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When the scientist is dealing with the
central problem of his field, he may become
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recognise any alternatives to the current
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paradigm become more and more severe
and the alternative paradigms become more
and more promising do the scientists begin
to question the prevailing view (?)
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Abstract

Our understanding of the earliest moments of the Universe relies on General Relativity
(GR) and the Standard Model (SM) of particle physics, which together allowed us to
trace its history from the first minutes to the date. Gravitational waves (GWs), predicted
by GR and detected for the first time in 2015, offer a unique way to probe the very early
Universe, providing insights about phenomena beyond the reach of direct measurements
and beyond the cosmic microwave background (CMB). Cosmological phase transitions
during the evolution of the Universe are particularly significant as they can generate a
stochastic background of GWs, revealing critical information about the fundamental forces
of the Universe and its early dynamic processes.

This thesis presents a self-consistent study of cosmological first-order phase transi-
tions (FOPTs) and their implications for the early Universe. We begin with an overview
of the standard Hot Big Bang theory, the thermal history of the Universe, and its ex-
pansion. The basics of Quantum Field Theory at finite temperature are introduced to
understand the effective potential and the dynamics of phase transitions. We particu-
larly focus on FOPTs and the complexities of computing the velocity of the expanding
bubbles. An in-depth examination is conducted on FOPTs within the Standard Model
augmented with a real scalar singlet, identifying the region in parameter space where
bubbles can achieve relativistic velocities, which is crucial for recently discussed baryo-
genesis and Dark Matter production mechanisms. We then present a more sophisticated
analysis regarding the computation of the friction exerted by the plasma on the expanding
bubbles. Additionally, we quantise field theories on a bubble wall background, focusing
on spontaneous gauge symmetry–breaking and computing the momentum transfer from
transition radiation. This will lead towards an understanding of bubble expansion during
FOPTs. Furthermore, we move to analyse symmetry–restoring phase transitions and the
friction exerted from the plasma to relativistic expanding bubbles demonstrating that
next-to-leading order effects result in positive pressure scaling with the wall’s Lorentz
boost factor, as it will happen in the more vanilla symmetry–breaking case. In the final
part, we take a different perspective regarding the problem and we utilise a hydrodynamic
approach to characterise various expansion modes for direct and inverse phase transitions,
analysing their hydrodynamics, energy budget, and the possibility of runaway walls.

This work aims at providing a sufficiently detailed framework for understanding part
of the intricate dynamics of FOPTs, therefore contributing to the broader scope of un-
derstanding of the early Universe.
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Chapter 0

Introduction

Our understanding of the Universe, particularly its earliest moments, is grounded in two
fundamental pillars of theoretical physics: General Relativity (GR) and the Standard
Model (SM) of particle physics. Einstein’s theory of gravitation, among other things,
enables us to comprehend one intriguing aspect of our Universe—its expansion. The
SM, in turn, provided a more comprehensive understanding of pivotal events in the early
Universe, such as the formation of the first nuclei during Big Bang Nucleosynthesis and
the creation of the cosmic microwave background (CMB). Remarkably, GR and the SM
together allowed us to reconstruct a precise history of the Universe from its first minutes
to the date, spanning almost 14 billion years.

Making experimental progress and penetrating the optically thick barrier of the CMB
is challenging. How can we investigate the very first moments of the existence of the Uni-
verse? Currently, we cannot perform direct measurements of those moments. However,
GR predicts the existence of gravitational radiation, manifesting as tiny ripples in space-
time that propagate at the speed of light. Gravitational waves (GWs) are so weakly
coupled to us that, once formed, they proceed undisturbed and constitute an important
source of information if detected and traced till their origin. In 2015, the LIGO experi-
ment made the first detection of gravitational waves originating from a binary black hole
merger, making the start of a new era of astronomical and cosmological research. As-
trophysical objects of interest now include massive binaries, inspirals, supernovae, and
spinning neutron stars. Additionally, cosmological phenomena such as inflation and cos-
mological phase transitions might have generated a stochastic background of gravitational
radiation. Observing such a background provides a direct probe into the very early Uni-
verse, looking back far beyond the CMB and involving energies beyond the reach of any
ground-based laboratory.

This thesis focuses on the cosmological impact of phase transitions associated with the
spontaneous symmetry breaking of global and local symmetries. As it is well known from
thermodynamics, phase transitions can be of various types. We will mostly focus on first-
order ones, that occur abruptly and proceed through the nucleation of bubbles of the new
phase. These transitions move from a metastable vacuum to a stable one, with bubbles
representing regions of the new phase expanding into the old phase of the Universe. After
nucleation, these bubbles expand and eventually collide. This process must compete with
the expansion of the Universe; if it is too slow, the bubbles never collide. The collisions
generate anisotropies that act as sources of gravitational radiation. Once produced, GWs
propagate undisturbed through space until they might be detected today as a redshifted
stochastic background. Present and future ground-based and space-based interferometers
are actively searching for such signals.
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Cosmological FOPTs have the peculiar feature that the Universe spends a certain
amount of time in a metastable state, known as the false vacuum. The phase ends, in
most cases, when the probability per unit time and unit volume of nucleating bubbles in
the expanding Universe becomes significant.

A critical open question in the study of FOPTs in the early Universe is to determine
the velocity of the bubble walls as they expand. This quantity is essential for under-
standing the dynamics of the transition and its observational signatures, but it remains
unclear how to compute it accurately. The velocity of the bubble wall is influenced by
several factors, including the pressure difference between the two phases, the friction from
interactions with the surrounding plasma, and the transfer of energy from the bubble wall
to the surrounding medium. Accurately modelling these effects is crucial for predicting
the outcomes of the phase transition, such as the characteristics of the gravitational wave
signal.

In this thesis, we tackle this problem from different perspectives. We explore various
theoretical approaches to compute the friction exerted on the bubble wall, which is a
key factor in determining the wall velocity. One approach is to use effective field theory
techniques to derive simplified models that capture the essential physics of the problem,
providing a more tractable framework for analytic calculations. Another approach involves
the characterisation of the microphysics of the plasma surrounding the bubble wall in
terms of a fluid description, considering the interactions between the particles in the
plasma and the field driving the phase transition.

With this latter approach, we also investigate the role of hydrodynamic effects in the
expansion of the bubble walls. The motion of the bubble wall can induce shock waves and
rarefaction waves in the surrounding plasma, which can affect the energy transfer and the
friction experienced by the wall. Understanding these hydrodynamic effects is important
for developing a complete picture of the bubble wall dynamics.

Furthermore, we examine the impact of different models of new physics beyond the
Standard Model on the bubble wall velocity. Various extensions of the SM predict different
behaviours for the phase transition, including variations in the strength of the transition
and the nature of the interactions in the plasma. By studying these models, we aim
at identifying common features and key differences that could help in constraining new
physics from future gravitational wave observations.

This thesis is structured as follows: in chapter 1, we introduce the necessary frame-
work for this work to be self-consistent. We start with an overview of the standard Hot Big
Bang theory, detailing the thermal history of the Universe and describing its expansion
as understood to date. We then introduce the basics of Quantum Field Theory (QFT)
at finite temperature, essential for computing the effective potential of a given theory—a
key component for quantitatively studying the dynamics of phase transitions. We discuss
different types of phase transitions and the role of symmetries. We then focus on first-
order phase transitions, introducing all the elements needed to describe their dynamics.
The chapter concludes with the challenging task of computing the velocity of bubble ex-
pansion during a FOPT, reviewing existing approaches in the literature, and discussing
their weaknesses.

The remainder of this thesis is structured into three main sections, each one exploring
different facets of FOPTs. In the first part, in chapter 2, we investigate an explicit FOPT,
focusing on the fine-tuning necessary to achieve ultrarelativistic expansion of the bubble
wall. The second part, made of chapter 3 and chapter 4, builds on the previous results
by thoroughly analysing the friction exerted by plasma particles on the wall in this high-
velocity limit, both in symmetry–breaking and symmetry–restoring phase transitions.
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The final part, in chapter 5, approaches the dynamics from a different angle, treating the
plasma particles as a continuous fluid moving in response to the expanding bubble wall.

In more detail, in chapter 2, we study an explicit example of a FOPT in the SM
augmented with a real scalar singlet. The novelty of our study is the identification and
analysis of the parameter space region where a first-order phase transition can occur,
particularly where bubbles of true vacuum can reach relativistic velocities. This region
is interesting because it can lead to the recently discussed mechanisms for baryogenesis
and Dark Matter production. We thoroughly analyse different models for Dark Matter
production and baryogenesis, as well as the possible discoveries in current and future
experiments.

In chapter 3, we quantise from first principles the field theories existing on the back-
ground of a bubble wall in the planar limit, focusing on spontaneous gauge symmetry
breaking. Using these tools, we compute the average momentum transfer from tran-
sition radiation—the soft emission of radiation by an energetic particle passing across
the wall—with a focus on the longitudinal polarisation of vectors. We find these to be
comparable to transverse polarisations in symmetry-breaking transitions with mild super-
cooling, and dominant in broken-to-broken transitions with thin walls. Our results have
phenomenological applications for bubble expansion during first-order phase transitions.
Our framework allows for robust calculation of any particle processes of interest in such
translation-breaking backgrounds.

In chapter 4, we analyse for the first time the friction pressure on relativistic walls
in phase transitions where gauge symmetry is restored. This is particularly motivated by
the observation that this pressure can, in principle, be negative at leading order as some
particles lose mass crossing into the new phase. We find, however, that at next-to-leading
order (NLO) the soft emission of vectors from a charged current leads to positive pressure
scaling with the wall’s Lorentz boost factor γw, similar to the case of gauge symmetry
breaking. Unlike the latter case, the dominant contribution in single emission is safe from
infrared divergences and exhibits a much stronger dependence on the wall shape. Finally,
we argue that in any phase transition, no multi-particle process on the wall can impart
negative pressure greater than the leading-order result in the asymptotic limit of large
velocity.

In chapter 5, we study the hydrodynamic approach to bubble expansion to charac-
terise all expansion modes. We review the literature on direct phase transitions (PT)
and extend the study to inverse PTs. In a direct PT, a local vacuum transitions to a
deeper vacuum of the zero-temperature potential, with the energy difference manifesting
as bubble wall acceleration, driven by vacuum energy release. In an inverse PT, a deeper
minimum transitions to a higher one of the zero temperature potential, with bubbles ex-
panding against vacuum energy, driven purely by thermal corrections. We study, for the
first time, the hydrodynamics and energy budget of inverse PTs. We find several expan-
sion modes for inverse bubbles, related to known modes for direct transitions by mirror
symmetry. We also investigate the friction on the bubble wall and discuss the possibility
of runaway walls in inverse PTs.

In summary, this thesis will contribute to advancing our understanding of FOPTs in
the early Universe by partially addressing the challenging problem of bubble wall velocity
from multiple angles. By effective field theory approaches, semi–analytic computations,
and hydrodynamic considerations, we aim to provide a comprehensive framework for
predicting the dynamics of bubble walls during cosmological phase transitions. This work
represents a small but hopefully significant step forward in comprehending the complex
and intriguing dynamics of FOPTs, by ultimately helping us to unlock the secrets of the
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early Universe and the fundamental forces that shaped its evolution.
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Chapter 1

Basics of phase transitions in the
early Universe

In this opening chapter, we start exploring part of the intricate dynamics of the early
Universe. At the heart of our investigation lies the compelling scenario of FOPTs and
their profound implications for understanding the evolution of the Universe. These tran-
sitions, occurring in the primordial plasma, could have profoundly shaped the thermal
and cosmological history of the Universe.

Throughout this chapter, we will lay the groundwork by introducing concepts, tools,
and notation essential for our exploration. We begin with a review of the thermal evolution
of the Universe, highlighting key thermodynamic principles that govern its early stages.
Moving beyond to conventional QFT and then its version at finite temperature. These
foundational tools will enable us to investigate the intricate dynamics of FOPT bubbles,
including their formation, expansion, and the subsequent emission of gravitational waves.

This introductory chapter sets the stage for comprehending the broader implications
of FOPTs in theoretical model building and experimental observations. It serves as a
concise and comprehensive guide, useful for both newcomers and seasoned researchers
delving into the interplay between cosmology and high-energy physics.

The chapter is organised as follows: in section 1.1, we provide an overview of the stan-
dard cosmological and thermal history of the Universe, emphasising key thermodynamic
quantities essential for understanding the processes that occur in such an environment. In
section 1.2, we introduce fundamental computational tools used to quantitatively explore
the early stages of the Universe. This includes computing the effective potential in quan-
tum field theory and understanding how the surrounding thermal environment influences
the fields potential. In section 1.3, we delve into the concept of phase transitions that may
have occurred in the early Universe, their connection to symmetry breaking, and their
impact on cosmological dynamics. We conduct a quantitative analysis to characterise
first-order phase transitions, illustrated with a specific example.

Moving on to section 1.4, we examine the dynamics of nucleated bubbles, which ex-
pand while experiencing frictional forces from the plasma. We also review the production
of gravitational wave signals from linearised Einstein equations, their relationship with
FOPTs, and methods for computing sensitivity curves for present and future experiments.
In section 1.5, we try to address the complex task of calculating bubble wall velocities, a
topic still under active investigation in the literature. We review existing approaches and
their limitations.

In section 1.6, we focus on the case of ultrarelativistic expanding bubbles, where
computations are simplified. We discuss the current state of the art of friction computa-
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tions for individual particles impacting the walls, highlighting strengths, weaknesses, and
approximations used. Finally, in section 1.7, we summarise the findings presented and
outline the objectives and structure of the subsequent chapters of this thesis.

Notations

Throughout this thesis, we will work in natural units and use the convention of setting

ℏ = c = kB = 1 , (1.1)

unless otherwise stated. When necessary for comparison with real numbers, we will tem-
porarily restore the usual dimensions.

1.1 Cosmological setup
The standard cosmological history of the Universe provides a comprehensive framework
that describes the evolution of the Universe from its earliest moments to its current state.
This model, grounded in the Hot Big Bang theory, combines principles from general
relativity, particle physics, and observational astronomy to offer a coherent narrative of
the history of the Universe. In this section, we aim to provide a concise review of the
standard cosmological framework within which the phenomena we will study occur. The
discussion will follow ref. [5].

1.1.1 Expansion of the Universe
The expansion of the Universe is a fundamental concept in cosmology, first observed
by Edwin Hubble in the 1920s. Through his observations of distant galaxies, Hubble
discovered that galaxies are receding from us at velocities proportional to their distances.
This led to the formulation of Hubble’s Law, which states that the velocity of a galaxy
v is directly proportional to its distance d from the observer, expressed as v = H0d.
The proportionality constant, H0, known as the Hubble constant, quantifies the rate of
expansion of the Universe. The Hubble constant is crucial for understanding the scale
and age of the Universe, as it provides a measure of how fast space is expanding. Current
estimates of H0 are derived from various methods, including observations of the cosmic
microwave background, supernovae, and galaxy redshift surveys. The precise value of the
Hubble constant remains a topic of ongoing research and debate, with implications for
our understanding of cosmological parameters and the overall dynamics of the Universe.

The Universe, as we observe it, when examined at sufficiently large scales (∼ Mpc),
starts to exhibit the same properties regardless of the direction we look. This observation
led to the formulation of the cosmological principle. The cosmological principle is a
foundational assumption in cosmology that asserts the Universe is both isotropic and
homogeneous when viewed on sufficiently large scales. Isotropy means that the Universe
looks the same in all directions; there is no preferred direction in the cosmos, and the large-
scale distribution of matter and radiation is uniform. Homogeneity, on the other hand,
implies that the Universe has a consistent composition and structure regardless of the
location within it. These principles suggest that the laws of physics are universal and that
any observer, regardless of their position, would perceive a similar large-scale structure
of the Universe. The cosmological principle simplifies the mathematical modelling of the
Universe and underpins many of our current cosmological theories. Observations of the
cosmic microwave background radiation and the large-scale distribution of galaxies provide
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strong empirical support for the isotropy and homogeneity of the Universe, validating the
cosmological principle as a robust framework for understanding the cosmos.

A key ingredient for understanding the expansion of the Universe and seeing the cos-
mological principle applied is the set of Einstein equations.. These equations, formulated
by Albert Einstein as part of his general theory of relativity, describe how matter and
energy influence, and are influenced by, the curvature of spacetime. The Einstein field
equations are given by

Gµν + Λgµν = 8πGNTµν , (1.2)

where Gµν = Rµν − 1
2Rgµν is the Einstein tensor that encodes the curvature of spacetime,

where Rµν and R are the Ricci tensor and the Ricci scalar, respectively, Λ is the cosmo-
logical constant, gµν is the metric tensor describing the geometry of spacetime, GN is the
Newton gravitational constant, and Tµν is the stress-energy tensor that represents the dis-
tribution of matter and energy. We use a mostly minus metric for flat space (+,−,−,−).

Among all solutions to the Einstein equations, one that embodies the assumptions of
isotropy and homogeneity is the Friedmann-Robertson-Lamaitre-Walker (FRLW) metric,
which can be expressed as

ds2 = dt2 − a(t)2
[

dr2

1 − kr2 + r2dΩ2
]
, (1.3)

where ds is the spacetime interval, a(t) is the scale factor that describes how distances
in the Universe change with time, k is the curvature parameter (with k = 0,+1,−1
corresponding to flat, closed, and open universes, respectively), r is the radial coordinate,
and dΩ represents the angular part of the metric. If we describe the Universe as a
perfect fluid, characterised by having no shear stress, no viscosity, and no heat conduction
(compatible with isotropy and homogeneity), this approximation is not only suitable for its
contents, including radiation and dark energy, but also simplifies the Einstein equations,
allowing for tractable solutions that can describe the expansion of the Universe. The
stress-energy tensor is then given by

T µν = (ρ+ p)uµuν − pgµν , (1.4)

where ρ and p are the energy and pressure density, respectively, and uµ is the 4–velocity
of the fluid. It can be shown that the energy-momentum tensor is covariantly conserved,
∇µT

µν = 0. Such conservation law leads to the continuity equation describing the evolu-
tion of the energy density in an expanding Universe that reads

ρ̇ = −3 ȧ
a

(ρ+ p) . (1.5)

Since in general ȧ ̸= 0, we can clearly see that the energy is not conserved, due to the
non-time translational invariance of the metric.

Substituting the FRLW metric into the Einstein equations yields the Friedmann
equations, which govern the dynamics of the scale factor a(t) and thus the expansion of
the Universe. They read (

ȧ

a

)2
= 8πGN

3 ρ− k

a2 + Λ
3 , (1.6)

ä

a
= −4πGN

3 (ρ+ 3p) + Λ
3 . (1.7)
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Here, ȧ and ä are the first and second time derivatives of the scale factor. The first
Friedmann equation relates the expansion rate to the energy density, curvature, and
cosmological constant, indicating how the expansion speed of the Universe depends on its
contents and geometry. The second Friedmann equation provides information about the
acceleration or deceleration of this expansion, influenced by the energy density, pressure,
and cosmological constant.

Now, we can define the Hubble factor, in terms of the scale factor,

H(t) = ȧ(t)
a(t) , (1.8)

and specifying the matter content of the Universe, that is introducing an equation of state
(EoS), where we relate the pressure with the energy density through

p = wρ , (1.9)

where w is the quantity defining the type of content, assumed to be a constant. Now,
combining eq. (1.6) and eq. (1.7) with the previous expression we can write down the
evolution of the energy density of the Universe

ρ̇ = −3H (ρ+ p) = −3Hρ(1 + w) , (1.10)

whose solution, if w is time–independent, is just

ρ ∝ a−3(1+w) , a(t) ∝ t2/3(1+w) . (1.11)

Depending on the value of w it describes different types of energy, that are:

• w = 1/3: this describe pure radiation, since for it the EoS reads ρ = p/3. The
energy density of radiation scales as ρ ∝ a−4 because, in addition to the dilution
effect due to expansion, the energy of each photon also redshifts (decreases) with
the expansion of the Universe.

• w = 0: this describes non-relativistic matter (dust), where the pressure is negligible
compared to the energy density, p ≈ 0. The energy density of matter scales as
ρ ∝ a−3 as the Universe expands.

• w = −1: for dark energy (cosmological constant), the pressure is p = −ρ, where
ρ ∝ const. The energy density of the dark energy remains constant as the Universe
expands, then leading to an accelerated expansion.

Other values of w are (generically) more exotics, such as w = 1 describes a period of
kination, i.e. when the dominant component is the kinetic energy of a scalar field, or
w = −1/3 where it describes the contribution from the curvature of the Universe, that
anyway it is measured to be roughly flat, k ≈ 0.

Therefore, the Hubble parameter H(t) evolves differently depending on the dominant
component of the Universe, and then it is instructive to recast eq. (1.6) in the following
form

H2 =
∑
i

8πGN

3 ρi , (1.12)

where we have defined

ρk = − k

8πGa2 , ρΛ = 3Λ
8πGa2 . (1.13)
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In this way, eq. (1.6) reads

H2 = H2
0 (Ω0,rada

−4 + Ω0,ma
−3 + Ω0,ka

−2 + Ω0,Λa
0) , (1.14)

where we have defined the ratio of the energy densities with the critical energy density

Ω0,i = ρi
ρc

, ρc = 3H2
0

8πGN

, (1.15)

and where the subscript ‘0’ refers to the present epoch, having normalised a0 = 1. The
precise value of H0 is still under debate, but it is measured to be roughly H0 ∼ 70 km
s−1Mpc−1.

The expression in eq. (1.7) tells us that an isotropic and homogeneous Universe cannot
be static for standard matter, i.e. matter satisfying the so-called strong energy condition
ρ + 3p > 0, or in other words, when neglecting curvature and the cosmological constant.
Moreover, since today ȧ > 0 and ä < 0, we can deduce that the Universe is expanding. If
the expansion were at a constant rate, the inverse of the Hubble rate, 1/H0, would give
us the age of the Universe.

1.1.2 Thermal history of the Universe
When the expansion rate is relatively slow compared to the characteristic time scale
of subnuclear processes, that is Γint ≫ H with Γint interaction rate of such processes,
and the departure from thermal equilibrium is small, then the particles involved can be
accurately described by equilibrium thermodynamics. The key quantity for deriving all
thermodynamic properties is the phase space distribution function f = f(x,k), defined
as

dN = fi(x,k) d3xd3k , (1.16)

where i refers to the particular species of particles and dN is the number of particles in
a box of volume d3xd3k in the phase space. As we said, from here we can derive the
thermodynamical properties, such as the number density

ni = gi
(2π)3

∫ d3xd3k

V
fi(x,k) , (1.17)

where gi are the degrees of freedom of the i particle. Alongside the number density, we
can define the energy density and the pressure density

ρi = gi
(2π)3

∫ d3xd3k

V
Ei(p)fi(x,k) , (1.18)

pi = gi
(2π)3

∫ d3xd3k

V

|k|2

3Ei(p)
fi(x,k) , (1.19)

where E2
i = k2+m2

i and where mi is its mass. At a microscopical level, at the equilibrium,
there are two different families of species described by1

f eq
i (p) = 1

e(Ei−µi)/T ± 1 , (1.20)

1The functional form of f , at equilibrium, that is it depends only on p and not on k and x, is a direct
consequence from the assumption of a homogeneous and isotropic Universe, i.e. from the cosmological
principle.
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where ∓ refers to bosons and fermions, respectively, and µi is the chemical potential
associated to the species i2.

We can explicitly compute two relevant limits for the thermodynamic quantities above
derived. There are two relevant scales appearing in the distribution function, that are the
mass mi and the temperature Ti of the i species, so

non–relativistic : mi ≫ Ti


ni = gi

(
miTi

2π

)3/2
e−(mi+µi)/Ti ,

ρi = mi ni ,

pi = Ti ni ,

(1.21)

relativistic : mi ≪ Ti


ni = cigi

ζ(3)
π2 T

3
i ,

ρi = digi
π2

30T
4
i ,

pi = ρi
3 ,

(1.22)

with ci = 1(3/4) and di = 1(7/8) for bosons (fermions). Moreover, it is convenient to
define the energy density of all radiation present in the Universe at a certain temperature,
considering only the relativistic species, since the non relativistic ones are exponentially
suppressed, that is

ρrad = g⋆(T )π
2

30T
4 , g⋆(T ) =

∑
i=B

gi

(
Ti
T

)4
+ 7

8
∑
j=F

(
Tj
T

)4
, (1.23)

where the sums run over all the bosons and fermions coupled to the thermal bath, where
T is the temperature of the bath, and Ti is the temperature of the species i. Then, g⋆(T )
can be seen as the effective number of relativistic dofs that are active at a temperature
T .

It is instructive to see, from eq. (1.8), that in a radiation dominated Universe the
Hubble rate depends on the temperature as

H(T ) =
√
π2

90g⋆(T ) T
2

MPl
, (1.24)

where MPl = (8πGN)−1/2 = 2.4 × 1018 GeV is the reduced Planck mass.
As an example we compute the relativistic dofs for the SM at T ≥ 300 GeV ≥ MW ,

where all the species are non-decoupled, i.e. all the Ti = T , then

gSM
∗ (T ≫ MW ) = 2 · 8︸ ︷︷ ︸

gluons

+ 3 · 3︸ ︷︷ ︸
W±,Z

+ 2︸︷︷︸
A

+ 1︸︷︷︸
h

+

+7
8

 4 · 6 · 3︸ ︷︷ ︸
gq , quarks, colour

+ 4 · 3︸ ︷︷ ︸
gl, leptons

+ 2 · 3︸ ︷︷ ︸
gν , neutrinos

 = 106.75 , (1.25)

while the value today can be computed to be g0
⋆ ≃ 3.36.

2This distribution is valid if the component is at chemical and kinetic equilibrium at temperature T .
With chemical equilibrium we mean that if there is some particle changing interaction i + j ↔ m + n
we also have µi + µj = µm + µn. With kinetic equilibrium we mean that the scattering interactions
in processes like i + j ↔ i + j are in equilibrium, meaning that for every process that occurs, the
reverse process occurs at the same rate. This equilibrium ensures that their momentum distributions are
characterised by a common temperature.
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Entropy in an expanding Universe

Another useful quantity, both in thermodynamics and in the evolution of the Universe, is
the entropy. Neglecting the chemical potential, from thermodynamics we know that the
entropy variation can be written as

TdS = dU + pdV = d(ρV ) + pdV = d[(ρ+ p)V ] − V dp , (1.26)

where ρ and p are quantities defined at equilibrium. Moreover, from the integrability
conditions ∂2S

∂T∂V
= ∂2S

∂V ∂T
we find a relation between energy density and pressure

dp = ρ+ p

T
dT . (1.27)

Then substituting above we get

dS = 1
T
d[(ρ+ p)V ] − (ρ+ p)V dT

T 2 = d
[
ρ+ p

T
V + const.

]
. (1.28)

This tells us that the entropy per comoving volume is given by

S = a3 (ρ+ p)
T

, (1.29)

then recalling the energy conservation

d[(ρ+ p)V ] = ρV → d
[
ρ+ p

T
V
]

= 0 ,

thus, this implies that at the thermal equilibrium, the entropy per comoving volume is
conserved3.
It is useful to introduce the entropy density

s = S

V
= (ρ+ p)

T
→ d(sa3)

dt
= 0 . (1.31)

The entropy density is dominated by the contribution of relativistic species, i.e.

s = 2π2

45 g⋆,sT
3, g∗,s(T ) =

∑
i=B

gBi

(
Ti
T

)3
+ 7

8
∑
j=F

gFj

(
Tj
T

)3
. (1.32)

In general, g⋆ ̸= g⋆,s, but what is important is to underline that the entropy is conserved
for both species at equilibrium and decoupled species, separately. Now that we know the
behaviour of s and na in terms of the scale factor a(t) we can define a conserved quantity,
the yield

Ya = na
s

→ dYa
dt

= 0 , (1.33)

where

Ya =


45ζ(3)ga
2π4g∗,s

T ≫ m,µ ,

45ga
4
√

2π5g∗,s

(
m
T

) 3
2 e−(m−µ)/T T ≪ m ,

(1.34)

3We have neglected the chemical potential since in general |µ| ≪ T , but we can easily generalise to
the case with chemical potential

TdS = dU + pdV = d(ρV ) + pdV − µd(nV ) → S = a3 (ρ+ p− µn)
T

, (1.30)

where n is the number density of particles.
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thus if the particle number of a given species a does not change in a comoving volume, Ya
is constant. Moreover, the fact that s ∼ g⋆,sT

3a3 = const. implies that the temperature
of the Universe evolves as

T ∼ g−1/3
⋆,s a−1 , (1.35)

where the factor g−1/3
⋆,s enters since every time a species becomes non−relativistic and it

decouples from the thermal bath, it injects entropy to other relativistic particles present
in the plasma.

1.1.3 Timeline of Cosmological Evolution
Understanding the history of the universe is crucial for comprehending its current state
and predicting its future development. This section outlines the key eras of the evolution
of the Universe, highlighting the major physical processes and transitions that have oc-
curred since the “beginning". With the theoretical tools we have gathered, we can now
describe the expected history of the universe, particularly within the first second. As we
progress through the timeline, we move from the well-understood Big Bang Nucleosynthe-
sis (BBN) to the more speculative aspects of inflation. The time and temperature intervals
(expressed in energy units) for each era are provided in table 1.1 to give a detailed picture
of how the universe has changed over time.
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1.2 Introduction to finite temperature QFT
The early Universe was a hot and dense environment where high-energy interactions
played a significant role in the evolution of matter and energy. To properly study cos-
mological phase transitions, it is essential to understand the behaviour of quantum fields
at finite temperatures. The early Universe was characterised by extremely high temper-
atures, where thermal effects significantly influenced the dynamics of fields and particles.
Finite temperature quantum field theory (QFT) provides the framework necessary to de-
scribe these thermal effects and analyse phase transitions that may have occurred in the
early Universe. We start by reviewing the case at zero temperature, explaining how to
compute the effective potential of a QFT, and then, introducing the finite temperature
effects, how it is affected by the presence of a thermal bath.

1.2.1 Basics of zero temperature QFT
In the path integral representation of a QFT [6, 7], the vacuum-to-vacuum transition
amplitude for a scalar field in the presence of a source J(x) is given by

⟨0+|0−⟩J = Z[J ] =
∫

Dϕ exp
[
iS[ϕ] +

∫
d4x J(x)ϕ(x)

]
, (1.36)

where Z is the generating functional of Green’s functions, represented by a functional inte-
gral over configuration space and S[ϕ] is the action describing the theory. The generating
functional of connected Green’s functions W [J ] is related to Z via exponentiation

Z = eiW [J ] . (1.37)

Expanding W in a functional Taylor series gives

W [J ] =
∑
n

1
n!

∫
d4x1 . . . d

4xnG
(n)(x1, . . . , xn)J(x1) . . . J(xn) , (1.38)

where G(n) is a connected Feynman diagram with n external lines and the sum runs over
all the connected diagrams. The effective action Γ[ϕ̄(x)] is obtained from W [J ] via a
Legendre transformation

Γ[ϕ̄(x)] = W [J ] −
∫
d4x J(x)ϕ̄(x) , (1.39)

where ϕ̄(x) is the classical field defined as

ϕ̄(x) = δW

δJ(x) = ⟨0+|ϕ(x)|0−⟩J
⟨0+|0−⟩J

. (1.40)

From the definition (1.40), it follows that

δΓ
δϕ̄(x)

= −J(x) . (1.41)

This equation is crucial in the study of spontaneous symmetry breaking (SSB), as min-
imising Γ[ϕ̄] corresponds to finding the minima of the effective potential, which will be
defined shortly. The effective action Γ[ϕ̄] can be expanded similarly to W

Γ[ϕ̄] =
∑
n

1
n!

∫
d4x1 . . . d

4xn Γ(n)(x1, . . . , xn)ϕ̄(x1) . . . ϕ̄(xn) , (1.42)
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where Γ(n) is an one-particle-irreducible (1PI) Feynman diagrams with n external lines
and the sum runs over all the 1PI diagrams. The effective action can also be expanded
in terms of momentum rather than powers of ϕ̄4, yielding

Γ[ϕ̄] =
∫
d4x

[
−Veff(ϕ̄) + 1

2(∂µϕ̄)2Z(ϕ̄) + · · ·
]
, (1.43)

where Z(ϕ̄) is the wavefunction renormalisation factor and Veff(ϕ̄) is the effective potential.
For a constant classical field, this reduces to Γ[ϕ̄] = −V4Veff(ϕ̄), where V4 is the 4−volume
containing the system.

Using the background-field method involves expanding the action around a constant
configuration ϕb, shifting ϕ → ϕb + ϕ

eiΓ[ϕb] = ei
∫
d4x(− 1

2ϕb□ϕb−V [ϕb])
∫

Dϕ ei
∫
d4x(− 1

2ϕ□ϕ− 1
2ϕ

2V ′′(ϕb)− 1
3!ϕ

3V ′′′(ϕb)+··· ) . (1.44)

At one-loop order, this simplifies to

eiΓ[ϕb] = ei
∫
d4x(− 1

2ϕb□ϕb−V [ϕb])
∫

Dϕ exp
{
i
∫
d4x

(
−1

2ϕ□ϕ− 1
2ϕ

2V ′′(ϕb)
)}

, (1.45)

that leads to a Gaussian integral

eiΓ[ϕb] = const. × ei
∫
d4x(− 1

2ϕb□ϕb−V [ϕb]) 1√
det(□ + V ′′[ϕb])

. (1.46)

The effective potential Γ[ϕ] is computed by taking the logarithm

Γ[ϕ] = S[ϕb] + ∆Γ[ϕb] . (1.47)

The one-loop effective potential in momentum space is given by

∆Veff(ϕb) = − i

2

∫ d4p

(2π)4 log(p2 + V ′′[ϕb]) , (1.48)

where ∆Γ[ϕb] = −V4∆Veff(ϕb).

MS renormalisation scheme

Given the divergence of the integral above, we need to renormalise the theory by fixing
the value of the couplings appearing in V ′′[ϕb] at a specific scale µR, known as the
renormalisation scale. Utilising dimensional regularisation with the MS scheme, for a
theory with a general particle content, the effective potential is

Veff(ϕb) = V0(ϕb) + 1
64π2

∑
i

(−1)Fnim4
i (ϕb)

[
log m

2
i (ϕb)
µ2
R

− Ci

]
, (1.49)

where ni are the degrees of freedom for each field, coupled with ϕ, and Ci are CF = CS = 3
2

for scalars and fermions, Cg = 5
6 for gauge bosons and F = 0(1) for bosons (fermions).

Moreover, mi(ϕb) are the tree-level field–dependent masses of each particle in the theory.
The correction to the tree-level potential is typically referred to as Coleman-Weinberg
(CW) potential [8, 9].

4In the Local Potential Approximation (LPA), the effective action is simplified by assuming that the
dependence of the field on space-time derivatives can be neglected, focusing instead on the potential term.
This means that only the local interactions of the fields are considered, while gradient terms are ignored.
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On-shell renormalisation scheme

While the MS scheme is often computationally simpler due to its regularisation and renor-
malisation techniques, other regularisation schemes that directly connect to physical ob-
servables can sometimes simplify result interpretation and reduce calculation complexity,
especially in phenomenological studies. Therefore, the on-shell renormalisation scheme is
useful. The on-shell scheme directly relates renormalised parameters to physically mea-
surable quantities, such as particle masses and physical couplings. This offers a clearer
and more intuitive physical interpretation compared to the MS scheme, where we impose
the renormalisation conditions:

dVeff

dϕ

∣∣∣∣∣
ϕ=v

= 0 , (1.50)

d2Veff

dϕ2

∣∣∣∣∣
ϕ=v

= M2
ϕ , (1.51)

where v is the minimum of the tree-level potential, and Mϕ is the physical ϕ mass. We
can easily derive that the CW potential becomes

VCW =
∑
i

ni(−1)F
64π2

[
M4

i

(
log M

2
i

M2
i0

− 3
2

)
+ 2M2

iM
2
i0

]
. (1.52)

In this expression, Mi represents the masses as functions of the scalar field values, Mi ≡
Mi(ϕ), and Mi0 are the masses evaluated at the tree-level vacuum expectation value,
Mi0 ≡ Mi(v), in the true vacuum of the theory. This setup is preferred for the study of
phase transitions (PTs) since radiative corrections do not modify the tree-level position
of the ground state and the masses in the true vacuum of the theory.

The above formula (1.52), is not applicable to particles that are massless in the true
vacuum, such as Goldstone bosons5, because the normalisation scale in the logarithm
becomes ill-defined. We will address this issue more thoroughly in the next Chapter,
in section 2.1, when discussing an explicit theory, such as the singlet extension of the
Standard Model, and propose a resolution method for this problem.

1.2.2 Adding a thermal bath
At finite temperatures, the properties of quantum fields are modified by the presence of
a thermal bath. The key idea in FTQFT is to incorporate temperature effects into the
standard QFT by working in a modified space-time framework, [6, 10–13].

In QFT’s path integral representation, the partition function Z(β) is defined as

Z(β) = Tr e−βH , ρ(β) = 1
Z
e−βH , (1.53)

where H is the Hamiltonian of the system, and β−1 = T represents the temperature. Here,
ρ(β) denotes the density matrix operator. In a statistical ensemble, ensemble averages
for any observable O are defined as

⟨O⟩β = Tr ρ(β)O . (1.54)

5This is also referred to as the IR catastrophe.
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The cyclicity of the trace in the partition function leads to the Kubo-Martin-Schwinger
(KMS) formula

⟨O1(t)O2(t′)⟩β = ⟨O2(t′)O1(t+ iβ)⟩β . (1.55)

This relation highlights that the partition function exhibits periodicity along the imagi-
nary time axis with period β. After performing the Wick rotation t → −iτ in the time
direction, the partition function’s periodicity is reflected in the action

Z(β) =
∫

Dϕ e−SE [ϕ] , SE[ϕ] =
∫ β

0
dτ
∫
d3x L[ϕ] , (1.56)

where ϕ(τ = 0,x) = ϕ(τ = β,x) ensures periodic boundary conditions.
For a fermionic system, the partition function in the imaginary formalism introduces

anti-periodic boundary conditions:

ψ(β,x) = −ψ(0,x) , ψ̄(β,x) = −ψ̄(0,x) . (1.57)

The fields’ Fourier expansion in the time direction results in discrete frequencies:

ϕ(x, τ) =
∑

ωn=2nπ/β
e−iωnτϕn(x) (bosons) , (1.58)

ψ(x, τ) =
∑

ωn=(2n+1)π/β
e−iωnτψn(x) (fermions) . (1.59)

The Fourier transform of the propagator is then

G(τ,x) = 1
β

∑
n

e−iωnτ G̃(ωn,x) , (1.60)

where ωn = 2nπ
β

for bosons and ωn = (2n+1)π
β

for fermions, are the Matsubara frequencies.
Then, the propagators for bosonic and fermionic field theories in the Matsubara formalism
(in momentum space) are given by

G̃(ωn,p) = −i
ω2
n + p2 +m2 , S̃(ωn,p) =

−i(/p+m)
ω2
n + p2 +m2 . (1.61)

Therefore, at finite temperature, the integration over internal energies is replaced by a
sum over discrete Matsubara frequencies, leading to∫ d4p

(2π)4 → 1
β

∑
n

∫ d3p

(2π)3 . (1.62)

For bosonic fields, a mode ωB(n = 0) = 0 is permitted, known as soft bosons. These
soft bosons are crucial in determining the plasma properties during the phase transition,
which will be elaborated further in this thesis. Modes with n > 0 are referred to as hard
modes. Therefore, using the imaginary time formalism, we can derive the Feynman rules
that incorporate finite-temperature corrections. These rules are summarised as follows:

• Boson propagator: −i
ω2
n + p2 +m2

• Fermion propagator:
−i(/p+m)

ω2
n + p2 +m2
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• Loop integration: iT
∞∑

n=−∞

∫ d3p

(2π)3

• Vertex factor: −iT δ (∑i ωi) δ(3) (∑i pi)

With these Feynman rules, we can perturbatively compute the finite-temperature correc-
tions to the effective potential. Then, we can easily extend the result in eq. (1.48) and
get

∆V β
eff(ϕb) = 1

2β
∑
n

∫ d3p

(2π)3 log(ω2
n + p2 + V ′′[ϕb]) . (1.63)

It can be shown that by summing over the Matsubara frequencies we get

∆V β
eff(ϕb) =

∫ d3p

(2π)3

[
ω

2 + 1
β

log(1 ± e−βω)
]
, (1.64)

where ± refers to bosons and fermions respectively, and ω2 = p2 + V ′′[ϕb]. One can see
that the first temperature-independent term in (1.64) corresponds to the CW potential,
indeed it can be computed that

∫ d3p

(2π)3
ω

2 = 1
2

∫ d4p

(2π)4 log(p2 + V ′′[ϕb]) . (1.65)

The second term in (1.64) is related to the thermal corrections to the potential as follows

1
β

∫ d3p

(2π)3 log(1 ± e−βω) = 1
2π2β4JB,F [V ′′(ϕb)β2] . (1.66)

The integral (1.66) and therefore the thermal bosonic (fermionic) effective potential admits
a high-temperature expansion which will be very useful for practical applications.

It is important to highlight that in the high-temperature limit, the thermal corrections
to the effective potential take the form

∆VT
T≫mi−→ const. +

∑
i=B,F

cigi
m2
i

24 T
2 + . . . , (1.67)

where ci = 1(1/2) for bosons (fermions) and gi are the dofs of the i-th particle. The
terms proportional to T 2 in this expansion can be interpreted as thermal masses. At
very high temperatures, these terms contribute significantly to the free energy density
and to the curvature of the effective potential at the origin, stabilising it. In other words,
the large thermal contributions cause the potential’s minima to shift towards the origin
(i.e., the symmetric phase), thus restoring the symmetry. This phenomenon is known as
high-temperature symmetry restoration.

This approach allows for a comprehensive study of QFT at finite temperature, incor-
porating both statistical mechanics and field theory techniques.

1.2.3 Daisy resummation and higher order loops
Incorporating finite-temperature corrections is crucial for understanding symmetry restora-
tion at high temperatures. However, the perturbative expansion becomes problematic in
this regime due to infrared (IR) divergences caused by soft bosons. The presence of the
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Figure 1.1: Here are shown the different higher-loops contributions to the effective
potential: (from left to right) the thermal correction to the mass, the daisy diagrams, the
lollipop and the superdaisy contribution.

additional scale parameter, the temperature T , disrupts the usual connection between the
powers of the coupling and the loop order, leading to the breakdown of the perturbative
series. To address this problem, a resummation procedure is necessary to account for all
thermal effects correctly.

A systematic approach to this problem involves the resummation of “daisy diagrams".
This full dressing resummation procedure has been developed in the literature, providing
a consistent perturbative framework for studying phase transitions, [14].

The thermal potential, while straightforward to implement, faces IR challenges illus-
trated by specific diagrams as shown in fig. 1.1. The scaling behaviour of these diagrams
can be analysed using finite-temperature Feynman rules. For example, a diagram with a
zero-temperature superficial degree of divergence6 D > 0 scales as TD, whereas a diagram
with D ≤ 0 scales as T . This analysis confirms that the thermal mass diagram, with
D = 2, scales as ∼ λT 2. Similar scaling behaviour can be computed for other relevant
diagrams, assuming the loop connecting to the external legs is soft, or n = 0 in terms
of Matsubara modes. Under these conditions, the scaling for various diagrams can be
computed as follows:

• For daisy diagrams with n petals, the scaling is ∼ λnT 2n−1/m2n−3
ϕ .

• For two-loop lollipop diagrams, the scaling is ∼ λ2T 2.

• For three-loop superdaisy diagrams, the scaling is ∼ λ3T 4/m2
ϕ.

It is important to note that the mϕ in the denominator only appears if the first loop
contains a soft boson. Fermion loops, even with n = 0, include a πT in the denominator,
preventing them from becoming soft.

The phase transition is driven by the interplay between tree-level masses −m2
ϕ and

thermal corrections λT 2. The transition occurs when these quantities are of the same
order, i.e., m2

ϕ ∼ λT 2
PT. At the phase transition temperature TPT, we can evaluate the

scaling of the diagrams:
6In QFT, the superficial degree of divergence D of a Feynman diagram provides a measure of how

the diagram’s amplitude behaves under changes in the momentum scale. It is determined by the power
counting of momenta in the integrals that define the diagram. Specifically, D is given by

D = 4 − Eϕ(dϕ − 1) − Eψ

(
dψ − 3

2

)
− EA(dA − 1) ,

where Eϕ, Eψ, and EA are the numbers of external scalar, fermion, and gauge boson lines, respectively,
and dϕ, dψ, and dA are the corresponding field dimensions. The superficial degree of divergence indicates
whether a diagram is convergent or divergent: if D < 0, the diagram is convergent; if D ≥ 0, it is diver-
gent. This analysis helps identify which diagrams require renormalisation and guides the development of
renormalisation procedures to handle these divergences systematically.
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• For daisy diagrams with n petals, the scaling becomes ∼ λ1/2m2
ϕ.

• For two-loop lollipop diagrams, the scaling remains ∼ λm2
ϕ.

• For three-loop superdaisy diagrams, the scaling also remains ∼ λm2
ϕ.

We observe that while two-loop lollipops and three-loop superdaisies remain under
perturbative control, the daisy diagrams have the same value at each order in the pertur-
bation expansion n. This indicates a significant breakdown of the perturbative expansion.
In the following, we show how to address this problem neglecting the contribution from
2−loop lollipop and 3−loop super daisy diagrams.

It can be shown that resumming all the daisy diagrams one gets

δVdaisies = − T

12π

(
m2
ϕ + λT 2

24

)3/2

= − T

12π
(
m2
ϕ + Π(T )

)3/2
. (1.68)

Here, Π(T ) = λT 2

24 represents the thermal correction to the scalar field mass. Examining
the thermal mass correction of the scalar field, we find that the resummation of the daisy
diagrams effectively shifts the mass

m2
ϕ → m2

ϕ + Π(T ) . (1.69)

This shift can be applied to the full thermal potential. At high temperatures, shifting m2
ϕ

in the potential mainly adds a field-independent term, which can be ignored. Additionally,
the m4

ϕ term contributions from the thermal potential and the zero-temperature Coleman-
Weinberg potential cancel each other out, making them irrelevant. At low temperatures,
this shift becomes inconsequential.

However, it’s important to note that thermal corrections slow the convergence of the
perturbation series. When mϕ → 0 in the above expression, the one-loop correction scales
as λ3/2, rather than the usual λ2 at higher orders.

To summarise, to account for higher loops due to the Daisy diagrams at finite tem-
perature, we can follow the so-called “Truncated-Full-Dressing" procedure [14]. Doing so,
the full one-loop potential becomes

Veff(ϕ, T ) = Vtree +
∑
i

VCW
(
M2

i (ϕ) + Πi

)
+ VT

(
M2

i (ϕ) + Πi

)
, (1.70)

where Πi are the thermal masses, dependent on the VEV ϕ and the temperature for each
degree of freedom.

Despite its effectiveness, the full dressing procedure does not completely resolve all
IR issues in the effective potential. Additional techniques are required to manage the
IR behaviour of transverse gauge bosons, since they do not receive thermal correction
perturbatively, and sensitivity to IR cutoffs. Alternative methods have been proposed
to further mitigate these issues [15–20]. Although a comprehensive discussion of these
methods is beyond our scope, it is important to note their relevance and the ongoing
efforts to refine them.

1.2.4 Imaginary potential
As scalar masses become negative, the quantum potential develops imaginary parts at
both zero and finite temperatures [21]. At zero temperature, the imaginary part of the
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quantum potential is given by

Im V T=0
1−loop(ϕ) =

∑
i

Θ(−m2
i (ϕ))ni

|mi(ϕ)|4
64π . (1.71)

Here, Θ(−m2
i (ϕ)) is the Heaviside function, indicating when the field i is tachyonic. The

Higgs boson can have a negative mass squared due to the non-convex nature of the
classical potential, leading to an unstable origin or a potential barrier. Goldstone bosons
can also become tachyonic, adding to the imaginary part. However, this imaginary part
is cancelled by finite temperature corrections within the temperature range relevant for
phase transitions.

At finite temperature, the imaginary parts arise in both the integrals and the daisy
resummed contributions when scalar fields are tachyonic. The high-temperature limit of
the finite temperature correction is

Im V T ̸=0
1−loop(ϕ, T ) ≈

∑
i

Θ(−m2
i (ϕ))ni

(
−|mi(ϕ)|4

64π + |mi(ϕ)|3T
12π

)
. (1.72)

The first term cancels the zero-temperature imaginary part, while the second term is
compensated by the ring diagrams’ imaginary part, given by

Im Vdaisy(ϕ, T ) = −
∑
i

Θ(−m2
i (ϕ))ni

T |mi(ϕ)|3
12π . (1.73)

This cancellation holds as long as m2
i (ϕ)+Πi(T ) > 0 for all ϕ. However, for certain values

of T and ϕ, m2
i (ϕ) + Πi(T ) can become negative, leading to an imaginary part from the

daisy resummed corrections.
The imaginary part of the potential represents a decay rate of quantum states [22].

We rely on the real part of the potential for stability during the phase transition, as the
imaginary part remains small. Thus, the system’s dynamics are driven by the real part
of the one-loop potential, ensuring stability throughout the transition.

1.3 Phase transitions in the early Universe
Having established the essential concepts for understanding early Universe dynamics, we
can now step into the cosmological PTs. The notion that the universe underwent a PT
is both intriguing and significant, offering a myriad of phenomenological implications
such as baryon asymmetry, dark matter, GW signals, and various cosmological relics.
Phase transitions in the early Universe, particularly FOPT, are especially compelling
due to their potential to produce strong GW signals through bubble collisions and the
formation of topological defects. In contrast, second-order phase transitions (SOPTs),
which occur without a barrier in the effective potential separating different phases, do not
break thermal equilibrium and hence do not produce baryogenesis.

A key feature of QFT is its ability to exhibit different phases, even in simple set-
tings, resulting in distinct phenomenologies depending on the phase. This is due to the
necessity of expanding the theory around the minimum of the potential to make predic-
tions, with each phase corresponding to a different minimum. The role of symmetries and
their breaking is fundamental in physics, exemplified by the electroweak (EW) symme-
try breaking via the Higgs mechanism, which provides mass to fermions in the Standard
Model (SM). At high energies, such as those present in the primordial plasma after infla-
tion and reheating, the fate of broken symmetries like the EW symmetry becomes crucial.
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High-temperature expansions of the thermal potential suggest symmetry restoration at
high temperatures, leading to the necessity of a phase transition as the universe cools.

This section explores the effective potentials characterising crossovers, SOPTs and
FOPTs, equipping the reader with the necessary tools to understand the electroweak phase
transition (EWPT) and other important phenomena discussed in subsequent sections. We
also review the broader implications of these PTs in the early Universe, emphasising their
unique properties and significant cosmological impacts.

1.3.1 Symmetry Paradigm in Phase Transitions and Their Role
Symmetry and its breaking are fundamental concepts in understanding phase transitions
within the framework of QFT. Symmetry principles guide the behaviour of physical sys-
tems, dictating how fields and particles interact. In the context of cosmological phase
transitions, symmetries play a crucial role in shaping the dynamics of the early Universe.

A symmetry in a physical system implies that certain transformations leave the sys-
tem unchanged. For example, a rotational symmetry means that the system’s properties
do not change if it is rotated. In QFT, symmetries are often described by groups of
transformations under which the action of the theory remains invariant. When a symme-
try is spontaneously broken, the system’s ground state (vacuum state) does not exhibit
the symmetry of the underlying theory. This phenomenon is central to many important
processes in particle physics and cosmology. The Higgs mechanism, which breaks the
electroweak symmetry, is a prime example. By introducing a scalar field (the Higgs field)
that acquires a non-zero vacuum expectation value (VEV), the Higgs mechanism provides
mass to the gauge bosons and fermions in the Standard Model.

In the early Universe, as it cooled from the hot, dense state following the (hot) Big
Bang, various symmetries that were initially unbroken could have been broken through
phase transitions. These transitions are driven by changes in temperature and other
environmental conditions, causing the universe to shift from one phase to another. The
type of phase transition depends on the nature of the symmetry breaking:

• Crossovers:

– They refer to smooth transitions between different phases of matter, where no
latent heat is released and no distinct phase boundary is formed.

– During a crossover, physical properties such as energy density and pressure
change smoothly (and also all their derivatives) as the temperature varies.
This means there is no abrupt change in the state of the system, but rather a
continuous transformation from one phase to another.

• Second-Order Phase Transitions:

– SOPTs involve a continuous change in the order parameter (e.g., the VEV of
a field) without any discontinuity. It is characterised by having the second
derivative of the free energy density discontinuous. There is no latent heat
released, and the transition does not involve the coexistence of phases.

– Symmetries are restored smoothly as the temperature increases. For instance,
the high-temperature expansion of the effective potential typically includes
a term proportional to T 2ϕ2, which tends to stabilise the symmetric phase
(ϕ = 0) at high temperatures.
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– During a SOPT, the effective potential’s minima are connected, allowing the
system to transition smoothly between phases. This type of transition does
not generate significant non-equilibrium phenomena, making it less effective
for processes like baryogenesis, but they can produce a significant amount of
topological defects [23] resulting in a non trivial dynamics after the PT, i.e.
production of a gravitational wave signal, among the other things.

• First-Order Phase Transitions:

– FOPTs are characterised by a discontinuous change in the order parameter,
involving a latent heat and the coexistence of different phases. This transition
typically requires a barrier in the effective potential separating the symmetric
and broken phases.

– At a critical temperature, bubbles of the new phase nucleate within the old
phase. These bubbles expand, collide, and eventually fill the entire universe,
releasing latent heat and potentially generating GWs.

– The presence of a barrier and the resulting bubble dynamics create conditions
far from equilibrium, which are necessary for mechanisms like baryogenesis.
This makes FOPTs particularly significant in cosmology, as they can lead to
the production of matter-antimatter asymmetry and other cosmological relics.

The breaking of symmetries and the resulting phase transitions have profound impli-
cations for the early Universe:

• QCD PT: An example of a crossover in cosmology is the quark-hadron transition
in QCD, which is believed to have occurred in the early Universe. At high tem-
peratures, quarks and gluons exist in a deconfined state known as the quark-gluon
plasma. As the universe cooled, these particles gradually combined to form hadrons
(protons and neutrons) in a process that was not a sharp phase transition but rather
a smooth crossover.

• Electroweak Phase Transition (EWPT): The EWPT is a crucial event in the
history of the universe. If it is a first-order transition, it can provide the necessary
conditions for electroweak baryogenesis, a process that could explain the observed
baryon asymmetry of the universe.

• Gravitational Waves: FOPTs can (directly) generate a stochastic background
of GWs through bubble collisions and turbulence in the primordial plasma. These
GWs provide a unique probe of the early Universe, potentially observable by future
detectors. GWs are be also produced in SOPTs, but their signal is much more
suppressed compared to the one generated during FOPTs, but as already mentioned,
topological defects originated during the PT could possibly lead to GW production,
e.g. [24–27].

• Topological Defects: Symmetry breaking during phase transitions can lead to
the formation of topological defects such as cosmic strings, domain walls, and
monopoles. These defects can have significant cosmological consequences and of-
fer insights into the symmetry structure of fundamental theories.

In summary, the paradigm of symmetry and its breaking plays a pivotal role in phase
transitions, influencing the behaviour and evolution of the universe. Understanding these
transitions helps us uncover the fundamental processes that shaped the cosmos, providing
key insights into the underlying symmetries of nature.
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1.3.2 Nucleation rates
As already stated FOPTs in the early Universe are crucial phenomena characterised by
the nucleation of bubbles of a new phase within the old phase through the tunnelling
between these two phases.

In QFT, tunnelling decay processes are often studied using the Euclidean path integral
approach. The path integral formulation often employs the saddle point approximation
(or the method of steepest descent) to evaluate integrals. The dominant contributions
to the path integral come from the paths near the classical solution that extremise the
action, i.e., the paths for which the first variation of the action vanishes (δSE = 0). The
bounce solution ϕbounce is a non-trivial solution to the Euclidean field equations

δSE[ϕbounce]
δϕ

= 0 . (1.74)

This solution corresponds to a configuration where the field tunnels through a potential
barrier from a false vacuum state to a true vacuum state. For ϕbounce, the Euclidean action
is at an extremum. This means that the first derivative of the action with respect to the
field configuration vanishes. The second variation of the action around the bounce solution
determines the nature of the extremum. For the bounce solution, the second variation
(or the Hessian matrix of the action) has both positive and negative eigenvalues. This
mixed signature indicates that the bounce is a saddle point rather than a local minimum
or maximum. The presence of negative eigenvalues corresponds to directions in which the
action decreases, signifying the instability of the false vacuum state.

The fact that the bounce solution is a saddle point means that it represents a
metastable state with respect to the tunnelling process. The negative mode in the spec-
trum of fluctuations around the bounce solution is associated with the decay of the false
vacuum through quantum tunnelling.

Then, to quantitatively describe this process, we compute the tunnelling rate, which
represents the probability per unit volume and unit time that a phase transition occurs
[28–31]. The tunnelling rate, Γ, is expressed as

Γ = Ae−SE , (1.75)

where A has the dimension of energy to the fourth power, and SE is the Euclidean action
evaluated on the solution of the Euclidean EOM. This rate encapsulates the dynamics of
bubble nucleation in a scalar field theory described by the Lagrangian

L = 1
2(∂µφ)2 − V (φ) . (1.76)

To understand the tunnelling process, we need to study the decay of the metastable (false)
vacuum. The process can be visualised as classical motion in imaginary time, where the
field evolves according to the Euclidean equation of motion

□φ = d2φ

dτ 2 + ∇2φ = dV (φ)
dφ

≡ V ′(φ) , (1.77)

with boundary conditions

φ(±∞,x) = 0 , dφ

dτ
(0,x) = 0 . (1.78)
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Figure 1.2: Top: sketch of the analogy with classical mechanics. Solving the problem
of a particle subjected to the inverted potential −V (ϕ), released at rest at some point, is
analogous. If the release point is to the left of ϕ∗, we end up in an undershoot configu-
ration (left panel). If the release point is to the right of ϕ∗, we end up in an overshoot
configuration (right panel). Bottom: The field profiles for each configuration mentioned
above, where the only solution is the (red) one when the release (escape) point is exactly
at ϕ∗.

The solution to this equation, known as the bounce, describes the field starting from the
false vacuum, reaching near the true vacuum, and returning to the false vacuum. The
Euclidean action evaluated on the bounce solution is given by

SE(φ) =
∫
dτd3x

1
2

(
dφ

dτ

)2

+ 1
2(∇φ)2 + V (φ)


bounce

. (1.79)

As Coleman showed in [28], the solution with minimal action typically exhibits spherical
symmetry, O(d), simplifying the equation to

d2φ

dr2 + d− 1
r

dφ

dr
= dV

dφ
, (1.80)

with the boundary conditions

dφ

dr
(r = 0) = 0, φ(r = ∞) = 0 . (1.81)

This equation has an analogy in classical mechanics, where φ is the position of a particle
moving under an inverted potential −V (φ) with a friction term. The particle must start at
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the escape point and reach the origin at rest. Since the bounce equation cannot generally
be solved analytically, numerical methods like the overshoot/undershoot technique are
employed, as sketched in fig. 1.2. This method converts a boundary value problem into
an initial value problem, iteratively adjusting the starting point to find the correct bounce
solution.

Given the spherical symmetry, the bounce action simplifies to

SE ≡ Sd
T 4−d = Ωd

∫ ∞

0
dr rd−1

1
2

(
dφ

dr

)2

+ V (φ)
 , (1.82)

where Ωd is the solid angle in d-dimensions.
To be more clear, the total solution is a sum over all possible field configurations

in the path integral. However, since tunnelling processes are exponentially suppressed
by the Euclidean action SE, the dominant contribution comes from the configuration
with minimal Euclidean action. At zero temperature (T = 0), the system respects full
Euclidean symmetry, and we typically consider the solution with O(4) symmetry, which
minimizes the action in four-dimensional Euclidean space.

At finite temperature (T > 0), time is compactified and periodic with a period
β = 1/T , reducing the symmetry of the system. In this case, we should consider both
O(4)– andO(3)–symmetric solutions, but generally the latter ones, which have only spatial
symmetry, dominate when the thermal fluctuations become significant. Therefore, at high
temperatures, the O(3) bounce typically dominates the tunnelling rate.

Then, at finite temperatures, the tunnelling process requires the evaluation of both
four-dimensional and three-dimensional actions

S4 = 2π2
∫ ∞

0
dr r3

1
2

(
dφ

dr

)2

+ V (φ)
 , (1.83)

S3

T
= 4π

T

∫ ∞

0
dr r2

1
2

(
dφ

dr

)2

+ V (φ)
 . (1.84)

In summary, FOPTs in the early Universe are described by the tunnelling of the scalar
field through a potential barrier, a process quantified by the tunnelling rate. The bounce
solution, which minimises the Euclidean action, provides a detailed understanding of the
dynamics of bubble nucleation.

Explicit example To illustrate the concepts of a FOPT, we consider a specific potential
where thermal corrections introduce a term proportional to φ3. This potential is expressed
as:

V (φ, T ) = M2

2 φ2 − A(T )
3 φ3 + λ

4φ
4 , (1.85)

and shown in (left panel of) fig. 1.3.
Here, M2 ≡ M2(T ) = c(T 2 − T 2

0 ) with c > 0, A(T ) ∝ T > 0, and λ > 0 for stability
at zero temperature. At low temperatures where A(T ) is negligible, the phase transition
is second order since the quartic term dominates. However, at higher temperatures, the
φ3 term creates a thermal barrier, potentially leading to a FOPT.

The potential’s extrema are

φmin =

0, φ∗ ≡ A

2λ

1 +
√

1 − 4M2λ

A2

 , φmax = A

2λ

1 −
√

1 − 4M2λ

A2

 . (1.86)
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Figure 1.3: Left: toy (rescaled) potential, properly normalised, for studying the main
features of a FOPT, as a function of the parameter κ. It is worth noting that the limit
κ → 2/9 corresponds to a barrier of infinite height, resulting in the system being stuck in
the false vacuum, or in other words, the system has a temperature above the critical one.
Right: bounce profiles as a function of κ. For κ → 0, the barrier becomes smaller and
smaller, resulting in a thick wall configuration, while in the other limit, the bubble wall
becomes thinner and thinner.

The critical temperature Tc is when the potential has two degenerate minima, defined by

λM2

A2 = 2
9 . (1.87)

For T0 < T < Tc, the potential has a first-order transition if tunnelling occurs before the
temperature drops to T0. A FOPT is characterised by a discontinuous change in the VEV
of φ, leading to a singularity in the first derivative of the free energy. The latent heat, or
the difference in free energy between the two minima, is ∆V = V (0) − V (φ∗) ≥ 0. We
define κ ≡ λM2/A2, making the critical condition κ ≤ 2/9. The tunnelling action must
be calculated to determine if the transition happens. The nucleation temperature lies
between Tc and T0 when the potential has a thermal barrier. By rescaling the variables

r = ξ

µ
, φ = M2

A
ϕ , (1.88)

the actions in four and three dimensions are

S4 = 2π2M
2

A2 I4(κ) , S3

T
= 4π M

3

TA2 I3(κ) , (1.89)

where

Id(κ) ≡
∫ ∞

0
dξ ξd−1

1
2

(
dϕ

dξ

)2

+ ϕ2

2 − ϕ3

3 + κϕ4

4

 . (1.90)

These integrals must be evaluated on the bounce solution of (1.80) where the field profiles
solving the Euclidean EOM, as a function of the parameter κ, have been reported in the
right panel of fig. 1.3. The potential in terms of rescaled variables is then

V̂ (ϕ) = ϕ2

2 − ϕ3

3 + κϕ4

4 , (1.91)
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Figure 1.4: Here, we report the dimensionless integrals I3,4(κ) as in (1.90). It is evident
that in the limit κ → 2/9, these integrals diverge. The limit κ → 0, both from above and
from below, corresponds to thick wall configurations.

with a false vacuum at the origin if κ < 2/9. For κ = 2/9, the potential develops two
degenerate minima, causing I3,4 to diverge. When κ → 0, it transitions into a thick-wall
configuration as the quartic term becomes negligible. Numerical solutions, as in fig. 1.4,
yield I3(0) ≈ 3.47 and I4(0) ≈ 10.36. In the figure has also been reported the case with
κ < 0. Here, even if the potential is not bounded from below, we can in principle compute
the tunnelling decay rate of the system, as computed in [32].

This example clearly demonstrates how thermal corrections can induce a FOPT,
highlighting the critical concepts and calculations involved.

1.3.3 Parameters of the PT

A FOPT can be quantitatively described by several key parameters. These parameters
provide insights into the dynamics and physical consequences of the transition. Below,
we introduce and define these parameters [33, 34].

After having defined the nucleation rate as in (1.75), we can define the nucleation
temperature, Tn, as the temperature at which the phase transition effectively begins. It is
defined as the temperature at which the probability of nucleating a critical bubble of the
new phase within a Hubble volume per Hubble time becomes order one. Mathematically,
this condition is expressed as ∫ Tn

Tc

dT

T

Γ
H4 = 1 , (1.92)

whereH is the Hubble parameter. By considering the exponential growth of the tunnelling
rate [29], Γ ∼ T 4

(
SE
2π

)d/2
e−SE , for the relevant temperatures one can approximate the
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nucleation condition by

Γ(Tn)
H(Tn)4 = 1 → Sd

T 4−d
n

− d

2 ln
(

Sd
2πT 4−d

n

)
= 4 ln Tn

H(Tn) , (1.93)

where we used that SE = Sd/T
4−d. Assuming radiation domination and neglecting the

first logarithm in the LHS of the previous expression we can roughly estimate the value
of the bounce action for a temperature T ∼TeV

SE ≃ 4 ln
(
MPl

Tn

)
≈ 140 . (1.94)

Now, the probability P (T ) of a specific point in the Universe remaining in the false
vacuum at temperature T can be derived by considering the nucleation and growth of
bubbles of the true vacuum [35]. When a bubble nucleates, it expands spherically with a
volume V = 4π

3 R
3. The comoving volume affected by a bubble nucleated at temperature

T ′ expands as the Universe expands, proportional to 1
H(T ′)3 , where H(T ′) is the Hubble

parameter. The number of bubbles nucleated per unit comoving volume, between a time
t and a time t+ dt, is then given by

dN = Γ(t)V (t) dt = Γ · 4π
3

v3
w

H(T ′)3

∣∣∣∣∣ dtdT ′

∣∣∣∣∣ dT ′ = Γ(T ′)dT
′

T ′
1

H(T ′)4 , (1.95)

where we have used that
dT

dt
= −H(T )T . (1.96)

The volume fraction of the false vacuum decays exponentially because the nucleation
events are Poisson distributed7 in space and time. Therefore, the probability P (T ) can
be written as an exponential of the integral of the nucleation rate. Integrating this from
T to the critical temperature Tc gives the exponential suppression factor

P (T ) = exp
(

−
∫ Tc

T
dN(T ′)

)
= exp

(
−4π

3 v3
w

∫ Tc

T

Γ(T ′)
H(T ′)4

dT ′

T ′

)
. (1.98)

Therefore, the probability, P (T ), of a specific point in the Universe remaining in the false
vacuum at temperature T is given by

P (T ) = exp [−I(T )] , I(T ) = −4π
3 v3

w

∫ Tc

T

Γ(T ′)
H(T ′)4

dT ′

T ′ . (1.99)

7The bubble nucleation rate depends on the temperature but can be considered locally constant within
a small enough time or temperature interval. In each such interval, the nucleation events occur with a
constant average rate. Each bubble nucleation event is independent of other nucleation events. This
independence arises because the nucleation of a bubble in one region does not directly influence the
nucleation of bubbles in distant regions of the Universe, especially in the early stages of nucleation before
bubbles start to grow and overlap significantly. For a Poisson process, the probability P (n;λ) of observing
n events in a given interval is given by:

P (n;λ) = λe−λ

n! , (1.97)

where λ is the average number of events in the interval. Consider a small volume element V in the
Universe and a small time interval ∆t, then the expected number of bubble nucleation events in this
volume and time interval is λ = Γ(T )V∆t. The probability of no bubble nucleation events occurring in
the volume V during the time interval ∆t, i.e. the probability of a specific point in the Universe remaining
in the false vacuum, is P (0;λ).
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This probability decreases as the Universe cools and more regions transition to the true
vacuum. The percolation temperature, Tp, is the temperature at which bubbles of the new
phase have expanded sufficiently to overlap and fill a significant fraction of the Universe.
It is defined by the condition

P (Tp) ≈ 0.71 , I(Tp) ≈ 0.34 . (1.100)

This refers to the fraction of space filled by randomly distributed, equal-sized spheres (in-
cluding overlaps) in three-dimensional Euclidean space, marking the onset of percolation.
It indicates that at least 34% of the comoving volume must have transitioned to the true
vacuum state for percolation to occur.

In a vacuum-dominated scenario, as reported in [36], the simple percolation criterion
can be misleading. While the probability of being in the false vacuum, P (t), decreases
over time and may reach the desired value, percolation might never occur due to the
continued inflation of the false vacuum. This issue arises because, despite the reduction
in P (t), the physical volume of the false vacuum, Vfalse ∝ a(t)3P (t), may continue to grow
as space expands. For the phase transition to successfully complete, it is not enough for
P (t) to decrease; the physical volume of the false vacuum must also shrink after or around
percolation.

This sets a stringent condition: P (t) must decrease faster than the rate of expansion
of space in the vacuum-dominated phase. Specifically, the condition for the successful
completion of the phase transition is that the rate of change of the false vacuum volume
must satisfy

1
Vfalse

dVfalse

dt
= 3H(t) − dI(t)

dt
= H(T )

(
3 + T

dI(T )
dT

)
< 0 . (1.101)

This implies that the decrease in P (t) must outpace the growth in the physical volume
due to inflation.

The strength of the phase transition, denoted by α, quantifies the latent heat released
during the transition relative to the radiation energy density. It is defined as8

α = ε

ρrad
=

∆V − T d∆V (ϕ)
dT

ρrad
≈ ∆V
ρrad

, (1.105)

where ∆V is the difference in energy density between the false and true vacua, and ρrad
is the radiation energy density at the transition temperature. This parameter, which

8There is an intuitive and physical way to understand this definition. Starting from basic thermody-
namics, from the definition of the internal energy of a system U = TS − pV and dividing by the volume
we get

u = Ts− p , (1.102)

where now we have that u is the internal energy density, s the entropy density and p the pressure. At
the transition, the change in internal energy is the latent heat, ε, while

∆p = −∆V (ϕ) = −(V (ϕTV ) − V (ϕFV ) , ∆s ≡ −d∆F
dT

= −d∆V (ϕ)
dT

, (1.103)

so that we get

ε = ∆V − T
d∆V (ϕ)
dT

. (1.104)
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must be computed at the percolation temperature, plays a significant role in determining
the energy budget of the phase transition. The α parameter, defined as the latent heat
liberated during the transition divided by the radiation energy density of the universe,
is influenced by the extent of supercooling. As the temperature drops below the critical
point, the energy difference between the true and false vacua, ∆V , remains relatively
stable. In contrast, the radiation energy density, ρrad ∝ T 4, decreases rapidly due to
the expansion of the universe. As a result, α ∝ 1/T 4, implying that more significant
supercooling leads to a higher α, which indicates a larger energy budget for the transition.

Another important parameter is the inverse duration of the phase transition, β/H,
which characterises how rapidly the transition proceeds. It is defined as

β

H
= T

d(SE/T )
dT

. (1.106)

A larger β/H implies a faster transition, which affects the resulting GW signals and
the formation of other cosmological relics. It is generically computed at the nucleation
temperature, since in all realistic cases the percolation temperature is almost always equal
to the nucleation one. If this is not true, as we will see in chapter 2, the inverse duration
of the PT can be estimated to be

β

H

∣∣∣∣∣
Tp

≈ (8π)1/3vw
H(Tp)R⋆

, R⋆ =
(∫ Tc

Tp

dT

T

Γ(T )
H(T )

(
Tp
T

)3)1/3

. (1.107)

Together, these parameters provide a comprehensive description of a FOPT, capturing
the dynamics, timescales, and physical implications of the transition.

The temperature at the end of the phase transition, called reheating temperature
(Treh), critically influences the redshift of the GW signal. Assuming the transition com-
pletes within a time frame shorter than the Hubble time, we can apply conservation of
energy arguments to estimate the reheating temperature Treh

(1 − ΩGW)(∆V + ρrad

∣∣∣
T=Tp

) = ρrad

∣∣∣
T=Treh

, −→ Treh ≈ (1 + α)1/4Tp , (1.108)

where ΩGW represents the fraction of the critical energy density in gravitational waves.
In the second step, we assumed the energy lost in GW signal to be negligible. Then,
gravitational waves generated during the phase transition redshift as the universe ex-
pands, lowering their observed frequency today. The reheating temperature Treh signifies
the temperature at which the universe is reheated after the phase transition, affecting
subsequent cosmological evolution and the relic abundance of particles. In the context of
cosmological models, Treh, plays a crucial role in scenarios involving baryogenesis, dark
matter production, and the thermal history of the Universe.

1.4 Bubble dynamics - expansion of the bubble and
GW signal

After introducing the essential tools to define bubble properties during a FOPT and their
nucleation, we now turn to their evolution and expansion within the primordial thermal
plasma. We will begin by reviewing the evidence for bubble expansion and identifying
the final expansion regimes. As bubbles collide, they generate a stochastic background of
GWs. We will explore how the linearised Einstein equations describe GW propagation and
production, and review the contributions to the overall GW signal expected from bubble
collisions, sound wave generation, and turbulence. Finally, we will discuss the prospects
of detecting these signals with future space-based and ground-based interferometers.
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Figure 1.5: General structure of a (thin) bubble configuration. Inside the bubble (red
shaded region) the system is in the true vacuum, ⟨ϕ⟩ ≠ 0, while outside the bubble, r ≳ R,
in the false vacuum, ⟨ϕ⟩ = 0. The thickness of the wall is defined as the transient region
for which ϕ′(r) ̸= 0.

1.4.1 Bubble expansion
Once bubbles are nucleated in a FOPT, their dynamics play a crucial role in the comple-
tion of the transition. Understanding how these bubbles evolve involves considering their
formation in Euclidean space and then translating these dynamics to Minkowski space-
time. This section details the nucleation process, the critical radius, and distinguishes
between O(4) symmetric bubbles in vacuum and O(3) symmetric bubbles in a thermal
primordial plasma.

In the context of QFT, bubble nucleation is initially studied in Euclidean space, where
time is treated as an imaginary quantity. The nucleation process involves the creation
of a bubble of true vacuum within the false vacuum. The bounce solution has O(4)
symmetry in vacuum, meaning it is spherically symmetric in four-dimensional Euclidean
space. After performing a Wick rotation to Minkowski spacetime, the O(4) symmetry
becomes a hyperbolic symmetry in three spatial dimensions and one time dimension.
This can be easily seen by looking at the profile solution of the scalar field ϕ ≡ ϕ(r) where
r =

√
τ 2 + x2 is the Euclidean radius. At first glance, we can treat the bubble wall as

thin, i.e. we can approximate the transition of ϕ(r) from ϕ(r = 0) = ϕ∗ to ϕ(r = ∞) = 0
as happening instantaneously at r = R

ϕ(r) =

ϕ∗ for r ≲ R ,

0 for r ≳ R ,
(1.109)

as one can see from the sketch in fig. 1.5. When we rotate back to Minkowski and this
radius is written in terms of the Minkowski time we have

ϕ(r) = ϕ
(√

t2 − x2
)
, (1.110)

and we can clearly figure out the interpretation: the solution ϕ(r) describes the nucleation
of a bubble of true vacuum of radius R. The interpretation in terms of bubbles is possible
thanks to the spherical symmetry of the least action solution. This can be seen as the
formation of a bubble with value ϕ∗, with the surface located at R =

√
x2

surface − t2 in
real space. In the vacuum, the surface then expands, reaching asymptotically the speed
of light

xsurface =
√
R2 + t2 → lim

t→∞

dxsurface

dt
= 1 . (1.111)
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Outside of the bubble, |x| ≳ |xsurface|, there is still the false vacuum; inside, there is the
true one.

In a thermal context, where the phase transition occurs in a hot, early Universe
plasma, the system is studied in three spatial dimensions with time periodically identi-
fied with period 1/T . This periodicity breaks the O(4) symmetry to O(3), resulting in
bubbles that are spherically symmetric in three-dimensional space. Since time has been
compactified, the solutions are stationary. Therefore, for the O(3) symmetric solution,
upon rotating back to Minkowski spacetime, we observe that a bubble with exactly the
critical radius will not expand. It is generally believed [37] that thermal fluctuations will
slightly deform the radius Rc → Rc + δ, causing the expansion to begin.

Critical radius The concept of a critical radius is pivotal in understanding the dy-
namics of nucleated bubbles. The critical radius, Rc, is the radius at which a bubble is
energetically favourable to grow rather than shrink. This balance is determined by the
competition between volume energy and surface tension.

• Volume Energy: The volume energy difference between the false vacuum (high
energy state) and the true vacuum (low energy state) provides a driving force for
the bubble to expand. The energy gain per unit volume is ∆V , the difference in
potential energy between the two vacua.

• Surface Tension: The bubble wall has a surface tension σ, which represents the
energy cost of creating the interface between the true and false vacua. The energy
cost per unit area is proportional to

σ =
∫ ∞

0
dr

1
2

(
dϕ

dr

)2

+ V (ϕ, T )
 =

∫ ϕ⋆

0
dϕ

√
2V (ϕ, T ) , (1.112)

where ϕ⋆ is the escape point.

The total energy E(R) of a bubble of radius R is given by the sum of the volume energy
and the surface energy

E(R) = −4π
3 R3∆V + 4πR2σ . (1.113)

To find the critical radius, we set the derivative of E(R) with respect to R to zero

dE(R)
dR

= −4πR2∆V + 8πRσ = 0 . (1.114)

Solving for R, we get the critical radius

Rc = 2σ
∆V . (1.115)

A bubble with R < Rc will shrink and disappear, while a bubble with R > Rc will grow,
converting the false vacuum into the true vacuum.
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Driving Force of Bubble Expansion Once a bubble of true vacuum nucleates, the
expansion is driven by the pressure difference between the true vacuum inside the bubble
and the false vacuum outside. This pressure difference acts as the driving force pushing
the bubble walls outward.

The effective equation for bubble expansion in thermal equilibrium can be derived
from an effective Lagrangian9

L = −4πσR2
√

1 − Ṙ2 + 4
3πR

3∆pdr . (1.119)

Here, ∆pdr represents the change in driving pressure, defined as ∆pdr = ∆Veff. The
Euler-Lagrange equation derived from this is

R̈ + 2
R

(1 − Ṙ2) = ∆pdr

σ
(1 − Ṙ2)3/2 . (1.120)

Expressed in terms of the Lorentz factor γ = 1/
√

1 − Ṙ2, this becomes

dγ

dR
= ∆pdr

σ
− 2γ
R

. (1.121)

Solving this, we get

γ(R) = ∆pdr

3σ R + C

R
, (1.122)

with the constant C determined by the initial condition γ(R0) = 1. The initial static
bubble radius R0 = Rc has been defined in (1.115). Simplifying the solution for γ(R) and
normalising with respect to R0 we get

γ(R) = 2
3R + 1

3R2 . (1.123)

This indicates that the bubble velocity

Ṙ(t) =

√√√√1 − 9R4

(1 + 2R3)2 , (1.124)

rapidly approaches the speed of light after nucleation if ∆pdr > 0. Although this effective
equation can also describe bubble expansion in a vacuum by substituting the driving

9In order to derive this effective Lagrangian, following [38, 39], we introduce the radial variable ρ2 =
x2 + y2 + z2 and in the action with Lagrangian in (1.76), we split the contribution inside the wall and
outside of it assuming that all the gradients far from the wall vanish, then

S[ϕ] =
∫
d4x

[
1
2(∂ϕ)2 − V (ϕ)

]
(1.116)

= 4π
∫

wall
dtdρ ρ2

[
1
2
(
ϕ̇2 − (∂ρϕ)2)− V (ϕ)

]
− 4π

3 R3
∫
dt∆V . (1.117)

Now change the basis from (t̂, ρ̂) to (ê⊥, ê||) defined by

ê⊥ = 1√
1 − Ṙ2

(−Ṙt̂+ ρ̂) , ê|| = 1√
1 − Ṙ2

(t̂+ Ṙρ̂) . (1.118)

Integrating over ϕ the EOM, neglecting friction terms, and assuming the thin wall limit we arrive at
the relation 2V (ϕ) = (∂⊥ϕ)2. Plugging this in the action above and performing the integral, with the
definition of sigma as in (1.112), we arrive at (1.119).
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Figure 1.6: Sketch of the dynamics of a nucleated bubble in the primordial plasma.
Once a bubble is nucleated, it starts to expand due to the initial driving force, ∆V . All
the particles around it described either as individual ones or through collective action in
terms of a fluid, exert a friction force on the expansion. The end of the picture signals
two different possibilities: either the driving force is so large that the expansion is never
stopped and the bubbles keep accelerating until they collide (so-called runaway regime),
or there is a balance between these forces and a terminal velocity is reached.

pressure with its vacuum part, it’s important to note that true thermal equilibrium is
not realistic near the bubble wall. This necessitates the inclusion of friction terms in
the effective equation of motion due to out-of-equilibrium effects, which will be further
discussed.

For O(4) symmetric bubbles, which nucleate in a vacuum, there is no surrounding
plasma to exert any frictional force, ∆pdr = ∆Veff . As a result, once these bubbles nucleate
and start to grow, they are expected to continuously accelerate until they collide with
other bubbles. The lack of resistance allows the bubble walls to move outward increasingly
faster as the pressure difference drives the expansion.

In contrast, O(3) symmetric bubbles, which nucleate in a thermal primordial plasma,
experience a different dynamic. The presence of the plasma introduces frictional forces
due to interactions with the surrounding particles. As the bubble expands, this frictional
force opposes the driving force of the pressure difference, ∆pdr = ∆Veff − ∆Pplasma. This
resistance can alter the dynamics significantly. If the bubble starts to grow, the friction
from the plasma and surrounding particles will eventually produce a balance with the
driving force, leading to the bubble reaching a terminal velocity, found by solving

lim
γw→∞

∆pdr = 0 . (1.125)

This terminal velocity is the speed at which the driving force and the frictional force are
in equilibrium, preventing further acceleration. However, if bubbles collide before this
equilibrium is reached, the dynamics are altered.

Then, as sketched in fig. 1.6, there are two primary regimes for the dynamics of
expanding bubbles [33, 40, 41]

• Runaway Regime: In this regime, the bubbles continue to accelerate until they
collide, reaching very high velocities. This occurs when the driving force remains
dominant over any resisting forces, typically in a vacuum scenario.
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• Terminal Velocity Regime: In this regime, the bubbles reach a terminal velocity
where the driving force is balanced by the frictional force from the plasma. This
prevents further acceleration and is characteristic of bubbles expanding in a thermal
primordial plasma.

In summary, the distinction between O(4) symmetric bubbles in vacuum and O(3)
symmetric bubbles in a thermal primordial plasma reflects the different symmetries and
dynamics involved in these environments. Understanding these dynamics is essential for
studying the early Universe and the resulting cosmological implications.

Interior of the bubble

After discussing the evolution of the bubble wall, which expands due to the balance
between the driving force and the friction from the plasma, it’s essential to understand
the dynamics inside the bubble as well [42, 43].

The lightlike hypersurface r = r∗(t), where the field takes the value ϕ∗, that is the
tunnelling point, separates the solution ϕ = ϕ̃(

√
t2 − r2) for r < t from ϕ = ϕ̄(

√
r2 − t2)

for r > t. Inside this lightcone, field oscillations occur, while outside, the bubble wall
reaches the asymptotic value ϕFV. The evolution of a single bubble configuration after
nucleation at t = 0 is as follows:

• Outside of the Bubble: The scalar configuration is related to the bounce config-
uration ϕ̄ through SO(1,3) symmetry

ϕ(t, r) = ϕ̄
(√

−t2 + r2
)
, (1.126)

where ϕ̄(s =
√

−t2 + r2) satisfies the bounce equation of motion

d2ϕ̄

ds2 + 3
s

dϕ̄

ds
− dV

dϕ̄
= 0 . (1.127)

• Inside of the Bubble: The scalar configuration is again related through SO(1,3)
symmetry

ϕ(t, r) = ϕ̃
(√

t2 − r2
)
, (1.128)

where ϕ̃(s =
√
t2 − r2) satisfies:

d2ϕ̃

ds2 + 3
s

dϕ̃

ds
+ dV

dϕ̃
= 0 . (1.129)

In this region, the field oscillates around the new local minimum of the potential.

Thus, the dynamics of the bubble interior involve field oscillations, distinct from
the exterior where the bubble wall propagates. The exact solution of the field equation
reveals oscillations generated behind the wall, decaying towards the bubble centre, as we
can see from fig. 1.7. For spherical symmetry, this behaviour is significant when the ratio
∆V/Vmax is high enough, or in other words, if ϕ∗ is sufficiently far from ϕTV.
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Figure 1.7: This figure illustrates the time evolution of a bubble wall at different time
slices in theO(4) symmetric case. The dashed section represents the exterior of the bubble,
described by ϕ = ϕ̄(

√
r2 − t2), while the solid line represents the interior, described by

ϕ = ϕ̃(
√
t2 − r2). If the nucleated bubble is thick, meaning the escape point is far from

the true vacuum, the field rolls down classically, producing a tail of oscillations. As time
progresses, these oscillations compress towards the wall position.

1.4.2 GW from linearised Einstein equations
In this section, we first review the prediction of gravitational radiation emission within
the weak field limit of GR. We then explore the essential characteristics of GW signals
that arise from FOPTs. Specifically, we investigate how the GW spectrum depends on key
parameters directly associated with the effective potential governing the order parameter.
Additionally, we analyse the sensitivity curves of current and future experiments, crucial
for assessing the detectability of GWs [44, 45].

Gravitational Wave Emission

Starting from Einstein’s equations without the cosmological constant, we focus on the
linearised theory by expanding the metric around flat spacetime. This approach predicts
gravitational radiation, neglecting self-gravitational interaction via radiation.

Linearising the metric, gµν = ηµν + hµν where |hµν | ≪ 1, hµν is treated as a pertur-
bation, and ηµν is the Minkowski metric. In this regime, the Ricci tensor Rµν and Ricci
scalar R yield

Gµν = Rµν − 1
2ηµνR = −1

2

(
□hµν − 1

2ηµν□h
)

= 1
MPl

Tµν , (1.130)

where h = hµµ. Introducing the trace-reversed field tensor

h̄µν = hµν − 1
2ηµνh , and ∂µh̄

µ
ν = 0 , (1.131)

where h̄ = −h. The linearised field equations become

□h̄µν = −16πGNTµν , (1.132)
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where MPl = (8πGN)−1/2. In this gauge, the equation of motion for hµν is a standard
wave equation. The key implication of equation (1.130) is the prediction of gravitational
radiation. In vacuum, this simplifies to

□h̄µν = (−∂2
t + ∇2)h̄µν = 0 , (1.133)

which describes 10 equations for GWs propagating at the speed of light. The simplest
solution is sought in the form of plane waves

h̄µν = Aµνe
ikx , (1.134)

where Aµν is the amplitude tensor and kµ = (ω,k) is the wave four-vector satisfying
kµk

µ = 0 leading to ω2 = |k|2.
It can be shown that only 6 of the 10 equations are independent, allowing the choice

of a gauge such as the Lorenz gauge Aµνkµ = 0. This gauge ensures that Aµν is transverse
and traceless (TT).

The effect of GWs on free-falling particles in the TT gauge is null for a single particle.
However, for two nearby particles initially at rest, the proper distance between them
evolves over time10.

Gravitational Wave Radiation

Here, we briefly discuss the emission of GWs from a general distribution characterised by
the stress-energy tensor Tµν . We will see that radiation correlates with the quadrupole
moment tensor Iij =

∫
d3x ρ(x)xixj.

Similar to Maxwell’s equations, we seek retarded solutions for an observer far from
the source at position r and time t. Under the assumption |x| ≪ r, the retarded solution
of equation (1.130) approximates to

h̄µν(t, r) ≃ 4GN

r

∫
V
Tµν(t− r,x)d3x , (1.136)

where V denotes the volume containing the source. Considering momentum-energy con-
servation, the spatial components h̄ij are meaningful, leading to the tensor virial theorem

∂2
t

∫
V
T 00xixjd3x ≃ 2

∫
V
T ijd3x . (1.137)

This, together with the definition of the quadrupole moment, results in the emitted GW

h̄ij(t, r) = 2GN

r
Ïij(t− r) , (1.138)

known as the quadrupole emission formula. Enforcing the TT gauge, we obtain

h̄TT
ij (t, r) = 2GN

r
ÏTT
ij (t− r) . (1.139)

10The proper distance, computed at the same time, between two nearby particles is

∆L =
∫

|ds2|1/2 =
∫ √

|gµνdxµdxν | ≃ |gxx(x = 0)|1/2 · ϵ ≃
[
1 + 1

2h
TT
xx (x = 0)

]
· ϵ , (1.135)

where hTT
xx (x = 0) = A+e−iωt. Then the displacement is proportional to the initial separation, ϵ, of the

masses in a possible detector and the sensitivity must be such to distinguish A+ from 1, where this is
expected to be of order 10−23 − 10−21.
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When the time-dependent components of Iij lie in the transverse plane with respect to
the z-axis, the two polarisations of GW radiation are

h+(t, r) = 2GN

r
ÏTT
xx (t− r) , h×(t, r) = 2GN

r
ÏTT
xy (t− r) , (1.140)

with linear polarisation for a single component and elliptical polarisation otherwise.

Power Emitted

GWs carry energy and induce spacetime deformations. In the TT gauge of the linearised
theory, the stress-energy tensor for GWs is given by

TGWµν = 1
32π

c2

GN

⟨(∂µh̄TT
ij )(∂ν h̄TT

ij )⟩ , (1.141)

with averaging over several wavelengths indicated by angular brackets. For a plane wave
propagating in the z-direction, the stress-energy tensor has three non-zero components.
We focus on the 00 component, corresponding to the energy density

TGW00 = ρGW = 1
32π

ω2c2

GN

(A2
+ + A2

×) . (1.142)

Using this, the power emitted by GWs is derived as

PGW = −dE

dt
= GN

5c5 ⟨(
...
I TT
ij )(

...
I TT
ij )⟩ . (1.143)

This formula highlights that the quadrupole moment of a system relates to the emitted
power, reflecting the system’s kinetic energy relative to the timescale of its non-spherical
internal motions. The fundamental constant GN/c

5 is inversely related to a characteristic
luminosity L0, emphasising the immense scale of gravitational radiation compared to other
forms of energy emission in the Universe.

1.4.3 Stochastic Gravitational Wave Background from FOPTs
After briefly exploring the origins of GW predictions, we categorise them into three main
sources:

(i) GWs produced by astrophysical events like compact binary systems orbiting or su-
pernova explosions.

(ii) Primordial GWs generated during the early Universe by inflation, leaving a distinct
imprint on the Cosmic Microwave Background.

(iii) GWs stemming from cosmological phase transitions.

Cosmological FOPTs can generate a stochastic background of GWs via bubble nucle-
ation—a highly inhomogeneous process— where some of the kinetic energy from rapidly
expanding bubbles transfers to the cosmic plasma, creating turbulence. A stochastic
background of GWs arises from the superposition of numerous independent and uncor-
related sources, making them indistinguishable from random noise. Ground-based detec-
tors detect these by coordinating measurements across multiple interferometers to identify
sources of correlated noise [46–56].
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In this section, we outline the primary characteristics of the GW spectrum and the
signals expected from FOPTs. We start with the energy-momentum tensor associated
with the scalar field ϕ

Tµν = ∂µϕ∂νϕ− ηµν

(1
2(∂ϕ)2 − V (ϕ)

)
, (1.144)

where ηµν is the Minkowski metric. The GW energy density is then given by

ρGW (t,x) = 1
32πGN

⟨ḣTTij (t,x)ḣTTij (t,x)⟩ . (1.145)

To compute the GW power spectrum, we assume the cosmological stochastic background
is statistically isotropic, stationary, and Gaussian11. The spectral density of the time
derivative of metric perturbations Pḣ is defined as

⟨ḣTTij (k, t)ḣTTij (k′, t)⟩ = Pḣ(k, t)(2π)3δ(k − k′) , (1.146)

resulting in the energy density

dρGW
d ln(k) = 1

32πGN

k3

2π2Pḣ(k, t) , (1.147)

and dividing by the critical energy density ρc

dΩGW

d ln(k) = 1
32πGNρc

k3

2π2Pḣ(k, t) . (1.148)

The stochastic GW background’s magnitude is typically expressed in terms of its energy
density per logarithmic frequency interval relative to the critical energy density of the
Universe:

ΩGW (f) = f

ρc

dρGW
df

, (1.149)

where ρc = 3M2
PlH

2
0 , with H0 being the Hubble rate today.

To conclude this section, we note that GWs produced at temperature T∗, with a
characteristic frequency f∗, propagate through the Universe unchanged, with their energy
density scaling as a−4 and their frequency as a−1. The characteristic frequency and the
fraction of critical energy density in GWs today are

f = f∗

(
g0,s

g∗,s

)1/3
T0

T∗
, (1.150)

ΩGW = Ω∗
GW

(
a∗

a0

)4 (H∗

H0

)2
, (1.151)

where H∗ and g∗,s are the Hubble parameter and the number of relativistic degrees of
freedom at T∗, respectively.

11Statistically isotropic means that the statistical properties of the system can be determined by looking
at any section of the sky. Stationarity implies that these properties do not change over time. Gaussianity
arises from the central limit theorem for independent events: the radiation arriving at a detector is the
sum of the amplitudes of the radiation produced by each independent process, leading to a Gaussian
signal.
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GW Spectrum from FOPTs

FOPTs are particularly intriguing because their GW spectrum depends on two key pa-
rameters. The first parameter, β, represents the rate of change of the bubble nucleation
rate—or the inverse period of the phase transition—which sets the characteristic timescale
and the bubble size at collision time, determining the characteristic frequency f∗ of the
GW spectrum. The second crucial parameter is α, defined as in (1.105). Both α and
β are evaluated at the nucleation temperature12 Tnuc and dictate the functional form of
the GW spectrum. These parameters are computed from the effective action describing
bubble nucleation, found for any scalar potential governing the phase transition.

The primary sources contributing to the GW power spectrum from FOPTs include
[54]:

1. Bubble wall collisions. These collisions are often approximated using the envelope
approximation [57].

2. Sound waves in the plasma are generated after bubble collisions but before the
plasma’s kinetic energy dissipates [46].

3. Magnetohydrodynamic (MHD) turbulence in the plasma developing post-bubble
collisions [58].

These processes coexist, and their contributions to the stochastic GW background linearly
combine to give

h2ΩGW ≈ h2Ωϕ + h2Ωsw + h2Ωturb . (1.152)

In strong FOPTs, when no terminal velocity is reached, the scalar contribution often
dominates, especially when bubble expansion proceeds via detonation (vw > cs, where vw
is the wall velocity and cs is the sound speed in the plasma).

This section highlights that GWs from FOPTs offer unique insights into the dynamics
of the early Universe. They carry information about high-energy particle physics and
remain largely undisturbed since their production, owing to their weak interaction with
matter.

Scalar field contribution

The GW contribution from the scalar field involved in a PT can be approximated using
the envelope approximation [57, 59, 60]. In this method, a fraction κ of the latent heat
from the PT is concentrated in a thin shell near the PT front, neglecting the dynamics
of the interior collision regions. The kinetic energy is assumed to be stored only in the
bubble walls that have not yet collided. The first collision of a surface element determines
the point at which the energy density will start to fade away. Therefore, in the envelope
approximation, the anisotropic stress is abruptly removed at this point. When bubble
walls collide, they push the plasma to scales comparable to their radius at the collision
time, causing turbulence that generates gravitational radiation.

To understand the spectrum’s dependence on key quantities, first we use dimensional
analysis. The energy density of GWs equals the energy radiated by GW emission divided
by the volume where this energy is located. The radiated energy is the emitted power
times the problem’s timescale. Thus, the relevant quantities are the timescale β−1 and

12Actually, they have to be evaluated at the percolation temperature, Tp, but since generically, they
are almost the same, here, we make no distinction between them.
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the typical bubble size vwβ−1, where vw is the bubble wall velocity. Therefore, the GW
energy density today can be expressed as

ρGW,∗ = PGWβ
−1

(vwβ−1)3 , (1.153)

where PGW is the power emitted during GW emission. From dimensional analysis, we
can see that

...
I ∼ mass × (size)3

(time)3 ∼ κεv3
wβ , PGW ∼ GN(κεv3

wβ)2 , (1.154)

where we used that [ε] = ML−1T 2 and, as previously mentioned, the kinetic energy of
accelerating bubbles is typically a fraction κ of the latent heat ε of the phase transition,
then we get

ρGW,∗ ∼ GNκ
2 ε

2

β2v
3
w . (1.155)

It is useful to express GN as a function of the Hubble rate, GN ∼ H2
∗

ρtot
, allowing us to

estimate

ΩGW,∗ ∼
(
H∗

β

)2 (
κε

ρrad + ε

)2

v3
w . (1.156)

Numerical simulations suggest the power spectrum can be described by the fit

Ωϕ
env(f) = Ωϕ,peak

env
(a+ b)f̃ bϕfa

bf̃a+b
ϕ + afa+b

, (1.157)

where a = 3, b = 1.51, and f̃ and Ωϕ,peak
env are the peak frequency and amplitude respec-

tively13. The peak amplitude Ωϕ,peak
env is given by

h2Ωϕ,peak
env = 1.67 × 10−5 × 0.44v3

w

1 + 8.28v3
w

κ2
(
H

β

)2 (
α

α + 1

)2
(

100
g∗

)1/3

, (1.158)

and the peak frequency f̃ϕ is

f̃ϕ = 2.62 × 10−3 × 1.96
1 − 0.51vw + 0.88v2

w

( 1
H∗

)(
T∗

100 GeV

)(
g∗

100

)1/6
mHz . (1.159)

Here, H∗ is the Hubble parameter at the time of bubble collision, g∗ is the number
of relativistic degrees of freedom, and κ is the fraction of latent heat converted into the
kinetic energy of the bubble walls. This mechanism predominantly contributes to the GW
spectrum in the so-called runaway regime, where bubble walls continue to accelerate until
they collide. This process is brief but significant in generating gravitational radiation.

13In the literature, gravitational wave spectra from bubble dynamics are often estimated using simula-
tions that employ thin-wall and envelope approximations within a flat background metric. However, in
[61] it has been shown that these spectra can be analytically derived under the same assumptions.
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Sound waves contribution

After the merger of bubbles, the subsequent phase, known as the “acoustic" mechanism,
becomes crucial for the generation of GWs. In this phase, sound waves produced by
the dynamics of the bubble propagate through the plasma, overlapping and contributing
to the generation of additional GWs. Unlike the brief collision mechanism, the acoustic
phase lasts much longer, typically on the order of the Hubble time, making it a dominant
contributor to the GW spectrum when the bubble wall reaches a terminal velocity vw.

The GW spectrum from the acoustic mechanism is described by

dΩsw

d ln f = 0.687Fgw,0ΩswC

(
f

f̃sw

)K
2
(
H∗R∗
cs

)
τsh > 1/H∗ ,

K3/2
(
H∗R∗√
cs

)2
τsh < 1/H∗ ,

(1.160)

where the efficiency parameter K for GW production in this stage is defined as

K = κswα

1 + α
, κsw = 3

ϵξw

∫
w(ξ)v2

pγ
2
pξ

2dξ , (1.161)

where γ represents the Lorentz factor, ξ = r/t with r as the bubble radius and t as
the time since nucleation, vp is the velocity of the plasma. This quantity will be largely
studied in the last chapter. Moreover, τsh denotes the time scale for shock formation, and
Ωgw ≈ 10−2 is determined from numerical simulations. The mean bubble separation is
R∗ = (8π)1/3 max(vw, cs)/β, with cs being the speed of sound. The factor Fgw,0 scales the
emitted signal to the observable spectrum today

Fgw,0 = Ωγ,0

(
g0,s

g∗,s

)4/3 (
g∗

g0

)
≈ 3.57 × 10−5

(
g∗

100

)1/3
, (1.162)

The spectral shape C(s) and peak frequency f̃sw are given by

C(s) = s3
( 7

4 + 3s2

)7/2
, f̃sw ≈ 26

( 1
H∗R∗

)(
zp
10

)(
T∗

100 GeV

)(
g∗

100

)1/6
µHz , (1.163)

where zp ≈ 10 is determined by simulations.
In finding the case τsh > H−1

∗ , it has been assumed that the sourced lasted for
τsh ∼ H−1

∗ . If the shock formation timescale is less than a Hubble time the total GW
power should be reduced by a factor τshH∗ = H∗R⋆/K

1/2.
Initially, the prevailing view attributed the primary generation of GWs to the ki-

netic energy of bubble walls during their collisions, especially in scenarios with strong
FOPTs. This perspective led to the formulation of the envelope approximation model,
which posits that shear stresses are concentrated in thin shells near the phase boundary
and dissipate rapidly upon collision. However, it is now recognised that GWs produced
during the collision phase are often overshadowed by radiation generated by fluid dynam-
ics in subsequent phases of the transition unless the plasma friction is minimal enough
to allow for a runaway scenario. In runaway scenarios, where the bubble walls accelerate
continuously, most of the transition’s energy is converted into kinetic energy of the walls,
thereby amplifying gravitational radiation from the collision phase. Nevertheless, recent
numerical simulations indicate that shear stresses in the collision region exhibit a more
intricate behaviour than originally envisioned by the envelope approximation.
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Figure 1.8: This figure illustrates a typical GW signal from a FOPT, separated into its
various contributions: bubble collisions (blue), sound waves (green), and turbulence (red).
The sensitivity curves for current and future ground- and space-based interferometers are
also shown. The method for constructing these sensitivity curves is discussed in sec. 1.4.4.

Turbulence contribution

The final stage of GW production is the turbulent phase, where the non-linearities of fluid
equations become significant. This phase is the most challenging to model accurately due
to the complexity of numerical simulations, which often rely on untested assumptions.
One key uncertainty in this phase is the generation and role of vorticity, which leads to
turbulence and subsequently contributes to the GW spectrum. In the turbulent phase, the
motion of the fluid becomes chaotic, leading to the generation of turbulence, which can
further enhance the production of GWs. This chaotic motion is characterised by vortices
that create anisotropic stress-energy components, essential for GW generation. However,
the exact mechanisms by which vorticity is produced and its relative importance in the
overall GW spectrum remain areas of active research.

Numerical simulations have provided some insights into the GW spectrum from tur-
bulence, though these models are still subject to significant uncertainties. For instance,
current models suggest that the efficiency of GW production from turbulence can be pa-
rameterised in terms of the turbulent kinetic energy fraction and the properties of the
phase transition, such as the terminal wall velocity vw and the strength parameter α.
The GW energy density spectrum from turbulence is often modelled using a power-law
behaviour with a peak frequency determined by the characteristic length scale of the tur-
bulent vortices. The peak amplitude and frequency can be fit from numerical simulations,
typically yielding results that depend on the specifics of the phase transition dynamics and
the properties of the fluid involved. For a more accurate modelling of the GW spectrum,
it is crucial to determine the terminal velocity vw with precision. The terminal velocity
influences the efficiency of energy transfer to the fluid and thus affects the resultant tur-
bulence. Determining vw requires a detailed understanding of the bubble wall dynamics
during the phase transition, which involves complex interactions between the bubble wall
and the surrounding plasma.

Here are the relevant equations and fits from numerical simulations for the GW signal
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produced during the turbulent phase

dΩturb

d ln f ∼
(
H∗

β

)2 (
κturbα

1 + α

)3/2
(

100
g∗

)1/3 (
f

f̃turb

)3
 1

1 +
(
f/f̃turb

)2


11/3

, (1.164)

where κturb is the efficiency factor for turbulence and f̃turb is the peak frequency of the
turbulent GW spectrum, given by

f̃turb ≈ 27µHz
(
β

H∗

)(
T∗

100 GeV

)(
g∗

100

)1/6
. (1.165)

This provides a numerical fit for the GW signal from turbulence based on current under-
standing and simulations, highlighting the ongoing need for refined models and simulations
to reduce uncertainties and improve accuracy.

In summary, while the turbulent phase of GW production is the least understood
and modelled with the greatest uncertainty, it is a critical component of the overall GW
spectrum from a FOPT. Further advancements in numerical simulations and theoretical
models are necessary to improve our understanding and predictions of this phase. This
includes refining the models of vorticity generation and turbulence and obtaining more
accurate values for key parameters such as the terminal velocity vw.

1.4.4 Sensitivity Curves for GW Experiments
In this section, we derive the sensitivity curves for current and future experiments designed
to detect GW signals. Our goal is to assess the detectability of GW signals originating
from cosmological PTs by evaluating their signal-to-noise ratio (SNR) [41, 62]. The central
issue revolves around whether the GW signals generated by PTs fall within the detectable
range of sensitivity for present and future experiments.

A stochastic background of GWs becomes detectable in an experiment running for a
duration tobs if the SNR exceeds a specified threshold value

SNR ≥ SNRthr = 10 , (1.166)

where the SNR is calculated as

SNR =

√√√√tobs

∫ fmax

fmin
df

(
h2ΩGW (f)
h2Ωnoise(f)

)2

. (1.167)

Here, h2ΩGW (f) denotes the dimensionless spectral energy density of GWs, while h2Ωnoise(f)
represents the spectral noise energy density. tobs accounts for the observational time in-
tegrated over multiple interferometers used in the experiment.

To derive the sensitivity, we assume a power-law form for the GW spectrum:

ΩGW (f) = Ωb(fref)
(
f

fref

)b
, (1.168)

where fref is a reference frequency. The sensitivity can then be determined by maximising
Ωb(fref) for each fref to achieve the required SNR threshold SNRthr.

The Power-Law Integrated (PLI) sensitivity curve h2ΩPLI(fref) is defined as

h2ΩPLI(fref) ≡ h2 max
b

[Ωthr
b ] , (1.169)

47



1 10 100 1000 10
4

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

Figure 1.9: Here is presented the Power-Law Integrated (PLI) sensitivity curve for the
Einstein Telescope (ET) experiment [63]. The PLI sensitivity in (1.169) is obtained con-
sidering, for each reference frequency fref , between the range of accessible frequencies, the
power-law relation ΩGW (f) = Ωb(fref)(f/fref)b, find the spectral index b that maximises
the threshold value Ωthr

b , and then take the envelope of the family of curves.

LIGO O2 LIGO O5 LISA CE BBO DECIGO ET
tobs (months) 6 20 48 60 48 48 60
h2Ωnoise(f) [64] [65] [66] [67] [68] [69] [63]

Table 1.2: Observational times (tobs) and h2Ωnoise(f) values for each experiment, with
SNR threshold SNRthr = 10.

where Ωthr
b represents the threshold value of Ωb(fref) for detection. Experimental sensitiv-

ities are often presented in terms of characteristic strain noise hc(f)

hc(f) =
√
fSnoise(f) , (1.170)

where Snoise(f) is the one-sided noise power spectral density. The relationship with
Ωnoise(f) is given by

Ωnoise(f) = 2π2

3H2
0
f 3Snoise(f) , (1.171)

with H0 = 2.176 × 1018 Hz being the Hubble rate today. Table 1.2 summarises the
observational times tobs considered for each experiment, along with the corresponding
values of h2Ωnoise(f) used in our calculations.

In conclusion, by analysing the sensitivity curves across various experiments, we can
determine the detectability of GW signals from cosmological Phase Transitions. These
analyses play a crucial role in understanding the potential of current and future observa-
tories in unveiling these elusive cosmic phenomena.

1.5 Interaction with the surroundings: friction
After summarising all the relevant information needed to compute the GW signals from
cosmological phase transitions, we realised that the wall velocity is a crucial parameter.
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It significantly influences the dynamics of the phase transition and the resulting GW
spectrum. To accurately determine it, it is essential to consider the interaction between
the bubble wall and the surrounding plasma. Various methods and approximations have
been employed in the literature to estimate the wall velocity, each with its own set of
assumptions and limitations. In this section, we will explore and summarise the key
approaches used to compute the wall velocity, highlighting their assumptions and the
conditions under which they are reliable.

The dynamic of the bubble wall is governed by its interaction with the plasma. As
the bubble expands, the wall encounters resistance from the surrounding plasma, which
affects its velocity. The key factors influencing this interaction include:

• Friction from Plasma Particles: The particles in the plasma exert a frictional
force on the bubble wall, slowing it down. This friction depends on the nature of
the particles and their interactions with the wall.

• Thermal and Pressure Effects: The temperature and pressure differences be-
tween the inside and outside of the bubble contribute to the driving force and the
opposing frictional force.

• Energy Transfer: The energy transferred from the bubble wall to the plasma can
affect the wall’s velocity. This includes energy lost as heat or converted into kinetic
energy of the plasma particles.

These components—friction from plasma particles, thermal and pressure effects, and en-
ergy transfer—are interdependent. For instance, higher temperatures result in more en-
ergetic plasma particles, increasing friction, while energy transfer can change the thermal
state of the plasma, affecting both the frictional force and pressure. Thus, the interplay be-
tween these factors creates a complex, dynamic system where changes in one aspect, such
as temperature, can significantly impact others, like friction and pressure, underscoring
the importance of understanding these interdependencies for accurately modelling bubble
wall dynamics.

Several methods have been proposed in the literature to model these interactions and
to compute the wall velocity. Here, we discuss the most relevant ones, outlining their
assumptions and applicability:

1. Hydrodynamic Approximations: These models, [33, 70–73], classify the phase
transition based on the speed of the bubble wall relative to the speed of sound in
the plasma. There are two main classes of expansions that are detonations, when
the wall velocity exceeds the speed of sound, leading to a supersonic expansion, and
deflagrations when the wall velocity is subsonic. These models assume specific forms
of energy transfer and friction between the wall and plasma. They are reliable when
the interactions can be approximated by ideal hydrodynamic flows.

2. Microphysical Approaches: These approaches, [74–79], compute the friction
force from first principles, considering the detailed particle interactions at the mi-
croscopic level. Using effective field theories, these methods incorporate particle
physics details to estimate the wall velocity. These methods require detailed knowl-
edge of the particle physics involved and are reliable when such detailed information
is available and accurate.

3. Numerical Simulations:
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• Lattice Simulations: These simulations model the phase transition on a
discrete space-time lattice, allowing for a detailed study of the bubble dynamics
and wall velocity, [80–84].

• Hydrodynamic Simulations: Using computational fluid dynamics, these
simulations solve the hydrodynamic equations to model the bubble expansion
and wall velocity, [46–50, 85–90].

In the following, we will briefly review the hydrodynamic approach, which will be
mostly presented in the last chapter, and we will also discuss the (semi-classical) ap-
proach using the Boltzmann equations for the plasma. We will conclude the chapter by
analysing how the situation changes when we consider ultrarelativistic bubbles and how
the computations simplify.

1.5.1 Hydrodynamics description
This section introduces, in the context of the hydrodynamic description of the plasma,
the key thermodynamic variables, examines the role of the scalar field driving the phase
transition, and emphasises the necessity of an equation of state to determine the bubble
expansion dynamics.

To classify FOPTs, it is important to analyse the plasma’s behaviour around the
bubble wall. The bubble wall acts as a boundary between two phases of the plasma,
modelled as a perfect fluid characterised by bulk velocity v, temperature T , and pressure
p. For large bubbles, the relevant bulk velocity is primarily along the wall’s direction,
which we refer to as the z-direction.

The interface between the phases is a sharp boundary, considered infinitely thin in
hydrodynamic terms. As a result, the values of (T , v, p) can differ on either side of
the interface. The hydrodynamic model aims to relate the properties inside the bubble
(denoted as higgsed, (T , v, p)h) with those outside the bubble (denoted as symmetric,
(T , v, p)s) and the energy parameters of the transition described in the previous sections.
The main variables in this analysis include the shape of the scalar field, the tempera-
tures inside Th and outside Ts the bubble, the plasma velocities inside vh and outside vs,
and the pressures inside ph and outside ps. The hydrodynamic approach usually leaves
the wall velocity vw as an undetermined parameter, requiring additional methods and
approximations to find its value.

In this section, we will explore various established techniques to understand these
relationships and their impact on bubble expansion dynamics. Further, we will address the
determination of wall velocity in the subsequent part of this chapter, examining different
methods and assumptions used to compute it.

Thermodynamic quantities To describe the hydrodynamic behaviour of the bubble
wall, we first introduce the key thermodynamic quantities

w = T
∂p

∂T
, s = w

T
, e = w − p , F = −p = VT (ϕ, T ) , (1.172)

where, in order, we defined the enthalpy, the entropy density, the energy density and the
free-energy density.

The Scalar field The phase transition is driven by a scalar field, ϕ, which changes its
value from the false vacuum (ϕfalse) to the true vacuum (ϕtrue) as the bubble expands. The
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dynamics of the scalar field are governed by its potential, V (ϕ, T ), which is temperature-
dependent and dictates the energetics of the phase transition.

Hydrodynamic Equations

The combined system of the scalar field condensate and the surrounding plasma can be
described by their contribution to the energy-momentum tensor [73]. For the scalar field,
we have

T µνϕ = (∂µϕ)∂νϕ− gµν
[1
2(∂ϕ)2 − V (ϕ)

]
, (1.173)

where V (ϕ) is the zero temperature potential. The stress-energy tensor of a gas described
by a distribution function f is generically defined as

T µν =
∫ d3k

(2π)32E kµkνf(k, x) . (1.174)

For a perfect fluid, it can also be written as

T µνf = (ef + pf )uµuν − gµνpf , (1.175)

where uµ is the plasma four-velocity. Then, the total stress-energy tensor is the sum of
two contributions, the scalar field condensates and plasma. The hydrodynamic equations
are derived from the conservation of the total energy-momentum tensor of the system and
the rest mass current density

∇µT
µν = 0 , ∇µJ

µ = 0 , (1.176)

where Jµ = ρuµ and ρ is the rest mass energy density. Solving such a set of equations
will allow us to describe continuous waves.

However, in such a hydrodynamic description, the shape of the wall is described
by a sudden step, mathematically parameterised by a discontinuity. This will induce
discontinuities in the thermodynamic quantity describing the fluid, so we need to deal
with such discontinuity. As an explicit example, we can consider the case of a steady
planar wall, moving in the z−direction. Then the conservation of the stress-energy tensor
implies

∂zT
zz = ∂zT

zt = 0 . (1.177)

By integrating the above equations across the wall one gets the following useful relations,
also called junction conditions, that connect the plasma velocity and the other thermo-
dynamic quantities between the two sides of the discontinuity

w+v+γ
2
+ = w−v−γ

2
− , w+v

2
+γ

2
+ + p+ = w−v

2
−γ

2
− + p− , (1.178)

where ± refers to the two different sides of the interface.
To close the set of hydrodynamic equations, an equation of state (EoS) is required.

The EoS relates the thermodynamic quantities and provides a functional relationship
between them. A commonly used form of the EoS in the context of cosmological phase
transitions is

p = p(ρ, T ) . (1.179)
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The specific form of the EoS depends on the properties of the plasma and the nature of
the phase transition. In such a context the relativistic gas approximation, where a bag
equation of state14 is used, is a good description of the system. Therefore

p = 1
3(e− 4ϵ) , (1.180)

where ϵ is the vacuum energy difference between the two phases. It is worth noticing that
the vacuum energy contribution will be present only in the old phase, i.e. outside of the
bubble, while inside, in the new phase, only the contribution coming from the relativistic
gas will be present.

Given appropriate initial conditions, the hydrodynamic equations fully describe the
temperature and fluid velocity distributions. These equations define the various hydrody-
namic phases that occur during a FOPT. Therefore, the interaction between the bubble
wall and the surrounding plasma results in distinct expansion modes, categorised by the
wall’s velocity in relation to the speed of sound in the plasma (cs):

• Deflagration: The bubble wall expands subsonically (vw < cs). The phase transi-
tion front moves slower than the speed of sound, creating a compression wave ahead
of the bubble ending in a shock.

• Detonation: The bubble wall expands supersonically (vw > cs). The phase transi-
tion front moves faster than the speed of sound, generating a tail behind the front.

• Hybrid Modes: Intermediate scenarios where the wall velocity is bigger than the
speed of sound, but a compression wave in front of the bubble wall is still present.

To determine the expansion mode of the bubbles, we solve the hydrodynamic equa-
tions subject to the boundary conditions at the bubble wall, imposing that, in the plasma
frame, the fluid is at rest at the centre of the bubble and very far from the bubble wall.

In summary, the hydrodynamic description of bubble wall expansion requires the in-
troduction of key thermodynamic quantities, the scalar field dynamics, and an appropriate
equation of state. By solving the conservation equations for energy and momentum, we
can determine the expansion modes of the bubbles, which is crucial for predicting the
resulting GW signals. In Chapter 5, we will analyse this approach in detail, extending it
to the case of inverse phase transitions, which will be defined there.

1.5.2 Boltzmann equations
Determining the velocity of the bubble wall, vw, and accurately modelling the friction
necessitates a detailed understanding of the out-of-equilibrium disturbances within the
plasma, governed by effective kinetic theory. This theory involves solving a set of Boltz-
mann equations, which are intricate integro-differential equations. Addressing these chal-
lenges, this section delves into various methods and approaches used in the literature,
providing a thorough overview of the techniques employed to determine the wall velocity
under different conditions and assumptions.

14The bag EoS is a model used primarily in the context of quark-gluon plasma and in the study
of hadrons. The EoS reads p = (ρ − 4B)/3 where B is referred to as the bag constant, a parameter
representing the vacuum energy difference between the perturbative vacuum (free quarks and gluons)
and the true vacuum (inside hadrons where quarks are confined). The term “bag" comes from the fact
that hadrons are described as regions (bags) of space where quarks are confined by the vacuum pressure
but are free to move within the “bag".
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The friction between the plasma and the bubble wall is a complex physical process.
In equilibrium, each plasma component can be described by a distribution function feq,i.
However, when the scalar condensate interacts with the plasma, it drives the system out
of equilibrium, causing the distribution function fi to differ from feq,i. Simultaneously, the
dynamics of the scalar condensate are influenced by these distribution functions, creating
a feedback loop that complicates solving the system. To tackle this, we start with the
fundamental equations. The equation of motion for the Higgs classical background φ,
derived at leading order15, is given by

□φ+ dV0

dφ
+
∑
i

dm2
i (φ)
dφ

∫ d3k

(2π)3Ei
fi(k, x) = 0 , (1.181)

where the sum includes all light particles interacting with the wall, fi represents their
distribution functions, and V0 is the renormalised vacuum potential. The coupling between
the condensate and the plasma particles is represented by the last term on the left-
hand side. Additionally, the Boltzmann equations governing the plasma distributions are
essential for a comprehensive understanding.

The Boltzmann equation tracks the evolution of the distribution in phase space
fa(x,p, t) according to the interaction between the species a and the other species (and
possibly according to the expansion of the Universe). Formally the Boltzmann equation16

is written as
L[f ] = C[f ] , (1.183)

where L is the Liouville operator, while C is the collision term. The non− relativistic
Liouville operator17 for f(x,v) of a species of mass m subjected to a force F = dp

dt
is

L[f ] =
(
∂

∂t
+ ẋ · ∇x + v̇ · ∇v

)
f =

(
∂

∂t
+ v · ∇x + F

m
· ∇v

)
f . (1.185)

Now the covariant generalisation of the Liouville operator, under the assumption of a
smooth Universe, i.e. f will be x−independent, is given by

L = pµ
∂

∂xµ
+mF µ ∂

∂pµ
, (1.186)

15In order to get this expression, following [91], one needs to compute the operator equation of motion,
that should annihilate the physical thermal state, and then split the Higgs (quantum) field in its classical
background and a fluctuation part, such that ⟨δϕ⟩ = 0. We then evaluate the trace of the operator
equation of motion over the out-of-equilibrium thermal density matrix that describes the propagating
bubble wall. Assuming there are no charge conjugation-violating gauge condensates, we have ⟨Aµ⟩ = 0.
Finally, we use WKB wave functions to evaluate the thermally averaged operators. This can be found in
[92]. This approach is justified because the background field φ varies on a scale much longer than T−1,
which characterises the reciprocal momenta of particles in the plasma.

16At the kinetic equilibrium, this equation, for a species a will be a differential equation for the number
density, that can be seen as

Jµ = (n,J) , ∇µJ
µ = ṅ+ 3Hn = [source− loss] . (1.182)

17In order to justify the structure of this operator we need to use the gas kinetic theory. Consider
the evolution of fa describing a gas of N particles with mass m in a box of volume V , subjected to the
force F . In the dilute gas limit, for which we can neglect the collisions between particles, all the particles
contained in an elementary volume centred in (x,p), after a time dt, will be in an elementary volume
centred in (x′ = x + vdt,p′ = p + F dt). Then

fa(x,p, t) = fa(x + vdt,p + F dt, t+ dt) , (1.184)

and expanding to the first order we recover the previous expression.
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where the Liouville operator L governs the evolution of the distribution function f of
a particle in position space x, with momentum p and mass m, under the influence of
an external force F µ. The collision operator C[f ] accounts for the interactions occurring
within the plasma. Its general form read

C[fa] =
∑
n,m

1
S

∫
dΠALL δ

(4)(ptot
i − ptot

j )
[
|Mn→m|2P [n,m] − (n ↔ m)

]
, (1.187)

where we have defined

dΠALL =
n∏

i=1,i ̸=a

d3pi
(2π)32Ei

m∏
j=1

d3pj
(2π)32Ej

. (1.188)

and the population factor

P [n,m] =
n∏
i=1

fi
m∏
j=1

(1 ± fj) , (1.189)

and where the sum over n, m denotes all possible interaction processes and takes into
account all the particles except for the a for which we are trying to solve the Boltzmann
equation, the δ(4) ensures the conservation of four-momentum and the factor 1 ± f in the
population factor account for quantum statistical effects, like Bose-Einstein condensate
or fermion degeneracy. S is a symmetry factor accounting for identical particles in the
initial and final state and it is defined as S = ∏

i ni!
∏
j nj! .

In the literature, the Boltzmann equations are often simplified by primarily consid-
ering 2 → 2 scattering processes due to the relative tractability of these interactions and
due to the fact that they are very efficient in thermalising the plasma in front of the bub-
ble wall. During the EWPT the relevant processes that have been considered in previous
studies [74–76] are

• top interactions: tt̄ → gg, tg → tg, tq → tq (summing over all massless quarks).

• W interactions: Wq → gg, Wg → qg, WW → f̄f and Wf → Wf .

In summary, the interaction between the bubble wall and the plasma is then captured
by a complex set of equations. The Boltzmann equations include a force term, which is
related to the momentum change of particles as they collide with the wall, leading to
a departure from equilibrium in their distribution functions. The collision term, on the
other hand, represents the interactions among plasma particles within the wall and acts
to restore equilibrium. The scalar field equation incorporates various physical aspects:
the wall’s acceleration, the energy released from the phase transition (which drives the
acceleration), and the departure from equilibrium (which provides friction against the
wall). When the deviation from equilibrium δfi approaches zero, the dissipative friction
term disappears, simplifying the scenario. Solving these coupled equations is extremely
challenging due to the complexity of the collision term, which necessitates tracking nu-
merous interactions within the wall. This problem can be approached by considering two
different scales: the wall thickness Lw and the mean free path λmfp of plasma particles.
When the wall thickness is much greater than the mean free path, the particles tend to
thermalise, and their distribution remains close to equilibrium, simplifying the equations.
Conversely, if the mean free path is much longer than the wall thickness, the collision
term can be approximated as zero, a situation known as the semi-classical approximation,
which significantly reduces the complexity of the problem.
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In this last case, considering C[f ] = 0, a simple solution can be found. We can
consider a planar wall along the z-direction, and then the Boltzmann equation simplifies
significantly. The equation reduces to

pz
E
∂zfi(p, z) − 1

2Ei
dm2

i

dz
∂pzfi(p, z) = 0 , (1.190)

where mi(z) is the position-dependent mass. This equation can be solved by knowing only
the shape of the wall, which controls m2

i (z). The term containing the mass derivative acts
as a classical force, pushing the distribution functions away from equilibrium. It can be
shown that the solution to this equation should be expressed in terms of the transverse
momentum p⊥ and the quantity

√
p2
z +m2(z)

fi

(
p⊥,

√
p2
z +m2(z)

)
. (1.191)

This form indicates that the distribution function depends on the transverse momentum
and the effective energy, which includes the position-dependent mass. Then, the distri-
bution function, in the wall frame, will take the form

fi(E, p, T ) = fi

(
pµuµ
T

)
= fi

(
γw(E + vwpz)

T

)
, (1.192)

where vw is the velocity of the wall and uµ = γw(1, 0, 0,−vw).
Despite his usefulness and complexity, this approach overlooks other potentially sig-

nificant processes, such as 1 → 2 interactions (e.g. decays or transition radiation pro-
cesses). We will see that these latter ones (at least in the ultrarelativistic limit) are highly
relevant and can change qualitatively the dynamics. This will be the subject of the next
section.

1.6 Ultrarelativistic Bubbles
In the context of FOPTs, the study of ultrarelativistic bubbles provides significant simpli-
fications in the computations of bubble dynamics and interactions with the plasma. Ul-
trarelativistic bubbles are characterised by bubble wall velocities approaching the speed
of light, vw ≈ 1. This regime is particularly interesting because the dynamics of the
phase transition and the resulting GW production can be markedly different from those
involving non-relativistic bubbles.

In this regime, the computation simplifies greatly because the interaction of the
plasma with the wall can be described in terms of individual particles colliding with the
wall, rather than through collective hydrodynamic effects. Then, what we generally do
is to set aside the Boltzmann distribution functions for the active species and focus on
solving the EOM for the scalar degrees of freedom undergoing the PT using the effective
potential. The condition for a runaway or non-runaway scenario is determined by the
relation

∆V ≷ P , (1.193)

where P is the total pressure acting on the wall. For sufficiently fast and large bubbles,
compared to their initial radius, the wall shape can be approximated as planar. This
approximation is valid because, at these high velocities, the curvature of the bubble
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becomes negligible over the relevant scales of interaction. Consequently, we can simplify
the problem by considering the bubble wall as an infinitely large plane moving through the
plasma. In this planar wall limit, the computation of the friction force can be organised
by considering the process of a single particle transforming into another (others) as it
passes through the wall.

To be as general as possible, we derive a master equation for P that will be used
throughout this thesis [93]. The pressure exerted on the expanding wall by single parti-
cles hitting it can be understood as the momentum exchanged with the wall during the
interaction, averaged over the phase space18 where such a process can occur, and then
integrated over the flux of the incoming particles. Thus, it reads

P =
∑
i

∫ ∏
A∈i

gA
d3pA
(2π)3

pzA
p0,A

fA(pA)︸ ︷︷ ︸
incoming flux

×
∑
f

∫
dPi→f∆pz︸ ︷︷ ︸
⟨∆pz⟩

, (1.194)

where A represents the particles present in the initial state, the sums run over all possible
initial and final states allowed by the theory. To provide a precise expression for the
differential splitting probability dPi→f , consider a single particle interacting with the
bubble wall. We begin by integrating the improperly normalised momentum-space states

⟨p′|p⟩ = 2p0(2π)3δ3(p − p′) , (1.195)

over a wave packet to construct a properly normalised single particle initial state

|ϕ⟩ ≡
∫ d3p

(2π)32p0ϕ(p)|p⟩ , (1.196)

with the normalisation condition∫ d3p

(2π)32p0 |ϕ(p)|2 = 1 . (1.197)

We label momentum-space states in terms of their incoming symmetric-phase momentum.
Due to the presence of a bubble wall, these states exhibit nontrivial dependence on the
z-direction

⟨r|p⟩ =
√

2p0eip⊥·r⊥χp(z) (scalars), (1.198)

where χp(z) has to be determined by solving the corresponding free particle evolution
equation in the presence of the bubble wall. For spinor or vector fields, χp should be
replaced with the appropriate spinor or vector solution to the Dirac or Yang-Mills equation
in the wall background.

The splitting probability is then given by integrating over the final state phase space
of the squared T −matrix element of the initial state transitioning to the multiparticle
final state

dPi→f ≡
∫ ∏

X∈f

d3pX
(2π)32p0

X

⟨ϕ|T |{pX}⟩⟨{pX}|T |ϕ⟩ , (1.199)

implicitly summing over final state spin and colour indices and where X represents the
particles present in the final state and {pX} the collection of their momenta. Since

18The phase space considered includes the non-conservation of momentum along the z-direction, making
it larger than the Lorentz-invariant phase space.
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the bubble wall is invariant in time and the transverse directions, energy and transverse
momentum are conserved. Therefore, the transition matrix element between momentum
states is

⟨{pX}|T |p⟩ =
∫
d4x⟨{pX}|Hint|p⟩ (1.200)

= (2π)3δ(2)

p⊥ −
∑
X∈f

p⊥,X

 δ
p0 −

∑
x∈f

p0
X

Mi→f . (1.201)

Then the differential probability of the process i → f takes the following form

dPi→f =
∏
X∈f

(
d3pX

(2π)32p0,X

)
(2π)3δ(3)(ptot

i − ptot
f )|Mi→f |2 , (1.202)

where Mi→f is the amplitude of the process taking into account the fact that in the z-
direction, there is a wall background breaking translation symmetry along this direction.
Therefore, it is defined as

Mi→f =
∫
dz V (z)

∏
A∈i

ζ(pA)
∏
X∈f

ζ∗(pX) , (1.203)

where ζ(p) are the eigenmodes describing the incoming/outgoing particles, found by solv-
ing the EOM for the specific particle, while V (z) is the (generally) space-dependent vertex
function.

1.6.1 Review computation for LO and NLO
In this section, we review the computations for the 1 → 1 (LO) and 1 → 2 (NLO)
processes shown in fig. 1.10, as it has been done in the literature [94–99]. We start by
reviewing how the WKB approximation works and what is the form of the eigenmodes of
the particles in such approximation.

WKB approximation

The Wentzel-Kramers-Brillouin (WKB) approximation is a widely used method in quan-
tum mechanics for solving the Schrödinger equation in cases where the potential varies
slowly compared to the wavelength of the particle. This semi-classical approximation
is particularly useful in scenarios where exact solutions to the Schrödinger equation are
difficult or impossible to obtain.

The fundamental idea of the WKB approximation is to express the wave function as
an exponential function whose exponent is expanded in powers of ℏ, the reduced Planck
constant. This leads to an approximate solution that can be interpreted in terms of
classical mechanics with quantum corrections. Outside the wall, far from the bubble wall,
the mode functions are expected to be a superposition of plane waves. These plane waves
are solutions to the Klein-Gordon equation:

χ′′(z) +
(
p2
z(z)
ℏ2

)
χ(z) = 0 . (1.204)

Inside the wall, the situation is more complex due to the spatially varying potential. In
the literature has been proposed the WKB approximation where we express the wave
function χ(z) in the form

χ(z) = e
i
ℏ (S0+ℏS1+ℏ2S2+··· ) , (1.205)
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Figure 1.10: Sketch of the processes 1 → 1 (left) and 1 → 2 (right), also referred to
as LO and NLO processes. In the LO one, a particle changes its mass (and thus its
momentum) as it passes through the wall, while in the NLO, an incoming particle a
approaching the bubble wall radiates a vector boson c, which acquires mass in the Higgs
phase.

and then substituting this expression into the differential equation, matching terms of the
same order in ℏ. This process yields an infinite set of equations that can be solved order
by order in ℏ. To the leading order, the solution is

χ(z) =
√

psz
pz(z)

exp
[
i

ℏ

∫ z

0
dz′ pz(z′) + · · ·

]
. (1.206)

The assumptions underlying the WKB approximation are:

• The potential varies slowly on the scale of the particle’s wavelength, which is quan-
tified by the condition ℏp′′

z/p
2
z ≪ 1.

• The solution can be locally approximated by plane waves whose amplitude and
phase vary slowly compared to the wavelength.

In the context of bubbles in a FOPT, these conditions are typically satisfied as soon
as the bubble walls are thin compared to the characteristic length scales of the phase
transition, but still large enough for the slowly varying potential assumption to hold, and
the scalar field in the vicinity of the bubble wall changes smoothly.

Thus, when the WKB approximation is justified and allows us to simplify the problem
significantly by treating the interaction of the particles with the bubble wall in terms of
quasi-classical particle trajectories.

LO contribution

At leading order (LO), i.e. 1 → 1 process, the computation involves calculating the
momentum transfer from particles hitting the wall and changing their mass. The friction
force at this order is relatively straightforward to compute because it involves only the
direct interactions of particles with the wall. The amplitude for the process, using the
WKB approximation for the eigenmodes, reads

M1→1 = 2p0 , (1.207)

then the average exchanged momentum is

⟨∆pz⟩ =
∫ d3q

(2π)32q0
(2π)3δ(3)(p− q) · 4p2

0 · ∆pz ≃ 2p0 · ∆pz . (1.208)
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From here to get the friction we just need to integrate over the incoming flux

PLO =
∫ d3p

(2π)32p0
· p

z

p0
f(p) · 2p0 · ∆pz (1.209)

= ∆m2

24 T 2
nuc , (1.210)

where ∆m2 = m2
b −m2

s is the difference in mass across the different phases and where we
used that the momentum change is given by

∆pz = pz − qz ≈ p0 −
√
p2

0 − ∆m2 ≈ ∆m2

2p0
, (1.211)

where we assumed the relativistic limit p0 ≫ ∆m and

∫ ∞

0

4πp2dp

(2π)3
1

ep/Tnuc ± 1
∆m2

2p = ∆m2T 2
nuc

24 ×

1 boson
1
2 fermion

, (1.212)

where Tnuc is the nucleation temperature. Thus, extending to a general particle content,
we obtain

PLO =
∑
i

nici
24

(
m2
i (TV) −m2

i (FV)
)
T 2

nuc , (1.213)

where i runs over all the particles present in the thermal plasma, ni is the number of
d.o.f.s of the particle i, ci = 1(1/2) for bosons(fermions) while m2

i (TV,FV) are the tree
level field dependent masses computed at the true (false) vacuum.

NLO contribution

For next-to-leading order (NLO) computation, the process is commonly referred to as
transition radiation19, i.e. the splitting of a particle passing through the wall. This
introduces additional complexity as one must account for the particles not only interacting
with the wall but also emitting radiation. We will see that the NLO friction can be
significantly higher than the LO friction, especially when emitting a gauge boson.

For a general splitting 1 → 2 it is convenient to parameterise the kinematics of the
particles’ momenta in the following way

pµ =
(
p0, 0, 0,

√
p2

0 −ma(z)2
)
, (1.214)

qµ =
(

(1 − x)p0,−k⊥, 0,
√

(1 − x)2p2
0 −mb(z)2 − k2

⊥

)
, (1.215)

kµ =
(
xp0, k⊥,

√
x2p2

0 −mc(z)2 − k2
⊥

)
, (1.216)

where we defined x = k0/p0 and we already used the conservation of energy p0 = q0 + k0.
Moreover, mi(z) are the masses of the three particles involved in the vertex as a function

19Transition radiation occurs when a charged particle crosses the boundary between two different
media with varying electromagnetic properties. The sudden change in velocity of the particle as it moves
from one medium to another results in the emission of radiation due to the disruption of the particle’s
electromagnetic field. The energy and frequency of the emitted radiation depend on the properties of the
media and the energy of the charged particle.
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of z, and k⊥ = |k⊥|. The mass change through the wall will be approximated as a sudden
step

mi(z) = mi,s θ(−z) +mi,b θ(z) . (1.217)

Imposing the reality of qz and kz alongside the conservation of energy, 0 < x < 1, we get
the explicit shape of the allowed phase space, that is√

k2
⊥ +mc(z)2

p0
≤ x ≤ 1 −

√
k2

⊥ +mb(z)2

p0
, (1.218)

0 ≤ k2
⊥ ≤ p2

0
4 − mb(z)2 +mc(z)2

2 + (mb(z)2 −mc(z)2)2

4p2
0

. (1.219)

Now, one last ingredient that is missing is the amplitude of the process a → bc, which
reads

M ≡
∫
dz χp(z)V (z)χ∗

q(z)χ∗
k(z) , (1.220)

where χp, χq, and χk are the particles’ wave functions, and V (z) is the vertex function.
The product of three wave functions in the 1 → 2 splitting is given by

χp(z)χ∗
q(z)χ∗

k(z) ∼ exp
[∫ z

z0

(
m2
a

2p0
− m2

b + k2
⊥

2k0
− m2

c + k2
⊥

2k0

)
dz′
]
. (1.221)

Then, the matrix element is expressed as:

M = Vs

∫ 0

−∞
exp

[
iz
As
p0

]
dz + Vh

∫ ∞

0
exp

[
iz
Ah
p0

]
dz = 2ip0

(
Vh
Ah

− Vs
As

)
, (1.222)

where

A = m2
a − m2

b

x
− m2

c

1 − x
− k2

⊥
x(1 − x) , (1.223)

and s(h) refers to the symmetric (higgsed) phase. The squared matrix element becomes

|M|2 = 4p2
0

∣∣∣∣ VbAb − Vs
As

∣∣∣∣2 . (1.224)

It has been emphasised in [95] that among all the possible emissions the one contributing
the most to the pressure at high energies p0 involves the emission of a (transverse) vector
boson X(p) → X(q) + AT (k), where AT represents a transversely polarised vector boson
and X can be a fermion, scalar, or a boson. For the case of a trilinear interaction involving
a vector boson, we report a brief derivation here, while for all the rest we refer to [95, 96].
The interaction we have in mind is present in the scalar-QED theory, with a complex
scalar field charged under a local U(1), where the Lagrangian contains

L ⊃ −ig(ϕ†∂µϕ− ϕ∂µϕ
†)Aµ , (1.225)

producing a vertex function as follows

iV± = g(pµ + qµ)ϵµ±(k) , (1.226)
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where ϵ± refers to the two polarisations for the transverse modes20 and where the ver-
tex function remains independent of phase (both Vb and Vs are identical) and squaring,
contracting and summing over initial and final spins can be expressed as

|V |2 = 4g2k
2
⊥
x2 , (1.229)

where g denotes the gauge coupling constant. Then, the amplitude takes the form

|M|2 ≈ 16g2p2
0

m4
V

k2
⊥(k2

⊥ +m2
V )2 , (1.230)

where mV = mc,h and mc,s = 0. Finally, we have all the ingredients to compute the
friction from the process ϕ → ϕ+ AT

PNLO =
∫ d3p

(2π)3(4p0q0)
f(p)

∫ d3k

(2π)32k0
· |M|2 · (pz − qz − kz) (1.231)

≈
∫ d3p

(2π)34p2
0
f(p)

∫ dx

2x

∫ πdk2
⊥

(2π)3 · 16g2p2
0m

4
V

k2
⊥(k2

⊥ +m2
V )2 · k

2
⊥ +m2

V

2xp0
(1.232)

≈
∫ d3p

(2π)32p0
f(p) · mV p0

2π2 log
(
mV

gT

)
, (1.233)

where in the previous steps we integrated over the allowed PS and the integral over k⊥,
being divergent, has been regularised by cutting the integration at kmin

⊥ ∼ gT , being the
minimal value of the transverse momenta is cut in the IR. This has been done since we
cannot trust our QFT at zero temperature for momenta lower than the typical momentum
of the plasma particles in equilibrium, due to the screening of the long wavelength modes
by the temperature effects and a proper treatment at finite temperature is needed. We
can, then, schematically say that

PNLO ∼ g2

2π2mV γwT
3
nuc . (1.234)

We can observe that the pressure is primarily affected by the emission of soft vector
bosons, resulting in the characteristic γw enhancement.

In summary, if the plasma does not exert sufficient friction on the bubble wall to
halt its acceleration, the wall will continue to accelerate, reaching high γ factors. At
leading order, the backward friction exerted by the medium on the bubble wall scales
as P1→1 ∼ m2T 2, which attains a finite limit at large γ. The pressure driving the wall
forward is generally of the same order, but it can be numerically larger, leading to a
scenario where γ increases indefinitely, suggesting a potential "runaway" situation.

However, at the next order, transition radiation of wall-frame soft, massive vector
bosons introduces an additional friction term, P1→2 ∼ γg2mT 3. This term increases
linearly with γ, thereby limiting the γ-factor of the wall and preventing an actual runaway.

20Starting from the functional form of kµ in order to find the polarisation vectors we need to solve the
system of equations

ϵ(k) · k = 0 , ϵ∗(k) · ϵ(k) = −1 , (1.227)

so that they take the following form, as found in ref. [96]

ϵ±(k) = 1√
2 − 2µ2

c

(
0,
√

1 − µ2
c − θ2,±i

√
1 − µ2

c ,−θ
)

≃ 1√
2

(0, 1,±i,−θ) , (1.228)

where θ ≡ k⊥
xEa

is the emission angle and µc ≡ mc

xEa
is the mass fraction.
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1.7 Summary and outlook
A FOPT proceeds through the nucleation and subsequent expansion of bubbles of the new
phase, driven by the free-energy density difference, ∆V , between phases. If friction from
the surrounding matter can be ignored, the bubble wall interpolating between the two
phases will continue to expand with constant proper acceleration until the bubbles collide.
In this scenario, most of the vacuum energy released is converted into the kinetic energy of
the walls, a situation known as runaway. Conversely, if friction causes a pressure P that
equilibrates the driving force P ≃ ∆V , the bubble wall reaches a constant subluminal
terminal velocity, and energy is efficiently transferred to the medium.

The bubble velocity and the realisation of either regime critically affect the phe-
nomenological consequences, such as the strength and spectral shape of the stochastic
GW signal. Therefore, understanding the dynamics of an expanding domain wall in a
medium is essential21. Analysing bubble-medium interactions is complex and remains an
active area of research [74, 75, 77, 78, 94–96, 99–113]. Friction is generally a complex
function of bubble velocity vw and the surrounding degrees of freedom (d.o.f.). However,
a distinction can be made between the low vw regime, where a fluid description is ap-
propriate, and the ultra-relativistic regime, γw ≡ 1/

√
1 − v2

w ≫ LwΓint., where Lw is the
wall thickness in its rest frame and Γint. is the interaction rate between particles in the
medium [114]. The third chapter focuses on the latter regime, where the wall interacts
with individual particles.

A particle hitting the wall from the old phase can undergo several processes, organised
as a perturbative expansion in the theory’s couplings defined in the wall’s background.
The spontaneous breaking of translation symmetry means momentum perpendicular to
the wall is no longer conserved. The average momentum lost ⟨∆p⟩ times the flux of incom-
ing particles yields the pressure opposing the bubble’s expansion. It is most convenient
to work in the wall’s rest frame.

At leading order, incoming particles either cross the wall or reflect. When reflections
are neglected22, we find:

PLO
γw→∞ ≃ (γwnvw)⟨∆p⟩ ≃ (γwnvw) ∆m2

2⟨p0⟩
, (1.235)

where ⟨p0⟩ ∝ γwT is the boosted energy of the incoming particle in the wall frame, ∆m ≡√
m̃2 −m2 is the mass change between phases, and n is the number density in the plasma

frame. This LO pressure is independent of γw and scales like ∝ T 2ṽ2 in the case of a
thermal bath, where ṽ is the vacuum expectation value in the broken phase23 [94, 106].

Later, the same authors analysed the next-to-leading order 1 → 2 processes in the
same ultra-relativistic regime. Despite the cost of the coupling, they found that the emis-
sion of soft vector bosons gaining mass during the transition leads to a friction pressure
scaling like PNLO ∝ γw [95], which eventually dominates over the LO effect. This soft
emission is known as transition radiation. While [95] focused on particles emitted forward
into the wall, [96, 115] also considered reflected emission and argued it was larger by a
factor of four.

21In this thesis, we refer to any bubble wall interpolating between different phases of a theory in the
planar limit as a domain wall, otherwise stated

22Reflections can be important and even dominant for intermediate relativistic γw [79].
23This leads to the so-called Bodeker-Moore (BM) criterion, PLO < ∆V , for the wall to become

relativistic. Assuming pressure monotonically increases with γw, the BM criterion was used as a rough
runaway condition.
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Subsequent studies only considered the emission of transverse vector polarisations,
ignoring the effects of longitudinal ones. Analysing these modes is complicated by the
rearrangement of particle d.o.f. across a gauge symmetry-breaking transition [116], partic-
ularly in the case of greatest interest. Moreover, amplitudes involving Nambu-Goldstone
bosons (NGBs) can produce spurious divergences without proper care. Recently, it was
shown that LO effects from longitudinal modes significantly impact pressure [79]. Thus,
it becomes essential to properly account for their contribution at NLO. Additionally,
frequent reliance on WKB approximations, which break down for the soft momenta dom-
inating the emission phase space, weakens previous treatments.

1.7.1 Thesis structure
In this thesis, we will tackle all these features regarding cosmological FOPTs from different
perspectives. In the next chapter, we analyse phase transitions in the minimal extension
of the SM with a real singlet scalar field. The novelty of our study is that we identify and
analyse in detail the region of parameter space where the FOPT can occur, particularly
where the bubbles of true vacuum can reach relativistic velocities. The aim is to investigate
how much fine-tuning is needed to have ultrarelativistic expanding bubbles. Moreover,
this region is interesting as it can lead to the newly discussed baryogenesis and dark
matter production mechanisms [97, 98].

After this study, we will come back to the weaknesses presented above in the com-
putation of the friction in such ultrarelativistic limit. We will approach the calculation of
transition radiation by quantising field theories in the translation-breaking background of
a domain wall from first principles. We construct a complete orthonormal basis of ’left’
and ’right’ mover energy eigenstates24, each wave mode having ’reflected’ and ’transmit-
ted’ parts. We then relate these to in and out asymptotic eigenstates of four-momentum
in the S-matrix language. In the case of vectors, the degrees of freedom across the wall are
best described in terms of ’wall polarisations’ τ and λ, as noted in [116]. The advantage
is that τ1,2 and λ are not mixed with each other in the presence of the domain wall. The
two sets coincide only for zero transverse momentum k⊥ = 0 (normal incidence on the
wall), where rotations around the direction of propagation are symmetric25. Additionally,
in the case of gauge symmetry breaking, λ smoothly transitions from a Higgs d.o.f. on
the symmetric side to a third massive vector d.o.f. on the broken side. We demonstrate
how to perform calculations using this basis consistently and avoid the divergences that
appear in a naive analysis.

In the fourth chapter, we analyse for the first time friction pressure on relativistic
walls in phase transitions where gauge symmetry is restored, particularly motivated by the
observation that this pressure can, in principle, be negative at leading order, since some
particles lose mass by definition as they cross into the new phase. We find, however, that
at NLO, the soft emission of vectors from a charged current leads to positive pressure
scaling as the wall’s Lorentz boost factor γw, similar to the case of gauge symmetry
breaking. Contrary to the latter case, we find that the dominant contribution in single
emission is safe from IR divergences and exhibits a much stronger dependence on the wall
shape. Finally, we argue that in any phase transition, no multi-particle process on the

24Throughout this chapter, ’right-moving’ denotes positive z-momentum particles and ’left-moving’
denotes negative z-momentum particles.

25Starting from k⊥ = 0, the general τ and λ polarisation vectors can be obtained by general transverse
Lorentz boosts, a good symmetry of the theory. Thus orthogonality is obvious. In general, they are
also distinguished by whether in unitary gauge the z-component of the vector Aµ is zero or not. See
section 3.2.2.
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wall can impart negative pressure greater than the leading order result, in the asymptotic
limit of large velocity.

In the fifth and last chapter, we will present a different perspective on the friction
acting on the bubble walls, i.e. from a hydrodynamic point of view. We will also extend
the treatment at what we will define to be inverse PTs.
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Chapter 2

Ultrarelativistic bubbles and some
cosmological consequences

As mentioned earlier, this chapter will focus on the study of ultrarelativistic FOPTs and
the degree of fine-tuning required to achieve such rapidly expanding bubbles. Among the
many motivations for exploring this intriguing question, the origins of dark matter (DM)
and the matter–antimatter asymmetry remain some of the most significant unresolved
puzzles in early Universe cosmology. We will also investigate in detail the novel mech-
anisms proposed in [97, 98, 117] for DM production and baryon asymmetry generation
during FOPTs.

FOPTs are known to be particularly useful for constructing baryogenesis models since
they inherently satisfy the out-of-equilibrium condition required by one of Sakharov’s
criteria [118]. Applications of this mechanism to the electroweak phase transition have led
to the seminal scenarios of electroweak baryogenesis [119, 120]. In the SM, the EWPT is
expected to be a smooth crossover [121, 122]. However, this is not the case for various BSM
frameworks, where successful scenarios of electroweak baryogenesis can be constructed
(for a recent review, see [123]). The connection between DM and phase transitions is less
direct, but there are classes of models where these two phenomena are strongly related
(see, for example, [124–145]).

The focus of this chapter will be EWFOPT with very relativistic bubbles. In this con-
text, collision between bubbles and particles in the plasma, as was shown recently [115],
can lead to the production of new states with mass scale significantly larger than the
scale of the phase transition1. These heavy states can serve as DM candidates [97] or
their production and subsequent decay [98, 117], if accompanied with C, CP and baryon
number violating interactions can lead to baryon asymmetry generation. The success-
ful realisation of this scenario requires bubble expansion with ultra-relativistic velocities.
Such bubble wall motion is known to be possible and is expected within certain classes of
the potentials ([33, 62, 107, 147, 148]). However, in the case of electroweak phase tran-
sition, the requirement of ultra-relativistic velocities leads to very non-trivial constraints
on the effective potential. In this chapter, we analyze in detail the simplest extension of
the SM that can lead to a FOPT: real singlet scalar field. There have been numerous
studies of phase transition in this type of scenario [149–161]. The Lagrangian can be
restricted further by considering Z2 [162] or Z3 symmetries [163, 164]. Interestingly such
a real singlet scalar field can appear in composite Higgs models [165] (see also [166–168]
for studies pertaining to phase transition). However, most of the above mentioned works

1Note that this effect is different from the mechanism presented in [139, 146] where the heavy fields
are produced by the collisions between different bubble walls.
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did not analyze in detail the region of parameter space with relativistic bubbles since slow
bubble wall velocities are preferred [119, 120] for the usual electroweak baryogenesis. We
fill this gap by analysing in detail phase transitions in the real singlet extension of SM
with an approximate Z2 discrete symmetry, focusing on the parameter space which results
in very fast bubble expansions.

This will permit us to evaluate the region of parameter space where Baryogenesis via
relativistic bubble walls is viable and to put constraints on the mass scale of the dark
sector responsible for CP and B violation. Implications for non-thermal DM production
from bubble wall plasma particle collisions will also be considered.

The chapter is organised as follows: in section 2.1, we review the singlet extension
of the SM and write the two field potential with thermal corrections. In section 2.2,
we present the computation of the terminal velocity of the bubble wall in the ultra-
relativistic regime, for the generic case and for SM. In section 2.3, we qualitatively discuss
the different patterns of phase transitions and argue that only a two-steps PT can yield
ultra-relativistic bubble wall motion. In section 2.4 we present a numerical study of
the two-step PT analysing in detail the region with fast bubble motion. In section 2.5,
we draw the consequences of our previous results for the production of heavy DM and
Baryogenesis and in section 2.6, we comment on the GW signal induced by such strong
transitions. Finally, in section 5.5, we summarise and conclude.

2.1 Review of the singlet extension of the SM
Let us start by reviewing the effective potential of the SM with a real scalar field (s). The
scalar potential will be given by

V (H, s) = −m2
h

2 (H†H) + λ(H†H)2 − m2
s

4 s2 + λhs
2 s2(H†H) + λs

4 s
4 , (2.1)

where H is the SM Higgs doublet and mh ≈ 125 GeV is the physical mass of the Higgs.
For simplicity, we will impose Z2 symmetry on the potential to avoid the terms with odd
powers of s field. As a result, when ⟨s⟩ = 0, we avoid any scalar mixing terms which are
constrained by the recent Higgs signal strength measurements [169]. The Higgs doublet
can be decomposed as usual

HT =
(
G+,

h+ iG0
√

2

)
, (2.2)

where h is the usual Higgs boson getting a vev which is given by vEW =
√
m2
h/2λ ≈ 246

GeV if ⟨s⟩ ≡ vs = 0.

2.1.1 Coleman–Weinberg potential
Next, we take into account 1-loop corrections which are encapsulated by the Coleman-
Weinberg (CW) potential [9]

VCW =
∑

i=Z,h,W,t

ni(−1)F
64π2

[
M4

i

(
log M

2
i

M2
i0

− 3
2

)
+ 2M2

iM
2
i0

]
. (2.3)

In this expression, Mi stands for the masses depending on the Higgs and singlet fields val-
ues, Mi ≡ Mi(h, s), and Mi0 are the field values from the tree-level vev, Mi0 ≡ Mi(vEW , 0).
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Then one can easily check that this potential corresponds to the following renormalisation
conditions

Veff = V0 + VCW ,

dVeff

dh

∣∣∣∣∣
(h,s)=(vEW ,0)

= 0, d2Veff

dh2

∣∣∣∣∣
(h,s)=(vEW ,0)

= m2
h . (2.4)

eq.(2.3) cannot be used directly for contributions of the Goldstone bosons, since their
masses vanish in the true vacuum and the CW potential is IR divergent. However, the
solution to this issue was suggested in ref. [21] which emphasised that the physical Higgs
mass is defined at p2 = m2

h and the effective potential at p2 = 0 (see for details ref. [21]).
Thus it would be better to use a modified renormalisation condition

d2Veff

dh2

∣∣∣∣∣
(h,s)=(vEW ,0)

= m2
h − Σ

(
p2 = m2

h

)
+ Σ (0) , (2.5)

where the differences in self-energies are taking into account the running of self-energy
from p2 = 0 to p2 = m2

h. In this case, the IR divergences in Σ(0) due to the virtual
Goldstone bosons are cancelled against the IR divergences of Veff . In practice, at the end
of this renormalisation procedure, the contribution of the Goldstone bosons is given by

V GB
CW (h) =

∑
i=G

nG
64π2M

4
G±,0(h)

[
log M

2
G

m2
h

− 3
2

]
. (2.6)

The number of d.o.f, masses of various particles and the scalar mass matrix as a functions
of h, s are given by

nW± = 6, nZ = 3, nG±,0 = 3, nt = 12 ,

M2
W±(h) = g2h2

4 , M2
Z(h) = g2 + g′2

4 h2, M2
G±,0(h) = −m2

h

2 + λh2+λhss2, M2
t (h) = y2

t h
2

2 ,

M2(h, s) =
3λh2 + λhs

2 s
2 − m2

h

2 λhssh

λhssh 3λss2 + λhs
2 h

2 − m2
s

2

 . (2.7)

As a side remark, in the region where the Higgs h → 0 and s ∼ O(vEW ), there will
be two scales involved in the problem: the value of the singlet field s and the masses of
the SM particles MW,Z,t(h → 0, s) → 0 ≪ s. This type of two scale potential has been
studied in the past [170], by using two different renormalisation scales. It was concluded
that resummation is needed when the log (Mi(0, s)/s) is large enough to cancel the loop
suppression. Although we have two largely separated scales, we have checked that for our
region of the parameter space, such a resummation is not necessary.

2.1.2 Finite temperature potential
The temperature and the density effects can be taken into account by complementing the
zero temperature potential with thermal corrections (see for example [6, 14]),

V (T,Mi) = V T=0
eff (Mi) + VT (Mi) . (2.8)
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In eq.(2.8), V T=0
eff (Mi) is the potential we computed in the previous subsection and the

thermal potential VT (Mi) is given by

VT (Mi(h, s)) =
∑
i∈B

ni
2π2T

4JB

(
M2

i (h, s)
T 2

)
−
∑
i∈F

ni
2π2T

4JF

(
M2

i (h, s)
T 2

)
,

JB/F (y2) =
∞∫

0

dx x2 log
[
1 ∓ exp (−

√
x2 + y2)

]
. (2.9)

However, to save computation time, we use the approximate expansion of the function
JB/F (y2) as given in ref. [14]:

JB(y2) =


−π4

45 + π2

12y
2 − π

6 y
3 − y4

32 log
[

y2

16π2 exp[3/2 − 2γ]

]
, y2 ≪ 1 ,

−
m>3∑
n=1

1
n2y

2K2(yn) , y2 ≫ 1 ,

JF (y2) =


7π4

360 − π2

24y
2 − y4

32 log
[

y2

π2 exp[3/2 − 2γ]

]
, y2 ≪ 1 ,

−
m>3∑
n=1

(−1)n
n2 y2K2(yn) , y2 ≫ 1 .

(2.10)

where γ ≈ 0.577 is the Euler constant, and K2(z) are the second-kind Bessel function.
To account for dangerously divergent higher loops due to the Daisy diagrams at finite
temperature, we follow the so-called “Truncated-Full-Dressing" procedure [14]2. Doing
so, the full one-loop potential becomes

V (h, s, T ) = Vtree(h, s) +∑
i

[
VCW

(
M2

i (h, s) + Πi(h, T )
)

+ VT

(
M2

i (h, s) + Πi(h, T )
)]
, (2.11)

where Πi(T ) are the thermal masses of various degrees of freedom. In the real singlet
extension of the SM [14], the expressions of the thermal masses read

Scalar: Πh(T ) = T 2
(

3g2

16 + g′2

16 + λ

2 + y2
t

4 + λhs
24

)
, Πs(T ) = T 2

(
λhs
6 + λs

4

)
,

(2.12)

Gauge: ΠL
g (T ) = T 2diag

(
11
6 g

2,
11
6 (g2 + g′2)

)
, ΠT

g (T ) = 0 , (2.13)

where ΠL
g (T ) denote the thermal mass of the longitudinal mode of the gauge bosons, while

transverse modes ΠT
g (T ) are protected by gauge invariance and thus do not receive a mass

at leading order in perturbation theory.

2.2 Velocity of the EW bubbles
After having introduced all the necessary concepts and ingredients to quantitatively study
the FOPTs, like in section 1.3 and section 1.4, let us proceed to the computation of the

2Recently for the singlet scalar extensions of the SM have been proposed more sophisticated method for
computing the thermal potential with two loop dimensional reduction to the three dimensional effective
field theory see [171, 172].
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bubble wall velocity vw. The dynamics of the bubble wall motion is controlled by the
driving force due to the potential differences between the false and true vacuum

∆V ≡ Vfalse − Vtrue , (2.14)

and the friction due to finite temperature effects. As already stated in the previous
chapter, the calculation of the friction is generically a very complicated problem, however
for the ultra-relativistic bubble motion at leading order (LO - tree level) very simple
expressions have been obtained [94, 106] for the pressure force from friction,

∆PLO ≃
∑
i

gici
∆M2

i

24 T 2
nuc , (2.15)

where ∆M2
i is the change in the mass of the particle i during the PT, ci = 1 (1/2) for

bosons (fermions) and gi is the number of d.o.f of the incoming particle. eq.(2.15) assumes
that the masses of the particles outside of the bubble are less than the temperature,
otherwise, the friction will have an additional Boltzmann suppression ∝ exp[−Mfalse/T ].
Interestingly the production of heavy particles can also contribute to the friction at the
same order [115]

∆Pmixing
LO ∝ v2T 2Θ(γwTnuc −M2

heavy/v) , (2.16)

where v is the vev of the Higgs field and we review the heavy particle production later in
the section 2.5.1. One can see that the friction (pressure from plasma on the bubble wall)
becomes velocity independent so that permanent accelerating (runaway) behaviour of the
bubble expansion becomes possible. However, for theories where the gauge bosons receive
a mass during the phase transition, this is not the case and the effect with multiple gauge
boson emissions, leads to the additional contribution (NLO) to the pressure which scales
as [95, 96, 115, 134]

∆PNLO ∝
∑
a

gag
3
gaugeγwT

3
nucv . (2.17)

At this point, we can see that bubbles will keep accelerating till the moment when NLO
friction becomes large enough to balance the driving force

∆V = ∆PLO + ∆Pmixing
LO + ∆PNLO , (2.18)

which will set the γterminal
w the bubble can reach,

γterminal
w ∼

(
∆V − ∆PLO − ∆Pmixing

LO
T 3

nucv

)
. (2.19)

Note that we can be as well in the situation where the percolation (bubble collision) starts
before the terminal γterminal

w is reached.

2.2.1 Friction forces during the electroweak phase transitions
Let us apply the discussion of the previous section to the EWPT. Our main interest will
be the possibility of heavy particle production which can later source baryogenesis and
DM production following the ideas in [97, 98, 115, 117]. The heavy particle production
(see also the discussion in section 2.5.1) happens due to the collision between the plasma
particles and the bubble wall. The typical centre of mass energy for such a process will

69



be roughly ∼
√
γwTvEW , thus γw will be controlling the maximal mass of the new fields

that can be produced. To calculate γw in the context of the EWPT, we need to know the
forces acting on the bubble wall.

The LO friction from the top, Z, and W takes the form

∆PSM
LO ≈ T 2

nucv
2
EW

(
y2
t

8 + g2 + g′2

32 + g2

16

)
≈ 0.17 T 2

nucv
2
EW . (2.20)

There is also a contribution to the LO friction from the singlet and Higgs scalars, however,
it depends on the masses of these fields in the false vacuum and we find it to be numerically
subleading compared to the estimate in eq.(2.20)3. In our numerical calculation we took
this additional contribution into account, however, for the current discussion it is sufficient
to use eq.(2.20). This gives a rough condition on the nucleation temperature for the
transition to become ultra-relativistic

∆V > 0.17 T 2
nucv

2
EW (relativistic wall condition). (2.21)

The computation of the NLO friction in the SM has been carried out in [96] and the
following approximate expression has been derived:

∆PSM
NLO ≈

[∑
abc

νagaβcCabc

]
κζ(3)
π3 αMZ(vEW )γw log MZ(vEW )

µ
T 3

nuc , (2.22)

where νa = 1(3/4) for a a boson (fermion), ga is the number of degrees of freedom of a and
Mg,i(vEW ) is the mass of the gauge boson inside the bubble. Cabc represents the coupling
which appears in the vertex (see appendix 2.C), βc=Z0 = 1, and βc=W± = cos θW =
MW/MZ , α = e2(vEW )/4π ∼ 1/128 is the electromagnetic fine structure constant. The
renormalisation scale µ has to be understood as the lower cut-off for the integration
over soft momentum, typically the thermal mass µ ∝ α

1/2
i Tnuc [115]. The κ factor is

introduced [96] to account for the contributions of both reflected and transmitted bosons
and is approximately equal to κ ∼ 4. The sum in the square brackets is approximately
equal to [∑

abc

νagaβcCabc

]
≈ 157 , (2.23)

see appendix 2.C for details. At this point, we can compute the terminal wall velocity by
balancing the pressure against the driving force

∆V − ∆PSM
LO = ∆PSM

NLO(γw = γterminal
w ) (Terminal velocity criterion) (2.24)

⇒ γterminal ∼ 6 ×
(

∆V − ∆PSM
LO

(100 GeV)4

)(
100GeV
Tnuc

)3 1
log Mz

gT

. (2.25)

Taking into account that (∆V − ∆PLO) /(100 GeV)4 ≲ O(1), we can see that the bubbles
will become ultra-relativistic, i.e. γterminal ≫ 1 only if Tnuc is significantly lower than the
scale of the phase transition ∼ 100 GeV.

3These contributions are smaller due to the number of d.o.f. and possible Boltzmann suppression
factors ∝ exp[−Mfalse/T ].
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2.3 Phase transition in the singlet extension
After the preparatory discussion in the previous sections 2.1 and 2.2, we can proceed to
the analysis of phase transition in the model with the singlet field, eq.(2.1). Our analysis
will be focused on the region of parameter space with relativistic bubble expansion, for
other studies of phase transition in SM plus Z2 real singlet scalar, see Refs. [162, 173–175].

In the previous section 2.2, we have seen that the velocity of the bubble expansion
is fixed by the balance between the friction from the plasma and the driving force. At
low temperatures the friction is suppressed (see eq.(2.20)-(2.22)) so that we expect the
bubbles to become relativistic (large Lorentz γterminal

w factor).
Let us check whether low nucleation temperatures are feasible in the singlet exten-

sion. We will assume that Z2 remains unbroken in the true vacuum in order to avoid to
constraints from the Higgs-scalar mixing (see for example [176]). Then in the model with
Z2 odd singlet, the phase transition can occur in two ways: one-step (⟨h⟩ = 0, ⟨s⟩ = 0) →
(vEW , 0) and two-steps4 (⟨h⟩ = 0, ⟨s⟩ = 0) → (0, ⟨s⟩|̸=0) → (vEW , 0) [157, 162, 174], and
each of these phase transitions can be first or the second order. We review both of these
scenarios of phase transitions in order to understand in what case it is possible to obtain
relativistic bubbles.

2.3.1 One-step phase transition
This case has been largely studied in the literature [162, 174] and we will not provide
a complete description of it. In this scenario, the singlet never gets a vev, and all of
its effects reduce to the additional contributions to the Higgs potential from Coleman-
Weinberg terms and thermal corrections. However, it turns out that relativistic bubbles
are very unlikely for such phase transitions (see also results in [162]). In the limit when
|ms| ≪ Tc we can show analytically that this is indeed the case. Near the origin h → 0,
the potential in h direction is dominated by the ∝ h2 terms

Vdominant(h → 0, s = 0, T ) = m2
eff(T )
2 h2 + . . . . (2.26)

The effective mass m2
eff include the tree-level terms and the leading thermal contributions

and is approximately equal to

m2
eff(T ) ≃ −m2

h + T 2
(
m2
h

4v2
EW

+ y2
t

4 + g2 + g′2

16 + g2

8 + λhs
24

)
> 0 . (2.27)

The FOPT can happen only if m2
eff(T ) > 0. Then assuming perturbative values of the

coupling λhs we can estimate the lowest temperature where the FOPT can occur to be
T nuc

min ≳ 100 GeV. Comparing this value with the discussion in the section 2.2.1 we can see
that the bubble wall velocities will always satisfy γw ≲ 10. As mentioned before, we are
interested in the expansions with much larger γw factors, so that we do not discuss one
step phase transition further.

2.3.2 Two step FOPT with relativistic bubbles
Two-steps realisations of the EWPT have already been studied in many works, see for
example [157, 162, 174, 177–181]. The novelty of our study is that we will be focusing

4We will see later that at temperatures T ≪ Tc Coleman-Weinberg potential can shift a little bit the
false vacuum position to (δvh, vs) where δvh ≪ vs, vh.
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on the parameter space with relativistic bubbles which was previously ignored. We or-
ganise the discussion as follows: In section 2.3.2, we show qualitative results based on
the approximate treatment of the potential and then in section 2.4 we present the exact
numerical results obtained with our code. The two step phase transition

(0, 0) → (0, ⟨s⟩) → (vEW , 0) , (2.28)

can happen if the m2
s parameter of eq.(2.1) is positive. In this case, it is convenient to

parameterise the Lagrangian in the following way

Vtree(h, s) = −m2
h

4 h2 + m2
h

8v2
EW

h4 − m2
s

4 s2 + λhs
4 s2h2 + m2

s

8v2
s

s4 . (2.29)

where vEW =
√
m2
h/2λ GeV and vs =

√
m2
s/2λs correspond to the local minima at (⟨h⟩ =

vEW , ⟨s⟩ = 0) and (⟨h⟩ = 0, ⟨s⟩ = vs) respectively. The origin of two-step PT can be
intuitively understood from the following considerations. For simplicity let us ignore the
Coleman-Weinberg potential and restrict the discussion by considering only the thermal
masses. Then the potential will be given by

V (H, s) ≈ Vtree(H, s) + T 2

24

 ∑
bosons

niM
2
i (H, s)) + 1

2
∑

fermions

nFM
2
F (H, s)

 ,

= Vtree(H, s)

+ T 2
[
h2
(
g′2

32 + 3g2

32 + m2
h

8v2
EW

+ y2
t

8 + λhs
48

)
+ s2

(
m2
s

16v2
s

+ λhs
12

)]
.

(2.30)

From this expression, we can clearly see that the temperatures when the minima with non
zero vevs appear for the Higgs and singlet fields can be different. Then it can happen that
the Z2 breaking phase transition occurs before the EW one. This means that there will
be first a phase transition from (0, 0) → (0, vs). After this phase transition, the Universe
keeps cooling down and the minimum with ⟨h⟩ ≠ 0 will be generated. By choosing the
appropriate values of masses and couplings we can make sure that the minimum with
(vEW , 0) is the true minimum of the system. The transition (0, vs) → (vEW , 0) will be of
the first order if there is a potential barrier between the two minima. One of the necessary
condition in this case will be ∂2V/∂h2|s=vs,h→0 > 0, which using eq.(2.30) we get

−m2
h

4 + λhsv
2
s

4 + T 2
(
g′2

32 + 3g2

32 + m2
h

8v2 + y2
t

8 + λhs
48

)
> 0 . (2.31)

From this discussion, we can see that there are qualitatively two different cases depend-
ing on whether the potential barrier between two minima remains or disappears at zero
temperature, i.e. when m2

h ≷ λhsv
2
s . In the first case, the phase transition will necessarily

happen before the “No Barrier"(NB) temperature

TNB =
√√√√ m2

h − λhsv2
s

g′2

8 + 3g2

8 + m2
h

2v2 + y2
t

2 + λhs
12

∼
vs

√
−λhs +

(
mh
vs

)2

0.8 , (2.32)

since the bounce action drops once the potential barrier between two minima reduces.
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In the other case, when the barrier remains even for zero temperature potential,
the phase transition is obviously of the first order. However, it might happen that the
tunnelling rate is too slow and the system remains stuck in the false vacuum.

From eq.(2.31) we can see that the size of the potential barrier between the two
minima is controlled by the coupling λhs. Increasing this parameter will enhance the
potential barrier and will lead to the reduction of TNB so that (vs, 0) remains a local
minimum even at zero temperature. At some point we expect the potential barrier to
become so large that the system will remain trapped in the false vacuum forever. From this
discussion, we can expect that the lowest temperatures will be achieved at the boundary
of the region where no PT can occur. The lowest temperature will correspond to the
(global) minimum of S3/T controlling the tunnelling rate, as explained later in section
2.4. If this minimum happens at temperatures much lower than Tcrit, then there will be
super-cooling (Tnuc ≪ Tcrit). Even though this discussion was made by considering only
the thermal masses in the potential, numerically we find that for the effective potential
with truncated full dressing [14] the qualitative behaviour does not change, and only
explicit conditions for m2

h and T nuc
min are modified.

At last, we always check whether the condition for the EWSB minimum to be the
global minimum at zero temperature is satisfied:

m2
sv

2
s < m2

hv
2
EW (EWSB is global minimum) , (2.33)

where the above equation is valid up to small loop-level corrections.

2.4 Numerical results
After the qualitative discussion, let us proceed to the numerical calculations. The bounce
action for (0, vs) → (vEW , 0) was computed using our own dedicated code (cross checked
against FindBounce [182]) and we relegate the details and methods of this calculation
to Appendix 2.A. We parameterise our model in terms of (ms, λhs, vs) parameters (see
eq.(2.29)). Instead of analysing all the possible values of ms, in this section we report the
results (see fig.2.1 left panel) by fixing ms = 125 GeV (there is no particular reason for
this value of ms and the results for the other values of ms are similar and are shown in the
appendix 2.B). In the plane (see fig.2.1) vs − λhs, we identify four regions with different
behaviours under the phase transition. The blue region shows second order transition
when there is no barrier between the two separated vacuum. Next to it there is a light
red region where the transition is of the first order. We indicate separately (dark red)
the region, where the transition is of the first order and the bubbles are relativistic. In
particular, the boundary between the regions with relativistic and non-relativistic bub-
bles is defined by the criteria of eq.(2.21), i.e. when the LO pressure for relativistically
expanding bubbles is less than the driving force. At last, there is NO PT region, where
the system remains stuck in the false vacuum since the tunnelling rate is too small.

The structure of the diagram (on the fig.2.1 top−left panel) can be easily understood
from the qualitative discussion in the previous section. Indeed, keeping vs fixed, the size
of the potential barrier is controlled by the coupling λhs. Moving from left to right the
size of the potential barrier increases and we are gradually moving from the region of
second order phase transition → FOPT → FOPT with relativistic bubbles → no PT
region. Similarly moving up (increasing vs for fixed values of λhs) also corresponds to the
increase of the potential barrier as we pass through the regions with different PT in the
same order. On the upper axis, we report the physical mass of the singlet in the true
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vacuum Ms(vEW , 0) and exclude the constrained region where h → ss is kinematically
allowed (the grey meshed region).

Next we plot the values of Tnuc and γterminal
w as a function of (λhs, vs) (fig.2.1). As

discussed in the previous section, the region with the smallest values of the nucleation
temperature (thus the fastest bubbles) is located near the “NO PT" region, i.e. where
the system remains trapped in the false vacuum. The blue dot on the Tnuc plot indicates
the last point we have found before the system enters the regime of no phase transition
(NO PT). In the bottom right we plot Mmax =

√
γwTnucvEW quantity which indicates the

maximal energy in the c.o.m frame for the plasma particle−bubble wall collision, which
corresponds to the largest mass of the heavy particles we can produce (see discussion in
sec 2.5.1).

In order to better understand the dependencies of Tnuc and γw on the parameters
of the model, it is useful to separate further the parameter space depending on whether
the potential barrier disappears at zero temperature or not. This is important since the
bounce action in such cases has very different dependencies on the temperature. See
for example fig.2.2, where we have plotted the S3/T for vs = 170,ms = 125 GeV for
the various couplings λhs. In the case when the potential barrier disappears at some
temperature TNB the function S3/T drops to zero, but if the barrier remains even at zero
temperature S3/T has a global minimum for T ̸= 0 which will be controlling the lowest
nucleation temperature possible.

2.4.1 No potential barrier at zero temperature
Let us start by defining the region where there is no potential barrier at zero temperature.
In fig.2.1, we demonstrate the curves where the barrier disappears for various values of
the temperatures (TNB). For TNB = 0 case, the approximate curve can be obtained
analytically by looking at the leading terms in the zero temperature CW potential

λhs ≲
m2
h

v2
s

− nty
4
t

32π2
v2
EW

v2
s

. (2.34)

The agreement between this equation and the exact TNB = 0 curve is at the level of a few
permille discrepancies. To the right of TNB = 0 curve, the potential barrier between the
two minima remains even at zero temperatures. For the values vs ≳ 200 GeV, we find that
the line TNB = 0 approximately coincides with the boundary of no phase transition region
(where the system remains stuck in the false vacuum) but obviously the boundary of “NO
PT" is always to the right of TNB = 0 curve. The size of this narrow strip is of the order
10−4 in λhs values. One can see it from the Tnuc panel of fig.2.1 where we have indicated
the value of λhs when TNB = 0 by vertical thin line and red dot (for intersection) and the
position of the blue dot which is the last point where the transition is of the first order
before we enter NO PT region. The boundaries of this region were obtained by numerical
calculations where we have scanned λhs parameter with a step 10−6. We postpone the
discussion of the FOPT in this narrow region to the next section 2.4.2.

In this section, we restrict our discussion only on the region to the left of TNB = 0
curve. Then the phase transition will be always completed before the Universe cools down
to TNB, i.e. TNB < Tnuc, which provides a lower bound for the nucleation temperature.
At the same time, the velocity of the bubbles becomes largest for the smallest possible
values for the nucleation temperature. So that the fastest bubbles will be near TNB = 0
curve. Looking at fig.2.1 we can see that the largest γw (Lorentz boost factor) and lowest
nucleation temperatures happen for vs ≳ 200 GeV, where the TNB = 0 curve passes
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Figure 2.1: Top-Left: Scan of the parameter space in the plane λhs − vs for ms = 125
GeV. The four regions are as follows: i) white - NO PT, the region where the transition
never completes because the barrier remains at zero temperature and the function S3/T
never passes below the nucleation condition, ii) light and dark red are the regions where
the FOPT happens. Dark (light) red corresponds to the region with relativistic (non-
relativistic) bubble expansion. The boundary between two regions is given by eq.(2.21)
iv) blue - the phase transition is of the second order. The grey meshed region is the one
in which Ms(vEW , 0) < mh/2, that is constrained from collider experiments. Top-Right
and Bottom: the dependencies of Tnuc, γw, Mmax on the λhs coupling for ms = 125
GeV. The blue dot on the Top-Right plot designates the end of the curve when the tuning
becomes 10−6 and the red dot signals the appearance of a barrier at zero temperature (all
the points above the red dot have a barrier at T = 0). For the last three plots, we varied
the λhs parameter with the steps of 10−6. The value of vs is encoded in colour according
to the bottom-right plot.
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Figure 2.2: Left: S3/T function with vs = 170 GeV and ms = 125 GeV. We observe
that the nucleation temperature saturates around Tnuc ≈ 54 GeV. The horizontal gray
line satisfy the nucleation condition S3/Tnuc = 3

2 log (S3/2πTnuc) + 4 log (Tnuc/H). Right:
Zooming in on the region with lower nucleation temperatures.
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Figure 2.3: Tuning of the coupling λhs as a function of the nucleation temperature.
The dashed green line represents the naive tuning ∼ (Tnuc/mh)2. We observe that this
naive estimation for the tuning is rather precise at large nucleation temperature but can
underestimate the tuning by one order of magnitude for very low nucleation temperature.

very close to the NO PT boundary. The shape of the lines in fig.2.1 clearly indicates
the necessity of tuning in order to obtain low nucleation temperatures (large γw). In
particular, for the values of vs ≳ 200 GeV we can see that the nucleation temperature
drops by choosing λhs close to the NB value (similarly γw becomes maximal see fig.2.1). We
can estimate this tuning by looking at ∂ log λhs/∂ log Tnuc quantity (analogue of Giudice-
Barbieri [183] measure of the tuning) as a function of Tnuc. This result agrees with our
expectation from the steepness of the curves in the fig.2.3 and with the naive tuning
expectation which scales as ∼

(
Tnuc/mh

)25.
At last, we would like to remind that the discussion in this section always assumed

that the phase transition completes before the potential barrier disappears. We have
checked numerically that this is always the case. Indeed the time of the phase transition

5This expression follows eq.(2.31) if we require the cancellation between the terms independent of
temperature.
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is given approximately by the bubble radius at the moment of percolation [36, 184]

R⋆ ≡ (8π)1/3

β̃
=
(∫ Tcrit

Tper

dT

T

Γ(T )
H(T )

(
Tper

T

)3)−1/3

. (2.35)

This radius is related to the β ≡ − d
dt
S3
T

= HT d
dT

S3
T

parameter by an approximate rela-
tion [184]

β

H

∣∣∣∣∣
Tper

≃ β̃

H
= (8π)1/3

R⋆H
, (2.36)

where we find R−1
⋆ ∼ βtypical ∼ (10 − 104)H. At this point, the temperature drop during

the bubble expansion will scale as

∆T ∼ Tnuc(H∆t) ∼ TnucH

β
. (2.37)

Due to the large value of β/H we find numerically that this drop of the temperature is
not enough for the barrier to disappear or in other words

Tnuc − ∆T > TNB . (2.38)

Such behaviour can be understood from the following consideration: near TNB the bounce
action drops very quickly and so that the tunnelling becomes very efficient almost instan-
taneous and typical bubble radiuses are much smaller than the Hubble scale. This leads
to another prediction that GW signal will be suppressed as well since it is controlled by
the (β/H) quantity eq.(2.36). As we will see, even with this suppression the GW signal
is efficient enough to be detected in the future.

2.4.2 Tunnelling with potential barrier at zero temperature
Let us proceed to the analysis of the case when the potential barrier does not disappear at
zero temperature. The parameter space with the lowest nucleation temperatures (fastest
bubbles) will be located again near the “NO PT” boundary. However in this case the
nucleation temperature will be controlled by the local minima of the S3/T function, see
fig.2.2. At least a minimum is expected since the potential at low temperature becomes
fully temperature independent and S3(T → 0) → const., so that S3/T necessarily starts
to grow for T → 0.

Numerically (see fig.2.1) for the value of ms = 125 GeV we find that for vs ≲ 170
GeV entire region with the fast bubbles has a potential barrier at zero temperature. In
fig.2.2, we present the euclidean action for vs = 170 GeV and ms = 125 GeV. Going back
to fig.2.1, we see that for those values the “NO PT” curve and the “TNB = 0” curve are
largely separated. This is not a surprise since in this region of parameter space the bounce
action S3/T ∼ O(102) is small enough to guarantee the successful tunnelling even when
the barrier remains at zero temperature. In the range of λhs from 0.5 to 0.7, numerically
we find that nucleation temperatures are ≳ 30 GeV, and the corresponding maximal
Lorentz factors for the velocities of the bubble expansion in the ranges of ≲ 30, see Table
2.1. Interestingly we find that in this case the bubble radius R⋆ ∼ (8π)1/3vw

β
are a little bit

larger than the ones discussed in the section 2.4.1, corresponding to a bit smaller values
of β/H parameter.
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Figure 2.4: Left: Plot of S3(T )/T as a function of the temperature, for different values
of λhs in the case where ms = 125 GeV and vs = 220 GeV. As we increase the value
of the coupling λhs, the disappearance of the potential barrier happens later, allowing
for longer supercooling, until it is large enough to remain even at zero temperature. For
the first four curves from the top, we observe a second drop in the function at very low
temperature. This second drop corresponds to the displacement on the false minimum
that we describe in this section. Right: Same plot as in the left panel, but with a lower
value for vs. The pattern we found is the same, but lowering vs causes a lowering of the
curves and the displacement of the false minimum is less pronounced.

Super fine-tuned region We finally comment on the parameter space with vs ≳ 200
GeV (again we are fixingms = 125 GeV), where the curves “NO PT" and “TNB = 0" almost
superimpose (the region between red and blue dots on the Tnuc panel of the fig.2.1). There
will be a very narrow strip between the curves “NO PT" and “TNB = 0" regions, where
the tunnelling will happen even though the barrier remains at zero temperature. We
find (see fig.2.4) that the region corresponds to the variations of the λhs parameter of
the order δλhs ∼ O(10−4), i.e. two order of magnitude smaller than the full region with
relativistic bubbles. In this very small region, various additional effects can start playing
a role. For example, let us look at the fig.2.4 we can see that the bounce action S3/T has
a local maximum and a deeper (global) minimum with respect to the standard scenario.
Such behaviour of the action is coming from the cancellations of various terms in the
effective potential. For simplicity let us look at T = 0 case. Then there is a region of
parameter space where purely polynomial potential has no local minimum at (0, vs), but
the effects of the −3M4

t (h)
8π2

(
log Mt(h)

Mt(vEW )

)
terms in Coleman-Weinberg contribution lead to

the appearance of the local minimum at (δvh, vs). In fig.2.5 we plot the contributions
of the various terms in the effective potential leading to the appearance of this local
minimum and the trajectory of the typical bounce solution in this case. As a result, the
distance in the fields space between the two minima decreases and the tunnelling becomes
faster, which leads to the appearance of the second (global) minimum in S3/T .

Benchmark points

In Table 2.1 and 2.2, we give typical values of the nucleation temperature, the Lorentz
factor γw, the β/H factor, and we indicate if the barrier remains at zero temperature,
applying the criterion in eq.(2.38). We can see that the largest bubble radius at the
collision (smallest β) corresponds to the case when S3/T is monotonic and very flat near
the tunnelling temperature (c.f. the right panel of fig. 2.4).

78



0.146 0.148 0.150 0.152

2.1959

2.1960

2.1961

2.1962

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

0.00 0.05 0.10 0.15 0.20 0.25

-0.0004

-0.0002

0.0000

0.0002

0.0004

Figure 2.5: Here is presented an explicit example of displacement of the false vacuum for
{λhs, vs, T} = {0.36784, 220 GeV, 3 GeV}. Left: we show the 2D potential where the blue
line corresponds to the part of the potential plotted in the right panel and the (purple)
dot is the position of the displaced false minimum, in both plots. Red line indicates the
bounce trajectory. Right: plot of the different contributions to the potential. We see that
a displaced minimum can be generated by balancing the tree level and the CW potential
of the top quark, for low enough temperature, in such a way all the other particles, that
are massless in the false vacuum, have a negligible contribution. It can be shown that
they cause, as the temperature increases, the shift of the local minimum towards h = 0.

ms = 125 GeV, vs = 170 GeV
λhs

Treh
100GeV

Tnuc
100GeV

Tper
100GeV γw

β̃
H = (8π)1/3

R⋆H
mFalse
H /GeV FM0

0.56 0.880 0.877 0.850 − 434 35.4 No
0.58 0.855 0.851 0.822 − 355 37.3 No
0.6 0.829 0.824 0.790 − 296 39.2 No
0.62 0.800 0.795 0.762 1.2 209 40.1 No
0.64 0.769 0.762 0.714 2.4 158 42.5 No
0.66 0.729 0.720 0.661 4 108 43.4 No
0.68 0.678 0.666 0.582 6.6 51 44.8 No
0.69 0.642 0.627 0.506 8.8 18 45.0 No
0.695 0.612 0.594 0.412 11 5 44.7 No
0.6997 0.566 0.542 0.237 15 1.4 43.8 No

Table 2.1: We report for fig.2.2, ms = 125 GeV and vs = 170 GeV, reheating, nucleation
and percolation temperatures, respectively, for different values of λhs and γw reached by
the expanding walls as well as the parameter β̃/H computed using eq.(2.36). We also
show the effective Higgs mass in the false vacuum at the nucleation temperature defined
as (mFalse

H )2 = ∂2V
∂h2

∣∣∣
T=Tnuc

, relevant for DM production explained in section 2.5.2. In the
last column, FM0 concerns the displacement of the false minimum. ‘No’ if it is at the
(Higgs) origin, ‘Yes’ if it moved. In this case, the minimum is always at the origin.
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ms = 125 GeV, vs = 205 GeV
λhs

Treh
100GeV

Tnuc
100GeV

Tper
100GeV γw

β̃
H = (8π)1/3

R⋆H
mFalse
H /GeV FM0

0.397 0.577 0.564 0.544 4 371 19.1 No
0.405 0.530 0.512 0.488 8 268 19.1 No
0.4155 0.448 0.412 0.379 18 130 17.7 No
0.42 0.393 0.330 0.290 37 72 15.2 No
0.423 0.339 0.161 0.124 270 66 7.1 No
0.4234 0.335 0.107 0.095 805 109 3.9 No
0.424 0.335 0.051 0.051 5.7 · 103 3.3 · 103 0.7 No
0.4242 0.335 0.0337 0.0337 1.8 · 104 3.2 · 104 0.25 No
0.42424 0.335 0.028 0.0279 3.0 · 104 1.8 · 103 4.4 No
0.424266 0.335 0.018 0.017 1.0 · 105 99 6.2 Yes
0.424267 0.335 0.016 0.014 1.3 · 105 44 6.3 Yes

Table 2.2: Same as Table 2.1, but for fig.2.4 and with vs = 205 GeV. We observe that
the last two points display a displacement of the false minimum.

2.5 Consequences for production of dark matter and
Baryogenesis

One of the motivations for the study of a model of EWPT with relativistic bubbles is the
relation between relativistic expansion and the out-of-equilibrium production of heavy
states presented for the first time in [115], when the field undergoing the PT (here the
Higgs) is coupled to some heavy dark sector at typical massMN . In this section, we remind
the principle of the production mechanism and we study the scenario of the production of
Dark Matter [97] and Baryogenesis [98], which were previously agnostic about the EWPT
realisation.

First of all, the strong FOPT involves a supercooling represented by a dilution factor,

D ≡ gsym
⋆s (Tnuc)
g⋆s(Treh)

(
Tnuc

Treh

)3
, (2.39)

with g⋆s(T ) (gsym
⋆s (T )) being the number of relativistic degrees of freedom of the entropy

in the broken (symmetric) phase. This means that with D ≪ 1, any type of dark matter
production or Baryogenesis mechanism that happens much earlier than the PT should
provide values denser than the conventional estimation by a factor of 1/D (see for exam-
ple [133, 185]). For instance, the WIMP cross section should be σ ∼ D

10−3 10−29cm3/s to
produce a correct dark matter abundance. This is the case when freeze-out happens at
temperatures much higher than the reheating.

2.5.1 Production of heavy states during ultra-relativistic expan-
sion

There are a few mechanisms which can lead to heavy particle production during FOPT.
This can happen if the incoming massless particle in the unbroken phase gets a very large
mass from the Higgs vev [94, 117] (mass gain), or due to the bubble- bubble collision [139,
146] or due to the plasma particle−bubble collision [115]. Our study will be focused on
the later one.

Let us assume that FOPT happens and the bubble expansion is indeed relativis-
tic with γterminal

w ≫ 1. The simplest model where the production of heavy particles
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during plasma−bubble wall collision can be realised is described by the following La-
grangian [115]:

L = 1
2(∂µh)2 + iq̄ ̸∂q + iN̄ ̸∂N −MNN̄N − Y hN̄q − V (h) , (2.40)

where q is a massless particle in the symmetric phase and N is a heavy field with large
vev−independent mass MN ≫ vEW . h is the Higgs field undergoing a FOPT. With no loss
of generality, we go to the basis where fermion masses are real. Before the strong phase
transition starts, the abundance of heavy states N in the plasma is strongly Boltzmann
suppressed and they would naively seem irrelevant to the dynamics of the transition.
In a homogeneous vacuum, the transition from light to heavy state q → N is obviously
forbidden by the conservation of momentum. However, in the presence of the bubble wall,
the conservation of momentum along the z direction is broken (assuming a planar wall
expanding in the x − y plane) and a computation using WKB phases for the q and N
fields demonstrates that the probability P(q → N) is non-vanishing [115] and is given by

P(q → N) ≈ Y 2v2
EW

M2
N

Θ(γwTnuc −M2
NLw) , (2.41)

with Lw ∼ 1/vEW the width of the wall. Behind the bubble wall a large abundance of N
and N̄ , nBEN is produced. Let us emphasise that this abundance is much larger than its
equilibrium value.

Another possibility of the heavy particle production can be realised for the following
interaction

∆L ⊃ λhϕ
2 ϕ2h2 + 1

2M
2
ϕϕ

2 . (2.42)

In this case ϕ is a heavy scalar field with mass Mϕ ≫ vEW , then in the vicinity of the
wall, the process h → ϕϕ has the probability [115]

P(h → ϕ2) ≈
(
λhϕvEW
Mϕ

)2 1
24π2 Θ(γwTnuc −M2

ϕL
h
w) . (2.43)

The results in section 2.2 on the terminal velocity in the singlet extension of SM
allows us to compute the maximal mass of the particles which can be produced during
the electroweak FOPT in the singlet extension. Indeed saturating the step function in
the above equation and assuming the Lw ∼ 1/vEW we get approximately:

MMAX ≈ 400 GeV
log1/2 MZ

gTnuc

(
∆V − ∆PLO

(100 GeV)4

)1/2 (100GeV
Tnuc

)
. (2.44)

Numerical results for the maximal mass MMAX are reported in fig.2.1. We can see that
the maximal mass we can produce is roughly ∼ 10 TeV scale.

We would like to note that our results can be easily applied for the mass gain mech-
anism of the heavy state production [117]. Indeed, in this case, the maximal mass will be
Mmass gain ≃ γwT , and can be read off from the bottom right plot of the fig.2.1 by noting
that it will scale as Mmass gain ∼ M2

MAX/vEW . Since the mass of the heavy field comes
from the vev of the Higgs, it will additionally be bounded by the unitarity considerations
to be below ≲ 2 TeV.
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2.5.2 Dark Matter production
In this section, we will apply the results for the velocity of the bubble expansion for DM
model building.

Scalar DM coupled to the Higgs portal

We assume a heavy scalar ϕ coupled to the SM via the traditional Higgs portal

LDM = 1
2(∂µϕ)2 −

M2
ϕϕ

2

2 − λhϕ
2 h2ϕ2 . (2.45)

The DM (ϕ) field is stabilised by some additional Zϕ
2 (we use this subscript to differentiate

it from Z2 of the singlet potential). After the Higgs transition, the abundance of massive
ϕ, nBE

ϕ , behind the wall is given by

nBE
ϕ ≈ 2

γwvw

∫ d3p

(2π)3
pz
p0

P(h → ϕ2) × fh(p, Tnuc) . (2.46)

We can see that DM production during the bubble expansion is strongly dependent on
the density of the Higgs field available at the nucleation temperature fh(p, Tnuc). The
relevant parameter for the discussion is the ratio√√√√d2V

dh2

∣∣∣∣∣
fv

1
T

≡ mFalse
H

T
, (2.47)

where fv denotes the position of the false vacuum and
√
d2V/dh2

∣∣∣
fv

is the mass of the
Higgs mFalse

H in the false vacuum. As soon as this quantity becomes larger than 1, we
expect exponential suppression of the Higgs abundance

Ceff
ζ(3)T 3

nuc
π2 ≡

∫ d3p

(2π)3fh(p, Tnuc) ≈


ζ(3)T 3

nuc
π2 if mFalse

H < T ,(
mFalse
H Tnuc

2π

)3/2

e−mFalse
H /Tnuc if mFalse

H > T .
(2.48)

Here we define Ceff to take into account the Boltzmann suppression. After redshifting to
today, the stable produced abundance takes the form

Ωtoday
ϕ,BE h

2 =
Mϕn

BE
ϕ

ρc/h2
g⋆S0T

3
0

g⋆S(Treh)T 3
reh

≈ 6.3 × 108 Mϕn
BE
ϕ

GeV
1

g⋆S(Treh)T 3
reh

,

≈ 5.4 × 105 ×
(
Ceffλ

2
hϕvEW

Mϕg⋆S(Treh)

)(
vEW
GeV

)(
Tnuc

Treh

)3

× e
−

M2
ϕ

2γwvEWTnuc . (2.49)

This expression has to be supplemented with the freeze-out(FO) contribution which is
produced before the phase transition

Ωtoday
ϕ,FO h

2 ≈ 0.1 ×
(
Tnuc

Treh

)3

×
(

0.03
λhϕ

)2(
Mϕ

100 GeV

)2

,

Ωtoday
ϕ,tot h

2 = Ωtoday
ϕ,BE h

2 + Ωtoday
ϕ,FO h

2 . (2.50)

Note that the FO contribution is suppressed by the factor
(
Tnuc/Treh

)3
due to the brief

stage of inflation during the phase transition. Obviously the prediction for relic density
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Figure 2.6: Left: DM abundance in the parameter space λhϕ −Mϕ for different values
of λhs by fixing vs = 205 GeV and ms = 125 GeV (that fixes the values of Tnuc, Treh and
γterminal
w ). The solid lines represent correct DM abundance, while underproduced inside

and overproduced outside. The lower part of each contour is dominated by freeze-out
and the upper part via bubble expansion. The connecting vertical line (independent of
the portal) comes from thermal production after the reheating of the transition. The
magenta shaded region is excluded by XENON1T while the dotted green and blue lines
are projected limits from XENONnT and DARWIN respectively. Right: same plot for
vs = 175 GeV and ms = 150 GeV. As expected, increasing the tuning from red to magenta
increases the amplitude of the curve. The values used are extracted from Table 2.B.1.

must match the experimental observations: Ωtoday
ϕ,tot h

2 ≈ 0.1. We can see from eqs.(2.49),(2.50)
that for small values of the portal coupling λhϕ, DM production will be dominated by the
freeze-out mechanism while bubble expansion takes over for larger values of λhϕ.

Next, we can check whether this mechanism for DM production can lead to viable
phenomenology, given the results on bubble dynamics in section 2.4. Instead of making a
scan of the parameter space, we will just focus on a few representative benchmark points.

For ms = 125 GeV, vs = 205 GeV, we show in fig.2.6 the isocontours reproducing the
correct relic density for three reference values of λhs (corresponding nucleation tempera-
tures can be found in the Table 2.1). Firstly, Ceff ≃ 1 for all three reference points. For
λhs = 0.424 the upper red curve corresponds to the case when DM production is dom-
inated by the BE (bubble expansion) and the lower curve by FO. The steepness of the
upper red curve (BE) comes from the fact that we are always in the region of parameter
space where exp

[
−M2

ϕ/(2γwvEWTnuc)
]

≪ 1, leading to a very strong sensitivity on Mϕ

mass. Physically this means that the model generically predicts large overproduction of
DM in BE process unless the Boltzmann suppression exp

[
−M2

ϕ/(2γwvEWTnuc)
]

is playing
a role. For the other two reference points λhs = 0.4242, 0.42424 we can see that there is an
additional part of parameter space for the DM masses Mϕ ∼ 1−4 TeV, which corresponds
to the region without the Boltzmann suppression exp

[
−M2

ϕ/(2γwvEWTnuc)
]

∼ 1. This
is related to larger values of MMAX ∼

√
γwvEWTnuc and smaller values of the nucleation

temperature, reducing the excess of the DM abundance. On the right panel of fig.2.6, we
report similar plots for vs = 175 GeV, ms = 150 GeV.

Finally, before closing this section, we comment on the possibility of considering
the singlet s itself, in the limit of very precise Z2, as DM. After the phase transition
T ∼ 40 GeV, the singlet is in thermal equilibrium and we can apply straightforwardly the

83



3.0 3.5 4.0 4.5 5.0 5.5 6.0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

Overproduced DM

Under-
produced DM

Figure 2.7: DM production for the singlet portal model. In this context, the Boltzmann
suppression ∼ e−ms/Tnuc plays a strong role and allows for bubble expansion produced DM
with much higher nucleation temperature Tnuc ∼ 15 GeV.

freeze-out expression:

Ωtoday
s, FOh

2 ≈ 0.1
(

0.06
λhs

)2(
Ms(vEW , 0)

100 GeV

)2

. (2.51)

From this estimate of the FO abundance for s and recalling that we considered λhs ∼
0.3 − 0.6 and Ms(vEW , 0) ∼ 100 GeV, we conclude that the abundance of s produced in
this fashion, today, is underproduced by one or two orders of magnitude to fit the observed
amount of DM Ωtoday

s, FOh
2 ≈ 0.1. Even in this underproduced case, there are severe bounds

from the direct detection experiments except for the resonant region, where (2.51) is over-
estimated. However, as we will discuss in the Appendix. 2.D, we will have a Z2 explicit
breaking which makes s decay much before today.

Singlet portal DM

In this section, we mention an alternate possibility of coupling the DM (ϕ) to the singlet
field s via the “singlet portal"

∆L ⊃ λsϕ
2 ϕ2s2 + 1

2M
2
ϕϕ

2 , P(s → ϕ2) ≈
(
λsϕvs
Mϕ

)2 1
24π2 Θ(γwTnuc −M2

ϕL
s
w) ,(2.52)

where the width of the singlet wall is similar to the length of the Higgs wall Lw. In-
terestingly even though FOPT is from (0, vs) → (vEW , 0), the singlet scattering of the
wall can lead to the production of the ϕ field. The phenomenology of DM production
is very similar to the Higgs portal case discussed in the previous section, with one main
difference: in the false vacuum, the mass of the singlet is not small and the factor Ceff
introduced in the eq.(5.71) plays an important role. The results are shown in fig.2.7. For
example, if we compare the curves for λhs = 0.424, ms = 125 GeV, vs = 205 GeV in
fig.2.7 and in fig.2.6, we can see that, for the Higgs portal DM, the isocontour has the
same shape, but with the larger values of DM Mϕ masses. As shown in eq.(2.49), this is
due to the proportionality between the DM relic abundance produced during the bubble
expansion with ∝ Ceff/Mϕ.
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Singlet portal with additional field A slight modification of this scenario is to further
introduce a light scalar s̃. Then we can have,

L = LSM − λ̃s̃sϕ2 −
M2

ϕ

2 ϕ2, (2.53)

where again ϕ is the DM and we did not write down the mass terms for simplicity of
notation. We assume that s̃ is in the thermal bath before the PT. Then due to the field
change of s in the bubble wall, the momentum conservation violating process s̃ → ϕϕ can
occur (h → ϕϕ may also occur if there is the h2ϕ2 term). In this model, s → s̃ + SM
particles happen via the DM loop.

Fermion-mediated Dark Matter

In the previous section, we noticed that the DM production during bubble expansion
strongly depends on the mass of the incoming particle in the symmetric phase, due to the
Boltzmann suppression factor. In the case of an incoming scalar, generically this effect is
relevant and crucially modifies the phenomenology, as we have seen in the section 2.5.2.
In this section, we construct a model where the incoming particle is a massless fermion
in the symmetric phase so that Ceff ≡ 1 by definition. The model consists of a vector-like
neutral fermion N which is a singlet under SM and a couple of Z2 odd fields ϕ and χ:

L = LSM + Y∗L̄HN +MNN̄N + YDMN̄χϕ . (2.54)

Here, L,H are SM lepton and Higgs doublets, respectively. The production mechanism
works as follows: the heavy field N is produced during the phase transition L → N and it
will subsequently decay into N → χϕ,N → LH. The field N can be Majorana or Dirac
(in the former case there will be a relation to neutrino masses and in the latter it will be
completely independent of neutrinos).

In this model, heavy N are produced via L → N with a probability

Ptree(L → N) ≈ Y 2
⋆ v

2
EW

M2
N

Θ(γwTnuc −M2
NLw) . (2.55)

As a consequence, unstable heavy N accumulate behind the wall with initial density given
by

nBE
N ≈ Y 2

⋆ v
2
EW

M2
Nγwvw

∫ d3p

(2π)3
pz
p0

× fL(p, Tnuc)Θ(pz −M2
N/vEW ) ,

≈ Y 2
⋆ v

2
EWT

3
nuc

2π2M2
N

e
−

M2
N

2vEWTnucγw + O(1/γw) , (2.56)

where vw =
√

1 − 1/γ2
w, we expanded for large γw and approximated the Fermi-Dirac

distribution as a Boltzmann distribution. Compared to the original proposal in ref. [97],
the density of the heavy fields inside the bubble will be additionally enhanced by ∼ 16π2

factor since 1 → 1 transitions are more effective than 1 → 2. Let us assume that Mϕ < Mχ

so that ϕ is the DM candidate, then DM production will happen via the following chain
of processes:

L →
via PT

N →
via decay

ϕχ → ϕϕ+ SM . (2.57)
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However, the heavy N has two channels of decay: toward the heavy dark sector ϕ, χ and
back to the light L. The abundance of ϕ, χ after the transition is thus suppressed and
given by

nχ ≈ nϕ ≈ Y 2
DMY

2
⋆

Y 2
DM + Y 2

⋆

v2
EWT

3
nuc

2π2M2
N

e
−

M2
N

2vEWTnucγw + O(1/γw) , (2.58)

and the final relic abundance redshifted to today thus reads

Ωtoday
ϕ,BE h

2 ≈ 1.5 × 108 × Y 2
⋆ Y

2
DM

Y 2
⋆ + Y 2

DM

2Mϕ

MN

(
vEW
MN

)(
vEW

246GeV

)(
Tnuc

Treh

)3

e
−

M2
N

2vEWTnucγw .

(2.59)

For the freeze-out process in the symmetric phase, we have ϕϕ → LHLH by neglecting
co-annihilation. The cross-section is highly phase space suppressed (closing a loop for a 2
to 2 annihilation gives a similar scaling): σϕϕ→(LH)∗LH ∼ M2

χ(YDMY∗)2

(16π2)24πM4
N
. The abundance by

taking into account the supercooling is

Ωtoday
ϕ,FO h

2 = 103
(
Tnuc

Treh

)3 M4
N/M

2
χ

(6TeV)2
10

(YDMY∗)4 . (2.60)

The total DM density today will be given by the sum of eq.(2.59)-(2.60). Therefore,
this scenario leads to the over-production of DM unless Mϕ,Mχ ≲ 10 GeV. However,
note that these equations are valid only for the heavy DM candidates which do not go
back to equilibrium after the phase transition. Otherwise, the final density will be given
by eq.(2.60) only without

(
Tnuc/Treh

)3
and we are going back to the normal freeze-out

scenario.
Let us now investigate the regime Mϕ ≃ Mχ, precisely |Mϕ − Mχ| ≲ Mϕ/20, where

the co-annihilation takes place. In this case, we have the channel ϕχ → HL̄ to decrease
the abundance of ϕ as well as χ. The cross-section is σϕχ→HL̄ ∼ (YDMY∗)2

4πM2
N
. Therefore, we

have

Ωtoday
ϕ,FO,Coh

2 ∼ 0.1
(
Tnuc

Treh

)3
× M2

N

(10TeV)2
1

(YDMY∗)2 . (2.61)

Summing this estimate with the Ωtoday
ϕ,BE h

2 in eq.(2.59) we find that it becomes possible to
reproduce the observed DM abundance. However, we see that bubble expansion tends
to overproduce the DM and the relic abundance in BE can be reproduced if only the
factor exp[−M2

N/(2vEWTnucγw)] starts playing a role in suppressing DM relic density (left
boundary of fig.2.8 is almost vertical).

2.5.3 Baryogenesis mechanism
Now we remind the reader, the scenario of Baryogenesis with relativistic bubble walls that
was proposed in [98]. As a prototype, we worked with the following model, reminiscent
of the toy model of eq.(2.40), (omitting the kinetic terms)

L = LSM +m2
η|η|2 +

∑
I=1,2

MIB̄IBI

+
 ∑
I=1,2

YI(B̄IH)PLQ+ yIη
∗B̄IPRχ+ κηcdu+ 1

2mχχ̄cχ+ h.c.

 . (2.62)
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Figure 2.8: DM production in the fermionic portal model. We fix MDM = MN/5, and
YDM = 3. Only the co-annihilation regime where |Mϕ − Mχ| ≲ Mϕ/20 appears to be
viable and shown by dashed lines.

Thus, additionally to the SM and the singlet sector, the model contains a Majorana field
χ and two vector-like B quarks with the masses M1,2 ∼ mχ. η is a scalar field in the
fundamental representation of QCD and with electric charge Q(η) = 1/3. We defined
Q, u, d as the SM quark doublet and singlets respectively, and ignored the flavour indices.
H is the SM Higgs.

We first proved that the production mechanism, when computed up to one loop-
level, indeed transforms a CP-violating phase into a chiral asymmetry in the abundances
produced, in a fashion very similar to usual leptogenesis decay. Let us now sketch the
mechanism in itself. First, b−quarks collide with the relativistic wall and produce BI , B

c
I

via the mechanism explained above. Thus inside the bubble, we have

nBI − nBcI = −
(
YIvEW
MI

)2

ϵIn
inc
b , nb − nbc =

∑
I

(
YIvEW
MI

)2

ϵIn
inc
b , (2.63)

where ninc
b is the number density of the bottom-type quark colliding with the wall from

outside, nb and nB are the abundances inside of the bubble and ϵ is a loop suppressed
coefficient which parametrises the CP violating phase and the resonance between one-loop
and tree-level diagrams. After the passage through the wall, the following asymmetric
abundances are then generated∑

I

(
nBI − nBcI

)
= −(nb − nbc) . (2.64)

From this expression we can read an apparent asymmetry in the bottom quark abun-
dances. However, if the heavy B freshly produced were to decay back into b, the asym-
metry would be washed out. This is however not the case if they decay in a dark sector
containing χ, η, where the asymmetry is enhanced by the presence of a Majorana mass
for χ. The final unsuppressed produced asymmetry is given by

∆nBaryon

s
≈ 135ζ(3)

8π4

∑
I,J

(
YI⟨H⟩
MI

)2 |yI |2

|yI |2 + |YI |2
× gb
g⋆

(
Tnuc

Treh

)3

× Im(YIY ∗
J y

∗
IyJ)

(
−2Im[f IJB ]

|YI |2
+ 4Im[f IJB ]|mχ,η→0

|yI |2

)
, (2.65)
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where s is the entropy at the moment of the production, gb is the number of degrees of
freedom of the bottom and g⋆ the number of relativistic degrees of freedom. The loop
functions f IJB have been computed in [98] and are controlled by the CP-violating sector.
Absence of strong wash-out conditions

MB,χ,η ≳ 30Treh ∼ 103 GeV , (suppressed wash-out) (2.66)

as well as experimental signatures (direct production in colliders, flavor violation, neutron
oscillations) pushed the heavy particles to be

MB,χ,η ≳ 2 × 103 GeV . (2.67)

In the context of singlet extension with Z2 that we studied, this opens up the range

MB,χ,η ∈ [2, 10] TeV , (2.68)

where the Baryogenesis mechanism proposed above is operative.

2.5.4 Impact of the heavy sector on the phase transition
The models we are considering by construction have new heavy fields coupled to the
Higgs boson. These will lead to the finite corrections to the scalar parameters of the form
(assuming a Yukawa type connection yBHb)

δm2
h ∼ −8gNM2

Ny
2

64π2

(
log M2

N

v2
EW

− 3
2

)
, δλ ∼ 4gN

y4

64π2

(
log M2

N

v2
EW

− 3
2

)
, (2.69)

where gN is the number of heavy degrees of freedom and MN is the typical mass of the
heavy sector. One can wonder how these corrections can affect the tuning of the Higgs
potential. However, note that in our model the Higgs mass hierarchy problem is not
addressed and generically we expect the size of m2

h to be of the order of the cut off scale
(Mpl in SM). So the corrections in eq.(2.69) do not make the tuning worse.

In case the Higgs hierarchy problem is solved at the scale of the heavy fields in
eq.(2.45),(2.62) the tuning in the Higgs potential will be roughly,

tuning ∼ m2
h

∆Heavy physicsm2
h

∼ 8π2m2
h

y2M2
N

. (2.70)

We can combine this estimate with a tuning for low nucleation temperatures (see discus-
sion in section 2.4.1) which are necessary for the heavy field production and the tuning
estimate becomes:

tuning ∼ T 2
nuc

∆Heavy physicsm2
h

∼ 8π2T 2
nuc

y2M2
N

. (2.71)

Using the estimates of the maximal values of γw and the maximal mass of heavy particles
which can be produced during the bubble-plasma collisions (see eq.(2.25) and eq.(2.41))
we get the following estimate for the maximal tuning in the model

tuningMAX ∼
(

Tnuc

20GeV

)4
, (2.72)

where we remind the reader that this estimate is valid only if the Higgs hierarchy problem
is solved at the heavy fields scale.
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2.6 Gravitational waves emitted
It is well known that strong gravitational waves background will be emitted, with peak
frequency around the mHz if the EWPT happens to be strongly first order. This is
the optimal range of sensitivity of the forthcoming LISA detector [54, 186] and also GW
detectors such as LIGO [187, 188], BBO [189, 190], DECIGO [191–193], ET [63, 194, 195],
AION [196], AEDGE [197].

The signal produced at the moment of the transition, as presented in section 1.4,
can be separated into different contributions: the bubble collision [49] contribution, the
plasma sound waves [54] and finally the turbulence. Only the two first sources of GW
are well understood. Another nice feature of those two sources is that they are expected
to dominate in different physical situations; the bubble collision would dominate in case
of a runaway wall and the sound waves if the wall reaches a terminal velocity. We have
already mentioned that the EWPT, if first order, will always happen in the regime of
terminal velocity, because of the large number of strongly coupled vector bosons6. For
GW produced by plasma sound wave, the peak frequency and amplitude are given by

Ωpeak
plasmah

2 ≈ 0.7 × 10−5
(

100
g⋆

)1/3(
κswα

1 + α

)2

(HrehR⋆) ,

fpeak ≈ 2.6 × 10−5
(

1
HrehR⋆

)(
zp
10

)(
Treh

100 GeV

)(
g⋆

100

)1/6

Hz , (2.73)

with zp ∼ 10, κsw is the efficiency factor for the production of sound waves in the
plasma [73],

κsw ≈ α

0.73 + 0.083
√
α + α

, (2.74)

α and R⋆ have been defined in eqs.(1.105) and (2.35) respectively, R⋆ ∼ O(10−1 −
10−4)H−1 is the approximate size of the bubble at collision and all quantities (T,H, g⋆)
have to be evaluated at reheating.

As we have seen in sections 2.5.3–2.5.2, for the baryogenesis and DM production
we need relativistic walls with relatively low nucleation temperature ≲ 10 GeV. In this
context, α ≫ 1 and κsw → 1. The peak frequency and the signal amplitude are only
functions of the size of the bubbles at collision, which are reported in Table 2.2 and 2.B.1.
We can observe that in this range β/H spans the value between [50, 104], with a preference
for lower values. Going back to eq.(2.73), emitted amplitude and frequencies will be of
the order

Ωpeak
plasmah

2 ∈ [5 × 10−7, 2 × 10−9] , fpeak ∈ [10−4, 0.03] Hz , (2.75)
where we set zp = 10, g⋆ = 100. This range of frequencies and amplitude are largely
in the expected sensitivity of the coming observer LISA [54, 198], as expected for this
class of models [33]. We thus conclude that a strong GW signal in the LISA with a
spectrum controlled by the plasma sound waves is a generic prediction of baryogenesis
with relativistic bubble walls. This is in sharp opposition with the general expectation
that usual EWBG demands slow walls, and thus suppressed signals.

As a final comment, it should however be noticed that the current simulations do not
directly provide solutions for the regime of large α, and we only have an extrapolation of
the numerical result. Thus, the conclusion above should be taken with a grain of salt.

6A possible exception would be the case of extreme cooling, as hinted in [96] where even the pressure
from gauge bosons cannot stop the acceleration of the wall. However, in our study, we do not find such
a situation.
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2.7 Summary
In this chapter, we have presented the first explicit realisation of the baryogenesis and
DM production during electroweak phase transition for ultra-relativistic bubble expansion.
The work is based on the proposals in [97, 98, 115, 117] where new heavy particles are
produced in plasma−bubble wall collisions. We have shown that the model with SM
extended by a real singlet with a Z2 symmetry can indeed lead to ultra-relativistic bubbles,
where the Lorentz factor γw can reach the values ∼ 105−6. Such fast bubbles can appear
if the symmetry–breaking occurs in two steps: first discrete Z2 is spontaneously broken
and in the second step electroweak symmetry–breaking is accompanied by Z2 restoration
(0, 0) SOPT−−−→ (0, vs) FOPT−−−−→ (vEW , 0). We find that there exists a region of parameter space
where the nucleation temperature can become as low as 1 − 2 GeV and the collision of
the bubble wall with the plasma particles can lead to the non-thermal heavy particle
production with the masses up to ∼ 10 TeV. Interestingly we find that the mechanism is
most efficient for relatively low masses of the singlet field Ms(vEW , 0) ∼ 70 − 100 GeV,
close to the region excluded by the Higgs invisible decays. Subsequently, this region
of parameter space will be probed by HL-LHC ([174, 199]) in the singlet production
mediated by off-shell Higgs boson. By noting the slight Z2 breaking, s, if produced, can
decay into bb̄ in collider experiments. Depending on the size of the breaking displaced
vertices of bb̄ may be probed. We find the typical bubble radius parameter of the order of
R⋆ ∼ (10−4−1)H−1 so that stochastic gravitational background signal becomes observable
at GW experiments like LISA [54, 198].

The model necessarily requires tuning ∝ (Tnuc/mh)2 which numerically turns out to be
of the order of 10−4 − 10−2 (using Giudice-Barbieri measure) for successful baryogenesis
and DM production mechanism. In spite of this, we believe it can provide an useful
guidance for more appealing models where these hierarchies can appear naturally.
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Appendix

2.A The bounce in two dimensions
In this chapter, we studied numerically the phase transition from the minimum (0, vs) (or
in the vicinity of it) to (vEW , 0). The bounce computation can be done using existing
codes for example FindBounce or CosmoTransition. However, we have found that in the
regime of large supercooling where the potential around the false vacuum is very flat, the
existing codes are often not stable and lead to numerical errors. Thus we have developed
our own code (more stable for the flat potentials), following the procedure described
in [200], while cross-checking the available values with FindBounce.

2.A.1 Computation of the bounce profile
In this Appendix, we briefly review the standard computation of the bounce action with
only one field before describing the algorithm we used for the same computation but for
the case of two fields PT. In order to compute the vacuum tunnelling probability from the
false vacuum to the true one in d dimensions, we need to minimise the Euclidean action
given by

SE =
∫
ddx

[
1
2(∂µϕ)2 + V [ϕ]

]
. (2.76)

It is known that the field configurations leading to the minimal action are the ones that
exhibit an O(d) spherical symmetry, then the so-called bounce solution is the solution of
the following Cauchy problem

d2ϕ

dr2 + d− 1
r

dϕ

dr
= dV [ϕ]

dϕ
, lim

r→∞
ϕ(r) = 0 , dϕ

dr

∣∣∣∣∣
r=0

= 0 , (2.77)

where we have chosen the false minimum to be at ϕ = 0. If we interpret the parameter r as
a time and ϕ as a position, this problem becomes formally equivalent to the evolution of a
mechanical ball in a potential −V [ϕ] undergoing a friction d−1

r
dϕ
dr

, released with vanishing
velocity and stopping its evolution for r → ∞ at ϕ = 0. It is well known that this problem
can be solved by applying numerically an overshoot/undershoot method on the position
of the released point. Releasing the ball too close to the true vacuum would induce an
overshoot configuration (the ball would continue after crossing ϕ = 0), we would thus shift
the release point toward the false vacuum, while releasing it too close to it would end up
in an undershoot configuration (the ball would never reach ϕ = 0 and starts oscillate
around the minimum of −V [ϕ]) and we correct it by shifting the release point farther
from the false vacuum. Iterating between those two situations, we are able to find the
correct release point and obtain the bounce solution.
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Figure 2.A.1: On the left, the potential, along the path, experienced by the field x and
the corresponding escape point x⋆. On the right the potential, along the path, is projected
in the h direction.

2.A.2 Bounce action in two dimensions and path deformation
The problem complexifies when the transition involves many fields. Here there is no
straightforward intuition for the path followed by the fields in field space during the
tunnelling. One can think that a straight line, connecting the two minima, could be a
reasonable guess, but it turns out that it cannot be considered a good approximation of
the tunnelling path7. Here we thus describe the algorithm [200] to find the right path in
field space. In a multi-field case, the eq.(2.77) becomes

d2ϕ⃗

dr2 + d− 1
r

dϕ⃗

dr
= ∇⃗V [ϕ⃗] , lim

r→∞
ϕ⃗(r) = 0 , dϕ⃗

dr

∣∣∣∣∣
r=0

= 0 . (2.78)

Since in this case an overshoot/undershoot procedure cannot be easily applied, the idea is
to reduce the problem to one dimensional tunnelling. In order to do so we start guessing
the path, ϕ⃗g(x), where x is now to be understood as the parameter that measures the
distance along the path, i.e. the so-called curvilinear abscissa. For the present case, if we
parametrise the path in the field space as (h(t), s(t)) = (t, f(t)) ≡ (h, s(h)) it is defined
as

x(h) =
∫ h

hfm

√√√√1 +
(
ds(h′)
dh′

)2

dh′ , (2.79)

where hfm is the value of the Higgs field in the false minimum. With this choice of
field coordinates to parametrise the path, the condition

∣∣∣dϕ⃗(x)
dx

∣∣∣2 = 1 is satisfied, and the
Euclidean equation of motion in eq. (2.78) can be rewritten along the parallel and the
perpendicular direction

d2x

dr2 + d− 1
r

dx

dr
= ∂xV [ϕ⃗g(x)] ,

d2ϕ⃗g(x)
dx2

(
dx

dr

)2

= ∇⃗⊥V [ϕ⃗g(x)] . (2.80)

7Let us emphasise that in the region of the parameter space we studied, the straight line between the
false and the true vacuum gives a Euclidean action which is often wrong by orders of magnitudes, as
the path is often very far from the straight line, as a consequence, we cannot dispense from the effort of
studying the exact 2D path in field space.
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Figure 2.A.2: Left: iterative procedure for the correct path, starting from the straight
line connecting the two minima and then modified according to the field N⃗ . Right:
bounce profile of the fields (black for h(r) and red for s(r)) on the correct path.

Here, we have been able to separate the dynamics along the parallel and perpendicular
direction in such a way the first equation defines a new undershoot/overshoot problem,
that we solve to obtain the value of the escape point, ϕ⃗0(x⋆), and the Euclidean action
corresponding to the potential along the path considered ϕ⃗g, as in fig.2.A.1. On the other
hand, the second equation can be seen as a condition that the bounce solution has to
satisfy and can be thought of as a force field acting on the path, defined as following

N⃗ ≡ d2ϕ⃗g(x)
dx2

(
dx

dr

)2

− ∇⃗⊥V [ϕ⃗g(x)] . (2.81)

The right path will be the one where N⃗ is vanishing. The algorithm proceeds iteratively:
first, we guess a path, the straight line connecting the two minima, then we find the
bounce solution along this path, we compute the normal force and deform the guessed
path according to it. In practice, to define the path at the step n, ϕ⃗n, we need to
solve for the bounce profile for the path at ϕ⃗n−1, extract the escape point x⋆,n−1, that
is (h(x⋆,n−1), s(x⋆,n−1)) in field space, we then discretise the path in the interval x ∈
[0, x⋆,n−1], creating a series (ϕ⃗n−1)j, for j = 1, ..., N and a series of values for the normal
force (N⃗n−1)j. We then shift each point of the discretised path by

(ϕ⃗n)j = (ϕ⃗n−1)j + ρ(N⃗n−1)j j = 1, . . . , N . (2.82)

In the end, we fit a path ϕ⃗n along the shifted points from (ϕ⃗n−1)j. The procedure of
deformation of the path will produce a series of paths ϕ⃗i[x], over which we compute the
Euclidean action according to eq.(2.76) at each step of the deformation, like in fig.2.A.2.
The algorithm stops when the difference in the bounce action, S3, between two successive
iterations is below some imposed precision. At a definite temperature T , we start by
identifying the two minima, the false and the true ones

(⟨h⟩, ⟨s⟩)fm = (v(T ), vs(T )) → (vEW , 0) , (2.83)
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Figure 2.A.3: Left: in blue the initial guessed path with a straight line connecting the
false vacuum and the saddle-point, showed in red, and then the steepest path computed
from the saddle-point. We used a polynomial potential with arbitrary units, not relevant
for the qualitative picture we are presenting in this section. Right: fields profile along the
final tunnelling path that it is not shown in the right panel, since it almost super-imposes
with the initial path. In yellow it is depicted the release point.

and will keep the false minimum fixed during the whole procedure of deformation. Gen-
erally, especially when we have a sizable amount of supercooling, the escape point is just
behind the barrier, so the escape point (v⋆(Tn), vs,⋆(Tn)) will be different from the, zero-
temperature, EWSB vacuum, but when the tunnelling happens the system will classically
roll down towards the global minimum, as we can see from fig.2.A.2. We do not track the
evolution of the fields profile after the tunnelling.

2.A.3 Unbounded potentials
When dealing with an unbounded potential, conceptually there is nothing particularly
different compared to a very deep minimum scenario. At some point, the escape point
does not change significantly as the minimum becomes deeper. However, we encountered
two specific issues:

• The initial path cannot be a straight line connecting the two minima, as we cannot
guess the slope of the line without knowing the global minimum.

• Even if we intuitively select a straight initial line, the code we developed often
becomes unstable if the guessed path is significantly different from the real one.

To address these issues, we devised an initial path consisting of two segments. First,
a straight line connecting the false vacuum and the saddle point. Then, from the sad-
dle point, we used the steepest descent path. This is achieved by solving the following
equation:

dϕ⃗(t)
dt

= −∇⃗V [ϕ⃗(t)] , ϕ⃗(0) = saddle point . (2.84)
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Figure 2.B.1: Here is presented the same results found in fig. 6 of ref. [162]. It has
to be noted that these results are obtained with only the thermal potential and without
Daisy resummation, i.e. without thermal masses. The relation with our parameters is
(λs, λhs) = (η, 2κ) and Ms(vEW , 0) = 300 GeV.

ms = 150 GeV, vs = 175 GeV
λhs

Treh
100GeV

Tnuc
100GeV

Tper
100GeV γw

β̃
H = (8π)1/3

R⋆H
mFalse
H /GeV FM0

0.53 0.616 0.608 0.592 − 580 17.4 No
0.54 0.581 0.570 0.552 3 420 17.8 No
0.56 0.492 0.470 0.444 9 228 17.7 No
0.58 0.329 0.141 0.130 348 160 4.7 No
0.582 0.327 0.051 0.0508 5.3 · 103 9.5 · 103 0.4 No
0.582262 0.327 0.025 0.0236 3.7 · 104 194 8.2 Yes
0.582264 0.327 0.024 0.0219 4.3 · 104 130 8.3 Yes
0.582266 0.327 0.021 0.017 5.7 · 104 24 8.5 Yes

Table 2.B.1: Same as Tables 2.1 and 2.2, but with ms = 150 GeV and vs = 175 GeV.

With this initial guess, the algorithm proceeds as previously described, and the code
stabilises. Figure 2.A.3 provides a pictorial understanding of the case with two fields, ϕ1
and ϕ2. The blue path represents the first straight segment from the false vacuum to
the saddle point, followed by the steepest descent path. The red point marks the saddle
point, while the yellow point indicates the release point. The right panel shows the field
profiles along the final path.

2.B Supplemental numerical results
In this Appendix, we present all our supplemental numerical results. First, although we
focused mostly on a more weakly coupled part of the parameter space, we would like to
compare our findings with the ones in the ref. [162] and argue that we observed only small
changes, due to the inclusion of loop-corrections and Daisy resummation. In fig.2.B.1 we
make a reproduction of the scan of fig.6 of [162] using our potential and emphasise the
close similarities. The relations between the parameters κ, η and the couplings in the
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Figure 2.B.2: Similar plots than in fig.2.1 and fig.2.3 for the value of ms = 150 GeV.
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Figure 2.B.3: In this plot we show the regime of transition. We observe that several
points display a disappearance of the barrier which is typical of the regime of no barrier
at T = 0. However, the nucleation temperature is controlled by the first minimum of
S3/T , which is typical of the regime with a barrier at T = 0.

eq.(2.1) is as follows

κ [162] = λhs
2 , η [162] = λs . (2.85)

In the main text, we studied specifically the case where the parameter ms = 125
GeV, we observed that for this value, the region of deep supercooling displayed small
masses of the singlet in the real vacuum, being on the verge of detection due to h → ss
at Ms ≲ 62 GeV. We also concluded in section 2.4 that this region was closing around
Ms ≈ 75 GeV. We could wonder if this conclusion would change if we modify the value
of the parameter ms, and if so in which direction. In fig.2.B.2 we show similar plots
than in fig.2.1 and 2.3 for the case of ms = 150 GeV. Thus, increasing the value of ms

pushes the deep supercooling region to Ms ≈ 90 GeV, at the price of increasing the
portal coupling λhs. However, we can observe on the last plot of fig.2.B.2 that the typical
tuning remains roughly the same and that we can still trust our naive (Tnuc/mh)2 for an
order-of-magnitude estimate of the tuning.

On the other hand, we also observed that decreasing the parameter ms to ≈ 100 GeV
was pushing all the deep supercooling region inside Ms ≲ 62 GeV, which is thus strongly
disfavoured by colliders. We hope that this trend can be extrapolated to larger values of
ms, until we hit perturbativity bounds for λhs.

We could also wonder what happens at the upper boundary of the deep supercooling
region, as we have observed in fig.2.1 a sharp decrease in the supercooling allowed around
vs ≲ 200 GeV (for ms = 125 GeV). This transition regime can be understood if we plot
the explicit S3/T functions in fig.2.B.3. Comparing the plot in fig.2.B.3 with the one in
fig.2.4, we see that as we decrease vs, the full pattern of S3/T is shifted toward smaller
values. At some critical point around vs ≈ 200 GeV, the nucleation becomes controlled
by the first minimum in the function S3/T and not by the disappearance of the barrier.
This largely suppresses the possibility of large supercooling.

Finally, in Table 2.B.1, we provide the value of the velocity, reheating and nucleation
temperature for ms = 150 GeV and vs = 175 GeV that was used in fig.2.6.

97



2.C The coefficient of NLO pressure
In this appendix, we will review the calculation of the friction coefficient for the NLO
pressure for EW phase transition. We will follow closely the discussion in [96] and report
the quantity [∑

abc

νagaβcCabc

]
, (2.86)

where νa = 1(3/4) for a a boson (fermion), βc ≡ Mc

MZ
and Cabc stands for the couplings

appearing in the vertex. Normalisation of the Cabc coefficient is the following: for a chiral
fermion coupled to the vector field the amplitude for the process ψ → ψAsoft is equal to

gψψ̄LAµψL ⇒ CψψA =
g2
ψ

4παem
. (2.87)

The relation eq.(2.87) is written only for one polarisation of the vector field. Similarly for
the scalar field

igϕ(ϕ∗∂µϕ− ∂µϕ
∗ϕ)Aµ ⇒ CϕϕA =

g2
ψ

4παem
, (2.88)

and the vector fields

gV 1V 2A3

(
V 1
µνV

2
µAν + V 2

µνAµV
1
ν + AµνV

1
µ V

2
ν

)
⇒ CV1V2A = g2

V 1V 2A

4παem
, (2.89)

where in all of these formulas Cabc coefficients are reported only for one polarisation of the
vector fields both in the initial and the final states. Summing all of these contributions
and taking care of the multiplicities of the initial and final states we find[∑

abc

νagaβcCabc

]
= 2

(
7 + 14cw

s2
w

− 7 − 15s2
w

c2
w

)
≃ 157 . (2.90)

For the interested reader, we refer various individual contributions in the Table 2.C.1. If
in the false vacuum the Higgs doublet H is too heavy its contribution must be subtracted
and the sum in eq.(2.90) reduces to[∑

abc

νagaβcCabc

]
No Higgs

≃ 145 . (2.91)

At last, we would like to emphasise that these results include only the transverse polar-
isations of the vector fields. NLO effects of the longitudinal polarisations are not fully
established and we omit them here, however, these cannot qualitatively modify the results.

2.D Domain wall collapse
Our main discussion was focused on the two step phase transition (0, 0) → (0, vs) → (vh, 0)
where the first phase transition is Z2 breaking. Obviously during such a phase transition
domain walls will be formed which can drastically modify the cosmology of the system.
We can avoid the stable domain walls if we assume some small Z2 breaking, however in
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Process ∑
gaCabc β ν Result

ψ → W±ψ 24
s2
w

cw
3
4

18cw
s2
w

ψ → Zψ 4(3−6s2
w+8s4

w)
s2
wc

2
w

1 3
4

3(3−6s2
w+8s4

w)
s2
wc

2
w

H → WH 2
s2
w

cw 1 2cw
s2
w

H → ZH 1−2s2
wc

2
w+c4

w+s4
w

2s2
wc

2
w

1 1 1−2s2
wc

2
w+c4

w+s4
w

2s2
wc

2
w

A → WsoftW & W → WsoftA 8 cw 1 8cw

Z → WsoftW & W → WsoftZ
8c2
w

s2
w

cw 1 8c3
w

s2
w

W → ZsoftW
4c2
w

s2
w

1 1 4c2
w

s2
w

Total: 2
(

7+14cw
s2
w

− 7−15s2
w

c2
w

)
≃ 157

Table 2.C.1: Different contributions to the sum in eq.(2.22).

this case the question arises about the timescale for the stability of the domain walls. This
is particularly important since recently it was shown [201] that for singlet extension of
the SM the domain walls (if still present) will become seeds of the secondary phase tran-
sition (0, vs) → (vh, 0) and will dominate the phase transition. We will follow closely the
discussion in section 2.3.2 using only the tree-level potential and the thermal corrections
to the masses. Then the Z2 breaking phase transition will occur at the temperatures

TZ2 ≃ vs

 12
3 + 4λhs v

2
s

m2
s

1/2

≃ 200 − 300 GeV, (2.92)

which is the temperature of the domain wall formation. The domain wall-mediated tran-
sition will happen at the temperature Tw which is found to be order one different from
TZ2 . The exact mechanism of the transition depends on the values of the couplings and
can proceed either with the classical rolling or 2D bounces localised on the domain wall.
The temperature when the classical rolling can start is reported in ref. [201] and is equal
to

T rolling
w ≃ TZ2


4m2

h +m2
s

(
1 −

√
1 + 8v2

sλhs
m2
s

)

8Πh(TZ2) +m2
s

(
1 −

√
1 + 8v2

sλhs
m2
s

)


1/2

. (2.93)

The nucleation temperature (T 2D
w ) of 2D bounces should be found numerically (ref. [201])

however it will be obviously smaller than Tcrit (of (0, vs) → (vh, 0) phase transition). At
this point, we can safely ignore the seeded phase transition effects if all of the domain
walls annihilate in the interval of temperatures

[Tw, TZ2 ] , Tw < Tcrit , (2.94)
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where Tw is the temperature when the seeded phase transition will be completed and it
is obviously less than Tcrit of EW phase transition. Let us estimate how strong the bias
∆VB should be between the potential energies of the two minima of Z2 potential so that
all of the walls can disappear. For these estimates, it is sufficient to assume that there is
order one difference between Tw and TZ2 , which is generically the case. The critical radius
(above which) areas with the true vacuum will start to expand is roughly

Rc ∼ σ

∆VB
, (2.95)

where σ is the surface energy density of the wall. So the domain walls will exist on the
time scale of

∆tw ∼ Rc

u
∼ σ

u∆VB
, (2.96)

where u is the velocity of the wall motion. The change of the temperature during the wall
annihilation will be roughly

∆T ∼ TcritH∆tw . (2.97)

So if ∆twH ≪ 1 ⇒ ∆T ≪ Tcrit the wall annihilation happens almost instantaneously.
Assuming σ ∼ T 3

crit and H ∼ T 2
crit
Mpl

we get

∆V
T 4

crit
≫ Tcrit

uMpl
. (2.98)

Balancing the pressure against the friction forces ∆VB ∼ uT 4
crit we can estimate the

velocity and then the condition for the quick wall annihilation becomes

∆VB
T 4

crit
≫
√
Tcrit

Mpl
∼ 10−8 , (2.99)

which is not restrictive at all.
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Chapter 3

Quantisation across the bubble wall
and friction

The progression of a FOPT involves the nucleation and expansion of bubbles of a new
phase, driven by the free-energy density difference ∆V between phases. If there is no
friction from surrounding matter, the bubble walls expand with constant acceleration, a
scenario known as runaway. However, if friction generates a pressure P balancing the
driving force (P ≃ ∆V ), the bubbles reach a constant subluminal velocity.

Understanding bubble dynamics is crucial for predicting phenomena like GW signals.
Friction depends on the bubble velocity vw and the surrounding dofs. At low vw, a
fluid description can be suitable, but in the ultra-relativistic regime, individual particle
interactions become significant. Incoming particles can either cross the wall or reflect,
with the resulting momentum loss providing the pressure opposing the expansion.

At leading order (LO), for processes 1 → 1, the pressure is independent of γw, scaling
with temperature and the vev in the broken phase, see (1.213). Next-to-leading order
(NLO) processes, i.e. 1 → 2, involving the emission of soft vector bosons, lead to a
friction pressure scaling with γw, known as transition radiation, which can dominate the
LO effect, see (1.234). In fig. 3.0.1 is presented a sketch of such processes. This study
will point out that longitudinal modes and soft momenta, often neglected in previous
analyses, can significantly impact pressure calculations.

In this chapter, we approach the calculation of transition radiation by quantising field
theories in the translation-breaking background of a domain wall from first principles. A
complete orthonormal basis is constructed from ‘left’ and ‘right’ mover energy eigenstates,
with each wave mode having ‘reflected’ and ‘transmitted’ parts. We then carefully relate
these to in and out asymptotic eigenstates of 4-momentum, understood in the S matrix
language.

For vectors, we demonstrate that describing the degrees of freedom across the wall in
terms of ‘wall polarisations’ τ and λ is more convenient than using conventional transverse
and longitudinal modes, as pointed out in [116]. The advantage of this approach is that
τ1,2 and λ are not mixed with each other in the presence of the domain wall. These sets
coincide only for zero transverse momentum k⊥ = 0 (normal incidence on the wall), where
rotations around the direction of propagation remain a symmetry.

In the case of gauge symmetry–breaking, λ smoothly interpolates between a Higgs
degree of freedom on the symmetric side and a third massive vector degree of freedom
on the broken side. We show how to perform calculations using this basis consistently,
avoiding divergences that may appear in a naive analysis.

Although we explain how to (numerically) compute ⟨∆p⟩ for a general wall profile,
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Figure 3.0.1: Diagrams corresponding to LO and NLO processes contributing to friction
on a moving bubble wall. The emission of vectors with changing mass is generally the
dominant 1 → 2 process for friction and the subject of this work. Tilde distinguishes
objects in the new phase.

we dedicate most of the work to approximating it in a way that is independent of the
particular shape, with the rough scale Lw playing the only role, while commenting on
the sensitivity thereon. For the IR of the emitted spectrum kz ≲ L−1

w the wall appears
effectively as a step function. This limit is particularly interesting theoretically (as well as
phenomenologically important, as mentioned already) since everything can be computed
analytically and relatively simply. For wavelengths shorter than the wall width kz > L−1

w ,
the WKB approximation becomes applicable. The integral over the phase space thus
splits into two contributions and the averaged momentum exchange very schematically
takes the form

⟨∆p⟩ ∼
∫ kz<L−1

w

d3k ∆p |Mstep|2 +
∫
kz>L−1

w

d3k ∆p |Mwkb|2 . (3.1)

where the M are matrix elements for emission calculated using the respective approxi-
mations. As the incoming flux scales like γw, we then have

P ∝ γw⟨∆p⟩ . (3.2)

As a warm up, we study transition radiation in a theory with two scalars and observe
some surprises. Though we find that the pressure from the emission of one scalar by the
other always saturates at large velocities PNLO,scalars

γw→∞ ∝ γ0
w, we find also that there can be

an intermediate regime of linear growth PNLO,scalars
intermediate ∝ γw. For scalars we find that the

WKB contribution (second term in eq. (3.1)) dominates the momentum transfer in the
asymptotic γw limit.

In the case of spontaneous breaking of gauge symmetry we find that the total friction
from vector emissions scales as ∝ γw log gT

ṽ
for T/ṽ ≪ 1, where ṽ is the Higgs’ vev, in

line with literature. We provide an updated fitted formula in eqs. (3.135) and (3.139).
The logarithmic enhancement appears only for the τ polarisations, and is dominated by
the step function contribution (the first term in the eq. (3.1)), however we also find
that effects of the λ polarisations can lead to significant corrections for mild supercooling
( ṽ
T

∼ few). We compare the relative importance in fig. 3.0.2 (Left). The curves are only
very weakly dependent on Lw. This and all of the rest of the figures in the chapter are
in natural units with some arbitrary scale [arb.].

As a side application, we also compute the transition radiation when the bubble
wall connects two vacua with broken gauge symmetry–but different vevs v and ṽ. In
this case, the contribution to friction from the longitudinal vector emission scales as
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Figure 3.0.2: Comparison between the averaged exchanged momentum from transition
radiation due to the emission of τ and λ vector polarisations, in the limit of large incoming
particle energy p0 → ∞. Left: Symmetric → Broken transition at finite temperature T ,
shown as a function of temperature over Higgs vev ṽ. T enters via thermal masses (for
details see the discussion in section 3.3.2). Results do not change significantly in the
limit Lw → 0. Right: Broken → Broken transition. While the τ contribution does not
change, λ emission can easily become dominant. We highlight the sensitivity on the wall
thickness. [arb.] means arbitrary units.

PNLO,vectors
γw→∞ ∝ γwL

−1
w (see fig. 3.0.2, Right) and can dominate over the transverse for thin

wall.
Aside from the asymptotic p0 → ∞ limit, we are also able to explore regimes with

intermediate – though large – γw. For symmetric → broken transition we find that the
saturating value is reached at energies dependent on the mass of the emitter particle, as
shown in fig. 3.0.3 (Left). In the case of the broken → broken transition we find that
there is an intermediate regime where the pressure scales as PNLO,vectors

intermediate ∝ γ2
w (right panel

of fig. 3.0.3).
The chapter is organised as follows: in the section 3.1 we work through a toy model

with only scalars, introducing various elements of the calculation. In section 3.2 we
quantise an Abelian Higgs model in the presence of a symmetry–breaking domain wall
and present the results for transition radiation of vectors in section 3.3. We summarise
in section 3.4.

Summary of notation: In the rest of this chapter, we will adopt the following con-
ventions:

1. We treat the bubble wall in the planar limit, where it is one dimensional and centred
around z = 0.

2. We use a hybrid notation for four-vector Lorentz indices:
µ = (n, z) ≡ (0, 1, 2, z). Coordinates are xµ = (xn, z) ≡ (t,x⊥, z).

3. Similarly for momenta kµ = (kn, kz) ≡ (k0,k⊥, k
z) ≡ (k0,k).

Also E2 = knkn = k2
0 − k2

⊥, where k⊥ = |k⊥|.

4. We define the change in mass across the wall ∆m ≡
√
m̃2 −m2.
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Figure 3.0.3: Total averaged momentum exchange as a function of incoming particle
energy p0. Left: Symmetric → Broken for different values of the mass of the emitter
particle ψ. The asymptotic regime is reached around p0 ∼ mψm̃/m (dashed lines), with
intermediate log(p0/mψ) growth. Right: Broken → Broken with thin walls. Here the
saturation value is reached around p0 ∼ L−1

w Max[1,mψ/m]. Again we highlight the sen-
sitivity to wall width. For small enough Lw we find an inter-relativistic regime with
averaged exchange momentum growing linearly, which translates to pressure scaling like
γ2
w.

5. Lw is the thickness of the wall.

6. γw (vw) is the boost factor (the velocity) of the wall.

7. The momenta p, q, k will always be used as in fig. 3.0.1 and we define:

∆p ≡ pz − qz − kz , ∆pr ≡ pz − qz + kz ,

∆p̃ ≡ pz − qz − k̃z , ∆p̃r ≡ pz − qz + k̃z .
(3.3)

3.1 Simple example: scalars
In this section, as a warm up for the more complex case of gauge theories, we go through
the quantisation of a scalar field theory in the presence of a domain wall and derive results
for transition radiation for the case of one scalar emitting another. This toy example is
sufficient to highlight many features of calculations in a spatially dependent background.

Consider two different scalar fields ϕ, ψ, the first of which feels the wall and has
different mass depending on the phase, while the second for simplicity does not. The
Lagrangian we consider is the following

L = 1
2(∂ϕ)2 + 1

2(∂ψ)2 − 1
2m

2
ϕ(z)ϕ2 − 1

2m
2
ψψ

2 − y(z)1
2ψ

2ϕ, (3.4)

where m(z) interpolates between m2(z)|z→−∞ = m2 = const and m2(z)|z→+∞ = m̃2 =
const. Similarly y(z) goes from y to ỹ. The profiles change on the scale of the wall width
Lw around z = 0. The interactions in eq. (3.4) are not the most general, but are designed
to mimic the vector case when y = const. The process that we will be studying is ψ → ψϕ,
which would be forbidden by kinematics if it was not for the breaking of z−momentum.
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Section summary: In section 3.1.1 and 3.1.2, we quantise the free theory, focusing
on the ϕ field 1 , by defining a complete basis of solutions that solve its equations of
motion. In section 3.1.3, we define a new basis that corresponds to out-going eigenstates of
momentum. Later, in section 3.1.4, we calculate the amplitude for the ψ → ψϕ transition
in the step wall approximation, valid when kzLw ≲ 1. In section 3.1.5, we present the
proper domain for the phase space integration over the final state. In section 3.1.6,
we complete the emission spectrum discussing the calculation of the amplitude in the
(opposite) WKB regime kzLw ≳ 1. In section 3.1.7, we summarise and present master
formulae for the calculation of the averaged momentum transfer ⟨∆p⟩. We conclude by
discussing results for ⟨∆p⟩ and pressure PNLO in sections 3.1.8 and 3.1.9 respectively.

3.1.1 Complete basis
The quantisation of modes in the presence of a background profile arises in many corners
of physics. A very similar task appears for example in the quantisation of field theory in
black hole spacetimes. We found the treatment in [202] particularly useful. In the simple
example of eq. (3.4) above, the discussion is relevant for ϕ, which satisfies

(∂2 +m2
ϕ(z))ϕ = 0 , (3.5)

with a z−dependent mass term. To perform second quantisation we need to first find a
convenient basis of solutions of this equation. Far away from the wall the solutions are
plane waves. A convenient choice of complete orthonormal basis is given in terms of ‘right’
and ‘left’ moving solutions, which are defined by their boundary conditions as follows 2

ϕR,k = e−iknxnχR,k(z) ≡ e−iknxn
eik

zz + rR,ke
−ikzz , z → −∞

tR,ke
ik̃zz , z → +∞

(Right) (3.6)

with k0 > m and

ϕL,k = e−iknxnχL,k(z) ≡ e−iknxn
√
kz

k̃z

tL,ke−ikzz , z → −∞
rL,ke

ik̃zz + e−ik̃zz , z → +∞
(Left) (3.7)

with k0 > m̃ and we take kz, k̃z to be strictly positive 3. The factor
√
kz/k̃z is included

in eq. (3.7) to ensure appropriate normalisation (see below, eq. (3.13)). In the limit of no
domain wall the rL, rR (tL, tR) coefficients are zero (one) and ϕL, ϕR correspond simply to
the plane waves with ∓kz momenta. The momentum along z is not conserved across the
wall; however, asymptotically far it becomes constant and fixed by the relations

kz ≡
√
k2

0 − k2
⊥ −m2, k̃z ≡

√
k2

0 − k2
⊥ − m̃2 . (3.8)

In general, we need to solve the equations of motion to find the expression of the coeffi-
cients rL,R, tL,R. Consequently, they will depend on the explicit form of the mass variation
m2
ϕ(z). However, here it will be sufficient to consider the step wall ansatz for the mass

m2
ϕ(z)

m2
ϕ(z) = m2 + ∆m2Θ(z) , ∆m2 ≡ m̃2 −m2 . (3.9)

1The quantisation of ψ, as it does not feel the wall, is instead completely standard.
2Recall that the index n designates 0, 1, 2 and not the z direction.
3As is well known, the basis formed by just ϕR,k but allowing kz to take both signs (and k̃z =

sign(k)(
√
k2 − ∆m2) is also complete but not orthogonal and therefore less convenient. For example, the

algebra of creation and annihilation operators would be more complicated.
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using the Heaviside Theta function. The form of the coefficients for the scalar case under
consideration can be obtained by matching ϕ and its first derivative at the origin z = 0,
where the step wall lies. They take the form

rR,k = kz − k̃z

kz + k̃z
, tR,k = 2kz

kz + k̃z
. (3.10)

These expressions are specific to the step-wall assumption. However, the general treatment
that we present here will hold for general rk, tk coefficients and could be easily adapted to
a smooth wall case. Modes with m < k0 < m̃ decay exponentially on the right of the wall
and are automatically included as right-movers. For these, k̃ is purely imaginary with
magnitude

|k̃z|2 = ∆m2 − k2
z for 0 < kz < ∆m . (3.11)

In a similar fashion, for the left moving solution we find

rL,k = −rR,k = k̃z − kz

kz + k̃z
, tL,k = k̃z

kz
tR,k = 2k̃z

kz + k̃z
. (3.12)

and we explicitly note the condition k0 > m̃, to avoid the inclusion of solutions growing
exponentially at infinity. The left and right moving modes are orthonormal in the sense
that ∫ ∞

−∞
dz χI,k χ

∗
J,q = 2πδIJδ(kz − qz) , I, J ∈ {R,L} . (3.13)

Computing integrals such as eq. (3.13) in the step function case requires the identity

∫ 0

−∞
eiβzdz = PV

(
1
iβ

)
+ πδ(β) , (3.14)

and its complex conjugate (which gives the integral from 0 to ∞). In eq. (3.13) the
principle value (PV) pieces vanish as soon as we specify the relation between k̃z and kz,
i.e. k̃2

z = k2
z +m2 − m̃2. Notice we can discard terms proportional to δ(kz + qz) due to the

strictly positive definition of kz, qz in our definition. If explicitly computing things like
the Hamiltonian and operator algebra (see next subsection) it is also useful to know the
other inner products:

∫ ∞

−∞
dz χR,k χR,q = −

∫ ∞

−∞
dz χL,k χL,q = 2πk

z − k̃z

kz + k̃z
δ(kz − qz),

∫ ∞

−∞
dz χR,k χL,q = 4π

√
kzk̃z

kz + k̃z
δ(kz − qz). (3.15)

Finally, we would like to comment that, in general, bound states may also appear in
the spectrum, in addition to the scattering states studied above, if the function m2

ϕ(z) is
non-monotonic and has minima in the vicinity of the domain wall. These are of the form
ϕb ∝ e−iknxnχb(z), with χb exponentially decaying for |z| → ∞ and should be included
in the upcoming expansion eq. (3.16). Further detail can be found in appendix 3.B.
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3.1.2 Quantisation
Now that we have a complete orthonormal basis of eigenstates in the presence of the wall,
we can proceed to quantise the theory. The field ϕ can be expanded in the form 4

ϕ(x, t) =
∑
I=R,L

∫ d3k

(2π)3
√

2k0

(
aI,kϕI,k + a†

I,kϕ
∗
I,k

)
,

where ϕL,k ≡ 0 for E < m̃ , (3.16)

where d3k ≡ dkzd2k⊥, we recall E ≡
√
k2

0 − k2
⊥ and kz runs between [0,∞). We choose to

label states by their quantum numbers outside the wall5. Note we have trivially extended
the definition of the left moving modes to the region E < m̃ for convenience.

Using eqs. (3.13) and (3.15), one can show that

aI,p =
∫ dz√

2p0
eip0tχ∗

I,p(iπ + p0ϕ) , (3.17)

where π ≡ ∂tϕ. Promoting Poisson brackets of ϕ and its conjugate momentum π to
canonical commutation relations gives the familiar commutation algebra

[aI,k, a†
J,q] = (2π)3δ(k − q)δIJ ,

[aI,k, aJ,q] = [a†
I,k, a

†
J,q] = 0 , I, J ∈ {R,L} .

(3.18)

We can define two types of states

|kR⟩ ≡
√

2k0 a
†
R,k |0⟩ , (3.19)

|kL⟩ ≡
√

2k0 a
†
L,k |0⟩ , (3.20)

which should be thought of as independent external states in any process. The space of
physical states is thus the Fock space defined by arbitrary powers of a†

R,k and a†
L,k acting

on the vacuum.

3.1.3 Out-going eigenstates of momenta
In the previous subsections we chose to quantise the orthonormal basis {ϕR,k , ϕL,k} and
defined associated one-particle states |kR⟩ and |kL⟩. As we explain in more detail in
section 3.A by the use of wave-packets, these should be thought of as describing incoming
particles with definite z−momenta kz and −k̃z respectively at t → −∞, but at t → +∞
they correspond to a superposition between a transmitted and reflected particle. As a
consequence, the functions ϕR,L are eigenstates of momenta only at t → −∞. They are
well-suited for processes with asymptotic in-state ϕ particles.

On the other hand, in this work we will be interested in the momentum transfer to
the wall, so it is more convenient to have a ϕ particle emitted as an asymptotic out-state
with well-defined momentum at t → ∞. A complete orthonormal basis of such late-time

4We use normalisation conventions in line with [203].
5This is more convenient than labeling with respect to k̃z since this becomes imaginary for the branch

0 < kz < ∆m.
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Figure 3.1.1: Summary of asymptotic external states with definite 4−momentum, to
be used in calculating any process in the background of a domain wall (or any localised
z−dependent potential). The upper panels represent in-state particles incoming from
z = −∞ and z = ∞. In the plane wave limit they correspond to states |kR⟩ and |kL⟩
with wavefunctions eqs. (3.6) and (3.7) respectively. The lower panels represent out-state
particles travelling out towards z = −∞ and z = ∞. They correspond to states eqs. (3.23)
and (3.24) with wavefunctions eqs. (3.21) and (3.22) respectively.

eigenstates of momentum is given by

ϕout
L,k ≡ e−iknxnζL,k(z) = e−iknxnχ∗

R,k(z) = e−iknxn
r∗

R,k χR,k + t∗R,k

√
k̃z

kz
χL,k

 , (3.21)

ϕout
R,k ≡ e−iknxnζR,k(z) = e−iknxnχ∗

L,k(z) = e−iknxn
r∗

L,k χL,k + t∗L,k

√
kz

k̃z
χR,k

 , (3.22)

where in the last equalities we related them to the basis of section 3.1.1. We emphasise
again that in our notation kz, k̃z > 0 always. ϕout

L,k and ϕout
R,k should be thought of as

describing an outgoing final state particle with −kz and +k̃z momentum respectively.
Recall that the function χL,k vanishes for kz < ∆m and the corresponding Θ functions
are implicit. At t → −∞ they are both superpositions of incoming particles from z = ±∞
and do not have well defined momentum. In practice we need to calculate the amplitudes
with ζL,R = χ∗

R,L wave functions. At the level of states, we have

|kout
L ⟩ = r∗

R,k|kR⟩ + t∗R,k

√
k̃z/kz |kL⟩ Θ(kz − ∆m) , (3.23)

|kout
R ⟩ = t∗L,k

√
kz/k̃z |kR⟩ + r∗

L,k|kL⟩ , (3.24)

where we explicitly remind ourselves that when 0 < kz < ∆m the left mover state does
not exist. The different asymptotic states are illustrated in the fig. 3.1.1.

We emphasise that both bases can be used to quantise the theory. In our present
chapter however we will consider only outgoing ϕ particles so that the basis {ϕout

R,k, ϕ
out
L,k}

is actually more convenient. From now on we drop the label ‘out‘ and we will refer to R
(L) emission meaning using the mode functions {ζR, ζL}, if not stated otherwise.
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3.1.4 Amplitudes
We now finally turn to compute the amplitude for the process ψ → ψϕ in the back-
ground of a domain wall. We have not discussed the quantisation of ψ since it does not
feel the wall directly and there are no complications with respect to the standard the-
ory. In the previous sections we argued that there are two processes we have to consider
separately: the emission of a left and right moving ϕ particle, with respective wavefunc-
tions ζL(ζR). Having quantised the free theory, the treatment of perturbative interactions
proceeds as standard, by defining an S-matrix in terms of the interaction Hamiltonian
S = T exp (−i

∫
d4xHInt) where T here denotes time ordering. We have the amplitudes

of interest

⟨kout
I q| S |p⟩ ≡ (2π)3δ(3)(pn − kn − qn)iMI

tree= −i
∫
d4x⟨kout

I q| HInt |p⟩ (3.25)

with I = L,R ,

where p and q stand for the initial and final one particle states for the ψ field and their
respective 4−momenta, and the last equality is up to leading order in perturbation theory
(tree level). Notice we have defined the matrix element M as closely as possible to
standard theory. Of course, we cannot extract a z−momentum conserving delta function
but rather M still contains the integral over z.

For the theory of scalars of eq. (3.4), we have HInt = −iyψ2(x)ϕ(x) and we can now
proceed to explicitly computing amplitudes. In the case of a ζL mode emission (where
the emitted scalar has −kz momentum), the amplitude takes the form

ML =
∫ ∞

−∞
dz y(z)ei(pz−qz)z

[
ζL,k = χ∗

R,k(z)
]∗

=
[

−iy
pz − qz + kz

+ rR,k
−iy

pz − qz − kz
− tR,k

−iỹ
pz − qz + k̃z

]
. (3.26)

Instead, in the case of ζR mode emission (where the emitted scalar has +k̃z momentum):

MR =
∫ ∞

−∞
dz y(z)ei(pz−qz)z

[
ζR,k = χ∗

L,k(z)
]∗

=
√
kz

k̃z

[
tL,k

−iy
pz − qz − kz

− −iỹ
pz − qz − k̃z

− rL,k
−iỹ

pz − qz + k̃z

]
, (3.27)

where the square root factor comes from the normalisation condition in eq. (3.7). To com-
pute the total friction from ψ → ψϕ we must sum the contributions from both processes.
Then we can compute the amplitude squared for the emission of a right/left mover, under
the assumption that y = const., we obtain

|MR|2 = y2 4kzk̃z(kz − k̃z)2

(k̃2
z − (pz − qz)2)2(kz − pz + qz)2

, (3.28)

|ML|2 = y2 4k2
z

(k2
z − (pz − qz)2)2


(kz−k̃z)2

(k̃z+pz−qz)2 , kz > ∆m ,
∆m2

∆m2−k2
z+(pz−qz)2 , kz < ∆m ,

(3.29)

where for L emission we distinguished between the two branches corresponding to k̃z

purely real and imaginary, and used eq. (3.11) to simplify in the latter case.
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3.1.5 Phase Space integration
We can now compute the average exchanged momentum due to transition radiation, ⟨∆p⟩
due to a single incoming particle. We integrate over the whole allowed phase space of the
final two particles, weighting the amplitude squared for ψ to emit ϕ by the momentum
lost. We add separately contributions from left and right movers with their respective
slightly different phase space. ⟨∆p⟩(p) is in general a function of the four-momentum p
of the incoming ψ. From ⟨∆p⟩ we can compute the total friction pressure by integrating
over the incoming flux.

For simplicity we take p⊥ = 0 and parameterise the kinematics of the 1 → 2 process
as follows

pµ = (p0, 0, 0,
√
p2

0 −m2
ψ), qµ = (q0,−k⊥, 0, qz),

kµ = (k0, k⊥, 0, kz), k̃µ = (k0, k⊥, 0, k̃z), (3.30)

where k̃z is defined in eq. (3.8) and qz =
√
q2

0 − k2
⊥ −m2

ψ, with q0 = p0 − k0 from energy
conservation. Note we have used the cylindrical symmetry of the set up to make the second
spatial component of kµ zero. ⟨∆p⟩ is given by the sum of left and right contributions

⟨∆p⟩ = ⟨∆pR⟩ + ⟨∆pL⟩

≡
∫
dPψ→ψϕR (pz − qz − k̃z)︸ ︷︷ ︸

∆pzR

+
∫
dPψ→ψϕL (pz − qz + kz)︸ ︷︷ ︸

∆pzL

. (3.31)

where dPψ→ψϕI is the differential probability. The first and second terms on the RHS of
eq. (3.31), will be different in their lower limits on the kz integrals. The second term,
left-mover emission, contains also the modes k0 < m̃ which are exponentially decaying
inside the wall. In section 3.A.2 we show that∫

dPψ→ψϕI∆pzI =
∫ kzmax

kz,Imin

dkz
2π

1
2k0

∫ k2
⊥,max

0

dk2
⊥

4π · 1
2pz

[
1

2|qz|
|MI |2∆pzI

]
qz=±qz

k

, (3.32)

where I = R,L and [...]qz=±qz
k

is intended to be the sum over qz = ±qzk. The contribution
with qz = −qzk corresponds to the reflection of the incoming particle ψ, a branch missing in
the previous literature. Of course, in the ultra-relativistic regime, it is expected that this
should be highly suppressed 6. The limits of integration of eq. (3.32) are found demanding
the reality of the qz momentum, obtaining for the (R) modes

(Right) : kz,Rmin ≡ ∆m ≤ kz ≤ kzmax ≡
√

(p0 −mψ)2 −m2,

0 ≤ k2
⊥ ≤ k2

⊥,max ≡ 1
4p2

0
(p2

0 + k2
z +m2 −m2

ψ)2 − k2
z −m2. (3.33)

For the (L) modes, the only difference is

(Left) : kz,Lmin ≡ 0 ≤ kz ≤ kzmax . (3.34)

Following this discussion, in general, there will be four contributions:

⟨∆pq
z<0
L ⟩, ⟨∆pq

z>0
L ⟩, ⟨∆pq

z<0
R ⟩, ⟨∆pq

z>0
R ⟩.

However, we explicitly checked that in all cases of interest, the contributions with qz < 0
are largely subdominant and we will ignore them completely in the rest of this chapter.

6Notice that the sign change in ∆pzR means that a process with qz < 0 contributes more to momentum
exchange, but it is the amplitude which is generally suppressed.
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3.1.6 Emission in the WKB regime
So far we have been treating the bubble wall as a step function. This is a good approxi-
mation if the z momentum of the emitted particle is less than the inverse scale over which
the background (in the case of eq. (3.4), the mass) changes significantly, i.e. kz ≲ L−1

w .
How can we proceed if the particles’ momentum becomes comparable or larger than the
width of the wall? First of all, if we know the shape of the potential exactly, we can solve
for the left and right mover solutions as we did above for the step-wall, and proceed with
these functions in precisely the same way as before. In principle, this can always be done
numerically. However, we will argue that even in the case when we do not know the exact
shape of the potential, we can still obtain reliable results.

Let us consider a particle hitting the wall with momentum kz ≫ L−1
w . Reflection

will be suppressed and the WKB approximation, which has been used extensively in the
literature [95, 96, 107], becomes applicable. The approximate form of the z-dependent
wavefunctions are now χ ≈

√
kz(z0)/kz(z)e

±i
∫ z
z0
kz(z′)dz′

, with z0 some reference position.
Having the approximate solutions to the χR,L(ζR,L) basis functions, we proceed in the
same way as in section 3.1.4. Thus, in practice this means separating the phase space
into two regions:

region (1) kzϕ ≪ L−1
w , step wall,

region (2) kzϕ ≫ L−1
w WKB.

(3.35)

In the WKB regime the amplitude for a general 1 → many right-movers7 process, allowing
for all masses to vary, can be schematically written as follows

Mwkb =
∫ +∞

−∞
dz V (z) exp

[
i
∫ z

0
∆p(z′)dz′

]∏
i

√√√√piz(0)
piz(z)

,

∆p(z′) ≡ pz(z′) −
∑
i

pzi (z′) = pz(z′) −
∑
i

√
(pi0)2 − (pi⊥)2 −m2

i (z′) , (3.36)

where i sums over final state particle momenta. Naively, computing this integral requires
knowledge of the functions mi(z). However, these are changing only in the vicinity of the
wall, while outside they quickly reach the asymptotic constant values. This means we can
split the amplitude into two pieces

Mwkb =
∫ 0

−∞
dzV (−∞)ei∆pz(−∞)z + ei

∫ Lw
0 dz′∆p(z′)

∫ ∞

0
dzV (+∞)ei∆pz(+∞)z︸ ︷︷ ︸

Moutside

+
∫ Lw

0
dzV (z)ei

∫ z
0 dz′∆p(z′)︸ ︷︷ ︸

Minside

, (3.37)

where the assumption is that things are varying only between z ∈ [0, Lw]. In the WKB
regime, all the momenta of the particles are much larger than the inverse width of the
wall pzLw ≫ 1 so the overall modification of momenta p(+∞) − p(−∞) ≪ p(∞) is much
less than its absolute value (if the wall is not too thick m(z)L ≲ 1), this is why we have
approximated ∏√p/p(z) → 1. Similarly ∆p(+∞)−∆p(−∞) ≪ ∆p(∞), then from basic
properties of Fourier transformations the amplitude

M → 0, if ∆pmax
z Lw ≫ 1 , (3.38)

7We will see later on how left mover emission is negligible for us in the WKB regime.
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with ∆pmax
z = Max[∆pz(±∞)]. The physics behind this relation is very simple: the wall

of the width Lw can lead to the momentum loss ∆pz at most L−1
w . This is expected

since the processes with ∆pz ≫ L−1
w happen at distances ∼ ∆p−1

z , much shorter than the
typical wall width. However, at such small distances we recover translational symmetry
along the z direction and transition radiation must be forbidden (we checked these state-
ments for various wall ansatzes in appendix 3.J). From these arguments, we can see that
independently of the wall ansatz the particle emission will be dominated by the region
∆pzLw ≲ 1. Then we can approximate the amplitude as follows

Mwkb =
∫ 0

−∞
dzV (−∞)ei∆pz(−∞)z +

∫ ∞

0
dzV (+∞)ei∆pz(+∞)z

+
∫ Lw

0
dzV (z)ei

∫
dz̃∆p(z̃) . (3.39)

Performing the z integrals for the first two terms is trivial and, using eq. (3.14), we get

Mwkb ≈ V (−∞)
i∆pz(−∞) − V (+∞)

i∆pz(+∞) +
∫ Lw

0
dzV (z)ei

∫
dz̃∆p(z̃) (3.40)

The last term scales very roughly as V (z ∈ [0, Lw])Lw then assuming V (z ∈ [0, Lw]) ∼
V (∞) ∼ V (−∞) we can see it will be suppressed by the condition ∆pLw ≲ 1. Thus we
arrive at the Bodeker-Moore formula [95] for reduced matrix element

Mwkb red. = V (−∞)
i∆pz(−∞) − V (+∞)

i∆pz(+∞) . (3.41)

Now one can take this formula and perform the phase space integration. However, we
would like to emphasise a simple but important point. Since we have ignored the contri-
bution inside the wall, there is no guarantee that the matrix element will be suppressed
in the region with ∆pzLw ≫ 1. In all of our calculations we always:

• impose ∆pzLw < 1 − Fourier decomposition properties

• verify that Minside ≪ Moutside − applicability of BM approximation (we will see
that satisfying this inequality turns out to be non-trivial for longitudinal vector
bosons).

Finally, from this discussion it is clear that we should not worry about left emission
in the WKB regime since for left movers with kz > L−1

w the total loss of momenta ∆pz =
pz − qz + kz > L−1

w , meaning these processes must be strongly suppressed and we can
safely ignore them.

Scalars example Let us apply this very generic discussion to the case of scalar radia-
tion. Then the matrix element will be given by

Mwkb red. = −iy
pz − qz − kz

− −iy
pz − qz − k̃z

, (3.42)

for the contribution outside of the wall. The contribution inside the wall (which we ignore)
scales roughly as

Minside
wkb

Mwkb red. ∼ ∆pzLw , (3.43)

which is always less than one. We conclude that the neglected corrections coming from
inside of the wall contributions are indeed negligible for scalars.
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3.1.7 Procedure for the momentum transfer calculation: sum-
mary

In this section we summarise the previous results and give a concise prescription for the
momentum transfer calculation independent of the wall shape details. There are three
contributions:

⟨∆pstep
L ⟩ , ⟨∆pstep

R ⟩ , ⟨∆pwkb⟩ , (3.44)

where the first two correspond to emission to the left and right in the step wall regime and
the last one to the emission to the right in the WKB regime. These are given explicitly
by the following phase space integrals:

⟨∆pstep
L ⟩ =

∫ kzmax

0

dkz
2π

1
2k0

∫ k2
⊥,max

0

dk2
⊥

4π · 1
2pz

[
1

2|qz|
|ML|2(pz − qz + kz)

]
Θ(L−1

w − kz) ,

⟨∆pstep
R ⟩ =

∫ kzmax

∆m

dkz
2π

1
2k0

∫ k2
⊥,max

0

dk2
⊥

4π · 1
2pz

[
1

2|qz|
|MR|2(pz − qz − k̃z)

]
Θ(L−1

w − kz) ,

⟨∆pwkb⟩ =
∫ kzmax

∆m

dkz
2π

1
2k0

∫ k2
⊥,max

0

dk2
⊥

4π · 1
2pz

[
1

2|qz|
|Mwkb red.|2(pz − qz − k̃z)

]
× Θ

(
kz − L−1

w

)
Θ
(
L−1
w − (pz − qz − k̃z)

)
, (3.45)

where the limits kzmax, k
2
⊥,max were defined in eq. (3.33) but we repeat them here for the

reader’s convenience,

kmax
z ≡

√
(p0 −mψ)2 −m2 ,

k2
⊥,max ≡ 1

4p2
0
(p2

0 + k2
z +m2 −m2

ψ)2 − k2
z −m2 . (3.46)

and also recall that ∆m2 ≡ m̃2 − m2. ML,MR are the amplitudes for the process
calculated using the step wall ansatz (see section 3.1.4) and Mwkb red. is the amplitude in
the WKB approximation, without the contribution inside the wall, calculated following
the discussion in section 3.1.6. Note the presence of various Theta functions imposing
cuts on phase space. For the ⟨∆pstep

L,R⟩ cases, these ensure that kz < L−1
w , i.e. a step

wall approximation is valid. Similarly Θ(kz − L−1
w ) for the WKB regime. For the latter,

the second constraint Θ
(
L−1
w − (pz − qz − k̃z)

)
imposes that the momentum transfer not

surpass the inverse wall width (see discussion near eq. (3.38)). In practice, all constraints
can be implemented by cutting the integration limits, as is shown in Table 3.1.1. The
Θ(±(L−1

w − kz)) are easily implemented by cutting the kz integration appropriately. For
the WKB regime, the extra constraint pz − qz − k̃z < L−1

w amounts to cutting also the k2
⊥

integration as follows

k2
⊥ ≤

k2
⊥,wkb , kz < kz∗
k2

⊥,max , kz > kz∗
(WKB red.) (3.47)

where

k2
⊥,wkb ≡ 1

4p2
0

(
p2

0 + k2
z +m2 −m2

ψ − (pz − k̃z − L−1
w )2

)2
− k2

z −m2 , (3.48)

kz∗ ≡
√

(pz − L−1
w )2 + ∆m2 . (3.49)

To derive this, note that if pz − k̃z −L−1
w < 0, the positivity of qz means we are done with

no extra condition. If instead pz − k̃z − L−1
w > 0, squaring the constraint and solving for

k2
⊥ gives eq. (3.48).

113



Phase space integration limits
L−step R−step WKB red.

kz

[
0,Min[L−1

w , kzmax]
] [

∆m,Min[L−1
w , kzmax]

] [
L−1
w ,Max[L−1

w , kz∗]
] [

Max[L−1
w , kz∗], kzmax

]
k2

⊥ [0, k2
⊥,max] [0, k2

⊥,max] [0, k2
⊥,wkb] [0, k2

⊥,max]

Table 3.1.1: We report here all phase space integration limits for each emission con-
tribution after explicitly taking into account constraints imposed by Theta functions in
eq. (3.45). The WKB regime is divided into two regions having imposed the constraint
∆pzLw < 1, as explained in section 3.1.7. All definitions Max & Min functions are in-
cluded to also capture low p0 or large L−1

w .

3.1.8 Momentum transfer from scalar emission
Using the expressions summarised in section 3.1.7, we calculate the momentum transfer
from scalar emission ψ → ψϕ in our toy model eq. (3.4). As explained above, the total
averaged momentum transfer is the sum of three separate contributions ⟨∆pstep

L,R⟩, ⟨∆pwkb
R ⟩.

Numerical integration is relatively straightforward and representative results are shown in
fig. 3.1.2. Analytical expressions can be derived, with some details given in section 3.G.1,
and are presented when deemed useful. There are several parameters in the problem so
which of the three contributions dominates is a function of different hierarchies. Generi-
cally we find that at large energies p0 → ∞ the WKB contribution always dominates and
falls off as 1/p0. Computing the phase space integrals in this asymptotic limit, we obtain
a very good approximation

⟨∆ptotal⟩
∣∣∣
p0≫L−1

w Max[1, mψ/m]
≈ ⟨∆pwkb

R ⟩ ≈ y2m̃

32π2m2
ψ

× (3.50)

p−1
0

2m̃

[
2m̃2 ln

(
m

m̃

)
+

2(m2 + m̃2)m2
ψ −m2m̃2

S(m) ln [D(m)] + S(m̃) ln [D(m̃)]
]
,

where

D(m) ≡
m2 − 2m2

ψ + S(m)
2m2

ψ

, S(m) ≡ im
√

4m2
ψ −m2 .

On the other hand, at low and intermediate relativistic energies, the step function con-
tributions typically dominate. This behaviour is amplified in two independent regimes.
For very thin wall Lw → 0 the WKB contribution naturally only turns on at higher ener-
gies p0 ≫ L−1

w , with ⟨∆pstep
R ⟩ temporarily dominating in its place (see bottom-right panel

of fig. 3.1.2). Nonetheless, the trend is still reasonably approximated by interpolating
backward the asymptotic result of eq. (3.50).

More interesting is the case when the initial mass of ϕ is very light m ≪ m̃,mψ. Each
contribution to momentum transfer becomes constant for an inter-relativistic plateau as
can be observed in the leftmost panel of fig. 3.1.2. Moreover, it is actually ⟨∆pstep

L ⟩ that
dominates, with a value

⟨∆ptotal⟩ ≈ ⟨∆pstep
L ⟩ ≈ y2m̃

8π2m2
ψ

for p0 ≲ m̃mψ/m . (3.51)

Further details can be found in section 3.G.1.
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Figure 3.1.2: Numerical results for the averaged momentum transfer to the wall for
each of the three contributions in eq. (3.45) as a function of incoming particle energy.
Black and orange curves stand for right and left emission of soft quanta (using step wall),
while blue is for the energetic quanta (using WKB). The vertical red dashed lines are the
lower bounds on the minimal energy the incoming particle can have to emit right and
left modes. We show four cases of interest, that respectively are: m̃ ≫ m, m̃ ∼ O(1)m,
m̃ − m ≪ 1 and L−1

w ≫ m̃. The horizontal and oblique dashed lines are analytical
estimates in eq. (3.50) (⟨∆pwkb

ζR
⟩), in eq. (3.251) (⟨∆pstep

ζL
⟩) and in eq. (3.252) (⟨∆pstep

ζR
⟩).

At the highest scales, the WKB contribution always dominates and falls as p−1
0 (while

both step wall contributions fall as p−2
0 ). In the limit Lw → 0, R emission also falls off as

p−1
0 . Most interestingly, for large hierarchy mψ/m, ⟨∆p⟩ is constant until p0 ≲ m̃mψ/m.
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3.1.9 Pressure from scalar emission
The pressure induced on the bubble wall from scalar emission is finally obtained by inte-
grating over the incoming flux

P =
∫ d3p

(2π)3fψ(T, γw) × pz

p0
⟨∆ptotal⟩ , (3.52)

where fψ is the phase space distribution of incoming ψ particles in the frame of the wall.
Let us first focus on the interesting regime when m ≪ mψ, identified in eq. (3.51), where
⟨∆p⟩total is constant for a plateau lasting till p0 ≲ m̃mψ/m. In the ultra-relativistic limit
pz/p0 → 1, and the integration gives simply

Pscalar = nψ(T, γw)⟨∆ptotal⟩ = γwnψ(T )⟨∆ptotal⟩ , p0 ≲
m̃mψ

m
. (3.53)

To go from the second equality to the third we used that the number density of ψ in
the wall frame is boosted with respect to the FRW frame number density. Thus, even
scalar emission can cause friction pressure that grows with γw. Combining the plateau
and asymptotic contributions for scalar emission, we have approximately, for an incident
thermal population,

Pscalar ≈


T 3

8π4
y2m̃
m2
ψ

× γw , γw ≲ m̃mψ
mT

T 2

64π3
y2m̃2

mψm
, γw ≳ m̃mψ

mT

, (3.54)

where the second expression was obtained by expanding eq. (3.50) for small m and simply
multiplying by nψ(T ) ≈ T 3/π2. The asymptotic constant pressure can be compared
with the LO contribution from a thermal population of ϕ particles crossing the wall as
per eq. (1.235), which gives ∼ T 2m̃2. We observe that the NLO contribution is more
important when y2

64πmψm
≳ 1.

We remind the reader that our results for scalar emission pressure were obtained for a
particularly simple choice of interactions in the Lagrangian eq. (3.4) (with y = const) and
we highlighted here a particular regime of parameters. Our main goal was to mimic as
much as possible the vector radiation to be discussed in the next section. We will return
to whether the pressure in eq. (3.54) can be phenomenologically relevant in future work.

3.2 Spontaneously broken gauge theories
We now proceed to the phase transitions related to the spontaneous breaking of gauge
symmetry and the emission of vector bosons. The procedure will in essence be exactly the
same as what we presented for the case of the scalar emission. We will quantise the theory
of a gauge field in the background of a domain wall interpolating between a symmetric
and broken phase. As should be expected, the extra difficulty will involve dealing with
gauge-fixing, spin and the change of degrees of freedom due to the spatially-dependent
rearrangement of the vacuum.

For simplicity, we will consider the Abelian Higgs model of a charged complex scalar
H, whose potential V (

√
2|H|) is responsible for the spontaneous breaking of the U(1)

gauge symmetry. A second scalar field ψ charged under the same U(1) will play the role
of matter; its potential is trivial. The Lagrangian is

L = −1
4FµνF

µν + |DµH|2 − V
(√

2|H|
)

+ |Dµψ|2 −m2
ψ|ψ|2, (3.55)
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where we are using the convention Dµψ = (∂µ + igAµ)ψ and Aµ is the vector gauge field.
We will in general not need to commit to a specific potential but will simply assume that
it has two minima at

√
2|H| = v, ṽ, where v → 0 corresponds to the symmetric phase.

We will quantise the theory in the background of a domain wall
√

2⟨|H|⟩ = v(z). We will
also be interested, both as a computational tool and as a phenomenological case in its
own right, in imagining a distorted or more general class of potential with non-zero v < ṽ.
We will call this scenario a broken to broken phase transition, in opposition to the more
familiar case of symmetric to broken phase transitions.

To work with the theory described by eq. (3.55), one has to make two independent
choices: what field coordinates to use for H, such as Cartesian or polar, and what gauge
to impose. The value of each choice is determined by the particular application. Much of
the following pages will be dedicated to arguing for the most convenient choices for our
application.

If we are interested in studying the geometry of the vacuum manifold, polar coordi-
nates H = 1√

2(h+v)eiθ are most convenient. The potential depends only on the modulus.
In the symmetric phase however, this coordinate choice is singular. On the other hand,
Cartesian coordinates are well-defined everywhere

H = 1√
2

(h1 + ih2) ≡ 1√
2

(h+ v(z) + ih2) , (3.56)

where we have expanded around the background solution h1 = v(z). The Lagrangian for
the Higgs and gauge fields becomes

LA,H = −1
4FµνF

µν + 1
2(∂h)2 + 1

2(∂h2)2 − gAµ [h2∂µv(z) − v(z)∂µh2]

+ 1
2g

2v2(z)A2 − 1
2∂

2
1V (v(z))h2 − 1

2∂
2
2V (v(z))h2

2 + . . . ,
(3.57)

up to quadratic terms, where ∂i ≡ ∂/∂hi, so that the last two terms are the z-dependent
mass terms of h and h2.

At a non-zero minimum of the potential, h2 becomes massless and is the would-be
Nambu-Goldstone boson (NGB). As always for gauge theories, when v ̸= 0 a mixing term
appears between this goldstone boson and the gauge boson. However, in the context of
a varying background, there is also an extra mixing proportional to ∂zv. When v is a
constant, the mixing can be eliminated completely while also gauge fixing by adding the
so called Rξ gauge term

δLg.f. = − 1
2ξ (∂µAµ − ξgvh2)2 , (3.58)

and integrating by parts. For v = v(z), adding this same (now z−dependent) gauge-fixing
term does not get rid of mixing entirely but localises it to the region of the wall

LA,H + δLg.f. = − 1
4FµνF

µν − 1
2ξ (∂µAµ)2 + 1

2(∂h)2 + 1
2(∂h2)2

− 2gh2A
z∂zv(z) + 1

2g
2v(z)2A2 − 1

2∂
2
1V (v(z))h2

− 1
2
[
∂2

2V (v(z)) + ξg2v2(z)
]
h2

2 + . . . .

(3.59)

3.2.1 Particle content in the asymptotic regions
We briefly remind ourselves of the spectrum of the theory in the asymptotic regions v = 0
and ṽ at z → −∞ and z → ∞ respectively, before discussing the full interpolating space.
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Symmetric phase: The theory eq. (3.59) around the symmetric point minimum v = 0
describes two scalars h1,2, with equal mass by symmetry

m2
h,s ≡ ∂2

1V (0) = ∂2
2V (0) (3.60)

The gauge-fixing affects only the Maxwell equations of motion for the massless vector
Aµ. Whatever the value of ξ, we can identify two physical transverse (in the sense that
Aµk

µ=0) degrees of freedom with polarisation vectors given by

ϵµT1 = (0, 0, 1, 0) , ϵµT2 = 1√
k2

⊥ + k2
z

(0, kz, 0,−k⊥) , (3.61)

for kµ = (k0, k⊥, 0, kz). The only (well-known) subtlety involves imposing on the Hilbert
space a constraint to project out unphysical states, the so-called Gupta-Bleuler condi-
tion [204].

Broken phase(s): At a symmetry–breaking minimum ∂2
2V (ṽ) = 0 and h2 describes

the would-be NGB. A particularly convenient choice is ‘unitary gauge’, corresponding to
ξ → ∞ in which the NGB decouples completely, making manifest the spectrum. We are
left with a single massive scalar (the Higgs) h with mass squared equal to ∂2

1V (ṽ) and a
massive vector boson Aµ with mass

m̃ ≡ gṽ , (3.62)

and satisfying the Proca equation

∂µF
µν + m̃2Aν = 0 . (3.63)

This reduces to a Klein-Gordon equation for each component of Aµ supplemented by the
Lorenz condition:

=⇒ ∂2Aµ + m̃2Aµ = 0 , ∂µA
µ = 0 . (3.64)

Solving this is straightforward and one adds to the transverse polarisations of eq. (3.61)
a third longitudinal one parallel to 3−momentum

ϵµL =
(
k2

0 −m2

k0
, k⊥, 0, kz

)
k0

m
√
k2

0 −m2
. (3.65)

3.2.2 Global degrees of freedom
Here will analyse the fields defined over the entire region and identify the appropriate
global modes to quantise, where by global we simply mean they are good across the wall.

In principle, one could choose a convenient value of ξ in eq. (3.59) and push ahead
with quantisation. However, we would have to deal with mixing when solving for the mode
functions, as well as taking care to impose a non-trivial Gupta-Bleuler like condition on
physical states. Luckily, we will argue that even when asymptotically approaching the
symmetric point as z → −∞, it is possible to work with unitary gauge ξ → ∞ with
impunity. This approach was already made at the classical level in ref. [116], and we
will re-derive and tweak some of their results using a slightly different language, before
quantising.
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In unitary gauge, the h2 degree of freedom decouples and the theory becomes

LU.G.
A,H = − 1

4FµνF
µν + 1

2g
2v2(z)A2 + 1

2(∂h)2 − 1
2∂

2
1V (v)h2 + . . . , (3.66)

and the equations of motion for eq. (3.57) reduce to just two uncoupled equations

□h = −V ′′(v)h , (3.67)
∂νF

µν = g2v2(z)Aµ . (3.68)

The first one is the equation of motion for the physical Higgs boson h and we will not
have any more to say about it here. The second will be the focus of our attention.
While v(z) > 0, the theory is always in a broken phase and Aµ describes a massive
vector. Unitary gauge is then manifestly a valid choice. Note that the usual transversality
condition for massive vector bosons in this case becomes

∂µ∂νF
µν = ∂µ(g2v2Aµ) = 0 , (3.69)

=⇒ ∂nA
n + ∂zA

z = −∂zv
2

v2 Az , (3.70)

which, in the presence of the domain wall, generalises the standard Lorenz condition for
massive electrodynamics in eq. (3.64). The constraint above ensures this vector field has
three polarisation degrees of freedom. Subbing this back into eq. (3.68) we get

∂2Aµ + ∂µ
[(
∂zv

2

v2

)
Az
]

+ g2v2Aµ = 0 . (3.71)

The general Fourier mode can be written as

Aµk0,k⊥
= e−iknxn

∑
l

al χ
µ
l,kn(z) , (3.72)

where l runs over three indices, al are some constant Fourier coefficients and the functions
χµl,k0,k⊥

(z) have to be found by solving eq. (3.71). One might be tempted to define left and
right moving χµ modes by fixing the incoming piece at infinity in terms of conventional
transverse and longitudinal modes eqs. (3.61) and (3.65). However, under such a choice,
transmitted and reflected pieces would contain also other polarisations. Fundamentally,
this is because for non-zero k⊥, rotations around k are not a symmetry and conventional
spin is not conserved. We now construct more convenient ‘wall polarisations’, which
instead do not mix.

τ polarisations: It is useful to define what we call τ−polarisations by the condition
Az = 0, since for these we recover the Lorenz condition ∂µAµ = 0, which in Fourier space
reduces to

knχ
n
τ ≡ k0χ

0
τ − k⊥χ

⊥
τ = 0 , (3.73)

and has solutions in terms of two constant vectors

χµτ = ϵµτ1,2 χτ1,2(z) , (3.74)

where

ϵµτ1 =(0, 0, 1, 0), ϵµτ2 = (k⊥, k0, 0, 0)/
√
k2

0 − k2
⊥ , (3.75)
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and the equations of motion eq. (3.71) become the Klein-Gordon-like[
−E2 − ∂2

z + g2v2(z)
]
χτ1,2(z) = 0 , (3.76)

where we remind the reader of the definition E =
√
k2

0 − k2
⊥. Note that ϵµτ1 is one of the

standard transverse polarisations, but ϵτ2 is not, since it has a non-zero time component,
and is not orthogonal to three momentum. The wave equation to solve across the wall
for τ d.o.f. is thus identical to the scalar case studied in section 3.1.

λ polarisation: It remains to solve for the remaining degree of freedom with Az ̸= 0.
The wave equation to solve for is obtained by setting µ = z in eq. (3.71). We note already
that it is significantly more complicated than what we found for τ . Whatever the solution
for Az, the other components of the vector are fixed. Requiring orthogonality with χµτ
implies the form χµλ(z) = (−iknα(z), χzλ) where we recall n = 0,⊥. The generalised Lorenz
condition in eq. (3.70) immediately leads to the relation

α(z) = ∂z (v2χzλ)
E2 v2 . (3.77)

Plugging this back into the eq. (3.71), we obtain the equation in terms of the χz only

−E2χzλ − ∂z

( 1
v2∂z(v

2χzλ)
)

+ g2v2(z)χzλ = 0 . (3.78)

We can get rid of the linear in derivative term if we introduce a new function λ(z)

χzλ = E

gv(z)λ(z) , (3.79)

and eq. (3.78) becomes Schrodinger-like(
−E2 − ∂2

z + Uλ(z)
)
λ = 0 , (3.80)

with effective potential

Uλ(z) = g2v2(z) − v ∂z

(
∂zv

v2

)

= g2v2(z) + 2
(
∂zv

v

)2

− ∂2
zv

v
.

(3.81)

The solutions in terms of λ, unlike χzλ, satisfy the usual orthogonality relations∫
dzλk(z)λ∗

q(z) = 2πδ(kz − qz) . (3.82)

It is easy to prove − and we do so explicitly in section 3.F − that for an interpolating
solution v(z) of a completely arbitrary Higgs potential V , we have (v′/v)2, v′′/v → m2

h,s

as z → −∞ so that Uλ(z) is always finite even if v = 0. More precisely

lim
z→−∞

Uλ(z) =

g2v2 , v ̸= 0
m2
h,s , v = 0

≡ m2
λ . (3.83)
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We see that λ is the perfect cross-wall field. It interpolates between one of the massive
(Higgs) degrees of freedom on the symmetric v = 0 side z → −∞ and a third component
of the massive vector in the broken region z → ∞. If instead v ̸= 0, λ simply interpolates
between the different mass vectors.

Let us look more closely at the Aµ vector formed by the λ field. Using the equations
of motion forces the on-shell relation:

χzλ = E2∂zα

E2 − g2v2(z) ⇒

χµλ = (−iknα(z), χzλ) = (−ikn, ∂z) α(z) + g2v2(z)
E2 χzλ(0, 0, 0, 1)

= (−ikn, ∂z) α(z) + gv(z)
E

λ(z)(0, 0, 0, 1) (3.84)

So that the vector can be written as a total derivative plus a term sub-leading in energy.
This form will turn out to be very useful in calculating the amplitudes for physical pro-
cesses. Far from the wall, when v → const, we can introduce the polarisation vector ϵµλ
such that

χµλ ∝ ϵµλ, ϵλµϵ
λµ = −1

ϵµλ =
(
kn
kz

E2 , 1
)

× E

gv

= kz

Egv
kµ + gv

E
(0 , 0 , 0 , 1) . (3.85)

We emphasise again that these λ and τ differ from the conventional transverse and lon-
gitudinal polarisations. Far from the wall, all polarisations satisfy the same equation of
motion and one can use any linear combination of either basis to decompose the vector
field. We can relate the wall polarisations to the conventional longitudinal and transverse
ones in eqs. (3.61) and (3.65) via the rotation matrix

 ϵT1

ϵT2

ϵL

 =


1 0 0
0 k0kz

E
√
k2

0−m2
− k⊥m

E
√
k2

0−m2

0 k⊥m

E
√
k2

0−m2
k0kz

E
√
k2

0−m2


 ϵτ1

ϵτ2

ϵλ

 . (3.86)

In the case of a very large kz, E ≫ k⊥,m the mixing angle between τ, λ transverse and
longitudinal scales as m/E. We can see that the two bases of polarisations are exactly
the same for the case k⊥ = 0. This is expected since for this configuration of momenta
T1, T2 polarisations have zero components in the z direction. Using the unbroken part
of the Lorentz symmetry (boosts in x − y direction) we can obtain the polarisations for
generic momenta, which indeed agrees with the τ, λ basis derived before. Our goal in this
chapter is to calculate the total pressure acting on the domain wall and for this, we sum
the contributions from all polarisations. We perform all of the calculations in the τ, λ
basis, without even reporting the results for T, L polarisations.

v → 0 limit

All of the previous discussion applied most manifestly for the case when the vev of the
symmetry breaking field is v ̸= 0. What happens in the case when the domain wall on
one side approaches a vacuum where the gauge symmetry is unbroken? We saw in the
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Figure 3.2.1: The potential for the λ degree of freedom, which is defined everywhere.
Recall m = gv and m̃ = gṽ, plus thermal corrections. As v → 0 a growing plateau
develops ending at z ∼ m−1

h,s ln (v/ṽ) with value m2
h,s - the symmetric side mass of the

Higgs in the case v = 0 exactly. These curves were drawn using the explicit profile
eq. (3.92).

previous section that the potential of the λ mode has a property that as v → 0 then
Uλ(z) → m2

h,s, which together with our expectations from the Higgs phenomena hints
that on the unbroken side λ should correspond to the would-be NGB

λz→−∞ → h2 . (3.87)

To understand this matching better, let us look at the χµλ vector in the limit v → 0

χµλ = (−iknα(z), χzλ) =
(

−ikn∂z(vλ)
gEv2 ,

E

gv
λ

)

= λ

gv

(
−ikn

E

[
v′

v
+ λ′

λ

]
, E

)
v→0

= e−ikx

gv

(
kn

E
[−imh,s + kz] , E

)
, (3.88)

where we have used that λ becomes a plane wave far from the wall and v′/v → mh,s.
Note that the factor (−imh,s + kz)/E is a pure phase if the λ dof is on shell. Let us see
whether we can build exactly the same vector but from the field h2. Indeed if we consider
the vector

∂µ
(
h2

gv

)
= −e−ikx

gv

(
kn, kz + i

v′

v

)
= −iEe−ikx

gv(kz − imh,s)

(
kn

E
[−imh,s + kz] , E

)
. (3.89)

So we can see, comparing with eq. (3.88), that the two vectors χµλ and ∂µ(h2/gv) are
exactly the same apart from the constant phase factor, so indeed λ field in the z → −∞
limit corresponds to the Goldstone boson.

What about starting from a finite value and taking v → 0? For concreteness let us
consider the potential

V = λh(|h| − v)2(|h| − ṽ)2. (3.90)

First of all the potential has a cusp at |h| = 0 so the limit v → 0 becomes discontinuous.
This can be seen also in the form of Uλ(z). As v becomes smaller a longer finite plateau
develops in the potential with value ≈ m2

h,s, as is shown in fig. 3.2.1. No matter how
small v eventually the potential turns down and asymptotes to g2v2 as is to be expected.
Thus for any finite though tiny v the asymptotic states at z → −∞ are those of a massive
vector.
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3.2.3 The step wall case
In order to proceed further we need to solve the equations of motion. In general, it is
a complicated problem depending on the shape of the effective potential Veff(h) at the
time of the phase transition. One needs to find the solitonic solution v(z) connecting false
and true vacuum and later the wavemodes describing perturbations of each field on this
background. In the particular case of the domain wall

v(z) = 1
2 ṽ
(

1 + tanh
(
z

Lw

))
, (3.91)

solutions were found in [116] in terms of hypergeometric functions. In this chapter, we
will consider an even simpler case, namely a step function ansatz for the wall. This
approximation will of course be valid only if the momentum of the particle during the
passage is (much) less than the inverse width of the wall k, k̃ ≪ L−1

w . Typically, this width
is controlled by the mass of the Higgs L−1

w ≈ mh.
The solution of the equations of motion can be written down on each side immediately

and the only challenge becomes deriving and implementing matching conditions. In this
section, we report the matching conditions for τ and λ polarisations and write down the
corresponding wave functions. We will do so first for the broken to broken case v > 0. As
an explicit example, we can imagine distorting eq. (3.91) to

v(z) → v + 1
2 (ṽ − v)

(
1 + tanh

(
z

Lw

))
. (3.92)

We then comment on the v → 0 limit, which is straightforward for τ degrees of freedom
but more delicate for λ.

(τ) polarisations

For the τ polarisations, we showed in section 3.2.2 that the equations of motion are exactly
the same as for the scalar field (□Aµ(τ) = −g2v2Aµ(τ)) and so for the step wall the matching
conditions become:

χτi |<0 = χτi |>0 , (3.93)
∂zχτi |<0 = ∂zχτi |>0 , (3.94)

with i = 1, 2. The reflection and transmission coefficients are thus the same as for scalars
and the wave functions become

χµτi,R,k(z) = ϵµτi

eik
zz + rτke

−ikzz , z < 0
tτk e

ik̃zz , z > 0
, (3.95)

χµτi,L,k(z) = ϵµτi

√
kz

k̃z


k̃z

kz
tτk e

−ikzz , z < 0
e−ik̃zz − rτke

ik̃zz , z > 0
, (3.96)

where

rτk = kz − k̃z

kz + k̃z
, tτk = 2kz

kz + k̃z
, (3.97)

k0=
√
k2
z +m2

τ + k2
⊥ , k̃z =

√
k2

0 − m̃2
τ − k2

⊥ , mτ ≡ gv , m̃τ ≡ gṽ .

Taking the v → 0 limit for these degrees of freedom is simple and we approach the v = 0
case smoothly.
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(λ) polarisation

The λ modes require more work. Again we first focus on the broken to broken case of
v > 0. Matching conditions are easy to derive by integrating the wave equation for λ once
and twice respectively (most easily done at the level of eq. (3.78)). These are

∂zλ

v(z)

∣∣∣∣∣
<0

= ∂zλ

v(z)

∣∣∣∣∣
>0

,

v(z)λ|<0 = v(z)λ|>0 , (3.98)

which allows us to write down the expressions for (in-state) ‘left’ and ‘right’ movers:

λR,k(z) =

eik
zz + rλke

−ikzz , z < 0
tλk e

ik̃zz , z > 0
(3.99)

λL,k(z) =
√
kz

k̃z


k̃z

kz
tλke

−ikzz , z < 0
e−ik̃zz − rλke

ik̃zz , z > 0
(3.100)

where

rλk = ṽ2kz − v2k̃z

ṽ2kz + v2k̃z
, tλk = 2kzvṽ

ṽ2kz + v2k̃z
, (3.101)

k0=
√
k2
z +m2

λ + k2
⊥ , k̃z =

√
k2

0 − m̃2
λ − k2

⊥ , mλ ≡ gv , m̃λ ≡ gṽ .

Notice that in the relativistic limit

rλk → ṽ2 − v2

ṽ2 + v2 , for kz ≫ mλ, m̃λ . (3.102)

so that λ maintains a finite reflection probability as long as the step function is a valid
approximation, as was pointed out in [79].

Interestingly we can see that rλk → 1 in the limit v → 0, i.e. the wall becomes
completely non-transparent for the λ polarisations in this limit. This in-penetrability of
the wall deserves some discussion. Consider the explicit form of Uλ(z) for the case of the
tanh profile in eq. (3.92). As mentioned in section 3.2.2 and sketched in fig. 3.2.1, in the
limit of v → 0, Uλ(z) develops a growing plateau with a height ≈ L−2

w ∼ m2
h,s and width

Lplateau ∼ Lw log ṽ/v. In the step function approximation, the first scale is effectively
treated as infinite. For v = 0 exactly, since mλ(−∞) = mh,s , obviously there are no
oscillating λR,k modes at all in the step regime, while λL,k are completely reflected. For
v tiny but non-zero the potential eventually does instead relax to m2

λ = g2v2 and both
oscillating λL,R solutions exist, though strongly constrained to live on opposite sides of the
wall8: |rk| = 1 − O(v2/ṽ2). Back to the v = 0 exact case, one can also consider theories
in which the two scales Lw and mh,s are decoupled (e.g. set mh,s = 0 as an extreme case).
Then again oscillating λL,R modes will exist on both sides of the wall even as Lw → 0.
Still, by numerical inspection, we find total reflection (|rk| → 1) in the step wall limit,
though we leave a proper proof to future work.

In conclusion, calculations in the step function regime for the symmetric to broken
transition case (v = 0) can be computed starting from the v ̸= 0 case, using wavemodes
eqs. (3.99) and (3.100), and then finally setting v → 0 in the amplitude at the end.
Notice instead that the asymptotic masses in the phase space kinematics will need to be
discontinuously changed from gv to mh,s.

8One might question the validity of the step wall approximation for kz ≳ L−1
w when the potential

function Uλ(z) has a very long plateau v ≪ ṽ. However, the solutions eqs. (3.99) and (3.100) capture
exactly the qualitative behaviour described.
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A comment on bound states: We have so far considered ‘scattering state’ solutions
to the equations of motion, i.e. those which are plane waves far from the wall. What
about bound states? In principle, such states are possible for λ polarisation. Ref [116]
found the existence of one for the case v = 0 when the potential satisfies some specific
constraints. The form of the potential for v > 0, for example, as sketched in fig. 3.2.1,
suggests that a bound state might generically appear. The mass of these bound states is
controlled by the scale L−1

w , as is obvious by its absence in the step wall limit. One could
in principle calculate in the WKB limit the amplitude for an incoming particle to excite
this bound state. We leave this interesting exercise to future work.

3.2.4 Quantisation
Following on from the previous sections, we can expand the field into a complete basis of
eigenmodes of the free theory in the background vev v(z),

Aµ =
∑
I,ℓ

∫ d3k

(2π)3
√

2k0

(
ain
ℓ,I,k e

−i(k0t−k⊥x) χµℓ,I,k(z) + h.c.
)

=
∑
I,ℓ

∫ d3k

(2π)3
√

2k0

(
aout
ℓ,I,k e

−i(k0t−k⊥x) ζµℓ,I,k(z) + h.c.
)
,

(3.103)

where I = R,L denote right and left movers, ℓ = τ1, τ2, λ sums over different wall polari-
sations. The wave modes χµ(z) are in general constructed via

χµτi,I,k = ϵµτi χτi,I,k(z) , (3.104)

χµλ,I,k =
(

−ikn∂z(vλI,k)
gEv2 ,

E

gv
λI,k

)
on shell= ∂̄µ

∂z
(
vλzI,k

)
Eg v2

+ gv(z)
E

λI,k δ
µ
z , (3.105)

where ∂̄µ ≡ (−ikn, ∂z), with the explicit form of scalar fields χτi,I,k(z) and λI,k(z) obtained
by solving the respective Schrodinger-like wave eqs. (3.76) and (3.80) with appropriate
R,L-mover boundary conditions. In the step wall approximation for the vev v(z), these
are given analytically in eqs. (3.95), (3.96), (3.99) and (3.100). In complete analogy to the
case of fundamental scalars9, the modes χµℓ,I,k should be thought of as describing incoming
(early time) eigenstates of momentum (particles) in the plane wave limit with physical
z−momentum kz > 0 and −kz for R and L respectively. Modes describing outgoing (late
time) eigenstates of momenta ζµℓ,I,k are instead obtained via

ζµτi,{L,R} = ϵµτi χ
∗
τi,{R,L}(z), (3.106)

ζµλ,{L,R} =
(−ikn∂z(vλ∗

{R,L})
gEv2 ,

E

gv
λ∗

{R,L}

)
on shell= ∂̄µ

(
∂z(vλ∗

{R,L})
Eg v2

)
+ gv(z)

E
λ∗

{R,L} δ
µ
z ,

(3.107)
where we have dropped k labels to not clutter the notation. Notice the switch in L,R -
labels. Both sets of eigenmodes form a complete orthonormal basis and can be used to
expand the field operator in eq. (3.103). The associated Fourier operators carry in and
out labels to emphasise that they create/annihilate in and out states in the S−matrix
language ∣∣∣kin

ℓ,I

〉
≡
√

2k0 (ain
ℓ,I,k)† |0⟩ , (3.108)∣∣∣kout

ℓ,I

〉
≡
√

2k0 (aout
ℓ,I,k)† |0⟩ , I ∈ R,L & ℓ ∈ τ1, τ2, λ . (3.109)

9See section 3.1.3 and section 3.A.

125



Both satisfy the usual algebra eq. (3.18) upon quantisation.

Ward identity and current conservation: We now comment on current conserva-
tion in the case of spontaneously broken Lorentz symmetry. If the gauge symmetry is
preserved, vector bosons can couple only to conserved currents. This is not the case when
it is spontaneously broken, but we may still choose to consider coupling to a conserved
current 10. In the Lorentz invariant theory, the statement of the current conservation can
be expressed in terms of amplitudes. Given an arbitrary process with an external vector
leg with momentum kµ, we have the following identity

M(4,J) ≡ ϵµkM(4,J)
µ = (ϵµk + kµ)M(4,J)

µ , (no wall). (3.110)

where the (4, J) label indicates full 4-momentum conservation and the process is mediated
by the conserved current Jµ, and ϵµk is the external particle’s polarisation vector. This
Ward identity implies that substituting the latter for the particle’s momentum kµ makes
the amplitude vanish.

In the presence of a domain wall in the z direction, the generalised matrix element
M(3) as defined in eq. (3.25) includes an integral over z and the polarisation tensor is also
a function thereof. The expression of conservation closest to eq. (3.110) is

M(3,J) ≡
∫
dz χµℓ,I,k(z)M(3,J)

µ (z) =
∫
dz

(
χµℓ,I,k(z) + ∂̄µf(z)

)
M(3,J)

µ (z) , (3.111)

where ∂̄µ ≡ (−ikn, ∂z) , (with wall)

and f(z) is an arbitrary function.
To make this discussion more concrete we consider the coupling of the gauge field to

the conserved current made out of ψ fields we introduced in eq. (3.55):

L = igAµJ
µ, Jµ = i

(
ψ†∂µψ − ψ∂µψ†

)
, ∂µJµ = 0 . (3.112)

Then the amplitude (defined in eq. (3.25)) corresponding to the emission of the (l, I)
polarisation from the current will be equal to

⟨kout
I q| S |p⟩ ≡ (2π)3δ(3)(pn − kn − qn)

∫
dz
(
ζµl,I,k(z)

)∗
(p+ q)µei(p

z−qz)z , (3.113)

where as usual p, q are the initial and final momentum of the ψ particle. Note, modulo a
numerical factor, the same expression will be valid for the emission of the vector boson
from an arbitrary conserved current (not necessarily one made from scalars). The current
conservation imposes that any interaction which can be written in the form

Jµ∂µf ⇒ ⟨final| Sf |initial⟩ =
∫
d4x ∂µf(x)Jµ(x) = 0 , (3.114)

has a vanishing matrix element. We see now the use of writing the polarisation vector
for the λ d.o.f. as we did in eq. (3.107). The dangerous-looking first term is actually a
total derivative and can be subtracted when computing amplitudes (see section 3.D). We
comment further on this in the next section as well as discuss the case of non-conserved
current in section 3.E.

10For example this is the case for the coupling of W boson to light quarks, in the high energy regime
when the quark masses can be approximately neglected.
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3.2.5 Subtleties with WKB regime
Before we start computing the amplitudes of interest, we highlight some important sub-
tleties related to the calculation in the WKB regime. As we have discussed in section
3.1.6, our formulas are valid only if the contribution inside the wall can be ignored. Let
us check whether this is a reasonable approximation for the vector emission. Consider the
λ and τ cases separately:

• τ polarisation
For the τ polarisations we can estimate the contribution to the amplitude inside
and outside of the wall and we find:

Mτ
inside

Mτ
outside

≃ ∆pzLw . (3.115)

Similarly to the scalar case discussed in the section 3.1.6, the contribution inside
the wall can be safely ignored.

• λ polarisation
Now let us look at the λ polarisation, and the interactions between the current and
λ field. Using the expansion for χµλ field (see for example eq. (3.88)) we get:

gJµAµ(λ) = g(Jn∂nα− Jzχ
λ
z )

= Jn

[
−ikn
Ev(z)2∂z (v(z)λ(z))

]
− Jz

E

v(z)λ(z) , (3.116)

outside of the wall, when λ = eikx this becomes

Jn

[
knk

z

Ev(z)

]
− Jz

E

v(z)λ = gJµ · ϵ(λ)
µ , (3.117)

see eq. (3.85). Let us consider the domain wall connecting the vacua with broken
and restored gauge symmetry. In this case, the λ polarisation will interact with
the ψ particle only on the broken side. Then the amplitude originating from the
integration outside of the wall will be equal to

Mwkb red.
λ ∝ −

(
(p+ q)µϵ(λ)

µ (z → −∞)
pz − qz − k̃z

)
≃ −

(
k̃z(pz + qz)

ṽE

)
,

ṽ ≡ v(z → +∞) , (3.118)

where we have kept only the leading term in energy in the polarisation vector and
simplified using the conservation of the current, p2 = q2. We can see that this matrix
element is growing with energy and is singular in the limit ṽ → 0, which are very
worrisome properties since the limit ṽ → 0 corresponds to the no domain wall and
therefore no transition radiation, i.e. M → 0! Let us look now at the contribution
coming from the integration inside the wall, using the interaction form of eq. (3.116)

Minside ≃
∫ Lw

0
dze−i(p−q)zz(p+ q)n

[
−ikn
Ev(z)2 (∂zv(z) + v(z)∂z)

]
e−i

∫ z
0 dz̃kz(z̃)

−
∫ Lw

0
dze−i(p−q)zz(p+ q)z

E

v(z)e
−i
∫ z

0 dz̃kz(z̃) . (3.119)
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In the first integral there is a term ∝ ∂zv(z), which upon integration will necessarily
lead to

Minside ∼ (p+ q)0

E

1
ṽ
, (3.120)

which is of the same size as the contribution outside of the wall. We see that the
amplitude Mwkb red.

λ will definitely lead to incorrect results, so how can we proceed?
One possibility would be to take some ansatz for the domain wall and then perform
full WKB calculation keeping the terms inside the wall, which will lead to correct
results without bad properties of eqs. (3.119)−(3.118). However, we can still make
progress even without the knowledge of the shape of the wall using the following
trick. By construction, we have been focusing on the case where the current built
out of ψ fields is conserved

Jµ = i(ψ†∂µψ − ψ∂µψ
†) , ∂µJ

µ = 0 . (3.121)

On the other hand, the λ mode can be written as a complete derivative plus a term
subleading in energy (eq. (3.84))

A(λ)
µ = ∂µα + gv(z)

E
λ(z)(0, 0, 0, 1) . (3.122)

The part ∂µα does not couple to a conserved current, meaning that

gJµA(λ)
µ → −g2v(z)

E
Jzλ . (3.123)

With this simplification, we immediately see that all of the problems with λ polar-
isations are cured

Moutside ∼ (p+ q)zg2ṽ

E∆pz
, Minside ∼ Lwg

2ṽ
(p+ q)z

E
,

Minside

Moutside
∼ Lw∆pz . (3.124)

The contribution inside the wall is suppressed and the matrix element is not growing
with energy but vanishes in the limit ṽ → 0.

So far we have been focusing only on the case when the current made out of ψ fields is
conserved on both sides of the wall. This is not true generically, and in particular for SM
fermions, where the Yukawa interactions will lead to current non-conservation. So how
should one proceed in that case? As explained in more detail in section 3.E, it turns out
that, with very minor modifications, a very similar trick can be used.

3.3 Transition radiation and pressure from vectors
We are now ready to calculate transition radiation and the resultant pressure from vector
boson emission. We are working in the Abelian Higgs theory of eq. (3.55) and calculate
the average momentum transfer during the radiation of a gauge boson from an incoming ψ
particle of energy p0. We evaluate the amplitudes of interest in the next section, comment
on the final state phase space and masses employed in section 3.3.2, and finally present
our results in section 3.3.3.

128



3.3.1 Amplitudes
All the relevant amplitudes for the particle process ψ → ψA obtained from eq. (3.113)
are reported here. These are τ and λ polarisation emission for left and right movers in
the step wall and WKB regimes,

Mstep
τ,L = −igϵµτ2(p+ q)µ

(
1

∆pr
+ rτk

∆p + tτk
−∆p̃r

)
, (3.125)

Mstep
τ,R = −igϵµτ2(p+ q)µ

√
kz

k̃z

[
k̃z

kz
tτk
∆p − 1

∆p̃ + rτk
∆p̃r

]
, (3.126)

Mwkb red.
τ = −igϵµτ2(p+ q)µ

(
1

∆p − 1
∆p̃

)
, (3.127)

Mstep
λ,L = −i g

E
(pz + qz)

[
gv

(
1

∆pr
+ rλk

∆p

)
− gṽ

tλk
∆p̃r

]
, (3.128)

Mstep
λ,R = −i g

E
(pz + qz)

√
kz

k̃z

[
gv
k̃z

kz
tλk
∆p − gṽ

(
1

∆p̃ − rλk
∆p̃r

)]
, (3.129)

Mwkb red.
λ = −i g

E
(pz + qz)

[
gv

∆p − gṽ

∆p̃

]
, (3.130)

where the scattering coefficients rτ,λk , tτ,λk relevant for the amplitudes in the step wall regime
are defined in section 3.2.3 and the ∆p factors in denominator are defined in eq. (3.3).
We presented amplitudes for v ̸= 0. However, the symmetry-breaking transition case can
be obtained smoothly at this level by sending v → 0. Note that

Mstep
λ,L → 0 as v → 0 , (3.131)

in this limit. The discontinuity in asymptotic d.o.f. (and therefore masses) is hidden here
inside the kinematic factors and are addressed in the following section.

For λ emission we used current conservation to simplify the computation of these
amplitudes by subtracting the total derivative piece in the wavemode eq. (3.107), as ex-
plained in section 3.1.2. For Mstep this simplification does not change the final expression
since it is exact (in the limit of a step wall). However, we emphasise again that it does for
Mwkb red.

λ , which is an approximation as described in section 3.1.6, and the subtraction is
necessary to be consistent with the approximations and avoid unphysical divergences, as
explained in section 3.2.5.

3.3.2 Phase space integration for vector emission
In going from the amplitudes above to the averaged exchanged momentum ⟨∆pℓ⟩, where
ℓ = τ, λ, we integrate over final state phase space following the prescriptions and kine-
matics summarised in section 3.1.7, using Mstep and Mwkb red. in their respective regimes
of validity. However, there are some important subtleties to discuss compared to the
simple theory of scalars of section 3.1, particularly for a symmetric to broken transition.
In this case, the mass of the vector (and therefore τ d.o.f.) in the old phase (z → −∞)
is zero by gauge invariance since v = 0. As shown explicitly in section 3.G.4, in principle
we can get finite results working with m = 0 and integrating over the full phase space
as long as the mass of the emitter is kept finite mψ ̸= 0. However, thermal corrections
ought to be important. We should expect our calculation to break down for momenta
that are too soft (to be defined precisely), where thermal field theory becomes important.
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To regularise the log divergence in transverse emission when mψ is set to zero, [96] cut
the k⊥ integration at the soft thermal scale ∼ gT . This is roughly equivalent to using
‘electric’ thermal masses11 in all asymptotic state kinematics

(τ) :

m̃ = mτ (z = +∞) ≈ g
√
ṽ2 + T 2 ,

m = mτ (z = −∞) ≈ gT ,

(λ) :

m̃ = mλ(z = +∞) ≈ g
√
ṽ2 + T 2 ,

m = mλ(z = −∞) = mh,s(T ) .

(symmetric to broken) (3.132)

In this work we also impose the IR cut-off in this way, since our primary focus is the
proper calculation of λ emission, which turns out to not need IR regulation. We note
however that eq. (3.132) requires further scrutiny. As is well known, the self energy for
A receives ‘magnetic mass’ thermal corrections only at two loops from charged matter,
of parametric order ∼ g2T . Moreover, we are working in the frame of the wall, so the
background plasma is boosted and standard results should be distorted. We leave the
rigorous inclusion of finite temperature to a follow up study.

In eq. (3.132), mh,s is the mass of the Higgs d.o.f. in the symmetric phase (see
eq. (3.83)) which will also be temperature dependent 12. So now, for example, the in-
tegration limits for the kz integral for ⟨∆pλ,step

R ⟩ in eq. (3.45) become explicitly kz ∈[√
g2ṽ2 + g2T 2 −m2

h,s(T ) , kzmax

]
13.

It is worth stressing that for τ polarisation what appears in the amplitude and in the
kinematics boundaries of the PS are always the masses m and m̃ as defined in eq. (3.132).
However, for the λ polarisation the coupling appearing in the amplitude is really the
bare gv(→ 0) and does not receive thermal corrections, while in the kinematics and PS
integration what appears is m and m̃ as defined as in eq. (3.132). So eq. (3.131) still holds
even at finite T . For broken to broken transitions the vector masses are, for both λ and
τ fields

m ≈ g
√
v2 + T 2 , m̃ ≈ g

√
ṽ2 + T 2 , (broken to broken) . (3.133)

In summary, ⟨∆p⟩ is computed as in section 3.1.7 with phase space integration limits
in Table 3.1.1 and asymptotic masses defined here above. In general, there is a total of
six contributions:

⟨∆pτ, step
R ⟩ , ⟨∆pτ,wkb

R ⟩ , ⟨∆pτ, step
L ⟩ ,

⟨∆pλ, step
R ⟩ , ⟨∆pλ,wkb

R ⟩ , ⟨∆pλ, step
L ⟩ . (3.134)

3.3.3 Pressure on the bubble wall
We now report and comment on our results for the average NLO momentum transfer
⟨∆p⟩ due to transition radiation from a ψ particle travelling across the wall and thereby

11This is the thermal mass correction in the self-energy of A0. It is the relevant scale for example in
the Debye screening of the Coulomb field [11].

12We do not discuss the explicit form of it since our results are largely insensitive to it.
13When mh,s(T ) < m̃(T ) we are in line with our set up which assumed m < m̃, but if it is the

other way around the lower limit of kz becomes imaginary. This is signaling the fact that modes with
0 < k̃ <

√
m2 − m̃2 are now exponentially decaying in the old phase (right) side of the wall. Then it

is more appropriate to define the step wall regime according to k < k̃ ≲ L−1
w and parameterise the PS

integrals in terms of (k̃z, k2
⊥). The integration limits for k̃z for R−mover emission would be k̃z ∈ [0, k̃zmax],

where k̃zmax =
√

(p0 −mψ)2 − m̃2.

130



0.001

0.010

0.100

1

10

0.001

0.010

0.100

1

10

1 10 100 1000 104 105

Figure 3.3.1: Symmetric → Broken. We present qualitatively the same plot as in
fig. 3.0.3 (left panel), this time disentangling all the contributions, and highlighting the
effect of a hierarchy m ≪ mψ for τ emission. Top Left: Averaged momentum exchange
for τ polarisation contributions. The curves quickly saturate to their constant asymptotic
values and the dominant contribution is L−mover emission in the step wall regime. Thick
lines are numerics and the dashed line is the analytical expression in eq. (3.255). Top
Right: Same as previous, but for m/mψ ≪ 1. We see the transient inter-relativistic
regime scaling as log(p0), well described by the m = 0 analytical formulae (dashed lines)
found in section 3.G.4. The regime ends around p0 ∼ m̃mψ/m. Bottom: λ polarisation
contributions. The result is quite insensitive to the symmetric side λ mass mh,s(T ) as
long as it is ≲ m̃. We plot for mψ = 1 [arb.], but varying it does not change much either;
unlike for τ , there is no intermediate regime. Dashed lines are analytical formulae in
eqs. (3.263) and (3.264).
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Figure 3.3.2: Broken → Broken. Left: Averaged momentum exchange for λ polarisation
emission for relatively thin wall. The inter-relativistic regime of scaling with p0 lasts till
p0 ∼ L−1

w . Taking ∆m ≪ 1 does not qualitatively change anything except for suppressing
all values. Notice m ≲ m̃. Right: Similar to previous, but in the case m ≪ m̃. Here
we see that the inter-relativistic regime is distorted at low p0 and also extended up to
p0 ∼ L−1

w mψ/m.

compute the total pressure on the bubble wall. We show a break down of figs. 3.0.2
and 3.0.3 into all their contributions, as well as provide some analytical formulae. A
comprehensive comparison (via numerical integration - see section 3.G for some analytical
evaluation of phase space integrals) of all the different parts in eq. (3.134) is shown in
figs. 3.3.1 and 3.3.2, as a function of the energy of the incoming emitter particle, ψ. In
the asymptotic p0 → ∞ limit all contributions are constant. Their relative importance
is displayed in fig. 3.3.3. We now discuss the two cases of interest v = 0 and v ̸= 0
separately.

Symmetric to broken case (v = 0). We observe in fig. 3.3.1 that when the emitting
particle is mψ ≲ m the contribution from τ saturates quickly to the constant p0 → ∞
value (top left in fig. 3.3.1), but if there is a hierarchy m ≪ mψ, we observe an inter-
relativistic regime of logarithmic dependence on p0 up until p0 ∼ m̃mψ/m. This can
be traced to a collinear log divergence of phase space integration in the limit m = 0 &
p0 → ∞ as explained in section 3.G. This behaviour is not present in contributions from
λ polarisation emission, which are insensitive to mψ for relativistic p0, even when the
symmetric side mass is set to zero mh,s = 0.

In the asymptotic p0 → ∞ limit τ contributions depend significantly only on the ratio
14 m/m̃, which can be translated to T/ṽ. While individual λ contributions depend also on
L−1
w their sum is constant. The total momentum transfer (summing over all contributions)

can be fitted by the following expression

lim
p0→∞

⟨∆ptotal⟩ ≃ g3ṽ

0.135 log
(
ṽ

T
+ 2.26

)
− 0.085 − 0.2

log
(
ṽ
T

+ 2.26
)

ṽ/T
+ 0.19
ṽ/T

 .
(3.135)

We recall that to obtain this expression we cut the phase space integrals in the IR at
energies ∼ gT . The expression in eq. (3.135) becomes valid for the energies of initial
particle p0 ≳ ṽ

T
×mψ, which in the case of massless emitter mψ → 0 becomes p0 ≳ ṽ. At

14See for example the exact evaluation of the dominant contribution eq. (3.255).
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Figure 3.3.3: Here is presented the same plot as in fig. 3.0.2, but this time disentangling
all the contributions. Solid lines refer to τ polarisation, while dashed to λ. The red lines
are the total sum, for each polarisation. Top: Symmetric → Broken. It is shown two cases
with different wall widths and it is worth noticing that while the total contribution for
τ and λ does not change appreciably, the single contributions do, like R step wall versus
WKB. Bottom: Broken → Broken. Here it happens the same as in the top panels, but,
since in this case, L step contribution from λ polarisation has to be taken into account,
we see that, depending on the value of Lw and the hierarchy between the different vevs,
can be the most relevant contribution.
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last we would like to remind the reader that the expression above was obtained just for
the single vector emission, and one cannot trust it for very large values of log.

The contribution of the longitudinal modes is sub-leading except perhaps for mild
super-cooling ṽ/T ∼few, and is equal approximately to

lim
p0→∞

⟨∆pλ⟩ ∼ g3ṽ × cλ(Lw, T, m̃,mψ), cλ ∈ [0.02, 0.03]. (3.136)

This result qualitatively agrees with the estimate in the Ref. [95]. An analytical form for
the function cλ is given in eq. (3.265).

So far we have been calculating the momentum transfer from individual collisions. In
order to find the pressure acting on the bubble wall we need to perform the integration
over the flux of incoming particles. This can be easily done in the thermal case since we
know the distributions

P =
∫ d3p

(2π)3fψ(T, γw) × pz

p0
⟨∆p⟩. (3.137)

If the average momentum transfer is a constant the integration is simple and we find,
since in the ultra-relativistic case pz/p0 → 1,

P = nψ(T, γw)⟨∆p⟩ = γwnψ(T )⟨∆p⟩, (3.138)

where nψ is the density of emitters ψ defined in the plasma frame. Then, for the symmetric
to broken transition we obtain the following expression for the pressure:

lim
γw→∞

Pth. ≃ ζ(3)γwT 3

π2 × (3.139)

g3ṽ

0.135 log
(
ṽ

T
+ 2.26

)
− 0.085 − 0.2

log
(
ṽ
T

+ 2.26
)

ṽ/T
+ 0.19
ṽ/T

 ,

where th. stands for thermal.

Broken to broken case (v ̸= 0). In fig. 3.3.2 we show the evolution of ⟨∆p⟩(p0) for
a broken to broken transition. We focus only on λ contributions since the ones from
τ are essentially the same as in fig. 3.3.1 with suitable re-interpretation of what m, m̃
mean (see section 3.3.2). Again the curves eventually saturate to a constant value but we
highlight the strongly Lw−dependent novel contribution from L−mover emission, which
easily comes to dominate in the thin wall regime. As in fig. 3.0.3, we highlight that
in the left panel, we can clearly distinguish the inter-relativistic region where this last
contribution develops a linear growth in p0. In fig. 3.3.3 we see the dependence of the
saturation value of the averaged exchanged momentum (in the limit p0 → ∞) on the ratio
between vevs (lower panels).

Broken to broken transitions were recently studied at leading order by [79] and it
was found that reflection of the longitudinal vectors is efficient for the energies below L−1

w

(inverse width of the wall). This in its turn leads to the pressure scaling as γ2
w, as long

as p0 < L−1
w . We find that a reminiscent effect happens at NLO level, the main difference

is that the momentum of the vector is not fixed by the speed of the bubble expansion
and is always integrated over all possible values. We find that the momentum transfer
is dominated by left-mover modes and for the values of the energies of incoming particle
p0 < L−1

w Max[1,mψ/m] it is proportional to ∝ p0

lim
p0<L

−1
w Max[1,mψ/m]

⟨∆pv ̸=0⟩ ∼ 10−2 × g2 (v2 − ṽ2)2

(v2 + ṽ2)2 × p0

Max[1,mψ/m] . (3.140)
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In the case of large hierarchy 0 < m ≪ mψ, not only is the saturation point delayed, but
a further slight distortion occurs at low p0, as shown in fig. 3.3.2. Once the energy of the
initial particle becomes larger than ∼ L−1

w Max[1,mψ/m], we have

lim
p0→∞,Lw→0

⟨∆pv ̸=0⟩ ≃ 0.05g2 (v2 − ṽ2)2

(v2 + ṽ2)2L
−1
w . (3.141)

Momentum transfer stops growing and reaches the saturation value. Note that the max-
imal value of this pressure is controlled by L−1

w and not by the mass of the vector gṽ.
This is related to the fact that at high energies Goldstone Boson equivalence theorem
relates the longitudinal vectors to the Goldstone bosons, and the strength of their in-
teraction with the bubble wall (Higgs field) is controlled by the mass of the Higgs (wall
width). Consequently, in the case of broken to broken transition, there is an additional
contribution to the pressure which scales as

lim
γw→∞

Pλ
v ̸=0 ∼ 0.05ζ(3)γwT 3

π2 × g2 (v2 − ṽ2)2

(v2 + ṽ2)2 × L−1
w . (3.142)

with an intermediate regime scaling as Pλ ∝ γ2
w for the values of boost factor γw <

(LwT )−1.

3.4 Summary
We conclude by summarising the main results of our work. We analysed in detail the
phenomena of transition radiation in the presence of domain walls. We quantised from first
principles scalar and vector theories on a translation-violating background and identified
the correct asymptotic states. We split emission into soft and UV regimes and used a
step wall and WKB approximation respectively to compute the desired matrix elements
for transition radiation. Quantisation of vector field theories was naturally performed via
the introduction of new degrees of freedom which do not coincide with the traditional
transverse and longitudinal polarisation but are a convenient admixture. In this way, we
have resolved some puzzles regarding the inclusion of longitudinal polarisations in the
calculation of transition radiation.

We applied these results to calculate the pressure experienced by the bubble wall dur-
ing the ultra-relativistic expansion. For the phase transitions with spontaneous breaking
of the gauge symmetries in the regime of strong supercooling, we find the pressure which
scales as

P ∝ γwg
3ṽT 3 log ṽ

T
, for ṽ/T ≫ 1, (3.143)

and is dominated by the emission back out of the wall of transverse-like polarisations
with momenta kz ∈ (0,∆m). This result qualitatively agrees with the previous literature
on the subject. For moderate ratio ṽ/T ∼ few we find that the contribution from the
longitudinal-like polarisations can lead to significant corrections. We provide an updated
fitted formula for the total pressure in eq. (3.139).

We also analysed the pressure in the case of transition between two vacua with broken
gauge symmetry. Interestingly we find in this case the contribution from the longitudinal-
like polarisation can easily become dominant for thin walls, with the asymptotic value
controlled by the inverse wall width Pmax ∝ γwg

2T 3L−1
w . Moreover, we find a transient

intermediate regime of P ∝ γ2
w scaling for p0 ≲ L−1

w .
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Our results make an advance in understanding the balance between bubble accel-
eration and friction which plays a crucial role in determining most phenomenological
consequences of FOPTs as well as their detection prospect at upcoming gravitational
wave detectors.

Future outlook: The work can be improved and generalised in several ways. An im-
portant remaining question is the inclusion of finite temperature effects in a robust first
principles fashion (see for example the discussion in section 3.3.2). It is relatively easy,
though cumbersome, to allow also for the emitting particle to feel the wall mψ → mψ(z).
Though in the γw → ∞ limit, any dependence on mψ(z) should drop out, we saw how
mψ can distort the intermediate shape of PNLO(γw) and ultimately finding the equilib-
rium velocity vw will require full knowledge of this curve. Similarly one could rigorously
quantise fermionic fields that change mass across the wall.

A possibly important direction is the analysis of multiple vector emissions, partic-
ularly in regimes with large logs, possible IR enhancements, and back-reaction effects
coming from the overdensity of soft vector bosons around the wall (see discussion in [96]).
Furthermore, it would be interesting to compare our wall-shape-independent results with
a full numerical calculation using a specific smooth wall ansatz (for example tanh). Fi-
nally, with some tweaks, our expressions can be used to analyse pressure in qualitatively
different types of FOPTs, such as spontaneous breaking of global symmetries, or even
symmetry restoring transitions. This latter case will be the subject of the next chapter.

While our interest here was in friction, we emphasise that our set up is useful for rig-
orously computing any process / Feynman diagram15 in the presence of background walls
which are not treated as a perturbation. Just as an example, one can easily re-purpose our
expressions to compute the number of particles of a given species produced from collisions
between an expanding bubble and surrounding particles 16. The spontaneous breaking
of Lorentz/translational symmetry in the early Universe results in a rich phenomenology
that is only starting to be explored systematically.

15At tree or even loop level.
16These could be heavy, Dark matter candidates.
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Appendix

3.A Wavepackets and asymptotic states
No wall: Let us recall a few things in the usual manifestly translation-invariant case
(no wall background). For clarity, we will first focus on 1+1 dimensions. For a scalar field
theory, the field operator ψ(t, z) is interpreted as creating a particle at position z at time
t = 0. The position space wavefunction of a state is thus given by its inner product with
⟨0|ψ. The wavefunction of a single particle eigenstate of momentum |k⟩ =

√
2k0a†

k|0⟩ is,
as expected,

⟨0|ψ(t, z)|k⟩ = e−ikµxµ . (3.144)

To derive formulae for observables such as scattering cross sections or emission proba-
bilities involving realistic particles we have to crucially go through appropriately defined
wavepackets that describe those asymptotic states, taking a limit of sharp momentum
only at the end. A wavepacket state describing a particle with momentum peaked around
p and localised in space is given by

|Ψp⟩ ≡
∫ ∞

−∞

dkz

(2π)
√

2k0
fp(kz)|k⟩ , ⟨Ψp|Ψp⟩ =

∫ dkz

(2π) |fp(kz)|2 = 1 . (3.145)

where fp(kz) is like a sharp Gaussian in kz peaked at pz. Note there is no spacetime
dependence in this expression (we are always in the Heisenberg picture). The limit to
recover a momentum eigenmode is fp(kz) −→ (2π)3

√
2k0δ(pz − kz). However, the more

appropriate limit used in the derivation of physical rates makes use of the normalisation
condition above

|fp(kz)|2 −→ (2π)δ(pz − kz) , (peaked momentum limit) . (3.146)

To see the localisation we can look at the wavefunction of the wavepacket state:

⟨0|ψ(t, z)|Ψp⟩ =
∫ ∞

−∞

dkz

(2π)
√

2k0
fp(kz)e−ikµxµ . (3.147)

At t = 0 this is an oscillating function of z (with wavelength controlled by p) with a
Gaussian envelope so that it is indeed localised at z = 0. As a function of time, the
wavepacket moves in the direction of sign(p). Because each mode has a slightly different
dispersion relation, the spatial width of the wavepacket tends to widen in time (dispersion)
but this can be counteracted by making fp(k) a sharper Gaussian, taking an appropriate
order of limits.
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3.A.1 Asymptotic states in the wall background
In the presence of the wall we should still define asymptotic particle states as appropriate
wavepackets to compute formulae for physical rates. A slight complication comes from
the fact that the one particle states |kL,R⟩ we quantise are not eigenstates of momentum.
Moreover, in general, the same state describes different types of particles in different
regions of space17. Defining the asymptotic state carefully will get rid of any ambiguity.

We now consider an operator that feels the wall ϕ(t,x) expanded in left and right
mover modes as in eq. (3.16). As before, the action of this on the vacuum should be
thought of as creating a particle localised at xµ = 0. Contracting a state with ⟨0|ϕ still
gives the wavefunction understood in the usual sense. In fact

⟨0|ϕ(t,x)|kI⟩ = e−iknxnχI,k(z) , (3.148)

with I = R,L. To gain physical intuition of the one particle states |kI⟩, consider con-
structing wavepackets by superimposing exclusively right (left) movers:

|Φin
I,p⟩ ≡

∫ ∞

0,∆m

dkz

(2π)
√

2k0
fp(kz)|kI⟩ , (3.149)

where again we focus on 1 + 1 dimensions and where the lower limit is 0 (∆m) for R (L)
movers respectively. The ‘in’ labels will become clear shortly. Their wavefunctions are
respectively

⟨0|ϕ(t, z)|Φin
I,p⟩ ≡

∫ ∞

0,∆m

dkz

(2π)
√

2k0
fp(kz)e−ik0tχI,k(z) . (3.150)

Ignoring the slight dispersion mentioned at the end of the previous subsection, the time
evolution of eq. (3.150) for I = R(L) describes an isolated localised wavepacket travelling
in towards the wall from z < 0 (z > 0) when t < 0. This wavemode scatters off the
wall and for t > 0 splits into reflected and transmitted wavemodes travelling in opposite
directions. Thus, |ϕin

R,p⟩ (|ϕin
R,p⟩) is a good asymptotic state for an incoming particle with

positive (negative) z−momentum. It cannot however be used as an asymptotic state for
any single outgoing asymptotic particle since at late times it describes a superposition.

So what about single localised outgoing particles? Clearly, when the wave equation is
reduced to Schrodinger-like form with a real potential, these can be obtained by complex
conjugation of the spacial part of the wavefunction. In other words we require states
|Φout

I,p ⟩ such that

⟨0|ϕ(t, z)|Φout
I,p ⟩ ≡

∫ ∞

∆m, 0

dkz

(2π)
√

2k0
fp(kz)e−ik0tζI,k(z) ,

with ζR,L(z) = χ∗
L,R(z) .

(3.151)

In time, these correspond to two waves coming from opposite sides of the wall, hitting
the wall around t ≈ 0 and interfering in just the right way so that at late time there is
only one wavemode travelling towards z → −∞ or z → ∞ respectively. Notice the swap
in labels. We adopt the convention that the right-mover R (left-mover L) label always
denotes a particle of positive (negative) z−momentum. It is an easy exercise to write

17This can be simply because the mass changes or, as in the case of λ(x) in a symmetric to broken
transition, the field interpolates even between particles of different spin.
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the ζR,L in terms of a linear composition of the complete basis χR,L as explicitly done in
eqs. (3.21) and (3.22). The appropriate wavepacket for an outgoing state is thus

|Φout
I,p ⟩ ≡

∫ ∞

∆m, 0

dkz

(2π)
√

2k0
fp(kz)|kout

I ⟩ , (3.152)

where |kout
I ⟩ are the one-particle states with wavefunctions ζI,k(z) and are related to the

|kI⟩ by

|kout
L ⟩ = r∗

R,k|kR⟩ + t∗R,k

√
k̃z/kz |kL⟩ Θ(kz − ∆m) , (3.153)

|kout
R ⟩ = t∗L,k

√
kz/k̃z |kR⟩ + r∗

L,k|kL⟩ , (3.154)
where the reflection and transmission coefficients were defined in general for scalar d.o.f.
in section 3.1.1, and given explicit form in the case of a step wall for fundamental scalars
also in section 3.1.1 and for different vector polarisations in section 3.2.3.

Reflection and transmission probabilities: As a consistency check, we can compute
reflection and transmission probabilities in this language. Focusing on the identity part
of the S matrix S = 1 +��iT , the amplitude for a particle incoming from z < 0 to reflect
and transmit should be, respectively:

⟨ϕout
L,p|ϕin

R,p⟩ =
∫ ∞

0

dk

2π |fp(k)|2 rR,k → rR,p , (3.155)

⟨ϕout
R,p|ϕin

R,p⟩ =
∫ ∞

∆m

dk

2π |fp(k)|2 tL,k
√
k̃z/kz →

tL,p
√
p/p̃ , p > ∆m

0 , p < ∆m
, (3.156)

where the arrow denotes taking the peaked momentum limit eq. (3.146) in the end. So
the relative probability for a peaked-around-p incoming mode to reflect/transmit into a
peaked-around-p outgoing mode is what one could have already guessed

Reflection probability = |⟨ϕout
L,p|ϕin

R,p⟩|2 → |rR,p|2 , (3.157)

Transmission probability = |⟨ϕout
R,p|ϕin

R,p⟩|2 →

|tL,p|2p/p̃ , p > ∆m
0 , p < ∆m

. (3.158)

3.A.2 Phase space derivation from wavepackets
In this section we will obtain formulae for the averaged momentum exchanged by transi-
tion radiation processes in the background of the wall, deriving eq. (3.32) in the main text.
Treating the incoming particle as a wavepacket as in eq. (3.145), we find the amplitude
squared for splitting into ℓ particles, which may or may not feel the wall. These outgoing
states are late-time eigenstates of momentum, obtained as limits of their own wave-packet
forms. We have

|⟨kout
1 . . . kout

ℓ |Φp⟩|2 =
∫ d3p1d

3p2√
4p0

1p
0
2

fp(p1)f ∗
p (p2)δ(3)

(
p1 −

ℓ

Σ
i=1
ki

)
δ(3)

(
p2 −

ℓ

Σ
j=1
ki

)
|M(3)

1→ℓ|2

=
∫ d3p1dp

z
2√

4p0
1p

0
2

fp(p1)f ∗
p (p2)δ(3)

(
p1 −

ℓ

Σ
i=1
ki

)
p0

1
|pz1|

δ (pz1 − pz2) |M(3)
1→ℓ|2

=
∫ d3p1

2|pz1|
|fp(p1)|2δ(3)

(
p1 −

ℓ

Σ
i=1
ki

)
|M(3)

1→ℓ|2

−→ (2π)3

2|pz|
δ(3)

(
p−

ℓ

Σ
i=1
ki

)
|M(3)

1→ℓ|2 , (3.159)

139



where the temporary label (3) on M emphasises only three of 4−momentum are con-
served. In the last step, we take the peaked momentum limit of eq. (3.146). For the
particular case of a 1 → 2 process as discussed in this work, we have

⟨∆pzI=R,L⟩ ≡
∫

Pp→qkout
I

∆pzI =
∫ d3k

(2π)32k0

∫ d3q

(2π)32q0 |⟨q kout
I |Φp⟩|2∆pzI

=
∫ d3kd3q

(2π)38pzk0q0 δ
(3) (p− k − q) |M(3)

I |2∆pzI

=
∫ d3k

(2π)38pzk0|qzk|
[
|M(3)

I |2∆pzI
]
qz=±qz

k

(3.160)

where in going to the last line we have used

δ
(
p0 − k0 − q0

)
= q0

|qzk|
[δ(qz − qzk) + δ(qz + qzk)]

with qzk =
√

(p0 − k0)2 − k2
⊥ −m2

q

(3.161)

Thus, in principle, one should sum contributions from both signs of qz to obtain the full
integrated rate. In practice, the qz < 0 branch will be highly sub-leading at large energies.

Comparison with decay formula: One might wonder how to recover the familiar
decay formula in the limit of no wall. The latter can be derived in terms of the full
4−momentum conserving matrix element M(4) as

|⟨k1 . . . kℓ|p⟩|2 =
∫ d3p1d

3p2(2π)2√
4p0

1p
0
2

fp(p1)f ∗
p (p2)δ(4)

(
p1 −

ℓ

Σ
i=1
ki

)
δ(4) (p2 − p2) |M(4)

1→ℓ|2

=
∫ d3p1(2π)2

2p0
1

|fp(p1)|2δ(4)
(
p1 −

ℓ

Σ
i=1
ki

)
δ (0)︸ ︷︷ ︸
T/2π

|M(4)
1→ℓ|2

−→ (2π)4

2p0
T δ(4)

(
p−

ℓ

Σ
i=1
ki

)
|M(4)

1→ℓ|2 , (3.162)

where T is total time (one can only define a decay probability per unit time). We can
see how eq. (3.159) reduces to this result. In the absence of the wall, the matrix element
gives

|M(3)
1→ℓ|2 = 2π Lzδ

(
pz −

ℓ

Σ
i=1

)
|M(4)

1→ℓ|2 (3.163)

where Lz is the distance traversed in the z direction. Finally, using that Lz = T pz/p0,
eq. (3.159) reduces to eq. (3.162).

3.B Computations for scalar eigenmodes
In this appendix, we report, for completeness, the full computation of the orthogonality
conditions for the eigenmodes computed in section 3.1.1. Starting from the KG equation
for the ϕ field in presence of a z−dependent mass

(□ +m2(z))ϕ = 0 , −→ χ′′
k(z) +m2(z)χk(z) = 0 , (3.164)

140



where with k we refer to the momentum along the z−direction and m2(z) = m2 + (m̃2 −
m2)θ(z). The general solution of this differential equation is of the form

χk(z) ≡

Aeikz +Be−ikz , z < 0
Ceik̃z +De−ik̃z , z > 0

(3.165)

where for this to be a solution we need to specify the relation k̃2 = k2 +m2 − m̃2.
Integrating the KG equation around lim

ϵ→0

∫+ϵ
−ϵ dz we find that the solution and its derivative

should be continuous around z = 0, this lead to the following relations between the
coefficients A+B = C +D ,

k(A−B) = k̃(C −D) .
(3.166)

Since we have the freedom to set one of the four coefficients to zero, we can, without
loss of generality, define two linearly independent solutions that describe right-movers
and left-movers. The motivation for setting one of these coefficients to zero is to avoid
describing a physical wave that comes from z = ∞ (for right-movers) or z = −∞ (for
left-movers). For the former, we set D = 0 and then

χR,k(z) ≡

AReikz +BRe
−ikz , z < 0

CRe
ik̃z , z > 0

(3.167)

where the coefficients are related by the conditions (3.166)
AR = k + k̃

2k CR ,

BR = k − k̃

2k CR .

(3.168)

Instead, for left-movers, we set A = 0, then

χL,k(z) ≡

BLe
−ikz , z < 0

CLe
ik̃z +DLe

−ik̃z , z > 0
(3.169)

where the coefficients, from (3.166), are
CL = k̃ − k

2k̃
BL ,

DL = k̃ + k

2k̃
BL .

(3.170)

Without fixing any further relation among coefficients we already have constructed two
linearly independent and orthogonal solution. Indeed∫ +∞

−∞
dz χL,kχ

∗
R,k′ = 0 . (3.171)

In details∫ +∞

−∞
dz χL,kχ

∗
R,k′ =

∫ 0

−∞
dz
(
BLe

−ikz
) (
A′
Re

−ik′z +B′
Re

+ik′z
)

+
∫ +∞

0
dz
(
CLe

ik̃z +DLe
−ik̃z

) (
C ′
Re

−ik̃′z
)

= A′
RBL

∫ 0

−∞
dz e−i(k+k′)z +B′

RBL

∫ 0

−∞
dz ei(k

′−k)z

+ C ′
RCL

∫ +∞

0
dz ei(k̃−k̃′)z + C ′

RDL

∫ +∞

0
dz e−i(k̃′+k̃)z.

141



Using the following relations∫ +∞

0
dz eiαz = πδ(α) + PV

(
− 1
iα

)
,

∫ 0

−∞
dz eiαz = πδ(α) + PV

( 1
iα

)
, (3.172)

first we focus on the terms proportional to the deltas∫ +∞

−∞
dz χL,kχ

∗
R,k′ ⊃ A′

RBLπδ(k + k′) +B′
RBLπδ(k − k′) (3.173)

+ C ′
RCLπδ(k̃ − k̃′) + C ′

RDLπδ(k̃ + k̃′) . (3.174)

Expressing the deltas as function of the energy

δ(k ± k′) =
∣∣∣∣∣ dkdk0

∣∣∣∣∣
−1

δ(k0 ± k′
0) = k

k0
δ(k0 ± k′

0),

δ(k̃ ± k̃′) = k̃

k0
δ(k0 ± k′

0) ,

and enforcing the deltas we get∫ +∞

−∞
dz χL,kχ

∗
R,k′ ⊃ π

k0
δ(k0 + k′

0)
[
kARBL + k̃DLCR

]
+ π

k0
δ(k0 − k′

0)
[
kBRBL + k̃CLCR

]
= 0 , (3.175)

where the first term is zero since k0+k′
0 > 0, while the second is zero since the combination

in the brackets vanishes as soon as we express the conditions in (3.168) and (3.170).
Now focusing on the PVs we get∫ +∞

−∞
dz χL,kχ

∗
R,k′ ⊃ A′

RBL PV
[
− 1
i(k + k′)

]
+B′

RBL PV
[

1
i(k′ − k)

]

+ C ′
RCL PV

[
− 1
i(k̃ − k̃′)

]
+ C ′

RDL PV
[

1
i(k̃ + k̃′)

]
.

Now dropping the PVs and using (3.168) and (3.170) we get

. . . = iBLC
′
R(k − k̃′)(k2 − k′2 − k̃2 + k̃′2)

(k − k′)(k + k′)(−k̃ + k̃′)(k̃ + k̃′)
= 0 ,

that vanishes as soon as we specify that k̃2 = k2 +m2 − m̃2.
The remaining two free parameter, CR and BL can be fixed with the normalisation con-
ditions. ∫ +∞

−∞
dz χL,kχ

∗
L,k′ = 2πδ(k0 − k′

0) , (3.176)∫ +∞

−∞
dz χR,kχ

∗
R,k′ = 2πδ(k0 − k′

0) . (3.177)

Then, we have

(LL) =
∫ 0

−∞
dz
(
BLe

−ikz
) (
B′
Le

ik′z
)

(3.178)

+
∫ +∞

0
dz
(
CLe

ik̃z +DLe
−ik̃z

) (
C ′
Le

−ik̃′z +D′
Le

ik̃′z
)
. (3.179)
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The pieces proportional to the delta functions must give the normalisation condition
among the coefficients while all the other pieces must vanish. Indeed, following the same
tricks we have used for the orthogonality condition, we get

(LL) ⊃ π

k0

[
kB2

L + k̃(C2
L +D2

L)
]
δ(k0 − k′

0) + CLDL
πk̃

k0
δ(k0 + k′

0) , (3.180)

from which we read

kB2
L + k̃(C2

L +D2
L) = 2k0 → BL = ±

√
2k0

√
2k̃

k + k̃
. (3.181)

It can be shown that all the other pieces, proportional to the PVs vanish, indeed

(LL) ⊃ BLB
′
LPV

[
1

i(k′ − k)

]
+ (CLC ′

L −DLD
′
L)PV

[
− 1
i(k̃ − k̃′)

]

+ (CLD′
L − C ′

LDL)PV
[
− 1
i(k̃ + k̃′)

]

= −iBLB
′
L(k2 − k′2 − k̃2 + k̃′2)

(k − k′)(k̃2 − k̃′2)
= 0 . (3.182)

For the right-movers we have

(RR) =
∫ 0

−∞
dz
(
ARe

ikz +BRe
−ikz

) (
A′
Re

−ik′z +B′
Re

ik′z
)

(3.183)

+
∫ ∞

0
dz
(
CRe

ik̃z
) (
C ′
Re

−ik̃′z
)
. (3.184)

The pieces proportional to the delta functions must give the normalisation condition
among the coefficient while all the other pieces must vanish. Indeed,

(RR) ⊃ π

k0

[
k(A2

R +B2
R) + k̃C2

R

]
δ(k0 − k′

0) + ARBR
πk

k0
δ(k0 + k′

0) , (3.185)

from which we read

k(A2
R +B2

R) + k̃C2
R = 2k0 → CR = ±

√
2k0

√
2k

k + k̃
. (3.186)

It can be shown that all the other pieces, proportional to the PVs vanish, indeed

(RR) ⊃ (ARB′
R − A′

RBR)PV
[

1
i(k + k′)

]
+ (ARA′

R −BRB
′
R)PV

[
1

i(k − k′)

]

+ CRC
′
RPV

[
− 1
i(k̃ − k̃′)

]

= iCRC
′
R(k2 − k′2 − k̃2 + k̃′2)
(k2 − k′2)(k̃ − k̃′)

= 0. (3.187)

In the end, we were able to fix all the coefficients and to construct a basis of eigenmodes
suitable for second quantisation of the field ϕ, as in Eq. (3.16). In order to have the
solution written as in Eq. (3.6) and (3.7) we need to divide the the eigenmodes by AR
and DL, respectively, since

rR = BR

AR
, tR = CR

AR
, rL = CL

DL

, tL = BL

DL

. (3.188)
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3.C Diagonalisation of the Hamiltonian
In this appendix we investigate, for the case of longitudinal vector bosons, why the ‘wall
polarisation’ λ is the most suitable dof for describing the change in dofs across the wall
and what we really mean with orthogonality of the eigenmodes.
In unitary gauge, focusing only on the gauge sector, we get

L = −1
4FµνF

µν + m2(z)
2 AµA

µ (3.189)

= 1
2
(
Ȧz + ∂zA

0
)2

+ 1
2m

2(z)
(
A2

0 − A2
z

)
. (3.190)

As is well known, this is a theory with a constraint, imposed by the Lagrange multiplier
A0. We can either work with the vector Aµ and get the Proca equation, or we can
eliminate A0 and get a wave equation with only the dynamical dof Az. The equation of
motion in each case is

∂µF
µν +m2(z)Aν = 0 , (3.191)

Äz − ∂z

( 1
m2∂z(m

2Az)
)

+m2(z)Az = 0 , (3.192)

where we used the constrain ∂µ(m2Aµ) = 0, which has been useful to rewrite as

A0 = 1
m2∂z

(
m2Az

−∂t

)
, (3.193)

thus relating A0 to Az. The inverse derivative is to be understood in momentum space.

Solving à la Proca We found solutions to the equations of motion in vector form,
which we call right-moving in analogy with the scalar case. These solutions are given by

AµR,k(t, z) = e−ik0tχµR,k(z) , (3.194)

where

χµR,k(z) =



1
m

 k

k0

 eikz + rk
m

 −k
k0

 e−ikz, z < 0 ,

1
m̃

 k̃

k0

 tkeik̃z, z > 0 .
(3.195)

Here, k0 =
√
k2 +m2, k =

√
k2

0 − m̃2, and the coefficients rk and tk are given by

rk = m̃2k −m2k

m̃2k +m2k
, tk = 2kmm̃

m̃2k +m2k
(3.196)

Similarly, we found the left-moving solutions

AµL,k(t, z) = e−ik0tχµL,k(z) , (3.197)

where

χµL,k(z) =
√
k

k̃



1
m

 −k
k0

 k̃
k
tke

−ikz, z < 0 ,

1
m̃

 −k̃
k0

 e−ik̃z − rk
m̃

 k̃

k0

 eik̃z, z > 0 ,
(3.198)
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with the same coefficients rk and tk as for the right-movers.
However, we encountered a problem: the right-moving and left-moving solutions do

not seem to be orthogonal in the naive way as expected, even for different momenta p ̸= q∫
dz χµR,p(z)(χµ,L,q(z))∗ ̸= 0 . (3.199)

This non-orthogonality issue needs further investigation.

Solving for Az Consider solving for Az from the start, setting Az = e−ik0tχR,L,k in
(3.192). Upon integrating once and twice respectively, the matching conditions are

∂z(m2(z)Az) = continuous at z = 0 , (3.200)
m2(z)Az = continuous at z = 0 . (3.201)

The second condition implies that the first one can be simplified, yielding the matching
conditions

∂zAz = continuous at z = 0 , (3.202)
m2(z)Az = continuous at z = 0 . (3.203)

The right-moving wave modes are thus given by

AzR,k = e−ik0tχR,k(z) ≡ e−ik0t

eikz + rke
−ikz, z < 0

tke
ik̃z, z > 0

(3.204)

with k, k0, rk, tk defined above. Similarly, the left-moving wave modes are

AzL,k = e−ik0tχL,k(z) ≡ e−ik0t


k̃m̃2

km2 tke
−ikz, z < 0

e−ik̃z − rke
ik̃z, z > 0

(3.205)

These are both exactly what one would expect by taking the µ = z component of the
solutions to Proca’s equations and then normalising by a constant.

Is it a general result that scattering states of wave equations with a term linear in
derivative are not orthogonal in the naive sense? Instead, it seems that defining a new
variable λ = m(z)Az/(−∂t) – which kill the linear in derivative term in the eom – its
scattering states are naively orthogonal18.

18In wave equations that include terms linear in the derivative, such as the Dirac equation or certain
scalar field theories, the orthogonality of scattering states is generally not preserved in the naive sense.
Unlike second-order wave equations like the Klein-Gordon equation, which have well-defined inner prod-
ucts ensuring orthogonality, these linear derivative terms introduce complexities that alter the standard
inner product structure. Consequently, the naive inner product

∫
ψ∗

1ψ2 d
3x may not yield zero even for

states that should be orthogonal. For example, in the Dirac equation, solutions are normalised using an
inner product involving gamma matrices

⟨ψ1|ψ2⟩ =
∫
ψ†

1γ
0ψ2 d

3x . (3.206)

This modified inner product ensures orthogonality but differs from the simple overlap integral used in
second-order wave equations. Thus, for wave equations with linear derivative terms, it is essential to
properly define an inner product that accurately reflect the orthogonality of the solutions.
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But what do we mean by orthogonal? How do we know what the appropriate
inner product on the space of solutions should be? The answer can be found by seeing
if the modes diagonalise the Hamiltonian and read off from this what is the appropriate
inner product. The Hamiltonian in the 1 + 1 dimensional case, after some manipulation
and eom use, is just

H =
∫
dx

1
2
(
(F 0z)2 +m2(Az)2 +m2(A0)2

)
. (3.207)

In order to evaluate the Hamiltonian most easily, we will further manipulate by using
F 0z = m2Az/(−∂t) in the first term and using (3.193) in the last term

H =
∫
dx

1
2

m4
(
Az

−∂t

)2
+m2(Az)2 + 1

m2

(
∂z
m2Az

−∂t

)2
 (3.208)

=
∫
dx

1
2m

2
(

(Az)2 −
(
Äz

−∂t

)(
Az

−∂t

))
(3.209)

=
∫
dx

1
2
(
λ̇2 − λ̈λ

)
. (3.210)

In going to the second line, we performed integration by parts on the last term and then
applied the equation of motion for Az given in (3.192). Our objective was to reformulate
H to eliminate linear ∂z terms, which are cumbersome to handle due to the difficulty of
expressing ∂zχzR,L,p in terms of χzR,L,p, unlike ∂tχzR,L,p = −ip0χzR,L,p. In the final line, it is
noteworthy to observe how the Hamiltonian is expressed in terms of the λ field.

We can now expand Az into the right and left movers above

Az =
∑
I

∫ dp

(2π)
√

2p0

(
cI,pA

z
I,p + c.c.

)
, (3.211)

where for the moment the Fourier coefficients are just functions of p and not operators.
Therefore,

H =
∑
I,J

∫ dpdq

(2π)2
√

4p0q0

∫ dz

2 m
2(z)

[
cI,pcJ,qχ

z
I,pχ

z
J,qe

−i(p0+q0)t
(
1 − p0/q0

)
+ cI,pc

∗
J,qχ

z
I,pχ

z∗
J,qe

−i(p0−q0)t
(
1 + p0/q0

)
+ c∗

I,pcJ,qχ
z∗
I,pχ

z
J,qe

i(p0−q0)t
(
1 + p0/q0

)
+c∗

I,pc
∗
J,qχ

z∗
I,pχ

z∗
J,qe

i(p0+q0)t
(
1 − p0/q0

)]
. (3.212)

So we can see that the appropriate inner product necessary so as to diagonalise the
Hamiltonian is ∫

dz
m2(z)
p0q0 χzI,p(χ

∗,z
J,q) = 2πδIJδ(p− q) , (3.213)

which we have checked that this is indeed satisfied by our modes defined above. Thus the
Hamiltonian becomes diagonal

H =
∑
I

∫ dp

2πp
0|cI,p|2 . (3.214)
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We also add the other ’inner products’
∫ ∞

−∞
dz
m2(z)
p0q0 χzR,p χ

z
R,q = 2π rp δ(p− q) , (3.215)∫ ∞

−∞
dz
m2(z)
p0q0 χzL,p χ

z
L,q = −2π rp δ(p− q) , (3.216)

∫ ∞

−∞
dz
m2(z)
p0q0 χzR,p χ

z
L,q = 2π

√
p̃

p
tp δ(p− q) , (3.217)

where rp and tp are given by eq. (3.196).
The conclusion is that the mode functions defined here do indeed diagonalize the

Hamiltonian, however, it is crucial to select the appropriate inner product. For wave
modes of Az, the appropriate inner product is given in eq. (3.213). When working with
Aµ instead, the inner product will take the form∫

dz χµR,pPµνχ
∗ν
L,q = 0 , (3.218)

where Pµν is an appropriate projector. Although finding Pµν should not be particularly
difficult, it may turn out to be unnecessary.

3.D Current conservation in the presence of the wall
In the main text, we have discussed the modifications of the Ward identities in the presence
of the wall and that in general the conserved current coupled to the total derivative must
give zero matrix element,

Jµ∂µf ⇒ ⟨final| Sf |initial⟩ = 0 . (3.219)

Let us discuss the effects of various choices of the gauge transformation function f . For ex-
ample let us consider f = χτ1,2(z), where χτ1,2 are the wave functions for the τ polarisations
(see section 3.2.2). Then the matrix element will be equal to

Jµ ∝ (p+ q)µ ⇒ M = (p+ q)µkµ
∆p + rτk

(p+ q)µkµr
∆pr

− tτk
(p+ q)µk̃µ

∆p̃ ,

kµr ≡ (km,−kz), k̃µ ≡ (km, k̃z) . (3.220)

We can simplify the amplitude using the following identities:

(p+ q)µkµ = (p+ q)mkm − (p+ q)zkz
km=(p−q)m= (p+ q)m(p− k)m − (p+ q)zkz

= p2
z +m2

ψ − q2
z − m̃2

ψ − (p+ q)zkz

m2
ψ=m̃2

ψ= (p+ q)z(p− q − k)z = (p+ q)z∆p . (3.221)

Performing similar manipulations for all of the terms we get:

M = (p+ q)z(1 + rτk − tτk) = 0 , (3.222)
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where we used the fact that 1 + rτk − tτk = 0 for τ polarisations, as expected. Similarly we
can choose f = α(z), of the λ. Then from the eq. (3.99) we can get

α|z<0 = ikz

gvE

(
eik

zz − rλke
−ikzz

)
,

α|z>0 = itλk × k̃z

gEṽ
eik̃

zz , (3.223)

where we have used that α = 1
gv2E

∂z(vλ) → 1
gEv

∂zλ outside of the wall. Using the
expression for reflection and transmission coefficients from eq. (3.101)

rλk = ṽ2kz − v2k̃z

ṽ2kz + v2k̃z
, tλk = 2kzvṽ

ṽ2kz + v2k̃z
, (3.224)

we can compute the amplitude for the processes Jµ → χµλ corresponding to the interaction
Jµχ

µ
λ. The computation goes as follows

M = kz

gEv

(p+ q)µkµ
∆p − kz

Egv
rλk

(p+ q)µkµr
∆pr

− k̃z

gEṽ
tλk

(p+ q)µk̃µ
∆p̃

= (p+ q)z
E

(
kz

gv
− kz

gv
rλk − k̃z

gṽ
tλk

)
︸ ︷︷ ︸

=0

= 0 , (3.225)

the last expression in brackets is the matching condition for the λ field (eq. (3.98)) which
must be satisfied. Note that terms cancelling each other in the brackets are growing in
energy, which makes crucially important the calculation of exact values of reflection and
transmission coefficients.

3.E WKB regime in the case of current non-conservation
In the main text we focus only on the transition radiation from the conserved current.
How we can perform a similar calculation in the case when the current is not conserved?
Let us consider the following example with scalar fields

L = −1
4FµνF

µν + |DµH|2 − V (|H|) + |Dµϕ|2 −m2
ψ|ϕ|2 +

(
κϕ2H + h.c.

)
.

(3.226)
The charges under the gauged U(1) symmetry are as follows: QU(1)(H) = 1, QU(1)(ϕ) =
−1/2. In the section 3.2.5, in order to perform the WKB calculation and get rid of inter-
actions that can potentially lead to the divergences we have used the current conservation
equations to modify the expression for the matrix elements. In the case of the system in
eq. (3.226) the divergence of the current becomes equal to:

∂µJ
µ
ϕ =

√
2v(z)

(
κ∗ϕ∗2 − κϕ2

)
, Jµϕ = i(ϕ∗∂µϕ− ϕ∂µϕ∗) . (3.227)

The interaction between the λ polarisation and Jµϕ and can be written as follows:

gQϕJ
µ
ϕA

(λ)
µ → Qϕ

[
−

√
2
(
κ∗ϕ∗2 − κϕ2

) 1
Ev(z)∂z (v(z)λ(z)) − g2v(z)

E
λ(z)Jz

]
. (3.228)

We can see that on top of the term λJz present in the conserved current case, there is an
additional interaction. However, this interaction is not growing with energy, and in the
limit v(z) → 0, it is finite (see discussion in the appendix 3.F), thus the calculation of the
vector emission becomes straightforward.
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3.F Properties of the potential for λ field
In the main text we have shown that λ field satisfies the following equation of motion
eq. (3.80)−(3.81) (

−E2 − ∂2
z + Uλ(z)

)
λ = 0 ,

Uλ(z) = g2v2(z) + 2
(
∂zv

v

)2

− ∂2
zv

v
. (3.229)

Let us investigate the properties of the function Uλz .

Broken→ Broken In this case

vz→±∞ ̸= 0 , (3.230)

and the potential has the limits :

Uλ(z)|z→±∞ = g2v2(z → ±∞) , (3.231)

where we have used that v′, v′′ → 0 outside of the wall. Physics wise this result is expected
since λ mode must have the mass of the vector gv outside of the wall.

Symmetric→Broken Here we will assume

v(z → −∞) = 0 , v(z → ∞) = ṽ ̸= 0 . (3.232)

On the broken side as expected

Uλ(z → ∞) = g2v2(z → ∞) = g2ṽ2 , (3.233)

the potential becomes equal to the mass square of the vector boson. To find its limit on
the symmetric side we need to look at the equation defining v(z):

∂2
zv(z) = V ′(v(z)) , (3.234)

where the prime stands for a derivative with respect to v(z). Integrating this equation we
get

1
2 (∂zv(z))2 = V (v(z)) − C , (3.235)

where C = −(∂zv(z0))2 +V (v(z0)) is a ‘constant of integration’. We can choose z0 → −∞,
then using v′, v → 0 we get C = V (v(−∞)) = V (0), which need not be zero. Now we
look at the limits as z → −∞. At this point, using eqs. (3.234) and (3.235) we can write
the various terms of the Uλ function in terms of the potential V and its derivatives V ′:

∂2
zv(z)
v(z) = ∂2

zv

v
= V ′(v)

v
v→0−→ V ′′(0) ,(

∂zv(z)
v(z)

)2

=
(
∂zv

v

)2

= 2V (v) − V (0)
v2

v→0−→ V ′′(0) . (3.236)

149



However, in the limit z → −∞, v → 0, we know that the first derivative of the potential
V must be equal to zero at this point

∂V

∂v

∣∣∣∣∣
v→0

= 0 , (3.237)

since there is a local minimum at v = 0. Thus in the region v → 0 we can write down:

V (v)|v→0 = V ′′(0)v2

2 + V (0) ⇒

V ′(v))
v

∣∣∣∣∣
v→0

= V ′′(0) , 2V (v) − V (0)
v2 = V ′′(0) . (3.238)

Combining these results we can see that

lim
z→−∞

Uλ(z) = V ′′(0) = m2
h,s , (3.239)

where mh,s is the mass of the scalar on the symmetric side. We can see that as was
discussed in the section 3.2.2 Uλ has the correct properties for a potential of a d.o.f
interpolating between the scalar field and λ polarisation on different sides of the wall.

3.G Evaluation of phase space Integrals
In this appendix, we provide some details regarding the evaluation of the phase space
integrals, and how to derive analytical expressions. We will always be interested in the
limit of large incoming energy p0 ≫ all masses. The types of integrals we deal with are
all of the form

I(p0) =
∫ l1(p0)

const
dk
∫ l2(p0,k)

const′
dk2

⊥ Int(p0, k, k2
⊥) , (3.240)

where the dependence on couplings and masses mi is implicit. When I(p0) admits an
expansion around infinity, this can be obtained in principle straightforwardly as

I(p0) = I(1/x)|x→0 + d

dx
I(1/x)

∣∣∣∣∣
x→0

1
p0 + . . . (3.241)

and one can sometimes take this ‘exact’ approach. However, such an expansion does
not always exist 19, or if it does, its coefficients might in practice be difficult to evaluate.
Moreover, in the presence of large mass hierarchies, the regime where eq. (3.241) is actually
a good approximation can begin at arbitrarily high energies 20. One can often successfully
use a different expansion instead, which we call ‘collinear expansion’, of p0, kz ≫ k⊥,mi

where mi stands for all masses. Keeping the leading term, reduces integrands to the form

Int(p0, k, k2
⊥) = N(k, k⊥,mi)[

(kIR⊥,m)2 + k2
⊥

]2 for p0, kz ≫ k⊥,mi, (3.242)

19For example, in vector emission in symmetry–breaking transitions, for m = 0 we find logarithmic
growth.

20We saw this for example when there are large scale other than p0 such as m̃mψ/m in plots in the
main text figs. 3.0.3, 3.1.2, 3.3.1 and 3.3.2.
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where

k2
⊥ ≲ (kIR⊥,m)2 ≡

k2
zm

2
ψ − kzm2p0

(p0)2 +m2 > 0 . (3.243)

The function N depends on the contribution in question but we wish to highlight the
factor in denominator. This form makes most manifest the properties of the phase space
structure in particular for τ polarisation (and scalars), most importantly when m (and
possibly mψ) is very small. For a given kz, the integrand is peaked for k2

⊥ ≲ (kIR⊥,m)2.
Notice the role of kIR⊥,m - its presence regulates an otherwise logarithmically IR divergent
integral. Indeed the momentum transfer diverges in the limit of m,mψ → 0. It is easy to
prove that kIR⊥,m < kz for small m, justifying the expansion. When m/mψ is very small,
clearly there are two relativistic regimes, the first given by

p0 ≲ kzmψ/m , (3.244)

where kz should be taken in the dominant region. Typically kz ∼ m̃ for step function con-
tributions and ∼ L−1

w for WKB. Above this scale instead one reaches the true asymptotic
behaviour where eq. (3.241) is valid.

3.G.1 Scalars
Scalar R-mover emission (WKB) We begin with the most dominant contribution
to scalar emission at the highest of energies p0 → ∞. The amplitude is the simplest that
one can encounter,

Mwkb
R =

(
y

i∆p + ỹ

−i∆p̃

)
, (3.245)

and

⟨∆pwkb
R ⟩ =

∫ kzmax

L−1
w

dkz
∫ k2

⊥,cut

0

dk2
⊥

2
|Mwkb

R |2

(2π)28pzqzk0
∆pR . (3.246)

Form ̸= 0, properly evaluating the expansion eq. (3.241) for this case is tricky 21. However,
the collinear expansion eq. (3.242) works extremely well, giving

⟨∆pwkb
R ⟩ ≈ y2∆m4

32π2

∫ kzmax

L−1
w

dkz
∫ k2

⊥,cut

0
dk2

⊥
(kz − p0)2/(p0)4[

(kIR⊥,m)2 + k2
⊥

]2 [
(kIR⊥,m̃)2 + k2

⊥

] , (3.247)

where kIR⊥ is given by eq. (3.243). We see indeed that for large p0 the integrand is
relatively flat in kz while k⊥ is strongly IR dominated as anticipated in the preamble
above, justifying the expansion. The integrals can now be computed exactly and we
obtain eq. (3.50). We can see clearly however that there is also an intermediate regime
for small m/mψ characterised by a plateau:

⟨∆pwkb
R ⟩ ≈


y2m̃2Lw
32π2m2

ψ
, L−1

w ≪ p0 ≲ L−1
w

mψ
m

eq. (3.50) , p0 ≳ L−1
w

mψ
m

, (3.248)

21The coefficient of the 1/p0 term in eq. (3.241) is the first non-zero contribution as expected from
fig. 3.1.2. Out of the three terms to evaluate only one is non-zero in the x → 0 limit. Said limit cannot
be taken before the integral is evaluated however and such a task proves unnecessarily difficult.
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where we remind ourselves that there is no WKB contribution at all unless we can emit
modes greater than the inverse wall length. The value of the plateau is easily obtained
by setting m = 0 at the start and computing the leading order in eq. (3.241). However,
in this regime, we find the step function contributions are more important and we move
on there now.

Scalar R and L-mover emission (step wall) The step wall case is an interesting
theory exercise in its own right, since everything can be done exactly. For scalars the
contributions are

⟨∆pstep
R ⟩ =

∫ L−1
w

∆m
dkz

∫ k2
⊥,max

0

dk2
⊥

2
|Mstep

R |2

(2π)28pzqzk0
∆pR . (3.249)

⟨∆pstep
L ⟩ =

∫ L−1
w

0
dkz

∫ k2
⊥,max

0

dk2
⊥

2
|Mstep

L |2

(2π)28pzqzk0
∆pL . (3.250)

where the matrix elements are given by eqs. (3.28) and (3.29). Evaluating these in the
asymptotic limit we obtain

⟨∆pstep
L ⟩ ≈ y2m̃

32π2m2
ψ

4 , p0 ≲ m̃mψ/m
4m2

ψ∆m
3m̃m2p2

0

[
m2

(
ln m2

m̃2 − 1
)

+ m̃2
]
, p0 ≳ m̃mψ/m

(3.251)

⟨∆pstep
R ⟩ ≈ y2m̃

32π2m2
ψ

1 − m̃Lw , p0 ≲ 4 m̃mψ/m
m2
ψ(L−1

w −∆m)
4m̃m2p2

0

[
∆m2 + 2m2 ln

(
m
m̃

)]
, p0 ≳ L−1

w mψ/m
(3.252)

For the R−contribution there is an intermediate regime well approximated by the WKB
asymptotic formula in (3.50), as can be seen from fig. 3.1.2 (bottom right panel).

3.G.2 Vectors: τ emission
The three relevant amplitudes are repeated here again

Mstep
τ,L = −igϵµτ2(p+ q)µ

(
1

∆pr
+ rτ,k

∆p + tτ,k
−∆p̃r

)
,

Mstep
τ,R = −ig

√
kz

k̃z
ϵµτ2(p+ q)µ

[
k̃z

kz
tk
∆p − 1

∆p̃ + rk
∆p̃r

]
,

Mwkb
τ = −igϵµτ2(p+ q)µ

(
1

∆pr
+ 1

−∆p̃

)
.

(3.253)

For τ polarisation we can treat both types of transitions of interest at the same time by
interpreting the m, m̃ correctly.

3.G.3 m ̸= 0 asymptotic p0 regime
We present now the dominant contribution Mstep

τ,L in detail 22. The amplitude squared is

∣∣∣Mstep
τ,L

∣∣∣2 = 16g2k2
zk

2
⊥p

2
0

(k2
z +m2)(k2

z − (pz − qz)2)2


∆m2

∆m2−k2
z+(pz−qz)2 , kz < ∆m

(kz−k̃z)2

(k̃z+pz−qz)2 , kz > ∆m
, (3.254)

22Similar asymptotic expressions can be derived for all contributions but we do not believe it useful to
fill the chapter with multiple complicated formulae. We deem the total fitted formulae in the main text
of more practical use given the overall uncertainties in the physics of FOPTs in the early Universe.
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where, as usual, we make a distinction between two branches distinguished by k̃ being
imaginary or real. We can explicitly evaluate the leading term in the large p0 expansion
eq. (3.241) for the total momentum exchanged. We report only the first, dominant, branch

⟨∆pτ,step
L ⟩ −→ g2m̃

8π2 F
step
τ,L (r ≡ m̃/m) , kz < ∆m branch , (3.255)

where the dimensionless function defined is

F step
τ,L (r) = 1

(r2 − 1)
{
2
(
π(1 + r)2 − (1 + r2) csc−1[r]

)
ln[r −

√
r2 − 1] − 2 tan−1[

√
r2 − 1]

− 4(1 + r)2
(
G− ℑLi2

[
i(r +

√
r2 − 1)

])
− 2(r2 − 1)(r − 1 +

√
r2 − 1) + 2πr cosh−1[r]

−r2
(

8
√
r2 − 1 coth−1

[
1 − 2r√

r2 − 1

]
+ tan−1[

√
r2 − 1](4

√
r2 − 1 + 4 log[r] − 2)

)}
.

G ≈ 0.916 is Catalan’s constant and ℑ stands for imaginary part. We caution the reader
that, while the analytical evaluation of integrals is a fun endeavour, we believe that, at
least at the present time, the numerical fits presented in the main text are more useful.

3.G.4 The m → 0 regime
The inter-relativistic regime of growth ∝ log (p0) discussed in the main text whenm/mψ ≪
1 can be found analytically by simply setting m = 0, keeping mψ ̸= 0, and using the
collinear expansion eq. (3.242) to evaluate the phase space integrals. We obtain

⟨∆pτ,step
L ⟩ ≃ g2m̃

2π2

(
1 + 2 ln

(
p0

mψ

))
, (3.256)

⟨∆pτ,step
R ⟩ ≃ g2m̃

1800π2

[
526 − 900G− 195π + 480 ln

(√
2p0

mψ

)]

+g
2m̃2Lw
8π2

[
3 − 2 ln

(
m̃Lwp0

mψ

)]
+ O

(
(m̃L)2

)
, (3.257)

⟨∆pτ,wkb
R ⟩ ≃ g2m̃2Lw

8π2

[
2 ln

(
m̃Lwp0

mψ

)
− 3

]
, (3.258)

where G ≈ 0.916 is Catalan’s constant. The total contribution is dominated by L emission
and then scales like

⟨∆pτ, tot⟩ ≃ ⟨∆pτ, step
L ⟩ ≃ g2m̃

2π2

(
1 + 2 ln

(
p0

mψ

))
. (3.259)

We remind the reader that these are the results for the single vector emission, to the
expression above cannot be trusted for the large values of the log.

3.G.5 Vectors: λ emission
We report again the relevant amplitudes here with general v ̸= 0 :

Mstep
λ,L = −i g

E
(pz + qz)

[
gv

(
1

∆pr
+ rλk

∆p

)
− gṽ

tλk
∆p̃r

]
, (3.260)

Mstep
λ,R = −i g

E
(pz + qz)

√
kz

k̃z

[
gv
k̃z

kz
tλk
∆p − gṽ

(
1

∆p̃ − rλk
∆p̃r

)]
, (3.261)

Mwkb red.
λ = −i g

E
(pz + qz)

[
gv

∆p − gṽ

∆p̃

]
. (3.262)
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Figure 3.G.1: Analytically derived exact formulae for the exchanged momentum in the
asymptotic limit p0 → ∞ from the emission of λ polarisations. Dashed lines correspond
to the small m̃Lw approximations reported in eq. (3.263). The sum of the two different
contributions is roughly constant.

Unlike the case of τ we must consider the two transitions of interest separately.

Symmetric to Broken (v = 0): The symmetric side mass of the λ degree of freedom
is mh,s − the mass of the Higgs in that phase. We find however that taking mh,s = 0
incurs an error which is at most ∼ 10% when mh,s ∼ few × m̃. One can rigorously prove
that in the limit p0 → ∞ we have

⟨∆pλ,step
R ⟩ −→ g4ṽ2

8π2m̃
F step
λ,R (m̃Lw) (3.263)

= g4ṽ2

8π2m̃
[2 + 4G− π + m̃Lw (2 ln(m̃Lw) − 2 ln(2) − 1)] + O

(
(m̃Lw)3

)
,

⟨∆pλ,wkb
R ⟩ −→ g4ṽ2

8π2m̃

tan−1

 m̃Lw√
1 − m̃2L2

w

− m̃Lw ln
(

1 −
√

1 − m̃2L2
w

) , (3.264)

where G ≈ 0.916 is Catalan’s constant. F step
λ,R has a closed form in terms of (hyperbolic)

trig functions and the dilogarithm, but we have deemed it more useful to explicitly report
only its small m̃Lw limit - an excellent approximation, as can be seen in fig. 3.G.1. There
we also see that the sum of the two contributions is roughly constant, giving

⟨∆pλ,total⟩ ≈ ⟨∆pλ,step
R ⟩ + ⟨∆pλ,wkb

R ⟩ ≃ g4v2

8π2m̃
[2 + 4G− π − m̃Lw ln(2)] , (3.265)

to leading orders in m̃Lw. A more accurate expression when m̃Lw ∼ 1 is eq. (3.264).

3.H Pressure in the EW phase transition
In this work, we computed the pressure in the context of an Abelian toy model, where
the U(1) gauge boson was emitted by a complex scalar. Emission from fermions will
not significantly change our result per degree of freedom. Moreover, the emission can be
straightforwardly expanded to the non-Abelian case.
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For the SM case, the pressure at 1 → 2 level originates from the vertices inducing
ψ → Zψ (where the first particle in the final state is soft and ψ is some fermion of the
SM), ψ → W±ψ for the gauge bosons emitted from fermions H → W±H, H → ZH for
the gauge bosons emitted from the Higgs and A → WW,W → WA, Z → WW,W →
WZ,W → ZW for gauge bosons emitting gauge bosons. The careful counting of all the
processes involved in the pressure was presented in Appendix C of [1]. This leads to a
final pressure of the form

PSM,1→2 ≈157 × αemMZ
4γwζ(3)T 3

π

[
0.135 log

(
ṽ

T
+ 2.26

)

− 0.085 − 0.2
log

(
ṽ
T

+ 2.26
)

ṽ/T
+ 0.19
ṽ/T

]
, (3.266)

where every contribution is normalised to the fine structure constant αem and the Z
boson mass MZ in the broken phase. We caution the reader that this expression is still
an estimate and may incur future revision, for example, from a better understanding of
finite temperature corrections - see section 3.3.2.

3.I Sensitivity to wall width
In this work we separated the phase space of particles according to when the step wall
and WKB approximations are justified

• kz < L−1
w , Step wall

• kz > L−1
w , WKB

where Lw is the width of the wall. However, this is a somewhat arbitrary quantity,
significant up to some order 1 factor. Although we have discussed the sensitivity of our
results to Lw in several places, we summarise it in this dedicated appendix.

We study numerically how pressure changes with wall width. For scalars, the domi-
nant contribution comes from the WKB regime and dependence on Lw vanishes, as can
be seen in explicitly by the analytical formulae eqs. (3.50) and (3.251). The results for
vector emission are highlighted in fig. 3.I.1. The left and right columns show left and
right mover emission respectively, while top and lower panels correspond to τ and λ po-
larisations. The first thing to notice is that ⟨∆pτ, step

L ⟩, which is the dominant contribution
for super-cooled symmetric to broken transitions is largely insensitive to Lw. Secondly,
⟨∆pλ, step

R ⟩ and ⟨∆pλ,wkb
R ⟩ show almost linear dependence around Lw ∼ few m̃ but their

sum is largely constant. This point was made also in fig. 3.G.1 using analytical asymptotic
formulae. Instead, ⟨∆pλ, step

L ⟩, which exists only in broken to broken transitions is linearly
dependent on the cut-off (see eq. (3.141)).

3.J The suppressed region ∆pzLw ≫ 1: the Fourier
constraint

In section 3.1.6 and afterward, we stated that in WKB approximation the region ∆pzLw ≫
1 should have a very suppressed contribution to the pressure. In this appendix, we bring
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Figure 3.I.1: Dependence of various contributions to average momentum transfer, due
to the emission of a vector boson, on the inverse wall width L−1

w in the limit p0 → ∞.
Top (Bottom) panels refer to τ (λ) emission, while left (right) column refers to L (R)
emission. In this limit, any dependence on the mass of the emitter (mψ) vanishes.
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some arguments to this claim (see also Appendix B.1 of [96] and Section V of [95] for
previous discussion). The function that we have to study is typically the following integral

M ≈
∫ ∞

−∞
dzV (z)ei

∫ z
−∞ ∆pz(z′)dz′

, (3.267)

where far from the wall both ∆p(z) and V (z) are constant. In this case, we can always
absorb V (z) = V0 exp[

∫ z
0 (V ′/V )dz] inside the exponent (redefining ∆p) and thus we can

focus only on the integrals where V (z) = V0

M ≈ V0

∫ ∞

−∞
dzei

∫ z
0 ∆pz(z′)dz′

. (3.268)

In general, these integrals must be evaluated numerically for various wall shapes. However,
for particular choices like

∆pz(z) = ∆pz + ϵ

2 tanh z/Lw, (3.269)

we can evaluate the integrals analytically. In eq. (3.269), ϵ parameterises the change of
the phase across the wall. This leads to

M = V0

∫ ∞

−∞
dz exp [i∆pzz + iϵf(z)] ,

(3.270)

f(z) = Lw
2 log cosh z

Lw
, (3.271)

and give finally

|M|2 = πϵLw|V0|2

2∆p2
z − ϵ2/2 × sinh (πϵLw/2)

sinh (π(∆pz − ϵ/2)Lw/2) sinh (π(∆pz + ϵ/2)Lw/2)
(3.272)

≈ πϵLw|V0|2

2∆p2
z

× sinh (πϵLw/2)
sinh2 (π∆pzLw/2)

. (3.273)

For ϵLw ≲ 1,∆pzLw ≫ 1, we obtain

|M|2 ≈ πϵLw|V0|2

4∆p2
z

× πϵLwe
−π∆pzLw = (πϵLw)2|V0|2

4∆p2
z

× e−π∆pzLw (3.274)

which shows that |M|2 ∝ e−π∆pzLw and then decay exponentially with ∆pzLw ≫ 1. We
have also checked numerically the behaviour of the amplitude for other wall shapes, with
a similar behaviour (for example Erf function) and always find exponential suppression.
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Chapter 4

NLO friction in symmetry–restoring
phase transitions

After nucleation, bubbles expand at relativistic speeds if unimpeded, with their veloc-
ity determined by the balance between the energy density difference and the out-of-
equilibrium pressure from surrounding matter. Bubbles can either reach an equilibrium
velocity where energy is efficiently transferred to the medium or continue accelerating in
a “runaway" scenario. The space of theories with this feature is a topic of recent and
ongoing research, as sketched in fig. 4.0.1.

In this chapter, we take a step forward in charting this space by studying the partic-
ular case of phase transitions (PT) where gauge symmetry is restored. This goes in the
opposite direction of most literature, which has focused rather on symmetry–breaking, for
obvious reasons. In the SM, electroweak and chiral symmetry are spontaneously broken
as the universe cools 1. Nonetheless, it is still possible for the Universe to be stuck in a
false vacuum of broken symmetry, as sketched in fig. 4.0.2, and transition to a deeper,
symmetric one. We discuss this further and study a simple, concrete two-field model in
section 4.D.

We start first by emphasising why the dynamics of such transitions are potentially
interesting, or at least deserving of some consideration. We take symmetry–restoring PTs
as the prime example of more general transitions where particles lose mass as they cross
the bubble wall. This is true by definition for gauge bosons (and typically fermions in the
theory as well). If the bubble expands into the broken phase at highly relativistic speeds,
we can think of it interacting with individual particles. In the frame of the wall, those
particles are highly boosted and by simple kinematics each degree of freedom (d.o.f.) i
leads to a negative momentum transfer to the wall

∆pi = pzi − p̃zi ≈ −m2
i

2pzi
, (4.1)

where pµ,mi are the incoming particle’s 4−momentum and mass in the old (broken)
phase, while a tilde will always denote a quantity in the new (symmetric) phase. We
have in mind mi = gv or yv where v is the symmetry–breaking vev on the broken side,
g is the gauge coupling and y is a Yukawa coupling. Multiplying by the incoming flux
(assuming a thermal population at temperature T ) gives the Bödeker-Moore result [94]

1To be precise, in the SM both transitions are smooth cross-overs, made first order only by the addition
of BSM ingredients.
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Figure 4.0.1: In the vast landscape of quantum field theories A, a subset B can undergo
vacuum decay and first order phase transitions. Within B we can distinguish between
phase transitions where nucleated bubbles can in principle accelerate forever, and that
subset C where instead an equilibrium velocity always exists because friction from sur-
rounding matter grows indefinitely with γ. The exact boundaries of C within B are a topic
of ongoing research. The current work extends C to include gauge symmetry–restoring
transitions with charged currents. Clearly, we have not attempted to draw the relative
sizes of A, B and C to scale.

for relativistic pressure at leading order 2

PLO ∼ −m2
iT

2 , (4.2)

indicating a preference towards continued accelerated expansion of bubbles. This suggests
that the phenomenology of these ‘inverse’ PTs can be quite different and the strength of
signals potentially enhanced. It is thus necessary to examine whether there are other
effects, in the relativistic regime, that counter (or reinforce) this dynamic.

In this chapter, we focus on friction pressure coming from the soft vector emission
from a charged current, as it passes from a broken to a symmetric phase, as sketched
later in fig. 4.0.3. It is ‘NLO’ in the sense that it is a 1 → 2 process involving an
interaction vertex (proportional to the gauge coupling g). For the more commonly studied
symmetry–breaking PTs, the analogous process (emission from a charged current going
from symmetric to broken phase) leads to [2, 95, 96, 115]

PNLO ∝ g3vγwT
3 . (symmetric → broken) (4.3)

The growth with γw means that in those PTs, this contribution eventually dominates
over 1 → 1 processes in the highly relativistic limit. Clearly, it is, therefore, crucial to
understand these effects also in the symmetry–restoring case.

For concreteness, we will be considering an Abelian Higgs model, with a complex
scalarH charged under a gauged U(1) that is restored in the true vacuum. The Lagrangian
is

L = −1
4FµνF

µν + |DµH|2 − V
(√

2|H|
)

+ gJµ(ψ)Aµ + . . . , (4.4)

where ⟨|H|⟩ = 0 in the true vacuum and ⟨|H|⟩ ̸= 0 in the false vacuum, for some Tnuc
and where Dµ ≡ (∂µ + igAµ), Aµ is the gauge field, V is a potential for H, and Jµ is
a charged current made of fermionic or (complex) scalar matter ψ, minimally coupled 3.

2We are ignoring numerical coefficients in front, made precise by eq. (4.94).
3Finally, the dots in eq. (4.4) will be completely irrelevant for us, but are there to allow for possible

other d.o.f.s contributing to the realisation of an effective (in general finite-T ) potential drawn in fig. 4.0.2.
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Figure 4.0.2: In this chapter we focus on friction effects on nucleated bubbles of restored
gauge symmetry expanding into a surrounding false vacuum of broken symmetry. The
effective potential for the order parameter h is thus of the form sketched, for some Tnuc.

We will study friction effects involving all single quantum emissions resulting from the
coupling ∝ JµAµ. In the main text, we will eventually take the mass of this charged d.o.f.
to be constant mψ(z) = mψ, ignoring any (Yukawa-like) interaction it might have with
the Higgs field, and moreover will set it to zero (a good approximation in the relativistic
limit of interest). We comment on the absence of apparent soft divergences for this choice
in section 4.A, which is in contrast to the symmetry–breaking case above. In section 4.B
we argue that the effects of a spatially dependent mψ(z) are subleading.

This chapter is organised as follows. In section 4.1 we present the setup of our
calculation and review the canonical quantisation of the vector field in a background of
broken translations [2], for a completely general wall profile. In section 4.2 we describe
our strategy of using the step wall and WKB approximations in their respective, to some
extent complementary, regimes of validity, without committing to a specific theory. The
reader who is not interested in the many details of calculation can safely skip ahead to
section 4.3, where we present our results, and more importantly to the final discussion
in section 4.4. In section 4.C we discuss more generally about the possibility of negative
friction.

4.1 Theoretical setup
We imagine that a bubble of true vacuum ⟨|H|⟩ = 0 is nucleated and expands to a large
(compared to its initial) radius. Since we will be interested in the local physics of medium
particles interacting with the bubble wall, we will from now on consider the planar limit of
a one dimensional domain wall ⟨|H|⟩ = v(z)/

√
2 interpolating between the true vacuum

at z → ∞ and false vacuum ⟨|H|⟩ = v = const at z → −∞. Moreover, since we are taking
v(z) to be time-independent and using the Minkowski spacetime metric, we are therefore
working in an assumed inertial rest frame of the wall. This will be self-consistent when
the bubble reaches equilibrium and travels at constant speed 4. The setup (as well as the

4More generally, it will be also if the timescale of the process on the wall we are interested in is short
enough that an instantaneous rest frame can be assumed.
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Figure 4.0.3: Our domain wall (in blue) describing the Higgs’ vev ⟨h⟩ = v(z) is centred
at z = 0 in its rest frame, interpolating between a false vacuum phase of broken gauge
symmetry and a true vacuum phase of restored symmetry. Highly relativistic medium
particles hit the wall from the left and can undergo many z−momentum violating pro-
cesses. In this work, we focus on a charged current crossing the wall while emitting a
single quantum through the minimal coupling interaction in eq. (4.4). Asymptotically,
the emitted particle can be a transverse gauge boson or a Higgs/Goldstone degree of
freedom if emitting to the right, or any of the three polarisations of the corresponding
massive vector if emitting to the left. Globally, the emitted degrees of freedom are best
described by so-called τ and λ polarisations, as presented in section 4.1.1. We use a tilde
to denote quantities in the new phase.

process we wish to calculate) is summarised in fig. 4.0.3.
Expanding H = (v(z) + h+ i h2) /

√
2 in eq. (4.4) gives us a theory of perturbative

quantum fields in the background of the domain wall. To calculate particle processes
in this spatially dependent background, we start by properly defining and canonically
quantising the free theory. We will now state and explain the key features, while for
more details we refer the reader to [2]. The impatient or busy reader may skip directly to
section 4.1.3 for a succinct summary.

4.1.1 Unitary gauge and ‘wall’ polarisations:
In this section, we aim to provide a concise summary of the construction of ‘wall’ polari-
sations, which was detailed in the previous chapter, and to introduce the differences with
respect to the previous analysis. This summary is intended to remind the reader of the
essential components needed for the computations presented in the following sections, but
can be skipped by going directly to the end of section 4.1.3.
Despite the fact that the theory approaches the symmetric phase asymptotically on one
side, we can make use of unitary gauge [2, 116]. The equations of motion (e.o.m.) of the
quadratic action are then

∂2h = −V ′′(v(z))h , (4.5)
∂νF

µν = g2v2(z)Aµ , =⇒ ∂µ
(
v(z)2Aµ

)
= 0 . (4.6)

The first will describe particle excitations of the Higgs h with mass mh,s ≡ V ′′(0) and
mh,b ≡ V ′′(v) on the symmetric and broken sides respectively 5. In this work we will only
need to focus on the second - spatially dependent - Proca equation, which implies the

5As well as two discrete modes describing fluctuations in position and shape of the wall, see for example
[205].
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generalised Lorenz condition in eq. (4.6). The excitations of Aµ will describe three massive
vector d.o.f.s deep in the broken phase, while only two (transverse) polarisations deep in
the symmetric phase, as well as the second Higgs d.o.f. h2. Since time and x⃗⊥ = (x, y)
translations remain symmetries of the theory, we can seek solutions to the quadratic e.o.m.
that are eigenmodes of energy k0 and transverse (w.r.t. the wall) momentum k⃗⊥

Aµk = e−i(k0t−k⃗⊥x⃗⊥) ζµk (z) . (4.7)

Using rotational symmetry around the z−axis we will always focus on

k⃗⊥ = (k⊥, 0) , with k⊥ > 0 , (4.8)

unless otherwise stated. The z−dependence of the background leads to a non-trivial part
of the mode functions ζµ(z), which are not eigenmodes of z−momentum. Nonetheless one
can choose boundary conditions such that ζµ(z) describes the mode of choice asymptoti-
cally far away from the wall, with the full function everywhere else determined by solving
the e.o.m..

A further complication in the presence of a spatially-dependent vector mass is that
conventional transverse and longitudinal polarisations are in general not the best d.o.f.s
to use. This is because the conventional spin angular momentum is associated with
rotations around a particle’s direction of propagation, for example, k⃗ = (k⃗⊥, k

z) for a
particle incoming from z → −∞. The presence of the domain wall background at z = 0
means that only rotations around the z−axis remain a symmetry, which implies that spin
is not conserved unless the particle is exactly incident on the wall k⃗⊥ = 0. Physically this
means, for example, that an incoming particle with conventional transverse polarisation
has a finite amplitude to reflect a longitudinally polarised vector 6.

The appropriate, mutually orthogonal d.o.f.s in the presence of a wall were first
pointed out in [116]. We call them τ (of which there are two) and λ ‘wall’ polarisa-
tions. The latter are easily obtained by setting Azτ = 0, which leads to ∂µA

µ
τ = 0 and

(∂2 + g2v(z)2)Aµτ = 0, while the former have the orthogonal form Aµλ = (∂nα(z), Az), with
n = t, x, y, where α(x) is fixed in terms of Az through the generalised Lorenz constraint
in eq. (4.6). The ζµℓ=τ1,τ2,λ(z) can be constructed from scalar functions τi=1,2(z) and λ(z)
as follows

ζµτi = ϵµτi τi(z), where ϵµτ1 = (0, 0, 1, 0) , ϵµτ2 = (k⊥, k0, 0, 0)/
√
k2

0 − k2
⊥ , (4.9)

ζµλ =
(

−ikn∂z(v(z)λ)
gEv2(z) ,

E

gv(z)λ
)

on shell= ∂̄µ
(
∂z(v(z)λ)
Eg v2(z)

)
+ gv(z)

E
λ δµz , (4.10)

with E2 ≡ k2
0 − k2

⊥ ,≡ ∂̄µ ≡ (−ikn, ∂z) ,

where the scalars satisfy corresponding Schrodinger-like wave equations that can be de-
rived from eq. (4.6): (

E2 + ∂2
z − g2v2(z)

)
τ1,2 = 0 , (4.11)(

E2 + ∂2
z − Uλ(z)

)
λ = 0 . (4.12)

The potential for τ modes is simply a changing vector mass. On the other hand, λ has a
non-trivial effective potential

Uλ(z) = g2v2(z) − v(z) ∂z
(
∂zv(z)
v2(z)

)
→

g2v2 , as z → −∞
m2
h,s , as z → +∞

, (4.13)

6Since the full theory eq. (4.4) is invariant under the full Lorentz group, the angular momentum lost
is in reality of course absorbed by the wall.
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which exhibits the expected asymptotic behaviour describing a propagating vector in the
broken phase and a Higgs particle in the symmetric phase. The limits in the last step
are true for any interpolating solution v(z) satisfying ∂2

zv(z) = V ′ (v(z)) for arbitrary
potential with minima at v and 0 [2].

Orthonormal basis: Having identified the appropriate d.o.f.s and reduced the equa-
tions of motion to Schrodinger-like form, we must choose a convenient complete basis of
solutions to expand in and eventually quantise. In this work, we will only be interested in
processes with particles described by Aµ in the final state. We therefore choose boundary
conditions corresponding to outgoing particles moving towards the right (R) and left (L)
respectively

ϕout
ℓ,R,k(z) −→

√
kz

k̃z

tλR,ke−ikzz , as z → −∞
e−ik̃zz + rλR,ke

ik̃zz , as z → +∞
, (k̃z > 0) (4.14)

ϕout
ℓ,L,k(z) −→

eik
zz + rℓL,ke

−ikzz , as z → −∞
tℓL,k e

ik̃zz , as z → +∞
, (kz > 0) (4.15)

with k0 =
√
k2
z + k2

⊥ +m2
ℓ =

√
k̃2
z + k2

⊥ + m̃2
ℓ (4.16)

where ϕℓ ≡ (τ1(z), τ2(z), λ(z)), the rk, tk coefficients are fixed by solving the equations of
motion, and the factor in front of eq. (4.14) is for normalisation. The general orthonor-
mality condition is∫ ∞

−∞
dz ϕℓ,I,k ϕ

∗
ℓ,J,q = 2πδIJδ(kz − qz) , I, J ∈ {R,L} . (4.17)

While the solutions eqs. (4.14) and (4.15) are not eigenstates of z−momentum, wavepack-
ets formed by the superposition of purely R or L movers do describe localised single wave-
modes at late time with definite positive or negative central z−momentum respectively
7. At finite z the behaviour of the solutions will of course depend on the details of the
shape of v(z). Before moving on we will consider the simple, exactly solvable case of a
step function.

4.1.2 Step function
In this approximation we consider

v(z) = v [1 − Θ(z)] , (4.18)

where Θ(z) is the Heaviside theta function. The wavemodes are exactly solvable and
determined by the appropriate matching conditions at z = 0. For the two τ polarisations,
these are simply the continuity of the function and its first derivative, leading to

(
τ outi,R,k

)∗
=
√
kz

k̃z


k̃z

kz
tτk e

ikzz , z < 0
eik̃

zz − rτke
−ik̃zz , z > 0

, (k̃z > 0) (4.19)

(
τ outi,L,k

)∗
=

e−ikzz + rτke
ikzz , z < 0

tτk e
−ik̃zz , z > 0

, (kz > 0) (4.20)

7At early times instead they describe two separate wavemodes incoming towards the wall which inter-
fere in just the right way to describe a well–defined particle at late time.
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where

rτk = kz − k̃z

kz + k̃z
, tτk = 2kz

kz + k̃z
, k0 =

√
k2
z + g2v2 + k2

⊥ =
√
k̃2
z + k2

⊥ .

The orthonormality condition eq. (4.17) can be checked exactly.
For λ, the step function limit is more tricky since on one side ṽ = v(z > 0) = 0.

However, we can obtain the right answer by starting from a broken to broken transition
ṽ ̸= 0, as first studied in [79], and then sending ṽ → 0 subsequently. The matching
conditions are continuity of v(z)λ(z) and λ′(z)/v(z) at z = 0, leading to

(
λout
R,k

)∗
=
√
kz

k̃z


k̃z

kz
tλke

−ikzz , z < 0
e−ik̃zz − rλke

ik̃zz , z > 0
, (k̃z > 0) (4.21)

(
λout
L,k

)∗
=

eik
zz + rλke

−ikzz , z < 0
tλk e

ik̃zz , z > 0
, (kz > 0) (4.22)

and

rλk = ṽ2kz − v2k̃z

ṽ2kz + v2k̃z
, tλk = 2kzvṽ

ṽ2kz + v2k̃z
, k0 =

√
k2
z +m2

λ + k2
⊥ =

√
k̃2
z + m̃2

λ + k2
⊥ ,

where mλ = gv, and m̃λ = gṽ for ṽ ̸= 0 must be discontinuously changed to m̃λ = mh,s

in the case ṽ = 0. Note

rλk → −1 , for ṽ → 0 . (4.23)

Thus, as long as the step wall is a good approximation, λ modes are totally reflected:
R and L movers live completely on opposite sides of the symmetry–breaking wall. If we
regularised eq. (4.18) with something like v(z) = v (1 − tanh(mhz/2)) /2, which comes
from the standard double-well quartic potential V (h) = λhh

2(h − v)2/4 studied in [116],
then the total reflection is trivial. The width of the wall is controlled by the mass of
the Higgs Lw ≈ m−1

h and particles with kz ≲ L−1
w , for which the step function is a

good approximation, do not have enough energy to make it to the other side. However,
we stress that even for wall profiles with mh → 0 the reflective behaviour remains. A
better interpretation of eq. (4.23) is that λ describes the would-be Nambu-Goldstone
boson, that interacts derivatively with the background wall, as seen for example by the
derivative terms in the potential Uλ(z) in eq. (4.13).

4.1.3 Amplitudes and exchanged momentum
We choose to expand the field Aµ into a complete orthonormal basis of solutions to the
quadratic equations of motion that are eigenmodes of energy k0, transverse momentum
k⃗⊥ and describe outgoing particles of definite z−momentum,

Aµ =
∑
I,ℓ

∫ d3k

(2π)3
√

2k0

(
aout
ℓ,I,k A

µ
ℓ,I,k + h.c.

)
,

with Aµℓ,I,k = e−i(k0t−k⃗⊥x⃗) ζµℓ,I,k(z) ,
(4.24)

where ℓ = τ1, τ2, λ sums over the three different orthogonal ‘wall’ polarisations, and I =
R,L stand for right (z → +∞) and left (z → −∞) moving particles. In practice the
ζℓ,I,k are constructed by solving the Shrödinger equations eqs. (4.11) and (4.12) with
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boundary conditions of eqs. (4.14) and (4.15) (the latter defining the ‘out’ choice) and
finally plugging the solutions into eqs. (4.9) and (4.10). Upon quantisation, the associated
Fourier operators create out states∣∣∣kout

ℓ,I

〉
≡
√

2k0 (aout
ℓ,I,k)† |0⟩ , I ∈ R,L & ℓ ∈ τ1, τ2, λ . (4.25)

and satisfy the usual creation/annihilation operator algebra. Wick’s theorem follows
from this as usual and one may go ahead and compute amplitudes for arbitrary particle
processes of interest in the background of the wall.

We will be focusing on the relatively simple single emission from the minimally cou-
pled charged current Jµ in eq. (4.4). The tree level amplitude for this process is given by
the following expression

⟨kout
ℓ,I q| S |p⟩ = (2π)3δ(3)(pn − kn − qn)iMℓ,I ,

iMℓ,I ≡
∫
dz
(
ζµℓ,I,k(z)

)∗
(p+ q)µei(p

z−qz)z , (4.26)

where S = exp (i
∫
d4x gAµJ

µ) is the S−matrix and Right and Left mover emission are
to be treated as separate processes. We emphasise that for a conserved current Jµ, which
is the case we will focus on in this work, we can ignore the first term in eq. (4.10) since
it is a total derivative. The total average momentum transfer is then given by summing
over polarisations, as well as right and left contributions,

⟨∆p⟩ =
∑
ℓ,I

⟨∆pℓI⟩ =
∑
ℓ

⟨∆pℓR⟩ + ⟨∆pℓL⟩ , (4.27)

and integrating appropriately over all final state phase space, giving the following master
equations:

⟨∆pℓL⟩ = 1
64π2

∫ kzmax

0
dkz

∫ k2
⊥,max

0
dk2

⊥ · |Mℓ,L|2

k0pzqz
∆pL , (4.28)

⟨∆pℓR⟩ = 1
64π2

∫ k̃zmax

0
dk̃z

∫ k2
⊥,max

0
dk2

⊥ · |M̃ℓ,R|2

k0pzqz
∆pR , (4.29)

and ∆pL = pz − qz + kz , ∆pR = pz − qz − k̃z ,

where k̃zmax , k
2
⊥,max are defined below, and we naturally choose to integrate in kz for left

emission and k̃z for right emission, since the lower kinematic limit is zero no matter the
hierarchy between mℓ and m̃ℓ. The form of eq. (4.28) follows straightforwardly from our
choice to second quantise and normalise modes of Aµ in the kz variable (see eq. (4.17)).
The reader can find an explicit derivation in terms of wave-packets in [2]. There, for
the case of symmetry–breaking, all particles were gaining mass in the new phase and we
also integrated eq. (4.29) in kz, with a lower limit. On the other hand, for a symmetry–
restoring transition, kz takes on imaginary values for very soft τ emission to the right
8, so that k̃z is necessarily the better variable. Changing quantisation variable will only
change the normalisation of the wavemodes, which translates into

M → M̃ ≡

√
k̃z

kz
M , (4.30)

8For λ emission, which of kz , k̃z have an imaginary branch depends on the relative sizes of mλ = gv
and m̃λ = mh,s.
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and thus in the final state phase space integration

dkz|M2| → dk̃z|M̃2| ≡ dk̃z
∣∣∣∣∣ k̃zkz

∣∣∣∣∣ |M2| . (4.31)

The upper limits of integration are in general given by

kzmax =
√

(p0 − m̃ψ)2 −m2
ℓ , k̃zmax =

√
(kzmax)2 +m2

ℓ − m̃2
ℓ ,

k2
⊥,max =

(p2
0 + E2 − m̃2

ψ)2

4p2
0

− E2 ,
(4.32)

where one chooses to write E2 ≡ k2
0 − k2

⊥ in terms of k2
z + m2

ℓ or k̃2
z + m̃2

ℓ for left and
right emission respectively. For gauge symmetry–restoration we have of course m̃τ = 0.
In the main text we will also take the charged current to be massless mψ = m̃ψ = 0 and
comment on the insensitivity of our results thereon.

If one is powerful enough to compute the exact wavemodes for a given wall profile, the
exact amplitude and average momentum transfer for transition radiation can be calculated
using the expressions provided here. However, we will now explain our strategy to obtain
approximate expressions, ignoring details of the wall shape.

4.2 Approximations in phase space
The main difficulty in calculating amplitudes and then ultimately ⟨∆p⟩ in the previous
section is the computation of the ζµ(z) wavemodes for a given wall profile v(z). We could
in principle simply try to use a step function. Not only is this a good theoretical exercise,
but it is also a legitimate approximation for soft vectors. However, one should not over-
rely on it. Properties of the λ field, in particular, can be qualitatively quite different in the
exact step function limit, such as the enhanced reflection, as studied already in [79] and
then [2]. In practice we will then follow the procedure described in [2], where phase space
was split into two regions: IR, where the step wall approximation is legitimately valid
and UV, where instead the wave function of the vector bosons can be treated in a WKB
approximation. Here, relative to the previous chapter, because of the symmetry–restoring
pattern, we identify a more coherent approach to partitioning the phase space into its IR
and ultraviolet UV components in order to capture the physics in both limits of thin and
thick walls. Instead of using the cutoff kz ≷ L−1

w , we will present this alternative method
in the remainder of this section. We also verified that this more careful prescription does
not change the result in the previous chapter.

4.2.1 Wavemodes

We now examine exactly when the step wall and WKB approximations are legitimate.
The conditions will end up being slightly more refined than the simple cut used in [2]. We
recall one more time the asymptotic masses for both τ, λ polarisations, defining m ≡ gv :

(τ) :

mτ (z = +∞) = 0
mτ (z = −∞) = m

, (λ) :

mλ(z = +∞) = mh,s

mλ(z = −∞) = m
. (4.33)
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Step function limit (IR): The background wall can be well approximated by a step
function for wavemodes which change on scales longer than those of the background. This
should be expected for particles with momenta much less than the inverse width of the
wall

step : Max
[
|kz| , |k̃z|

]
≪ L−1

w . (4.34)

The absolute value is necessary, since for example for τ polarisation there is a phase space
region where

k2
z = E2 −m2 < 0 , E2 ≡ k2

0 − k2
⊥ = k̃2

z > 0 . (4.35)

In other words, even if the mode is decaying for z < 0 as an exp(−|kzz|), step wall
approximation is valid only if L−1

w ≪ |kz|. This constraint, when implemented in the
integration limits, will in general cut both the extrema of integration.

WKB limit (UV): We now analyse the range of validity of the WKB approximation.
In general, we are looking at the solutions of the Shrödinger-like equation:

(
∂2
z − V (z)

)
ψ = −E2ψ,

V (z) = g2v2(z) for τ polarisations (see eq. (4.11))
V (z) = Uλ(z) for λ polarisations (see eq. (4.12))

.

(4.36)

We look for a solution of the form ψ = eiφ(z), which leads to
(
iφ′′(z) − φ′(z)2 − V (z)

)
= −E2 . (4.37)

Then assuming |φ′′| ≪ |φ′ 2|, |E2 − V (z)| , we arrive at:

φ′ 2 = E2 −m2(z) ≡ k2
z(s) =⇒ φ(z) − φ(z0) =

∫ z

z0
ds kz(s) . (4.38)

The wave function solution becomes:

ψ = A e
i
∫ z
z0
ds k(s) + O

(
|φ′′|
|φ′2|

)
. (4.39)

This approximation is valid if

|φ′′| ≪ |φ′ 2| =⇒ |k′
z(z)| ≪ |k2

z(z)| =⇒ |∂zV (z)|
2|kz(z)|

≪ |k2
z(z)| . (4.40)

We approximate the derivative of the potential as ∂zV (z) ∼ ∆m2/Lw, then we arrive at
the following constraint:

Min
[
|kz| , |k̃z|

]
≫
(

|∆m2|
2Lw

)1/3

. (4.41)
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4.2.2 Amplitudes
Having defined the two complementary approximations for the wavemodes ζµ(z), one can
attempt to evaluate the amplitudes eq. (4.26), which will then be valid in the correspond-
ing regimes. This is completely straightforward for the case of the step function and
exact expressions are presented below in eq. (4.44). For WKB, the matrix element for R
emission is

iMwkb
ℓ =

∫
dz V(z)ei

∫ z
0 ds∆pz(s) ,

with V(z) ≡ ϵµℓ,k(z) (p+ q)µ , ∆pz(s) ≡ (pz − qz − kz(s)) ,
(4.42)

where the constant ϵµτ1,2,k were given in eq. (4.9), and we just take ϵµλ,k(z) = δµz gv(z)/E
using current conservation to ignore the total derivative in eq. (4.10). We can then reduce
Mwkb

ℓ to the form first explored by [95]

iMwkb red.
ℓ ≡

∫ 0

−∞
dz V(−∞) ei(pz−qz−kz)z +

∫ ∞

0
dz V(∞) ei(pz−qz−k̃z)z , (4.43)

plus contributions which are dependent on the specific shape of the wall. These additional
contributions were shown to be important only if Mins [∆pz(s)]Lw ≫ 1, as long as for λ
emission we subtract the total derivative term in eq. (4.10) 9. However, in this regime the
full matrix element should vanish since we recover translation symmetry and the emission
process is forbidden (see [2] for details ). Ignoring the contribution inside the wall, it is
not always guaranteed that this suppression is properly captured. Thus, in practice, we
always complement eq. (4.43) by explicitly cutting out the region ∆pzLw ≫ 1 in the phase
space integration. Finally, we do not consider left emission in the WKB approximation
because there is no allowed phase space simultaneously satisfying all appropriate cuts.

For consistency of notations with [2] we report all amplitudes for the vector field
quantised in terms of the kz variable:

Mstep
τ,L = −igϵµτ2(p+ q)µ

(
1

∆pr
+ rτk

∆p − tτk
∆p̃r

)
,

Mstep
τ,R = −igϵµτ2(p+ q)µ

√
kz

k̃z

[
k̃z

kz
tτk
∆p − 1

∆p̃ + rτk
∆p̃r

]
,

Mwkb red.
τ = −igϵµτ2(p+ q)µ

(
1

∆p − 1
∆p̃

)
,

Mstep
λ,L = −ig

2v

E
(pz + qz)

[
1

∆pr
− 1

∆p

]
,

Mstep
λ,R = 0 ,

Mwkb red.
λ = −ig

2v

E
(pz + qz) 1

∆p ,

(4.44)

where we have ignored terms proportional to delta functions since they ultimately don’t
contribute, and

∆p ≡ pz − qz − kz , ∆pr ≡ ∆pL ≡ pz − qz + kz ,

∆p̃ ≡ ∆pR ≡ pz − qz − k̃z , ∆p̃r ≡ pz − qz + k̃z .
(4.45)

9If not, this piece will grow with energy and, ignoring the contribution inside the wall, one fails to see
the cancellation that must necessarily occur. For more general processes, one should check case by case.
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By τ here we mean τ2. Amplitudes for the emission of τ1 are zero. Because of rotational
symmetry around the z−axis we can focus on the choice eq. (4.8), which manifestly leads
to ϵµτ1(p+ q)µ = 0.

4.2.3 Numerical procedure
Strictly speaking, the conditions eqs. (4.34) and (4.41) tell us that the respective ap-
proximations are valid only when the values of momenta are much less/greater than the
corresponding thresholds. In practice in our calculation, we make the following approxi-
mation:

step : Max
[
|kz| , |k̃z|

]
< L−1

w . (4.46)

WKB :
Min

[
kz, k̃z

]
>

(
|∆m2

ℓ |
2Lw

)1/3
 ∩

(
Max

[
|kz| , |k̃z|

]
> L−1

w

)
. (4.47)

For the WKB approximation, we have added the second condition in order to avoid double
counting, since for thin walls (e.g. mL ≪ 1 for τ) there can be an overlap between the
phase space regions defined by eqs. (4.34) and (4.41). Instead, for thick walls we comment
that there can be a part of phase space not covered by our prescription, whenMin

[
kz, k̃z

]
<

(
|∆m2|
2Lw

)1/3
 ∩

(
Max

[
kz, k̃z

]
> L−1

w

)
. (4.48)

However, this extra contribution will never significantly change our results.
We gather now for convenience all of the separate contributions to the momentum

transfer in our calculation scheme:

⟨∆pstep
L ⟩ = 1

64π2

∫
dkzdk2

⊥ · |ML|2

pzqzk0
(pz − qz + kz) Θ(step) ,

⟨∆pstep
R ⟩ = 1

64π2

∫
dk̃zdk2

⊥ ·
∣∣∣∣∣ k̃zkz

∣∣∣∣∣ |MR|2

pzqzk0
(pz − qz − k̃z) Θ(step) ,

⟨∆pwkb⟩ = 1
64π2

∫
dk̃zdk2

⊥ ·
∣∣∣∣∣ k̃zkz

∣∣∣∣∣ |Mwkb red.|2

pzqzk0
(pz − qz − k̃z)

× Θ (WKB) Θ
(
L−1
w − (pz − qz − k̃z)

)
,

(4.49)

where the Θ(WKB) and Θ(step) are imposing the conditions in eqs. (4.46) and (4.47).
In the WKB contribution an additional Θ

(
L−1
w − (pz − qz − k̃z)

)
is imposed to enforce

that the momentum loss is always less than L−1
w , as expected from Fourier transformation

properties (see discussion below eq. (4.43), and [2] for more details). The integration
ranges are given by

k̃z ∈ [0 , p0 −mψ] & k2
⊥ ∈

[
0 ,

(p2
0 + k̃2

z −m2
ψ)2

4p2
0

− k̃2
z

]
,

kz ∈
[
0 ,
√

(p0 −mψ)2 −m2
]

& k2
⊥ ∈

[
0 ,

(p2
0 + k2

z +m2 −m2
ψ)2

4p2
0

− k2
z −m2

]
.

(4.50)

where, as mentioned before, we have taken mψ = m̃ψ to be constant, and moreover will
set it to zero since it does not affect our results in the relativistic regime.
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Figure 4.3.1: Average momentum transfer ⟨∆p⟩ from single emission by a charged par-
ticle with incoming energy p0 = pz, as it crosses the wall into the phase of restored gauge
symmetry. We show the breakdown of all contributions in our calculation scheme (see
section 4.2 for details): emission to the right (R) of low momentum modes (using the step
function approximation), plus large momentum modes (using the WKB approximation),
and emission to the left (L) of low momentum modes (step function). All are asymp-
totically constant, leading to friction on the wall that grows linearly with γw. We show
results for two different values of wall length mLw = g/

√
λh = 1/2, 10−3, in units fixed

by the broken phase gauge boson mass m ≡ gv = 1, described by solid and dotted lines
respectively. Left: emission of τ−polarisations. Only the WKB contribution changes
appreciably in the thin wall limit, decaying as expected. Right: emission of λ polarisa-
tions. R emission in the step limit does not exist. L emission depends linearly on L−1

w .
We also highlight the dependence of the WKB contribution on the mass of the Higgs in
the symmetric phase mh,s, showing the natural identification mh,s = L−1

w = v
√
λh (upper

two blue curves) as well as mh,s = 0 (lower two).

4.3 Results
In this section, we present our results for the average momentum transfer ⟨∆p⟩ from the
NLO process of single emission of τ and λ polarisations from a charged particle in eq. (4.4)
traversing the wall.

We break down all contributions as a function of incoming energy p0 in fig. 4.3.1,
where the main result is that ⟨∆p⟩ is constant and positive in the ultra-relativistic
limit, and thus will lead to a pressure growing with γw when multiplied by the in-
coming flux. In fig. 4.3.2, we explore in more detail the dependence of the constant
asymptotic values ⟨∆p⟩p0→∞ on details of the theory. For τ emission the only scales in
the problem (apart from p0) are m and Lw. Thus, by dimensional analysis, we have
⟨∆pτ ⟩p0→∞ = g3vfτ (mLw), for some function fτ . We turn this into a dependence on
couplings by defining L−1

w ≡
√
λh v, where λh will be a coupling related to the Higgs

potential. On the other hand, for λ there is also a mass on the symmetric side mh,s. In
most models, it is natural to identify mh,s ≈ L−1

w , which allows us to study λ emission
also as a function of mLw. We thus take as a primary benchmark

mLw = g√
λh

= m

mh,s

, (4.51)

but we comment on disentangling Lw and mh,s when this make a significant difference. We
also recall that we take the emitting charged particle to have constant mass mψ(z) = mψ
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Figure 4.3.2: Left: Momentum transfer in the asymptotic limit, conveniently nor-
malised, from τ and λ emission channels, and the total sum, as a function of the product
mLw, expressed in terms of couplings as g/

√
λh. In the region g/

√
λh ≪ 1 (a ‘thin wall’

from the point of view of the τ field), λ is the dominant contribution. In the opposite
(‘thick wall’) region we conservatively only keep WKB contributions. The jaggedness
around g/

√
λh ∼ 1 is purely a result of the brute cuts in phase space. Right: Breakdown

of all contributions in our calculation scheme. Bold (dashed) lines refer to τ (λ) emis-
sion respectively. We show the λ WKB contribution for the most natural identification
mh,s = L−1

w = v
√
λh, as well as mh,s = 0.

and set it to zero. Turning on this mass distorts the curves at low energies but its effect is
quickly lost for large p0. In section 4.B we argue that our estimates for total ⟨∆p⟩p0→∞ are
also unaffected by allowing mψ(z) to vary, although ⟨∆p⟩ can in general be even negative
for low p0.

We now provide some approximate formulae for all asymptotic contributions. Focus-
ing first on τ emission, we obtain

⟨∆pτR⟩p0→∞ ≃ g3v

8π2

4.4 , g/
√
λh ≪ 1

0 , g/
√
λh ≫ 1

, (4.52)

⟨∆pτL⟩p0→∞ ≃ g3v

8π2

0.07 , g/
√
λh ≪ 1

0 , g/
√
λh ≫ 1

, (4.53)

⟨∆pτwkb⟩p0→∞ ≃ g3v

8π2

g/
√
λh , g/

√
λh ≪ 1

2
(
g/

√
λh
)−1

ln
(
g/

√
λh
)
, g/

√
λh ≫ 1

. (4.54)

The first two contributions, coming from phase space where the step function is a good
approximation, naturally dominate and remain constant in the thin wall limit mLw =
g/

√
λh ≪ 1, while the contribution from the complimentary WKB regime vanishes. If

instead one makes the wall look more and more broad mLw ≫ 1, in our scheme the WKB
contribution dominates and is proportional to g2/Lw, modulo an innocuous log. WKB
domination follows from our cut in eq. (4.46); if we got rid of the absolute value, the R
step contribution dominates over WKB. However, we would like to emphasise that in the
limit λh → 0 ⇒ Lw → ∞ momentum transfer must vanish independently of prescription
since the wall disappears, which is captured by the above equations. All contributions
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manifestly vanish as g or v → 0. For λ emission instead, we find

⟨∆pλL⟩p0→∞ ≃ g3v

8π2

4
(
g/

√
λh
)−1

, g/
√
λh ≪ 1

0 , g/
√
λh ≫ 1

, (4.55)

⟨∆pλwkb⟩p0→∞ ≃ g3v

8π2

0.8
(
g/

√
λh
)−1

, g/
√
λh ≪ 1

1.6
(
g/

√
λh
)−1

, g/
√
λh ≫ 1

. (4.56)

In the thin wall limit, the dominant contribution is from L movers, and it grows linearly
with L−1

w . This can be traced back to the total reflection of λ modes while the step
function is a good approximation kz(z) ≲ L−1

w , as discussed in section 4.1.2. For the
natural identification mh,s ≈ L−1

w , then ⟨∆pλ⟩ can be interpreted as going like the mass
gained mh,s. However, we stress that even if we set mh,s = 0, the behaviour remains.
A better interpretation is again that λ describes the would-be Nambu-Goldstone boson,
that interacts derivatively with the background wall. The WKB contribution appears to
also increase in the thin wall limit, perhaps contrary to the reader’s expectations. This is
only because of the identification mh,s ≈ L−1

w in our benchmark choice. If we set mh,s = 0,
then we have instead

⟨∆pλwkb⟩p0→∞ ≃ g3v

8π2 2.2
(
g/
√
λh

)
ln
(

(g/
√
λh)−1

)
, for mh,s = 0 and g/

√
λh ≪ 1 .

(4.57)

where again we have L−1
w =

√
λh v, and it decays as expected as ∝ L−1

w . For the case
mh,s ≫ L−1

w we found the WKB contribution to scale again like L−1
w . This can be traced

back to the fact that this limit is equivalent to the thick wall limit, happening for τ
polarisation too. For the benchmark eq. (4.51), it is compensated by the mass gained
L−2
w − m2, and increases linearly instead, as per eq. (4.56). The difference is highlighted

in both figs. 4.3.1 and 4.3.2. Finally, we recall that we do not have a contribution from
R emission in the step function limit since the amplitude is proportional to gṽ → 0, as
already stated section 4.2.2.

In fig. 4.3.2 the solid red line tracks the sum total of all contributions in our scheme,
which we approximate by the following expression

⟨∆p⟩pz→∞ ≃ g3v

8π2

5
(
g/

√
λh
)−1

g/
√
λh ≪ 1

2
(
g/

√
λh
)−1 [

1 + ln
(
g/

√
λh
)]

g/
√
λh ≫ 1

, (4.58)

where we have switched to pz → ∞ to be more accurate. To go to the friction pressure
experienced by the wall expanding against a bath of particles charged under the restoring
gauge symmetry, one should in principle integrate ⟨∆p⟩ against the distribution of in-
coming particles. Since this momentum transfer becomes constant for large p0, to a very
good approximation we can simply multiply eq. (4.59) by the incoming flux. Assuming a
thermal distribution, this gives

PNLO ≃ ζ(3)
π2 γw T

3⟨∆p⟩pz→∞ , for γw ≫ 1 . (4.59)

This expression of course should only be trusted when the bubble can be thought of as
interacting with individual particles. A necessary condition is thus that the timescale of
interactions between particles (in the plasma frame) Γ−1

int. is longer than the wall cross
time, i.e. γw ≫ LwΓint..
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4.4 Summary and discussion
In this chapter, we studied the NLO friction in phase transitions of gauge symmetry–
restoration, as a prime example of instances where particles may lose mass as they cross
the phase boundary. To calculate, we reapplied the scheme developed in chapter 3 to
study 1 → 2 processes in the translation-breaking background of a bubble/domain wall,
in particular interpolating between different phases of a gauge theory. This amounts to a
first principles quantisation of the gauge field using appropriate polarisations, and splitting
final state phase space into regimes where the step function and WKB approximations
are respectively valid.

The main result of this chapter is that the average momentum transfer due to a single
emission from a particle charged under the gauge symmetry, as it passes from a broken
to a restored phase, is positive, asymptotically constant, and roughly given by

⟨∆p⟩pz→∞ ∼ g2

2π2L
−1
w ∼ g2

2π2

√
λh v , (symmetry–restoring) , (4.60)

where Lw is the width of the wall. We emphasise its typical relation to the Higgs vev (on
the broken side) v and quartic coupling λh, to make manifest the physical vanishing limit
v → 0. This leads to a growing, positive, friction pressure eq. (4.59) for ultra-relativistic
bubbles. Thus, we prove that symmetry–restoring phase transitions cannot have runaway
behaviour γw → ∞.

Comparison with gauge symmetry–breaking: We can compare eq. (4.60) to the
far more studied case of symmetry–breaking transitions [2, 95, 96, 115], which is usually
quoted as ⟨∆p⟩ ∼ g3v/2π2, ignoring a possible log term. A significant difference is present
in the ‘thin wall’ limit mLw = g/

√
λh ≪ 1 due to the enhancement of λ (∼ longitudinal)

modes. The ‘thick wall’ limit g/
√
λh ≫ 1 instead has not been explicitly quoted in the

literature, but it will also go as eq. (4.60), since an extremely broad wall Lw → ∞ is like
having no wall at all so that the average momentum transfer in this limit vanishes also for
symmetry–breaking transitions. Roughly speaking, one can imagine the black curve in
the left panel of fig. 4.3.2 as describing the symmetry–breaking case. Another difference
worth highlighting is the absence of naive soft divergences in any of the calculations in
the main text. Unlike the symmetry–breaking case, nowhere did we have to resort to
thermal masses to get a finite answer. We took a closer look at this in section 4.A. When
testing the insensitivity of our results to turning on a change in current mass mψ(z) in
section 4.B, we did encounter a collinear log divergence, but this was always subleading
with respect to the dominant contribution computed in the main text.

Anti-friction: Our motivation was guided partly by exploring the possibility of anti-
friction, ⟨∆p⟩ < 0 → P < 0, in instances when particles lose mass as they cross the wall.
In symmetry–restoration, this is true at LO for τ (∼ transverse) polarisations of the gauge
field 10, and for any fermions with Yukawa couplings to the Higgs 11. However, we found
by direct computation that contributions to P from 1 → 2 NLO emission processes were
positive and growing, and therefore always dominant for γw large enough. This positivity
is almost trivial. The only thing that can possibly be negative in eqs. (4.28) and (4.29)

10We note that, on the other hand, it is not in general true for λ polarisations, whose mass changes
from m = gv to mh,s.

11Interestingly, a toy model with symmetry–restoration discussed in section 4.D leads to a positive total
PLO. It is therefore not always straightforward to obtain PLO < 0.
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are ∆pL,R, and it is easy to prove that both are ≥ 0 for a constant charged particle mass
mψ = m̃ψ. Allowing ψ to lose mass in section 4.B lead to a negative contribution that was
however subleading. This is no accident. As discussed in more detail in section 4.C, we
argue that no particle physics process, with arbitrary number of incoming and outgoing
states, can contribute an average momentum transfer more negative than ⟨∆p⟩min = pz−p0
per incoming d.o.f., in the limit γw → ∞. The possibility of growing negative friction
for low γ transient regimes has interesting, though model-dependent, phenomenological
consequences, discussed briefly in section 4.C. We leave this exploration to future study.
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Appendix

4.A Absence of soft divergences
In this section, we elucidate why the total momentum transfer to the bubble wall in the
case of a symmetry–restoring phase transition calculated in the main text is IR finite. This
result should be contrasted with the opposite case (when the true vacuum has a broken
gauge symmetry) where an apparent logarithmic IR enhancement has been found [2, 96].
Let us look at the expressions for the matrix elements see eq. (4.44), the divergences in
principle can appear when the momentum differences in the denominator are vanishing

∆{p, pr, p̃, p̃r} = 0 . (4.61)

Let us consider for simplicity the case when the emitter particle has zero mass mψ = 0
both in the false and true vacuum. Then the energy conservation forces

∆pr = pz − qz + kz > p0 − q0 − k0 = 0 , (4.62)
∆p̃r = pz − qz + k̃z ≥ p0 − q0 − k0 = 0 , (4.63)

where kz, k̃z are positive by definition and in the last inequality ∆pr = 0 only for k0 = 0.

∆p = pz − qz − kz = p0 −
√
q2

0 − k2
⊥ −

√
k2

0 − k2
⊥ −m2 > 0 , (4.64)

∆p̃ = pz − qz − k̃z = p0 −
√
q2

0 − k2
⊥ −

√
k2

0 − k2
⊥ ≥ 0 , (4.65)

where in the last inequality ∆p̃ = 0 only for k⊥ = 0. So the divergences can appear only
when ∆p̃ and ∆p̃r are equal to zero. Let us start by analysing the divergences appearing
in the limit ∆p̃ → 0: the relevant amplitudes are Mstep

τ,R and Mwkb
τ and both of them

diverge as 1/∆p̃. For the scope of analysing the IR divergences we can safely focus only
on the divergent pieces. Below we show the calculation for the ‘step’ contribution (WKB
contribution differs just by some finite factor and proceeds in exactly the same way). The
amplitude squared in the ∆p̃ → 0 limit is

lim
∆p̃→0

|Mstep
τ,R |2 = 4k2

⊥p
2
0|kz|

(k̃z)3
× 1

(∆p̃)2 . (4.66)

However, what is controlling the momentum transfer in the wall is the quantity

⟨∆p⟩|IR ∝
∫
k⊥→0

dk̃z
2π

1
2k0

dk2
⊥

4π

∣∣∣∣∣ k̃zkz
∣∣∣∣∣ · 1

2pz

[
1

2|qz|
|Mstep

τ,R |2(∆p̃)
]
. (4.67)

We change the integration variable using k̃zdk̃z = k0dk0, and then focus only on the limit
k⊥ → 0, where potential IR divergences can in principle appear. Then we get

⟨∆p⟩|IR ∝ 1
4π2

∫ dk0

k2
0
k⊥dk⊥ , (4.68)
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where the integral over k⊥ is obviously finite. The integral over k0 looks naively IR
divergent, but remember that the upper bound of the k⊥ integration is always below k0,
thus

⟨∆p⟩|IR ∝ 1
4π2

∫ dk0

k2
0
k⊥dk⊥ <

1
8π2

∫
dk0 = finite . (4.69)

Note that if we were calculating the probability of emitting the vector boson instead of
the momentum transfer to the wall, we would have found a log divergence in k⊥. Indeed,

P1−emission ∼
∫
k⊥→0

dkz

2π
1

2k0

dk2
⊥

4π · 1
2pz

[
1

2|qz|
|Mstep

τ,R |2
]

∼ 1
4π2

∫ dk0

k2
0
k⊥dk⊥ × 2k0q0

p0k2
⊥

= Log divergent . (4.70)

What about ∆p̃r = 0? This term appears in Mstep
τ,R and in Mstep

τ,L . However, the contri-
bution of the left moving modes will be non-singular since k0 ≥ m > 0, and for the right
moving modes we get

lim
k0→0

|Mstep
τ,R |2∆p̃ ∝ mp2

0
k2

0
. (4.71)

Thus, we are back to the estimate

⟨∆p⟩|IR ∝
∫ dk0

k2
0
k⊥dk⊥ = finite . (4.72)

4.B Effects of a changing current mass
In the main text, we computed the average momentum transfer for a single emission from
a charged current crossing into a gauge symmetry–restoring phase, assuming the charged
matter did not change mass, i.e. mψ(z) = mψ. We then focused on mψ = 0, as our
results did not depend on this parameter for large p0 (large γ). These were positive and
straightforwardly IR-finite. Of course, the more realistic case will have a varying mass,
and our results are only phenomenologically useful if they are not appreciably affected by
it. We will now argue that this is indeed the case.

If we suppose for concreteness that the charged current is a fermion, then the most
natural way to gain mass is by the addition to the theory in eq. (4.4) of a Yukawa-like
interaction

δLf = ψ̄i��Dψ − (yHψ̄LψR + h.c.) , (4.73)

where gauge invariance forces ψ to be exactly massless on the symmetric side. If ψ were
a complex scalar, we have more choice at the renormalisable level, such as

δLs = 1
2 |Dµψ|2 − m̃2

ψ|ψ|2 − (yψ2H2 + h.c.) or y|ψ|2|H|2 . (4.74)

The first interaction mimics the fermion case, with current non-conservation upon ex-
panding around the vev. The second term shows that for a scalar one can also gain mass
in a current preserving fashion. All these differences will not matter in what follows. For
concreteness, we focus on the maximal change m̃ψ = 0, in line with eq. (4.73).
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A proper treatment would now require quantising also ψ modes into left and right
movers, as we did for the vector in section 4.1. While this is certainly doable, it appears
to us unnecessary, and we can argue qualitatively. On general grounds we expect the
average momentum transfer to go as

lim
p0→∞

⟨∆p⟩ → vf
(
g, y,

√
λh

)
+ O

(
v2/p0

)
, (4.75)

where f is some unknown function. In the main text, we computed the leading O (g3) and
O
(
g2√λh

)
terms of f . This had dominant support from phase space where the vector

was soft k0 ∼ gv, or ∼ L−1
w ,mh,s for λ, and the fermion hard q0 ∼ p0, consistent with our

choice of ignoring the mass mψ(z) ≪ p0. Including mψ(z), the greatest change will result
in the part of phase space where the fermion is soft (and the vector hard).

Intuition for this possible contribution can be developed without much work by using
the reduced WKB approximation for the matrix element, as per section 4.2.2. It was
already pointed out in [95] that the amplitude for emission of a soft fermion is suppressed
with respect to the emission of a soft vector 12. We now go a bit further, estimating this
WKB contribution, and show that indeed the contribution related to a change in ψ mass
is suppressed for large incoming energies.

The matrix element for τ polarisation ψ → ψAµτ is

Mwkb red.
τ = −iyϵµτ

(
pµ + qµ

pz − qz − kz
− p̃µ + q̃µ

p̃z − q̃z − k̃z

)
, (4.76)

where, as in the main text, by τ we mean the non trivially zero τ2. Defining x = k0/p0,
the various four-momenta are explicitly

pµ = (p0, 0, 0,
√
p2

0 −m2
ψ) , p̃µ = (p0, 0, 0, p0) ,

qµ = (p0(1 − x),−k⊥, 0,
√
p2

0(1 − x)2 − k2
⊥ −m2

ψ) , q̃µ = (p0(1 − x),−k⊥, 0,
√
p2

0(1 − x)2 − k2
⊥) ,

kµ = (p0x, k⊥, 0,
√
p2

0x
2 − k2

⊥ −m2
A) , k̃µ = (p0x, k⊥, 0,

√
p2

0x
2 − k2

⊥) . (4.77)

The behaviour of eq. (4.76) is dictated by the collinear singularity of the second term for
k⊥ → 0, when

Mwkb red.
τ → iy

4p0(1 − x)
k⊥

. (4.78)

We note that the momentum transfer in this region is actually negative

∆pR = pz − q̃z − k̃z
k⊥→0= pz − p0 + k2

⊥
2q0k0 + . . . . (4.79)

We can estimate this ‘negative’ contribution from the loss in ψ mass in the large p0 limit
by

⟨∆pR⟩ψ ∝
∫ dxdk⊥k⊥

xp2
0

x

x(1 − x) × 16p2
0(1 − x)2

k2
⊥

×
−m2

ψ

2p0
. (4.80)

We observe that this integral diverges logarithmically with respect to k⊥, but not with
respect to x, because the WKB contribution is only considered in the UV part of the

12See Table I in [95].
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phase space, unlike the approach taken in Appendix 4.A, where we considered the step
wall contribution. Nevertheless, the overall contribution must scale as

⟨∆p⟩neg. ∝ −
m2
ψ

p0
× log(divergence) . (4.81)

This divergence should be considered regulated by some mass scale. If we had allowed the
mass of the emitter in the new phase to be non-zero, we would have found a dependence
such as

⟨∆p⟩neg. ∝ −
m2
ψ − m̃2

ψ

p0
× log

(
p0

m̃ψ

)
. (4.82)

However, for large values of the initial momentum, this contribution will be highly sub-
leading, regardless of the logarithmic divergence. Therefore, we can conclude that the
contribution to the pressure we have identified is the only one that scales with the Lorentz
boost factor. It is important to note that this divergence is related to the zero mass of
the fermion on the symmetric side, and we expect it to be mitigated by interactions with
the plasma.

We noticed that this negative contribution, coming from a particle losing mass across
the wall, was subleading in pz ∼ p0. This is true more generally as discussed in section 4.C,
where we explore possible negative friction contributions in more general terms.

4.C Negative friction?
In this appendix, we attempt to examine more broadly the question of whether 1 →
2 processes, or indeed any multi-particle process in theories of broken translation, can
source negative friction. We should emphasise that, in order to be phenomenologically
interesting, a negative sign is not enough, but rather we would require ⟨∆p⟩ ∼ (pz)n with
n > −1. A contribution n = −1 is already obtained at LO when particles lose mass,
while n < −1 would be inconsequential.

We start first with a generic 1 → 2 process, with incoming particle a and outgoing
particles b and c and assign them 4−momenta pµ, qµ, kµ respectively. There are four
possible physical momentum transfers, corresponding to particles b, c being emitted to
the right (R) or left (L) 13. Defining ∆pI,J , with I, J ∈ {R,L}, as appropriate for the
case b is I−emitted and c is J−emitted, these are

∆pR,R ≡ pz − q̃z − k̃z =
√
p2

0 −m2
a −

√
(p0 − k0)2 − k2

⊥ − m̃2
b −

√
k2

0 − k2
⊥ − m̃2

c ,

∆pL,R ≡ pz − q̃z + kz =
√
p2

0 −m2
a −

√
(p0 − k0)2 − k2

⊥ − m̃2
b +

√
k2

0 − k2
⊥ −m2

c ,

∆pR,L ≡ pz + qz − k̃z ,

∆pL,L ≡ pz + qz + kz ,

(4.83)

where, as always, we use a tilde to denote a quantity evaluated in the new phase when it
changes across the wall, and qz, q̃z, kz, k̃z ≥ 0. Further down, we study each contribution
in more detail, in particular when it can be negative. However, it is easy to prove that,

13As explained in section 4.1, in theories of broken translations R and L emission are more properly
considered on separate footing.
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in any case, and over all phase space, the momentum transferred cannot be smaller than
the absolute minimum

∆p ≥ ∆pMin = pz − q0 − k0 = pz − p0 = −m2
a

2pz + O
(

1
p2
z

)
, (4.84)

the second equality by energy conservation. In the relativistic limit this is equal to the
LO minimum eq. (4.1). We note that, although this absolute minimum is negative, it is
going to zero in the asymptotic limit pz → ∞. It seems very difficult that the amplitude
of the emission process might compensate for this. We can be more precise. A lower
bound on the average momentum transfer is

⟨∆pI,J⟩ =
∫
dΠBTPH |MI,J |2 ∆pI,J

≥ ∆pMin

∫
dΠBTPH |MI,J |2

= ∆pMin PI,J ,

(4.85)

where BTPH, which stands for broken translation phase space, is the positive-definite
appropriate integration over final state momenta (such as in eqs. (4.28) and (4.29)), and
MI,J and PI,J are the matrix element and total integrated probability for the correspond-
ing process. Since P is an integrated probability for a physical process it cannot grow
arbitrarily to infinity with incoming particle energy p0 ≈ pz (less it breaks unitarity), and
we conclude that

⟨∆p⟩ > −m2
a

2pz , for pz → ∞ , (4.86)

that is, asymptotic friction (obtained when multiplying by the flux ∝ γw ∝ pz) will never
dominate the LO contribution. We saw an explicit example of a negative contribution
being subdominant in section 4.B.

The argument above can run again for an arbitrary Ni → Nf process. In this case,
the absolute minimum momentum transfer is

∆pNi→Nf
Min = pz1 + · · · + pzNi − p0

1 − · · · − p0
Ni

= −
Ni∑
j=1

m2
a,j

2pzj
+ O

(
1
p2
z

)
, (4.87)

which is independent of Nf . In the same way as eq. (4.85), we would conclude that the
average momentum transfer, over all final phase space, cannot beat the leading order
contribution of Ni particles simply crossing the wall, in the asymptotic limit.

We emphasise that our general argument applies only to the regime when individual
particles can be thought of as interacting with the wall, usually the asymptotic γw → ∞
regime, as opposed to a hydrodynamic regime when macroscopic fluid equations are more
appropriate. We do not rule out negative friction for intermediate, possibly relativistic,
bubble speeds, an exploration of which we leave to future work. We simply point out
that potential intermediate regimes of negative pressure growing with v or γ could be
phenomenologically quite interesting, as they could lead to instabilities. Fluctuations in
the speed of expansion along the bubble’s boundary can be expected, just as fluctuations
in its position should be expected from finite temperature effects, collisions with the
medium itself, or even quantum mechanically in the case of vacuum tunneling [206].
These fluctuations would grow in time and could lead to highly asymmetric bubbles at
late time, which would greatly enhance the gravitational wave signal from single bubble
expansion as well as collisions 14.

14Similar conclusions are emphasised in a recent work [207], although there the bubble of the new phase
is already nucleated with significant asymmetry.
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Further details of 1 → 2 processes. We examine a bit further the contributions in
eq. (4.83). Clearly, ∆pL,L > 0 always. Furthermore, ∆pL,R is clearly minimised when all
of the kinetic energy available goes to b (i.e. kz = 0)

∆pL,R ≥ pz − qzmax =
√
p2

0 −m2
a −

√
(p0 −mc)2 − m̃2

b (4.88)

→ mc − m2
a − m̃2

b

2p0
+ O

(
1/p2

0

)
, (4.89)

and similarly

∆pR,L ≥ pz − kzmax =
√
p2

0 −m2
a −

√
(p0 −mb)2 − m̃2

c (4.90)

→ mb − m2
a − m̃2

c

2p0
+ O

(
1/p2

0

)
. (4.91)

We see that the lower bounds eqs. (4.88) and (4.90) can be positive or negative, depending
on the relative size of the three masses involved, but if p0 is large enough, they can only
be negative if mc,b = 0 and ma > m̃b,c.

Finally, the most negative possible momentum transfer comes from

∆pR,R ≥ ∆pR,R |k⊥=0 =
√
p2

0 −m2
a −

√(
p0 −

√
k̃2
z + m̃2

c

)2
− m̃2

b − k̃z , (4.92)

≥
√
p2

0 −m2
a −

√
p2

0 − m̃2
b,c , if m̃c,b = 0 , (4.93)

where we have highlighted the simple case of when either of the outgoing masses is zero.
When both are non-zero, the precise location of the absolute minimum within the al-
lowed range k̃z ∈ (0,

√
(p0 − m̃b)2 − m̃2

c) is non-trivially located somewhere in between
the extreme points, but it is always greater than pz − p0.

4.D Toy model with symmetry–restoring PT
In the main text, we computed friction without any discussion of specific models realising
fig. 4.0.2. We now dedicate some space to this, mentioning some general possibilities,
before studying a simple concrete model below.

In principle, for every symmetry–breaking FOPT that proceeds as the universe cools
down, there is a potential symmetry–restoring FOPT that would follow if the universe
were adiabatically heated up. This possibility was recently explored in [208], in the
context of post-inflationary reheating. The picture in fig. 4.0.2 could also be true at zero
temperature, for a non-renormalisable polynomial potential in (even powers of) the single
field |H| in eq. (4.4). Alternatively, by the addition of the right type of matter, one can
arrange for radiative corrections to drive the effective quartic coupling of h to run slightly
negative and then positive (as occurs in the Standard Model - see for example [209]). This
leads to the existence of a second vacuum at very large field value, which can be tuned to
have higher energy density. For a two field (or more) potential, fig. 4.0.2 can be obtained
even at the renormalisable level. In all these ‘cold’ scenarios, one has to explain why
the universe starts in the false vacuum, perhaps as a result of h random walking during
inflation.

In the rest of this appendix, we explore a simple, though concrete, two field potential
that can be considered as an existence proof for a first-order, symmetry–restoring phase
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Figure 4.D.1: Sketch of the PT steps in the toy model described in section 4.D, where
ϕ is charged and s → −s is a symmetry. At early times, for very high temperature, there
is only one, symmetry preserving, vacuum at the origin. As the universe starts to cool
down, the origin becomes unstable and a new minimum appears, spontaneously breaking
gauge symmetry. As the universe cools down further, a pair of two Z2 symmetry–breaking
minima appear (only one in the figure) and at some Tnuc the system will make the (1st
order) transition to restore the gauge symmetry. The latter false and true vacua persist
at zero temperature. Domain walls can in principle be avoided by introducing sufficient
Z2 breaking. For the purposes of our work, we do not need to comment on this further.

transition that proceeds as the universe cools down, starting from a unique global mini-
mum at high temperature. It does not therefore rely on inflation, or other initial condition
selection mechanisms to start the universe in a false vacuum. For simplicity, we imagine
the dynamics occurring in a hidden, thermal sector. For our purposes, we will not need
to compute decay rates. We simply assume the transition will happen. We will however
be interested in examining the leading order pressure mentioned around eq. (4.2). We
remind the reader how the LO pressure, in the high temperature limit, is defined for a
general particle content [94]

PLO =
∑
i

nici
24

(
m2
i (TV) −m2

i (FV)
)
T 2

nuc , (4.94)

where i runs over all the particles present in the thermal plasma, ni is the number of
d.o.f.s of the particle i, ci = 1(1/2) for bosons(fermions) while m2

i (TV,FV) are the tree
level field dependent masses computed at the true (false) vacuum. Interestingly, we will
find it difficult for this particular scenario to lead to negative LO pressure.

Minimal concrete model: We examine a simple, renormalisable, toy model consisting
of a complex field ϕ, charged under a gauged U(1), and a real scalar s, endowed with a
Z2 symmetry (a strong condition that we will later relax), with the following Lagrangian

L = −1
4FµνF

µν + |Dµϕ|2 + (∂µs)2

2 +m2
1|ϕ|2 − λ1|ϕ|4

4 + m2
2s

2

2 − λ2s
4

4 − λ3s
2|ϕ|2 .

(4.95)

It is obvious from the form of eq. (4.95) that, at zero temperature and for λ3 large enough,
one has a spontaneously broken U(1) local minumum and a spontaneously broken Z2 local
minimum:

⟨|ϕ|⟩ =
√

2m1/λ1 , ⟨s⟩ = 0 , ⟨|ϕ|⟩ = 0 , ⟨s⟩ = m2/
√
λ2 . (4.96)
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We will argue that, for some particular choices of parameters, the cosmology will follow
the steps sketched in fig. 4.D.1. Initially, at very high temperature, the (only) minimum
of the system is at the origin of the potential, that is the symmetric configuration (⟨|ϕ|⟩ =
0, ⟨s⟩ = 0). Then, as the system cools down, U(1) is spontaneously broken (⟨|ϕ|⟩ ≠
0, ⟨s⟩ = 0). At even lower temperatures, a new, deeper minimum appears, which breaks
the Z2 but restores the gauge symmetry, giving the desired transition (⟨ϕ⟩ ̸= 0, ⟨s⟩ =
0) → (⟨ϕ⟩ = 0, ⟨s⟩ ≠ 0).

For this to happen, we first need to explore the minima structure of the potential at
low temperatures and require that the global minimum corresponds to (⟨ϕ⟩ = 0, ⟨s⟩ ≠ 0).
This leads to the condition

m4
2

4λ2
>
m4

1
λ1

. (4.97)

For our discussion, it is sufficient to use the tree level potential, and the leading terms
in high temperature expansion, wherein appear the field dependent masses. They read

m2
ϕ1 = −m2

1 + λ1

4 (3ϕ2
1 + ϕ2

2) + λ3s
2 ,

m2
ϕ2 = −m2

1 + λ1

4 (ϕ2
1 + 3ϕ2

2) + λ3s
2 ,

m2
s = −m2

2 + 3λ2s
2 + 2λ3|ϕ|2 ,

m2
A =2g2|ϕ|2 ,

(4.98)

where we separated two degrees of freedom of the complex scalar field ϕ = (ϕ1 + iϕ2)/
√

2.
Then, the thermal corrections to the masses will be given by

Πϕ =
(
g2

4 + λ3 + λ1

12

)
T 2 , Πs =

(
λ2

4 + λ3

6

)
T 2 . (4.99)

Therefore, the requirement that U(1) is broken before Z2 becomes

T 2
ϕ > T 2

s , (4.100)

where Tϕ,s are the temperatures when the effective mass, m2
s,ϕ + Πs,ϕ, vanishes and they

are defined as

T 2
ϕ = 12m2

1
3g2 + λ1 + λ3

, T 2
s = 12m2

2
3λ2 + 2λ3

. (4.101)

This requirement, written in terms of the couplings, reads

g2 < −λ3 + λ1

3 + m2
1

m2
2

(2
3λ3 + λ2

)
. (4.102)

The last condition will be that there is a barrier separating the two minima at (⟨ϕ⟩ ̸=
0, ⟨s⟩ = 0) and (⟨ϕ⟩ = 0, ⟨s⟩ ≠ 0), that is we need to require that they are local minima,
then

∂2Veff

∂s2

∣∣∣∣∣
⟨ϕ⟩≠0,⟨s⟩=0

= −m2
2 + 4λ3m

2
1

λ1
+ T 2

[
λ2

4 − λ3(6g2 + 2λ3 + λ1)
6λ1

]
> 0 , (4.103)

∂2Veff

∂ϕ2
1

∣∣∣∣∣
⟨ϕ⟩=0,⟨s⟩≠0

= −m2
1 + λ3m

2
2

λ2
+ T 2

[
3g2 − 2λ3 + λ1

12 − λ2
3

6λ2

]
> 0 , (4.104)
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where Veff = Vtree + VT . These conditions turn out to be easy to satisfy.
Let us look at the LO pressure in this model, focusing on its sign. Since all the

particles here are bosons, all we need to calculate is the sum of the mass squared, then
we get

∑
m2(⟨ϕ⟩ ≠ 0, ⟨s⟩ = 0) = 12m2

1
λ1

g2 + 2m2
1 −m2

2 + 4λ3m
2
1

λ1
, (4.105)

∑
m2(⟨ϕ⟩ = 0, ⟨s⟩ ≠ 0) = 2m2

2 − 2m2
1 + 2λ3

m2
2

λ2
, (4.106)

then the LO pressure will be negative if∑
m2(⟨ϕ⟩ = 0, ⟨s⟩ ≠ 0) <

∑
m2(⟨ϕ⟩ ≠ 0, ⟨s⟩ = 0) , (4.107)

that translates into the condition

g2 > −λ3 + λ1

3 + λ1m
2
2

4λ2m2
1

(
λ2 + 2

3λ3

)
. (4.108)

We can see that this is incompatible with the previous condition, in eq. (4.102), of
the U(1) breaking before Z2 and the requirement that in the true vacuum, the gauge
symmetry is unbroken. So the total LO pressure is always positive in the concrete theory
of section 4.D, despite the existence of a symmetry–restoring phase transition.

Including additional matter: One might think that, in order to change the above
conclusion, we need only introduce additional matter fields to the theory, that lose mass
during the final symmetry–restoring transition. Instead, we now show that, while main-
taining our assumptions of renormalisability and Z2 symmetry, this is not so. We rewrite
the theory in a slightly tidier fashion,

V = λf (f 2 − v2
f )2 + λt(t2 − v2

t )2 + λftf
2t2 +

∑
(other fields not getting vev) , (4.109)

where f can be thought of as the radial mode of the charged field and t is the real
scalar. The choice of labels reflects the fact that we will demand that, at T = 0, the true
(degenerate) vacua are ⟨t⟩ = ±vt, ⟨f⟩ = 0, while the false vacuum is ⟨t⟩ = 0, ⟨f⟩ = vf .
Again, both can be (meta-)stable local minima for large enough λft. The desired hierarchy
translates to the requirement

λfv
4
f < λtv

4
t . (4.110)

We take the additional sum in eq. (4.109) to be over an arbitrary number of extra fermions
and scalars coupled at renormalisable level. For example, but not only, the Yukawa-like
interactions in eqs. (4.73) and (4.74). Again, we also restrict the sum to respect the Z2
symmetry of t, and relax this assumption further below.

As before, at the highest of temperatures, the origin of field space will be the unique,
symmetric vacuum. Next, we impose that the U(1) breaking occurs first, to follow the
steps of fig. 4.D.1. Thermal corrections to the potential, in the high temperature limit,
are given by [6]

VT (T ) = T 2∑
i

nici
24 m2

i (f, t) + . . . , (4.111)
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where mi(f, t) are the field dependent tree level masses for every particle present in the
thermal plasma, ni is the number of the d.o.f.s of the particle i, while ci = 1(1/2) for
bosons(fermions). Roughly speaking, the field f will develop a vev at the temperature
Tf , defined as when its effective thermal mass at the origin vanishes

meff
f (f, t)2

∣∣∣∣∣
f,t=0

= ∂2

∂f 2 (Vtree + VT (Tf ))
∣∣∣∣∣
f,t=0

= 0 . (4.112)

It is instructive to notice that the thermal correction to the mass can be rewritten in the
following way

∂2VT
∂f 2

∣∣∣∣∣
f,t=0

= Πf (Tf ) = T 2
f

∑
i

nici
24

∂2m2
i (f, t)
∂f 2

∣∣∣∣∣
f,t=0

. (4.113)

Now, whichever is the form of m2
i (f, t) after the second derivative, computed at the origin,

the only terms that will survive are the quadratic ones, then it is convenient to write the
masses as

m2
i (f, t) = m2

i (0, 0) + 1
2
∂2m2

i (f, t)
∂f 2

∣∣∣∣∣
f,t=0

f 2 + 1
2
∂2m2

i (f, t)
∂t2

∣∣∣∣∣
f,t=0

t2 + . . . , (4.114)

where there is no linear term, or mixed second derivative, due to the Z2 symmetry.
Restricting to renormalisable operators in eq. (4.109) means that there are no higher
order terms and the series finishes here. We can then rewrite

∂2m2
i (f, t)
∂f 2

∣∣∣∣∣
f,t=0

= 2 · m
2
i (f, 0) −m2

i (0, 0)
f 2 . (4.115)

Therefore a useful way to write the thermal correction is the following

∂2VT
∂f 2

∣∣∣∣∣
f,t=0

= Πf (Tf ) = T 2
f

∑
i

nici
12

(
m2
i (f, 0) −m2

i (0, 0)
f 2

)
, (4.116)

Since the RHS is actually independent of f , this allows us to evaluate it wherever we
want, so even at f = vf . An analogous expression follows for Tt evaluating at t = ±vt,
and we can solve for both temperatures, finding

T 2
f =

−12m2
f (0, 0)v2

f∑
i nici (m2

i (vf , 0) −m2
i (0, 0)) , T 2

t = −12m2
t (0, 0)v2

t∑
i nici (m2

i (0,±vt) −m2
i (0, 0)) , (4.117)

where we recall that m2
f,t(0, 0) < 0. Now the condition Tf > Tt, together with eq.(4.110),

forces ∑
nicim

2
i (0,±vt) −

∑
nicim

2
i (vf , 0) > 0 , (4.118)

but this is the condition of the LO pressure being positive.

Explicit Z2 breaking: Things become more complicated if we allow for explicit Z2
breaking terms in our theory. This could be simply done by including a cubic term in
our tree level potential, or if one prefers to leave the cold potential unaltered, by adding
to the sum of renormalisable operators in eq. (4.109), some Z2 breaking terms, such as a
massive Dirac fermion with a Yukawa coupling to t

L ⊃ µ t3 + (yt+mψ)ψ̄ψ + . . . (4.119)
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We find that with these types of additions, it is naively possible to arrange for the cosmo-
logical history in fig. 4.D.1, with a negative LO pressure in the final symmetry–restoring
FOPT. However, this is at the expense of significant tuning, which will be very sensitive
to a more proper treatment of finite temperature corrections to the potential, and thus
cannot be trusted.
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Chapter 5

Hydrodynamics of inverse PTs

From a theoretical perspective, PTs between a local minimum and a deeper, local or global,
minimum are commonplace in quantum field theory, where it is believed that the vacuum
structure is a complicated manifold. A direct phase transition connects a local vacuum
to a deeper vacuum of the zero–temperature potential, and the energy difference between
the two minima manifests itself in the acceleration of the bubble wall. In this sense, the
transition is triggered by the release of vacuum energy. On the other hand, an inverse
phase transition connects a deeper minimum of the zero–temperature potential to a higher
one, and the bubble actually expands against the vacuum energy. The transition is then
triggered purely by thermal corrections. We study for the first time the hydrodynamics
and the energy budget of inverse phase transitions. We find several modes of expansion
for inverse bubbles, which are related to the known ones for direct transitions by a mirror
symmetry. We finally investigate the friction exerted on the bubble wall and comment on
the possibility of runaway walls in inverse phase transitions.

As already anticipated in the first chapter, we will try to characterise the bubble
expansion modes during the PT in the limit in which the hydrodynamics description is a
good approximation. We will review what has been done in the literature and extend it
to what we called inverse PTs.

The hydrodynamics of cosmological PTs have been intensively studied in the past,
alongside their hydrodynamical properties, their efficiency to turn vacuum energy into
bulk motion, sound speed effects [73, 86, 210–215] and gravitational wave imprint [47, 48,
54] (see for example [216] for a review). A thorough classification of the different modes of
expansion of bubbles wall has been presented [217–220]. Five consistent types of solutions
survived the examination: weak and Chapman-Jouguet (CJ) deflagrations, weak and CJ
detonations and hybrid solutions, which are supersonic deflagrations glued to rarefaction
waves. The collapse of cosmological droplets, because of their possible impact on the
production of GW [221] and PBH production [109], also received attention. In a direct
phase transition, the vacuum undergoes a transition from a local higher minimum of the
zero–temperature potential to a deeper minimum, as presented by the blue arrow (direct
PT) in fig.5.0.1. The acceleration of the bubbles of the new phase is then triggered mostly
by the vacuum energy release.

A much less studied situation is the expansion of bubbles of inverse phase transitions,
where the transition is from a lower minimum (of the zero–temperature potential) to
a higher one, as presented in solid darker red arrow (inverse PT) in fig.5.0.1. During
inflation, we expect the true zero temperature vacuum to be populated and the symmetries
to be broken by the vacuum expectation values of the scalar fields. The subsequent
reheating will then increase the temperature of the bath and push the scalar fields to the
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Figure 5.0.1: Schematic representation of the thermally corrected potential of a phase
transition triggered by the vacuum energy, denoted as direct PT (blue arrow), and a
phase transition against the vacuum energy, triggered by thermal corrections, referred to
as inverse phase transition (darker red arrow).

origin, to the restoration of symmetries. The transition to the symmetric vacuum can then
proceed via the nucleation of inverse bubbles expanding against the vacuum energy. Such
a phenomenon has been studied in [208, 222] in the context of reheating after inflation,
during the superheated deconfinement PTs of QCD that could occur during neutron stars
mergers [223] and in some fast walls realisations of baryogenesis [224]. These “inverse”
bubbles will however differ in many respects from the bubbles nucleated during direct
PTs.

In this chapter, we present a thorough study of the modes of expansion of inverse
phase transitions and discuss their energy budget. We also investigate the velocity of such
bubbles. Here is a summary of the main results of our study:

• The main parameters controlling the expansion are the wall velocity ξw and the
strength of the PT −αN ≡ |ϵ|/ρN , where ϵ is the difference of vacuum energy, and
ρN is the radiation energy density at the nucleation temperature TN .

• We find five different types of consistent solutions: weak and Chapman-Jouguet
(CJ) inverse deflagrations, weak and CJ inverse detonations, and inverse hybrid
solutions. They however differ in several respects from their direct counterparts. In
the plasma frame, the fluid velocities are typically negative (toward the inside of
the bubble), meaning that the plasma is being sucked into the bubble.

• We calculate the efficiency of the energy transfer from the phase transition to the
bulk flow motion, which acts as the source of gravitational waves.

• We also study the pressure exerted on inverse bubbles. We discover a hydrody-
namic obstruction to the expansion of inverse phase transition, very similar to the
obstruction to the expansion of direct ones. In the regime of fast bubbles, where
the collisionless approach can be applied, we find a new Boltzmann suppression of
the plasma pressure.
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The remainder of this chapter is organised as follows: in Section 5.1 we present a
review of known results of the hydrodynamics of the direct phase transitions, in Section
5.2, we present the study of the hydrodynamics of inverse phase transitions, in Section
5.3, we discuss the energy budget of the inverse phase transition as well as the efficiency
factors. In Section 5.4, we discuss the friction effects on the bubble wall and in Section
5.4.2, the possibility of runaway solutions is discussed. Finally, we conclude in Section
5.5.

5.1 Direct phase transitions: a reminder
In this section, we review the expansion modes of a cosmological bubble that forms during
a first-order PT within a primordial plasma background while the Universe cools down.
This type of transition is the one considered in most cosmological applications, and it is
characterised by a release of vacuum energy into the plasma. For this reason, we refer
to it as direct. The case of inverse PTs against the vacuum energy will be the topic of
Sec. 5.2.

5.1.1 Matching across discontinuities
The hydrodynamics of the coupled system, where a nucleated bubble expands within the
primordial plasma, can be described by the conservation of the total energy-momentum
tensor. The energy-momentum tensor contains two pieces: i) the scalar background,
which generates the bubble wall profile that we denote ϕ, and ii) the plasma that we
denote f and that we model as a perfect fluid. Those two contributions respectively read

T µνϕ = (∂µϕ)∂νϕ− gµν
[1
2(∂ϕ)2 − V (ϕ)

]
, (scalar field component) (5.1a)

T µνf = (ef + pf )uµuν − gµνpf , (plasma component) (5.1b)

where uµ = γ(v)(1,v) is the fluid four-velocity in the plasma frame with the Lorentz boost
factor γ(v) = 1/

√
1 − v2, ef and pf are the fluid energy density and pressure, that vanish

at zero temperature. V is the effective (loop-resummed) scalar potential. However, one
usually combines the fluid energy density and pressure with the effective scalar potential
energy, e = ef + V (ϕ), p = pf − V (ϕ). The advantage of writing the energy-momentum
tensors in terms of e and p is that the matching conditions for hydrodynamic quantities
take the standard form that appears commonly in the literature. Note that the fluid
enthalpy writes w = ef +pf = e+p. Therefore, in terms of e and p, the energy-momentum
tensor for the fluid then takes the following form

T µνf = (e+ p)uµuν − gµν [p+ V (ϕ)] . (5.2)

Then, the conservation of the energy-momentum tensor is given by

∇µT
µν = ∇µ

(
T µνϕ + T µνf

)
= 0 . (5.3)

Hydrodynamical flows can develop discontinuities such as shock waves and reac-
tion fronts, across which the bulk quantities undergo a jump, as pictorially presented
in fig.5.1.1. The conservation equations in eq.(5.3) can then be used to derive junction
conditions of these quantities. Those will serve as boundary conditions for the smooth
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Figure 5.1.1: Pictorial representation of a discontinuity interface in the wall frame. The
fluid ahead of the discontinuity, (+), is coming towards the wall in the region behind,
(−). For direct PT (+) is (generically) the symmetric phase, while (−) is the broken one.

evolution of the fluid on both sides of the discontinuity. By integrating eq. (5.3) over a
volume containing the interface and using Stokes’ theorem, we arrive at the continuity
equations governing the flow of energy-momentum

(T zν+ − T zν− )nν = 0 , (T tν+ − T tν− )nν = 0 , (5.4)

where nµ = (0, 0, 0, 1) is the unit 4-vector perpendicular to the bubble interface. Under
the assumption that the flux along the 3-direction is uµ = γ(z)(1, 0, 0,−v(z)), one can
obtain the junction conditions

w+γ
2
+v+ = w−γ

2
−v− , (5.5a)

w+γ
2
+v

2
+ + p+ = w−γ

2
−v

2
− + p− , (5.5b)

where w ≡ e+ p is the enthalpy and where the subscript “±” denotes quantities in front
of/behind the bubble wall, so that − always represents the interior of the bubble. To be
explicit, w+ = ws(T+), w− = wb(T−) (and similarly for p±), where the label “s/b” denotes
the symmetric/broken phase, see fig. 5.1.1. Upon rearranging the junction conditions, we
arrive at the familiar relations between the velocities, the energies and the pressures,

v+v− = p+ − p−

e+ − e−
,

v+

v−
= e− + p+

e+ + p−
. (5.6)

We remind that the velocities v± have to be understood in the front frame (the frame
where the discontinuity is at rest). To advance and determine the solutions for the system
of hydrodynamical equations, we must assume a specific equation of state (EoS) for the
plasma. This EoS will represent a function that relates various thermodynamic quantities.

5.1.2 Introducing an Equation of State
To make further progress, we need to introduce an Equation of State (EoS), which for
simplicity we take to be the bag EoS:

e+(T ) = a+T
4 + ϵ+, p+(T ) = 1

3a+T
4 − ϵ+,

e−(T ) = a−T
4 + ϵ−, p−(T ) = 1

3a−T
4 − ϵ−, (5.7)
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where a± and ϵ± are constants and we used the convention ϵ+ − ϵ− ≡ ∆V . Here, a±
describes the different light degrees of freedom across the wall, and T± the different tem-
peratures. One can explicitly compute the expression of the dof in the high–temperature
limit, where they can be read from the thermal corrections to the effective potential:

a± = π2

30
∑

i=light dof

[
gBi + 7

8g
F
i

]
, (5.8)

where B(F ) stands for boson (fermion). From the EoS, it is easy to see that the relations
in eq.(5.6) become

v+v− = 1 − (1 − 3α+)r
3 − 3(1 + α+)r ,

v+

v−
= 3 + (1 − 3α+)r

1 + 3(1 + α+)r , (5.9)

where we have defined

α+ ≡ ϵ+ − ϵ−

a+T 4
+

, r ≡
a+T

4
+

a−T 4
−
, αN ≡ ϵ+ − ϵ−

a+T 4
N

, (5.10)

with αN characterizing the strength of the PT at the nucleation temperature TN . It is
then conventional to define the vacuum energy in the true minimum to be zero: ϵ− = 0
and ϵ+ ≡ ϵ. Notice that by doing so we are specifying our transition to proceed from
a phase with a higher vacuum energy to a phase with a lower one. This is the usual
behaviour expected for a cooling phase transition, as it complies with the structure of the
zero–temperature potential.

The parameter r can be eliminated from eq.(5.9) to write v+(v−, α+),

v+(v−, α+) = 1
1 + α+

[(
v−

2 + 1
6v−

)
±

√√√√(v−

2 + 1
6v−

)2

+ α2
+ + 2

3α+ − 1
3

]
. (5.11)

In fig. 5.1.2 are reported the two different branches ± for constant values of α+. The left
panel refers to direct PTs, with α+ > 0, while as we will discuss in Sec. 5.2 the right panel
refers to inverse PTs, with α+ < 0.

Phase transitions and discontinuities are accompanied by an increase in the entropy
of the plasma. We discuss the conservation of entropy current

∂µ(suµ) = 0, s ≡ w

T
(Entropy in continuous waves) . (5.12)

This is a reflection of the fact that the fluid in a continuous wave is in local thermal
equilibrium. However, discontinuous boundaries are intrinsically dissipative and entropy
will generically increase across them. Across a boundary, the following inequality has to
be fulfilled:

s+γ+v+ ≤ s−γ−v− (Across discontinuities) , (5.13)

which imposes the increase of the entropy across the wall. Using the matching conditions
in eq.(5.5), this relation can also be rephrased in the following way

γ−

γ+
≤ T+

T−
. (5.14)
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Figure 5.1.2: Left: In standard direct phase transitions with α+ > 0, we depict con-
tours of constant α+ in the allowed region in the plane (v−, v+), where v± are the fluid
velocities in the wall frame. Shaded red regions indicate the presence of deflagrations and
detonations, which are forbidden by hydrodynamical constraints, as we explain in the
text. Right: Same as the left panel, but for the case of inverse phase transitions with
α+ < 0. In the shaded red regions we similarly highlight the impossibility of strong inverse
detonations (v+ ≤ cs), while strong inverse deflagrations will decay to inverse hybrids.

5.1.3 The theory of discontinuities
So far we have addressed the hydrodynamic equations across discontinuities, focusing on
matching conditions across the interfaces. The purpose here is to introduce the Taub
and reaction adiabats that connect (and select) the physical fluid states across interfaces.
In the study of phase transitions, two types of discontinuities will be relevant: i) the
shock front and ii) the reaction front (or phase boundary). Additional details on the
construction of the adiabats are provided in Appendix 5.C as well as in ref. [225].

Shock front The first type of discontinuity that can develop in a fluid is the shock front.
It is characterised by an interface where there is no change in the chemical/physical compo-
sition of the fluid (vacuum), but there can be discontinuous jumps in the thermodynamic
quantities.

The matching conditions across a discontinuity, using eq.(5.5a) and eq.(5.5b), can be
expressed in the form

w−x− − w+x+ = (p− − p+)(x− + x+) , (5.15)

where we defined x ≡ w/ρ2, being ρ = nm the rest–mass density1, which we find con-
venient2 to represent in the plane (x, p). Now we need to express the w−(x−, p−) as a

1Here n is the number density and m the rest–mass of the system.
2In the case of nonrelativistic fluids, the shock adiabatic is typically plotted in the (V, p)-plane, with

V representing the volume of the system. However, for the relativistic case, the natural variables for
representing the relativistic shock adiabatic are wV 2 = w/ρ2 and pc2. Using these coordinates, the Taub
adiabat offers a straightforward and graphical description of fluid properties across a shock. It can be
visualised as the curve connecting the states ahead and behind a shock wave.
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function of (x−, p−), where we consider x as the independent variable, and this can be
done via the bag equation of state, describing a system for which there is no change in its
microscopic nature across the interface, that is ϵ = 0,

w− = 4p− , w+ = 4p+ . (5.16)

Writing p− in terms of the other quantities we obtain

p− = 3p+x+ − p+x−

(3x− − x+) . (Taub adiabat) (5.17)

This is the Taub adiabat. Intuitively, the shock front can be understood as a discontinuity
with vanishing latent heat α+ → 0 (ϵ → 0), which implies, from eq.(5.9)

v+v− = 1
3 ,

v+

v−
= 3 + r̃

1 + 3r̃ , r̃ ≡
(
T+

T−

)4

, (5.18)

since for a shock wave with no change of vev, the number of relativistic dof remains the
same, i.e. a+ = a−. Finally, denoting the velocity of the shock wave ξsh and the velocity
of the fluid after the shock wave vsh,−, we obtain the following matching conditions at the
shock-wave front

ξsh = cs

√
3 + r̃

1 + 3r̃ , vsh,− = c2
s

ξsh
. (5.19)

The state of the plasma across a shock wave has always to lie on the same Taub adiabat.
Moreover, as described in Appendix 5.C, entropy considerations require that the state of
the plasma behind the shock lies on a point of the Taub adiabat with larger pressure

p− > p+ (entropy increase for shocks) , (5.20)

or that the shock wave goes up on the Taub adiabat, as for example illustrated in fig.5.1.3
for the trajectory from the blue to the green dot.

Reaction front The second type of discontinuity is the reaction front, which is char-
acterised by an interface where there is a change in the chemical/physical composition of
the fluid. In other words, this requires a change in vacuum energy and in the equation of
state, often manifested through a change in the number of relativistic degrees of freedom.

Now, using the matching conditions across a discontinuity, eq.(5.5a) and eq.(5.5b),
and the bag equation of state, with ϵ ̸= 0, we get

p− = (3p+ + 4ϵ)x+ − p+x−

(3x− − x+) . (reaction adiabat) (5.21)

This is the reaction adiabat. Let us notice that the reaction front clearly reduces to a
shock wave in the limit ϵ → 0. Therefore, the reaction front connects states ahead of the
interface, lying on the Taub adiabat, to states behind the interface, lying on the reaction
adiabat.

In fig.5.1.3, we present the Taub and the reaction adiabat with the solid black and
darker red line, respectively. Starting from a point (x+, p+) lying on the former adiabat,
we can conclude that any other point on this adiabat can be reached upon crossing
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Figure 5.1.3: Left: Reaction and Taub adiabats for a direct PT. The trajectory con-
necting the blue dot with the green one is an example of a valid shock wave (connecting
two points on the same Taub adiabat), while the trajectory connecting the blue dot to the
orange one (from the Taub adiabat to the reaction one) is an example of valid reaction
front with ϵ ̸= 0. Further details are presented in Appendix 5.C. Right: Same for the
case of an inverse PT.

some shock wave. What selects the arrival point is the conserved flux going through the
discontinuity. The matter flux j is defined by

ρ+γ+v+ = ρ−γ−v− ≡ j , (5.22)

where, in these coordinates, it provides the slope of the chord from the initial point + on
the adiabatic to any other point –, that is:

p− = p+ − j2(x− − x+) , (5.23)

and it is shown with the dashed red line in fig.5.1.3. Given an initial point (x+, p+) (the
blue dot lying on the Taub adiabat) and a straight line with the (conserved) matter flux
as the slope (the dashed red line), we can obtain the state of the plasma behind the wall
as the intersection between such line and the reaction adiabat (the orange dot). This
shows the intuitive usefulness of such construction.

5.1.4 Hydrodynamical equations
Up to this point, we have discussed the relations between thermodynamic quantities
across discontinuities. In this section, our focus shifts to examining the different types of
solutions to the hydrodynamical equations and investigating their properties.

The relativistic hydrodynamics equations have been shown to allow for self-similar
solutions. A hydrodynamic solution is said self-similar when it can be described by only
two quantities with independent dimensions apart from space and time. In such cases, all
relevant physical quantities can be expressed as functions of a similarity variable, typically
a combination of spatial and temporal coordinates.

For large enough bubbles, when the solution reaches a terminal wall velocity, the
fluid profile can be characterised by the self-similar variable ξ ≡ r/t (for a comprehensive
explanation, we refer to [225–227]). Notably, ξ possesses the dimension of a velocity but
can be interpreted as a position as well. The velocity of the bubble wall, denoted as ξw,
ranges between the centre of the bubble (ξ → 0) and the lightcone (ξ → 1).
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Starting from the conservation of the energy-momentum tensor, projecting eq.(5.3)
along and perpendicular to the flow, assuming spherical symmetry for the solutions and
finally expressing the system of equations in terms of this self-similar variable, we obtain
the following form

(ξ − v)∂ξe
w

= 2v
ξ

+ [1 − γ2v(ξ − v)]∂ξv , (Euler eq.)

(1 − vξ)∂ξp
w

= γ2(ξ − v)∂ξv . (continuity eq.) (5.24)

We emphasise that v denotes here the velocity of the fluid in the plasma frame (equiv-
alently the centre of the bubble frame), as opposed to v± defined in the frame of the
wall.

Combining those equations leads to the well–known equation for the fluid velocity:

2v
ξ

= γ2(1 − vξ)
[
µ2
p→w

c2
s

− 1
]
∂ξv, µp→w(ξ, v) = v − ξ

1 − ξv
, (5.25)

where µp→w(ξ, v) is the Lorentz transformed fluid velocity, from the plasma to the wall
frame. Two qualitatively different types of solutions emerge from the analysis of the
equation eq.(5.25): i) the rarefaction wave and ii) the compression wave.

i) The rarefaction wave propagates from the head, moving at the largest velocity ξhead
to the tail, which moves at some smaller velocity ξtail < ξhead. Consistency dictates
that either ξtail = cs or ξhead = cs. While this is not true for generic flows, the
symmetries of an expanding bubble dictate that the flow is at rest at the bubble
centre and on the lightcone, meaning v(ξ = 0) = v(ξ = 1) = 0. By imposing these
boundary conditions, we deduce from eq. (5.25) that for such solutions, ∂ξv > 0.
Examining eq. (5.24) and focusing on the cases of interest for us, namely ξ − v > 0
and ∂ξv > 0, we conclude that the rarefaction waves are also decompression waves,
since ∂ξp > 0, as we travel from ξ = 1 to ξ = 0, i.e. toward the centre of the bubble.
Similar conclusions hold for the enthalpy w and the temperature T , which we will
define, in terms of the wall velocity, at the end of this section.

ii) On the other hand, compression waves accelerate the motion of the plasma toward
the centre of the bubble. The same reasoning as above indicates that the pressure,
the temperature, and the enthalpy increase across the wave, as we travel toward the
centre of the bubble, i.e. from ξ = 1 to ξ = 0.

Upon solving eq. (5.25) with the matching condition (5.5a), and obtaining the fluid
velocity profile, we can subsequently compute the enthalpy profile

w(ξ) = w(ξ0) exp
[∫ v(ξ)

v(ξ0)

(
1
c2
s

+ 1
)
γ2(v)µ(ξ(v), v) dv

]
. (5.26)

From ∂ξ lnT = γ2(v)µ(ξ, v)∂ξv, we can also obtain the temperature profile that reads

T (ξ) = T (ξ0) exp
[∫ v(ξ)

v(ξ0)
γ2(v)µ(ξ(v), v) dv

]
, (5.27)

where ξ0 refers to the interface location, both for shock and reaction fronts. Properly
computing the profile across the wall of the different thermodynamic quantities will be
the subject of sec. 5.3.
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Figure 5.1.4: Profiles of the fluid velocity v(ξ) in the plasma frame, both for the case of
(standard) direct phase transitions (α+ > 0), and for inverse phase transitions (α+ < 0).
The former case is described in the quadrant I and has v(ξ) > 0, while the latter is in the
quadrant II with v(ξ) < 0. The grey shaded region is unphysical as it would imply that the
fluid moves faster than the wall, |v(ξ)| > |ξ|. The red shaded region would similarly give
unphysical velocity profiles as the dot–dashed red line indicates the maximum velocity
that a detonation–type of solution can have, i.e. the sound speed in a frame moving
at ξ, v(ξ) = µ(ξ, cs). The dashed blue line shows the velocity of the shock front for
deflagrations, that is µ(ξsh, v(ξsh))ξsh = c2

s. The different quadrants describe different
physical systems: I) bubble and II) inverse bubble expansion as ξ > 0, III) droplet and
IV) inverse droplet collapse with ξ < 0. The quadrants are related to each other by a
mirror symmetry v → −v and ξ → −ξ. The coloured profiles in orange, green and blue,
in the I quadrant, describe a deflagration, a hybrid, and a detonation, respectively, and
in the II quadrant an inverse deflagration, an inverse-hybrid, and an inverse detonation,
respectively. The other profiles are obtained by symmetry (see also [225]).
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Types of discontinuities for cosmological direct phase transitions
Detonations
p+ < p−, v+ > v−

Deflagrations
p+ > p−, v+ < v−

Weak v+ > cs, v− > cs Physical v+ < cs, v− < cs Physical
Chapman-Jouguet v+ > cs, v− = cs Physical v+ < cs, v− = cs Physical
Strong v+ > cs, v− < cs Forbidden v+ < cs, v− > cs Unstable

Table 5.1.1: Types of discontinuities for the direct phase transitions.

5.1.5 The types of solutions for direct PTs
In the previous sections, we have gathered the necessary tools to solve the thermodynamic
profiles of bubbles. We now apply these tools to various modes of expansion of cosmo-
logical bubbles. As we shall see, constructing the velocity and temperature profiles of
physical phase transitions requires glueing together discontinuous fronts and continuous
waves.

In this section, we delineate the different types of solutions possible for direct cos-
mological phase transitions. In fig. 5.1.4 we present all the possible solutions of eq.
(5.25). The four quadrants describe different physical situations: I) direct bubble expan-
sion [218, 228, 229], II) inverse bubble expansion (this work), III) direct droplet collapse
(see [230] for a recent study) and IV) inverse droplet collapse. In this section we will
remind the solutions in quadrant I and study in depth the solutions of quadrant II in Sec.
5.2. Table 5.1.1 summarises the various flows that can exist across the discontinuity.

Direct phase transitions admit three bubble expansion modes: i) detonations ii) de-
flagrations and iii) hybrid solutions.

Detonations

In phase transitions proceeding as detonations, the wall moves colliding with the fluid at
rest in front of it. In the wall frame, the fluid ahead of the wall moves at v+ = ξw, and
upon entering the new phase, it slows down to v− < v+. Detonations lie in in the upper
half plane of the left panel of fig. 5.1.2.

To achieve a consistent solution, this setup needs a composition of a reaction front
located at ξw, followed by a rarefaction wave. The fluid velocity right after the wall
passage jumps to v(ξw) = µ(v+, v−) and then gradually slows down until it smoothly
reaches zero at ξ = cs. In this scenario, according to the junction conditions, we observe
that T+ = TN < T− and α+ = αN . A family of solutions is parameterised by the parameter
r, and we have indicated by TN the nucleation temperature at which the bubbles nucleate.

In principle, three possible classes of detonations exist depending on v−. Weak det-
onations exhibit v− > cs. In this case, the reaction front of the detonation is a weak
discontinuity and its trajectory on the reaction adiabat is depicted in the left panel of
fig.5.C.2. The Chapman-Jouguet (CJ) detonations have v− = cs. On the other hand,
strong detonations have v− < cs, which display a strong discontinuity. The trajectory on
the reaction adiabat of a strong discontinuity is presented in the left panel of fig. 5.C.3.

The velocity profile, in the plasma frame, for a weak detonation, is illustrated in the
left panel of fig. 5.1.5.

Impossibility of strong detonations In this paragraph, we review why strong det-
onations are not feasible for cosmological phase transitions. This impossibility stems
from the boundary conditions, which impose that the velocity asymptotically approaches
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zero both far from the bubble and at its center [218]. This requirement translates to
v(ξ = 0) = v(ξ → cs) → 0 and v(ξ = 1) = 0. The resulting impossibility of strong
detonation is readily apparent from eq. (5.25). Indeed, in the case of detonations, v > 0,
and the decrease of velocity, ∂ξv > 0, from the position of the front ξ > cs to cs is only
possible if [

µ2
p→w

c2
s

− 1
]
> 0 , (5.28)

which conversely requires that

|µp→w(ξ, v)| = ξ − v

1 − ξv
≡ v− > cs . (5.29)

From these considerations, we conclude that strong detonations with v− < cs cannot
satisfy the boundary conditions of a bubble with vanishing bulk velocity at the centre.

Deflagrations

For phase transitions described by deflagrations, the plasma is at rest immediately behind
the wall, so the wall velocity is ξw = v−. These solutions correspond to the lines in
the lower half plane of the left panel in fig. 5.1.2, with the fluid velocity being higher
behind the wall than in front, v− > v+. The fluid velocity in front of the wall jumps to
v(ξw) = µ(v−, v+). Since v− > v+, we have v(ξw) < ξw, causing the deflagration solution
profile to start below the line v = ξ, as shown in quadrant I of fig. 5.1.4.

These solutions are constructed from the combination of a shock wave, followed by a
compression wave, and finally, the reaction front, as depicted on the right panel of fig. 5.1.5.
Similarly to detonations, deflagrations can, in principle, be weak v− < cs (see right panel
of fig. 5.C.2 to see the trajectory on the reaction adiabats of the weak discontinuity),
strong v− > cs (right panel of fig. 5.C.3), or Chapman-Jouguet type v− = cs.

In the case of subsonic deflagrations, the wall velocity is v− = ξw < cs, leading to
the conclusion that these deflagrations are weak. However, this is not the case if the
deflagration is supersonic (yet slower than the Jouguet velocity) [219].

Impossibility of strong deflagrations It has been argued that strong (supersonic)
deflagrations are forbidden [218, 219], primarily through two distinct arguments: stability
and entropy law. The first argument, reviewed in Appendix 5.A, concludes that even if
a supersonic deflagration can indeed be made to exist at some moment, it is inherently
unstable with respect to perturbations. The second argument relies on the increase of
entropy. In fig. 5.C.3, we show how a strong deflagration (left panel, blue to orange
dot trajectory) can be seen as a shock (blue to green trajectory), followed by a weak
detonation (green to orange trajectory). It is instructive to compare with the case of a
strong detonation (right panel, blue to orange trajectory), which can be seen as a shock
(blue to green trajectory) followed by a weak deflagration (green to orange trajectory).

But what is the nature of the shock wave in each case? For the strong detonation we
observe that the shock (blue to green) goes up on the adiabat, constituting an entropy-
increasing shock wave and satisfying the conditions in eq.(5.20). This makes the strong
detonation seemingly viable 3. However, in the case of deflagrations, where we have a

3As mentioned before, strong detonations are however not compatible with the boundary conditions
of the nucleated bubble.
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Figure 5.1.5: Velocity profiles for detonations (left), hybrids (middle) and deflagrations
(right). The gray shaded region indicates the interior of the bubble.

shock from blue to green, going down on the adiabat, it consequently decreases entropy
and violates the conditions in eq. (5.20). Due to these two reasons, we conclude that strong
deflagrations are not viable modes of expansion of bubble walls. We however emphasise,
as discussed in [219], that the nature of the cosmological phase transitions might allow for
a direct jump between the blue and the orange point, making our argument inconclusive.
In any case, we expect the stability argument to hold for cosmological phase transitions
as well.

Hybrids

The previous reasoning by which strong deflagrations are forbidden does not necessarily
mean that a supersonic deflagration–type of transition cannot exist. Although a solution
with v− < cs and v+ > cs is unstable, the closest stable solution has v− = cs and v+ > cs

4.
This type of solution can be achieved by combining a Chapman-Jouguet deflagration with
a rarefaction wave behind the wall, ensuring the fulfilment of boundary conditions. This
configuration is termed hybrid solution (or supersonic deflagration [219]), which become
stable when v− = cs. In the middle panel of fig.5.1.5, we present an example of such a
hybrid composition.

Evolving through the different profiles

When discussing the various modes of bubble expansion, it is more physical to fix the
strength of the phase transition, αN , and solve for all the other quantities in terms of
it. Having fixed the strength there will be only one possible fluid profile for a given wall
velocity. In fig. 5.1.6, we present the evolution of v+ ans v− as a function of ξw. Since αN
is not directly specified as an input parameter in the matching conditions, we conducted
a scan over v+ and v− to determine which combination gives the appropriate αN . Conse-
quently, we also calculated α+/αN and the position of the shock wave, ξsh. The vertical
grey lines indicate the speed of sound, cs, and the Jouguet velocity, which represents the
velocity distinguishing the fastest hybrid solution from the slowest detonation. We will
properly define the Jouguet velocity in section 5.2.3. In the right panel, we illustrate the

4To be more precise, the condition v− = cs is determined by the stability criteria for perturbations. As
discussed in Appendix 5.A, linear perturbation analysis shows that for a deflagration front to be stable, we
require v− ≤ cs. Conversely, to ensure that the detonation solution is not double-valued, we need v− ≥ cs.
Therefore, to maintain a well-defined and stable front, it is necessary to have v− = cs. For a more rigorous
treatment, one should also verify the stability of the deflagration front under corrugation (deformation
or perturbation of the front, such as waves or ripples). This has been addressed (perturbatively) in [225],
which demonstrates that the deflagration front remains stable if appropriate boundary conditions are
specified for the velocity of the reaction front.
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Figure 5.1.6: The quantities α+/αN , and v+, v−, ξsh as a function of ξw for fixed values
of αN = 0.1, 0.5 varying the wall velocity. For deflagrations ξw = v−, for hybrids neither
v+ nor v− can be identified as the wall velocity, while for detonations ξw = v+. The
vertical lines represent the sound speed and the Jouguet velocity.

scenario where for sufficiently large values of αN a solution with ξw within the grey band
cannot be found. In other words, there cannot exist a (slow) deflagration compatible with
such a (large) αN .

Now that we have examined the relevant characteristics of the solutions for an expand-
ing bubble during a direct phase transition and we have set all the necessary notation, we
are ready, in the next section, to explore the second quadrant of fig. 5.1.4, which describes
the case of bubble expansion during an inverse phase transition.

5.2 Inverse phase transitions
After reviewing the hydrodynamic solutions of direct PTs, we now turn to our main
interest, namely the inverse PTs. These occur from a phase with vanishing vacuum energy
to another phase with (positive) vacuum energy. We will follow the same presentation as
before and identify all the expansion modes of inverse PTs.

5.2.1 Motivation and basics
When the system finds itself in a minimum with zero vacuum energy, typically located
away from the origin of the potential, it may still be advantageous to transition to a state
with non–zero vacuum energy, albeit with more relativistic (light) degrees of freedom.

How can this be realised? The simplest setup is the one where a direct transition
proceeds in the opposite direction, namely if we simply heat up the zero–temperature
phase as considered in ref. [208] in the context of reheating. If we stick to this picture, we
do not need to go beyond the bag EoS. In fact, one can write the pressure in the broken
and symmetric phases as in eq. (5.7) but inverting the roles of ϵ±, so that one can have
a supercooled or superheated PT depending on which branch the system is coming from.
Notice that if the two phases are well–defined in the temperature range relevant for a
direct transition, they are typically well–defined for the inverse transition as well, as both
transitions are supposed to take place around the same critical temperature. Therefore, if
the direct PT is not extremely supercooled, also the inverse PT should be well established
provided it is not extremely superheated.
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Figure 5.2.1: Velocity profiles for inverse detonations (left), inverse hybrids (middle)
and inverse deflagrations (right).

Types of discontinuities for cosmological inverse phase transitions
Inverse Detonations
(p+ < p−, v+ > v−)

Inverse Deflagrations
(p+ > p−, v+ < v−)

Weak v+ < cs, v− < cs v+ > cs, v− > cs
Chapman-Jouguet v+ = cs, v− < cs v+ = cs, v− > cs
Strong v+ > cs, v− < cs v+ < cs, v− > cs

Table 5.2.1: Types of discontinuities for the inverse phase transitions.

The matching conditions of the inverse PT remain formally the same as in the direct
case and we can refer to Sec. 5.1.1. As before, in order to complete the set of equations,
we need to introduce an equation of state relating the various thermodynamic quantities.
Keeping the same convention as in the previous section, for an inverse phase transition
we require that the inside of the bubble − expands into the outside of the bubble +, and
the EoS takes the form in eq. (5.7). Since the matching conditions across the wall are
formally unchanged once they are written in terms of the enthalpy and the velocities in
the wall frame, the relations in eq. (5.9) still hold.

However, sticking to the definitions of eq. (5.10) for α+ and r, one finds that inverse
PTs display negative α+:

α+ = ϵ+ − ϵ−

a+T 4
+

= − ϵ

a+T 4
+
, (5.30)

where here ϵ+ = 0 and ϵ− ≡ ϵ. From now on, we will stick to the following characterisation:
direct PTs have α+ > 0 while inverse PTs have α+ < 0.

Following the same steps as before and eliminating the pressures and the r parameter
in favour of α+ and v−, we obtain the same relation between the velocities

v+(v−, α+) = 1
1 − |α+|

[(
v−

2 + 1
6v−

)
±

√√√√(v−

2 + 1
6v−

)2

+ α2
+ − 2

3 |α+| − 1
3

]
, (5.31)

with the only difference that α+ is now negative. Notice that the limit α+ → −1 is
actually smooth. The isocontours with constant α+ are reported in the right panel of
fig. 5.1.2.

5.2.2 The types of solutions for inverse PTs
Similarly to the case of direct phase transitions, we expect that several types of fluid
solutions can exist for inverse phase transitions. We found five different possible expansion
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modes, analogously to the direct case, that we called: i) inverse detonations (weak and
CJ), ii) inverse deflagrations (weak and CJ), and iii) inverse hybrids, displayed in the left,
right, and middle panels, respectively, of fig. 5.2.1. Our naming of inverse detonations
and deflagrations relies on the mirror symmetry that can be drawn from fig. 5.1.4 5.

Inverse Detonations

The first possibility, in analogy with detonations, would be to build an inverse detonation
by glueing a reaction front with ξw = v− < cs and a rarefaction wave going from v(ξ+

w ) to
0 at ξ = cs. In the plasma frame, the velocity v(ξ+

w ) = µ(v−, v+) with v− < v+ is always
negative. Notice however that since ξ is positive the bubble is actually expanding. As one
can see from eq. (5.24), across the rarefaction wave, namely from ξ = cs to ξ = ξw, the
pressure as well as the velocity decreases. Such solutions are displayed in the left panel
of fig. 5.2.1.

For this type of wave with v− = ξw < cs, there are in principle three solutions for
v+, see the right panel of fig. 5.1.2: v+ < cs, which we call the weak inverse detonation,
the CJ solution v+ = cs and v+ > cs, which we call the strong inverse detonation.
The corresponding trajectories in terms of reaction adiabats are shown in fig. 5.C.4 and
fig.5.C.5.

Impossibility of strong inverse detonations Similarly to the case of direct strong
detonations, one can show that inverse strong detonations are not compatible with the
boundary conditions of the bubble. Taking into account that the fluid velocity is always
negative, v(ξ) ≤ 0, and requiring that v(ξ → cs) → 0, one has ∂ξv > 0. From eq. (5.25)
this implies that the velocity increases from the phase boundary to the outside of the
bubble, so that

[
µ2
p→w

c2
s

− 1
]
< 0 is required by the boundary conditions. This yields

|µp→w| = ξ − v

1 − ξv
≡ v+ < cs , (5.32)

where the subscript p → w means that we go from the plasma frame to the wall frame.
We then conclude that strong inverse detonations are not compatible with our boundary
conditions. This leaves the weak and CJ inverse detonations as the only physical solutions.

Inverse Deflagrations

A second type of solutions are inverse deflagrations, where we glue a reaction front with
v+ = ξw and v− > cs followed by a compression wave ending with a shock front. A typical
fluid profile can be seen in the right panel of fig. 5.2.1. As we can see, these solutions
are characterised by the fluid being sucked inside the bubble. This can be physically
interpreted by noticing that, upon entering the bubble, particles losing their mass receive
a kick toward the centre (as we shall see in Sec. 5.4), which then accelerates the fluid
inward.

There are three possible solutions for inverse deflagrations depending on the value
of v+: v+ > cs dubbed weak inverse deflagration, the CJ solution with v+ = cs, and
the strong inverse deflagration with v+ < cs. The corresponding trajectories in terms of
reaction adiabats can be found in fig. 5.C.4 and fig. 5.C.5.

5The distinguishing physical characteristic of detonations setting it apart from deflagrations, as stated
in [231], is that the fluid just behind the reaction front is in motion rather than the propagation exceeding
the speed of sound. The mirror symmetry flips this physical interpretation, as for instance for inverse
detonations the fluid will be in motion ahead of the reaction front.
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The impossibility of strong inverse deflagrations As for the case of direct PTs,
strong inverse deflagrations can be argued to be forbidden by two arguments.

The first argument is about stability, and in Appendix 5.A we argue that strong
inverse deflagrations cannot be stable by following the same reasoning as for direct PTs.

As a second argument, we can consider the behaviour of entropy across a strong
inverse deflagration front. Referring to the right panel of fig. 5.C.5, we can interpret a
strong inverse deflagration (blue to orange) as composed of a shock wave (blue to green)
followed by a weak deflagration (green to orange). This is however forbidden, as the shock
would imply negative entropy production (the pressure decreases across the shock)6. We
again warn the reader that this second argument might not hold because of the nature of
cosmological PTs.

Inverse Hybrids

The closer stable solution to a strong inverse deflagration is a CJ inverse deflagration with
v+ = cs, which we dub inverse hybrid. Notice that here, contrarily to direct hybrids, it
is the upstream velocity (v+) that is fixed to the speed of sound. To build the velocity
profile we glue a rarefaction wave to a detonation front, followed by a compression wave
and finally a shock wave. This is shown in the middle panel of fig. 5.2.1. Moreover, the
requirement that the shock wave is evolutionary (increases entropy) with v−,sh < cs and
v+,sh > cs, in the shock frame, imposes that v− > cs

7.
Fixing v+ = cs actually sets an upper bound on |α+|. In particular, we find that for

|α+| ≥ 2/
√

3−1 ∼ 0.15 inverse hybrids cannot be achieved. This is because these solutions
are constrained to be in the region dubbed “strong inverse deflagration" in fig. 5.1.2, and
by writing α+ in terms of v+ and v−, we get from (5.11) that

α+(v+, v−) = (v− − v+)(1 − 3v+v−)
3v−(1 − v2

+) . (5.33)

By setting v+ = cs, and the extremal value v− = 1 in eq. (5.33), we obtain the largest
possible |α+| as |αmax, hybrid

+ | = |α+(cs, 1)|.
We also find that the wall velocity of the inverse hybrid solution must satisfy

c2
s < ξw < cs . (5.34)

The lower bound comes from the fact that the slowest possible inverse hybrid is set by the
slowest possible shock, that is the intersection of the blue dashed line with the horizontal
axis v(ξ) = −1 in the quadrant II of fig. 5.1.4. This reads

µ(ξw, v(ξw))ξw = c2
s

v=−1−→ ξmin, hybrid
w = c2

s . (5.35)

The upper bound comes from the fact that for ξw > cs there always exists an inverse
deflagration which is stable.

6Similar considerations would show that strong inverse detonations are instead allowed in principle,
even though incompatible with the required boundary conditions for the bubble as discussed above.

7Notice that in principle, another hybrid solution exists with v− < cs and v+ = cs. However, this
solution would require a shock wave behind the wall with vsh,− < cs and vsh,+ < cs, which is however
forbidden by the thermodynamics of shocks.
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Figure 5.2.2: The quantities α+/αN , and v+, v−, ξsh for fixed αN = −0.1,−0.5 varying
the wall velocity. The colour coding is the same as in fig. 5.1.6. For inverse detonations
we can identify ξw = v−, for inverse hybrids neither v+ nor v− can be identified with the
wall speed, while for inverse deflagrations ξw = v+. We can see that for large enough
|αN |, a window opens up where no consistent solution can be found. For αN < −1/3, as
in the right panel, only inverse detonations are allowed.

5.2.3 The Jouguet velocity for the transition between detona-
tion and hybrid

In the context of direct phase transitions, the Jouguet velocity defines the wall velocity,
ξw = ξdirect

J , for which the hybrid solution becomes a detonation, i.e. the velocity for
which the bubble wall catches up with the shock wave. It reads

ξdirect
J = cs

1 +
√

3αN (1 − c2
s + 3c2

sαN)
1 + 3c2

sαN

 , (5.36)

which is obtained by substituting v− = cs into eq.(5.11), and we have identified α+ ≡ αN
since the fluid to the right of the wall is at rest.

By a similar reasoning, in this section, we determine the inverse Jouguet velocity,
ξinv
J , which separates a pure inverse detonation from an inverse hybrid solution so that if
ξinv
J < ξw < cs the bubble grows as an inverse hybrid. To this end, we remind the reader

that for an inverse detonation, one has

v− = ξw < v+ < cs, (5.37)

while the inverse hybrid solution implies

v− > cs , v+ = cs , c2
s < ξw < cs . (5.38)

We can now look for the wall velocity such that inverse detonations become impossible.
Starting from v+ < cs for a weak inverse detonation, the transition to a forbidden strong
inverse detonation occurs when v+ > cs, so that the fastest allowed inverse detonation is
given by the limit v+ → cs. To find ξinv

J we can then set v− = ξinv
J and v+ = cs in eq. (5.11)

to obtain

cs = 1
1 − |α+|

[(
ξinv
J

2 + 1
6ξinv
J

)
−

√√√√(ξinv
J

2 + 1
6ξinv
J

)2

+ α2
+ − 2

3 |α+| − 1
3

]
, (5.39)
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which implicitly gives ξinv
J as a function of |α+|.

Notice that for an inverse hybrid solution, the region in front of the wall has a non–
vanishing fluid velocity and one cannot identify α+ with αN . The latter needs to be solved
for once we have fixed the strength of the PT. The value of ξinv

J as a function of the wall
velocity resulting from this procedure is shown by the red dashed line in the right panel
of fig. 5.3.2.

In fig. 5.2.2, we show the evolution of v+, v− (defined at the reaction front), the ratio
α+/αN , and the position of the shock ξsh, as a function of the wall velocity ξw for the
case of inverse phase transitions. Here we observe a gap of velocities between inverse
detonations and inverse hybrids that cannot be realised for a given value of αN . The
gap widens as |αN | increases, and for αN < −1/3 the forbidden region extends to all
the inverse hybrids and inverse deflagrations, leaving the inverse detonations as the only
possible solutions.

5.3 Energy budget of phase transitions
In this section, we examine the energy budget of inverse PTs. We begin by reviewing
the direct PT case and calculating the enthalpy and other thermodynamic quantities
for the various solutions. We then compute the efficiency factor, which quantifies how
much of the available energy is converted into bulk fluid motion, thereby contributing to
the production of GWs. Finally, we will present a similar analysis for inverse PTs and
highlight the main differences.

5.3.1 Thermodynamic quantities for direct PTs
As discussed already in Sec. 5.1, once the fluid velocity profile is known it is possible
to build the corresponding enthalpy and the temperature profiles. As these profiles are
discontinuous at the wall and at the position of the shock, we need to use the junction
condition in (5.5a) to provide a full characterisation. We consider the three types of
solutions for the fluid and collect all the necessary results in Appendix 5.B. The resulting
profiles are shown in the top row of fig. 5.3.1.

Efficiency factor The conservation of the energy–momentum tensor from eq. (5.3) tells
us how much of the initial energy is converted into bulk fluid motion. We are interested
in such a quantity because the kinetic energy density of the fluid, given by

ρkin ∝ v2γ2w , (5.40)

controls the amplitude of the GW signal from the PT. It is useful to split the conservation
of energy in the following way:

ξ3
w

3 ϵ︸︷︷︸
vacuum energy

+ 3
4

∫
wNξ

2dξ︸ ︷︷ ︸
initial thermal energy

=
∫
γ2v2wξ2dξ︸ ︷︷ ︸
fluid motion

+ 3
4

∫
wξ2dξ︸ ︷︷ ︸

final thermal energy

, (5.41)

The integration range in eq. (5.41) needs to include all the regions of space where the
fluid is perturbed (v ̸= 0) for the conservation to hold. This is interpreted as the fact that
the released vacuum energy and the initial thermal energy are converted into bulk fluid
kinetic energy and thermal energy after nucleation. By defining

ρN ≡ 3
4

∫
wNξ

2dξ , ρkin =
∫
γ2v2wξ2dξ , (5.42)
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Figure 5.3.1: Top: Enthalpy, pressure, energy and temperature profiles across the
bubble wall for detonations (left), hybrids (middle), and deflagrations (right). These
correspond to the velocity profiles shown in fig. 5.1.5. The enthalpy and the temperature
are normalised to wN and TN . For the temperature profiles, we have chosen a+/a− = 1.5.
Bottom: Same as in the top row but for inverse PTs, for solutions corresponding to the
profiles in fig. 5.2.1. For the temperature profiles, we have chosen a+/a− = 0.8.

one can introduce the efficiency parameter κdirect,

ρkin

ρtot
≡ κdirect

αN
1 + αN

, (5.43)

where ρtot is the total energy before nucleation, i.e. the LHS in eq. (5.41), and we have
related the various quantities to αN defined in eq. (5.10) via the bag EoS. The parameter
κdirect defined in this way is a measure of the efficiency for transferring the initial vacuum
energy into bulk fluid motion and takes the form

κdirect = 3
ϵξ3
w

∫
γ2v2wξ2dξ . (5.44)

The fraction of the total energy going into thermal energy can then be directly estimated
by 1 − κdirect.

The numerical results for κdirect are displayed in the left panel of fig. 5.3.2, where we
actually plot the combination κdirect αN/(1+αN) for a better comparison with the inverse
case. The solid black lines are the isocontours with the same αN , varying the wall velocity.
We can note that the top right corner, where we have the fastest hybrid solutions, is the
most efficient in converting the released vacuum energy into kinetic energy, saturating
almost to 1 for αN ≫ 1. The red dot-dashed line is the Jouguet velocity, defined in eq.
(5.36), while the grey dashed line indicates the sound speed. It is worth noticing that
not for every set of parameters a solution with a specific efficiency can be found. This is
represented by the red shaded region, where no solution is available. This behaviour is
similar to the right panel of fig. 5.1.6, where the grey shaded region was signalling that
no solution could be found for a certain choice of αN and ξw.

We also checked numerically energy conservation, eq. (5.41), which can be rewritten
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Figure 5.3.2: Efficiency factor for converting the energy budget into bulk fluid motion
for direct PTs (left) and in the inverse case (right). The red dashed line is the Jouguet
velocity. The red shaded region shows where no consistent solution with such a choice of
wall velocity and efficiency can be found.

as ∫ 1

0

[(
γ2 − 1

4

)
w − 3

4wN
]
ξ2 dξ = ϵ

3ξ
3
w . (5.45)

5.3.2 Thermodynamic quantities for inverse PTs
In this section, we aim to build the profiles for the thermodynamic quantities of interest
for the inverse PTs. All the details are collected in Appendix 5.B and the profiles for the
inverse transitions are presented in the bottom row of fig. 5.3.1.

Efficiency factor For the inverse PTs, we start by considering the energy density before
the nucleation event to be the one of radiation,

ρtot = eR = 3
4wN , (5.46)

where wN is the enthalpy of the + phase at the nucleation temperature. On the other
hand, the kinetic energy density of the fluid is given by

ρkin ∝ v2γ2w . (5.47)

It is again instructive to split the conservation of energy. For the inverse PTs, we obtain

3
4

∫
wNξ

2dξ︸ ︷︷ ︸
initial thermal energy

= ξ3
w

3 ϵ︸︷︷︸
vacuum energy

+
∫
γ2v2wξ2dξ︸ ︷︷ ︸
fluid motion

+ 3
4

∫
wξ2dξ︸ ︷︷ ︸

final thermal energy

, (5.48)

where wrt to the standard case we see that the total amount of energy at our disposal is
the initial thermal energy that will be converted not only into kinetic and final thermal
energy, but also into vacuum energy. Indeed, it is apparent from eq. (5.48) that inverse
phase transitions are happening “against the vacuum" and would not be possible at zero
temperature.
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In order to understand what are the appropriate boundaries of integration, we can
consider the total enthalpy before nucleation inside a sphere that will contain all the
space affected by the fluid perturbation after nucleation. This sphere has radius v̄ =
Max(ξw, cs), where for instance v̄ = cs for inverse detonations.

Then, it is possible to define the efficiency κinverse as the fraction of the critical energy
inside this sphere that will go into bulk fluid motion:

κinverse ≡ ρkin

ρtot
= 4π

∫ v̄
0 ξ

2dξ v2γ2w

4π
∫ v̄

0 ξ
2dξ 3

4wN
= 4
v̄3

∫
ξ2dξ v2γ2 w

wN
. (5.49)

In the way it is defined the efficiency κinverse is the parameter directly entering the fits for
the GW signal 8. As before, we fix αN and solve for all the other variables. Our numerical
results for κinverse obtained in this way as a function of ξw and αN are displayed in the right
panel of fig. 5.3.2. The solid black lines are the isocontours with the same αN , varying
the wall velocity.

Similarly to the direct PT case, we note that the top right corner where we have
the fastest inverse deflagrations is the most efficient in converting the initial energy into
kinetic energy, saturating to κinverse ≈ 0.5 for αN ≳ −1/3. For more negative values of
αN , i.e. αN ≲ −1/3, only inverse detonations are allowed and the efficiency drops. This
effect may also be understood in terms of energy conservation, as for large and negative
αN a significant fraction of the energy budget is lost to the vacuum energy of the new
phase and is not transferred into bulk kinetic energy of the fluid.

The red dot-dashed line is the Jouguet velocity, defined implicitly in eq. (5.39), while
the grey dashed line indicates ξw = cs. The limiting solid red curve separates physical
solutions from forbidden ones, in shaded red. It is worth noticing that the region for
which a consistent solution cannot be found is bigger than in the direct case. Indeed,
increasing |αN | beyond |αN | ≈ 0.07, a window of forbidden solutions appears between the
inverse detonation and inverse hybrid, as we can already observe in fig.5.2.2. This window
induces the peculiar feature in the limiting red curve appearing at |αN | ≳ 0.07. At the
dip, in |αN | ≳ 0.07 and ξw = c2

s, it merges with the Jouguet velocity (dashed red line).
This merging is due to the fact that the slowest possible velocity for a hybrid is ξw = c2

s,
as explained in section 5.2.2.

We have also checked numerically energy conservation from (5.48) for the inverse PT:∫ 1

0

[(
γ2 − 1

4

)
w − 3

4wN
]
ξ2 dξ = − ϵ

3ξ
3
w . (5.51)

5.3.3 The GW signal from sound waves
One of the main interesting features of cosmological phase transition is the copious grav-
itational wave signal induced [232–236]. For this reason, and in the context of several
future GW experiments, it has become crucial to quantify the amplitude and the spec-
trum of GWs emitted during cosmological PTs. One of the strongest sources of GWs is
the sound waves propagating in the plasma after the end of the transition [47, 48, 54],
which are sourced by the kinetic energy deposited in the plasma.

8We could in principle also introduce another definition of the efficiency, κ̃inverse, which matches more
closely the expression for the direct case:

κ̃inverse = 3
ϵ v̄3

∫
ξ2dξ w v2γ2 , κinverse = |αN |κ̃inverse. (5.50)
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In the case of direct PTs, it has been showed that the amplitude of the signal from
sound waves is controlled by [73]

Ωdirect
GW ∝

(
ρkin

ρtot

)2

=
(
κdirectαN
1 + αN

)2

, (5.52)

where ΩGW is the fraction of energy in GW radiation today, where κdirect αN/(1 + αN)
corresponds to the fraction of energy converted to bulk fluid motion.

In the context of inverse PTs, we expect the GW signal to analogously scale like

Ωinv
GW ∝

(
ρkin

ρtot

)2

= κ2
inverse . (5.53)

We however emphasise that such claim should be confirmed by numerical simulations.

5.4 The pressure on the bubble wall
In this section we investigate the pressure and the driving force which acts on the bubble
walls, first in the direct case and then in the inverse PT.

5.4.1 The driving force in the direct PT
Despite the difference in pressure, an important phase transition parameter which cannot
in principle be fixed by hydrodynamics only, is the velocity of the bubble wall expansion,
ξw. To investigate it we need to rely on a microphysics analysis. The EoM of the scalar
field is given by [100, 101]

□ϕ+ dV (ϕ)
dϕ

+
∑
i

dm2
i (ϕ)
dϕ

∫ d3p

(2π)32Ei
fi(p, x) = 0 , (5.54)

where fi are the distribution functions of the different particles coupling to the wall.
The distribution functions are unknown and need to be solved via Boltzmann equations.
Following the lines of [73], we can integrate the EoM in eq.(5.54)

∫
dz∂zϕ. Upon this

operation, we obtain the driving force for the expansion of the bubble9

Fvacuum ≡
∫ outside

inside
dz∂zϕ

dV (ϕ)
dϕ

= ϵ+ − ϵ− , (5.55)

which is positive for a direct phase transition and negative for an inverse phase transition,
and the resisting friction originating from the plasma

Pplasma ≡ −
∫
dz∂zϕ

∑
i

dm2
i (ϕ)
dϕ

∫ d3p

(2π)32Ei
fi(p, z, T ) = PLTE + Pdissipative . (5.56)

Using a separation of the form fi(p, T, z) = f eq(p, T, z)+ δfi(p, T, z), the friction has been
conventionally split into a LTE (local thermal equilibrium) contribution and dissipative
contribution. From now on, we will follow the following convention: positive pressure will
contribute to the acceleration of the bubble wall while negative pressure will resist it.

9Notice that there is an intrinsic freedom in determining what is called the driving force and what is
called the friction force. Here we follow the split explained in [237], and used typically in particle physics
computation of the pressure [94] as opposed to [73].
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The dissipative force originates from departure from equilibrium piece δfi(p, T, z),
while the LTE originates from heating effects and the f eq(p, T, z) piece. The LTE contri-
bution can be further separated in

PLTE = −
∫ outside

inside
dz∂zϕ

dVT (ϕ, T )
dϕ

= −∆VT +
∫ outside

inside
dz
∂VT
∂T

∂T

∂z
. (5.57)

Finally, the pressure budget on the wall is given by

Fvacuum − Pplasma = ϵ+ − ϵ− + ∆VT −
∫ outside

inside
dz
∂VT
∂T

∂T

∂z
− Pdissipative . (5.58)

Let us first neglect the contribution of the dissipative forces. In the context of the direct
phase transition ϵ− = 0 and we define ϵ+ ≡ ϵ, so that eq.(5.58) becomes

Fvacuum − Pplasma = ϵ+ ∆VT −
∫ ∞

−∞
dz
∂VT
∂T

∂T

∂z
, (5.59)

where the integral is to be performed from the inside of the bubble to the outside of
it. We cannot solve exactly the integral without a microscopic description of the phase
transition and the change of d.o.f. As a first approximation, we can assume that the phase
transition is weak enough so that T+ ≈ T−

10 obtaining

Fvacuum − Pplasma ≈ ϵ− 1
3∆aT 4

+ , (5.60)

which we can express in the equivalent form

Fvacuum − Pplasma ≈ 3w+

4

(
α+ − 1

4(1 − b)
)
, b ≡ a−/a+ . (5.61)

with b ≤ 1 being the ratio of the number of relativistic d.o.f inside and outside the
bubble. The driving force is maximised when b = 1 (this remains true even if there
is a large heating in front of the wall and T+ ≫ TN). A more precise expression can
be obtained within the purely local thermal equilibrium approximation by imposing the
conservation of entropy across the reaction front, as was followed in [104, 105, 237]. Our
simplified picture in (5.61) captures nevertheless the physics we are interested in.

We observe that in the instance of ϵ → 1
3∆aT 4

+, the driving force vanishes. This is an
example of the hydrodynamic obstruction discussed for in details in [103–105, 237–240].
Intuitively, from a purely hydrodynamic point of view, this can be understood from the
presence of a shock wave in front of the wall, which heats up the plasma. It has been
showed that this hydrodynamic obstruction is maximal at the Jouguet velocity, which is
the crossing between the hybrid and the detonation regime. From fig. 5.2.2 we observe
that α+ has a minimum at the Jouguet velocity, which turns into a weaker driving force
in eq. (5.61).

The dissipative force Pdissipative can be estimated within a particle physics model. It
originates from

Pdissipative =
∫
dz∂zϕ

∑
i

dm2
i (ϕ)
dϕ

∫ d3p

(2π)32Ei
(fi(p, z, T ) − f eq

i (p, z, T )) . (5.62)

It however requires a careful solving of the Boltzmann equations to be accounted for [74–
78, 100, 101].

10Notice that the strict equality T+ = T− is technically not consistent with the LTE assumption, which
imposes the conservation of entropy current and thus the saturation of eq. (5.13).
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The runaway solution for direct PTs

In the regime of fast bubbles, the wall can reach a terminal velocity, described by a
boosted detonation, or keep accelerating until the collision. We call the latter, a runaway
wall. This type of runaway wall can be studied neglecting the collisions among particles
in the wall [2, 94–96, 102, 106, 115, 241], where it is assumed that the distribution is fixed
all along the wall by the incoming flux: fi(p, T ) = foutside(p, TN). This avoids the usual
split into an equilibrium and an out-of-equilibrium piece, as performed in the previous
subsection. This is approximately verified when particles entering do not scatter inside
the wall. In the regime of fast bubbles, γw ≫ 1, where we defined γw ≡ 1/

√
1 − ξ2

w the
boost factor of the wall to the plasma, it is known that while the contribution from LTE
decreases, the most important contribution originates from the particles coupling to the
scalar field and thus gaining a mass [94]. In the case of the fast walls, it has been obtained

PLO,γw→∞
plasma ≈

∑
i

cigi
∆m2

iT
2

24 , (5.63)

where ∆m2 ≡ m2
b − m2

s > 0 and where ci = 1(1/2) for bosons (fermions), and gi is
the number of d.of of each particle. On top of those contributions, pressure from particle
splittings studied in [2, 95, 96, 115] has been also shown to be able to stop the acceleration
of the bubble wall. Notice that such contributions are by definition not accounted in
eq. (5.54). This is an open question of how to express particle splittings in the framework
of eq. (5.54).

In a given model the condition for runaway behaviour is usually formulated as

|Pmax
plasma(Tnuc)| < ϵ , (5.64)

where Pmax
plasma(Tnuc) contains several pieces: the LO plasma pressure dominated by the

expression in eq.(5.63), possibly pressure from mixing particles [107] and pressure from
emission of soft gauge bosons, scaling like the wall boost factor γw.

5.4.2 The driving force in the inverse PT
In the case of an inverse phase transition, the difference of vacuum energy becomes a
resisting pressure and the driving force originates from the plasma effects. We reinterpret
the various contributions in the following way: the resisting force is given by

Fvacuum ≡
∫
dz∂zϕ

dV (ϕ)
dϕ

= ϵ+ − ϵ− , (5.65)

and the pushing plasma effect is given by

Pplasma ≡ −
∫
dz∂zϕ

∑
i

dm2
i (ϕ)
dϕ

∫ d3p

(2π)32Ei
fi(p, z, T ) = PLTE + Pdissipative . (5.66)

As before, we first ignore the dissipative contributions. In the inverse PT case ϵ+ = 0,
and we define ϵ− ≡ ϵ. The approximate LTE expression becomes (when we can approxi-
mate T+ ≈ T−):

Fvacuum − Pplasma ≈ 3w+

4

(
1
4(b− 1) − |α+|

)
, b ≡ a−/a+ , (5.67)
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where now b > 1. We observe that the driving force fuelling the expansion now originates
from the change of d.o.f. and has to overcome the resisting force from the vacuum. This
requires b > 1 + 4|α+|. This approach misses potentially important physical effects, as
already stated in the previous section, as for example effects coming from the change of
temperature across the wall. We leave this for further studies.

Looking back at fig. 5.2.2, we observe that even at constant αN , α+ is a function of the
wall velocity ξw and presents a peak at the crossing between the inverse detonation and
the inverse hybrid profile. Notice that, since in the case of inverse transitions the pressure
associated with |α+|, as observed in the RHS of eq. (5.67), is resisting the expansion, this
behaviour implies a hydrodynamical obstruction very similar to the one that has been
largely studied in direct phase transitions [104, 237, 238] and recalled in the subsection
above. Like in the direct case, the obstruction shows a peak at the (inverse) Jouguet
velocity. This trend would deserve more investigation, we however leave the study of the
subtleties of such effects to future studies.

The runaway solution for inverse PTs

So far, we have studied the steady states of the expansion modes. A steady state is reached
when the vacuum force is balanced by the plasma pressure. It remains the possibility that
a steady state is not reached at all and the bubble keeps accelerating until the collision.

What about the possibility of the runaway solution for the inverse PT? In principle,
this can be studied in the collisionless limit, since we consider γw ≫ 1: the pressure
from the exchange of momentum originates from some particles losing their mass and
inducing a kick on the wall. Let us sketch the analysis in the collisionless regime. Since
the particles lose their mass when entering the wall, we expect the reflection from outside
to be negligible. Let us then as a first approximation only consider the entering species:
in the wall frame, we can apply the conservation of energy along the particle trajectory,

E =
√
m2 + p2

z + p2
⊥ ,

dE

dz
=
(
dm2

dz
+ dp2

z

dz

)
1

2E = 0 , ⇒ ∆ppart
z ≈ −|∆m2|

2pz
.(5.68)

From eq.(5.68), we see that particles entering the wall and losing their mass are accelerated
inward by a negative ∆pz. By conservation of momentum, the wall receives an equal and
opposite kick, ∆ppart

z = −∆pwall
z > 0, which accelerates it forward. This leads us to

conclude that the wall is aspired as the particles lose their mass. This behaviour was
dubbed anti friction in the analysis of ref. [208].

We need however to convolute with the incoming flux to have a pressure

Pplasma = −
∫
dz∂zϕ

∑
i

gi
dm2

i (ϕ)
dϕ

∫ d3p

(2π)32Ei
fi(p, z, T )

≈ −
∑
i

gi

∫ d3p

(2π)3
|∆m2

i |
2Ei

f eq
outside(p, T ) (5.69)

where the sum is performed over particles losing their mass and gi is the number of d.o.f
of each particle. The integral over the phase space is frame-independent and we compute
it in the plasma frame. We obtain the final expression

Pγw→∞
plasma ≈ −

∑
i

Ceff,i(mi
out/T )cigi

|∆m2
i |T 2

24 , (5.70)
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where again ci = 1(1/2) for bosons (fermions). We also defined Ceff ≤ 1 to take into
account the Boltzmann suppression of the particles outside the bubble. It has an analytical
expression in two limits

Ceff(mi
out/T )T

2

24 ≡
∫ d3p

(2π)32Ei
fi(p, T ) ≈


T 2

24 if mout
i ≪ T ,

1
2mout

i

(
mout
i Tnuc

2π

)3/2

e−mout
i /T if mout

i ≫ T ,
(5.71)

and we emphasise that the particles with large masses outside of the bubble become
Boltzmann suppressed. Therefore, if the following inequality is satisfied,

ϵ <

∣∣∣∣∣∑
i

Ceff,i(mi
out/T )cigi

|∆m2
i |T 2

24

∣∣∣∣∣ , (5.72)

then the wall can in principle runaway. However, we will expect, in the same case as in
the direct phase transition [2], that there might be other sources of pressure from the
splitting of particles passing through the wall [3].

Notice that the presence of the Boltzmann suppression factor in (5.72) implies that
the BM pressure for inverse and direct transitions can actually be different (in absolute
value) for the cooling and the heating phase transition happening in the very same particle
physics model. This could change the conclusion in ref. [208] that runaway for the direct
PT would imply non–runaway for the inverse PT, and viceversa.

Let us however notice that from the point of view of hydrodynamics, the situation for
inverse phase transitions appears different than in the case of direct phase transitions. In
the case of direct phase transitions the hydrodynamical solutions with ξw ∼ 1 correspond-
ing to ultra–relativistic detonations are in principle possible for any value of α+ = αN .
In an inverse phase transition steady–wall solutions with ξw ∼ 1 correspond to inverse
deflagrations. These solutions exist only for −1/3 < α+ < 0. It is then conceivable that
when α+ becomes too negative the runaway behaviour is prevented. This reflects the fact
that the vacuum energy is now opposed to the bubble expansion rather than fueling it.
On the other hand, runaway walls are not steady-state solutions, so this reasoning cannot
firmly invalidate runaway for α+ < −1/3.

5.5 Summary
The reheating of the Universe, for example at the end of cosmic inflation [208], or after a
period of matter domination, might lead to inverse phase transitions against the vacuum
energy of the zero–temperature potential. Formally, we find that these transitions can be
studied by taking αN → −αN in the expression for the fluid velocity as computed from
the matching conditions in the case of direct phase transitions.

In this chapter, we have focused on the hydrodynamics of inverse transitions, and we
have identified five different modes of bubble expansion: weak and CJ inverse detonations,
weak and CJ inverse deflagrations and finally inverse hybrids. We have excluded strong
inverse detonations as they are inconsistent with the boundary conditions of the bubble,
as well as strong inverse deflagrations because they are unstable and likely excluded by
entropy considerations. We show schematically a summary of the possible fluid velocity
profiles for inverse PTs in fig. 5.5.1, alongside the direct PT profiles for comparison.

We have provided the velocity, enthalpy, and temperature profiles for each of these
solutions and examined the efficiency for transferring energy into bulk fluid motion after
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Figure 5.5.1: Cartoon illustrating the various fluid solutions, and the corresponding
discontinuities and interfaces for direct PTs (top) and inverse PTs (bottom).

nucleation. This can be used to assess the amplitude of the gravitational waves produced
during such a transition.

Finally, we have studied the pressure exerted on the bubble wall of the inverse phase
transition. As opposed to the direct case, the driving force originates from the plasma
rather than from the vacuum energy. We also find an analogous hydrodynamic obstruc-
tion, where the resistance to the expansion is maximal at the crossing of the inverse
Jouguet velocity.

While our study clearly has applications in the case of heating phase transitions, we
leave the exploration of particle physics models that could lead to the realisation of such
inverse phase transitions for future studies.
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Appendix

5.A Stability of the hydrodynamical solutions
The stability of the direct phase transitions has been thoroughly studied in previous
works [227] and [225] (sections 4.8 and 5.5) and more specifically in [242, 243]. In this
context, the stability of discontinuities has been related to the concept of evolutionarity
of the front. A front is said to be evolutionary if any type of infinitesimal perturbations
acting on it remains infinitesimal.

To determine if a front is evolutionary, it is sufficient to compute its degree of under-
determinacy DU [225, 227], which is defined as the difference between the unknown pa-
rameters associated with the front and the number of boundary conditions applied on the
front.

The boundary conditions applied on the wall are the three conservation equations,
the conservation of mass, momentum, and energy across the front and possibly a fourth
condition imposing the front velocity ξ. On the other hand, the number of unknown
parameters is given by i) the number of acoustic λ±

1,2 and 2) the entropy perturbations
λ±

0 that can be transmitted from the front [227]. We call those perturbations propagating.
We can obtain that

• The perturbations λ±
1,2 in the front frame have the form

Ahead : λ+
1 = v+ + cs

1 + v+cs
∝ v+ + cs λ+

2 = v+ − cs
1 − v+cs

∝ v+ − cs , (5.73)

Behind : λ−
1 = v− + cs

1 + v−cs
∝ v− + cs λ−

2 = v− − cs
1 − v−cs

∝ v− − cs , (5.74)

where the proportionality is valid in the Newtonian limit and is simply the compo-
sition between an acoustic perturbation propagating with a velocity ±cs in a fluid
with bulk velocity v− downstream or v+ upstream. A propagating perturbation (for
a left propagating front) ahead of the wall needs to have λ+ < 0 while a propagating
perturbation behind the wall will have λ− > 0. Those are the conditions for the
perturbations to be propagated away from the front. Perturbations violating those
conditions remain stuck on the front and do not propagate.

• λ±
0 : On the other hand, the entropy perturbations λ±

0 are always transmitted [225,
227]. The count is thus always two from the entropy perturbations.

Let us illustrate the computation with the case of v+ > cs, v− < cs, we have

λ+
1 > 0 λ+

2 > 0 λ−
1 > 0 λ−

2 < 0 , (5.75)

where we can conclude that only λ−
1 is propagating. Put in a more intuitive way, in the

region where the flow is upstream (toward) the front, v+ > cs, and so the two acoustic
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perturbations which propagate with velocity cs cannot propagate away from the front,
since v+ > cs. On the other hand, downstream, the flow goes out from the wall with
velocity v− < cs and so, while the perturbation propagating toward the front cannot
escape from it, the perturbation propagating away from the front can escape it because
v− < cs. This leads us to the conclusion that for v+ > cs, v− < cs, there are three
propagating disturbances, two entropy and one acoustic. If the velocity of the shock is
not imposed, the degree of under-determinacy is finally Dv+>cs,v−<cs

U = 3 − 3 = 0, and the
front is evolutionary. Following a very similar computation,

D
v+>cs,v−<cs
U = 3 − 3 = 0, D

v+>cs,v−>cs
U = 1, D

v+<cs,v−<cs
U = 1, D

v+<cs,v−>cs
U = 2 ,(5.76)

assuming that the velocity of the front is not imposed. This implies that only a shock wave
with v+ > cs, v− < cs is evolutionary.

5.A.1 Application to direct PTs
The same analysis can be followed to study the reaction fronts like detonations and defla-
grations. There is however one important physical difference: while the shock wave veloc-
ity cannot be fixed as a boundary condition, the velocity of a phase transition boundary
is controlled by hydrodynamics and particle physics. This consists of one more boundary
condition. The very same analysis leads to

D
v+>cs,v−<cs
U = 3 − 4 = −1, D

v+>cs,v−>cs
U = 0, D

v+<cs,v−<cs
U = 0, D

v+<cs,v−>cs
U = 1.(5.77)

The case v+ > cs, v− < cs corresponds to strong detonations that are not realised in
a cosmological phase transition, v+ > cs, v− > cs and v+ < cs, v− < cs correspond
respectively to weak detonations and weak deflagrations and are evolutionary. Finally,
v+ < cs, v− > cs corresponds to the strong deflagrations and are not evolutionary, because
even fixing the velocity of the wall does not set the degree of under-determinacy to zero.
This analysis has been confirmed by numerical simulations [217].

5.A.2 Application to inverse PTs
We now turn to the stability of the solutions for inverse phase transitions that we discussed
in the main text. The results in eq.(5.77) remain valid, as they apply directly to the phase
boundary, which have the same structure for the direct and the inverse transitions.

We can thus conclude in exactly the same way: the case v+ > cs, v− < cs corresponds
to the inverse strong detonations, v+ < cs, v− < cs and v+ > cs, v− > cs correspond
respectively to weak inverse detonations and weak inverse deflagrations and are evolu-
tionary, and finally v+ < cs, v− > cs corresponds to strong inverse deflagrations and are
not evolutionary.

We conclude that direct and inverse strong deflagrations are not evolutionary and
then very likely unstable. If they can be made to exist initially, they will split into the
hybrid solutions identified in the main text.

5.B Profiles of the thermodynamic quantities across
the waves

In this appendix, we collect all the necessary results to compute the plots of fig.5.3.1 and
the profiles of temperature and enthalpy.
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5.B.1 Direct PTs
We begin by studying the direct phase transitions, with deflagrations, hybrids and deto-
nations:

Deflagrations Here there are two discontinuities, at the shock and at the wall position,
as we can see in fig. 5.5.1. The matching conditions at the shock position are again

(matching at the shock) wsh+ v
sh
+ γ

2
+ = wsh− v

sh
− γ

2
− , (5.78)

where + refers to the right region wrt the shock, i.e. the unperturbed fluid, and – refers
to the left region wrt the shock, the perturbed region. Then we can identify

wsh+ = wN , vsh+ = ξsh , vsh− = µ(ξsh, v(ξ−
sh)) . (5.79)

To obtain the enthalpy after the shock, wsh− , we can plug eq.(5.79) into eq.(5.78) to obtain

wsh− ≡ w(ξ−
sh) = wN · ξsh

1 − ξ2
sh

· 1 − µ(ξsh, v(ξ−
sh))2

µ(ξsh, v(ξ−
sh))

. (5.80)

Now, evolving the solution back to the wall position we have that

w(ξ+
w ) = w(ξ−

sh) · exp
[∫ v(ξ+

w )

v(ξ−
sh

)

(
1 + 1

c2
s

)
γ(v)2µ(ξ(v), v) dv

]
. (5.81)

Proceeding in a similar way as above, the matching conditions at the wall position imply

w− ≡ w(ξ−
w ) = w(ξ+

w ) · µ(ξw, v(ξ+
w ))

1 − µ(ξw, v(ξ+
w ))2 · 1 − ξ2

w

ξw
. (5.82)

Summarizing the total profile is

w(ξ) =


wN ξ ≥ ξ+

sh

w(ξ−
sh) · exp

[∫ v(ξ)

v(ξ−
sh

)

(
1 + 1

c2
s

)
γ(v)2µ(ξ(v), v) dv

]
ξ+
w ≤ ξ ≤ ξ−

sh

w(ξ−
w ) ξ ≤ ξ−

w

(5.83)

The same can be applied to the temperature profile which is

T (ξ) =


TN ξ ≥ ξ+

sh

T (ξ−
sh) · exp

[∫ v(ξ)

v(ξ−
sh

)
γ(v)2µ(ξ(v), v) dv

]
ξ+
w ≤ ξ ≤ ξ−

sh

T (ξ−
w ) ξ ≤ ξ−

w

(5.84)

where

T (ξ−
sh) = TN

(
w(ξ−

sh)
wN

)1/4

, (5.85)

T (ξ+
w ) = T (ξ−

sh) exp
[∫ v(ξ+

w )

v(ξ−
sh

)
γ(v)2µ(ξ(v), v) dv

]
, (5.86)

T (ξ−
w ) = T (ξ+

w )
(
w(ξ−

w )
w(ξ+

w ) · a+

a−

)1/4

. (5.87)

The resulting profiles are shown in the right panel (first row) of fig. 5.3.1.
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Detonations For the detonations, we only have the discontinuity at the wall position.
We skip the detailed derivation and give the resulting profile, that for the enthalpy is

w(ξ) =


wN ξ ≥ ξ+

w

w(ξ−
w ) · exp

[∫ v(ξ)

v(ξ−
w )

(
1 + 1

c2
s

)
γ(v)2µ(ξ(v), v) dv

]
cs ≤ ξ ≤ ξ−

w

w(cs) ξ ≤ cs

(5.88)

while the temperature is

T (ξ) =


TN ξ ≥ ξ+

w

T (ξ−
w ) · exp

[∫ v(ξ)

v(ξ−
w )

γ(v)2µ(ξ(v), v) dv
]

cs ≤ ξ ≤ ξ−
w

T (cs) ξ ≤ cs

(5.89)

where

w(ξ−
w ) = wN · 1 − ξ2

w

ξw
· µ(ξw, v(ξ−

w ))
1 − µ(ξw, v(ξ−

w ))2 , (5.90)

w(cs) = w(ξ−
w ) exp

[∫ v(cs)

v(ξ−
w )

(
1 + 1

c2
s

)
γ(v)2µ(ξ(v), v) dv

]
, (5.91)

T (ξ−
w ) = TN

(
w(ξ−

w )
wN

· a+

a−

)1/4

, (5.92)

T (cs) = T (ξ−
w ) exp

[∫ v(cs)

v(ξ−
w )

γ(v)2µ(ξ(v), v) dv
]
. (5.93)

The profiles are shown in the left panel (first row) in fig. 5.3.1.

Hybrids Here we have two discontinuities and we have to glue the two previous solutions
in order to have a consistent one. Skipping the details the resulting enthalpy profile is

w(ξ) =



wN ξ ≥ ξ+
sh

w(ξ−
sh) · exp

[∫ v(ξ)

v(ξ−
sh

)

(
1 + 1

c2
s

)
γ(v)2µ(ξ(v), v) dv

]
ξ+
w ≤ ξ ≤ ξ−

sh

w(ξ−
w ) · exp

[∫ v(ξ)

v(ξ−
w )

(
1 + 1

c2
s

)
γ(v)2µ(ξ(v), v) dv

]
cs ≤ ξ ≤ ξ−

w

w(cs) ξ ≤ cs

(5.94)

and analogously for the temperature profile. What is worth noticing is that here, in order
to build a consistent solution we glued a CJ deflagration with a rarefaction wave, this
means that the velocity of the fluid behind the wall, in the wall frame, has to be v− = cs,
and the matching condition reads

w(ξ−
w ) = w(ξ+

w ) · µ(ξw, v(ξ+
w ))

1 − µ(ξw, v(ξ+
w ))2 · 1 − c2

s

cs
. (5.95)

5.B.2 Inverse PTs
We now turn to inverse phase transitions.
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Inverse Deflagrations Here, as in the standard case, we have two discontinuities, but
now the phases + and − are inverted. We remind the reader that even in this case we
keep the identification + to be the region to the right of the discontinuity, while − to be
the region to the left. Therefore, using the matching condition, at the wall position we
have to impose that

w(ξ−
w ) = wN · 1 − µ(ξw, v(ξ−

w ))2

µ(ξw, v(ξ−
w )) · ξw

1 − ξ2
w

, (5.96)

and evolving backwards to the shock position we get

w(ξ+
sh) = w(ξ−

w ) exp
[∫ v(ξ+

sh
)

v(ξ−
w )

(
1 + 1

c2
s

)
γ(v)2µ(ξ(v), v) dv

]
. (5.97)

Now, at the shock position, we get that

w(ξ−
sh) = w(ξ+

sh) · 1 − ξ2
sh

ξsh
· µ(ξsh, v(ξ+

sh))
1 − µ(ξsh, v(ξ+

sh))2 . (5.98)

Summarizing, the enthalpy profile is described by

w(ξ) =


wN ξ ≥ ξ+

w

w(ξ−
w ) · exp

[∫ v(ξ)

v(ξ−
w )

(
1 + 1

c2
s

)
γ(v)2µ(ξ(v), v) dv

]
ξ+
sh ≤ ξ ≤ ξ−

w

w(ξ−
sh) ξ ≤ ξ−

sh

(5.99)

The same can be applied to the temperature profile which is

T (ξ) =


TN ξ ≥ ξ+

w

T (ξ−
w ) · exp

[∫ v(ξ)

v(ξ−
w )

γ(v)2µ(ξ(v), v) dv
]

ξ+
sh ≤ ξ ≤ ξ−

w

T (ξ−
sh) ξ ≤ ξ−

sh

(5.100)

where

T (ξ−
w ) = TN

(
w(ξ−

w )
wN

· a+

a−

)1/4

, (5.101)

T (ξ+
sh) = T (ξ−

w ) exp
[∫ v(ξ+

sh
)

v(ξ−
w )

γ(v)2µ(ξ(v), v) dv
]
, (5.102)

T (ξ−
sh) = T (ξ+

sh)
(
w(ξ−

sh)
w(ξ+

sh)

)1/4

. (5.103)

The resulting profiles are shown in the right panel (second row) of fig. 5.3.1.

Inverse Detonations Here we only have the discontinuity at the wall position. As
before, we skip the detailed derivation and give the resulting profile, that the enthalpy is

w(ξ) =


wN ξ ≥ cs

wN · exp
[∫ v(ξ)

v(cs)

(
1 + 1

c2
s

)
γ(v)2µ(ξ(v), v) dv

]
ξ+
w ≤ ξ ≤ cs

w(ξ−
w ) ξ ≤ ξ−

w

(5.104)
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while the temperature is

T (ξ) =


TN ξ ≥ cs

TN · exp
[∫ v(ξ)

v(cs)
γ(v)2µ(ξ(v), v) dv

]
ξ+
w ≤ ξ ≤ cs

T (ξ−
w ) ξ ≤ ξ−

w

(5.105)

where

w(ξ−
w ) = w(ξ+

w ) · 1 − ξ2
w

ξw
· µ(ξw, v(ξ+

w ))
1 − µ(ξw, v(ξ+

w ))2 , (5.106)

w(ξ+
w ) = wN exp

[∫ v(ξ+
w )

v(cs)

(
1 + 1

c2
s

)
γ(v)2µ(ξ(v), v) dv

]
, (5.107)

T (ξ−
w ) = T (ξ+

w )
(
w(ξ−

w )
w(ξ+

w ) · a+

a−

)1/4

, (5.108)

T (ξ+
w ) = TN exp

[∫ v(ξ+
w )

v(cs)
γ(v)2µ(ξ(v), v) dv

]
. (5.109)

The profiles are shown in the left panel (second row) in fig. 5.3.1.

Inverse Hybrids Here we have two discontinuities and we have to glue the two previous
solutions in order to have a consistent one. Skipping the details the resulting enthalpy
profile is

w(ξ) =



wN ξ ≥ cs

wN · exp
[∫ v(ξ)

v(cs)

(
1 + 1

c2
s

)
γ(v)2µ(ξ(v), v) dv

]
ξ+
w ≤ ξ ≤ cs

w(ξ−
w ) · exp

[∫ v(ξ)

v(ξ−
w )

(
1 + 1

c2
s

)
γ(v)2µ(ξ(v), v) dv

]
ξ−
sh ≤ ξ ≤ ξ−

w

w(ξ−
sh) ξ ≤ ξ−

sh

(5.110)

and analogously for the temperature profile. What is worth noticing, even in the inverse
case, is that, in order to build a consistent solution we glued a CJ inverse deflagration
with an inverse rarefaction wave, this means that the velocity of the fluid in front of the
wall, in the wall frame, has to be v+ = cs, and the matching condition reads

w(ξ−
w ) = w(ξ+

w ) · 1 − µ(ξw, v(ξ−
w ))2

µ(ξw, v(ξ−
w )) · cs

1 − c2
s

. (5.111)

The resulting profiles are shown in the middle panel (second row) of fig.5.3.1.

5.C Taub and Poisson’s adiabats
In this section, we introduce how discontinuities are treated within hydrodynamics and
how to connect states across such interfaces. We will introduce the Taub adiabat and
summarise the main features. First seminal works, to name a few, were done by [244, 245],
but we will follow the more modern approach presented in [225, 227].

In the presence of discontinuity waves, like shock and reaction fronts, the profile can
be mathematically described by a discontinuity surface with a region ahead of the shock
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(upstream) and one behind it (downstream). The discontinuity prevents to use of the
relativistic hydrodynamic equation across the discontinuity, which can be replaced by
the relativistic version of the Rankine-Hugoniot junction conditions. We can recast the
hydrodynamic equations

∇µ(ρuµ) = 0 , ∇µT
µν = 0 , (5.112)

in global equation in the sense that they are not anymore only locally defined. To do so
we choose an arbitrary function f and a 4−vector λν and, using the previous expression,
we can write

∇µ(ρuµf) = ρuµ∇µf , ∇µ(T µνλν) = T µν∇µλν . (5.113)

We then integrate both sides over an arbitrary region V containing the shock surface and
all his history, Σ, and then apply Stoke’s theorem on the LHS, obtaining∫

S
ρuµfnµ dV =

∫
V
ρuµ∇µf d

4x , (5.114)∫
S
T µνλνnµ dV =

∫
V
T µν∇µλν d

4x , (5.115)

where nµ is the 4−vector perpendicular to S. We can now shrink V to zero while com-
prising a portion Σ′ of the 3D worldline relative to the shock front. In this limit, LHS→ 0
while the RHS is the quantity computed at each side of the shock, then∫

Σ′
fJρuµKnµ dV = 0 ,

∫
Σ′
λµJT µνKnµ dV = 0 , (5.116)

where we introduced the double bracket notation JAK = A+ − A−. Then the conditions

JρuµKnµ = 0 , JT µνKnµ = 0 , (5.117)

are exactly the junction conditions written in the main text, in eqs. (5.5a) and (5.5b).
Now, defining the mass flux as J = ργv = const., and taking uµ = (0, 0, 0, 1), we can
recast the first the conditions ρuz = const. and T zz = const. in the following expressions

JJ2K = 0 , J2 = − JpK
Jw/ρ2K

. (5.118)

Now, from T tz = const. we get

wγ2v = const. → Jγw/ρK = 0 . (5.119)

Taking the right expression in eq. (5.118) multiply it by w+
ρ2

+
+ w−

ρ2
−

, and subtracting from
it the square of the previous expression we end up in

s
w2

ρ2

{
=
(
w+

ρ2
+

+ w−

ρ2
−

)
JpK . (5.120)

This expression is the relativistic generalisation of the classical Hugoniot adiabat for New-
tonian shock fronts. Equations (5.118) and (5.120) are known as Taub’s junction condi-
tions for shock waves, serving as the relativistic counterparts to the Rankine–Hugoniot
junction conditions for Newtonian shocks.

When examining the (p, w/ρ2) plane, the Taub adiabat offers a straightforward and
visual representation of fluid properties across a shock. We plotted the shock adiabatic
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in this plane since the natural variables for representing the relativistic shock adiabatic
are w/ρ2 = wV 2 and pc2; in these coordinates, J2 gives the slope of the chord from the
initial point 1 on the adiabatic to any other point 2. Here, the Taub adiabat appears as
the curve connecting the states before and after a shock wave, as illustrated in fig. 5.C.1.
Upon defining the state “+" of the fluid ahead of the front in terms of pressure p+ and the
ratio w+/ρ

2
+, condition (5.120) constrains the possible states of the fluid in the shocked

region “−" to lie on the adiabat. Similar to the Newtonian result, the chord connecting
the two states is proportionate to the square of the mass flux, J2, implying that for the
same initial state “+", a new state “−" with higher pressure will also entail a greater mass
flux across the shock.

From the definition of the sound speed

c2
s =

(
dp

de

)
s

, (5.121)

and using that for the isoentropic transformation we have that de = hdρ we can see that

c2
s =

(
dp

de

)
s

=
(

dp

d(h/ρ)

)
s

(
d(h/ρ)
de

)
s

=
(

dp

d(h/ρ)

)
s

c2
s − 1
ρ2 , (5.122)

that translate in (
dp

d(h/ρ)

)
s

= − ρ2c2
s

1 − c2
s

= −ρ2γ2
sc

2
s < 0 , (5.123)

meaning that the slope at any point along the Taub adiabat is inherently negative and
directly proportional to the local sound speed. Consequently, shocked states with higher
pressures and densities will exhibit larger sound speeds.

For weak discontinuities11 the jumps in the specific entropy and in the pressure scale,
according to [245], as

JsK =
[

1
12hT

(
d(h/ρ)
dp

)
s

]
JpK3 +O(JpK4) . (5.124)

The meaning of the previous equation lies in the necessity for a change in entropy across
a shock, albeit only slightly. Because of the second law of thermodynamics, this change
must manifest as an increase. Hence,

s− > s+ . (5.125)

This inequality mirrors the intricate irreversible processes occurring within the narrow
region of the shock front. It enables the exclusion of unphysical shocks that fail to induce
an increase in entropy.

Let’s visualise the situation described: consider the point (p+, x+) where x = h/ρ =
w/ρ2 in the p−x plane. We draw two curves through this point: the shock Taub adiabatic
and the Poisson adiabatic. The equation of the Poisson adiabatic, being an isoentropic
transformation, is given by s+ − s− = 0. One can demonstrate that the Poisson and
Taub adiabats passing through a given state share identical first and second derivatives
at that particular state. Moreover, excluding non-convex equations of state, it can be
proven that the second derivative of the Taub adiabat is always positive. To determine

11Discontinuity for which every quantity is small, i.e. the states ahead and behind the shock are not
very different.
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Figure 5.C.1: Taub and Poisson’s adiabats. In the left panel, it is presented the Taub
adiabat connecting two different states, (x±, p±), across a shock, whose chord connecting
them is proportional to the (conserved) matter flux J2. In the right panel, the Poisson
adiabad is compared to the Taub one. Since this latter is an isoentropic adiabat, i.e.
connect states with the same entropy, it selects the physical branch of the Taub adiabat,
for which the final state, across the shock, has increased its entropy.

the relative position of the two curves near point 1, we consider the fact that we must
have s− > s+ on the shock adiabatic for p− > p+, while on the Poisson adiabatic s− = s+.
Consequently, the abscissa of a point on the shock adiabatic must exceed that of a point on
the Poisson adiabatic with the same ordinate p−. When combined, s− > s+ and p− > p+,
they establish that the Poisson adiabat selects the "physical" branch of the Taub adiabat,
ensuring it always lies above the constant-entropy curve.

Under the assumption that the concavity of the Taub adiabat is always positive,
combined with the increase in pressure across the discontinuity and eq. (5.120), we also
conclude that ρ−w− > ρ+w+. Furthermore, since w− > w+, we deduce ρ− > ρ+.

These inequalities provide crucial insights into the flow velocities on either side of the
shock and how they compare with the local sound speed. By using eq. (5.5b) and the
aforementioned inequalities, we arrive at the conclusion that the velocity must decrease
in magnitude across the shock.

|v−| < |v+| . (5.126)

Furthermore, from eq. (5.123), along with the previous expression, we can demonstrate
that the flow entering a shock front is always supersonic, while the flow exiting it is
necessarily subsonic

J2 > −
(
∂p

∂x

)
+

→ v+ > cs,+ = cs , (5.127)

J2 < −
(
∂p

∂x

)
−

→ v− < cs,− = cs . (5.128)

It’s important to emphasise that the previous inequalities hold true for relativistic (as well
as non-relativistic) shock waves, irrespective of the thermodynamic conditions. This is
due to the necessity for the shock to be evolutionary, i.e., stable under small perturbations.
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Figure 5.C.2: Representation of a weak detonation (left) and a weak deflagration (right).
The state of the plasma ahead of the wall is represented by the blue dot and lies on the
Taub adiabat, while the state of the plasma behind the discontinuity is represented by the
orange dot and lies on the reaction adiabat.

In summary, across a shock, several changes occur: entropy, enthalpy, pressure, and
rest-mass density increase, while the velocity relative to the shock decreases. Additionally,
the flow is supersonic ahead of the shock and subsonic behind it. Moreover, both the mass
flux and the entropy jump increase for states further along the physical branch of the Taub
adiabat. These findings hold even for strong shocks, where the jumps in states ahead and
behind the shock can be arbitrarily large. Finally, we here collect all the representations
of the Taub and reaction adiabats for the strong and weak, direct and inverse deflagration
and detonation in fig.5.C.2, 5.C.3, 5.C.5 and 5.C.4.
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Figure 5.C.3: Left: Strong detonation: the physical detonation is the trajectory be-
tween the blue point and the orange one (from Taub to the reaction adiabat). However,
we can virtually see it as the trajectory from the blue dot to the green one (from Taub
to Taub, so a shock wave) and then back to orange (from Taub to the reaction adiabat).
Right: Strong deflagration: the physical deflagration is the trajectory from the blue dot
to the orange one, but, here too, we can see it as the trajectory from the blue to the green
and then back to orange.

Figure 5.C.4: Same as in fig. 5.C.2 for inverse PT.

Figure 5.C.5: Same as in fig. 5.C.3 for inverse PT.
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Chapter 6

Conclusion

In this thesis, we focused on the impact of cosmological first-order phase transitions,
particularly highlighting the non-trivial dynamics they induce during the early stages of
the evolution of the Universe. We tried to present one of the open problems in this research
field, which is a reliable computation of the bubble wall velocity during the expansion.
Although this question remains unresolved for a general theory with no approximations
on the velocity range, we hope the reader has gained some intuition about the challenges
involved and what can be done to improve the methods we presented.

In more detail, in chapter 1, we provided the foundational framework needed for
this work. We began with a discussion of the standard Hot Big Bang theory, detailing
the thermal history of the Universe and its expansion. We then covered the basics of
QFT at finite temperature, which is crucial for computing the effective potential of a
given theory. This is essential for understanding the dynamics of phase transitions. We
examined different types of phase transitions and the role of symmetries, focusing on
first-order phase transitions. The chapter concluded with an analysis of the challenging
task of computing the velocity of bubble expansion during a FOPT, reviewing existing
literature, and identifying weaknesses.

In chapter 2, we examined a specific example of a FOPT within the SM augmented
by a real scalar singlet. The novel aspect of our study was the detailed analysis of the pa-
rameter space where first-order phase transitions could occur, particularly where bubbles
of true vacuum could achieve relativistic velocities. This area is significant because it can
lead to new mechanisms for baryogenesis and Dark Matter production. We thoroughly
analysed various models for Dark Matter production and baryogenesis and explored the
potential for discoveries in current and future experiments.

In chapter 3, we quantised field theories on the background of a bubble wall in
the planar limit, with a focus on spontaneous gauge symmetry breaking. Using these
tools, we calculated the average momentum transfer from transition radiation, focusing
on the longitudinal polarisation of vectors. We found that longitudinal polarisations
were comparable to transverse polarisations in symmetry-breaking transitions with mild
super-cooling and dominant in broken-to-broken transitions with thin walls. Our results
have practical implications for bubble expansion during first-order phase transitions. Our
framework allows for robust calculations of particle processes in such translation-breaking
backgrounds.

In chapter 4, we analysed the friction pressure on relativistic walls in phase transitions
where gauge symmetry is restored. This analysis was motivated by the observation that
this pressure could be negative at leading order since some particles lose mass as they
cross into the new phase. However, we found that at next-to-leading order (NLO), the
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soft emission of vectors from a charged current leads to positive pressure scaling with the
wall’s Lorentz boost factor γw, similar to gauge symmetry breaking. Unlike the latter
case, the dominant contribution in single emission is free from infrared divergences and
shows a strong dependence on the wall shape. Finally, we argued that in any phase
transition, no multi-particle process on the wall can impart negative pressure greater
than the leading-order result in the asymptotic limit of large velocity.

In the final chapter 5, we explored the hydrodynamic approach to bubble expansion to
characterise all expansion modes. We reviewed the literature on direct PT and extended
the study to inverse PTs. In a direct PT, a local vacuum transitions to a deeper vacuum
of the zero-temperature potential, with the energy difference manifesting as bubble wall
acceleration, driven by vacuum energy release. In an inverse PT, a deeper minimum
transitions to a higher one, with bubbles expanding against vacuum energy, driven purely
by thermal corrections. We conducted the first study on the hydrodynamics and energy
budget of inverse PTs. We discovered several expansion modes for inverse bubbles, related
to known modes for direct transitions by mirror symmetry. We also investigated the
friction on the bubble wall and discussed the possibility of runaway walls in inverse PTs.

In conclusion, this thesis has explored the dynamics of FOPTs in the early Universe,
focusing on the intricate computation of friction exerted on the bubble wall. By integrat-
ing various approaches, we have developed a cohesive framework to predict and compute
such a contribution, in a general theory, in the ultrarelativistic limit. Our findings offer
valuable insights into these fundamental processes that could have governed the early Uni-
verse, contributing to the broader field of cosmology and particle physics. This work lays
the groundwork for future research, providing a deeper understanding of the mechanisms
driving cosmological phase transitions.
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