
Doctoral Dissertation

Doctoral Program in Electrical and Information Engineering (36thcycle)

Learning-based Approaches for
Automatic Fault Detection and

Diagnosis in Industrial Systems

By

Bahman Askari

Supervisor(s):
Prof. Engr. Mariagrazia Dotoli, Supervisor

Dr. Engr. Raffaele Carli, Co-Supervisor
Dr. Engr. Graziana Cavone, Co-Supervisor

Doctoral Examination Committee:
Prof. Engr Andrea BONCI, Università Politecnica delle Marche
Dr. Engr Claudio SAVAGLIO, Università della Calabria

Politecnico di Bari

2024

I would like to dedicate this thesis to my beloved family.

Acknowledgements

I would like to express my heartfelt gratitude to the following individuals whose
support and guidance have been instrumental during my Ph.D. journey. First and
foremost, my deepest appreciation goes to Prof. Mariagrazia Dotoli, who was my
supervisor during the Ph.D. program at the Polytechnic University of Bari in Italy.
Her unwavering support, invaluable guidance, and generous assistance have been
fundamental in shaping the direction of my research. I am truly grateful for the
supervision she has provided throughout my academic pursuit. I would also like to
extend my gratitude to Dr. Raffaele Carli and Dr. Graziana Cavone for their insightful
technical discussions, which have significantly contributed to the development of my
work. Their expertise and feedback have been invaluable in advancing my research.
I am indebted to Prof. Antoine Grall for granting me the remarkable opportunity to
join the Computer Science and Digital Society (LIST3N) laboratory and his research
group at the University of Technology of Troyes (UTT) in France. The collaborative
environment within the group, particularly in association with Dr. Yves Langeron,
has greatly enriched my research experience and broadened my horizons. Last, but
certainly not least, I would like to express my profound gratitude to my friends and
colleagues who have provided unwavering support and assistance throughout my
academic journey. I am grateful to each of you for your contributions to my academic
and personal growth. Your guidance and encouragement have been pivotal to my
success, and I am truly fortunate to have had you by my side.

iv

List of Publications

Publications Related to This Thesis:

• B. Askari, R. Carli, G.Cavone, M. Dotoli, "Data-Driven Fault Diagnosis
in a Complex Hydraulic System based on Early Classification", 1st IFAC
Workshop on Control of Complex Systems (COSY 2022), November 24-25,
2022, Bologna, Italy, IFAC-PapersOnLine 55 (40), 187-192.
DOI: 10.1016/j.ifacol.2023.01.070.

• B. Askari, G. Cavone, R. Carli, A. Grall, and M. Dotoli, "A Semi-Supervised
Learning Approach for Fault Detection and Diagnosis in Complex Mechanical
Systems", 2023 IEEE 19th International Conference on Automation Science
and Engineering (CASE), Auckland, New Zealand, August 2023, pp. 1-6.
DOI: 10.1109/CASE56687.2023.10260469.

• B. Askari, Y. Langeron, G. Cavone, R. Carli, A. Grall, and M. Dotoli, "An
Integrated Approach for Failure Diagnosis and Analysis of Industrial Systems
Based on Multi-Class Multi-Output Classification: A Complex Hydraulic
Application", the 33rd European Safety and Reliability (ESREL) Conference.
University of Southampton, United Kingdom, September 2023.
DOI: 10.3850/978-981-18-8071-1-P456-cd.

• B. Askari, A. Bozza, G. Cavone, R. Carli, and M. Dotoli, "An adaptive
constrained clustering approach for real-time fault detection of industrial
systems", European Journal of Control, 2023, 100858, pp 1-10.
DOI: 10.1016/j.ejcon.2023.100858.

Additional Paper (Not Strictly Related to Learning-Based Approach):

• A. Bozza, B. Askari, G.Cavone, R. Carli and M.Dotoli, "An Adaptive Model
Predictive Control Approach for Position Tracking and Force Control of a
Hydraulic Actuator", 2022 IEEE 18th International Conference on Automation
Science and Engineering (CASE), Mexico City, Mexico, 2022, pp. 1029-1034.
DOI:10.1109/CASE49997.2022.9926645.

Abstract

The timely detection and diagnosis of faults are crucial for maintaining the safety and
reliability of industrial systems, as they help prevent severe damage and unexpected
disruptions in operations. In pursuit of this objective, learning-based approaches
have emerged as powerful tools, harnessing various machine learning techniques to
detect potential faults and diagnose their root causes in the systems under study. This
thesis delves into the application and advancement of machine learning methods,
especially in the context of hydraulic and pneumatic systems, vital components at
the heart of industrial machinery. The primary focus is to enhance the fault detection
and diagnosis capabilities within these critical domains, thereby contributing to the
overall performance and longevity of industrial machinery. The hydraulic system
serves as a primary focus of investigation, where an early time series classifica-
tion method is applied to detect faults as early as possible. Leveraging data-driven
approaches, the aim is to detect potential faults in the multi-component hydraulic
system and diagnose their underlying causes using a multi-class multi-output classi-
fication method. The study encompasses the development of algorithms capable of
recognizing deviations from normal system behavior and, in turn, determining the
specific issues that trigger these deviations. Moving forward, my exploration extends
to both pneumatic and hydraulic systems in case of label scarcity in the dataset.
To this aim, semi-supervised learning approaches are combined with conventional
classification methods to harness the power of unlabeled data and improve model gen-
eralization and performance in fault detection and diagnosis. Finally, by employing
adaptive machine learning methods in this context, an adaptive constraint clustering
algorithm is presented for real-time fault detection in the pneumatic system. The
results of this thesis are anticipated to provide practical solutions for maintaining the
safety and reliability of complex industrial systems.

Keywords: Fault Detection and Diagnosis, Hydraulic Systems, Industrial Sys-
tems, Machine Learning, Pneumatic Systems

Contents

List of Figures xi

List of Tables xv

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Problem Statement . 3

1.3 Research Objectives . 3

1.4 Contribution of the Thesis . 4

1.5 Description of Case Studies Conducted in the Thesis 5

1.5.1 Hydraulic System . 5

1.5.2 Pneumatic System . 7

1.6 Outline of the Thesis . 10

2 Literature Review 12

2.1 Supervised Machine Learning Methods 13

2.1.1 A Comprehensive Guide to Supervised Learning 13

2.1.2 Related Works in Supervised Machine Learning for Failure
Detection and Diagnosis 30

2.2 Semi-Supervised Machine Learning Methods 33

2.2.1 A Comprehensive Guide to Semi-Supervised Learning . . . 33

Contents vii

2.2.2 Related Works in Semi-Supervised Machine Learning for
Failure Detection and Diagnosis 37

2.3 Unsupervised Machine Learning Methods 40

2.3.1 A Comprehensive Guide to Unsupervised Learning 40

2.3.2 Related Works in Unsupervised Machine Learning for Fail-
ure Detection and Diagnosis 48

2.4 Reinforcement Learning Methods 50

2.4.1 Brief Overview on Reinforcement Learning Methods 51

2.4.2 A Brief Assessment of Reinforcement Learning for Failure
Detection and Diagnosis 52

2.5 Conclusion of Machine Learning Models for Failure Detection and
Diagnosis . 53

3 Supervised Methods: Data-Driven Fault Diagnosis in a Complex Hy-
draulic System based on Early Classification 54

3.1 Introduction to Early Classification Algorithms and Contribution . . 54

3.2 The Early Time Series Classification Methodology 56

3.3 Illustrative Numerical Example . 58

3.4 Case Study: Complex Hydraulic System 59

3.4.1 Data Pre-processing and Sensor Selection 59

3.4.2 Baseline Methods and Performance Indicators 63

3.4.3 Results and Discussion . 64

3.5 Conclusion of the Early Time Series Classification Method 68

4 Supervised Methods: An Integrated Approach for Failure Diagnosis
and Analysis of Industrial Systems Based on Multi-Class Multi-Output
Classification 69

4.1 Introduction to Multi-Class Multi-Output Classification 69

4.2 A Hybrid Model for Failure Analysis 70

viii Contents

4.2.1 Multi-Class Multi-Output Classification 70

4.2.2 Rule-based Model for Failure Analysis 72

4.3 Case Study: Complex Hydraulic System 73

4.3.1 Setup of Experiments . 73

4.3.2 Results Analysis and Discussion 74

4.4 Conclusion of Multi-Class Multi-Output Classification and Failure
Analysis . 79

5 Semi-Supervised Methods: An Approach for Fault Detection and Diag-
nosis in Complex Mechanical Systems 80

5.1 Introduction to Semi-Supervised Learning 80

5.2 The proposed Semi-Supervised Leaning methodology 81

5.2.1 Inputs Definition . 81

5.2.2 Label Propagation . 83

5.2.3 Training and Classification 85

5.2.4 Implementation Details and Computational Considerations . 85

5.3 Case Study and Numerical Experiments: Complex Hydraulic and
Pneumatic Systems . 85

5.3.1 Data Pre-processing and Experimental Setup 86

5.3.2 Comparison with Baseline Methods 88

5.3.3 Results and Discussion . 90

5.4 Conclusion of Graph-based Semi-Supervised Method based on Label
Propagation . 93

6 Unsupervised Methods: An Adaptive Constrained Clustering Approach
for Real-Time Fault Detection of Industrial Systems 94

6.1 Introduction to Unsupervised Learning and thesis contribution . . . 94

6.2 Fault detection system framework 96

Contents ix

6.3 The proposed methodology based on Adaptive Constrained Cluster-
ing Algorithm . 97

6.3.1 Micro-clustering . 98

6.3.2 Constrained macro-clustering 100

6.4 Case study: Complex Pneumatic System 101

6.4.1 Experimental setup . 102

6.4.2 Performance evaluation . 102

6.4.3 Results analysis and discussion 103

6.4.4 Comparison with related clustering approaches 106

6.5 Conclusion of Adaptive Constrained Clustering Algorithm 108

7 Conclusion and Future Work 110

7.1 Conclusion of the Thesis . 110

7.2 Future Work . 111

References 112

Appendix A Baseline Machine Learning Methods 120

A.1 Mathematical Basics of Classification Methods 120

A.1.1 Logistic Regression . 121

A.1.2 Support Vector Machine 123

A.1.3 Decision Tree Algorithm 126

A.1.4 Random Forest Algorithm 127

A.1.5 KNN Algorithm . 127

A.1.6 Deep Learning . 128

A.2 Clustering Methods . 131

A.2.1 Kmeans Algorithm . 131

A.2.2 Apriori Algorithm . 131

x Contents

Appendix B Python Codes 133

List of Figures

1.1 Hydraulic system scheme: (a) primary working circuit and (b) sec-
ondary cooling-filtration circuit (adapted from [1]). 6

1.2 Pneumatic schemes of the actuator used for driving the rotary gripper
in the case of nominal working condition (a), internal air flow-rate
leakage (b), external air flow-rate leakage for the A side (c) and the
B side (d), internal occlusion for the A side (e) and the B side (f). . . 8

2.1 Linear Regression (blue line) and Logistic Regression (red line)
models on a simple dataset with 20 data points. 15

2.2 (left) Representation of separating hyperplane for two-class data and
(right) the optimal hyperplane to separate two-class data. The margin
between support vectors (d) is equal to 2

∥w||[2]. 16

2.3 Mapping of input space X into high-dimensional feature space Z [2]. 17

2.4 Schematic diagram of a decision tree [3]. 18

2.5 Schematic diagram of a Random Forest. 21

2.6 The effect of K in KNN classification. 23

2.7 The difference between deep learning and traditional machine learn-
ing (adapted from [4]). 24

2.8 Single-neuron perceptron model [5]. 25

2.9 Structure of the multilayer perceptron (MLP)[5]. 26

2.10 Typical unfolded RNN diagram [4]. 26

2.11 An example of CNN architecture for image classifcation[4]. 27

xii List of Figures

2.12 The process of self-training SSL (adapted from [6]). 34

2.13 self-training SSL based on KNN base classifier [6]. 35

2.14 Co-training approach. 36

2.15 Two-step procedure of GSSL. Here, red circles and blue circles
denote the labeled positive and negative nodes, respectively. Circles
with question marks represent the unlabeled nodes and the color in
the shaded circles indicate their corresponding predicted label [7]. . 36

2.16 Comparison between transductive and inductive settings in GSSL.
The significant difference between them lies in the inference stage.
For the transductive setting, only the labels of unlabeled nodes on
the same graph in the training dataset need to be inferred. For an
inductive setting, however, the trained model can also predict the
label of unseen nodes on new graphs that do not exist in the training
set. Here, red circles and blue circles denote the labeled positive and
negative nodes, respectively. Circles with question marks represent
the unlabeled nodes, and the color in the shaded circles indicates
their corresponding predicted label [7]. 37

2.17 Clustering Methods . 42

2.18 Illustration of K-means algorithm. (a) Two-dimensional input data
with three clusters; (b) three seed points selected as cluster centers
and initial assignment of the data points to clusters; (c) and (d)
intermediate iterations updating cluster labels and their centers; (e)
final clustering obtained by K-means algorithm at convergence [8] . 43

2.19 A simple example of anomalies in a two-dimensional data set [8] . . 44

2.20 Principal Component Analysis (PCA) (adapted from [9]). 46

2.21 Two sets of data points belonging to two different classes that need
to be classified [10]. 47

2.22 Linear Discriminant Analysis (LDA) is used which reduces the 2D
graph into a 1D graph to maximize the separability between the two
classes [10]. 47

2.23 General Reinforcement Learning Structure. [11] 50

List of Figures xiii

3.1 Comparison of an incoming sequence with clusters from the training
set [12]. 59

3.2 The first curve depicts an incoming time series xt , while the second
curve illustrates the expected cost fτ(xt) given xt , ∀τ ∈{0, . . . ,T−t}
[12]. 60

3.3 PS1-PS6 pressure signals of the HS Dataset 61

3.4 FS1-FS2 flow rate signals of the HS Dataset 61

3.5 TS1-TS4 Temperature signals of the HS Dataset 62

3.6 EPS1 and VS1 signals of the HS Dataset 62

3.7 CP, CE and SE signals of the HS Dataset 63

3.8 Confusion matrix of ETSC model for different fault types (cooler,
pump, accumulator, and valve) . 65

3.9 Early fault time for the cooler (a), valve (b), accumulator (c), and
pump (d): the vertical line shows the optimal time t⋆ (in terms of
timestamps) dividing the signal in observed (solid) and unobserved
(dash) parts. 67

4.1 Scheme of the failure diagnosis and analysis method based on
MCMO classification. 71

4.2 Degradation of hydraulic components and stable state of the hy-
draulic system. 75

5.1 Scheme of graph-based transductive SSL. 82

5.2 Correlation matrix for the PS dataset. 87

5.3 Correlation matrix for the HS dataset. 87

5.4 Confusion matrix for (a) SSL-LP, (b) SSL-LR, (c) SSL-DT, (d) SSL-
NB, (e) SSL-RF, and (f) SSL-SVM, considering the valve V 10 and
pump MP1 as MFIs for XL(5%) and XT (50%) 89

5.5 Confusion matrix for (a) SSL-LP, (b) SSL-LR, (c) SSL-DT, (d) SSL-
NB, (e) SSL-RF, and (f) SSL-SVM, considering MaxFlowA and
MaxFlowB as the MFIs for XL(5%) and XT (50%) 89

xiv List of Figures

5.6 Dataset of the PS: labeled (green) and unlabeled (orange) data points
before (a) and after (b) label propagation. 92

6.1 Work-flow of the real-time fault detection approach. 95

6.2 Scheme of the proposed Adaptive Constrained Clustering Algorithm. 97

6.3 Results of the Adaptive Constrained Clustering algorithm over batches
in the case of batch size B = 50. Data points in the current batch
are represented by red color, while the green and orange colors de-
note the micro-clusters belonging to the nominal and non-nominal
macro-clusters, respectively. 104

6.4 Compression rate as a function of radius threshold (a) and sum of
square error over the number of clusters (b) for the micro-clustering
of the Adaptive Constrained Clustering approach. 105

6.5 Results of the silhouette analysis on micro-clustering varying the
number of micro-clusters in the range [2,9]. 105

6.6 Results obtained by the Constrained K-means algorithm with two
final clusters. 106

6.7 Results of the Stream K-means algorithm over batches in the case of
batch size B = 50. Data points in the current batch are represented
by red color, while the light-green and grey colors denote the two
clusters, whose updated centroids at each iteration are indicated by
the blue stars. 107

List of Tables

1.1 Description of sensors deployed in the case study HS. 7

1.2 Description of fault types for each HS component 9

1.3 Data features collected during each work-cycle of PS dataset. 9

1.4 Description of the fault types addressed by the case study PS. 10

3.1 The most correlated sensor for each component of the HS. 60

3.2 Tuned values of main hyper-parameters for each HS component. . . 64

3.3 Tuned values of main hyper-parameters for each HS component. . . 66

3.4 Comparison of the proposed and baseline methods in terms of accu-
racy (%) for each HS component. 66

3.5 Comparison of the proposed and baseline methods in terms of fault
time (timestamp) for each HS component. 66

4.1 Accuracy of component level through MCMO classification model. 75

4.2 Precision of component level through MCMO classification model. . 76

4.3 Failure probability (FP) for all failure modes (FM) of the HS. . . . 77

4.4 HS Steady State. (F: failure; H: non-failure or healthy) 78

4.5 HS Transient State. (F: failure; H; non-failure or healthy) 78

5.1 Accuracy (%) of the baseline methods with training data XL(25%)

for different MFIs . 91

xvi List of Tables

5.2 Accuracy (%) of the SSL-methods with training data XL(25%)∪
XU(25%) for different MFIs . 92

5.3 Accuracy, F1 Score, Precision, and Recall (%) of the baseline meth-
ods with training data XL(5%), considering {C1,V 10,MP1,A1−
A4} as the feature set . 92

5.4 Accuracy, F1 Score, Precision, and Recall (%) of SSL-methods with
training data XL(5%)∪XU(45%), considering {C1,V 10,MP1,A1−
A4} as the feature set . 92

Chapter 1

Introduction

In this chapter, I delve into the world of fault detection and diagnosis (FDD) in
complex industrial systems. To build a strong foundation for my exploration, I
start by thoroughly examining the background and motivations driving the various
methods and approaches used in FDD. I take a close look at the unique challenges
posed by complex systems and the crucial need for proactive fault detection. Then, I
articulate the precise problem statements that each of my projects tackles, shedding
light on the intricacies and complexities of fault detection in industrial systems.
As I progress, the research objectives for each activity become clearer, guiding us
towards innovative solutions. Finally, I highlight the contributions of my research,
all aimed at enhancing the performance and maintenance of manufacturing lines
and industrial systems. In this comprehensive chapter, I prepare the groundwork for
an in-depth exploration of my research journey, centered around the core themes
of comprehension, addressing challenges, and advancing the field of FDD in smart
manufacturing.

1.1 Background and Motivation

Within the scope of my research, I have made substantive contributions through the
examination of two distinct industrial case studies, categorizing my endeavors into
three distinct sections. In each of these sections or activities, I have judiciously em-
ployed a variety of ML methodologies, thereby ensuring the most suitable analytical
tools are applied to the specific tasks at hand. This approach allows us to leverage the

2 Introduction

full spectrum of ML capabilities in my efforts to address the multifaceted challenges
presented by these industrial contexts. Broadly, ML methods can be categorized into
four types: supervised, unsupervised, semi-supervised, and reinforcement learning.
Given the characteristics of the dataset, I concentrate on the first three methods while
excluding reinforcement learning from the thesis.

In the first two activities, I harnessed the capabilities of supervised ML method-
ologies. Since the complexity of industrial systems in various applications neces-
sitates efficient fault diagnosis and conventional methods typically detect faults at
the end of working cycles, which can lead to costly downtime and potential damage.
Chapter 3 addresses the critical need for early fault diagnosis in a hydraulic system,
motivated by the desire to strike a balance between the accuracy of fault detection
and the earliness of detection.

On the other hand, in chapter 4, the failure of individual components of complex
systems may not immediately lead to system failure but can eventually disrupt system
operations. The motivation behind this research is to provide a comprehensive
analysis of potential failures and their causes, addressing the need for a holistic
understanding of complex systems’ reliability using a specific supervised ML method
called multi-class multi-output (MCMO) classification.

In chapter 5, my approach shifted towards the utilization of semi-supervised
learning (SSL) techniques, a strategic response to the scarcity of labeled data where
the integration of artificial intelligence into mechanical FDD is crucial for enhancing
reliability and reducing costs in Industry 4.0 applications. However, dynamic envi-
ronments often pose challenges, including limited labeled data and the presence of
rare or difficult-to-detect faults. The motivation here is to leverage SSL to address
these challenges.

Finally, in chapter 6, my methodology culminated in the application of unsu-
pervised ML techniques, adeptly employed to process incoming unlabeled data
streams in real-time where the widespread deployment of sensors in Industry 4.0 has
elevated the role of data-driven methods in FDD. This research activity introduces
an Adaptive Constrained Clustering Algorithm (ACCA) for real-time fault detection
in industrial machines, driven by the need for responsive and accurate fault detection
methods.

1.2 Problem Statement 3

1.2 Problem Statement

Regarding the reasons for my previous activities, I will present the problem state-
ments in three different aspects.

In the first supervised activity, the problem revolves around detecting various
fault types in hydraulic system components before completing a full working cycle.
Early detection of these faults is essential to minimize downtime, reduce repair costs,
and prevent further damage to the system. Traditional methods are often reactive,
whereas this research activity seeks proactive solutions for early fault classification.

Then the second activity tackles the challenge of diagnosing potential failures in
multi-component systems and delving deeper into the root causes of these failures.
The focus is on preventing system disruptions, minimizing downtime, and ensuring
smooth system operations, especially in scenarios where component failures can
cascade into critical issues.

Subsequently, the semi-supervised learning (SSL) method addresses the problem
of detecting potential failures in dynamic mechanical systems where labeled data are
scarce and expensive. Faults in such systems may be rare or challenging to identify
and might not be fully represented in the labeled dataset.

Finally, the adaptive constrained approach addresses the problem of real-time
fault detection in industrial machines using continuously incoming monitoring data.
It focuses on achieving results comparable to offline methods but with higher respon-
siveness.

1.3 Research Objectives

In this section, I outline the research goals and objectives for the activities mentioned
above.

The primary research objective is to develop an early time-series classification
(ETSC) algorithm tailored to hydraulic systems. This algorithm aims to classify
the system’s state early in the working cycle while maintaining high classification
accuracy. By achieving this objective, this work seeks to provide a practical solution
for early fault detection in complex hydraulic systems.
The second research objective is to propose a data-driven model with a two-step

4 Introduction

decision approach. In the first step, the MCMO classification technique is employed
to diagnose potential failures based on sensor signals. In the second step, failure
analysis (FA) is applied to investigate the root causes of these failures. This approach
aims to comprehensively analyze potential failures in complex systems.
In the case of SSL, the research objective is to combine graph-based SSL (GSSL),
particularly relying on label propagation, with conventional classification algorithms
to detect potential failures in complex mechanical systems. This approach aims
to enlarge labeled datasets and improve the accuracy of identifying non-nominal
conditions.

Lastly, the research objective of the unsupervised method is to develop the ACCA,
which consists of a two-stage procedure: micro-clustering and constrained macro-
clustering. The micro-clustering stage groups batches of work-cycle data into
micro-clusters in real-time, while the macro-clustering stage groups micro-cluster
features into macro-clusters offline. This approach aims to provide real-time fault
detection with high responsiveness and accuracy.

1.4 Contribution of the Thesis

In this section, I elucidate my contributions and innovations within each research
direction.
The first contribution to the doctoral thesis is the introduction of the ETSC method,
which demonstrates superior accuracy and earlier fault detection capabilities com-
pared to baseline methods. This advancement holds promise for optimizing the
performance and maintenance of manufacturing lines, reducing costly downtime,
and enhancing overall productivity.
The second contribution is the introduction of a two-step approach that combines
MCMO classification and FA. The approach enhances system reliability, reduces
downtime, and minimizes the impact of failures on system operations. It offers a
promising alternative to conventional methods and contributes valuable insights into
improving the performance and maintenance of manufacturing lines.
The third contribution lies in the application of GSSL to expand labeled datasets and
effectively identify various types of non-nominal conditions in complex mechanical
systems. It provides a valuable addition to the toolbox of fault detection methods,

1.5 Description of Case Studies Conducted in the Thesis 5

contributing to the optimization of manufacturing lines’ performance and mainte-
nance.
The last contribution is the ACCA, which achieves results equivalent to offline base-
line methods with improved responsiveness and processing speed. It represents an
innovative approach to real-time fault detection and contributes to the optimization of
manufacturing lines by providing timely insights for maintenance and performance
improvement.

1.5 Description of Case Studies Conducted in the The-
sis

In this thesis, I focus on two mechanical datasets, namely hydraulic and pneumatic.
The multi-component hydraulic system (HS) dataset is centered around the condi-
tion assessment of a hydraulic test rig, utilizing multi-sensor data. Additionally,
the pneumatic dataset revolves around a single-component pneumatic system (PS)
configuration, consisting of a rotary gripper controlled by pneumatic actuators that
operates using linear pneumatic pistons and 4-way valves.

1.5.1 Hydraulic System

The first dataset concerns a real complex and multi-component HS, whose predictive
maintenance experimental data set is available in [13]. The observable data are
related to the failures due to different causes across different working cycles. The
considered HS consists of a test rig equipped with a primary working and a secondary
cooling-filtration circuit [13], which are connected via an oil tank, as shown in
Fig. 1.1. The primary working circuit consists of the main pump MP1, switchable
accumulators A1−A4, filter F1, and a set of valves. The secondary cooling-filtration
circuit –which is responsible for cooling and filtering the hydraulic oil– consists
of the hydraulic pump SP1, a three-way solenoid valve, filter F2, cooler C1, and a
variety of sensors [1].

In this HS, the state of the four main components (C1, V 10, MP1, A1−A4)
varies dynamically, while the monitoring system cyclically records process values

6 Introduction

Fig. 1.1 Hydraulic system scheme: (a) primary working circuit and (b) secondary cooling-
filtration circuit (adapted from [1]).

such as pressures, flow rates, and temperatures during sixty-second working cycles.
Moreover, several types of faults may occur in the hydraulic components, which
differ in fault types, severity, and duration. In Fig. 1.1 the green color represents
the key elements of the HS (e.g., accumulators, pumps, valve, and cooler), while
the orange ones represent the sensors, such as vibration, pressure, and temperature
sensor. Table 1.2 shows the components and simulated fault conditions where the
monitoring task in the given HS is conducted for four components: cooler C1, valve
V 10, main pump MP1, and accumulators A1−A4 (see Fig. 1.1).

The final state of the HS is represented using a stable flag SF where the value
1 indicates a system failure type and the 0 value means that the system works in a
healthy mode. Indeed, the HS runs over 2205 working cycles, and the corresponding
samples are collected under different conditions. Some data samples were measured
under stable conditions, whereas others were recorded when static conditions might

1.5 Description of Case Studies Conducted in the Thesis 7

Table 1.1 Description of sensors deployed in the case study HS.

Identifier Measured quantity Unit Frequency
PS1-6 Pressure Pa 100 Hz
EP1 Motor Power W 100 Hz

FS1-2 Flow Rate Lit/min 10 Hz
TS1-4 Temperature ◦C 1 Hz
VS1 Vibration mm/s 1 Hz
CE Cooling Efficiency % 1 Hz
CP Cooling Power kW 1 Hz
SE System Efficiency Factor % 1 Hz

not have been reached yet. Data from both conditions are recorded in the predictive
maintenance data set of the HS [13].

1.5.2 Pneumatic System

The PS dataset was collected from a single-component PS deployed in a real indus-
trial process [14]. This system refers to the robotic work-cell that has been produced
by an Italian automotive company leader in the European market.

In this PS, the rotary gripper is driven by two pneumatic actuators respectively
called “A side" and “B side", whose pneumatic scheme is represented in Fig. 1.2.a.
Each side consists of a linear pneumatic piston and a typical 4-way valve for provi-
sioning the needed air flow-rate into the chambers of the related piston. The gripper is
equipped with flow meters so that during each whole work-cycle both the maximum
and mean flow rate of the air entering the piston chambers are retrieved and collected
by an onboard acquisition system. Moreover, the overall working time of each 4-way
valve (one for each piston side) is computed as the absolute value of the difference
between the time when the actuation command is given to the valve and the time
when the related piston rod reaches its final stroke. Therefore, for each work-cycle,
six different monitoring features are collected and recorded in the pneumatic dataset,
as summarized in Table 1.3.

The whole experiment is based on a data set of N=600 work-cycles, comprehend-
ing 100 nominal and 500 non-nominal operating conditions shuffled in a random

8 Introduction

(a) (b)

(c) (d)

(e) (f)

Fig. 1.2 Pneumatic schemes of the actuator used for driving the rotary gripper in the case
of nominal working condition (a), internal air flow-rate leakage (b), external air flow-rate
leakage for the A side (c) and the B side (d), internal occlusion for the A side (e) and the B
side (f).

1.5 Description of Case Studies Conducted in the Thesis 9

Table 1.2 Description of fault types for each HS component

Component Value Fault Severity Samples
Cooler 3% total failure 732

C1 20% reduced efficiency 732
100% full efficiency 741

Valve 73% total failure 360
V10 80% severe lag 360

90% small lag 360
100% optimal behavior 1125

Pump 0 no leakage 1221
MP1 1 weak leakage 492

2 severe leakage 492
Accumulators 90 bar total failure 808

A1-A4 100 bar severely reduced pressure 399
115 bar slightly reduced pressure 399
130 bar optimal pressure 599

HS stable flag 0 stable conditions 1449
SF 1 unstable conditions 756

Table 1.3 Data features collected during each work-cycle of PS dataset.

Feature name Description Unit
MaxFlowA Maximum flow-rate on side A l/min
MaxFlowB Maximum flow-rate on side B l/min

IntegrFlowA Mean flow-rate on side A l/min
IntegrFlowB Mean flow-rate on side B l/min

TimeA Working time of the 4-way valve on side A s
TimeB Working time of the 4-way valve on side B s

fashion. The faulty conditions regard the rotary gripper over the complete work-
cycles of the robotic cell. Specifically, as described in Table 1.4, five different
anomaly conditions are generated. It is worth pointing out that the robotic work-cell
under study may also be affected by other less frequent types of faults in addition to
the described ones. Nevertheless, only data related to the five considered faults have
been provided by the automotive Italian company that produces the work-cell. As
indicated in the Table 1.4, the external leakage of airflow and the internal occlusion
are simulated for both pistons of the pneumatic actuator, while the internal leakage
is the same for both sides. For the sake of implementing the above-described faulty
scenarios, three different configurations of the pneumatic circuit are deployed:

10 Introduction

Table 1.4 Description of the fault types addressed by the case study PS.

Fault type Number of instances System state
No fault 100 Nominal

Ext. leakage on side A 100 Non-nominal
Ext. leakage on side B 100 Non-nominal

Int. occlusion on side A 100 Non-nominal
Int. occlusion on side B 100 Non-nominal

Internal leakage 100 Non-nominal

1) Pneumatic circuit generating the internal air flow-rate leakage – An additional
valve is inserted between both the outputs of the 4-way valve (Fig. 1.2.b).

2) Pneumatic circuit generating the external air flow-rate leakage – Two additional
valves are inserted between the air venting source (i.e., flow-rate not in pressure) and
chamber 1 of the piston for the A side (Fig. 1.2.c) and between the air supply source
(i.e., the flow-rate in pressure) and chamber 2 of the piston for the B side (Fig. 1.2.d),
respectively.

3) Pneumatic circuit generating the internal occlusion – Two additional valves
are inserted between the pressure pipeline output of the 4-way valve (i.e., flow-rate
not in pressure) and chamber 1 of the piston for the A side (Fig. 1.2.e) and between
the venting pipeline output of the 4-way valve (i.e., flow-rate not in pressure) and
chamber 2 of the piston for the B side (Fig. 1.2.f), respectively.

1.6 Outline of the Thesis

In chapter 2, I provide an extensive overview of diverse ML methods, with a compre-
hensive review of their related work in the domain of FDD. Moving forward, chapters
3 and 4 introduce two prominent supervised techniques, namely ETSC and MCMO
Classification, illustrating their application in the HS case study with detailed results
and analysis. Chapter 5 delves into SSL, focusing on label propagation-based SSL,
and demonstrates its utilization in both HS and PS datasets for limited labeled data
scenarios. Subsequently, chapter 6 unfolds the concept of adaptive clustering for
real-time FDD, showcasing its practical implementation using streaming data from
the PS for real-time fault detection, accompanied by results and profound analysis.
Finally, chapter 7 concludes the thesis, summarizing key findings, contributions, and

1.6 Outline of the Thesis 11

prospects for future research, encapsulating the entirety of my journey into the FDD
of industrial systems.

Chapter 2

Literature Review

In the context of manufacturing lines, FDD plays a critical role in optimizing per-
formance and maintenance [15–17]. FDD encompasses various techniques and
approaches that aim to identify and address failures in a timely manner. One promi-
nent approach in FDD is learning-based FDD, which leverages the power of data
analysis and ML methods to detect and diagnose failures effectively [18].

The ML model development process begins with data collection, which is fol-
lowed by data preprocessing to clean, transform, and make the dataset suitable for
learning. Then the dataset is typically divided into training, validation, and test sets.
The appropriate ML algorithm is then chosen, and the model is trained on the training
set. Hyperparameters of the trained model are tuned to optimize performance using
the validation set. After fine-tuning the model, the performance is then evaluated
on the test dataset using various metrics. Once satisfactory results are achieved, the
model is deployed for real-world use, with ongoing monitoring and maintenance.
Interpretation and visualization techniques can provide insights into the model’s
decision-making process. The specific details of each step can vary depending on
the problem, dataset, and ML approach used.

We typically categorize the ML algorithms into four main types: supervised learn-
ing, unsupervised learning, semi-supervised learning, and reinforcement learning.
Supervised learning involves training a model using labeled data, where the input
features and their corresponding output labels are provided. Unsupervised learning
deals with unlabeled data, where only the input features are available without any
corresponding output labels. Semi-supervised learning lies in between supervised

2.1 Supervised Machine Learning Methods 13

and unsupervised learning. It leverages a combination of labeled and unlabeled
data for training [19]. Reinforcement learning is an ML paradigm where an agent
learns to make sequential decisions by interacting with an environment to maximize
a cumulative reward.

2.1 Supervised Machine Learning Methods

Supervised learning, a subfield of ML, offers a powerful approach to train predictive
models by utilizing labeled data. Supervised learning involves the use of algorithms
that learn from labeled samples, where the input data (features) and corresponding
output (labels) are provided. These algorithms are trained to recognize patterns
in the data and make predictions based on these learned patterns [20–22]. In the
realm of ML, the development of a supervised learning algorithm typically involves
a structured approach consisting of three distinct phases: the training phase, the
validation phase, and the testing phase. Accordingly, it is advisable to partition the
dataset into three separate subsets, each allocated to one of these phases. Furthermore,
it is essential to identify or choose appropriate performance evaluation metrics that
will be used to assess and refine the supervised learning models throughout the
training, validation, and testing processes. In simple terms, supervised learning
means the tuning of model parameters using labeled data sets so that the tuned model
parameters can work for larger and unseen data. Considering a scenario where I have
n models represented as y = fw1(x),y = fw2(x), . . . ,y = fwn(x), and I select the best
model y = fwi(x) through training and validation processes by using a labeled data
set. The performance of the selected model is evaluated by testing it on another data
set which is generally smaller than the training data set.[23].

2.1.1 A Comprehensive Guide to Supervised Learning

There are two main types of supervised learning models: classification models and
regression models which offer valuable tools for FDD in manufacturing lines and
production datasets. Classification models enable the identification and classification
of failures into discrete categories, while regression models provide quantitative
estimates of failure severity. The choice between these models depends on the

14 Literature Review

specific objectives and requirements of the problem at hand. Given the categorical
nature of my dataset, I focus my attention on classification methods.

- Classification Methods

Classification models can be employed to classify instances as either normal or faulty
based on the available input features. These models learn from labeled data that
includes information about whether a failure has occurred or not. By analyzing the
patterns and relationships between the input features and the associated failure labels,
classification models can make predictions about the presence or absence of failures.
The mathematical notation of the classification methods is detailed in the appendix
A.1.

In this thesis, I have explored and utilized various classification methods as
baselines for comparisons and evaluations. While there exist numerous classification
algorithms, I specifically focus on introducing a selection of commonly used methods
that have demonstrated their effectiveness in the field of FDD. These methods serve
as reference models against which I compare the performance of my proposed
approaches and assess their efficacy in optimizing the performance and maintenance
of manufacturing lines. Notably, the classification algorithms employed in this
study include mathematical learning models such as Logistic Regression (LR) and
support vector machine (SVM), hierarchical models such as decision trees (DT) and
random forests (RF), K-nearest neighbor (KNN), and deep learning, which have
been extensively studied and proven to be effective in similar contexts.

The two mathematical learning models considered in this section are logistic
regression and SVM techniques. The logistic regression model has been built
upon the probability nature of the classes, and the SVM model has been built
upon the separability nature of the classes. In the following subsections, these two
mathematical models are discussed using fewer variables and simple examples. The
explanation includes the optimization of an error factor and derivation of the models.

Logistic Regression LR is a widely used classification algorithm that models
the relationship between the input features and the probability of belonging to a
certain class. It is particularly suitable for binary classification problems but can
be extended to handle multi-class classification through techniques like one-vs-rest

2.1 Supervised Machine Learning Methods 15

Fig. 2.1 Linear Regression (blue line) and Logistic Regression (red line) models on a simple
dataset with 20 data points.

or multinomial logistic regression. In LR, the algorithm applies a logistic function
(sigmoid function) to the linear combination of the input features. This transfor-
mation maps the output to a value between 0 and 1, representing the probability of
belonging to the class labels. In figure (2.1) I created a simple dataset with 20 data
points then I fitted both Linear Regression and Logistic Regression models to this
data. The blue line represents the Linear Regression hyperplane, and the red line
represents the Logistic Regression hyperplane. By setting an appropriate threshold,
instances can be classified into different classes. LR is computationally efficient
and interpretable, making it a popular choice for the FDD in manufacturing lines. It
can handle both numerical and categorical input features and does not make strong
assumptions about the distribution of the features. LR also allows for the analysis of
feature importance through the examination of the coefficients associated with each
feature. The mathematical notation of the optimization and objective function for
LR is detailed in the appendix A.1.1.

Support Vector Machines SVM [24] is a powerful classification algorithm
that finds an optimal hyperplane in a high-dimensional feature space to separate
instances belonging to different classes. SVM aims to maximize the margin between

16 Literature Review

Fig. 2.2 (left) Representation of separating hyperplane for two-class data and (right) the
optimal hyperplane to separate two-class data. The margin between support vectors (d) is
equal to 2

∥w|| [2].

the hyperplane and the nearest instances, known as support vectors. SVM can handle
linear and nonlinear classification tasks by using different kernel functions. It is
effective in handling datasets with a large number of features and can handle outliers
well. The optimization problem is the basis for the development of linear SVM
models. It can also be used to make an optimal straight-line cut (in any direction) that
divides the data domain into two for classifying two classes. Here I focus only on
the two-class (or binary classification) SVM in detail while the SVM for multi-class
classification can be created using combinations of several two-class SVMs.

• Linear SVM Classification: The two classes can clearly be separated easily
with a straight line. In linear SVM (figure 2.2), the algorithm aims to find
a hyperplane (w · x+ b = 0) that best separates data into different classes.
The optimal hyperplane is the one that maximizes the margin, which is the
distance between the hyperplane and the nearest data points (support vectors
w ·x+ b = 1 and w ·x+ b = −1) from each class. Note that many possible
linear classifiers can separate the data, but there is only one that maximizes the
margin. This linear classifier is known as the optimal separating hyperplane
(see figure 2.2).

• Nonlinear SVM Classification: Although linear SVM classifiers are efficient
and work surprisingly well in many cases, many datasets are not even close
to being linearly separable. One approach to handling nonlinear datasets is

2.1 Supervised Machine Learning Methods 17

Fig. 2.3 Mapping of input space X into high-dimensional feature space Z [2].

to add more features, such as polynomial features. Polynomial and Radial
Basis Functions (RBF) are the most common non-linear SVMs that extend
the capabilities of SVM to handle data that is not linearly separable. This is
done by transforming the data into a higher-dimensional feature space where
it becomes separable by a hyperplane. In other words, the classification may
be carried out either in a vector space or in a feature space, where the vector
space is defined as the space that contains the original features, and the feature
space is defined as the space that contains the transformed features using
kernel functions. It can be observed from Figure (2.3) that the two-class data
are not linearly separable in the original input space but are possible in a
three-dimensional feature space.

The mathematical notation of the linear SVM is detailed in the appendix A.1.2.
Therefore, the steps in the linear SVM are the mapping of the data domain into a
response set and the dividing of the data domain. The steps in the nonlinear SVM
are the mapping of the data domain to a feature space using a kernel function [25],
the mapping of the feature space domain into the response set, and then the dividing
of the data domain.

SVMs are effective in finding the optimal decision boundary, which results in
good generalization to unseen data. They work well in high-dimensional spaces,
making them suitable for various applications, including text classification and

18 Literature Review

Fig. 2.4 Schematic diagram of a decision tree [3].

image recognition. SVMs can be sensitive to the choice of kernel function and its
hyperparameters. Training SVMs on large datasets can be computationally intensive.
Interpretability can be challenging, especially in non-linear SVMs.

Decision Trees Hierarchical models help to classify even isolated groups of
points by connecting them with their parent classes using tree-like structures. These
models are highly suitable for modern requirements, which include big data and
distributed machine learning. It adopts both regression and classification strategies
with a tree that may be built through a sequence of decisions. Hence, it is also called
a decision tree (DT) [23].

DT [26, 3] classification is an ML algorithm that is based on a binary tree
structure and is particularly useful for solving problems where you need to make
decisions by following a sequence of rules based on input features. DT recursively
splits the data based on different feature thresholds to create branches and leaf
nodes representing different class labels. DTs are interpretable and can handle both
numerical and categorical features. They are effective in capturing complex decision
boundaries and can handle high-dimensional data.

As can be seen in figure (2.4), DT starts with a root node that represents the entire
dataset. The algorithm selects a feature and a corresponding threshold to split the
data into two subsets (sub-trees) in a way that optimally separates the target classes.
The final outcome node (leaf node) is beyond which no further separation of trees is
possible. The goal is to minimize impurity or maximize information gain with each
split. Common impurity measures include Gini impurity and entropy. Information

2.1 Supervised Machine Learning Methods 19

gain as the name suggests calculates the amount of information that is provided
by a feature regarding the class. The node is split and the tree is constructed on
the basis of information gain values. The DT algorithm maximizes the information
gain function besides splitting the node/attribute possessing the greatest amount of
information, first. Information gain is mathematically denoted as:

Information Gain = Impurity(parent node)−
K

∑
i=1

Ni

N
Impurity(child nodei) (2.1)

where Ni is the number of samples in child node i and N is the total number of
samples in the parent node. To address bias toward attributes with many values,
the gain ratio normalizes information gain by considering the number of values an
attribute can take.

Entropy measures the level of disorder or impurity in a node. Mathematically,
for a node with K classes, entropy is calculated as:

Entropy (node) =−
K

∑
i=1

pi log2 (pi) (2.2)

where pi represents the proportion of samples belonging to class i in the node.
Information gain quantifies the reduction in impurity achieved by a split. It is
calculated as the difference between the impurity of the parent node and the weighted
average impurity of the child nodes.

The Gini impurity measures the likelihood of a randomly chosen data point being
misclassified. Mathematically, for a node with K classes, Gini impurity is calculated
as:

Gini(node) = 1−
K

∑
i=1

(pi)
2 (2.3)

where pi represents the proportion of samples belonging to class i in the node.

Once the initial split is made, the process is repeated recursively for each subset.
The algorithm selects the best feature and threshold for each subset, creating child
nodes and further splitting the data. The tree continues to grow until a stopping

20 Literature Review

criterion is met, such as a maximum tree depth, a minimum number of samples in
a leaf node, or when no further improvement in impurity can be achieved. When a
stopping criterion is reached, the terminal nodes of the tree are called leaf nodes or
decision nodes. These nodes contain the class label that corresponds to the majority
class of the samples in that leaf. To make a prediction, a data point is passed through
the decision tree by evaluating the input features at each node and following the path
down the tree based on the feature values. When the data point reaches a leaf node,
the class label associated with that leaf is the predicted class.

Some of the most well-known DT classifiers and algorithms are ID3 (Iterative
Dichotomiser 3), C4.5, and C5.0. ID3 is one of the earliest DT algorithms developed
by Ross Quinlan [27]. It uses entropy and information gain as splitting criteria. C4.5
is an extension of ID3, also developed by Ross Quinlan [28]. It can handle both
categorical and numerical attributes and uses gain ratio as a splitting criterion. C5.0 is
an improved version of C4.5 which is significantly faster and more accurate than C4.5
[29]. It offers enhanced performance and support for more data types. Algorithm 9
in appendix A.1.3 outlines the high-level steps for constructing a decision tree using
a given splitting criterion.

In simple terms, the DTs make several vertical and horizontal cuts on the data
domain, and thus they are highly suitable for multiclass classification as well. DTs
are interpretable, and their visual representation makes them easy to understand and
explain. However, they can be prone to overfitting on noisy data. Techniques like
pruning and ensemble methods like Random Forests and Gradient Boosting are often
used to mitigate these issues and improve classification accuracy.

Random Forests Ensemble learning is an ML technique that harnesses the col-
lective intelligence of multiple individual predictors, such as classifiers or regressors,
to achieve more accurate and robust predictions than what can be obtained from the
best individual predictor alone. In ensemble learning, a group of such predictors
forms an ensemble, and the process of combining their predictions is referred to as
aggregation. Ensemble methods are designed to leverage the diversity and comple-
mentary strengths of these individual predictors, resulting in enhanced predictive
performance and increased reliability. The fundamental idea behind ensemble learn-
ing is that by combining the insights and perspectives of multiple models, it becomes

2.1 Supervised Machine Learning Methods 21

Fig. 2.5 Schematic diagram of a Random Forest.

possible to mitigate errors, reduce over-fitting, and improve the overall quality of
predictions for a wide range of ML tasks.

Random Forest (RF) is an ensemble learning method that builds multiple DT
during training and combines their predictions to improve accuracy and robustness.
It is widely used for classification tasks and is based on the concept of bagging
(Bootstrap Aggregating) and feature randomness. RF employs DTs as base learners.
Each DT is trained on a bootstrap sample (randomly selected with replacement)
from the original dataset. Bagging involves creating multiple bootstrap samples
from the training data, each of which is used to train a separate DT. By training
on different subsets of the data, RF reduces the risk of over-fitting and increases
model robustness. RF introduces an additional layer of randomness by considering
only a random subset of features (attributes) at each split in each DT. This helps to
decorate the trees and ensures that each tree is trained on different subsets of features,
reducing the chances of selecting the same dominant features in every tree. Figure
2.5 illustrates a simplified representation of a random forest consisting of three DT.
In this ensemble method, the final class label for a given instance is determined
through majority voting where each individual tree within the forest predicts a class
label for the instance, and the most commonly predicted class label is chosen as
the final output. Algorithm 15 in appendix A.1.4 represents a general overview of
the RF learning methods. In practice, RF implementations may include additional
optimizations, handling of different data types, and hyperparameter tuning.

22 Literature Review

K-Nearest Neighbors (KNN) KNN is a non-parametric classification algo-
rithm that classifies instances based on their proximity to other instances in the
feature space. In KNN, the K represents the number of nearest neighbors considered
for classification. When a new instance needs to be classified, the algorithm calcu-
lates the distance between the new instance and all instances in the training data X .
The K nearest neighbors are selected, and the majority class among these neighbors
is assigned to the new instance. KNN is a simple and intuitive algorithm that can
handle both binary and multi-class classification problems. It does not require any
training process as it stores the entire training dataset (see algorithm 8 in appendix
A.1.5).

The k-nearest neighbors are selected among instances of the training set where
closeness is defined in terms of distance or similarity measures. Considering two
instances p(p1, p2, ..., pd) and q = (q1,q2, ...,qd), some of the distance measures are
as follows:

• Manhattan Distance (L1 norm)

L1(p,q) = |p1−q1|+ |p2−q2|+ . . .+ |pd−qd|

The sum of the absolute differences of the coordinates p and q.

• Euclidean Distance (L2 norm)

L2(p,q) =
(
(p1−q1)

2 +(p2−q2)
2 + . . .+(pd−qd)

2
)1/2

The length of the line segment connecting points p and q.

• Supremum Distance (L∞ norm or Lmax norm)

L∞(p,q) = max{|p1−q1| , |p2−q2| , . . . , |pd−qd|}

The maximum difference between any attributes of objects p and q.

• Minkowski Distance (Generalization of Lp-distance)

Lp(p,q) = (|p1−q1|p + |p2−q2|p + . . .+ |pd−qd|p)1/p

2.1 Supervised Machine Learning Methods 23

Neighborhood K=1

Neighborhood K=7

Neighborhood K=17

X

Fig. 2.6 The effect of K in KNN classification.

In Figure (2.6), we find the class of an unknown instance x based on its neighbors.
When k equals 1, the class is determined by the closest neighbor. In the more general
scenario with k greater than 1, we use majority voting. This means we consider
the class labels of all neighbors, and they each have an equal contribution to the
classification. But in majority voting the algorithm is very sensitive to the choice of
K. Alternatively, weighted voting is another option, where each neighbor contributes
to the classification based on its distance d from the unknown instance x (e.g., a
possible weight factor: w = 1/dist(x,d)2)

KNN is robust to noise and can capture local patterns in the data. However, it can
be sensitive to the choice of the value of K, and the performance may degrade with
high-dimensional data or imbalanced datasets. Small values of K increase sensitivity
to outliers, large values of K lead to the inclusion of many objects from other classes
in the neighborhood, and optimal values of K tend to yield the highest classification
accuracy.

The KNN algorithm is often referred to as a "lazy learner" or "lazy classifier"
because it does not build an explicit model during the training phase. Instead, it
memorizes the training data and makes predictions based on the nearest neighbors
at the time of prediction. This makes it different from "eager learners" or "eager

24 Literature Review

Labeled
Dataset

Class Labels

ML

Preprocessing
Feature

Extraction
Feature

Selection

DL

Deep Learning Model

Fig. 2.7 The difference between deep learning and traditional machine learning (adapted
from [4]).

classifiers" like decision trees or neural networks, which build a model based on
the training data and use that model to make predictions. KNN’s laziness allows it
to adapt to changes in the data dynamically but may require more computational
resources during prediction.

Deep Learning Classification Neural networks, specifically deep learning
models, have gained significant popularity in recent years due to their ability to learn
complex patterns and relationships in data. Neural networks consist of multiple
layers of interconnected nodes (neurons) that process and transform the input data.
They can handle both classification and regression tasks. The distinction between
ML and DL is illustrated in Figure 2.7. In DL models, there is an automated process
for preprocessing, feature extraction, and selection, enhancing their ability to learn
and adapt effectively.

Three common types of deep learning classification models are:

• Feedforward Neural Networks (FFNs): also known as Artificial Neural
Networks (ANN) and MultiLayer Perceptrons (MLPs), consists of layers of
interconnected nodes, including an input layer, hidden layers, and an output

2.1 Supervised Machine Learning Methods 25

Fig. 2.8 Single-neuron perceptron model [5].

layer. Information flows in one direction, from input to output. It is a fully
-connected network, meaning each neuron in one layer is connected to all
neurons in the subsequent layer. In an FFN, the input layer first receives and
normalizes the input data. The hidden layers, which can vary in quantity, ana-
lyze these input signals. The output layer then makes decisions or predictions
based on the processed data. Figure 2.8 illustrates a model of a single-neuron
perceptron, where an activation function y = ϕ(xw+b) is applied to map the
output value y from the summation function ((xw+b)) where x, w, b, and y
represent the input vector, weighting vector, bias, and output value, respec-
tively [30]. Then Figure 2.9 illustrates the structure of the MLP (ANN or FFN)
model. The details regarding the computation of output layers in the MLP can
be found in Appendix A.1.5.

• Recurrent Neural Networks (RNNs): The RNN category includes gated
recurrent units (GRUs) and long short-term memory (LSTM) approaches to
handle sequential data. They contain loops that allow information to persist
over time, making them suitable for tasks where previous context matters. A
typical unfolded RNN diagram for a particular input sequence is shown in
Figure 2.10.

• Convolutional Neural Networks (CNNs): CNNs are tailored for grid-like
data, particularly images. They consist of convolutional layers for feature

26 Literature Review

Fig. 2.9 Structure of the multilayer perceptron (MLP)[5].

Fig. 2.10 Typical unfolded RNN diagram [4].

extraction and pooling layers for down-sampling. An example of CNN archi-
tecture for image classification is illustrated in Figure 2.11.

The selection of the appropriate deep learning classification model depends on
the nature of the data and the specific requirements of the task. It is common to
experiment with different architectures and techniques to achieve optimal results. In

2.1 Supervised Machine Learning Methods 27

Fig. 2.11 An example of CNN architecture for image classifcation[4].

complex applications, hybrid models may be used, combining elements of FNNs,
RNNs, and CNNs to leverage their respective strengths.

- Regression Methods

Regression models are used for predicting continuous outcomes, and they are well-
suited for systems that yield such continuous responses [23]. We can represent the
continuous response variable Y of a system by establishing a linear relationship be-
tween X and the domain variable x. Let’s consider a straightforward two-dimensional
parametric model for these variables, as outlined below:

Y = aX (2.4)

If the actual responses are y, and the domain values are x, then we can define a
nonlinear error factor as follows:

E = (y−ax)2 (2.5)

The continuous property of the variables x and y allows the application of deriva-
tives for minimization. This holds true even when the model is high-dimensional,
represented as a vector model as follows:

28 Literature Review

E = (y−Ax)2 (2.6)

When we have both a dataset and its associated response values, we can estimate
the parameter (matrix) A by minimizing errors, and thus we can have the model
defined in Equation (2.4) as a predictive model.

In the context of failure detection and diagnosis in manufacturing lines, regres-
sion models can be utilized to estimate the severity or magnitude of a failure based
on the available input features. This can provide valuable information for mainte-
nance planning and resource allocation. By learning from labeled data that includes
information about the severity of failures, regression models can capture the un-
derlying patterns and relationships between the input features and the associated
failure severity values. Regression models commonly used in this domain include
Linear Regression, Decision Tree Regression, Random Forest Regression, Gradi-
ent Boosting Regression, Support Vector Regression (SVR), and Deep Learning
Regression.

• Linear Regression: Linear regression is a fundamental regression algorithm
that models the relationship between the input features and the target variable
using a linear equation. It aims to minimize the difference between the pre-
dicted and actual target values by adjusting the coefficients. Linear regression
is interpretable and computationally efficient. However, it assumes a linear
relationship between the features and the target variable, which may not always
hold in complex manufacturing line scenarios.

• Decision Tree Regression: DT regression is a regression algorithm that
utilizes a tree-like model to make predictions based on the input features.
Similar to classification decision trees, DT regression recursively splits the
data based on different feature thresholds to create branches and leaf nodes
representing different predicted values. The predicted value for a new instance
is the average of the target values in the leaf node that the instance belongs
to. DT regression can handle both numerical and categorical features and can
capture nonlinear relationships in the data.

• Random Forest (RF) Regression: RF regression is an ensemble learning
method that combines multiple decision trees for regression tasks. Each DT

2.1 Supervised Machine Learning Methods 29

in the random forest is trained on a different subset of the data and features.
The predicted values from individual trees are aggregated to produce the final
prediction. RF regression provides improved accuracy and robustness by
reducing overfitting and capturing diverse patterns in the data. It can handle
high-dimensional data, handle missing values, and accommodate nonlinear
relationships.

• Gradient Boosting Regression: Gradient boosting regression is another
ensemble learning technique that combines weak regression models into a
strong predictive model. It sequentially trains multiple regression models,
where each subsequent model corrects the errors made by the previous models.
The final prediction is obtained by summing the predictions from all the
models. Gradient boosting regression is known for its ability to handle complex
relationships and effectively model nonlinear patterns in the data.

• Support Vector Regression (SVR): SVR extends the principles of SVM to
regression tasks. SVR aims to find a regression function that fits the data while
minimizing deviations from a margin around the predicted values. It can handle
linear and nonlinear regression problems by using different kernel functions.
SVR is effective in handling datasets with a large number of features and
outliers. It provides robustness against noise and can handle high-dimensional
data.

• Deep learning Regression: Deep learning regression models are designed to
predict continuous numerical values or real numbers, making them suitable
for tasks where the output is a quantity rather than a category or class. These
models have gained popularity for their ability to capture complex relation-
ships in data, particularly in domains like image processing, natural language
understanding, and time series forecasting.

In the previous section, we discussed conventional supervised learning techniques
designed for scenarios where the entire dataset is available from the outset. However,
practical industrial applications often involve data streaming in real time. To address
this, adaptive or incremental learning methods are employed to effectively process
streaming data. This is particularly relevant when dealing with classification and
regression tasks on data that continuously arrives over time. In essence, stream
classification (e.g. Hoeffding Trees) and regression (e.g. Online Linear Regression)

30 Literature Review

models play a crucial role in making real-time decisions, offering insights into stream
data, and responding quickly to changing patterns and trends in dynamic, data-rich
environments.

2.1.2 Related Works in Supervised Machine Learning for Failure
Detection and Diagnosis

Industrial systems play a pivotal role in various sectors, such as manufacturing, met-
allurgy, and energy, contributing to their efficient and reliable operations. Hydraulic
systems (HSs), as a specific type of industrial system, are widely employed and
known for their ability to generate and control power through the use of pressurized
fluids. Due to severe environments and unpredictable operating conditions, HSs are
prone to failure. Furthermore, as the scope and automation levels of HS expand, their
operational stability and reliability must be improved as well. By properly recog-
nizing and addressing possible faults, damages may be reduced, maintenance costs
can be minimized, and productivity can be increased [1]. Consequently, prognostic
health management is a growing field, crucial to implement predictive maintenance
in complex manufacturing systems. It is based on a number of condition-based
monitoring (CBM) techniques, including vibration analysis, acoustic emissions anal-
ysis, and oil analysis, all of which can provide useful information on the health of
monitored equipment in real-time [31].

As a result, CBM of HSs is becoming increasingly important in order to improve
industrial applications and bring several benefits such as the reduction of machinery
downtime and maintenance costs [32]. However, due to the frequent and costly
shutdown problems, it is not convenient to predict the future of machinery damage
using manual CBM systems. Conversely, various types of CBM indicators can be
automatically derived from running machines to suitably identify their health in
real-time. The basic idea commonly exploits the degradation trends that change
over time due to shifting operational conditions: it is thus ideal to explore the
correlation between changing operational conditions and degradation patterns over
time [33]. Since the majority of today’s industrial systems, as well as HSs, make use
of sensors to collect measured data, healthy indicators (HIs) can be straightforwardly
constructed from the measured data to characterize the healthy condition of devices

2.1 Supervised Machine Learning Methods 31

using automated methods based on signal processing, artificial intelligence, and
other analytics approaches.

In the related literature, several automated techniques have been proposed to
address the CBM problem in HSs. For instance, [32] analyzes a complex HS to
find the correlation between features extracted from raw sensor data and fault types.
Using a multivariate statistic, they identify the most significant features specific to a
fault case where the fault characteristics of experimental data are known. Authors of
[34] propose an intelligent system to accurately characterize the health of the same
HS using streams of real-time sensors’ data. Authors of [35–38] apply different
fault detection methods based on conventional machine learning models to detect
failures in HSs. Considering the nonlinear characteristics of the signals measured
by multiple sensors in the HS system, a novel fault diagnosis method of the HS
based on multi-source information fusion and fractal dimension is proposed by [39],
where the fault pattern recognition of the system is realized by using the k-nearest
neighbor technique and fuzzy clustering approach. The sampling rates of the sensors’
data collected from the HS are always varied, and the coupling interaction between
the components makes consistent data collection challenging. Authors of [1] and
[40] apply various deep learning models to the HS sensors’ data to overcome such
a problem. The performance of Deep Learning (DL) FDD relies on mathematical
plant models where the development of DL networks helps to extract high-level and
abstract features from the data to enhance fault classification and regression results
when effective feature representations are extracted [41].

In all the above-cited works, the proposed CBM systems are able to accurately
monitor the working condition of the industrial devices, without being capable of
detecting in advance the failure. In the related literature of HSs, the decision-making
is postponed until the entire information has been gathered. Indeed, all the previous
works do not predict the time of failure during a working cycle and do not prevent
the system from working in the presence of possible severe faults. In fact, the time of
a potential failure in a component, which may be identified via automated processing
of available sensors’ signals, is one of the most significant HIs in HSs. When new
measurements arrive sequentially, it is required to gradually monitor the health status
of an asset in these kinds of applications. Since the measures are not always regular
and arrive over time, it is indeed critical to make a decision as soon as possible
to optimize the performance of the system ([12]). As the HS runs over cycling
operations, several relevant parameters may be monitored to observe any progressive

32 Literature Review

change leading to some potential failure. However, at this time, only a slight drop in
running performance occurs, and it is not possible to prevent these faults through
traditional fault diagnosis techniques. As a result, it is crucially needed to raise an
early warning of fault according to the changing trend of working signals in HSs.

As mentioned before, industrial systems are complex and failure-prone systems
that require constant monitoring and maintenance to prevent downtime and ensure
safety. ML and Failure Analysis (FA) are two powerful tools that can be used to
diagnose system failures and establish the root cause of failures. On the one hand,
ML techniques can learn from historical data to diagnose the likelihood of future
failures. For instance, several automated techniques have been proposed in the
literature to solve fault diagnosis issues in industrial assets ([42, 43]), particularly
HSs. These techniques are capable of dealing with various challenges in fault
diagnosis, such as the non-linear nature of sensor signals, varied sampling rates, and
coupling interactions between components. On the other hand, FA is a systematic
approach to investigating the root cause(s) of a failure or malfunction in a system
or component ([44]). The process of FA typically involves a combination of data
analysis, physical inspection, and testing to identify and isolate the cause(s) of the
failure. Fault tree analysis (FTA) is one of the most common techniques within the
broader field of FA that can identify the root causes of failures and help engineers
develop effective mitigation strategies as one of the reliability analysis tools. Several
studies propose different methods for FA and maintenance planning of industrial
systems: for instance, [45] propose a methodology for maintenance planning based
on system-level prognostics and FA. Authors of [46] use FA to analyze failure
behavior and component contributions on a coal mine’s dragline for maintenance
planning and cost reduction. Authors of [47] present a case study showing how their
approach identifies events causing failures during the warranty period in a computer
numerical control (CNC) turning center. Authors of [48] introduce a method to
determine the likelihood of uncertain events by combining expert opinions with
FTA for an HS case study. Authors of [49] analyze faults in complex systems to
capture hierarchical causality between root causes and faults using an actuator system
dataset.

While FTA is a powerful tool for analyzing the causes of system failures, it
has limitations when it comes to dynamic systems. In such cases, statistical FA
([50–52]) may be more appropriate, as they can provide a more accurate picture of
the industrial system behavior contributing to failure.

2.2 Semi-Supervised Machine Learning Methods 33

The previously reported literature review shows that existing works apply either
ML or FA to diagnose and analyze the system failures, based on the dataset avail-
ability and system knowledge. In particular, ML techniques are typically employed
for handling large and complex industrial datasets, whereas FA is employed for
analyzing the failure behavior of individual components or systems. Moreover, FA
is typically based on expert knowledge and requires a thorough understanding of the
system under consideration, while ML algorithms can learn patterns and behaviors
from large datasets without prior knowledge of the system.

2.2 Semi-Supervised Machine Learning Methods

Semi-supervised learning (SSL) is a type of ML approach that lies between super-
vised and unsupervised learning. In this paradigm, a combination of labeled and
unlabeled data is used for training the model. The goal of SSL is to leverage the
limited labeled data along with the abundant unlabeled data to improve the model’s
performance and generalization.

2.2.1 A Comprehensive Guide to Semi-Supervised Learning

SSL methods can be categorized into several approaches based on their underlying
principles and techniques.

Self-training Methods

This is a simple and widely used SSL technique. It starts with a small labeled dataset
and iteratively labels unlabeled data points using a trained model’s predictions. The
labeled dataset grows over time as can be seen in figure 2.12.

This approach is compatible with any supervised learning algorithm and typically
performs well in the absence of outliers. Figure 2.13 illustrates this approach when
the KNN is taken as the base classifier into consideration.

34 Literature Review

Step 2: f=Classifier(XL , YL)

Step 5: Augment Training Labeled Data XL =XL + Xself

Step 6: Repeat Step 2

Unlabeled Data XU

Step 3: Apply f on Unlabeled Data XU

Step 4: Xself =Samples with most confident
score and remove Xself from XU

Step 1: Initial Labeled Data XL

Fig. 2.12 The process of self-training SSL (adapted from [6]).

Co-training Methods

Co-training methods work with multiple views or features of the data. They train
multiple classifiers, each on a different view, and exchange predictions on unlabeled
data to improve classification performance. Similar to co-training, the multi-view
SSL approach leverages multiple views of the data to improve the classification of
unlabeled data points.

In co-training, the algorithm trains two or more classifiers, each using a different
set of features or perspectives (often referred to as "views") of the data. However,
there is a special twist: each classifier uses the predictions of the others on the
unlabeled data to enhance its own learning process (see figure 2.14).

Graph-Based Methods

Graph-based Semi-Supervised Learning (GSSL) methods use the structure of the
data, typically represented as a graph, to propagate labels from labeled to unlabeled
data points. GSSL is a class of SSL techniques that holds great promise. GSSL
capitalizes on the inherent structure of data through the use of graphs, aligning with
the fundamental manifold assumption in SSL. In essence, GSSL methodologies

2.2 Semi-Supervised Machine Learning Methods 35

Fig. 2.13 self-training SSL based on KNN base classifier [6].

commence by creating a graph representation, where every sample is a node, and
the connections, typically characterized by weighted edges, reflect the similarity
between pairs of nodes. This approach to graph construction implies that nodes
linked by high-weight edges tend to share the same labels, aligning with the manifold
assumption that samples residing in close proximity within a lower-dimensional
manifold should exhibit similar labels [7]. The primary two-step process in GSSL
involves, first and foremost, constructing an appropriate graph structure along which
the provided labels can be subsequently propagated. This fundamental procedure is
illustrated in Figure 2.15.

GSSL algorithms can be divided into two categories namely transductive and
inductive based on whether to predict data samples’ labels out of training data.
While the majority of GSSL methods adopt a transductive approach, there do exist

36 Literature Review

Feature Set
X=(X1, X2)

Example Set L Example Set L

New Labeled Data Set 1 New Labeled Data Set 2

Classification Model 1 Classification Model 2

Training Training

Unlabeled Data Unlabeled Data

Classifying Classifying

Fig. 2.14 Co-training approach.

Fig. 2.15 Two-step procedure of GSSL. Here, red circles and blue circles denote the labeled
positive and negative nodes, respectively. Circles with question marks represent the unlabeled
nodes and the color in the shaded circles indicate their corresponding predicted label [7].

several inductive GSSL methods. Typically, in real-world scenarios, transductive
SSL techniques tend to outperform their inductive counterparts when it comes to
prediction accuracy. However, it is important to note that transductive methods
often come with a trade-off in terms of computational cost, particularly in situations
involving large-scale incremental learning. Figure 2.16 illustrates the distinction
between these two approaches within the realm of GSSL."

In the context of FDD in manufacturing lines, SSL can be applied to enhance the
accuracy and efficiency of the detection and diagnostic processes. By utilizing the

2.2 Semi-Supervised Machine Learning Methods 37

Fig. 2.16 Comparison between transductive and inductive settings in GSSL. The significant
difference between them lies in the inference stage. For the transductive setting, only the
labels of unlabeled nodes on the same graph in the training dataset need to be inferred. For
an inductive setting, however, the trained model can also predict the label of unseen nodes on
new graphs that do not exist in the training set. Here, red circles and blue circles denote the
labeled positive and negative nodes, respectively. Circles with question marks represent the
unlabeled nodes, and the color in the shaded circles indicates their corresponding predicted
label [7].

available labeled data, which typically consists of instances with known failure states
and the large amount of unlabeled data collected from normal operation conditions,
SSL algorithms can effectively learn the underlying patterns and identify anomalies.

2.2.2 Related Works in Semi-Supervised Machine Learning for
Failure Detection and Diagnosis

The use of SSL in FDD allows for the exploration of unlabeled data, which can
reveal valuable insights into the normal behavior and operation of the manufacturing
lines. By learning from both labeled and unlabeled data, the model can capture the
underlying structure of the data distribution and make accurate predictions on unseen
instances.

By incorporating SSL into the FDD process, manufacturing lines can benefit
from enhanced accuracy and efficiency in detecting failures and diagnosing their

38 Literature Review

causes. This can contribute to reduced downtime, optimized maintenance strategies,
and improved overall performance and productivity. However, it is important to note
that the success of SSL relies heavily on the availability of reliable labeled data and
the quality of the unlabeled data.

In the previous works, the proposed supervised models are able to accurately
monitor the working condition of the industrial devices, only in the case the entirely
labeled data is available. Such an assumption is indeed a big challenge in industrial
applications.

However, as the mechanical system runs over cycling operations, several relevant
parameters may be monitored to observe any progressive change leading to some
potential failures. In many tasks, there is a paucity of labeled data. The labels may
be difficult to obtain because they require human annotators, special devices, or
expensive and slow experiments. In real-world scenarios, faults are usually fixed
within a short period of time while a practical FDD method is demanded to detect
and diagnose various faults with the smallest possible number of faulty samples
available. In this context, where label scarcity is the common problem, inductive and
transductive SSL has a significant practical value. On the one hand, inductive SSL
assumes that the unlabeled data is generated from the same distribution as the labeled
data and tries to learn a general model that can be applied to new unseen examples.
Transductive SSL, on the other hand, makes use of the specific information contained
in the unlabeled data that is related to the specific examples in the labeled set. In
other words, transductive SSL makes predictions for the test data based on both
labeled and unlabeled data rather than trying to generalize to new examples.

For instance, [53] develops an inductive semi-supervised FDD method with fuzzy
rules. The developed approach was applied to the FDD of an industrial actuator.
All failure modes can be well identified without any given prior knowledge. [54]
combines the Gaussian mixture model and support vector machine (SVM) to form
an inductive SSL model for fault diagnosis of chemical processes. Experimental
results show that the SSL enhanced the traditional classification ability and is suitably
applicable to the complex industrial environment. As the amount of labeled data
remains fixed in inductive SSL, it may not be sufficient to capture the full complexity
of the problem. In fact, transductive SSL typically outperforms inductive SSL since
it can use unlabeled data when training the model [55]. [56] used SVM as a base
classifier for their proposed transductive SSL framework. The proposed framework

2.2 Semi-Supervised Machine Learning Methods 39

iteratively adds confidently labeled testing samples to enrich the training pool for
early fault detection, achieving comparable performance to classic supervised FDD
methods with a small amount of faulty training data.

[57] proposes a transductive SSL approach for fault detection in Additive Manu-
facturing products, leveraging both labeled and unlabeled data to make predictions
about component quality without individual certification. [58] proposes a new trans-
ductive semi-supervised deep generative approach that incorporates CNNs to model
the complex relationship between high-dimensional process data and process status,
considering temporal and intervariable correlations. In [59], a three-stage trans-
ductive SSL approach is proposed for intelligent bearing fault diagnosis, which
outperforms existing methods when limited labeled data is available. [60] proposes
LSTM-LAE, a novel transductive method for fault diagnosis that combines LSTM
and LAE techniques to extract temporal features and improve performance by lever-
aging unlabeled data. [61] discusses graph-based SSL, a useful subset of transductive
SSL that labels partially observed datasets using information from both labeled and
unlabeled data points in a network, which can be especially helpful in situations
where labeled data is scarce, time-consuming, or expensive.

Graph-based SSL is a subset of transductive SSL in which the aim is to label a
partially observed data set by using information from both labeled and unlabeled
data points in a network [61]. Similar to the other SSL methods, it can be partic-
ularly useful in situations where labeled data is scarce, or where labeling the data
is time-consuming or expensive. However, graph-based SSL has some advantages
over other transductive SSL methods. For example, graph-based SSL can naturally
handle high-dimensional data, capture complex dependencies between features, and
incorporate prior knowledge in the form of graphs or networks. Authors in [62]
propose an SSL model for fault detection and classification using a combination of
expert knowledge and unlabeled data based on graph regularization and convex pro-
gramming optimization function, which helps in accurately detecting and classifying
faults in the monitoring data.

Methods that rely on expert knowledge are limited by the amount and quality
of that knowledge, and may not be able to capture all of the relevant information
in the data. Graph-based SSL with label propagation (LP) relies not only on the
limited and potentially biased knowledge of human experts, thus allowing for a more
comprehensive and effective SSL approach in many applications.

40 Literature Review

Moreover, using LP in graph-based SSL can be a successful method for eliminat-
ing redundant labels. Graph-based SSL with LP can help to improve the accuracy
and performance of algorithms in situations where there are irrelevant or noisy data.
By making use of both labeled and unlabeled data, this technique can lead to a more
precise and refined dataset. Despite being effective in a variety of scenarios, research
on the application of graph-based SSL to FDD industrial systems is still lagging
behind. In the context of FDD, the use of SSL for maintenance planning can be
particularly beneficial, as it can help to enrich the dataset with additional data and
consequently can be an effective approach for predicting corrective and preventive
maintenance actions for the reliability and availability of industrial systems.

2.3 Unsupervised Machine Learning Methods

Unsupervised learning is an ML approach where the algorithm learns from unlabeled
data without explicit output labels. The goal of unsupervised learning is to discover
hidden patterns, structures, or relationships within the data.

2.3.1 A Comprehensive Guide to Unsupervised Learning

There are several types of commonly used unsupervised learning methods:

Clustering

A clustering [63] approach, in the context of ML and data analysis, refers to the
use of various methods to group similar data points together into clusters based on
shared characteristics or similarity. These approaches are categorized into several
major types (see figure 2.17):

• Partitioning Approaches: Partitioning methods aim to divide the dataset into
distinct partitions or clusters. Examples include k-means (algorithm 10 in
appendix A.2.1) and k-medoids. These algorithms iteratively refine cluster
assignments to minimize an objective function, often based on distances
between data points.

2.3 Unsupervised Machine Learning Methods 41

• Hierarchical Approaches: Hierarchical clustering methods create a tree-like
structure of nested clusters. Agglomerative algorithms start with individual
data points as clusters and merge them progressively, while divisive methods
begin with a single cluster and split it into smaller subclusters.

• Density-Based Approaches: Density-based methods identify clusters as re-
gions of high data point density separated by areas of lower density. DBSCAN
(Density-Based Spatial Clustering of Applications with Noise) is a well-known
example that groups points together if they are sufficiently dense and have
nearby neighbors.

• Grid-Based Approaches: Grid-based clustering methods divide the data
space into a grid of cells and assign data points to these cells. Clusters are then
formed by grouping adjacent cells with a sufficient number of points. STING
(Statistical Information Grid) is an example of a grid-based approach.

• Model-Based Approaches: Model-based clustering assumes that the data
is generated by a statistical model. These methods search for the best-fitting
model parameters and use them to determine cluster assignments. The Gaus-
sian Mixture Model (GMM) is a classic model-based clustering technique.

• Constraint-Based Approaches: Constraint-based clustering allows the in-
corporation of prior knowledge or constraints into the clustering process.
Constraints can be used to guide the clustering algorithm by specifying which
data points should or should not belong to the same cluster.

These categorizations provide a framework for understanding the diverse range
of clustering techniques available, each with its own strengths and suitability for
different types of data and clustering tasks. Researchers and practitioners choose clus-
tering methods based on the specific characteristics of their data and the objectives
of their analysis.

In the preceding section, we delved into traditional clustering methods, which
assume that we have all the data available upfront. However, real-world industrial
scenarios often involve data that arrives gradually over time. To effectively handle
such stream data, we turn to adaptive, incremental, or stream clustering methods.
These techniques are specifically designed to accommodate the dynamic nature of
incoming data, enabling us to gain valuable insights and patterns as information

42 Literature Review

(a) Partitioning (b) Hierarchical (c) Density-Based

(d) Grid-Based (e) Model-Based (f) Constraint-Based

Fig. 2.17 Clustering Methods

unfolds in real-time. Following the traditional taxonomy of clustering algorithms,
stream clustering methods can be categorized into four main categories [64]:

• Partitioning methods: Clustream, SWClustering and StreamKM++.

• Density-based methods: DenStream, rDenStream, C-DenStream, SDStream,
HDDStream, MuDi-Stream, and HDenStream

• Grid-based methods: D-Stream, DDStream, MR-Stream, DENGRIS and PKS-
Stream.

• Model-based methods: SWEM

Anomaly Detection

Anomaly detection [65, 66] algorithms aim to identify instances that deviate signifi-
cantly from the normal patterns or behaviors observed in the data. These algorithms
can detect rare events or outliers that may indicate the presence of failures. For
instance, in Figure 2.19, Points o1 and o2, as well as points in the region O3 lie
outside the bounds of the normal regions and are, thus, point anomalies since they
deviate from normal data points [67].

2.3 Unsupervised Machine Learning Methods 43

Fig. 2.18 Illustration of K-means algorithm. (a) Two-dimensional input data with three
clusters; (b) three seed points selected as cluster centers and initial assignment of the data
points to clusters; (c) and (d) intermediate iterations updating cluster labels and their centers;
(e) final clustering obtained by K-means algorithm at convergence [8]

Anomaly Detection encompasses various techniques to identify unusual patterns
or outliers within datasets. Common methods include statistical approaches like Z-
Score and Median Absolute Deviation (MAD), which assess data points’ deviations
from statistical norms; density-based methods like DBSCAN and Local Outlier
Factor (LOF), which pinpoint anomalies in low-density regions; distance-based
techniques like K-Nearest Neighbors and One-Class SVM, which gauge data points’
distances from their neighbors; clustering methods like K-Means and Hierarchical
Clustering, which flag outliers as data points that do not fit into clusters; ensemble
methods like Isolation Forest, which isolate anomalies by random feature splits;
autoencoders that use neural networks to detect anomalies based on reconstruction
errors; histogram-based approaches dividing feature space into cells; and specialized
techniques for time-series data, such as AutoRegressive Integrated Moving Average
(ARIMA) and Prophet, which predict values and identify anomalies by comparing

44 Literature Review

Fig. 2.19 A simple example of anomalies in a two-dimensional data set [8]

actual and predicted values. The choice of method depends on data characteristics
and the nature of anomalies, with domain expertise guiding the selection process.

Dimensionality Reduction

As the dimensionality of the dataset or the number of features grows, the data volume
needed for achieving a statistically meaningful outcome also rises exponentially. This
presents challenges like overfitting, prolonged computation times, and diminished
precision in machine learning models, commonly referred to as the issues stemming
from the curse of dimensionality when dealing with high-dimensional data. Dimen-
sionality reduction techniques reduce the dimensionality of the data by extracting
a lower-dimensional representation while preserving important information. This
can help visualize the data, identify relevant features, and simplify subsequent analy-
sis and interpretation. To address the curse of dimensionality, feature engineering
techniques are used which include feature selection and feature extraction:

• Feature Selection: In this method, you choose a subset of the original features
and discard the rest. The selection can be based on statistical techniques,
domain knowledge, or other criteria. Feature selection methods include:

2.3 Unsupervised Machine Learning Methods 45

Filter Methods: These methods use statistical metrics like correlation or
mutual information to select the most relevant features.

Wrapper Methods: These methods use a machine learning model’s perfor-
mance to select features. They involve training and evaluating the model with
different feature subsets.

Embedded Methods: Feature selection is integrated into the learning algo-
rithm itself. Techniques like L1 regularization for linear models automatically
select relevant features.

• Feature Extraction: Feature extraction transforms the original features into a
new set of features. The idea is to project the data into a lower-dimensional
space while preserving as much relevant information as possible. Popular
techniques for feature extraction include:

Principal Component Analysis (PCA): PCA is a linear transformation
method that finds orthogonal axes (principal components) where the variance
of the data is maximized. It is excellent for reducing dimensions in a decorre-
lated manner by finding a new set of variables, smaller than the original set
of variables, retaining most of the sample’s information, and useful for the
regression and classification of data.

Indeed, PCA is designed to capture the highest variance present in the data.
The principal components, which are linear combinations of original variables
in the dataset, are organized by importance in decreasing order. The cumulative
variance encompassed by all principal components equals the total variance
found in the initial dataset. As depicted in Figure 2.20, the first principal
component (PCA1) captures the most substantial data variation. Subsequently,
the second principal component (PCA2) seizes the maximum variance that is
orthogonal to the first principal component, and so forth [9].

Linear Discriminant Analysis (LDA): LDA is often used for supervised
dimensionality reduction and is especially useful in classification tasks [68]. It
aims to maximize the separability between classes. This is achieved by identi-
fying a collection of linear discriminants that optimize the ratio of variance

46 Literature Review

PCA1

PCA2

Variance

Variance

Transformation
2D → 1D

PCA1 > PCA2

Fig. 2.20 Principal Component Analysis (PCA) (adapted from [9]).

between classes to variance within classes. In simpler terms, it determines the
feature space directions that most effectively distinguish various data classes
from one another.

Consider two distinct sets of data points representing different classes that
I aim to classify. As depicted in the provided 2D plot in figure 2.21, when
these data points are visualized in a two-dimensional space, there is no single
straight line that can entirely separate the two data point classes. In such
scenarios, LDA comes into play. LDA transforms the 2D graph into a 1D
representation, effectively enhancing the separability between the two classes.

In figure 2.21, it can be seen that a new axis (in red) is generated and plotted
in the 2D graph such that it maximizes the distance between the means of the
two classes and minimizes the variation within each class. In simple terms,
this newly generated axis increases the separation between the data points of
the two classes. After generating this new axis using the above-mentioned
criteria, all the data points of the classes are plotted on this new axis and are
shown in figure 2.22 [10].

The choice between feature selection and feature extraction depends on the
specific problem, the nature of the data, and the computational resources avail-

2.3 Unsupervised Machine Learning Methods 47

Fig. 2.21 Two sets of data points belonging to two different classes that need to be classified
[10].

Fig. 2.22 Linear Discriminant Analysis (LDA) is used which reduces the 2D graph into a 1D
graph to maximize the separability between the two classes [10].

able. Dimensionality reduction can help in cases where a dataset has too many
features, some of which may be redundant or irrelevant, leading to improved model
performance, reduced overfitting, and faster training times.

Association Rule Mining

Association rule mining techniques discover relationships and associations between
different features or variables in the data. These associations can provide insights
into the dependencies and interactions between variables, which may be indicative
of failure-related patterns. The Apriori algorithm is a popular method for association
rule mining. The Apriori algorithm operates on a database of transactions, where
each transaction is a set of items. It is widely used for market basket analysis, which
identifies item sets that are frequently purchased together. The algorithm employs

48 Literature Review

a bottom-up approach to discover frequent item sets and generate association rules
(see Appendix A.2.2).

2.3.2 Related Works in Unsupervised Machine Learning for Fail-
ure Detection and Diagnosis

In the context of FDD in manufacturing lines, unsupervised learning methods can
be applied to explore the data and identify anomalies or abnormal behavior without
prior knowledge of specific failure instances. Unsupervised learning techniques can
provide valuable insights into the normal operating conditions and help in detecting
deviations from the expected behavior.

Unsupervised learning methods can be applied to analyze the historical data
collected from manufacturing lines and identify abnormal behavior or patterns
that may signal the presence of failures. By detecting anomalies or identifying
distinct clusters within the data, unsupervised learning techniques enable proactive
maintenance strategies, allowing for timely interventions to prevent further damage
or downtime. It is worth noting that unsupervised learning alone may not provide
explicit information about the specific types or causes of failures. However, it
can complement other FDD approaches and assist in exploratory data analysis,
feature selection, and gaining a deeper understanding of the data distribution, which
can guide subsequent supervised or semi-supervised learning methods in failure
diagnosis and decision-making processes.

Recently, as opposed to model-based techniques [69], data-driven methods have
been widely used in industrial systems to detect possible faults under the realistic
hypothesis that monitoring data is available [70–72]. For instance, Bayesian networks
and the principal component analysis are respectively used in [73] and [74] as the
core component of the fault diagnosis approach. However, within the ML context,
unsupervised learning (e.g., clustering) is one of the most common techniques to
interpret and transform raw data into information that can potentially create value
in CBM applications. For instance, a clustering analysis successfully supports the
identification of the fault severity level in the case of multi-degradation systems
where distinguishing among different faults is difficult. Hence, several clustering-
based automated techniques are proposed in the related literature to deal with CBM.

2.3 Unsupervised Machine Learning Methods 49

In [75] the normal operation of a selective laser melting machine – defined as a
manufacturing process that uses a metal powder bed and thermal energy supplied by
a computer-controlled and focused laser beam to build a work-piece – are compared
against three faulty conditions using clustering methods in order to implement a CBM
system and enable machine tools for predictive maintenance solutions. In standard
clustering algorithms (e.g., K-means) the goal is to divide the original data set into
non-intersecting groups such that the distances between the instances of the same
group (i.e., intra-clusters) are smaller than the distances with respect to instances
of other groups (i.e., inter-clusters). An interesting modification of the traditional
K-means is represented by the Constrained K-means, where the learning process
is not totally unsupervised. In addition to the original data set, some additional
information about the desired clusters are provided: for example, information can be
related, but not limited, to must-link and cannot-link constraints.

Nevertheless, all the traditional clustering methods (such as K-means and Con-
strained K-means) require the availability of the whole data set to build and run
the ML models. In the current industrial scenarios, where sensors and Internet of
Things devices generate dynamical process data at high speed, producing actionable
insights at the right time is challenging [76]. More specifically, when real-time
monitoring data arrive over time, conventional techniques used for static data sets are
not suitable for online fault detection based on data stream (DS) [64]. The goal of DS
clustering is to maintain a continuously consistent good clustering of the observed
sequence, using a limited amount of memory, time, and information about data.
Performing the clustering analysis over DS requires additional challenges, including
the need for quick responses and the single-pass constraint over the raw data. Several
stream clustering approaches have been proposed in the literature to address the DS
clustering problem: they can be mainly categorized into partitioning-based (e.g.,
Leader, Stream K-means, and CluStream), density-based (e.g., DenStream), and
grid-based e.g., DStream) [64]. In particular, the partitioning-based DS clustering
techniques are divided, in turn, into adaptive methods (e.g., Leader and Stream K-
Means) and Online-Offline clustering methods (e.g., CluStream) [64]. For instance,
in [77] a fault-detection system based on data stream prediction is proposed as a DS
management system, including different data prediction methods both for short-term
and long-term prediction: the achieved results show that the methods using more
historical data perform better in long-term prediction, while the methods using the
most recent data perform better in short-term prediction. Another peculiarity of

50 Literature Review

Fig. 2.23 General Reinforcement Learning Structure. [11]

DS mining is the so-called concept drift, which refers to the unforeseen change in
statistical properties of the instances coming from the stream of data over time [78].
Especially when the goal of the clustering activity is to determine a fault detection
strategy, understanding how and when the stream of data changes over time is crucial.
To this aim, in [79] authors indicate four different concept drift modes: sudden,
gradual, incremental, and recurring. A method to detect concept drift in data streams
as a potential indication for faulty system behaviors is proposed in [80]. Although
the results show the effectiveness of the approach, it is worthwhile noting that the
concept drift does not always represent a meaningful measure of the degradation of
the process under analysis.

2.4 Reinforcement Learning Methods

Reinforcement Learning (RL) is a type of ML paradigm where an agent learns to
make a sequence of decisions by interacting with an environment. The agent aims
to maximize a cumulative reward signal over time through a trial-and-error process.
RL is commonly used in scenarios where the agent has to make a series of actions to
achieve a goal, and it does not have access to a labeled dataset but can learn from its
own experiences (see figure 2.23).

In figure 2.23 the interaction between the agent and the environment is usually
defined by the formal framework of Markov Decision Processes (MDP).

2.4 Reinforcement Learning Methods 51

2.4.1 Brief Overview on Reinforcement Learning Methods

There are several types or categories of RL, including:

Model-Free vs. Model-Based RL

In model-free RL, the agent learns a policy that maps states to actions directly
without building an explicit model of the environment. Common algorithms include
Q-learning, State-Action-Reward-State-Action (SARSA), and various policy gradient
methods.

In model-based RL, the agent constructs an internal model of the environment to
simulate possible outcomes of actions. This model is used for planning and decision-
making. Model-based RL can be more sample-efficient but requires learning an
accurate model of the environment.

Value-Based vs. Policy-Based RL

In value-based RL, the agent learns a value function that estimates the expected
cumulative reward of being in a certain state and taking a certain action. Q-learning
and Deep Q-networks (DQN) are examples of value-based methods.

In policy-based RL, the agent directly learns a policy, which is a mapping from
states to actions, without explicitly computing value functions. Policy gradient
methods like REINFORCE are used in policy-based RL.

On-Policy vs. Off-Policy RL

On-policy methods update the policy based on the experiences generated by the
current policy. This can lead to slower learning but is more stable.

Off-policy methods allow the agent to learn from experiences generated by a
different policy than the one being updated. This often leads to more efficient
learning but can be less stable.

52 Literature Review

Exploration Strategies: Exploration vs. Exploitation

RL agents face the exploration-exploitation dilemma, where they must balance ex-
ploring unknown actions to discover better strategies and exploiting known actions
to maximize rewards. Various exploration strategies, such as Epsilon-Greedy, Up-
per Confidence Bound (UCB), and Thompson sampling, are used to address this
dilemma.

Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) combines RL with deep neural networks,
allowing agents to handle high-dimensional state and action spaces. DRL methods
have achieved remarkable success in applications like game playing, robotics, and
autonomous vehicles.

These categories and types provide a framework for understanding the diverse
range of RL methods and approaches used to solve complex decision-making prob-
lems in various domains. The choice of RL algorithm depends on the specific
problem, the available data, and the trade-offs between exploration and exploitation.

2.4.2 A Brief Assessment of Reinforcement Learning for Failure
Detection and Diagnosis

In the realm of RL for failure detection and diagnosis, existing research has focused
on developing intelligent systems that can autonomously learn and adapt to complex
industrial environments. Compared to supervised or unsupervised learning, RL is
still not as frequently used in FDD, reliability, and safety applications [42]. However,
it presents several potentials for making crucial contributions to these fields. The
related works delve into the application of RL algorithms to enhance the reliability
and performance of FDD processes in industrial systems. They explore the utilization
of RL techniques to optimize maintenance strategies, reduce downtime, and improve
overall system resilience. By leveraging RL, these studies aim to pave the way for
more efficient and proactive FDD solutions in industrial contexts. RL has been
applied, for instance, to condition-based maintenance planning for multi-component
systems with conflicting risks [81]. With the complexity of engineering systems

2.5 Conclusion of Machine Learning Models for Failure Detection and Diagnosis53

rising, optimization of CBM with Markov Decision Processes (MDP) and other
traditional decision-making techniques becomes difficult, if not computationally
infeasible. To find effective inspection and maintenance procedures for large-scale
infrastructure systems, authors in [82] used Deep Reinforcement Learning.

2.5 Conclusion of Machine Learning Models for Fail-
ure Detection and Diagnosis

In summary, this chapter provides an overview of ML models for FDD with a
focus on four main categories of ML techniques: supervised, unsupervised, semi-
supervised, and reinforcement learning. Each category is introduced and explained
in detail, highlighting subsets within each. The chapter delves into the mathematical
optimization aspects and provides comprehensive descriptions of key algorithms
associated with each category. Furthermore, it offers insights into related work in
FDD, presenting a thorough literature review for each method as applied to industrial
systems. This comprehensive exploration sets the stage for a deeper understanding of
the role of main ML techniques in FDD and their potential applications in real-world
scenarios.

Within this chapter, I have discussed the four primary categories of ML models
central to the realm of FDD. However, it is important to note that the landscape
of ML is vast and continuously evolving. Alongside the models explored here,
there exist other techniques, including Physics-Informed ML, Transfer Learning,
Automated (AutoML), and more, which have found utility in FDD and industry 4.0
applications[83]. Although these approaches bear significant relevance, my emphasis
in this discussion is placed squarely on the core ML models, and I will not delve into
the intricacies of these other methodologies.

Chapter 3

Supervised Methods: Data-Driven
Fault Diagnosis in a Complex
Hydraulic System based on Early
Classification

3.1 Introduction to Early Classification Algorithms
and Contribution

In the previous works, the proposed CBM systems are able to accurately monitor
the working condition of the industrial devices. However, they have not exhibited
the capability to proactively predict equipment failures beforehand. In the related
literature of HSs, the decision-making is postponed until the entire information has
been gathered. Notably, prior research endeavors have not included the ability to
anticipate the timing of system failure within a working cycle, nor to proactively
avert system operation in the face of potentially critical faults. In fact, the time of a
potential failure in a component, which may be identified via automated processing of
available sensors’ signals, represents one of the most crucial Health Indicators (HIs)
in the realm of HSs. In scenarios where new measurements arrive sequentially, there
is a need for progressive monitoring of an asset’s health status. Given the irregularity
of these measurements and their asynchronous nature, it becomes paramount to
expedite decision-making to enhance system performance([12]). As the HS runs

3.1 Introduction to Early Classification Algorithms and Contribution 55

over cycling operations, several relevant parameters may be monitored to observe
any progressive change leading to some potential failure. However, at this time,
only a slight drop in running performance occurs, and it is not possible to prevent
these faults through traditional fault diagnosis techniques. As a result, it is crucially
needed to raise an early warning of fault according to the changing trend of working
signals in HSs.

The main contribution of this work is early fault detection to avert equipment
breakdown and enhance the efficiency of industrial systems. To achieve this goal, I
utilize an early time-series classification (ETSC) algorithm to solve the problem of a
complex HS with several interconnected components. As it can be seen in section
1.5.1, the sequential data, generated by different types of sensors, are processed and
an early classification model is applied for each component of the HS to detect in
advance potential failures. By taking both accuracy and earliness into account, this
adaptive approach formalizes the early classification of time series as a sequential
decision-making task and forecasts the healthy state of incoming and incomplete
sensors’ data before the observation of the entire time series. In other words, at each
time step, it computes the optimal expected time for decision-making in advance. As
a result, the early classification model successfully achieves a trade-off between the
performance and the earliness criterion. This early predicted failure time helps to
prevent the HS from breaking down and reduces the cost of maintenance. Finally,
since the failure time is known in advance, the remaining useful life of the compo-
nents may be anticipated by dividing the asset’s life cycle into healthy and unhealthy
stages. The experimental results on a realistic HS dataset from the related literature
show that the ETSC method can effectively identify different fault types with a
higher accuracy and earlier prediction time compared to baseline methodologies.

The rest of this chapter is organized as follows. Section 3.2 describes the ETSC
method aimed at classifying the eventual fault types of each new working cycle of the
HS. In Section 3.4, the proposed methodology is applied to the early classification of
the state of the main HS components, and the achieved results are comprehensively
discussed and compared with those obtained by baseline methods. Lastly, concluding
remarks and outlooks to future works are summarized in Section 3.5.

56
Supervised Methods: Data-Driven Fault Diagnosis in a Complex Hydraulic System

based on Early Classification

Algorithm 1: Early Time-Series Classification Algorithm
Inputs: xt = ⟨x1,x2, ...,xt⟩,

{
hk

t
}

t∈{1,...,T},k∈{1,...,K}
1: xt ← ⟨x1⟩
2: t← 1 while (¬TRIGGER

(
xt ,{hk

t }k∈{1,...,K}
)
) ∨ (t < T) do

3:
t← t +1

4: xt ← ⟨xt−1,xt⟩
5:
6: k = argmax

k∈{1,...,K}
P(ck | xt), ŷ← hk

t (xt)

7: t⋆← t
Outputs: ŷ, t⋆

8: procedure TRIGGER(xt ,{hk
t }k∈{1,...,K})

9: T ← False for τ ∈ {0, . . . ,T − t} do
10:

Compute fτ (xt) through (3.3)
11:
12: τ∗ = argmin

τ∈{0,...,T−t}
fτ (xt) if (τ∗ = 0) then

13:
T ← True

14:
15: return T
16: end procedure

3.2 The Early Time Series Classification Methodology

In this section, I outline an early time-series classification algorithm based on the
framework introduced in [12]. This algorithm is designed to forecast the category
of incoming time-series data while observing a minimal number of initial measure-
ments.

Let us consider a system with a cyclic operation, whose generic component
working-cycle is represented by a T -dimensional time series of real-valued measure-
ments xT =⟨x1,x2, . . . , xT ⟩ that can be classified by a label y in accordance with a
finite set M of M = |M | classes. The goal of the ETSC is to optimally classify a
new and still incomplete time-series xt⋆ = ⟨x1,x2, . . . ,xt⋆⟩ at t⋆ ∈ {1, . . . ,T} before
the full observations become available.

3.2 The Early Time Series Classification Methodology 57

To this aim, let us consider a set S of m sequences for the training of the early
classification model. Each sequence is a couple

(
xi

T ,yi
)
∈ RT ×M , where xi

T =〈
xi

1,x
i
2, . . . ,x

i
T
〉

(i = 1, . . . ,m) is the i-th time-series and yi represents the associated
label. The training set S is used to determine a series of classifiers ht (with t ∈
{1, . . . ,T}): each classifier ht estimates the class of the t-dimensional sub-series
xt = ⟨x1,x2, . . . ,xt⟩. The early classification model is based on the estimation of
the earliest time t⋆ at which the prediction ht⋆ (xt⋆) is equivalent to hT (xT), i.e., the
classifier based on the observation of the entire time-series xT .

As a first pre-condition, all the full-length training time-series in S must be
partitioned into K clusters {c1,c2, . . . ,cK}. Clusters should have similar time series
and be distinct from one another, such that an incoming incomplete sequence is
generally assigned to one of them. The number of clusters for each target class
corresponds to the maximum silhouette factor, which is a metric used to assess the
performance of a clustering technique. The Euclidean distance is used to calculate
the distance between an incomplete incoming time series and a complete one. Then,
the membership probabilities of the sub-series to each cluster are computed. In
particular, the membership probability of sub-series xt to cluster ck is denoted as
P(ck | xt), and is computed as follows:

P(ck | xt) =
sk

∑
K
i si

(3.1)

where sk is a sigmoid function defined as:

sk =
1

1+ exp−λ∆k
. (3.2)

Note that in (3.2) λ is a constant value and ∆k is the difference between the
average of all distances of the clusters to xt , and the distance of the cluster ck and xt .

As a second pre-condition, for each time-point t ∈ {1, . . . ,T} the confusion
matrix for each cluster and each classifier ht is computed based on the frequencies
observed in the training data, and is denoted as Pt (ŷ | y,ck), where ŷ and y are the
predicted and the true class, respectively.

The proposed methodology for the early classification is formally described in
Algorithm 1. The core part of the algorithm lies in the procedure TRIGGER reported
at the bottom part of Algorithm 1 (lines 9-19). Such a procedure implements a

58
Supervised Methods: Data-Driven Fault Diagnosis in a Complex Hydraulic System

based on Early Classification

function that looks for a future time step at which a trustworthy classification can be
made.

Given xt at time t, T − t measurements are still missing on the incoming series
to carry out the complete cycle. To find the optimal future step τ ∈ {0, . . . ,T − t}
when the incoming time-series will be correctly classified, an expected cost function
is calculated in the TRIGGER function as follows:

fτ (xt) =

∑ck
P(ck | xt)∑y∈M ∑ŷ∈M Pt+τ (ŷ | y,ck)Ct(ŷ | y)+C(t + τ).

(3.3)

Equation 3.3 represents the cost function associated with the prediction decision
problem and is composed of two terms: misclassification and time cost. The term
C(t + τ) in (3.3) is a non-decreasing function, indicating the cost of delaying the
classification at future time t + τ . Conversely, the first term in (3.3) is based on the
misclassification function Ct(ŷ | y) : M ×M −→ R –that provides the cost at time t
of predicting ŷ when the true class is y– and the conditional probabilities P(ck | xt)

and Pt+τ (ŷ | y,ck).

Equation (3.3) allows us to determine the optimal time step τ∗ at which the
expected cost is minimum. When a new measurement is available, the computation
of the expected cost is re-evaluated (lines 3-4): only and only when the current time
corresponds to the optimal prediction time, the classification decision procedure
stops and the classifier hk

t is selected to predict the class of the input sequence xt

(lines 7-8). Indeed hk
t is the base classifier that is learned over t time steps using the

k-th cluster of the complete time series in the training phase.

3.3 Illustrative Numerical Example

In this section, I provide a step-by-step numerical example to illustrate the workings
of the ETSC (Algorithm 1).

In Figure 3.1, confusion matrices are computed for each time step and cluster.
While in Figure 3.2, the curves visually demonstrate the tradeoff between the gain in
expected precision and the cost of delaying decisions, with the minimum expected at
time τ∗. The introduction of new measurements has the potential to alter both the

3.4 Case Study: Complex Hydraulic System 59

Fig. 3.1 Comparison of an incoming sequence with clusters from the training set [12].

expected cost curve and the estimated τ . This numerical example demonstrates the
step-by-step execution of the ETSC for the provided inputs in Section 3.4.3.

3.4 Case Study: Complex Hydraulic System

In this section, the proposed ETSC methodology is applied to a real-world complex
HS, as detailed in section 1.5.1. Applying this early classification model allows us to
not only detect possible faults but also estimate as soon as possible the time of these
faults by meeting the earliness criterion.

3.4.1 Data Pre-processing and Sensor Selection

Before conducting any data-driven process, data pre-processing is required. Un-
doubtedly, the quality of the training dataset plays a crucial role in determining the
accuracy of classification methods. Using all the attributes in a large data set would
lead in an over-fitted model ([84]). Conversely, the main characteristic of each fault
is strongly influenced only by some correlated sensor signals. In this case study, the
most significant sensor signals for CBM of each component are selected based on

60
Supervised Methods: Data-Driven Fault Diagnosis in a Complex Hydraulic System

based on Early Classification

Fig. 3.2 The first curve depicts an incoming time series xt , while the second curve illustrates
the expected cost fτ(xt) given xt , ∀τ ∈ {0, . . . ,T − t} [12].

Table 3.1 The most correlated sensor for each component of the HS.

Component The most correlated sensor
Valve PS1
Cooler CE
Pump SE

Accumulator FS1

the correlation between the features and the fault degrees ([32, 35]). The pressure
(PS1−PS6), flow rate (FS1−FS2), and temperature (T S1−T S4) sensor signals
have been plotted in figure 3.3, 3.4, and 3.5 respectively. Furthermore, Figure 3.6
illustrates motor power (EPS1) and vibration (VS1), while Figure 3.7 exhibits signals
for Cooling Efficiency (CE), Cooling Power (CP), and System Efficiency Facto (SE).
The most correlated time-domain sensors to each fault type are shown in Table 3.1
based on the Spearman ranking correlation analysis.

As usually done in supervised learning tasks, the series of observations including
both features and corresponding labels is partitioned into two distinct subsets: the
training set and the testing set. The model learns on the training data using both
features and labels, while its performance is measured on the testing set when only
features are employed to predict the labels. In this case study, the 2205 working

3.4 Case Study: Complex Hydraulic System 61

Fig. 3.3 PS1-PS6 pressure signals of the HS Dataset

Fig. 3.4 FS1-FS2 flow rate signals of the HS Dataset

62
Supervised Methods: Data-Driven Fault Diagnosis in a Complex Hydraulic System

based on Early Classification

Fig. 3.5 TS1-TS4 Temperature signals of the HS Dataset

Fig. 3.6 EPS1 and VS1 signals of the HS Dataset

3.4 Case Study: Complex Hydraulic System 63

Fig. 3.7 CP, CE and SE signals of the HS Dataset

cycles of the selected sensors are splitted into training (75%) and testing (25%)
subsets. Certainly, a portion of the training data can be utilized for model validation
as well.

3.4.2 Baseline Methods and Performance Indicators

The following reference methods are introduced to evaluate the performance of
the proposed techniques. One of the most used classification methods is Linear
discriminant analysis (LDA), which divides each sample of various sensors into
numerous intervals and performs feature extraction using median, variance, skew-
ness, and kurtosis. Then the Pearson correlation coefficient is used to analyze the
correlation between sensors’ data features and faults. In addition, common clas-
sification methods such as artificial neural networks (ANNs) and support vector
machine (SVM) with linear and radial basis function (RBF) kernels are also used as
alternative state-of-the-art techniques.

To compare the results of the ETSC method with those of the baseline models, I
employ two key metrics: accuracy and earliness. The accuracy of a classification
task is calculated based on the so-called confusion matrix, also known as an error
matrix. By definition, a confusion matrix CM is a square matrix whose dimension
corresponds to the number M of classes and whose element CM(i, j) is equal to the
number of observations known to be in class i (actual class) and predicted to be in
class j (predicted class). Then the accuracy metric indicates how close the predicted
labels are to the actual labels, and is defined as follows:

Accuracy = 100
∑

M
i=1 CM(i, i)

∑
M
i=1 ∑

M
j=1 CM(i, j)

(3.4)

64
Supervised Methods: Data-Driven Fault Diagnosis in a Complex Hydraulic System

based on Early Classification

Table 3.2 Tuned values of main hyper-parameters for each HS component.

Component Cost time (C(·)) Sigmoid parameter (λ)
Valve 0.001 1000
Cooler 0.01 1000
Pump 0.01 1000

Accumulator 0.001 1000

where ∑
M
i=1 CM(i, i) indicates the number of sample that have been truly labeled

using the classification algorithm (i.e., the elements on the diagonal of matrix CM),
while ∑

M
i=1 ∑

M
j=1 CM(i, j) represents the total number of samples in the given data

set. If the entire set of predicted labels for a data set strictly match the true set of
labels, then the accuracy achieves the highest value, i.e., 100%.

Second, the earliness metric is considered to provide the time of fault diagnosis
during the procedure of early classification. If the early classifier uses t⋆ data points
of a testing time series during classification, then earliness is defined as follows:

Earliness = 100
T − t⋆

T
(3.5)

where T is the length of complete time series ([31]). If the entire set of measure-
ments is used to perform the classification, then earliness achieves the lowest value,
i.e., 0%.

3.4.3 Results and Discussion

For every hydraulic component, I implement and fine-tune the ETSC model in Python.
Subsequently, I apply this model individually to the chosen sensor data. To assess
how each hyperparameter influences the decision-making process, I systematically
vary their values within predefined ranges The main hyper-parameters of the early
classification model and the best values after the tuning process for each component
are listed in Table 3.3.

In particular, the most important parameter is the cost time parameter, indicated
by C(·) in (3.3). In particular, this parameter is varied in the range:

{0.1,0.01,0.001,0.0001,0.00001}

3.4 Case Study: Complex Hydraulic System 65

Fig. 3.8 Confusion matrix of ETSC model for different fault types (cooler, pump, accumulator,
and valve)

when the cost time is very low, the number of subgroups in each class, and thus the
complexity of the classes, do not influence the results; conversely, when the cost
time increases, the decision task becomes harder, and the early decision-making
is postponed. As for the sigmoid function parameter – denoted as λ in (3.2) – by
varying its value in the range {10,100,1000} no significant difference in the accuracy
of the models is observed.

Since I face a multi-classification problem, the ETSC model is first quantita-
tively evaluated by the confusion matrix. Generally, the diagonal and off-diagonal
elements of the confusion matrix represent successful and unsuccessful detection of
fault/healthy signals, respectively. It is apparent that the diagonal values of the con-
fusion matrices for all components (Fig. 3.8) are much larger than the off-diagonal
values, meaning that the ETSC method perfectly classifies the fault/healthy condition
of each working cycle.

In general, classification methods like ANN, SVM, and ETSC exhibit higher
overall accuracy compared to statistical methods such as LDA in diagnosing faults

66
Supervised Methods: Data-Driven Fault Diagnosis in a Complex Hydraulic System

based on Early Classification

Table 3.3 Tuned values of main hyper-parameters for each HS component.

Component Cost time (C(·)) Sigmoid parameter (λ)
Valve 0.001 1000
Cooler 0.01 1000
Pump 0.01 1000

Accumulator 0.001 1000

Table 3.4 Comparison of the proposed and baseline methods in terms of accuracy (%) for
each HS component.

Component LDA⋆ ANN⋆ SVM⋆ SVM⋆ ETSC
(Linear) (RBF)

Valve 100 100 100 100 100
Cooler 100 100 100 95.7 100
Pump 73.6 80.0 72.4 64.2 96.0

Accumulator 54.0 50.4 51.6 65.7 84.4
Overall 81.9 82.6 81.0 81.4 95.1

⋆ accuracy results taken from ([35]).

Table 3.5 Comparison of the proposed and baseline methods in terms of fault time (timestamp)
for each HS component.

Component Baseline methods ETSC
Valve 6000 966, 972
Cooler 60 1
Pump 60 1, 12, 14

Accumulator 600 114, 126

in the HS being studied. As shown in Table 3.4, the accuracy of the ETSC is the
maximum value (i.e., 100%) for the valve and the cooler diagnosis model, whilst it
is respectively 96.0% and 84.4% for the pump the accumulator, which means that
the diagnosis model performs quite well on the correlated sensors. The accuracy of
all baseline methods is instead not satisfying for CBM of the accumulator.

The most important advantage of the ETSC model with respect to the baseline
methods lies in the ability to estimate the time of a potential fault. In all the baseline
models presented in Table 3.4, the detection of faults occurs at the end of a working
cycle, while the ETSC model can diagnose the healthy/fault condition of the system

3.4 Case Study: Complex Hydraulic System 67

Fig. 3.9 Early fault time for the cooler (a), valve (b), accumulator (c), and pump (d): the
vertical line shows the optimal time t⋆ (in terms of timestamps) dividing the signal in observed
(solid) and unobserved (dash) parts.

in advance, with no need to wait up to the end of the working cycle. As it can be
seen in Table 3.5, the estimated time of each fault type is much less than the duration
of a complete working cycle. For instance, in the case of the accumulator, the early
classification model can diagnose any fault after observing 114 or 126 measurements
(i.e., the earliness is 81.0% or 79.0%), while the baseline models must explore the
entire measurements which takes exactly 600 timestamps (i.e., the earliness is 0%).
In particular, Fig. 3.9 represents the estimated fault time of some specific signals
for the hydraulic pump component. Indeed, the threshold of measurements has
been gradually increased during the working cycles to satisfy the trade-off between
accuracy and earliness.

68
Supervised Methods: Data-Driven Fault Diagnosis in a Complex Hydraulic System

based on Early Classification

Summing up, two main outcomes are apparent: on the one hand, the applied
ETSC method is able to assign each incoming sequence to the corresponding fault
types with high accuracy; on the other hand, it can estimate an optimal fault diagnosis
time, thus balancing between the classification accuracy and the cost of delaying the
classification result.

3.5 Conclusion of the Early Time Series Classification
Method

Nowadays, the research on intelligent fault prognosis for HSs is increasingly growing
due to its potential to improve operational safety and reliability, lower maintenance
costs, and boost productivity in several industrial sectors. Given the cycling operation
of HSs, several relevant parameters may be monitored to detect any progressive
change leading to some potential failures. At this phase, only a slight drop in running
performance occurs, which is not detectable through traditional fault diagnosis
techniques, and thus it is crucial to raise an early warning of fault considering
the changing trend of working signals in HSs. In this paper, an early time-series
classification (ETSC) algorithm is applied to support fault prognosis in a complex
HS with several interconnected components. The proposed technique aims at early
classifying the state of the system while keeping the loss of classification inaccuracy
at the minimum level. In contrast to baseline models that detect eventual failures
at the end of each working cycle, the ETSC model can predict any fault type of
the HS components before observing the entire working cycle. Indeed, the early
classification model successfully achieves a trade-off between the performance and
the earliness criterion. Experimental results on a realistic HS dataset from the related
literature show that the ETSC method can effectively identify different fault types
with higher accuracy and earlier compared to baseline methodologies.

Chapter 4

Supervised Methods: An Integrated
Approach for Failure Diagnosis and
Analysis of Industrial Systems Based
on Multi-Class Multi-Output
Classification

4.1 Introduction to Multi-Class Multi-Output Classi-
fication

In contrast to the previous literature, the goal of this work is to combine ML with
statistical FA to create a tool that can assess a complex system’s behavior with a
minimum of user intervention. Specifically, the ML model is used to detect the states
of the hydraulic components and the ultimate state of the HS, while the statistical FA
is utilized to determine the primary cause of the failure. In fact, I propose a hybrid
model that includes both ML and statistical FA techniques. In order to process the
sensor measurement data coming from the industrial HS and forecast not only the
potential failures of the system components but also the overall state of the system
and simultaneously identify the root cause of failure, a Multi-Class Multi-Output
(MCMO) classification method is constructed. MCMO model is appropriate for

70
Supervised Methods: An Integrated Approach for Failure Diagnosis and Analysis of

Industrial Systems Based on Multi-Class Multi-Output Classification

handling complex classification problems with multiple labels. This model allows
for the assignment of multiple labels to a single data point, which can be beneficial
in cases where a data point belongs to more than one output or has multiple classes.

The rest of this chapter is organized as follows. Section 4.2 presents the MCMO
method to classify fault types industrial systems, used as inputs for the rule-based
model for the purpose of FA. Section 4.3 describes a case study where the MCMO
method is applied to the state of the components of the HS, and results are discussed
and compared with baseline methods. Lastly, concluding remarks and outlooks for
future work are presented in Section 4.4.

4.2 A Hybrid Model for Failure Analysis

This section outlines a two-step procedure presented for the complex multi-component
system to diagnose not only the failure of the system but also the fault of each compo-
nent at the same time (see Figure 5.1). The proposed hybrid model consisting of the
MCMO classification and the rule-based system for FA is described in Algorithm 2.

4.2.1 Multi-Class Multi-Output Classification

An MCMO classification problem involves forecasting multiple target variables,
where each target variable has more than two possible classes.

MCMO classification models based, for instance, on Logistic Regression (LR),
K-Nearest Neighbor (KNN), Support Vector Machines (SVM), Decision Tree (DT),
and Random Forest (RF) – denoted as MLR, MKNN, MSVM, MDT, and MRF,
respectively – are an extension of traditional classification techniques that can handle
multiple output variables simultaneously. In contrast to the corresponding single-
output models LR, KNN, SVM, DT, and RF, the MCMO models can predict multiple
dependent variables that are correlated with each other. In addition to labeling each
basic component to its corresponding class, MCMO models can also label the entire
state of the system to a specific binary class (Stable and Non-stable).

Let us consider a system with a cyclic operation, whose generic component
working-cycle is represented by a set X =

〈
X(1),X(2), . . . ,X(N)

〉
of N time-series,

each being composed of T real-valued measurements X(i) =
(
xi

1,x
i
2, . . . ,x

i
T
)

(for each

4.2 A Hybrid Model for Failure Analysis 71

Fig. 4.1 Scheme of the failure diagnosis and analysis method based on MCMO classification.

i = 1,2, . . . ,N). Each time-series is classified in accordance with M labels defined in
C = {c1,c2, . . . ,cM}: Y =

〈
Y (1),Y (2), . . . ,Y (N)

〉
denotes the labels corresponding

to the time-series in X .

The goal of the MCMO classification is to optimally classify the time-series set
X to the class labels Y , i.e., determining the pairing

(
X(i),Y (i)

)
∈RT ×C for each

i = 1,2, . . . ,N.

The proposed MCMO-based method is described in detail in steps 1-4 of Algo-
rithm 2. The inputs to the algorithm are a set of time series X and its corresponding
multi-labels Y . The algorithm splits the dataset into training and testing sets and fits
an MCMO classification model using the training set. It then uses the trained model
to predict the labels Ypred for the testing set.

Note that the reproducibility of the MCMO classification method depends on
several factors, including the availability and quality of training data, the chosen
model, and the specific implementation. To ensure reproducibility, it is important to

72
Supervised Methods: An Integrated Approach for Failure Diagnosis and Analysis of

Industrial Systems Based on Multi-Class Multi-Output Classification

Algorithm 2: Failure Diagnosis and Analysis based on Multi-Class Multi-
Output classification

Inputs: X , Y
Outputs: FA results

1: Split the dataset X , Y in train data Xtra, Ytra and test data Xtest , Ytest
2: Build the MCMO model using the train data Xtra, Ytra
3: Determine the classes Ypred associated with the test data Xtest
4: Compute the accuracy and precision of the MCMO model comparing Ytest and

Ypred
5: Define all failure modes M j from Ypred
6: Compute the failure probability of M j
7: Find the steady-state and transient-state of the system
8: Perform the statistical FA

have a well-defined and representative training dataset that accurately represents the
variability and complexity of the problem at hand. It should include samples from
all classes of each target variable to provide sufficient information for the MCMO
model to learn.

4.2.2 Rule-based Model for Failure Analysis

A rule-based model is a systematic approach used to analyze the possible causes of
failure in a system. The procedure starts by defining all possible failure modes M j

that could occur in the system, having identified all the potential issues that could
arise and lead to the failure of the system by taking a type of fault in the components.
Subsequently, the failure probability (FP) for each of the identified failure modes
M j is computed. The probability of a given failure mode M j is P

(
M j

)
= NM j/N,

which corresponds to the ratio between the number NM j of observations and the total
number N of failures in the dataset. The results of the statistical FA are used for the
development of a risk management plan, with the final aim of minimizing the risk of
failure and ensuring a safe and efficient operation. The statistical FA procedure is
described in steps 5-8 of Algorithm 2. The algorithm calculates all possible failure
mode M j by taking the Cartesian product of the predicted labels in Ypred and then
proceeds to find the steady-state and transient state of the system, which may provide
insights into the underlying causes of failure.

4.3 Case Study: Complex Hydraulic System 73

Note that the reliability of the mentioned approach for failure analysis depends
on various factors, including the quality of data, the expertise of analysts, and the
complexity of the system being studied. It also relies on a comprehensive database
that covers a wide range of failure modes, with sufficient quantities to capture
probabilities and system behavior. A more robust and comprehensive database
leads to more informed and effective decision-making in the context of maintenance
policies.

4.3 Case Study: Complex Hydraulic System

This section applies the proposed methodology to a realistic complex HS in section
1.5.1 which data from an experimental study on predictive maintenance is available
in ([13]).

4.3.1 Setup of Experiments

Using the sensors signals listed in Table 1.1 as input, the MCMO model is able to
simultaneously diagnose the multi-outputs of hydraulic components and the overall
state of the HS described in Table 1.2, making it a powerful tool for decision-making
problem.

In Figure 1.1, the state of the four hydraulic components and the overall state of
the HS during the 2205 working cycles have been graphically represented, providing
a comprehensive visual overview of the system’s performance. For simplicity and
dimensionality reduction, I used the average of time series X instead of processing
the individual data points which can be useful in very specific situations. In this
case, averaging the time series can help smooth out any noise or fluctuations in the
data, making it easier to visualize trends or find patterns using ML algorithms. Then,
to compare the performance of different classifiers, the dataset has been split into
a training set (80%) to train the MCMO model and a testing set (20%) to evaluate
the performance of the model. This split ratio is a commonly used ratio, although it
may vary depending on the size of the dataset and the complexity of the problem
being solved. For the sake of comparing the results achieved by the MCMO methods
with those obtained by the baselines, accuracy, and precision are used to evaluate the
performance of the models.

74
Supervised Methods: An Integrated Approach for Failure Diagnosis and Analysis of

Industrial Systems Based on Multi-Class Multi-Output Classification

4.3.2 Results Analysis and Discussion

The results of the implementation of the proposed approaches for failure diagnosis in
the HS can be evaluated in terms of accuracy and efficiency. The accuracy of the fault
detection depends on the performance of the ML algorithm used for classification.
Tables 4.1 and 4.2 show that the MCMO methods have better accuracy and precision
in comparison with corresponding traditional methods. Among them, the use of an
ensemble of decision trees in a Multi-Class Multi-Output Random Forest (MRF)
can capture the non-linear and complex relationships between the input features and
the output labels of the HS. This leads to better diagnosis performance compared to
models that use linear or simpler non-linear models where the accuracy and precision
for the cooler, valve, pump, accumulator, and HS are respectively, 100, 97.50,
99.77, 97.73, and 98.90. The MCMO model involves multiple target variables,
which can lead to high-dimensional feature spaces. Therefore, understanding the
relationships between input features and multiple output variables is more complex
and challenging compared to traditional single-output classification models.

To evaluate the reliability of the complex HS, an FA is required to examine all
possible FM in which the system may fail. However, in this case, the scope of the
analysis is limited to the four main components, namely the cooler, valve, pump,
and accumulator. Various hydraulic components and environmental effects may
have an impact on the overall condition of the HS even though they were not taken
into account in this analysis. Thus, the inspection and evaluation of the system’s
reliability are focused solely on these main components, while external factors and
other components are excluded. To this aim, all possible combinations of FM are
defined for the HS by taking only the four main components into consideration.
These FM are then assigned to probabilities based on their likelihood of occurring.
By calculating the probability of each FM, the most critical points of failure within
the HS are identified, while facilitating the development of strategies to mitigate the
corresponding risks. The results of this analysis can be seen in Table 4.3, which
provides a clear picture of the system’s reliability and identifies areas that require
improvement.

4.3 Case Study: Complex Hydraulic System 75

Fig. 4.2 Degradation of hydraulic components and stable state of the hydraulic system.

Table 4.1 Accuracy of component level through MCMO classification model.

Model Cooler Valve Pump Accumulator HS

LR 99.77 71.65 98.86 61.22 92.97
KNN 99.83 84.12 97.95 94.55 92.06
SVC 99.83 48.75 95.01 57.14 92.97
DT 99.83 94.10 58.27 95.23 91.60
RF 99.83 96.37 58.27 97.73 91.83
MLR 100 50.79 75.96 41.95 87.30
MKNN 100 73.69 98.18 87.07 95.01
MSVM 53.51 46.48 54.42 36.50 68.70
MDT 100 94.10 99.77 95.23 97.27
MRF 100 97.50 99.77 97.73 98.86

76
Supervised Methods: An Integrated Approach for Failure Diagnosis and Analysis of

Industrial Systems Based on Multi-Class Multi-Output Classification

Table 4.2 Precision of component level through MCMO classification model.

Model Cooler Valve Pump Accumulator HS

LR 99.77 77.30 98.89 58.86 84.48
KNN 99.83 84.46 98.03 94.60 87.17
SVC 99.83 36.54 95.80 65.68 84.48
DT 99.83 94.09 43.71 95.24 88.00
RF 99.83 96.37 58.27 97.73 86.62
MLR 100 81.79 78.58 59.38 87.27
MKNN 100 74.55 98.24 87.18 95.06
MSVM 55.46 25.00 33.33 25.00 50.0
MDT 100 94.14 99.77 95.29 97.27
MRF 100 97.59 99.77 99.73 98.90

4.3 Case Study: Complex Hydraulic System 77

Ta
bl

e
4.

3
Fa

ilu
re

pr
ob

ab
ili

ty
(F

P)
fo

ra
ll

fa
ilu

re
m

od
es

(F
M

)o
ft

he
H

S.

FM
FP

(%
)

FM
FP

(%
)

FM
FP

(%
)

FM
FP

(%
)

C
1V

4P
1A

1
0.

13
C

1V
4P

1A
2

0.
13

C
1V

4P
1A

3
0.

13
C

1V
4P

1A
4

0.
13

C
2V

4P
1A

1
0.

13
C

2V
4P

1A
2

0.
13

C
2V

4P
1A

3
0.

13
C

2V
4P

1A
4

0.
13

C
3V

4P
1A

1
0.

13
C

3V
4P

1A
2

0.
13

C
3V

4P
1A

3
0.

13
C

3V
4P

1A
4

0.
13

C
1V

4P
2A

1
0.

13
C

1V
4P

2A
2

0.
13

C
1V

4P
2A

3
0.

13
C

1V
4P

2A
4

0.
13

C
2V

4P
2A

1
0.

13
C

2V
4P

2A
2

0.
13

C
2V

4P
2A

3
0.

13
C

2V
4P

2A
4

0.
13

C
3V

4P
2A

1
0.

13
C

3V
4P

2A
2

0.
13

C
3V

4P
2A

3
0.

13
C

3V
4P

2A
4

0.
13

C
1V

4P
3A

1
1.

45
C

1V
4P

3A
2

1.
45

C
1V

4P
3A

3
1.

45
C

1V
4P

3A
4

27
.9

1
C

2V
4P

3A
1

27
.9

1
C

2V
4P

3A
2

1.
45

C
2V

4P
3A

3
1.

45
C

2V
4P

3A
4

1.
45

C
3V

4P
3A

1
27

.9
1

C
3V

4P
3A

2
1.

45
C

3V
4P

3A
3

1.
45

C
3V

4P
3A

4
1.

45

78
Supervised Methods: An Integrated Approach for Failure Diagnosis and Analysis of

Industrial Systems Based on Multi-Class Multi-Output Classification

Table 4.4 HS Steady State. (F: failure; H: non-failure or healthy)

Steady-state Cooler Valve Pump Accumulator HS
[AB] F H H H SF1
[CD] Ci=2 H H F SF1
[EF] H H H F SF1

Table 4.5 HS Transient State. (F: failure; H; non-failure or healthy)

Transient Cooler Valve Pump Accumulator HS
State
[BC] Ci=1..3 Vi=1..4 F Ai=1..4 SF2

Pi=1
[DE] Ci=1..3 V4→V1 Pi=2..3 Ai=1..4 SF1
[FG] Ci=1..3 H H Ai→ Ai−1 SF1

In Table 4.3, if valve V4 is substituted with either V1, V2, or V3 in all FMs, then
the resulting FP will be equal to zero. Table 4.3 shows that it is not uncommon for
the HS to fail even when individual components such as coolers, valves, pumps, and
accumulators are in optimal conditions (e.g., C3V4P3A4). This is due to two main
reasons. First, some issues on the overall system design or configuration could occur,
such as incorrect sizing or installation of components, or inadequate maintenance
and monitoring of the system. Second, environmental effects or interactions and
dependencies between components are not captured by the individual sensor mea-
surements used for diagnosis. As a consequence, it is evident that the dataset related
to the case study HS does not embed all failure system information. Alternatively, a
thorough analysis of the system’s design and operation may be conducted to identify
any redundancies, backup systems, or alternative pathways that may allow the system
to continue functioning despite component failures.

To this aim, Tables 4.4 and 4.5 respectively present the steady-state and transient-
state conditions of the HS, highlighting the stable and consistent operation of the
system under normal conditions [AB], [CD], and [EF] (see Figure 4.2), as well as its
response to changes (transient-state [BC], [DE], and [FG]). Regardless of the cooler
state (i.e., it is failed or at full efficiency), the system exhibits the same behavior
pattern for [BC], [DE], and [FG] (see Figure 4.2), thus indicating that the cooler is
not a critical component.

4.4 Conclusion of Multi-Class Multi-Output Classification and Failure Analysis 79

Comparing Table 4.3 with Tables 4.4 and 4.5, the dynamic nature of the HS’s
failure behavior is clearly evident, as opposed to being primarily static. Table 4.4
shows the critical component that leads to system failure, whereas Table 4.5 reveals
that HS is failed with a sequence or a combination of events. A basic fault tree
can model HS failure mode in the first case but not in the second one. Therefore,
additional modeling techniques are needed to capture the system’s behavior. Among
them, dynamic fault trees and, stochastic Petri net which is an extension of basic
fault trees, and also Markov models are potential probabilistic tools that can be used
for this purpose.

4.4 Conclusion of Multi-Class Multi-Output Classifi-
cation and Failure Analysis

For complex systems, a fault of one or several components does not necessarily
lead to a failure of the system, but if the failed components are not immediately
replaced, they may conduct some other components to an idle state. In this work,
a data-driven model with a two-step decision approach is proposed to provide a
comprehensive analysis of the potential failures and their causes. In the first step,
a Multi-Class Multi-Output (MCMO) classification technique is used to diagnose
potential failures based on sensor signals, and, in the second step, Failure Analysis
(FA) is applied to investigate the root causes of those failures. The proposed approach
is applied to a multi-component HS case study, showing the resulting effectiveness
in improving system reliability, reducing downtime, and minimizing the impact
of failures on system operations. The results show that MCMO classification is a
promising approach for multi-component system failure diagnosis that offers several
advantages over conventional methods.

Chapter 5

Semi-Supervised Methods: An
Approach for Fault Detection and
Diagnosis in Complex Mechanical
Systems

5.1 Introduction to Semi-Supervised Learning

In this chapter, graph-based SSL relying on LP is combined with conventional
classification algorithms in order to detect potential faults in complex and multi-
component mechanical systems. Experimental results on realistic systems from the
related literature shows that the proposed method can effectively enlarge the labeled
datasets and interestingly identify different types of failures and faults with higher
accuracy compared to baseline methodologies.

The rest of this chapter is organized as follows. Section 6.2 describes the SSL
method aimed at classifying the eventual fault types that may occur during the
working cycle of a system. In Section 6.3, two case studies are presented: first, a
real HS is described, and the corresponding sensors’ data are introduced; then, the
pneumatic system and corresponding data are introduced as the second scenario.
Subsequently, the proposed methodology is applied to the SSL of the state of the
main HS components and PS, and the achieved results are comprehensively discussed

5.2 The proposed Semi-Supervised Leaning methodology 81

Algorithm 3: Semi-Supervised Learning (SSL) Algorithm
Inputs: XL,XU , YL, XT
Outputs: YU , YT

1: YU = LabelPropagation(XL, YL, XU)
2: Train the Classifier Model using (XL, XU , YL, YU)
3: YT = Classifier(XT)
4: procedure YU = LABELPROPAGATION(XL, YL, XU)
5: Compute normalized transition matrix T̄
6: Initialize YL in accordance with YL
7: Compute YU through (5.6)
8: Extract YU from Y
9: end procedure

and compared with those obtained by baseline methods. Lastly, concluding remarks
and outlooks for future works are summarized in Section 6.4.

5.2 The proposed Semi-Supervised Leaning method-
ology

The proposed graph-based SSL using LP is described in Algorithm 3. The labeled
input XL, the corresponding labeled output YL, and the unlabeled input XU are the
three main inputs of the SSL algorithm. The preliminary part of the algorithm is the
LP function that uses XL and YL, to estimate the unlabeled output YU corresponding
to XU to improve and enlarge the training data for the ML classifier, which is the
core part of the SSL. The procedure data flow is schematized in Fig. 5.1.

5.2.1 Inputs Definition

Let us consider a collection of N training examples Xt = (x1, . . . ,xL,xL+1, . . . ,xN),
each being determined by D features collected in the set D = {δ1, . . . ,δd, . . . ,δD}.
The first L examples xi with i ∈ {1, . . . ,L}, denoted by XL, are labeled according to
a discrete label set C = {γ1, . . . ,γc, . . . ,γC} composed of C classes, thus being asso-
ciated to labels YL = (y1, . . . ,yL) with yi ∈ C . The remaining U = N−L examples
xi with i ∈ {L+ 1, . . . ,N}, denoted by XU , are unlabeled. Moreover, M examples
XT = (xN+1, . . . ,xN+M) are unseen (unlabeled) testing data points.

82
Semi-Supervised Methods: An Approach for Fault Detection and Diagnosis in

Complex Mechanical Systems

Fig. 5.1 Scheme of graph-based transductive SSL.

5.2 The proposed Semi-Supervised Leaning methodology 83

5.2.2 Label Propagation

The initial stage of the proposed SSL consists in taking all examples XL and corre-
sponding labels YL to estimate the labels YU corresponding to the remaining examples
XU (Algorithm 1, line 1). As can be seen in Fig. 5.1, this approach allows the training
dataset to grow progressively, allowing for improved model performance with more
data.

In general, LP is predicated on the notion that similar data points are probably
part of the same class and that class labels of a small group of labeled data points
can be used to predict class labels of the unlabeled data points [85]. In LP, the
class labels of the labeled data points are used as initial estimates. Through a series
of iterations, the labels are subsequently propagated to the unlabeled data points.
During each iteration, the class labels of the unlabeled data points are updated based
on the labels of their closest neighbors. This process continues until convergence,
at which point the class labels of the unlabeled data points are considered to be the
final class labels. To do this, LP constructs a fully linked graph in which all of the
labeled and unlabeled data points are the nodes. There is a weighted edge between
the two nodes. The weight increases as the Euclidean distance between two nodes
decreases. In particular, the edge connecting any two nodes a,b is weighted by wab

defined as follows:

wab = e−
∑δd∈D

(
x
δd
a −x

δd
b

)2

σ2 (5.1)

where σ is a control parameter that determines the scale of the similarity. Note
that the exponential function in (5.1) transforms the Euclidean distance into a simi-
larity measure that ranges from 0 (no similarity) to 1 (maximum similarity). I allow
a node label to propagate to all other nodes through the edges. Larger edge weights
allow labels to travel through the graph more easily. Let us define a (L+U)×(L+U)

probabilistic transition matrix T whose element a,b –denoting the probability to
jump from node a to b– is computed as follows:

Tab =
wab

∑
L+U
r=1 wrb

,∀a,b = 1, . . . ,L+U. (5.2)

84
Semi-Supervised Methods: An Approach for Fault Detection and Diagnosis in

Complex Mechanical Systems

Matrix T is straightforwardly converted into the normalized matrix T̄ , whose
element a,b is determined through a normalization step:

T̄ab =
Tab

∑
L+U
r=1 Tar

,∀a,b = 1, . . . ,L+U (5.3)

In turn, matrix T̄ can be splitted into 4 sub-matrices:

T̄ =

[
T̄ LL T̄ LU

T̄UL T̄UU

]
(5.4)

where sub-matrices T̄UL, T̄ LU and T̄UU represent the similarity between the
unlabeled data points and the labeled data points, and between the unlabeled data
points, respectively.

Moreover, let us define a (L+U)×C label matrix Y, whose a-th row contains
the probability that node xa has class γc for each c = 1, . . . ,C. The upper L-row
block and the lower U-row block portion of matrix Y are denoted as YL and YU

and are related to the labeled and unlabeled training data, respectively. It is not
crucial to initialize the rows of YU since they correspond to the unlabeled data points.
Following [85], the following iterative scheme allows to compute the labels of data
point XU :

Y← T̄ Y. (5.5)

Due to the clamping (i.e., fixing the labels of data points, typically the labeled
data points), YL never changes, therefore YU is the only variable to be computed.
As a consequence, (5.5) can be written as:

YU = (I− T̄UU)
−1 T̄ULYL (5.6)

where I represents the identity matrix and (I− T̄UU) is invertible as long as there
are no disconnected components in the similarity graph (i.e., all data points are
connected to at least one other data point).

5.3 Case Study and Numerical Experiments: Complex Hydraulic and Pneumatic
Systems 85

5.2.3 Training and Classification

The classifiers are then trained using the XL, XU , YL, and YU to finally map previously
unseen samples XT to class labels YT (Algorithm 3, line 2). The SSL method uses
both labeled training (XL, YL) and estimated data (XU , YU) to learn the classification
model. Finally, the trained model is used on the testing portion of the dataset (XT) in
order to predict the testing labels YT (Algorithm 3, line 3).

5.2.4 Implementation Details and Computational Considerations

The proposed algorithm was implemented in Python on a Lenovo Z400 laptop
with an Intel Core i7 processor. The implementation leveraged the scikit-learn
library for training the classifier and utilized the LabelPropagation package for the
label propagation step. The preprocessing steps included standard data cleaning
and normalization procedures. The algorithm was executed on a standard laptop,
and while specific computation times may vary depending on the dataset size and
complexity, the Intel Core i7 processor provided ample computational power for
the task. The implementation demonstrated the feasibility of GSSL on the given
hardware, showcasing the versatility of the scikit-learn for such ML tasks.

5.3 Case Study and Numerical Experiments: Com-
plex Hydraulic and Pneumatic Systems

This section performs the FDD for two mechanical systems, a single-component PS
and a multi-component HS, using the proposed SSL approach.

The first case study addresses a single-component PS deployed in a real industrial
process in 1.5.1. This system refers to the robotic work-cell that has been produced
by an Italian automotive company leader in the European market. Conversely,
the second case study concerns a real complex and multi-component HS, whose
predictive maintenance experimental data set is available in 1.5.2. The observable
data are related to the failures due to different causes across different working cycles.

86
Semi-Supervised Methods: An Approach for Fault Detection and Diagnosis in

Complex Mechanical Systems

5.3.1 Data Pre-processing and Experimental Setup

Data pre-processing is necessary prior to any data-driven procedure being performed.
The accuracy of classification techniques is, in fact, significantly impacted by the
quality of the training data set. In this case study, the most significant components
of the PS and HS for FDD are selected based on a quality measure. To do so, a
quality measure has been applied on XL and YL to find the most relevant features to
the system fault.

In general, a quality measure Quality(di,YL) evaluates how suitable a feature
di ∈D is for predicting the value of the class attribute YL, relying on distributions
over feature values and target values. Gain Information (GI) is a popular filter model
and quality measure used in feature weight scoring. It is defined as:

GI(D ,di) = Entropy(D)− ∑
v∈ Values(di)

|Dv|
|D |

Entropy(Dv) (5.7)

where Values(di) denotes the set of all possible distinct values that di can take
in D , Dv refers to the subset of D for which the attribute has the value v, and the
entropy operator represents a measure of the pureness of data as follows:

Entropy(D) = ∑
γc∈C
−pc log2 (pc) (5.8)

being pc the relative frequency of class γc in D GI is used to find the main failure
indicators (MFIs) which are signs or symptoms that indicate a potential failure or
problem in a system. MFIs can be monitored using a variety of techniques, including
sensors, data analysis tools, and human observation. The results of the monitoring
can be used to identify trends and patterns and to prioritize maintenance and risk
mitigation activities. The MFIs for the PS data have been obtained for six features
D = {MaxFlowA, MaxFlowB, IFRA, IFRB, TimeA, TimeB} where the value of
GI is 0.33731, 0.31845, 0.30832, 0.21980, 0.11030, and 0.09469 for MaxFlowA,
MaxFlowB, IFRA, IFRB, TimeA, and TimeB, respectively. Moreover, the correlation
matrix in Fig. 5.2 shows that the MaxFlowA (-0.43) and MaxFlowB (-0.46) are the
two most correlated variables to the final state of the PS, meaning that changes in
these features are strongly associated with changes in the final state of the single-unit
PS. Similarly in the case of the HS dataset, where D = {C1,V 10,MP1,A1−A4},

5.3 Case Study and Numerical Experiments: Complex Hydraulic and Pneumatic
Systems 87

Fig. 5.2 Correlation matrix for the PS dataset.

Fig. 5.3 Correlation matrix for the HS dataset.

MFIs are the most correlated components to each failure type which are evaluated
according to (5.7). The results show that the value of GI for the valve V 10, pump
MP1, accumulator A1−A4, and cooler C1 are 0.46177, 0.31588, 0.07358, and
0.00012, respectively. This means that the valve V 10 is the MFI in the HS when
a failure occurs. On the other hand, the cooler has less effect on the final state
prediction of the HS (the larger the GI of an attribute, the better the attribute for
building the prediction model). Additionally, the correlation matrix in Fig. 5.3 shows
the pairwise correlations between different components in the HS dataset. The values
in this matrix range from −1 to 1, where −1 indicates a perfect negative correlation,
0 indicates no correlation, and 1 indicates a perfect positive correlation. Since the
correlation matrix shows that the valve V 10 (0.63) and pump MP1 (-0.55) are the
two most correlated components to the final state of the HS, it suggests that changes
in these components are strongly associated with changes in the final state of the HS.

88
Semi-Supervised Methods: An Approach for Fault Detection and Diagnosis in

Complex Mechanical Systems

5.3.2 Comparison with Baseline Methods

The proposed SSL models are applied independently to the PS and HS scenarios
after being developed and adapted in Python. As per normal, two equal-sized subsets
are created from the datasets that include both the features and the accompanying
labels: the training (Xt) and the testing (XT) set. Then, the training portion is divided
into two subsets: the labeled (XL,YL) and unlabeled (XU) training data, where the size
of the first subset is generally smaller than the latter. Using the LP to estimate the
classes YU corresponding to the unlabeled training samples XU , the SSL classification
models are trained over (XL,YL,XU ,YU). Various traditional classification algorithms
are implemented, including Support Vector Machine (SVM), Logistic Regression
(LR), Decision Tree (DT), Naive Bayes (NB), and Random Forest (RF).

The accuracy, F1 score, precision, and recall are used to evaluate the performance
of the models in order to compare results acquired by the SSL forecasting technique
with those of the multi-class baselines. The accuracy of a classification task is
calculated based on the so-called confusion matrix (CM), also known as the error
matrix. By definition, a CM is a square matrix whose dimension corresponds to
the number C of classes and whose element CM(k, p) is equal to the number of
observations known to be in class γk (actual class) and predicted to be in class γp

(predicted class). Accuracy is the ratio of the number of correct predictions to the
total number of predictions made by the model. In multi-class SSL, accuracy over
the (XT ,YT) is the percentage of correctly classified samples over all classes and is
defined as follows:

Accuracy = 100
∑

C
k=1 CM(k,k)

∑
C
k=1 ∑

C
p=1 CM(k, p)

. (5.9)

If the entire set of predicted labels for a data set strictly matches the true set of
labels, then the accuracy achieves the highest value, i.e., 100%. F1 score balances
precision and recall in the assessment of model performance. Precision measures the
accuracy of positive predictions, while recall measures the completeness of positive
predictions.

5.3 Case Study and Numerical Experiments: Complex Hydraulic and Pneumatic
Systems 89

Fig. 5.4 Confusion matrix for (a) SSL-LP, (b) SSL-LR, (c) SSL-DT, (d) SSL-NB, (e) SSL-RF,
and (f) SSL-SVM, considering the valve V 10 and pump MP1 as MFIs for XL(5%) and
XT (50%)

Fig. 5.5 Confusion matrix for (a) SSL-LP, (b) SSL-LR, (c) SSL-DT, (d) SSL-NB, (e) SSL-RF,
and (f) SSL-SVM, considering MaxFlowA and MaxFlowB as the MFIs for XL(5%) and
XT (50%)

90
Semi-Supervised Methods: An Approach for Fault Detection and Diagnosis in

Complex Mechanical Systems

5.3.3 Results and Discussion

First, the proposed SSL model is first quantitatively evaluated by the CM over the
testing dataset (XT). The numerical experiments conducted on the two industrial
datasets demonstrate that the SSL performance is influenced by several factors. In
general, the MFIs in PS and HS data can interestingly affect the performance of
SSL. The similarity metric (i.e., Euclidean distance) used to define the connections
between data points can have a significant impact on the LP. The performance of
LP is dependent on the number of labeled data points. As the number of labeled
data points increases, the performance of the LP method and consequently the SSL
improves. The quality of the labeled data can also have a significant impact on the
performance of LP. If the labeled data is noisy or contains errors, the performance of
the method may be negatively impacted.

As can be seen in the figure (Fig. 5.4), the SSL method classifies the faulty/healthy
condition of the PS with high accuracy, since only one sample is misclassified. More-
over, the accuracy, F1 score, precision, and recall are respectively equal to 99.667,
99.935, 99.801, and 99.00 for both baseline and SSL methods, while MaxFlowA
and MaxFlowB are the most significant feature for fault diagnosis in the PS dataset.
The PS data set is well-separated and dense, therefore traditional ML models can
often perform well without the need for SSL or additional labeled data. This is
because traditional models are designed to work with labeled data and are often able
to generalize well when the labeled data is representative of the underlying samples.
In order to show the effectiveness of the LP, the corresponding results are plotted
in Fig. 5.6, where the green and orange points are labeled and unlabeled training
data of the pneumatic work-cell system, respectively (Fig. 5.6a). After applying
LP, the unlabeled data are labeled, and the estimated labels are linked with labeled
data (Fig. 5.6b). However, even in these cases, there may be some benefits to using
SSL. For example, incorporating additional unlabeled data into the model can help it
to better capture the underlying patterns and relationships in the data. This can be
useful for maintaining system reliability and reducing the likelihood of unexpected
failures.

It is apparent that the diagonal values of the confusion matrices for the HS
(Fig. 5.5) are much larger than the off-diagonal values, meaning that the SSL method
perfectly classifies the failure/healthy condition of each working cycle in the HS.
Through a series of experiments conducted on Tables 5.1 and 5.2 to 5.3 and 5.4, I

5.3 Case Study and Numerical Experiments: Complex Hydraulic and Pneumatic
Systems 91

Table 5.1 Accuracy (%) of the baseline methods with training data XL(25%) for different
MFIs

ComponentModel SVM LR DT NB RF
{V 10} 82.230 82.230 82.230 82.230 82.230
{MP1} 77.425 77.425 77.425 77.425 77.425

{V 10,MP1} 82.230 92.928 92.928 87.761 92.928
{C1,V 10, 81.868 92.928 92.566 87.761 92.747

MP1,A1−A4}

implemented a systematic reduction in XL percentage from 25% to 5% while holding
the XT percentage constant at 50% across all runs. The overall accuracy of the
models for the HS dataset can be seen in Tables 5.1 and 5.2. In Tables 5.3 and 5.4, by
tuning the SSL model and taking MFIs into consideration, I found out that the most
important components for failure detection of HS are the valve V 10 and pump MP1.
In Tables 5.3 and 5.4, the overall performance of the models for the HS dataset was
evaluated using metrics such as accuracy, F1 score, precision, and recall. In this case,
I trained and tested the learning models over the whole feature set while the size of
labeled training data (XL = 5%) was much less than unlabelled data (XU = 45%).

Regarding Table 5.1 to 5.4, it seems that generally, SSL methods with estimated
labels have better accuracy in comparison with real labels. To find the reason behind
this difference, I explored the training data, and I found out that by learning on a fixed
set of data that generates a given model, algorithms can quickly become ineffective
or even counterproductive. This problem could occur because of the modification of
data or the occurrence of new data constantly. I can claim that LP solves this problem
during label estimation in the graph-based model. Consequently, the SSL algorithms
have a better performance in some cases. In general, the overall accuracy of the SSL
methods is equal to or higher than conventional supervised methods such as SVM
and LR in FDD problems in both the PS and HS case studies. On the other hand,
when I employ the MFIs related to the target states, LP produces better labels for the
unlabeled training portion of data and consequently enhances the performance of the
SSL method.

Summing up, three main outcomes are apparent: on the one hand, the applied
SSL method is able to assign fault sets to the corresponding failure types with high
accuracy; on the other hand, it can label incoming fault sets, where most of the data
are unlabeled. Interestingly, by considering MFIs in the SSL process (see Table 5.3

92
Semi-Supervised Methods: An Approach for Fault Detection and Diagnosis in

Complex Mechanical Systems

Table 5.2 Accuracy (%) of the SSL-methods with training data XL(25%)∪XU(25%) for
different MFIs

ComponentModel SSL-SVM SSL-LR SSL-DT SSL-NB SSL-RF
{V 10} 82.230 92.928 92.928 92.928 92.928
{MP1} 82.230 92.928 92.928 92.928 92.928

{V 10,MP1} 82.230 92.928 92.928 92.928 92.928
{C1,V 10, 83.409 92.928 92.566 92.928 92.566

MP1,A1−A4}

Table 5.3 Accuracy, F1 Score, Precision, and Recall (%) of the baseline methods with training
data XL(5%), considering {C1,V 10,MP1,A1−A4} as the feature set

MetricModel SVM LR DT NB RF
Accuracy 75.431 92.112 92.566 92.928 92.566
F1 Score 71.961 91.569 91.739 92.391 91.739
Precision 72.755 90.588 91.792 91.467 91.792

Recall 71.434 93.367 91.686 93.861 91.686

Table 5.4 Accuracy, F1 Score, Precision, and Recall (%) of SSL-methods with training data
XL(5%)∪XU(45%), considering {C1,V 10,MP1,A1−A4} as the feature set

MetricModel SSL-SVM SSL-LR SSL-DT SSL-NB SSL-RF
Accuracy 83.409 92.928 91.024 92.928 91.024
F1 Score 82.912 92.391 89.928 92.391 89.928
Precision 83.018 91.467 90.413 91.467 90.413

Recall 86.620 93.861 89.500 93.861 89.500

(a) (b)

Fig. 5.6 Dataset of the PS: labeled (green) and unlabeled (orange) data points before (a) and
after (b) label propagation.

5.4 Conclusion of Graph-based Semi-Supervised Method based on Label
Propagation 93

and 5.4), the model can improve its performance by taking into account the specific
factors that are most likely to cause it to fail. Based on my analysis of both PS and
HS, it is evident that the rate of misclassified samples in comparison to the overall
failure data is significantly low (figures 5.4 and 5.5), suggesting that the number
of maintenance actions required in both the original and enlarged datasets may not
differ significantly. In general, the proposed SSL models can be applied to both fault
diagnosis of single components and fault detection of multi-component systems in a
wide range of applications in various industries.

5.4 Conclusion of Graph-based Semi-Supervised Method
based on Label Propagation

The integration of artificial intelligence in mechanical FDD helps to increase relia-
bility, reduce costs, and improve the overall performance of mechanical systems in
Industry 4.0 applications. Most interesting industrial applications nowadays come
from dynamic environments where data are generated continuously over time and
where the labeled data are scarce and expensive. Therefore, semi-supervised learning
(SSL) can be particularly useful in FDD because faults may be rare or difficult to
identify, and may not be fully represented in the labeled data. By using a combination
of labeled and unlabeled data, SSL can help to identify these rare or difficult-to-detect
faults, leading to a more effective FDD. In this paper, graph-based SSL relying on
label propagation is combined with conventional classification algorithms to detect
potential failures in complex mechanical systems. Experimental results on realistic
pneumatic and hydraulic systems from the related literature show that the proposed
method can effectively enlarge the labeled datasets and interestingly identify dif-
ferent types of non-nominal conditions with higher accuracy compared to baseline
methodologies.

Chapter 6

Unsupervised Methods: An Adaptive
Constrained Clustering Approach for
Real-Time Fault Detection of
Industrial Systems

6.1 Introduction to Unsupervised Learning and thesis
contribution

In this chapter, a partitioned-based DS clustering approach is used to perform a
fault detection strategy in a real-time fashion, with the final aim of discriminat-
ing the nominal and non-nominal working conditions of a real industrial machine.
More specifically, the proposed method relies on a cyclical Adaptive Constrained
Clustering algorithm, which is composed of two steps: micro-clustering and con-
strained macro-clustering. The DS is partitioned over a finite number of batches
(also known as windows) of data. In the micro-clustering step, data are grouped
into several so-called micro-clusters, which are thus dynamically updated over time.
This represents a big challenge in DS mining, usually done by means of common
clustering methods (e.g., K-means), where however no control over the final clusters
is guaranteed. Moreover, in the DS mining context, a challenging issue arises when
some constrained-based learning approaches must be applied to clusters which, in
turn, are formed over time. To cope with such an issue, additional must-link and

6.2 Fault detection system framework 95

Fig. 6.1 Work-flow of the real-time fault detection approach.

cannot-link constraints are thus taken into account during the macro-clustering step
in an innovative fashion, while dealing with the vectors of cluster features related
to each generated micro-cluster. Then, leveraging the information acquired at the
previous stage, the composition of macro-clusters is dynamically updated, so that
the incoming monitoring data are grouped into two clusters over time, representing
the nominal and non-nominal work conditions, respectively. Differently from the
related literature where unsupervised methods are typically employed in DS min-
ing, the proposed approach combines the use of a large amount of unlabeled data
with a limited quantity of additional information, thus shifting the benefits of the
offline-constrained clustering to the real-time scenario.

The rest of the chapter is organized as follows. Section 6.2 describes the fault
detection system framework. The proposed algorithm is illustrated in Section 6.3.
Section 6.4 is focused on the numerical experiments based on a real case study: the
achieved results are comprehensively discussed and compared against those obtained
with other static-based clustering methods. Lastly, concluding remarks and outlooks
to future works are summarized in Section 6.5.

96
Unsupervised Methods: An Adaptive Constrained Clustering Approach for

Real-Time Fault Detection of Industrial Systems

6.2 Fault detection system framework

Let us consider an industrial process with a repeated work-cycle, where a number
of parameters are periodically monitored through the measurements collected by
faultless sensors installed on the machine. It is worthwhile noting that the faultless
hypothesis for the sensor results in assuming the retrieved data is accurate and
reliable, without any errors or faults. Those parameters are used to perform an
analysis of the work conditions of the industrial system. More specifically, the main
goal is to define a real-time detection methodology aimed at detecting whether the
industrial system is nominally working or any faulty condition is occurring. The
flow-diagram showing the high-level activities performed by the proposed real-time
fault detection approach is illustrated in Fig. 6.1. The overall framework comprises
two main stages to be conducted for each iteration j corresponding to a given time
window: Data Acquisition and Data Monitoring. The former is focused on acquiring
a continuous stream of raw data from the industrial process, whereas the latter
performs mining activities aimed at extracting information useful for determining
the system’s working state. Hence, during the Data Acquisition step, a continuous
DS is retrieved by sensors, and, being properly pre-processed and rearranged, data
are analyzed during the Data Monitoring step. As long as the process is working
in accordance with the nominal behavior, no further action is taken; conversely, if
any faulty condition occurs, an alert arises and eventual subsequent PHM actions are
immediately triggered.

For the sake of handling the incremental stream of data, the single-pass paradigm
is considered, according to which an instance of parameters that have been already
processed cannot be processed again (e.g., random access is not allowed) [64, 86, 87].
Suppose that the monitoring information of the work-cycle i is stored in an m-
dimensional vector X⃗i. Due to memory and computational effort limitations, only
a finite group of data extracted from the input stream is analyzed at a time. In
particular, the stream of data is divided into equal batches (or windows) containing B
data points, in accordance with the so-called landmark window model [64, 78]. As a
consequence, the fault detection procedure is iterated by a sampling period W = BT ,
where T denotes the cycle time. In the j-th time window only the B instances X⃗i

related to the cycle times iT belonging to the window [(j−1)W, jW] are considered,
as follows:

6.3 The proposed methodology based on Adaptive Constrained Clustering
Algorithm 97

Fig. 6.2 Scheme of the proposed Adaptive Constrained Clustering Algorithm.

D j = {X⃗i, . . . , X⃗i+B−1},∀ j = 1,2, . . . (6.1)

In this way, it is ensured that two consecutive windows D j and D j+1 (∀ j =
1,2, . . .) do not overlap, resulting in allowing real-time data processing. Therefore,
lower memory usage and, at the same time, a faster run-time than traditional static
approaches are reached for large data sets.

6.3 The proposed methodology based on Adaptive
Constrained Clustering Algorithm

In this section, an Adaptive Constrained Clustering Algorithm (ACCA) is proposed
to perform real-time fault detection in accordance with the problem formulated in
Section 6.2. The basic idea is to cluster the incoming data points into two clusters
over time, representing the nominal and non-nominal work conditions, respectively.
The cluster of non-nominal conditions groups all the possible faults that may affect
the industrial system dynamics.

98
Unsupervised Methods: An Adaptive Constrained Clustering Approach for

Real-Time Fault Detection of Industrial Systems

Algorithm 4: Adaptive Constrained Clustering Algorithm
Inputs: Data stream D j (∀ j = 1,2, . . .)
Outputs: Data clusters {M H

j ,M F
j } (∀ j = 1,2, . . .)

1 Initialize micro-clusters {N 1
0 , . . . ,N I0

0 }= { /0}
2 Initialize macro-clusters M H

0 = M F
0 = /0

3 for j = 1,2, . . . do

4

[
{N 1

j , . . . ,N
I j

j },{CFN 1
j
, . . . ,CF

N
I j

j
}
]

=

5 Micro-clustering
(
D j,{N 1

j−1, . . . ,N
I j−1

j−1 }
)

6 {M H
j ,M F

j } =

Macro-clustering
(
{CFN 1

j
, . . . ,CF

N
I j

j
},{M H

j−1,M
F
j−1}

)

To this aim, the proposed algorithm relies on a two-stage procedure including
the micro-clustering and macro-clustering steps as shown in Fig. 6.2. The former is
responsible for grouping the batches of data into micro-clusters while DS continu-
ously arrives from the data acquisition system. Then, after processing each batch of
data in the micro-clustering step, the micro-clusters are condensed into vectors of
cluster features. Finally, leveraging on additional knowledge on the nominal working
conditions set (i.e., clustering constraints on some samples), the macro-clustering
aims at grouping the micro-clusters features into macro-clusters, so that each data
point is clustered in accordance with the overall clusters. The procedure is repeatedly
executed until the DS process is active.

The overall procedure is formally described in Algorithm 4, whilst the micro-
clustering and macro-clustering steps – respectively defined in Algorithm 5 and 6 –
are described in detail in the sequel.

6.3.1 Micro-clustering

The goal of the primary step is to identify and discover behavioral groups (or
clusters) in the DS. The micro-clustering procedure shown in Algorithm 5 is based
on leader clustering, which is a partition-based DS clustering technique [64]. Each
batch of data is optimally clustered into micro-clusters using a distance criterion:
whenever a new data point X⃗ arrives from the streams, the cluster i∗ having the
closest distance d∗ is found. If such a distance is below the threshold dthreshold , the

6.3 The proposed methodology based on Adaptive Constrained Clustering
Algorithm 99

Algorithm 5: Micro-clustering

Inputs: Data batch D j, previous micro-clustering {N 1
j−1, . . . ,N

I j−1
j−1 }

Outputs: Updated micro-clustering {N 1
j , . . . ,N

I j
j }, micro-cluster features

{CFN 1
j
, . . . ,CF

N
I j

j
}

Parameters: Distance threshold dth
1 I j← I j−1

2 {N 1
j , . . . ,N

I j
j }← {N 1

j−1, . . . ,N
I j−1

j−1 }
3 for X⃗ ∈D j do
4 i∗ = mini∈1,...,I j

(
dist(X⃗ ,N i

j)
)

5 d∗ = dist(X⃗ ,N i∗
j)

6 if d∗ < dth then
7 N i∗

j ←N i∗
j ∪{X⃗}

8 else
9 I j← I j +1

10 N
I j

j ←{X⃗}

11 for N ∈ {N 1
j , . . . ,N

I j
j } do

12 compute CFN = (NN ,
−→
LSN ,SSN) through (6.3)-(6.5)

data point X⃗ is assigned to cluster i∗, otherwise a new cluster (leader) is created,
being composed of the single data point X⃗ . Note that no prior information on the
number of micro-clusters is needed; however, the performance of the algorithm
depends on the correctness of the threshold guess dthreshold . Indeed, dthreshold is
used to control the granularity of the micro-clustering and the trade-off between
micro-cluster size and number of micro-clusters. A common approach is to set
statically such a threshold to low values that capture the local structure of data while
ensuring the resulting clusters not to be too small.

As an alternative, the Exponentially Weighted Moving Average (EWMA) [88,
89] method can be used to dynamically adjust and fine-tune the dthreshold value
in real-time, allowing for adaptive and responsive adjustments based on dynamic
characteristics and the eventual occurrence of drift in data.

Once the data points in the batch are clustered into micro-clusters, the following
features are computed for each micro-cluster. Given a cluster N composed of data

100
Unsupervised Methods: An Adaptive Constrained Clustering Approach for

Real-Time Fault Detection of Industrial Systems

Algorithm 6: Macro-clustering
Inputs: Micro-cluster features {CFN 1

j
, . . . ,CF

N
I j

j
}, previous

micro-clustering {M H
j−1,M

F
j−1}

Outputs: Updated macro-clustering {M H
j ,M F

j }
Parameters: Must-link constraints for nominal and non-nominal conditions

H and F
1 for CF ∈ {CFN 1

j
, . . . ,CF

N
I j

j
} do

2 dH = dist(CF,H)

3 dF = dist(CF,F)

4 if dH < dF then
5 M H

j ←M H
j−1∪{CF}

6 else
7 M F

j ←M F
j−1∪{CF}

points {X⃗i}, the vector of corresponding cluster features is defined as the following
triple:

CFN = (NN ,
−→
LSN ,SSN) (6.2)

where NN is the number of points in N ,
−→
LSN is the linear sum of the data points,

and SSN is the square sum of data points:

NN = |N | (6.3)

−→
LSN =

NN

∑
i=1

X⃗i (6.4)

SSN =
NN

∑
i=1

X⃗2
i =

NN

∑
i=1

〈
X⃗i, X⃗i

〉
. (6.5)

6.3.2 Constrained macro-clustering

The goal of the secondary step is to group the micro-clusters obtained by the previous
step into macro-clusters based on a given set of constraints, which are additional
information about the data set. As soon as the micro-clustering creates the micro-
clusters features over batch data, the macro-clustering step updates the final clusters

6.4 Case study: Complex Pneumatic System 101

using the constrained sets. In particular, as formally described in Algorithm 3, the
observed I micro-clusters are grouped into K = 2 predefined groups (i.e., the macro-
clusters of nominal and non-nominal conditions, which are denoted at iteration j
by M H

j and M F
j , respectively), where an observed micro-cluster is represented by

its corresponding cluster feature vector [64]. Indeed, as usually done in constrained
clustering [90], the Euclidean distance between each micro-cluster centroid and the
must-link constraints sets is calculated in order to update the overall macro-clusters
after each batch processing. In particular, knowing the corresponding cluster features,
the centroid X⃗0

N is computed in reference to cluster N as:

X⃗0
N =

∑
NN
i=1 X⃗i

NN
=

−→
LSN

NN
. (6.6)

The constraints sets can be represented by must-link (i.e., constraint specify-
ing that two data points must be assigned to the same cluster) and/or cannot-link
(i.e., constraint specifying that two data points cannot belong to the same cluster)
constraints; however, without loss of generality, in Algorithm 3 I refer to the must-
link set only. Hence, the distance of the must-link samples to micro-clusters is
calculated, relying on the information on some samples related to the healthy and
faulty behaviors of the considered industrial component (i.e., samples belonging to
the macro-cluster of nominal and non-nominal conditions). As a result, the macro-
clustering component finds the nominal micro-clusters and merges them in a final
cluster of nominal conditions, whilst the remaining micro-clusters are combined in
the final cluster of non-nominal conditions.

6.4 Case study: Complex Pneumatic System

For the sake of validating the proposed approach, the Adaptive Constrained Clus-
tering algorithm is implemented in Python and used to perform the real-time fault
detection of a pneumatic system deployed in a real industrial process. In particular,
the experiments refer to a robotic work-cell produced by an automotive company
leader of the Italian and European market in section 1.5.2. The whole cell – that is
employed to analyze the quality and detect any possible defects of an automotive
work-piece performing a 90-second work-cycle – consists of an anthropomorphic
manipulator and three grippers. Among them, the “rotary gripper" (positioned on the

102
Unsupervised Methods: An Adaptive Constrained Clustering Approach for

Real-Time Fault Detection of Industrial Systems

base of the framework) represents the most critical component and, consequently,
is subject to frequent faults. Hence, it constitutes the case study for the proposed
real-time fault detection procedure.

6.4.1 Experimental setup

A portion equal to 1% of the dataset is used to define the constrained set of sample
working conditions. Specifically, the faulty must-link set F is formed by picking
one sample from each of the five non-nominal categories in Table 1.4, while the
healthy must-link set H is composed of two samples of nominal operating con-
dition. Furthermore, for the sake of evaluating the effectiveness of the proposed
approach, the labels are removed from the entire data set; subsequently, the Adap-
tive Constrained Clustering algorithm is applied to the unlabeled data; finally, the
obtained macro-clusters are compared with the true classes (i.e., the ground truth),
while different clustering methods can be compared through evaluation metrics. The
experiment is repeated 100 times by changing both the batch size and the value of
the algorithm parameters to show the performance sensitivity.

6.4.2 Performance evaluation

The performance of the micro-clustering procedure is evaluated using the sum of
squared errors (SSQ) and the Silhouette Score (SS), which are internal methods
(i.e., they evaluate the clustering performance without any reference). The former
measures the sum of squared distances of data points from their cluster centroids:

SSQ =
I

∑
k=1

∑
X⃗i∈Nk

∥∥∥X⃗i− X⃗0
Nk

∥∥∥2
. (6.7)

Conversely, the SS of a data point aims at assessing how well a data point fits
into the corresponding micro-cluster compared to others:

SS(X⃗i) =
b(X⃗i)−a(X⃗i)

max{a(X⃗i),b(X⃗i)}
(6.8)

6.4 Case study: Complex Pneumatic System 103

where a(X⃗i) is the average dissimilarity of point X⃗i with all other points in the
same cluster, and b(X⃗i) is the lowest average dissimilarity of point X⃗i to any other
cluster to which it does not belong. The SS for the overall clustering is the mean of
the SS for all data points, as follows:

SS = ∑
X⃗i∈{N1∪...∪NI}

SS(X⃗i)

N
. (6.9)

As for the evaluation of the macro-clustering, the Purity index is considered,
which is one the most commonly used external methods (i.e., they assess the accuracy
of clustering by comparing the results to known ground truth). It is computed as
follows:

Purity =
1
N

K

∑
h=1

max
k∈{H,F}

∣∣∣Ωh∩M k
∣∣∣ (6.10)

where Ωh (for h = 1,2) denotes the sets of nominal and non-nominal data points
with ground truth labels. Note that perfect clustering has a purity index equal to 1,
while poor clustering has purity values close to 0.

6.4.3 Results analysis and discussion

Figure 6.3 shows the composition of all micro-clusters and two macro-clusters over
time obtained in the case of batches with a fixed size equal to B = 50 and setting the
threshold distance to dthreshold = 1 (i.e., a maximum size of 100 data points for each
microcluster in real-time processing).

It is worthwhile noting two findings: on the one hand, the number and size of
micro-clusters (represented in Fig. 6.3 by coloring the corresponding data points)
increases over iterations; on the other hand, at each iteration, all data points are
grouped into two macro-clusters (represented in Fig. 6.3 by coloring the correspond-
ing micro-clusters), thus allowing to properly distinguish between the nominal and
non-nominal working conditions in real-time.

Finally, since the most significant algorithm parameter is the distance threshold
dthreshold , different experiments are analyzed and compared by varying dthreshold

within the range [0,1,2,3,4,5,6,7,8].

104
Unsupervised Methods: An Adaptive Constrained Clustering Approach for

Real-Time Fault Detection of Industrial Systems

Fig. 6.3 Results of the Adaptive Constrained Clustering algorithm over batches in the case of
batch size B = 50. Data points in the current batch are represented by red color, while the
green and orange colors denote the micro-clusters belonging to the nominal and non-nominal
macro-clusters, respectively.

In particular, for each value of dthreshold the number of micro-clusters is evaluated
over the whole DS by means of the so-called compression rate (i.e., the number of
samples divided by the number of the micro-clusters) and the Elbow method (i.e., the
heuristics aimed at determining the optimal number of clusters) [64]. From the plots
shown in Fig. 6.4 it can be seen that for dthreshold = 1 the compression rate is equal to
100 (Fig. 6.4.a) while the optimal number of micro-clusters is equal to 6 (Fig. 6.4.b),
implying that each micro-cluster optimally comprises 100 data points. This result
is also confirmed by the Silhouette analysis that usefully aims at investigating the
separation distance between the resulting clusters: Fig. 6.5 reports the average
Silhouette score obtained varying the numbers of micro-clusters I, showing that the
best values are achieved in the case of 6 clusters.

In addition, as for the macro-clustering, the purity metric is evaluated: the two
obtained macro-clusters include respectively 100 and 500 data points, precisely

6.4 Case study: Complex Pneumatic System 105

(a)

(b)

Fig. 6.4 Compression rate as a function of radius threshold (a) and sum of square error over
the number of clusters (b) for the micro-clustering of the Adaptive Constrained Clustering
approach.

Fig. 6.5 Results of the silhouette analysis on micro-clustering varying the number of micro-
clusters in the range [2,9].

106
Unsupervised Methods: An Adaptive Constrained Clustering Approach for

Real-Time Fault Detection of Industrial Systems

Fig. 6.6 Results obtained by the Constrained K-means algorithm with two final clusters.

corresponding to the data points representing the nominal and non-nominal classes
(ground truth), thus, reaching a purity index equal to 1. This shows the accuracy
and reliability of the method in properly classifying the data in accordance with the
nominal/non-nominal working conditions.

6.4.4 Comparison with related clustering approaches

In order to show the effectiveness of the proposed Adaptive Constrained Clustering,
it is compared with both a static (namely, the Constrained K-means) and a stream
clustering (namely, the Stream K-means) approach.

The Constrained K-means performs a profitable modification of the traditional
K-means algorithm: leveraging on background knowledge about the data set, it uses
pairwise must-link and cannot-link constraints [8]. Imposing the number of final
clusters equal to 2 and using the must-link constraints F and H , the results are
shown in Fig. 6.6. Although it is apparent that the obtained results in terms of final
clusters are equal to those achieved by the proposed approach, it is worthwhile noting
that my Adaptive Constrained Clustering algorithm works in real-time. Therefore,
even though Constrained K-means correctly detect the effective working conditions,
reaching a purity value equal to 1, it is an offline and therefore slower approach for
data mining on the whole data set.

6.4 Case study: Complex Pneumatic System 107

Fig. 6.7 Results of the Stream K-means algorithm over batches in the case of batch size
B = 50. Data points in the current batch are represented by red color, while the light-green
and grey colors denote the two clusters, whose updated centroids at each iteration are
indicated by the blue stars.

Conversely, the well-known Stream K-means, also called online K-means, is a
variant of the classical K-means algorithm designed to handle large data sets [64, 8].
In this approach, the data is processed sequentially in batches, rather than all at once.
Each batch is used to update the current set of cluster centroids, which are then
refined iteratively. By processing data in a streaming fashion, it is possible to handle
large data sets efficiently and in real-time, without requiring the entire data set to be
loaded into memory.

However, in this approach, the number of clusters must be predefined. Moreover,
it is worthwhile noting that Stream K-means requires a longer computational time
than my approach due to the iterative process of updating the current set of cluster
centroids within each batch. Conversely, the proposed Adaptive Constrained Cluster-
ing algorithm always maintains a set of CFN that summarizes the features of each

108
Unsupervised Methods: An Adaptive Constrained Clustering Approach for

Real-Time Fault Detection of Industrial Systems

corresponding micro-cluster, which makes it faster than the Stream K-means, despite
requiring more storage memory.

Figure 6.7 shows the results of the Stream K-means algorithm applied to the
case study, considering batches of 50 points each and two clusters (K = 2). It is
evident that, during the first iterations, the clusters formed by the first batches are
not well-separated; as new batches are added and the algorithm is applied to larger
and larger portions of the data, the clusters become less distinct and begin to overlap
in some iterations.

In addition, the clusters formed at each iteration are dependent on the order in
which the batches of data points are processed. On the contrary, in the Adaptive
Constrained Clustering method, the order in which the data points arrive does not
affect the clustering results at each iteration or at the end of the procedure.

Indeed, the Stream K-means algorithm is not very effective at clustering this data
set, as the clusters are not well-separated and do not remain stable over time. In
terms of purity, the Stream K-means only scores 0.66. Such a result demonstrates
that the proposed approach outperforms the other reference streaming methods in
terms of accuracy.

6.5 Conclusion of Adaptive Constrained Clustering
Algorithm

Thanks to the pervasive deployment of sensors in Industry 4.0, data-driven methods
have recently played an important role in the fault diagnosis and prognosis of
industrial systems. In this chapter, a novel Adaptive Constrained Clustering algorithm
is defined to support real-time fault detection of an industrial machine, by clustering
the incoming monitoring data into two clusters over time, representing the nominal
and non-nominal work conditions, respectively. To this aim, the proposed algorithm
relies on a two-stage procedure: micro-clustering and constrained macro-clustering.
The former stage is responsible for grouping the batches of work-cycle data into
micro-clusters, while the data stream continuously arrives from the data acquisition
system. Then, after condensing the micro-clusters into vectors of cluster features,
and leveraging on additional knowledge on the nominal and non-nominal working
conditions (i.e., constraints on some samples), the second stage aims at offline

6.5 Conclusion of Adaptive Constrained Clustering Algorithm 109

grouping the micro-clusters features into macro-clusters. Experimental results on
a real-world industrial case study show that the proposed real-time framework
achieves the same results of offline baseline methods (e.g., Constrained K-means)
with a higher responsiveness and processing speed; in comparison to stream baseline
methods (e.g., Stream K-means), the proposed approach obtains more accurate and
easily interpretable results.

Chapter 7

Conclusion and Future Work

7.1 Conclusion of the Thesis

In this comprehensive study, I have applied various machine learning (ML) tech-
niques to address fault detection and diagnosis (FDD) challenges in complex in-
dustrial systems. Firstly, I demonstrated the effectiveness of the Early Time-Series
Classification (ETSC) model in detecting potential failures in a hydraulic system
(HS). ETSC not only achieved high accuracy but also significantly reduced predic-
tion time, enabling real-time monitoring and predictive maintenance. Secondly, a
Multi-Class Multi-Output (MCMO) classification approach was proposed to forecast
the states of multiple HS components simultaneously, outperforming traditional
methods and providing consistent predictions. This approach also allowed for the
diagnosis of overall HS states, emphasizing its practical utility. Furthermore, I
explored semi-supervised learning (SSL) for fault detection in pneumatic and hy-
draulic systems, showcasing the capability of SSL to achieve high accuracy with
limited labeled data. Lastly, an unsupervised ML method for real-time fault detection
was proposed, which involved micro-clustering and macro-clustering stages. This
approach demonstrated superior performance compared to baseline methods, includ-
ing static-constrained K-means and online Stream K-means. Overall, my research
contributes to the advancement of FDD in industrial systems through the application
of diverse ML methodologies.

7.2 Future Work 111

7.2 Future Work

Future research will explore diverse avenues to enhance my existing methodologies.
I plan to incorporate additional base classifiers into the ETSC model to tailor its
performance to various types of sequential data. Furthermore, I intend to address
sensor data feature selection challenges by replacing traditional classifiers with deep
learning models. Additionally, I aim to expand my horizons in failure analysis
by considering probabilistic modeling approaches that account for dependencies,
including dynamic fault trees and stochastic Petri nets. Another perspective is to
incorporate the learning of event combinations involving dependencies into the ML
phase of my approach. Moreover, I intend to apply the multi-class multi-output
(MCMO) model to datasets with lower dynamism than the hydraulic system dataset.
This will allow us to conduct a fundamental fault tree analysis and determine the
system’s reliability. In terms of data environments, my future efforts will focus on
dynamic settings with continuously generated data, particularly stream data. I will
also explore the integration of semi-supervised learning models with maintenance
management to optimize maintenance intervals, thereby enhancing system reliability
and minimizing inspection costs. Lastly, I will explore the inclusion of a fault
identification sub-stage to provide deeper insights into the root causes of faults,
culminating in a comprehensive unsupervised fault diagnosis algorithm. As I delve
deeper into stream data mining, addressing the challenge of concept drift within the
dataset emerges as a pivotal avenue for future research in this field.

References

[1] Keke Huang, Shujie Wu, Fanbiao Li, Chunhua Yang, and Weihua Gui. Fault
diagnosis of hydraulic systems based on deep learning model with multirate
data samples. IEEE Transactions on Neural Networks and Learning Systems,
pages 1–13, 2021.

[2] Atin Roy and Subrata Chakraborty. Support vector machine in structural
reliability analysis: A review. Reliability Engineering & System Safety, page
109126, 2023.

[3] Malti Bansal, Apoorva Goyal, and Apoorva Choudhary. A comparative analysis
of k-nearest neighbor, genetic, support vector machine, decision tree, and long
short term memory algorithms in machine learning. Decision Analytics Journal,
3:100071, 2022.

[4] Laith Alzubaidi, Jinglan Zhang, Amjad J Humaidi, Ayad Al-Dujaili, Ye Duan,
Omran Al-Shamma, José Santamaría, Mohammed A Fadhel, Muthana Al-
Amidie, and Laith Farhan. Review of deep learning: Concepts, cnn architec-
tures, challenges, applications, future directions. Journal of big Data, 8:1–74,
2021.

[5] Kun-Cheng Ke and Ming-Shyan Huang. Quality prediction for injection
molding by using a multilayer perceptron neural network. Polymers, 12(8):1812,
2020.

[6] Mohsen Hajighorbani, SM Reza Hashemi, B Minaei-Bidgoli, and Shabnam
Safari. A review of some semi-supervised learning methods. In IEEE-2016,
first international conference on new research achievements in electrical and
computer engineering, pages 1–10, 2016.

[7] Yanwen Chong, Yun Ding, Qing Yan, and Shaoming Pan. Graph-based semi-
supervised learning: A review. Neurocomputing, 408:216–230, 2020.

[8] Abiodun M Ikotun, Absalom E Ezugwu, Laith Abualigah, Belal Abuhaija, and
Jia Heming. K-means clustering algorithms: A comprehensive review, variants
analysis, and advances in the era of big data. Information Sciences, 2022.

[9] GeeksforGeeks. Ml - principal component analysis.
https://www.geeksforgeeks.org/principal-component-analysis-pca/, March
2023. Accessed on October 2023.

References 113

[10] GeeksforGeeks. Ml - linear discriminant analysis. https://www.geeksforgeeks.
org/ml-linear-discriminant-analysis/, March 2023. Accessed on October 2023.

[11] Alberto Pliego Marugán. Applications of reinforcement learning for mainte-
nance of engineering systems: A review. Advances in Engineering Software,
183:103487, 2023.

[12] Asma Dachraoui, Alexis Bondu, and Antoine Cornuéjols. Early classification of
time series as a non myopic sequential decision making problem. In Machine
Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part
I 15, pages 433–447. Springer, 2015.

[13] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[14] Bahman Askari, Augusto Bozza, Graziana Cavone, Raffaele Carli, and Maria-
grazia Dotoli. An adaptive constrained clustering approach for real-time fault
detection of industrial systems. In European Journal of Control (EJC), 2023.
In press.

[15] Zeki Murat Çınar, Abubakar Abdussalam Nuhu, Qasim Zeeshan, Orhan Korhan,
Mohammed Asmael, and Babak Safaei. Machine learning in predictive mainte-
nance towards sustainable smart manufacturing in industry 4.0. Sustainability,
12(19):8211, 2020.

[16] Anam Abid, Muhammad Tahir Khan, and Javaid Iqbal. A review on fault
detection and diagnosis techniques: basics and beyond. Artificial Intelligence
Review, 54:3639–3664, 2021.

[17] Attila Ernő Frankó and Pál Varga. A survey on machine learning based
smart maintenance and quality control solutions. Infocommunications Journal,
13(4):28–35, 2021.

[18] Cheng Ji and Wei Sun. A review on data-driven process monitoring methods:
Characterization and mining of industrial data. Processes, 10(2):335, 2022.

[19] Miroslav Kubat, Ivan Bratko, and Ryszard S Michalski. A review of ma-
chine learning methods. Machine Learning and Data Mining: Methods and
Applications, pages 3–69, 1998.

[20] Sotiris B Kotsiantis, Ioannis Zaharakis, P Pintelas, et al. Supervised machine
learning: A review of classification techniques. Emerging artificial intelligence
applications in computer engineering, 160(1):3–24, 2007.

[21] Amanpreet Singh, Narina Thakur, and Aakanksha Sharma. A review of super-
vised machine learning algorithms. In 2016 3rd international conference on
computing for sustainable global development (INDIACom), pages 1310–1315.
Ieee, 2016.

[22] Tammy Jiang, Jaimie L Gradus, and Anthony J Rosellini. Supervised machine
learning: a brief primer. Behavior Therapy, 51(5):675–687, 2020.

https://www.geeksforgeeks.org/ml-linear-discriminant-analysis/
https://www.geeksforgeeks.org/ml-linear-discriminant-analysis/

114 References

[23] Shan Suthaharan. Machine learning models and algorithms for big data classi-
fication. Integr. Ser. Inf. Syst, 36:1–12, 2016.

[24] M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, and B. Scholkopf. Support
vector machines. Intelligent Systems and their Applications, IEEE, 13(4):18–28,
1998.

[25] B. Scholkopf, S. Mika, C. J. C. Burges, P. Knirsch, K. R. Muller, G. Ratsch,
and A. J. Smola. Input space versus feature space in kernel-based methods.
IEEE Transactions on Neural Networks, 10(5):1000–1017, 1999.

[26] Vinícius G Costa and Carlos E Pedreira. Recent advances in decision trees: An
updated survey. Artificial Intelligence Review, 56(5):4765–4800, 2023.

[27] J Ross Quinlan. An empirical comparison of genetic and decision-tree clas-
sifiers. In Machine Learning Proceedings 1988, pages 135–141. Elsevier,
1988.

[28] J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

[29] Badr Hssina, Abdelkarim Merbouha, Hanane Ezzikouri, and Mohammed Erri-
tali. A comparative study of decision tree id3 and c4. 5. International Journal
of Advanced Computer Science and Applications, 4(2):13–19, 2014.

[30] Farhad Mortezapour Shiri, Thinagaran Perumal, Norwati Mustapha, and Rai-
hani Mohamed. A comprehensive overview and comparative analysis on deep
learning models: Cnn, rnn, lstm, gru. arXiv preprint arXiv:2305.17473, 2023.

[31] Francesca Calabrese, Alberto Regattieri, Lucia Botti, Cristina Mora, and
Francesco Gabriele Galizia. Unsupervised fault detection and prediction of
remaining useful life for online prognostic health management of mechanical
systems. Applied Sciences, 10(12):4120, 2020.

[32] Nikolai Helwig, Eliseo Pignanelli, and Andreas Schütze. Condition monitoring
of a complex hydraulic system using multivariate statistics. In 2015 IEEE Inter-
national Instrumentation and Measurement Technology Conference (I2MTC)
Proceedings, pages 210–215, 2015.

[33] Yaguo Lei, Naipeng Li, Liang Guo, Ningbo Li, Tao Yan, and Jing Lin. Ma-
chinery health prognostics: A systematic review from data acquisition to rul
prediction. Mechanical Systems and Signal Processing, 104:799–834, 2018.

[34] Sudarshan S. Chawathe. Condition monitoring of hydraulic systems by classi-
fying sensor data streams. In 2019 IEEE 9th Annual Computing and Communi-
cation Workshop and Conference (CCWC), pages 0898–0904, 2019.

[35] Z. Xu, H. Yu, J. Tao, and C. Liu. Compound fault diagnosis in hydraulic system
with multi-output svm. In CSAA/IET International Conference on Aircraft
Utility Systems (AUS 2020), volume 2020, pages 84–89, 2020.

References 115

[36] Yafei Lei, Wanlu Jiang, Anqi Jiang, Yong Zhu, Hongjie Niu, and Sheng Zhang.
Fault diagnosis method for hydraulic directional valves integrating pca and
xgboost. Processes, 7(9), 2019.

[37] Xiaohang Zhao, Ke Zhang, and Yi Chai. A multivariate time series classification
based multiple fault diagnosis method for hydraulic systems. In 2019 Chinese
Control Conference (CCC), pages 6819–6824, 2019.

[38] Zhijie Peng, Ke Zhang, and Yi Chai. Multiple fault diagnosis for hydraulic
systems using nearest-centroid-with-dba and random-forest-based-time-series-
classification. In 2020 39th Chinese Control Conference (CCC), pages 29–86,
2020.

[39] Wei Wang, Yan Li, and Yuling Song. Fault diagnosis method of hydraulic
system based on multi-source information fusion and fractal dimension. Journal
of the Brazilian Society of Mechanical Sciences and Engineering, 2021.

[40] Kyutae Kim and Jongpil Jeong. Real-time monitoring for hydraulic states
based on convolutional bidirectional lstm with attention mechanism. Sensors
(Basel, Switzerland), 20, 2020.

[41] Majdi Mansouri, Mohamed Trabelsi, Hazem Nounou, and Mohamed Nounou.
Deep learning-based fault diagnosis of photovoltaic systems: A comprehensive
review and enhancement prospects. IEEE Access, 9:126286–126306, 2021.

[42] Zhaoyi Xu and Joseph Homer Saleh. Machine learning for reliability engineer-
ing and safety applications: Review of current status and future opportunities.
Reliability Engineering & System Safety, 211:107530, 2021.

[43] Bahman Askari, Raffaele Carli, Graziana Cavone, and Mariagrazia Dotoli.
Data-driven fault diagnosis in a complex hydraulic system based on early
classification. IFAC-PapersOnLine, 55(40):187–192, 2022.

[44] Qadeer Ahmed, Syed Asif Raza, and Dahham M Al-Anazi. Reliability-based
fault analysis models with industrial applications: A systematic literature
review. Quality and Reliability Engineering International, 37(4):1307–1333,
2021.

[45] Felipe Augusto Sviaghin Ferri, Leonardo Ramos Rodrigues, João
Paulo Pordeus Gomes, Ivo Paixão de Medeiros, Roberto Kawakami Harrop
Galvão, and Cairo Lúcio Nascimento. Combining phm information and system
architecture to support aircraft maintenance planning. pages 60–65, 2013.

[46] Deniz Tuncay and Nuray Demirel. Reliability analysis of a dragline using fault
tree analysis. Scientific Mining Journal, 56(2):55–64, 2017.

[47] Rajkumar B Patil, Digvijay A Mhamane, Pruthwiraj B Kothavale, and Basavraj
Kothavale. Fault tree analysis: a case study from machine tool industry. In
Proceedings of TRIBOINDIA-2018 An International Conference on Tribology,
2018.

116 References

[48] Shizheng Li, Zhaojun Yang, Hailong Tian, Chuanhai Chen, Yongfu Zhu, Fuqin
Deng, and Song Lu. Failure analysis for hydraulic system of heavy-duty
machine tool with incomplete failure data. volume 11, page 1249. MDPI, 2021.

[49] Kerelous Waghen and Mohamed-Salah Ouali. Multi-level interpretable logic
tree analysis: A data-driven approach for hierarchical causality analysis. Expert
Systems with Applications, 178:115035, 2021.

[50] Yong-bum Lee, Gi-chun Lee, Jong-dae Yang, Jong-won Park, and Dong-cheon
Baek. Failure analysis of a hydraulic power system in the wind turbine. Engi-
neering Failure Analysis, 107:104218, 2020.

[51] Yi-Min Mo, Yi Gong, and Zhen-Guo Yang. Failure analysis on the o-ring of
radial thrust bearing room of main pump in a nuclear power plant. Engineering
Failure Analysis, 115:104673, 2020.

[52] Tong-Wei Ni and Zhen-Guo Yang. Failure analysis on unexpected leakage of
electro-hydraulic servo valve in digital electric hydraulic control system of 300
mw thermal power plant. Engineering Failure Analysis, 119:104992, 2021.

[53] Andre Lemos, Walmir Caminhas, and Fernando Gomide. Adaptive fault
detection and diagnosis using an evolving fuzzy classifier. Information Sciences,
220:64–85, 2013.

[54] Isaac Monroy, Raul Benitez, Gerard Escudero, and Moisès Graells. A semi-
supervised approach to fault diagnosis for chemical processes. Computers &
Chemical Engineering, 34(5):631–642, 2010. Selected Paper of Symposium
ESCAPE 19, June 14-17, 2009, Krakow, Poland.

[55] Shaozhi Chen, Rui Yang, and Maiying Zhong. Graph-based semi-supervised
random forest for rotating machinery gearbox fault diagnosis. Control Engi-
neering Practice, 117:104952, 2021.

[56] Ke Yan, Chaowen Zhong, Zhiwei Ji, and Jing Huang. Semi-supervised learning
for early detection and diagnosis of various air handling unit faults. Energy
and Buildings, 181:75–83, 2018.

[57] Ikenna A Okaro, Sarini Jayasinghe, Chris Sutcliffe, Kate Black, Paolo Paoletti,
and Peter L Green. Automatic fault detection for laser powder-bed fusion using
semi-supervised machine learning. Additive Manufacturing, 27:42–53, 2019.

[58] Taeyoung Ko and Heeyoung Kim. Fault classification in high-dimensional com-
plex processes using semi-supervised deep convolutional generative models.
IEEE Transactions on Industrial Informatics, 16(4):2868–2877, 2020.

[59] Kun Yu, Tian Ran Lin, Hui Ma, Xiang Li, and Xu Li. A multi-stage semi-
supervised learning approach for intelligent fault diagnosis of rolling bearing
using data augmentation and metric learning. Mechanical Systems and Signal
Processing, 146:107043, 2021.

References 117

[60] Shuyuan Zhang and Tong Qiu. Semi-supervised lstm ladder autoencoder
for chemical process fault diagnosis and localization. Chemical Engineering
Science, 251:117467, 2022.

[61] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised
learning using gaussian fields and harmonic functions. In Proceedings of the
20th International conference on Machine learning (ICML-03), pages 912–919,
2003.

[62] Xiaogang Wang, Haichao Feng, and Yunpeng Fan. Fault detection and clas-
sification for complex processes using semi-supervised learning algorithm.
Chemometrics and intelligent laboratory systems, 149:24–32, 2015.

[63] Mauricio Zuluaga Rodriguez, Cesar Henrique Comin, Daladier Casanova,
Odemir Martinez Bruno, and Diego Raphael Amancio. Clustering algorithms:
A comparative approach. PLOS ONE, 14(1):e0210236, 2019.

[64] Stratos Mansalis, Eirini Ntoutsi, Nikos Pelekis, and Yannis Theodoridis. An
evaluation of data stream clustering algorithms. Statistical Analysis and Data
Mining: The ASA Data Science Journal, 11(4):167–187, 2018.

[65] Mohiuddin Ahmed, Abdun Naser Mahmood, and Jiankun Hu. A survey of
network anomaly detection techniques. Journal of Network and Computer
Applications, 60:19–31, 2016.

[66] Salima Omar, Asri Ngadi, and Hamid H Jebur. Machine learning techniques
for anomaly detection: an overview. International Journal of Computer Appli-
cations, 79(2), 2013.

[67] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A
survey. ACM computing surveys (CSUR), 41(3):1–58, 2009.

[68] J. Montoya-Bedoya, R. Graves, S. Joshi, and M. Satra. Feature design, selection,
and model optimization for fault classification in a hydraulic rock drill. Annual
Conference of the PHM Society, 14(1), Oct 2022.

[69] Gian Paolo Incremona and Antonella Ferrara. Fault diagnosis for robot manipu-
lators via vision servoing based suboptimal second order sliding mode. In 2019
18th European Control Conference (ECC), pages 3090–3095. IEEE, 2019.

[70] Gustavo Dalmarco, Filipa R Ramalho, Ana C Barros, and Antonio L Soares.
Providing industry 4.0 technologies: The case of a production technology
cluster. The journal of high technology management research, 30(2):100355,
2019.

[71] Angelo Cenedese, Michele Luvisotto, and Giulia Michieletto. Distributed
clustering strategies in industrial wireless sensor networks. IEEE Transactions
on Industrial Informatics, 13(1):228–237, 2017.

118 References

[72] Cristiano Hora Fontes and Hector Budman. A hybrid clustering approach for
multivariate time series–a case study applied to failure analysis in a gas turbine.
ISA transactions, 71:513–529, 2017.

[73] M Amine Atoui and Achraf Cohen. Fault diagnosis using pca-bayesian network
classifier with unknown faults. In 2020 European Control Conference (ECC),
pages 2039–2044. IEEE, 2020.

[74] Chenhao Wu, Jiguang Yue, Li Wang, and Feng Lyu. Fault diagnosis of recessive
weakness in superbuck converter based on kpca-ipnn. In 2020 European
Control Conference (ECC), pages 2045–2050. IEEE, 2020.

[75] Eckart Uhlmann, Rodrigo Pastl Pontes, Claudio Geisert, and Eckhard Ho-
hwieler. Cluster identification of sensor data for predictive maintenance in a
selective laser melting machine tool. Procedia Manufacturing, 24:60–65, 2018.
4th International Conference on System-Integrated Intelligence: Intelligent,
Flexible and Connected Systems in Products and Production.

[76] Javier Diaz-Rozo, Concha Bielza, and Pedro Larrañaga. Clustering of data
streams with dynamic gaussian mixture models: An iot application in industrial
processes. IEEE Internet of Things Journal, 5(5):3533–3547, 2018.

[77] Ahmad Alzghoul, Magnus Löfstrand, and Björn Backe. Data stream forecasting
for system fault prediction. Computers & industrial engineering, 62(4):972–
978, 2012.

[78] Alaettin Zubaroğlu and Volkan Atalay. Data stream clustering: a review.
Artificial Intelligence Review, 54(2):1201–1236, 2021.

[79] Sergio Ramírez-Gallego, Bartosz Krawczyk, Salvador García, Michał Woźniak,
and Francisco Herrera. A survey on data preprocessing for data stream mining:
Current status and future directions. Neurocomputing, 239:39–57, 2017.

[80] Jan Zenisek, Florian Holzinger, and Michael Affenzeller. Machine learning
based concept drift detection for predictive maintenance. Computers & Indus-
trial Engineering, 137:60–65, 2019.

[81] Nailong Zhang and Wujun Si. Deep reinforcement learning for condition-based
maintenance planning of multi-component systems under dependent competing
risks. Reliability Engineering & System Safety, 203:107094, 2020.

[82] Charalampos P Andriotis and Konstantinos G Papakonstantinou. Managing en-
gineering systems with large state and action spaces through deep reinforcement
learning. Reliability Engineering & System Safety, 191:106483, 2019.

[83] Adam Thelen, Xiaoge Zhang, Olga Fink, Yan Lu, Sayan Ghosh, Byeng D
Youn, Michael D Todd, Sankaran Mahadevan, Chao Hu, and Zhen Hu. A
comprehensive review of digital twin—part 1: modeling and twinning enabling
technologies. Structural and Multidisciplinary Optimization, 65(12):354, 2022.

References 119

[84] Amir Ebrahimifakhar, Adel Kabirikopaei, and David Yuill. Data-driven fault
detection and diagnosis for packaged rooftop units using statistical machine
learning classification methods. Energy and Buildings, 225:110318, 2020.

[85] Zhu Xiaojin and Ghahramani Zoubin. Learning from labeled and unlabeled data
with label propagation. In Tech. Rep., Technical Report CMU-CALD-02–107.
Carnegie Mellon University, 2002.

[86] Jonathan A Silva, Elaine R Faria, Rodrigo C Barros, Eduardo R Hruschka,
André CPLF de Carvalho, and João Gama. Data stream clustering: A survey.
ACM Computing Surveys (CSUR), 46(1):1–31, 2013.

[87] Mohammed Ghesmoune, Mustapha Lebbah, and Hanene Azzag. State-of-the-
art on clustering data streams. Big Data Analytics, 1(1):1–27 , 2016.

[88] Damianos P Melidis, Myra Spiliopoulou, and Eirini Ntoutsi. Learning under
feature drifts in textual streams. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, pages 527–536, 2018.

[89] Supriya Agrahari and Anil Kumar Singh. Concept drift detection in data stream
mining: A literature review. Journal of King Saud University-Computer and
Information Sciences, 34(10):9523–9540, 2022.

[90] Bahman Askari and Sattar Hashemi. Text document clustering by using semi-
supervised learning and outlier detection. International Journal of Mecha-
tronic, Electrical and Computer Technology (IJMEC), 7(23):3255–3262, Jan-
uary 2017.

Appendix A

Baseline Machine Learning Methods

A.1 Mathematical Basics of Classification Methods

In the context of classification, it is necessary to define a1x1 +a2x2−b = 0 so that
we can create a plane that can divide the data domain X1X2 into two subdomains D1

and D2, such that all the points in a subdomain can be labeled the same:

D1 =
{
(x1,x2) : [a1,a2] [x1,x2]

′−b≤ 0
}

(A.1)

D2 =
{
(x1,x2) : [a1,a2] [x1,x2]

′−b > 0
}

(A.2)

Therefore, our classifiers may be defined as:

[a1,a2] [x1,x2]
′−b =−1 for the data points in domain D1

and
[a1,a2] [x1,x2]

′−b = 1 for the data points in domain D2.

By applying the same parametrization process, we can establish high-dimensional
classifiers for data points within a three-dimensional data domain, a four-dimensional
data domain, and so forth. This classification model can be extended and represented
in the following matrix form:

A.1 Mathematical Basics of Classification Methods 121

Ax′−b =−1;x ∈ D1 (A.3)

Ax′−b = 1;x ∈ D2 (A.4)

and the subdomains are:

D1 =
{

x : Ax′−B≤ 0
}

(A.5)

D2 =
{

x : Ax′−B > 0
}

(A.6)

These equations represent parameter models, but there exists a multitude of poten-
tial parameter values. The challenge is to choose values that meet the parametrization
goals. After defining these values, the next step is to determine the optimal parameter
values [23].

A.1.1 Logistic Regression

LR offers a classification model, which is discussed in this section using fewer
variables and a straightforward two-class classification example [23]. In LR, the
primary goal is to minimize the entropy E, and for a two-class problem, it can be
defined as follows:

E = y log(p)+(1− y) log(1− p) (A.7)

In this equation, we have the class label y, which can take values 0 or 1, and
p represents the probability of detecting class label y. This can be simplified as
follows:

E = log(1− p)+ y log
p

(1− p)
(A.8)

If we assume that the probability p follows a logistic function with a parameter
a, we can express the probabilities p and 1− p as follows:

122 Baseline Machine Learning Methods

p =
eax

1+ eax (A.9)

1− p =
1

1+ eax (A.10)

where equation A.10 indicates the logistic (sigmoid) function. By replacing the
mathematical expressions for both p and 1− p in Eq. (A.8), we can rewrite it with
the following equation:

E = log
1

1+ eax + y logeax (A.11)

E =− log(1+ eax)+ yax (A.12)

When we apply a partial derivative operator with respect to the parameter a, we
obtain the following equation:

∂E
∂a

= yx− eax

1+ eax x = 0 (A.13)

if we substitute Eq. (A.9) in the Eq. (A.13), we can get the following:

∂E
∂a

= (y− p)x = 0 (A.14)

The next step is to derive an expression for the second derivative from Eq. (A.13)
that is important to update the parameter a. The results of the application of the
second partial derivative are:

∂ 2E
∂a2 =−(1+ eax)xeaxx− eaxxeaxx

(1+ eax)2 = 0 (A.15)

∂ 2E
∂a2 =− xeaxx

(1+ eax)2 = 0 (A.16)

∂ 2E
∂a2 =−x

eax

(1+ eax)

1
(1+ eax)

x = 0 (A.17)

A.1 Mathematical Basics of Classification Methods 123

By substituting the mathematical expression in Eq. (A.34) for p, we can simplify
the above equation and obtain the following:

∂ 2E
∂a2 =−xp(1− p)x = 0 (A.18)

By representing p(1− p) with w, we can rewrite this equation as follows:

∂ 2E
∂a2 =−xwx = 0 (A.19)

We can now use the Newton–Raphson approach [?] to update the logistic
regression parameter a:

acurr = aprev−
(

∂ 2E
∂a2

)−1
∂E
∂a

(A.20)

using the Eq. (A.14) and (A.19), we can change the Eq. (A.20) to:

acurr = aprev − (xwx)−1(y− p)x (A.21)

If we extend this equation to encompass updates for the parameters in a broader
sense, we arrive at the following:

acurr = aprev −
(
x′Wx

)−1
(y− p)x (A.22)

where W is a matrix with the diagonal elements w that need to be optimized by
tuning and finding the optimal values.

A.1.2 Support Vector Machine

Let us start with the following straight-line equation (A.23) to divide the data domain:

wx+b = 0 (A.23)

124 Baseline Machine Learning Methods

Considering a data domain, this parameterized straight line divides the data
domain into two subdomains, and we may call them left subdomain and right
subdomain, denote them by D1 and D2, and define them as follows:

D1 = {x : wx+b≤ 0}
D2 = {x : wx+b > 0}

(A.24)

The points falling in these subdomains may be distinguished with labels 1 for
the subdomain D1 and -1 for the subdomain D2. Therefore, the parametrization
objective of the support vector machine can be defined as follows:

wx+b = 1,x ∈ D1

wx+b =−1,x ∈ D2
(A.25)

In the parametrization objectives, we have modeled two straight lines (or hyper-
planes) that can help to define boundaries between the classes. The optimization
objective is to define an objective function (in this case, the distance between the
straight lines) and search for the parameter values that maximize the distance. These
lines are parallel to each other; therefore, we can simply use the standard distance
formula between two parallel lines y = mx+b1 and y = mx+b2 as follows:

d =
(b2−b1)√

m2 +1
(A.26)

where the slopes of the straight lines are m=w, and their intercepts are b1 = b+1
and b2 = b−1. By substituting these variables, we can establish the following:

d =
±2√

ww′+1
(A.27)

Ultimately, this distance formula will be the measure for the optimization problem
that we build; therefore, without loss of generality, we can rewrite it as follows:

d =
±2√
ww′

(A.28)

In practice, the support vector machine optimization problem is written using the
mathematical norm notation, therefore we rewrite the above equation as follows:

A.1 Mathematical Basics of Classification Methods 125

d =
±2
∥w∥2 (A.29)

By squaring both sides of the equation, and then dividing both sides of the equa-
tion by the value of 2, we can obtain the following simple mathematical relationship:

d2

2
=

1
∥w∥2

2

(A.30)

It states that instead of maximizing the distance function d2/2, we can minimize
∥w∥2/2. In other words, we can minimize the prediction error with respect to the
above classifier while maximizing the distance between them (this is the optimization
objective). Therefore, the following mathematical expression can be defined for the
prediction error between x ∈ D and its response variables y:

e = 1− y(wx+b) (A.31)

This error function plays a major role in the development of an optimization
problem for the support vector machine.

Suppose there are p features X1,X2, . . . ,Xp and the i th observation is denoted
by xi1,xi2, . . . ,xip, where i = 1, . . . ,n. Then we can plot these n data points in a
p-dimensional space to form a multidimensional space. This space is the vector
space, and it displays both the magnitude and the directional information of the
data. This set of p features may be transformed into a new set of d features using a
polynomial kernel [3]. This space is called the feature space and, in general, each
data point in the feature space carries information about a single data point in the
vector space. The advantage of a feature space is that the nonseparable classes in the
vector space may be turned into separable classes using the right choice of kernel.
However, finding a kernel and generating such a transformation is not simple.

φ : Rp→ Rd (A.32)

where Rp is the vector space (original domain) and Rd is the feature space, which
is high dimensional (generally d >> p). It is possible to find φ that helps transform

126 Baseline Machine Learning Methods

the vector space to a feature space where the classes are linearly separable. Hence,
the support vector machine classifier in the feature space can be written as follows:

Minimize
w,b

∥w∥2

2

subject to: s(wφ (x)+bI)≥ I
(A.33)

However, φ(x) is high dimensional, thus the computation becomes very expen-
sive. Apart from the classification in linear space, the SVM approach can be readily
applied for nonlinear classification as well by utilizing kernel tricks to implicitly map
the inputs into high-dimensional feature spaces. Figure (2.3) explains one such map-
ping where a two-dimensional input space (x1,x2) is mapped into a three-dimensional
feature space (z1,z2,z3) by using the mapping, z1 = x2

1,z2 =
√

2x1x2,z3 = x2
2.

A.1.3 Decision Tree Algorithm

Algorithm 9 outlines the step-by-step process for constructing a decision tree.

Algorithm 7: Decision Tree Construction
Parameters: Training dataset D, chosen splitting criterion (e.g., Gini

impurity, entropy)
Result: Decision tree T

1 if stopping criterion met then
2 return a leaf node with the majority class label

3 Select the best feature F and threshold TF using the chosen splitting criterion
4 Create a decision node for feature F and threshold TF
5 Partition the data into child datasets D1 and D2 based on F and TF
6 Tleft← Decision Tree Construction(D1)
7 Tright← Decision Tree Construction(D2)
8 Attach Tleft as the left child node and Tright as the right child node of the

current decision node
9 return the constructed decision tree T

A.1 Mathematical Basics of Classification Methods 127

A.1.4 Random Forest Algorithm

Algorithm 15 provides a comprehensive overview of the process for constructing a
Random Forest, a robust ensemble learning method that combines multiple decision
trees to improve predictive accuracy and reduce overfitting.

Algorithm 8: Random Forest Classification
Parameters: Training dataset D, Number of decision trees Ntrees, Number

of features considered Nfeatures
Result: Random Forest model

1 Initialize an empty list, Forest, to store decision trees
2 for i = 1 to Ntrees do
3 Create a bootstrap sample Di by randomly selecting N samples with

replacement from D
4 Randomly select Nfeatures features from the total set of features
5 Train a decision tree Ti using Di and the selected features
6 for each node in Ti do
7 Randomly select a subset of Nfeatures features
8 Calculate the best split using a chosen criterion (e.g., Gini impurity)

9 Add the trained tree Ti to the Forest

10 Make predictions using the Random Forest
11 for each input data point X do
12 for each tree Ti in Forest do
13 Traverse Ti and obtain a class prediction

14 Aggregate predictions from all trees (e.g., a majority vote for
classification)

15 return the Random Forest model

A.1.5 KNN Algorithm

Algorithm 8 outlines the K-Nearest Neighbors (KNN) classification method, which
is a simple yet effective machine learning algorithm used for classifying data points
based on the majority class among their nearest neighbors within a specified range,
making it a popular choice for various classification tasks.

128 Baseline Machine Learning Methods

Algorithm 9: K-Nearest Neighbors (KNN) Classification
Parameters: Training dataset D, test data point X , number of neighbors K
Result: Predicted class label for X

1 for each data point Di in training dataset D do
2 Calculate the distance between X and Di (e.g., Euclidean distance)
3 Store the distance along with the class label of Di

4 Sort the distances in ascending order
5 Select the top K data points with the smallest distances
6 Count the occurrences of each class label among the selected K data points
7 Assign the class label with the highest count as the predicted class label for

X
8 return Predicted class label

A.1.6 Deep Learning

In figure 2.9:

• x(s)k : the k th input data at the sth set of data

• m: the total number of input data

• nlr,plr : the plr th neural node of the lr th layer

• and Nlr: the total number of neurons in the lr th layer

• The notation x(s): the vector of input data

• Nset : the total number of data points in the input dataset

• L: the summation of the layers except the input layer

Equations below present the expressions for the output vectors of the first layer,
lrth layer in the hidden layer and output layer, respectively. In the aforementioned
equations, wlr represents the weighting vector of the lr th layer. The weighting
values range between 0 and 1. These values change with the training data and
represent the memory of the neural network related to the input and output after
model training.

For lr = 1,

A.1 Mathematical Basics of Classification Methods 129

O(s)
1 = ϕ1

(
x(s)×w1 +bT

1

)
(A.34)

where

O(s)
1 =

[
O(s)

1,1 O(s)
1,2 · · · O(s)

1,N1

]
(A.35)

w1 =

w1,1,1 w1,2,1 · · · w1,N1,1

w1,1,2 w1,2,2 w1,N1,2
...

...
...

w1,1,m w1,2,m · · · w1,N1,m

 (A.36)

b1 =

b1,1

b1,2
...

b1,N1

 (A.37)

For L >| r ≥ 2,

O(s)
lr = ϕ1

(
O(s)

lr−1×wlr +blr
T
)

(A.38)

where

O(s)
lr =

[
O(s)

lr,1 O(s)
lr,2 · · · O(s)

lr,Nlr

]
(A.39)

wlr =

wlr,1,1 wlr,2,1 · · · wlr,Nlr,1

wlr,1,2 wlr,2,2 wlr,Nlr,2
...

... . . .

wlr,1,Nlr−1 wlr,2,Nlr−1 · · · wlr,Nlr,Nlr−1

 (A.40)

130 Baseline Machine Learning Methods

blr =

blr,1

blr,2
...

blr,Nlr

 (A.41)

For lr = L,

O(s)
L = ϕ2

(
O(s)

L−1×wL +bT
L

)
(A.42)

where

O(s)
L =

[
O(s)

lr,1 O(s)
lr,2 · · · O(s)

lr,Nlr

]
(A.43)

wL =

wL,1,1 wL,2,1 · · · wL,NL,1

wL,1,2 wL,2,2 wL,NL,2
...

...
...

wL,1,NL−1 wL,2,NL−1 · · · wL,NL,NL−1

 (A.44)

blr =

bL,1

bL,2
...

bL,NL

 (A.45)

The term O(s)
lr represents the output vector of the Irth layer after training from

the first dataset to the sth dataset.

A.2 Clustering Methods 131

A.2 Clustering Methods

A.2.1 Kmeans Algorithm

Algorithm 10: K-Means Clustering Algorithm

1 Input: X = {x1,x2, . . . ,xn} (Dataset to be clustered), k (Number of required
clusters) Output: C = {c1,c2, . . . ,ck} (Cluster centroids)

2 Initialization:
3 for i = 1 to k do
4 Initialize cluster ci randomly from X

5 while Convergence not reached do
6 // Distance calculations
7 for i = 1 to n do
8 for j = 1 to k do

Compute the Euclidean distance from data object xi to cluster c j

9 // Data object assignment
10 for i = 1 to n do
11 Assign data object xi to the closest cluster c j

12 // Update cluster centroids
13 for j = 1 to k do
14 Update cluster c j to the mean of data objects assigned to it

15 End

A.2.2 Apriori Algorithm

The process of Apriori algorithm can be summarized as follows:

where we begin with item sets of size 1 and find all frequent item sets, which
have support greater than a predefined threshold. After that candidate item sets of
size, k+1 are generated from the frequent item sets of size k. To do this, join two
frequent item sets of size k only if their first k−1 items are identical. Prune any item
sets that contain subsets not in the frequent item set of size k.

then we count the support (number of transactions containing the item set) for
each candidate item set and remove any candidates below the support threshold. The

132 Baseline Machine Learning Methods

Algorithm 11: Apriori Algorithm
Parameters: Transaction database T , support threshold min_support,

confidence threshold min_con f idence
Result: Association rules

1 L1← find_frequent_1_itemsets(T,min_support);
2 L← L1;
3 k← 2;
4 while Lk−1 ̸= /0 do
5 Ck← generate_candidate_itemsets(Lk−1);
6 Lk← find_frequent_itemsets(T,Ck,min_support);
7 L← L∪Lk;
8 k← k+1;

9 A← generate_association_rules(L,min_con f idence);
10 return A;

item set size (k) is increased and goes back to the candidate generation step until no
new candidate item sets can be generated. Finally, Once all frequent item sets are
found, we generate association rules based on them. An association rule typically
has the form A→ B, where A and B are item sets. These rules express the likelihood
that if A is in the basket, then B is also in the basket.

Appendix B

Python Codes

The Python code implementations for the activities conducted throughout this re-
search are available in my GitHub repositories. You can access and download the
code from the following repository link: https://github.com/bahmanskr.

In these repositories, you will find the Python scripts and Jupyter Notebooks
used for data analysis, modeling, and other relevant tasks related to the research
presented in this thesis. Feel free to explore the code and documentation for a detailed
understanding of the methods and techniques used in the study. We encourage readers
and researchers interested in replicating or building upon this work to make use of
the code and resources available in the GitHub repository.

https://github.com/bahmanskr

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background and Motivation
	1.2 Problem Statement
	1.3 Research Objectives
	1.4 Contribution of the Thesis
	1.5 Description of Case Studies Conducted in the Thesis
	1.5.1 Hydraulic System
	1.5.2 Pneumatic System

	1.6 Outline of the Thesis

	2 Literature Review
	2.1 Supervised Machine Learning Methods
	2.1.1 A Comprehensive Guide to Supervised Learning
	2.1.2 Related Works in Supervised Machine Learning for Failure Detection and Diagnosis

	2.2 Semi-Supervised Machine Learning Methods
	2.2.1 A Comprehensive Guide to Semi-Supervised Learning
	2.2.2 Related Works in Semi-Supervised Machine Learning for Failure Detection and Diagnosis

	2.3 Unsupervised Machine Learning Methods
	2.3.1 A Comprehensive Guide to Unsupervised Learning
	2.3.2 Related Works in Unsupervised Machine Learning for Failure Detection and Diagnosis

	2.4 Reinforcement Learning Methods
	2.4.1 Brief Overview on Reinforcement Learning Methods
	2.4.2 A Brief Assessment of Reinforcement Learning for Failure Detection and Diagnosis

	2.5 Conclusion of Machine Learning Models for Failure Detection and Diagnosis

	3 Supervised Methods: Data-Driven Fault Diagnosis in a Complex Hydraulic System based on Early Classification
	3.1 Introduction to Early Classification Algorithms and Contribution
	3.2 The Early Time Series Classification Methodology
	3.3 Illustrative Numerical Example
	3.4 Case Study: Complex Hydraulic System
	3.4.1 Data Pre-processing and Sensor Selection
	3.4.2 Baseline Methods and Performance Indicators
	3.4.3 Results and Discussion

	3.5 Conclusion of the Early Time Series Classification Method

	4 Supervised Methods: An Integrated Approach for Failure Diagnosis and Analysis of Industrial Systems Based on Multi-Class Multi-Output Classification
	4.1 Introduction to Multi-Class Multi-Output Classification
	4.2 A Hybrid Model for Failure Analysis
	4.2.1 Multi-Class Multi-Output Classification
	4.2.2 Rule-based Model for Failure Analysis

	4.3 Case Study: Complex Hydraulic System
	4.3.1 Setup of Experiments
	4.3.2 Results Analysis and Discussion

	4.4 Conclusion of Multi-Class Multi-Output Classification and Failure Analysis

	5 Semi-Supervised Methods: An Approach for Fault Detection and Diagnosis in Complex Mechanical Systems
	5.1 Introduction to Semi-Supervised Learning
	5.2 The proposed Semi-Supervised Leaning methodology
	5.2.1 Inputs Definition
	5.2.2 Label Propagation
	5.2.3 Training and Classification
	5.2.4 Implementation Details and Computational Considerations

	5.3 Case Study and Numerical Experiments: Complex Hydraulic and Pneumatic Systems
	5.3.1 Data Pre-processing and Experimental Setup
	5.3.2 Comparison with Baseline Methods
	5.3.3 Results and Discussion

	5.4 Conclusion of Graph-based Semi-Supervised Method based on Label Propagation

	6 Unsupervised Methods: An Adaptive Constrained Clustering Approach for Real-Time Fault Detection of Industrial Systems
	6.1 Introduction to Unsupervised Learning and thesis contribution
	6.2 Fault detection system framework
	6.3 The proposed methodology based on Adaptive Constrained Clustering Algorithm
	6.3.1 Micro-clustering
	6.3.2 Constrained macro-clustering

	6.4 Case study: Complex Pneumatic System
	6.4.1 Experimental setup
	6.4.2 Performance evaluation
	6.4.3 Results analysis and discussion
	6.4.4 Comparison with related clustering approaches

	6.5 Conclusion of Adaptive Constrained Clustering Algorithm

	7 Conclusion and Future Work
	7.1 Conclusion of the Thesis
	7.2 Future Work

	References
	Appendix A Baseline Machine Learning Methods
	A.1 Mathematical Basics of Classification Methods
	A.1.1 Logistic Regression
	A.1.2 Support Vector Machine
	A.1.3 Decision Tree Algorithm
	A.1.4 Random Forest Algorithm
	A.1.5 KNN Algorithm
	A.1.6 Deep Learning

	A.2 Clustering Methods
	A.2.1 Kmeans Algorithm
	A.2.2 Apriori Algorithm

	Appendix B Python Codes

