult to under-
stand, learners are more likely to become frustrated and give up. Conversely, if the task is too
easy or uninteresting, learners tend to lose interest and give up. This is in line with the principles
of the zone of proximal development. Consideration of syntonicity is an approach to instruc-
tional design that encourages learners to actively engage with content in a more meaningful way
[188].

It should be clear that LOGO was originally conceived to teach mathematics and not directly
computer programming, which was a tool for learning, a means of empowering students with
mathematical ideas. However, Papert recognised an epistemic potential in the programming
approach. Indeed, “powerful ideas” enable new ways of thinking [106] According to Papert:

“In teaching the computer how to think, children embark on an exploration about
how they themselves think. The experience can be heady: Thinking about thinking
turns every child into an epistemologist, an experience not even shared by most
adults”. [130]

In summary, LOGO can be seen as the forerunner of all coding initiatives, embodying the core
principles of constructionist theory. Numerous contemporary programming languages still im-
plement the “turtle” function, from its heir Scratch to Python. The latter provides a turtle package
in its standard library, as shown in Fig 2.2. Finally, many of Papert’s ideas have been used as
inspiration for the Lego© Mindstorm kits.

2.2.2 Creative Learning

Creative learning, as defined by Mitchel Resnick [159], is an educational methodology that pro-
motes creative thinking, problem solving, and self-expression through the use of technology and
other expressive materials. The MIT Media Lab, particularly through the Lifelong Kindergarten
group4, has developed Scratch, a visual programming language based on creative learning and
designed specifically for young learners. Its intuitive drag-and-drop interface and engaging sto-
rytelling environment make it an accessible and powerful tool for creative learning.

Resnick’s approach of creative learning is based on constructionis and on the belief that every-
one has creative potential. By providing learners with opportunities to explore, experiment and
create, we foster their ability to think creatively, solve problems and express themselves authen-
tically by creating personally meaningful projects using digital tools and technologies.

4https://www.media.mit.edu/groups/lifelong-kindergarten/overview/
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Figure 2.2: A Python turtle graphics example.

In particular, Resnick emphasises the concepts of low floors and high ceilings [146], originally
introduced by Seymour Papert. Low floors mean that learners can get started quickly and en-
gage in meaningful exploration without being overwhelmed. High ceilings, on the other hand,
represent opportunities for learners to push their boundaries, delve deeper, and engage in more
complex and challenging creative projects as their skills and confidence grow. Resnick expands
upon the concepts of low floors and high ceilings by introducing the notion of wide walls. It
refers to providing a range of possibilities and multiple pathways for learners to explore their
interests and express their ideas. Rather than prescribing a single correct solution or outcome,
wide walls allow learners to take ownership of their learning journey, make choices, and find
their own creative solutions.

In summary, the creative learning model can be described by the “4 Ps” framework [159], which
stands for Projects, Passion, Peers and Play:

• Projects. Projects refer to hands-on, personally meaningful activities that learners under-
take to explore and create something of their own. Creative learning encourages learners
to engage in project-based activities where they can pursue their interests, solve problems,
and express their ideas through the process of creating tangible outcomes.

• Passion. Passion represents the learner’s intrinsic motivation, interests, and personal con-
nections to the learning content. When learners are engaged in activities they are passionate
about, they are more likely to invest time and effort, take ownership of their learning, and
unleash their creativity.

• Peers. Peers refer to the social aspect of learning and the value of collaboration and
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sharing. Creative learning recognizes the power of peer interaction, collaboration, and
feedback in the learning process. By collaborating with others, learners can exchange
ideas, learn from different perspectives, and inspire each other’s creativity. Peer interac-
tions also foster a sense of community and provide a supportive environment for learners
to take risks and explore new ideas.

• Play. Play encourages an open and exploratory mindset, where learners can experiment,
take risks, and embrace the joy of discovery. It stimulates imagination, curiosity, and
creative thinking.

Following these principles, the construction of a creative artifact follows an iterative process
called the Creative Learning Spiral or “the kindergarten approach to learning” [145]. In this
spiraling model, depicted in Figure 2.3, children imagine what they want to do, create a project
based on their ideas, play with their creations, share their ideas and creations with others, reflect
on their experiences – all of which leads them to imagine new ideas and new projects. The
process is iterated many times.

Figure 2.3: Creative Learning Spiral [145].

2.3 Mental Model of Program Behavior

In this section, we move from learning theory to mental model theory by introducing the concept
of the notional machine. This part is essential for understanding the main constructivist strategy
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used in introductory programming.

2.3.1 Notional Machine

A notional machine (NM) refers to an abstract concept used in programming education to help
learners understand how computer programs are executed by a computer. It serves as a concep-
tual model that simplifies the understanding of complex computer operations and allows pro-
grammers to reason about the behavior of their code without needing to understand the specific
details of a particular computer architecture. It is often used in introductory programming courses
to teach basic programming concepts.

The term NM originated in the 1970s during the rise of the psychology of programming and
the development of educational programming languages such as Logo. Benedict du Boulay
introduced the concept, referring to it as “the general properties of the machine that one learns
to control” [57]. One of the first NMs was presented in a Logo manual for primary education,
using hand-drawn representations and analogies to aid understanding (see Figure 2.4).

Figure 2.4: A page from the 1976 LOGO handbook (reproduced in [59]).

In the mid-2000s, the term NM gained currency in education and NM was informally defined as
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“a model of the computer as it relates to executing programs” [148]. Later, a seminal review of
NMs was published [172], focusing on program execution. The author characterised NM as an
abstract representation of a computer’s behaviour when executing programs within a particular
programming language context. He goes on to show that different programming languages can
have similar or different NMs, and that a single language can have multiple NMs describing
program execution at different levels of abstraction. In addition, NMs can help to compare
programming languages based on their programming paradigms [93].

Finally, according to [172], a NM can focus on three different areas of learning: the program-
ming language itself, the “machine” – as in du Boulay’s original definition – and the interaction
between the language and the machine. A NM is thus an idealized model that guides students
toward aspects related to some or all three areas. For example, if the focus is on a particular
feature of Python, the domain will be that of the programming language; if the focus is on as-
pects related to a machine (e.g., the number of pins in a BBC micro:bit), the focus will be on
the hardware on which the program will run. Depending on the context (i.e., level of abstrac-
tion), the machine may be a physical machine, a virtual machine, an operating system, or even a
programming environment (e.g., Scratch).

2.3.2 Mental Model Theory

A mental model is a representation of a system or environment in the mind. In particular, mental
models reflect people’s beliefs about the system they are interacting with, often based on naive
assumptions [129]. Indeed, people often rely on analogies of superficial features when forming
mental models of new systems. Mental models then evolve over time through interactions with
the system. They are simplified explanations of phenomena and can be mentally simulated to
predict system behaviour, albeit with limitations.

Constructivism emphasizes that learners actively construct knowledge based on their prior expe-
rience, rather than passively receiving it from teachers. However, learners often develop mental
models that are not viable, i.e., inaccurate, incomplete, and based on superficial understanding.
Students tend to stick to familiar models, making it more difficult to change existing mental mod-
els than to create new ones. As a result, learning a second or subsequent programming language
is generally still a difficult transfer task [160].

The researchers suggest that teachers explicitly introduce the NM, an idealized computer that
represents the properties implied by the constructs of the programming language. The NM helps
learners develop valid mental models and improve their understanding of programming concepts
[57]. Following [55], the relation between an NM of a given hardware/programming language
and the student’s mental model is depicted in Fig. 2.5.
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Figure 2.5: Notional machine and students’ mental model [55].

An example of a weak mental model is discussed in [189], with the following code snippet:

for (i = 0; i < 10; i++) {
System.out.println(i);

}

Specifically, the study highlights that novices tend to confuse the interpretation of the semantics
of the for statement (a program component) with its specific application in a particular context.
In particular, students tend to think that whatever variable is used in the body of the for loop
is always set to zero at the beginning of the loop. This understanding is clearly incorrect. In
addition, [189] argues that the problem is common in CS1 courses, where teachers often associate
a program statement with a single problem/context and vice versa, leading to incorrect mental
models.

With experience, mental models become more stable and accurate, leading to mental schemas of
computer behaviour that resemble the thinking of expert programmers.

2.3.2.1 Program Tracing

Mental models, as described by [129], are runnable and can be simulated in mental working
memory. However, this cognitive capacity is limited, so it is necessary to simulate problems
at an appropriate level of abstraction, focusing only on essential system factors. In computer
programming, this simulation of program execution is known as program tracing, a fundamental
skill for design and comprehension tasks.

Unfortunately, novice programmers often struggle with program tracing because it requires track-
ing the state of program execution [172]. The information involved can overwhelm the memory
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capacity of even professionals, leading to the use of external debugging tools. Novice program-
mers face additional challenges because they lack experience in focusing on the right elements,
leading to failures due to excessive cognitive load.

Teachers should be aware of this, design tasks with the right level of difficulty, and use learning
aids and visual tools to overcome working memory limitations, such as PythonTutor5.

2.4 Constructionist Programming

Programming is generally regarded as a fundamental component of constructionist approaches.
In programming, individuals are tasked with creating a solution to a given problem that can
be mechanically executed by an executor. To program effectively, students need to know the
basic actions that the executor can perform, as well as to understand the rules and syntax of
the programming language. They also need to understand the relationship between syntax and
semantics. Learning to program therefore involves understanding the dynamic nature of program
execution and the process of creating functional and meaningful artefacts.

In order to assess a learner’s mental model, we need a conceptual framework that represents the
types of knowledge required to complete a particular task [97]. Cognitive scientists generally
agree that there are three types of knowledge involved in computer programming: syntactic,
conceptual and strategic [16].

Syntactic knowledge refers to an understanding of the syntax of a programming language, such
as the grammar and format of statements. Conceptual knowledge refers to the dynamics of
the program, such as knowing how programming constructs work and how they determine the
execution of the code. Finally, strategic knowledge relates to problem-solving strategies and
refers to the ability to apply the syntactic and conceptual knowledge to develop programs to solve
novel problems. Typically, novice programmers “know the syntax and semantics of individual
statements but they do not know how to combine these features into valid programs” [198]. The
following Python example illustrates these concepts:

x = 0
while(n != 0):

n = int(input("Enter a value "))
x += n

In this code snippet, the syntactic knowledge is to understand the syntax of the while loop and the
syntax of the addition operator (+=). The conceptual knowledge is to understand the behaviour
of the while loop, knowing that it will continue to execute as long as the value of n is not 0, and

5https://pythontutor.com
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Figure 2.6: Roles of variable hierarchy [151].

that it will stop as soon as the condition is false. The strategic knowledge lies in recognising the
variable n as an accumulator variable used to calculate the sum of the inputs, accumulating each
input value in the variable x.

2.4.1 Micro Patterns, Goals and Plans

Mastering strategic knowledge means being able to apply and recognise abstractions in the pro-
gram, namely micro-patterns. The concept of the role of variables [151, 106] has been proposed
to guide novice programmers from initial operational knowledge of a variable to the ability to
identify abstract use cases that help to identify the solution to a specific problem. During the
process of learning to program, students may realise that the problem is a special case of a more
general family of problems, leading them to reason in terms of abstractions.

Patterns should be introduced incrementally to construct and refine the existing mental model
grounded in prior knowledge. Literature suggests adhering to the roles of variable hierarchy
depicted in Figure 2.6, as elaborated by [151]. The hierarchy should be interpreted as follows: the
predecessor of an arrow is a learning prerequisite for the corresponding successor. For example,
in the case of variables, teachers should start with the concept of literals and then introduce a role
on top of the roles already understood, until more patterns are combined in the same program for
complex problems.

These considerations should make it clear that there are differences between novice and expert
programmers in the way they analyse and understand programs. Novices tend to read programs
sequentially, line by line. Experts take a different approach, looking for “beacons” - lines of code
that serve as typical indicators of certain structures or operations [193, 26]. These beacons help
experts to identify significant sections of code known as plans or “chunks” [169]. In particular,
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experts use abstractions such as micro-patterns to identify the high-level goals and plans within
a program.

The following example illustrates the process of designing a solution to a problem by identifying
the goals and corresponding plans:

Write a program that calculates the average.

Goals: sum N values; count the values; divide the sum by N

Plans: Sum loop (with variable gatherer/accumulator);
Count loop (with stepper variable);
Guarded division (division by zero is checked)

The example provides a clear understanding of strategic knowledge, which involves problem-
solving strategies based on goals and plans identified by micro-patterns such as loop patterns and
variable roles. At a higher cognitive level, strategic knowledge involves selecting, combining and
tailoring constructs and plans to solve the task [191]. Plans are used as basic building blocks and
can be integrated, as presented in [169], by abutment (i.e. concatenation, i.e. plans are applied
in full one after the other), nesting (i.e. plans are applied nested around each other, e.g. double
for loop to scan cells of a matrix), interleaving (i.e. merging several plans) and tailoring to
create novel solutions (i.e. adapting the plan to a particular scenario, e.g. a different initialisation
of an accumulator variable).

2.4.2 Threshold Concepts

This section provides an overview of threshold concepts and their importance in relation to NMs
and, more generally, in programming education. Threshold concepts are key ideas in a field of
study that bring about a profound change in learners’ understanding and thinking [113, 172].
Once grasped, they become deeply embedded in learners’ knowledge frameworks and have a
lasting impact on their cognitive structures.

Threshold concepts often challenge learners’ preconceptions and require a paradigm shift in
thinking. However, they facilitate the integration of different aspects of the subject, promote
holistic understanding and enable knowledge transfer across different domains.

There are a number of threshold concepts in programming. Many of them, such as parame-
ters, control flow, recursion and variables, form the basis of effective programming skills [86].
Among these, program dynamics is particularly critical, involving an understanding of program
behaviour and the thought processes of experienced programmers [172]. It serves as a bound-
ary between programmers and non-programmers, and its learning is typically irreversible [171].
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Other common threshold concepts are program-memory interaction, such as pointers, and object-
oriented programming [21].

Recognising the importance of threshold concepts is essential for effective instructional design.
Educators should use strategies such as active learning and scaffolding to guide students through
these challenges and promote deep understanding and mastery of programming.

2.4.3 Misconceptions

Learning to program, as a process of creating a mental model of the underlying NM, is a difficult
task where students can fall into several programming misconceptions [57]. The latter, as defined
by Sorva, are “understandings that are deficient or inadequate for many practical programming
contexts” and can significantly impede progress in learning to program. He further emphasizes
the detrimental impact of misconceptions, stating that “Incorrect and incomplete understand-
ings of programming concepts result in unproductive programming behavior and dysfunctional
programs”.

The root cause of many programming misconceptions lies in prior knowledge from domains
outside of programming, such as mathematics and natural languages [170]. High-level program-
ming languages, while providing a convenient level of abstraction, can paradoxically contribute
to misconceptions. By hiding the underlying machine-level details, these languages can obscure
the concrete execution of programs on the computer. This abstraction, intended to simplify pro-
gramming, can make it difficult for students to understand the connection between constructs
and their actual implementation, leading to bugs and errors.

The literature on programming misconceptions is extensive and common examples include En-
glish keywords, mathematical notation and similarities [105]. For example, students may misin-
terpret the meaning of keywords such as while or if, believing that the loop will continue until
the condition is false, or that the then branch will be executed immediately upon condition ful-
filment. The assignment operator = can be misinterpreted as an equation or value exchange, and
the increment operator (a = a + 1) can be considered an invalid expression. Finally, miscon-
ceptions can arise from similarities (e.g. metaphors and analogies), such as equating a variable
with a box, or treating programming as a conversation with a sentient computer (the so-called
“superbug” [134]). This can lead to attributing intentionality to the computer and overestimating
its capabilities.

2.4.4 Program Comprehension

In learning to program, a fundamental aspect is the comprehension of code. However, it is only
in recent years that the importance of understanding code has been recognised as an integral part
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of programming education. Conventionally, educators have prioritized program composition,
which encompasses writing code, while considering reading skills as an incidental byproduct of
writing code. However, reading and writing code are related skills, but not directly interdepen-
dent.

In a study by [84], this competence is conceptualised by the term “program comprehension”
and defined as “a process in which an individual constructs his or her mental model of a pro-
gram”[84]. Furthermore, it introduced the concept of “program comprehension tasks” as a
cognitive approach aimed at guiding students in their learning process to construct viable mental
models. In particular, a program comprehension task is an exercise that exposes the learner to
an artifact that represents the program. The exercise necessitates the learner’s active engagement
with the artifact in some form. This interaction stimulates the learner to construct and refine their
mental model. The artifact can take various shapes, such as source code, Parsons problems6, or
collections of blocks in a visual programming language. Its level of abstraction can vary widely.
To overcome the constraints of working memory, learners can utilize external representations
like notes, traces, or diagrams during their interactions with the artifact [45, 84].

In [84], researchers propose a framework to assist teachers in considering the cognitive aspects of
program comprehension. This framework is organised as a matrix that classifies program com-
prehension tasks from two perspectives. The first perspective considers the program at different
block levels, ranging from individual instructions to individual blocks, relationships between
blocks, and the entire program. The second perspective, orthogonal to the first, considers the
program in three dimensions: textual surface (the program text as a static entity related to syn-
tactic knowledge), program execution (a dynamic entity representing functional knowledge), and
function/purpose (viewing the program as an artifact with an extrinsic purpose reflecting strategic
knowledge). Figure 2.7 depicts the block model matrix.

Figure 2.7: The Block Model Matrix [84].

In this matrix, the rows represent a hierarchy of increasingly complex programming structures,

6A Parson’s problem is a type of program comprehension task where learners are given all the blocks or lines of
code needed to solve a problem, but the lines have been mixed up so that they are no longer in the correct order. The
learner is asked to put the code back in the correct order to complete a specific task [84].
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while the columns represent different dimensions of comprehension corresponding to different
levels of abstraction.

2.5 Some Pedagogical Implications

In recent years, a variety of tools and methods for teaching programming have emerged, from
project-based learning to peer education and pair programming [138] to visualization tools and
block-based coding. However, designing a successful introductory programming course remains
a complex endeavor. It requires careful consideration of the diverse characteristics of students,
including factors such as school environment, familiarity with technology, individual interests,
and learning needs. Sometimes the materials used to teach programming overload students’ cog-
nitive resources [112]. In addition, challenges arise from the ineffective use of teaching strategies
for problem-solving and coding techniques [36], and from students’ lack of mastery of program-
ming syntax [149, 142]. Incorporating visualisations into explanations can be a powerful tool to
help students develop clear mental representation of programs [149]. These challenges are com-
pounded by time constraints and limitations imposed by curriculum structures. These difficulties
are particularly pronounced in short introductory activities, where the aim is to engage students
quickly, capture their attention and interest, and provide a clear understanding of programming
concepts within a limited timeframe.

To address these challenges and improve the effectiveness of introductory programming educa-
tion, this chapter has explored various pedagogical techniques with a constructionist approach.
Some of the key pedagogical implications that can be drawn from this chapter include:

• Shifting Learner Perspectives: Shift students’ perspectives on key concepts for deeper
understanding and reflection (metacognition). Prioritize selected concepts to create more
enriching learning experiences.

• Understand Program Dynamics: Grasping threshold concepts like recursion and ref-
erence parameters is crucial. Teachers should help students develop a dynamic view of
program execution. Consider using visualization tools like PythonTutor to aid understand-
ing.

• Make NM explicit: Clearly establish NM as a learning objective in introductory courses.

• Enhance Code Comprehension: Teach program tracing for improved program under-
standing. Reinforce code comprehension skills to help students build strong mental mod-
els.
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Chapter 3

Data Science Education

Data Science (DS) education is the foundation for a wide range of programmes, including CS,
DS itself, and many other related fields. It equips students with the essential skills to manage
data throughout its lifecycle, from collection and storage to processing and analysis. Core topics
explored in this area of education include database management, programming, and the ever-
evolving field of machine learning (ML). Fundamental to all of these areas is a strong foundation
in coding, as it enables students to effectively manipulate, analyse and visualise data, enabling
them to tackle real-world DS challenges.

It is difficult to pinpoint a specific date of birth for data education, as the field has evolved
over time in response to the growing importance of data in our increasingly digital data-driven
world. We can say that early efforts in data education began in the 1970s, primarily within the
database research community. These efforts focused on curriculum placement and best practices
for teaching data systems concepts. However, it was not until the recent rise of big data and the
high demand for DS professionals that universities began to establish dedicated DS programmes
or curricula and to recognise DS as an emerging discipline [72]. This emphasis on data educa-
tion has led to a growing focus on data pedagogy, a critical aspect of faculty development and
curriculum design.

This chapter is intended to prepare the reader for the following chapters, which present our
pedagogical experiments in Data Systems education. In particular, it aims to briefly present
the history and epistemology of DS. It then discusses the state of the art in pedagogical and
methodological approaches to data education, as well as the challenges and opportunities of its
interdisciplinary nature, with a focus on introductory data science (IDS) courses at both school
and university level. Finally, it focuses on database research education.
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3.1 Data Science as Discipline

Over time, the term “data science” has emerged independently in CS, statistics, and other fields
[82]. In CS, the term “datalogy” was proposed by Peter Naur in 1966 to the editor of the
Communications of the ACM [127] as a new name to CS, “the science of the nature and use
of data”. In addition, he also proposed the term “datamaton” to indicate the automatic device
for processing data, and “datum&tics” to indicate the part of datalogy which deals with the
processing of data by automatic means.

The term “data scientist” emerged in the late 2000s, initially in the tech industry. It was popular-
ized by an essay in 2008 by data analytics leaders at LinkedIn and Facebook, which highlighted
the importance of DS in business analytics [47]. The essay also noted the lack of formal educa-
tional programs in DS, suggesting that it was an emerging field with significant potential.

The rise of big data has presented challenges for industries, as they grapple with managing and
processing large amounts of data that cannot be effectively handled using traditional methods.
The term “big data” is often associated with its 5 V’s: volume, variety, velocity, value, and
veracity. It is important to note that the early research and development efforts in big data were
primarily driven by industry, with companies like Google and Meta innovating and developing
specialised tools and frameworks to address the challenges of big data management.

While some may perceive DS as merely a collection of existing methods and tools from various
fields, its true innovation lies in its holistic approach [73]. DS integrates knowledge and skills
from these different disciplines to extract knowledge and value from data. This integration en-
ables DS to tackle complex problems that traditional, siloed approaches may not be able to tackle
effectively.

In 2010, Conway [43] proposed a Venn diagram to illustrate the interaction and intersection
between these fields, as depicted in Figure 3.1. Many other Venn diagrams have been proposed
over the years [182].

Universities are actively exploring how to incorporate DS activities into their curricula and
courses [35, 10] and integrate it with existing disciplines. However, despite these efforts, DS
education has not yet achieved full recognition as a discipline in its own right. It is more often
discussed in the context of related fields such as CS and statistics education. This lack of inde-
pendent recognition is further evidenced by the absence of a dedicated academic journal focusing
solely on DS education [71].

Several researchers see DS as an emerging discipline, moving from a multidisciplinary to an
interdisciplinary state [7]. According to [73], the ultimate goal is to achieve transdisciplinar-
ity, where fields are seamlessly integrated with a unified and holistic approach centered on data.
However, there is still a long way to go to achieve transdisciplinarity, as the DS community faces
many challenges and open questions. In a 2020 paper [197], Jeannette M. Wing, the pioneer
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Figure 3.1: Data science Venn diagrams.

of modern CT, identified ten critical research areas that the DS community should prioritise to
advance the field and address emerging societal needs, including scientific, technological and
ethical challenges. These areas are: scientific understanding of learning, especially deep learn-
ing algorithms; causal reasoning; valuable data; multiple, heterogeneous data sources; reasoning
from noisy and/or incomplete data; trustworthy AI; computing systems for data-intensive ap-
plications; automation of front-end stages of the data lifecycle; privacy; ethics. Beyond these
specific research areas, Wing also presents three fundamental meta-questions that challenge the
very nature of DS as a discipline: what are the deep questions of DS, what is the role of the
domain in DS, and what makes DS unique.

3.1.1 Data Thinking

DS has introduced a new data-driven paradigm. As an emerging field, researchers are exploring
the distinctive thinking patterns of data scientists as opposed to statisticians or computer scien-
tists. Thus, the term “data thinking” (DT) has been proposed [120]. According to [29], DT
refers to the perspective on the methods, processes, structures, characteristics and habits of the
mind when dealing with data problems and systems. In particular, DT combines CT, statistical
thinking, different mathematical conceptions and domain thinking [120], as depicted in Fig. 3.2.

Domain thinking is the ability to apply knowledge and expertise from a specific field or industry
to analyze and interpret data. This domain knowledge allows data scientists to ask meaningful
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Figure 3.2: Data thinking Venn diagram.

questions, identify relevant patterns, and interpret results within the context of the problem [72].

Statistical thinking, introduced by W. Edwards Deming [54] and further developed by David
Moore [125], is a mindset that emphasizes the importance of understanding the nature of data
and its variability in solving real-world problems. It involves a process of inquiry that starts
with formulating questions, collecting and analyzing data, interpreting results, and evaluating
the validity of conclusions.

In summary, DT skills can be described as the cognitive processes required to understand whether
data is a good representation of the real situation, to reason about data in terms of meaning within
the relevant application domain and not just as a data structure, to analyze data both logically and
statistically, and to recognize that problem abstraction is application domain dependent and that
generalization is subject to bias and variance in the data [121].

3.1.2 Data Science Pedagogy

DS pedagogy is an interdisciplinary approach that integrates teaching methods from CS, statis-
tics, mathematics, and various application domains. This interdisciplinary perspective provides
learners with opportunities to engage with STEM subjects and to develop the cognitive, organi-
zational, and research skills necessary for interdisciplinary work. It emphasizes active learning,
contextualized learning, and white-box understanding.

Active learning promotes student engagement and problem-solving skills through hands-on ac-
tivities, collaborative projects, and case studies. Context-bases learning uses real-life examples
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and real data to connect theoretical concepts to practical applications. This approach increases
learner motivation, engagement, and diversity.

In data education, machine learning (ML) and deep learning algorithms play a crucial role, as
they are essential elements of DS, but require an extensive background in mathematics. Typically,
a white-box understanding approach is preferred. The term “white-box understanding” refers
to understanding the details of the algorithm, i.e. how it works, while black-box understanding
refers to the ability to call a library procedure that executes the algorithm without understanding
the internal process of how the algorithm’s output is generated.

Practical constraints and prior knowledge may require a black-box approach where students fo-
cus on high-level intuition and input-output behavior. For example, to introduce deep learning
algorithms, tools such as Google’s Teachable Machine1 can be a valuable resource to keep stu-
dents engaged without getting bogged down in complex mathematical details.

On the other hand, novices may find it difficult to improve the performance of an algorithm with-
out a white-box understanding. In fact, a superficial understanding is not sufficient for tasks such
as hyperparameter tuning, which require familiarity with how the algorithm works. This can
lead to oversimplified or inaccurate mental models of AI/ML systems, and also create unrealistic
expectations in students, leading to the so-called “Eliza effect”, where a system appears much
smarter than it is [13]. To this end, several pedagogical strategies have been experimented to
support white-box understanding, such as an approach based on hands-on pen-and-paper tasks
experimented with in an introductory DS course for psychology graduate students [119]. In ad-
dition, there is a significant body of research in the field of AI education, particularly focused on
the teaching of ML in K-12 education [183]. This research highlights the need for a paradigm
shift in computing education to effectively integrate ML models. [183] identifies key elements
for successful integration, including fostering data-driven thinking, emphasising real-world ap-
plications, acknowledging the black-box nature of certain algorithms, taking an interdisciplinary
approach with STEAM subjects, and introducing students to new NMs. Notably, these findings
are also relevant for DS education.

From a learning theory perspective, constructivism and creative learning principles can be in-
tegrated into data pedagogy to promote active engagement, project-based learning, and critical
thinking. For example, the study presented in [152] highlights a team-based, project-focused
introductory course centered around big data. The outcomes of the study reveal positive results
in terms of both learning outcomes and practical engagement with tasks mirroring those encoun-
tered in the industry. In the study by [123], a team-based learning strategy for database courses
is introduced. The study showcases how this approach can yield enhancements in performance
while effectively addressing the conceptual and collaborative needs of database education.

Finally, a limited number of studies have explored the integration of gamification into data ed-
ucation. While a significant portion of these studies primarily focus on introductory statistical

1https://teachablemachine.withgoogle.com
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concepts [100], particularly in the context of online courses, a few experiments have extended
their scope to domains beyond statistics. For example, a recent work [99] presents a data literacy
experiment based on a data visualization learning application that offers different types of gami-
fication (e.g., badges and challenges, use of avatars, social competition). The results of the study
are encouraging, showing positive outcomes in terms of learning and engagement.

3.1.3 The Challenge of Interdisciplinarity

While interdisciplinarity is an intrinsic aspect of DS, it also poses challenges for the design of DS
programs and courses. There is an ongoing debate about how to incorporate application domains
into the learning content and whether it should be done. Furthermore, the optimal ratio between
disciplines, as suggested by [43], remains an open question. For example, many DS programs
have their roots in either CS or statistics departments, resulting in a curriculum that is heavily
biased toward CS or statistics [4]. To address this, various approaches to integrating application
domains have been proposed. For example, [10] developed a multidisciplinary DS curriculum
involving faculty from different disciplines. In addition, students are required to earn credits in
one of the proposed application domains as part of their degree.

Other researchers have explored how CS education can benefit from DS [117]. Indeed, incor-
porating real-world data can help CS students better understand real-world problems, while sta-
tistical reasoning can improve their problem-solving skills [73]. In addition, some researchers
have experimented with integrating application domains into traditional courses. For example,
[181] proposed incorporating biological data analysis into a CS1 course in which students learn
programming skills using real laboratory data. In [11], an interdisciplinary CS1 course among
business and CS students focusing on business domain problems is presented.

Finally, [77] proposes a comprehensive framework of five guiding principles2 for effective teach-
ing in introductory DS courses. This framework emphasises structuring courses around diverse
case studies, incorporating computational elements, teaching abstraction, mimicking real-world
scenarios, and promoting critical thinking and scepticism. This framework, with its emphasis
on practical application and critical thinking skills, aims to produce confident, competent and
analytical data scientists who are well prepared to navigate the complexities of the field.

3.2 Teaching Introductory Data Science

Data is now everywhere, and our lives and decisions depend on vast amounts of data. The latter
has generated a lot of excitement in recent years, creating new business models, services and jobs.
However, it has also raised a number of concerns, particularly about the ethical and political

2https://datasciencelabs.github.io
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issues behind the algorithms used to mine data [143]. Therefore, digital skills and awareness
to deal with data in personal and professional activities are now considered essential for every
citizen [65]. These competences are commonly referred to as data literacy. The latter can be
defined as the ability to understand and critically evaluate information derived from authentic
data [88].

In this section, we explore the intricacies of teaching IDS in schools and universities, particu-
larly to non-CS majors, by examining the motivations, challenges, and pedagogical approaches
documented in the literature.

The findings from this research form the basis of the thesis, which presents a set of pathways
and tools designed to facilitate IDS education for non-CS majors. These pathways and tools
are tailored to both university students and high school students involved in careers guidance
activities, ensuring that the benefits of IDS education reach a wide audience.

3.2.1 Teaching IDS in Schools: Motivations & Challenges

As mentioned above, as we live in the data age, it is fundamental that people have some basic
data skills in order to be active digital citizens. Students should be aware of the challenges of data
ethics and learn how to share, handle, communicate, and interpret data appropriately, regardless
of their future careers. In addition, we believe that early exposure to DS topics in school can
help to embed data culture in students and make them aware that DS has become ubiquitous due
to its domain-specific nature. This is also reflected at university, where many non-computing
academic programs (e.g. biology, business, medicine, etc.) have started to offer courses that
cover data analytics topics, and students need to be aware of this. Furthermore, it is widely
recognized that data thinking, like computational thinking, should be introduced to students as
early as possible to spark their interest and create a potential future generation of data scientists,
or at least data literate people.

These are the main motivations for offering data dissemination activities to students. If we con-
sider the fact that it is difficult to find experienced DS teachers or support materials for DS
education in (Italian) schools, the issue becomes even more important. Furthermore, DS can be a
means to promote and improve competency-based education with an interdisciplinary approach.
The use of real data can be exploited to design learning units -“Unità di apprendimento” (UdA)
in Italian-, creating learning pathways that mix humanities, sciences, coding, and digital skills.
In particular, authentic data can be relevant to students’ interests and attitudes, which can have
a positive impact on their creativity and motivation to learn. In addition, real data sets have
been shown to promote data thinking in learning environments designed to develop CT [120].
Therefore, CS education can also benefit from the potential of data by paving the way for new
interdisciplinary learning units where students can integrate data literacy with other soft and hard
skills.
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On the other hand, early DS activities lead to a number of challenges that need to be considered
by educators and researchers. Firstly, achieving the desired learning outcomes, as DS education
often requires some prior knowledge of computing and statistics/mathematics. Coding and sta-
tistical models are important components of DS, and students typically need to learn a program-
ming language and/or some statistical packages (e.g., R, Python, Pandas, NumPy, matplotlib,
etc.). The domain-specific nature of DS is certainly an opportunity for learning, but could also
be a challenge if not addressed appropriately: domain knowledge should be carefully assessed
by choosing a dataset that requires a “right” level of knowledge, and with a view to an UdA,
teachers from non-computing disciplines should contribute their domain knowledge. Time and
curriculum constraints could be another important barrier to the dissemination of DS in schools.
In our experience, activities have to be embedded in a very short time frame of 10/20 hours max-
imum, which leads to several challenges in terms of providing the right balance between learning
content and hands-on practical activities. The latter is a major component of DS education, but
often requires a lot of time, as non-computing students often struggle with the technical and
coding aspects.

Finally, there are several other aspects that can affect the learning objectives of the activities.
One example is the choice of the right level of data complexity, which depends on several char-
acteristics, such as data quality: a fair amount of messiness in the data could create learning
opportunities in exploring the data; on the other hand, too much messiness may require skills
that are too advanced for students and thus lead to frustration and demotivation (e.g., missing
values that may require different interpretations or treatments by students) [88]. Another exam-
ple is the size of the dataset: a small amount of data can be handled with pen and paper, whereas
a large amount of data requires a software tool.

3.2.2 Tailoring IDS for Diverse Majors

In recent years, IDS courses have proliferated in many disciplines. However, most are designed
for CS majors and require prerequisites in programming and mathematics. For example, the
ACM Data Science Task Force’s Draft 2 of Data Science Curriculum Competencies3 is aimed
primarily at CS majors and focuses on knowledge domains such as artificial intelligence, big
data systems, data acquisition, data management, and more [46]. This poses a challenge for
students from non-CS backgrounds who may not meet these specific requirements [103]. The
same situation applies to academic education, where IDS courses are typically advanced elective
that require prior knowledge of programming, mathematics, and statistics. Our university is
no exception. Nevertheless, for the upcoming academic year (2024/2025), there are plans to
introduce an IDS course aimed at students enrolled in the Digital Humanities program.

Designing an IDS course for non programming literate students and without a solid mathematical

3The ACM Data Science Task Force Report: https://dstf.acm.org/DSTF_Final_Report.pdf
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background faces challenges. The learning objectives of the course should be formulated so as
not to assume prior knowledge of CS or mathematics. This factor plays a key role in the course
design phase, which includes aspects ranging from defining the desired learning outcomes to
curating appropriate learning materials, pedagogical methods, and supportive learning tools.

For example, choosing a white-box approach to teaching ML algorithms may not be the wisest
choice, as students lack the basic mathematical skills to understand them. However, the course
should equip students with skills that are relevant to the job market. Therefore, it is crucial that
students not only understand the concepts, but are also able to perform simple tasks in groups,
thus promoting a sense of autonomy in their learning journey.

3.2.3 Data-Centricity Pedagogy

A significant barrier to entry for many IDS courses is the requirement for programming skills.
This requirement often excludes students from diverse academic backgrounds, limiting the ac-
cessibility and inclusivity of IDS education. However, the recent emergence of data-centricity
pedagogy [95] offers a promising approach to addressing this challenge.

This approach emphasises rethinking the content of CS1 courses by incorporating a data-centered
and interdisciplinary perspective. It can be defined as a convergence of DS and data structures,
prioritising fundamental DS concepts as a springboard for the introduction of data structures
[95]. This shift aims to broaden engagement and support for a wider range of students, beyond
those traditionally interested in CS. By adopting this lens, students can see programming not just
as a technical skill, but as a powerful tool for addressing relevant questions in areas of personal
interest.

The data-centric approach has several distinct advantages. A key advantage is the use of real-
world data presented in tabular form. Familiarity with tables is widespread, even among younger
students, who encounter them in a variety of contexts, such as middle school mathematics and
spreadsheet applications. In addition, real-world data promotes alignment between course con-
tent and students’ personal interests. However, implementing the data-centricity approach is not
without its challenges. These challenges include strategically sequencing topics to ensure logical
progression, effectively integrating elements of statistics and programming into the curriculum,
and selecting appropriate programming methods that align with learning objectives.

Despite these challenges, data-centricity has been successfully applied in several courses and
programmes [60]. For example, Brown University offers the course “CSCI 0111”4, a data-centric
course using the Pyret programming language5 [60]. Similarly, the University of California,
Berkeley, offers “Data 8”6, a course that uses the Python programming language along with the

4https://cs.brown.edu/courses/csci0111/
5https://pyret.org
6https://data.berkeley.edu/education/courses/data-8
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“datascience”7 educational package.

3.2.4 Related Work

Different approaches to IDS education have been explored to cater for the diverse backgrounds
and interests of students. One example is the “Data 8: Foundations of Data Science” course at
the University of California, Berkeley8. This eight-week course is based on Python and uses
the “datascience” educational library developed at Berkeley9. The “datascience” Python pack-
age provides basic data structures for working with tables and maps. The former allows easy
manipulation of tabular data, while the latter introduces geographic data. In addition, the library
provides complementary utility functions and predicates that facilitate intuitive data retrieval
(e.g., table.where(condition)). The course begins with an introduction to DS and pro-
gramming basics, covering variables, type casting, and data types such as integers, floats, strings,
and np.arange. This basic programming content is taught over the course of approximately two
weeks. The course then moves on to data transformation operations, data visualisation tech-
niques, and statistical analysis topics, including linear regression, classification, confidence in-
tervals, and statistical tests.

Another example is an IDS course for non-CS majors presented in [28]. This course uses the
interactive web platform DSLP, designed by the course instructors and inspired by visual pro-
gramming languages, to teach the high-level workflow of data processing and analysis without
requiring coding. It covers topics such as data ethics and feature engineering, and allows students
to work on real data through in-class demos and hands-on case studies.

Several researchers advocate introducing students, especially non-CS majors, to programming
through JavaScript in conjunction with the D3.js library [85]. This approach seems to encourage
interdisciplinarity, as students hone their data thinking skills by programming interactive and
data-driven visualisations.

Many researchers suggest using the statistical software R to introduce statistics, DS or AI at
both secondary and university level [133, 25, 166]. Some examples include an IDS course for
non-majors in a flipped classroom format [32], an undergraduate DS course focusing on the con-
cept of the DS life cycle [200], and a team-based, project-oriented IDS course aimed at students
from diverse backgrounds [152]. Both courses cover various programming concepts such as
data structures (e.g., lists, vectors, arrays and matrices, data frames), structured programming
constructs (e.g., loops, conditional statements, and functions), data and text manipulation (in-
cluding regular expressions), and file I/O (including Excel spreadsheets). Two other relevant

7https://github.com/data-8/datascience
8Course “Data 8” https://data.berkeley.edu/education/courses/data-8
9Datascience Library, Berkeley: https://github.com/data-8/datascience
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examples come from the statistics education community: an IDS course10 [77] with a focus on
computation using the R programming language and R Markdown for report generation, and
“Passion-driven statistics”11 [174], a course-based undergraduate research experience (CURE)
based on data-driven projects with a focus on statistical concepts, used in several US colleges
and universities. The course provides material for implementing programs in various program-
ming languages such as Python, R, SAS, STATA, and SPSS. The approach has shown positive
results in terms of motivation and interest in DS topics, with high participation of female and
minority students.

There are also examples coming from CS education, in particular CS1 courses with a data-centric
pedagogy. For example, the “CSCI 0111” course offered at Brown University12, based on the
Pyret programming language13 [60]. The latter is a programming language specifically designed
to serve as an introductory language for CS education with strong static typing, Python-inspired
syntax, a focus on functional programming concepts, strong support for testing, and native sup-
port for class definition, image, map and tabular data. Pyret is the introductory language used
in the textbook “A Data-Centric Introduction to Computing” [61], aimed at both secondary and
tertiary education. Other examples include an introductory data-centric computing course at
Boston University for non-CS majors, covering relational databases, Python programming, and
data mining [178]; an interdisciplinary CS1 course for social science majors focusing on the
domain knowledge of psychology [118]; and an introductory programming course for CS and
non-CS students [28], using the Python programming language and the Grock14 online learning
platform, which allows students to work with textual and numerical data and receive automatic
formative feedback. This programme starts with an introduction to the standard Python library,
file I/O, iteration, and conditionals to handle tabular data. It then moves on to Python libraries
such as Pandas, Matplotlib, and Scikit-learn, focusing on the Dataframe data structure. The
course serves as a springboard to a traditional CS1 course.

These approaches aim to introduce students with different backgrounds and interests to the world
of data. All courses have a strong practical component, with a focus on real-world projects and
teamwork, placing students at the interface between academic and industrial contexts [152].

Other examples come from schools. Although data education is still in its infancy and rarely
integrated into school curricula [190], recent years have seen a surge in proposed teaching units
using programming languages and statistical software tools. Bootstrap: Data Science [155] is a
curriculum designed for use in integrated contexts at the secondary-school level, based on Pyret
programming language. Other examples include IDS15, a year-long course for high-school stu-
dents using the R programming language for statistical computing; a unit based on survey data

10https://datasciencelabs.github.io
11https://passiondrivenstatistics.wescreates.wesleyan.edu
12CSCI 0111 course: https://cs.brown.edu/courses/csci0111/
13Pyret Programming Language: https://pyret.org
14Grock Learning: https://groklearning.com
15https://www.idsucla.org
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using the CODAP16 online tool [63]; School 2117 using Tableau; the Tableau’s official data liter-
acy courses for schools and academies18; and finally, an innovative curriculum where secondary
school students learn about big data and its social impact using real multivariate data [64].

3.3 Database Education

Database education is a specific area of data systems education that focuses on databases. It
includes topics such as data modelling and query languages. Databases are a fundamental part
of CS and DS education. Within this area, researchers dedicated to database education have
placed particular emphasis on identifying common SQL misconceptions [115]. Although this
dissertation focuses primarily on the area of logical database design, as opposed to the specific
query language, this section provides a brief overview of the current state of database educa-
tion, including the identification of SQL misconceptions, the use of visual query tools, and the
introduction of NoSQL in database courses.

3.3.1 SQL Misconceptions

One of the main sources of misconceptions seems to be students’ prior knowledge [115, 168].
In SQL education, prior understanding of mathematics, set theory, relational algebra and pro-
gramming can influence learning through knowledge transfer [115]. For example, the presence
of keywords borrowed from natural language in SQL makes it susceptible to linguistic trans-
fer [57], and prior experience with programming languages can leads to misconceptions due to
differences in notation and usage [156].

In the research paper [115], numerous misconceptions and errors related to SQL are documented.
The study underscores that students often confuse the == and = operators in SQL queries, de-
spite the fact that the == comparison operator is not part of the SQL syntax. This misconception
arises from different notations of other programming languages. Other common misconceptions
are related to the scope of different query elements. For example, students may define a view
using a query with a WITH clause, but fail to invoke the view in the main query for proper us-
age. Similarly, students may mistakenly use a self-join query to retrieve pairs of records from the
same table, not realising that the table should be referenced twice in the query. These misconcep-
tions reflect an incorrect or incomplete mental model in which students may view the database
management system as a black-box. Indeed, the literature predominantly emphasizes subqueries,
GROUP BY clauses, and JOIN clauses as the main areas where misconceptions are prominently
observed [23, 115, 180].

16https://codap.concord.org
17

https://www.tableau.com/community/blog/2021/8/tableau-brings-data-literacy-classroom-school-21
18https://www.tableau.com/it-it/learn/data-literacy
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Other common misconceptions include the belief that the DISTINCT clause selects the first
element in a list, inappropriate uses of primary keys, and various syntactic errors, such as re-
membering only the main part of a keyword or using synonyms interchangeably [139, 115].

Finally, several visualisation tools have been developed to illustrate the underlying notional ma-
chine of SQL. For example, SQL Tutor19, which offers a step-by-step visualization of how a
physical query plan is executed, presented in a hierarchical structure. An example of the SQL
query visualisation is shown in figure 3.3. Other notable examples include QueryVis [101] and

Figure 3.3: SQL Tutor

SQLVis 20 [116]. The latter visualises the SQL query plan and schema at a higher level of ab-
straction, creating a graph-based visualisation of SQL queries in Jupyter notebooks. A glimpse
of SQLVis in action can be seen in figure 3.4.

Figure 3.4: SQLVis

19https://cudbg.github.io/sqltutor/
20https://github.com/Giraphne/sqlvis
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3.3.2 NoSQL Education

The term NoSQL has evolved to encompass many different types of database. However, its cur-
rent usage often emphasises the concept of “Not Only SQL”, referring to databases that depart
from the traditional relational model based on normalised tables. Several key characteristics dis-
tinguish NoSQL databases, such as different data models (e.g. graph, tree, key-value, document),
schema flexibility, implicit support for horizontal scaling, and, typically, eventual consistency in
contrast to the strong consistency of relational databases [124].

Research has investigated specific mental models and misconceptions that students hold about
NoSQL databases, with a particular focus on those related to document-oriented and graph-based
models. Although the literature on NoSQL misconceptions is not as extensive as that for SQL,
recent studies have shed light on the challenges students face when performing aggregation and
union operations in NoSQL database environments.

These findings are consistent with observations in SQL education, suggesting that certain con-
cepts and operations pose similar hurdles across different data management paradigms. For ex-
ample, students working with MongoDB often face challenges when dealing with concepts such
as GROUP BY and related subqueries [5]. Similarly, in Cypher, the query language for Neo4j,
students struggle with the use of the WITH clause, which is used to concatenate the graph results
of previous queries into subsequent queries [39]. Furthermore, studies have observed a higher
frequency of result set errors in MongoDB compared to graph databases. This discrepancy may
be attributed to the greater cognitive effort required to construct an effective mental model for
document-based data structures, which can lead to errors in formulating queries that retrieve the
desired results [6].

With respect to data modelling, there have been numerous proposals for design methodologies
for NoSQL systems: [38] proposes a general workload-driven method for designing key-value,
wide-column and document NoSQL database schemas; [12] presents the “NoSQL Abstract
Model” - a system-independent representation of application data for NoSQL design. Other ex-
amples include: a model-driven approach that generates NoSQL database implementations from
a high-level conceptual model [48], a design methodology for transforming entity-relationship
models into document-oriented logical models suitable for MongoDB [49], and a similar ap-
proach is proposed for Cassandra in [37].

Finally, the inclusion of NoSQL databases in traditional database courses has become a topic of
discussion among academics worldwide, reflecting the growing importance of these technologies
in industry [199]. This trend is illustrated by several case studies: [153] presents a semester-long
web-based project using both SQL (Oracle) and NoSQL (MongoDB) for an undergraduate IDB
course; another learning model specifically designed to introduce NoSQL paradigms to under-
graduate students is presented in [124]; other examples include the integration of the CouchDB21

21https://couchdb.apache.org
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database management system as an introduction to non-relational databases [62] and the integra-
tion of basic NoSQL database commands using Neo4j in vocational training programmes [92].
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Innovating Concurrency and Data
Education
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Chapter 4

Concurrency Education with Sonic Pi:
“Hear” and “Play” Mistakes and
Misconceptions in Multithreaded
Programs1

Concurrency is a complex to learn topic that is becoming more and more relevant, such that
many undergraduate CS curricula are introducing it in introductory programming courses. This
chapter investigates the combined use of Sonic Pi and Team-Based Learning to mitigate the dif-
ficulties in early exposure to concurrency [175]. Sonic Pi, a domain-specific music language,
provides great support for “playing” with concurrency, and “hearing” common problems such
as data races and lack of synchronization among different concurrent threads. More specifi-
cally, the chapter focuses on students’ misconceptions regarding concurrency in Sonic Pi and
compares them to those arising in traditional concurrent programming languages. In addition, it
preliminary explores knowledge transfer from Sonic Pi to C/C++.

4.1 Introduction

Background and Motivations Concurrent programming is a technique in which two or more
executions threads start, run in parallel or in an interleaved fashion through context switching,
and complete in an overlapping time period by managing access to shared resources. Multi-
threading can be compared to a pianist playing a piano with both hands. Instructions run in
parallel on a single processing unit. The threads may work on different instructions (such as the

1This chapter is based on the material published in [185, 51, 52].
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pianist playing two separate musical pieces), but work with the same resources and processing
power. Concurrent programs can execute multiple tasks at once, e.g., writing a file on disk while
appending new items. Concurrency, however, introduces nondeterminism: the exact order in
which tasks are scheduled is not known in advance. Furthermore, the interleaving of instructions
of different execution threads may yield an exponential number of possible schedules. It is often
the case that some schedules will lead to correct outcomes and others will not. Thus, it becomes
necessary for programmers to express constraints to prevent the system from allowing schedules
that yield incorrect outcomes.

In the past, due to its complexity, concurrency was typically introduced at advanced levels of
computer science (CS) curricula. However, due to its growing importance, e.g., event-driven
programming and multi-core computing, several universities are now rethinking their approach
and starting to introduce concurrency in introductory courses, in some cases adopting simplified
concurrency models [175, 58]. Despite this, students often struggle to understand concurrency,
which can be particularly challenging when introduced early in the curriculum. Consequently,
there is a need for research aimed at effectively introducing concurrency and supporting students
in building and refining their viable mental models.

In this chapter we investigate the use of Sonic Pi to mitigate the difficulties in early exposure
to concurrency. Sonic Pi [1] is a domain-specific programming language and code-based music
tool where musical concepts, and specifically those related to multi-threading, are aligned with
programming ideas. The Sonic Pi programming tasks have been used within a collaborative
framework based on the Team-Based Learning (TBL) pedagogy [186]. They focused on code
comprehension and code composition and targeted common misconceptions about concurrent
programming.

The approach, based on an interdisciplinary pedagogy for early exposure to concurrency by
combining music and programming activities, has been applied to two teaching experiments for
undergraduate CS students, more precisely 130 first-year students in the context of an annual
first-year course that focuses on teaching students the fundamentals of computer architecture
design for modern microprocessors and 54 third-year students in the context of a third-year,
second-semester course that focuses specifically on the design and analysis of algorithms for
concurrent and distributed systems.

Research Questions Based on previous research on concurrency education in traditional pro-
gramming languages, our research questions are:

• Does the use of Sonic Pi help the students face common misconceptions and mistakes
in concurrent programming? Do misconceptions and mistakes in Sonic Pi correspond to
misconceptions and mistakes in traditional concurrent programming languages?

• Can we apply knowledge transfer from Sonic Pi to more traditional programming lan-
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guages such as C and C++? What is the effect in terms of learning outcomes?

Contributions The contribution of this chapter is twofold. Firstly, it presents an introductory
approach to concurrency based on Sonic Pi, aimed at undergraduate students, and shares all the
detailed information and materials so that other instructors can replicate the activities. This teach-
ing format is based on our extensive research and classroom experimentation over the past three
years, which has provided a solid foundation. Secondly, the chapter explores students’ miscon-
ceptions about concurrency that emerged during the experiments. By collecting and analyzing
team responses and deliverables, we delve into students’ problem-solving strategies, comparing
them to experiences with those based on traditional programming languages.

Design The choice of the Sonic Pi programming language is due to several reasons. As men-
tioned in [2], “Sonic Pi was designed to teach a large number of computing concepts covered in
the new UK computing curriculum introduced in September 2014. Examples of these concepts
are conditionals, iteration, variables, functions, algorithms, and data structures. We also extend
beyond these to provide educators with an opportunity to introduce concepts that we believe will
play an increasingly important role in future programming contexts such as multi-threading and
hot-swapping of code.” Sonic Pi offers distinct advantages over traditional computing methods to
facilitate the early introduction of multi-threading. The inherent concurrency of music creation
(e.g., several instruments that synchronize on a rhythm and melody) and the simplicity of the
tool can provide a natural and immersive learning experience for concurrency. In particular, live
coding and auditory output, two key features of Sonic Pi, provide great support for “playing”
with concurrency, and “hearing” data races and other common mistakes. To our knowledge, this
study represents the first attempt to use Sonic Pi for these learning goals at the university level.

The proposed teaching format is based on our previous research and experiments started in the
academic year 2019/2020. We started by experimenting with the use of Sonic Pi with TBL to
increase learning motivation and curiosity among freshmen by introducing them to advanced
topics [186].

Building on this experience, we further refined and adapted the teaching format in the academic
year 2021/2022 for third year students enrolled in the Concurrent Programming and Distributed
Algorithms (CP2) and Informatics for Creativity, Didactics and Dissemination (ICDD) courses.
These courses provided an ideal platform to explore concurrency and its application in creative
contexts. In these experiments, the primary learning objective was to introduce students to the
concept of multi-threading in Python. However, we approached this goal by starting with concur-
rency in Sonic Pi and then moving to Python using the python-sonic library. This interface
allowed students to combine the multi-threading capabilities of Python with the functionality of
Sonic Pi within a Python environment. For the students enrolled in the ICDD course, the ex-

2Programmazione Concorrente e Algoritmi Distribuiti in Italian.
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periment served an additional purpose. It provided an opportunity to examine the pedagogical
objectives and didactic concepts of the experiment itself.

The two units presented in this thesis, aimed at third year CPand first year Computer Archi-
tecture (CA) students, and experimented during the academic year 2022/23, are based on our
previous experience. They represent the culmination of our efforts to introduce concurrency in
a creative way and to address misconceptions in concurrency education. More specifically, we
focused on the goal of introducing students to the concept of concurrency through a series of
short practical tasks, each designed to address specific misconceptions about concurrency and
basic programming concepts, allowing students to gradually build their understanding while ad-
dressing specific misconceptions, including variable scope, function calls, parameter passing,
race conditions, correctness and synchronisation goals. Some tasks focused on program compre-
hension, while others involved code writing. Program comprehension tasks [84] are a cognitive
approach to teaching programming, where the learner interacts with an artifact representing the
program, for example a piece of code. See 2.4.4 for more details.

The program comprehension and composition tasks in Sonic Pi have been designed taking into
account common misconceptions observed both in our previous teaching experience and in the
literature on concurrency education, in particular, those arising from the mixing of concepts
from concurrency and the underlying computational models [175], which seem to be particularly
challenging for students.

Experimental Evaluation To assess the effectiveness of the activity in terms of engagement
and appreciation we considered students’ overall perceptions through a post-questionnaire; to
evaluate the effectiveness in terms of learning outcomes, we considered TBL data, in particular
team responses to the TBL tasks.

In addition, we wanted to gather preliminary empirical evidence on the transferability of the con-
current programming knowledge, skills, and abilities that students acquire in our Sonic Pi-based
learning environment to other traditional programming languages, such as C. Knowledge transfer
is crucial for effective learning, but it can pose challenges and lead to misconceptions for several
reasons, such as differences in the underlying notional machines (NM) of the programming lan-
guages considered. To investigate knowledge transfer, we designed a written test consisting of
three exercises in either C or pseudocode, focusing on concurrency aspects covered in the music
code-based domain. The test was administered one week after the experiment.

Plan of the Chapter Section 4.2 discusses related work while Section 4.3 introduces some
preliminary notions about Sonic Pi and TBL. Section 4.4, 4.6 and 4.7 provide all the details
of the design of the TBL units (RAT Quiz and Team app). In Section 4.8 we introduce the
teaching experiments and we present an aggregate analysis of data collected via quizzes, tests,
and questionnaires. Section 4.9 discusses findings and implications. In Section 4.10 we address
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some conclusions and future work.

4.2 Related Work

This section presents related work, by surveying approaches combining music and coding, ap-
proaches for teaching concurrency, focusing on the most common misconceptions related to
concurrency, and finally introducing knowledge transfer.

4.2.1 Music and Coding in CS Education

Live coding involves the real-time manipulation of running programs to generate live auditory or
visual effects, with the coding process becoming an integral part of the performance [20]. From
a pedagogical perspective, live coding provides immediate feedback and enhanced interactivity,
making it a valuable tool for teaching computer programming. In particular, live music coding
allows abstract programming concepts to be presented in a more natural way through music.

In recent years, live music coding has gained prominence in interdisciplinary contexts, partic-
ularly in the field of STEAM education [27]. This approach has proven successful in teaching
programming in both introductory and advanced programming courses [69]. Furthermore, the
integration of music and CS has been found to enhance students’ appreciation, motivation, and
engagement in the learning process [74]. The author of [76] highlights the effectiveness of
domain-specific programming platforms in promoting intrinsic motivation and positive attitudes
towards learning CS. In [69], the author presents an approach to teaching design patterns and
other programming topics (data structures, grammars, parsing, and formal proofs) using a music
composition project. A summer camp is presented in [109], designed with a “Code Beats” ap-
proach, where students learn fundamental programming concepts to make music using a domain-
specific tool that provides immediate feedback and hints for learning. The experiment seemed
to increase student interest, motivation and engagement. Finally, in [150] Scratch music coding
capabilities are used to teach basic programming concepts. There are a number of educational
code-based music creation tools, such as JythonMusic3, EarSketch4, TunePad5 and Sonic Pi6.
Sonic Pi, developed in 2012 with the UK’s new primary and secondary computing curriculum in
mind, has proved effective in introducing live music coding to primary schools [1]. It also ap-
pears to be effective in promoting positive attitudes towards programming among middle school
students [136]. Furthermore, the use of multimedia computer contexts in teaching introductory

3https://jythonmusic.me/
4https://earsketch.gatech.edu/landing/#/
5https://tunepad.live/
6https://sonic-pi.net
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programming across educational levels has shown positive effects on pass and retention rates
[165].

4.2.2 Concurrency Education

In the field of concurrency education, several studies have focused on analyzing programming
errors made by students. One study examined errors in specific concurrent assignments, while
another conducted a phenomenographic study to understand how students develop concurrent
programs [107]. Additionally, the analysis of final written exams from concurrent and operat-
ing systems courses aimed to identify common misconceptions among students [176]. Finally,
empirical research at the secondary school level has investigated students’ perspectives on the
correctness of concurrent programs [89, 18].

Concurrency poses challenges as it involves non-determinism, making it difficult to test program
correctness by running them. Unlike sequential programming, concurrency requires a more for-
mal and reasoned approach, demanding students to develop viable mental models of concurrent
program execution. In addition, students are expected to possess a solid understanding of funda-
mental concepts like variable scope, parameter passing, aliasing, references, and pointers, which
are considered threshold concepts—challenging concepts that require significant development
or revision of specific areas of the mental model. Mastery of these concepts enables students to
recognize connections with other programming concepts [22, 175].

Given the complexity involved, concurrent programming has traditionally been covered in ad-
vanced courses that require strong programming skills, such as operating systems courses or
other advanced electives. However, the increasing importance of concurrency, as discussed in
the previous section, has prompted the CS education community to address concurrency in intro-
ductory courses. This has led to a reevaluation of curricula and the emergence of new pedagogical
approaches [175].

Over the past few decades, several tools have been developed to aid students in learning about
concurrency. Eludicate [81] and Atropos [108] are examples of tools that allow students to
capture and visualize concurrent object-oriented execution. However, these tools lack active in-
teraction with the visualization, which diminishes engagement and learning impact, as argued by
Sorva [173]. To address this limitation, other tools have been introduced, such as The Deadlock
Empire7, an online educational game specifically designed for learning concurrency. Progvis
[177] is another tool that enables visualization of the interaction between concurrency and fun-
damental programming concepts like scope, parameter passing, and references.

In addition to these tools, older examples include Linda [31] and Multi-Logo [144]. Linda is a
coordination language that supports concurrency, and Multi-Logo is a concurrent extension of

7https://github.com/deadlockempire/deadlockempire.github.io
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Logo, which was experimented in primary schools where students had to control simple robotic
devices constructed from LEGO® bricks.

In principle, formal concurrency models may be considered as possible NMs to be used to rea-
son on concurrent executions abstracting away from the syntax of a particular programming lan-
guage. Process calculi such as CSP [79] and CCS [122] and graphical concurrency models such
as Petri nets [135], are well-known abstract models used to represent concurrent computations
as mathematical objects and to reason about their properties [98].

For instance, in [17], Mordechai Ben-Ari adopts a logic-based approach based on automata,
temporal properties and model checking to reason about properties such as mutual exclusion,
starvation, and deadlock interleaved with practical examples of concurrent programming libraries
in Java and Ada.

4.2.3 Common Misconceptions in Concurrent Programming

Misconceptions in concurrent programming can often lead to subtle and hard-to-debug issues.
In this section, we consider misconceptions related to basic and advanced concepts in concurrent
programming.

Many students struggle with synchronization problems, and part of this may lie in their under-
standing of the prerequisites that are crucial to concurrent programming. In fact, students may
struggle not only with concurrency concepts but also with threshold concepts about the underly-
ing computational model.

As discussed, e.g., in [175, 176], students often struggle with the scope of variables, mistakenly
believing that local variables are shared between threads or concurrent function calls. This mis-
conception stems from a failure to distinguish between different instances of function calls and
to recognize that each instance has its own set of local variables.

Other misconceptions include the belief in global locks as protectors of code rather than pro-
tectors of specific resources, which stems from a non-viable mental model that focuses on code
rather than data. Additional common misconceptions concern correctness [90], believing that a
concurrent program only needs to work most of the time rather than all of the time. They may
rely on trial and error for debugging, ignoring the concept of interleaving, which is difficult for
many students to grasp. It has also been found that many students experience the program in
terms of the program text rather than its dynamic execution [176].

In addition, students find it difficult to identify concurrency problems and formulate synchroniza-
tion goals [19]. However, once synchronization goals are identified, they generally succeed in
implementing solutions that meet those goals. However, in one study [176], students struggled to
associate shared data with appropriate synchronization primitives, such as using multiple locks
to protect the same instance in different situations.
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Students often believe that using synchronization primitives, such as locks or semaphores, en-
sures thread safety [75]. Students need to understand the importance of correct synchronization
placement, avoiding race conditions, and understanding the semantics of different synchroniza-
tion mechanisms.

Another misconception relates to memory models, where students often assume sequential con-
sistency [75]. This misconception may stem from concurrency courses that focus on context
switching on a single CPU and neglect other scenarios involving weaker memory models.

A further common misconception about concurrency, unrelated to the basic concepts, is that
adding concurrency to a program will automatically improve performance [179]. In fact, concur-
rency introduces additional complexity, so it is important for students to understand that perfor-
mance improvement depends on several factors, such as the nature of the problem, the hardware,
and the efficiency of the concurrency design.

Lastly, although it is not necessary to know object-oriented programming (OOP) to work with
concurrency, it was observed that a non-viable mental model of OOP can lead to misconceptions
in identifying shared data and synchronization mechanisms since some OOP concepts are also
relevant to concurrency (e.g. confusing class and instance, which is similar to confusing instances
of a function call, values, and references, etc.).

Finally, it is important to note that these misconceptions may vary according to programming
language, individual experience, and educational context. Nevertheless, investigating these mis-
conceptions can help to better know student understanding and improve future concurrency edu-
cation.

4.2.4 Knowledge Transfer

Knowledge transfer refers to the application of skills (or knowledge, strategies, approaches,
or habits) learned in one context to a novel context [8]. In particular, we refer to the knowl-
edge domain transfer [15], which is the process of applying previously acquired knowledge and
skills from one context to another (in the same or a different discipline). In our case, concur-
rent programming concepts and concurrent problem-solving strategies facilitate the learning and
adoption of concurrency in another programming language. However, transferring knowledge
from a language such as Sonic Pi to more traditional textual languages such as C and C++ can be
challenging due to differences in their NMs. We are not currently aware of any existing research
that explores this specific scenario, and further research is needed to understand the effectiveness
and challenges of knowledge transfer in this learning context.

Extensive research into the transition from block-based to text-based languages has highlighted
differences in syntax, mental models, misconceptions, program comprehension, and learning
outcomes [94]. However, current research seems to point in the direction of a positive transfer
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between block-based and text-based languages [192].

Learning a second programming language can be challenging [68], even for experienced devel-
opers, because of the need to adapt mental models to new language features [163]. However, in
some cases, programmers moving from one language to another, such as from C# to Ruby, chose
to start from scratch, ignoring prior knowledge, which mitigated the effects of cross-language
interference [163].

4.3 Preliminaries

Our proposal relies on a combination of Sonic Pi and Team-Based Learning (TBL) as the teach-
ing format. The resulting learning experience combines hands-on programming activities with
collaborative learning. In this section, we focus on the preliminary notions at the basis of the
proposed approach, namely, Sonic Pi and Team-Based Learning.

4.3.1 Sonic Pi and Concurrency

Sonic Pi is a domain-specific language for manipulating synthesizers through time. It can also
be viewed as a code-based musical creation and performance tool, where each musical concept
corresponds to a programming idea. The music domain allows for a pedagogy that focuses on
the problem (concurrency) rather than the programming language, proposing real-world exam-
ples that are inherently multithreaded. From this perspective, Sonic Pi seems to be naturally
constructionist8 (the “building material” [130] to learn concurrency), as Papert’s computational
thinking stresses the importance of the computer as a powerful meta-tool for “making the ab-
stract concrete” [106].

From a technical point of view, Sonic Pi is based on the Ruby programming language, inheriting
its simple syntax. It offers an intuitive and user-friendly integrated development environment
(IDE) for creating music. Furthermore, Sonic Pi provides auditory output feedback, allowing
users to hear the sound generated by their programs in real time. This audio feedback, com-
bined with textual program output and compiler error/warning messages, offers immediate and
tangible results, enhancing the learning experience. These characteristics make Sonic Pi a lan-
guage with a steep learning curve, extremely effective in adapting to different learning goals and
environments, and in tailoring topics to students’ interests and attitudes [1].

Sonic Pi is officially distributed for Microsoft Windows, Mac OS X and Raspberry Pi OS (but
there are also unofficial distributions for Linux). Compared to other live coding languages, it
is very easy to install, as it provides an all-in-one installer and does not require a separate in-

8See 2.2.1 for a detailed explanation of constructionism.
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terpreter. Once inside Sonic Pi, there is no need to route audio to channels: just the command
“play” followed by a note number is enough to create the sound. Sonic Pi does not use the usual
pitch classifications found in live coding, such as the frequency swing in SuperCollider, but as-
signs a number to each key of a standard piano [70]. Sonic Pi takes advantage of the speed of

Figure 4.1: Some examples of Sonic Pi programs and instructions.

modern processors in assuming that a sequence of instructions, as those depicted in Fig. 4.1 (A),
are likely to be executed so quickly in succession that they will be perceived as a chord, and not
as an arpeggio. An arpeggio form can be achieved by “sleeping” the current thread for a number
of seconds as in Fig. 4.1 (B). The notion of sleep is similar to that of the standard POSIX sleep
operation that suspends execution for the specified time. Sonic Pi 2.0 has introduced special
semantics that avoid drifting due to delays (thread scheduling and invocation of the POSIX sleep
operation) [2].

Finally, Sonic Pi supports various APIs, allowing users to interact with other platforms and ex-
pand its capabilities, such as the python-sonic interface.

Due to these factors, Sonic Pi is an ideal tool for teaching both the fundamentals of computer
programming, such as iterations, selections, functions, and data structures, as well as advanced
concepts like concurrency and scope rules. One of the unique advantages of Sonic Pi is its
ability to synchronize and audibly perceive different musical instruments, allowing learners to
“feel” local and global objects in action.

The language offers several interesting concurrent features, such as the in_thread and
live_loops control constructs, which are interpreted across multiple concurrent threads. The
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live_loop construct is the key to mastering live coding with Sonic Pi. For instance, con-
sider the program in Fig. 4.1 (C). Here we create a bass drum beating by repeating the sample
:bd_haus forever. Thanks to hot-swapping code live loops can be redefined on-the-fly while
still running. The in_thread construct resembles traditional thread-spawning operations in
languages such as C. For instance, consider the program in Fig. 4.1 (D). Here the MIDI note
30 is played at the same time as the sample :drum_heavy_kick with half a second between
each onset.

These programming abstractions provide an intuitive introduction to concurrency, even for
novice programmers who are guided by sound and perception. The resulting programs can there-
fore be validated with a sense of rhythm and melody.

Sonic Pi provides the cue and synch functions to create synchronized music patterns between
threads and/or live loops and avoid drifting effects. The cue sync mechanism is very similar to
the notifyAll() and wait()methods of the Condition objects of other concurrent program-
ming languages, such as Python and Java. Finally, Sonic Pi uses a lock-based synchronization
mechanism, providing the get and set functions to prevent race conditions. It also utilizes a
global memory store called Time State, where threads and live loops can share data.

Overall, Sonic Pi’s combination of auditory feedback, intuitive concurrency features, and syn-
chronization mechanisms makes it an effective tool for introducing concurrency and other pro-
gramming concepts.

4.3.2 Team-Based Learning (TBL)

To support a collaborative learning environment, we used the TBL teaching methodology. This
approach encourages collaboration between team members, and healthy competition between
teams, and enriches the learning environment with gamification elements. All these characteris-
tics made TBL consistent with Papert’s constructionist idea of the importance of students’ social
and effective involvement in the construction of a computational artifact ([106]). Collaborative
learning has been widely explored in CS education and there is extensive literature on its benefits.
In particular, TBL has been shown to be effective in preventing student dropout and improving
exam pass rates in CS1 courses [165]. In addition, a qualitative study has shown that TBL is
highly rewarding and engaging for students enrolled in CS1 courses [87].

TBL is a strategy that enables students to follow a structured process to improve their engagement
and the quality of their learning. It consists of modules that can be taught in a three-step cycle:
pre-class preparation, in-class Readiness Assurance Process (RAP), and application-focused ex-
ercise (Team APP). More specifically, TBL has five essential components plus an optional peer
evaluation phase. It begins with individual study outside the classroom, followed by a multiple-
choice test (RAT), first individually and then in teams who must agree on answers. The RAP
phase ends with immediate feedback (usually through scratch cards, which add a playful com-
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ponent to the learning), a possible team appeal and a class discussion with the instructors. This
is followed by the team application (APP), which is an open-book task where each team works
on the same exercise and has to give an answer at the same time. Finally, the teams discuss and
compare their solutions in plenary. This phase can be done with different discussion techniques,
such as the gallery walk, where each team presents its solution in a kind of poster session.

Technically, we designed RAT quizzes on the course Moodle page. Immediate feedback was
given at the end of the team quiz. In addition, we proposed a digital gallery walk using Padlet9,
an online bulletin board tool that allows team solutions to be shared with the whole class.

4.4 Learning Content & Material

The design focused on the goal of introducing students to the concept of concurrency through
a series of short practical tasks, each designed to address specific misconceptions about concur-
rency and basic programming concepts, allowing students to gradually build their understanding
while addressing specific misconceptions, including variable scope, function calls, parameter
passing, race conditions, correctness, and synchronization goals. Some tasks focused on pro-
gram comprehension, while others involved code writing. Program comprehension tasks [84], as
discussed in 2.4.4, are a cognitive approach to teaching programming, where the learner interacts
with an artifact representing the program, for example, a piece of code. Through this interaction,
the learner is stimulated to build and refine their viable mental model of the underlying NM.

In what follows, we outline the learning content we developed for the TBL units. Specifically,
we first present the preparation material in Section 4.5, then the RAT quizzes in Section 4.6 and
the team application tasks in Section 4.7.

4.5 Pre-Class Preparation

To ensure adequate preparation and familiarisation with the TBL methodology and the Sonic
Pi language, we introduced students to these topics one week prior to the in-class activity. We
assigned the following pre-class materials:

• Sonic Pi Tutorial10 (a fully integrated tutorial that provides a comprehensive introduction
to Sonic Pi, assuming no prior knowledge of coding or music).

• Multimedia footage of live coding performances, available on the Sonic Pi website.

9https://it.padlet.com
10https://sonic-pi.net/tutorial.html
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• Slides explaining the TBL methodology.

All preparatory materials were uploaded to the course Moodle page for easy student access. We
estimated that students would need about 2-3 hours of individual study to complete the prepara-
tion before the class sessions.

4.6 RAT Quiz

We designed an identical RAT quiz for both activities, consisting of five multiple-choice ques-
tions that assessed participants’ understanding of Sonic Pi language syntax and concurrency
concepts. Following the principles of TBL, the quiz was first completed individually and then
retaken in teams. The results of these individual and team RATs were collected for information
purposes only. As they served as a preparatory tool for the subsequent team application phase
and were completely independent of the research question, they were not statistically validated or
included in the data analysis. Nevertheless, the results suggest a general trend towards improved
performance in teams compared to individual attempts.

The five questions of the Rat quiz are discussed in the rest of the section.

4.6.1 Quiz 1: Hear thread creation

Consider the following program:

live_loop :foo do
play 60
sleep 1

end

When the program runs, you hear a basic
beep every beat. Change the note 60 to
65 in the editor without stopping the
program. What happens?

• It raises a RunTime error.

• It forks the main thread and creates
two new ones. One will play 60
and the other 65. This is live
coding.

• No effect on execution. This is live
coding.

• It changed automatically without
missing a beat. This is live coding.
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In Quiz 1, we highlight a distinguishing feature of Sonic Pi, i.e., the dynamic management of
code updates, a key point for live coding sessions. Among the multiple choices, only the last an-
swer is correct. Indeed hot code-swapping ensures that the behavior of the thread is automatically
updated. This feature is at the basis of live coding in Sonic Pi.

4.6.2 Quiz 2: Hear interleavings

Consider the following code:

live_loop :foo do
play 50
sleep 1

end

sample :drum_cymbal_open

What happens if you run it?

• All the code after the loop is not
executed.

• The loop and the sample are
executed simultaneously.

• The drum cymbal open sample is
played while the loop is “asleep”.

• The loop will repeat 50 times and
then play the sample.

In Quiz 2, the attention is focused on the difference between sequential and concurrent execution
flow. Here the second answer is the correct one. Indeed, the live loop construct starts
a concurrent thread which repeatedly plays note 50 while the main program continues to the
sample.
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4.6.3 Quiz 3: Hear the differences between threads and loops

Consider the following code:

live_loop :foo do
sample :ambi_choir
sleep 0.5

end

in_thread do
sample :ambi_drone

end

What happens if you run it?

• The sample in the live loop
command is played repeatedly,
while the sample in the
in_thread command is played
only once.

• It is not possible to execute both a
thread and a live loop concurrently
(runtime error).

• Both the live loop and the thread
sample are played infinitely.

• Only the live loop will be executed.

In Quiz 3, the attention is focused on the difference between threads and iterative task. The
live loop command starts a concurrent thread which repeatedly executes its body. The
in_thread command requires an explicit loop inside its body to repeat a command more
than once. Therefore, the first answer is the correct one.
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4.6.4 Quiz 4: Listen to data races

Consider the following code:

live_loop :setter do
set :foo, rrand(70, 130)
sleep 1

end

live_loop :getter do
puts get[:foo]
sleep 0.5

end

What are the Set and Get functions of the
Sonic Pi meant for?

• They allow threads to access a
shared resource in a thread-safe
way, but mutual exclusion is not
guaranteed.

• They allow threads to access a
shared resource in a thread-safe
way, with guaranteed mutual
exclusion.

• They are used to produce
non-deterministic program
behaviour.

• They are used to manipulate
objects whose scope is restricted to
a single thread or function.

In Quiz 4, we stress the importance of using thread-safe read/write operations in program with
multiple threads. The commands set and get have been introduced to atomically modify data
structures in Sonic pi. Therefore, the second answer is the correct one.
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4.6.5 Quiz 5: Avoid Drifting

Given the following code:

live_loop :foo do
use_synth :prophet
play 20
sleep 8
cue :f

end

sleep 0.3

live_loop :bar do
sync :f
sample :bd_haus
sleep 0.5

end

Are the two live loops synchronized?

• The two live loops are out of phase
due to the 0.3 sleep between the
two live loops.

• The two live loops are
synchronised because the i-th
iteration of the live loop :bar is
synchronised with the i-th iteration
of the loop :foo via sync, which
waits for the cue :f event.

• The code is incorrect and will not
be executed.

• The two live loops are not
synchronised because the get and
set methods are not used.

In Quiz 5, we stress the importance of time synchronization when reproducing audio signals via
multiple threads. Due to possible delays in the scheduling of different threads, multiple threads
executing different music samples repeatedly may get out of synch after few iterations, i.e. the
resulting program can be affected by the drifting problem. To avoid this problem, Sonic Pi
provides synchronization operations between thread groups. More specifically, the commands
cue and sync enforce a rendez-vous synchronization in between the :foo and :bar threads.
Therefore, the second answer is the correct one.

4.7 Team Application

In this Section we provide an overview of the team application tasks we developed for the TBL
units. Tasks 1, 2 and 3 were designed for the CA and CP units, while tasks 4, 5, 6 and 7 were
specifically designed for CP students.

CP stands for “Computer Architecture Course” and is an annual first-year course, while CP
stands for “Concurrent Programming and Distributed Algorithms” and is a third-year course
aimed at introducing multithreading/multicore, event-driven and distributed programming con-
cepts. For a more detailed explanation, please refer to Section 4.8.1.
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The team app tasks included a variety of question formats, including multiple-choice questions
and open-ended tasks that required students to implement Sonic Pi code. Each exercise targeted
specific misconceptions related to concurrent programming. We focused on a range of concurrent
concepts, such as data races and synchronization mechanisms, as well as fundamental program-
ming concepts like variable scope and function calls. The evaluation criteria are based on the

Table 4.1: Learning Objectives for Concurrency Management

Objective Level 1 Level 2 Level 3 Level 4
Recognizing a shared re-
source

Does not recognize the pres-
ence of shared resources in
the exercise

Recognizes the presence of
shared resources but does not
handle concurrent access cor-
rectly

Recognizes the presence of
shared resources and imple-
ments synchronization mech-
anisms to ensure concurrent
access

Recognizes the presence of
shared resources, effectively
implements synchronization
mechanisms, and optimizes
performance

Recognizing synchronization
goals

Does not recognize the need
for synchronization between
processes or threads

Recognizes the need for syn-
chronization but implements
inadequate or complex solu-
tions

Recognizes the need for syn-
chronization and implements
suitable and understandable
solutions

Recognizes the need for syn-
chronization, implements in-
novative and optimized solu-
tions

Recognizing the correct visi-
bility scope of variables

Does not understand the con-
cept of visibility scope of
variables in concurrent con-
text

Partially understands the con-
cept of visibility scope but
makes errors in managing
shared variables

Understands the concept of
visibility scope and prop-
erly manages shared variables
among threads

Fully understands the concept
of visibility scope and imple-
ments advanced solutions to
manage shared variables

Recognizing race condition Does not encounter race con-
ditions and fails to resolve
them

Identifies race conditions but
only partially resolves the
problem

Effectively manages race
conditions in most cases

Successfully avoids race con-
ditions and implements pre-
ventive solutions

Recognizing possible dead-
lock situations

Does not recognize deadlocks
and does not resolve them

Identifies deadlock situations,
but with some difficulty

Avoids deadlock situations
and manages them effectively
most of the time

Successfully avoids deadlock
situations and implements ef-
fective preventive solutions

rubric presented in Table 4.1. It is important to remark that, in presence of multiple execution
threads, the traditional concepts of variable scope become more complex. In addition to global
and block/function local scope, it is also necessary to consider thread local variables and the
interplay among all of them.

By embedding concurrent problems within these fundamental programming concepts, we aimed
at highlighting the challenges and complications that arise when students do not have a clear
understanding and a viable mental model of sequential execution and concurrency.
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4.7.1 Task 1: Data Races and Variable Scope, 10 minutes

Voting cards: Which answer is true?

• In B and C, different threads operate on a common resource and the result depends on
the order in which the different threads execute their instructions;

• In A and C, different threads operate on a common resource and the result depends on
the order in which the different threads execute their instructions;

• In all three programs, there are no resources shared between threads;

• In A and C, there are no resources shared between threads. The result depends on the
order in which the instructions of the different threads are executed.

Task 1 is based on of three Sonic Pi codes, namely A, B, and C, and on some ”voting cards”
questions. Each code comprises two threads that access a global variable x without any syn-
chronization mechanism. Students were required to select the correct answer from the following
options. In script A, variable x is thread local, whereas in script B and C x is global. Therefore,
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only A does not present data races as specified in the first answer. Furthermore, in B both threads
simultaneously update x starting from note 40. The data race can be heard as perturbations of
note 40. In C the second assignment eventually overwrites the first one and thus, after a sequence
of perturbations of note 40, the program first jumps to the higher note 60 and then the sequence
of perturbations continues from that note. The task specifically targets misconceptions related to
data races and the management of global shared resources in a concurrent programming model.

70



4.7.2 Task 2: Data Races and Function Calls, 10 minutes.

Voting cards: Which answer is true?

1. Mutual exclusion mechanisms are in place in all programs.

2. In a program there is only one possible race condition in read/write but not related to
multiple writes.

3. In programs where the “foo” function or procedure is present, these cannot be done
check race conditions.

4. None of the previous answers.

Task 2 consists of three Sonic Pi programs and some “voting cards” questions. Students were
required to identify potential data races. The task aimed at addressing both race conditions and
fundamental programming concepts such as variable scope, function calls, and parameter pass-
ing. To identify a data race, students needed to comprehend the scope of variables and function
calls within a concurrent scenario. In all three programs, there exists a shared resource referred
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to as x. The first program features two threads that access x without any form of mutual exclu-
sion or synchronization mechanism. The second program involves the definition of a function
with a single formal parameter. This function is called 10 times by the second thread, with the
variable x passed as an argument by value. Consequently, each function frame possesses its own
local variable named x. However, as the function is called, the variable x is accessed without any
synchronization mechanism in place, which can potentially lead to data races. In the third pro-
gram, a function without parameters is defined and subsequently called 10 times by the thread.
Each time the function is invoked, it accesses the global variable x without any synchronization
mechanism in place.
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4.7.3 Task 3: Sleep and Data race, 10 minutes

Task 3 presents a multiple-choice question that requires students to reason about pausing execu-
tion and data races. The table shows the Sonic Pi code for this task, the “voting cards questions”,
and the “gallery walk”. The code consists of two global variables: an array of notes and a counter
variable initialized to zero. There is also a function with a parameter x, which defines a thread to
play the x-th note from the array. A loop calls the function three times and increments the counter
variable by one. The array is global and shared between the threads. However each thread uses
the same array, i.e., potential race condition on a shared data structure, but with a different index,
i.e., different cells of the array. Therefore, without any sleep invocation to introduce delays in
thread execution, the audible output of the program is the E minor chord, i.e., the latter answer
is correct.
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4.7.4 Task 4: Thread-safeness, 10 minutes

Task 4 is an open-ended task requiring students to identify the synchronization goal and imple-
ment a thread-safe solution. The task involves a ring variable, which can be seen as a type of
linked list, shared by two threads in a non-thread-safe manner. One thread sorts the ring, then
sleeps for 1 second, and finally plays the notes from the ring. The other thread shuffles the ring
and then sleeps. Each thread repeats this process 10 times in a loop.

The current implementation suffers from a race condition, resulting in non-deterministic behav-
ior. Sometimes the thread plays the sorted ring, while other times it does not. The misconception
lies in the identification of the synchronization goals, specifically the shared resource accessed by
both threads. Students were tasked with identifying the synchronization goals and implementing
a thread-safe solution to address the race condition. Three possible solutions of task 4 are shown
in Figure 4.2.
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4.7.5 Task 5: Locking and Synchronization, 10 minutes

Task 5 consists in a multiple-choice question, requiring students to analyze the lock mechanism
and identify the presence of a deadlock. The task involves a shared resource, represented by
the variable :add, which is accessed by multiple threads in a safe manner using the set-get
operators of the Sonic Pi time state. The task is designed to address misconceptions regarding
synchronization mechanisms based on message passing, specifically the set-get and cue-sync
operations in Sonic Pi.

Despite the thread-safe use of the shared variable, a deadlock situation arises as both threads
synchronize using cue and sync on messages :add and :wait, but in a wrong order, i.e.,
both threads remain blocked on the corresponding sync invocation.
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4.7.6 Task 6: Thread-local scope, 20 minutes

Task 6 involves completing the Sonic Pi code using three threads and parameter passing functions
to generate an ordered sequence of audible notes. Understanding thread synchronization and
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scope rules for variables and synthesizers is crucial to solving the task. In particular, synthesizers
are global but thread-local, whereas variables can be shared between threads and be local within
a function. This task requires a higher level of understanding from students. Success in these
tasks requires mastery of skills and the ability to apply theoretical knowledge creatively.
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4.7.7 Task 7: Master/slaves Synchronization, 20 minutes

Task 7 simulates a memory barrier, where four threads, including three musicians and a con-
ductor, interact. The musicians synchronize to play a melody, while the conductor pauses the
other threads when a counter variable reaches a certain value. After a set time, the conductor
sends a message for the threads to resume playing. The task requires students to synchronize the
musicians and implement the behavior of the conductor thread, responsible for setting the tempo
for the other threads.
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a = ( r i n g 60 , 57 , 65)
i n t h r e a d do

1 0 . t i m e s do
b = g e t [ : a s a a h ]
c i a o = b . s o r t
p r i n t c i a o
s l e e p 1
p l a y c i a o

end
end

i n t h r e a d do
1 0 . t i m e s do

b = a . s h u f f l e
s e t : asaah , b
s l e e p 1

end
end

a = ( r i n g 60 , 57 , 65)
i n t h r e a d do

1 0 . t i m e s do
s e t : a , a . s o r t
p r i n t a
s l e e p 1
p l a y a

end
end

i n t h r e a d do
1 0 . t i m e s do

sync : a , a . s h u f f l e
s l e e p 1

end
end

a = ( r i n g 60 , 57 , 65)
s e t : foo , a
i n t h r e a d do

1 0 . t i m e s do
aux = g e t [ : foo ]
s e t : foo , aux . s o r t
p r i n t g e t [ : foo ]
s l e e p 1
p l a y g e t [ : foo ]

end
end

i n t h r e a d do
1 0 . t i m e s do

aux = g e t [ : foo ]
s e t : foo , aux . s h u f f l e
s l e e p 1

end
end

Figure 4.2: Task 4 Solutions

4.8 Experimental Evaluation

In this section we describe the two teaching experiments realized to evaluate the approach, first
presenting the setting and then the obtained results.

4.8.1 Experimental Set-Up

The first experiment involved third-year students enrolled in the CP course, while the second
experiment involved first-year students enrolled in the CA course on computer architectures.

The CP course is a third-year, second-semester course that focuses specifically on the design and
analysis of algorithms for concurrent and distributed systems. It has a unique position in our
B.Sc. program in CS as the only course dedicated entirely to concurrent programming. Students
enrolled in this course have advanced knowledge in several areas, including programming (non-
concurrent), databases, networks, and architectures. This foundational knowledge serves as a
basis for exploring the intricacies of concurrent programming and gaining a deeper understanding
of its principles and applications.
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The CA course is an annual first-year course that focuses on teaching students the fundamentals
of computer architecture design for modern microprocessors. Throughout the course, students
gain knowledge and skills in several areas, including assembler languages, number representation
and arithmetics, combinatorial and sequential circuits, and processor and memory hierarchies.
From the 2022/2023 academic year, students have been introduced to concurrency through our
experimental approach and then with a very brief introduction to multi-threading in C/C++ using
the pthread and std:thread libraries. It is important to note that students enrolled in the
CA course already have one semester of experience in imperative programming using C++.

The CP students are referred to as the P1 population, while the CA students are referred to as the
P2 population. Specifically, P1 consisted of 54 third-year students (divided into 10 teams), while
P2 consisted of 130 third-year students (divided into 34 teams).

Both experiments described in this chapter were conducted during the second semester of the
2022/2023 academic year. The first experiment took place at the beginning of the CP course,
where students were introduced to concurrency concepts. The second experiment was conducted
in April, just before students in the CA course were introduced to multi-threading in C. The tim-
ing of these experiments allowed students to gain a basic understanding of concurrency through
the Sonic Pi-based approach, before delving into multi-threading in other languages.

The activities did not contribute to the student’s final summative assessment. Instead, they had
formative value, serving as learning experiences and opportunities for students to develop their
understanding of concurrent programming concepts.

During the activities, we collected team APP tasks to analyze students’ understanding of con-
currency and any misconceptions that might arise, according to the rubric described in Table
4.1. We also collected data through an anonymous individual post-questionnaire on students’
appreciation/perception of the activity. Finally, we collected the results of a post-individual test
to investigate knowledge transfer. The test consisted of three exercises formulated either in pseu-
docode or in the C programming language. These exercises proposed a similar concurrency
scenario, but in other languages, and provided practical opportunities for students to apply their
understanding of concurrency in a different learning context.

Technically, the final questionnaire and the “knowledge transfer” test were developed using
Google Forms, which provides a user-friendly interface for data collection. The questionnaire
and the test can be found in the appendix A.2 and A.3. The TBL quizzes were developed using
the Moodle platform, which provides a comprehensive set of features for online learning and
assessment. In addition, we used platforms such as Wooclap11 and Padlet to collect the team task
solutions and responses. These platforms provided a collaborative environment where teams
could share and submit their solutions, encouraging student engagement and teamwork. Overall,
the combination of these tools facilitated efficient data collection and supported the interactive
and collaborative aspects of the learning activities.

11https://www.wooclap.com
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4.8.2 Experimental Results

The questions included in the RAT quiz have been carefully selected based on a refinement
process of similar past activities conducted with Sonic Pi. The test aims to assess the students’
understanding of some basic concepts related to concurrency and live coding, which are essential
for completing the Team APP tasks in the TBL module. Due to time constraints and the structure
of the TBL module, only 5 questions were chosen, each focusing on independent concepts. The
data collected from the quiz were not used to answer the research questions, but are reported for
completeness to present the full material of the TBL activity, as the quiz served as a preparation
tool for the subsequent Team APP phase. Notably, the repeated quiz within the team generally
yielded better results. However, it was not our intention to statistically validate this result using
psychometric or other techniques to assess validity and reliability, as these data were not used in
the research study. The results are reported in Appendix A.1 as additional material for complete-
ness only. In the following section we focus our attention on the results obtained for the Team
APP tasks.

4.8.2.1 Team APP Results

We conducted both item and code analyses of the team tasks to identify potential errors and mis-
conceptions. Specifically, for multiple-choice questions, we tried to identify patterns in incorrect
answers to determine which concepts were common misconceptions. For tasks that required
students to write code, we analyzed their solutions to identify specific errors. The results are
presented per task, each time distinguishing between the CA and CP scenarios.

Task 1 60% of the CA teams answered the first question correctly. However, 13% incorrectly
voted that the threads in the first and third programs use a shared resource, resulting in a nonde-
terministic program. In addition, 7% incorrectly voted that there are no shared resources in any
of the programs, making them deterministic. Finally, 20% voted that the first and third programs
had no shared resources and were therefore not deterministic. These responses highlight miscon-
ceptions around the concept of shared resources, especially in the first exercise where the mis-
conception is “reinforced” by a variable scope error (confusing local scope with global scope).
In the second exercise, it is clear that there is a lack of clarity among these teams on the definition
of a shared resource. There is also a misunderstanding about the meaning of a deterministic pro-
gram, since a program can be non-deterministic even without shared resources between threads.
Finally, the last answer reveals a misconception of both shared resources between threads and
variable scope, where local variables with the same name are mistakenly considered to be shared
between threads.

The CP scenario is significantly different, with 90% of the teams answering correctly. Only 10%
voted for the response that all three programs do not have shared resources.
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Task 2 In task 2, 48% of CA teams answered correctly. 19% voted that in the programs where
the function “foo” is defined, there cannot be any race conditions. This highlights a poor un-
derstanding of the program, as there are still data races present in the second program. There
is a misconception that, because it is pass-by-value, a race condition can never occur regardless
of the context. Additionally, 5% of the teams voted that all programs have a mutual exclusion
mechanism for accessing the shared resource. In this case, it is evident that there is a lack of
understanding of concurrent mental models, where it is not clear what a synchronization mecha-
nism is for protecting access to a resource. Finally, 29% voted that no answer was correct, failing
to recognize the presence of a data race in the second program as well.

In this case, the results for CP are different. The percentage of correct answers is lower, standing
at 30%. 70% of the teams voted that none of the answers were correct, thus failing to recognize
the existence of a data race in the second program.

Task 3 In task 3, 67% of the CA teams and 78% of the CP teams answered correctly, stating
that the output was the chord of A minor. However, 27% of the CA teams (and 22% of the CP
teams) failed to recognize the presence of a race condition, and during the plenary discussion,
the misconception emerged that a data race is necessary for a race condition to occur. Finally,
6% of the CA teams answered that the notes are always played in the same order, indicating that
their mental model associates an implicit sequential order to the creation and execution of the
three threads, thus not recognizing the race condition.

Task 4 Tasks from 4 onwards are exclusive to the CP experiment. Figure 4.2 displays three
solutions to task 4, which encompass all the other cases. All teams recognized the problem
(the thread orders the list but it is not always played in order) and applied a strategy to solve
it. However, in the solution on the left, the correct synchronization objective was not identified.
The solution was devised based on basic knowledge, which involved creating local copies of
the shared variable but failed to eliminate the underlying race condition. In the center solution,
there is a partially correct approach, but it exhibits misconceptions regarding synchronization
mechanisms, as both a lock and a wait signal are utilized, albeit the wait signal is used incorrectly.
Finally, the right solution demonstrates a correct approach (apart from some syntax errors) where
locking mechanisms are applied to the shared resource.

Task 5 In Task 5, 50% of the teams identified the deadlock situation. 10% described it as star-
vation, while 30% believed that one of the two threads would eventually get all the resources.
Finally, 10% answered that it was something else. In this case, the students displayed an inac-
curate mental model of program execution, failing to recognize that the two threads were stuck
waiting for resources held by each other, preventing any progress in the program.
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Task 6 & 7 All teams successfully completed Task 6 with the correct solution. During the
activity, there were some challenges related to the specific scope rules of Sonic Pi. However,
once the dual scope of synthesizers and variables was clarified by us, no further issues arose. The
teams effectively utilized the knowledge acquired from previous tasks. Task 7, on the other hand,
proved to be more challenging as it was a less guided exercise compared to the previous ones.
It required a deep understanding of thread synchronization mechanisms and the management
of a shared resource. Not all teams submitted a solution as they were unable to translate the
problem into a practical solution. Others partially implemented a solution where the conductor
coordinates the various threads but fails to pause/resume execution in a “memory barrier” style.
Only one group managed to successfully implement the required solution. Some of the team
results can be found in the appendix A.4.

4.8.2.2 Final Questionnaire

CA A total of 23 people responded to the final CA questionnaire. None had any previous
experience of concurrent programming and Sonic Pi or Ruby. For the question “I think the
musical approach with Sonic Pi is useful for understanding concurrency” [A] the median12 is
4. For the question “I think the activity was effective in introducing and/or deepening some
concepts of concurrent programming” [B] the median is 3. In particular, the students who gave a
negative or neutral answer to question A were the same students who gave a neutral or negative
answer to question B. Figure 4.3 shows the distribution of responses on a Likert scale from 1 to
5.

Participants commented that the activity was useful for understanding the importance and bene-
fits of concurrent programming, learning a new programming language, understanding the con-
cept of threads and synchronization, and improving their knowledge of concurrent programming.

74% of participants found the activity to be at an appropriate level of challenge, 22% found it
difficult and the remaining 4% found it easy. Regarding the time allotted for the activity, 65% of
participants felt it was sufficient, while 35% expressed the wish for more time to complete the
tasks. In terms of individual preparation, 6 people consider that they have prepared adequately
for the activity, 14 do not know, and 3 insufficiently. Finally, 22% of students found the teamwork
experience very useful, 30% useful, 26% neutral, 13% not very much, and 9% not at all.

CP The final CP questionnaire was completed by 16 students. Of these, 44% had previous work
experience in concurrent programming and 30% had used Sonic Pi in the ICDD course. For the
question “I think the musical approach with Sonic Pi is useful for understanding concurrency”
[A] the median is 4. For the question “I think the activity was effective in introducing and/or

12The median is used in the analysis of Likert scale data because of the ordinal nature of the scale. Ordinal data
implies that the response options have a rank or order, but the distance between each option is not necessarily equal.
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Figure 4.3: CA final questionnaire

deepening some concepts of concurrent programming” [B] the median is 4. In particular, students
who gave a negative or neutral response to one question were the same as those who gave a
neutral or negative response to the other question. Figure 4.4 shows the distribution of responses
on a Likert scale from 1 to 5. In addition, several students commented that the approach provided
a useful introduction to concurrency and offered a clear practical example. In addition, 80% of
the students reported that they found the level of difficulty of the activity to be fair, while 18%
found it to be difficult. Regarding the time allocated, 70% of the students felt that it was fair,
while the remaining students expressed a preference for more time to complete the tasks. In
terms of individual preparation, 44% people consider that they have prepared adequately for the
activity, 31% do not know, and 25% insufficiently. Finally, 25% of students found the teamwork
experience very useful, and 75% useful.

4.8.2.3 Assessing Knowledge Transfer

CA Only 6 students answered the first exercise correctly. In particular, most of the incorrect
answers revealed a mental model still based on sequential execution, where note 60 would be
played only after the other thread had played notes 45 and 50, thus describing deterministic be-
havior. One student confused the behavior of the cue with that of synth, while two students
confused in\_thread with live\_loops, stating that the sound would be repeated an infi-
nite number of times. Finally, one student replied that only notes 45 and 60 would be played.

In the second exercise, in pseudo-code, all but one of the CA students correctly identified the
possible scenarios. Only one student said that the program always generates an error.
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Figure 4.4: CP final questionnaire

In the third exercise, using C with the pthread library, 80% of the CA students answered that
the program was not deterministic. However, only 15% of them correctly identified the possible
outputs of the program. The remaining students recognised the correct outputs but also added
the combination 0 0 or 0 1 10, which are impossible as they can never occur. These answers once
again highlight the problem of misconceptions about basic concepts, particularly references and
pointers.

CP In the CP experiment, 7 out of 16 students solved the first exercise correctly, while the
others either did not answer or considered a sequential model. The second exercise was solved
correctly by all students. Finally, 80% answered the third exercise correctly (non-deterministic
and correct output), while the remaining students judged the behavior of the program to be non-
deterministic.

4.9 Discussion

TBL Methodology An innovative aspect of our approach is the adoption of a TBL pedagogy.
This method combines elements typical of flipped-class with individual and team activities in
a series of focused tasks that perfectly fit our goal, i.e., exploring concurrency misconceptions
and common mistakes. The strict integration of the activity with the considered courses, e.g.,
knowledge transfer in order to formulate problems seen in Sonic Pi in the languages adopted
in the courses, feedback on the proposed quiz and task to the student involved in the course,
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combined with a generally positive evaluation of the activity represents a first step towards the
stable application in a future edition of our bachelor degree.

TBL results and post-questionnaires allowed us to perform quantitative and qualitative analysis
of the outcome of our experiments. It is also important to remark that the population considered
in our experiments consisted of 184 university students. Furthermore, the proposed method is the
result of a refinement along three different academic years involving around 400 students in total.
The high number of students, involved voluntarily, seems to indicate the widespread perception
of the usefulness of innovative approaches to programming education.

Sonic Pi for Introducing Concurrency In our opinion, there are several reasons for adopting
Sonic Pi as an introductory language for concurrency. First of all, music provides a stimulating
and creative domain in which to start “thinking concurrently”. Furthermore, Sonic Pi is based on
Ruby with advanced programming aspects such as thread-local variables and hot-swapping code,
thus representing a stimulating language for university students. The sound manipulation library
is interesting by itself since it provides operations to create new sounds, to modify, combine,
and reproduce music samples. As in nested variable scopes, filter declarations can be nested to
create a sort of effect scope that can be confined within a single thread. Concerning program-
ming constructs, another distinguishing feature is that Sonic Pi provides constructs at different
abstraction levels for creating asynchronous threads: the in_thread command is closer to the
C pthread_create invocation but with a much simpler syntax; the live_loop embeds a
built-in infinite loop and, thus, it resembles the typical demon pattern used in the most common
system programs. Hot-swapping code makes the editor a very effective tool for experimenting
with all features of the Sonic Pi programming language and, in particular, with those related to
concurrency and synchronization.

In our concurrency misconception exploration, the possibility of using sound and music creation
not only as the target of a given exercise but also as a concrete means to hear anomalies (e.g., data
races, missing synchronization, out-of-order executions) turned out to be a key ingredient of our
experiments. For instance, we exploited this feature in different tasks included in the Team App,
e.g., to hear the difference between a correct program (which expected result is to reproduce a
chord) and an incorrect one (which result is a random sequence of the notes in the chord).

The fact that Sonic Pi is a domain-specific language can be seen as a possible disadvantage in
using it to introduce concurrency in the first year of undergraduate courses. Introductory courses
are typically based on widespread languages such as C and C++ and are mainly focused on
programming methodologies and data structures. To overcome this problem, in our experiments,
Sonic Pi has been introduced in the context of a mini-course together with the TBL method.
Together they were also meant as innovative methods to stimulate the students’ attention and
learning process.

In conclusion, the simplified concurrency abstractions of Sonic Pi combined with a modern pro-
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gramming style and a domain-specific flavor is a perfect fit for first-year university students.

Data Analysis The results obtained from the tasks highlight the presence of misconceptions
among the participants, both about concurrency and about fundamental programming concepts
within a concurrent scenario. For example, participants showed a lack of clarity in distinguish-
ing between local and global scope and in understanding how shared resources affect program
behavior, and some others mistakenly believed that certain programming mechanisms, such as
pass-by-value, could eliminate the possibility of race conditions.

The results seem to highlight the importance of addressing misconceptions with targeted, guided
interventions aimed at making concepts and scenarios about concurrent programming explicit.
Furthermore, the plenary discussion generated during the activity could help participants to con-
solidate their understanding and develop a viable mental model. A notable finding is that ad-
dressing misconceptions is also useful for third-year students, where one might expect them to
have acquired advanced programming skills.

In terms of knowledge transfer, it appears that students found it easier to align their existing
mental model of programs in Sonic Pi with the pseudo-code representation. On the other hand,
the exercises using C syntax required more effort in terms of adapting a mental model from one
programming language to another with a different NM.

Generalizability of Results First, the tasks may not cover all aspects of concurrent program-
ming, and the results may not fully capture students’ overall understanding of concurrency. Our
tasks were designed with only a few misconceptions in mind. As a result, the assessment of
students’ understanding is based on their responses to specific tasks and may not reflect their
overall understanding of concurrent programming concepts. In addition, the sample size in both
experiments may not be representative of the entire student population, which may limit the
generalisability of the results, especially for the knowledge transfer part. In fact, only a small
fraction of the students responded to the final questionnaire, which limits the significance of the
results. Therefore, the generalisability of the knowledge transfer results should be interpreted
with caution and further research is needed.

4.10 Conclusions

In this chapter, we presented an introductory approach to concurrency aimed at exploring un-
dergraduate students’ misconceptions using the Sonic Pi language so as to exploit the natural
connection between multi-threading and live music coding. In our view, this chapter serves as a
pilot study and provides preliminary evidence for the CS education community.
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More specifically, we have discussed the methodology adopted in our experiments and the popu-
lation settings, the material developed for the RAT quiz and Team APP activities, and commented
on the data collected before, during, and after the activities. The experiment comprises an addi-
tional transfer learning experiment designed via a series of exercises proposed both in Sonic Pi
and more traditional multi-threaded programming languages such as C and C++.

Promising initial results from questionnaires and tasks provide strong motivation for us to delve
deeper into live music coding and targeted exercises, particularly those related to program com-
prehension. Our results are consistent with the existing literature on misconceptions, suggesting
that students may face challenges not only in grasping concepts related to concurrency but also
in understanding fundamental principles underlying the computational model. These consider-
ations also apply to third-year students, leading us to reflect on the pedagogy of programming
education in our undergraduate program.

In particular, the results of the Team APPs and the plenary discussion seem to suggest that a focus
on mental models is beneficial in improving concurrency education, both to teach viable mental
models and to present specific cases where common non-viable mental models are inappropriate
and lead to misconceptions.

The results of the knowledge transfer test are quite encouraging, at least for the pseudo-code
scenario, but future research is needed.

Based on the first year’s results, we believe that the proposed approach could also be valuable in
secondary education, especially in high schools with a focus on STEM education or in vocational
schools specializing in technology-related fields.

Our study also has some limitations, such as musical background. The use of Sonic Pi may be
a potential barrier for students with no prior musical experience or limited musical interest. It
may require an initial investment in learning basic musical concepts before fully grasping the
concurrency concepts introduced. This could potentially hinder their interest and understanding
of the concurrency concepts. Future research is needed to understand this.

Finally, future experiments will provide fertile ground to further investigate the effectiveness of
our approach and to analyze and address other misconceptions that are not included in the current
research.

Data availability

The data that support the findings of this study are openly available on Github
https://github.com/researchDataset/SonicPi_dataset/tree/main.
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Chapter 5

Collaborative Learning in an Introductory
Database Course1

The learning outcomes of introductory database courses are quite broad, encompassing very di-
verse abilities and skills. For increasing the effectiveness of learning w.r.t. the different skills
and ensuring continuous engagement of students, we experimented cooperative methodologies
throughout the course. Specifically, Think-Pair-Share (with adapted and tailored cycle times) was
applied for both application exercises and hands-on laboratory activities, whereas we adopted
team peer-reviews for the more complex final design activities. The chapter describes and eval-
uates the intervention, in terms of student engagement, appreciation, and learning outcomes.

5.1 Introduction

Database education plays a significant role in the teaching of CS. Specifically, in our university,
the “Introduction to Databases” is a second year course, with around 200 students enrolled in
two different degrees, namely the CS and the Statistics Bachelors.2 The learning outcomes of
the course, as those of typical introductory database courses, are quite broad, encompassing very
diverse abilities and skills. The aim is for students to acquire both data modelling (M) skills,
mainly related to domain understanding and abstraction capabilities, and querying (Q) capabili-
ties, mainly related to precise logical specification of information needs and programming.

The students are thus expected to learn how to (M1) design a database, from a requirements spec-

1This chapter is based on the material published in [34].
2The course is offered for 12 ECTS to CS students, including also (basic) administration topics, and for 8 ECTS

to Statistics, only including database design and querying skills. In the chapter, we focus on the 8 ECTS subset of
the course, which is taken by all the students.
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ification document to SQL DDL statements, establishing data integrity constraints; (M2) check
the quality of the proposed schemas and possibly improve them by eliminating redundancies and
anomalies; (Q1) express queries in relational languages; (Q2) express queries and manipulation
operations in the SQL language.

In the last decades, active methodologies and learner-centered approaches has proven effective
in the teaching/learning process of CS. One of the most common approaches to database edu-
cation is project-based learning [41, 56]. It was hybridized with collaborative techniques from
[162], resulting in a customized approach relying on case studies and teamwork with student
roles. Many other approaches rely on gamification, i.e., the use of gamified elements, such as
challenges, achievements, points, and story mode, into learning environments. Gamification had
been applied for database design in [42] and MonstER Park [158], aimed at learning graphical
conceptual modelling (ER diagrams). Game-based approaches to learn SQL include SQL Island
[157], an online game for the creation of SQL queries, QueryCompetition [187], a competitive
gamified web environment, and SQL Scrolls [141], a game framework with Parson’s puzzles.

Collaborative techniques mainly rely on comparison of views and discussion to maximize par-
ticipation, focus attention, and engage students. Specifically, Think-Pair-Share (TPS) [14] is a
collaborative learning strategy where students work together to solve a problem. This strategy
requires students to (i) Think individually about the solution to the problem; (ii) Pair and discuss
the devised (partial) solution; (iii) Share ideas with classmates. It has been successfully applied
to introductory CS topics, mostly related to programming [91], and in database application exer-
cises [111] but its potential in laboratory and in a more comprehensive design task has not been
exploited, nor its effectiveness for modelling skills investigated.

Peer review [128] is a reciprocal process whereby students produce feedback reviews on the
work of peers and receive feedback reviews from peers on their own work. Learning benefits are
derived both from receiving feedback reviews and from the learning mechanisms activated by
producing feedback reviews. Peer review has been used in the form of code review for project
work in CS1 courses [80] and also in introductory database courses [78]. When using peer review
in early bachelor years, one of the problems is that students struggle to provide meaningful peer
feedback, resulting in missing reviews (i.e. students not submitting the review on time) and poor
quality feedback. This issue was confronted in the collaborative team peer review [110], in which
reviews were carried out by teams. It was found that teams produced higher quality feedback and
found the activity more engaging and enjoyable than individual reviews.

The purpose of this study is to investigate collaborative learning techniques (namely, TPS3 and
team peer reviews) for different learning goals in the introductory database course. By applying
the TPS cooperative methodology (with adapted and tailored cycle times) we aim at extending
the benefit of the methodology to diverse learning goals, working with the same methodology

3The methodology we actually employ is referred to as Think/Write-Pair-Share since the solutions are shared in
the teams and across teams as written artifacts. Moreover, in our case, we opted for 4 person teams rather than pairs.
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for both application exercises and hands-on laboratory activities. For more complex final design
activities, the collaborative approach extends to team peer-reviews, where each team collabora-
tively reviews the design outcome of other teams.

This chapter thus specifically addresses the following research question: is collaborative learn-
ing effective, in terms of learning outcomes, for the different skills to be acquired in an introduc-
tory database course? The degree of achievement of a learning goal will be measured in terms
of the partial evaluations on different written exam artefacts. We thus compare the partial evalu-
ations obtained in individual partial assessment for specific skills to be achieved by the students
and consider the variance among partial evaluations. Students engagement and appreciation are
measured as well, in terms of the number of students leaving the teams/the activities and of
answers given in final course feedback questionnaires.

The collaborative activities were designed in the context of a teaching innovation project, with
the support of an instructional designer, and were planned for a traditional, on-site, edition of the
course. A first edition of the intervention took place in academic year 2019/20, and was repeated
in exactly the same way in academic year 2020/21. Both the editions were taught entirely online.
In this chapter, we evaluate the second edition of the intervention (2020/21), characterized by
on-site standard exam modalities4. A preliminary report on the first edition is available in [33]
with no specific reference to the research question we address here.

The remainder of the chapter is organized as follows. Section 5.2 provides an overview of the
participants and a detailed description of the activities and then discusses data collection and data
analysis. Section 5.3 reports the achieved results. The results are discussed in Section 5.4 while
some conclusions are presented in Section 5.5.

5.2 Methods

5.2.1 Population

The second-year database course was attended in academic year 2020/21 by 180 undergraduate
students enrolled in the Bachelor in CS (around 80%) and in Statistics (around 20%) at the
University of Genoa, Italy. The class was heterogeneous as students previously attended different
math and programming courses. Prerequisite knowledge consisted of basic programming skills,
set theory, and propositional logic. There was a gender gap, with around 20% females (and
a much higher rate in Statistics than in CS). Participation in the collaborative activities was
optional, and of the 180 students in the enrolled cohort, the set C of students participating in the
collaborative activities included 70 students (39%) while the set S of the not participating ones

4The evaluation modalities for the 2019/20 academic year were exceptional (oral exam only) and no assessment
of individual artifacts is available.
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included 110 students (61%) (3 of which initially opted for participation but withdrew or were
excluded due to inactivity later in the semester). All the collaborative activities had formative
assessment only. The exam modalities (that will be detailed in Section 5.2.3) were identical for
C and S students, the only exception being that C students delivered the project as a team, while
the project is individual for S students.

Our study sample was a subset of the total cohort. Specifically, we only analyzed the set P of
students who passed the exam for the course. The latter consists in 95 students (72 CS students
and 23 Statistics students, 20 females), out of which 50 (denoted as PC) participated in the
collaborative activities and 45 (denoted as PS) did not.

At the beginning of the semester (second week of classes) we formed the teams by maximiz-
ing intra-group heterogeneity (since diversity fosters discussion) and inter-group homogeneity
(so that teams are comparable and balanced). To generate the groups we rely on the GRumbler
algorithm5, supported by an ad-hoc app. The GRumbler is designed to maximize the mixing
across the class and provide the greatest possible degree of diversity within each group. Hetero-
geneity criteria include gender, degree program, indicators of academic performance (number of
credits acquired and average grade), previous knowledge of databases (professional or from high
school), and personality traits (e.g., being introvert rather than extrovert). This information was
collected during the first week through an online questionnaire. We started with 19 teams, all but
2 of 4 students (2 teams only included 3 students). The groups were stable for all the activities
of the semester.

5.2.2 Setting/Approach

The intervention consists in: (i) TPS (with weekly cycles) for laboratory exercises (SQL); (ii)
TPS (with short cycles) for application exercises on data modelling; and (iii) collaborative team
peer review of the conceptual design for the final project. Collaborative team peer review means
that both the reviewed artifact is designed by teams and the review activity is performed collab-
oratively (first individually drafting the reviews and then refining and consolidating them after
group discussion). Moreover, for monitoring the behavior of the teams, we propose (iv) two
peer evaluation activities (one intermediate and one final). All the activities provided a formative
assessment only and do not contribute to the final grade.

As discussed in Section 5.1, our results refer to the second edition of the intervention, in academic
year 2020/21 (March-May 2021). Lessons and collaborative activities were held online, relying
on the Microsoft Teams video conference platform, Moodle as e-learning platform, Wooclap as
a polling system, and GitHub classroom for SQL assignments. As this was the second year of
online teaching, students (and teachers) were already familiar with the systems and platforms.
Written exams were in presence.

5GRumbler: https://scholar.harvard.edu/msparrow/grumbler
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Lab Topics

1 DDL: creating tables and key/foreing key constraints
2 QL: select project join queries
3 QL: outer join and group by
4 QL: subqueries
5 QL: updates and constraints
6 QL: views

Table 5.1: Weekly cycle for lab exercises - Topics

Figure 5.1: Weekly Cycle - Gantt Chart

In what follows, we provide some additional details on the various collaborative activities pro-
posed to C students. The students that decided not to participate in such activities (i.e., S stu-
dents) were free not to attend classes devoted to collaborative activities (roughly amounting to
40% of the classes6) or to attend as spectators. They got access to all the materials, namely as-
signments, query expected results, and a summary of the discussion/draft solution for database
design tasks, but were not involved in teams and had no assignments during the semester.

Weekly cycle TPS for laboratory exercises (SQL) Groups are invited to work for a week, in-
cluding a 2 hours lab session, on a task (typically, formulating some queries on a given database).

The objective of the activities is to learn the SQL query language. The reference system is
PostgreSQL. The organization of the activities (summarized by the Gantt chart in Figure 5.1,
corresponding to two weekly cycles) was the following:

• Think [Days 1 & 2]: assignment of the task to the students via Moodle, and small con-
frontation with respect to their doubts. Students are asked to start working individually on
the assignment, or at least to get acquainted with it.

• Pair [Days 3–5]: work in the small group. This starts in the 2 hours lab session and
is carried out within the Microsoft Teams channels. The instructors and the tutors play

6The remaining 60% was equally split among (pre-)recorded asynchronous frontal lectures and synchronous
discussion sessions, mainly relying on Wooclap pollings.
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Ex Session Task Description

ER Conceptual 1.1 core entity identification
Modelling 1.2 attribute vs relationship

Case 1 1.3 identifiers
(cinema hall 1.4 relationship vs (weak) entity

programming) 1.5 hierarchies

ER Conceptual 2.1 core entity identification
Modelling 2.2 identifiers

Case 2 2.3 hierarchies
(training company) 2.4 relationship vs (weak) entity

Table 5.2: Short cycle for design exercises - Tasks

the role of learning facilitators by managing the activity by intervening in the channels if
requested by the learners and by joining the discussions on the channels at least twice in
each session to monitor the progress. (One instructor and two tutors for 19 teams mean 6/7
teams per supervisor.) The step ends with the submission on Moodle of the team artifact
(SQL commented file).

• Share [Day 6]: in synchronous hours, in the general Team channel, by discussing the
main issues emerged by the teams’ artifacts and problems encountered. Discussions are
facilitated by Wooclap pollings.

The Share activity of week i overlapped with the start of the cycle for week i + 1. This general
structure was applied for 6 weeks.

Table 5.1 reports the details of the specific notions on which each individual weekly task refers to.
Note that, for assignments involving query specification (i.e., labs 2–6 in Table 5.1), the result
returned by each query on the reference database is provided to the students for checking the
correctness of the specified query by result comparison7. The availability of such results, together
with discussions within the team and with the tutor were quite effective in avoiding, in the queries
submitted at the end of the Pair phase, the syntax issues, incorrect or missing tables and columns,
and query returning incorrect results discussed among the misconceptions identified in [114].
During the sharing phase, the work submitted by the teams (and the main issues emerged during
the discussion) are exposed, thus the instructors can monitor the results / improvements obtained
by the students. Individual feedback are provided to each team asynchronously.

5.2.2.0.1 Short cycle TPS for data modelling application exercises Teams are invited to
carry out all three phases of the think-pair-share technique within the single two-hour exercise

7This will be referred to as ”query results” in the feedbacks in Table 5.5.
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session. The goal of these activities is to deepen aspects concerning the practical application of
database design. Specifically, after an introductory section on relational data model understand-
ing, the first two sessions were devoted to conceptual design while the third one was devoted to
logical design. The activities are organized according to the following schema:

• Think: sharing of the task with the students, short confrontation with respect to doubts by
the students, individual work by the student resulting in a written artifact (a small Entity
Relationship diagram for the conceptual design) shared with the team (typically posting it
on the chat of the Microsoft Teams channel of the team). 10 minutes are dedicated to this
phase.

• Pair: sharing in the small group takes 12 minutes and is carried out in a meeting on the
Teams channels, the instructor and the tutors manage the activity by intervening in the
channels if requested by the learners. The team artifact is shared with the instructor.

• Share: the sharing phase takes place in 12 minutes, within the general meeting of the
Teams channel. A team is chosen to present their solution, another team is chosen as an
opponent and, using the Wooclap tool, learners in each team are asked to share the result.

This general structure allows us to complete an exercise divided into 4-5 sub-tasks within a
session. Table 5.2 reports the details of the specific notions on which each individual sub-task
refers for the ER Conceptual Modelling sessions. During these activities, the role of the instructor
and of the tutors is of facilitators. After having explained the practical organization of the activity
(phases, roles, timing, tools, and deliverables) and the assigned tasks, during the synchronous
lab activity they monitor the interaction within teams and join the team meeting (or interact with
them through the chat) if the team asks for help or clarification. During the sharing phase, the
work submitted by the teams (and the main issues emerged during the discussion) are exposed,
thus the instructor gets insight about the results achieved by the students.

Collaborative Team Peer Review of the conceptual design In this activity, the teams are
assigned a case study (specifically, the database supporting an online game platform8) and submit
a conceptual design for it (i.e., Entity Relationship diagram with data dictionary and constraints).
This artifact is submitted via a Moodle Workshop activity and collaboratively peer-reviewed by 3
other teams. The criteria for peer review (presented in Table 5.3) are illustrated to the students and
they can do some practice on an example submission (another schema with an example evaluation
by the instructor). For each criterion, teams are required to provide a numerical evaluation and
to comment / highlight any devised problems in the pdf.

8The case study assigned in the 2019/20 edition of the course was the database supporting a solidarity time bank.
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Criterion Question

Syntactic correctness is the schema syntactically correct?

Syntactic completeness does the schema include cardinality constraints, identifiers,
types of hierarchies?

Semantic correctness:
entities and relation-
ships

does the schema correctly identify the main entities and rela-
tionships?

Semantic correctness:
cardinality and identi-
fiers

are the specified cardinalities and identifiers correct?

Completeness does the schema omit any relevant information?

Additional constraints
(correctness & com-
pleteness)

does the project identify and formulate in a (clear and) correct
way all the constraints that cannot be expressed in the diagram?

Readability is the scheme readable and well documented?

Table 5.3: Criteria for conceptual model peer review

The time frame for review is one week. Again, a sort of Think-Pair is adopted for collaborative
reviews, since each student is assigned a schema for reviewing (and she is in charge of inserting
the final review in Moodle) but the review needs to be discussed and finalized within the team.
The most valuable part of the review is not the numerical scores, but the comments, as each team
is asked to resubmit the revised design (along with a rebuttal to the reviewers). In this way, a
better conceptual design will result in a better final project. The final project submission will
also include the logical design and SQL part of the online game support platform. The role of the
teacher in this activity is to devise and explain the review criteria, to emphasise that alternative
modelling of the domain is perfectly possible, so that the review should not be biased by the
previous (possibly different) modelling already done by the team, and to provide the example
review.

5.2.3 Data Collection

During the activities we collected data on student engagement (participation in activities, submis-
sions, attendance, etc.) collected by Moodle and Teams, which led to the exclusion of 3 students
out of the original 73 from the collaborative activities (as mentioned in section 5.2.1). At the
end of the course, we collected data on student appreciation in the form of a final feedback on
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Group N Mean SD t

Experimental Group (PC) 50 0.90 0.84 t = −2.1907

Control Group (PS) 45 1.36 1.16

p < 0.05

Table 5.4: The t-test result of the students’ deviations between exam results for the two groups.

the course (anonymous), including specific questions about the collaborative activities (appreci-
ation/criticism for different activities). This is collected through a Moodle feedback form.

During the exam sessions (for the whole academic year, 5 exam dates) we collected data on exam
results, in particular in addition to the number of students who completed the exam (already
mentioned in section 5.2.1), we collected the individual grades assigned to each exercise in the
written exam. The written exam consisted of a closed part and a part with exercises on:

M1 reverse engineering (from a relational schema to the corresponding ER diagram)

M2 database normalization (specify functional dependencies and recognize normalization issues
in a schema)

Q1 relation algebra queries specification

Q2 SQL queries specification

Each part is assigned a score of 0-5. The passing threshold is 50% on both parts (modelling and
querying). The final grade of the student is then obtained as a weighted average with the projects
grade. In our analysis, we consider the variance among the individual grades for exercises M1,
M2, Q1, and Q2.

5.3 Results

Homogeneity in partial assessments (main hypothesis) We performed a statistical analysis
based on some statistical test in order to analyze and compare the variance of individual exercise
grades in the two groups: students who passed the exam and joined the collaborative activities
(PC, cfr. Section 5.2.1) and students who passed the exam and did not participate (PS, cfr.
Section 5.2.1). The aim of the analysis is to assess whether there is a significant difference be-
tween the variances in individual exam results (grades) on the four exercises for the PC and
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Activity Usefulness of Answer (Median)

query results 4
TPS long interaction inside the team 4

interaction with the tutor 3
feedbacks on delivered solutions 3

Think 3
TPS short Pair 3

Share 3

Team interaction inside the team1 4
Peer reviewing activity 3
Review obtained reviews 3

Table 5.5: Usefulness of the collaborative activities, answer on Likert scale from 1, definitely
useless, to 4, definetely useful, (1 in both modeling and reviewing).

PS groups of students. To calculate the variance of each student’s exam results on the different
parts, we used its unbiased estimator (dividing by n− 1). As a summary index of the two groups
we have chosen the sample mean of the gained variances. To check whether the deviations be-
tween exam results on the different exercises in the two student groups are significantly different
we performed the unpaired two-sample t-test. All analyses were performed using the statistical
software R9.

To perform the unpaired two-sample t-test, we first verified the conditions for validity of the test.
In particular, we assumed the two sample groups to be normally distributed according to the
central limit theorem (each sample size is greater than 40).

By F-test we rejected the hypothesis for the two sample group variances to be equal (p−value =
0.02761) and consequently we set "false" in the var.equal argument in the t.test func-
tion of R. Finally, we set the alternative hypothesis to "less".

The t-test performed on the deviations between exam results showed significant difference be-
tween the average variances of the two groups, with t = −2.1907 and p < 0.05; that is, the
average variance of the students who participated in collaborative activities is significantly dif-
ferent than that of the other student group. In particular, the average variance of the students who
participated in collaborative activities is significantly less than that of the other student group.
Table 5.4 shows the t-test result.

9https://www.r-project.org
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Engagement and appreciation. Our experience confirmed the usefulness of team peer reviews
in mitigating the impact of missing reviews and increasing the quality of feedback [110]. Both
are relevant issues when applying peer-review in early bachelor years, but we experienced no
issues of late or missing reviews in this activity and we observed an overall good quality of
feedback.

For what concerns student appreciation, we summarize in Table 5.5 the median answers on a
Likert scale from 1 to 4, where 1 is ”not at all” and 4 is ”very high” to questions from the fi-
nal anonymous feedback provided by students in C for specific activities described above. The
overall perception of usefulness for the three activities is high (greater than 3). For collaborative
peer reviews, the percentages of ”useful” and ”definitely useful” answers were 50% and 44% for
the reviewing activity, while they both were 39% for the obtained reviews. In the final feedback
questionnaire we also asked whether the student would have reconfirmed the choice to partici-
pate/non participate in the collaborative activities. The choice would have been reconfirmed by
95% of the participating students, and by 70% of the non participating ones.

5.4 Discussion

5.4.1 Performance and Engagement

Achievement of learning outcomes. Our main hypothesis is the effectiveness of collaborative
methodologies for the different learning outcomes of the course, for assessing which we compare
the partial evaluations obtained in individual partial assessment for specific skills to be achieved
by the students and consider the variance among partial evaluations. The results shown in Section
5.3 confirmed that the average variance of the students who participated in collaborative activities
is significantly less than that of the other student group, thus the partial results are significantly
more homogeneous. Thus, collaborative learning seemed to be effective, in our study, in terms
of learning outcomes, for the different skills to be acquired in an introductory database course.
The discussions activated within the team and the continuous involvement in assignments etc.
likely ensured a more balanced learning effort on the different topics, while students preparing
the exam independently might devote more effort on a subject and less on another.

We also observed that the passing rate is much higher in C (71%) than in S (41%). This is likely
due to the fact that students joining the collaborative modality are those that are in the most
favourable conditions (non working students, no lacking prerequisites, etc.).

Student appreciation From the results of the final course feedback questionnaires the following
findings emerged:

• The level of satisfaction with the collaborative activities is high, as the “regret rate” with
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respect to the initial choice is much higher for students who do not participate in them, and
all activities were perceived as useful (median of 3 or more),

• the longer the time for discussion and confrontation among the team, the higher the per-
ception of usefulness (the lowest median values are those for TPS short),

• in all the collaborative activities, the discussion inside the team is considered as the most
useful source of learning (together with the availability of query results for lab assignment,
that enabled a first level of correctness check), with higher usefulness than support and
feedback from tutors and plenary discussions with the instructor,

• in collaborative peer review, though collaborative reviewing ensured quite high quality
reviews, providing review was deemed more effective than receiving them.

5.4.2 Threats to Validity

Internal validity Since the participation was on a voluntary basis, there is a potential bias in
students choosing the collaborative modality (i.e., C rather then S). Though the participation did
not affect the exam modalities (except for the fact that the final project is developed in a team
rather than individually), as previously observed in Section 5.4, students joining the collaborative
modality are likely those that are in the most favourable learning conditions. Moreover, more
ambitious or communicative students may have more likely chosen C. The design of the teams
could have affected the effectiveness of the collaborative activities. The attributes chosen for
group assignment could also have introduced some bias, and, even with the same attributes,
different algorithms and even different runs of the same algorithm (e.g., the GRumbler algorithm
we employed) may produce different team, impacting team behavior and thus the results.

External validity Both editions of the course have been held online and this could have had an
impact on collaboration (online collaboration is somehow different from in-person collaboration)
preventing to generalize the approach to an in presence edition of the course. Furthermore, the
results cannot be generalized to a course level due to the fact that the evaluation was carried out in
a particular course at a specific university. However, they could be relevant for courses teaching
introductory database modelling and querying notions in other CS-related degrees. Indeed, our
study sample represents the target population (second or third year Bachelor’s students). In addi-
tion, both the modelling and the SQL assignment were prepared by the lecturers with reference
to notions typically taught in an introductory database course at tertiary level.
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5.4.3 Limitations and Improvements

As mentioned in Section 5.4.2, the obtained results do not generalised to an on-site setting,
since the entire course and collaborative activities were held online. Moreover, further factors
could have influenced the results obtained by students in the graded artifacts, that we plan to
consider in future analyses. The final grade was assigned to students as a weighted average
of the written exam mark and the project evaluation. For students in C, the final project was
developed in teams and the same grade assigned to all team members. Some peer evaluation
activities were performed, in which students were asked to assess on a Likert scale both their
own individual contribution to the team (self-evaluation) and that of each team member (peer
evaluation), according to a number of dimensions. A finer analysis of the quality of teamwork
and learning outcomes is a possible direction for future work, as well as an investigation of
relationships between written exam and project marks. Further analyses could consider whether
there are significant differences according to the gender, to the degree, or to the exam session.

5.5 Conclusions

The learning goals of introductory database courses are quite diverse, ranging from data mod-
elling to query specification skills. Different active learning techniques are being applied to
data education. In this chapter, we focus on collaborative methodologies and, specifically, on
TPS and team peer evaluation; our evaluation demonstrates that the use of collaborative learning
techniques was effective in getting a more homogeneous achievement of the diverse learning
goals, measured in terms of exam results. The partial evaluation on different artefacts was in-
deed found to be significantly more homogeneous for students taking part in the collaborative
activities. The techniques also demonstrated quite engaging and appreciated by the students.
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Chapter 6

ToyPandas: A Python Package for
Data-Centric Computing

This chapter introduces ToyPandas, an educational Python package that we have developed
specifically to promote data-centric pedagogy for beginners with no programming background.
The main features of the library are presented, as well as its implementation, pedagogical impli-
cations and comparison with related work.

6.1 Introduction

Over the years, we have developed several introductory programming units for freshmen and
high school students involved in outreach activities. In the 2022/2023 academic year, we ex-
perimented with data-centric computing pedagogy and developed a data-oriented course in the
Python programming language.

This course emphasised the importance of grounding programming instruction in real-world data
analysis scenarios. Students were exposed to authentic data sets, taught how to extract meaning-
ful insights from that data, and equipped with the programming skills necessary to perform data
manipulation, analysis, and visualisation tasks. Further details of the course can be found in
section 7.4, and the syllabus in the Appendix B.3.

A crucial aspect of the course design was the choice of programming language and data set. In
particular, to effectively implement a data-centric computing pedagogy, it is crucial to have native
support for tabular data structures. While professional programming languages, such as Python
and R, provide such capabilities through dedicated libraries, they may not be the most appropriate
choice for introducing beginners to programming. This is mainly because using these libraries
often requires a certain level of familiarity with the core programming language concepts. In
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response to this challenge, researchers have developed specialised educational tools. Two promi-
nent examples include the Pyret1 programming language and the “datascience”2 Python library,
as discussed earlier in section 3.2.4.

Motivations & Context Our instructional design process began with a thorough review of the
existing literature to assess the suitability of different programming languages for our educa-
tional goals. We recognised the advantages of data-oriented languages such as Python and R,
with libraries such as Pandas for tabular data manipulation. However, these solutions presented
challenges due to their reliance on fundamental language constructs such as lists and dictionaries,
which may not be fully understood by beginners.

While alternatives such as Pyret and the Datascience package were promising, they presented
additional barriers. Their unconventional syntax and notional machines deviated significantly
from the widely used Python Pandas library, potentially hindering students’ transition to the
standard Python environment.

Our primary goal was to provide an authentic Python Pandas programming experience, while
prioritising accessibility and learning for beginners. To achieve this, we aimed to simplify the
notional machine used by the original Pandas library to fit within the confines of a 15-hour intro-
ductory course. We wanted a programming language with a short learning curve and seamless
integration with Python’s Pandas library to minimise the potential for misconceptions that come
with learning a new language.

6.2 ToyPandas Package

To address these challenges, we have developed ToyPandas, an educational Python package built
on top of Pandas. ToyPandas provides a simplified yet authentic Pandas Python programming ex-
perience, with a concise syntax and a notional machine that closely matches that of Pandas. This
allows beginners to grasp the core concepts of data analysis without getting bogged down in com-
plex syntax or unnecessary details. Indeed, its primary pedagogical aid is to make programming
more accessible to beginners thanks to a less complex notional machine and an easier-to-learn
syntax than original Pandas.

The transition from ToyPandas to Pandas should be quite intuitive and natural, as students are
not asked to construct a new mental model from scratch, but rather to build on their existing one.
For instance, creating a DataFrame from two Series using ToyPandas involves the following

1https://pyret.org
2https://github.com/data-8/datascience

103

https://pyret.org
https://github.com/data-8/datascience


code snippet:

s1 = series(2, 0, 5, 9)
s2 = series("Bob", "Alice", "Ted", "Carol")
df = concat(s1, s2)
df.show()

In particular, the commands are very similar to those in the original Pandas library, but reflect a
simplified NM. In particular, in the original Pandas, series can be defined starting from iterables,
dictionaries, or scalar values (e.g. with np.arange()), so the original command might be
something like:

s1 = pd.Series([2, 0, 5, 9]|)

This approach assumes prior knowledge of basic Python data types such as lists. However, this
can be confusing for beginners who are just starting to learn about series, as they may perceive
series as similar to lists. In addition, the syntax is more tricky, requiring students to enclose
square brackets (to define the list) within parentheses (to call the method). This can lead to a
higher cognitive load, as beginners need to grasp multiple concepts at once in a short period of
time.

To make series simpler and more like lists, we have hidden an important feature of Pandas,
namely hashable indexes and multi-level/hierarchical indexes. In ToyPandas, series can only
have numeric indexes, just like traditional Python lists. In addition, when an element is removed
from the series, the resulting series still maintains a sequential order of numeric indexes. In
contrast, the original library requires manual adjustments to fix the “holes” in the indexes, since
they are treated as hashable keys in a map.

Another fundamental difference lies in the names of the data types. In our library, no prior
knowledge of Python and NumPy iterable data types is required. Text and heterogeneous series
are referred to by different names - “string” and “object” - instead of using a single identifier
called “object” as in Pandas. Integer and floating-point columns are simply called “int” and
“float” respectively, without specifying the bit size of the type in the column name (e.g., int32,
int64, float64, etc.).

Indeed, from a syntactic and standard output perspective, we wanted to make ToyPandas sim-
pler, more expressive and provide clearer semantics. For instance, we simplified the access
to a dataframe element by not distinguishing between .loc[] and .iloc[] and naming it
.indexlocate[] to emphasize the semantic of the statement. In addition, we have simpli-
fied the signature of several methods to use only basic data type of arguments and return value.

On the other hand, we keep the original Pandas syntax for Boolean conditions and data transfor-
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mation pipeline idiom. For example:

df[df[(Age > 18) & (Name == "Alice")]].groupby(’type’).median()

This design choice stems from the need to maintain compatibility with existing learning tools,
such as PandasTutor, to facilitate a white-box understanding of data manipulation concepts.

Iteration over rows is still implicit (like SQL queries)3, and user-defined functions can still be
applied to dataframe columns using our redefined .apply() method. Finally, we have overrid-
den several Pandas methods for working with series and dataframes, including those for handling
missing values, renaming columns, and removing duplicates.

From a technical standpoint, ToyPandas comprises a collection of subclasses derived from Pan-
das classes, encompassing Series, DataFrame, and pd.core.indexing. iLocIndexer, among others.
These subclassed objects retain compatibility with Matplotlib methods, allowing for seamless
data visualization tasks.

Finally, ToyPandas is still compatible with the visualisation tool PandasTutor (see Figure 6.1).
This was a key objective, as it allows the NM to be visualised at the data manipulation level.

Figure 6.1: PandasTutor: a visualisation tool for Pandas.

6.3 PyPI Release and Future Work

We initially used a local version of ToyPandas during our teaching experiment with school
students. Students had to import this local version into their Google Colaboratory reposi-
tory as an external Python file script. However, to make ToyPandas accessible to a broader

3In particular, many Pandas operations are vectorised to improve performance, but this optimisation detail is
beyond the scope of our project.
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audience, we officially released it on the Python Package Index (PyPI) in July 2023. The
released package, currently in version 0.2.04, can be easily installed using the command
pip install ToyPandas.

This release marks a significant step forward in our efforts to promote ToyPandas as a learn-
ing package for data-centric programming. By making ToyPandas widely available, we aim to
empower educators and students worldwide to experience the benefits of data-centric computing.

Our future plans for ToyPandas include continued maintenance and updates to extend the li-
brary’s capabilities and expand its documentation. We are also exploring the possibility of reim-
plementing ToyPandas using a wrapper class approach.

The feedback from our teaching experiment was generally positive. Students found ToyPandas
to be easy to learn and use, and they were able to grasp the core concepts of programming and
data analysis. Teachers also found ToyPandas to be a valuable tool for teaching data-centric
computing. However, it is important to note that these results are preliminary and do not have
statistical validity. Our experiment involved a small group of students, and further research is
needed to confirm our findings with a larger and more diverse sample.

Our project has some limitations. For example, it does not support all the features of Pandas,
and it is not as powerful as Pandas. Also, ToyPandas is still under development and there may
be some bugs or missing features.

In conclusion, our preliminary evaluation suggests that ToyPandas is a promising tool for intro-
ducing beginners to data-centric computing. While ToyPandas shows promise, further research
is needed to conclusively validate its effectiveness. The limited sample size of students in our
experiment limits the generalisability of our findings, which currently positions this work as a
valuable experience and technical report, paving the way for future, larger scale studies.

4https://pypi.org/project/ToyPandas/
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Part III

Teaching Experiences and Educational
Proposals
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This part presents a curated collection of teaching experiments and proposals conceived and
implemented during my PhD journey, based on the research findings presented in the previous
part of this dissertation. Specifically, chapter 7 compares the data-centric approach to Python
programming with other pedagogical approaches and presents three different methods for intro-
ducing students to the language; chapter 8 outlines a lesson designed for high school students
that focuses on data visualisation using Tableau software; and chapter 9 presents a proposed
course design for an introductory DS course that emphasises both coding and visualisation skills
through the use of Tableau and Python. Although chapter 8 presents some qualitative results, it
is considered an experience rather than an experiment, due to its highly experiential nature and a
population very different (both in age and size) from those involved in the previous experiments
presented in Part II.

Before presenting them, a brief overview is given of the research journey that led to their design
and implementation. This overview includes other experiments that are not reported in this thesis,
but which have contributed to a broader understanding of the research topic.

Prior research activities

Our first experiments were aimed at improving the educational offering of our CS degree pro-
gramme and the orientation/outreach activities we provide to secondary school students, such
as the “Stage of Informatica” programme. These experiments focused primarily on increasing
students’ motivation and engagement in learning to program, while also strengthening soft skills
such as teamwork. We explored different strategies, including gamification and collaborative
learning. The latter involved students from different backgrounds working together, mirroring
real-world team settings. In particular, we investigated the TBL methodology with Sonic Pi, tar-
geting first-year students enrolled in the CS1 course, and obtained preliminary results in terms of
engagement and competence in programming. These results can be found in [186] and formed
the basis for the more extensive experiments presented in chapter 4, which involved other courses
and academic years.

Over time, the interventions have moved beyond teaching methods to focus on pedagogical ap-
proaches to CS and data education. Some experiments have been replicated several times over the
years, others adapted to other age groups or courses, allowing us to refine and evaluate activities
based on student feedback and learning outcomes. By actively soliciting students’ feedback and
suggestions (e.g. through anonymous questionnaires), we have been able to refine and improve
the interventions according to their needs and preferences, and to systematically integrate these
refined interventions into our undergraduate CS curricula or outreach programme activities.

To elaborate on our experiments, we integrated real-world problem-solving scenarios into the
activities, providing students with practical challenges to apply theoretical knowledge in a mean-
ingful way, and encouraging critical thinking and creativity.
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Finally, in response to the Covid-19 outbreak, we also experimented with distance and blended
learning. Many experiments were adapted for distance learning, while others were specifically
designed for a distance learning context. For example, collaborative learning experiments were
conducted to enhance social interaction, virtual reality (VR) was used to enhance social presence
within virtual learning environments, and online gamification platforms were used to promote
both engagement and collaboration, creating a playful and rich learning environment where stu-
dents could learn, collaborate and experiment with social interaction with their peers and in-
structors. Our research into using VR technology to create more immersive and social learning
environments has produced some preliminary results, which can be found in [40].

In parallel, we also experimented with other age groups. Although our target groups were un-
dergraduate and high school students, we also experimented with primary and middle school
students and senior citizens. For example, we designed several teaching units that were part of
a PON project5, aimed at children, to introduce CT and data thinking through coding and un-
plugged activities. We also designed an online challenge based on coding and CT concepts using
the online edutainment platform Smart O.C.A.6 This challenge was a unique opportunity to en-
gage primary and middle school students across Italy in a fun and interactive learning experience
while improving their understanding of computing concepts. The platform offered a series of
engaging tasks that gradually increased in complexity, allowing students to hone their coding
skills. A full overview of the activity and preliminary results can be found at [50].

At the other end of the age spectrum, we experimented with third-age students enrolled in an
ICT course organised by UniGeSenior7, a programme that empowers senior citizens to improve
their digital skills. This collaboration provided valuable insights into the learning preferences
and challenges of third age ICT students, enabling us to develop effective collaborative teaching
strategies tailored to their specific learning needs. For a more detailed discussion, refer to [184].

5In Italian, PON stands for “Piano Operativo Nazionale”.
6Smart O.C.A. (Online/Offline Challenge Activity): https://www.edutainmentformula.com/

web-app/smart-oca/
7UniGeSenior: https://senior.unige.it
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Chapter 7

Python for All: Three Alternative
Approaches for Introducing Novices to
Programming1

Designing an effective introductory programming course is difficult, requiring consideration of
student characteristics as well as time and curriculum constraints. This challenge is even greater
for introductory orientation and outreach activities designed to quickly engage students with no
prior programming experience, to spark and foster their interest.

In this chapter, we present three Python programming modules for secondary school students,
each consisting of about 15 hours of theory and practical teamwork. The units share core learn-
ing objectives, but their pedagogical approaches vary to suit different educational contexts. In
particular, we have experimented with block-based coding, tinkering and data-centric pedagogy.

In the context of this thesis, it is interesting to analyse the data-centric approach in comparison to
other pedagogical methods. This analysis serves two purposes: to gather initial student feedback
on data-centric programming, and to propose a design for a short teaching unit based on this
pedagogy. Individual post-questionnaire feedback shows positive results in terms of interest and
engagement across all units. The Python micro:bit module appears to be particularly effective
in promoting hands-on learning and engagement. In addition, the data-centric approach, while
initially challenging, progressively engages students through real-world data manipulation.

1This chapter is based on [53] and experiment with university and high school student groups.
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7.1 Introduction

This chapter introduces three compact Python programming modules tailored for educational
guidance and outreach in secondary schools, targeting students with no prior programming ex-
perience. These modules, each approximately 15 hours in length over two days, include both
theoretical and practical activities with the overall goal of achieving the following learning out-
comes: at the end of the activity, students will be able to understand basic programming concepts
and basic Python syntax and structure, including data types, operators, basic input/output, control
structures, iteration, and functions.

While the learning objectives are consistent across the modules, the pedagogical methods vary,
allowing for the exploration of different learning scenarios. The first unit takes a “traditional”
approach based on imperative programming, but using a visual, block-based environment called
EduBlocks [9]. A distance learning version has been developed, that also incorporates elements
of gamification to make the unit more engaging when offered in remote learning environments.
The second unit takes a physical computing and tinkering approach using the BBC micro:bit
platform [140, 161]. Finally, the third unit ventures into the realm of data-centric pedagogy [95],
using our own Python package (described in chapter 6) to streamline DS programming tasks.

Context & Contribution The presented teaching units were offered as part of CS orientation
activites in different academic years, from 2019/2020 to 2022/2023. They were aimed at sec-
ondary school students without CS background. In total, across all editions, our experimentation
involved more than 250 students.

These units can be used as inspiration for future introductory and orientation activities. In par-
ticular, the third unit also serves to present an experience of using data-centricity pedagogy with
our ToyPandas educational library.

Structure of the chapter The remainder of the chapter is organized as follows. Section 7.2
provides a description of the first unit using the block-based imperative approach; Subsection
7.2.1 provides details of the gamified version of the first unit; Section 7.3 provides details of
the second unit using the BBC micro:bit. Section 7.4 provides details of the third unit using the
data-centric computing approach. Finally, Section 7.5 discusses the outcomes of the experiences.

7.2 A Block-Based Introduction to Python

The first teaching unit was an integral part of a broader CS outreach program in the 2022 and
2023 editions. In this module, students were introduced to Python programming using a tradi-
tional approach that emphasizes control structures and imperative programming. However, the
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students used EduBlocks, a block-based educational platform designed to simplify programming
by providing a visual interface that allows students to build Python programs by dragging and
dropping blocks of code. It also facilitates a gradual transition to text-based programming by
displaying the relevant Python syntax over each block. In addition, it streamlines understanding
and code design by reducing the complexity of the instruction set. Together, these features allow
students to focus on solving problems rather than getting bogged down in syntactical intricacies.

The unit consisted of eight short programming modules, each consisting of a brief instructional
session and a hands-on group activity. The topics and final assignments for each module are
listed in the appendix B.1.

7.2.1 Gamification during Covid-19

During the Covid-19 health emergency, in the 2019/2020 and 2020/2021 academic years, we
adapted the teaching module to meet the needs of distance learning. Our approach involved the
use of Smart O.C.A., an online edutainment platform, as the foundation of our virtual learning
environment. Specifically, Smart O.C.A. is a video quiz game that can be played individually or
in groups, and each game instance can be customized based on the target audience.

The introduction to programming was ingeniously structured akin to a tabletop game, where
each programming concept was represented by four distinct game tiles. Refer to Figure 7.1 for a
visual depiction of the game board in action.

More specifically, the initial cell for each topic encompassed a concise video lecture (derived
from the presentation of the topic in the face-to-face unit) accompanied by quizzes designed to
provide instant and automated feedback. Upon successful quiz completion, students unlocked
access to the fourth section, which encompassed a practical task in EduBlocks. To encourage
collaboration during the labs, we grouped students into small teams of 4-5. Students were in-
structed to use external video conferencing software for screen sharing and collaborative code
development.

In cases where quiz responses were incorrect, students progressed to the second and third game
boxes, housing supplementary quiz material. The final tasks, however, necessitated synchronous
interaction and entailed manual assessment by the instructor. Consequently, students awaited
their assignments to undergo evaluation. To facilitate this process, we engaged undergraduate
students to partake in assessing assignments, fostering a culture of peer tutoring and support.

We incorporated the following gamification components:

• Real-time leaderboards: Students can see their progress and rankings in real time, fostering
a sense of competition and motivation to perform better.

• Colorful gameboard: The game board is designed with vibrant colors and visually appeal-
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ing graphics, creating an engaging and immersive learning environment.

• Multimedia Elements: We have incorporated video lessons to enhance the learning content
and make it more interactive and engaging.

• Interactive, Collaborative, Timed Quizzes: Timed quizzes challenge students to think on
their feet and reinforce their understanding of the material.

• Player Icons: Students can personalize their icons to make the learning experience more
enjoyable.

• Levels: The use of levels creates a sense of progression and achievement, motivating stu-
dents to progress through the learning journey. Each level corresponds to a programming
topic.

• Points: Students earn points for completing assignments or quizzes, providing immediate
feedback and encouraging active participation and learning.

Figure 7.1: Smart O.C.A. Python.

7.3 A Physical Computing Approach to Introductory Python
Programming

The second unit takes a physical computing perspective on programming using the BBC mi-
cro:bit - a compact programmable device equipped with a microcontroller, an array of sensors
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Figure 7.2: BBC micro:bit.

including buttons, an accelerometer and compass, a LED display, and wireless connectivity. The
micro:bit supports a range of programming languages, from visual to textual languages, such as
Scratch and Python. This approach allows students to create engaging interactive projects and
see the immediate impact of their programs in the real world, adding a tangible and practical
dimension to programming.

This unit follows the same sequence of programming topics as the previous one, but within an
event-driven paradigm. In fact, students had to write simple programs to control the behavior of
the micro:bit in response to certain events, such as key presses or motion detection.

Each programming concept was introduced through a concise lecture and then reinforced through
hands-on work in a browser-based text programming environment2, which is tightly integrated
with the microbit library and provides code suggestions and device simulation capabilities. We
formulated exercises using the idea of the micro:bit as a dice, as shown in the figure 7.2, which
represents the five points on the dice. The tasks are listed in appendix B.2.

This teaching unit was experimented with secondary school students from a mechanical voca-
tional school who had no prior programming experience. These students visited our university
labs for the experience.

7.4 A Data-Centric approach to Programming

Building on the foundation of data-centric computing pedagogy outlined in chapter 3.2.3, the
third unit served as a practical application of these concepts. This unit used short, interactive
lectures designed to facilitate active learning. These lectures were complemented by hands-on
programming activities using our educational library Toypandas, introduced earlier in chapter 6.

2Python Editor for micro:bit: https://python.microbit.org/v/3
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The emphasis on data manipulation and analysis inherent in the data-centric approach necessi-
tated some adjustments to the learning materials and the sequencing of topics. However, these
changes were relatively minor and mainly involved the substitution of similar elements. For ex-
ample, it was decided to exclude the while loop from the curriculum. This exclusion reflects
the fact that dataframes, a core construct in data manipulation, rely heavily on implicit iteration,
similar to the behaviour observed in declarative languages such as SQL [93]. A comprehensive
list of topics and tasks covered in Unit Three can be found in the Appendix B.3.

Each topic was introduced with a combination of slide presentations and hands-on exercises
using the CSV IMDb dataset3 of movie information and reviews. Students began the process
by importing, visualizing, and extracting insights from the data using various Pandas techniques
such as head, shape, describe, and info.

They then delved into data transformation, which included eliminating duplicate columns, per-
forming column reorganization operations such as renaming, and addressing missing values ei-
ther by removing rows with null values or using imputation methods such as replacing them with
averages.

Students then gained proficiency in data frame manipulation techniques, including slicing, se-
lection, and extraction operations. They were also tasked with formulating a function capable
of translating movies with a rating of 8.0 or above into the text label “good” and classifying the
rest as “bad”. These transformed labels were then used to create a new column. Applying this
function to the column was accomplished using the apply() method.

To conclude their learning journey, students were introduced to data visualization and were able
to apply several techniques, including scatter plots, histograms, and word clouds.

This teaching unit was experimented with secondary school students from a tourism vocational
school who had no previous programming experience. These students visited our university labs
for the experience.

7.5 Feedback and Discussion

After each activity, individual post-questionnaires were administered to the students. These ques-
tionnaires included multiple Likert scale questions that assessed students’ perceptions of their
level of interest, difficulty, usefulness, and support while navigating the field of computer sci-
ence and the university environment. Additionally, three questions related to Python program-
ming were included, covering topics such as Boolean conditions, iteration with for loops, and
indexing with lists/series. Refer to Appendix B.4 for further details.

All of the different approaches to introducing coding seemed to yield positive results in terms

3IMDb dataset: https://datasets.imdbws.com
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of student engagement. However, the second unit seemed to be the most engaging. From the
evaluation questionnaires, we obtained the most positive results in terms of engagement. In
addition, these results matched well with our perceptions during classroom observations. In fact,
the micro:bit actively engaged students with a “learning by doing” approach that is well aligned
with the principles of constructionist learning theory.

Conversely, the data-centric pedagogy initially presented a higher level of cognitive load that
could potentially deter students. Even though our library simplified the syntax, many students
initially struggled with series. However, data-centric programming quickly became an engaging
and accessible experience through hands-on manipulation of real-world data. As a result, the
final questionnaire revealed that students found it more challenging, but generally in line with
their interests.

Finally, the imperative, block-based approach seemed generally less effective in terms of engage-
ment, likely due to the lack of a tangible real-world artifact. In addition, the gamified version
showed comparable results with respect to the imperative version, suggesting that the gamifica-
tion elements effectively offset the somewhat less engaging remote environment.

When we analyzed the three programming questions on the final questionnaire, we found com-
parable results across units. This finding was somewhat unexpected, as we had anticipated that
the different approaches, offering different perspectives on the topics, might introduce a slight
bias in the learning outcomes. However, this was not the case, suggesting that these units can be
considered equivalent in terms of learning outcomes and can therefore be used in different learn-
ing contexts. For example, the results of the data-centric pedagogy did not outperform the others
on Boolean and indexing questions, despite the extensive use of these concepts in manipulating
data frames. Similarly, students performed consistently on the for-loop question even though
they used more implicit iteration.

Overall, the anonymous, open-ended feedback indicated that the activities served as a valuable
orientation tool. Some students found out through our educational guidance activity that CS was
not their calling, while others were eager to explore CS further, possibly extending their studies
or pursuing a career in the field.
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Chapter 8

Data Literacy in High School:
An Experience in Introducing Data Science
using Tableau1

This chapter builds upon the motivations and challenges for introducing DS in schools, as dis-
cussed in Chapter 3.2.1, by presenting two teaching units designed to enhance data literacy
among high school students.These units use Tableau software2 and emphasise data evaluation,
particularly through data visualisation. Authentic data sets are used, including those related to
the Olympic Games and global economic freedom. The first unit includes a two-hour mod-
ule dedicated to data exploration and preparation, while the second unit focuses exclusively on
data visualisation. To provide context, a comprehensive literature review has been presented in
Chapter 3.2.4. Our main goal was to give students an authentic experience with DS, foster data
thinking, and to make them aware of the importance of data in developing a better society.

The instructional design follows the latest data literacy standards, in particular the Data Liter-
acy Competence Matrix [147] and the European DigComp framework3. The latter provides a
common understanding of digital literacy.

8.1 Population and Setting

We proposed two teaching units in two different school years (2021/22 and 2022/23). The total
duration of the first and second units was roughly 19 and 21 hours respectively, spread over one

1This chapter is based on the material published in [66, 67]
2Tableau: https://www.tableau.com
3DigComp: https://joint-research-centre.ec.europa.eu/digcomp_en
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month. Both were aimed at grade-11 students of a high school in humanities (“Liceo Classico”
in Italian)4 and were part of a school Pathways for Soft Skills and Educational Guidance (known
in Italy as P.C.T.O.) activity. In particular, students in the second unit were enrolled in the
European Classical Lyceum curriculum, which, compared to the traditional one, includes the
study of economics, law and two foreign European languages, as well as the strengthening of
scientific disciplines.

The population of the first unit consisted of 28 students divided into 10 groups (2-3 students per
group). Because of Covid-19, the lesson was conducted remotely via a video meeting platform.
Students did not receive a Tableau licence, but were able to use the 12-day free trial of Tableau
Cloud.

The population of the second unit consisted of 42 students from two different classes. Each class
was divided into 6 groups (4-5 students per group). The activity was carried out face-to-face in
a computer laboratory at the Department of Computer Science of the University of Genoa and
focused on data visualization, using the free platform Tableau Public.

For both activities, we did not consider programming-based solutions such as Python or R, as
the students had no previous experience of computer programming and this would have required
a disproportionate cognitive effort in such a short period of time.

At the end of each edition, we collected all the group projects and multimedia presentations. In
addition, a satisfaction questionnaire was sent to the students. All analyses of the Likert data
were done using Tableau software.

8.2 Unit Overview

The teaching units consisted of a frontal lesson introducing data, a lab lesson using Tableau,
a team project, to which students are assumed to devote 15 hours over a month, and a final
meeting where student teams could share and discuss their findings. Our unit led students with
no previous experience in data literacy to perform basic analysis and visualisation on a real
dataset.

The units had the following learning objectives according to the Data Literacy Competence Ma-
trix: perform data exploration; identify anomalies and outliers and perform basic data cleaning
operations (Teaching Unit 1 only); develop an analysis plan; create meaningful graphical repre-
sentations of data; read and understand graphs, maps, and charts; draw information from data;
recognise the importance of data and be aware of ethical issues related to data.

4The Italian “Liceo Classico” (literally “Classical Lyceum”) is a high school with a focus on classical studies,
where students study both Latin and Ancient Greek, with comprehensive curricula in philosophy, literature and
history.
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8.2.1 Teaching Unit 1

The first unit (school year 2021/22) consisted of a total of 6 hours of theory and practical activ-
ities, plus a group project and a final discussion. At the end of the activity, the students were
also given a satisfaction questionnaire about the topic of the activity and the group work. In what
follows, we describe in more detail of the different stages of the course.

First Lesson (4 hours) The first lesson started with a brief introduction to data using prac-
tical examples from everyday life. We defined basic data types (textual, numerical, location),
variables (quantitative, ordinal, and categorical) and tabular data, before introducing students
to big data and data science. We proposed some interactive quizzes in Wooclap5 followed by
a plenary discussion in order to actively engage students. For example, we asked them to de-
scribe big data in one or two words, and then we used the students’ answers to create a word
cloud. This simple exercise allowed us to actively introduce students to data collection (their re-
sponses), visualisation (word cloud as a visual representation of textual data) and analysis (word
cloud interpretation). We then explored the concept of data analysis and data-driven decision
making, including a reflection on data ethics. Finally, we introduced students to the topic of data
exploration and transformation.

The second half of the lecture was devoted to the hands-on activity in Tableau using a toy dataset
provided in Tableau’s online tutorials. We performed some basic data preparation operations (e.g.
identifying useful data, removing duplicate columns, identifying/correcting typos or inadmissible
values, combining tables together, etc.). We adopted a learning-by-doing approach: the students,
guided by the teacher, were able to work in groups and replicate the operations on their own
machine.

Second Lesson (2 hours) The second lecture focused on data evaluation, in particular data
analysis, visualisation, and interpretation. Starting from the output of the data preparation flow,
we performed a simple data analysis to generate some visual representations of the data (e.g.
interactive geographical maps, bar charts, pie charts, histograms, line graphs, etc.). A lot of time
was spent on data interpretation and data storytelling to present the results. We discussed that it
is possible to visualise data in different ways and that some visualisations are more appropriate
than others for different use cases. Finally, we presented the requirements of the group project.

From a technical perspective, we created Tableau sheets (one plot per sheet) and combined them
into a Tableau dashboard where interactivity could be added to enhance the user’s insight into
the data. For example, students could add a filter to analyse a specific subset of data.

5https://www.wooclap.com
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Team Project and Final Presentation (expected effort 15 hours, deadline 1 month) Stu-
dents had to prepare a project on a real dataset about the modern Olympic Games. The dataset
was an unclean version of the original Olympics dataset6. With our modifications, it could also
be used for basic data cleaning practices (we duplicated some columns, created dirty data, and
inserted null tuples). The dataset included all the Games from Athens 1896 to Rio 2016 and con-
tained more than 271 thousand rows and 15 columns. Each row corresponded to an athlete com-
peting in an individual Olympic event and contains basic bio data on athletes and medal results.
In particular, the NOC column (National Olympic Committee, 3-letter code) provided the oppor-
tunity to join another table. We suggested a number of websites where students could download
additional datasets (e.g. kaggle.com), but this was optional for the project. The Olympics
dataset offered students the opportunity to ask questions about how the Olympics Games evolved
over time, including questions about the participation and performance of women, different na-
tions, sports, events, etc.

Students had to identify a research question and, on the basis of such question, clean and prepare
the data, create appropriate charts and graphs, and create an interactive dashboard to interpret
and present the phenomenon. Finally, they had to prepare a multimedia presentation illustrating
the research activity and the results obtained, the encountered difficulties and possible future
directions, as well as the dynamics of team work and project management (tasks, deadlines, roles,
etc.). Finally, they had to reflect on some aspects of data application for civic responsibility. Due
to the trial period of Tableau Cloud, the students had 12 days to work on the data platform and the
remaining days to work on the multimedia presentation. Students were provided with guidelines
and teaching materials (class slides, dataset, and lecture recordings). In the final session, the
teams presented their findings to the whole class.

8.2.2 Teaching Unit 2

The second teaching unit (school year 2022/23) consisted of 4 hours of theory and practical
activity, the team project and the final discussion. The activity was structured similarly to the
previous one, but with a different dataset and without the data preparation part, as the duration
of the module was reduced to 4 hours (instead of 6).

Lesson (4 hours) As before, we introduced students to data literacy, (big) data, and data sci-
ence. We focused on data evaluation and on the ethical and privacy aspects of data. We spent
more time on data storytelling - how to present and communicate the results of data. Again,
we offered interactive quizzes on Wooclap. The hands-on activity with Tableau Public Edition
took place in our university labs and focused on aspects of data visualisation. For example, we
discussed the choice of graph depending on the type of data, as sometimes there is more than one

6
https://www.kaggle.com/datasets/heesoo37/120-years-of-olympic-history-athletes-and-results
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possible graphical representation, and we looked for graphically effective communication strate-
gies. Finally, we put it all together in a dashboard and discussed the result. We practised directly
on the dataset they would later use in the group project phase. The data exploration phase was
then guided by the teacher.

Team Project and Final Presentation (expected effort 15 hours, deadline 1 month) The
students had to work in teams and prepare a data science project with a focus on data visualisa-
tion. As the school explicitly requested a legal/economic domain (as the classes were from the
European Classical Lyceum curriculum), we chose the Economic Freedom Index dataset freely
distributed by the Heritage Foundation7. It measures the economic freedom of 184 countries
based on trade freedom, business freedom, investment freedom, and property rights. Specifi-
cally, we combined five years of observations from 2018 to 2022 into a single dataset to allow
students to analyse the global economic prosperity over the past five years. In this edition, the
school also asked us to assign a research question to each group, and we suggested the following
questions:

1) Over the five-year period, how has the Italian economic freedom evolved? 2) Has the global
scenario of economic freedom changed between 2018 and today? 3) Has the Covid-19 pandemic
had an impact on economic freedom (globally and in 4 other countries of your choice)? 4) How
does economic freedom vary in different areas (Europe, America, etc.)? 5) How will countries’
economic freedom change in 2022? Compare max and min; 6) How does Europe’s economic
freedom compare with Russia’s? Questions were the same for both high school classes.

Based on the assigned research question, students had to generate appropriate charts and graphs
and create an interactive dashboard to interpret the phenomenon. Finally, they had to prepare a
multimedia group presentation with the same design requirements as in Teaching Unit 1. In the
final session, the teams had to present their results in plenary.

8.3 Preliminary Results

At the end of each edition, we collected team projects and responses to a final satisfaction ques-
tionnaire. The questionnaire was individual and consisted of the following questions: (DS) How
interested were you in the unit?; (H1) How challenging was it?; (H2) How much fun was it?;
(H3) How useful was it?. All items were rated on a Likert scale from 0 to 3, with options ranging
from “not at all” to ‘very much” (note that H1 is a reverse item).

In particular, the first edition had a population of 28 students, while the second edition had 42
students. The first session was held remotely due to the Covid-19 health emergency, while the

7https://www.heritage.org/index/
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Figure 8.1: Gantt bar chart of Likert scale survey data (2023 vs. 2022 edition).

second session was held in person in a computer laboratory at the Department of Computer
Science of the University of Genoa. The team projects were assessed according to the following
evaluation criteria: presentation quality and time management (multimedia presentation/slides,
adherence with assignment deadline); data analysis (number of variables used; types of data
operations such as drill-down, filtering, etc.; the depth and structure of the analysis in relation to
the original research question); communication with data (effective use of maps/charts, presence
of labels/legends, interactivity in dashboards, etc.), and domain-knowledge (quality of in-depth
study, cited sources, etc.). The scores for each dimension were given in decimals, and the final
score was calculated as a weighted sum of the different criteria. Presentation, data analysis, and
communication had the same weight (0.3), while domain knowledge had a weight of 0.1.

In the first edition, all team projects were of good quality and students seemed to appreciate
and grasp the potential of a data-driven approach as well as its application in their personal and
professional daily lives.

In the second edition, the quality of projects has been more erratic. In total, we assessed 11 team
projects. The mean was 6.9 and the median was 7. More specifically, we gave three groups a
mark of 6, six groups a mark of 7, and two groups a mark of 8.

Figure 8.1 shows the results of the final questionnaires. Only 6 and 11 students in 2022 and 2023
respectively completed the questionnaire. The median of the item DS is 1.5 [2 in 2023], while
the medians of the three items related to the homework (H1, H2, H3) are 1, 2, and 2 respectively
[1, 1 and 2 in 2023]. In general, the activity was perceived as difficult in both editions (all
H1 responses were negative), but more so in the second, although it was perceived as more
useful. The level of interest in the activity is quite similar, although the first edition had a higher
percentage of very positive responses. We did not conduct a statistical control between the two
sessions as several variables were changed (remote vs. face-to-face, data cleaning phase, dataset
change, pre-set research question), some of which were beyond our control.
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In an informal way, we can measure the variability between the two editions based on the anony-
mous free comments from the 2023 questionnaire. Specifically, about half of the participants ex-
pressed a preference for working with a different dataset (one that is not economic/legal) and/or
having the opportunity to propose their own dataset. Two respondents would also have liked a
lesson on multimedia presentations. Finally, one person suggested splitting the theory and prac-
tical sessions into separate days. We believe that a data-driven activity will spark curiosity and
motivation if the topic is of interest to the student, so in the future, we will propose a number of
datasets to choose from and leave the students free to devise their research questions.

8.4 Limitations and Future Directions

From the first experiment, we realized that the data preparation part required more technical skills
than the data visualization part and therefore could be more challenging in those schools where
the IT discipline is not present (e.g. in Italy, the high school specializing in classical studies).
For this reason, and due to time constraints, we have preferred to focus on data visualization in
the second edition of the course.

Another aspect concerns the deadline for the final project. In the first edition, all groups met
it, but in the second edition, almost all were late. This could be because Tableau Cloud has a
non-renewable trial period, while Tableau Public has an unlimited period. This difference may
have affected the students psychologically. In addition, their school’s pedagogical approach may
not have accustomed students to team projects with deadlines, contributing to the delays.

We believe it’s essential to establish a dialogue with the school’s math and computer science
teachers to align with the class’s learning outcomes. Unfortunately, this was not possible in
our case, and it had repercussions in the second edition. Students lacked sufficient statistical
knowledge, such as the concept of median, and had difficulty identifying when to use the mean.
This affected the data analysis process.

In addition, we strongly disagree with the 2023 school’s requirement that the research question
be stated. We believe that allowing students to pursue inquiries prompted by their curiosity can
have a positive impact on motivation and creativity. In the second iteration, students seemed to
view the team project as a mere obligation, like an extra homework assignment. This is reflected
in the project results, which were noticeably less elaborate and engaging than the first edition.
In the first edition, the projects demonstrated higher quality data analysis and produced more
valuable data insights.

Furthermore, we recognize that the domain of the dataset could influence students’ interests and
curiosity. Therefore, we advocate that the dataset be chosen in collaboration with students to
increase engagement and excitement.

Regarding the questionnaire in Teaching Unit 1, a limitation is the sample size, which is too
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small and therefore not statistically significant (only 6 students responded, probably because the
survey was optional).

From a tool perspective, Tableau, with its friendly user interface and real-time suggestions, ap-
peared to be a very powerful and effective data tool with a short learning curve for introducing
data literacy to novices.

Furthermore, we believe that the proposed approach could be experimented/extended in other
types of secondary schools. As a future direction, we would like to experiment with data inges-
tion and data preparation using Tableau Cloud in a technical institute specialising in computer
technology8 and experiment with Tableau Public in some science-oriented high schools (“Liceo
Scientifico” in Italian)9 to present predictive models (e.g. linear or logistic regression) and anal-
yse data distribution (e.g. with box plots or scatter plots). Finally, we are working on a 2-hour
module on building data views for accessibility to raise students’ awareness of web content ac-
cessibility for people with a wide range of disabilities. In this respect, Tableau seems to be an
effective platform for this, as its elements are accessible by design and comply with WCAG 2.0
AA.

8In Italy, the technical institute is a type of secondary vocational school.
9The “Liceo scientifico” (literally “scientific lyceum”) is a type of Italian secondary school that emphasises

scientific culture, particularly mathematics, physics, chemistry, biology and sometimes, depending on the chosen
track, computer science.
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Chapter 9

A Data Science Course for Non-Computing
Majors

This chapter proposes a formal 6-credit course introducing DS fundamentals to students with no
CS background.

The proposal draws on experiences and experiments conducted during the Ph.D., which are de-
tailed in previous chapters. In particular, our experience in data education has informed the
exploration of visual tools such as Tableau for data analysis and visualisation activities. This
approach facilitates an intuitive and practical introduction to the DS lifecycle for beginners.

In addition, experimentation with innovative teaching methods highlighted the value of foster-
ing active and collaborative learning environments. These strategies not only increase student
engagement, but also have been shown to improve learning outcomes.

Finally, experiments in programming highlighted the importance of tailoring activities to stu-
dents’ individual needs and interests, which ultimately supports the development of robust men-
tal models of the underlying concepts.

This course proposal aims to address the challenges outlined in section 3.2.2 by providing stu-
dents with an introduction to DS that prepares them to both “think with” and “work with” data,
promotes data literacy, and emphasises practical applications through the use of data visualisa-
tion tools and easy-to-learn programming environments. To provide relevant background infor-
mation, a comprehensive literature review has been presented in section 3.2.4.

The remainder of this chapter is structured as follows: Section 3.2.2 presents the motivations and
context for the course, followed by a review of related work in Section 3.2.4. Section 9.1 details
the educational setting, while Section 9.2 outlines the instructional design choices employed.
Finally, Section 9.3 discusses limitations and potential avenues for future work.
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Appendix C.1 presents the detailed lesson plan.

9.1 Educational Setting

The IDS course proposal is designed as a 6 ECTS semester course aimed at third year under-
graduate students majoring in Digital Humanities. These students have no background in pro-
gramming or statistics. The main goal of the course is to introduce students to different tools
and methods to perform simple data analysis and visualisation tasks. Specifically, students will
explore the main aspects of the DS lifecycle, covering data exploration, cleaning, manipulation,
analysis and visualisation, through in-class demos and hands-on collaborative activities based on
data visualisation tools and Python programming. In addition, the course will focus on effective
communication with data and encourage reflection on the ethical aspects of DS. The following
are the objectives and learning outcomes of the course.

Learning objectives The course aims to foster a data-driven culture among students, including
data ethics, data visualization and analysis skills, as well as technical skills to perform basic DS
tasks. In particular:

• Introduce students to fundamental DS concepts and techniques.

• Provide a practical understanding of the DS lifecycle.

• Develop essential programming skills for data manipulation and analysis.

• Encourage effective communication of data insights.

• Promote critical reflection on ethical issues in DS.

Learning outcomes By the end of the course:

1. Students will be familiar with a variety of DS tools and methodologies.

2. Students will be able to carry out basic data tasks, including data exploration, analysis and
visualization.

3. Students will be able to effectively present data insights using data visualization and sto-
rytelling techniques.

4. Students will demonstrate awareness of ethical issues related to DS.
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5. Students will develop expertise in data visualization and effective communication using
Tableau software.

6. Students will develop proficiency in Python programming using the Jupyter notebook en-
vironment with a focus on data-centric tasks using both the standard library and popular
DS libraries such as Pandas and Matplotlib.

Exam Modality

• Attendance Mode:

– Tableau Assignment (maximum 2 points impact on final grade).

– Final project: Group project on a real-world dataset using the Python programming
language.

• Non-attendance mode:

– A final individual project on a real-world dataset that requires proficiency in both
Python and Tableau.

– An oral exam consisting of 2 open-ended questions on key concepts (e.g., discuss the
DS life cycle and provide a detailed description of each stage, discuss data ethics and
its consequences in cultural domains, etc.).

Evaluation For evaluation criteria, please refer to the evaluation grids provided in the Ap-
pendix.

9.2 Instructional Design Choices

This section outlines pedagogical strategies and tools. The main goal is to create an inclusive
and effective learning environment that accommodates students with diverse backgrounds and
learning preferences.

9.2.1 Tools and Learning Environment

Tableau provides an easy-to-use environment where students can focus on data thinking without
getting bogged down in syntax and coding challenges.
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In essence, Tableau serves a similar purpose as Scratch or other visual tools in introductory pro-
gramming, allowing for a smooth transition to more advanced concepts. In addition, Tableau’s
industry ubiquity provides students with foundational skills in a widely used data visualisation
platform. Building on an introduction to data visualisation with Tableau, the course then equips
students with CT skills through Python programming. This approach encourages active learning,
creativity and a deeper understanding of data analysis.

Python, chosen for its beginner-friendly syntax, extensive libraries for data manipulation, ma-
chine learning and visualisation, and vast online resources, serves as the foundation for this
course. The use of Jupyter notebooks within Google Colaboratory, a cloud-based environment,
eliminates local setup and provides easy access to libraries, collaboration features, and powerful
computing resources. This interactive platform allows students to write and run Python code
directly in their web browser, providing a seamless learning experience.

In addition, classes integrate an interdisciplinary perspective and include a significant hands-
on component through in-class demonstrations and team-based, project-focused labs that tackle
real-world problems. This approach equips students with both theoretical knowledge and practi-
cal skills.

9.2.2 Notional Machine

A key challenge in designing this course for non-CS students is determining the optimal depth of
programming language coverage and the minimum skill level required for success. It’s important
to emphasise that the course emphasises essential Python skills for basic data tasks, rather than
a comprehensive programming expertise. It should not be seen as a replacement for a traditional
CS1 course.

Following a data-centric approach inspired by [28], the course prioritizes data tasks over lan-
guage constructs. For instance, instead of focusing solely on loops, students learn how to iterate
through data elements to achieve specific data manipulation goals. Each operation is accompa-
nied by sample code that serves as a practical guide for solving similar problems.

The course begins with a brief, hands-on introduction to the DS lifecycle in Tableau, and then
moves on to script programming in Python. First, students learn standard Python operations and
constructs to perform basic data operations, such as importing CSV files, using iteration (for
loops), and conditional statements. Students are then introduced to the Pandas and Matplotlib
libraries, focusing on features of the language that are fundamental to working with data, partic-
ularly tabular data structures. By introducing basic Python first, and then the libraries, students
can appreciate the benefits of using Pandas for data tasks, while building a solid foundation in
general Python programming.

Students will also be introduced to machine learning through the use of the scikit-learn
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library. Note, however, that our approach is to present machine learning algorithms using only
the call methods provided by the library, without delving into the details of the algorithms. While
black-box learning is generally discouraged, we believe that it fits perfectly with the goals of this
course, where students do not have a solid background in mathematics.

While ToyPandas can be a valuable tool for engaging students and introducing basic concepts
of data manipulation, it’s important to recognise its limitations. Designed for short introductory
activities, ToyPandas may not be suitable for a full university course. We recommend using the
Pandas library directly, or using ToyPandas as a stepping stone from Tableau to Pandas before
moving on to the full capabilities of the latter.

9.2.2.1 Dataframes

The core of the Pandas library is the dataframe abstraction, which represents tabular data and is
directly related to the commonly used CSV file. Libraries built around this abstraction provide
immensely powerful functionality, enabling complex transformations with simple code. Using
Pandas can greatly simplify any DS project, so it is essential that students learn to use it effec-
tively by the end of the course.

DataFrames are introduced in Week 5, allowing students to revisit problems and see how much
easier solutions become with them.

It’s worth noting that certain individual code statements in Python Pandas can be difficult to
understand, especially with long data operation pipelines that encourage the use of programming
idioms capable of performing multiple operations within a single condensed statement. While
this approach can be powerful, it can obscure intermediate steps and turn the underlying process
into a black box.

To this end, we include PandasTutor1 throughout the course lectures to visualize the annotation
table transformations. In fact, students can observe and understand how Pandas manipulates their
data step by step, facilitating a clearer understanding of the transformations applied at each stage.

9.2.3 Team Formation

For face-to-face students, teamwork will be a compulsory part of the designated laboratory ac-
tivities throughout the semester and will also be integrated into the final project. We propose
the formation of homogeneously (i.e. well-balanced) heterogeneous groups [30]. These groups
will be heterogeneous in the sense that they will be composed of members of different genders,
nationalities and backgrounds, such as previous experience and digital technical expertise. In
addition, course tutors may identify other relevant criteria to ensure an optimal mix within each

1PandasTutor: https://Pandastutor.com
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team. This approach aims to capitalise on the unique strengths of each individual, while still
allowing for meaningful comparisons between teams in the final project.

We recommend utilizing the GRumbler algorithm, developed by Harvard University2, to form
groups. This algorithm effectively handles ordinal categorical variables; therefore, any quantita-
tive variables should be transformed appropriately.

9.3 Limitations & Future Work

In this chapter, a proposal for an introductory DS course for non-CS students has been presented.
Although the proposal derives from my own PhD research activity, the whole framework has not
been empirically validated, so it is not possible to present insights. Without empirical data, it is
difficult to ascertain how effectively the proposed curriculum and pedagogical approach supports
the learning objectives of the target students.

In fact, the learning framework could potentially present challenges for both students and educa-
tors. In particular, while the integration of Tableau and Python appears promising, the extent of
knowledge transfer between them and the subsequent applicability of skills in real-world scenar-
ios remains untested. It becomes mandatory to guide students as they transition from Tableau’s
visual framework to Python’s coding paradigm. While the literature related to transfer scenarios
similar to this one (e.g., moving from visual and block-based programming languages to text-
based languages) demonstrates generally positive transfer results [192], there is no dedicated
study specifically addressing the transition from Tableau to Python. As a future direction, we
aim to investigate knowledge transfer between Tableau and Python.

In summary, these limitations underscore the need for empirical validation, adaptability, and
continuous refinement. Future directions should include empirical evaluations, assessments of
skill transfer, and the long-term sustainability of the course in the changing landscape of DS and
digital humanities.

2GRumbler algorithm: https://scholar.harvard.edu/files/msparrow/files/
grumbler-instructions.pdf
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Chapter 10

Conclusions

This thesis presents a series of pedagogical experiments and proposals aimed at improving the
learning experience in concurrent programming and data science education. It investigated the
potential of innovative teaching methodologies, tools, and programming practices that incorpo-
rate a constructionist learning approach to improve the learning experience.

The experiments with Sonic Pi, detailed in Chapter 4, demonstrated significant promise in ad-
dressing the RQ outlined in Chapter 1. These experiments effectively engaged students, and
facilitated the introduction of concurrency concepts through a playful and familiar domain, with
a simplified NM that also presented the challenges of the topic, such as data races and deadlocks.
After successful pilot runs in various undergraduate courses, we intend to systematically intro-
duce this activity to first year students in the Computer Architecture course. This approach will
introduce and preview an advanced topic, stimulate students’ interest, and prepare them for the
complexities of concurrent programming that they will encounter in later coursework.

We also plan to present this activity to ICDD students as evidence of our ongoing educational
research and as an example of how to design effective teaching modules. This activity covers sev-
eral key aspects of successful pedagogy, including the selection of an appropriate programming
language, the identification and analysis of common student misconceptions, and the develop-
ment of engaging and interactive learning experiences.

Finally, we aim to present this activity to secondary school teachers as a potential tool for in-
troducing concurrent programming to younger students. We believe that the constructionist
approach of the Sonic Pi platform can effectively introduce basic concepts of concurrent pro-
gramming in an engaging and accessible way. We acknowledge that this study represents a first
step in developing effective pedagogical approaches to concurrency education. Further research
is warranted to explore the long-term impact of this approach on student learning outcomes and
to refine the Sonic Pi-based activities for wider applicability.
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Similarly, the experiment described in Chapter 5 produced encouraging results in terms of learn-
ing objectives and student engagement, demonstrating its practical application in database edu-
cation. As a result, the TPS teaching methodology has been successfully incorporated into our
database course at the University of Genoa, particularly in the data modelling laboratory sessions
and applied exercises. We also intend to retain the team peer review activity for the conceptual
design phase of the final project, as it promotes collaborative learning and the development of
critical thinking skills.

Experiments with Python have provided valuable insights into different pedagogical approaches
to introducing programming. Each of these approaches has its own strengths and limitations,
so the choice of methodology depends on the specific characteristics of the target audience. In
terms of data-centric pedagogy, our ToyPandas package seems to support this, and we intend to
experiment with this in other future activities.

This research serves as a pilot study investigating different strategies for introducing program-
ming to beginners. The results provide a valuable basis for the development of future iterations
or activities within introductory programming courses, such as those offered by the University of
Genoa’s “Stage di Informatica” programme. In addition, these experiments can serve as a reflec-
tive tool for the CS1 course, providing valuable insights into approaches that can foster students’
curiosity and motivation.

Similarly, the data literacy units designed for high school students can serve as a basis for our
data-related courses offered at undergraduate and graduate levels, and their results played a key
role in the construction of the course proposal presented in Chapter 9. Furthermore, the author
of the thesis, who is now taking on a new role as a CS teacher at a commercial vocational school,
has partially adopted this approach to design a learning unit (“Unità di apprendimento” in Ital-
ian) for his students. This unit focuses on the analysis of website data using the online data
visualisation tool Google Analytics, using the Google Merch dataset provided by Google1. The
interdisciplinary unit also included mathematical-statistical and marketing concepts. While there
is currently no data available to assess the effectiveness of this approach in terms of learning out-
comes as the unit has not been completed, initial observations seem to indicate a promising tra-
jectory as students have shown increased levels of engagement and interest. Finally, we express
our hope that the proposed IDS course will be implemented in the curriculum of the University
of Genoa in the forthcoming academic years.

Although the reported experiences are primarily based on preliminary qualitative findings, they
have significant potential to address the research question. The use of visualisation tools such
as Tableau, rather than our ToyPandas library with its simplified NM, alongside group projects
using real-world datasets, is a promising way to promote DS thinking. Integrating these elements
into even short unit modules has the potential to create authentic DS experiences that cultivate

1Google Analytics - Demo Account: https://support.google.com/analytics/answer/
6367342?hl=en
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data-driven thinking in students.

As part of our future research, we would like to experiment with our data activities with high
school students. This will involve adapting our existing materials and methods to make them
accessible and engaging for a younger audience. We believe that this will help to stimulate
interest in data systems and related fields among high school students and encourage them to
pursue further studies in these areas.

Finally, although our focus has been on data modelling, we aim to explore and identify the
main misconceptions surrounding data query languages (e.g., SQL) at both university and school
level. We believe that it will help us to improve the teaching provision and develop more effective
teaching methods and resources for database education. This will involve conducting surveys and
interviews with students to understand the challenges they face when learning and using SQL.
As part of the work of designing the CS curriculum of the school2 where the author currently
works, and based on the general and professional competences indicated by Indire3, the author
of this thesis has decided to introduce databases and SQL into his teaching. He would like to
start some preliminary research into students’ misconceptions about basic SQL concepts.

Lastly, we aim to validate an active learning methodology specifically designed for application-
oriented logical database design. This methodology was introduced to undergraduate students
enrolled in our database course. The experiment investigated the feasibility of using our method-
ology to teach advanced topics such as data redundancy and aggregates, which are fundamental
concepts in many NoSQL databases. While the initial results are encouraging, further refinement
and empirical validation are needed to solidify the effectiveness of this approach.

Limitations

Our research has several limitations that should be considered. First, our experiments were con-
ducted on a small scale with limited student demographics. This makes it difficult to generalize
our findings to broader populations. Second, our research did not always involve a formal eval-
uation of the effectiveness of our teaching methods. This means that we cannot definitely say
whether our methods were more effective than traditional teaching methods. Third, our research
did not focus on long-term student outcomes. We do not know whether the positive effects of
our teaching methods persisted after students completed our courses. Finally, the decision not
to use randomised controlled trials as a research method because of ethical and moral concerns
may introduce another layer of bias and affect the generalisability of our findings.

Despite these acknowledged limitations, our research provides valuable insights into the potential
of innovative teaching methods in computer science (CS) and data education. These findings

2Istituto Scolastico Casaregis
3Professional Area Skills for Commercial Vocational Schools, General Area Skills for Vocational Schools
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provide a strong foundation for further research, and we believe they hold great promise for
improving CS education practices.
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Appendix A

Concurrency Education with Sonic Pi

A.1 RAT Results

For the sake of completeness, in this section we discuss the results of the RAT quizzes.

• For CA students, as expected, we found that team scores tended to be higher than individual
scores. Specifically, the RAT quiz success rate (i.e., the percentage of correct answers)
increases from 5.6 for the individual test to 6.5 for the team test. Table A.1 shows the
percentage of total correct answers for each item Qi. We found that teams outperformed
individuals in all but the first question, which was about live coding loops. Specifically,
Q1, 19 teams answered correctly, and 6 students voted for “No effect on execution. This
is live coding”, 7 students voted for “It forks the main thread and creates two new ones.
One will play 60 and the other 65. This is live coding”, and 1 student voted for “It raises
a runtime error”. Looking at the individual responses, we can see that the second question
was the most difficult, which was about live coding with live loops and a sample outside
the loop.

• For the CP results, table A.2 shows the percentage of total correct answers for each item
Qi for both individuals and teams. It can be seen that the teams achieved significantly
higher percentages of correct answers than the CA students, performing better in all five
questions. For the CP students, the fourth question was the most challenging, which was
about live coding with live loops and the get/set synchronization mechanism.
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CA Q1 Q2 Q3 Q4 Q5

Individual 75% 37% 49% 44% 60%

Team 59% 63% 59% 63% 81%

Table A.1: CA individual and Team RAT results.

CP Q1 Q2 Q3 Q4 Q5

Individual 61% 46% 48% 37% 70%

Team 91% 91% 82% 73% 91%

Table A.2: CP Individual and Team RAT results.

A.2 Individual Post-Questionnaire

• I think that the activity was effective in introducing and/or deepening some concepts of
concurrent programming. Likert scale ranging from 1 to 5.

• I believe that the musical approach with Sonic Pi helps to understand concurrency in a
simple, intuitive, and less abstract way. Likert scale ranging from 1 to 5.

• I think that this activity has mainly helped me to... Open answer.

• I consider the level of difficulty of the suggested exercises to be Easy, Ok, Difficult.

• I consider the time needed to complete the activity to be Very suitable, Suitable, Not suit-
able.

• I prepared adequately for the class activity. Likert scale ranging from 1 to 5.

• Have you developed concurrent code in school/university or professional projects? Yes
(with open answer); No

• Have you ever used the Ruby programming language or the Sonic Pi development envi-
ronment? Yes; No

• Teamwork was useful and satisfying. Likert scale ranging from 1 to 5.
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A.3 Knowledge Transfer Test

Figures A.1, A.2, and A.3 show the three exercises of the knowledge transfer test.

A.4 Gallery Walk - Team APP Results

Figure A.4 illustrates the results of the gallery walk for tasks 6 and 7.
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Figure A.1: Exercise 1
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Figure A.2: Exercise 2
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Figure A.3: Exercise 3
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Figure A.4: Team Task 6 and 7 Solutions
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Appendix B

Python for All

B.1 A Block-Based Introduction to Python

The teaching unit was structured as follows:

1. Algorithms, Flowcharts, Programs, and Executor

• Understand algorithm design and representation using flowcharts.

• Learn how to write and execute Python programs using EduBlocks.

2. Variables

• Explore the concept of variables in Python.

• Understand variable naming conventions and rules.

• Learn how to assign values to variables.

• Type Casting

3. Basic Data Types and I/O

• Study the fundamental data types in Python, including integers, floats, strings, and
booleans.

• Learn how to perform operations and manipulations with these data types.

• Print() and Input() statements

4. Comparison and Boolean Operators

• Understand comparison operators (e.g., ==, >, <, etc.) and their usage.
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• Explore boolean operators (e.g., and, or, not) for logical evaluations.

5. Conditional Control Structures

• Learn how to make decisions using if, if-else, and if-elif-else statements in Python.

6. Python Lists

• Explore Python lists, a versatile data structure for storing collections of elements.

• Learn list manipulation techniques such as appending, indexing, and slicing.

7. Conditional Loop Structures

• Iteration: for and while loops.

• Learn how to control loop execution with break and continue statements (optional).

8. User-defined Functions & Pseudo-random Numbers

• Study how to create custom functions in Python.

• Learn how to generate pseudo-random numbers in Python using the random module.

The final assignments for each module require students to:

1. Devise an algorithm for computing the area and perimeter using the provided radius, and
generate a corresponding flowchart for the algorithm.

2. Exchange the values of two variables, requiring students to manipulate the roles and as-
signments of the variables.

3. Receive two input numbers and store them in separate variables, then calculate and display
their sum. To work with the numbers as integers, students need to convert the values from
strings to integers.

4. Accept an input number and assess if it fulfills a specified condition using boolean and
comparison operators.

5. Similar to the previous task, but incorporate an additional condition using an if-else state-
ment.

6. Utilize a Python list to hold values like name, surname, and age. Based on the age value,
output an appropriate message using an if-else statement.

7. Validate, for each element within a given list, whether its value matches a specified value.
To tackle this, students will need to utilize both conditional and iterative statements.
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8. Final task. Create a program to implement the “Guess the Number” game using the Ran-
dom library, lists and user-defined functions, if desidered. In this game, the player provides
input (guesses) to the game and receives feedback based on his guesses. The “game mas-
ter” (the computer) plays the role of generating a random number within a predefined range
and provides feedback on the player’s guesses. The feedback varies based on the value the
player enters; if the guess is less than the hidden number, the program will print a message
indicating that it’s too low. If the guess is greater than the hidden number, the program will
print a message saying it’s too high. Finally, if the guess is equal to the hidden number,
the program will print a message indicating that the player has guessed correctly. The in-
teraction between the player and the Game Master continues until the player successfully
guesses the hidden number. The player’s goal is to guess the number in as few attempts as
possible.

B.2 A Physical Computing Approach to Introductory Python
Programming

We formulated the following tasks:

1. In task 1, students were asked to implement code that would detect button presses and
perform the appropriate actions. Pressing key A would increment the variable by 1, while
pressing key B would display the updated value of the variable on the micro:bit’s screen.

2. In task 2, students have to implement a program that handles button presses and updates
the variable value accordingly. Pressing button A would increment the variable by 1, but
only if the value was less than 6 (the maximum value a dice can take). Pressing button B
would display the current value of the variable on the micro:bit’s screen. They then had to
implement an additional solution that would reset the count variable to 1 when button A
was pressed and the count variable had a value of 6.

Through this exercise, the students practiced conditional statements, variable manipula-
tion, and screen display on the micro:bit. They also gained an understanding of how to
restrict the range of possible variable values and how to respond to specific keystrokes.

3. The third task required changing the behavior of the program when keys A and B were
pressed. Specifically, when button A was pressed, the program had to increment the
counter variable by one and print its value. When button B was pressed, the program
had to decrement the counter variable and display its value.

By completing this exercise, students practiced handling button events, modifying vari-
ables based on user input, and displaying output accordingly. It provided an opportunity
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to explore different button interactions and introduced the concept of dynamically manip-
ulating variables in response to user actions.

4. The fourth task was similar to the previous one, but with a special requirement to display
the symbol of the die face instead of the decimal number. Students had to use the Image
class objects provided by the micro:bit library to represent each cube symbol. They also
had to use the if-else construct to select and display the appropriate image based on the
variable value.

By implementing this exercise, students continued to practice conditional statements, ma-
nipulating variables, and using micro:bit’s built-in features to create visually appealing
output.

5. The fifth task, which built on the previous one, asked students to use the accelerometer
functionality to detect shaking. When a “shake” was detected, the program had to generate
a pseudo-random number using the random library and display the corresponding cube
image.

This exercise allowed the students to further explore other aspects, including sensor inte-
gration and random numbers, while increasing the interactivity and unpredictability of the
program.

6. The sixth exercise required students to create a list of all the die faces (Image objects)
and modify the code to use the elements in the list. By creating a list of all the die faces,
students gained a more efficient and organized approach to handling multiple images. They
then modified the code to access the images from the list based on the variable value or
the randomly generated number. This implementation allowed for more flexibility because
changing the cube faces only required changes within the list, rather than modifying the
code for each individual image.

This exercise encouraged students to explore the benefits of using lists to manage collec-
tions of data and improve code readability and maintainability.

7. Task 7 required the implementation of a Python function to be called on each event trig-
gered by button presses or the accelerometer. The purpose of the function was to check the
parity of a number. If the number was even, the symbol/image of a heart was displayed on
the screen, followed by the image of the die face.

Through this exercise, students gained an understanding of the concept and potential of
functions and modular programming. They learned how functions can improve code struc-
ture, increase code reusability, and facilitate event-driven behavior.

8. Task 8 required simulating the roll of two dice by combining the values generated by shak-
ing two micro:bits (each of which generates a pseudo-random number). The two micro-
controllers exchange messages using the micro:bit’s radio protocol (based on Bluetooth).
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Through this exercise, students explored the concept of distributed systems and the mes-
sage passing paradigm. They gained hands-on experience using the micro:bit radio pro-
tocol to exchange data between devices. They also gained experience with type casting
because the radio protocol only sends string objects, not numbers.

B.3 A Data-Centric approach to Programming

On the first day, we covered the following topics:

1. Introduction to DS and data-driven paradigm.

• Students grasped the importance of data in driving decisions and solutions across
domains, establishing data science as a critical modern discipline.

2. Introduction to programming: algorithms, executors, programs, and programming lan-
guages.

• Students learned the basics of programming, understanding how algorithms solve
problems and how programming languages effectively communicate with computers.

3. Variables, data types, and dynamic typing.

• Students gained insights into variables and data types, specifically focusing on inte-
gers, floats, and strings.

4. Tabular data structures: Series and DataFrame.

• Students explored the value of these structures for efficient data manipulation and
analysis, becoming essential tools for handling large data sets.

5. Comparison and logical operators applied to data (e.g., masks and filters).

• Students discovered how to create masks and filters to extract and manage data based
on specific conditions, enabling powerful data analysis tasks.

By the end of the first day, students had a basic understanding of Python programming. On the
second day, we presented the following topics:

6. How to import CSV dataset.

• Students will be guided on reading data from CSV files and storing it in a dataframe.

7. Basic data exploration techniques.
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• Students will explore fundamental data exploration techniques, including examining
data dimensions, getting data summaries.

8. Handling Missing Values, Duplicates, and Outliers.

• Students will learn essential data cleaning techniques, ensuring data integrity and
accuracy in their analyses.

9. Data Filtering

• Students will master performing data filtering based on conditions using DataFrame
APIs, resembling SQL queries.

• Example: movies_df[movies_df[’Rating’] >= 8]

10. Data Transformation

• Students will learn how to apply custom operations to data and make changes to the
dataset according to specific conditions.

• Students will learn how to define and use functions and conditionals.

11. Data Visualization

• Students will explore data visualization by creating graphs, charts, and maps using
Matplotlib and other libraries.

• Students will gain insight into how to interpret and communicate effectively with
data.

B.4 Individual post-questionnaire

Likert scale quiz (0-4):

• How interesting did you find the proposed activities?

• How difficult did you find the proposed activities?

• How useful did you find the proposed activities?

• How helpful was the PCTO in clarifying your ideas about your future choices?

• Free comments

Programming questions:
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1. Given the following expression: not(not(A) and B) and assuming that A and B can
take the boolean values True and False. For which pairs of values A, B is the expression
evaluated as False?

• A and B True

• A and B False

• A = True, B = False

• A = False, B = True

2. Given the following program:

x = 0
for i in range(5):

print(x)
x = x + 1

What is the output of the program?

• 1, 2, 3, 4, 5

• 2, 3, 4, 5, 6

• 0, 1, 2, 3, 4

• 0, 1, 2, 3, 4, 5

3. Given the list: s = [1, 2, 44, 0]. Determine the value of: s[1], s[3], s[4]: (Given the
series: s = series(1, 2, 44, 0). Determinare the value of: s.indexlocate[1], s.indexlocate[3],
s.indexlocate[4])

• 1, 44, 0

• 2, 0, IndexError: list [series] index out of range

• 1, 0, IndexError: list [series] index out of range

• 1, 44, IndexError: list [series] index out of range
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Appendix C

A Data Science Course for Non-Computing
Majors

C.1 Lesson Plan

In this section we outline the lesson plan for the course and the learning content of each lesson.
Please note that the above lesson structure is a general guideline and can be adapted according
to the teacher’s preferences and the students’ needs. The time allotted for each section can be
adjusted accordingly.

Lesson 1: Introduction to Data Science

The first lesson serves as an introduction to DS and focuses on cultivating a data-centric mindset.
Students will be introduced to the concept of thinking with data and making ethical decisions
based on data. The lesson is delivered in a frontal format where the teacher combines verbal
communication with visual aids such as slides to effectively present examples.

What is Data Science?

• Briefly introduction of the importance of DS in today’s digital age.

• Present data literacy as a fundamental 21st century skill for individuals to navigate an
increasingly data-driven world, both in everyday life and in professional contexts.

• Highlight the role of data in driving insight, innovation and decision making.
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• Define DS as a multidisciplinary field that involves extracting insights and knowledge from
data.

• Emphasise the interdisciplinary nature of DS, combining elements of statistics, mathemat-
ics, CS and domain-specific knowledge.

Comparison with Other Terms: Big Data and Machine Learning

• Introduce the 5 V’s model (Volume, Velocity, Variety, Veracity, and Value) as a framework
for understanding the characteristics of Big Data.

• Explain how the 5 V’s highlight the challenges and opportunities associated with process-
ing, analyzing, and deriving insights from large datasets.

• Discuss how DS encompasses the methods and techniques used to extract meaning from
data, while big data emphasises the challenges of dealing with large and complex datasets,
and machine learning focuses on algorithms that enable computers to learn from data.

Ethical Considerations

• Delve into the principles of data ethics, fairness, and privacy.

• Explain the importance of obtaining informed consent, anonymising data where appropri-
ate, and exercising due diligence when handling sensitive information.

By following this lesson structure, students will acquire a robust foundation in grasping the fun-
damental concepts of DS as an interdisciplinary field. They will also appreciate the importance of
data literacy and develop a heightened awareness of the challenges and opportunities associated
with data.

Lesson 2: Data Science Lifecycle with Tableau

The second lesson focuses on an introduction to data analysis and visualization using Tableau.
Tableau simplifies the process by providing a visual, code-free interface. Each variable is repre-
sented as a draggable element and can be a measure or a dimension. To create a visualization,
you simply drag and drop variables. The lesson is structured as follows:
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Introduction to Data Visualization (10 minutes)

• What is data visualization?

Practical examples (scatter plots, line plots, bar charts, histograms, etc.).

• The role of data visualization in data analysis and in storytelling.

In data analysis, visualization serves as a powerful tool for identifying patterns, trends,
and anomalies that may not be readily apparent from raw data. By transforming data into
visually appealing representations, data visualization enables us to gain insights from large
datasets and make informed decisions.

In storytelling, data visualization serves as a compelling medium for communicating
complex information to a wide audience. It conveys data-driven insights in an engaging
and understandable way.

Introduction to Tableau (50 minutes)

• A quick overview of Tableau software.

• Import a dataset (e.g., a CSV file) into Tableau.

• Explore the data, in terms of rows (records) and columns.

• Identify a research question that will guide the entire project.

• Introduce the concept of Tableau column data types (e.g., numeric, text, geographic, etc.)

• Identify basic data quality issues (duplicate columns, null records, incorrect values w.r.t.
the domain, inconsistent data types etc.)

Visualize the Data (30 minutes)

• Introduce students to the types of statistical variables in Tableau

Tableau “measures” (quantitative variables) and “dimensions” (qualitative variables).

• Demonstrate how to create different visualizations such as bar charts, line graphs, scatter
plots, and geographic maps using Tableau.
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Lesson 3: Dashboards and data-driven Stories

In Lesson 3, students will gain hands-on experience with Tableau and develop skills in sharing
and communicating with data. They will learn how to create powerful and meaningful visualiza-
tions and dashboards for effective data communication.

Choosing the most appropriate type of chart/graph (30 minutes)

• Emphasize the importance of selecting appropriate visualizations based on the type of data
and the research question.

Correct visualizations from a statistical point of view (considering the statistical data
type with respect to the chosen graph).

Effective from a communication point of view, emphasizing data visualization as a
means of storytelling.

Dashboards (45 minutes)

• Collect appropriate visualizations in a Tableau dashboard.

• Add interactivity to dashboards.

• Emphasize the importance of creating visually effective dashboards to communicate effec-
tively with data to different audiences.

• Learn the best practices for visualizing data:

Less can be more. Minimize decorations and other “chart junk”;

Choose colors carefully

Reduce the number of colors;

Use only useful data (filter out all irrelevant data);

...

Lesson 4: Sharing and Communicating with Data

In this lesson, students will learn how to share accessible dashboards. Students will also reflect
on visual best practices to make their visualizations inclusive and accessible. In fact, data visual-
izations are often inaccessible due to low color contrast, inadequate labeling, or images without
alt text. This means that part of the audience may be excluded from the information presented,
which should be avoided.
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Tableau Stories

• Explain how to publish and share dashboards on the Tableau Public platform.

• Walk students through the process of uploading the dashboard to Tableau Public website.

• Discuss ethical and privacy issues (e.g., personal or sensitive data, etc.) related to data
sharing

• Introduce students to Tableau Stories as a way to enrich the dashboard with multimedia
elements such as text and images to create a more effective and meaningful visualization,
emphasizing the importance of communication and storytelling skills.

Data Vizualization Accessibility

• Improving color contrast, properly labeling elements, adding text to graphs/charts, etc.

• Discuss the impact of inclusive data visualization design on data communication.

Lesson 5: Case-Study with Tableau (2 hours)

Hands-on The fifth lesson presents a hands-on, team-based activity that utilizes Tableau to
provide students with the opportunity to apply their acquired data science skills in a real-world
context. Working with a dataset of their choice, preferably related to their area of interest, such
as cultural data, students will engage in a data-driven exploration to uncover meaningful insights.

A wealth of cultural and digital humanities dataset resources is readily available on the internet.
For example, one reputable and valuable source is UNESCO1, or the University of Pittsburgh2.

Student groups are tasked with completing the assignment within a ten-day timeframe. The group
assessment will be incorporated into the overall individual assessment, ensuring that teamwork
and individual contributions are both valued.

Throughout the lesson, the instructor and teaching assistants will act as learning facilitators, pro-
viding guidance and timely feedback to students as they collaborate in their teams. This support
will foster a collaborative learning environment and ensure that students effectively leverage their
data skills to tackle the practical task at hand.

The activity will be structured as follows:

1http://uis.unesco.org
2https://pitt.libguides.com/findingdata/digitalhumanities
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• Introduction to the Assignment: Students will be tasked with creating a data visualization
project that showcases their proficiency in using Tableau for effective data communication.

• Data Import and Exploration: Students will import the provided dataset into Tableau, thor-
oughly exploring and understanding the data to gain insights into its structure and charac-
teristics.

• Research Question Formulation: Students will formulate a specific research question that
can be meaningfully addressed by analyzing the dataset, considering the audience they aim
to communicate with.

• Data Quality and Cleaning: Students will perform basic data cleaning procedures to en-
sure the accuracy and integrity of the dataset, addressing any potential inconsistencies or
anomalies.

• Visualization Creation: Students will create meaningful visualizations using Tableau to ef-
fectively answer the formulated research question. These visualizations should be tailored
to the specific needs and preferences of the target audience.

• Dashboard: Students will organize the created graphs and charts into a comprehensive and
effective dashboard that effectively communicates the research findings and insights.

• Presentation: Students will present their Tableau dashboard or stories to the wider com-
munity, effectively conveying their data-driven findings.

• Technical Report Preparation: Students will prepare a technical report, using word pro-
cessing software, discussing the design choices made throughout the project, summarizing
the key findings and results of the data analysis, and addressing ethical considerations
relevant to data handling and presentation.

Deadline. The deadline for submitting the assignment is the end of the next two weeks.

Evaluation Criteria. The evaluation criteria should be provided to students prior to the assign-
ment. The evaluation covers three dimensions: quality of data analysis, quality of data presenta-
tion/communication, and quality of the technical report. Instructors should provide constructive
feedback to each group to support their learning and improvement, and summarize the take-home
message from the assignment. Refer to Table C.1 in Appendix for the details.

Lesson 6: Introduction to Python Programming

This lesson provides an introductory overview of programming concepts and syntax, with a
focus on addressing common misconceptions. The instructor will lead in-class demonstrations
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and exercises to ensure students grasp the fundamental concepts of programming, such as the
distinction between variable names and string values, and the difference between expressions
and statements.

Why Programming? (45 minutes)

• From Tableau to Python: Highlight the advantages of using a programming language (e.g.,
greater customization, rich collection of libraries, etc.).

• Introduction to algorithms, programs, and executors.

• Introduction to Google Colaboratory and Jupyter Notebooks.

Python as a Calculator (45 minutes)

• Using Python to perform basic arithmetic operations.

• Introducing variables (variable name, variable assignment etc.)

• Present three basic data types: integer, float, string.

Lesson 7: File Input/Output, Conditional Statements and For Loop

In Lesson 7, students will explore importing and manipulating text files using conditionals and
iteration. Before diving into the new concepts, students will engage in a collaborative activity
using the TPS teaching methodology to reinforce their understanding of the topics covered in the
previous lesson.

TPS Activity (20 minutes) To effectively review the concepts from the previous lesson, the
instructor can employ the TPS teaching methodology, guiding students through a collaborative
activity that focuses on swapping variable values using a temporary variable.

5 minutes for individual work, 10 minutes for pair work, 5 minutes for plenary discussion.

File Input / Output (70 minutes)

• Introduction to Python files I/O.

• How to read rows and print lines from a file: Introducing iteration (for loop).
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• How to filter data: introduction to conditional statements (if-else) and indexing.

For example, to read a .csv file line by line:

import csv

with open(’dati.csv’, ’r’) as file:
reader = csv.reader(file)

for row in reader:
print(row)

To filter data according to a condition:

import csv

reader = csv.reader(file)

for row in reader:
# Suppose column 2 contains numeric age values and we want
to print only rows with a value greater than 18.
if row[2] > 10:

print(row)
else:

print("The value does not satisfy the condition.")

The latter examples exposes students to the concept of indexing. In fact, each record of the file
is a Python list, where each column is identified by a numerical index. Specifically, the index of
the first column is 0, the second column is 1, and so on.
Notes: The course only introduces for loops, but does not cover while loops or recursion. This is
beyond the scope of our learning goals, as students will focus on Pandas, which uses a declarative
style where iteration is implicit in the dataframe idiom.

Lesson 8: Functions

The objective of this lesson is to introduce students to the concept of functions in Python and
enable them to understand the benefits of using functions, how to define and call functions, and
how to work with parameters and return values.
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Introduction (30 minutes)

• Advantages of using functions: code reusability, organization, and abstraction.

• Explain the syntax of defining a function in Python.

• Demonstrate how to define a simple function without parameters and return values.

• Encourage students to create and call their own simple functions.

Parameters and Return Value (30 minutes)

• Explain the concept of function parameters and their role in passing data to functions.

• Show examples of functions with different types of parameters.

• Guide students in creating functions with parameters and calling them with various argu-
ments.

• Discuss the use of the return statement in functions to return value.

• Explain the significance of returning values from functions.

• Show examples and guide students in creating functions with return value.

Scope and Lifetime of Variables (30 minutes)

• Introduce the concepts of variable scope, local and global variables.

• Show examples of variable scope within and outside of functions.

Lesson 9: Python Lab (2 hours)

In this lab, students will work in groups to gain hands-on experience with importing, processing,
and manipulating data from CSV files. Students will start by importing a CSV file using the
standard Python library. Then, they will store the data in a variable and print the data row by row,
filtering the data to print only those rows that meet a given condition on one or more attributes.
Finally, students will define a custom function to transform the value of a given attribute and
print the updated values.

During the lesson, the instructor and teacher assistants will serve as learning facilitators, guiding
students and providing immediate feedback. This lab is considered ungraded and no formal
submission is necessary.
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Lesson 10: Introduction to Pandas

By the end of this lesson, students should be familiar with the basics of data manipulation and
analysis using Pandas.

Introduction to Pandas (20 minutes)

• What is Pandas and why is it popular in data analysis?

• Key features and benefits of using Pandas.

• Instructions to import/install Pandas and its dependencies.

• Introduction to Series: Understanding one-dimensional labeled arrays (similar to a column
in a spreadsheet).

• Introduction to DataFrame: Introducing two-dimensional labeled data structures to store
tabular data (similar to a spreadsheet).

Data Import and Basic Operations (30 minutes)

• Importing data (e.g., CSV, Excel, etc.)

• Exploring data using head(), tail(), info(), describe(), and shape.

• Data selection, indexing, and slicing.

• Explore built-in functions in Pandas (e.g., max, mean, average) and apply them to a sin-
gle column to compare them to the file-based approach, emphasizing the simplicity and
efficiency of using these functions compared to manual iterations.

Data Cleaning and Preprocessing (30 minutes)

• Handling missing data using dropna() and fillna().

• Removing duplicates with drop duplicates().

• Renaming columns and handling data types.
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Lesson 11: Data Analysis in Pandas

Students will delve into the Pandas library. They will be introduced to aggregation functions,
sorting, and complex multi-column boolean conditions to filter and manipulate data.

Data transformation operations (45 minutes)

• Filtering data using boolean indexing.

Introduction to boolean data types and bitwise operators.

• Grouping data with groupby() and performing aggregate functions such as sum(), mean(),
count(), etc.

• Using the pivot() function to transform data between wide and long formats.

Hands-on (45 minutes) Students will work on an guided notebook to practice data transforma-
tion operations using Pandas. The dataset should be tailored to students’ interest. The instructor
will provide assistance and answer questions throughout the lab.

Lesson 12: Advanced data transformations in Pandas

Students will delve deeper into Pandas, exploring merge operations and handling missing values
and duplicates. They will also learn how to apply functions to columns.

Data Manipulation

• Summary of Data Transformation in Pandas.

• Merging DataFrames (inner, outer, left, right merge).

• Concatenating two DataFrames, vertically and horizontally.

• Handling of mismatched indexes and columns during concatenation3.

• Applying user-defined functions to columns using the apply() method to transform data.

• Optional. Gain an understanding of anonymous functions (lambda functions) in Python.
Learn how to apply anonymous functions inline using the apply() method.

3This problem does not occur when using ToyPandas.
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Hands-on (45 minutes) Students will work on a Jupyter notebook to practise data transfor-
mation operations using Pandas. The instructor will be available throughout the lab to provide
assistance and answer questions.

Lesson 13 & 14: Data Visualization with Matplotlib

By the end of this lesson, students should have a basic understanding of data visualization in
Python and be familiar with the Matplotlib library.

In particular, students will gain hands-on experience in creating various types of plots, including
line plots, scatter plots, bar charts, histograms, and subplots. They will also explore advanced
plotting techniques, such as box plots, and gain an introduction to additional plotting libraries
like Seaborn and Plotly.

• Installing/importing Matplotlib.

• Creating a basic plot using Matplotlib’s interface.

• Customizing plot appearance (colors, labels, titles, legends, etc.).

• Line Plots and Scatter Plots.

Creating line plots to visualize trends and patterns in data.

Generating scatter plots to visualize the relationship between two variables.

Adding markers, colors, and labels to enhance plot readability.

• Bar Charts and Histograms.

Creating bar charts to compare categorical data.

Customizing bar charts with different styles and colors.

Understanding histograms and their use in visualizing data distributions.

• Advanced Plots with Matplotlib.

Subplots: Arranging multiple plots in a single figure.

Box-plot: visualize the center and distribution of the data.

• Introduction to other plotting libraries (choose one or more libraries, such as Seaborn,
Plotly, or ggplot, wordcloud etc.).
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Lesson 16: Pandas Lab

In this lab, students will be given a partially completed notebook to complete. The notebook will
take them through the various steps they have learnt in previous lessons, from importing data
to creating simple plots using Python libraries. ere are some specific tasks that students will be
asked to complete:

• Import data from a CSV file

• Clean and format the data

• Create simple graphs and plots using Matplotlib or other libraries.

• Customize the appearance of the plots.

This lab is designed to help students solidify their understanding of the concepts they have
learned and to gain hands-on experience with using Python for data visualization.

The instructor and any teaching assistants will serve as facilitators/tutors, helping students as
needed.

If students do not complete the lab in class, they can complete it and submit it on the course
website. The lab assignment is not graded, but it is required for students to complete the course.

Lesson 16 &17: Introduction to Machine Learning - NLP

In this lesson, students will be introduced to the fundamental concepts of machine learning using
the scikit-learn library in Python.

Introduction to Machine Learning (15 minutes)

• Define machine learning and its role in various fields, including digital humanities.

• Introduce the concept of natural language processing (NLP) and its applications in text
analysis.

• Introduce other examples including social media analysis and literary analysis.

• Explain the concept of training data and model prediction.
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The Machine Learning Workflow (20 minutes)

• Present the basic steps of the machine learning workflow:

– Data collection and preparation.

– Model selection.

– Model training.

– Model evaluation.

– Prediction using the trained model.

Hands-on Activity 1: Text Classification (60 minutes) To introduce text analysis, it is sug-
gested to provide a notebook with Naive Bayes, as it is a very simple algorithm that is already
implemented in the scikit-learn library. It is also suggested to choose a simple dataset, such as
news articles categorised by topic.

• Explain the concept of Naive Bayes and its underlying principles.

• Discuss the pros and cons of using Naive Bayes for text classification.

• Import the necessary libraries in Python.

• Import a dataset of text documents labeled with various categories.

• Preprocess the text data, such as removing punctuation and converting to lowercase.

• Create a vocabulary of unique words and their frequencies in each category.

• Calculate the conditional probabilities of different words given a class label.

• Use the Naive Bayes algorithm to classify new text documents into the appropriate cate-
gory.

• Practice building a Naive Bayes classifier using Python on a sample dataset.

• Observe how the classifier performs on new text documents.

• Experiment with different parameters and techniques to improve the classifier’s accuracy.
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Hands-on Activity 2: Sentiment Analysis (60 minutes) Students will be introduce to senti-
ment analysis. We suggest to use a simple dataset of social media posts with sentiment labels for
initial practice, such as tweets categorized as positive, negative, or neutral.

• Introduction to Sentiment Analysis and Social Media

• Define sentiment analysis and its role in social media analysis.

• Discuss the benefits of sentiment analysis for understanding public opinion, identifying
trends, and analyzing social phenomena.

• Introduce social media platforms and their role in digital humanities research.

• Present Naive Bayes algorithm for sentiment analysis, and introduce the concept of senti-
ment lexicons and their applications in sentiment analysis.

• Provide a dataset of social media posts with sentiment labels.

• Students have to preprocess the text data, such as removing punctuation, converting to
lowercase, and handling emojis.

• Create a vocabulary of unique words and their frequencies in each sentiment class.

• Calculate the conditional probabilities of different words given a sentiment label.

• Apply the Naive Bayes algorithm to classify new social media posts into the appropriate
sentiment category.

• Evaluate the performance of the sentiment analyzer using accuracy, precision, and recall
metrics.

• Create some visualisations, such as a word cloud, histogram and so on.

Lesson 17: Presentation of the Final Project

This lesson focuses on introducing the final team project, where students will analyze a real-
world dataset of their choice. The project will require them to collect, prepare, and transform
data, analyze it, and create meaningful graphical visualizations. Each team will be required to:

• Analyze data using Python libraries, especially prepare a Jupyter Notebook Python in
which all analyses and visualizations are properly annotated and presented.
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• Prepare a multimedia presentation showing the overall project, the target audience, re-
search question, results, ethical considerations, as well as discussing limitations, possible
future directions, organization of teamwork, and a reflection on the data literacy and soft
skills acquired.

The instructor needs to make explicit:

• The purpose and objectives of the final project.

• Provide guidelines for selecting a suitable dataset relevant to their interest, introducing
popular data sources like Kaggle, etc.

• Clarify the evaluation criteria (see Section C.2), and the project submission deadline.

• Provide additional resources or tutorial if needed.

Students may submit an abstract/proposal of their project (e.g., selected dataset and research
question) to the instructor for preliminary feedback before starting the project.

C.2 Evaluation Grids

This appendix provides the evaluation grid for the Tableau project and the final project. Refer to
table C.1 for the details of the tableau assignment, C.2 for the details of the final project grid.
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Aspect Criteria and Description Rating (1-5)

Data Analysis
Number of Graphs and Correct Use
- Number of relevant and insightful graphs for
the research question
- Correct use of graph types based on variable
types (categorical, numerical)
- Appropriate use of aggregation functions
(mean, median, etc.)

Data Communication
Effective and Visually Appealing Dashboards
- Filter and visualization of only relevant data to
the research question
- Appropriate choice of visualization types to
convey information
- Effective use of labels, additional text, and col-
ors to enhance understanding

Technical Report

Clarity and Completeness of the Technical Re-
port
- Clear explanation of design choices
- Clear presentation of research question and in-
tended audience
- Well-presented results and insights
- Thorough consideration of ethical implica-
tions
- Inclusion of metacognitive elements (difficul-
ties faced, limitations, etc.)

Table C.1: Tableau Assignment Evaluation Grid: with Likert scale: Excellent (5); Good (4);
Satisfactory (3); Needs Improvement (2); Poor (1).
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Criterion Evaluation (1-5)
Data Understanding
- Chose a meaningful and relevant dataset, explaining the choice
- Demonstrated a clear understanding of the data through its description
Data Exploration
- Used Pandas functions to load and examine the data
- Identified data types, presence of missing values, and key features of
the dataset etc.
Identifying Research Question
- Formulated a clear and relevant research question
Data Analysis
- Applied appropriate techniques to answer the research question
- Performed correct calculations/statistics using Pandas
Visualizations
- Created meaningful and appropriate visualizations using Matplotlib or
other plotting libraries
- Annotated visualizations clearly and accurately (show only relevant
data, legend, alternative text, color contrast etc.)
Presentation
- Prepared a well-structured and documented Jupyter notebook
- Presented results logically and coherently
- Discussed ethical and privacy considerations
Code Proficiency
- Wrote clean, readable, and efficient Python code
- Commented code clearly and understandably

Table C.2: Final Project Evaluation Grid with Likert scale: Excellent (5); Good (4); Satisfactory
(4); Needs Improvement (3); Insufficient (2).
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