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Abstract

The Cyber Risk Management process relies on multiple sources of information, some
of which derive from the monitored environment, some of which is stored in external
repositories. The availability and the quality of these sources of information plays a
critical role during Cyber Risk Management, directly influencing the quality in terms
of accuracy and completeness of the related processes. This is especially relevant for
ICT systems designed around self-protection (i.e. self-protecting systems), which
is currently a desired property of many modern ICT systems as it enriches its
features with the ability to detect and react to security threats at run-time. Recently,
several solutions leveraging the attack graph model have been proposed to design
and implement such self-protecting systems. While such systems take a first step
towards effective self-protection, they do not consider: (i) the possibility of having
non complete information in the external repositories, (ii) the possibility of having
non accurate information in the inventories derived from the environment, and (iii)
the limitations in terms of accuracy-scalability trade-off imposed by the usage of the
attack graph model.

This thesis represents a first step towards a solution to enhance the quality of
information supporting the cyber risk management process in self-protecting systems,
and provides the following major contributions: (i) A study of the external publicly
available vulnerability repositories, in order to understand their structure, their
semantics and how all these repositories can be integrated in a unified structure, able
to provide the cyber risk management process with complete, accurate information.
(ii) A computational pipeline able to enhance the accuracy of the inventories derived
from the environment by reducing the number of false positives contained within,
as well as explicitly addressing and instrumenting the accuracy-scalability trade-off
imposed by the attack graph model. (iii) A comprehensive evaluation of the proposed
methodologies on a case study.1

1A repository with the implementation and further documentation of the proposed methodologies
is available at https://github.com/Marcvs101/enhancing-cyber-risk-management

https://github.com/Marcvs101/enhancing-cyber-risk-management
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Chapter 1

Introduction

State of the art self protecting systems promise to deliver a solution to the
challenge of achieving a fully automated system capable of performing Risk Manage-
ment at runtime, however the intricacies of ICT (Information and Communication
Technology) systems are not making this an easy task.

Most notably, much effort has gone towards developing methodologies and
techniques to adapt the Risk Management process to the specific domain of ICT,
leading to its contextualization into the Cyber Security Assessment process. And
while efforts to automate the Cyber Security Assessment process with the intention
of enhancing or implementing a self protecting system have been made, to the best
of the author’s knowledge most of these efforts do not consider the possibility and
consequences of being supported by information which may not achieve a perfect
degree of accuracy and completeness.

For this reason, it is of interest to study: (i) which information is involved in
the Cyber Security Assessment process, with particular attention to the semantics
of each information source as well as what is actually required by the process; (ii)
methodologies to polish and combine the different sources in order to obtain higher
quality and quantity of information and (iii) how the quality of information affects
the subsequent analysis steps of the process.

1.1 Risk Management: ISO 31000
Since 13 November 2009, the Risk Management process has been standardized by

the International Organization for Standardization in the ISO 31000 family [83, 7].
This standard comes from the consensus of hundreds of risk management professionals
around the world through a process which lasted over four years and seven drafts.
ISO 31000 has been intended to resolve the many inconsistencies and ambiguities
existing between different approaches and definitions by providing a consistent
vocabulary and methodology for assessing and managing risk. In particular, the
standard provides: (i) a unified vocabulary; (ii) a set of performance criteria; (iii)
a consistent methodology for identifying, analyzing, evaluating and treating risk;
and (iv) guidance on how to implement the aforementioned methodology into the
governance processes of any organization.

Consistency and coherence of the vocabulary used during Risk Management
is fundamental to achieve greater clarity and wider understanding of the Risk
Management process. For this reason, in addition to this family of standards, a
revision of the existing ISO/IEC vocabulary for risk management in Guide 73:2002 [9]
has been carried out.



1.1 Risk Management: ISO 31000 2

The ISO 31000 family provides clear performance criteria in order to manage risks
effectively and efficiently. These criteria are based on the following eleven principles:
(i) creating and protecting value; (ii) being an integral part of all organizational
processes; (iii) being part of decision making; (iv) explicitly addressing uncertainty;
(v) being systematic, structured, and timely; (vi) being based on the best available
information; (vii) being tailored; (viii) taking into account human and cultural
factors; (ix) being transparent and inclusive; (x) being dynamic, iterative, and
responsive to change; and (xi) facilitating continual improvement of the organization.
In addition, the standard also provides a set of desired outcomes (i.e. controls) which
are to be used as a way to measure the effectiveness of the implementation of a risk
management process. The last performance criteria that the standard provides is a
list of important characteristics of an advanced risk management process, in which:
(i) an emphasis is placed on continual improvement in risk management through
measurement; (ii) there is a comprehensive, defined, and accepted accountability
for risks, controls, and risk treatment tasks; (iii) all decision making within the
organization must involve to some appropriate degree the explicit consideration of
risks and the application of risk management; (iv) there is continual communication
with external and internal stakeholders as well as comprehensive and frequent
reporting of risk management performance, as part of good governance; and (v) risk
management is viewed as central to the organization’s management processes, such
that risks are considered as “effect of uncertainty on objectives”.

Risk Assessment

Communication and Consultation

Monitor and Review

Establish the Context
Risk Identification Risk Analysis Risk Evaluation

Risk Treatment

Figure 1.1. High level schema of the Risk Management process, as described in ISO 31000

The process for managing risk adopted by ISO 31000 derives partly from the
process described in AS/NZS 4360:2004[1], and follows the structure shown in
Figure 1.1. The process is iterative and is composed of a central stack which
is responsible for establishing the context (internal and external), for identifying,
analyzing and evaluating risks (Risk assessment) and finally, applying risk treatment,
as well as two elements which act constantly throughout the process, namely: (i)
Communication and consultation with internal and external stakeholders, in order
to consider their input and to factor their involvement in the process; and (ii)
Monitoring and review, in order to react to new risks and changes in the context
(e.g. objectives, environment).

With regards to the central stack, the first element, Establish the Context,
aims to define what is the desired goal of the organization, as well as which internal
and external factors which may influence how these objectives are achieved.

The Risk Assessment is the second element of this stack and is itself
composed of Risk Identification, Risk Analysis and Risk Evaluation. Given an
established context, Risk Identification aims to understand what could happen,
how, when and why. Risk Analysis then aims to study the consequences of each
identified risk, and likelihood of these consequences. The standard does not require
the analysis to adopt qualitative or quantitative approaches, as both have their own
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role depending on the type of risk, the information available and the purpose for
which the output of process is to be used. Risk Evaluation aims to merge the output
of the Risk Analysis into a single, unified prioritization value (i.e. Risk), the details
of which have been defined during the establishment of context.

Lastly, Risk Treatment is the third element of the stack and aims to introduce
new controls or improve existing controls in order to lower the overall risk which
the organization is subject to. Since the standard defines risk as a combination of
likelihood and impact of its consequences, the Risk Treatment element is similar to
a process of optimization in which magnitude and likelihood of consequences are
adjusted in order to achieve a net benefit. ISO 31000 lists seven general treatment
actions which can be performed on risk: (i) avoiding the risk by avoiding the risk-
inducing activity; (ii) accepting or increasing the risk in order to pursue opportunity;
(iii) removing the source of risk; (iv) affecting the likelihood; (v) affecting the
consequences; (vi) sharing the risk with another party; and (vii) accepting the risk
via informed decision.

The last part of ISO 31000 provides guidance on how to implement the afore-
mentioned methodology into the governance processes of any organization. This is
necessary because in order to be effective, the Risk Management process must be
integrated into an organization’s decision-making processes. The standard describes
not only which elements are needed in order to achieve an integration of the process
in an organization’s governance, but also goes out of its way to describe how an
organization should create, implement and keep these elements up-to-date, while
considering also the timescale needed to achieve alignment with the organization’s
culture and governance processes.

1.2 The Cyber Security Assessment Process
Since ISO 31000 is meant for a broad scope of application, thus generic by

design, it has been necessary for the Risk Assessment Process to be contextualized
into the Cyber Security Assessment Process (alternatively Cyber Risk Assessment
Process) [72] to correctly adapt to the nuances of ICT systems. The Cyber Security
Assessment Process focuses on cyber risks and threats, exploiting domain specific
representations in order to quantify risk (calculated as a composition of likelihood
and impact, as described by ISO 31000) and model threats. One of the main goals
of this process includes the study of vulnerabilities and risks associated to an ICT
system in order to produce and apply a response plan. This process requires a deep
understanding of the ICT system in consideration as well as precise knowledge on
the vulnerabilities that are associated to it. As a consequence, currently this process
is done prevalently by human analysts with the assistance of tools that, at best,
provide the analyst with increased situational awareness.

Environment Cyber Security Assessment Process

Response PlanInformation
Gathering

Vulnerability
Analysis

Response
PlanningExternal Data

Sources

C
ontext

Establishm
ent

R
isk

Treatm
ent

Figure 1.2. High level schema of how the Cyber Security Assessment Process achieves a
response plan

Figure 1.2 highlights the basic high level schema of the process focused on
producing a response plan. The Process begins with two products of the Context
Establishment phase, in particular: (i) the environment (i.e. ICT assets to consider
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for assessing risk, attack surface) of the organization; and (ii) which external sources
of information are to be used to integrate the elements necessary to support the
process.

The first step of the process is then the Information Gathering step. During
this step several tasks are performed, such as the identification and documentation
of network asset vulnerabilities, the identification and usage of external sources of
information such as sources of cyber threat intelligence and vulnerability repositories,
the identification and documentation of internal and external threats and the
identification of potential mission impacts.

The second step of the process is the Vulnerability Analysis step. During
this step information about vulnerabilities, threats, mission impacts and likelihoods
are factored together in order to determine the cyber risk of an organization.

The third step of the process is the Response Planning step. This step is
tasked with producing a list of possible response strategies for each vulnerability,
using the cyber risk calculated previously as one of many possible prioritization
metrics.

1.3 Self-Protecting Systems
The research community has been engaged in addressing the challenge of achieving

a fully automated system capable of performing Risk Management of ICT systems at
runtime. This problem poses several technical and scientific challenges, especially in
domains such as critical infrastructure, in which complex cyber and physical systems
coexist [101, 84, 10, 67, 21, 42, 92, 110, 32, 22], and distributed systems, which
strengthen reliability and enhance performance by mitigating possible bottlenecks
in computation, at the cost of exposing applications to higher security risks [14, 59].

Moreover, the transition from closed and regulated environments to open ones
(where entities cannot always be assumed trustworthy) complicates the detection of
failures and anomalies, and rectifying such issues may demand considerable time
and resources [111]. Consequently, there has been a growing focus towards self-*
systems i.e., systems able to support Self-configuration (i.e., automatic configuration
of components) [65, 69], Self-healing (i.e., automated discovery, and correction of
faults) [82], Self-optimization (i.e., autonomous monitoring and control of resources
to ensure optimal functioning for the defined requirements) [63] and Self-protection
(i.e., proactive identification and protection from arbitrary attacks) [105, 108].

With particular reference on performing Risk Management at runtime in ICT
systems, significant attention has been directed towards self-protecting systems, i.e.,
a particular class of autonomous systems capable of detecting and mitigating security
threats at runtime [105].

Similar to other self-* properties, self-protection enables the system to au-
tonomously adapt to dynamic environment with minimal human intervention, thus
ensuring responsiveness, agility, and cost-effectiveness. Typically, self-protecting
systems consist of a monitored environment (i.e., the system to be protected) and of
an autonomic or protecting environment implementing the protection and adaptation
logic [102]. The autonomic environment is typically implemented as a feedback
control loop based on the Monitor-Analyze-Plan-Execute over a shared Knowledge
(MAPE-K) architecture [51, 18] comprising 5 conceptual modules:

• Monitoring (M) gathers data from the underlying monitored environment
through probes (or sensors);
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• Analysis (A) performs data analysis to determine whether an adaptation is
necessary;

• Planning (P) devises a workflow of adaptation actions necessary to achieve
the system’s objectives if required;

• Execution (E) carries out the actions identified in the computed plan through
actuators acting on the monitored system;

• Knowledge Base (K) stores data of the monitored environment, adaptation
goals, and other pertinent states that are shared among the MAPE components.

The MAPE-K adaptation loop implicitly depends on an adaptation function that
delineates the protection objectives. Within the cyber security domain, adaption
involves analyzing the current security posture and taking actions to improve the
security posture of the monitored environment. To achieve this, various security
metrics are available [80] and can be combined to reflect the current security situation.
However, among them, the most suitable candidate for governing the feedback loop
is the risk, i.e., the quantification of the probability of a specific incident occurring
and causing harm to an organizational asset.

Following this paradigm, in recent years, several dynamic risk estimation archi-
tectures have emerged, capitalizing on the attack graph model [38, 93, 62, 8], which
represent potential attack steps in a network using a graph-based model.

Examples of architectures emerged in recent years are Dynamic Risk Management
Systems [39, 38], which are able to assist the security analysts in comprehensively yet
accurately mitigate possible and ongoing attacks on monitored ICT systems while
upholding the system’s mission integrity. According to the work of Granadillo et.
al. [39, 38], a Dynamic Risk Management System (DRMS) integrated into a larger
ICT system is able to promptly assess risks and address ongoing threats, by focusing
on the technical aspects of the monitored environment. This is in contrast with the
traditional approach to risk assessment outlined in ISO 31000, which emphasizes
establishing a security architecture that spans organizational and business aspects.
This contrast is essential because the disparity between technical and organizational
levels often results in increased overhead and inertia during the risk assessment
process, which is unacceptable in highly dynamic environments such as ICT systems,
where both the system itself and the threat landscape are in continuous evolution.

Despite their unique features, these architectures adhere to the same principles
underlying a MAPE-K loop, utilizing risk as the controlling variable. Figure 1.3
illustrates the key components characterizing these solutions.

Specifically, the autonomic environment collects information from the monitored
environment and external data sources through a Data Collection, Aggregation and
Integration component. Its objective is to generate data necessary for subsequent
components for risk estimation, analysis, and response. Once input data is available,
it is forwarded to an Attack graph generation and risk estimation component for the
analysis phase. This component is responsible for the computation of the actual
attack graph to identify potential dangerous attack paths and estimate the risk level
based on the identified paths. Subsequently, a response component devises a series
of mitigation actions that could be implemented to modify the system’s exposure
to risk. Finally, the execution phase is mediated by a visual environment enabling
security experts to choose the most suitable response actions among those proposed
and thereby bring closure to the feedback loop. A knowledge base is employed to
store and manage all the information required to complete the control loop.
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Autonomic Environment

Visual Environment

Attack Graph Generation and Risk Estimation

Response

Data Collection Aggregation and Integration

Environment

Monitor

Analyze

PlanExecute

External
Repositories

Cyber
Risk

Knowledge

Figure 1.3. MAPE-K architecture for attack graph-based self-protecting systems.

1.4 Problem Statement and Contributions
Self-protecting systems based on the MAPE-K architecture represent the state-

of-the-art in the field of Risk Management of ICT systems. While these systems
have been proven to be highly capable, both in theory [38, 39], as well as in practice
for curated environments [8, 93], no quality assessment has been carried out on
the information feeding into these systems, which has always been assumed as
trustworthy.

Understanding the sources of information that feed the system, assessing their
quality and capabilities and attempting to remediate their flaws is fundamental for
the correctness of the system, as the quality of a process can only be as good as
the quality of the information it is provided with (garbage in, garbage out). For
this reason, considerations must be made about the quality of the system, especially
when considering the accuracy and completeness of the processes which are part of
the system as well as the information used to feed them.

Considerations on Accuracy
A common factor of all implementations of autonomic environments utilizing

the MAPE-K architectural framework is the need to ensure the utmost accuracy in
risk estimation within the risk-driven feedback loop to guarantee the efficacy of the
autonomic environment, and in turn of the self-protecting system. Due to the nature
of the MAPE-K control loop, the accuracy of the response is directly correlated to
the accuracy of the risk estimation. Risk estimation in state-of-the-art architectures
is achieved through attack graph-based methodologies, which, in turn, hinge on the
data processing conducted during the Data Collection, Aggregation and Integration
(Monitoring) process.

This need for accuracy stands in contrast to the performance demands placed
on the autonomous system. Indeed, while state-of-the-art methodologies such
as attack graphs are powerful and potentially accurate models, they suffer from
scalability issues, forcing to opt for the computation of an approximated Attack
Graph [68, 70, 43]. This introduces a level of uncertainty into risk estimation, where
accuracy is traded off for scalability. The situation is further complicated when
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considering that state-of-the-art implementations of the Data Collection, Aggregation
and Integration (monitoring) process relies on probe-based mechanisms to extract
information from the environment. Probe-based mechanisms are not always accurate,
and may introduce false positives in subsequent processes, harming the accuracy of
the risk analysis. Indeed, the introduction of false positives leads to a cumulative
loss of accuracy, initially impacting the data collection phase and subsequentially
affecting the attack graph and risk computation phase.

Considerations on Completeness
Currently, no official standard has been adopted to formally define and represent

a vulnerability in a ICT network. This has lead to multiple efforts lead by both the
scientific community as well as governmental and industrial communities, to define
and adopt de-facto standards to represent ICT vulnerabilities, weaknesses, patterns
of attack and threats. This effort, in turn, has lead to the establishment of multiple
sources of data which are currently used during the cyber security assessment process.
Each data source models different, disjoint concepts of the cybersecurity sphere,
includes different attributes which depend on the modeled concept, and each source
is curated by different entities (most prominent of which are the National Institute
of Standards and Technology-NIST and MITRE Corporation). This leads to the
consequence that no single data source holds all the information required to fully
carry out the cyber security assessment process. As an example, the Planning phase
of a state-of-the-art cyber risk management system implemented on the MAPE-K
architecture should be able to devise a workflow of adaptation actions (e.g. mitigation
actions, patches). This is usually carried out by performing a cost-benefit analysis
to gauge the risk reduction of an adaptation action against the cost of applying such
adaptation action on the ICT system. But this analysis is only possible if: (i) it is
possible to obtain a list of available adaptation actions for a given vulnerability, and
(ii) it is possible to give an estimation of the cost of application of each adaptation
action. These elements are not always (if at all) present in each data source. This
prompts the necessity for an analyst or an automated system to explore, consider and
interpret each and every data source in order to gather the necessary information.
However each and every data source has its own structure, semantics and intended
target audience. In particular, most data sources that deal with cyber risk usually
adopt formats aimed predominantly towards human consumption (i.e. natural text).
This leads to the result that correctly traversing and interpreting each data source
in search for relevant information is not trivial, especially for autonomic systems,
and thus is still an open problem.

Thus, given these considerations, this thesis will aim to contribute to the following
open problems:

1.4.1 Chapter 3: Integrating Sources of Data to Support Automatic
Correlation

This chapter analyzes the most prominent publicly available data repositories
used to feed the cyber risk management process, and proposes a methodology aimed
at integrating multiple data sources to support automatic correlation and improve
the overall level of knowledge available to the process. The main contributions of
this chapter are:

• A systematic review of the most prominent publicly available repositories used
to feed the cyber risk management process (NVD [75], CWE [31], CAPEC [29]
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and ATT&CK [94]), aimed at understanding and formalizing their structural
properties. During this process, schemas will be presented to highlight each
repository’s capability and structure, as well as to highlight the presence of
references between different repositories.

• The construction of a unified data model, a graph-based representation of
elements from each different repository, which is able to explicitly represent
and handle the structure and hierarchy of elements of the same repository as
well as the links existing between elements of different repositories.

• The proposal of a methodology to be implemented in the Data Collection,
Aggregation and Integration component of an autonomous system enabling the
automated retrieval of critical information (e.g., which mitigation actions are
available for a given vulnerability, what is the cost of applying each mitigation
action) required in order to carry out the cyber risk management process by
exploiting the unified data model in order to perform cross-repository searches
while being mindful of each repository’s internal structure and semantics.

Part of the work detailed in this chapter has been submitted in journal format
to ACM Digital Threats: Research and Practice, as Silvia Bonomi, Hérve Debar,
Marco Cuoci - “Integrated knowledge graph to support automatic correlation in the
vulnerability analysis process”. This submission received a major revision request
and is currently undergoing rework for resubmission.

1.4.2 Chapter 4: Enhancing the Quality of Automatically Gener-
ated Inventories

This chapter focuses on two problems which currently characterize state-of-the-art
self-protecting systems: (i) the improvement of the quality (in terms of accuracy) of
the automatically generated inventories without increasing the degree of intrusiveness
in the monitored system, and (ii) the analysis of the accuracy-scalability trade-off
existing in attack graph-based self-protecting systems governed by risk estimation.

The first problem stems from the introduction of false positives during the Data
Collection, Aggregation and Integration (Monitoring) phase of a state-of-the-art
autonomic environment. The second problem stems from the need of improving the
scalability of the self-protecting system and reducing the size of the input processed
by the attack graph generator while being mindful of the loss of accuracy that results
in doing so.

In order to address these two issues in a single highly configurable solution,
this chapter proposes a computational pipeline to be implemented in the Data
Collection, Aggregation and Integration component of an autonomic system. To
this aim, two sub-components will be defined, namely vulnerability filtering and
vulnerability aggregation, that can be used either in isolation or in combination, and
for each component, several algorithms and methodologies will be proposed.

It is important to note that the proposed approach will be orthogonal to those
available at the state-of-the-art, which only work on the self-protection bottleneck
(i.e., the attack graph generation algorithm), at the price of finding approximate solu-
tions without assessing the level of accuracy loss. Conversely, the proposed approach
will work on the input data feeding the control loop sanitizing and compressing it,
trying to avoid the loss of information (i.e., preventing as much as possible and
quantifying the accuracy loss in the risk estimation).

Thus, the main contributions of this chapter are:
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• A formalization of the problem of enhancing the quality of automatically
generated inventories.

• Several methodologies and several algorithms aimed at tackling the problem of
enhancing the quality of automatically generated inventories. To achieve this,
human knowledge will be leveraged, since it will be assumed that an analyst
or system administrator is able to validate a vulnerability by confirming or
discarding the presence of the platforms that it affects. Since a human is
involved in the process, all the proposals will also carry an additional goal to
make this process as efficient as possible.

• A methodology aimed at tackling the problem of improving the scalability
of the self-protecting system while being mindful of the loss of accuracy that
results in doing so. In order to achieve this, several aggregation strategies able
to aggregate semantically equivalent information and to reduce the size of the
input processed by the attack graph generator will be proposed.

• A unified computational pipeline to be included in the Data Collection, Ag-
gregation and Integration component of an autonomic system in order to
provide a single, highly configurable solution to (i) enhance the quality of
automatically generated inventories through the introduction of a vulnerability
filtering sub-process and (ii) provide an vulnerability aggregation sub-process
able to operate on the accuracy-scalability trade-off of the risk analysis in
order to allow the analyst to tailor the analysis to better fit various use cases.

Part of the work detailed in this chapter has been:

• Published in conference format as: Silvia Bonomi, Marco Cuoci, Simone Lenti,
“A Semi-automatic Approach for Enhancing the Quality of Automatically
Generated Inventories” in proceedings of 2023 IEEE International Conference
on Cyber Security and Resilience (CSR) [25].

• Accepted for publication in conference format as: Silvia Bonomi, Marco
Cuoci, Simone Lenti, “A Version-based Algorithm for Quality Enhancement of
Automatically Generated Vulnerability Inventories” (to appear) in proceedings
of 2024 IEEE International Conference on Cyber Security and Resilience
(CSR).

• To be submitted in conference format as: Silvia Bonomi, Marco Cuoci, Si-
mone Lenti, Alessandro Palma, “A Computational Pipeline for Improving
the Accuracy-Scalability Trade-off of Self-Protecting Systems based on Attack
Graphs” to be submitted on July 15th in 19th International Conference on
Risks and Security of Internet and Systems (CRISIS 2024).

1.4.3 Chapter 5: Analyzing the Accuracy-Scalability Trade-off in
Attack Graph-Based Self Protecting Systems - A Case Study

This chapter serves as case study and as an experimental validation of the
contributions of Chapter 4. In order to perform a thorough validation, which ensures
the comparability of each result, a single case study will be constructed using
a methodology developed to generate real network environments starting from a
desiderata.
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The presence of a single case study allows experimental results from each proposed
algorithm and methodology to be compared correctly. A single case study is also
crucial in the experimental evaluation of the whole computational pipeline, which
highlights the pipeline’s advantages and the contribution of each block to the
definition of the accuracy-scalability trade-off.

Thus, this chapter provides the following contributions:

• An introduction to the accuracy-scalability trade-off existing in state-of-the-art
attack graph-based self-protecting systems governed by the risk estimation.

• A methodology to provide real, statistically relevant testing environments
through the use of virtualization.

• A single, coherent case study to perform a thorough experimental evaluation
of all the methodologies and algorithms introduced in Chapter 4.

• The experimental evaluation of each methodology and algorithm introduced
in Chapter 4, as well as their effect with respect to the accuracy-scalability
trade-off. The experimental evaluation on the case study will also consider
each sub-process of the computational pipeline in isolation, as well as their
integration in the whole computational pipeline.

Part of the work detailed in this chapter has been:

• Published in conference format as: Silvia Bonomi, Marco Cuoci, Simone Lenti,
“A Semi-automatic Approach for Enhancing the Quality of Automatically
Generated Inventories” in proceedings of 2023 IEEE International Conference
on Cyber Security and Resilience (CSR) [25].

• Accepted for publication in conference format as: Silvia Bonomi, Marco
Cuoci, Simone Lenti, “A Version-based Algorithm for Quality Enhancement of
Automatically Generated Vulnerability Inventories” (to appear) in proceedings
of 2024 IEEE International Conference on Cyber Security and Resilience
(CSR).

• To be submitted in conference format as: Silvia Bonomi, Marco Cuoci, Si-
mone Lenti, Alessandro Palma, “A Computational Pipeline for Improving
the Accuracy-Scalability Trade-off of Self-Protecting Systems based on Attack
Graphs” to be submitted on July 15th in 19th International Conference on
Risks and Security of Internet and Systems (CRISIS 2024).
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Chapter 2

Related Work

In the literature, different works design self-protecting systems for different
goals [79, 105, 108]. They focus on specific domains, as Yuan et al. [106] and English
et al. [35], who propose self-protecting architectures to automatically detect and
mitigate cyber threats of software (the former) and provide mitigation actions based
on event correlation (the latter). They adapt the MAPE-K principles to dynamically
adapt the system at runtime to respond to security threats. Similarly, Liang et
al. [61] present a framework to enhance the self-protection of power systems by
leveraging the distributed security features of blockchain technology. Finally, other
works develop self-protecting strategies for securing data storage, such as Strunk et
al. [95], who minimize the performance costs of system versioning, and Kocher et
al. [54] who propose to distribute watermarking algorithms to self-adapt protection
against piracy. These works highlight the challenges of self-protecting systems
related to the risk estimation component that requires human intervention to be as
accurate as possible, representing a potential bottleneck of autonomic systems [27].
Attack Graph-based approaches have been developed to address this limitation and
automate risk estimation of self-protecting systems. For example, Kavallieratos et
al. [48] map DREAD [91], a static threat modelling approach, to attack graph for
assessing the risks of attack paths and making the analysis actionable for dynamic
risk assessment. Similarly, Gonzalez-Granadillo et al. [38] provides a solution for
dynamic cyber risk analysis leveraging an attack graph model where vulnerabilities
are represented as CVEs and the assessment is performed starting from CVSS
metrics [33]. Such system represents the current state of the art, providing the
baseline over which every methodology and algorithm proposed in this thesis will be
evaluated and compared against.

According to what has been introduced in Section 1.2, current state-of-the-art
systems analyze the risk of an ICT system using mainly two sources of information: (i)
external repositories, and (ii) inventories generated from the monitored environment.
As it will be shown in the next sections, both of these sources of information and
their involvement with the risk management process are the subject of several open
research problems.

2.1 On publicly available external repositories
Understanding vulnerabilities affecting information systems is a long-standing

activity, established for example by the PhD thesis of Krsul [55] at US CERT and
the creation of the Common Vulnerabilities and Exposures1 (CVE) [30] in 1999,

1https://cve.mitre.org/

https://cve.mitre.org/
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followed by the NIST National Vulnerability Database2 [75] in the US. More recently,
the Common Vulnerability Scoring System (CVSS) [66] specified a framework for
supporting the evaluation of risks associated with a CVE entry. These efforts
have been further structured in order to provide additional information related
to the principles of vulnerabilities through the Common Weakness Enumeration3

(CWE) [31] dictionary, which classifies types of vulnerabilities, the Common Attack
Patterns Enumeration4 (CAPEC) [29], which provides a catalog of known patterns
of attack, and the Adversarial Tactics, Techniques, and Common Knowledge5

(ATT&CK) [94], which provides a guideline for classifying and describing cyberattacks
and intrusions.

The information in these repositories is currently used for two main purposes: (i)
to analyze, describe and identify vulnerabilities in software and (ii) to support the
risk analysis of complex information systems. Grieco et al. [40] use machine learning
techniques to predict types of vulnerabilities through large-scale analysis of software.
Evans et al. [36] leverage CWE to understand the exploitability of vulnerabilities
in software. Ohm et al. [76] propose an analysis of the impact of vulnerabilities
affecting linked open source code. Hemberg et al. [41] build the BRON database and
show how it can efficiently support cyber hunting activities. Kiesling et al. [52] build
the SEPSES Knowledge Graph and show how it is able to support simple tasks.
Zhang et al. [109] leverage NVD to propose a way to predict the overall occurrence
of new vulnerabilities from the rate of past disclosure. Shen [90] uses the NIST
Cybersecurity Framework (CSF) to analyze the impact of software vulnerabilities in
the medical critical infrastructure. Fu et al. [37] leverage vulnerability information
to manage risks, giving particular attention to the medical infrastructure. Grandillo
et al. [38] presents a framework for automatic dynamic risk estimation which uses
NVD and CVSS as external data sources.

In all the above-mentioned studies, the role played by publicly available reposito-
ries is crucial and the amount and quality of retrieved information represent critical
factors to determine the accuracy of the solutions built on top of them. This is even
more important in the critical infrastructure domain, at a time where regulations
such as the Network and Information systems Security (NIS) directive [74] impact
the way industries labelled as critical infrastructures, and the vendors which serve
these industries must disclose vulnerability information to the regulators. Regulators
worldwide are pushing towards the deployment of sectorial Information Sharing and
Analysis Centers (ISAC), to establish trusted brokers that make available vulnera-
bility information associated with sector-specific mitigation recommendations inside
a trusted circle. Thus, the question of the quality and usage of this vulnerability
information is highly relevant, as all the use cases presented herein rely on them to
provide accurate analysis.

To the best of the author’s knowledge, almost all the works dealing with NVD,
CWE, CAPEC and ATT&CK repositories focus on how to use these repositories
as data sources to feed learning algorithms (e.g., [11, 47, 12]) or to provide basic
information for the risk analysis (e.g., [38]). The only works that have been found
that actively aggregate the different repositories in order to increase the available
information is a work from Hemberg et al. [41] that presents the BRON database and
shows how it can efficiently support cyber hunting activities, and a work from Kiesling
et al. [52] that presents the SEPSES Knowledge Graph and shows how it is able to

2https://nvd.nist.gov/
3https://cwe.mitre.org/
4https://capec.mitre.org/
5https://attack.mitre.org/

https://nvd.nist.gov/
https://cwe.mitre.org/
https://capec.mitre.org/
https://attack.mitre.org/
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support simple tasks in the vulnerability assessment process. These works [41, 52]
share the same perspective i.e., merging in a single graph all (heterogeneous) elements
extracted from individual repositories to support complex analysis. In all three
works, indeed, cross-references existing between repositories are exploited to build
edges of graph based structures and all three works propose to store (even if in a
different form) such resulting graph in a graph database to efficiently support queries
(Neo4J in the work presented in Chapter 3, Arango DB in [41] and RDF in [52]).

The main difference between the two works and the work detailed in Chapter 3
is in the final objective behind the construction of the graph structure. In this work,
the interest lies in understanding the properties and structures of every repository
and of the resulting unified data model to understand if and how it is possible
to extract enough information to support three analysis tasks, mainly performed
during risk analysis: (i) identification of the actual vulnerable part within a host,
(ii) identification of mitigation strategies to deal with discovered vulnerabilities and
(iii) identification of the cost of applying a mitigation. In [41], the main focus is on
threat hunting and identification (i.e., a task mainly used in incident management).
To this aim, they selected the top 10 exploited vulnerabilities and used the graph
structure to identify all possible threats linked to such 10 CVEs. The two works are
thus complementary. [41] employs a “top-down” analysis approach starting from all
possible threats and progressively filters them to identify only those related to the
considered CVE. The work detailed in Chapter 3 takes a “bottom-up” approach as
it starts from vulnerabilities (potentially detected by a network scanner) and tries
to identify their effect on the system and how they can be mitigated. In [52], the
main focus is the formalization of the knowledge base, as well as its maintainability.
The resulting structure simplifies significantly the semantics and the structure of the
underlying data sources, allowing simple selections to achieve simple goals. However
forgoing the semantics of otherwise structured data (e.g. CPE configurations and
strings) may not provide desired or accurate results. The work detailed in Chapter 3
aims to understand and include each repository’s structure and semantics within
the unified data model in order to maintain the best possible accuracy. So, to the
best of the author’s knowledge, no work that constructs a unified data model to
support the Cyber Security Assessment process without forgoing potentially relevant
information exists yet.

2.2 On the quality of automatically generated invento-
ries

Much effort has been devoted to identifying known vulnerabilities in a monitored
system in order to reduce its exposure. To the best of the author’s knowledge,
however, far less attention has been dedicated to the quality of produced inventories.

Kocaman et al. [53], Ushakov et al. [99], Tovarnak et al. [98] address the issue of
building a device inventory containing Common Platform Enumeration (CPE) entities
to retrieve information about vulnerabilities from NIST’s National Vulnerability
Database (NVD). The main difference between these works is in the CPE selection
process. In particular, Kocaman et al. [53] assume the input to be already in CPE
format, Ushakov et al. [99] try to reconstruct the CPE strings needed to perform the
selection process from product names in system logs, Tovarnak et al. [98] construct a
tree structure leveraging NIST’s pattern matching specification in order to perform
the selection process through graph queries. Neither of the three works deals with
ensuring that the inventory produced is accurate and complete.

Several studies have been conducted regarding the vulnerability inventory in order
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to improve, enrich and provide access to information related to vulnerabilities for the
purposes of supporting informed decisions. Russo et al. [86], Warehus et al. [103] and
Yosifova et al. [104] use different machine learning, data mining, and natural language
processing approaches to enrich every CVE entry with additional information and
to provide valuable metrics to improve awareness during the cyber vulnerability
assessment process. Other works focus on the support of situational awareness
about the vulnerability inventories rather than on their quality, by providing suitable
visualizations and analytics (as in Pham et al. [81] and Angelini et al. [15]) or
by using data structures which enable further and more structured analyses (e.g.,
Kiesling et al. [52], Syed [97]).

2.3 On the accuracy and scalability of attack graph
based methodologies

In the literature, there are different methodologies to analyze the cyber risks.
They constitute the security standards and are OWASP [46], MEHARI (MEthod for
Harmonized Analysis of RIsk) [28], and EBIOS [17], which are two-factor risk models
as they evaluate the risk of an attack according to its likelihood and impact. Although
they define the standard components that must be leveraged when evaluating the
cyber risk (i.e., likelihood and impact), they are difficult to adapt to multi-step
attacks due to the exploit dependencies that must be taken into account in the
evaluation of the risk.

For this purpose, attack graph-based approaches have been born to estimate the
risk of multi-step attacks. For example, Kavallieratos et al. [48] map DREAD [91],
a static threat modeling approach, to attack graph for assessing the risks of attack
paths and make the analysis actionable for dynamic risk analysis. Similarly, Gonzalez-
Granadillo et al. [38] provides a solution for dynamic cyber risk analysis based on
CVSS metrics [33]. One of the core aspects to underline when using these approaches
is that the quality of the results depends on the quality of the input. While this
is true for any system [20], it is particularly relevant when managing the risks of
multi-step attacks because inaccurate results may provide inaccurate protection.

Regarding the accuracy and scalability of attack graph-based methodologies, the
scientific literature analyzes these two issues separately, differentiating the issues
of accuracy of the risk analysis based on the attack graph and the issues of the
scalability of the graph itself.

Attack graph scalability
Let us note that the attack graph computation and analysis is currently the main
bottleneck of attack graph-based self-protecting systems, deriving from the theoretical
complexity of the graph exploration. A natural direction to improve the performance
of such systems is by adopting scalable attack graph generation algorithms. Several
approaches exist in the literature to deal with such issue like (i) computing only
shortest paths [49], (ii) pruning the exploration up to a given path length [49], (iii)
considering distributed [50, 77] or parallel algorithms [57, 58]. All of these strategies
implicitly assume that input data used to compute the attack graph are accurate
and trade the efficiency for an approximated solution. In addition, they do not
assess and quantify the accuracy-scalability trade-off. Thus it is difficult to estimate
the accuracy loss when they are used in self-protecting systems (e.g., [38]). The
approaches proposed in Chapters 4 and 5 take an orthogonal perspective. Indeed,
these proposals focus on the input data used by attack graph generation algorithms
to improve their quality and reduce their size, still minimizing the accuracy loss.
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As a consequence, the techniques proposed in this work can also be combined with
existing solutions.

To move a step towards real-time attack graph generation, other solutions propose
to compute attack paths based on alerts coming from detection systems. Among
them, Nadeem et al. [71] propose a generation system that translates alert events
to episode sequences that are then used to build a finite automaton representing
the structure of the attack graph. Similarly, Ning et al. [73] and Moskal et al. [70]
aggregate intrusion alerts based on their frequency and features to generate smaller-
sized attack graphs and accelerate risk analysis. Also in this case, performance is
traded off for accuracy (i.e., the attack graph is built from potentially inaccurate
data extracted from alerts).

Different solutions leverage Artificial Intelligence (AI) to predict attack paths
and avoid their complete enumeration. For example, Hu et al. [43] use data mining
to correlate alerts and construct the attack graph accordingly, while Li et al. [60]
leverage deep neural networks to generate attack graphs. These solutions focus
on defining an approximation of attack graphs to avoid the complete generation
and improve the scalability. On one side, they analyze the trade-off between the
approximation degree of the generated graphs and the computational complexity.
On the other hand, they do not analyze the impact on the risk estimation and
scalability trade-off, which is crucial for self-protecting systems [56, 105, 108] to
adjust response planning dynamically.

On the accuracy of attack graph input data
State-of-the-art solutions do not consider pre-processing the inputs of the attack
graph computation algorithm. Instead, they collect data from different sources (e.g.,
different vulnerability scanners, sensors, IDSs) and aggregate them into a repository
which is finally normalized to accomplish the data format necessary for the Analysis
component [45, 50] of a self-protecting system following the MAPE-K architecture.
To the best of the author’s knowledge, the main contribution looking at the quality of
vulnerability inventories (i.e., one of the attack graph inputs) is proposed by Bonomi
et al. [25], who leverage the security expert’s knowledge to detect and identify false
positives coming from vulnerability scanners. They propose to require the human
analyst to validate the presence of vulnerabilities by reducing as much as possible
the number of interactions. The core idea behind such methodology is to model
the dependencies between vulnerabilities and vulnerable platforms in the network
(i.e., the hosts’ configurations defined according to NIST’s National Vulnerability
Database [100]) and use such dependency model to drive the interaction with the
user. Indeed this contribution is part of this thesis, and is featured in detail in
Chapter 4, which will also propose several advancements to perfect the methodology
and to consider and evaluate the accuracy of risk estimation in the computational
pipeline proposed in the same chapter.
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Chapter 3

Integrating Sources of Data to
Support Automatic Correlation

Of all the aspects surrounding the Cyber Security Assessment process, the
analysis of vulnerabilities is one of the most critical aspects. Moreover, vulnerability
analysis not only has a strong impact on risk management but also fundamentally
affects other processes such as incident management, as it provides information
which is necessary for the process and for the decision activities that follow.

Understanding vulnerabilities affecting ICT systems is a long-standing activity,
as established by the PhD thesis of Krsul [55] at US CERT and consolidated by the
creation of the Common Vulnerabilities and Exposures1 (CVE) in 1999, followed by
the creation of National Institute for Standards and Technology’s (NIST) National
Vulnerability Database2 in the US. More recently, efforts to develop standardized
frameworks to support the evaluation of risk associated to each vulnerability have
gained traction, leading to the adoption of many methodologies, such as the Common
Vulnerability Scoring System (CVSS) [66]. These efforts have been further expanded
to provide additional information related to the principles of vulnerabilities through
the Common Weakness Enumeration (CWE) [31] dictionary, which classifies types
of vulnerabilities.

With self-protecting systems being still in their infancy, vulnerability assessment
is still an activity typically performed by cyber security analysts. Analysts manually
check and analyze reports obtained from various sources, such as vulnerability
scanners, to estimate each vulnerability’s risk by evaluating the likelihood of each
exploit and the magnitude of the consequences of the successful exploitation of each
vulnerability.

During this task, knowledge extracted from publicly available repositories is
leveraged (e.g., NIST NVD [75], the MITRE CWE [31], and the available ICS-CERT
advisories, just to cite a few) and is correlated between multiple, possibly heteroge-
neous and large, sets of complementary and sometimes redundant information. This
activity is extremely time-consuming for a human and not trivial for an automated
system as the relevant information needs to be searched, downloaded and then
analyzed by accessing multiple data sources which are often provided as plain text.
In addition, the accuracy of the analysis is also impacted by the background and
expertise of the analyst and by its familiarity with data sources that need to be used.
Thus, there is a non-negligible effort that is required for a human or automated
agent to understand the type and the semantics of data that is needed to complete

1https://cve.mitre.org/
2https://nvd.nist.gov/

https://cve.mitre.org/
https://nvd.nist.gov/
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the task.
Recently, effort is being spent in designing and developing automatic or semi-

automatic correlation engines to support security operators as well as potential
autonomic systems, in order to reduce the effort of finding the relevant information.
As an example, there exist architectures for dynamic risk management designed
during the Panoptesec project [8] and the PANACEA EU research project [93]
where vulnerabilities are detected through vulnerability scanners and then analysed
to estimate the related level of risk, by correlating information coming from the
organization with data coming from NVD.

However, most of the existing solutions currently focus on how to correlate data
observed from the monitored environment with data stored in a single external data
source (typically the NVD). To the best of the author’s knowledge, few works look
at the integration of the knowledge across different external repositories and very
few consider more than two information sources together and how to leverage the
existing relationships between data.

Contributions
This chapter takes a step in the direction of integrating multiple data sources to
improve the overall level of knowledge and to support automatic correlation of
information. In particular, the chapter provides the following contributions:

1. A systematic review of several well-known publicly available repositories such
as NVD [75], CWE [31], CAPEC [29] and ATT&CK [94, 23], aimed at un-
derstanding and formalizing their structural properties. During this process,
schemas have been made to highlight each repository’s capability and structure,
as well as to highlight the presence of references between different repositories;
The result is a graph-based conceptual model of every repository where nodes
represent elements present in each repository and edges represent the existing
relationships (between elements) defined inside each repository;

2. A unified data model, a graph-based representation of elements from each dif-
ferent repository, which is able to explicitly represent and handle the structure
and hierarchy of elements of the same repository as well as the links existing
between elements of different repositories; The unified data model is built on
top of the existing repositories. It allows for correlation and analysis of all
relevant concepts stored across all the included repositories. This unified data
model will be then proven to support complex analysis tasks;

3. The formalization of three relevant and complex analysis tasks (usually per-
formed during the vulnerability analysis in the risk management process), with
the final aim to show how they can be efficiently supported by the unified data
model. Algorithms that leverage the unified data model to easily find solutions
will be proposed. In particular, the following analysis tasks will be considered:

• Vulnerability classification to highlight the actual vulnerable system part
and the system context needed to exploit a vulnerability,

• Identification of possible mitigation actions given a vulnerability, and
• Identification of the cost of applying a mitigation to a vulnerability.

To perform and validate the analysis, an exemplary unified data model has been
instantiated starting from a dataset that includes (i) the whole CWE repository, (ii)
the whole CAPEC repository and (iii) a subset of the NVD database considering
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vulnerabilities extracted from security advisories published by the ICS-CERT. For
the first task an analysis strategy spanning a single repository has been proposed.
This has been done to highlight the importance of having a deep knowledge of the
data, the structure and the semantics of each data source. Concerning the second
task a solution has been proposed, enabled by the integration of concepts in different
repositories (i.e, NVD and CWE). Lastly, for the third task a methodology that
elaborates the results and the principles behind tasks one and two has been proposed,
in order to prove the ability of the unified data model to produce new, relevant
information starting from previous computations across multiple repositories.

3.1 Repositories for Vulnerability Assessment
This section introduces the main publicly available repositories i.e., NVD [75],

CWE [31], CAPEC [29, 23], and MITRE ATT&CK [94], that are typically used as
primary sources to support security operators and autonomous systems during the
vulnerability assessment and risk management tasks. Particular emphasis will be
given in the description of:

• The information made available in the repository;

• The structure of each repository and, in particular, how data is organized and
classified internally to the repository (i.e., internal data relationships);

• Existing relationships between data stored in different repositories (i.e., external
data relationships).

The section aims to highlight the importance of the correct interpretation of
data and their relationships. Indeed, this is fundamental to design algorithms
and methodologies to better support security operators and automated systems
in reducing the time required for the analysis and in improving the accuracy of
the information provided. Section 3.3.1 will describe a naive solution that could
have been designed without deep knowledge of the repositories structure and then
an improvement will be shown by designing a solution that is fully aware of the
semantics and of the structure of the data.

3.1.1 Common Vulnerabilities and Exposures (CVE) and the NIST
National Vulnerability Database (NVD)

The Common Vulnerabilities and Exposures (CVE) [30] is a dictionary of publicly
disclosed cybersecurity vulnerabilities and exposures managed by MITRE corpora-
tion. The CVE dictionary consists of a set of independent entries each one having:
(i) an identification number; (ii) a description; and (iii) at least one public refer-
ence to external sources providing information about the issue. A CVE identifier
follows a simple syntax: CVE-YEAR -5-digits-number , where YEAR identifies when
the identifier has been created and 5-digits-number is a sequential number to
separate different entries of the same year. When someone suspects a vulnerability
in a piece of software, he/she requests to MITRE such an identifier. MITRE assigns
the identifier (YEAR and 5-digits-number ), but does not publish it immediately.
The identifier is only published when the vulnerability is confirmed. In some cases,
this process may take a significant amount of time, and there exist identifiers which
are never confirmed and thus never published.

In addition to the dictionary maintained by MITRE, CVE entries are collected,
organized and published in the National Vulnerability Database (NVD) [75], managed
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by NIST. NVD is built upon and fully synchronized with the CVE list so that any
update to CVE appears immediately in NVD. Inside NVD, each entry is structured
as follows:

• CVE identifier : it is the unique CVE identifier associated with the vulnerability.

• CVE assigner : it contains the indication of the entity/body that detected and
notified the vulnerability.

• CVE description: it is typically a textual description of the vulnerability and
of the effect of a possible exploit.

• Relevant References: it provides a set of references that allow enriching the
knowledge about the vulnerability context. In particular, it is worth mentioning
the following references:

– Reference to software weaknesses categorized and classified in an external
repository i.e., the Common Weakness Enumeration (CWE) repository
(discussed in detail in Section 3.1.2).

– Reference to known affected software configurations. This information is
categorized by assigning to the CVE entry one (or more) Common Plat-
form Enumeration (CPE) string(s) organized in configurations, used to
identify information technology systems, software, and packages affected
by the vulnerability.

– A severity score and the associated CVSS vector.

• CVE history: each CVE has typically associated temporal information related
to its history such as the date of the publication and the date of the last
update.

Common Platform Enumeration (CPE) Strings
CPE strings identify, with a variable degree of accuracy, the vulnerable components
of an ICT system, as well as components which are not vulnerable per se, but may be
required in order express the vulnerability. According to the NIST documentation on
CPE version 2.3 [26, 78], a well-formed CPE string is obtained by the concatenation
of sub-strings, one for each attribute listed in Table 3.1 and separated by “:”.

Among them, three attributes are mandatory i.e., part, vendor and product.
When an optional attribute is not specified, it is replaced in the CPE string with ∗,
which according to he documentation translates to Any. An example of a well-formed
CPE string is cpe:2.3:o:microsoft:windows_98se:-:*:*:*:*:*:*:* that refers to the
operating system Microsoft Windows 98 and where the part attribute is equal to
o, the vendor attribute is equal to microsoft, the product is windows_98se and all
other (optional) attributes have not been specified.

The last column of Table 3.1 highlights the number of distinct sub-strings existing
in the CPE dictionary (as of September 2023) used to label individual attributes
(e.g., looking to the first row we have that only 3 values are used to identify the part
attribute i.e., “a”, “o” and “h”).

Let us note that, a specific system component could potentially be identified by
multiple CPE strings. This is due to the presence of optional attributes generating
an overlap between entries in the CPE dictionary, with certain strings being included
in others as particular cases e.g., we may have two possible CPE strings for the same
product, one specifying only mandatory attributes (e.g., Microsoft Windows XP)
and another one with a specific version (e.g., Microsoft Windows XP service pack 2).
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Table 3.1. Attributes used in the definition of a CPE string

Attribute Description Distinct

part domain of the element represented by the CPE 3(“a”=application, “h”=hardware, “o”=OS)
vendor vendor of the product 30684
product product name 139604
version version of the product 107581
update specific update of the product 10668
edition specific edition of the product 1077
language language used in UI of the product 38(encoded accordingly with [RFC5646[24]])
sw_edition market (or class of end users) that 440the product is tailored to
target_sw software computing environment used by the product 538
target_hw instruction set architecture on which it runs 65
other any other information that may pertain to the CPE 24

The CPE dictionary is built and curated manually by human analysts and, as such,
may contain errors e.g., typos in product names or a bad split between product
names and versions when both are tightly coupled in the common denomination
proposed by the vendor. Thus, on one hand, it is a rich source of information for
security analysts but on the other hand, it raises a few issues concerning the quality
of stored data.

NVD lists, for every stored vulnerability, its linked CPEs and supports queries
to filter CVEs based on the vendor, the severity or the publication date. In addition,
NVD labels CPE strings with additional information that specifies if the considered
product is itself vulnerable or if it represents an environmental condition necessary
for the exploit.

Inside NVD, CPE strings associated with a specific vulnerability are organized
in a set of alternative configurations (i.e., logically related through a OR operator).
Each configuration then is represented by a AND − OR tree called configuration
tree. As per NIST IR 7698 [100], a configuration tree defines which combinations of
software, hardware and operating system are necessary for the vulnerability to exist.
Figure 3.1 shows a graphical representation of possible topologies of configurations
trees.

CVE

CPE2 CPEj

V

V

CPE3CPE1

V

Confirguration 2 Configuration k

Configuration 1

Figure 3.1. Structure of CPE configurations stored in NVD. Red and green denote
vulnerable / non-vulnerable status
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Let us note that, NVD (as it is now) is just a repository and it has not been
designed to embed a correlation engine able to perform a deep analysis among data
(e.g., it is not currently able to analyze different CPE configurations or correlate
CVE and CWE to suggest mitigation actions). This task is indeed delegated to (i)
the vulnerability analyst that manually browses the available data and correlates
him/her self such information or (ii) external tools that download the data and
implement all the correlation logic internally.

Common Vulnerability Scoring System (CVSS)
NVD complements the description of every vulnerability by reporting one or more
severity scores computed according to the Common Vulnerability Scoring System
(CVSS) [5] and the corresponding CVSS strings. CVSS provides a way to consider
the main characteristics of a vulnerability and to produce a numerical score reflecting
its severity. The numerical score is then translated into a qualitative representation
(such as low, medium, high, and critical) to help organizations to properly assess
and prioritize their vulnerability management processes. The severity score reported
in NVD corresponds (in almost all entries) to the vulnerability base score i.e., a
numerical value between 0 and 10 that is computed by scoring all the base metrics
defined in the CVSS specification. CVSS also allows to compute an environmental
score and a temporal score that can be used to (i) contextualize and reweigh the
severity of the vulnerability in the specific environment and (ii) keep into account the
time elapsed from when the vulnerability has been detected and when it is analysed.

CVSS evolved across three different versions, namely CVSS version 2.0, 3.0 and
3.1, defined and managed by FIRST [6], that coexist within the NVD ecosystem.
The main difference between these versions is in the set of metrics and corresponding
values that are considered in the computation of the score. Independently from the
considered version, only the base metrics are always evaluated and stored within
each NVD entry. This is necessary as by definition the estimation of environmental
metrics and temporal metrics are highly dependant on the ICT environment that
the vulnerability resides in.

Let us note that, while at the time of writing almost all NVD entries have
associated a CVSS version 2.0 base score, only newer entries report a CVSS 3.* base
score. Currently, NIST is not planning to update legacy CVSS 2.0 attributes into
the newer CVSS 3.0 and 3.1 for old entries. For this reason, CVSS 2.0 is still kept
as an alternative in newer entries as a measure to ensure both retro-compatibility
and uniformity across the NVD repository.

For the sake of completeness, CVSS base metrics are reported according to
specification 2.0 [3], as well as 3.0 [4] in tables 3.2 and 3.3 respectively. The CVSS
3.1 specification [5] introduces minor modifications in the definitions and formulas
used to compute the numerical scores in order to clarify and improve the existing
standard.

Figure 3.2 shows a possible UML conceptual representation for data stored in the
NVD database and its related information. As it can be seen, the central concept of
a NVD entry is represented by the CVE vulnerability which is then related to CPE
configurations and CVSS scores (that could be expressed according to specification
v2, v3 or both).

3.1.2 Common Weakness Enumeration (CWE)
The Common Weakness Enumeration (CWE) repository [31] is a categorization

of software weaknesses and vulnerabilities. It is managed by MITRE and it is
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Table 3.2. CVSS 2.0 base metrics

Metric Description Values

Access Vector (AV) This metric reflects how the
vulnerability is exploited

Local (L)
Adjacent Network (A)
Network (N)

Access Complexity (AC)
This metric measures the complexity
of the attack required to exploit the
vulnerability once an attacker has
gained access to the target system

Low (L)
Medium (M)
High (H)

Authentication (Au)
This metric measures the number of
times an attacker must authenticate
to a target in order to exploit a
vulnerability

None (N)
Single (S)
Multiple (M)

Confidentiality Impact (C)
This metric measures the impact
on confidentiality of a successfully
exploited vulnerability

None (N)
Partial (P)
Complete (C)

Integrity Impact (I)
This metric measures the impact
on integrity of a successfully
exploited vulnerability

None (N)
Partial (P)
Complete (C)

Availability Impact (A)
This metric measures the impact
on availability of a successfully
exploited vulnerability

None (N)
Partial (P)
Complete (C)

sustained by a community project. Its main goal is to report details about flaws in
software to support the identification, mitigation, and prevention of those flaws. To
this aim, every CWE entry has associated a numerical identifier and an explanatory
name. A CWE entry may contain references to other CWE entries with the result
of having information organized in a graph-based structure that can be queried and
analyzed i.e., CWE entries can be seen as vertexes of a graph and relationships
between entries can be seen as edges of the CWE graph. Such relationships are made
explicit in the repository from the fields Relationships and MemberOf Relationships
defined for each CWE entry. Given this graph-oriented view of the CWE repository,
in the following, the term “node” may be used to refer to a CWE entry. Additionally,
CWE entries report historical information that allows the user to analyze how the
issue evolved over time.

CWE entries are organized in a taxonomy and every entry can be one of the
following three different types: (i) view, (ii) category and (iii) weakness.

A weakness entry provides details about the associated issue, including a textual
description, common consequences of the weakness exploit, examples and possible
mitigations. CWE weakness nodes may also provide pointers to vulnerabilities
(i.e., by referencing CVE identifiers). This class of entries includes the majority of
CWE nodes. Weakness nodes can be also connected to highlight specific semantic
relationships. As an example, a parent-of (or child-of ) relationship between cwe1
and cwe2 models the fact that cwe1 represents a more (resp. less) general problem
than cwe2. Let us note that while in theory weakness nodes may have associated
multiple useful information, however, many fields are optional and thus may not be
populated for each entry.

Category nodes represent a way to group and structure different specialized
weaknesses under a common denominator. A category node represents a higher-level
concept aggregating together specific weaknesses. As an example, if we consider
the category CWE-1218 Memory Buffer Errors3 representing weaknesses related
to memory buffer management errors within a software system, we can see that it

3https://cwe.mitre.org/data/definitions/1218.html

https://cwe.mitre.org/data/definitions/1218.html
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Table 3.3. CVSS 3.0 and 3.1 base metrics

Metric Description Values

Attack Vector (AV)
This metric reflects the context
by which vulnerability
exploitation is possible

Network (N)
Adjacent (A)
Local (L)
Physical (P)

Attack Complexity (AC)
This metric describes the conditions
beyond the attacker’s control that
must exist in order to exploit
the vulnerability

Low (L)
High (H)

Privileges Required (PR)
This metric describes the level of
pivileges an attacker must possess
before successfully exploiting
the vulnerability

None (N)
Low (L)
High (H)

User Interaction (UI)
This metric captures the requirement
for a human user, other than the attacker,
to partecipate in the successful
compromise of the vulnerable component

None (N)
Required (R)

Scope (S)

The Scope metric captures whether a
vulnerability in one vulnerable
component impacts resources in
components beyond its security
scope

Unchanged (U)
Changed (C)

Confidentiality Imapct (C)

This metric measures the impact to
the confidentiality of the information
resources managed by a software
component due to a successfully
exploited vulnerability

None (N)
Low (L)
High (H)

Integrity Impact (I)
This metric measures the impact
on integrity of a successfully
exploited vulnerability

None (N)
Low (L)
High (H)

Availability Impact (A)
This metric measures the impact to
the availability of the impacted
component resulting from a
successfully exploited vulnerability

None (N)
Low (L)
High (H)

abstracts 9 detailed weaknesses (i.e., CWE-120, CWE-123, CWE-124, CWE-125,
CWE-131, CWE-786, CWE-787, CWE-788, CWE-805), each describing a specific
type of error leading to problems with memory buffers.

Categories can also be linked between each other to model concepts with different
levels of abstractions or to map already classified issues from one class to another
(e.g., category node CWE-723 Broken Access Control is linked to the category
node CWE-275 Permission Issues through a parent-of (in the graph represented
as Member_Of ) relationship meaning that CWE-723 is a more general issue than
CWE-275).

A view node identifies a perspective abstracting from the specific weakness and
it is usually associated to the type of aggregation it represents (e.g., Architectural
Concepts or Research Concepts) and its target audience (e.g., Academic Researchers
or Assessment Vendors). Generally, views are used to navigate and filter the CWE
repository and they result in a tree-based structure (called CWE tree) where the
view is the root and categories and weaknesses are its children. It is worth noting
that CWE categories and weaknesses may belong to multiple views and thus, they
may be part of more than one CWE tree.

Figure 3.3 shows the UML conceptual representation of the information stored
in the CWE repository.
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Figure 3.2. UML conceptual representation of the vulnerability data model.
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Figure 3.3. UML conceptual representation of the CWE data model
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(a) Graph Representation of the CWE reposi-
tory GCW E = (V, E, ℓ)

(b) Graph Representation of the CWE reposi-
tory, focus on Weaknesses sub-graph G′

CW E =
(V ′, E′)

(c) Graph Representation of the CWE repos-
itory, focus on the sub-graph including only
links between Views, Categories and Weak-
nesses G′′

CW E = (V ′′, E′′)

Figure 3.4. Graph Representation of the CWE repository GCW E = (V, E, ℓ) including all
CWE published up to September 2023.

Considerations on the CWE repository
As anticipated, information stored in the CWE repository and its relationships
can be represented as a graph of concepts where the set of vertexes is the set of
CWE nodes and the set of edges is represented by any existing relationship between
nodes (i.e., weakness-weakness such as parent_of or child_of, category-weakness,
category-category and view-category). More formally, if we denote W the set of
weakness nodes, C the set of category nodes and V the set of view nodes, we can
define the CWE graph as GCW E = (V, E, ℓ) where

• V is the set of vertexes defined as V = W ∪ C ∪ V;

• E is the set of all existing relationships between CWE nodes (i.e., given two
nodes vi, vj ∈ V there exists an edge ei,j ∈ E if and only if vi is related to vj

by some relation in CWE;

• ℓ is a label function that assigns the type of relationship to any existing
edge. Existing labels (i.e., relationships) at the time of the writing are:
child_of, parent_of, starts_with, can_precede, can_follow, required_by, requires,
can_also_be, peer_of.

Figure 3.4 shows the graphical representation of GCW E representing the whole
CWE repository and interesting sub-graphs. In particular: (i) Figure 3.4(a) shows
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the graph representing the whole set of nodes stored in the repositories and their
relationships; (ii) Figure 3.4(b) shows the CWE sub-graph obtained when considering
only weaknesses nodes; and (iii) Figure 3.4(c) highlights the CWE sub-graph obtained
considering only relationships between nodes of different types.

Contrary to the expectation, the “hierarchical organization” of data (i.e., the
partition of nodes in views, categories and weaknesses) does not induce a pure
tri-partite graph, but it rather constructs a complex structure where the number of
relationships between nodes in the same class is not negligible. A second interesting
point is the structure of the CWE graph obtained when considering only relationships
between nodes of different types (i.e., when we consider only edges labelled as
category-weakness and view-category). This sub-graph is indeed tri-partite (by
definition) and highlights the presence of a few categories having a high degree.

Table 3.4 summarizes the main relevant metrics of the CWE graph GCW E and
for few interesting sub-graphs defined as: (i) Gview is the sub-graph obtained when
considering only nodes of type view i.e., Gview = (V, E′) where E′ ⊂ E is the set of
edges ei,j = (vi, wj) such that vi, vj ∈ V, (ii) Gctg is the sub-graph obtained when
considering only nodes of type category i.e., Gctg = (C, E′) where E′ ⊂ E is the set
of edges ei,j = (vi, wj) such that vi, vj ∈ C and (iii) Gweak is the sub-graph obtained
when considering only nodes of type weakness i.e., Gweak = (W, E′) where E′ ⊂ E
is the set of edges ei,j = (vi, wj) such that vi, vj ∈ W.

Table 3.4. Summary of GCW E Graph Properties and of its sub-graphs (snapshot of the
CWE repository as of September 2023)

GCWE Gview Gctg Gweak

# Vertexes 1420 53 409 958
# Edges 6231 0 105 1571
# Isolated Vertexes 70 53 275 25
Average Degree 9.29 0.00 1.57 3.37
Max Degree 157 0 9 53
Average In-degree 4.78 0.00 1.08 4.55
Max In-degree 78 0 3 51
Average Out-degree 4.74 0.00 2.44 1.70
Max Out-degree 157 0 9 8

It can be observed that in the whole CWE graph GCW E there are only 70 isolated
nodes (i.e., 5% of the vertexes) i.e., nodes not connected to other nodes. These nodes
represent, in most of the cases, deprecated concepts still stored in the repository.
When considering the induced sub-graphs, it can be seen that (i) all nodes in the
view sub-graph are isolated meaning that views are independent each other, (ii) in
the category sub-graph 67% of nodes are isolated and the remaining ones are weakly
connected meaning that most of the categories are independent each other and just
a few of them models similar concepts and (iii) in the weakness sub-graph only 3%
of nodes are isolated while the others are generally well connected among them.
These properties let us think that CWE can be used as basic knowledge for building
complex correlation algorithms exploiting the graph relationship to infer potentially
hidden relevant information (an example will be discussed in the next section about
how to use the CWE tree structure to find possible mitigation actions when they
are not directly available in the considered CWE node).
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3.1.3 Common Attack Pattern Enumeration and Classification
(CAPEC)

Common Attack Pattern Enumeration and Classification (CAPEC) [29] is a
publicly available catalogue of common attack patterns reporting on how adversaries
may exploit weaknesses or flaws in applications. Similarly to CWE, it is managed
by MITRE and is maintained by a community project.

The structure of the CAPEC repository is very similar to CWE’s with entries
organized in a graph-based structure and classified in views, categories and attack
patterns.

An Attack Pattern entry provides a detailed description of the attack pattern,
specifying common attributes characterizing an attack and approaches employed by
adversaries to exploit known weaknesses.

Attack patterns also define the challenges that an adversary may face and are
generated from in-depth analysis of specific real-world exploit examples. Each attack
pattern captures knowledge about how specific parts of an attack are designed and
executed and gives guidance on ways to mitigate the attack’s effectiveness.

View and category nodes are built following the same rationale used in CWE:
view nodes identify a perspective to support the traversal of the CAPEC repository,
while category nodes model high-level concepts that serves as a point of aggregation
for Attack Patterns.

Let us note that CAPEC entries may be referenced by CWE entries (i.e., starting
from a specific CWE entry it is possible to understand the related attack patterns).
Unfortunately, the vice-versa is not true and CAPEC does not provide any reference
back to CWE or to CVE. Thus, it is not easy to understand, for a given attack
pattern, which are the vulnerabilities or weaknesses that are necessary to proceed
with the exploit.
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Figure 3.5. UML conceptual representation of the CAPEC data model

Figure 3.5 shows the UML conceptual representation of data stored in the
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CAPEC repository.
Let us note that while CAPEC is widely used by analysts for manual analysis,

using it as data source for automated analysis tools is far from being trivial as most
of the information stored is represented in plain text.

Considerations on the CAPEC repository
As per the case of CWE, the CAPEC repository can be interpreted as a graph
where vertexes are represented by CAPEC nodes (i.e., views, categories and attack
patterns) and edges are represented by relationships among them. More formally, if
we denote A the set of attack pattern nodes, C the set of category nodes and V the
set of view nodes, we can define the CAPEC graph as GCAP EC = (V, E, ℓ) where

• V is the set of vertexes defined as V = A ∪ C ∪ V;

• E is the set of existing relationships between CAPEC nodes (i.e., given two
nodes vi, vj ∈ V there exists an edge ei,j ∈ E if and only if vi is related to vj

by some relation in CAPEC;

• ℓ is a label function that assigns the type of relationship to any existing edge.

Figure 3.6 shows the graphical representation of GCAP EC representing the whole
CAPEC repository and interesting sub-graphs. In particular: (i) Figure 3.6(a)
shows the graph representing the whole set of nodes stored in the repositories and
their relationships; (ii) Figure 3.6(b) shows the CAPEC sub-graph obtained when
considering only weaknesses nodes; and (iii) Figure 3.6(c) highlights the CAPEC
sub-graph obtained considering only relationships between nodes of different types.

Looking at the structure of GCAP EC it can be observed that relationships between
nodes in the same class play a significant role in the CAPEC graph too. In addition,
it can also be seen that most of the structural properties of the CWE graph also apply
to GCAP EC . However, GCAP EC is much smaller than GCW E , making its analysis and
interpretation easier.

Table 3.5 summarizes the main metrics for the CAPEC graph GCAP EC and for
few interesting sub-graphs defined as: (i) Gview is the sub-graph obtained when
considering only nodes of type view i.e., Gview = (V, E′) where E′ ⊂ E is the set of
edges ei,j = (vi, wj) such that vi, vj ∈ V, (ii) Gctg is the sub-graph obtained when
considering only nodes of type category i.e., Gctg = (C, E′) where E′ ⊂ E is the set of
edges ei,j = (vi, wj) such that vi, vj ∈ C and (iii) Gatk_pat is the sub-graph obtained
when considering only nodes of type attack pattern i.e., Gatk_pat = (A, E′) where
E′ ⊂ E is the set of edges ei,j = (vi, wj) such that vi, vj ∈ A.

Table 3.5. Summary of GCAP EC Graph Properties (snapshot of the CWE repository as of
September 2023)

GCAPEC Gview Gctg Gatk_pat

# Vertexes 706 13 78 615
# Edges 984 0 0 727
# Isolated Vertexes 120 13 78 61
Average Degree 3.36 0.00 0.00 2.62
Max Degree 53 0 0 24
Average In-degree 4.05 0.00 0.00 3.62
Max In-degree 29 0 0 24
Average Out-degree 1.85 0.00 0.00 1.44
Max Out-degree 52 0 0 8
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Looking at the number of isolated nodes, we can observe that, differently from the
CWE graph, categories are independent of each other (i.e., there are no connections
between two categories). Thus, CAPEC seems to be really closer to a taxonomy than
CWE (see Figure 3.6). Finally, we can also observe the range of nodes’ degree when
considering attack patterns and their relationships is quite high (it ranges between
0 and 24 with an average of 2.62). This suggests that there are few central attack
patterns in the graph while others are generally independent (or loosely related)
concepts.

3.1.4 Adversarial Tactics, Techniques, and Common Knowledge
(ATT&CK)

The MITRE Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK)
repository [94] is a globally-accessible knowledge base of adversary tactics and tech-
niques based on real-world observations. ATT&CK provides information about
cyber adversary behaviour with particular emphasis on the attack lifecycle and
the platforms that specific attackers are known to target. ATT&CK focuses on
how external adversaries compromise and operate within computer networks and it
consists of the following core concepts:

• Tactic: denotes the short-term, tactical adversary goals during an attack and
basically represents what an attacker wants to obtain;

• Technique: describes how an adversary can achieve its tactical goals and thus
it represents how objectives can be achieved;

• Sub-technique: specializes the concept of technique by describing more specific
means by which adversaries achieve tactical goals;

The relationship between tactics and techniques/sub-techniques can be visualized
in the ATT&CK Matrix which is currently what analysts use to prevent and detect
specific attack categories.

Given a technique, it is typically associated to one or multiple groups i.e., sets
of related intrusion activity that are tracked by a common name in the security
community. Groups identification and their association with techniques are done
manually by analysts that do their best to ensure the accuracy, completeness and
consistency of the relationships tracked in ATT&CK. Groups are also mapped to
reported Software used, and the Technique implemented by that Software is tracked
separately on each Software page.

A technique (or sub-technique) has also typically associated a mitigation and
in the ATT&CK syntax a mitigation represents a security concept and classes of
technologies that can be used to prevent a technique or sub-technique from being
successfully executed.

It is interesting to see that this repository is also organized with a graph-based
logic and that the GAT T &CK graph can be built similarly to what has been done for
CWE and CAPEC by defining a node type for each relevant concept and an edge
for any type of relationship existing between concepts.

Figure 3.7 shows a possible conceptual data model for the ATT&CK repository.
Access to data stored in the ATT&CK repository can be done in different ways

ranging from using the tools available on the website (e.g., the ATT&CK Navigator)
to the download of the whole repository as an excel file or using the Structured
Threat Information Expression (STIX) language and serialization format used to
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exchange cyber threat intelligence (CTI). At the time of writing, the ATT&CK
dataset is available in STIX version 2.0 and 2.1.

It is important to note that STIX format representation is richer than every
other available format, even when compared to the information available on the
official web pages.

Table 3.6 summarizes the main metrics for the ATT&CK graph4 and some of its
relevant sub-graphs.

4The attributes in the graph derived from the STIX 2.1 representation of ATT&CK
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(a) Graph Representation of the CAPEC repos-
itory GCAP EC = (V, E, ℓ)

(b) Graph Representation of the CAPEC
repository, focus on Weaknesses sub-graph
G′

CAP EC = (V ′, E′)

(c) Graph Representation of the CAPEC repos-
itory, focus on the sub-graph including only
links between Views, Categories and Weak-
nesses G′′

CAP EC = (V ′′, E′′)

Figure 3.6. Graph Representation of the CAPEC repository GCAP EC = (V, E, ℓ) including
all CAPEC published up to September 2023.



3.1 Repositories for Vulnerability Assessment 32

Technique

- id
- name
- description
- detection
- platforms
- data sources
- is_subtechnique = False
- system requirements
- tactic type
- permissions required
- effective permissions
- defense bypassed
- remote support
- impact type

Mitigation

-id
- name
- description

Tactic

- id
- name
- description

Threat Group

- id
- name
- description
- aliases

associate_group

0..n

0..n

Software

- id
- name
- description
- aliases
- platforms
- labels

revoked-by

0..n

0..n

potential mitigation

0..n

0..n

uses
0..n0..n

implements

0..n

0..n
achieves

0..n 0..n

Matrix

- id
- name
- description

tactic_refs

0..n

0..n

uses

0..n

0..n

Sub-Technique

- is_subtechnique = True

subtechnique_of

0..n0..n

Campaign

- id
- name
- description

uses
0..n0..n

uses0..n
0..n

partecipates0..n
0..n

Figure 3.7. ATT&CK Graph Structure



3.1 Repositories for Vulnerability Assessment 33

T
ab

le
3.

6.
Su

m
m

ar
y

of
AT

T
&

C
K

G
ra

ph
Pr

op
er

tie
s

(s
na

ps
ho

t
of

th
e

C
W

E
re

po
sit

or
y

as
of

Se
pt

em
be

r
20

23
)

Fu
ll

M
at

ri
x

T
ac

ti
cs

T
ec

hn
iq

ue
s

T
hr

ea
t

M
it

ig
at

io
ns

So
ft

w
ar

e
C

ai
m

pa
ig

ns
G

ro
up

s
#

V
er

te
xe

s
22

80
4

55
11

92
15

2
10

7
74

8
22

#
E

dg
es

17
62

5
0

0
67

3
5

0
1

0
#

Is
ol

at
ed

V
er

te
xe

s
24

9
4

55
40

5
14

2
10

7
74

6
22

A
ve

ra
ge

D
eg

re
e

17
.3

6
0.

00
0.

00
1.

71
1.

00
0.

00
1.

00
0.

00
M

ax
D

eg
re

e
42

1
0

0
16

1
0

1
0

A
ve

ra
ge

In
-d

eg
re

e
10

.5
2

0.
00

0.
00

1.
02

1.
00

0.
00

1.
00

0.
00

M
ax

In
-d

eg
re

e
26

6
0

0
2

1
0

1
0

A
ve

ra
ge

O
ut

-d
eg

re
e

15
.4

3
0.

00
0.

00
2.

21
1.

00
0.

00
1.

00
0.

00
M

ax
O

ut
-d

eg
re

e
42

1
0

0
16

1
0

1
0



3.2 Integrating the Repositories 34

3.2 Integrating the Repositories
Section 3.1 provided a detailed overview of the characteristics of NVD, CWE,

CAPEC and ATT&CK repositories and analysed their structural properties inde-
pendently.

Let us remark that such repositories are managed independently from each other
and they have been initially thought to target different audiences:

• CVE and NVD are dedicated to providing detailed information about vul-
nerabilities and their features from the system perspective and they serve as
primary source of information for vulnerability evaluation in risk assessment.

• CWE has the aim of providing a common language and measuring stick for
security tools; it serves as a baseline for weakness identification, mitigation
and prevention efforts and thus it is more oriented to software developers and
testers.

• CAPEC provides a comprehensive dictionary of known attack patterns taken
by adversaries to exploit known weaknesses. It is mainly used by analysts,
developers, testers but also from educators to enhance understanding, awareness
and defenses.

• ATT&CK is used as a foundation for the development of specific threat models
and to understand how an attacker may launch its offensive to the system.
Thus, it is an important source of information for both blue team and red
team exercises but also for risk analysts to correctly evaluate the likelihood of
specific threat sources.

However, despite their independent target, structure and management, such
repositories are not completely unrelated. Contrarily, they address and report about
strictly related concepts from different point of views that, when considered together,
enlarge the perspective on the security situation providing a deeper and more detailed
view about it. Currently, every repository provides references to entries of the other
repositories but the correlation and the analysis is still usually carried out by a
human that manually browses and queries the data requiring typically minutes (or
hours in case of complex correlations). In particular:

• CVE entries have, among their references, pointers to CWE identifiers to
support the analyst in understanding the type of issue that may lead to the
existence of the vulnerability;

• CWE entries have, among their references, pointers to CAPEC entries and
(in a negligible number of cases) pointers to CVEs. This is done to point out
the relationships between a specific software issue or flaw and one (or more)
attack patterns that can be triggered from it;

• CAPEC entries have, among their references, pointers to MITRE ATT&CK
entries and (in a negligible number of cases) pointers to CVEs. This pointer
helps the analysis in linking an abstract attack pattern with concrete attack
techniques and tools.

Let us note that the presence of such explicit links paves the way to a natural
integration in to a single knowledge base that can be used to simplify the analysis of
a given situation from multiple points of view.
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In addition, when entering into the detail of the data model behind every
repository, it can be noticed that there are “attributes” (e.g., mitigation) that are
specified, with different flavours, in multiple repositories and that represent a relevant
concept by themselves from the security situation analysis point of view. Similarly,
there exists few attributes that induce an implicit relation between concepts stored in
different repositories. As an example, let us consider the affected resources attribute
associated to a weakness entry in CWE. Such attribute has the aim of specifying
the set of potential system resources affected by the considered weakness. Such
resources are described in CWE in plain text but conceptually they correspond to
the notion of platform that can be formalized through the concept of CPE.

In the following, a data model will be proposed in order to support the integration
of the considered repositories in to a unique knowledge graph [34] and an architecture
will be proposed to instantiate and keep the knowledge graph up to date. Since
both in academia and in industrial applications no consensus has been reached
on the definition of the term knowledge graph, throughout the scope of this work
the definition proposed by Ehrlinger and Wöß [34] will be used. According to
the definition proposed by Ehrlinger and Wöß [34], “a knowledge graph acquires
and integrates information into an ontology and applies a reasoner to derive new
knowledge”. This definition asserts that the knowledge graph retains all the properties
and characteristics of an ontology, and expands upon it by: (i) integrating more than
one sources of information, and (ii) supporting the application of a reasoning engine
in order to derive new information. This definition is also adopted by IBM5, for which
knowledge graphs “are typically made up of datasets from various sources, which
frequently differ in structure”, and “the data integration efforts around knowledge
graphs can also support the creation of new knowledge, establishing connections
between data points that may not have been realized before”. According to both
definitions, the structure of a knowledge graph is made up of three components called
nodes (representing the objects or entities we are interested in), edges (representing
the relationships existing between pairs of nodes) and labels (assigning a specific
semantic to any relationship).

When modeling the proposed knowledge graph, the following additional require-
ments have been considered:

• The knowledge graph should be easily and quickly updated reflecting updates
in the input repositories. To this aim, it has been decided to preserve as much
as possible the internal structure of every repository (i.e., it has been decided
to preserve all the originally existing semantic relationships) as well as to build
edges between concepts that are already linked using cross-references. While
this results in a trivial construction of the core part of the proposed knowledge
graph, it is important to ensure that the resulting knowledge graph can be
instantiated and populated efficiently and effectively;

• “Relevant” concepts for the analysis of the situation (e.g., CPE configurations,
mitigation actions) modeled in the input repositories as attributes must be
translated into entities (i.e., nodes) of the knowledge graph. This has been
decided in order to highlight these concepts

• The “hidden” relationships between concepts in different repositories have been
made explicit. Analyzing the attributes of each relevant entity, it has been
noticed that they could be semantically associated with existing concepts e.g.,
a weakness node has associated the applicable platform attribute (expressed as

5https://www.ibm.com/topics/knowledge-graph

https://www.ibm.com/topics/knowledge-graph
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plain text) and it has been noticed that this attribute could be translated in a
relationship with a CPE node.

The result is a single graph that enables the correlation of heterogeneous informa-
tion and the identification, as an example, of the possible attack techniques available
to an attacker to intrude into a network, starting from the detected vulnerabilities
on network hosts.

Figure 3.8 provides an overview of the conceptual data model behind the inte-
grated knowledge graph i.e., the type of nodes, links and label that can be find in
the proposed knowledge graph. Coloured shades6 are used to identify concepts and
related attributes (i.e., nodes of the knowledge graph) that are directly modelled
and represented inside the original repositories while the white background has been
left to identify concepts and attributes not directly available in the repositories.
Relationships between concepts in Figure 3.8 represent relationships (i.e., edges and
corresponding labels) in the knowledge graph.
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Figure 3.8. Conceptual Model of the integrated knowledge graph KG

In the following, concepts, attributes and relationships that are not directly
represented (or represented differently) in the source repositories will be discussed.

The CVE Vulnerability Concept
When modelling a CVE vulnerability, all the relevant attributes already available
in NVD have been kept and two additional pieces of information have been added,
namely vulnerable part and contextual components that are not explicitly stated in
NVD but that could be inferred by analyzing CPE configuration trees associated to
the CVE. More precisely, the attribute vulnerable part identifies which is the part in
the device stack affected by the vulnerability (e.g., it specifies if the vulnerability
affects the hardware, the operating system, an application, or multiple layers of the
stack). The attribute contextual components represents the list of platforms that
enable the vulnerability exploit and thus represent the context to materialize the
vulnerability.

CVSS Score Concept
Let us note that the CVSS score specification specifies three types of metrics for every

6We used the following color coding: red identifies concepts ad relationships deriving from CVE
and NVD, yellow is associated to CWE, light blue is associated to CAPEC and light green is
associated to ATT&CK.
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vulnerability: (i) base metrics, (ii) temporal metrics and (iii) environmental metrics.
However, only the base metrics are available in NVD as the other two are context
dependent. It has been decided to include in the proposed knowledge graph all the
three types as it is reasonable to believe that such information is of high importance
for the analyst because it can support dynamic and context-aware vulnerability
analysis. In this case, three classes of metrics have been simply associated to the
concept of CVSS score (base, temporal and environmental metrics) and the existence
of two possible scoring mechanism have been modeled, depending on the specification
that is being considered (v2.0 vs v3.1 if available, 3.0 otherwise).

Mitigation Concept
From the point of view of a security analyst or a risk assessor, it is important to
identify if a possible mitigation for a detected vulnerability exists, as well as its
degree of relevance (i.e. how relevant is the mitigation to the vulnerability). Thus,
the notion of mitigation has been explicitly modeled and has been associated to a
CVE vulnerability. In addition, considering that the notion of mitigation is recurrent
in the repositories (even if it is in the form of an attribute and with a different
flavour in every repository) it has been decided to further specialize it by modeling
the concepts of CWE mitigation, CAPEC mitigation and ATT&CK mitigation. Let
us note that CAPEC and CWE, by design, represent concepts at a different level
of granularity with respect to NVD (i.e., CWE generalizes and aggregates multiple
vulnerabilities under the same weakness and CAPEC defines patterns by linking
different weakness). However, a mitigation for a weakness could still provide some
indication on how to mitigate a specific problem. Thus, it has been decided to
model this aspect by associating an attribute i.e., relevance value, to the relationship
between CVE vulnerability and the associated mitigation.

Implicit Relationships
During the in-depth analysis of the attributes of each repository, it has been noticed
that there could be additional (implicit) relationships between elements of different
repositories. In particular, this is true for all the repositories that provide information
about platforms or affected resources. In the proposed knowledge graph, the concept
of platform has been introduced explicitly (i.e., the Common Platform Enumeration
concept) and thus an implicit relationship between entities having platforms or
affected resources attribute and the CPE concepts has been introduced.

This section detailed the structure of the ontology which is at the base for the
proposed unified data model. In order to transform this ontology into a knowledge
graph, as per the definition proposed by Ehrlinger and Wöß [34], the ontology must
be able to support a correlation engine capable of extracting information which is
not already present in the source repositories.

To this aim, the next section will detail how a correlation engine may be able to
extract new information using (i) only the information in a single source repository,
as well as (ii) information from multiple source repositories.

More specifically, the ability for a correlation engine to exploit the graph in order
to solve following tasks which are part of the cyber security assessment process will
be analyzed:

• Given the set of vulnerabilities affecting a specific host, for each vulnerability
get their vulnerable and contextual parts.

• Given the set of vulnerabilities affecting a specific host, get a set of possible
mitigation actions that could be applied, ranked according to their relevance
with respect to the considered vulnerability.
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• Given the set of vulnerabilities affecting a specific host and a ranked set of
possible mitigation actions that could be applied, get the cost derived from
applying each mitigation action to the host.

3.3 Computing the Integration
In order to construct and keep the knowledge graph presented in Section 3.2 up

to date, a data collection, integration and correlation system has been implemented,
as shown in Figure 3.9. The system is composed of a set of 4 parsers (one for each
repository) that gather data from each source and transform it using a graph-based
representation according with the data model presented in Figures 3.2 - 3.7. Once
the input data is represented in a graph-based format, it can be processed in the
Graph Integration step to extract data not directly available in the source repositories
(e.g., identifying all the mitigation nodes) and to generate the corresponding graph
according to the data model in Figure 3.8. The last step of the process is storing
the processed data in a graph data base that will support the query answering.

Let us note that building and maintaining (at least the core of) the proposed
integrated knowledge graph is theoretically possible and relatively easy due to the
presence of cross-repository references. However, its effectiveness and usefulness
depend on the amount of existing cross-repositories links and on the quality of the
attributes that have been instantiated for each entry. In this chapter, the objective
is to analyze such integrated knowledge graph to understand its strengths and its
weaknesses and to point out the practical challenges in its population.

In order to do so, the specific tasks introduced in the previous section (i.e.,
finding vulnerable and contextual parts of each vulnerability, finding all the possible
mitigation for a given host, evaluating the cost of applying a mitigation) will be
considered, in order to highlight the challenges and peculiarities of correlating
information (i) within a single repository, and (ii) between multiple repositories.
Lastly, it will be shown how the correlation engine may be able to work using the
products of previous correlations in order to generate new information which is still
relevant with respect to the cyber security assessment process.

3.3.1 Task 1: Identify the vulnerable part and the contextual part
This section will be dedicated to showing how a correlation engine may be able

to extract information relevant to the cyber security assessment process, by only
acting on a single repository of the proposed knowledge graph.

In particular, the problem chosen to demonstrate this capability is the following:

Given the set of vulnerabilities affecting a specific host, for each vulnerability get
their vulnerable and contextual parts.

This means showing how it is possible to instantiate, for every CVE vulnerability,
(i) the vulnerable part attribute i.e., the part of the system that is affected from the
vulnerability (e.g., hardware, application or operating system) and (ii) the contextual
components attribute (i.e., the components that are necessary as a precondition to
exploit the considered CVE).

Let us note that the vulnerable part of a vulnerability is an information not
directly available in the NVD’s CVE description but it must be (manually) inferred by
the analyst analyzing the CPE configuration trees associated with the vulnerability.
Thus, to retrieve this information and to store it explicitly as an attribute associated
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Figure 3.9. Data Collection, Integration and Correlation architecture to support the
proposed knowledge graph.

to a CVE node in the knowledge graph, every CVE in NVD will need to be processed
automatically.

For the purpose of this study, when considering a CPE string, just the mandatory
sub-string part:vendor:product has been considered. This is due to a change in the
CPE protocol, from version 2.2 to version 2.3 which extended the CPE string with
new additional optional fields, mostly left blank by human analysts, and thus not
practically helpful for our purposes.

Let us recall that in NVD, every CVE vulnerability has attached one or multiple
configuration trees representing the possible alternative CPE configurations that
may lead to a potential exploit. A configuration tree can thus be traversed from
its root down to the leaves represented by CPE strings7 and it suggests alternative
configurations (i.e., those related by an OR relationship) or configurations that need
to co-exist to make the exploit possible (i.e., those related by an AND relationship).
Each CPE string (i.e., each leaf) in a CPE configuration tree has associated a
vulnerable boolean value. Given a particular configuration, this value has the
purpose to differentiate between actual vulnerable components (e.g., vulnerable
applications, hardware or operating system), and non-vulnerable components that
however act as a necessary condition for the vulnerability exploitation.

As an example, let us consider the simple CPE configuration tree in Figure 3.10. It
7A CPE string is obtained by the concatenation of attributes specified in Section 3.1.1.
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can be seen that the application vuln_application_name from vendor_1 is the actual
vulnerable component while the hardware component platform_name from vendor_2
is not vulnerable itself but it is an enabling component for vuln_application_name
i.e., vuln_application_name is vulnerable only if running on platform_name as they
are related on the configuration tree by an AND.

AND

a:vendor_1:vuln_application_name h:vendor_2:platform_name
Vulnerable = True Vulnerable = False

Figure 3.10. Example of a CPE configuration tree

This simple example suggests that given a configuration tree and its particular
semantics, CPEs in every sub-tree must be analyzed independently. Moreover, while
performing the analysis it is necessary to distinguish between strings labelled as
vulnerable = True from those labelled as vulnerable = False.

Let us remark that each CPE in the configuration tree has its own part attribute.
Thus, given the one-to-many association between one vulnerability and related CPEs
leaves, it is possible that vulnerable leaves (i.e., CPE leaves in the configuration
tree having the vulnerable flag set to true) show a kind of “heterogeneity”8 between
part attributes. Said differently, vulnerable leaves of the same configuration tree
may refer to different parts of the system suggesting that the vulnerability may be
“vertical”.

Thus, it can be concluded that selecting the first part attribute or the most
frequent one appearing in each tree or forgoing the structure and semantics of the
configuration tree (i.e. “flattening” the AND − OR tree structure) is not enough.

From the previous observation, more than three part classes have been defined
to be possibly associated to a CVE. This is necessary, as different compositions of
CPEs part attributes in a single CVE are usually evidence of a vertical problem in
the stack (e.g., problems at the firmware level that could affect both hardware and
operating system parts or in system libraries that could affect both application and
operating system parts). For this reason, for any given CVE entry, the following
part classes have been defined:

• Class A: all the considered CPE strings refer to the application part (i.e., their
part attribute is equal to a);

• Class H: all the considered CPE strings refer to the hardware part (i.e., their
part attribute is equal to h);

• Class O: all the considered CPE strings refer to the operating system part (i.e.,
their part attribute is equal to o);

• Class A-H: there is a mix of CPE strings, some referring to the application
part and others to the hardware part (i.e., their part attribute is equal to a or
to h);

• Class A-O: there is a mix of CPE strings, some referring to the application
part and others to the operating system part (i.e., their part attribute is equal
to a or to o);

8Intended as "diversity". Not to be confused with the concept of "tree heterogeneity".
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• Class O-H: there is a mix of CPE strings, some referring to the operating
system part and others to the hardware part (i.e., their part attribute is equal
to o or to h);

• Class A-O-H or MIXED: there is a mix of CPE strings, where all the possible
parts of the system are referenced (i.e., their part attribute is equal to a, o or
to h).

To capture such classes, the vulnerability part vector veci has been introduced:
a 3-dimensional binary vector where each entry is associated with a part attribute
(i.e., the first to A, the second to O and the third and last one to H) and where every
entry is equal to 1 if in the configuration there exists at least one CPE with the
corresponding part, 0 otherwise. Each vector maps directly to a class.

At this point, computing a value for the attributes vulnerable part and contextual
part of a CVE entails computing two vulnerability part vectors veci, one relevant to
parts that are labeled as vulnerable, one relevant to parts that are labeled as not
vulnerable but still necessary in order to express the vulnerability (i.e. contextual).
Moreover, the algorithm that performs this calculation must necessarely take into
account the semantics introduced by the configuration tree structure which links
CVE to each CPE.

To this aim, Algorithm 1 is presented. This proposed algorithm correlates data in
the NVD repository in order to identify the vulnerable part as well as the contextual
part of a given input vulnerability.

Algorithm 2 shows the implementation of the compute_vulnerable_part_vector()
function and the compute_contextual_part_vector() used in Algorithm 1 that is able
to select leaf CPE strings taking into account the configuration tree structure.

The algorithm works as follows: it starts by assuming that all parts are potentially
vulnerable (i.e., making the hypothesis of being in the class AOH) and that no part
is potentially part of the context and then iterates over every sub-tree to find a
subset of parts that are vulnerable as well as the set of parts that are part of the
context in every configuration sub-tree. More in detail, the proposed algorithm:

1. Takes a sub-tree stj (i.e. a single configuration) having as root a child of the
CPE configuration tree root9

2. Maintains two copies of the sub-tree:

• A vulnerable copy, where only leaf nodes (and relevant paths) labelled as
vulnerable = False are pruned

• A contextual copy, where no nodes are pruned

3. Takes all the relevant leaves and identifies the vulnerable parts for the consid-
ered configuration tree (calculated in compute_common_parts, line 8 and 21
of algorithm 2, as the union of all part attributes of the CPE strings that
partake in the configuration tree)

4. Either:

• Computes the intersection with the previously identified vulnerable parts
to update the vector indicating the vulnerable part class

9A single configuration is an AND− OR tree. Multiple configurations are linked to a single CVE
by OR.
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Algorithm 1: Classification Algorithm with multi-part classes
Input: A CVEs list LCV E and the knowledge graph G
Output: A list of tuple ⟨cve_id, cve_vulnerable_part, cve_contextual_part⟩ where

cve_id is the CVE identifier, cve_vulnerable_part is the associated affected
vulnerable part and cve_contextual_part is the associated contextual part

1 L′
CV E ← ∅;

2 foreach vi ∈ LCV E do
3 vulnerable_veci ← compute_vulnerable_part_vector(vi);
4 contextual_veci ← compute_contextual_part_vector(vi);
5 vulnerable_class← map_vec_to_class(vulnerable_veci);
6 contextual_class← map_vec_to_class(contextual_veci);
7 L′

CV E ← {⟨v, vulnerable_class, contextual_class⟩};
8 end
9 return L′

CV E

10
11
12 function map_vec_to_class(vec)
13 begin
14 case vec == [0, 0, 0] do
15 return MIXED
16 case vec == [0, 0, 1] do
17 return H
18 case veci == [0, 1, 0] do
19 return O
20 case veci == [1, 0, 0] do
21 return A
22 case veci == [0, 1, 1] do
23 return OH
24 case veci == [1, 1, 0] do
25 return AO
26 case veci == [1, 0, 1] do
27 return AH
28 case veci == [1, 1, 1] do
29 return AOH
30 end
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• Computes the union with the previously identified contextual parts to
update the vector indicating the contextual part class

5. Maps the vectors indicating contextual and vulnerable part classes into part
classes

6. Returns the resulting vulnerable_class and contextual_class for each CVE

Algorithm 2:
compute_vulnerable_part_vector() function implementation leveraging on
the intersection of vulnerable configuration trees
compute_contextual_part_vector() function implementation leveraging on
the union of vulnerable and non vulnerable (i.e. contextual) configuration
trees
1 function compute_vulnerable_part_vector(vi)
2 begin
3 parts← {A, O, H};
4 TCP E ← get_CPE_tree_from_NVD(vi);
5 foreach sub-tree stj ∈ TCP E do
6 vul_stj ← prune_not_vulnerable_branches(stj);
7 st_leavesj ← get_leaves(vul_stj);
8 partj ← compute_common_parts(st_leavesj);
9 parts← parts ∩ partj ;

10 end
11 return parts
12 end
13
14
15 function compute_contextual_part_vector(vi)
16 begin
17 parts← ∅;
18 TCP E ← get_CPE_tree_from_NVD(vi);
19 foreach sub-tree stj ∈ TCP E do
20 st_leavesj ← get_leaves(stj);
21 partj ← compute_common_parts(st_leavesj);
22 parts← parts ∪ partj ;
23 end
24 return parts
25 end

As an example let us consider the vulnerability CVE-2022-0138 whose config-
uration tree is depicted in Figure 3.11. The configuration tree tells us that this
vulnerability has five sub-trees as alternative exploitable and among those, four
sub-trees reveals that two CPEs are needed for the exploit: one is the real vulner-
able part and the other the context needed for the exploit. Using the sub-trees
analysis according to function compute_vulnerable_part_vector Algorithm 2 we get
part = ∅, leading to classify the vulnerability as MIXED meaning that it may af-
fect vertically the system. This assumption is reinforced by the result of function
compute_contextual_part_vector which yields part = {A, O, H} which maps to the
classification AOH, confirming that the context for such vulnerability is to be found
across hardware, operating systems and applications.

Thus, in such a way, computing contextual and vulnerable platform classes for a
vulnerability becomes possible through the application of a correlation engine on
the proposed knowledge graph. It is however necessary to point out that deriving
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Figure 3.11. Example of the CPE configuration tree for CVE-2022-0138.

new information from a single source is not sufficient for an ontology to qualify as a
knowledge graph, according to definition [34]. Proof of this capability is to be shown
in the following section.

3.3.2 Task 2: Finding Mitigation Actions
This section will be dedicated to showing how a correlation engine may be able to

extract information relevant to the cyber security assessment process, by correlating
information spanning different repositories of the proposed knowledge graph.

In particular, the problem chosen to demonstrate this capability is the following:

Given the set of vulnerabilities affecting a specific host, get a set of possible
mitigation actions that could be applied, ranked according to their relevance with
respect to the considered vulnerability

This entails for each vulnerability vi (i) finding the set of mitigation actions,
as well as (ii) devising a metric to compute a ranking between different mitigation
actions.

The first step needed to answer the question is simple given the original structure
of the repositories and the available explicit cross-links. Indeed, starting from
individual repositories (i.e., NVD, CWE, CAPEC and ATT&CK), any entry can be
analyzed to check if it has a mitigation attribute associated. If a mitigation attribute
is found, a new mitigation node can be instantiated in the knowledge graph and
associated with the corresponding source node as well as specific type of mitigation,
depending on where it has been found.10 Then, for every pair ⟨vi, mj⟩ where vi is
a vulnerability which is part of the knowledge graph and mj is a mitigation, an
edge can be set up from vi to mj if the considered mitigation is reachable from vi

navigating existing links between different repositories. This is done through a simple
exploration of the knowledge graph following the schema detailed in Figure 3.8.

10Mitigation actions are represented as nodes in the proposed knowledge graph, while may appear
as attributes in some of the repositories. Moreover, in the proposed knowledge graph the “parent”
concept of “mitigation” is specialized in different types, i.e. NVD,CWE.. , of mitigation, according
to their origin.
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Once mitigation actions have been instanced as nodes, and connected to reachable
vulnerabilities as well as their node of origin in the knowledge graph, the main
remaining challenge is to compute the relevance of a mitigation mj for a vulnerability
vi.

Computing the relevance of a mitigation for a given vulnerability
Let us recall that the relevance attribute of the edge ⟨vulnerability, mitigation⟩ has
the aim to quantify how much the proposed mitigation is a good solution for the
considered vulnerability.

In principle, a mitigation mj has a good relevance for a vulnerability vi (i.e.,
the relevance level is 1) if it is a patch (or a solution) directly provided by the
vendor for the specific issue. If this is the case, the mitigation is typically referenced
directly inside NVD. Unfortunately, most of the time NVD entries do not provide a
mitigation themselves. However, vulnerabilities typically have references to CWE
(which abstracts the vulnerability in a class of issue) and CWE nodes usually may
have a mitigation field associated. Thus, it is possible to navigate among repositories,
using explicit references, to check if there exists a known mitigation for a specific
vulnerability.

The basic idea is that the “closer” the mitigation is to the vulnerability (i.e., fewer
references we need to explore), the “higher” will be the relevance of the mitigation
for the vulnerability.

Let us recall that, when traversing existing links from CVE to CWE to CAPEC
we are generalizing and abstracting the considered issue. Thus, if a vulnerability
has one mitigation available in NVD, this will have the highest possible relevance. If
not, it becomes necessary to look to mitigation defined for linked CWEs (i.e., for the
category of the issue where the vulnerability belongs) and in such case, a smaller
relevance score is assigned due to the fact that we are considering a solution to a
potential more general problem and thus not perfectly relevant to the specific issue.
For this reason, in the proposed instance, it has been decided to assign a relevance
level equal to 0 to CAPEC mitigations and ATT&CK mitigations. The rationale
is that the link between the attack patterns, attack techniques and the considered
vulnerability is not direct (i.e., it is obtained by transitively exploring links from
NVD to CWE to CAPEC and from CAPEC to ATT&CK). Thus, it is not easy to
assess to what extent the vulnerability is really involved in the attack pattern or in
the attack techniques and consequently the relevance of the considered mitigation
for the vulnerability.

This decision is supported by Figure 3.12, which highlights some topological
issues that arise from the concatenation of different data sources into a single,
interconnected graph structure. Most notably three things can be seen from this
figure: (i) Figure 3.12(a) highlights the participation in the connections of each
element of each data source. In particular it can be seen that in every case, no more
than 65.57% of the elements (nodes) of a specific repository has references to any
other element of another repository. (ii) Figure 3.12(b) highlights the fact that the
references between elements of different repositories are made on a next-hop basis,
i.e. an analyst curating a single repository only takes care of connecting an element
of such repository to other elements of “subsequent” repositories (e.g. NVD analysts
usually only reference CWE entries, CWE analysts usually only reference CAPEC
entries and so on). No attention is given to path integrity, e.g. incoming references
(what is referencing the current element) and what the referenced elements reference
themselves. This leads to isolated elements, as well as “paths” on the NVD-ATT&CK
chain either terminating early, or starting late. (iii) Figure 3.12(c) highlights the fact
that due to the difference in magnitude between the number of elements of different
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NVD CWE CAPEC ATT&CK

224400 1420 (958) 706 (615) 2151 (1192)

147148 559 336 450 177 189

65.57% 39.37% 23.66% 63.74% 25.07% 8.79%

(a) Nodes and interconnections present in and between the data sources. For CWE, CAPEC
and ATT&CK only one type of node counted in parenthesis has references to objects of other
data sources.

(b) Example of topology derived from the in-
terconnection of the data sources. Notice how
some elements and paths may (i) remain iso-
lated, (ii) be orphaned (either start “late” or
terminate “early” in the chain).

CWE-2007516 CVE 19 CAPEC 26 ATT&CK

(c) Example of topology derived from the in-
terconnection of the data sources, centered on
CWE-200. Notice how CWE-200 serves as a
focal point for 7516 CVE, 19 CAPEC and 26
ATT&CK elements. According to how these
elements are referenced, there is no guarantee
that all 19 CAPEC and 26 ATT&CK are still
relevant for all 7516 CVE.

Figure 3.12. Examples of topology features derived from the interconnections between
data sources.

repositories, bottlenecks and choke points are created which harm the accuracy of
the traversal. The figure proposes the example of CWE-200, which is referenced by
7516 CVE and references 19 CAPEC. Given the next-hop nature of the references
between elements of different repositories, there is no guarantee that all 19 referenced
CAPECs are relevant with respect to all 7516 CVE. Solving these issues remains an
open research problem and a probable avenue for future works.

Thus, given an edge e of the knowledge graph between a vulnerability vi and a
mitigation mj , the relevance level, can be defined as follows:

relevance(vi, mj) =


1 if mj is a NVD mitigation associated to vi

1
dist(vi,mj)+1 if mj is a CWE mitigation reachable from vi

0 otherwise
(3.1)

The following will detail how the distance dist(vi, mj) between a vulnerability
vi and a CWE mitigation mj is computed. Let us recall that CWE nodes are of
three different types: views, categories and weaknesses, but only weaknesses have
associated the Proposed_Mitigation field. Considering that a CVE may refer to a
category node (and not necessarily to a weakness), it could be necessary to traverse
the CWE graph GCW E described in Section 3.1 to find a mitigation, increasing thus
the distance from the considered vulnerability.

Let us note that the CWE graph GCW E links view, category and weakness nodes
using hierarchical relationships such as child_of (or parent_of ). Given two nodes
in the CWE graph GCW E , namely cwei and cwej , if cwei is child_of cwej then
we have that the issue related to cwei is more specific than the one described by
cwej . As a consequence, if cwei has a mitigation associated with it, such mitigation
may not be applicable to cwej as cwei is a particular case. Conversely, if cwei is
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parent_of cwej then we have that the issue related to cwei is more generic than the
one described by cwej . Thus, if cwei has a mitigation, this could fit also to cwej

even if it could not be completely effective.
While computing the distance of the mitigation, the semantics of the CWE

relationships need to be considered by giving different weights to traversed edges
depending on the associated relationships.

In the following, a heuristic to traverse the CWE graph and compute the distance
is proposed. Let vi be the vulnerability under analysis, let mj be the CWE mitigation
linked to vi in the knowledge graph and let cwej be a CWE node having mj as an
attribute. Let P be the path on the CWE graph GCW E connecting a CWE directly
referenced by vi (namely cwe1) with cwej . We can define the distance dist(vi, mj)
between the vulnerability vi and the mitigation mj as follows:

dist(vi, mj) = 1 +
∑

eu,v∈P

αu,v

where αu,v = 1 if the direct edge eu,v corresponds to the relationships u is
child_of v and αu,v = 2 if the direct edge eu,v corresponds to the relationships u is
parent_of v.11

CVEi CWE2

CWE1

CWE3

CWE4 CWE5

child_of parent_of

parent_of parent_of

(a) Example of connection between a vulner-
ability and a set of weaknesses in the CWE
graph

CVEi

m1

m2

m3

m4

m5

1
1 + 1 = 0,5

1
2 + 1 = 0,33

1
4 + 1 = 0,2

1
3 + 1 = 0,25

1
3 + 1 = 0,25

(b) Example of connection between a vulner-
ability and a set of mitigation actions in the
knowledge graph

Figure 3.13. Example of a portion of the knowledge graph during the instantiating process.

As an example, let us consider a vulnerability cvei. Figure 3.13(a) shows the
portion of the CWE graph GCW E reachable directly or through multiple hops from

11While counter intuitive, child of and parent of relationships in the CWE repository are to be
interpreted as “I am the parent of” and “I am the child of”. This is clarified later in Figure 3.13(a)
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cvei according to the knowledge graph. Let us assume that cvei has no mitigation
referenced in NVD and let us assume that all CWEs depicted in Figure 3.13(a) have
at least one mitigation associated.

Under these conditions, when instantiating the knowledge graph, one mitigation
node will be defined for every mitigation mi associated with a weakness cwei

represented in the figure and for each mitigation, it is necessary to compute the
relevance level in order to have a metric to rank these mitigation actions, from most
to least relevant. Figure 3.13(b) shows the result of such computation. Indeed, if
the mitigation m2 associated with cwe2 is considered, we have that its distance is 1
(i.e., cwe2 is directly referenced by cvei and there is no need to find a path within
GCW E , thus the relevance is simply 0, 5). Conversely, considering the mitigation m1,
its distance is 2 as we need to consider the edge ⟨cwe2, cwe1⟩ with α2,1 = 1 while
the distance for mitigation m4 is 3 has as we need to consider the edge ⟨cwe2, cwe4⟩
with α2,4 = 2.

This ensures that m3, associated to CWE3 is the least relevant mitigation for
cve1, as CWE3 and CWE2 may share the same father (i.e. refer to as the same
family of vulnerabilities, e.g. CWE-77 “Command Injection”) but may refer to
different specific sub-families of problems (e.g. CWE-78 “OS Command Injection”
and CWE-624 “Executable Regular Expression Error”). This also ensures that m3
retains at least some relevance with respect to cve1, as it may happen that different
families of vulnerabilities stemming from the same ancestor may still retain retain
enough similarity so that actions taken to mitigate one may be relevant for the other.

In the same fashion, this metric ensures that a mitigation on CWE4 and CWE5
will always be less relevant than a mitigation on CWE1. This is desired, as special-
izations of a broader vulnerability may rapidly lose relevance. As an example, all
children of CWE-74 (“Injection”) may be easily mitigated by the actions described
in CWE-74, while mitigation actions for CWE-94 (“Code Injection”) may not be
relevant for CWE-79 (“Cross-site Scripting”).

Thus, in such a way, computing the ranked list of mitigation actions for a
vulnerability becomes possible through the application of a correlation engine on the
proposed knowledge graph. Moreover, since at least two sources of information have
been used during the correlation in order to produce new information, the proposed
ontology can now be properly defined as a knowledge graph [34]. In the following
section it will be shown how it is possible to extract even more information through
correlation of the output of already correlated information.

3.3.3 Task 3: Finding Mitigation Action Cost of Application
This section will be dedicated to showing how a correlation engine may be able to

extract information relevant to the cyber security assessment process, by correlating
information spanning different repositories of the proposed knowledge graph as well
as information that is derived from previous correlations.

In particular, the problem chosen to demonstrate this capability is the following:

Given the set of vulnerabilities affecting a specific host and a ranked set of possible
mitigation actions that could be applied, get the cost derived from applying each
mitigation action to the host

This entails devising a metric to capture the concept of difficulty in applying a
mitigation. As per the result of Section 3.3.2, it is possible to fetch all mitigation
actions mj associated to any vulnerability vi in the proposed knowledge graph.
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Let us also recall that the difficulty attribute in the proposed knowledge graph
should be associated to the relationship between a vulnerability vi and a mitigation
mj . Consequently it makes sense to model the concept of difficulty as the composition
of two factors: one related to the “base” difficulty of working with a specific
vulnerability, and another one related to the “base” difficulty of applying a certain
mitigation regardless of the vulnerability it is applied on.

Mitigation Actions in NVD
Concerning mitigation actions deriving directly from NVD, the format used to tag
them has been analyzed, and it has been found that two labels are commonly used:
(i) patch and (ii) mitigation. Mitigation actions with label patch have associated a
direct reference that allows to download and install the patch for the vulnerability.
Conversely, mitigation actions with label mitigation provide a reference to an advi-
sory where the specific issue is described and alternative solutions to resolve the
vulnerability are provided. Thus, it has been decided to capture this difference by
assigning a base difficulty score of 0.167 to NVD mitigation actions tagged as patch
and a base difficulty score of 0.333 to NVD mitigation actions tagged as mitigation
(i.e., a direct and specific solution exists but it may be not so easy to apply it).12

Mitigation Actions in CWE
Considering mitigation actions deriving from the CWE repository, we need to recall
that they are originally specified by the Proposed_Mitigation field of a CWE entry
(i.e. usually a CWE Weakness), which in turn is composed of a description in natural
text and two attributes: mitigation strategies and phases. It is interesting to note that
for both of these attributes, the values used to label the mitigation are well-defined
and part of a finite dictionary. In particular, for phases we have: (1) Architecture
and Design, (2) Build and Compilation, (3) Distribution, (4) Documentation, (5)
Implementation, (6) Installation, (7) Integration,(8) Manufacturing, (9) Operation,
(10) Patching and Maintenance. (11) Policy, (12) Requirements, (13) System
Configuration and (14) Testing, (15) Null value.13

Admissible values for mitigation strategies are: (1) Attack Surface Reduction, (2)
Compilation or Build Hardening, (3) Enforcement by Conversion, (4) Environment
Hardening, (5) Firewall, (6) Input Validation, (7) Language Selection, (8) Libraries
or Frameworks, (9) Output Encoding, (10) Parameterization, (11) Refactoring, (12)
Resource Limitation, (13) Sandbox or Jail and (14) Separation of Privilege, (15)
Null value.14

Thus, a mitigation action in CWE is a tuple composed of a description in
natural text, a phase attribute and a mitigation strategy attribute of which its values
are selected among the listed possible options. As a consequence, the particular
composition of a CWE mitigation action’s phase and strategy attributes could be
used to estimate its base difficulty.

To quantify the difficulty of a CWE vulnerability, a numerical score to any
dimension considered needs to be assigned i.e., (i) the mitigation strategy and (ii) the
mitigation phase. These scores are reported in reported in Table 3.7 and Table 3.8,
and show the mapping between numerical score and mitigation phase and mitigation
strategy respectively.

12These values are not random and derive from a mapping that will be explained when introducing
the nuances of CWE mitigation actions. This choice has been done to ensure consistency and
compatibility across the board.

13Null value or attribute not present
14Null value or attribute not present
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Table 3.7. Mitigation Phase Mapping

Mitigation Phase Life-cycle Phase Numerical Score
architecture and design (iii) Design 0.83
build and compilation (iv) Development 0.66
distribution (vi) Training and release transition 0.33
documentation (vii) Operations and maintenance 0.16
implementation (iv) Development 0.66
installation (vi) Training and release transition 0.33
integration (v) Testing 0.5
manufacturing (iv) Development 0.66
operation (vii) Operations and maintenance 0.16
patching and maintenance (vii) Operations and maintenance 0.16
policy (vii) Operations and maintenance 0.16
requirements (ii) Analysis 1
system configuration (vi) Training and release transition 0.33
testing (v) Testing 0.5
null value 1

Concerning the mitigation phase mapping, the rationale behind the numerical
values is the following: phases considered by CWE can be mapped on to the classical
phases of a waterfall software development life-cycle i.e., (i) System investigation,
(ii) Analysis, (iii) Design, (iv) Development, (v) Testing, (vi) Training and release
transition, (vii) Operations and maintenance. Further in the development life-cycle
we need to act, higher will be the difficulty of applying a mitigation. Thus, a scale
between 0 and 1 has been defined (where a value close to 1 is assigned to early stages
of the process and values close to 0 are assigned to the last phased of the life-cycle)
and such intervals have been divided in equally-sized intervals. More in detail, the
phases from (ii) to (vii) of the waterfall software development life-cycle have been
considered, the interval [0, 1] has been split in 6 consecutive equal intervals and the
numerical score has been assigned accordingly.15 The rationale being that it is harder
to apply a mitigation action that requires a total rework of the affected platform,
instead of a mitigation action that requires a partial rework or can even be applied
during operation, e.g. a mitigation action that requires changes at the “Design”
phase of a certain product (or groups of products) is harder to implement than a
mitigation action that can be rolled out during “Operations and maintenance”.

Concerning the mapping of the mitigation strategy attribute, the description of
the allowed values provided in the CWE documentation have been analyzed, and
they have been classified at first according to a discrete scale (i) SEVERE, (ii) HIGH,
(iii) MEDIUM, (iv) LOW. This discrete qualitative scale has then been mapped into
a numerical range between 0 and 1 where values close to 0 represent strategies that
are less difficult than those close to 1. As an example, applying a mitigation action
that involves acting on a “firewall” and its rules is to be considered less difficult than
applying a mitigation action that requires using different “libraries or frameworks”.
As a general rule, mitigation phases and strategies with “null value” are always
assigned to the maximum allowed score of 1. This decision has been made to enforce
a worst-case analysis by default.

Thus, the base difficulty score for a CWE mitigation action can be evaluated as

base_difficulty(mj) = MPS × MSS

15The numerical scores assigned to the patch and mitigation labels associated to NVD mitigation
actions are aligned with the numerical scores of “(vii) Operations and maintenance” and “(vi)
Training and release transition” respectively.
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Table 3.8. Mitigation Strategy Mapping

Mitigation Strategy Numerical Score
enforcement by conversion 1
environment hardening 0.5
firewall 0.25
input validation 1
language selection 1
libraries or frameworks 1
output encoding 1
refactoring 1
resource limitation 0.5
sandbox or jail 0.5
separation of privilege 0.25
parameterization 1
attack surface reduction 0.5
compilation or build hardening 0.75
null value 1

where MPS is the numerical score of the phase attribute of mj and MSS is the
numerical score of the strategy attribute of mj .

Vulnerability Contribution
In order to calculate the contribution of a vulnerability vi to the computation of the
difficulty of applying a mitigation mj , the result of Section 3.3.1 can be exploited.
In particular, the vulnerable part associated to a vulnerability vi can be used to
estimate the “base” difficulty of applying any mitigation action to vi.

Table 3.9. Vulnerable Part Mapping

Vulnerable Part Class Numerical Score
A (Application) 0.33
O (Operating System) 0.66
H (Hardware) 1
AO (Libraries) 0.5
OH (Firmware) 0.833
AH (High-level Firmware) 0.833
AOH or MIXED (Cross-layer system libraries) 1

To this aim, table 3.9 shows the numerical mapping associated to the 7 vulnerable
classes that have been defined in the previous section. As usual, a scale between
0 and 1 has been used and higher values have been assigned to vulnerable parts
where carrying out any action requires more “base” effort (e.g., fixing a hardware
vulnerability is more difficult than fixing a vulnerability on an application. The
rationale behind the proposed numerical value is the following:

• The scale has been divided in three homogeneous intervals and the three main
vulnerable classes have been assigned as the boundaries of such intervals i.e.,
Application, Operating System and Hardware, considering that acting on the
application level is generally easier than acting on the operating system and
on the hardware;

• The highest complexity score has also been assigned to the classes AOH or
MIXED (Cross-layer system libraries) as these require to perform fixes over
all the protocol stack and we consider this as complex as fixing the hardware;
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• Fixing firmware has been considered more complex than fixing an operating
system or an application but somehow easier than fixing hardware and thus
an intermediate value has been assigned (which is actually the mean point
between the hardware complexity and the operating system complexity);

• The same rationale is applied to libraries that stand between application and
operating system.

Summarizing, the difficulty value of applying a mitigation mj to a linked vulner-
ability vi can be estimated as follows:

difficulty(vi, mj) = V P S×


0.167 if mj is a NVD mitigation associated to vi with label patch
0.333 if mj is a NVD mitigation associated to vi with label mitigation
MP S ×MSS if mj is a CWE mitigation
1 otherwise

(3.2)
where V PS is the vulnerable part score as for Table 3.9, MPS is the mitigation

phase score as for Table 3.7 and MSS is the mitigation strategy score as for Table 3.8.

Thus, in such a way, computing the cost of application of a mitigation action
mj to a vulnerability vi becomes possible through the application of a correlation
engine on the proposed knowledge graph. Moreover, this correlation hinges on the
results of two other previous correlations, strengthening the claim of validity for the
proposed knowledge graph according to definition [34].

3.4 Evaluation
In this section, challenges and issues related to the population and usage of

the proposed knowledge graph will be discussed, given the data available in the
considered repositories.

To construct and analyze the presented knowledge graph, the attention has been
focused on vulnerabilities affecting Industrial Control Systems (ICSs) to mimic the
analysis performed over hosts participating to a critical system. However, due to
the generality of the proposed method, the same approach can be used by feeding
the knowledge graph with any subset of vulnerabilities gathered by a vulnerability
scanner.

In the next sections, the dataset that has been used as input for the analysis
will be described, and then the results of instantiating of the knowledge graph, as
described in Section 3.3, will be discussed starting from the considered dataset.

3.4.1 Dataset
In order to perform an evaluation of the proposed knowledge graph, the first step

has been to instantiate a dataset gathering vulnerabilities (in the form of CVE entries
extracted from the NVD database) affecting Industrial Control Systems (ICSs). The
dataset includes all vulnerabilities referenced by 2553 ICS-CERT advisories published
over the period 2010 − 2023.

The Industrial Control Systems CERT (ICS-CERT)16 is part of the Cyberse-
curity and Infrastructure Security Agency (CISA) and focuses on isolation and
advertisement of threats to Industrial Control Systems (ICSs) environment. CISA

16https://www.cisa.gov/topics/industrial-control-systems

https://www.cisa.gov/topics/industrial-control-systems
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shares cybersecurity and infrastructure security knowledge and practices with its
stakeholders, in order to enable better risk management within the U.S. infrastruc-
tures.

ICS-CERT makes available its advisories to provide timely information about
current security issues, vulnerabilities, and exploits. Advisories are identified by
a unique id and inside each advisory, it is possible to find a textual description
of the issue, pointers to CWE and CVE as well as a risk evaluation and possible
countermeasures.

The final dataset includes 6232 CVE spanning the period September 1999 -
September 2023. Table 3.10 provides a summary of the CVE collected starting from
the ICS-CERT advisories.

Table 3.10. CVE Dataset Summary

Year #CVE
≤ 2015 889

2016 327
2017 429
2018 562
2019 601
2020 829
2021 1117
2022 1028
2023 450
Total 6232

For each CVE, the related data has been retrieved from NVD (i.e., information
related to CPEs and CVSS described in Figure 3.2). Then, to build an instance of
the proposed knowledge graph, the whole CWE, CAPEC and ATT&CK repositories
have also been downloaded. All the data gathered has been used to create our
knowledge graph and it has been stored in a single graph database (using Neo4J17)
to allow for simple integration.

3.4.2 Evaluating Task 1: Identify the vulnerable part and the
contextual part of a CVE vulnerability

This section will analyze the result of applying the algorithms and methodologies
presented in Section 3.3.1 when considering the subset of vulnerabilities derived
from ICS-CERT advisories as input for the knowledge graph, as described in the
previous section.

In particular, it will be shown:

• How vulnerabilities that derive from ICS-CERT advisories are distributed
across the identified part classes (see Fig. 3.14 and Table 3.11)

• The result of the analysis of the vulnerability configuration trees leading to
such a classification.

Table 3.11 and Fig. 3.14 summarize the result of the classification performed on
the evaluation dataset according to the execution of Algorithm 1 using the imple-
mentation of the compute_vulnerable_part_vector() function shown in Algorithm 2.

Let us recall that given a vulnerability vi, the sub-trees of its configuration
tree may be associated with different parts (see Figure 3.11) and, in this case, the

17https://neo4j.com/

https://neo4j.com/
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Table 3.11. CVE Classification into Vulnerable Classes

Vulnerable Class #CVE
A -Application 3432
O - Operating System 2008
H - Hardware 67
AH - High-level Firmware 18
OH - Firmware 60
AO - Cross-layer System Libraries 11
Mixed - System Libraries or System Protocol 623
Empty - Without CPE information 13
Total 6232

55,07%

0,96%

32,22%

0,29%
1,08%

0,18% 10,00% 0,21%

A
OH
O
AH
H
AO
MIXED
NOCPE

Figure 3.14. CVE Classification into Vulnerable Classes.

proposed algorithm will classify them as Mixed (about 10% of considered evaluation
set). Moving forward the vulnerabilities in this class will be called vulnerability with
heterogeneous vulnerable parts.

Thus, it is of interest to investigate the internal factors leading to this type of
classification.

Analyzing the whole dataset, what has been found is that the large majority of
CVE have associated vulnerable configurations trees all belonging to the same class
(i.e. about 89.1% of CVE). Concerning vulnerabilities with at least two configuration
trees belonging to different classes (i.e. about 10.7% of CVE), the analysis pivoted
on how many different classes of configuration trees are associated to the same CVE
and it has been found that in the evaluation dataset there does not exists more than
four different classes of vulnerable configuration trees linked to the same CVE18 (i.e.,
the “degree of heterogeneity” of the classes of trees present in a CVE is at most 4).19

Concerning CVEs with at least two vulnerable configuration trees belonging
to different classes, it was of interest to investigate if the classes of the vulnerable
configuration trees were complementary or mutually exclusive. With this aim,
the intersection20 of the classes of such configuration trees has been computed, to

18CVE with associated CPE configuration trees fitting in two classes are 9.3%, those fitting in
three classes are 1.3% and only one CVE has different CPE trees that fit four classes.

19Heterogeneity intended as diversity. Not to be confused with tree heterogeneity.
20Let us remind that the "classes" of configuration trees derive from the combination (set-union)

of the part attribute of the CPE strings partaking in the tree, e.g. a tree comprised of two "A" part
CPE strings and one "O" part CPE string will have "AO" as its class. Therefore the intersection
between classes of trees is defined as the class composed of the common CPE part elements of the
trees (e.g. the intersection of "AO" and "OH" results in "O").
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Figure 3.15. Distribution of the intersection of multiple vulnerable configurations.

understand if there is a common aspect in all the vulnerable configuration trees.
The result is shown in Figure 3.15.

It is interesting to see that when evaluating the intersection, there is a majority
of CVEs resulting in an empty class. This means that these CVEs have associated
vulnerable configurations that are somehow complementary and that have as a main
consequence the fact of affecting vertically the system. In those cases, a manual
inspection has been carried out and it has led to the discovery that the main issue is
very likely to be either a fault in a system library or a fault in the protocol stack of
the operating system.

3.4.3 Evaluating Task 2: Finding Mitigation Actions
This section will analyze the result of applying the algorithms presented in

Section 3.3.2 when considering the subset of vulnerabilities derived from ICS-CERT
advisories as input for the knowledge graph, as described in the previous section.

In particular, it will be shown:

• How vulnerabilities that derive from ICS-CERT advisories are served by miti-
gation actions across the knowledge graph and how much are these mitigation
actions relevant with respect to each vulnerability (see Fig. 3.16)

• How much are these mitigation actions actually relevant with respect to each
vulnerability (see Fig. 3.17))

Figure 3.16 presents the result of the traversal of the knowledge graph in search
for mitigation actions, starting from the evaluation dataset. It is interesting to
notice how about 90.61% of vulnerabilities in the evaluation dataset reach at least
more than one mitigation action21. Since this simple traversal yields more than one
mitigation action for each vulnerability, analyzing the mitigation actions in order to
pick only the most relevant mitigation actions becomes of interest.

Let us recall that due to the semantics of the tree structure of CWE, not all
mitigation actions reached by a vulnerability may be relevant: some mitigation
actions might be tailored only to certain specializations of the vulnerability thus
becoming ineffective, while others might be too broad to be effective.

In order to account for only the most relevant (and thus the most effective)
mitigation actions for each vulnerability, the maximum relevance value among all the

2179.24% of vulnerabilities reach ≥ 10 mitigation actions, 16.96% ≥ 50 mitigation actions, 2.13%
≥ 100 mitigation actions
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Figure 3.16. Distribution of the number of mitigation actions reached by each vulnerability.
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mitigation actions reached by each vulnerability has been studied in Figure 3.17. It
is interesting to note how 6.92% of vulnerabilities reach no mitigation action, 33.58%
of vulnerabilities have their closest mitigation in NVD (relevance = 1), and 57.25%
have their closest mitigation in their associated CWE Weakness (relevance = 0.5).
Navigation of the CWE tree is necessary only for 2.25% of vulnerabilities, which
have their most relevant mitigation actions at relevance values of either 0.33, 0.25
or for a single case 0.17. The figure also highlights the temporal distribution of the
vulnerabilities, with the general trend being that older vulnerabilities tend to have
their most relevant mitigation actions at a further distance when compared to the
most relevant mitigation actions from newer vulnerabilities (i.e. newer vulnerabilities
tend to have an associated mitigation action in NVD, while older vulnerabilities
tend to lack mitigation actions in NVD).

It is also interesting to notice how with every passing year, newer vulnerabilities
have been more numerous than the vulnerabilities of the previous year. This growth
in the quantity of newer vulnerabilities is to be accredited to the efforts made by US
legislators and officials in bolstering the country’s Cybersecurity posture [2].
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Figure 3.18. Distribution of mitigation difficulty into the Phases-Strategies space. Grayed
out values represent a (Phase, Strategy) combination that is never present in the
analyzed datasets. Mitigation Phase IDs are: (P1) Architecture and Design, (P2) Build
and Compilation, (P3) Distribution, (P4) Documentation, (P5) Implementation, (P6)
Installation, (P7) Integration, (P8) Manufacturing, (P9) Operation, (P10) Patching
and Maintenance. (P11) Policy, (P12) Requirements, (P13) System Configuration and
(P14) Testing, (P15) Null value. Mitigation strategies IDs are: (S1) Attack Surface
Reduction, (S2) Compilation or Build Hardening, (S3) Enforcement by Conversion, (S4)
Environment Hardening, (S5) Firewall, (S6) Input Validation, (S7) Language Selection,
(S8) Libraries or Frameworks, (S9) Output Encoding, (S10) Parameterization, (S11)
Refactoring, (S12) Resource Limitation, (S13) Sandbox or Jail and (S14) Separation of
Privilege, (S15) Null value.

3.5 Evaluating Task 3: Finding Mitigation Action Cost
of Application

This section will analyze the result of applying the algorithms and methodologies
presented in Section 3.3.3 when considering the subset of vulnerabilities derived
from ICS-CERT advisories as input for the knowledge graph, as described in the
previous section.

In particular, it will be shown:

• The associated difficulty of applying each mitigation action with respect to
their relevance value (see Fig. 3.19 and Fig. 3.20).

The second metric which is of interest for the evaluation of a mitigation action
is its difficulty to be deployed to the environment. The first two elements which
contribute to each mitigation action’s difficulty score in the case of a CWE miti-
gation are it’s Phase and Strategy scores. Figure 3.18 shows the contribution of
the combination of these scores to the overall mitigation difficulty calculation (the
values of the phase and strategy scores have been defined in Tables 3.7, 3.8 of the
previous section). While theoretically there are 15 × 15 possible combinations, only
46 combinations of ⟨phasepi, strategysj⟩ are present in the dataset, with a total of
11 different possible values. This information is encoded in the figure by leaving
the corresponding cell uncolored, and having the value grayed out. The presence
of colors in the cells highlights the existence of the combination of the Phase and
Strategy values in at least one mitigation action of the CWE repository. The gradient
of the color of each cell highlights the difficulty of each combination. From the
figure it is noticeable how there is a large presence of mitigation actions that just
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Figure 3.19. Distribution of CVE vulnerabilities into the "best" mitigation’s Relevance-
Difficulty space.

Figure 3.20. Distribution of CVE vulnerabilities into the "best" mitigation’s Difficulty
partial score (Phase Score × Strategy Score) and the CVE’s Part Score. Only mitigations
with a relevance value of 0.5 have been considered.

indicate a phase and leave a null value for the strategy (S15). The phases which are
most commonly combined with a null strategy are: implementation, architecture and
design and testing. The most recurrent combinations of ⟨phasepi, strategysj⟩ for all
the CWE mitigation actions in the dataset are: ⟨implementation, null_value⟩ (oc-
curring 488 times), ⟨architecture_and_design, null_value⟩ (occurring 365 times),
⟨implementation, input_validation⟩ (occurring 190 times).

Another measure of interest for each mitigation action is its relevance - difficulty
trade off. Thus, the distribution of the vulnerabilities in the dataset across the
Relevance × Difficulty space, according to their most relevant (max relevance)
and least difficult (min difficulty) mitigation action is studied in figure 3.19. Notice
how in this case, the addition of the Vulnerability Part Score (V PS, as defined in
table 3.9) results in more than 11 discrete difficulty values. The majority (90.83%)
of the vulnerabilities reside between the rows indicating relevance 1.00 and 0.50, i.e.
have their mitigation action either in NVD, or on their directly associated CWE
Weakness. Only 139 (3.22%) vulnerabilities in the dataset have their best relevance
mitigation score below 0.50. As per before, 431 vulnerabilities have no access to
any mitigation action. On the difficulty axis, most vulnerabilities (74.17%) indicate
mitigation actions with a difficulty equal or inferior to 0.25, indicating the presence
of at least one mitigation action with a relatively low difficulty level.

It is important to remember that the difficulty score is also influenced by the
vulnerability’s Vulnerable Part Score (V PS). For this reason, it is of interest to also
study the impact and distribution of the vulnerability’s vulnerable part score during
the mitigation difficulty calculation. This study is achieved by figure 3.20, which
highlights the composition of the components of the difficulty calculation (Part and
Phase × Strategy scores) given a set relevance value of 0.5. While at first glance
there seems to be a relationship between certain Part categories and mitigation
actions with certain combinations of Phase and Strategy attributes, it is important
to consider that the distribution of vulnerabilities into the Part categories is not
uniform (i.e. certain Part categories may collect more vulnerabilities than others).

Taking this consideration into account, after normalization, no clear indication
is evident about any association between a vulnerability’s Part class and its linked
mitigation’s Phase and Strategy attribute combination. However, an interesting
result is obtained by studying the distribution of vulnerabilities into their selected
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mitigation’s combination of Phase and Strategy attributes (collapse all rows into
one by summing values, consider only the columns). From this study, it is evident
that just the top three combinations of Phase and Strategy attributes (i.e. P9-S4,
P9-S5, P5-S15)22 are sufficient to encompass the mitigation actions selected by 1868
vulnerabilities (52.35% of the total in Figure 3.20).

22Operation - Environment Hardening, Operation - Firewall, Implementation - Null Value
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As a last step, Table 3.12 shows a concrete example of the result of the application
of all three tasks conducted on vulnerability CVE-2008-0760. This vulnerability
is part of the evaluation set and identifies a “Directory traversal vulnerability”
affecting a specific application23. Since only one configuration is present, and all
vulnerable platforms of this configuration point to a specific application, its vulnerable
platform is established as “A” (Application). This maps to a V PS of 0.33, as per
Table 3.9. No patch or mitigation are available in NVD, so CWE traversal becomes
necessary. CVE-2008-0760 is directly connected to CWE-22 (Path Traversal)24.
CWE-22 is a Weakness type CWE with 11 Potential Mitigations associated. Thus,
the 11 mitigation actions are reported in the table as having a relevance value
of 0.5. Continuing the exploration, CWE-22 is the parent of CWE-23 (Relative
Path Traversal) which has two Potential Mitigations associated. Since a parent_of
relationship has been traversed, these mitigation actions are given a relevance score
of 0.25. Another mitigation action is given a relevance score of 0.25, being part
of CWE-22’s grandfather, CWE-664 (Improper Control of a Resource Through
its Lifetime) through CWE-668 (Exposure of Resource to Wrong Sphere). Two
more mitigation actions derive from children of CWE-668, which in the CWE tree
structure are effectively CWE-22’s sibling nodes. This grants these two mitigation
actions a relevance score of 0.17. Each mitigation action also has its own phase
and strategy attributes, which map to their own MPS and MSS. With all three
scores evaluated, the difficulty of applying each mitigation action is calculated
and a ranking can be applied. As expected, the top four less difficult mitigation
actions that can be applied to CVE-2008-0760 do not involve extensive rework of the
application (the phase is always Operation and the strategies span across Firewall,
Environmental Hardening, Sandbox or Jail and Attack Surface Reduction). Also
as expected, difficult mitigation actions involve re-implementing and for the last
three ranked mitigation actions completely re-designing the application. Lastly, it
can be noted that less relevant mitigation actions tend to sit at the bottom of each
given MPS × MSS bracket. This hints at the tendency of the relevance score to act
as a discriminant between mitigation actions with comparable phase and strategy
combinations.

3.6 Conclusion
This chapter investigated the structure of the main public repositories used by the

cyber security community to collect and share information about vulnerabilities and
their possible exploits i.e., NVD, CWE, CAPEC and ATT&CK. Starting from this
huge amount of information managed independently by the repositories owners, the
aim of this chapter has been twofold: (i) presenting and discussing such repositories
taking a different perspective i.e., by considering them as one unique knowledge graph
that can be traversed and analysed to answer complex queries and (ii) verifying the
suitability of the knowledge graph as a reference knowledge base in the most common
vulnerability analysis tasks. It has been found that the high degree of connection
between concepts in different repositories supports well the two considered tasks.
In particular, a mechanism leveraging the knowledge graph has been proposed to
automatically correlate information across multiple repositories to speed up the
process and support analysts in the vulnerability analysis process. More in detail,
when identifying which is the vulnerable part of the system targeted by a specific
vulnerability, it has been observed that performing the classification automatically

23https://nvd.nist.gov/vuln/detail/CVE-2008-0760
24https://cwe.mitre.org/data/definitions/22.html

https://nvd.nist.gov/vuln/detail/CVE-2008-0760
https://cwe.mitre.org/data/definitions/22.html
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may provide the following benefit to security operators as well as self protecting
systems:

• It is immediately possible to relate the issue to a specific part of the system
and evaluate the dependencies between the vulnerable part and the enabling
context.

• Assuming that patches are available for any vulnerability, it is possible to
assess the difficulty of mitigating the vulnerability also as a function of its class.
Usually, patching vulnerable hardware is harder than patching an application.
Thus, the classification can help in prioritizing mitigation activities.

• The classification between vulnerable and non-vulnerable configurations can
be used as input for the enrichment of the CVSS score and in particular for
the definition and computation of the environmental score.

Concerning the second analysis task, a strategy to identify common mitigation
actions (in terms of strategies) for a set of vulnerabilities has been proposed. This
information will provide the analyst with fast feedback on the possible options and
will contribute to enhancing the overall level of awareness.

Let us note that this benefit derives directly from the deep knowledge of the
repositories and from the formalization of the relationships that has been done in
the knowledge graph. Indeed, it has been necessary to go deeper in understanding
the details of the relationships that characterize data stored. As an example, CPE
analysis revealed that some attributes associated with nodes could be misleading
(e.g., looking just at the part attribute of the first CPE string linked to a vulnerability
may lead to a wrong classification) and it highlighted the complexity of finding the
real vulnerable part.

Concerning the third analysis task, a methodology to estimate the cost of applying
a mitigation action on a vulnerability has been proposed. This information will
provide the analyst with a base estimation needed as input to the cost-benefit
estimation that is at the heart of the risk management process.

The results of the chapter represent a first step toward the design and implemen-
tation of a fully automated context-aware vulnerabilities analysis and classification
platform that can be built by using all the considered repositories as a unique
reference knowledge base.
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Chapter 4

Enhancing the Quality of
Automatically Generated
Inventories

Building and maintaining inventories is a fundamental component of many
security processes [24]. Among all inventories used to feed security processes, this
chapter will focus on the device inventory and the vulnerability inventory. These
two inventories are particularly relevant data sources that derive from a monitored
environment and are used not only to feed risk management [38, 62] but also other
critical processes such as Incident Management [16] and their supporting systems [85].
Since these sources constitute the primary data source for the analysis of complex
situations, some of these potentially involving multiple correlation steps, their quality,
in terms of completeness and accuracy, must be ensured to avoid that a propagation
of false positives and false negatives through the analysis steps cascades into an
extreme overestimation (or underestimation) of the real security situation.

Device and vulnerability inventories are typically built from the output of
network and vulnerability scanning tools. Such scanning tools use a network-based
or agent-based scanning mechanism in order to detect vulnerabilities. Network-
based scanners typically rely on probing mechanisms over the network, observe
hosts/devices’ answers and match them to fingerprints that may not be unique across
different configurations and product versions [88, 89]. While they can generally be
considered non-intrusive, they allow for the possibility of introducing false positives
when it comes to detecting and identifying existing configurations and associated
vulnerabilities. Agent-based techniques, on the other hand, employ active agents
that are installed locally on monitored hosts/devices and may be able to interact
with the operating system to gain a complete understanding of the system platforms
and configuration [53]. Therefore, they are still prone to false positives but tend to be
more accurate and intrusive than their network-based counterpart. The availability of
Agent-based techniques however is heavily dependant on the availability of an active
agent that is targeted at the specific architecture that needs to be monitored. It is
possible that particular environments (Industrial Control Systems or ICS for short
being an example) may feature devices and architectures that are not supported by
any active agent, thus restricting the possible choice of scanner only to network-based
scanners.

Figure 4.1 highlights another important issue of commercially available vulner-
ability scanners, the fact that regardless of being agent-based or network-based,
scanners use advisories and not CVE to report vulnerabilities in an ICT system.
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Figure 4.1. Multidimensional scaling (MDS) plot of CVE vulnerabilities aggregated
by advisory GLSA-201301-01, distributed according to the similarity between their
vulnerable vendors and products. Elements close together usually represent vulnerabilities
of different versions of the same product, elements distanced from each other represent
vulnerabilities of different products and vendors.

Inspecting the advisory pool of major commercially available vulnerability scanners,
yields two important characteristics of advisories: (i) Advisories are aimed towards
human consumption, and as such are predominantly populated by natural text, and
(ii) Advisories are an aggregation of CVE vulnerabilities based on either vendor
locality (e.g. GLSA-201301-01 1 “Mozilla Products: Multiple vulnerabilities” as
represented in the figure) or based on a single vulnerability affecting multiple prod-
ucts. Vulnerabilities in CVE format are usually listed as references to each advisory,
with the possibility of semantics being hidden in the paragraphs of natural text. As
an example, GLSA-201301-01 lists 499 CVE vulnerabilities pertaining to mozilla
products. Among these, CVE-2011-3101 2 is listed as one of the references of this
advisory, but analyzing its platform configuration yields that this vulnerability only
affects google chrome on the linux operating system, both of which are not mozilla
products. Even within the rest of the referenced vulnerabilities, it may happen that
a host does not have all the platforms which are associated to each referenced vulner-
ability, namely: Mozilla Firefox, Thunderbird, SeaMonkey, NSS, GNU IceCat, and
XULRunner. Thus, if left unattended, this characteristic of vulnerability scanners
is another source of false positives and consequent loss of accuracy for subsequent
inventories and processes that rely on these inventories.

The main focus of this chapter will be the problem of improving the quality (in
1https://security.gentoo.org/glsa/201301-01
2https://nvd.nist.gov/vuln/detail/CVE-2011-3101

https://security.gentoo.org/glsa/201301-01
https://nvd.nist.gov/vuln/detail/CVE-2011-3101
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terms of accuracy) of the automatically generated inventories without increasing
the degree of intrusiveness in the monitored system. To achieve this aim, human
knowledge will be leveraged, as it will be assumed that an analyst or a system
administrator is able to validate a vulnerability by confirming or discarding the
presence of the platforms that it affects. Since humans will be involved in the
process, another requirement for the solution of this problem will also be to make it
as efficient as possible.

This chapter provides the following contributions:

• A formalization of the problem of the quality enhancement of automatically
generated inventories.

• A computational pipeline that includes several proposed algorithms for the
quality enhancement of automatically generated inventories, as well as several
strategies able to operate on the accuracy-scalability trade-off of attack graph-
based methodologies for risk analysis. In particular the following will be
proposed:

– A methodology and an unoptimized algorithm for platform filtering.
– An optimization for platform filtering targeted at platform versions.
– An advancement for platform filtering that leverages the dependency

between CPE strings.
– An alternative, optimized algorithm for platform filtering that is aware of

the structure of CPE strings.
– Several analysis-aware aggregation strategies to trade accuracy for scala-

bility in attack graph-based methodologies for risk analysis.

4.1 Formalization of the Problem
The first contribution of this chapter is a formalization of the problem of the

quality enhancement of automatically generated inventories. To this aim, it is
necessary to lay the groundwork, disambiguating and presenting notions which will
be necessary to formalize the problem.

Problem Setting
For the purpose of this chapter, the ICT network (monitored environment) of a
given organization is considered. The considered network is monitored by one (or
multiple) monitor(s). Since the analysis tasks proposed in this chapter focus on
monitoring hosts/devices belonging to the network and their vulnerabilities, the only
inventories that have been considered for this analysis are (i) the Device Inventory
and (ii) the Vulnerability Inventory. Thus, this has lead to the decision to abstract
the underlying monitored environment into only these two inventories.3

The Device Inventory DI is simplified into the set of pairs ⟨hi, pj⟩ where hi

represents the host/device identifier and pj represents a specific platform (hardware,
operating system or software) deployed on the device. Every host’s platform pj will

3Normally, during complex security processes, an environment is described by a multitude of
inventories, not only by these two.
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be expressed through a Common Platform Enumeration (CPE) string.4 Thus, an
entry in DI will be a pair ⟨hi, cpej⟩.

The Vulnerability Inventory VI is simplified into the set of pairs ⟨hi, vulj⟩ where
hi represents the host/device identifier and vulj represents a vulnerability affecting
the host. In this chapter, vulnerabilities will be expressed according to the Common
Vulnerabilities and Exposures (CVE)5 format and a CVE identifier6 will be used to
univocally identify a vulnerability in the inventory.

Let us note that it is always possible to retrieve all the details related to a
vulnerability starting from its CVE identifier, by querying publicly available external
repositories such as NVD,7 as shown in Chapter 3.

In the following sections, it will be assumed that a vulnerability scanner can
interact freely with hosts/devices belonging to the monitored environment (i.e. the
network connectivity can be represented by a fully connected graph and no firewalls
are present in the monitored system). This is necessary to extract the required
relevant information that will be used to build DI and VI. In the following sections,
only non-intrusive vulnerability scanners will be considered i.e., vulnerability scanners
that are deployed in the monitored environment, that can interact with hosts/devices
in the network though the use of probing mechanisms but that cannot observe the
host internally. Due to their reliance on probing mechanisms, vulnerability scanners
are only able to report a raw DI and VI i.e., a DI and a VI that are potentially
affected by both false positives (pairs reported in the inventory but not really
characterizing the host) and false negatives (pairs not reported in the inventory but
characterizing the host). Throughout the chapter, such inventories will be denoted
as as DIraw and VIraw. Examples of tools that can be used as monitors are Nmap8

to construct the raw device inventory DIraw and Tenable Nessus9 or Greenbone
OpenVAS10 to construct the raw vulnerability inventory VIraw.

Let us note that typically a vulnerability is placed in the raw vulnerability inven-
tory as a consequence of the detection performed by one (or multiple) vulnerability
scanner(s) in response to one or multiple probes. Indeed, every vulnerability scanner
interacts with every host through a probing mechanism, and depending on the result
of the probe, the monitor identifies possible vulnerabilities existing on the host. One
or multiple probes are connected to advisories. Advisories are usually a collection
of zero, one or many vulnerabilities which are linked to the successful result of the
probe. In the occasions where the information about the advisory is available, the
identifier of the advisory advk will also be included in the vulnerability inventory
(and in particular in the vulnerability definition), to abstract the probing detection
mechanism (i.e., vulj = ⟨CV Ek, advk⟩ where CV Ek is a vulnerability identifier and
advk is the identifier of the advisory associated with CV Ek).

Let us recall that inventories may be affected by false positives and false negatives.
Thus, to measure the quality of an inventory I (being it a device inventory or a

4According to the NIST documentation on CPE version 2.3 [78], a well-formed CPE string is
obtained by the concatenation of sub-strings (one for every defined CPE attribute) where three
attributes are mandatory i.e., part, vendor and product. When an optional attribute is not specified,
it is replaced in the CPE string with ∗. See Section 3.1 of Chapter 3.

5https://www.cve.org/
6A CVE identifier follows a simple syntax: CVE-YEAR -5-digits-number , where YEAR identifies

when the identifier has been created and 5-digits-number is a sequence number in the year. See
Section 3.1 of Chapter 3.

7https://nvd.nist.gov/
8Nmap (“Network Mapper”) is an open-source tool for network exploration and security auditing,

cfr. https://nmap.org
9https://www.tenable.com/products/nessus/nessus-essentials

10https://www.openvas.org

https://www.cve.org/
https://nvd.nist.gov/
https://nmap.org
https://www.tenable.com/products/nessus/nessus-essentials
https://www.openvas.org
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vulnerability inventory) two metrics have been introduced:

• The completeness of the inventory, denoted as C(I), measures the degree of
coverage of the information reported in the inventory with respect to the real
host/device configuration. The completeness is computed as

C(I) = 1 − #false negatives

#real entity in the inventory
;

• The accuracy of the inventory, denoted as A(I), measures the degree of noise
reported in the inventory with respect to the real host/device configuration.
The accuracy is computed as

A(I) = 1 − #false positives

#real entity in the inventory
.

Problem Statement
It is of interest to improve the quality of the raw inventories collected from the
monitored environment. In particular, starting from DIraw and VIraw produced
directly by monitors, the goal is to compute new versions DI+ and VI+ of both the
inventories with increased quality, without being intrusive in the monitored system
i.e., without adding additional active monitors in the monitored environment. More
formally, the proposed goal is to produce the inventories DI+ and VI+ such that:

• The quality of the produced device inventory DI+ is as good as the quality
of the raw device inventory DIraw (i.e, C(DI+) ≥ C(DIraw) and A(DI+) ≥
A(DIraw)) and

• The quality of the produced vulnerability inventory VI+ is greater than (or
equal to, in the absence of false positives in the raw vulnerability inventory
DIraw) the quality of the raw vulnerability inventory DIraw (i.e., C(VI+) ≥
C(VIraw) and A(VI+) > A(VIraw) if A(VIraw) < 1, A(VI+) = A(VIraw) = 1
otherwise).

4.2 Computational Pipeline
Inventory quality plays a crucial role within the context of self-protecting systems,

where the quality of the inventories which are used as input for the system directly
influences the quality of the risk-based adaptation loop. Thus, this section introduces
a computational pipeline that is able to achieve an improvement in the accuracy
and scalability of the self-protecting system by improving the quality of the raw
inventories collected from the monitored environment.

Considering the architecture of the self-protecting system shown in Figure 4.2,
the proposed computational pipeline should be modular and should be integrated in
the Data Collection, Aggregation and Integration component with the aim of: (i)
enhancing the accuracy of risk estimation and (ii) improving its overall scalability.
The proposed pipeline will add the following two main components to the already
existing Data Collection, Aggregation and Integration component: (i) a Vulnerability
Filtering block and (ii) a Vulnerability Aggregation block. According to the desired
level of accuracy of the output, these new proposed components can be tuned and
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Figure 4.2. MAPE-K architecture for attack graph-based self-protecting systems.

orchestrated together with the old components of Data Collection, Aggregation and
Integration to generate different flows of computation. Different flows of computation
are characterized by the participation of varying new components that will affect
the level of accuracy of the output. An overview of the proposed pipeline pipeline is
available at Figure 4.3.

The main task of the Data Collection, Aggregation and Integration component
is to gather, sanitize and format all the information needed in the subsequent steps
of the MAPE-K control loop to compute the attack graph, estimate and analyze
the risk in the monitored system, and finally plan mitigation actions to manage the
risk. Among all the information handled by the Data Collection, Aggregation and
Integration component, this section focuses on the Vulnerability Inventory VI used
to generate the Attack Graph and estimate the likelihood of each vulnerability in
the monitored system. In the following, the information extracted “as it is”, without
any additional filtering or aggregation component that works in conjunction with
the Data Collection, Aggregation and Integration component will be referred as Raw
Data Collection. The term “raw” refers to the existing widespread implementation of
the data collection components that, to the best of the author’s knowledge, mainly
focuses on merging and integrating information coming from multiple external data
sources [70, 77, 71]. This corresponds to workflow 0 in Figure 4.3 that will represent
the baseline for any further analysis (i.e., the current state of the art for attack
graph-based self-protection systems). Note that workflow 0 can still be used in
isolation, as a fully functional implementation of the Data Collection, Aggregation
and Integration component bypassing the other proposed pipelines.

Vulnerability Filtering Component
At the basis of the Vulnerability Filtering component is the notion that state of the
art, probe-based vulnerability scanners11 are usually the main source of information
employed by the Raw Data Collection process in order to produce inventories. Thus
due to their probe-based nature, it is possible for these vulnerability scanners to

11A vulnerability scanner is a tool that automatically identifies vulnerabilities in a network by
scanning target systems and looking for known vulnerabilities and misconfigurations [64]. See
Section 4.1.
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Figure 4.3. High-Level architecture of the proposed computational pipeline.

produce inaccuracies, such as false positives, i.e., vulnerabilities that are not affecting
the system or not exploitable in the considered context. This is due to, for example:
(i) misconfiguration, (ii) misinterpretation of the standard system behavior, (iii)
dynamic content of systems’ applications, (iv) temporary conditions on the network,
and (v) lack of context [13].

To attempt to mitigate this possibility, the Vulnerability Filtering sub-component
has been introduced in the computational pipeline in order to reduce the number
of false positives deriving from the Raw data collection process i.e., vulnerabilities
that are listed in the vulnerability inventory generated by the Raw Data collection
algorithms.

Vulnerability Aggregation Component
False positives in the vulnerability inventory have a double disadvantage. On one
side, they reduce the accuracy of the risk estimation as it is performed on a set of
vulnerabilities that do not exist. On the other hand, they increase the size of the
vulnerability inventory, thus negatively impacting the scalability of the subsequent
attack graph-based analysis.

In order to attack the scalability issues related to attack graph based analysis, the
introduction of a Vulnerability Aggregation sub-component has been proposed. This
sub-component aims to further improve the scalability of the overall self-protecting
system by reducing the size of the input processed by the attack graph generation
and risk estimation module and, in particular, the vulnerabilities in the inventory
VI. This is done by aggregating vulnerabilities according to analysis-aware semantic
criteria. To reach this goal, the core idea is to aggregate a set of vulnerabilities with
common features (e.g., that affect the same host and have the same set of pre and
post-conditions) into a meta-vulnerability characterized by such common features.

Let us note that multiple aggregation policies may exist depending on the feature
considered. Ideally, it would be optimal to maximize the number of vulnerabilities
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aggregated into a meta-vulnerability (to maximize the scalability), while minimizing
the potential accuracy loss.

Computational Flows
The Vulnerability Filtering and the Vulnerability Aggregation components can be
orchestrated to support 3 different computational flows as shown in Figure 4.3. In
particular:

CF1 involves only the vulnerability filtering (flow 1 in Figure 4.3). This flow
theoretically guarantees the best accuracy, and can support a proactive security
analysis with unlimited resources for attack graph computation algorithms (from
both the computational and the temporal point of view).

CF2 involves only the vulnerability aggregation (flow 2 in Figure 4.3). This
flow trades accuracy for scalability and is more suitable to support better real-time
analysis where the computation time of attack graphs must be reduced as much as
possible and the analysis is fully automated without potential delays introduced by
vulnerability filtering. This flow is also particularly suitable when the accuracy of
the inventories generated by the raw data collection is particularly high.

CF3 involves both the vulnerability filtering and the vulnerability aggregation
components (flow 3 in Figure 4.3). This flow covers the most general case that
depends on the specific context and is based on the definition of a trade-off between
the accuracy and performance of the risk analysis.

4.3 An Algorithm for Vulnerability Filtering
This section will describe an initial solution aimed at increasing the quality of

the automatically generated inventories starting from DIraw and VIraw provided by
vulnerability and network scanners.12 The presented solution could be implemented
in the Vulnerability Filtering sub-component proposed in Section 4.2, in order to
realize computational flows CF1 and CF3.

The proposed solution is presented in two parts: (i) the first part of the proposed
solution pivots on the assumption of having an accurate and complete device inventory
DIi in order to employ the CPE strings contained within to validate vulnerabilities
in the vulnerability inventory VIrawi with the effect of reducing the number of false
positives; (ii) the second part of the proposed solution is a user-aided approach to
increase the quality of a raw device inventory DIraw, in order to attempt to satisfy
the requirement of having an accurate and complete device inventory DIi needed
for the first part of the solution.

More in detail, the second part of the proposed solution revolves around sub-
mitting a series of questions to the analyst or system administrator which leverage
his/her knowledge of a given host’s configuration13 in order to resolve symmetric
situations in the vulnerability inventory and, as a consequence, reduce the number
of false positives in the inventory.

Part 1: Validating a raw Vulnerability Inventory VIraw starting from an
accurate and complete Device Inventory DI∗

Algorithm 3 describes the first part of the proposed solution. It proceeds by
12Let us note that given vulnerability and network scanners like Nmap and Tenable Nessus or

Greenbone Open Vas, constructing DIraw and VIraw is a simple parsing operation of the produced
reports.

13Intended as which applications, operating system and hardware components are on a given
host.
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analyzing hosts one after the other and validating all the vulnerabilities present in
the vulnerability inventory VIraw before hopping to a new host (lines 2-4 and 6
in Algorithm 3). By exploiting the fact that the information that links CPE
configurations to any vulnerability in CVE format is listed in NVD, starting from the
raw vulnerability inventory VIraw as defined in the previous section, it is possible
to retrieve from NVD the contextual CPEs as well as their configurations (line 7
in Algorithm 3 i.e., CPEs and configurations that represent one or more enabling
conditions for the vulnerability to exist on the host, see Section 3.1). Contextual
CPEs can then be matched with those reported in DI∗ (line 8 in Algorithm 3). If
a match exists and atleast one configuration is satisfied, the CVE is considered as
“validated” and inserted in the vulnerability inventory VI+ which will be then the
output of the algorithm (lines 9-10 in Algorithm 3) otherwise the vulnerability is
safely discarded, since no enabling factor exists within the considered host.

Algorithm 3: Part 1 of the proposed solution
Input: A complete and accurate device inventory DI∗ (expressed as a set of pairs

⟨hi, CP Ej⟩)
Input: A raw Vulnerability Inventory VIraw

Output: A Vulnerability Inventory VI+

1 VI+ ← ∅;
2 host_list← get_host_list(DI∗);
3 foreach hi ∈ host_list do
4 vuln_listi ← get_vulnerability_list(hi,VIraw);
5 existing_CP Ei ← get_config_from_DI(hi,DI+);
6 foreach vj , advj ∈ vuln_listi do
7 cand_CP Ej ← get_CPE_from_NVD(vj);
8 validj ← match(cand_CP Ej , existing_CP Ei);
9 if validj = true then

10 VI+ ← VI+ ∪ {⟨hi, vj , advj⟩};
11 end
12 end
13 end
14 return VI+;

The match() function in line 8, Algorithm 3, is implemented by relying on the
presence of one or more configuration trees inside NVD. Indeed, given a specific
vulnerability vj in NVD, the associated CPE strings are not flat but they are rather
organized in a set of alternative configurations (i.e., logically related through a
OR operator). Each configuration then is represented by a AND − OR tree called
configuration tree. A configuration tree defines which combinations of software,
hardware, and operating system are necessary for the vulnerability to exist. Detailed
information about NVD and CPE strings and configuration trees can be found in
Chapter 3.

The main principle which has been leveraged in order to drive the validation
strategy is that given a configuration tree associated with a particular CVE, in order
to validate the CVE it is sufficient that a CPE in an OR condition is validated.
Conversely, if a CPE in an AND condition is invalidated (i.e., flagged as non-existing)
the whole AND condition is to be considered invalid with respect to the whole sub-
tree. More in detail, line 5, Algorithm 3 retrieves the configuration trees assigned to
a vulnerability and represents them as logical formulas defined by the AND − OR
structure of the configuration tree having one boolean variable for each CPE string
(leaf node).14 The match() function takes such formulas, sets to true all the variables

14Any formula in first order logic can always be represented as an AND− OR tree and vice-versa.
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corresponding to CPEs that exist in the considered device inventory DI∗ and to
false those without a match, evaluates all the logical formulas and finally returns
the resulting boolean value obtained by concatenating all the formulas using an OR
operator.15

CVE

CPE2 CPEj

V

V

CPE3CPE1

V

Confirguration 2 Configuration k

Configuration 1

Figure 4.4. Structure of CPE configurations stored in NVD. Red and green denote
vulnerable / non-vulnerable status.

As an example, let us consider the CVE reported in Figure 4.4 (Figure 3.1 of
Chapter 3). To simplify the example let us assume that configuration trees from 2 to
k contain a single CPE (where CPEj

1 is the first and only CPE in the configuration
j). During the execution Algorithm 3, the following formula is produced

(CPE1
1 ∨ (CPE1

2 ∧ CPE1
3) ∨ · · · ∨ CPE1

i )
k∨

j=2
CPEj

1

where every CPEj
k is a boolean variable. The formula is evaluated as true if

the specific configuration of platforms described by the formula is compatible with
the considered device inventory DI∗, i.e. if the CPEj

k present in DI∗ for host h1
are sufficient to evaluate the formula as true without any doubt. Evaluating this
formula as true entails the validation of the presence of the considered vulnerability
on the host h1. Conversely, evaluating this formula as false entails the validation
of the absence of the considered vulnerability on the host h1, i.e. the considered
vulnerability is a false positive and should not appear in VI+.

Part 2: Reconstructing the minimum-sized Device Inventory to improve
the accuracy of the Raw Vulnerability Inventory
The accuracy of the vulnerability inventory VI+ produced by Algorithm 3 is highly
dependant on the accuracy of the device inventory used as input. As a consequence,
if the device inventory is not accurate, the resulting vulnerability inventory VI+

will not be accurate as well. Furthermore, given the setting of the problem, it is not
possible to further improve the quality of the vulnerability inventory without the
introduction of a potentially intrusive solution, such as a local agent, in order to
obtain an additional source of information. Since part of the scope of the problem is
to remain as non-intrusive as possible, it is necessary to involve an analyst or a system
administrator by leveraging his/her knowledge of the platform configuration of the

15CPE configuration trees in NVD are linked one another through a common OR parent node.
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monitored environment in order to solve symmetric situations in the vulnerability
inventory and, as a consequence, attempt to reduce the number of false positives
in the inventory. The rationale behind this solution is that an analyst or a system
administrator easily knows (or has the means to know) if a platform is really
associated with a particular host. Therefore, for each host, he/she can easily validate
entries included in the device inventory (thus increasing its accuracy). However, it
could be possible that a device inventory may be comprised of a large number of
entries, which would translate directly to a large number of questions to be subjected
to the human agent. For this reason, it is necessary to submit the questions to the
human agent according to a utility function that prioritizes conditions of uncertainty
that allow for the validation/discarding of more vulnerabilities at the same time.

Since the questions submitted to the human agent revolve around single platforms,
the utility function which is part of the proposed prioritization mechanism must
leverage the configuration tree of every vulnerability (similarly to what is done in
Algorithm 3) in order to rank CPE strings based on two complementary criteria:
(i) the frequency and type of occurrences in the configuration trees and (ii) their
recurrence in the advisories.

The rationale supporting the first criteria is that if a CPE string CPEj appears
in many vulnerabilities linked by OR operators, and if CPEj is present in the
considered host, all these vulnerabilities in which CPEj appears will be validated
through a single question submitted to the human agent. Conversely, if CPEj is
involved in several AND conditions of several vulnerabilities, and CPEj is not present
in the considered host, then it will prune entire configuration sub-trees, potentially
cutting the number of elements in the Device Inventory which are still relevant
for the validation process.16 This means that the utility function must account
for positive as well as negative answers from the human agent while still striving
to maximize the impact of the answer on the structure of the CPE configuration
trees of the vulnerabilities in the Vulnerability Inventory. In other terms, the utility
function must aim to maximize its effectiveness despite not knowing apriori which
answer will the human agent choose.

Fortunately, by cleverly exploiting the semantics of the tools used to obtain the
information that is used to populate the inventories, there is a way to produce an
estimation of the expected answer for each platform in a system. Indeed, vulnera-
bility and network scanning tools function according to a probe-based mechanism.
Intuitively, if a platform is referenced by many advisories, it is reasonable to think
that the probability of that platform residing in the host is greater than the prob-
ability of that platform not belonging to the considered host. This intuition is
supported by the fact that an advisory is assigned to a host only if one or more
probes linked to an advisory detects the presence of possibly vulnerable platforms
through certain fingerprints. As such, it is reasonable to believe that the probability
of a platform being really present in a host rises if multiple probes detect it. This
bias in probability can be used in conjunction with the first criteria to empower
the utility function with an oracle that tries to provide a reasonable guess of the
expected answer that the human agent will provide.

Lastly, each time that the human agent provides an answer, it is necessary to re-
evaluate and re-prioritize the platforms in the Device Inventory that still need to be
validated before asking an additional question. This is necessary due to the fact that

16A platform in the Device Inventory is considered relevant if it partakes in a meaningful way to
any formula derived from any configuration of not-yet confirmed/discarded vulnerabilities in the
Vulnerability Inventory. In simpler terms, “if a platform helps me solve a configuration which is
still unsolved, then it is useful”.
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each platform has its own impact on the configuration trees of the vulnerabilities in
the Vulnerability Inventory. For this reason it is not uncommon for many platforms
to become irrelevant with respect to the task of validating vulnerabilities, through a
single question.

Algorithm 4 presents the pseudo-code of the proposed solution. Similarly to
the previous part, each host is analyzed independently and sequentially. For each
host hi the solution initially computes a structure defined as the vulnerability graph
Gi = (Vi, Ei) of host hi (line 5, Algorithm 4).

The set of nodes Vi that are part of the vulnerability graph Gi is partitioned into
three sub-sets: (i) advisory nodes Vadv which represent every advisory id listed in
the raw vulnerability inventory VIraw, (ii) vulnerability nodes VCV E which represent
every CVE listed in the raw vulnerability inventory VIraw and (iii) platform nodes
VCP E which represent every CPE string retrieved starting from a CVE in the raw
vulnerability inventory VIraw. Thus, Vi = Vadv ∪ VCV E ∪ VCP E .

The set of edges Ei that are part of the vulnerability graph Gi is also partitioned
into two sub-sets: (i) E(CV E,CP E) represents the set of edges linking a vulnerability
with its associated CPEs and (ii) Eadv,CV E represents the set of edges linking an
advisory to all its associated vulnerabilities. Thus, Ei = E(CV E,CP E) ∪ Eadv,CV E .

An example of a vulnerability graph for a host hi is shown in Figure 4.5.
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Figure 4.5. Schema of an exemplary Gi.

The vulnerability graph Gi is initially computed starting from the raw vulner-
ability inventory and is refined and used throughout the validation process. The
proposed algorithm then proceeds to assign scores to every edge in E(CV E,CP E) to
identify the “most relevant” CPE strings with respect to a specific vulnerability.
This is achieved considering the configuration tree linking a CVE with its associated
CPE strings in isolation These scores are only local with respect to each vulnerability,
so an aggregation step is required to have a score that can be used on each host. For
this reason, these “local” scores are then aggregated across multiple vulnerabilities
in order to achieve a single comprehensive score to each and every CPE string
in a host, that is able to take into account the contribution of a platform across
multiple vulnerabilities (lines 12 and 15, Algorithm 4). Using the calculated score
as a prioritization metric, a question is selected and raised to the human agent. In
particular, the proposed algorithm starts from the CPE string with the highest score
and proposes it to the user expecting a boolean answer in return (lines 17 and 18,
Algorithm 4).

If the existence of the proposed CPE string is confirmed by the human agent, it
is inserted in the device inventory DI+ and a comprehensive evaluation is triggered
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in order to understand if this answer contributed to the validation of one or more
vulnerabilities. This is achieved using the same technique presented in Algorithm 3,
by evaluating the logical formulas associated with configuration trees for every
connected vulnerability (lines 23-35, Algorithm 4). Differently from the previous part,
not all CPE strings may have been assigned a value yet. For this reason, formulas
that derive from configuration trees of vulnerabilities may still be undetermined.
This allows three outcomes to derive from the matching function: (i) the matching
function returns with a true value, meaning that the vulnerability is validated through
already validated CPE strings, and as a result it is inserted in the vulnerability
inventory VI+, (ii) the matching function returns with a false value, meaning that
the vulnerability is invalidated by already discarded CPE strings, and as a result
it is discarded and not included in VI+ and (iii) the formula cannot be evaluated
yet, meaning that with the current validated and discarded CPE strings, it is not
yet possible to state if the vulnerability exists or not, and that there is the need to
continue the validation process.

As a reminder, each time a CPE string or a CVE vulnerability is validated or
discarded, the vulnerability graph Gi is updated and thus, in the next iteration of
the algorithm, scores and prioritizations will be updated considering the insight
gained by the interaction with the human agent.

Computing the Prioritization Scores
The previous section introduced Algorithm 4 which aims to enhance the quality
of an automatically generated Vulnerability Inventory VIraw through the strategic
employment of a human agent. More in detail, it has been shown that by validating
or discarding platforms contained in the Device Inventory DIraw it is possible as
a consequence to validate or discard vulnerabilities from a Vulnerability Inventory
VIraw in order to refine it into a possibly more accurate VI+, which should contain
less false positives than VIraw.

This section will go on detail on the prioritization score used to order the sequence
of platforms to be validated by the human agent. More in particular, this section
will show how given an instance of the vulnerability graph Gi for a given host hi,
is is possible to compute the scores associated with edges in E(CV E,CP E) (i.e., the
assign_score() function) and how to aggregate the scores (i.e., the aggregate_score()
function) in order to have a single prioritization score to rank platforms on a host.

For a given host hi the assign_score() function takes as input the vulnerability
graph Gi and computes for each edge ev,p ∈ E(CV E,CP E) a numerical score represent-
ing the utility Wv,p

17 of validating or discarding CPE p. The concept of utility is
highly tied to the potentiality of CPE p to validate or discard the existence of the
vulnerability v in hi, and is formalized as:

Wv,p = αp × TSv,p + (1 − αp) × FSv,p

where

• TSv,p represents the utility of a CPE p with respect to its potential to validate
the CVE v when a positive answer from the human agent is expected (e.g.,
when a positive answer will allow to fully validate the vulnerability without
any additional question)

17Abusing the notation it is possible to refer to Wv,p as the entry of the W(CV E,CP E)[] array used
in Algorithm 4.
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Algorithm 4: Vulnerability Filtering
Input: A raw Device Inventory DIraw

Input: A raw Vulnerability Inventory VIraw

Output: A Device Inventory DI+

Output: A Vulnerability Inventory VI+

1 VI+ ← ∅;
2 DI+ ← ∅;
3 host_list← get_host_list(VIraw);
4 foreach hi ∈ host_list do
5 Gi(Vi, Ei)← compute_vulnerability_graph(VIraw);
6 W(CV E,CP E)[ ]← [0]|E(CV E,CP E)|;
7 WCP E [ ]← [0]|VCP E |;
8 validated_CP E[ ]← [⊥]|VCP E |;
9 CV E_to_validate← VCV Ei ;

10 while CV E_to_validate ̸= ∅ do
11 foreach ex ∈ E(CV E,CP E) do
12 W(CV E,CP E)[ex]← assign_score(Gi);
13 end
14 foreach cpex ∈ VCP E do
15 WCP E [cpex]← aggregate_score(W(CV E,CP E)[ ]);
16 end
17 CP Emax ← get_highest(WCP E [ ]);
18 validated_CP E[CP Emax]← ask_for_user_validation(CP Emax) ;
19 if validated_CP E[CP Emax] = true then
20 DI+ ← DI+ ∪ {⟨hi, CP Emax⟩};
21 Gi ← remove_validated({CP E_max});
22 end
23 foreach vj | ∃⟨vj , CP Emax⟩ ∈ E(CV E,CP E) do
24 cond_CP Ej ← get_CPE_from_NVD(vj);
25 validatedj ← match(cond_CP Ej , validated_CP E);
26 if validatedj = true then
27 VI+ ← VI+ ∪ {⟨hi, vj ,⊥⟩};
28 CV E_to_validate← CV E_to_validate \ {vj};
29 Gi ← remove_validated({vj});
30 end
31 else if validatedj = false then
32 CV E_to_validate← CV E_to_validate \ {vj};
33 Gi ← remove_validated({vj});
34 end
35 end
36 end
37 end
38 return VI+,DI+
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• FSv,p represents the utility of a CPE p with respect to its potential to validate
the CVE v when a negative answer from the human agent is expected (e.g.,
when a negative answer will allow to fully validate the vulnerability without
any additional question)

• αp represents the probability that the CPE p is really in the host given the
collected advisories (i.e. the probability of a positive answer from the human
agent)

Informally TSv,p and FSv,p are the answer to the question “What is the potential
of CPE p to resolve CVE v if the expected answer is positive/negative respectively?”

For the computation of TSv,p and FSv,p, it is necessary to analyze the CPE
configuration trees associated with the vulnerability v. In particular it is necessary
to interpret the all the configuration trees associated to vulnerability v as a formula
in first order logic, in which CPE strings (leaf nodes) are interpreted as boolean
variables.18 A true/false assignment to a variable maps to the corresponding platform
p (CPE string) residing or not in the considered host hi. The second necessary
step is a normalization passage in which the formula is converted in Disjunctive
Normal Form to mimic an OR − AND tree. This step is necessary as the logic
formula expressed in DNF highlights the dependency of each platform with respect
to other platforms, as well as providing a standardized form to apply any subsequent
computational process to.

At last, the true score TSv,p is computed as:

TSv,p = maxi

( 1
|ANDi|

)
× 1

|OR|
where |ANDi| is the number of CPEs related by the i-th AND operator in

the configuration tree and |OR| is the number of alternative configurations in the
configuration tree.

Similarly, the false score FSv,p is computed as:

FSv,p =
( ∑

i

|ANDi|
)

× 1
maxi(|ANDi|) × |OR|

The coefficient αp is used to estimate the expectation of a possible positive or
negative answer from the human agent. The estimation of this value depends on the
number of advisories that include at least one vulnerability which is in turn linked
to a considered CPE string p. Notice that αp is a coefficient that is global across
the considered host hi, therefore it does not depend on any specific vulnerability v.
The rationale supporting this coefficient is that given a host hi, multiple advisories
assigned to hi, reporting vulnerabilities that insist on the same CPE string p, should
increase the possibility of CPE string p being present in the host hi, as per the
probe-based mechanism attached to the advisories. In simpler terms, “If multiple
leads point to the same conclusion, maybe that conclusion holds some truth”. Thus,
the αp coefficient can be computed as:

αp = degadv(p)
max(degadv)

18Configuration trees of a same vulnerability are related one another by OR. This would make the
structure containing all the configuration trees of the same vulnerability a OR− AND− OR tree.
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where degadv(p) is the number of paths in Gi (Eadv,CV E and ECV E,CP E) starting
from any advisory adv and ending in p, and max(degadv) is the maximum number
of paths in Gi starting from any advisory adv and ending in any platform CPE (i.e.
max(degadv(cpe)) ∀ cpe ∈ Gi).

Lastly, the aggregate_score() function implements a simple aggregation for every
CPE of the computed utility scores over the edges. Thus, Wp is computed as:

Wp =
∑

ev,p∈E(CV E,CP E)

Wv,p.

Thus it is possible to implement this proposed algorithm as part of the computa-
tional pipeline in an effort to bolster the accuracy Data Collection, Aggregation and
Integration of a self-protecting system. A comprehensive evaluation and case study
of the proposed solution will be analyzed later on, in Chapter 5.

4.4 Optimizing Platform Versions
During the development and validation of the solution proposed in the previous

section, it has been noticed that the size of the vulnerability graph G⟩ greatly
increases when also considering the version attribute of CPE strings in addition
to the mandatory attributes part, product and vendor. This is due to the fact
that vulnerabilities may span over several versions of a product before a patch or
an effective mitigation is finally released. Alas, it is possible that a vulnerability
introduced in a version of a product may not be immediately found by analysts:
it is possible that in the time between the introduction and the discovery of the
vulnerability several versions of the same product have already been released, all
equally vulnerable.

A possible solution to the increase in size of G⟩ can be found by optimizing the
encoding of contiguous CPE version attributes in the platform configuration tree of
a CVE vulnerability. This solution is not new, as many vulnerability repositories,
such as NVD, encode contiguous product versions as product version intervals, thus
setting the version attribute of all affected CPE strings to the generic ANY (*) value
and attaching metadata to the CPE string to encode the affected version intervals.

The reliance on metadata is necessary since version intervals are not part of the
NIST documentation on CPE version 2.3 [78]. Since the solution proposed in the
previous section has been built following the NIST documentation, a modification
has to be made in order to optimize the proposed solution with respect to version
intervals. The general principle behind this modification is not to change the
proposed solution’s algorithm or heuristic, but to act on G⟩. In particular, since the
proposed solution’s algorithm and heuristic relies heavily on a platform’s occurrence
and frequency, it would make sense to (i) incorporate version intervals in G⟩ as well
as (ii) transforming each single version interval of a product into possibly multiple
version intervals which are able to highlight eventual version overlap.

The intuition is that simply encoding version intervals in the vulnerability graph
G⟩ might not be enough, as the algorithm categorizes two partially overlapping
version intervals as two separate entities. For this reason, in order for the proposed
algorithm to effectively recognize the presence of an overlap, it may be necessary
to explicitly highlight the presence of an overlap by splitting each version range
into (i) version ranges that overlap completely with other version ranges, i.e. the
versions contained by the version range are a subset of any other overlapping version
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range, and (ii) version ranges that never overlap with any other version range, i.e.
intersection of this version range with any other version range yields ∅. This is
necessary, because in order to be effective, the proposed solution’s heuristic must
be able to find recurring CPE strings within the platform configuration trees of
vulnerabilities. With this intuition in mind, the next logical step would be to
manipulate the version intervals in order to increase this recurrence. More formally,
overlapping version intervals should be broken up into the minimum number of
version “segments” possible, so that no version segment should terminate or start in
the middle of another version segment. Thus, given any two version segments A and
B for the same product p pertaining to the same host hi, the set-intersection A ∩ B
must result in either ∅ if A ̸= B or either A or B if A ≡ B.

This modification to G⟩ can be achieved via two subsequent steps:
• The first step covers the encoding of the version intervals in the version

attribute of the CPE strings of G⟩. This is necessary since G⟩ does not allow
the presence of metadata for a given CPE string. The non destructiveness of
this operation is guaranteed by the fact that in NVD, a CVE string’s version
attribute is set to ANY (∗) by convention each time a version interval is
attached to such CVE string.

• The second step covers the discretization of each version interval belonging
to platform configurations of vulnerabilities in a given host. Mathematically as
mentioned before, the desired outcome of this operation is that given any two
version segments A and B for the same product p pertaining to the same host
hi, the set-intersection A ∩ B must result in either ∅ if A ≠ B or either A or
B if A ≡ B. This is achieved trough the identification of boundary versions for
each version interval of each product pertaining to a given host (i.e. versions
that act as the outermost boundaries of the version interval.

More in detail, the discretization of a version interval into one or multiple version
segments is highly dependant on the existence of a version boundary that falls in
the middle (i.e. “cuts”) of another version interval of the same product. As an
example, if for a given product p there exist two version intervals I1 = (≥ 1, ≤ 3) and
I2 = (≥ 1, ≤ 2), it is necessary to slice I1 = (≥ 1, ≤ 3) into segments I ′

1 = (≥ 1, ≤ 2)
and I ′′

1 = (> 2, ≤ 3) since one of the boundaries of I2 (2) falls within interval I1.
This ensures that (i) no other interval intersects I ′′

1 , and (ii) I ′
1 intersects I2 and

I ′
1 ≡ I2. Notice also that in this example, sice no other boundary value cuts in the

middle of I2, there is no need to split I2 into segments. Another interesting detail
is that the boundary 2 has been assigned to I ′

1 and not I ′′
1 . This operation is not

trivial, and it will be explained in detail below, as it is dependant on all the version
intervals that partake in p for host hi.

Algorithm 5 implements the second step of the proposed optimization. In
particular for each CPE pj already present in G⟩, the proposed algorithm retrieves
its version boundaries and checks if a collision exists with other version intervals of
the same product (Line 6). If a collision exists, the algorithm proceeds to split the
interval identified by pj into two or three version segments (s_list), and substitutes
each occurrence of the colliding version interval pj in G⟩

opt with the two or three
version segments identified by s_list (Lines 6-9). The process continues until no
collision19 can be found on G⟩

opt (Line 2).

Assigning the Boundary Value
To recall the example that has been presented in the previous section, if a boundary

19Either all version segments and intervals for a product coincide, or their intersection is null.
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Algorithm 5: Platform Version Optimization
Input: A Vulnerability Graph G⟩
Output: An optimized Vulnerability Graph G⟩

opt

1 G⟩
opt ← G⟩;

2 while has_colliding_version_intervals(G⟩
opt) do

3 VCP E ← get_CP E_nodes(G⟩
opt);

4 foreach pj ∈ VCP E do
5 r_bound, l_bound← get_interval_bounds(pj);
6 if product_has_colliding_version_intervals(pj , r_bound, l_bound) then
7 c_rng, c_val← get_colliding_interval_and_value(pj , r_bound, l_bound);
8 s_list← segments_from_interval_and_collision(pj , c_rng, c_val);
9 update_graph(G⟩

opt, pj , s_list);
10 end
11 end
12 end
13 return G⟩

opt

value of a version interval I2 falls within a version interval I1, version interval I1
must be split into two version segments I ′

1 and I ′′
1 . If the boundary value of a

version interval is itself part of the version interval (operators =, ≥, ≤), deciding
its assignment to one of the newly created version segments is not a trivial task.
Version segments of the same platform p, under the same host hi must satisfy the
mathematical property of either not having anything in common with each other,
or being completely overlapping with respect to other segments, i.e. given any two
version segments A and B for the same product p pertaining to the same host hi,
the set-intersection A ∩ B must result in either ∅ if A ̸= B or either A or B if
A ≡ B. This raises two possible outcomes for a boundary value that falls within
a version segment, either (i) the version boundary value is included in one of the
two segments that it generates (I ′

1 or I ′′
1 with ≤ or ≥ operators), or (ii) the version

boundary value is not included in any of the two segments that it generates, and
instead spawns a third segment comprising only itself (I ′′′

1 with = operator).
In particular, the logic implemented in the segments_from_interval_and_collision()

function of Algorithm 5 adheres to the following logic:

Given the two segments A and B divided by the boundary value bound (i.e.
A:(.., < or ≤ bound), B:(> or ≥ bound, ..)), the boundary value bound is to be
either

included in A : (..,≤ bound) if no other interval includes bound with operator ≥, < or =
included in B : (≥ bound, ..) if no other interval includes bound with operator ≤, > or =
included in C : (= bound) otherwise

(4.1)
where A and B are the two segments derived from the split of a larger version

interval by bound, and C is a third, potentially new, segment which only contains
bound.

This modification on G⟩ preserves the proposed solution’s ability to correctly
function as well as integrates an important optimization with respect to the increased
size of G⟩ without having to trade any accuracy. And while version attributes are
optional according to the NIST documentation on CPE strings, and encoding them
in Gi comes at a cost in terms of complexity, it is necessary to stress the importance
of this decision and of its consequences on the accuracy of the resulting analysis.
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For this reason the vulnerability graph GNoV e
i will be also introduced, defined as

Gi with its CPE strings truncated to only consider the mandatory attributes part,
product and vendor. This graph will be used during the validation on the case study
(Chapter 5) to allow to accurately compare the impact in terms of accuracy and
scalability of such decision with respect to the filtering process.

4.4.1 Example of Application
The following section will detail an example of the application of the proposed

optimization given an instance of a generic product in G⟩. The proposed example is
also visually described in Fig. 4.6. In particular:

Given three CPE strings in G⟩ pertaining to a single product, and given their
attached metadata retrieved from NVD

1. cpe:2.3:a:vendor:product:1.0.0:*:*:*:*:*:*:*

2. cpe:2.3:a:vendor:product:*:*:*:*:*:*:*:* with version ≥ 1.0.2

3. cpe:2.3:a:vendor:product:*:*:*:*:*:*:*:* with version ≥ 0.9.0 & version ≤ 1.1.0

According to Algorithm 5, the following boundary versions are identified for the
given product

• the boundary 1.0.0 from CP E1 (version = 1.0.0)

• the boundary 1.0.2 from CP E2 (version ≥ 1.0.2)

• the boundary 0.9.0 and 1.1.0 from CP E3 (version ≥ 0.9.0 and version ≤ 1.1.0)

Among these

• the boundary 1.0.0 from CP E1 collides with CP E3 (1.0.0 between 0.9.0 and 1.1.0)

• the boundary 1.0.2 from CP E2 collides with CP E3 (1.0.2 between 0.9.0 and 1.1.0)

• the boundary 1.1.0 from CP E3 collides with CP E2 (1.0.0 between 0.9.0 and 1.1.0)

• the boundary 0.9.0 from CP E3 does not collide with any CPE

The proposed algorithm would then proceed to

• Leave CP E1, as-it-is, since it identifies precisely one version

• Segment CP E2 into two CPE strings:

1. a CPE string CP E′
2 for the interval [1.0.2, 1.1.0]

2. a CPE string CP E′′
2 for the open interval ]1.1.0, +∞[

This is necessary since version 1.1.0 of CP E3 falls within the version interval of CP E2
The boundary 1.1.0 is assigned to CP E′

2 since also CP E3 includes 1.1.0 as a boundary.

• Segment CP E3 into four CPE strings:

1. a CPE string CP E′
3 for the interval [0.9.0, 1.0.0[

2. a CPE string CP E′′
3 for version 1.0.0

3. a CPE string CP E′′′
3 for the interval ]1.0.0, 1.0.2[

4. a CPE string CP E′′′′
3 for the interval [1.0.2, 1.1.0]
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0.9.0 1.0.0 1.0.2 1.1.0

+ ∞
included

1

2

3

Figure 4.6. Example of the version splicing performed during 4.4.1. The three CPE strings
in input are represented on the Y axis, while the boundary versions are represented on
the X axis. Blue indicates the versions and version intervals in input, green indicates
the versions and version intervals in output for each CPE string. Red indicates the
boundary values identified by each CPE in input.

This is necessary since 1.0.0 and 1.0.2 fall within the version interval of CP E3
Moreover, since 1.0.0 appears in CP E1 as a unique version, it must not be included in CP E′

3
or CP E′′′

3 . Thus, the creation of CP E′′
3 is necessary Also, since 1.0.2 is already included in

the interval defined by CP E′
2, it is necessarily included in CP E′′′′

3 to allow for CP E′
2 and

CP E′′′′
3 to overlap completely.

Notice that the proposed optimization may transform each single CPE string into
potentially several new CPE strings, depending on the number of required version
segments. It however guarantees that the resulting CPE strings either identify one
single version, or identify version intervals which either overlap completely with
other version intervals or never overlap at all with any other version interval for the
considered product. This enables the heuristic described in the previous section to
act on potentially smaller, discrete version intervals, and to more easily identify and
select the most plausible versions or version intervals,20 effectively exploiting the
added complexity.

4.5 Considering Platform Dependency
This section aims to deliver an advancement with respect to the solution proposed

in Section 4.3 (Vulnerability Filtering). The focus of this new proposed advancement
lies in considering a new tree-based model to track similarities between attributes of
vulnerable platforms in CPE format.

Differently from what has been proposed before, this advancement operates on
the structure of a CPE string itself. More in detail, until now across this chapter a
CPE string has been handled as a monolithic entity, while in reality a CPE string
is composed by a series of attributes. The intuition behind this proposal is that
validating or discarding a platform in CPE string on a host hi entails the validation
or invalidation of its attributes. Following this principle, validating or discarding a
platform that shares most of its attributes with another, may also validate or discard
the other platform as a result of the validation or invalidation of the attributes that
compose such platform.

20Given a flat OR configuration in which all CPE strings bear the same weight, in this example
the filtering algorithm and the heuristic would prioritize CPE strings pertaining to versions 1.0.0
and [1.0.2, 1.1.0] before others, as they are the most frequent.
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As a bonus, since this proposed optimization operates on the structure of the
CPE string itself, it is possible to combine it together with the optimization of the
version attribute of CPE strings described in Section 4.4 (Version Optimization), as
the two are orthogonal.

The proposed advancement of the methodology described in Algorithm 4 of Sec-
tion 4.3 (Vulnerability Filtering) expands the vulnerability graph Gi by implementing
a dependency model able to potentially validate multiple platforms as a result of a
single interaction with the human agent.

The main intuition behind this new dependency model is to represent the
platforms in the vulnerability graph Gi as a tree-shaped graph having the host hi as
root. This is achieved by the computation of a vulnerability tree Ti = (V T

i , ET
i ) for

each host hi in the vulnerability inventory VI.
The set of nodes V T

i of the vulnerability tree is partitioned into three sub-sets:
(i) root nodes V T

r which collects the host hi currently under analysis, (ii) vulnerability
nodes V T

v which includes a node for every vulnerability v listed in the vulner-
ability inventory VI, (iii) platform nodes V T

CP E_part, V T
CP E_vendor, V T

CP E_product,
V T

CP E_version including a node respectively for every part, vendor, product and
version attribute appearing in each platform associated to any vulnerability in
the inventory VI. Consequently, V T

i = V T
r ∪ V T

v ∪ V T
CP E_part ∪ V T

CP E_vendor ∪
V T

CP E_product ∪ V T
CP E_version.

The set of edges ET
i is partitioned into the following sub-sets: (i) ET

hi,v
is the

set of edges linking a host hi to its associated vulnerability v, (ii) ET
v,p is the set of

edges linking a vulnerability v with its associated platform p, and (iii) ET
p is the set

of edges derived from a platform p and connecting (through a path) a part node to
a vendor node, to a product node, and finally to a version node. Since they form a
sub-tree in Ti, we refer to these edges as platform sub-tree, (grey-shaped sub-trees in
Fig. 4.7(b)). Consequently, ET

i = ET
p ∪ ET

p,v ∪ ET
hi,v

.
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(a) Example of the vulnerability graph Gi de-
scribed in Section 4.3.
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Host

Part1 Part2

Vendor1 Vendor2

Product1 Product2 Product3

Version1 Version2 Version3

Vuln1 VulnN

(b) Example of the proposed vulnerability tree
Ti.

Figure 4.7. Comparison between the (a) vulnerability graph Gi described in Section 4.3
(Vulnerability Filtering) and (b) the proposed vulnerability tree Ti to model the depen-
dencies between attributes of platforms.

Figure 4.7 visually highlights the differences between the vulnerability graph
Gi described in Section 4.3 (Vulnerability Filtering) and the proposed vulnerability
tree Ti. The main difference is that the existing model (Fig 4.7(a)) focuses on
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the applicability of vulnerabilities but does not take advantage of the attributes of
platforms represented in CPE format.

The proposed tree model (Fig 4.7(b)) highlights commonalities between different
platforms of the same host, such as different versions of the same product and other
products of the same vendor. As a consequence, the proposed tree model also enables
the validation or invalidation of common elements.

As an example, considering the setting described in Figure 4.7, it can be imme-
diately seen that by validating the presence of P1, only Product2 will be needed to
validate P2, and only V ersion2 is needed to validate P3. This is due to the fact that
validating P1 entails validating Part1, V endor1, Product1 and V ersion1. P2 shares
the same Part1 and V endor1 with P1, its only difference being Product2. Similarly,
P3 shares the same Part1, V endor1 and Product1 with P1, its only difference being
V ersion2. Conversely, invalidating the presence of P2 also invalidates the presence
of P1 and P3, since all three depend on Part1 and V endor1, i.e. it would not make
sense to look for versions of products of which their vendor is not even part of
the considered host. This example highlights the main property of the proposed
tree model: platform attributes that haven’t been validated yet but align with any
invalidated attribute in the platform sub-tree are automatically discarded without
requiring additional human input. Conversely, if all attributes of a platform that
have not been validated yet match with validated attributes in the structure, the
platform sub-tree can be safely validated without further human input.

This advancement can be easily implemented in Algorithm 4 of Section 4.3
(Vulnerability Filtering) just after the ask_for_user_validation() function (line 18 of
the same algorithm.). The human agent’s response should trigger a full traversal of
Ti in order to validate or discard platforms which have been indirectly affected by the
human agent’s response with regards to the chosen platform and its attributes. Thus
it is possible to achieve another advancement for the solution proposed in Section 4.3
(Vulnerability Filtering), which is also compatible with previous advancements and
optimizations, such as the one described in Section 4.4 (Version Optimization).

4.6 A Platform Structure-Aware Algorithm
This section will describe an alternative approach with respect to the solution

proposed in Section 4.3 (Vulnerability Filtering). As per the advancements proposed
in the previous sections, this new proposed approach aims to attack the complexity
generated by considering the optional version attribute of CPE strings in addition
to the mandatory attributes part, product and vendor. The intuition behind this
approach is similar to the intuition of Section 4.5 (Platform Dependency), for which
a platform using the CPE format is not just a monolithic entity, but is composed
by a series of attributes that are associated one to the other not only through
juxtaposition, but also through meaningful semantic relationships. Simple examples
of the semantic relationships between attributes of a CPE string can be found
between contiguous couples of attributes such as product and vendor, or product
and version: it is not intuitive to disassociate a product to its vendor, as it is not
intuitive to disassociate a version to a specific product. Indeed, the presence of
semantic relationships between attributes of a CPE string is also not a coincidence,
as it is a design choice of the CPE standard in order to allow for comparison of CPE
strings, as per NIST IR-7696 [78].

Focusing on the semantic relationships between attributes of platforms opens up
a new venue to explore in order to achieve a new approach to attack the problem.
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Part ProductVendor Version

CPE String

: : :

Figure 4.8. CPE string interpretation of attributes part, vendor, product and version as a
unary tree.

As stared in the beginning of the section, the main intuition behind this new
approach is that a CPE string is not a monolithic entity, but can be represented
as an unary tree in which each level represents an attribute, as exemplified by
Figure 4.8. For this reason, a new approach which is aware of the dependency
model between attributes of CPE strings can be proposed as an alternative to the
general approach proposed in Section 4.3 (Vulnerability Filtering). In particular,
invalidating an attribute of a CPE string has the benefit of discarding multiple CPE
strings (platforms) which depend on the single discarded attribute, at the cost of
possibly requiring multiple steps for validation since a single CPE string (platform)
under this model requires all its attributes to be validated.

In order to allow this new approach to reason on the dependency model between
attributes of CPE strings, a new structure has to be proposed, capable of correctly
representing the dependency model between attributes of multiple CPE strings
related to a single host. This could be achieved by a tree structure, in which the root
identifies the host, and nodes represent attributes of the CPE strings that partake
in the host.

More formally:

Definition 1 (Host-Platform Graph HPGi for a host hi)

Let hi be a host of the monitored environment and let CPEi be the set of CPEs
strings sj = part : vendor : product : version such that ⟨hi, sj⟩ ∈ DIraw.

Let the set of nodes V HP
i that are part of the host-platform graph HPGi be

• V host = hi represents the host upon which the graph is built.

• V part
i = {partk| ∃sj = “partk:-:-:-” ∈ CPEi} represents the set of distinct part

attributes existing in the device inventory pertaining to host hi.

• V vendor
i = {vendork| ∃sj =“x:vendork:-:-”∈ CPEi} represents the set of dis-

tinct vendor attributes existing in the device inventory pertaining to host
hi.

• V product
i = {productk| ∃sj =“x:y:productk:-” ∈ CPEi} represents the set of

distinct product attributes existing in the device inventory pertaining to host
hi.

• V version
i = {versionk| ∃sj =“x:y:z:versionk” ∈ CPEi} represents the set of

distinct versions attributes existing in the device inventory pertaining to host
hi.

Let the set of edges EHP
i that are part of the host-platform graph HPGi be
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• E
(host,part)
i = ⟨hi, partk⟩ represents the edges between the host node and the

part nodes.

• E
(part,vendor)
i = ⟨partk, vendorz⟩ represents the edges between each part nodes

and each vendor nodes, as they appear in the CPEs of the device inventory
for hi.

• E
(vendor,product)
i = ⟨vendork, productz⟩ represents the edges between each ven-

dor nodes and each product nodes, as they appear in the CPEs of the device
inventory for hi.

• E
(product,version)
i = ⟨productk, versionz⟩ represents the edges between each

product nodes and each versions nodes, as they appear in the CPEs of the
device inventory for hi.

The host-platform graph for hi is a graph HPGi = (V HP
i , EHP

i ) where

• V HP
i = V host

i ∪ V part
i ∪ V vendor

i ∪ V product
i ∪ V version

i .

• EHP
i = E

(host,part)
i ∪ E

(part,vendor)
i ∪ E

(vendor,product)
i ∪ E

(product,version)
i .

An example of a host-platform graph HPGi for host hi is shown in Figure 4.9.

Host o o:canonical o:canonical:ubuntu_linux

o:redhat

a:redhata

o:redhat:enterprise_linux

a:redhat:satellite

o:canonical:ubuntu_linux:12.04

o:redhat:enterprise_linux:5.0

a:redhat:satellite:5.6

o:canonical:ubuntu_linux:14.04

Platforms in Host

Figure 4.9. Host-Platform Graph HPGi for host hi. The colors highlight the concept of
“levels” within the graph. Each level originates from a different truncation of a CPE
strings.

As the figure suggests, the structure of the host-platform graph HPGi classifies
nodes in levels and each level is associated with an attribute of the CPE string
(e.g. part, vendor, product, version). Moreover, nodes of one level are linked only
to nodes of other levels: no edge exists between nodes of the same level (e.g. no
edges exist between two “vendor” nodes). Thus, the host-platform graph HPGi has
the capacity to highlight relationships between multiple CPE strings through their
participation in common sub-trees, e.g. versions of the same product sharing the
same product, vendor and part parent nodes. This in turn means that operating on
intermediate nodes of HPGi could potentially amplify the number of items validated
or discarded during a single interaction with a human agent. Indeed, given the
setting described in Figure 4.9, two versions (and platforms) share the same part,
vendor and product (o, canonical and ubuntu_linux). Confirming the absence of
any of these three attributes from hi automatically also confirms the absence of
any platform (identified by versions 12.04 and 14.04 of the ubuntu linux operating
system) which shares such attributes.

The same figure also highlights an important constraint that is necessary to
correctly formulate and utilize the host-platform graph. As stated before, according
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to documentation, semantically each attribute of a CPE string is tied to the previous
attribute of the same string. In order to enforce this semantic dependence in a
simple manner, a tree structure must be enforced on HPGi by design, i.e. no node
in V HP

i shall have more than one parent node. This is not granted by default by the
CPE standard, since as an example in the figure the CPE vendor attribute “redhat”
appears both as a software (a) vendor as well as a operating system (o) vendor.
Indeed it is possible for the same vendor to be associated to different parts and even
for the same product to be associated to multiple vendors inside the CPE dictionary.
This may be due to the possibility of acquisition of a product by a different vendor, as
well as re-branding efforts conducted by the vendor. This phenomenon is not limited
to the ⟨part, vendor⟩ or ⟨vendor, product⟩ attribute tuples, but is also possible for
some other attributes due to their generality, e.g. a value of 1.0.0 may be frequently
used in the version attribute, but each usage is semantically associated to potentially
different products.21

In order to actuate this enforcement, truncated CPE strings are used as identifiers
for nodes in V HP

i . For the purpose of this work, the truncation of a CPE string p on
an attribute x is defined as the sub-string p′ composed of the sequence of contiguous
CPE attributes starting from part, up to and including x. As an example, given
a:apache:http_server:2.0.0, truncating this string on vendor yields a:apache. Under
this convention, the type of the node represents the last attribute to be included in
its identifier, e.g. given the same CPE string a:apache:http_server:2.0.0, a V vendor

i
node built on the given CPE shall be identified by the CPE’s part and vendor
attributes a:apache, while a V product

i node built on the same CPE shall be identified
by the CPE’s part, vendor and product attributes a:apache:http_server. Thus, this
convention on the generation of identifiers for nodes in V HP

i is still able to represent
the semantic dependency between adjacent attributes in a CPE string, as well as
enforce a tree-structure on HPGi. The only exception for this convention is V host

i ,
which retains its unique identifier that maps to a host hi. In other words, with the
exception of V host

i , the graph HPGi is to be generated as a Trie (or prefix tree) in
which each value associated to an edge is the value of an attribute in CPE, and each
key (depth-first path on the tree) identifies a CPE string pertaining to the host hi,
according to the device inventory DIraw.

To validate or invalidate the presence of a vulnerability and improve the quality
of the vulnerability inventory, it is also important to reason over the relationships
between CPEs and CVEs. To this aim, a second graph is introduced, namely
the truncated vulnerability graph Gtx

i that keeps track of the relationships between
platforms, vulnerabilities and the contribution of each platform to validate or discard
a given vulnerability.

This graph is built starting from the platform configuration (OR − AND) tree
associated with a vulnerability vj from NVD. However, differently from a complete
configuration tree, its leaf nodes are not complete CPE strings but truncations of
CPE strings. As a reminder, the truncation of a CPE string p on an attribute x
has been defined as the sub-string p′ composed of the sequence of contiguous CPE
attributes starting from part, up to and including x.22

21This problem seems to be absent in the vulnerability tree Ti of Section 4.5, since experimentally
it has been observed that platforms within a single vulnerability retain semantic and chronological
affinity, i.e. no re-branding of a platform, nor other semantically relevant conflicts. Despite this,
the proposed enforcement can be still carried out also on Ti to ensure semantical congruity.

22As an example, given a:apache:http_server:2.0.0, truncating this string on vendor yields
a:apache.
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More formally

Definition 2 (Truncated Vulnerability Graph Gtx
i for a host hi)

Let hi be a host of the monitored environment. The truncated vulnerability graph
for host hi is the graph Gtx

i = (V tx
i , Etx

i ) where

The set of nodes V tx
i is partitioned into three sub-sets:

• Advisory nodes Vadv including a node for every advisory id listed in the raw
vulnerability inventory VIraw, pertinent to host hi.

• Vulnerability nodes VCV E including a node for every CVE listed in the raw
vulnerability inventory VIraw, present in host hi.

• Platform nodes V tx
CP E including a node for every CPE retrieved starting from

a CVE in the raw vulnerability inventory VIraw, truncated at its attribute x,
pertinent to host hi.

The set of edges Etx
i is partitioned into two sub-sets:

• E
(CV E,CP Etx)
i is the set of edges linking a vulnerability with its associated

CPEs (or truncations of thereof).

• Eadv,CV E
i linking an advisory to all its associated vulnerabilities, within the

context of host hi.

An example of a truncated vulnerability graph for a host hi is shown in Fig-
ure 4.10.

Advisory 2

CVE-2015-2808 CVE ...

a:redhat:satellite

V V

o:canonical:ubuntu_linux:12.04

o:canonical:ubuntu_linux:14.04

o:redhat:enterprise_linux:5.0 a:redhat:satellite:5.6

o:canonical:ubuntu_linux o:redhat:enterprise_linux

Platform Configuration

Original CPE

Advisory ...Advisory 1

Figure 4.10. Truncated graph Gtx
i with x = product for host hi.

Thus, the truncated vulnerability graph for a host hi retains the OR − AND
structure of relevant configuration trees, but is populated by leaf nodes that only
hold a subset of the attributes of the original CPE strings, depending on their
“truncation level” x. As a reminder, truncated CPE strings have also been used as
identifiers for nodes in HPG, and therefore, given a host hi and a truncation level x,
leaf nodes in Gtx

i correspond to the nodes found in the xth “level” of HPGi.23

These new structures allow for a new platform structure-aware algorithm that
operates on HPG in order to produce new, accurate vulnerability and device in-
ventories VI+ and DI+, starting from the “raw” inventories VIraw and DIraw to

23Levels of HPGi spawn from a BFS exploration starting from the host node in HPGi.
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be proposed. In order to guide the exploration of HPG performed by this new
algorithm, several complementary new algorithms must also be designed to function
as heuristics.

An algorithm for the host-platform graph HPGi

This section will describe the new proposed algorithm that is able to make use of the
host-platform graph (HPGi)’s structural properties in order to enhance the quality
of automatically generated inventories.

Intuitively, given a host hi, the new algorithm should perform an exploration of
HPGi, starting from its root (i.e. V host), and progressively descend through its nodes.
At each step of the exploration the currently explored node should be submitted to
a human agent for validation. Since nodes in HPGi are identified by truncations of
CPE strings (i.e. sets of contiguous attributes), this exploration allows for platform
strings expressed in CPE format to be validated or discarded progressively, one
attribute at a time. As a consequence, this also allows the algorithm to discard
entire sub-trees (thus multiple CPEs that share the same parent attributes) in the
event that an intermediate node were to be discarded. The order of the exploration
that determines which nodes are submitted to the human agent necessitates its own
complementary algorithms. These algorithms which will be detailed later in the
section, must be able to produce a cost function that is able to rank edges in HPGi

according to various proposed metrics and desiderata.

Algorithm 6: HPG exploration
Input: A raw Device Inventory DIraw

Input: A raw Vulnerability Inventory VIraw

Output: A Device Inventory DI+

Output: A Vulnerability Inventory VI+

1 VI+ ← ∅;
2 DI+ ← ∅;
3 host_list← get_host_list(VIraw);
4 foreach hi ∈ host_list do
5 HPGi ← build_hpg(DIraw);
6 foreach x ∈ [part, vendor, product, version] do
7 Gt

i [x]← build_trunc_graph(VIraw);
8 end
9 CV E_to_validate← get_cve(VIraw, hi);

10 while CV E_to_validate ̸= ∅ do
11 HPGi ← score_hpg(Gtx

i []);
12 n← select_node(HPGi);
13 result← validate_node(n);
14 if result = valid then
15 DI+ ← DI+ ∪ n;
16 end
17 else if result = discard then
18 HPGi ← remove_subtree(n);
19 end
20 CV E_to_validate,VI+,Gt

i []← check_CV E_conditions(DI+,VIraw, hi);
21 HPGi ← prune_useless(CV E_to_validate);
22 end

23 end
24 return VI+,DI+

Algorithm 6 presents the pseudo-code for a solution which uses HPG in order to
produce the improved inventories VI+ and DI+. For each host hi, its host-platform
graph HPGi is computed as well as its associated truncated vulnerability graphs, one
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for each “level” of HPGi. Then, until all CVEs of hi are either validated or discarded,
the algorithm assigns scores to the edges of HPGi using a cost function based on the
truncated vulnerability graphs, and performs an exploration of HPGi. Each time a
node which represents the value of a CPE attribute is selected by the exploration, it
is selected to be validated or discarded from hi. If the node is validated, it is included
in DI+ and the exploration continues. If the node is discarded, its whole sub-tree is
discarded (line 17) and removed from HPGi. On each cycle, CVEs’s configuration
trees are checked to determine if a CVE has been validated (and included in VI+)
or discarded. Furthermore, nodes that aren’t useful anymore for the validation of
the remaining CVEs are pruned from HPGi (lines 20-21).

Guiding the exploration of the host-platform graph HPGi

The exploration of HPG is guided by costs on nodes of HPG assigned by cost
functions that reason on truncated vulnerability graphs Gtx

i (line 11). In particular,
four different cost functions are proposed:

• R - Random in which the edges of HPG are assigned a random cost.

• P - Platform-based which uses the OR − AND structure of Gtx
i to assign a

cost to the edges of HPG.

• V - Vulnerability-based which uses the severity of the vulnerabilities of Gtx
i

to assign a cost to the edges of HPG.

• VP - Vulnerability-Platform-based which uses the severity of the vulnera-
bilities of Gtx

i to assign a cost to the edges of HPG, as well as the OR − AND
structure of Gtx

i to discriminate between forks of equal cost.

Platform-based cost function (P)
The platform-based cost function leverages the structure of each truncated vulner-
ability graph to compute the “potential of each CPE attribute to resolve one or
multiple CVEs in hi”. This is achieved by leveraging the structure of Gtx

i analyzing
each attribute’s number and type of occurrences, as well as analyzing each attribute’s
recurrence in the advisories. The rationale is that if a CPE attribute is linked to
many CVEs under OR conditions and it is present in the considered host hi, it
will contribute to the validation of all of them with a single action, while if it is
involved in AND conditions and it is not present in the considered host hi, then it
will discard entire sub-trees from HPGi, possibly also discarding multiple CPEs from
hi. In addition, if a CPE attribute (i.e. a part, a vendor, a product or a version) is
referenced by multiple advisories, the probability that it is really present increases.

These two analysis serve as the basis for the platform-based cost function P,
able to compute the costs of traversing the edges E(x − 1, x) of HPGi, using Gtx

i ,
for each “level” x of HPGi. This cost function can be formally defined as:

CFP (n) = 1 − (αn × TSn + (1 − αn) × FSn)

where

• TSn represents the potential of a CPE attribute n to validate a CVE, assuming
that n is in hi (positive answer).

• FSn represents the potential of a CPE attribute n to validate a CVE, assuming
that n is not in hi (negative answer).
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• αn represents the probability of CPE attribute n being in host hi given the
collected advisories.

TSn and FSn are computed according to the OR−AND structure of Gtx
i associated

to host hi. In particular, given a list of OR − AND configurations within Gtx
i , one for

each vulnerability v of host hi, we define as

TSn = maxj

( 1
|ANDj |

)
× 1

|OR|

FSn =
( ∑

j

|ANDj |
)

× 1
maxj(|ANDj |) × 1

|OR|

where |ANDj | is the number of CPE attributes related by the j-th AND operator
in Gtx

i and |OR| is the number of alternative configurations in Gtx
i .

α is used to predict the expected answer from the validator, and is based on the
number of advisories that point to the given CPE attribute. Its rationale being that
if multiple probe-based advisories report vulnerabilities that insist on the same CPE
attribute, that attribute is likely to be present in host hi. More formally,

αn = degadv(n)
Vn

where degadv(n) is the number of edges in Gtx
i ending in n and |Vn| is the overall

number of CPE attributes in Gtx
i .

Vulnerability-based cost function (V)
Given an attribute n, node of HPGi, the vulnerability-based cost function assigns to
each incoming edge E(n−1, n) in HPGi the maxv(1−severity) of every vulnerability
v that is linked to n in Gtx

i . In the event of multiple edges having the same cost
during the exploration of HPGi, a random selection is performed.

Vulnerability-Platform-based cost function (VP)
Given an attribute n, node of HPGi, the vulnerability-platform-based cost function
assigns to each incoming edge E(n − 1, n) in HPGi the maxv(1 − severity) of every
vulnerability v that is linked to n in Gtx

i . In the event of multiple edges having the
same cost during the exploration of HPGi, the cost function computes the CFP of
these edges and uses this secondary cost value as a discriminant.

Random-based cost function (R)
This cost function is trivial, as it assigns a random [0 − 1] cost to every edge in
HPGi without any reasoning on semantics. However it is interesting to be kept as
a baseline for the evaluation which will be carried out in Section 5.5 of the next
chapter.

Thus, through the introduction of Algorithm 6 which operates on the host-
platform graph HPGi, it is possible to utilize the full extent of the semantic relation-
ships that tie together the attributes of a CPE string, as per NIST IR-7696 [78], in
order to attack the complexity in the process of improving the quality of automatically
generated inventories.



4.7 Strategies for Aggregation 92

4.7 Strategies for Aggregation
The following section will describe a solution aimed at trading the quality of

the Analysis sub-process, part of the vulnerability assessment process, in favour
of increased scalability. The proposed methodology aims to further improve the
scalability of the overall self-protecting system by reducing the size of the input
processed by attack graph-based analysis techniques. More specifically, by aggre-
gating the vulnerabilities in the inventory VI over analysis-aware semantic criteria,
it is possible to produce an aggregated vulnerability inventory VIag. Using the
aggregated vulnerability inventory VIag as an input to the risk analysis affects
the generation of the attack graph and subsequent risk estimation, resulting in a
trade-off between accuracy and scalability of the risk analysis. Furthermore, the
proposed methodology could be implemented in the Vulnerability Aggregation sub-
component of the computational pipeline proposed in Section 4.2 in order to realize
computational flows CF2 and CF3.

Attack Graph-based methodologies allow an accurate estimation of risk in ICT
networks even when considering multi-step attacks and complex network architec-
tures. Attack graph-based systems for risk estimation, however, experience poor
scalability which derives from the exponential number of attack paths that need to
be considered during a risk analysis, especially when employed in a self-protecting
system. This is due to the fact that an attack graph must model all the possible
sequences of attack (i.e. paths) that an attacker may carry out once inside an ICT
environment. And while theoretically, every sequence of attack (i.e. sequence of
vulnerabilities used during an attack) is required in order to obtain the best accuracy
during the risk estimation, usually only a sub-set of attributes of each vulnerability
is actually considered in order to perform the risk estimation, depending on the
desired analysis. This leads to the claim that multiple vulnerabilities in a host hi

may be aggregated into classes of “equivalence”, according to their dependencies and
the finite possible values of their risk metrics [44]. This aggregation would reduce
the size of the vulnerability inventory, and in-turn reduce the computational effort
needed during attack graph-based analysis.

To further elaborate, the core idea behind the proposed methodology is to
aggregate a set of vulnerabilities with common features (e.g. that affect the same
host and have the same set of pre and post-conditions) into a meta-vulnerability
characterized by such common features. Ideally, it would be optimal to maximize
the number of vulnerabilities aggregated into a meta-vulnerability (to maximize the
scalability), while minimizing the potential accuracy loss.

It is important to note that different aggregation strategies exist depending
on the desired set of attributes to be considered as keys for the purposes of the
aggregation. The selection of the desired set of attributes should depend on the
desired analysis as well as the desired amount of trade-off between a faster but less
accurate analysis and an accurate but slower analysis. During the course of this
section, three aggregation strategies that take into account different aspects of the
attack graph-based risk model will be considered, namely:

• VA (Vulnerability-based Aggregation): For each host hi, the strategy aggre-
gates the vulnerabilities that have the same values for all their attributes. In
different words, two vulnerabilities having the same attribute values are aggre-
gated into a meta-vulnerability which inherits the same attribute values. Oth-
erwise, no aggregation is performed. As a consequence, each meta-vulnerability
is a representation of the unique combinations of vulnerability attribute values
of each host.
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• RA (Risk-based Aggregation): For each host hi, the strategy aggregates the
vulnerabilities that have the same values of the attributes used in a generic risk
evaluation. The resulting meta-vulnerability inherits the same values for the
attributes used during a generic risk assessment and computes the maximum
value between aggregated vulnerabilities for all the other attributes.

• HA (Host-based Aggregation): For each host hi, the strategy aggregates
all the vulnerabilities independently from their attributes. The resulting
meta-vulnerability computes the maximum value of the attributes among
the aggregated vulnerabilities. As a consequence, each host hi has a single
meta-vulnerability.

These three aggregation strategies represent the two extremities of the spectrum
(HA granting the fastest possible analysis at the cost of accuracy and VA being the
most accurate aggregation strategy at the cost of scalability), as well as a middle
ground that is centered around an exemplary set of metrics used during a generic
instance of risk estimation.

Since the aggregation strategies may rely only on sub-sets of each aggregated
vulnerability’s attributes, it is possible that a single meta-vulnerability may aggregate
vulnerabilities with different (qualitative) values for attributes and thus different
severity (numerical) scores and sub-scores. Since the attributes of a vulnerability
and the derived scores are necessary for subsequent analysis processes, it is critical to
handle the possibility of aggregating different vulnerabilities with different values for
their attributes. In order to address this critical issue, the calculation of a synthetic
set of attributes is proposed, for each meta-vulnerability. This calculation must
follow the “worst-case” analysis criteria. For this reason, each and every attribute
of each and every vulnerability must be compared in order to synthesize a new
set of attributes, composed of all the “worst-case” values of each attribute of each
vulnerability.24 While the “worst-case” metric calculation process for each meta-
vulnerability addresses the needs of the subsequent analysis processes, synthesizing
new values for the attributes of a meta-vulnerability from the attributes of each and
every aggregated vulnerability may harm the accuracy of the subsequent analysis.
This is due to the fact that the new values for the attributes, synthesized by applying
a “worst-case” criteria on the attributes of each and every aggregated vulnerability,
may not appear in any vulnerability aggregated by the meta-vulnerability. It is
important to be aware of this inaccuracy, which is not present in more stringent, less
performing aggregation strategies (VA), but becomes evident in more performing,
less stringent aggregation strategies (RA, HA). This creates a trade-off between
the accuracy or the risk estimation and the scalability of the attack graph-based
analysis, which leads to the necessity to make use of the most fitting aggregation
strategy given the context.

Applying a “worst-case” criterion to the attributes of a meta-vulnerability (i.e.
choosing the maximum value for each attribute across the aggregated vulnerabilities)
leads to the estimation of higher risk values. The consequence of this approach is
that meta-vulnerabilities tend to provide an overestimation of the risk, thus leading
to a conservative risk-analysis which coincides with an upper bound in the risk
estimation. This overestimation is proportional to the accuracy of each aggregation

24Using CVSS as an example for vulnerability attributes, given CVSS v3.1 vector strings
AV:P/AC:H/PR:H/UI:R/S:U/C:H/I:H/A:H and AV:N/AC:L/PR:N/UI:N/S:C/C:N/I:N/A:N, the
result of the “worst-case” synthesis is AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H. As it will be
explained later, note that the synthesized CVSS vector string may not be equal to any of the original
CVSS strings, i.e. it can happen that no original vulnerability may have the synthesized CVSS
string.
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strategy, as stricter aggregation strategies such as VA and RA result in less risk
overestimation and a more accurate analysis, at the cost of generating a larger Attack
Graph. In contrast, the HA strategy provides the highest possible overestimation of
risk, and therefore the lowest possible accuracy. The benefit of the HA strategy is
that the resulting Attack Graph will have the smallest possible size before loosing
critical pieces of information (if even one meta-vulnerability is removed from the
result of HA, a host hi will be completely severed from other hosts in the resulting
Attack Graph), and as such will severely limit the exponential explosion in size of
traditional Attack Graphs.

As an example, a host hi will be considered, with the vulnerabilities v1, v2, and
v3 reported in Table 4.1. Each vulnerability vx has metrics ma, mb, and mc, where
only ma and mb are used for risk estimation.

Table 4.1. Example of aggregation strategies for the vulnerabilities of a host hi.

Risk Metrics
ma mb mc

v1 1.0 1.0 0.5
v2 1.0 0.5 1.0
v3 1.0 0.5 0.5

The three considered aggregation strategies generate the following meta-vulnerabilities:

• VA: performs no aggregation, since the metric values of the three vulner-
abilities are mutually different. Therefore this strategy will produce three
meta-vulnerabilities which will have the same values for metrics as v1, v2 and
v3, respectively.

• RA: produces two meta-vulnerabilities: u∗
RA,1 and u∗

RA,2. u∗
RA,1 aggregates

vulnerabilities v2 and v3 with metrics {ma : 1.0, mb : 0.5, mc : 1.0}, while
vulnerability v1 is not aggregated and included in u∗

RA,2. This is because v1
has a different value for the risk metric mb, which is necessary for the risk
estimation.

• HA: aggregates all the vulnerabilities of host hi into a single meta-vulnerability
u∗

HA,1 with metrics {ma : 1.0, mb : 1.0, mc : 1.0}.

Thus it is possible to implement several aggregation strategies that substitute
vulnerabilities in VI with meta-vulnerabilities that aggregate multiple vulnerabilities.
The accuracy of the aggregation performed by the meta-vulnerabilities depends on
the aggregation strategy used and the semantic-aware criteria that have been used to
perform the aggregation. The result is an aggregated vulnerability inventory VIag

which is able to trade an Attack Graph-based risk analysis’ accuracy in favour of
increased scalability. The magnitude of the trade-off between accuracy and scalability
can be tuned according to the desired analysis, by deploying different aggregation
strategies.

4.8 Conclusion
This chapter introduced the problem of enhancing the quality of automatically

generated inventories used during the cyber risk management process. In particular,
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vulnerability and network scanners monitor the network environment in order to
produce a Vulnerability Inventory VI which collects and lists all the vulnerabilities
residing in each host in the network, and a Device Inventory DI which lists all the
platform configurations of hosts in the network. Starting from these two inventories,
the aim of this chapter has been twofold: (i) the introduction and formalization of the
problem of the quality of the data collected in the inventories by vulnerability and
network scanners, and (ii) the proposal of a computational pipeline and architecture
which is able to provide solutions that aim to mitigate the aforementioned problem.

It has been found that despite the problem of the quality of the data collected
in the inventories by vulnerability and network scanners exists, it is possible to: (i)
leverage the knowledge of a human agent in order to increase the accuracy of such
inventories by filtering out false positives, and (ii) trade the accuracy of the analysis
in favour of an increased scalability of the process, if so desired.

In particular, probe-based network and vulnerability scanners, although unin-
trusive, may falsely detect platform configurations linked to active vulnerabilities,
therefore potentially introducing false positives in the inventory. The chapter pro-
poses a filtering process capable of reducing the number of false positives in the
inventories that involves submitting queries to a human agent in order to validate
or invalidate the presence of platforms on a host. Platforms on a host which have
been validated or invalidated can then be used in conjunction with the applicability
conditions of each vulnerability in order to validate or invalidate each vulnerability.
In addition to this process, this chapter also proposes an aggregation methodology
able to perform a trade-off between the accuracy of the risk analysis and its scalabil-
ity in Attack Graph-based methodologies. This methodology is able to aggregate
vulnerabilities on each host, using analysis-aware strategies which are configurable
by the user in order to obtain the desired level of trade-off between accuracy and
scalability of the Attack Graph-based risk analysis.

The two proposed processes have been integrated into a modular architecture to
be implemented during the Data Collection Aggregation and Integration process of
a state-of-the-art autonomic system built upon the MAPE-K architecture. This new
modular architecture is able to support four computational flows:

• CF0: Performing no pre-processing on the vulnerability inventory VIraw

• CF1: Filtering vulnerabilities from the vulnerability inventory VIraw in order
to produce a new vulnerability inventory VI+

• CF2: Aggregating vulnerabilities from the vulnerability inventory VIraw into
meta-vulnerabilities in order to produce a new vulnerability inventory VIag

• CF3: Filtering vulnerabilities from the vulnerability inventory VIraw, then
aggregating the resulting filtered vulnerabilities into meta-vulnerabilities in
order to produce a new vulnerability inventory VI+

ag

It is important to note that the proposed processes and architecture derive from
an in-depth study of current state of the art vulnerability and network scanning
techniques, in conjunction with some of the repositories described in Chapter 3.

The results of the chapter represent a first step toward the design and implemen-
tation of a solution capable of performing fully automated cyber risk assessment by
refining and resolving problems that affect existing paradigms and methodologies
adopted by state of the art self-protecting systems.

Chapter 5 will introduce a case study and will analyze the results of a compre-
hensive experimental evaluation of each solution described in this chapter.
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Chapter 5

Analyzing the
Accuracy-Scalability Trade-off in
Attack Graph-Based
Self-Protecting Systems - A
Case Study

Building and maintaining inventories is a fundamental component of many
security processes [24]. Among all inventories used to feed security processes,
Chapter 4 focused on the device inventory and the vulnerability inventory. These
two inventories are particularly relevant data sources that derive from a monitored
environment and are used not only to feed risk management [38, 62] but also other
critical processes such as Incident Management [16] and their supporting systems [85].
Since these sources constitute the primary data source for the analysis of complex
situations, some of these potentially involving multiple correlation steps, their quality,
in terms of completeness and accuracy, must be ensured to avoid that a propagation
of false positives and false negatives through the analysis steps cascades into an
extreme overestimation (or underestimation) of the real security situation.

This chapter will perform a thorough evaluation of the effects of the methodologies
and algorithms described in the previous chapter (Chapter 4) on the device and
vulnerability inventories, as well as on the subsequent analysis phase of the cyber
risk management process. In particular, this chapter will analyze how the filtering
and aggregation sub-components of the proposed computational pipeline affects
subsequent risk analysis based on the attack graph model [38, 93], a graph-based
model of the potential attack steps in a network.

It is important to note that while risk analysis and more broadly cyber risk
management processes strive towards the best possible accuracy, this contrasts with
the performance of the autonomous system. Indeed, attack graphs are very powerful
and potentially accurate models, but they suffer from scalability issues forcing to opt
for the computation of an approximated attack graph [68, 70, 43]. This introduces a
certain degree of uncertainty in the risk estimation, where accuracy is traded off for
scalability. The situation gets even worse if we consider that state-of-the-art attack
graph-based self-protection systems feed the control loop with input data that is
not completely accurate due to false positives affecting the monitoring probes. This
results in a cumulative effect of accuracy loss, affecting first the data collection phase
and then the attack graph and risk computation phase.
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Thus, the main focus of this chapter will be the evaluation of the algorithms
and methodologies developed to: (i) attack the problem of improving the quality (in
terms of accuracy) of the automatically generated inventories without increasing the
degree of intrusiveness in the monitored system, and (ii) achieve a trade-off between
accuracy and scalability in attack graph-based analysis methodologies, through the
use of semantic-aware aggregation.

To achieve a thorough evaluation, a methodology to produce several statistically
relevant testing environments will be proposed, which will allow to achieve a compara-
ble, statistically relevant and congruous result across all the proposed methodologies
and algorithms. Having a real testing environment will also be necessary not only in
order to evaluate the single components, but also to carry out the evaluation of the
whole proposed computational pipeline.

This chapter provides the following contributions:

• A methodology to produce a statistically relevant testing environment on-
demand using virtualization.

• A comprehensive evaluation of the methodologies and techniques proposed in
Chapter 4 using real data coming from a case study of a network composed of
eight real hosts, in particular the following methodologies will be evaluated:

– An unoptimized algorithm for platform filtering.
– An optimization for platform filtering targeted at platform versions.
– An advancement for platform filtering that leverages the dependency

between CPE strings.
– An alternative, optimized algorithm for platform filtering that is aware of

the structure of CPE strings.

• A comprehensive evaluation of the computational pipeline proposed in Sec-
tion 4.2 aimed at the quality enhancement of automatically generated invento-
ries in state-of-the-art self-protecting systems. In particular the evaluation of
the pipeline will comprehend:

– A thorough evaluation of how the filtering component affects the structure
of the resulting attack graph.

– The impact of the accuracy-scalability trade-off operated by several
analysis-aware aggregation strategies on the attack graph’s structure,
generation and analysis.

5.1 Environment
This section will describe the environment of the proposed case study, as well as

provide a methodology to construct network environments which are able to achieve
statistically relevant case studies in order to evaluate cyber risk analysis processes.
In particular, the application of the proposed methodology has been necessary in
order to create a testing environment to perform a thorough evaluation of the compu-
tational pipeline and of the methodologies introduced in Chapter 4. Such proposed
methodology is able to achieve statistical relevance while guaranteeing the repro-
ducibility property of the results. Moreover, the proposed methodology exposes and
allows to operate by design on detailed information about the platform composition
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of each host of the constructed network environment. The proposed methodology also
grants the possibility to further probe the network environment using commercially
available vulnerability and network scanners through virtualization.

While solutions such as cyber ranges that are able to provide reproducibility as
well as access to in depth information about each host and network configuration
exist, these solutions are usually proprietary, and thus require complex (and costly)
set-up processes. This is due to the fact that cyber ranges are complex systems
which allow for full scale simulation and operation of a mock network environment.
As a result of integrating technologies and solutions that are able to accommodate an
extensive array of tasks, from training cybersecurity specialists to prototyping entire
network architectures before they are implemented in a real scenario, cyber ranges
prove themselves to be too complex and costly to be feasible for applications that
may require only a fraction of their potential, such as the application proposed in
this chapter. This motivates the interest in developing a methodology that is able to
obtain a “lightweight” reproducible and statistically relevant network environment,
able to support a sub-set of the operations typically carried out on a real environment
(e.g. threat hunting, risk estimation).

Thus, the proposed methodology has been designed to construct, instantiate and
collect snapshots of a network environment in order to perform subsequent tasks
such as risk estimation. More in particular, the proposed methodology has been
designed to deterministically produce a synthetic testing environment from a set of
known platforms, while maintaining variety and plausibility of host configurations,
thus guaranteeing reproducibility. In order for the synthetic network environment to
be queried by tools and methodologies used regularly by security professionals in real
scenarios, virtualization has been used to instantiate each synthetically generated
host configuration into a virtual appliance. In this particular case, in order to perform
the evaluation of the methodologies introduced in Chapter 4, virtualization of the
generated network environment has allowed for commercially available vulnerability
and network scanners such as Tenable Nessus, Greenbone OpenVas and Nmap, to
be used against each instance of host configuration, thus mimicking to a degree the
result of a vulnerability and network scan in a physical testing environment.

The proposed methodology is shown in Figure 5.1, and can be decomposed into
a stack of four sequential layers.

• The first layer of the stack (store) is composed of a collection of procedures
necessary to automatically install operating systems and applications. Exam-
ples of these procedures include shell scripts for applications to be installed on
linux based operating systems.

• The second layer of the stack (assembler) is tasked with assembling a
single prototype of a host. Each prototype is defined by a type as well as a
plausible configuration of an operating system and various applications, starting
from a desiderata. More particularly, this layer is tasked with deterministically
selecting the procedures to install one operating system and multiple compatible
applications from the “store” layer. Once the procedures have been selected,
this layer will compile them into one single procedure, which will constitute the
prototype of a host. Both plausibility and partly variety are handled at this
layer: Plausibility is enforced by matching the desired type of the prototype
host with the compatible types of operating systems and applications collected
by the “store” layer, as well as modulating the quantity of applications to
be included in a single configuration of a prototype of a host. Variety is
partly enforced by deterministically selecting only a sub-set of “plausible”
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applications to be included in each prototype’s configuration. This allows
different prototypes to be potentially assembled with different applications.

• The third layer (network composer) is tasked with selecting the high level
composition of the prototypes that will compose the network environment.
More particularly, this layer handles the variety of the network environment
by deterministically selecting the number of hosts to be generated, the amount
and distribution of the prototypes of hosts to be included in the network
environment, and lastly the “desiderata” of each prototype.1

• The fourth layer (orchestrator) is tasked with handling the instantiation
of the network environment into a virtualization engine in order to be accessed
by vulnerability and network scanners.

It is important to note that while it would be technically possible to simulate
complex network architectures and configurations (e.g. firewalls, VPNs) using
common virtualization engines, the current iteration of the proposed methodology
constructs a simple mesh network, assuming a worst-case scenario, i.e. it is assumed
that the attacker (exemplified by vulnerability and network scanners) has full
knowledge and reachability over the network. This is operatively implemented by
having all the virtualized network environment reside on the same subnet, and by
ensuring routing between any two hosts of the network environment.2 Support for
the generation of complex network topologies and architectures is a topic for future
work.

4 - Orchestrator

3 - Network Composer

2 - Assembler

1 - Store

Prototype A Prototype B

Instance Instance Instance

Type Z Type K2 x 1 x

P1 P2 P3 P4 P5 Pk

Prototype A Prototype B

Figure 5.1. Architecture of the stack of the proposed methodology.

5.1.1 Generating a Case Study
In order to generate a case study to perform the evaluation of the methodologies

introduced in Chapter 4, an implementation of this methodology has been realized
using python. Docker has been chosen as the virtualization engine to support the

1Note that if the desired amount of applications is equal or greater than the amount of available
applications for that host type, the second layer will not affect the variety of the network environment,
since the selected subset will coincide with the full set of compatible applications.

2Custom routing rules are injected into each host by the network composer. All commercially
available virtualization engines support the emulation of local networks and routing to various
degrees of accuracy.
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“orchestrator” layer. This implementation currently includes a total of 24 applications
and their dependencies, four different types of hosts, various versions of two different
Linux operating systems,3 two different vulnerability scanners4 and one network
scanner.5 The four different categorizations (types) of hosts and applications that
have been implemented for this case study are the following:

• Office Hosts
This category of hosts has been configured to include platforms typically
present in an office environment. As such, these applications are mostly local
and not exposed to the network. An example of such platforms includes web
browsers, mail clients and word processors.

• Server Hosts
This category of hosts has been configured to include platforms which are
typically present in server environments. These services are prevalently exposed
to the network (through port binding). Examples of such platforms include
database management systems, web servers and other network based services
(ftp, ssh, samba).

• Development Hosts
This category of hosts has been configured to include tools, frameworks and
libraries usually found in development environments. Such applications are
usually part of very complex stacks, which support compilation and interpre-
tation of code. Examples of such platforms include compilers, frameworks and
code interpreters.

• Generic Hosts
The last category of hosts has been configured to include platforms regardless
of their scope. This category contains the broadest spectrum of platforms,
encompassing local and network services, as well as frameworks and stacks.

In order to generate a sound network environment to use as a case study, two
instances of each host category have been created, one for each operating system
included in the realized implementation, Ubuntu Linux and Debian Linux. The
resulting environment is summarized in Table 5.1.

Table 5.1. Host OS configuration

Host Type OS OS Version
H0 Office Ubuntu Linux 22.10 Kinetic
H1 Office Debian Linux 10 Buster
H2 Server Ubuntu Linux 18.04.6 LTS Bionic
H3 Server Debian Linux 10 Buster
H4 Development Ubuntu Linux 15.10 Wily
H5 Development Debian Linux 11 Bullseye
H6 Generic Ubuntu Linux 15.04 Vivid
H7 Generic Debian Linux 11 Bullseye

The network vulnerability scanners that have been included in this case study
are Tenable’s Nessus and Greenbone OpenVas. By merging the output of the two
vulnerability scanners, a third synthetic vulnerability scanner has also been obtained

3Two versions of debian linux, 17 versions of ubuntu linux.
4Greenbone Openvas and Tenable Nessus.
5Nmap.
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and included in the case study. During the experimental evaluation, it has been
observed that this third synthetic vulnerability scanner has the capability to detect
more vulnerabilities than each real scanner in isolation. This is due to the fact that
the vulnerability scanners Tenable’s Nessus and Greenbone OpenVas operate using
two different proprietary advisory and vulnerability feeds. This in turn leads to the
observation that the vulnerability scanners cover different sets of CVE vulnerabilities.
In particular, it has been observed that Tenable’s Nessus covers 75486 CVE (33.64%
of NVD) over 162428 advisories, while Greenbone OpenVas covers 16311 CVE (7.27%
of NVD) over 3433 advisories. Moreover, both Tenable’s Nessus and Greenbone
Openvas cover the same 16301 CVE. This means that Tenable’s Nessus covers 59185
“exclusive”6 CVE, while Greenbone OpenVas covers 10 “exclusive” CVE.

The difference in CVE coverage, as well as the almost-inclusion of the CVE
of one vulnerability scanner by the other can be explained by the fact that the
two solutions use different advisory and vulnerability feeds. Tenable’s Nessus uses
proprietary advisories, aimed at businesses and security professionals. Greenbone
offers two advisory feeds: a paid solution aimed towards large businesses and a
community solution aimed at security professionals. Due to the fact that Openvas
(i.e. the scanner used in this test case) only supports community feeds, the amount
of advisories and their coverage is affected.

The preliminary results of a complete scan of the generated environment from
each network vulnerability scanner can be summarized by Table 5.2.

Table 5.2. Vulnerability Scanner Results

Host Scanner #Advisory #CVE

H0
nessus 38 7
openvas 2 2
merged 40 7

H1
nessus 48 14
openvas 3 4
merged 51 16

H2
nessus 83 8
openvas 5 9
merged 88 15

H3
nessus 82 3
openvas 5 9
merged 87 10

H4
nessus 46 2
openvas 50 218
merged 96 218

H5
nessus 44 2
openvas 2 2
merged 46 3

H6
nessus 122 111
openvas 59 237
merged 181 341

H7
nessus 102 13
openvas 4 7
merged 106 19

It is important to notice that, even if Tenable’s Nessus’s advisories cover almost
every CVE vulnerability covered by Greenbone’s Openvas’s advisories, the differences
in their probing mechanisms may lead to different detections (as evident from
Table 5.2). These detections have been manually analyzed, and no prevalence of
false positives have been found in one or the other vulnerability scanner, i.e. the two

6“Exclusive” intended as not covered by any other considered vulnerability scanner.



5.1 Environment 102

vulnerability scanners have the same chance of being right or wrong, no vulnerability
scanner is expected to be more “faulty” (less accurate) than the other. Therefore,
in order to achieve the best possible completeness of the automatically generated
vulnerability inventory VI it is necessary to consider the “merged” vulnerability
scanner as the baseline for further analysis. As a reminder, the completeness of an
inventory I has been defined during the problem setting in Section 4.1 of Chapter 4
as

C(I) = 1 − #false negatives

#real entity in the inventory
;

Therefore the result from both vulnerability scanners is needed to ensure the least
amount possible of false negatives, or conversely to ensure that all the vulnerabilities
in each host hi actually appear into the vulnerability inventory VI. It must be
noted that there is always the probability that even merging the output of multiple
vulnerability scanners may not be enough to correctly identify every vulnerability
residing within a host hi. This can be attributed to different factors, examples
of which are the probing-mechanism itself (i.e. if it can’t be probed, it can’t be
detected) as well as the existence of zero-day vulnerabilities, i.e. vulnerabilities
which are not widely known and for which proper detection methods have not been
implemented yet.

It is also interesting to note how in this case study hosts using Ubuntu linux as
their operating system have on average more advisories and vulnerabilities (CVE)
than hosts using Debian linux. This is due to the availability of older versions of
the Ubuntu linux operating system in the Docker ecosystem, as opposed to Debian
linux, which only makes available its two most recent versions (Debian 10 and 11).
This is in turn reflected on the package manager’s ability to fetch up-to-date and
vulnerability free applications, thus explaining the bias in the number of advisories
and vulnerabilities found by the network vulnerability scanners between the two
operating systems.

A mitigation for this quirk has been attempted by forcing the linux package
manager to fetch older versions of applications, but during preliminary tests this
mitigation has been discarded, as the advantage gained didn’t seem to justify the
added complexity.7

As a last step before running the evaluation, a “raw” vulnerability inventory
VIraw and the device inventory DIraw has been constructed for each host hi using
the output of the “merged” vulnerability scanner. In particular, the vulnerability in-
ventory VIraw of a given host hi has been constructed by collecting the vulnerabilities
in CVE format referenced by the advisories assigned by the “merged” vulnerability
scanner to host hi. Using a similar logic, the device inventory DIraw of a given
host hi has been constructed by collecting the platforms in CPE format related to
the vulnerabilities collected in the vulnerability inventory VIraw for host hi. This
ensures that the device inventory DIraw covers every platform referenced by any
vulnerability in the vulnerability inventory VIraw, for a given host hi. The ground
truth DItrue has been constructed using tools provided by the Docker virtualization
engine,8 in conjunction with manual inspection. Similarly, The ground truth VItrue

has been constructed by verifying applicability criteria using DItrue as input, as well
as through manual inspection. Due to the difficulty involved in their detection, false
negatives have not been factored in the ground truth VItrue. Thus, the completeness

7Broken dependencies, tar files behind servers that are no longer online, lack of documentation
for older versions of software, all on top of the “usual” headaches.

8See “docker sbom” instruction.
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C(I), with I being every proposed variation of VI and DI is always assumed to
be equal to 1 for the remainder of this case study. Detecting and handling false
negatives in the inventories and analyzing their impact on subsequent cyber risk
management processes is interesting ground for future work.

5.2 Vulnerability Filtering
Section 4.3 proposed a methodology aimed at increasing the quality of the

automatically generated inventories starting from “raw” vulnerability and device
inventories VIraw and DIraw provided by vulnerability and network scanners.

To evaluate the proposed methodology and its prioritization approach, several
other prioritization approaches with different levels of complexity have been im-
plemented and tested using network and vulnerability inventories relating to the
environment of the case study described in Section 5.1.

In particular, the following five strategies have been implemented and analyzed:

• RN - RaNdom
This strategy entails the random sorting of the platforms without any further
enhancement.

• SR - Smart Random
This strategy still uses the random sorting of the platforms. However, it
evaluates if a platform is still needed to validate at least one vulnerability. If
not, the strategy skips the platform.

• VS - Vulnerability Severity
This strategy assumes that vulnerabilities are sorted according to a defined
criteria. The strategy ensures that only platforms of the highest ranking
vulnerabilities are chosen first, in a random order. Once the highest ranking
vulnerabilities have been validated or discarded, the strategy moves on to the
platforms pertaining to the next highest ranking vulnerabilities. By all means
and purposes, this strategy advances on a per-vulnerability basis. As per
the Smart Random strategy, this strategy also evaluates if a platform is still
needed to validate the considered vulnerability. In the proposed case study,
vulnerabilities are sorted in descending order with respect to their CVSS Base
Score.

• PP - Platform Prioritization
This strategy applies the platform sorting using Algorithm 4 described in
Section 4.3. This strategy prioritizes platforms that have the highest potential
to contribute to the validation or invalidation of a vulnerability.

• VP - Vulnerability severity then Platform prioritization
This strategy sorts the vulnerability as described in Vulnerability Severity,
then ranks platforms pertaining to vulnerabilities of the same severity using
the platform prioritization strategy described in Section 4.3, considering only
the CPE topology of the vulnerabilities of equal severity.

It should be noted that none of the strategies are completely deterministic: in
RN and SR the platforms follow a random order (i.e. no sorting is applied), VS
performs a sorting on the vulnerabilities according to their scoring, and then uses a
random order for the platforms pertaining to vulnerabilities with the same scoring,
and PP and VP may choose at random if multiple platforms have the same score.
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For this reasons, 50 instances have been generated for each strategy in order to
compare statistically relevant results.

An important note is that vulnerability repositories such as NVD, usually rep-
resent contiguous product versions as version ranges through the use of metadata
associated to a CPE string. This notation is not part of NIST’s standard for CPE,
and therefore should not be considered at this time. Therefore for the purposes of
this evaluation it has been necessary to expand the instances of platform version
ranges into single versions of platforms. For this case study, 301 CVE vulnerabilities
(82.69% of the total 364 CVEs in the case study) have at least one platform version
range associated. In the case of NVD, NIST provides a public API able to return the
list of discrete versions contained by a version range. In total, 408 platform version
ranges (27.06% of the total 1508 CPEs in the case study) have been unpacked into
5710 platforms for the considered case study.

Note that this is the intended workflow when operating with NIST’s NVD
repository. In the next section an optimization will be discussed to address potential
inefficiencies of this approach.

Table 5.3. Result of the complete validation of all hosts of the case study.

Host Vulnerabilities - CVE Platforms - CPE

H0
Total 7 96
Confirmed 2 (28.6%) 2 (2.1%)
Discarded 5 (71.4%) 94 (97.9%)

H1
Total 16 1013
Confirmed 8 (50.0%) 3 (0.3%)
Discarded 8 (50.0%) 1010 (99.7%)

H2
Total 15 1216
Confirmed 6 (40.0%) 5 (0.4%)
Discarded 9 (60.0%) 1211 (99.6%)

H3
Total 10 1136
Confirmed 1 (10.0%) 1 (0.1%)
Discarded 9 (90.0%) 1135 (99.9%)

H4
Total 218 2108
Confirmed 211 (96.8%) 10 (0.5%)
Discarded 7 (3.2%) 2098 (99.5%)

H5
Total 3 34
Confirmed 1 (33.3%) 1 (2.9%)
Discarded 2 (66.7%) 33 (97.1%)

H6
Total 341 6048
Confirmed 321 (94.1%) 31 (0.5%)
Discarded 20 (5.9%) 6017 (99.5%)

H7
Total 19 1604
Confirmed 5 (26.3%) 3 (0.2%)
Discarded 14 (73.7%) 1601 (99.8%)

Table 5.3 shows the result of the complete validation of every host in the case
study described in Section 5.1. Within the context of this chapter, it is opportune
to define the complete validation of a host hi as the validation (i.e. filtering process)
of both its “raw” vulnerability inventory VIraw as well as its “raw” device inventory
DIraw, derived from the output of the vulnerability scanners. As a reminder, hosts
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H0 and H1 represent Office hosts, H2 and H3 represent Server hosts, H4 and H5
represent Development hosts and H6 and H7 represent Generic hosts.

For host H0 out of a total of 7 detected vulnerabilities, only 2 (28.6%) are
actually confirmed by the proposed methodology, and the remaining 5 (71.4%) are
false positives. Indeed only 2 (2.1%) platforms out of the 96 referenced by the
vulnerabilities of H0 actually reside in the host. The proposed methodology confirms
8 (50.0%) vulnerabilities on host H1, out of a total of 16 detected vulnerabilities, as
the remaining 8 (50.0%) are false positives. Indeed only 3 (0.3%) platforms out of the
1013 referenced by the vulnerabilities of H1 actually reside in the host. For host H2
out of a total of 15 detected vulnerabilities, only 6 (40.0%) are actually confirmed by
the proposed methodology, and the remaining 9 (60.0%) are false positives. Indeed
only 5 (0.4%) platforms out of the 1216 referenced by the vulnerabilities of H2
actually reside in the host. For host H3 out of a total of 10 detected vulnerabilities,
only 1 (10.0%) is actually confirmed by the proposed methodology, and the remaining
9 (90.0%) are false positives. Indeed only 1 (0.1%) platform out of the 1136 referenced
by the vulnerabilities of H3 actually reside in the host. The proposed methodology
confirms 211 (96.8%) vulnerabilities on host H4 out of a total of 218 detected
vulnerabilities, as the remaining 7 (3.2%) are false positives. Surprisingly only 10
(0.5%) platforms out of the 2108 referenced by the vulnerabilities of H4 actually
reside in the host. For host H5 out of a total of 3 detected vulnerabilities, only 1
(33.3%) is actually confirmed by the proposed methodology, and the remaining 2
(66.7%) are false positives. Indeed only 1 (2.9%) platform out of the 34 referenced
by the vulnerabilities of H5 actually reside in the host. For host H6 out of a total of
341 detected vulnerabilities, 321 (94.1%) are actually confirmed by the proposed
methodology, and the remaining 20 (5.9%) are false positives. Indeed only 31 (0.5%)
platforms out of the 6048 referenced by the vulnerabilities of H6 actually reside in
the host. Lastly, the proposed methodology confirms only 5 (26.3%) vulnerabilities
for host H7 out of a total of 19 detected vulnerabilities, as the remaining 14 (73.7%)
are false positives. Indeed only 3 (0.2%) platforms out of the 1604 referenced by the
vulnerabilities of H7 actually reside in the host.

The fist striking observation is that the number of confirmed platforms associated
with the vulnerabilities detected by vulnerability scanners on a given host hi is
very low (≤ 2.9%). This phenomenon has also been observed to have no apparent
correlation with the percentage of false positives (i.e. discarded vulnerabilities)
identified by the proposed methodology. Manual inspection of the vulnerabilities
and their associated platforms has found that many vulnerabilities cover wide
technology stacks, e.g. protocols or system libraries embedded in applications as well
as operating systems, and as such, may cover a wide range of platforms. An example
of this is found in H4, for which several vulnerabilities related to a version of Java
Development Kit (JDK) also affect other 2107 platforms, which refer to platforms
integrating the vulnerable component in their architecture, as well as operating
systems that ship with the vulnerable component as part of their system stack. To
provide another example, manual inspection has found that vulnerabilities detected
on host H3 are associated to 312 different platforms which identify various, mutually
exclusive, operating systems and firmware, as well as 42 different platforms which
identify various hardware components which are incompatible with each other.

The second observation is that there is no apparent correlation between the
precision of a scanner and the considered host. As an example, hosts H0, H2, H5
and H7 hover around the same 60% false positive rate, even tough they belong to
different categories of hosts (thus having different categories of platforms). To give
another example, despite the fact that H1, H3, H4 and H6 have been equipped
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with older versions of platforms and operating systems, their ratio of false positives
swings from one extreme (90.0%) to the other (3.2%).

It is important to remind that all proposed strategies are capable by design of
reaching a complete vulnerability validation state. The difference between each
proposed strategy is in the ordering of the platforms to be validated, thus it becomes
interesting to analyze the number of steps needed for each strategy to converge to
the result shown in Table 5.3.

Table 5.4. Results of the application of the strategies on the case study

Host Metric Strategies
RN SR PP VS VP

H0
Ci1 94.62 67.50 34.68 35.26 34.48
Mean 94.02 63.38 33.68 34.32 33.40
Ci0 93.42 59.26 32.68 33.38 32.32

H1
Ci1 1009.18 614.45 389.60 428.04 434.56
Mean 1008.14 577.16 366.86 401.36 409.96
Ci0 1007.10 539.87 344.12 374.68 385.36

H2
Ci1 1215.87 1122.71 1084.39 1095.75 1086.23
Mean 1215.74 1117.04 1083.28 1093.80 1084.88
Ci0 1215.61 1111.37 1082.17 1091.85 1083.53

H3
Ci1 1135.96 1082.47 1076.32 1081.85 1074.74
Mean 1135.88 1081.30 1075.44 1080.76 1073.94
Ci0 1135.80 1080.13 1074.56 1079.67 1073.14

H4
Ci1 2084.62 1020.15 590.88 782.74 637.39
Mean 2078.58 953.26 543.08 735.36 577.08
Ci0 2072.54 886.37 495.28 687.98 516.77

H5
Ci1 34.54 29.59 28.91 28.57 29.30
Mean 34.32 28.72 27.96 27.62 28.36
Ci0 34.10 27.85 27.01 26.67 27.42

H6
Ci1 6035.24 3063.92 991.11 1653.58 1304.73
Mean 6030.84 2918.10 960.66 1610.24 1262.62
Ci0 6026.44 2772.28 930.21 1566.90 1220.51

H7
Ci1 1603.93 1469.23 1321.78 1335.11 1329.46
Mean 1603.84 1452.56 1320.96 1333.92 1328.06
Ci0 1603.75 1435.89 1320.14 1332.73 1326.66

Table 5.4 shows the mean of the number of steps to validate all the vulnerabilities
(90% Confidence Intervals CIs) in every host of the case study described in Section 5.1,
for each strategy. As a reminder, hosts H0 and H1 represent Office hosts, H2 and
H3 represent Server hosts, H4 and H5 represent Development hosts and H6 and H7
represent Generic hosts.

For host H0, all strategies except RN and SR obtain similar results requiring
about ≈ 34 steps to validate all the vulnerabilities, while RN and SR necessitate ≈ 94
and ≈ 63 steps respectively. In the case of host H1, vulnerability-based strategies
VS and VP require about ≈ 405 steps to terminate, PP requires ≈ 367 steps, RN
requires ≈ 1008 steps, and SR necessitates ≈ 577 steps. Host H2 follows a similar
trend to H0, in which all strategies except RN and SR require about ≈ 1087 steps to
terminate, while RN and SR necessitate ≈ 1216 and ≈ 1117 steps respectively. All
strategies of host H3 with the exception of RN require ≈ 1077 steps to terminate,
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while RN necessitates ≈ 1136 steps. In host H4, platform-driven strategies PP and
VP require ≈ 550 steps to terminate, VS requires ≈ 735 steps, SR requires ≈ 953
steps and RN requires ≈ 2079 steps. For host H5, all strategies except RN require
≈ 28 steps to terminate, while RN necessitates ≈ 34 steps. Host H6 follows a similar
trend to H1, for which vulnerability-based strategies VS and VP require about
≈ 1400 steps to terminate, PP requires ≈ 960 steps, RN requires ≈ 6031 steps, and
SR necessitates ≈ 2918 steps. Lastly, host H7 requires ≈ 1330 steps for all strategies
except RN and SR, which necessitate ≈ 1604 and ≈ 1453 steps respectively.

Notice that the difference in size with respect to the number of steps is propor-
tional with the number of CVE present in each host, e.g. H6 has both the most
detected CVE vulnerabilities and steps required for termination among all other
hosts. Conversely, H5 has the least amount of detected CVE vulnerabilities as well
as the least amount of steps required for termination among all other hosts. This
is due to the fact that platform configurations of different CVEs may not overlap
completely, i.e. each CVE may be enabled by a different set of platforms. This
phenomenon has been experimentally observed to be more present in the case of
CVEs linked by different advisories, as it is usual for an advisory to reference either
(i) a single issue spanning multiple products or (ii) multiple issues regarding a single
or a family of products.

At a first glance, a meaningful difference between random (RN and SR) and
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Figure 5.2. Mean of the CVEs that still have to be validated after each step of the
prioritization strategies. H0 and H1 represent Office hosts, H2 and H3 represent Server
hosts. Dashed lines represent validations carried out by using GNoV e

i as input, thus
truncating the CPE string at the product attribute and ignoring versions.
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Figure 5.2. Mean of the CVEs that still have to be validated after each step of the
prioritization strategies. H4 and H5 represent Development hosts, H6 and H7 represent
Generic hosts. Dashed lines represent validations carried out by using GNoV e

i as input,
thus truncating the CPE string at the product attribute and ignoring versions.

semantic driven strategies (PP, VS and VP) can be immediately noticed for hosts H1,
H4, H6 and H7. Hosts H0, H2, H3 and H5 do not apparently exhibit any difference
between strategies. This is due to (i) H0 and H5 having few vulnerabilities insisting
on few, distinct platforms, (ii) H2 and H3 having vulnerabilities having large OR
configurations of distinct platforms which are incompatible with their respective
hosts, and (iii) the fact that the result shown in the table is the final state of the
application of the proposed strategies, i.e. the average number of steps necessary to
validate or discard all vulnerabilities in VIraw. Since these reasons contribute to
the lack of conclusive evidence over the differences between the different strategies
applied to these hosts, it is interesting to analyze the strategies’ evolution over the
number of steps. Thus, Figure 5.2 has been plotted to visually analyze the average
number of CVE vulnerabilities that still have to be validated after x steps of each
strategy.

The first result that can be noticed by analyzing the figure is that despite the
steps taken to completely validate or discard each vulnerability are comparable for
hosts H0, H2, H3 and H5, as shown in Table 5.7, “random” approaches RN and SR
present the worst evolution with respect to every other considered strategy. This
is easily noticed in the figure and confirmed in Table 5.5, for which the number
of vulnerabilities still left to validate does not decrease significantly (below 50%)
until 76.7% and 68.3% of the total elapsed steps, for RN and SR respectively.9 This

986.0% and 76.6% for ≥ 66%, 95.2% and 87.5% for ≥ 90%
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is expected, since these approaches do not consider any semantics while deciding
the order of the platforms to submit to the human agent, and therefore proposed
platforms may not be significantly impactful with respect to vulnerabilities in the
inventory. Also, as expected, strategy RN performs consistently worse than strategy
SR since RN does not remove “non-useful” platforms from the ordering.

With respect to “vulnerability-driven” approaches VS and VP, the evolution of
the proposed strategies across all the considered hosts highlights a limitation, as
they are characterized by a staircase-like trend. Manual inspection of the results
has determined the cause to be the presence of many OR branches in the CPE
configuration trees of certain CVEs. Examples of CVEs which have been found to be
blocking for “vulnerability-driven” approaches are: CVE-2015-2808 which contains
194 unique CPE strings across 53 configuration trees, the biggest of which is an
OR of 60 CPEs, CVE-2007-1858 which contains a single configuration tree which
is a single OR of 43 CPE strings and CVE-2022-23305 which contains 171 unique
CPE strings organized in 5 configuration trees, the biggest of which is an OR of
130 elements. In these platform configurations, it is typical that only one (or none)
of the CPEs in the OR is really present in the host, and its identification requires
multiple steps. For this reason, strategies that validate vulnerabilities sequentially
are impacted significantly by this type of vulnerability. Another interesting finding
is that most of the time, the two approaches VS and VP share the same evolution.
This is due to the fact that these approaches order the vulnerabilities first, and then
perform ordering of the related platforms. Also in this case manual inspection of
the results has been carried out, and it has been found that vulnerabilities with
the same CVSS base score (i.e. ranked equally by the vulnerability driven sorting)
rarely share platforms. This in turn means that the secondary ordering strategy
included in VP never comes into play, defaulting to a random ordering, which is
exactly what VS does.

The proposed “platform-semantic-driven” approach PP has consistently the best
evolution over the number of steps, across all the hosts of the case-study. This
is expected, since PP has been designed to prioritize the platforms that have the
highest potential to impact a vulnerability, whether by validating or discarding it, as
per Algorithm 4 of Section 4.3. In particular as shown in Table 5.5, PP in average
validates 50% of the vulnerabilities after just 14.7% of the total steps required to
perform a complete validation across all the hosts, while its closest competitors VS
and VP use significantly more steps (41.2% and 38.6% respectively) to achieve the
same result. The same trend can be observed for the validation of the last 33% and
10% of vulnerabilities, for which PP consistently outperforms the other considered
strategies.10

Table 5.5. Mean percentage of steps required for each strategy to achieve respectively
≥ 50%, ≥ 66% and ≥ 90% accuracy of the vulnerability inventory VI (i.e. validation
progress), across every host.

Strategy CVE validated
50% 66% 90%

RN 76.7% 86.0% 95.2%
SR 68.3% 76.6% 87.5%
PP 14.7% 23.3% 47.6%
VS 41.2% 52.4% 74.5%
VP 38.6% 49.4% 70.2%

10PP achieves 66% and 90% validation within an average of 23.3% and 47.6% of the total amount
of steps required for termination, respectively.
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The reason for PP’s comparable performance with respect to other ordering
strategies in Table 5.4 is due to the presence of CVEs with many OR branches in
the CPE configuration trees which do not share CPEs with other vulnerabilities.
This heavily degrades the performance of Algorithm 4 (Section 4.3, implemented by
strategy PP), which has been designed to exploit platform frequency and configura-
tion tree structure. Thus it is inevitable that in the absence of platform frequency
and in the presence of a “flat” OR configuration tree structure, the performance of
the proposed algorithm degrades. As an example, between steps 600 and 1200, PP
on H2 takes about 500 steps to discard CVE-2013-2566, a vulnerability with 552
platforms across 3 different platform configuration trees, the biggest of which is an
OR tree of 487 different platforms. Since this vulnerability is not present in H2, any
strategy has to discard all the platforms in every flat OR configuration in order to
discard the vulnerability.

5.2.1 Comments on Complexity and Accuracy
An important notion also highlighted by Figure 5.2 is the difference in the number

of steps needed to bring each strategy to conclusion using either the vulnerability
graph Gi (identified by contiguous lines) or GNoV e

i (the vulnerability graph that
ignores CPE versions, identified by dashed lines) as input. This difference is
substantial, as it can be easily seen that in each and every case, every strategy that
uses the vulnerability graph Gi as input (i.e. Gi considers the CPE version attribute)
will always require significantly more steps to terminate with respect to each and
every strategy that uses GNoV e

i as input. This is mainly due to the difference in size
between the two vulnerability graphs, GNoV e

i and Gi. Indeed, as a reference, the
number of distinct CPE strings that are part of Gi amount to from 105.88% up to
1546.09% those of GNoV e

i , depending on the host,11 while the overall size of Gi is
from 90.00% to 866.67% larger than GNoV e

i .
The increase in complexity brought by the version attribute of CPE strings, while

costly for the number of steps needed to bring closure, is fundamental to guarantee
a meaningful accuracy of the inventories produced by the methodology described in
Section 4.3.

As a reminder, Section 4.1 introduced the notion of accuracy of an inventory I as

A(I) = 1 − #false positives

#real entity in the inventory
.

Assuming perfect accuracy of the human agent, as well as the correctness of the
applicability clauses (CPE configuration trees) of each vulnerability in CVE format,
the proposed methodology will always achieve max A(I+) with I+ being the result
of the application of the methodology on the automatically generated device and
vulnerability inventories DI and VI (i.e. the methodology will correctly identify and
exclude false positives from both the device and vulnerability inventories). However,
it has been observed experimentally that using the vulnerability graph Gi which
includes the version attribute of CPE strings consistently achieves inventories with a
greater or equal accuracy (A(I) with I being DI and VI) if compared to the result
obtained excluding the version attribute and using the vulnerability graph GNoV e

i .
Indeed, Figure 5.3 highlights that forgoing version attributes from CPE strings

will almost always result in a sizeable introduction of false positives (i.e. vulnerabili-
ties that are confirmed as compatible by the proposed filtering methodology, but
are not truly present in the analyzed host) in the final vulnerability inventory VI+.

11Vulnerability graphs Gi and GNoV e
i are always related to a single host hi.



5.2 Vulnerability Filtering 111

H0 H1 H2 H3 H4 H5 H6 H7
Without Versions 1 5 3 4 4 2 7 8
With Versions 5 8 9 9 7 2 20 14
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Figure 5.3. False positives eliminated from the vulnerability inventories after applying

Algorithm 4 of Section 4.3, using GNoV e
i and Gi as input.

This is due to the fact that while some versions of a product may be vulnerable,
not all versions of a product are. This fact is further aggravated by how many
commercially available vulnerability scanners function. As stated during the formal-
ization of the problem, in Section 4.1, many commercially available vulnerability and
network scanners rely on probe-based mechanisms in order to identify the presence
of vulnerabilities and platforms on a system. It is highly possible that a probe
may not be able to accurately discern between two similar but different versions
of a product, one potentially vulnerable, one certainly not. This in turn may lead
the vulnerability scanner into detecting a different version of a product, possibly
introducing false positives in the resulting inventories VIraw and DIraw. If versions
are excluded from the vulnerability graph Gi, the proposed methodology will not
recognize the error and will carry on the false positives into the final inventories
VI+ and DI+. For this exact reason, it becomes necessary to include the optional
version attribute of CPE strings in the analysis and thus, it becomes necessary to
use the vulnerability graph Gi instead of GNoV e

i , as Gi has the capability to identify
and discern between different versions of products, albeit at the cost of increasing
the number of steps required for termination. This increased cost is necessary in
order to allow the methodology described in Section 4.3 to aim for the best possible
accuracy in pruning the number of false positives introduced by the vulnerability
scanners’ probing based mechanisms.

In conclusion, assuming perfect accuracy of the human agent, as well as the
correctness of the applicability clauses (CPE configuration trees) of each vulnerability
in CVE format, every ordering strategy implemented over the methodology proposed
in Section 4.3 has the potential to improve the accuracy of the vulnerability inventory
VIraw after each step, and given enough steps, has the capability to consistently
achieve a perfect accuracy value (A(VI+) = 1) with respect to the ground truth
and the assumptions that govern this case study. This satisfies the claim advanced
during the formalization of the problem, in Section 4.1 that given a filtering process,
the accuracy of the resulting inventories must be greater or equal than the accuracy
of the inventories in input to the process. More formally, the evaluation described
in this section has shown that the methodology described in Section 4.3 has the
capability to achieve A(VI+) > A(VIraw) if A(VIraw) < 1 (i.e. for H0, H1, H2, H3,
H4, H6, H7) or A(VI+) = A(VIraw) = 1 in the case of H5. Similarly to VI, the
methodology is also capable of increasing the accuracy of the device inventory DI,
since the proposed methodology confirms or discards one or more platforms from
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DI at each step, thus satisfying A(DI+) ≥ A(DIraw).

5.3 Optimizing Platform Versions
The previous section provided an experimental evaluation of the methodology

aimed at reducing the number of false positives in a vulnerability inventory VIraw.
The result of this evaluation exposed a curious behaviour common to all the strategies
used during this case study, as it is apparent that for half of the considered case
study no strategy terminates significantly “far” from others. And while this is true,
interestingly, the different strategies do show different evolutions over the number of
steps, with “platform-based” strategy PP being consistently the best performing
strategy (i.e. first to consistently validate 90% of VIraw) and “random-based”
strategies RN and SR being the worst.

It must be noted, however, that the number of steps required both for termination
as well as to reach at least 90% accuracy on VI+ is very high, with hosts H1, H2,
H3 H4, H6 and H7 requiring more than 500 steps on average to validate every
vulnerability in VIraw, regardless of the platform ordering strategy used. This is in
part a consequence of the expansion of the 408 platform version ranges (27.06% of the
total 1508 CPEs) into 5710 platforms for the considered case study. And since the
new 5710 platforms increase the original CPE set size of the whole environment by
nearly 379%, it becomes of interest to study an approach able to optimize platform
version ranges.

Thus, Section 4.4 (Version Optimization) proposes an optimization of the method-
ology described in Section 4.3 (Vulnerability Filtering), aimed at handling the addi-
tional complexity introduced by the inclusion of the optional version attribute of a
CPE string in the vulnerability graph Gi.

Indeed, as seen in the previous section, the complexity of the vulnerability graph
Gi increases up to 866.67% with respect to a vulnerability graph in which the optional
version attribute of a CPE string is not considered. The previous section has also
shown why it is not advisable to forgo the optional version attribute of a CPE string,
as doing so may considerably affect the proposed methodology’s ability to identify
and remove the false positives from “raw” vulnerability and device inventories VIraw

and DIraw provided by vulnerability and network scanners.
Thus, the additional complexity is required in order to retain accuracy. In order

to attempt to reduce this necessary complexity, a two-part optimization has been
proposed as a necessary mean to achieve the maximum possible accuracy of the
filtering process while trying to counter the increase in complexity which may result
from doing so. The proposed optimization achieves the following: (i) it encodes
platform version ranges into Gi, and (ii) it divides platform version ranges into
smaller platform version ranges in order to facilitate the proposed methodology’s
platform prioritization mechanics described by Algorithm 4 (strategy PP) from
Section 4.3 (Vulnerability Filtering).

The evaluation of the proposed optimization and its effects on the proposed
methodology has been carried out consistently with the evaluation of the proposed
methodology in the previous section (Section 5.2, Vulnerability Filtering). Thus,
the two parts of the proposed optimization have been applied to all five platform
prioritization strategies (RN, SR, PP, VS and VP), which have been implemented
on inventories derived from the environment described in Section 5.1 (Hosts H0-H7).

As per the previous case, it should be noted that none of the strategies are
completely deterministic: in RN and SR the platforms follow a random order (i.e.
no sorting is applied), VS performs a sorting on the vulnerabilities according to their
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scoring, and then uses a random order for the platforms pertaining to vulnerabilities
with the same scoring, and PP and VP may choose at random if multiple platforms
have the same score. For this reasons, 50 instances have been generated for each
strategy in order to compare statistically relevant results.

Table 5.6. Result of the complete validation of all hosts of the case study.

Host Vulnerabilities - CVE Platforms - CPE

H0
Total 7 27
Confirmed 2 (28.6%) 2 (7.4%)
Discarded 5 (71.4%) 25 (92.6%)

H1
Total 16 198
Confirmed 8 (50.0%) 3 (1.5%)
Discarded 8 (50.0%) 195 (98.5%)

H2
Total 15 333
Confirmed 6 (40.0%) 5 (1.5%)
Discarded 9 (60.0%) 328 (98.5%)

H3
Total 10 321
Confirmed 1 (10.0%) 1 (0.3%)
Discarded 9 (90.0%) 320 (99.7%)

H4
Total 218 461
Confirmed 211 (96.8%) 10 (2.2%)
Discarded 7 (3.2%) 451 (97.8%)

H5
Total 3 17
Confirmed 1 (33.3%) 1 (5.9%)
Discarded 2 (66.7%) 16 (94.1%)

H6
Total 341 1369
Confirmed 321 (94.1%) 31 (2.3%)
Discarded 20 (5.9%) 1338 (97.7%)

H7
Total 19 464
Confirmed 5 (26.3%) 3 (0.6%)
Discarded 14 (73.7%) 461 (99.3%)

Table 5.6 shows the result of the complete validation of every host in the case
study described in Section 5.1. Within the context of this chapter, it is opportune
to refresh the definition of the complete validation of a host hi as the validation (i.e.
filtering process) of both its “raw” vulnerability inventory VIraw as well as its “raw”
device inventory DIraw, derived from the output of the vulnerability scanners. As a
reminder, hosts H0 and H1 represent Office hosts, H2 and H3 represent Server hosts,
H4 and H5 represent Development hosts and H6 and H7 represent Generic hosts.

For host H0 out of a total of 7 detected vulnerabilities, only 2 (28.6%) are
actually confirmed by the proposed methodology, and the remaining 5 (71.4%) are
false positives. Indeed only 2 (7.4%) platforms out of the 27 referenced by the
vulnerabilities of H0 actually reside in the host. The proposed methodology confirms
8 (50.0%) vulnerabilities on host H1, out of a total of 16 detected vulnerabilities, as
the remaining 8 (50.0%) are false positives. Indeed only 3 (1.5%) platforms out of the
198 referenced by the vulnerabilities of H1 actually reside in the host. For host H2
out of a total of 15 detected vulnerabilities, only 6 (40.0%) are actually confirmed by
the proposed methodology, and the remaining 9 (60.0%) are false positives. Indeed
only 5 (1.5%) platforms out of the 333 referenced by the vulnerabilities of H2 actually
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reside in the host. For host H3 out of a total of 10 detected vulnerabilities, only 1
(10.0%) is actually confirmed by the proposed methodology, and the remaining 9
(90.0%) are false positives. Indeed only 1 (0.3%) platform out of the 461 referenced
by the vulnerabilities of H3 actually reside in the host. The proposed methodology
confirms 211 (96.8%) vulnerabilities on host H4 out of a total of 218 detected
vulnerabilities, as the remaining 7 (3.2%) are false positives. Surprisingly only 10
(2.2%) platforms out of the 461 referenced by the vulnerabilities of H4 actually
reside in the host. For host H5 out of a total of 3 detected vulnerabilities, only 1
(33.3%) is actually confirmed by the proposed methodology, and the remaining 2
(66.7%) are false positives. Indeed only 1 (5.9%) platform out of the 17 referenced
by the vulnerabilities of H5 actually reside in the host. For host H6 out of a total of
341 detected vulnerabilities, 321 (94.1%) are actually confirmed by the proposed
methodology, and the remaining 20 (5.9%) are false positives. Indeed only 31 (2.3%)
platforms out of the 1369 referenced by the vulnerabilities of H6 actually reside in
the host. Lastly, the proposed methodology confirms only 5 (26.3%) vulnerabilities
for host H7 out of a total of 19 detected vulnerabilities, as the remaining 14 (73.7%)
are false positives. Indeed only 3 (0.6%) platforms out of the 464 referenced by the
vulnerabilities of H7 actually reside in the host.

The fist striking observation is that the number of confirmed and discarded
vulnerabilities remains the same for the optimized and for the non optimized environ-
ment (Section 5.2, Vulnerability Filtering). This is expected, since the optimization
proposed in this section aims to reduce the number of steps required for termination,
by operating on the platforms. This is also expected, because in order to be effective
the proposed optimization should not harm the accuracy of the overall process.

The second observation that can be made is that the number of confirmed
platforms associated with the vulnerabilities detected by vulnerability scanners
on a given host hi is very low (≤ 7.4%) in absolute terms, but is definitively
higher than the values reported in the non optimized environment (≤ 2.9%) as
expected from an overall reduction in the number of platforms in the device inventory
DIraw. As per the non optimized environment, this phenomenon has also been
observed to have no apparent correlation with the percentage of false positives
(i.e. discarded vulnerabilities) identified by the proposed methodology. Manual
inspection of the vulnerabilities and their associated platforms has found that
many vulnerabilities cover wide technology stacks, e.g. protocols or system libraries
embedded in applications as well as operating systems, and as such, may cover a wide
range of platforms. An example of this is found in H4, for which several vulnerabilities
related to a version of Java Development Kit (JDK) also affect other 481 platforms
(2107 in the non optimized environment), which refer to platforms integrating the
vulnerable component in their architecture, as well as operating systems that ship
with the vulnerable component as part of their system stack. To provide another
example, manual inspection has found that vulnerabilities detected on host H3
are associated to 75 different platforms which identify various operating systems
and firmware, as well as 42 different platforms which identify various hardware
components which are incompatible with each other.

The third observation is that there is no apparent correlation between the
precision of a scanner and the considered host. As an example, hosts H0, H2, H5
and H7 hover around the same 60% false positive rate, even tough they belong to
different categories of hosts (thus having different categories of platforms). To give
another example, despite the fact that H1, H3, H4 and H6 have been equipped
with older versions of platforms and operating systems, their ratio of false positives
swings from one extreme (90.0%) to the other (3.2%).
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It is important to remind that all proposed strategies are capable by design of
reaching a complete vulnerability validation state. The difference between each
vulnerability is in the ordering of the platforms to be validated, thus it becomes
interesting to analyze the number of steps needed for each strategy to converge to
the result shown in Table 5.6.

Table 5.7. Results of the application of the strategies on the case study

Host Metric Strategies
RN SR PP VS VP

H0
Ci1 27.36 20.45 21.33 21.17 21.27
Mean 27.06 19.52 20.26 20.08 20.24
Ci0 26.76 18.59 19.19 18.99 19.21

H1
Ci1 196.51 143.04 67.13 81.59 81.42
Mean 195.88 133.48 66.12 79.98 79.54
Ci0 195.25 123.92 65.11 78.37 77.66

H2
Ci1 332.47 280.47 278.62 278.22 277.66
Mean 332.20 279.48 277.60 277.30 276.64
Ci0 331.93 278.49 276.58 276.38 275.62

H3
Ci1 320.65 271.08 269.91 270.79 269.60
Mean 320.42 270.24 269.16 269.92 268.70
Ci0 320.19 269.40 269.05 268.41 267.80

H4
Ci1 454.62 214.79 119.69 142.77 136.94
Mean 453.16 201.00 115.50 139.54 132.02
Ci0 451.70 187.21 111.31 136.31 127.10

H5
Ci1 15.02 11.26 11.60 11.44 10.69
Mean 14.42 10.34 10.72 10.46 9.82
Ci0 13.82 9.42 9.98 9.48 8.95

H6
Ci1 1366.00 821.37 559.76 673.55 668.30
Mean 1365.24 801.62 553.42 661.04 656.92
Ci0 1364.48 781.87 547.08 648.53 645.54

H7
Ci1 463.61 369.58 313.71 314.20 314.91
Mean 463.36 362.98 312.76 313.26 314.04
Ci0 463.11 356.38 311.81 312.32 313.17

Table 5.7 shows the mean of the number of steps to validate all the vulnerabilities
(90% Confidence Intervals CIs) in every host of the case study described in Section 5.1,
for each strategy. This result has been achieved by encoding platform version ranges
into the CPE string, and forgoing their expansion into discrete versions, as opposed
by the processing applied in the previous section. Notice that this constitutes only
part (i) of the proposed two-part optimization. Part (ii) will be discussed later in
the section. As a reminder, hosts H0 and H1 represent Office hosts, H2 and H3
represent Server hosts, H4 and H5 represent Development hosts and H6 and H7
represent Generic hosts.

For host H0, all strategies except RN obtain similar results requiring about ≈ 21
steps to validate all the vulnerabilities, while RN necessitates ≈ 27 steps. Similarly,
for host H1, vulnerability-based strategies require about ≈ 81 steps to terminate,
RN requires ≈ 196 steps, SR requires ≈ 133 steps, and PP requires ≈ 66 steps.
Host H2 follows a trend similar to H0 in which all strategies except RN require
about ≈ 278 steps to terminate, while RN necessitates ≈ 332 steps. All strategies
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of host H3 with the exception of RN require ≈ 270 steps to terminate, while RN
necessitates ≈ 320 steps. In host H4, vulnerability-based strategies require about
≈ 135 steps to terminate, RN requires ≈ 453 steps, SR requires ≈ 201 steps, and
PP requires ≈ 115 steps. For host H5, all strategies except RN require ≈ 10 steps
to terminate, while RN necessitates ≈ 14 steps. Host H6 follows a similar trend
to H1 and H4 in which vulnerability-based strategies require about ≈ 657 steps to
terminate, RN requires ≈ 1365 steps, SR requires ≈ 801 steps, and PP requires
≈ 553 steps. Lastly, host H7 requires ≈ 313 steps for all strategies except RN and
SR, which necessitate ≈ 463 and ≈ 363 steps respectively.

Notice that the difference in size with respect to the number of steps is still
proportional with the number of CVE present in each host, as per the result of
the previous section, e.g. H6 has both the most detected CVE vulnerabilities
and steps required for termination among all other hosts. Conversely, H5 has the
least amount of detected CVE vulnerabilities as well as the least amount of steps
required for termination among all other hosts. This is due to the fact that platform
configurations of different CVEs may not overlap completely, i.e. each CVE may be
enabled by a different set of platforms. This phenomenon has been experimentally
observed to be more present in the case of CVEs linked by different advisories, as
it is usual for an advisory to reference either (i) a single issue spanning multiple
products or (ii) multiple issues regarding a single or a family of products.

At a first glance, Table 5.7 demonstrates empirically that encoding platform
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Figure 5.4. Mean of the CVEs that still have to be validated after each step of the
prioritization strategies. H0 and H1 represent Office hosts, H2 and H3 represent Server
hosts.
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Figure 5.4. Mean of the CVEs that still have to be validated after each step of the
prioritization strategies. H4 and H5 represent Development hosts, H6 and H7 represent
Generic hosts.

version ranges, usually expressed as metadata to be unpacked into discrete platforms,
yields a significant performance benefit during the filtering process described in
Section 4.3 (Vulnerability Filtering). Indeed, with just this first part of the proposed
optimization, only H6 requires more than 500 steps for its vulnerability inventory
VIraw to be completely validated (i.e. to reach an accuracy of = 1), while all other
hosts only require a fraction of the steps to achieve the same level of accuracy. In
particular, the results described by Table 5.7 are on average 69.60% better than
those of Table 5.4 (non optimized environment),12 i.e. it takes an average of 69.60%
less steps to achieve the same result. On average, hosts H1, H4 and H7 achieve a
mean reduction of the number of steps required for termination of ≥ 75%, hosts H2
and H3 achieve a mean reduction of the number of steps required for termination of
≥ 70% and < 75%, and only H0, H5 and H6 achieve a mean reduction in the number
of steps required for termination of ≤ 65%. In particular, the average, minimum and
maximum reduction of the number of steps needed for completion for each strategy
is

• 72.61% on average for strategy RN, with a maximum of 80.57% on H1 and a
minimum of 57.98% on H5.

• 73.31% on average for strategy SR, with a maximum of 78.91% on H4 and a
minimum of 64.00% on H5.

1281.98% at maximum, 39.40% at minimum.
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• 66.28% on average for strategy PP, with a maximum of 81.98% on H1 and a
minimum of 39.85% on H0.

• 68.73% on average for strategy VS, with a maximum of 81.02% on H4 and a
minimum of 41.49% on H0.

• 67.04% on average for strategy VP, with a maximum of 80.60% on H1 and a
minimum of 39.40% on H0.

This is expected, as the amount of steps reduced by this optimization is highly
dependant on the distribution of the vulnerabilities that are enabled by platforms
expressed as version ranges, across the hosts.13

As per the previous section, a meaningful difference between random (RN and
SR) and semantic driven strategies (PP, VS and VP) continues to be present for
hosts H1, H4, H6 and H7. Hosts H0, H2, H3 and H5 do not apparently exhibit any
difference between strategies. This is due to (i) H0 and H5 having few vulnerabilities
insisting on few, distinct platforms, (ii) H2 and H3 having vulnerabilities having large
OR configurations of distinct platforms which are incompatible with their respective
hosts, and (iii) the fact that the result shown in the table is the final state of the
application of the proposed strategies, i.e. the average number of steps necessary to
validate or discard all vulnerabilities in VIraw. Since these reasons contribute to
the lack of conclusive evidence over the differences between the different strategies
applied to these hosts, it is interesting to analyze the strategies’ evolution over the
number of steps. Thus, Figure 5.4 has been plotted to visually analyze the average
number of CVE vulnerabilities that still have to be validated after x steps of each
strategy.

The considerations made for Figure 5.2 in the previous section still stand,
as despite the steps taken to completely validate or discard each vulnerability
are comparable for hosts H0, H2, H3 and H5, as shown in Table 5.7, “random”
approaches RN and SR continue to present the worst evolution with respect to
every other considered strategy. This is easily noticed in Figure 5.4 and confirmed
in Table 5.8, for which the number of vulnerabilities still left to validate does not
decrease significantly (below 50%) until 69.3% and 61.6% of the total elapsed steps,
for RN and SR respectively.14 This is expected, since these approaches do not
consider any semantics while deciding the order of the platforms to submit to the
human agent, and therefore proposed platforms may not be significantly impactful
with respect to vulnerabilities in the inventory. Also, as expected, strategy RN
performs consistently worse than strategy SR since RN does not remove “non-useful”
platforms from the ordering.

With respect to “vulnerability-driven” approaches VS and VP, the evolution of
the proposed strategies across all the considered hosts highlights a limitation, as
they are characterized by a staircase-like trend. Manual inspection of the results
has determined the cause to be the presence of many OR branches in the CPE
configuration trees of certain CVEs. Examples of CVEs which have been found to be
blocking for “vulnerability-driven” approaches using the proposed optimization are:
CVE-2015-2808 which contains 146 unique CPE strings15 across 53 configuration
trees, the biggest of which is an OR of 26 CPEs, CVE-2007-1858 which contains a
single configuration tree which is a single OR of 43 CPE strings and CVE-2022-23305

13H0 and H5 being the minimum at respectively 52.23% and 62.23%, only having a single platform
containing a version range.

1478.8% and 71.2% for ≥ 66%, 93.7% and 85.0% for ≥ 90%.
15This number includes platform version ranges encoded in CPE strings.
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which contains 42 unique CPE strings organized in 5 configuration trees, the biggest
of which is an OR of 37 elements. In these platform configurations, it is typical
that only one (or none) of the CPEs in the OR is really present in the host, and
its identification requires multiple steps. For this reason, strategies that validate
vulnerabilities sequentially are impacted significantly by this type of vulnerability.
Another interesting finding is that most of the time, the two approaches VS and VP
share the same evolution. This is due to the fact that these approaches order the
vulnerabilities first, and then perform ordering of the related platforms. Also in this
case manual inspection of the results has been carried out, and it has been found
that vulnerabilities with the same CVSS base score rarely share platforms. This in
turn means that the secondary ordering strategy included in VP never comes into
play, defaulting to a random ordering, which is exactly what VS does.

The proposed “platform-semantic-driven” approach PP continues to consistently
have the best evolution over the number of steps, across all the hosts of the case-study.
This is expected, since PP has been designed to prioritize the platforms that have
the highest potential to impact a vulnerability, whether by validating or discarding
it, as per Algorithm 4 of Section 4.3 (Vulnerability Filtering). In particular as shown
in Table 5.8, PP in average validates 50% of the vulnerabilities after just 12.6% of
the total steps required to perform a complete validation across all the hosts, while
its closest competitors VS and VP use significantly more steps (32.1% for both)
to achieve the same result. The same trend can be observed for the validation of
the last 33% and 10% of vulnerabilities, for which PP consistently outperforms the
other considered strategies.16

Table 5.8. Mean percentage of steps required for each strategy to achieve respectively
≥ 50%, ≥ 66% and ≥ 90% accuracy of the vulnerability inventory VI (i.e. validation
progress), across every host.

Strategy CVE validated
50% 66% 90%

RN 69.3% 78.8% 93.7%
SR 61.6% 71.2% 85.0%
PP 12.6% 22.5% 54.5%
VS 32.1% 42.5% 72.4%
VP 32.1% 41.6% 71.9%

As per the previous case, the reason for PP’s comparable performance with
respect to other ordering strategies in Table 5.7 for hosts H0, H2, H3 and H5 is due
to the presence of CVEs with many OR branches in the CPE configuration trees
which do not share CPEs with other vulnerabilities. Note that this issue persists
even after deploying the proposed optimization (i.e. with contiguous platform version
ranges “compressed” into a single platform). This heavily degrades the performance
of Algorithm 4 (Section 4.3 - Vulnerability Filtering, implemented by strategy
PP), which has been designed to exploit platform frequency and configuration tree
structure. Thus it is inevitable that in the absence of platform frequency and in
the presence of a “flat” OR configuration tree structure, the performance of the
proposed algorithm degrades. As an example, after about 200 steps, PP on H2
takes about 90 steps to discard CVE-2015-2808, a vulnerability with 146 platforms
across 53 different platform configuration trees, the biggest of which is an OR tree
of 26 different platforms. Since this vulnerability is not present in H2, any strategy
has to discard all the platforms in every flat OR configuration in order to discard

16PP achieves ≥ 66% and ≥ 90% accuracy within an average of 22.9% and 54.5% of the total
amount of steps required for termination, respectively.



5.3 Optimizing Platform Versions 120

the vulnerability. While the issue persists, deploying the proposed optimization
reduces its magnitude by potentially reducing the number of elements present in
every flat OR configuration, thus reducing the number of steps needed to validate or
invalidate each configuration. Moreover, compacting contiguous platform versions
into platform version ranges has the possibility to reduce the number of platforms
that vulnerabilities have in common, allowing the proposed algorithm to be more
incisive. An example of this can be found during the early steps on H6, where
PP manages to validate 171 vulnerabilities out of a total of 341 (50.15%) with one
single step. This is due to the fact that these 171 vulnerabilities (e.g. CVE-2018-
2938, CVE-2017-10356 and CVE-2019-2958 ) all share the same enabling platform
(a:oracle:jdk:1.7.0 ), present in H6.
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Figure 5.5. Mean of the CVEs that still have to be validated after each step of the
prioritization strategies. Comparison between the results of Section 5.2 (Vulnerability
Filtering) and Section 5.3 (Version Optimization). H1 represents an Office host, H4
represents a Development host.

Figure 5.5 compares the evolution of the average number of CVE vulnerabilities
that still have to be validated after x steps of each platform ordering strategy for
hosts H1 and H4. While the reduction in the number of steps required for termination
is apparent, the evolution of the different strategies with respect to the number of
steps remains similar with respect to the references of Section 5.2 (Vulnerability
Filtering). This as already hinted before, is a consequence of the distribution of the
vulnerabilities that are enabled by platforms expressed as version ranges, across the
hosts, and is expected, as the amount of steps reduced by this optimization is highly
dependant on this distribution.
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5.3.1 Optimizing platform versions for strategy PP
The second part of the proposed optimization attempts to enhance the per-

formance of the proposed methodology by dividing platform version ranges into
smaller, non overlapping platform version ranges. This is done in order to facilitate
the proposed methodology’s prioritization Algorithm 4 described in Section 4.3
(Vulnerability Filtering), which relies on frequency and distribution of platforms in
each platform configuration tree of vulnerabilities in a given host hi.

However, splicing platform version ranges into multiple platforms has the side-
effect of increasing the size of the vulnerability graph Gi, as already observed during
the comparison between Gi and GNoV e

i (i.e. vulnerability graph with or without the
optional platform version attribute). In particular, applying this optimization in
the considered test case increases the size of the vulnerability graph Gi by 8.28%,
on average (max 29.31%, min 0.00%). Thus, it is expected that this part of the
optimization will only benefit strategy PP and not the other strategies.

For the proposed test case, part 2 of the proposed optimization achieves a
reduction in the number of steps needed for termination of at best 16.92% on H6 and
at worst −24.41% on H7, with a mean of −1.50% for strategy PP. If all strategies
are considered, the values become slightly worse, with a maximum of 19.57% on
H6 and a minimum of −27.62% on H7, with a mean of −4.85% Moreover, a similar
trend can be observed by studying the evolution of strategy PP over the number
of steps, which produces a vulnerability inventory of at least ≥ 50% accuracy after
13.9% of the total steps required for termination, ≥ 66.0% after 21.6% steps and
≥ 90% after 56.7% steps.

While this result is not bad considering the increase in size of the vulnerability
graph Gi by 8.28% on average, manual analysis of the execution traces together
with the considerations made in this section lead to the conclusion that this second
part of the proposed two-step optimization is highly situational and should be
applied contextually, and that further work is needed to be able to fully exploit
its advantages. Ideally, a possible venue for future work would be the analysis
of an orchestration mechanism that, depending on the structure and statistical
properties of the platforms residing in a host is able to intelligently apply the second
step of the optimization on a per-host basis. This possibility has already been
demonstrated with hosts H5 and H7, for which an orchestration system able to
allow or block the application of the second step of the proposed optimization would
benefit both, H5 being benefited by allowing the second step of the optimization,
and H7 being benefited by not applying this second step. A hint on which this
venue could be developed is given by the composition of H5 and H7, as platforms
version ranges in H7 create a significant amount of “new” platforms version ranges
than H5, causing a 29.31% increase in size of the vulnerability graph Gi. Another
hint on which this venue could be developed is given is the distribution of the
platforms across the vulnerabilities of each host. Indeed, in different other case
studies this second step of the optimization has yielded a reduction of the number
of steps required by strategy PP to achieve termination by more than 15%. Manual
inspection of these environments has found a high degree of overlap of large platform
version intervals, across a sizeable amount of vulnerabilities (i.e. many isolated
“small” version intervals and one “large” central version interval shared by every
vulnerability). Such feature is not present in the proposed case study, and for this
reason, the second step of the optimization performs globally worse.
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5.4 Considering Platform Dependency
Section 4.5 (Platform Dependency) delivered another advancement to the method-

ology described in Section 4.3 (Vulnerability Filtering) by considering the dependen-
cies between different CPE strings used to identify platforms on a host. Indeed, this
advancement operates on the structure of a CPE string itself, which is not to be
considered as a monolithic entity anymore, but as a collection of attributes.

Thus, the main intuition behind this advancement is that the validation or
invalidation of a CPE string on a host hi leads to a validation or invalidation of
the string’s attributes on hi. As an example, validating the presence of a specific
version of a product on hi, should also entail the validation of the presence of the
same product on hi. Conversely, discarding a product from a host hi should also
entail the absence from hi of every other platform which identify specific versions of
the same product.

To this aim, Section 4.5 (Platform Dependency) presents an advancement which
is orthogonal to the process and optimizations presented previously, capable of
considering the dependency between different platforms and potentially capable of
increasing the effectiveness of the answer provided by the human agent by allowing
such answer to validate or invalidate more than one platform at the same time.

The evaluation of the proposed advancement and its effects on the proposed
methodology has been carried out consistently with the evaluation of the proposed
methodology in Section 5.2 (Vulnerability Filtering). Thus, the proposed advance-
ment has been applied to all five prioritization strategies (RN, SR, PP, VS and VP),
which have been implemented on inventories derived from the environment described
in Section 5.1 (hosts H0-H7).

It should be noted that none of the strategies are completely deterministic: in
RN and SR the platforms follow a random order (i.e. no sorting is applied), VS
performs a sorting on the vulnerabilities according to their scoring, and then uses a
random order for the platforms pertaining to vulnerabilities with the same scoring,
and PP and VP may choose at random if multiple platforms have the same score.
For this reasons, 50 instances have been generated for each strategy in order to
compare statistically relevant results.

As per the previous optimization, the final result of the validation described by
Table 5.3 of Section 5.2 (Vulnerability Filtering) still stands. Note that this new
advancement is orthogonal to the optimization proposed in Section 5.3 (Version
Optimization), thus if the two are applied at the same time, the final result will
be described by Table 5.6. This is due to the fact that this proposed advancement
affects the number of steps required by each strategy to converge to the same final
state, but doesn’t fundamentally change the input data or significative portions of
the algorithm.

Moreover, this advancement will only affect hosts that have platforms that
describe the same product at different levels of granularity, e.g. specific version vs
general product. To go in detail, a compatible group of platforms must be defined as
the group of platforms identifying different versions of the same product, together
with a platform that identifies the product in a generic fashion (i.e. no version is
specified in the CPE string). Following this definition, an example of a compatible
group of platforms is a generic o:apple:macos:- platform string, identifying a generic
instance of the macos operating system made by apple, grouped together with other
platform strings which identify different versions of the same operating system.

Thus, the following occurrences of compatible groups in the dataset derived
from Section 5.3 (Version Optimization) can be found: H0 has 2 compatible groups
composed of 3.0 platforms on average, H1 has no compatible groups, H2 has 4
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compatible groups composed of 3.0 platforms on average, H3 has 3 compatible groups
composed of 2.3 platforms on average, H4 has 15 compatible groups composed of 3.5
platforms on average, H5 has no compatible groups, H6 has 21 compatible groups
composed of 3.6 platforms on average, H7 has 3 compatible groups composed of
2.3 platforms on average. This entails the fact that if the advancement proposed
in this section is used in conjunction with the optimization proposed in Section 5.3
(Version Optimization), this advancement will have no effect on hosts H1 and H5
since no products are referenced with different levels of granularity (i.e. no product
is referenced both with and without a specific version).

Conversely, if the optimization proposed in Section 5.3 (Version Optimization) is
not applied, H0 has 2 compatible groups composed of 30.0 platforms on average, H1
has 8 compatible groups composed of 63.4 platforms on average, H2 has 9 compatible
groups composed of 89.6 platforms on average, H3 has 8 compatible groups composed
of 93.4 platforms on average, H4 has 18 compatible groups composed of 92.4 platforms
on average, H5 has no compatible groups, H6 has 37 compatible groups composed of
61.6 platforms on average, H7 has 15 compatible groups composed of 59.9 platforms
on average. Under these circumstances, the proposed advancement will still have no
effect on H5, but it will gain effect on H1. It is also interesting to notice that the
proposed advancement has the potential to be more effective in this scenario, since
on average more groups are found, and each group is composed of more platforms
on average, with respect to the already-optimized scenario.

5.4.1 Application to a non-optimized environment (Section 5.2)
Table 5.9 shows the mean of the number of steps to validate all the vulnerabilities

(90% Confidence Intervals CIs) in every host of the case study described in Section 5.1,
for each strategy, without any prior optimization pass. Given this setting, a correct
reference to compare this result would be Table 5.4 of Section 5.2 (Vulnerability
Filtering). As a reminder, hosts H0 and H1 represent Office hosts, H2 and H3
represent Server hosts, H4 and H5 represent Development hosts and H6 and H7
represent Generic hosts.

For host H0, all strategies except RN obtain similar results requiring about ≈ 34
steps to validate all the vulnerabilities, while RN necessitates ≈ 94 steps. Similarly,
for host H1, vulnerability-based strategies require about ≈ 360 steps to terminate,
RN requires ≈ 1008 steps, SR requires ≈ 537 steps, and PP requires ≈ 313 steps.
Host H2 follows a trend similar to H0 in which all strategies except RN and SR
require about ≈ 1085 steps to terminate, while RN and SR necessitate ≈ 1216
and ≈ 1117 steps respectively. All strategies of host H3 with the exception of RN
require ≈ 1080 steps to terminate, while RN necessitates ≈ 1136 steps. In host
H4, platform-based strategies PP and VP require about ≈ 470 steps to terminate,
RN requires ≈ 1760 steps, SR requires ≈ 852 steps, and VS requires ≈ 682 steps.
For host H5, all strategies except RN require ≈ 28 steps to terminate, while RN
necessitates ≈ 34 steps. Host H6 follows a similar trend to H1 and H4 in which
vulnerability-based strategies require about ≈ 1400 steps to terminate, RN requires
≈ 5871 steps, SR requires ≈ 2836 steps, and PP requires ≈ 961 steps. Lastly, host
H7 requires ≈ 1320 steps for all strategies except RN and SR, which necessitate
≈ 1604 and ≈ 1453 steps respectively.

Compared to the result obtained in Table 5.4 of Section 5.2 (Vulnerability
Filtering), it can be noticed that the proposed advancement has little effect on
some of the results, while on others it has a decent impact. In particular, it can
be noticed that while the only hosts affected are H0, H1, H2, H3, H4, H6 and H7,
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Table 5.9. Results of the application of the strategies on the case study, without prior
optimization

Host Metric Strategies
RN SR PP VS VP

H0
Ci1 94.62 67.50 34.68 34.89 34.48
Mean 94.02 63.38 33.68 34.08 33.40
Ci0 93.42 59.26 32.68 33.27 32.32

H1
Ci1 1008.64 573.01 332.24 383.86 375.39
Mean 1007.56 537.18 313.14 363.84 357.30
Ci0 1006.48 501.35 294.04 343.82 339.21

H2
Ci1 1215.87 1122.71 1084.39 1093.25 1086.23
Mean 1215.74 1117.04 1083.28 1091.32 1084.88
Ci0 1215.61 1111.37 1082.17 1089.39 1083.53

H3
Ci1 1135.96 1082.47 1075.53 1081.85 1074.74
Mean 1135.88 1081.30 1074.68 1080.76 1073.94
Ci0 1135.80 1080.13 1073.83 1079.67 1073.14

H4
Ci1 1801.18 918.49 513.57 724.19 532.80
Mean 1759.96 851.82 466.64 682.26 485.54
Ci0 1718.74 785.15 419.71 640.33 438.28

H5
Ci1 34.54 29.59 28.91 28.57 29.30
Mean 34.32 28.72 27.96 27.62 28.36
Ci0 34.10 27.85 27.01 27.01 27.42

H6
Ci1 5893.93 2972.83 991.11 1571.84 1286.33
Mean 5871.48 2835.78 960.66 1516.94 1240.40
Ci0 5849.03 2698.73 930.21 1462.04 1194.47

H7
Ci1 1603.93 1469.23 1321.78 1334.79 1329.46
Mean 1603.84 1452.56 1320.96 1333.14 1328.06
Ci0 1603.75 1435.89 1320.14 1331.49 1326.66

some strategies of H1, and H4 achieve a reduction in the number of steps required
to terminate of ≥ 10%. Meanwhile, H0, H2, H3 and H7 achieve a reduction of ≤ 1%
(but still ≥ 0%). This is expected since only these hosts have platforms that are
compatible with this advancement. Another property that can be noticed is that
this advancement benefits the most vulnerability-based strategies VS and VP and
random-based strategies RN and SR, with the average, minimum and maximum
reduction of the number of steps needed for completion being

• 2.25% on average for strategy RN, with a maximum of 15.33% on H4 and a
minimum of 0.00% on H0, H2, H3, H5 and H7.

• 2.55% on average for strategy SR, with a maximum of 10.64% on H4 and a
minimum of 0.00% on H0, H2, H3, H5 and H7.

• 3.60% on average for strategy PP, with a maximum of 14.64% on H1 and a
minimum of 0.00% on H0, H2, H5, H6 and H7.

• 2.92% on average for strategy VS, with a maximum of 9.35% on H1 and a
minimum of 0.00% on H3 and H5.

• 3.81% on average for strategy VP, with a maximum of 15.86% on H4 and a
minimum of 0.00% on H0, H2, H3, H5 and H7.
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This is also to be expected, since the distribution of the platforms compatible with
this advancement is not uniform across the vulnerabilities (CVE) of each considered
host hi.

5.4.2 Application to an already-optimized environment (Section 5.3)

Table 5.10. Results of the application of the strategies on the case study, after prior
optimization

Host Metric Strategies
RN SR PP VS VP

H0
Ci1 27.36 20.45 21.33 19.81 21.27
Mean 27.06 19.52 20.26 18.68 20.24
Ci0 26.76 18.59 19.19 17.55 19.21

H1
Ci1 196.51 143.04 67.13 81.59 81.42
Mean 195.88 133.48 66.12 79.98 79.54
Ci0 195.25 123.92 65.11 78.37 77.66

H2
Ci1 331.69 279.73 278.62 278.22 277.66
Mean 331.40 278.74 277.60 277.30 276.64
Ci0 331.11 277.75 276.58 276.38 275.62

H3
Ci1 319.86 269.63 269.91 270.79 269.60
Mean 319.63 268.79 269.16 269.92 268.70
Ci0 319.40 267.95 268.41 269.05 267.80

H4
Ci1 454.62 214.79 119.69 143.08 136.94
Mean 453.16 201.00 115.50 138.38 132.02
Ci0 451.70 187.21 111.31 133.68 127.10

H5
Ci1 15.02 11.26 11.60 11.44 10.69
Mean 14.42 10.34 10.72 10.46 9.82
Ci0 13.82 9.42 9.84 9.48 8.95

H6
Ci1 1366.00 821.37 559.76 673.55 668.30
Mean 1365.24 801.62 553.42 661.04 656.92
Ci0 1364.48 781.87 547.08 648.53 645.54

H7
Ci1 463.61 369.58 313.71 314.20 314.91
Mean 463.36 362.98 312.76 313.26 314.04
Ci0 463.11 356.38 311.81 312.32 313.17

Table 5.10 shows the mean of the number of steps to validate all the vulnerabilities
(90% Confidence Intervals CIs) in every host of the case study described in Section 5.1,
for each strategy, after applying the optimization described in Section 4.4 (Version
Optimization). Given this setting, a correct reference to compare this result would
be Table 5.7 of Section 5.3 (Version Optimization). As a reminder, hosts H0 and
H1 represent Office hosts, H2 and H3 represent Server hosts, H4 and H5 represent
Development hosts and H6 and H7 represent Generic hosts.

For host H0, all strategies except RN obtain similar results requiring about ≈ 21
steps to validate all the vulnerabilities, while RN necessitates ≈ 27 steps. Similarly,
for host H1, vulnerability-based strategies require about ≈ 81 steps to terminate,
RN requires ≈ 196 steps, SR requires ≈ 133 steps, and PP requires ≈ 66 steps.
Host H2 follows a trend similar to H0 in which all strategies except RN require
about ≈ 278 steps to terminate, while RN necessitates ≈ 332 steps. All strategies
of host H3 with the exception of RN require ≈ 270 steps to terminate, while RN
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necessitates ≈ 320 steps. In host H4, vulnerability-based strategies require about
≈ 135 steps to terminate, RN requires ≈ 453 steps, SR requires ≈ 201 steps, and
PP requires ≈ 115 steps. For host H5, all strategies except RN require ≈ 10 steps
to terminate, while RN necessitates ≈ 14 steps. Host H6 follows a similar trend
to H1 and H4 in which vulnerability-based strategies require about ≈ 657 steps to
terminate, RN requires ≈ 1365 steps, SR requires ≈ 801 steps, and PP requires
≈ 553 steps. Lastly, host H7 requires ≈ 313 steps for all strategies except RN and
SR, which necessitate ≈ 463 and ≈ 363 steps respectively.

Compared to the result obtained in Table 5.7 of Section 5.3 (Version Optimiza-
tion), it can be noticed that the proposed advancement has little effect on the results.
As expected, it can be noticed that the only hosts affected are H0, H1, H2, H3,
H4, H6 and H7. This is expected since only these hosts have platforms that are
compatible with this advancement. Another property that can be noticed is that
this advancement benefits only vulnerability-based strategy VS and random-based
strategies RN and SR, with the average, minimum and maximum reduction of the
number of steps needed for completion being

• 0.06% on average for strategy RN, with a maximum of 0.25% on H3 and a
minimum of 0.00% across all hosts except H2 and H3.

• 0.10% on average for strategy SR, with a maximum of 0.54% on H3 and a
minimum of 0.00% across all hosts except H2 and H3.

• 0.00% on average for strategy PP, with a maximum and a minimum of 0.00%
across all hosts.

• 0.98% on average for strategy VS, with a maximum of 6.97% on H0 and a
minimum of 0.00% on H2, H3, H5, H6 and H7.

• 0.00% on average for strategy VP, with a maximum and a minimum of 0.00%
on every host.

This is also to be expected, since the distribution of the platforms compatible with
this advancement is not uniform across the vulnerabilities (CVE) of each considered
host hi. This is also the reason why most strategies are not affected by this
advancement, in particular random-based strategies achieve very little improvement
due to their random nature coupled with the small number of platforms that are
actually compatible with this advancement. Similarly, PP and VP do not achieve
any improvement since the order of the selection of the CPE strings is tightly bound
by a mathematical formula, with little or no room for variation between different
executions. Indeed, if a “generic” platform (i.e. the platform with the version
attribute set to either NONE - or ANY *) is selected after all corresponding platforms
which relate to single (or to a range of) versions, this advancement will have no
effect. This poses as a limitation of this approach, and is addressed by the proposal
in Section 4.6 (Structure-Aware).

5.4.3 Considerations on the evolution of the non-optimized envi-
ronment

The considerations made for Figure 5.2 in Section 5.2 (Vulnerability Filtering) still
stand, as despite the steps taken to completely validate or discard each vulnerability
are comparable for hosts H0, H1, H2, H3 and H5, as shown in Table 5.9, “random”
approaches RN and SR continue to present the worst evolution with respect to every
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other considered strategy. If confronted against Table 5.5 of Section 5.2 (Vulnerability
Filtering), Table 5.11 confirms the same trend, with the only difference of achieving
minor increments in convergence speed for vulnerability-based strategies VS and
VP as well as random-based strategies RN and SR, as expected from the results of
Table 5.9.

Table 5.11. Mean percentage of steps required for each strategy to achieve respectively
≥ 50%, ≥ 66% and ≥ 90% accuracy of the vulnerability inventory VI (i.e. validation
progress), across every host.

Strategy CVE validated
50% 66% 90%

RN 76.5% 85.8% 94.5%
SR 68.3% 76.7% 87.7%
PP 14.8% 23.3% 48.4%
VS 42.3% 53.0% 73.0%
VP 39.4% 50.1% 70.7%

Figure 5.6 compares the evolution of the average number of CVE vulnerabilities
that still have to be validated after x steps of each platform ordering strategy for
hosts H1 and H4.
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(b) H1 Platform Dependency

0 500 1000 1500 2000
0

50

100

150

200
RN

SR

PP

VS

VP

Steps

M
ea

n 
of

 C
V
Es

 t
o 

va
lid

at
e 

(9
0%

 C
Is

)
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(d) H4 Platform Dependency

Figure 5.6. Mean of the CVEs that still have to be validated after each step of the
prioritization strategies. Comparison between the results of Section 5.2 (Vulnerability
Filtering) and Section 5.4 (Platform Dependency). H1 represents an Office host, H4
represents a Development host.

In this case, there is no apparent difference between the number of steps required
for termination as well as the evolution of the different strategies with respect to the
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number of steps, when compared against the references of Section 5.2 (Vulnerability
Filtering). This is expected, since as discussed before, the distribution of the
platforms compatible with this advancement is not uniform across the vulnerabilities
(CVE) of each considered host hi. Indeed, if during the execution of the validation
of the vulnerabilities of a host hi, a “generic” platform (i.e. the platform with the
version attribute set to either NONE - or ANY *) is selected after all corresponding
platforms which relate to single (or to a range of) versions, this advancement will
have no effect. This poses as a limitation of this approach, and is addressed by the
proposal in Section 4.6 (Structure-Aware).

5.4.4 Considerations on the evolution of the already-optimized
environment

The considerations made for Figure 5.4 in the previous section (Version Optimiza-
tion) still stand, as despite the steps taken to completely validate or discard each
vulnerability are comparable for hosts H0, H2, H3 and H5, as shown in Table 5.10,
“random” approaches RN and SR continue to present the worst evolution with respect
to every other considered strategy. If confronted against Table 5.8 of Section 5.3
(Version Optimization), Table 5.12 confirms the same trend, with the only difference
of achieving minor increments in convergence speed for vulnerability-based strategies
VS and VP as well as random-based strategies RN and SR, as expected from the
results of Table 5.10.

Table 5.12. Mean percentage of steps required for each strategy to achieve respectively
≥ 50%, ≥ 66% and ≥ 90% accuracy of the vulnerability inventory VI (i.e. validation
progress), across every host.

Strategy CVE validated
50% 66% 90%

RN 69.3% 78.8% 93.6%
SR 61.6% 71.2% 85.0%
PP 12.6% 22.5% 54.5%
VS 28.9% 42.2% 71.8%
VP 28.8% 41.6% 71.9%

Figure 5.7 compares the evolution of the average number of CVE vulnerabilities
that still have to be validated after x steps of each platform ordering strategy for
hosts H0 and H3.

Also in this case, there is no apparent difference between the number of steps
required for termination as well as the evolution of the different strategies with respect
to the number of steps, when compared against the references of Section 5.3 (Version
Optimization). This is expected, since as discussed before, the distribution of the
platforms compatible with this advancement is not uniform across the vulnerabilities
(CVE) of each considered host hi. Indeed, if during the execution of the validation
of the vulnerabilities of a host hi, a “generic” platform (i.e. the platform with the
version attribute set to either NONE - or ANY *) is selected after all corresponding
platforms which relate to single (or to a range of) versions, this advancement will
have no effect. This poses as a limitation of this approach, and is addressed by the
proposal in Section 4.6 (Structure-Aware).
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(a) H0 Version Optimization
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(b) H0 Platform Dependency
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(c) H3 Version Optimization
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(d) H3 Platform Dependency

Figure 5.7. Mean of the CVEs that still have to be validated after each step of the prioriti-
zation strategies. Comparison between the results of Section 5.3 (Version Optimization)
and Section 5.4 (Platform Dependency). H0 represents an Office host, H3 represents a
Server host.

5.5 A Platform Structure-Aware Algorithm
Section 4.5 (Platform Dependency) provided an interesting advancement which

considers platforms expressed as CPE strings not as a monolithic entity, but as a
collection of attributes. Section 4.6 (Structure-Aware) takes this approach further, by
designing a new algorithm in order to fully exploit the formal relationships between
the attributes of a CPE string.

The main idea behind the proposal is to approach the validation of vulnerabilities
by validating one platform attribute at a time. While this increases the number of
steps needed to validate a single platform (since all its attributes need to be validated
one at a time), this approach has the possibility of discarding entire sets of platforms
that share a subset of attributes early on, and more effectively than the solution
advanced in the last section (e.g. if a vendor is not present in the system, any
platform which derives from that vendor is automatically discarded). To achieve this,
the proposed approach constructs two graph structures: the Host-Platform Graph
(HPGi), and the truncated vulnerability graph Gtx

i , and then performs operations
on these graphs that lead to an increase the quality of the automatically generated
inventories VIraw and DIraw provided by vulnerability and network scanners. In
particular, Algorithm 6 of Section 4.6 (Structure-Aware) presents the pseudo-code
for this new approach, which pivots around the exploration of the host-platform
graph HPGi. Since each node of HPGi maps to a CPE attribute, exploring and
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validating these nodes has the capacity to discard entire sets (sub-trees) of CPE
which share common attributes. The exploration of HPGi is guided by four proposed
cost functions (R, P, V and VP) which reason on Gtx

i .
The evaluation of the newly proposed approach has been carried out consistently

with the evaluation of all the previous methodologies (Section 5.2, Vulnerability
Filtering), optimizations (Section 5.3, Version Optimization) and approaches (Sec-
tion 5.4, Platform Dependency) to ensure comparability. Thus, the newly proposed
approach has been applied using all four proposed cost functions, which have been
implemented on inventories derived from the environment described in Section 5.1
(Hosts H0-H7). It should be noted that each cost function is comparable to one or
multiple strategies from previous sections, in particular: (i) R is comparable to RN
and SR, (ii) P is comparable to PP, (iii) V is comparable to VS, and (iv) VP is
comparable to VP.

It should also be noted that none of the explorations of HPG driven by the cost
functions are completely deterministic: in R the platforms follow a random order (i.e.
no sorting is applied) and thus lead to a random exploration of the host-platform
graph, V performs a sorting on the vulnerabilities according to their scoring, and
then applies the same score to all the platforms pertaining to vulnerabilities with the
same scoring and thus may lead to a random branching choice during the exploration
of the graph, and P and VP may lead to a random branching choice if multiple
platforms have the same score. For this reasons, 50 instances have been generated
for each exploration of the graph driven by each cost function in order to compare
statistically relevant results.

As per the previous sections, the final result of the validation described by
Table 5.3 of Section 5.2 (Vulnerability Filtering) still stands. Note that this new
approach can also be carried out on the modified vulnerability and device inventories
proposed in Section 5.3 (i.e. by compressing contiguous product versions as product
version ranges), thus in such case the final result will be described by Table 5.6 of
Section 5.3 (Version Optimization). This is due to the fact that the host-platform
graph HPG derives from the CPE strings of the device inventory, thus if these
inventories are pre-processed the resulting host-platform graph will change according
to the result of the pre-processing.

5.5.1 Application to a non-optimized environment (Section 5.2)
Table 5.13 shows the mean of the number of steps to validate all the vulnera-

bilities (90% Confidence Intervals CIs) in every host of the case study described in
Section 5.1, for each cost function, without any prior optimization pass. Given this
setting, a correct reference to compare this result would be Table 5.4 of Section 5.2
(Vulnerability Filtering). As a reminder, hosts H0 and H1 represent Office hosts, H2
and H3 represent Server hosts, H4 and H5 represent Development hosts and H6 and
H7 represent Generic hosts.

For host H0, random-based cost function R requires about ≈ 33 steps to validate
all the vulnerabilities, while platform-based cost functions P and VP necessitate
≈ 34 steps, and lastly V necessitates ≈ 28 steps. For host H1, R requires about
≈ 147 steps to validate all the vulnerabilities, while P and V necessitate ≈ 142
steps, and lastly VP necessitates ≈ 93 steps. Host H2 follows a trend similar to H0
in which random-based cost function R requires about ≈ 49 steps to validate all
the vulnerabilities, while platform-based cost functions P and VP necessitate ≈ 46
steps, and lastly V necessitates ≈ 44 steps. All cost functions of host H3 require
≈ 36 steps to terminate. In host H4, R requires about ≈ 115 steps to validate all
the vulnerabilities, while P and V necessitate ≈ 77 steps, and lastly VP necessitates
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Table 5.13. Results of the application of the strategies on the case study, without prior
optimization

Host Metric Cost Functions
R P V VP

H0
Ci1 33.67 34.64 30.23 34.4
Mean 33.24 34.52 28.28 34.27
Ci0 32.81 34.40 26.33 34.15

H1
Ci1 166.99 161.82 172.81 118.04
Mean 147.48 142.62 142.84 92.92
Ci0 127.97 123.42 112.87 67.81

H2
Ci1 49.93 48.38 45.58 47.57
Mean 48.68 47.44 44.18 46.12
Ci0 47.43 46.50 42.78 44.68

H3
Ci1 36.06 36.62 35.92 36.66
Mean 35.74 36.50 35.74 36.52
Ci0 35.42 36.38 35.56 36.39

H4
Ci1 120.29 77.92 83.06 98.25
Mean 114.56 75.32 79.10 94.60
Ci0 108.83 72.72 75.14 90.95

H5
Ci1 12.08 12.70 12.20 12.76
Mean 11.62 12.58 12.12 12.62
Ci0 11.16 12.46 12.04 12.49

H6
Ci1 1199.13 746.35 543.51 1002.74
Mean 1146.94 716.72 490.00 958.33
Ci0 1094.75 687.09 436.49 913.91

H7
Ci1 60.78 51.77 59.43 54.02
Mean 58.98 51.66 57.70 53.02
Ci0 57.18 51.55 55.97 52.03

≈ 95 steps. For host H5, all cost functions require ≈ 12 steps to terminate. Host
H6 requires about ≈ 1147 steps to validate all the vulnerabilities for random-based
cost function R, while P necessitates ≈ 717 steps, V necessitates ≈ 490 steps, and
lastly VP necessitates ≈ 958 steps. Lastly, in host H7 random-based cost function
R requires about ≈ 59 steps to validate all the vulnerabilities, while platform-based
cost functions P and VP necessitate ≈ 52 steps, and lastly V necessitates ≈ 58
steps.

Compared to the result obtained in Table 5.4 of Section 5.2 (Vulnerability
Filtering), it can be immediately noticed that this new approach reduces significantly
the overall mean number of steps needed for termination, across all comparable
strategies. In particular, it can be noticed that while not all the hosts are always
affected positively by this new approach (e.g. all cost functions on H6 achieve
−19.39% at minimum, but 46.22% on average), the average reduction in the mean
number of steps required to terminate across all hosts and comparable strategies
is still significant, at 72.32%. The few, negative or neutral results are expected
for hosts with few vulnerabilities and platforms (H6 as discussed before, as well as
H0 which achieves 0.15% at minimum, 25.52% on average across all cost functions)
considering that the proposed host-platform graph structure HPG requires the
human agent to validate multiple nodes (i.e. attributes of a platform) in order to
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validate a single platform. Conversely, the real power of HPG is its ability to discard
multiple platforms with one single interaction with the human agent. Indeed, by
taking a look at the number of false positives found in VI and DI (summarized in
Table 5.3 of Section 5.2, Vulnerability Filtering) it can be immediately noticed how
the hosts in which this new approach obtains the best results, are also the same
hosts which have the highest amount of platforms discarded during the validation
process, with the best average reduction in the mean number of steps required to
validate all vulnerabilities across all cost functions being seen in hosts H2, H3 and
H7, amounting to ≥ 95%. All three hosts have a false positive ratio among their
platforms of ≥ 99.6%, the highest of all other hosts in the considered case study.
Conversely, the worst performing hosts H0 and H6 which sit at a mean reduction in
the number of required steps of 25.52% and 46.22% respectively have a false positive
ratio among their platforms of 97.9% and 97.1% respectively, the lowest of the
proposed case study. This property is also at the base for another observation that
can be made on these experimental results, as an inspection of the results reveals
that this new approach benefits the most vulnerability-based cost functions V and
VP and random-based cost function R, with the average, minimum and maximum
reduction of the number of steps needed for completion being

• 85.83% on average for cost function R when compared against RN, with a
maximum of 96.79% on H3 and a minimum of 63.28% on H5.

• 77.31% on average for cost function R when compared against SR, with a
maximum of 96.69% on H3 and a minimum of 47.55% on H0.

• 58.35% on average for cost function P when compared against PP, with a
maximum of 96.68% on H3 and a minimum of −19.39% on H6.

• 68.42% on average for cost function V when compared against VS, with a
maximum of 96.62% on H3 and a minimum of 0.15% on H0.

• 71.69% on average for cost function VP when compared against VP, with a
maximum of 96.67% on H3 and a minimum of 15.33% on H0.

Manual inspection of the execution traces has shown evidence that the random-based
cost function R has the best reduction of the number of required steps on average
(average reduction of steps of 85.83% when compared against RN, and 77.31% when
compared against SR across all hosts), while vulnerability-based cost functions come
second, at 68.42% for V when compared against VS and 71.69% for VP when
compared against VP, across all hosts. When compared against PP, P has the least
benefit from this proposed approach, reaching a still respectable 58.35% reduction
on the number of steps required to terminate on average.

5.5.2 Application to an already-optimized environment (Section 5.3)
Table 5.14 shows the mean of the number of steps to validate all the vulnerabilities

(90% Confidence Intervals CIs) in every host of the case study described in Section 5.1,
for each strategy, after applying the optimization described in Section 4.4 (Version
Optimization). Given this setting, a correct reference to compare this result would
be Table 5.7 of Section 5.3 (Version Optimization). As a reminder, hosts H0 and
H1 represent Office hosts, H2 and H3 represent Server hosts, H4 and H5 represent
Development hosts and H6 and H7 represent Generic hosts.

For host H0, random-based cost function R requires about ≈ 19 steps to validate
all the vulnerabilities, while platform-based cost functions P and VP necessitate
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Table 5.14. Results of the application of the cost functions on the case study, after prior
optimization

Host Metric Cost Functions
R P V VP

H0
Ci1 19.83 20.27 18.74 20.72
Mean 19.46 20.12 18.16 20.57
Ci0 19.09 19.97 17.58 20.43

H1
Ci1 33.76 30.79 29.17 29.33
Mean 33.22 30.68 28.32 28.52
Ci0 32.68 30.57 27.47 27.72

H2
Ci1 42.85 43.22 42.28 43.83
Mean 42.52 43.06 41.80 43.68
Ci0 42.19 42.90 41.32 43.53

H3
Ci1 35.96 36.81 36.19 36.78
Mean 35.64 36.70 36.02 36.66
Ci0 35.32 36.59 35.85 36.54

H4
Ci1 106.89 71.27 72.28 92.22
Mean 102.26 69.42 69.02 90.10
Ci0 97.63 67.57 65.76 87.98

H5
Ci1 12.3 12.72 12.39 12.73
Mean 11.96 12.60 12.28 12.60
Ci0 11.62 12.48 12.17 12.47

H6
Ci1 388.44 325.10 267.14 385.88
Mean 378.62 324.06 257.10 379.62
Ci0 368.80 323.02 247.06 373.37

H7
Ci1 52.74 51.93 48.89 50.88
Mean 52.08 51.84 48.08 50.60
Ci0 51.42 51.75 47.27 50.32

≈ 20 steps, and lastly V necessitates ≈ 18 steps. For host H1, R requires about
≈ 33 steps to validate all the vulnerabilities, while vulnerability-based cost functions
V and VP necessitate ≈ 28 steps, and lastly P necessitates ≈ 31 steps. Host H2
requires about ≈ 43 steps to validate all the vulnerabilities using random-based
cost function R, while platform-based cost functions P and VP necessitate ≈ 43
steps, and lastly V necessitates ≈ 42 steps. All cost functions of host H3 require
≈ 36 steps to terminate. In host H4, R requires about ≈ 92 steps to validate all
the vulnerabilities, while cost functions P and V necessitate ≈ 64 steps, and lastly
VP necessitates ≈ 86 steps. For host H5, all cost functions require ≈ 12 steps to
terminate. Host H6 requires about ≈ 359 steps to validate all the vulnerabilities
for random-based cost function R, while P necessitates ≈ 322 steps, V necessitates
≈ 232 steps, and lastly VP necessitates ≈ 366 steps. Lastly, in host H7 all cost
functions except V require about ≈ 51 steps to validate all the vulnerabilities, while
V necessitates ≈ 46 steps.

Compared to the result obtained in Table 5.7 of Section 5.3 (Version Optimiza-
tion), it can be immediately noticed that this new approach reduces significantly the
overall mean number of steps needed for termination, across all comparable strategies,
consistently with the result on the environment without any other prior optimization.
Differently from the previous result, applying the proposed approach on top of an
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already optimized environment yields diminishing returns with respect to applying
the same approach on a non optimized environment. In particular, it can be noticed
that while not all the hosts are affected positively by this new approach (e.g. all cost
functions on H5 achieve a reduction of −25.05% at minimum, −11.24% on average),
the average reduction in the mean number of steps required to terminate across all
hosts and comparable strategies is still significant, at 52.38%. The few, negative or
neutral results are expected for hosts with few vulnerabilities and platforms (H5 has
already been discussed, while cost functions on H0 achieve −2.44% at minimum,
7.55% on average) considering that the proposed host-platform graph structure HPG
requires the human agent to validate multiple nodes (i.e. attributes of a platform)
in order to validate a single platform. Conversely, the real power of HPG is its
ability to discard multiple platforms with one single interaction with the human
agent. Indeed, by taking a look at Table 5.6 of Section 5.3 (Version Optimization),
it can be immediately noticed how the hosts in which this new approach obtains the
best results, are also the same hosts which have the highest amount of platforms
discarded during the validation process, with the best average results across all cost
functions being seen in hosts H2, H3 and H7, amounting to ≥ 85.13%. All three
hosts have a false positive ratio among their platforms of ≥ 98.5%, the highest of all
other hosts in the considered case study. Conversely, the worst performing hosts
H0 and H5 which sit at a reduction in the number of required steps of 7.55% and
−12.02% respectively have a false positive ratio among their platforms of 92.6% and
94.1% respectively, the lowest of the proposed case study. This property is also at
the base for another observation that can be made on these experimental results, as
an inspection of the results reveals that this new approach continues to benefit the
most vulnerability-based cost functions V and VP and random-based cost function
R even on-top of an already optimized environment, with the average, minimum and
maximum reduction of the number of steps needed for completion being

• 68.49% on average for cost function R when compared against RN, with a
maximum of 88.81% on H7 and a minimum of 12.62% on H5.

• 52.36% on average for cost function R when compared against SR, with a
maximum of 86.81% on H3 and a minimum of −15.67% on H5.

• 42.50% on average for cost function P when compared against PP, with a
maximum of 86.76% on H3 and a minimum of −11.57% on H5.

• 46.74% on average for cost function V when compared against VS, with a
maximum of 86.42% on H3 and a minimum of −20.46% on H5.

• 51.80% on average for cost function VP when compared against VP, with a
maximum of 86.59% on H3 and a minimum of −25.05% on H5.

Manual inspection of the execution traces has shown evidence that random-based
cost function R is the most impacted on average (average reduction of steps of
68.49% when compared to RN, and 52.36% when compared against SR across all
hosts), while vulnerability-based cost functions come second, at 46.74% for V when
compared against VS and 51.80% for VP when compared against VP, across all
hosts. When compared against PP, P has the least benefit from this proposed
approach, reaching a still respectable 42.50% reduction on the number of steps
required to terminate on average.
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5.5.3 Considerations on the evolution of the non-optimized envi-
ronment

A first glance at the mean number of steps required for termination (Table 5.13)
reveals that a consistent difference between random (R) and semantic driven cost
functions (P, V and VP) can be immediately noticed only for hosts H4 and H6.
Hosts H2, H3, H5 and H7 do not apparently exhibit any difference between different
cost functions, and hosts H0 and H1 present alternating differences between the cost
functions. This is due to (i) H0 and H5 having few vulnerabilities insisting on few,
distinct platforms, (ii) H2 and H3 having vulnerabilities with large OR configurations
of distinct platforms which are incompatible with their respective hosts, (iii) H1 and
H7 having a large number of mutually-exclusive versions referred to few products
(e.g. in H7 each product has on average 10 versions), and (iv) the fact that the result
shown in the table is the final state of the application of the proposed approach,
i.e. the average number of steps necessary to validate or discard all vulnerabilities
in VIraw. These findings make it interesting to analyze the approach’s evolution
over the number of steps. Thus, Figure 5.8 has been plotted to visually analyze the
average number of CVE vulnerabilities that still have to be validated after x steps
of each exploration driven by each cost function.

The first result that can be noticed by analyzing the figure is that despite the fact
that the number of steps taken to completely validate or discard each vulnerability
are comparable for hosts H2, H3, H5 and H7, as shown in Table 5.13, “random-
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Figure 5.8. Mean of the CVEs that still have to be validated after each step of the
exploration of HPG driven by each cost function. H0 and H1 represent Office hosts, H2
and H3 represent Server hosts.
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Figure 5.8. Mean of the CVEs that still have to be validated after each step of the
exploration of HPG driven by each cost function. H4 and H5 represent Development
hosts, H6 and H7 represent Generic hosts.

based” approach represented by the cost function R continue to present the worst
evolution with respect to every other considered cost function, even if by a smaller
margin than the previous cases. This is easily noticed in the figure and confirmed
in Table 5.15, for which the number of vulnerabilities still left to validate does not
decrease significantly (below 50%) until 58.6% of the total elapsed steps, for R.17

This is expected, since “random” approaches do not consider any semantics while
guiding the exploration of HPG, i.e. deciding the order of the platforms to submit
to the human agent, and therefore proposed platforms may not be significantly
impactful with respect to the vulnerabilities to be validated.

The staircase-like trend originally found on “vulnerability-driven” strategies
VS and VP is now found on “platform-driven” cost functions P and VP. This is
not a limitation per se, but a characteristic of how these cost functions guide the
exploration of the graph. In particular it can be seen that each “plateau” is followed
by a sharp drop (e.g. H4 ad H6 discard ≈ 150 vulnerabilities in a single step each)
in the number of vulnerabilities left to validate or discard. Manual inspection of
the execution traces reveals that this behaviour is a symptom of a breadth-first
exploration of the host-platform graph HPG, aggravated by the presence of many
OR branches in the CPE configuration trees of certain CVEs. Indeed P and VP
are either capable of guiding the exploration towards a platform which is present in
the given host hi and that validates (i.e. solves at least one configuration of) many

1768.3% for ≥ 66%, 83.0% for ≥ 90%.
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Table 5.15. Mean percentage of steps required for each exploration of HPG driven by
each cost function to achieve respectively ≥ 50%, ≥ 66% and ≥ 90% accuracy of the
vulnerability inventory VI (i.e. validation progress), across every host.

Cost Function CVE validated
50% 66% 90%

R 58.6% 68.3% 83.0%
P 19.7% 37.5% 56.1%
V 34.8% 47.1% 65.4%
VP 39.4% 55.0% 68.1%

vulnerabilities of hi within the first few steps, or tend to spend a lot of time “floating”
on the surface, discarding all the platforms which are part of the OR branches of
all the configurations of each vulnerability down to the last one, before cascading
down. This is reflected by Table 5.15, for which the number of vulnerabilities still
left to validate does not decrease significantly (below 50%) until 19.7% and 39.4%
of the total elapsed steps, for P and VP respectively. Interestingly, it only takes
56.1% and 68.1% of the total elapsed steps for P and VP respectively to validate or
discard ≥ 90% of all the vulnerabilities in a given host.18

Lastly, the vulnerability-based cost function V sits in between random-based
and vulnerability-based cost functions, with a normal tendency to decline over time,
without any quirks (no staircases, no asymptotic evolution). This is reflected in the
fact that under this cost function, the number of vulnerabilities still left to validate
does not decrease significantly (below 50%) until 34.8%,19 similarly to VP.

Figure 5.9 compares the evolution of the average number of CVE vulnerabilities
that still have to be validated after x steps of each platform ordering strategy
for hosts H0 and H3. In this case, the reduction in the number of steps required
for termination as well as the evolution of the different strategies with respect to
the number of steps are apparent, and are very different if compared against the
references of Section 5.2 (Vulnerability Filtering). This is due to the fact that the
advancement proposed in this section takes on a completely different approach on the
issue by leveraging the Host-Platform Graph HPG in order to enhance the quality of
the considered inventories. Some similarities can still be observed between the two
graphs, however. Most notably: (i) all strategies seem to terminate approximately
in the same “spot” for both methodologies in H3 and (ii) a staircase-like trend
persists in cost function P and strategy PP as well as VP for both considered hosts.
Moreover, this feature which is also present in strategy VS is most notably not
present anymore in cost function V. As already stated before, this is due to the fact
that while the underlying data (i.e. platforms in CPE format) remains the same,
the advancement proposed in this section takes a different approach with respect to
the reference methodology proposed in Section 5.2 (Vulnerability Filtering).

5.5.4 Considerations on the evolution of the already-optimized
environment

A first glance at the mean number of steps required for termination (Table 5.14)
reveals that a consistent difference between random (R) and semantic driven cost
functions (P, V and VP) can be immediately noticed only for hosts H1 and H4.
Hosts H2, H3 and H5 exhibit small, alternating differences between different cost
functions, and hosts H0, H6 and H7 present alternating differences between the

1837.5% and 55.0% respectively for ≥ 66%.
1947.1% for ≥ 66%, 65.4% for ≥ 90%.



5.5 A Platform Structure-Aware Algorithm 138

0 20 40 60 80
0

2

4

6
RN

SR

PP

VS

VP

Steps

M
ea

n 
of

 C
V
Es

 t
o 

va
lid

at
e 

(9
0%

 C
Is

)

(e) H0 Reference

0 10 20 30
0

2

4

6
R

P

V

VP

Steps

M
ea

n 
of

 C
V
Es

 t
o 

va
lid

at
e 

(9
0%

 C
Is

)

(f) H0 Platform Structure-Aware

0 500 1000
0

5

10 RN

SR

PP

VS

VP

Steps

M
ea

n 
of

 C
V
Es

 t
o 

va
lid

at
e 

(9
0%

 C
Is

)

(g) H3 Reference

0 10 20 30
0

5

10 R

P

V

VP

Steps

M
ea

n 
of

 C
V
Es

 t
o 

va
lid

at
e 

(9
0%

 C
Is

)

(h) H3 Platform Structure-Aware

Figure 5.9. Mean of the CVEs that still have to be validated after each step of the
prioritization strategies. Comparison between the results of Section 5.2 (Vulnerability
Filtering) and Section 5.5 (Structure-Aware). H0 represents an Office host, H3 represents
a Server host. Keep in mind that cost function R is comparable to strategies RN and
SR, cost function P is comparable to strategy PP, cost function V is comparable to
strategy VS and cost function VP is comparable to strategy VP (The colors match).

cost functions. This is due to (i) H0 and H5 having few vulnerabilities insisting
on few, distinct platforms, (ii) H2 and H3 having vulnerabilities with large OR
configurations of distinct platforms which are incompatible with their respective
hosts, (iii) H1 and H7 having a multiple mutually-exclusive versions or version ranges
referred to few products (e.g. in H7 each product has on average 2 versions), and
(iv) the fact that the result shown in the table is the final state of the application of
the proposed approach, i.e. the average number of steps necessary to validate or
discard all vulnerabilities in VIraw. These findings make it interesting to analyze
the approach’s evolution over the number of steps. While these issues appear also
in the case of a non-optimized environment, the reduction in number of platforms
due to the version optimization has an effect on the magnitude of these issues. As
an example, the cost function V gains efficacy on H7, in H1 all semantic-driven
cost functions gain efficacy when compared to R and for H6, cost function VP
looses efficacy due to the platform compression caused by encoding version ranges
increasing the effectiveness of R. Thus, Figure 5.10 has been plotted to visually
analyze the average number of CVE vulnerabilities that still have to be validated
after x steps of each exploration driven by each cost function.

The first result that can be noticed by analyzing the figure is that despite the
fact that no cost function appears to always minimize the number of steps taken
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Table 5.16. Mean percentage of steps required for each exploration of HPG driven by
each cost function to achieve respectively ≥ 50%, ≥ 66% and ≥ 90% accuracy of the
vulnerability inventory VI (i.e. validation progress), across every host.

Cost Function CVE validated
50% 66% 90%

R 70.0% 80.2% 91.7%
P 16.2% 37.7% 65.0%
V 35.8% 48.4% 75.6%
VP 45.4% 66.4% 83.1%

to completely validate or discard each vulnerability for hosts H2, H3 and H5, as
shown in Table 5.14, the proposed “random-based” approach represented by the
cost function R continues to present the worst evolution with respect to every other
considered cost function, even if by a smaller margin than the previous cases. This
is easily noticed in the figure and confirmed in Table 5.16, for which the number of
vulnerabilities still left to validate does not decrease significantly (below 50%) until
70.0% of the total elapsed steps, for R.20 This is expected, since “random” approaches
do not consider any semantics while guiding the exploration of HPG, i.e. deciding
the order of the platforms to submit to the human agent, and therefore proposed
platforms may not be significantly impactful with respect to the vulnerabilities to

2080.2% for ≥ 66%, 91.7% for ≥ 90%.

0 5 10 15 20
0

2

4

6
R

P

V

VP

Steps

M
ea

n 
of

 C
V
Es

 t
o 

va
lid

at
e 

(9
0%

 C
Is

)

(a) H0

0 10 20 30
0

5

10

15 R

P

V

VP

Steps

M
ea

n 
of

 C
V
Es

 t
o 

va
lid

at
e 

(9
0%

 C
Is

)

(b) H1

0 10 20 30 40
0

5

10

15 R

P

V

VP

Steps

M
ea

n 
of

 C
V
Es

 t
o 

va
lid

at
e 

(9
0%

 C
Is

)

(c) H2

0 10 20 30
0

5

10 R

P

V

VP

Steps

M
ea

n 
of

 C
V
Es

 t
o 

va
lid

at
e 

(9
0%

 C
Is

)

(d) H3

Figure 5.10. Mean of the CVEs that still have to be validated after each step of the
exploration of HPG driven by each cost function. H0 and H1 represent Office hosts, H2
and H3 represent Server hosts.
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Figure 5.10. Mean of the CVEs that still have to be validated after each step of the
exploration of HPG driven by each cost function. H4 and H5 represent Development
hosts, H6 and H7 represent Generic hosts.

be validated.
The staircase-like trend originally found on “vulnerability-driven” strategies

VS and VP is now found on “platform-driven” cost functions P and VP. This is
not a limitation per se, but a characteristic of how these cost functions guide the
exploration of the graph. In particular it can be seen that each “plateau” is followed
by a sharp drop (e.g. H4 ad H6 discard ≈ 150 vulnerabilities in a single step each)
in the number of vulnerabilities left to validate or discard. Manual inspection of
the execution traces reveals that this behaviour is a symptom of a breadth-first
exploration of the host-platform graph HPG, aggravated by the presence of many
OR branches in the CPE configuration trees of certain CVEs. Indeed P and VP
are either capable of guiding the exploration towards a platform which is present in
the given host hi and that validates (i.e. solves at least one configuration of) many
vulnerabilities of hi within the first few steps, or tend to spend a lot of time “floating”
on the surface, discarding all the platforms which are part of the OR branches of all
the configurations of each vulnerability down to the last one, before cascading down.
This is reflected by Table 5.16, for which the number of vulnerabilities still left to
validate does not decrease significantly (below 50%) until 16.2% and 45.4% of the
total elapsed steps, for P and VP respectively. Interestingly, in the already-optimized
case P and VP diverge significantly in their evolution, requiring 65.0% and 83.1%
of the total elapsed steps for P and VP respectively to validate or discard ≥ 90% of
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all the vulnerabilities in a given host.21 Manual inspection of the execution traces
has revealed that the cause is due to VP enforcing a vulnerability-first approach, for
which the severity of each vulnerability is a stronger factor in the ordering of the
platforms than the OR−AND structure of the configuration trees. This in turn means
that the exploration guided by VP will not focus on the most impactful platforms
first (which is exactly what P does), but will select first platforms associated to
“severe” CVEs, and then only among those select the most impactful.

Lastly, the vulnerability-based cost function V sits in between random-based
and vulnerability-based cost functions, with a normal tendency to decline over time,
without any quirks (no staircases, no asymptotic evolution). This is reflected in the
fact that under this cost function, the number of vulnerabilities still left to validate
does not decrease significantly (below 50%) until 35.8%22 steps.
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Figure 5.11. Mean of the CVEs that still have to be validated after each step of the
prioritization strategies. Comparison between the results of Section 5.3 (Version Opti-
mization) and Section 5.5 (Structure-Aware). H3 represents a Server host, H5 represents
a Development host.

Figure 5.11 compares the evolution of the average number of CVE vulnerabilities
that still have to be validated after x steps of each platform ordering strategy for
hosts H3 and H5. Also in this case, the reduction in the number of steps required
for termination as well as the evolution of the different strategies with respect to
the number of steps are apparent, and are very different if compared against the
references of Section 5.3 (Version Optimization). This is due to the fact that the
advancement proposed in this section takes on a completely different approach on the

2137.7% and 66.4% respectively for ≥ 66%.
2248.4% for ≥ 66%, 75.6% for ≥ 90%.
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issue by leveraging the Host-Platform Graph HPG in order to enhance the quality of
the considered inventories. Some similarities can still be observed between the two
graphs, however. Most notably: (i) all strategies seem to terminate approximately
in the same “spot” for both methodologies and (ii) a staircase-like trend persists
in cost function P and strategy PP as well as VP. Moreover, this feature which is
also present in strategy VS is most notably not present anymore in cost function
V. As already stated before, this is due to the fact that while the underlying data
(i.e. platforms in CPE format) remains the same, the advancement proposed in this
section takes a different approach with respect to the base methodology proposed in
Section 5.2 (Vulnerability Filtering).

5.6 Experimental Evaluation of Computational Pipeline

Attack Graph Generation and Risk Estimation

Raw Data Collection

Environment

Monitor

Analyze

External
Repositories

Vulnerability Filtering

Vulnerability Aggregation

0

13

2

Figure 5.12. High-Level architecture of the proposed computational pipeline.

Section 4.2 introduced a computational pipeline (Figure 5.12) to be integrated
in the data collection aggregation and integration component of a self protecting
system. The first aim of this computational pipeline is to enhance the quality of
automatically generated inventories which usually derive from vulnerability scanners
monitoring the environment, through the application of a filtering module which
implements the methodologies, strategies and approaches described in Sections 4.3 to
4.6. The second aim of this computational pipeline is to allow the analyst to trade-off
accuracy in favour of scalability during the attack graph-based risk analysis through
the use of an aggregation module, which implements the methodology described in
Section 4.7.

Thus, this section will present the experimental evaluation of the proposed com-
putational pipeline, as well as its vulnerability filtering and aggregation components
to assess their benefit and limitations when included in the self-protecting system.
This section will also describe the additional experimental settings used to perform
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the evaluation of the computational pipeline, as well as an evaluation of the results
regarding scalability and risk estimation.

5.6.1 Setting Configuration
In order to perform the validation of the whole computational pipeline, sev-

eral network environments have been produced using the environment described
previously in Section 5.1 as a base.

To test the scalability, the base environment has been expanded in order to achieve
adequate complexity in order to perform a meaningful analysis of the scalability of
the analysis processes. In particular, several different LAN networks (i.e., networks
with full reachability between hosts) of different sizes have been considered, where
multiple replicas of the 8 hosts described in Section 5.1 (H0-H7) have been included.
Such topology has been considered for different motivations: (i) a LAN setting
is the common setup used for the validation of the state of the art attack graph
algorithms [50, 87] and (ii) LANs represent a common building block of a larger
enterprise network and are currently the parts of the network that have the largest
impact on scalability.

In addition, a complex network environment has been constructed using an
inspection of the network of the department of Computer, Control and Management
Engineering at Sapienza university as a base, which has been carried out with
network mapping software and manual inspection. After an anonymization and
sanitization pass, the results of this inspection revealed that the network of the
department taken as a reference is composed of around 250 devices arranged in 5
LANs connected through a router in a star topology. In order to represent these
250 devices, part of the environment described previously in Section 5.1 has been
used. More precisely, the 8 hosts of the previously generated environment have been
arranged and duplicated within the new complex network environment in order to
mimic the real network devices. The arrangement of the hosts in the network LANs
has been achieved through each hosts’s type (e.g. “server” hosts have been assigned
to the DMZ). This has allowed full visibility over the filtered (i.e. ground truth)
and unfiltered vulnerabilities of these hosts in the network. Table 5.17 summarizes
the configurations of the hosts and the number of (false and true) platforms and
vulnerabilities identified by the scanners.

The results of the proposed computational pipeline have been compared with
the current state of the art for attack graph-based self-protecting systems [38]. In
particular, the state of the art implementation [19] of an attack graph has been
used as a baseline reference (SoA in the figures).23 This reference attack graph has
been fed with the vulnerability inventory manually constructed as ground truth to
compare the benefit of the proposed approach with respect to a solution that is not
biased from initial false positives (i.e., a good scenario has been considered for the
state of the art).

The evaluation of the whole pipeline has been conducted on a Linux server with
an Intel(R) Xeon(R) Gold 6248 CPU 2.50GHz and 256 GB of memory.

23The Attack Graph follows the NETSPA model, in which edges encode the vulnerabilities which
an attacker can take to “jump” from one privilege@host to another.
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5.6.2 Vulnerability Filtering Component Evaluation
The first step of the pipeline (as described in Figure 5.12) is vulnerability filtering,

whose goal is the improvement of the accuracy of risk estimation by filtering out
false positives coming from vulnerability scanners.

To perform an evaluation of this component, it is necessary to examine how
different filtering approaches affect the results of the cyber risk analysis and how
they affect the attack graph size in a mesh network composed by the 8 hosts (i.e., a
configuration resembling the network of a small company with heterogeneous hosts).

In this configuration, the the state of the art (SoA) reference attack graph
contains 629 vulnerabilities as well as 74 false positive vulnerabilities detected by
the scanners. By computing the risk of a vulnerability as its CVSS base score, these
false positives directly impact the risk estimation for four of the eight hosts (H1, H2,
H4 and H6 are unaffected) in the environment with a Mean Absolute Error (MAE)
of the risk estimation of 0.38 on average (i.e., the value of the risk of a target differs
from its risk in the state of the art reference attack graph by 0.38 on average), with
a maximum of 0.59 on H3 and a minimum of 0.17 on H0. This result stresses the
importance of filtering false positives from vulnerability scans due to their negative
impact on cyber risk evaluation. This result has been obtained by computing the
risk value of a host hi as the highest risk value (i.e. CVSS base score) among all
the vulnerabilities pertaining to host hi, which maps to a simple worst-case scenario.
And while using the CVSS base score may be a simplistic computation of a risk
value, if more elements are factored in the risk calculation it is possible for the Mean
Absolute Error of the risk estimation to increase even beyond the one presented in
this case study.

Since this early result highlights that the filtering process is beneficial for the
risk estimation in four of the eight hosts present (i.e. without any filtering process
the risk estimation performed on these hosts return results which are distant from
the truth) it becomes interesting to study the evolution of the Mean Absolute Error
of the risk estimation at each step of the filtering process.
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Figure 5.13. Comparison between the mean of the CVEs that still have to be validated
after each step of the exploration of HPG driven by each cost function (5.13(a)) and
the variation between the risk evaluated in partially filtered attack graphs and in the
ground truth across elapsed filtering steps (5.13(b)). This figure considers host H7,
which represents a Generic host.

Figure 5.13 shows the Mean Absolute Error of the worst-case risk estimation
performed on H7 after each step of the filtering process using the methodology
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described in Section 4.6 (Structure-Aware). For the evaluation of the proposed
computational pipeline, the structure-aware methodology (Section 4.6) has been
chosen in conjunction with the platform vulnerability optimization (Section 4.4)
due to its performance in the proposed scenario with respect to other proposed
methodologies.

The first relevant aspect to point out is that the false positive vulnerabilities in
H7 (14 CVE) cause an average error in the risk estimation of 0.23% (i.e. MAE =
0.23 at step 0, without any filtering applied). In addition, it can be noticed that
platform-based approach P is the quickest approach to achieve a MAE of 0, only
needing 19 steps to do so. Meanwhile all other approaches V, VP and R necessitate
respectively 47, 50 and 55 steps to reach a MAE of 0 (i.e. achieve the same risk
estimation as with the ground truth). The second relevant aspect that can be derived
from the graph is that the MAE has a staircase-like evolution, regardless of the
adopted approach. Manual inspection of the execution traces has revealed that this
is a bias that derives from the source of the CVSS data used to evaluate the risk
during this case study, NVD. Indeed, elements of the CVSS vector string in NVD are
scored according to a well defined, qualitative scale. This in turn limits the numerical
values assigned to each CVSS attribute to few well known values. And since these
values are then factored in the CVSS base score formula, the possible values of the
CVSS base score, used in this case study as the measure of risk of a vulnerability, are
limited, non continuous and well defined. Thus, this non continuity is the main factor
in the staircase-like trend of the MAE in Figure 5.13(b). By also comparing the
evolution of the MAE with the mean of CVEs which are still left to validate across
all filtering approaches for H7, it can be noticed that there exists an association
between the drops in the “staircases” of Figure 5.13(b) (MAE) and the “plunges”
taken in Figure 5.13(a) (Mean CVE). This is expected, since decreasing the number
of CVEs which are still to be validated (i.e. validating or discarding vulnerabilities)
in turn has the possibility to decrease both the number false positive vulnerabilities
of H7, as well as the deviation from the ground truth (MAE). Indeed, the sharp drop
shown by filtering approach P between steps 10 and 20 of Figure 5.13(a) is reflected
by the MAE reaching zero at step 19 in Figure 5.13(b). Similarly, the sharp drop
in the number of CVEs left to validate around step 50 for VP in Figure 5.13(a) is
reflected by the MAE reaching zero at step 50 in Figure 5.13(b). The same can be
observed for filtering approach V, in which a sharp drop during the early stages of
validation can be seen for both the MAE and the number of CVEs to be validated
around step 10 (MAE drops below 0.05).

Another direct effect of the elimination of false positive vulnerabilities from the
hosts of the network is the reduction of the size of the attack graph, in addition
to the improvement of the accuracy of risk analysis. To measure the attack graph
size reduction, Figure 5.14 has been plotted to show how each step of the different
filtering approaches affects the number of edges of the attack graphs built using the
partially filtered inventories (i.e. filtering is halted upon reaching x steps).

All filtering approaches reduce the number of edges from 5032 to 4440, corre-
sponding to a space reduction of 11.76% of the attack graph on the proposed 8-host
network. The first result that can be noticed by analyzing the figure is that the
convergence rate to the ground truth is comparable for both the number of edges
(Figure 5.14) and the attack graph risk accuracy (Figure 5.13). More in detail, it
can be clearly noticed that filtering approaches P and V display the best overall
performance, with a sharp drop in the number of edges of the attack graph during
the first 50 steps, and a relatively flat curve to prune the remaining 6.36% and
9.33% edges derived from false positive vulnerabilities on the 8 hosts, respectively.
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Figure 5.14. Number of edges in partially filtered attack graphs for elapsed filtering steps
according to the different approaches. In this figure, each step affects all hosts of the
environment concurrently, e.g. step 1 in the x-axis of the figure refers to the application
of the fist step of multiple filtering approaches on all hosts of the network concurrently.
The Attack Graph follows the NETSPA model, in which edges encode the vulnerabilities
which an attacker can take to “jump” from one privilege@host to another (privileges are
either: none, user or root, hosts are H0-H7).

Filtering approach VP shows initial good performance which then stalls in a flat
staircase-like evolution which crosses R multiple times. R shows the worst overall
performance, requiring about 462 steps to fully terminate. These are expected
results indicating that the reduction of the attack graph edges follows the evolution
of the accuracy improvement over the steps of the filtering approaches. The two
results are however not equivalent, as the filtering methodology contributes to the
elimination of the edges of the attack graph due to false positive vulnerabilities even
while not directly contributing to the reduction in the error of the risk estimation of
a host, i.e. eliminating multiple elements from the attack graph may not affect the
risk estimation. This is apparent when considering the heavy staircase-like trend of
Figure 5.13 with the smoother trend displayed by this figure.

To wrap up, the analysis performed in this section showed the advantages of
filtering out false positives from the vulnerabilities in the inventories, in the proposed
cyber risk analysis pipeline. Without any filtering methodology, the current state
of the art solution for analyzing cyber risk is 38% less accurate on average and the
attack graph has 11.76% more edges. Among the different approaches, P and V
have the fastest convergence to the ground truth, resulting in a more accurate cyber
risk analysis and reduction of the attack graph size, given a fixed budget of steps. To
provide a comprehensive analysis of the advantages of the entire pipeline, the next
section will detail the analysis of the effects of the different aggregation strategies.



5.6 Experimental Evaluation of Computational Pipeline 148

5.6.3 Vulnerability Aggregation Component Evaluation
The vulnerability aggregation component described in Section 4.7 aims to reduce

the size of the vulnerability inventory used to generate attack graphs, thus improving
the scalability of the attack graphs in terms of size and complexity over time. This
reduction in size, however, has the side effect of propagating information loss to
cyber risk analysis processes which rely on the generated attack graph. Therefore, it
is crucial to investigate the trade-off between the benefits of scalability and the loss
of accuracy of the risk analysis across the three proposed aggregation strategies.

To this aim, Table 5.18 shows the reduction of the number of edges and the
impact on the risk analysis (both in terms of the number of affected targets and
Mean Absolute Error - MAE of the risk estimation) for the attack graphs obtained
with the different aggregation strategies with respect to the state of the art reference
attack graph derived from a mesh network of the 8 hosts.

Table 5.18. Attack graph risk accuracy and percentage of edge reduction for the different
aggregation strategies according to the state of the art reference attack graph.

Aggregation
Strategy

Affected
Targets

Risk
MAE

AG edges
reduction

VA 0% 0 68%
RA 12.5% 0.04 87%
HA 87.5% 0.44 99%

Table 5.18 underlines a great advantage of vulnerability aggregation: a reduction
between 68% and 99% of the attack graph size. Indeed, while the state of the art
reference attack graph has 5032 edges, they are reduced to 1610 for Vulnerability-
based Aggregation (VA), 654 for Risk-based Aggregation (RA), and 64 for Host-based
Aggregation (HA). However, the analysis confirms the side effect that aggregation
strategies may have on the accuracy of the cyber risk analysis. The most conservative
aggregation (VA) does not impact the estimation of the risk value because it
aggregates only vulnerabilities that have the same CVSS attributes.24 Similarly,
the impact of the RA strategy is small (12.5% of the hosts, MAE of 0.04) because
it aggregates vulnerabilities according to features used in the risk model to define
impact and likelihood of an exploit.25 Conversely, the HA strategy results in 4 cases
(50% of the total) in which the risk variation is more than 0.5. This worse accuracy
is because this strategy aggregates the vulnerabilities independently from their
attribute values. Thus VA, RA and HA present three possible aggregation strategies
to be deployed by the aggregation sub-component of the proposed computational
pipeline.

In order to correctly analyze the trade-off between scalability and accuracy, it is
essential to delve deeper into the impact of the aggregation sub-component on the
scalability of attack graphs. To achieve this objective, an additional analysis of the
time and space complexity of attack graphs generated using aggregated vulnerability
inventories is performed.

The scalability evaluation is performed by increasing the number of hosts in the
network up to 700, while still using a mesh topology. The additional hosts were
obtained by adding replicas of the 8 hosts detailed in Section 5.1 to the network.

Figure 5.15 shows the attack graph generation time (in seconds) for the different
synthetic environments. The generation time is measured in seconds, and it includes

24In the risk model used in this case study, risk is equal to a CVE’s CVSS base score.
25Only some CVSS attributes are used for the aggregation.
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Figure 5.15. Generation time (in seconds) of the attack graphs according to the different
aggregation strategies. The generation time includes the vulnerability aggregation time.

the time necessary to perform aggregation of the vulnerability inventory. The trends
highlight the attack graph generation speed-up when adopting aggregation strategies,
especially for large-size networks.

On average, there is a reduction of 8%, 33%, and 78% of the generation time
for Vulnerability-based (VA), Risk-based (RA), and Host-based (HA) aggregation
with respect to the state of the art reference attack graph, (SoA, dashed line in
Figure 5.15). It is worth noting that the generation time is considerably increased
when there is no aggregation (state of the art reference attack graph) and for
strategies VA and RA, while it increases linearly for strategy HA. It is a result
that one may expect because strategy HA keeps one vulnerability per network host,
forcing by design a linear complexity in the network size.

Figure 5.16. Number of edges of the attack graphs according to the different aggregation
strategies. Only “useful” edges have been considered, i.e. edges between hosts, as well
as edges between equal or increasing privileges of the same host.

This trend is confirmed by the space analysis reported in Figure 5.16, which
summarizes the number of edges of the attack graphs for the number of hosts for
each aggregation strategy. The number of edges is reduced by 40%, 55%, and 75%
when adopting VA, RA, and HA strategies, respectively.

Thus, these two analyses (Figures 5.15-5.16) give a clear indication that adopting
aggregation strategies provides a significant reduction of the attack graph structure
(space, from 40% to 75%) as well as faster generation times (from 45% to 95%).
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Concerning the analysis of the accuracy-scalability trade-off of large networks, it
is important to remark that computing the attack paths is computationally expensive
when performed in non-aggregated networks, and it is still an open problem in attack
graph-based analysis [96, 107].

Figure 5.17. Attack path computation time (in seconds) for the different aggregation
strategies.

Figure 5.17 reports the time (in seconds) required for the computation of the
attack paths for 3 attack targets, randomly chosen among the hosts of the network,
for the different network sizes. Since attack graphs are used to prevent and respond to
cyber-attacks promptly, it has been assumed that when the attack paths computation
needs more than 4 hours to be completed (14400 seconds), then the problem is
intractable. When there is no aggregation strategy (state of the art reference attack
graph, dashed line in Figure 5.17), the only size for which risk analysis can be
computed in a tractable amount of time is the network with 8 hosts, for which
the scalability-accuracy trade-off has been reported in the previous subsection. For
networks with more than 100 hosts, the problem becomes intractable. In contrast,
given the high reduction of attack graph size, it is still possible to compute attack
paths for cyber risk analysis in tractable time when adopting aggregation strategies.
In particular, the problem is tractable to up to 200 hosts when considering the VA
strategy, for which the computation requires almost 4 hours. The RA strategy allows
attack path computation of up to 300 hosts with a computation time of almost 3
hours. In contrast, the HA strategy scales up to 700 hosts for whom less than 1 hour
is needed to compute attack paths.

Thus, aggregation strategies enable attack path computation for network sizes
for which the problem would be intractable. In particular, with respect to attack
graph scalability, the HA strategy outperforms all the other strategies, being linear
to the network size.

Given the impossibility of computing the attack paths for networks with more
than 100 hosts using the state of the art reference attack graph, the information
loss of the aggregation strategies has been evaluated by analyzing the reachability
accuracy for all the networks from 10 to 700 hosts. More in detail, given each pair
of ⟨as, at⟩ where as is an attack source and at an attack target in state of the art
reference attack graph, let an s-t path be an attack path from as to at. Then, for
the attack graph obtained by applying aggregation strategies, the following elements
have been evaluated:

1. True Positives (TP) are the s-t paths in the state of the art reference attack
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graph and the aggregated attack graph.

2. False Positives (FP) are the s-t paths not in the state of the art reference
attack graph but in the aggregated attack graph. It could happen because
there may be new meta-vulnerabilities that do not exist in the state of the art
reference attack graph.

3. False Negatives (FN) are the s-t paths in the state of the art reference attack
graph but not in the aggregated attack graph. It could happen because the new
meta-vulnerabilities may alter the attack graph topology, leading to missing
paths.

4. True Negatives (TN) are the s-t paths neither in the state of the art reference
attack graph nor the aggregated attack graph.

Figure 5.18. Confusion matrices for each aggregation strategy (VA=Vulnerability-based
Aggregation, RA=Risk-based Aggregation, HA=Host-based Aggregation).

Figure 5.18 shows the confusion matrices of the reachable paths according to
the different aggregation strategies. This figure underlines that the VA strategy
has accuracy 1, as expected. Indeed, it only aggregates when all the features26 of
each vulnerability are the same, thus avoiding the generation of meta-vulnerabilities
that do not exist in the state of the art reference attack graph. In contrast, RA
and HA strategies have 0.96 and 0.81 accuracy, respectively. This is a result given
from the presence of meta-vulnerabilities that may alter the original attack graph
topology in which some paths may be wrongly present (at most 8% of the total
number of paths) and others missing (11% of the paths only for HA strategy).27

An interesting aspect regarding the RA strategy is that it does not contain false
negatives, and for this reason, it misses no paths of the state of the art reference
attack graph. Consequently, such a strategy is conservative because a lower accuracy
may be caused only by additional paths that do not exist in the original attack
graph.

This experimental evaluation analyzed the accuracy-scalability trade-off of the
proposed pipeline’s vulnerability filtering and aggregation components. It showed
that the presence of false positive vulnerabilities from automatic scanners may project
their lower accuracy in the risk analysis pipeline, thus resulting in inaccurate risk

26In the proposed case study, the attributes of the CVSS string.
27As a reminder, RA and HA generate new “meta-vulnerabilities” that inherit the worst features

(i.e. CVSS attributes) from all aggregated vulnerabilities.
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analyses. In contrast, aggregating the vulnerability inventories improves the attack
graph scalability, allowing path computation in networks whose size is intractable
with standard approaches (state of the art reference attack graph). On the other
hand, a slight degradation of accuracy in the risk evaluation is the price to pay
for the improved scalability. The degradation of the attack graph risk accuracy is
mitigated by tolerating from 10% to 20% of uncertainty in the risk calculation.

5.6.4 Evaluation on a realistic network topology
As a last step, this section will show the practicality of the proposed solution by

deploying the pipeline over a network having the same topology as the network of
the department of Computer, Control and Management Engineering at Sapienza
university. In particular, this complex network is composed of 5 LANs of different
sizes (3 LANs one for each research area of the department, 1 administrative LAN
and 1 DMZ) and each LAN is populated with virtual hosts consistent with the LAN
scope as described in Table 5.17. The results are reported in Table 5.19 and are in
line with previous results. In particular, it is interesting to note that the percentage
of targets with different risk values is slightly higher for the RA strategy and slightly
lower for the HA strategy. The reason for this difference may be attributed to the
fact that the attack target has been selected in the DMZ, which contains 5 servers,
which are less than all the 8 targets in the small LAN environment. This is also the
reason for the slightly higher MAE of the risk, which, however, is still low (0.06 for
RA, and 0.23 for HA). Considering the trade-off between the scalability parameters
(the computation time) and the accuracy errors (the Risk MAE) it appears very
advantageous to opt for the aggregation strategy HA because it has an MAE of only
0.23 but performs risk analysis in less than 20 minutes. In the case in which such an
MAE cannot be tolerated, the RA strategy provides a much smaller MAE (0.06),
requiring about 60 minutes more to compute all the attack paths.

Table 5.19. Attack graph risk accuracy, percentage of edge reduction, and path computation
time for the different aggregation strategies in the real environment.

Aggregation
Strategy

Affected
Targets

Risk
MAE

AG edges
reduction

computation
time

VA 0% 0 7% ≈ 200 min
RA 33% 0.06 25% ≈ 80 min
HA 66% 0.23 46% ≈ 20 min

5.7 Conclusion
This chapter performed a thorough evaluation on a real case study of the

computational pipeline which aims to enhance the quality of information derived
from the monitored environment as well as offer the possibility to trade accuracy in
favour of the scalability of the attack graph-based risk analysis in self-protecting
system. This pipeline integrates methodologies and algorithms aimed at attacking
the problem of enhancing the quality of automatically generated inventories used
during the cyber risk management process through a filtering sub-component, as
well several aggregation strategies implementing an accuracy-scalability trade-off in
state-of-the-art attack graph-based analysis methodologies through an aggregation
sub-component.

The creation of this computational pipeline is motivated by the fact that while
risk analysis and more broadly cyber risk management processes strive towards the
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best possible accuracy, this contrasts with the performance of attack graph-based
methodologies. Indeed state-of-the-art attack graph-based methodologies are very
powerful and potentially accurate models, but suffer from scalability issues forcing to
opt for the computation of approximated attack graphs [68, 70, 43]. This introduces
a certain degree of uncertainty in the risk estimation, where accuracy is traded off
for scalability. The situation gets even worse if we consider that state-of-the-art
attack graph-based self-protection systems feed the control loop with input data that
are not completely accurate due to false positives affecting the monitoring probes.
This results in a cumulative effect of accuracy loss, affecting first the data collection
phase and then the attack graph and risk computation phase.

Thus, the main focus of this chapter has been the evaluation of the capability of
algorithms and methodologies proposed in Chapter 4 with respect to: (i) attacking
the problem of improving the quality (in terms of accuracy) of the automatically
generated inventories without increasing the degree of intrusiveness in the monitored
system, and (ii) achieving a trade-off between accuracy and scalability in attack
graph-based analysis methodologies, through the use of semantic-aware aggregation.

To achieve a thorough evaluation, a methodology to produce several statistically
relevant testing environments has been proposed and leveraged, in order to achieve
a comparable, statistically relevant and congruous result across all the proposed
methodologies and algorithms. Having a real testing environment has also been
necessary not only in order to evaluate the single components, but also to carry out
the evaluation of the whole proposed computational pipeline.

Lastly, the proposed algorithms and methodologies have been integrated into a
modular architecture (computational pipeline) to be implemented during the Data
Collection Aggregation and Integration process of a self protecting system. This
computational pipeline has then been evaluated using a real scenario, derived from
the network environment of the department of Computer, Control and Management
Engineering at Sapienza university.

The result of the evaluation has shown that applying such computational pipeline
yields good results both in terms of accuracy, with 74 false positive vulnerabilities
being eliminated from the 8-host case study described in Section 5.1 which in turn
amounts to a 11.76% space reduction of the resulting attack graph (from 5032 edges
down to 4440), as well as when considering scalability of the attack graph-based risk
analysis, with aggregation strategies capable of reducing the resulting attack graph
size (i.e. number of edges) from 68% up to 99% with respect to a “good” state of the
art (i.e. no false positives present) at the cost of at most 0.44 MAE of the resulting
risk estimation.

It is important to note that the proposed processes, algorithms and computational
pipeline derive from an in-depth study of current state of the art vulnerability and
network scanning techniques, in conjunction with some of the repositories described
in Chapter 3.

The results of the chapter represent a confirmation of the work done in the
previous chapter, as well as a concretization through an actual case study of a first
step toward the design and implementation of a solution capable of performing
fully automated cyber risk assessment by refining and resolving problems that affect
existing paradigms and methodologies adopted by state of the art self-protecting
systems.
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Chapter 6

Conclusions

This thesis represents a first step towards a solution able to enhance the quality
of information supporting the cyber risk management process in self-protecting
systems.

The motivation for this thesis lies in how state of the art Cyber Risk Manage-
ment processes and methodologies expect and utilize information. As shown in
the introduction to this thesis (Chapter 1), the Cyber Risk Management process
relies on multiple sources of information, some of which derive from the monitored
environment, some of which are stored in external repositories. The availability and
the quality of these sources of information plays a critical role during Cyber Risk
Management, directly influencing the quality in terms of accuracy and completeness
of the related processes. This is especially relevant for ICT systems designed around
self-protection (i.e. self-protecting systems), which is currently a desired property
of many modern ICT systems as it enriches its features with the ability to detect
and react to security threats at run-time. Recently, several solutions leveraging the
attack graph model have been proposed to design and implement such self-protecting
systems. While such systems take a first step towards effective self-protection,
they do not consider: (i) the possibility of having non complete information in
the external repositories, (ii) the possibility of having non accurate information in
the inventories derived from the environment, and (iii) the limitations in terms of
accuracy-scalability trade-off imposed by the usage of the attack graph model.

In order to study and address these problems, this thesis provided the following
major contributions:1

• Chapter 3 presented a study of the external publicly available vulnerability
repositories, in order to understand their structure, their semantics and how
all these repositories can be integrated in a unified structure, able to provide
the cyber risk management process with complete, accurate information.

• Chapter 4 proposed several methodologies to be integrated in a computational
pipeline able to enhance the accuracy of the inventories derived from the
environment by reducing the number of false positives contained within, as
well as explicitly addressing and instrumenting the accuracy-scalability trade-off
imposed by the attack graph model.

1A repository with the implementation and further documentation of the proposed methodologies
is available at https://github.com/Marcvs101/enhancing-cyber-risk-management

https://github.com/Marcvs101/enhancing-cyber-risk-management
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• Chapter 5 provided a comprehensive evaluation of the methodologies which
participate in the computational pipeline proposed in Chapter 4. The evalua-
tion has been carried out on a case study as well as on a real scenario, derived
from the network environment of the department of Computer, Control and
Management Engineering at Sapienza university.

The following sections will present achievements of each contribution in detail.

6.1 Chapter 3 - Integrating Sources of Data to Support
Automatic Correlation

Chapter 3 investigated the structure of the main public repositories used by the
cyber security community to collect and share information about vulnerabilities and
their possible exploits i.e., NVD, CWE, CAPEC and ATT&CK. Starting from this
huge amount of information managed independently by the repositories owners, the
aim of this chapter has been twofold: (i) presenting and discussing such repositories
taking a different perspective i.e., by considering them as one unique knowledge graph
that can be traversed and analysed to answer complex queries and (ii) verifying the
suitability of the knowledge graph as a reference knowledge base in the most common
vulnerability analysis tasks. It has been found that the high degree of connection
between concepts in different repositories supports well the two considered tasks.
In particular, a mechanism leveraging the knowledge graph has been proposed to
automatically correlate information across multiple repositories to speed up the
process and support analysts in the vulnerability analysis process. More in detail,
when identifying which is the vulnerable part of the system targeted by a specific
vulnerability, it has been observed that performing the classification automatically
may provide the following benefit to security operators as well as self protecting
systems:

• It is immediately possible to relate the issue to a specific part of the system
and evaluate the dependencies between the vulnerable part and the enabling
context.

• Assuming that patches are available for any vulnerability, it is possible to
assess the difficulty of mitigating the vulnerability also as a function of its class.
Usually, patching vulnerable hardware is harder than patching an application.
Thus, the classification can help in prioritizing mitigation activities.

• The classification between vulnerable and non-vulnerable configurations can
be used as input for the enrichment of the CVSS score and in particular for
the definition and computation of the environmental score.

Concerning the second analysis task, a strategy to identify common mitigation
actions (in terms of strategies) for a set of vulnerabilities has been proposed. This
information will provide the analyst with fast feedback on the possible options and
will contribute to enhancing the overall level of awareness.

Let us note that this benefit derives directly from the deep knowledge of the
repositories and from the formalization of the relationships that has been done in
the knowledge graph. Indeed, it has been necessary to go deeper in understanding
the details of the relationships that characterize data stored. As an example, CPE
analysis revealed that some attributes associated with nodes could be misleading
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(e.g., looking just at the part attribute of the first CPE string linked to a vulnerability
may lead to a wrong classification) and it highlighted the complexity of finding the
real vulnerable part.

Concerning the third analysis task, a methodology to estimate the cost of applying
a mitigation action on a vulnerability has been proposed. This information will
provide the analyst with a base estimation needed as input to the cost-benefit
estimation that is at the heart of the risk management process.

The results of the chapter represent a first step toward the design and implemen-
tation of a fully automated context-aware vulnerabilities analysis and classification
platform that can be built by using all the considered repositories as a unique
reference knowledge base.

6.2 Chapter 4 - Enhancing the Quality of Automatically
Generated Inventories

Chapter 4 introduced the problem of enhancing the quality of automatically
generated inventories used during the cyber risk management process. In particular,
vulnerability and network scanners monitor the network environment in order to
produce a Vulnerability Inventory VI which collects and lists all the vulnerabilities
residing in each host in the network, and a Device Inventory DI which lists all the
platform configurations of hosts in the network. Starting from these two inventories,
the aim of this chapter has been twofold: (i) the introduction and formalization of the
problem of the quality of the data collected in the inventories by vulnerability and
network scanners, and (ii) the proposal of a computational pipeline and architecture
which is able to provide solutions that aim to mitigate the aforementioned problem.

It has been found that despite the problem of the quality of the data collected
in the inventories by vulnerability and network scanners exists, it is possible to: (i)
leverage the knowledge of a human agent in order to increase the accuracy of such
inventories by filtering out false positives, and (ii) trade the accuracy of the analysis
in favour of an increased scalability of the process, if so desired.

In particular, probe-based network and vulnerability scanners, although unin-
trusive, may falsely detect platform configurations linked to active vulnerabilities,
therefore potentially introducing false positives in the inventory. The chapter pro-
posed a filtering process capable of reducing the number of false positives in the
inventories that involves submitting queries to a human agent in order to validate
or invalidate the presence of platforms on a host. Platforms on a host which have
been validated or invalidated can then be used in conjunction with the applicability
conditions of each vulnerability in order to validate or invalidate each vulnerability.
In addition to this process, this chapter also proposed an aggregation methodology
able to perform a trade-off between the accuracy of the risk analysis and its scalabil-
ity in Attack Graph-based methodologies. This methodology is able to aggregate
vulnerabilities on each host, using analysis-aware strategies which are configurable
by the user in order to obtain the desired level of trade-off between accuracy and
scalability of the Attack Graph-based risk analysis.

The two proposed processes have been integrated into a modular architecture to
be implemented during the Data Collection Aggregation and Integration process of
a state-of-the-art autonomic system built upon the MAPE-K architecture. This new
modular architecture is able to support four computational flows:

• CF0: Performing no pre-processing on the vulnerability inventory VIraw
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• CF1: Filtering vulnerabilities from the vulnerability inventory VIraw in order
to produce a new vulnerability inventory VI+

• CF2: Aggregating vulnerabilities from the vulnerability inventory VIraw into
meta-vulnerabilities in order to produce a new vulnerability inventory VIag

• CF3: Filtering vulnerabilities from the vulnerability inventory VIraw, then
aggregating the resulting filtered vulnerabilities into meta-vulnerabilities in
order to produce a new vulnerability inventory VI+

ag

It is important to note that the proposed processes and architecture derive from
an in-depth study of current state of the art vulnerability and network scanning
techniques, in conjunction with some of the repositories described in Chapter 3.

The results of the chapter represent a first step toward the design and implemen-
tation of a solution capable of performing fully automated cyber risk assessment by
refining and resolving problems that affect existing paradigms and methodologies
adopted by state of the art self-protecting systems.

6.3 Chapter 5 - Analyzing the Accuracy-Scalability Trade-
off in Attack Graph-Based Self-Protecting Systems
- A Case Study

Chapter 5 performed a thorough evaluation on a real case study of the com-
putational pipeline introduced in Chapter 4, which aims to enhance the quality of
information derived from the monitored environment as well as offer the possibility
to trade accuracy in favour of the scalability of the attack graph-based risk analysis
in self-protecting system. This pipeline integrates methodologies and algorithms
aimed at attacking the problem of enhancing the quality of automatically gener-
ated inventories used during the cyber risk management process through a filtering
sub-component, as well several aggregation strategies implementing an accuracy-
scalability trade-off in state-of-the-art attack graph-based analysis methodologies
through an aggregation sub-component.

The creation of this computational pipeline is motivated by the fact that while
risk analysis and more broadly cyber risk management processes strive towards the
best possible accuracy, this contrasts with the performance of attack graph-based
methodologies. Indeed state-of-the-art attack graph-based methodologies are very
powerful and potentially accurate models, but suffer from scalability issues forcing to
opt for the computation of approximated attack graphs [68, 70, 43]. This introduces
a certain degree of uncertainty in the risk estimation, where accuracy is traded off
for scalability. The situation gets even worse if we consider that state-of-the-art
attack graph-based self-protection systems feed the control loop with input data that
are not completely accurate due to false positives affecting the monitoring probes.
This results in a cumulative effect of accuracy loss, affecting first the data collection
phase and then the attack graph and risk computation phase.

Thus, the main focus of this chapter has been the evaluation of the capability of
algorithms and methodologies proposed in Chapter 4 with respect to: (i) attacking
the problem of improving the quality (in terms of accuracy) of the automatically
generated inventories without increasing the degree of intrusiveness in the monitored
system, and (ii) achieving a trade-off between accuracy and scalability in attack
graph-based analysis methodologies, through the use of semantic-aware aggregation.
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To achieve a thorough evaluation, a methodology to produce several statistically
relevant testing environments has been proposed and leveraged, in order to achieve
a comparable, statistically relevant and congruous result across all the proposed
methodologies and algorithms. Having a real testing environment has also been
necessary not only in order to evaluate the single components, but also to carry out
the evaluation of the whole proposed computational pipeline.

Lastly, the proposed algorithms and methodologies have been integrated into a
modular architecture (computational pipeline) to be implemented during the Data
Collection Aggregation and Integration process of a self protecting system. This
computational pipeline has then been evaluated using a real scenario, derived from
the network environment of the department of Computer, Control and Management
Engineering at Sapienza university.

The result of the evaluation has shown that applying such computational pipeline
yields good results both in terms of accuracy, with 74 false positive vulnerabilities
being eliminated from the 8-host case study described in Section 5.1 which in turn
amounts to a 11.76% space reduction of the resulting attack graph (from 5032 edges
down to 4440), as well as when considering scalability of the attack graph-based risk
analysis, with aggregation strategies capable of reducing the resulting attack graph
size (i.e. number of edges) from 68% up to 99% with respect to a “good” state of the
art (i.e. no false positives present) at the cost of at most 0.44 MAE of the resulting
risk estimation.

The results of the chapter represent a confirmation of the work done in Chapter 4,
as well as a concretization through an actual case study of a first step toward the
design and implementation of a solution capable of performing fully automated cyber
risk assessment by refining and resolving problems that affect existing paradigms
and methodologies adopted by state of the art self-protecting systems.
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