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Abstract

The basic goal of topological data analysis is to apply topology-based descriptors
to understand and describe the shape of data. In this context, homology is one of
the most relevant topological descriptors, well-appreciated for its discrete nature,
computability and dimension independence. A further development is provided
by persistent homology, which allows to track homological features along a one-
parameter increasing sequence of spaces. Multiparameter persistent homology, also
called multipersistent homology, is an extension of the theory of persistent homology
motivated by the need of analyzing data naturally described by several parameters,
such as vector-valued functions. Multipersistent homology presents several issues in
terms of feasibility of computations over real-sized data and theoretical challenges
in the evaluation of possible descriptors. The focus of this thesis is in the interplay
between persistent homology theory and discrete Morse Theory. Discrete Morse
theory provides methods for reducing the computational cost of homology and persis-
tent homology by considering the discrete Morse complex generated by the discrete
Morse gradient in place of the original complex. The work of this thesis addresses
the problem of computing multipersistent homology, to make such tool usable in real
application domains. This requires both computational optimizations towards the
applications to real-world data, and theoretical insights for finding and interpreting
suitable descriptors. Our computational contribution consists in proposing a new
Morse-inspired and fully discrete preprocessing algorithm. We show the feasibility
of our preprocessing over real datasets, and evaluate the impact of the proposed
algorithm as a preprocessing for computing multipersistent homology. A theoretical
contribution of this thesis consists in proposing a new notion of optimality for such
a preprocessing in the multiparameter context. We show that the proposed notion
generalizes an already known optimality notion from the one-parameter case. Under
this definition, we show that the algorithm we propose as a preprocessing is optimal
in low dimensional domains. In the last part of the thesis, we consider preliminary
applications of the proposed algorithm in the context of topology-based multivariate
visualization by tracking critical features generated by a discrete gradient field com-
patible with the multiple scalar fields under study. We discuss (dis)similarities of such
critical features with the state-of-the-art techniques in topology-based multivariate
data visualization.
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Introduction

In the recent years, the increasing amount of data has led to the improvement and the development
of information handling techniques. The basic goal of Topological Data Analysis (TDA) is to
apply topology, one of the major branches of mathematics, to understand and organize qualitative
information about data. Because much of the data arising in scientific applications is in high-
dimensional spaces, the focus is on developing suitable tools for studying geometric features in
high-dimensional data. Thus, it might be convenient to capture finer features than clusters of data,
for instance, loops, holes and their higher-dimensional analogues.

Homology is one of the most relevant descriptor for higher-dimensional loops. That descriptor
has gained its popularity in the applications thanks to its discrete nature, computability and
dimension independence. Persistent Homology (1-PH) allows for comparisons of homologies of
different spaces. It consists in a tracking of each homological feature when comparing one space
to another along a single parametrized direction. It is used in data analysis to study evolutions
of qualitative features of data and it is appreciated for its computability, robustness to noise, and
dimension independence. Multiparameter Persistent Homology (MPH) 1s an extension of the PH
Theory motivated by the fact that data analysis and comparisons often involve the examination of
properties that are naturally described by multiple parameters, for instance in computer vision
with respect to photometric properties. Alternatively, for point cloud data, several criteria might
be chosen in order to filter the input datum for investigating both the domain itself under several
criteria at once, and the explanatory power of the different criteria over the same domain. Another
relevant tool for TDA is provided by discrete Morse Theory. This theory plays a key role in two
main directions. First, it provides compact and robust segmentations of a shape according to its
critical points. It also provides an important preprocessing tool for homology computations to
reduce the size of the input datum.

Contributions. The focus of this thesis is on evaluating how reduction techniques inspired by
Discrete Morse Theory can improve the feasibility of multipersistent homology (MPH) compu-
tations. Indeed, computing MPH requires to be able to deal with any reasonably sized data set,
and theoretical insights for finding and interpreting suitable descriptors. Richer mathematical
constructions are in need when moving from one to multiple parameters. Our contribution in the
first direction consists in proposing, in Chapter 4 a discrete Morse-based preprocessing algorithm
for computing MPH and more. A theoretical contribution of this thesis consists in proposing,
in Chapter 5, a new notion of optimality for a Morse-based preprocessing in the multiparameter
context. That is to say, we propose a property for determining whether the output of a discrete
Morse-based preprocessing algorithm is the best possible one. We show that the algorithm we

XV



propose is optimal in the sense proposed in this thesis. Finally, in Chapter 7, we discuss applica-
tions of our approach to the context of topology-based multivariate data visualization.

The remainder of the thesis is organized as described below.

In Chapter 1, we review the necessary background notions for the work of this thesis. In the
first section, we introduce cell complexes. This section is crucial to understand the requirements
for the algorithm presented in Chapter 4. In the second section, we introduce homology and
simplicial homology since they are the main topological invariants treated in this thesis. In the
third section, we introduce the basic notions for Lefschetz complexes, useful to capture in a
unified way cell complexes and the discrete Morse complex as introduced in the following section.
The notions related to relative homology in this section are of great interest for the content of
Chapter 5. In the fourth section, we introduce discrete Morse Theory which is the main tool we
exploit in this thesis to address computational and theoretical issue in MPH. The sixth and the
seventh sections are devoted to the introduction of Persistent Homology (PH), the former in the
one-parameter case (one-persistent homology (1-PH)), and the latter in the multiparameter case
(multipersistent homology (MPH)). We presented the two theories in a parallel way in order to
highlight (dis)similarities. The last section of the chapter presents the invariants associated with
PH, both in the one and in the multiparameter cases, where most of dissimilarities between the
two theories come up.

In Chapter 2, we present a review of the literature of persistent homology (PH) along the pipeline
common to all different approaches. First, we review how the cell and simplicial complexes is
represented, that is to say, the data structures for representing topological structures. Secondly, we
review the main constructions for getting a filtration of cell complexes. We distinguish between
filtration of a geometrical object like in the context of Size Theory and filtrations from point cloud
data. The third step is the actual computational step of major interest for this work of thesis. We
address the 1-PH and the MPH separately and we provide our comments on the different issued
in the two cases. We briefly review methods for the last step of the pipeline which consists in
interpreting the PH invariants.

Before introducing our algorithm in Chapter 4, we present some priors works on very closely
related state-of-the-art algorithms. We present in a unified way the algorithm in [162] as a suitable
1-PH preprocessing, then generalized to MPH in [4]. Moreover, we explain our classification of
the former, as a local algorithm, and, of the latter, as a global algorithm. This difference is crucial
to understand the novelty of the algorithm we propose in Chapter 4. Additionally, the proof of
correctness of the algorithm in Chapter 4 makes use of the description of the algorithm from [4].
Finally, the complexity analysis of our algorithm proposed in Chapter 4 has to be compared to the
complexity analysis provided in this chapter.
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In Chapter 4, we present the algorithm ComputedDiscreteGradient that we introduced in a
preliminary version in [115]. ComputeDiscreteGradient retrieves a discrete gradient compatible
with a vector-valued filtering function generalizing to multiparameter filtrations the local nature of
the algorithm treated in the previous chapter, as opposed to its first generalization to MPH which
has a global nature. We prove our algorithm to preserve MPH. We provide a detailed complexity
analysis of the proposed algorithm.

In Chapter 5, we restate the optimality proved for the 1-PH preprocessing algorithm treated in
Section 3.2 over cubical complexes embedded in R? into more general terms as a property of a
discrete gradient compatible with a one-parameter filtration. This optimality notion relates relative
homology to the number of necessary critical cells to capture the MPH properties of the filtration.
The proposed optimality notion admits a multiparameter generalization we have introduced in
this thesis. Under this definition, we show that the algorithm we propose as a preprocessing
in Chapter 4 is optimal for two cell complex subclasses: abstract simplicial complexes up to
dimension 2, and cubical complexes embedded in R3.

Chapter 6 is structured into four sections, one for each experimental evaluation undertaken by
our MPH preprocessing algorithm proposed in Chapter 4. Our MPH preprocessing algorithm is
evaluated in comparison to state-of-the-art methods, in the impact on MPH computations and
in the feasibility of dealing with large sized data which makes it suitable for being adapted to
application domains.

real-sized domains.

In Chapter 7, we present our contribution in the context of data visualization of multivariate fields.
In order to do this, we present some preliminaries in the research field, we review related methods,
and provide our own contribution. In the final part, we discuss comparison to other methods
and further developments. Both theoretical and experimental aspects for this part of the thesis
have been developed in collaboration with Federico luricich (University of Maryland (MD), USA).

We close the work of this thesis with Chapter 8 where we summarize the results obtained in this
work, the current developments of the topics, and future perspectives in the field.
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1 Background notions

In this chapter, we review the necessary background notions for the work of this thesis. In
Section 1.1, we introduce the topological structures of simplicial complexes and cubical complexes
and the more general notion of regular cell complex with the intersection property useful to include
both simplicial and cubical complexes into a unique formalism. This will be used in Chapter 3 and
Chapter 4 to define and compare the input domains of the presented algorithms. In Section 1.2, we
introduce the notion of homology as topological invariant for a simplicial complex. In Section 1.3,
we introduce the Lefschetz complex as a combinatorial structure which translates homology in a
common language for all kinds of complexes considered in this thesis. In doing this, we introduce
relative homology for Lefschetz complexes which is necessary for our contributions of Chapter 5.
In Section 1.4, we introduce some results from discrete Morse Theory which are necessary for
stating the properties of the algorithms described in Chapter 3 and Chapter 4, and to describe our
results in the context of topology-based visual analytics in Chapter 7. In Section 1.5, we introduce
the concept of persistent homology, here called one-parameter persistent homology, or simply
one-persistent homology to highlight its special character with respect to the multiparameter
persistent homology introduced in Section 1.6 and sometimes called multipersistent homology.
The latter constitutes the main topological feature we focus on in this thesis. In Section 1.7, we
introduce the topological invariants persistent homology for one-parameter and multiparameter
settings. This, on the one hand, defines the target of computing techniques related to persistent
homology, on the other hand, it is the proper landscape to understand the different character when
moving from one-persistent to multipersistent homology.

1.1 Cell complexes

In this section, we introduce the topological structure of a cell complex and we set the terminology
adopted for the rest of the thesis. In Section 1.1.1, we introduce the notion of a simplicial complex,
that is collection of elementary discrete entities called simplices which generalize triangles to
dimensions higher than 2. The simplicial complexes here considered are of two main kinds:
embedded in a Euclidean space or combinatorially described and called abstract. In particular,
this difference is made explicit to better express our contribution of Section 5.4. In Section 1.1.2,
we introduce the notion of a cubical complex, that is a collection of elementary discrete entities
called (hyper)cubes which generalize cubes to dimensions higher than 3. This time cubical
complexes will be only considered as embedded in a Euclidean space. We close the chapter by
defining the superclass of regular cell complexes with the intersection property which includes
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both simplicial and cubical complexes and it formalizes a requirement for the algorithm we
propose in Chapter 4.

1.1.1 Simplicial complexes

In this section, we introduce simplicial complexes. For the main definitions, we follow the
formalism of [149]. Differently from the definitions in the given reference, since we are not
interested in simplicial complexes with infinitely many simplices, we define all complexes to be
finite. We first address the case of a simplicial complex embedded in a Euclidean space and, then,
we address the case of abstract simplicial complexes.

A k-dimensional simplex s, or k-simplex for short, is the convex hull of k + 1 affinely independent
points of a p-dimensional Euclidean space with p > k + 1. Often, we will simply write s to mean
a k-simplex and dim s to indicate its dimension. A face t of s is the convex hull of any subset of
points generating s. The partial order relation “7 is face of s is denoted ¢ « s. If the dimensions
of s and ¢ differ by one we call ¢ a facet of s and write ¢ < s. Reciprocally, s is called a coface of ¢
or a cofacet when the two dimensions differ by one (respectively denoted s > ¢ and s > 7).

1.1.1 Definition (Simplicial complex). A simplicial complex S is a finite collection of simplices
such that:

(1) every face of a simplex in § is also in S (closure property);

(i1) the intersection of any two simplices in S is either empty or a unique simplex in § (intersec-
tion property).

The embedding space of a simplicial complex is the Euclidean space where all of its vertexes lie.
The embedding dimension of a simplicial complex S is the dimension p of the embedding space.

We will denote by S the set of k-simplices in S:

an element in Sy is also called a vertex;

e an element in S is also called an edge;

an element in S, is also called a triangle;

e an element in S3 is also called a tetrahedron.

A simplicial complex S has dimension d (and S is called a d-complex for short) if the maximum
of the dimensions of its simplices is d. Given a subset T in S, the closure of T in S, denote by 7T,
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Figure 1.1: (a) a simplicial complex; (b) a se of simplices which is not a simplicial a complex.

Source: image taken from Wikipedia.

is the subset of S containing all faces of s for s € T. The boundary of s in S is the set bdg(s) equal
to 5\{s}. The star of s in S is the set, denoted Starg(s), of cofaces of s in S. The coboundary of
s is the set cbg(s) given by Starg(s)\{s}. The subset T is closed in S if T = T. The subset T is
open in S if S\T is closed. The topology 7s generated by all open subsets in S is the simplicial
topology on S. Indeed, arbitrary intersections of open subsets are still open and finite intersections
of closed subsets are still closed. Later, in Definition 1.1.101), we will see how simplicial topology
is a particular case of the weak topology for CW-complexes.

In our finite setting, the simplicial topology corresponds to the topology induced by the em-
bedding space. Indeed, denoting by Real(S) the union of all simplices, we get that, since in
Definition 1.1.1 we only admit simplicial complexes with finitely many simplices, the simplicial
topology corresponds to the subspace topology induced on Real(S) by the embedding space.

In the following, we report the main definitions and properties that are useful in this thesis.

1.1.2 Definition (Simplicial subcomplex). A simplicial complex T is a subcomplex of Sif T < S.

It is easy to see that a subcomplex is always closed and, conversely, a closed subset in a simplicial
complex is always a subcomplex.

1.1.3 Example. The boundary of any simplex in a simplicial complex is a subcomplex.

1.1.4 Definition (k-path). In a simplicial complex S, a k-path of simplices from s* to t* is a finite

sequence of simplices (s, 267", s€, /i1 #f ] sK) such that:

e [ >0



° s’é = s* and s’l‘ =tk

o sk<igtl > sk <t > <t > gk

If s is equal to ¥, we say that the k-path is closed. If all sif ’s are different, we say that the k-path
is simple. If [ = 0, we say that the k-path is trivial.

Here, we introduce an inductive definition of connectedness for a collection of simplices 7" in S.

1.1.5 Definition (Connectedness). A subset 7" in S is:

e O-connected if T contains at least a O-simplex and for any pair of O-simplices there exists a
0-path;

e k-connected if T is (k — 1)-connected and, for any pair of simplices s*,z* in T, there is a
k-path from s* to ¢* of simplices in T.

A maximal k-connected subset with respect to the inclusion is called a k-connected component.

A simplicial complex can be defined in a combinatorial way without referring to its embedding
space.

1.1.6 Definition (Abstract simplicial complex). An abstract simplicial complex S on asetV is a
collection of subsets of V such thatif 7 € S and s < ¢, then s € S. Elements in S are called (abstract)
simplices and their dimension dims is & if s contains k + 1 elements in V.

It is easy to see that simplicial complexes can be seen as abstract simplicial complexes on the
set V = §p. Indeed, the closure property is implicit in the abstract definition and the intersection
property follows by noticing that the intersection of two subsets in V' is again a subset in V. The
face and coface relations are given respectively by the set inclusions < and = between abstract
simplices.

1.1.2 Cubical and cell complexes

In this section, we introduce some necessary definitions for the discrete spaces we treat all along
the thesis. First, we introduce cubical complexes [119]. Then, we introduce cell complexes as a
class including both simplicial and cubical complexes. Finally, we give the definition of regular
cell complex with the intersection property of special interest for the algorithms presented in
Chapter 3 and Chapter 4.

We begin by defining the elementary pieces in a cubical complex.
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1.1.7 Definition ((Hyper)cube). An elementary interval I is a closed interval either of the form
[l,I+1] < Ror[l,]] <R, with ] € R. In the latter case, we call it degenerate interval or a O-cube,
or a vertex. A O-cube, also called a vertex is a point in R. A (hyper)cube g of dimension k > 0,
also called a k-cube, is a finite product of non-degenerate closed intervals in R of equal length

Ix-I,c R,

Often, we will simply write ¢* to mean a k-cube and dimg to indicate its dimension. A face t of ¢
is a cube defined either by a proper subset of the elementary intervals defining g or by the O-cube
corresponding to some ending point of the elementary intervals defining g. The definitions of
facets, cofacets are defined and denoted in the same way as the analogous notions for simplices
introduced at the beginning of Section 1.1.1.

1.1.8 Definition (Cubical complex). A cubical complex Q embedded in R? is a finite collection
of cubes in R” such that:

(i) every face of a cube in Q is also in Q (closure property);

(i1) the intersection of any two cubes in Q is either empty or a unique cube in Q (intersection
property).

]

(a) (b)

Figure 1.2: (a) cubical complex in R? which is not a regular grid and (b) a regular grid in R?.

The embedding space of a cubical complex is the Euclidean space R? where all of its vertexes
lie. The embedding dimension is p. Cubical complexes allow to formalize regular grids which
constitutes an important subclass of cubical complexes particularly used in computational context,
for instance in our tests of Section 6.4 and Section 7.3.2. A regular grid is cubical complex in R”
obtained by axis-wise regular subdivisions of a limited range per axis of R”. In Figure 1.2, we
show how general cubical complexes differ from regular grids.
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Now, we introduce the structure of a cell complex having as special cases simplicial and cubical
complexes. A k-dimensional cell (or a k-cell) is a topological space a homeomorphic to the
interior of the k-dimensional ball B¥, sometimes shortly denoted by a* to underline that dima = k.
A set of k-cells is denoted by X;.

1.1.9 Definition (Cell complex). A cell complex X is a Hausdorff space whose elements are a
finite number of cells graded by dimensions X = | |, Xy along with, for each cell a € X;, a
continuous attaching map ¢, : B — a € X that satisfies:

e the interior of B is homeomorphically mapped to a;

e the (k — 1)-sphere S*~! := 9B is mapped into X;_;.

The dimension of a cell complex is the smallest integer & such that (_J; _o....xXi = X. The dimension
is well-defined by finiteness. A cell b is a face of a in X if and only if b belongs to the image
of ¢,. Analogously to the simplicial case, the partial order relation generated by “b is face of a”
is denoted b « a. If the dimensions of b and a differ by one we call b a facet of a and denote it
by b < a. Reciprocally, a is a coface of b, and a cofacet when the two dimensions differ by one
(respectively indicated @ » b and a > b).

As a topological space, a cell complex is usually asked to have the finest topology being coherent
with the topology 7, over each cell a. This topology is usually referred to as the weak topology
with respect to all subspaces given by the cells in X.

1.1.10 Definition (CW complex). A CW-complex X is a cell complex endowed with the topology
Tcw such that:

i) asetY < X is closed in X if and only if, for all a € X, a\(Y na) € 1, (weak topology)

We denote by Y the closure of a subset Y of X with respect to the topology Tcw. The boundary of
ain X is the set bdy (a) equal to @\{a}. The star of a in X is the set, denoted Stary (a), of cofaces
of s in X. The coboundary of s is the set cby (a) given by Starx (a)\{a}. All the given definitions
of (co)boundary, star and closure of a cell generalize the analogous definitions of Section 1.1.1
holding for simplicial complexes.

1.1.11 Definition. A regular cell complex X is a CW complex such that all attaching maps are
homeomorphisms.

In other words, no identifications occur under the restriction of the attaching maps to the (k—1)-
spheres. The topological structures of CW complexes and regular cell complexes admit in general
multiple cells in the intersection of two different cells.
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1.1.12 Definition. A cell complex X with intersection property is a CW complex such that, for
every two cells in X, the corresponding closures have either empty intersection or their intersection
is a unique cell in X

1.1.13 Remark. All simplicial complexes and cubical complexes are regular cell complexes with
the intersection property. The intersection property comes by definition. The regularity follows
since, for each k-simplex or k-cube, we have only non-degenerate faces. Moreover the j-faces are
in a fixed number, respectively (ljﬁ) and 2k-7 (];)

1.2 Homology

In this section, we introduce the main topological invariant we deal with in the work of this thesis.
The mathematical formalism of this section lay the basis for the language used in Section 1.5 and
Section 1.6 to define persistent homology. First, we see how homology is associated with the
algebraic notion of a chain complex. Then, in Section 1.2.1, we specialize to the case of simplicial
homology as an example of how to build a chain complex out of a topological structure like the
ones presented in the previous section.

Intuitively, the homology of a complex structure
(simplicial, cubical or cellular) is used to detect
independent k-dimensional holes in a topological
shape. A hole can be given a dimension by fol-
lowing this intuitive idea: different connected com-
ponents are separated by O-dimensional holes, tun-
nels are 1-dimensional holes (we have two of them
in Figure 1.3 bounded by red edges), voids are 2-
dimensional holes (we have one of them in Fig-
ure 1.3 bounded by the whole torus), and so on. The
1dea can be generalized by looking at k-cycles, i.e.,
formal combinations of k-dimensional cells to de-
termine whether or not they bound a k-dimensional Fi Lo - .

. 7 . igure 1.3: a triangularization of a hollow torus with
hole. More precisely, the incidence relations among i, "red) two 1-chains bounding two 1-dimensional
cells in the complex are combinatorially translated holes.
into algebraic terms. This allows to arrange k-chains
into a chain complex. Homology is used to detect holes since it manages in discriminating among
k-chains bounding a k-dimensional hole and those bounding a (k + 1)-chain.

1.2.1 Definition (Chain complex). A chain complex C = (Cy,0x) consists of a family C, = {Cy } ez
of Abelian groups or modules, called chain groups along with a collection of homomorphisms
Ox = {0k : Cx —> Cy_1 }rez called boundary maps such that

VkEZ, 6koﬁk+1 =0. (1.1)
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The elements of Cy, are called k-chains. A k-chain in the kernel of ¢y is called a k-cycle. A k-chain
in the image of 0y is called a k-boundary.

The chain complex definition ensures that, for each k € Z, the kernel of Jj contains the image of
Ok 1, that is all k-boundaries are k-cycles.

1.2.2 Definition (k"-Homology). The k'"-homology Hy(C) of the chain complex C is defined as
the quotient space Hy(C) = kerdy/im ;1. The integer k will be referred to as the homology
degree.

1.2.3 Definition (Chain morphism). Given two chain complexes C = (C,,$) and D = (D, 02),

a chain morphism is a collection of homomorphisms f, = {Cj /N Dy }kez such that (9,? ofr=
fi—10 (?,g, for all integers k. That is all the squares in the following diagram commute.

~AC C C C
Ok+2 T4 g k1
Crr1 Ck Cr—1
fk+l\ Ji fk1|
oP oP ob oP
~-$>Dk+l k+1 Dy K De_i k—1

1.2.4 Remark. Any chain morphism f induces a linear map f’, for each homology degree:

f :C—D = f* ZHk(C) —>Hk(D)

Indeed, the commutativity required in Definition 1.2.3 ensures that cycles in C are mapped to
cycles in D, and boundaries to boundaries, so that f;* is obtained by moving to the quotient
defining homology. However, notice that the possible injectivity or surjectivity of map f is
not necessarily preserved when passing to f;*. Indeed, on the one hand, cycles might become
boundaries and, on the other hand, some cycles in D can have no corresponding cycle in C.

1.2.1 Simplicial chain complexes

We focus on a special class of chain complexes which is obtained from abstract simplicial
complexes (Definition 1.1.6). The simplices of the simplicial complex will form a set of generators
for chain groups.

In order to build up a chain complex out a simplicial complex, we provide each simplex with
an orientation. In an abstract simplicial complex S, a simplex {vy,...,v;} is oriented when an
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ordering for the vertexes is chosen. Two orderings are equivalent if there exists an even number
of permutations changing one into the other, and the classes under this equivalence are called
orientations. Clearly, only two orientations are possible. An oriented simplex is an equivalence
class [vo,...,vi] of its ordering. When the orientation of a simplex is clear, we simply denote it
by s. If s is an oriented simplex, —s denotes the same simplex with opposite orientation.

A simplicial k-chain is a formal combination of oriented k-simplices with coefficients in some
Abelian group G. The chain group Ci(S;G) is the free Abelian group generated by S;. When the
coefficient group G is clear from the context, we simply write Cy(S). Boundary maps are obtained

by linear extensions from the values on simplices. For each oriented k-simplex s = [vy, ..., V]
k
k "
Ors = Z (=) [voy -y Diyeeeyvie],
i=0

where ¥; means that the vertex v; has been removed.
It can be easily checked that, under this definition, Condition (1.1) holds.

The so-obtained chain complex is called simplicial chain complex associated with S and denoted
by C(S) = (C«(S),03). The simplicial homology of S is the homology of C(S). For brevity, the
k"-homology group Hy(C(S)) will be denoted Hj(S).

Simplicial homology is a topological invariant, meaning that homeomorphic simplicial complexes
have the same associated simplicial homology. Simplicial homology is not the only homology
Theory one can associates with a simplicial complex with. The notion of singular homology [108]
can be associated with the underlying space |S|. By Theorem 2.27 in [108], the two theories agree
on simplicial complexes, implying in particular that simplicial homology does not depend on the
chosen orientation for simplices.

Depending on the coefficient group, we get possibly non-isomorphic simplicial homologies. Any
Abelian group can be seen as a Z-module. If G = R is a ring, then Hy(S;R) has an R-module
structure. By following Section 8.5 in [98], for R-modules the following algebraic decomposition
result holds.

1.2.5 Theorem ([98] Structure Theorem). Any finitely generated R-module M with R a principal
ideal domain (PID) admits unique elements ay,...,a, in R such that

p m
M=~ @R@EI—)IR/(C,].). (1.2)
= j=

We call the summands indexed by i form the torsion part of the decomposition, while the part
indexed by j is called free part.

Since the number of summands in the free part of the Structure Theorem decomposition does not
depend on the chose ring R, we introduce the following invariant for simplicial complexes.
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1.2.6 Definition (Betti numbers of a complex). Given a simplicial complex S, the k™ Betti number
associated with S with coefficients in R is the number B*(S;R)! of summands in the free part of
the Structure Theorem 1.2.5 decomposition of M = Hy(S;R), for k€ Z.

If R = F is a field, then Hj(S;F) has a F-vector space structure. In this case, there is no torsion
part in Formula (1.7.14). In the particular case of R = F», that is the field with two elements,
chains and homology can be easily defined without taking simplex orientation into account.

1.3 Lefschetz complexes

In this section, we introduce the Lefschetz complex as an algebraic structure which translates
the homology of chain complexes seen at the beginning of Section 1.2 into a combinatorial way
which mimics topological relations between cells. In particular, this is useful to express in a
common language the chain complex obtained in discrete Morse Theory from a discrete gradient
as treated in Section 1.4 and a topological structure such as the ones presented in Section 1.1. We
exploit this common language in our contribution of Chapter 5. First, we report only the basic
notions. We refer the reader to [131], for more details about Lefschetz complexes, or to [146] for
a notation closer to ours, where Lefschetz complexes are called S-complexes. In Section 1.3.1,
we introduce the notion of relative homology necessary for Chapter 5.

At the base of the homology definition there is the chain complex construction seen in Defini-
tion 1.2.1. This latter can be handled in a combinatorial way, in terms of the elements generating
each chain group and the incidence relations among them, encoded in the definition of the inci-
dence function of a Lefschetz complex. From now on, we fix the coefficient ring to be the field
F,.

1.3.1 Definition (Lefschetz complex). A Lefschetz complex (L,xy,) over Fy (often simply L)
consists of a graded finite set L = | |, L along with an incidence function ki, : L x L — F;
satisfying the following properties:

(i) Ya,be L, k.(b,a) # 0 implies that dimb — dima = 1

(i1) for every twocells be L, and a € Ly,

> Ku(b,c)ke(c,a) = 0.

cely_

I"The superscript k in B*(S;R) should not be confused with the subscript i adopted in Definition 1.7.13 for
multigraded Betti numbers. In the former case, k indicates the degree of the homology of a simplicial complex. In the
latter case, i indicates the degree of the homology in the Tor functor free resolution. In this latter case, a fixed degree
of the homology of a simplicial complex is taken into account.
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Analogously to cell complexes, dima = k if and only if a belongs to L. In this case, a is called a
k-cell and shortly denoted by a*.

In order to mimic face relations among cells in a cell complex, we introduce the following notation:
if k7. (b,a) # 0, we call b a cofacet of a (resp. a a facet of b) and write b > a (resp. a < b). These
imply, for a single cell, analogous notions of closure, boundary, coboundary and star.

We define the Lefschetz chain complex C(L) = (C.(L), 0%) as the chain complex associated to a
Lefschetz complex L = (L, k7 ) where, for each integer degree k

e the chain group Ci(L) is the F,-vector space generated by L

e the value of the boundary map (3,% on a basis element b* is defined by

Okb = Z KL(b,a)a

acL

By the following remark, the above definition is guaranteed to define a chain complex.

1.3.2 Remark. Under our assumptions, Condition (1.1) is equivalent to Condition (ii) in Definition
1.3.1.

Indeed, on the one hand Condition (1.1) is clearly stronger. On the other hand, by extending the
terms in (1.1) when applied to a specific cell and manipulating the sums, we get that a sum of
linearly independent elements gives the null vector. Hence, we deduce that all coefficients are
null. Such coefficients corresponds the left hand term in Condition (ii).

The k"-homology group H;(C(L)) in this case is actually an F,-vector space. For brevity, that
space will be denoted Hy(L). Analogously to the simplicial homology case, we indicate by
Hi(L;R) when we consider Lefschetz complexes over any ring R rather than the field F».

1.3.3 Example (Cell complexes as Lefschetz complexes). A cell complex X is a Lefschetz complex
(L, k1) over Fy with L graded by the cell dimensions, by taking Ly = X;, and ki equal to the
cellular incidence function Ky, with

Kx(b,a) =1 < b>a

Kx (b,a) =0 < otherwise

Indeed, Condition i) in Definition 1.3.1 is straightforward to check. As for Condition ii), in the
case of simplicial and cubical complexes, it follows easily since only cells c satisfying b > c > a in
X lead to non-null summands. Moreover, in X, if any, there are exactly two such c, thus summing
up to zero in Fy. For general cell complexes, Condition ii) follows from Remark 1.3.2 since, as a

Lefschetz complex X = (X, Kx) induces a chain complex isomorphic to a standard cellular chain
complex [108].
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Thanks to the combinatorial mean of Lefschetz complexes, we get a uniform way of dealing
with several kinds of homology. Simplicial homology becomes a particular case of cellular
homology [108]. For each CW-complex, the underlying space supports the singular homology
construction. By Theorem 2.35 in [108] singular and cellular homology agree.

A Lefschetz subcomplex (N, Kky) of (L,xz) is a Lefschetz complex such that Ny < Ly, for each
ke Z, and ky coincides with the restriction of k7, to N x N. A subset N is closed in L if, for all
b € N, the condition k7 (b,a) # 0 for some a € L implies a € N. It is a known fact (Theorems 3.1,
3.2 in [146]) that a closed subset N in L is a Lefschetz subcomplex with incidence function taken
by restriction.

1.3.4 Remark. A closed set in a simplicial complex is also closed if thought of as a subset in a
Lefschetz complex. Moreover, each simplicial subcomplex is necessarily a closed Lefschetz sub-
complex. Indeed, a subcomplex is, in particular, a complex and, by Condition (i) in Definition 1.1.1,
it implies being closed in the Lefschetz sense.

1.3.5 Definition (Intersection and union). Given (L, k) and (N, ky) Lefschetz subcomplexes
in (U, ky), we define the union (L U N, ) and the intersection (L n N, Kk~) by setting K, to
be the restriction of xy to (LU N) x (LU N) and K to be the restriction to (LN N) x (LN N),
respectively.

1.3.6 Remark. If L and N are closed in U, then both the union and the intersection are still closed
inU.

1.3.7 Remark. Definition 1.3.5 does not apply to the union and the intersection of general
Lefschetz complexes. In particular, two Lefschetz complexes may not agree on their intersection

1.3.1 Relative homology and Mayer-Vietoris pairs

In this section, we define relative Lefschetz complex pairs and their relative homology. Afterwards,
we define Mayer-Vietoris Lefschetz complex tuples. Both yield a short exact sequence of chain
complexes. In particular, these notions are necessary to prove our contribution of Proposition 5.3.1.
We adapt standard notions in Algebraic Topology [108] to be expressed in terms of Lefschetz
complexes.

1.3.8 Definition (Relative pair). If (N, ky) is a closed Lefschetz subcomplex in (L, k7,), we write
(L,N) and call it a relative pair of Lefschetz complexes.

Given a relative pair (L,N), we define the space Cy(L,N) of relative k-chains as the elements
in the quotient Cy(L)/Cy(N) of Fy-vector spaces. The relative boundary map 0" : Cy(L,N) —>
Cr—1(L,N) is induced by the boundary map for L by moving to the quotient of vector spaces. The
relative chain complex associated to a relative pair (L,N) is indicated C(L,N) = (C(L,N), ™).
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1.3.9 Definition (Relative homology). The relative k"-homology Hi(L,N) is the k"-homology of
the relative chain complex C(L,N).

Relative pairs yield to a short and a long exact sequence which is a standard result in commutative
algebra obtained through a technique called diagram chasing (see Theorem 2.16 in [108]).

1.3.10 Theorem. Each relative pair (L,N) induces a short exact sequence at chain level

0—C(N) ——=C(L) —2~C(L,N) —=0 (1.3)

with i induced by the inclusion and p being the quotient projection. Moreover, the short exact
sequence (1.3) induces a long exact sequence of homology

€k+1

(N — - H(L) P H(LN) —2 (1.4)

*
Pr—1

i*
— %o Hy g (N) = Hyy (L) > Hy_y (LN) =

where the maps € are defined over each [a] € Hi(L,N) by ¢ ([a]) = [0F(a)], where OF is the
boundary map in C(L).

1.3.11 Definition (Mayer-Vietoris triple). Given a Lefschetz complex U, a Mayer-Vietoris triple,
or simply an MV-triple is a triple (U, L,N) of Lefschetz complexes such that U = LU N and L, N
are closed Lefschetz subcomplexes of U.

MV-triples yield to a short and a long exact sequence in the same way relative pairs do.

1.3.12 Theorem. Each MV-triple (U,L,N) induces a short exact sequence at chain level

0——C(LAN) L c(yecmv) L= c(v o L) —0 (1.5)
with i and j induced by inclusions of LN N in L and N respectively, and with h and | induced

by the inclusions in L U N from L and N, respectively. Moreover, the short exact sequence (1.5)
induces the long exact sequence of homology

O+

(5 78) =1 5
—— Hi(LNN) ———— H(L)® Hy(N) Hiy(LUN) (1.6)
O g";f—l i S

bl
—>Hk,1(LﬁN — kfl(L)@kal(N) —>Hk,1(LUN) — ...

where the maps & are defined over each |a + b] € H(L UN), with a € Ci(L) and b € Ci(N), by
8([a]) = [0£(D)], where 0% is the boundary map from Cy (LA N).
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1.4 Discrete Morse Theory

In this section, we introduce the main theoretical tools from Forman’s discrete Morse Theory [87,
88]. Discrete Morse Theory is the discrete counterpart of a classical branch of Differential Geom-
etry called Morse Theory [142] that studies shape properties from the behavior of special scalar
functions defined on the shape, called Morse functions. The main notion introduced in this section
is that of a Morse complex built out from an original regular cell complex (Definition 1.1.11).
In our work, we are particularly interested in looking at a Morse complex as a reduction of the
original regular cell complex, in terms of number of cells, that preserves the homology of the
original cell complex. In view of the persistence preprocessing algorithms of Chapter 3 and
Chapter 4 for the retrieval of a discrete gradient, special emphasis is given to defining a Morse
complex from its discrete gradient. The notion of a Morse complex will be related to persistent
homology in Section 1.5 and Section 1.6. The interplay between discrete Morse Theory and
persistent homology is much deeper that what presented in this thesis and we refer the reader
to [8] for further details.

In Section 1.4.1, we introduce the basics in discrete Morse Theory. In doing this, we sketch
the relationship between discrete Morse functions and discrete gradients. In Section 1.4.2, we
introduce the notion of a Morse complex and its homology-preserving reduction property with
respect to the original complex.

1.4.1 Basic notions in discrete Morse Theory

All along this section, X will be a regular cell complex. As already seen in Example 1.3.3, X can
be thought of as a Lefschetz complex whenever necessary.
A real-valued cell function over X is a function f : X — R.

1.4.1 Definition (Discrete Morse function). A discrete Morse function is a real-valued cell function
f over X satisfying, for each s € X:

et (s) i=#{t>s | f(t) < f(s)}
e (s):=#r<s|f(r)=f(s)}

<1
< 1.

A cell s € X such that e™ (s) = e~ (s) = 0 is a critical cell. The dimension of a critical cell is
defined as its critical index or simply its index. Let my(f) be the number of critical cells defined
by f of index k.

Let B*(X;F) be the k"-Betti number relative to X where F is any field.

14



1.4.2 Theorem (Morse inequalities. Corollaries 3.6, 3.7 in [87]). For all integers k, the weak
Morse inequalities hold:

mi(f) = BX(X:F)
and the strong inequality holds

o0

(=1)fmi(f) = Y (1) B (X:F)

k=0 k=0

If in (1.4.2) the equality holds, then f is said to be a perfect Morse function. The problem
of finding a perfect discrete Morse function over a given regular cell complex is known to be
undecidable. Typically, additional assumptions on the cell complex guarantee to decide about the
existence of a perfect Morse function.

A discrete Morse function over X such that there exists no other discrete Morse function over X
with fewer critical cells (all indexes considered) is called an optimal discrete Morse function.

The problem of finding an optimal discrete Morse function over a given cell complex is known to
be NP-hard [117]. Indeed, this is inherently due to the undecidability of the problem of finding a
perfect Morse function for a general shape.

In discrete Morse Theory, a (discrete) vector of X is a pair of cells (s,7) such that s < ¢ and 5,7 € X.

1.4.3 Definition (Discrete vector field). A discrete vector field on a regular cell complex X is any
collection of vectors V of X such that each cell is component of at most one vector in V.

1.4.4 Definition. A V-path I is an ordered sequence of vectors

T = [(so,20),---,(s1,;)]

belonging to V, such that, for all indexes 0 <i</—1, s;+1 <t; and s; # si+1.

A V-path is said to be closed if sy = s; and trivial if [ = 0. Notice that, according to Definition 1.1.4,

a V-path [(s§,571),..., (5,657 1)] is a k-path from s* to any face r* of "), Hence, we can say

that I is from from s* to r*. The empty set is a valid V-path from each s* to itself.

1.4.5 Definition (Discrete gradient field). A discrete gradient field V is a discrete field with all of
its closed V-paths trivial.

From now on, we call a discrete gradient field simply a discrete gradient. A discrete Morse
function f : X — R induces a discrete gradient V(f) on X. The following characterization holds.
1.4.6 Theorem (Theorem 3.5 in [88]). A discrete vector field V is the gradient vector field of a

discrete Morse function f if and only if there are no non-trivial closed V -paths.
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The theorem ensures that, by studying discrete gradients over a regular cell complex, we get the
same information as studying discrete Morse functions. In the rest of this thesis, we focus on
discrete gradients rather than discrete Morse functions. This allows us to avoid possible confusion
with the several filtering functions that are present in this thesis and are introduced in Section 1.5
in the context of persistent homology. We remark that filtering functions are never required to be
discrete Morse functions.

1.4.2 Discrete Morse complex

In this section, we introduce the notion of a Morse complex and Morse reduction. The Morse
complex construction depends on a coefficient ring. Here, we consider only coefficients in the
field Z, with only two elements. We introduce the following definition.

1.4.7 Definition (Morse set). Given a discrete gradient V the Morse set M (V) relative to V is the
collection of all critical cells in X with respect to V. When clear from the context, we indicate
M (V) simply by M. We denote by M, the set of critical cells of dimension k.

Given a discrete gradient V, a separatrix from a critical cell t**1 to a critical cell s* is a V-path
from any face of t**! to s*. We can translate incidence relations among critical cells in M into
algebraic terms by means of the Morse incidence function Ky : M x M — F; defined by

Ky (t,s) =1 < the number of different separatrices from ¢ to s is odd (07
Ky (t,s) =0 < the number of different separatrices from 7 to s is even '

The function Ky, is an actual incidence function in the sense of Definition 1.3.1. Indeed, only
critical cells whose dimensions differ by 1 can have non-null value under the incidence function
Ky . In particular, the fact that the function kj, fulfills condition (ii) follows from Theorem 8.10 in
[87] in the particular case of F, coefficients and from the Remark 1.3.2.

1.4.8 Definition. The Morse complex is the Lefschetz complex (M, k) obtained from a discrete

gradient V where:

e M = M(V) is the Morse set with respect to V,

o k) = Ky (V) is the Morse incidence function obtained from V.

The combination of Forman’s Theorems 7.3 and 8.2 [87] proves, in particular, the following result.

1.4.9 Theorem (Morse reduction). Given a Morse set M over a cell complex X, the inclusion-
induced map
Q- Hk(M) —> Hk(X)

is an isomorphism for all integers k.
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o > = 0 < O
(a) (b)

Figure 1.4: two discrete vector fields over the same cell complex. Arrows denote discrete vectors. The first
component in discrete vectors correspond to the tail and second component to the head of the arrow. In (a), the
discrete field is not a discrete gradient: the arrows around the striped zone form a non-trivial closed V-path. In (b),
the discrete field is a discrete gradient. The only critical vertex is depicted in blue. The only critical 1-cell is depicted
in green.

1.4.10 Example. Consider X being the cell complex in Figure 1.4. Its homology is generated
by a single connected component in degree 0 and a single 1-cycle. The connected component
corresponds to the blue critical vertex v in the Morse set relative to the discrete gradient indicated
by the arrows. The loop corresponds to the green critical 1-cell s. Indeed, v and s are both cycles
since there are exactly two separatrices linking the two critical cells which implies Ky (s,v) = 0.

1.5 One-parameter persistent homology

In this section, we introduce the necessary background in persistent homology [80, 34]. In
order to underline the special character of persistent homology with respect to its multiparameter
counterpart treated in Section 1.6, we call it one-parameter persistent homology, or simply
one-persistent homology. Whereas, by persistent homology, we mean both one-parameter and
multiparameter persistent homology. We warn the reader that the content of Section 1.6 includes
the content of this section as a special case. In this section, we refer to the notion of homology of
a Lefschetz complex as introduced in Section 1.3. In Section 1.5.1, we introduce the notion of
a one-parameter filtration. This defines an intermediate step towards multiparameter filtrations
introduced in Section 1.6.1. Moreover, this defines the object where to apply the construction of
one-persistent homology in Section 1.5.2 that leads to the definition of the persistence module in
the one-parameter case. The analogous construction for multiparameter persistent homology is
given in Section 1.6.2.
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1.5.1 One-parameter filtrations

In this section, we introduce the notion of a one-parameter filtration of a Lefschetz complex L
(Definition 1.3.1). Lefschetz complexes are taken into account to include both cases of regular cell
complexes (Definition 1.1.11) and Morse complexes (Definition 1.4.8). Afterwards, we introduce
our own notion of a discrete gradient and a Morse complex compatible with a one-parameter
filtration. These latter is generalized in Section 1.6.1.

1.5.1 Definition (One-parameter filtration). A one-parameter filtration, or simply a one-filtration
of L is a map F taking each u € Z to a closed subcomplex L* of L in such a way that

o L'=;
e there exists a z € Z such that L* = L;

e u <vin Z implies that L" is a closed subcomplex of L".

Each element u € Z is called a filtration grade, or simply a grade. Each subcomplex L* is called a
filtration step or simply a step. We call the image L= F(Z) a filtered (Lefschetz) complex. We say
that L is filtered by F or, indifferently, by L.

We introduce the following property of a discrete gradient over a regular cell complex with respect
to a one-filtration.

1.5.2 Definition (Discrete gradient compatible with a one-filtration). Given a regular cell complex
X filtered by X, a discrete gradient V over X is said to be compatible with X if

V(a,b)eV, YueZ, acX"<beX".

A Morse complex M obtained from a discrete gradient compatible with a filtered complex X’ is
said to be compatible with X .

1.5.3 Definition (Morse filtered complex). Given a filtered complex X relative to X with grades
in Z and a Morse complex M over X, we define the Morse filtered complex M relative to M and
compatible with X by setting in each filtration step (M", x};), foru e Z,

M":={aeM|acX"},
Ky := Ky restricted to M" x M".
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Figure 1.5: a one-filtration indicated by numbers over cells. A discrete gradient which is non-compatible with
the one-filtration (a), and another discrete gradient which is compatible with the same one-filtration (b). Arrows
denote discrete vectors, red arrows denote non-compatible discrete vectors, colored cells are critical cells. The first
component in discrete vectors correspond to the tail and second component to the head of the arrow.

1.5.4 Definition (One-parameter filtering function). A one-parameter filtering function over X is
a function ¢ : X — Z such that, for all cells a,b € X

a<b = o) <o)

A filtering function ¢ of (X, ks) induces a sublevel filtration F? by setting F? (u) = (X“, k%) with

X"i={aeX|¢(a) <uj,
Kg 1= Kg restricted to X" x X".

Indeed, each set X“ is closed in X and then in each XV with u < v. The filtered complex X
obtained through sublevels under ¢ is denoted by £?.

1.5.5 Remark. A one-parameter filtered complex X can always be thought of as a X? for some
one-parameter filtering function ¢. Indeed, it suffices to take, for each cell a in X, ¢(a) equal to
the smallest grade u such that a € X".

1.5.2 One-parameter persistence module
Given a filtered complex L, the homology construction Hy(+; R) can be applied to each filtration
step. Since all definitions in this section does not depend on R, we skip to indicate it. Each

filtration step has its associated chain complex and, by following Remark 1.2.4, each inclusion
between successive filtration steps induces a linear map of corresponding homology spaces

[“CL’ = 1":H(L") — Hy(L")
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As already mentioned, maps 1"V are not necessarily injective or surjective. In this sense, a class is
persistent from grade u to grade v if it is not trivial in Hy (L") and still non-trivial in Hy(L"). This
motivates the following definition.

1.5.6 Definition (One-persistent homology). Given a Lefschetz complex L filtered by £ with
filtration grades in Z, the one-persistent k™-homology from grade u to grade v, with u < v, is the
image of the inclusion-induced map 1" of Hy(L").

Let us consider a Lefschetz complex L filtered £. The global information of one-persistent
homology for all possible filtration grades u < v is captured by the following definition.

1.5.7 Definition (One-parameter k"-persistence module). The one-parameter k™-persistence
module, or simply, one-persistence module Hy(L) of a filtered complex L is the family of
homology spaces H (L") with u € Z along with all linear maps """ with u < v induced by the
inclusion of complexes.

Fala@) L Faa,e)—— > Fala)

() (b)

Figure 1.6: In picture (a), we see the two-parameter filtration obtained by considering the one-parameter filtrations
in Figure 1.5 together. In the diagram (b), a representation of the corresponding persistence module in degree 0
(connected components) is depicted. For each F»-vector space in the persistence module, the corresponding reference
basis is made explicit, e.g., a is the homology class of the vertex a. Each matrix expresses a linear linear map in terms
of those bases.

We observe that, for a Lefschetz complex L filtered by L, if z € Z is such that L* = L, then 1>" is
an isomorphism for every w > z.

The Morse reduction result Theorem 1.4.9 has a counterpart for filtered complexes. The result is
implied by Theorem 4.3 in [144].

1.5.8 Theorem (One-parameter compatible Morse reduction). Given a regular cell complex X
filtered by a X with filtration grades in Z and a Morse complex (M, Kyy) compatible with X, the
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inclusion-induced maps at each grade u e Z
@ He(M") — Hi(X")

are isomorphisms for all integers k making all the inclusion-induced maps in each filtration
commute.

1.6 Multiparameter persistent homology

In this section, we generalize the background notions given for one-parameter persistent homology
in Section 1.5 to the multiparameter case, called multipersistent homology. Multipersistent
homology constitutes the main focus of this thesis. In this section, we refer to the notion of
homology of a Lefschetz complex as introduced in Section 1.3. In Section 1.6.1, we introduce the
notion of a multiparameter filtration, or simply a multifiltration. This defines the object where to
apply the construction of multipersistent homology in Section 1.6.2 that leads to the definition of
the persistence module in the multiparameter case.

In place of a finite total order (Z, <), the multiparameter case is based on the partially ordered set
(2", <) with < defined by setting, for any u = (uy,...,u,),v = (vi,...,v,) € Z",

u<vy < Vie{l,...,n}, u;<v;.

We call (Z", <) the grade poset, and multigrades its elements. If neither u < v or v < u, we call
the two multigrades u and v incomparable, and comparable otherwise. If u < v and u # v, we
shortly write u < v. The element of Z" with all null entries is simply denoted by 0.

1.6.1 Multiparameter filtrations

This section is generalizes concepts from Section 1.5.1 to the multiparameter case.

1.6.1 Definition (Multiparameter filtration). A multiparameter filtration, or simply a multifiltration
of L is a map F associating each u € Z" with a closed subcomplex L in L in such a way that

o L=
e there exists a grade z such that L* = L,

e y < vimplies that L" is a closed subcomplex of L".
Filtration multigrades and steps are defined analogously to Definition 1.5.1. We call the image L=
F(Z") a (multi)filtered (Lefschetz) complex. We say that L is (multi)filtered by F or, indifferently,
by L.
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In the work of this thesis, we also consider filtrations with filtration multigrades over discrete
subsets of R" rather than Z". In this case, the multigrade set Z" can be easily mapped to a discrete
subset of R". We refer the reader to [44, 141, 52, 132] for more details on filtrations and filtered
complexes indexed over general real parameters.

1.6.2 Definition (Discrete gradient compatible with a multifiltration). Given a regular cell complex
X multifiltered by X, a discrete gradient V over X is said to be compatible with X if,

V(a,b)eV, YueZ", aecX"<beX"

In the case of a Morse complex M obtained from a discrete gradient compatible with a filtered
complex X, we call M a Morse complex compatible with X .

1.6.3 Definition (Morse multifiltered complex). Given a regular cell complex X multifiltered by
X, and a Morse complex M over X, we define the Morse filtered complex M relative to M and
compatible with L by setting, in each filtration step (M, x},) forue Z,

M":={aeM|acX"},

Ky := K restricted to M" x M".

1.6.4 Definition (Multiparameter filtering function). A multiparameter filtering function over X
is a function ¢ : X — Z" such that, for all cells a,b € X

a<b = ¢la)<¢(b).

A filtering function ¢ of (X, kg) induces a sublevel filtration by setting F (u) = (X", k¢) with
X“:={aeX | ¢(a) <u},
K¢ := K restricted to X" x X".

Indeed, each set X“ is closed in X and then in each XV with u < v. The multifiltered complex X
obtained through sublevels under ¢ is denoted £?.

1.6.5 Remark. If n > 2, filtrations induced by functions give a proper subclass of general
filtrations. Indeed, filtrations of kind L? are one-critical, which according to [33] , means that the
minimal grade u € I" a cell in L belong to in L(@) is unique.

In the case of a Morse complex M compatible with the filtered complex £¢ induced by sublevel
sets by a filtering function ¢, we way that M is compatible with ¢.

22



1.6.2 Multiparameter persistence module

As for the one-parameter case, given a multifiltered Lefschetz complex £, the homology con-
struction Hy () can be applied to each filtration step. By Remark 1.2.4, each inclusion between
filtration steps induces a linear map of corresponding homology spaces

[“CL’ = 1":H(L") — Hy(L")

The notion of homology class persistent from one step to another is analogous to the one-parameter
case. A homology class is persistent from grade u to grade v if it is not trivial in Hy(L") and still
non-trivial in Hi(L"). This motivates the following definition generalizing Definition 1.5.6.

1.6.6 Definition (Multipersistent homology). Given a Lefschetz complex L multifiltered by L,
i.e., with filtration grades in Z", the multipersistent k"-homology from grade u to grade v, with
u < v, is the image of the inclusion-induced map 1" of Hy(L").

The global information of multipersistent homology for all possible filtration grades u < v is
captured by the following definition.

1.6.7 Definition (Multiparameter k"-persistence module). The multiparameter persistence k-
module Hi(L) relative to the multifiltered complex L is the family of homology spaces Hj.(L")
with u € Z" along with all linear maps 1" with u < v induced by the inclusion of complexes.

Fa(@) — " F2(@) — = F»(a)

(1) (r (1)
1 N oy
Folay ——— Fy(a,c) —— Fy(a)
i o) (") g

00— Fpley — = Falb)

0 1 2

(a) (b)

Figure 1.7: in picture (a), we see the two-parameter filtration obtained by considering the one-parameter filtrations
in Figure 1.5 together. In the diagram (b), a representation of the corresponding persistence module in degree 0
(connected components) is depicted. For each F,-vector space in the persistence module, the corresponding reference
basis is made explicit, e.g., a is the homology class of the vertex a. Each matrix expresses a linear linear map in terms
of those bases.
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We observe that, for a Lefschetz complex L multifiltered by L, if z € Z" is such that L? = L, then
1>" is an isomorphism for every w > z.

The one-parameter compatible Morse reduction Theorem 1.5.8 has a counterpart for multiparame-
ter filtered complexes implied by Corollary 2 in [4].

1.6.8 Theorem (Multiparameter compatible Morse reduction). Given a Lefschetz complex L
multifiltered by L and a Morse complex L compatible with X, the inclusion-induced maps at each
grade ue Z"

Ol : He(M") — Hy(X")

are isomorphisms for all integers k making all the inclusion-induced maps in each filtration
commute.

1.7 Invariants in persistent homology

The aim of this section is to introduce and discuss the invariants associated with a persistence
module that are more relevant in the context of this thesis. We emphasize similarities and
dissimilarities between the one-parameter and the multiparameter case.

The section is structured as follows. To begin with, we formalize what we mean by the word
“invariant”. Moreover, we introduce the rank invariant as an example of invariant formally
expressed in the same way in both the one and the multiparameter cases. In Section 1.7.1, we
introduce the persistence diagram as an example of complete invariant available for one-parameter
persistence and observe its relation with the rank invariant. In Section 1.7.2, we introduce the
persistence space as the multipersistence invariant of major interest for this thesis. We see how
the persistence space generalizes the persistence diagram. Both persistence spaces and diagrams
constitute the necessary background for the experimental results in Section 6.3. Another class
of persistence invariants comprises those of algebraic nature. In Section 1.7.3, we introduce
the algebraic formulation of the persistence module and the invariants called multigraded Betti
numbers. This setting is the preferable one to make it explicit the different character when moving
from one to multiparameter persistence, so in conclusion, we add some additional remarks.

1.7.1 Definition (Invariant). Given a set E whose elements admits an equivalence relation =, and
a set T, an invariant on E with values in T is a function Inv : E — T such that, for all e,e’ € E

ex¢ = Inv(e) = Inv(e').
The function Inv is a complete invariant if also the converse holds, that is,

Inv(e) =Tnv(e') < exé.
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The topic of this section is to define the available invariants on E, when E is the class of persistence
modules. Recall that the persistence module (see Definition 1.6.7) depends on a filtration F* and
the choice of the homology functor in some integer degree k. Recall what a filtration F' is from
Definition 1.6.1. We indicate by F(Z") when necessary to remark that the filtration parameters
run over n copies of a set Z. Recall the definition of the k"-homology functor Hy(—;F), with F a
field, introduced in Definition 1.2.2 and, from now on, indicated by H;(—). All along this section,
we set M to be a persistence module such that M = H; o F(R"). In Section 1.7.1, we treat the case
n = 1. In Section 1.7.1, we treat the general case n > 1.

A first persistence invariant can be defined indifferently in the one and the multiparameter
cases. Denote by AL the set {(u,v) € R" x R" | u < v}. Moreover, denote by A”Z  the set
A" U {(u,+0) | u € R*}, where +0 is an additional element greater than all others in R". For
each (u,v) € AL ,, consider the corresponding inclusion-induced map in the persistence module
M:

y, MY — M".

1.7.2 Definition (Rank invariant). The rank invariant of M is the function rank, : A’;m —> N
defined by
rankyy(u,v) := rank,;”.

For each pair of filtration grades u < v, the rank invariant counts the number of homology classes
persistent through 1,;" from grade u to grade v. In the next sections, we see, in particular, how the
rank invariant properties vary according to the character of parameter n.

1.7.1 Invariants in one-persistent homology

In this section, we focus on the case n = 1. We introduce the persistence diagram as an example
of complete invariant for one-parameter persistence. We define the persistence diagram, originally
introduced for one-parameter persistence modules with a countable number of filtration steps [75],
by following the definition for uncountable filtration steps given in [49]. We focus on this invariant
since our experimental tests in Section 6.3 directly involve it in the computations.

The persistence diagram is a representation in the Cartesian plane R x R of a one-parameter
persistence module M. Each point in the persistence diagram represents a discontinuity in the rank
invariant values which can be given either by a new-born or by a vanishing homology class in M.
The rank invariant is defined for points in the Cartesian plane which lay on the diagonal or above.
Discontinuities are checked only in the inner part of the rank invariant domain. Denote by AL the
set {(u,v) € R xR | u < v}. Moreover, denote by A1<7+OO the set A' U {(u, +0) | u€ R}, where +o0
is an additional element greater than all others in R. Each pair (u,v) of grades in A1<’ Lo 1S given a

multiplicity. The multiplicity function detects discontinuities of the rank invariant point-wise.
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1.7.3 Definition (Definition 1 in [49]). The multiplicity function of the one-parameter persistence
module M is the function Ly : A1<’ +oo — N defined by

tpr(u,v) := min { ranky (u+e,v—e) —ranky (u —e,v —e)+
e
—rankM(u+e,v+e)+rankM(u—e,v+e)} (1.8)
(e, +00) := min {rankM(u +e,v) —ranky (u—e, v)},
e
according to v being in R or equal to +0c0, and with e > 0 such that (u#+ e,v —e) belongs to A1<7+Oo.
1.7.4 Definition (Persistence diagram). Let M be a one-parameter persistence module. The

persistence diagram of M is the multiset PDgm,, defined by the set {(u,v) € AL |, | par(u,v) >
0} whose elements (u,v) are counted with multiplicity ts(u,v).

Figure 1.8: an example of persistence diagram along (on the right) and its corresponding barcode (center) with
respect to sublevel sets (shape on the left).

Source: image showed under gentle permission of the author, Barbara Di Fabio.

1.7.5 Example. In Figure 1.8, we see an example of filtration of a shape by sublevel sets with its
associated persistence diagram. We see, in red, homology classes in degree 0, in green the degree
1, in blue the degree 2. The bars visualize the barcode corresponding to the persistence diagram.

We warn the reader that, in the work given as a reference [49], the persistence diagram also
includes the diagonal points in the Cartesian plane. This choice is useful for defining the matching
distance between persistence diagrams. We have chosen to adopt the given definition to better
highlight the meaning of points in the persistence diagram.

It follows from Definition 1.7.4 that, by knowing the rank invariant, one can always retrieve
the persistence diagram. Conversely, the following result, also known as Triangle Lemma [80],
ensures that, in the one-parameter case, the rank invariant is determined by the persistence
diagram.
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1.7.6 Theorem (Theorem 1 in [49]). Forall (u',V') € Alsﬁ oo 1t holds that

ranky (u/,V') = Z w(u,v)+ Z u(u,+00). (1.9)
u<u’ u<su’
Vi<y

Hence, the two invariants are equivalent.

Completeness. We postpone the completeness discussion to Section 1.7.3. Here, we motivate
completeness by recalling the main steps in the proof. By Theorem 1.7.12, persistence modules
admit an algebraic formulation in terms of finitely presented graded modules. The completeness of
the persistence space follows by the decomposition given by Theorem 1.7.14 for finitely presented
graded modules. Under that decomposition, each pair (u,v) in the persistence diagram with
non-null multiplicity s (u,v) corresponds to tiys(u,v) different homology classes in M appearing
precisely at filtration grade u and disappering precisely at filtration grade v (never disappearing
if v = 4+00). Being equivalent to the persistence diagram, the rank invariant also is a complete
invariant for one-parameter persistence modules.

1.7.7 Remark. Often, the notion of a persistence diagram is equivalently expressed by the barcode.
The barcode BCyy consists of a multiset of intervals. Each element (u,v) in a persistence diagram
corresponds one-to-one to a persistence bar, that is an half-open interval [u,v) on the real line.
The multiplicity of each interval is the same as that in the persistence diagram.

Invariants representation remarks. We close this section by observing a crucial difference for
computational purposes between the persistence diagram and rank invariant in the one-parameter
case. The rank invariant is less convenient to be encoded since it requires to represent a natural
number for each pair in Alﬁ 1o Instead, the persistence space requires to represent only those
pairs in A1<7 +o With positive persistence. The rank invariant is not discrete, in the sense that,
the cardinality of its domain is uncountable when the set of filtration grades is uncountable. On
the contrary, the number of points in the persistence diagram depends on the homology features
changing along M. That number is finite whenever the filtration considered is a filtration of a
finite Lefschetz complex, even with uncountable filtration grades.

1.7.2 Invariants in multipersistent homology
In this section, we focus on the case n > 1. We introduce the persistence space which generalizes
the persistence diagram to multiparameter persistence modules. We define the persistence space,

by following the construction given in [49]. We focus on this invariant since, in our experimental
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tests in Section 6.3, we retrieve an approximate version of it. A the end of the section we highlight
theoretical dissimilarities with the one-parameter case. Dissimilarities will be clarified into more
details in Section 1.7.3.

In order to generalize to multipersistence the persistence diagram, the idea consists in:

e generalizing the multiplicity function of Definition 1.7.3;

e generalizing Theorem 1.7.10 for the generalized multiplicity function.

To address the first step, recall from Definition 1.7.2 that, for n > 1, values of the rank invariant are
defined above the diagonal in the space R” x R". Denote by A" the set {(u,v) € R" x R" | u < v}
with u < v if the strict inequalities u; < v; hold for all components. Moreover, denote by A”.  the
set A" U {(u,+0) | u € R"}, where +o0 is an additional element greater than all others in R”. The
first step 1s obtained through the following definition.

1.7.8 Definition (Definition 3 in [49]). The multiplicity function of the multiparameter persistence
module M is the function uy : AL | ;) — N defined by

Uas(u,v) := min {rankM(u+e,v—e) —ranky (u—e,v—e)+
e
—ranky (u+e,v+e) —I-rankM(u—e,v+e)} (1.10)

Upr(u, +00) := min {rankM(LH—e,v) —rankM(u—e,v)},
e

according to v being in R" or equal to 400, and provided to take e € R" such that e > 0 is sufficiently
close to 0 with respect to the infinity norm, and such that the pair (z+e,v —e) belongs to A | .

A part from the restriction on the vector e being close enough to 0, the multiplicity function
directly generalizes Definition 1.7.3. The need of this requirement is explained in Proposition 2
in [49] and it is aimed at preserving monotonicity properties of the rank invariant with respect to
component-wise perturbations of (u,v). This leads to the definition of persistence space in the
following terms.

1.7.9 Definition (Persistence space). Let M be a multiparameter persistence module. The persis-
tence space of M is the multiset PSpc,, defined by the set {(u,v) € A |, | t(u,v) > 0} whose
elements (u,v) are counted with multiplicity uas(u,v).

As already done in the persistence diagram case, we warn the reader that, in the referenced
work [49], the persistence space also includes the diagonal points in R" x R". This choice is
useful for defining the multidimensional matching distance between persistence spaces. We have
chosen to adopt the given definition to better highlight the meaning of points in the persistence
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diagram. It follows from Definition 1.7.9 that, by knowing the rank invariant, one can always
retrieve the persistence space. Conversely, the following result addresses the second step of the
desired generalization, thus guaranteeing that the rank invariant is determined by the persistence
space.

1.7.10 Theorem (Theorem 2 in [49]). Let (u',V') be in AL .. If e >0 in R" x R" and {e)
indicates the linear space spanned by e in R" x R", then it holds that

ranky (u',V') = Z w(u,v) + Z p(u, +0). (1.11)

u<u' ' —ueley u=<u' u' —uele)
v <vy—v'ele)

A part from the restriction of summands components to be chosen along the direction of {e), the
result directly generalizes Theorem 1.7.10. The role of {e) is explained by the slice-compatibility
of the rank invariant stated in Equation (2.1) in Section 2.4.1. Hence, the two invariants are
equivalent. Other available invariants are discussed in Section 2.4.1.

Non-completeness. The persistence space is not complete for the class of multiparameter per-
sistence modules. Its non-completeness is first discussed by Carlsson and Zomorodian in [35].
In Section 1.7.3, we explain it into more details by moving to an algebraic formulation of the
persistence module. Here, we summarize the most crucial points to motivate it. By Theo-
rem 1.7.12, persistence modules admit an algebraic formulation in terms of finitely presented
multigraded modules. The non-completeness of the persistence space follows by the impossibility
of generalizing to multigraded modules the decomposition given by Theorem 1.7.14 for finitely
presented graded modules. Being equivalent to the persistence space, the rank invariant also is a
non-complete invariant for one-parameter persistence modules.

1.7.11 Example. In Figure 1.9, we see two different persistence modules with the same rank
invariant (the example is taken from Example 2.2 in [133]). This shows that the rank invariant is
not complete.

Geometrical meaning. The geometrical meaning of the persistence space is highlighted by its
slice-compatibility property. For an invariant over persistence modules is the property ensuring
that, if restricted to any linear one-persistence submodule called slice (Definition 2.4.1), the
invariant corresponds to a one-persistence invariant. In Section 2.4.1, we present the slice-
compatibility of the persistence space which, over each slice, is equal to a persistence diagram.
That property highlights the geometrical meaning of a point in a persistence space. For each
pair (u,v) in the persistence space with non-null multiplicity s (u, v), there exists a slice, and a
pair (a,b) in the persistence diagram of the slice, where (a,b) corresponds to piy(u,v) different
homology classes in M appearing precisely at filtration grade a and disappearing precisely at
filtration grade b (never disappearing if b = +0).
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Figure 1.9: Two two-parameter filtrations (a) and (c) with their corresponding persistence modules (b) and (d),
respectively.

1.7.3 Algebraic invariants in persistent homology

In this section, we introduce the algebraic formulation of the persistence module. This setting
is the preferable one to explain why, in the one-parameter persistence case, we have complete
invariants available whereas, in the multipersistence case, we have not. Next, we introduce the
invariants called multigraded Betti numbers and provide our own perspective on their geometrical
meaning.

The algebraic formulation of the persistence module we follow is the one outlined by Carlsson and
Zomorodian in [35] and, then refined by Corbet and Kerber in [56]. Consider a filtration F' with
grades in Z" of some Lefschetz complex. Consider the k"-homology construction Hy(—;A) with
coefficients in a commutative ring with unity A. Denote by M the persistence module Hy(—;A) o F
with M* = Hy(F (u);A), and with 1" denoting the maps induced by the inclusion from grade u to
grade v. We want to look at M as a multigraded A[xy,...,x,|-module @(M). In order to define
the corresponding multigraded module (M), we determine, for each u € Z", its homogeneous
part o(M)" and, for each z = (z1,...,z,) € Z" the action of the monomials x* = x7' ---x3" over
elements in ot(M):

a(M)" =M homogeneous part of multigrade u
Mo (M) =1 (a(M)) Alx1,...,xq]-action of z=v—u over a.(M) € a(M)".

In the following statement, we adapt Theorem 1 in [35] to the refinement for finitely presented
modules discussed in Theorem 9 in [56].

1.7.12 Theorem (Correspondence). The correspondence & defines an equivalence of categories
between the category of persistence modules with of finite type with coefficients in A and n
parameters, and the category of finitely presented multigraded modules over Alxy, ..., X,].
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The rank invariant in algebraic terms. Under the correspondence « and by taking A | as
in the rank invariant definition (see Definition 1.7.2), we have that, for all (u,v) € AZ .,

ranky (u,v) = rank (x*~"- a(M)"),

where, in the right-hand term, rank indicates the rank of a module. According to Miller [141], this
allows to interpret the rank invariant of a persistence module M as a “persistent version’ of the
Hilbert function [128] of a(M).

1.7.3.1 Multigraded Betti numbers

The correspondence o of Theorem 1.7.12 allows to consider, for a persistence module, multigraded
Betti numbers. The latter invariants generalize Betti numbers given by the Structure Theorem 1.2.5
to multigraded modules. To begin with, we follow the construction outlined in [127]. Then, we
provide our own point of view on the geometrical meaning of multigraded Betti numbers.

In [127], the author defines multigraded betti numbers in terms of the Tor;(—;F) function [83,
128] depending on a non-negative integer i and a field F. The functor acts on the corresponding
Flx1,...,x,]-module a(M) and returns the multigraded F|xy, ..., x,]-module Tor;(a(M);F). Each
homogeneous part Tor;(a(M);F)" is a F-vector field and, since the Lefschetz complex filtered by
F is finite, it has finite dimension.

1.7.13 Definition (Multigraded Betti numbers). The multigraded Betti numbers associated with a
persistence module M consist of a collection of functions {f; F : Z" — N)}cn defined by

ﬁ,‘7M(u) = dimTOI‘,'(OC(M), F)u.

From now on, we simply write 3; and omit the module M when clear from the context.

The Hilbert’s Syzygy Theorem [128] ensures that, since o(M) is a F[xy,...,x,|-module, then
only By, ..., B, can be non-null functions. The function fy counts, in any multigrade, the number
of new homology generators. The function ;] counts the number of new relations among the
relations detected by f;. Hence, the geometrical meaning is not straightforward. Now, we focus
on the geometrical meaning of f3;’s by addressing:

e the case n = 0 corresponding to static case of homology;
e the case n = 1 corresponding to the one-parameter persistence case;

e the case n > 1 corresponding to multiparameter persistence.
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In the case n = 0, we can focus on fy. There are no grades, so By degenerates into a constant
function. The corresponding module (M) is simply an F-vector space of finite dimension. To
o (M), the Structure Theorem 1.2.5 applies and provides the standard decomposition with no
torsion part:

o(M)

lle

@F.

i=1

The constant function satisfies fyp = p since it counts the number of generators of a(M).

In the case n = 1, we can focus on fy and ;. The corresponding module o(M) is an F|x]-module
which is finitely generated since finitely presented implies finitely generated. To at(M), the Graded
Structure Theorem 1.2.5, which, by taking advantage of F|x] being a principal ideal domain (from
now on called PID) simply adapts the Structure Theorem to the graded case, applies.

1.7.14 Theorem (Graded Structure Theorem). Any finitely generated graded F[x]|-module a(M)

admits, up to ordering, a finite number of unique elements u',u/ v/ € Z" such that

m

Flx)(—u) @ DFL () /(i)

i=1 j=1

lIe

(M)

where F|x|(u) denotes the graded F|x]-module F|x] shifted by grade u defined, over each homo-
geneous part F[x](u)" := F[x]“*".

In [35], authors prove that pairs (u!,+o0) and (#/,1/) counted as many times as they appear in
the decomposition are precisely the elements of the persistence diagram associated with M (see
Definition 1.7.4). This result implies that the persistence diagram is a complete invariant for
one-persistence modules. Moreover, we get that:

p+m= Z Bo(u)
ueZ"

m = Z Bi(u).

ueZ"

This means that 3y is non-null where a new homology class appears along the persistence module.
In particular, the function fy still counts the number of generators in o(M) and, as we will see,
this will hold also in the n > 1 case. The function B; is non-null where a homology class disappear
along the persistence module. This perfect correspondence with components of elements in the
persistence diagram makes the case n = 1 so peculiar. This correspondence will be broken in the
n > 1 case. However, as shown in Figure 1.10, we observe that multigrade Betti numbers are not
a complete invariant for one-parameter persistence modules. Indeed, they detect ending points for
life-spans of homology classes without tracking which are the two ending points related to the
same class.
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Figure 1.10: two persistence diagrams with the same graded Betti numbers. Different persistence diagrams with the
same graded Betti numbers. Red and blue dots belong to different persistence diagrams. The labels By, B; indicate
where graded Betti numbers are non-trivial.

In the case n > 1, we can focus on fy, . .., B,. The corresponding module (M) is an F[xy,...,x,]-
module which is finitely presented. Since F[xy,...,x,] is not a PID, the Graded Structure Theorem
finds no multigraded counterpart. This is at the heart of non-completeness for multigraded
persistence modules invariants. Moreover, non-null values under the function 3; do not correspond
anymore to disappearing homology classes since the notion of relation among generators does not
necessarily imply it. Neither non-null values under the function 3, have that role and the same
holds for each function till 3.

What it is easy to see is that the multigraded Betti numbers and the persistence space or, equiva-
lently, rank invariant are not equivalent. Indeed, the initial differences highlighted in Figure 1.10
for the n = 1 case become more and more deep when one miss the link between relations of one
order to the other.
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2 State of the art

In this chapter, we present the literature of persistence Theory along the pipeline common to all
different approaches. The procedure can be simplified as in the figure below.

Interpretation

Filtration Invariant

Figure 2.1: persistence pipeline

As Figure 2.1 suggests, we can subdivide the persistence theory pipeline into three main steps
that will be reviewed separately treated in this chapter. First, in Section 2.1, we review the main
data structures representing simplicial and cubical complexes given as the input datum. The data
might come with very different encoding. The next step, treated in Section 2.2, is the filtration.
Computing persistence inherently depends on the way the filtration is built up from data. Thus,
filtrations change according to the problem to be addressed and we review the available filtration
constructions. The third step consists in the actual invariant computation to describe persistence
features. This is the step of major interest for the work of this thesis. In this step, we have
the major differences between the one-parameter and the multiparameter persistence theories,
separately treated in Section 2.3 and Section 2.4, respectively. As a last part, in Section 2.5, we
review some literature on the interpretation of the retrieved persistence invariants.

2.1 Data structures representing simplicial and cell complexes

The input datum of the persistence pipeline in Figure 2.1 might be of very different nature. More
precisely, there might be very different ways to codify it. Here, we consider the most known
data structures for cell, simplicial or cubical complexes. In the literature, several topological
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data structures encoding a cell complex have been proposed. For sure, the most common one is
the Incidence Graph. An Incidence Graph (IG) [74] is a topological graph-based data structure
representing a cell complex by explicitly encoding all of its cells and their incidence relations with
facets. For this reason, even if the domain is discretized through a simplicial complex, the IG can
be verbose. In the case of cubical complexes in R4, the axis-wise distribution of the cubes makes
it possible to encode the topology of the complex implicitly. Incidence relations are obtained by
index calculations without any overhead.

Simplicial Complexes. The Simplified Incidence Graph (SIG) [62] and the Incidence Simplicial
(1S) [63] data structures specializes the IG to simplicial complexes. The IG, SIG, IS data structures
have been all implemented in the public domain software Mangrove TDS Library [28, 29].
Mangrove TDS Library is a dimension-independent and extensible framework, targeted to the
fast prototyping of topological data structures. However, both these structures behave similarly
to the IG when working in high dimensions. Another graph-based data structure is the Simplex
tree [22, 21] data structure, in which all simplices of the simplicial complex are explicitly stored
using trees. The IG, SIG, IS data structures and the Simplex tree share a common trait storing
all the simplices in the simplicial complex. In particular, when dealing with data with a huge
number of points, or when working in a high dimensional space, a data structure storing all the
simplices is unfeasible to use in practice. One could consider data structures encoding only a
subset of the simplices. Data structures encoding only top simplices and vertices are, not only,
particularly effective in two and three dimensions, but also are the best candidates for extensions
to higher dimensions. An example in this direction is represented by the dimension-independent
adjacency-based data structure for encoding arbitrary simplicial complexes called Generalized
Indexed data structure with Adjacencies (IA*) [30].

2.2 Filtrations

In this section, we review the main one-filtration constructions presented in the literature. Mul-
tiparameter filtrations are obtained by combining multiple one-parameter filtrations. The most
general way of obtaining a one-filtered complex X from a cell complex X is by means of sublevel
sets with respect to a scalar filtering function ¢ defined on X. We detect two general contexts to
produce a one-filtration:

e in the scalar field setting, studied in Size Theory [89], one needs to consider smooth spaces
together with continuous functions defined on them quantifying some properties one wants
to compare. The sublevel sets with respect to the scalar field provide the filtration. The
purpose is that of describing the shape through its scalar field in view of applications to
shape comparison. The scalar field is described by its persistence features along sublevel
sets;
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e in the point cloud setting, reviewed in [31, 95], one starts from point cloud data; constructs
a simplicial complex over it; and filters it according to many possible different criteria.
The point cloud is thought of as a sampling over a smooth ideal shape whose homology
features should be inferred. Alternatively, the point cloud might represent any geometrical
realization of data and the inferred persistence of the filtration might provide topological
features as a preprocessing to any statistical data analysis.

Scalar field filtrations. Each smooth topological space is thought together with a continuous
measuring function. In this context, the cell complex X is thought of as a discrete version of an
ideal smooth shape. Thus, at the discrete level, the filtering function is given only on vertexes and
a simplex is said to belong to a certain filtration step X“ only if all of its vertexes do. Alternatively,
one can consider a piecewise linear function (PL-function), obtained by linear interpolation of a
function defined on vertexes.

Size Theory is first extended to multiparameters in [90]. The issues for the PL-setting in the
multiparameter case are treated in [42].

Point cloud data filtrations. The most common theoretical approach consists in taking the
nerve of the covering space given by all radius € neighborhoods of the points in the cloud. This
gives in turn a simplicial complex. Then, the filtration is obtained as the parameter e varies. This
is known as the Cech-complex [108]. In practical situations, other approaches are preferable. One
of them is the Vietoris-Rips complex (VR-complex) [198] which is simpler in terms of persistence
features created. A drawback for VR-complexes is the dimension of the simplicial complex
created which exceeds the embedding space dimension. Among the constructions non-exceeding
the embedding dimension, a-shapes [81] provide a filtration based on the Delaunay triangulation.
Filtrations of witness complexes, introduced in [64], allow to reduce the number of vertexes
from where to construct the nested sequence of simplicial complexes. Among the optimized
constructions, we report sparse filtrations [41], recently improved, by Sheedy for a-shapes [170]
by means of an output-sensitive algorithm, and by Har-Peled and Mendel in [106] by means of a
hierarchical clustering technique.

2.3 Computing one-persistent homology

In this section, we review the existing methods for computing one-persistent homology. First, we
review the general matrix reduction strategy. Then, we see how differently this strategy can be
optimized.

In the one-parameter case, computing persistence, with coefficients in some field, means obtaining
any of the equivalent persistence invariants described in Section 1.7 to track the life a homology
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feature along the filtration. The computation of the homological information has evolved over
the years. At the beginning, persistent homology has been computed by extending techniques
developed for retrieving homology. The classical approach to homology computation is based on
the Smith Normal Form (SNF) reduction [149, 1] applied to the boundary matrix, i.e., the matrix
representing the boundary maps J, and is super-cubical in the size of the complex. Optimizations
of the SNF algorithm are discussed in [96, 120, 181]. By restricting to field coefficients and
ordering the columns in the boundary matrix according to the associated filtration grades before
applying the SNF reduction, the persistence diagram can be retrieved. Nowadays, the spread
of persistent homology has led to a reversed scenario in which homology is computed through
algorithms aimed at the retrieval of persistent homology and, then, specialized to the case of a
trivial filtration. An equivalent way of representing the SNF with coefficients in a field is by
means of the Echelon form. As an advantage, the standard algorithm [34, 75], used to get the
Echelon form of the boundary matrix, keeps the column order fixed along the reduction. This
directly allows to read off the persistence pairs of each homology feature along the filtration. The
standard algorithm generalizes to any complex dimension the incremental method for homology
proposed in [80, 65].

In the boundary matrix of J, each column corresponds to a k-cell and each row to a (k— 1)-cell.
Each k-cell comes associated with a filtration grade indicating the first step where the k-cell
appears in the filtration. Columns are ordered by increasing values of the associated grades.
Non-null column entries indicate the (k — 1)-facets of the corresponding k-cell. To obtain the
persistent pairs in degree k, the standard algorithm performs a left-to-right column reduction over
O and Oy 1. Whenever two columns are found to have the same non-null entry with highest row
index, that row index called lowest-one, those two columns are successively summed up till the
reduced matrix is obtained. Non-null columns in the reduced matrix represents a persistence pair
formed by the column cell and the cell corresponding to the lowest-one. The persistence of the pair
is obtained as the difference between the two filtration grades of the cells in the persistence pair.
Grades of null-columns in ¢ represents the birth of a homology class. Such a new homology class
can either last all along the filtration or be paired as a row in 0y, 1. The core idea introduced by the
incremental method in [80, 65] and exploited in the standard algorithm is that, if cells are added
one-by-one along a filtration, then each k-cell either creates a new class in k-homology (positive
cell) or destroy an old class in (k — 1)"-homology (negative cell). Under this interpretation, in the
reduced matrix, null-columns represent positive cells and non-null columns represent negative
cells. In practical cases, the standard algorithm has a linear complexity in the number of the cells
of the complex. Although the methods based on a matrix reduction are theoretically valid in
any dimension, their worst-case complexity is super-cubical in the number of cells in the whole
complex. This has led to develop other techniques to compute persistent homology. A survey can
be found in [75].

We subdivide the methods for retrieving persistence invariants in the one-parameter case into two
classes. In Section 2.3.1, we review integrated techniques to perform persistence computations.
In Section 2.3.2, we review preprocessings methods which aim at reducing the size of the input
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datum before applying persistence computations. The tools available for computing one-persistent
homology are reviewed in Section 2.3.3.

2.3.1 Integrated one-parameter techniques

Practical enhancements in computing one-parameter persistence can be performed in different
ways. We subdivide the integrated methods into:

e direct optimizations [53, 177, 32, 143, 54] acting on the way the boundary matrix is
reduced;

e distributed optimizations [75, 135, 11] of the boundary matrix reduction;

e annotation-based techniques [66, 21, 26] encoding in a smart way the homology classes
along the filtration as an attribute to cells.

Direct optimizations act directly on the standard algorithm by exploiting different aspects.

A first method is the twist algorithm [53]. The boundary matrix is reduced from right-to-left.
This way, whenever a persistence pair is found, the column with the same index as the row in the
persistence pair is set to zero. This reduces the number of column operations to be performed.
The twist algorithm outperforms the standard one over filtrations with the number of homology
classes higher at the beginning of the filtration and lower towards the end.

The Row algorithm [177] (also called dual algorithm) exploits cohomology duality to act on
the rows instead of the columns of the boundary matrix. The time complexity is theoretically
equivalent to the standard algorithm. However, the row algorithm allows to forget rows once they
are paired, thus optimizing the storage cost of the procedure. As a disadvantage explicited by
the authors, in most data structures for encoding cell complexes, the boundary retrieval is more
efficient than the coboundary retrieval and, explicitly representing a row in the boundary matrix
means explicitly retrieving the coboundary of each cell.

In [32] authors introduce a sequential algorithm based on a generalization of persistence to non-
necessarily increasing sequences of cell complexes called zigzag persistence. Zigzag persistence
is exploited in [143] to take advantage of the sparsity of the boundary matrix. The algorithm is a
hierarchical variation of the SNF reduction of the boundary matrix that can be obtained in matrix
multiplication time, that is O(n%37%) in the number of cells. At the moment, this is the lowest
worst-case time cost for the boundary matrix reduction.

An output-sensitive algorithm is proposed in [54] where the left-to-right reduction of columns is
replaced by successive computations of submatrix ranks. The submatrix ranks are used to describe
the persistence diagram through the Formula 1.8. The submatrices are selected according to a
threshold parameter 6. Homology classes with persistence lower than & are not computed. Time
complexity depends on the number of persistence pairs found. The worst-case time complexity
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depends on the procedure implemented for the submatrix rank computations. Practical advantages
are remarkable when a short-living persistence features are not of interest.

Distributed Optimizations take advantage of a divide-and-conquer approach.

Persistent homology is locally computed and then merged through spectral sequences in [75, 135].
The algorithm applies to the complete boundary matrix simultaneously encoding all boundary
maps 0 for all integers k. The complete boundary matrix is subdivided into blocks D), given
by intersecting rows with filtration grade equal to # and columns with filtration grade equal to v.
Each block is reduced via the standard algorithm. Different blocks are reduced from the diagonal
outwards, that is to say, from short to long-living persistence features.

In [11, 12] a similar partition into chunks is exploited to combine the distributed approach to the
advantages of the twist algorithm and the elimination of unnecessary unpaired cells inspired by
Forman’s discrete Morse Theory [87] before merging the blocks contributions.

Annotation-based Techniques have emerged recently in [66, 21] for persistence computations
in the simplicial case. Annotations [26] are vectors associated to each simplex to compactly
encoding the homological class they belong to. They are often combined with the Simplex Tree
data structure [22] instead of using the Incidence Graph as most of the other libraries.

2.3.2 Preprocessing in one-persistent homology

All preprocessing methods in this section share the common task of reducing, while preserving
persistence, the input filtration in the number of cells and, possibly, in the number of filtration
grades. All the methods adapt similar preprocessings coming from homology computations to the
persistence case by imposing compatibility with the filtration structure of the input datum. We
subdivide the preprocessing methods into:

e discrete Morse-based preprocessings [123, 176, 174, 162, 99, 86, 193, 92];
e (co)reduction-based preprocessings [146, 148, 70];

e acyclic space-based preprocessings [147, 71].

Discrete Morse-based preprocessings aim at retrieving a discrete gradient compatible with a
given filtering function. From [144], implying Theorem 1.5.8, we know that this suffices to obtain
a Morse complex with, in general, fewer cells and grades than the original filtration. In general,
the discrete gradient is locally found through a divide-and-conquer strategy. We consider methods
applying to filtrations whose function attributes are extended from vertexes to higher dimensional
cells.

The algorithm described in [123] is the first one to introduce a divide-and-conquer approach
which applies to simplicial filtered complexes in any dimension. The main drawback of this
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algorithm is introducing many spurious critical simplices with respect to the ones strictly in need
for describing the homology changes along the filtration. This drawback grows with the dimension
of the simplicial complex.

Two approaches have been defined in [176, 174] for 2D and 3D images respectively. Focusing on
a parallel implementation, they provide a substantial speedup in computing the discrete gradient
still creating spurious critical simplices. In [162] Robins, Wood and Sheppard introduce a
dimension-agnostic algorithm, focused on regular grids, that processes the lower star of each
vertex independently. From now on, this algorithm will be called ProcessLowerStars and, since
the algorithm presented in Chapter 4 generalizes ProcessLowerStars to the multiparameter case,
the algorithm will be discussed in more details in Section 3.2. An efficient implementation of
[162] is discussed in [99] while, for simplicial complexes, the same algorithm as been extended to
triangle [86] and tetrahedral meshes [193]. The first dimension independent implementation for
simplicial complexes of a slightly modified algorithm inspired by [162] is presented in [92].

Reductions and coreductions-based preprocessings are introduced in [146] and they aim at
removing pairs of incident cells while preserving homology features. Given a Lefschetz filtered
complex L, a reduction pair is a pair (a,b) of cells in L such that the coboundary cby (a) = {b}.
a coreduction pair is a pair (a,b) of cells in L such that the coboundary bdy (b) = {a}. Under
the further constraints of allowing only for pairs of cells in the same level set, the removal
of a (co)reduction pair leads to a smaller filtered Lefschetz complex with the persistence pre-
served [144].

For simplicial complexes, the algorithm is adapted to persistence in [148]. Then, it is extended to
general CW-complexes in [70].

Acyclic spaces-based preprocessings aim at detecting a subspace A of the Lefschetz filtered
complex £ with the same homology of a single vertex. By excision property of homology, the
homology of L is the same as the relative homology of the pair (L,A).

The first algorithm exploiting acyclic subspaces is first introduced in [147]. An acyclic space is
found from a seed cell initializing A by successively adding cells while the A keeps being acyclic.
The size of A depends on the process ordering of cells.

Acyclic spaces are adapted to the persistence case in [71], where the space A is required to satisfy
A" := A n L" being acyclic for any filtration grade u.

2.3.3 Tools for one-persistent homology

In the recent years, many tools for computing persistence have been developed and distributed.
We can classify these software tools as follows:

e tools based on a matrix reduction [184, 190, 145, 13, 160, 9];

e tools based on annotations [138, 67];
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e tools exploiting preprocessings [118, 153].

Tools based on matrix-reduction directly work with the boundary matrices of a cell complex
and they usually implement the standard algorithm or one of its optimizations. The javaPlex
library [184] for persistence of simplicial filtrations is based on the first, no longer maintained,
open-source tool jPlex. The library implements standard, dual and zigzag algorithms. The GAP
persistence package [190] extends the GAP packages to persistence computations of point cloud
data and implements the standard algorithm for simplicial filtraions. The pHom library [183] is an
R library acting on point cloud data that implements the standard and the dual algorithms. The
Dionysus C++ based library [145] implements the standard algorithm for simplicial filtrations.
The PHAT C++ library [10] is the first one to support a parallel implementation of the reduction
algorithm for persistence. The toolbox accepts in input directly boundary matrices, thus allowing
for computations over general cell complexes, and implements several algorithms: the standard
algorithm for persistence [80] and four optimizations, namely the twist algorithm [53], the chunk
algorithm [11], the spectral sequence algorithm [75] and the row algorithm [177]. It also supports
a Python package version available from the PyPi repository at https://pypi.python.org/pypi
phat. The spin-off version of the tool DIPHA [160] supports a distributed implementation.
The Ripser C++ package [9] implements the twist and dual algorithm in a optimized way for
VR-coplexes.

Tools based on annotations often combine the Simplex Tree data structure [22] instead of using
the Incidence Graph as most of other libraries. The Gudhi C++ library [138] implements the
twist algorithm and the multifield algorithm for simultaneous computation of persistence over
several coefficient fields [23]. Gudhi supports a Python module available at http:/ /gudhi.gforge.
inria.fr/python/latest /index.html. The SimpPers [67] library implements the simplicial maps
algorithm [66].

Tools based on preprocessings are motivated by the constant growth of the size of the data.
Perseus [153] is a very flexible C++ library which handles general simplicial, cubical filtrations.
The tool reduces the size of the input complex via discrete Morse Theory and then retrieves
persistent homology by exploiting the standard algorithm. The RedHom C++ library [118] is
based on reduction and coreduction operators for the simplification step and it uses PHAT for the
persistent homology computation.

2.3.4 Discussion

The first thing to be noticed is the rich variety of techniques and optimizations proposed in the
recent years. This holds both from the algorithms and from the tools points of view. Nowadays,
challenges in persistence are more related to the next step of the pipeline, namely the feasibility
of statistics methods over persistence results.

From the computational point of view, challenges are, on the one hand, directly inherited from
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the static case of simple homology, especially regarding the time efficiency, and, on the other
hand, they are related to the representation of the multiple spaces within a filtration rather than
a single space necessary in simple homology. In the former case, techniques and optimizations
have managed to make persistence feasible over real-sized data with the same efficiency as for
simple homology. In the latter case, the adopted strategies for dealing with the storage costs are
the preprocessing strategies and the parallel and distributed approaches.

In a first phase, preprocessing optimizations had led the way in time and storage costs efficiency.
In the work of this thesis, our main contribution consists in proposing a preprocessing optimization
which generalizes those preprocessings to the multipersistence case. Nowadays, software applying
different techniques are compared in [155] and performances vary according to the kind of filtration
involved. For the sake of the work of this thesis, we remark that practical tests have shown
that, in the case of one-parameter persistence, libraries implementing integrated optimizations
outperform those implementing any preprocessing. The measured time and storage cost difference
in performances is remarkable. We believe this is in part due to the fact that, where possible,
parallel and distributed techniques are more efficient than preprocessing ones. Moreover, best
performing tools, such as Ripser or DIPHA integrate a parallel or distributed implementation to the
reduction power of the Morse complex directly on the boundary matrix process. For instance, the
clear and compress strategy exploited in the chunk divide-and-conquer approach [11] is inherently
connected to discrete Morse Theory and both the libraries implement it at the level of matrix
reduction, directly. This considerations may lead to think that preprocessings are not the right way
of addressing computational issues in the multipersistence case. However, in the next section we
present the related works in multipersistence computations and, within that context, we discuss
the advantages of preprocessing techniques.

From the theoretical point of view, we focus on existing Morse-based preprocessing for the
one-parameter case. It is remarkable that, for 3D grey-scale images (and, thus for 3-dimensional
cubical complexes) the algorithm proposed in [162] is able to find a minimal number of critical
cells. However, this minimality property has no formal definition as a property for the discrete
gradient. In Section 5.1, we formalize the corresponding property for a discrete gradient. This
will allow us to express the optimality of [162] into more general terms including also the
multiparameter case, and, finally, to prove that the algorithm of Chapter 4 we have proposed is
optimal in the so-defined sense.

2.4 Computing multipersistent homology

In this section, we review the existing methods for computing multiparameter persistence. Unlike
the one-parameter case, computing multiparameter persistent homology may indicate the retrieval
of different invariants. Indeed, as shown by Carlsson and Zomorodian in [35] and reviewed
in Section 1.7.2, the algebraic formulation of the persistence module theoretically prevents a
complete descriptor to be discrete or independent from the coefficient field chosen for homology.
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This theoretical limitation opens a wide research area in finding multipersistence representations
in a suitable way for computations. So, differently for what we have done in Section 2.3, in
Section 2.4.1, we briefly report the state of the art for the existing multipersistence invariants.
After that, we subdivide the methods for multipersistence computations into two classes. In
Section 2.4.2, we review the methods for computing representations of multipersistence. In
Section 2.4.3, we review the preprocessings methods which reduce the input filtration size and
preserve multipersistence features. In Section 2.4.4, we discuss the provided overview in relation
to the contribution of this thesis.

2.4.1 Invariants in multipersistent homology

In this section, we classify the state-of-the-art invariants available for summarizing multipersis-
tence. Indeed, as opposed to one-parameter persistence, representing multipersistence features
has still to find the best trade-off between amount of captured information and computability.
This motivates the seek for, not simply new computational methods, but also new invariants for
multipersistence. Apart from the complete information of the persistence module itself, which has
no canonical mathematical representations, there are several non-complete invariants associated
to multipersistence. We classify the existing invariants into the following classes:

e slice-compatible invariants [35, 49, 132];
e algebraic invariants [126, 141, 107];

e noise-oriented invariants [169].

Slice-compatible invariants. We classify an invariant as slice-compatible if, restricted to a
slice, it corresponds to a one-persistence invariant. Given a multiparameter filtration F' with
filtration grades in R", one can always consider a linear injective map [ : R — R”.

2.4.1 Definition (Slice). The slice of F associated to [ is the one-parameter filtration given by
Fl:=Fol.

If u,v € R" are in the image of [, we say that [ is through (u,v).

Let M be equal to Hy o F, where Hy is the k"-homology functor. The rank invariant of M,
introduced in [35] falls into this category. Denote by A” the set {(u,v) € R" x R" | u < v}.
Moreover, denote by A” , the set A" U {(u,+0) | u € R"}, where +o0 is an additional element
greater than all others in R". For each (u,v) € AL ,, consider the corresponding inclusion-induced
map

1y, MY — M".
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2.4.2 Definition (Rank invariant). The rank invariant of M is the function rank : A’é’oo —> N
defined by
rankyy(u,v) = rankty;”

For each pair of filtration grades u < v, the rank invariant counts the number of homology classes
persistent through 1,;" from grade u to grade v. The rank invariant is slice-compatible in the sense
that, for every (u,v) € AL , the slice F ! with I through (u,v) defines a unique pair (a,b) € Alspo
such that, if M! = Mol

rank, (a,b) = ranky (u,v) (2.1

Equality (2.1) was proved for sublevel filtrations of continuous functions, first for 0"-homology
in [17], then for general homology degrees in [27].

The persistence space [49] generalizes the persistence diagram of Definition 1.7.4 to multipersis-
tence. Denote by A”. the set {(u,v) € R" x R" | u < v} with u < v if the strict inequalities u; < v;
hold for all components. Moreover, denote by A”. , the set A" U {(u, +o0) | u € R"}, where +0
is an additional element greater than all others in R". Each pair (u,v) of grades in A”  is given a
multiplicity defined by

tpr(u,v) = limye_o (rankpys (u+ €,v— €) —ranky (u— €,v— €)+
—ranky (u+ €,v+ €) + ranky (u— €,v+ €)) (2.2)
g (u,+00) = limye_,o (ranky (u+ €,v) —ranky (u— €,v)),

according to v being in R” or admitting infinite components and with ee R".

2.4.3 Definition (Persistence space). The persistence space PSpc,, of the persistence module M
is the multiset defined by the set {(u,v) € A~ | uy(u,v) > 0} whose elements (u,v) are counted
with multiplicity s (u,v).

By the Representation Theorem in [49], the persistence space is theoretically equivalent to the
rank invariant. Hence, by Equation (2.1), each point in the persistence space corresponds to a
point in a unique slice / of F. Denoted by Adm(PSpc,,) the set of linear injective maps / through
(u,v) with (u,v) € PSpc,,, we get that

PSpc,, = |_| PDgmg;xy.
leAdm(PSpc;,)

First introduced in [133], the fibered barcode generalizes the barcode to multipersistence. We
denoted by Adm(AZ ) the set of linear injective maps [ through (u,v) with (u,v) € AL .. To
highlight the analogy ‘with the persistence space, we define the barcode in a slightly different way
from the one originally proposed in [133].
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2.4.4 Definition (Fibered barcode). The fibered barcode FBCy; of a persistence module M is
defined by
FBCy:= || BCpuy).
leAdm A% )

The fibered barcode is slice-compatible by definition. By Remark 1.7.7, the barcode and the
persistence diagram are equivalent over each slice. Observe the different kinds of considered
slices for the persistence space and the fibered barcode. In the former case, the multiparameter
perspective detects a number of slices which depends on the homology features of the filtration.
In the latter case, the number of slices is taken a priori as all possible slices in the filtration grade
space with no relation to where homology features are. This subtle aspect is not of much interest
when the two invariants are either retrieved in an approximate way or supported by a filtration
preprocessing. However, it should be taken into account in the formalism.

Algebraic invariants. We classify in this class all multipersistence invariants linked to the
algebraic formulation, as a multigraded F[x1,...,x,]-module M of the persistence module under
the Correspondence Theorem (Theorem 1.7.12).

In [35], a natural-valued family of functions f3; defined over the the multigrades of M and indexed
over the integers is associated to multiperistence for the first time. This family corresponds to
the classical algebraic invariant called multigraded Betti numbers [83, 128]. By Hilbert’s Syzygy
Theorem , we have non-trivial functions f3; only when 1 < i < n. Multigraded Betti numbers
capture the relationships among generators of M. In geometrical terms, non-null values of By (u)
detect where, in the filtration, new homology classes appear. The multigraded Betti numbers
Bi, ..., PBn register the appearance of higher order relations among homology generators. Further
insights on the geometrical interpretation of f3;’s are investigated in [127] where they are related
to spectral sequences and Hypertor functors.

Other classical definitions such as the Hilbert function and the Hilbert polynomial are first associ-
ated to multipersistence by Miller in [141]. Moreover, the author defines QR-codes generalizing
barcodes to the multiparameter case. QR-codes are algebraically determined by the two notions
of modules generators and cogenerators. In geometrical terms, a generator captures the idea of a
homology class birth. Indeed, it corresponds to f3y. Instead, a cogenerator captures a vanishing
homology class from some multigrade on. Unlike one-parameter persistence, elder morphisms
have to be specified before defining QR-codes. Elder morphisms generalize the elder rule for
one-parameter persistence which conventionally determines that elder homology classes survive
over younger ones when merging along a filtration. At the moment, there is no algorithm for
computing QR codes.

A similar perspective is given by Harrington et al. in [107] where the suggestion is to investigate
the stratified structure of the module M obtained by associated prime ideals. By tensoring through
local primes, one may inspect M and, possibly, distinguishing among different kinds of compo-
nents, i.e., homology features, according to their persistence along several parameter directions
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in the filtration: transient components are definitely vanishing in any parameter direction, per-
sistent components have some never vanishing parameter direction, fully persistent components
persist along any parameter direction. Again, there is still no computational counterpart for this
persistence module representation.

Noise-oriented invariants. In the one-parameter case, the persistence of a homology class is
a well-defined concept. Noise is implicitly assumed to correspond to short-living persistence
features. Metrics between invariants (barcodes and persistence diagrams) implicitly depend on
that convention. Indeed, any two invariants which differ only for short-living features are typically
declared close. The feature counting map for a one-parameter filtration is a map which, according
to an increasing value for persistence ¢, counts the number of homology classes with persistence
higher than 7. The feature counting map behavior reveals the relative contribution of long-
living homology features with respect to noise (short-living features). By taking advantage of a
Category Theory formalism, authors in [169] define the feature counting invariant as the invariant
associating with each persistence module its own feature counting map depending on a chosen
noise system. The noise system is defined to provide a generalization of persistence for homology
classes in a multiparameter persistence module. As authors explain, in the multiparameter case,
there are several possible ways of defining what noise is. A noise system is introduced as a
suitable family of functors inducing a metric on a subclass of the persistence module class.
Several instances of noise systems are proposed. In particular, the standard noise is the noise
system determined by the choice of a specific growth direction in the space of filtration grades.
Long-living homology classes are the long-lasting ones along that direction. It is possible to
compute the feature counting map with respect to standard noise of a multiparameter filtration
through the open-source Topcat library [154].

2.4.2 Computing multipersistent descriptors

In the recent years, methods for computing multipersistence, limitedly to simplicial complex
filtrations, have been proposed. Proposing new algorithms for multipersistence retrieval is a very
active research branch for the computational topology community. Indeed, only some of the
methods we present in this overview were available before we started the work of this thesis.
As reported in Section 1.7, the invariants or, more in general, the representations available for
multipersistence are not equivalent one another. So, we classify the available methods according
to the invariant or the representation they provide:

e persistence module retrieval [33, 94];
e slice-compatible invariants retrieval [17, 27, 133];

e other invariants retrieval [94, 33, 133].
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Persistence module retrieval. The first algorithm for the persistence module retrieval of a
simplicial filtered complex S of S is proposed in [33], where the three tasks of computing the k-
boundaries, k-cycles and their quotients at each grade u are translated into submodule membership
problems in computational commutative algebra. As drawbacks, the algorithm introduces an
artefact dependency on the chosen basis for expressing the chain complex and implies high
computational costs in terms of time: O(|S|*n?), where n is the number of independent parameters
in the filtration.

The actual persistence module can be retrieved by means of the algorithm proposed in [94]. The
algorithm has been implemented in the Topcat library [154] and distributed in public domain. See
Section 6.2 for a preliminary evaluation of our method as a preprocessing to the Topcat library
performances. The algorithm acts on the filtration S at chain level rather than at homology level.
First, k-cycles and k-boundaries are expressed in terms of the same basis along the filtration at
the chain level. Then, the Smith Normal Form reduction is applied at each step u in the filtration
leading to a worst time complexity of O(|S|#"), where 7 is the maximum cardinality among the
components u; in the poset of filtration grades, and n the number of dimensions in the filtration.

Slice-compatible invariants retrieval. In the time line, the first approach in this class is the
foliation method introduced by Biasotti et al. in [17] for the retrieval of the persistence space
limitedly to the case of 0""-homology. Then, in [27], the foliation method is extended to higher
homology degrees. The foliation method is not properly an algorithm but rather a framework,
particularly suited for shape comparison purposes in the context of Size Theory [89] but not
strictly limited to it. The foliation method reduces the computations to multiple iterations of
one-persistence computations over each possible filtration slice. The cost of the foliation method
is the cost of each persistence computation times the number of possible slices. Encoding the
persistence space retrieved by the foliation method has the cost of a single persistence diagram for
each possible slice in the set of filtration grades. In Section 6.3, we evaluate the impact on our
implementation of the foliation method of the preprocessing described in Chapter 4.

Here, the filtration is induced by sublevel sets with respect to a continuous filtering function
¢ : Y — R" with Y a topological space. Each injective linear map / : R — R” determining the
filtration slice F(X) is uniquely determined by two parameters

e meR"suchthat >)' ,m; =1andm; >0, forall 1 <i<n;

e beR"suchthat Y’ m; =0.
Indeed, if R is parametrized by a € R, then we define [ : R — R" by
l(a):=a-m+b. (2.3)
2.4.5 Proposition. The filtration slice F!(Y) is the sublevel set filtration induced by the function
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¢’ : Y — R such that, for each point x€ Y,

¢'(x):= min m;- max M
i=1,....,n i=1,...,n m;

By Proposition 1 in [17], each pair («,v) such that u < v or (u,c0) with oo greater than all other
elements in R" uniquely determines a linearization / through (u,v). Hence, there is a unique pair
(a,b) € R" x R" such that /(a) = u and [(b) = v. Hence, Theorem 3 in [17], written equivalently
in terms of rank invariant rather than size functions, ensures that, if M = Hyo F and M = Mol,
then

ranky (u,v) = rank,, (a,b). (2.4

Thus, Equation (2.4) ensures that one-parameter persistence can be performed independently over
each slice. Moreover, this can be done by means of any available algorithm or tool.

In the context of Size Theory, the main purpose is that of comparing shapes. Existing algorithms
implementing the foliation method have not as final goal that of retrieving the entire persistence
space. The persistence space is a mean towards the computation of the matching distance between
persistence spaces which quantifies the (dis)similarity between shapes. To this purpose, an
approximate version of the persistence space is retrieved by the algorithm proposed in [47]. The
space of all available filtration slices is uniformly sampled. Authors quantify the density of
the sampling which is necessary for determining the matching distance up to a fixed threshold
error. The same procedure is specialized and optimized for two-parameter filtrations in [16] in a
hierarchical way. This method finds applications for shape comparison in the PHOG library [15]
where authors use the approximate persistence space to deal with photometric attributes. The tool
handles graph domains with multiple filtering functions. The foliation method is applied and then
the persistence diagram of the graph is computed by applying the optimization by A*-reduction
introduced in [57].

For the two-parameter case, i.e., for n = 2, a complete representation of a multipersistence
slice-compatible invariant is the one proposed in [133] for the retrieval of the fibered barcode of
M = Hy o F(S) with S a simplicial complex. The algorithm is a variation of the foliation method
where slices are parametrized to exploit suitable duality properties for n = 2. The algorithm is
implemented in the Rivet visualization tool [133] which is available online at [197].

Rivet consists of three main steps:

e a preprocessing by multigraded Betti numbers to reduce the number of filtration grades;
e introduction of the augmented arrangement data structure for handling a barcode template;

e successive and efficient updatings of barcodes in the template from one slice to another.
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In the preprocessing step, Rivet locates A; interesting grades along each component in the grade
poset via bigraded Betti numbers [127, 83]. This procedure is optimized for the n = 2 case and
requires time O(|S|*A), where A is the product of A1 A,.

Secondly, the support of the bigraded Betti numbers is crucial for Rivet to introduce a specific
data structure, called augmented arrangement based on the duality line-to-point for lines in the
plane connecting points determined by grades in the support of bigraded Betti numbers. The
barcode template is obtained in time O(|S|3A + (|S| +logA)A?).

In the final step, the barcode retrieval is successively updated over each entity in the augmented
arrangement. The final step is linear in |S| and the implementation is optimized to decide whether
to modify the barcode from adjacent entities in the augmented arrangement or to compute it
from scratch. Though limitedly to the two-parameter case, this strategy sensibly increases the
size of the inputs which is possible to handle and, depending on the kinds of filtration, it has
led to computations over simplicial complexes of up to 15M simplices. This is not comparable
to one-parameter persistence standards but, up to now, it is way the highest size available for
multipersistence.

Other invariants retrieval. The rank invariant value over a single pair (u,v) can be easily
derived from a persistence module representation by an algorithm discussed in [33]. However,
the full rank invariant computation requires the iteration of this simple procedure for all possible
grades satisfying u < v in the filtration which multiplies the complexity by approximately %|F 2,
where |F| is the, typically very large, cardinality of filtration grades. The Topcat library [154]
implements the function for the rank invariant computation starting from the persistence module
representation obtained through [94]. The implemented function computes the rank invariant in
each (u,v) but not the full rank invariant.

The algorithm in [94] is not limited to the persitence module retrieval but it also allows for the
retrieval of the feature counting map.

The preprocessing performed by Rivet allows to compute the multigraded Betti numbers, limitedly
to the two-parameter persistence case.

2.4.3 Preprocessing in multipersistent homology

By preprocessings for multipersistence, we mean methods that aim at reducing the size of the
input filtration, in terms of filtration grades or number of cells, before applying any possible
multipersistence computation.

A filtration-oriented preprocessing in multipersistence. As already described, by detecting
multigraded Betti numbers, the algorithm in [132], and implemented by the tool Rivet [197],
manages to reduce the number of filtration grades where to apply persistence computation. Thus,
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we classify part of the procedure implemented in Rivet as a preprocessing oriented to the reduction
of filtration grades.

Morse-based preprocessings in multipersistence reduce both the number of filtration grades
and cells in the input pipeline for multipersistence. They share the common trait of implicitly
referring to discrete Morse Theory by generalizing similar algorithms from one-parameter per-
sistence discussed in Section 2.3.2. However, we remark that discrete Morse Theory has no
multiparamenter counterpart. For filtered graphs X, rather than d-dimensional cell complexes,
the algorithm proposed in [48] reduces the size of X without affecting the persistence module.
Clearly, the procedure is limited to the 0"-homology study. Among the Morse-inspired methods,
the first attempt for extending the concept of discrete gradient to the multiparameter case, can be
found in [2] as a multiparameter generalization of [123]. Afterwards, in [4] a first generalization
of [162] is proposed. Being of particular interest for the description of our algorithm presented in
Chapter 4, we dedicate Section 3.3 to a more detailed description of algorithm [4], from now on
called Matching. In Section 4.5, the two algorithms are proved to be equivalent, thus guaranteeing
correctness of our algorithm. The main drawback of the algorithm is in the runtime storage cost
which prevents it to be applied over large datasets. In Section 6.1, we evaluate the time and space
efficiency of the Matching algorithm compared to ours, introduced in Chapter 4.

2.4.4 Discussion

Computations in multiparameter persistent homology suffer from high time and space costs which,
at the moment, prevent the application to real-world data. Moreover, integrated optimizations
from one-parameter persistent homology have not found yet a counterpart in the multiparameter
case, to the best of our knowledge. This motivates the interest in finding new preprocessings for
the reduction of the input filtration size both in terms of number of cells and number of relevant
filtration grades.

2.5 Interpreting invariants in persistent homology

In this section, we review the last step of the persistence Theory pipeline, that is how to interpret
persistence invariants once computed. In Section 2.5.1, we introduce the main (pseudo)metrics for
persistence invariants. In Section 2.5.2, we report the main results concerning stability properties
of those distances. In Section 2.5.3, we review the methods for applying statistics to persistence
mvariants.
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2.5.1 Distances between invariants

We first address the one-parameter case and then, we move to the multiparameter one.

One-persistence distances. In one-persistent homology case, the persistence diagram (Defini-
tion 1.7.4) 1s the preferable invariant for quantifying distances. Persistence diagrams are multiset
of points in the plane whose coordinates represent the birth and the death time of each persistent
homology class. Distances among persistence diagrams are given by possible distances among
finite sets of points in the plane based on the co-norm || - || in R?.

2.5.1 Definition. Given X and Y finite sets of points in the metric space defined by the real plane
with the infinity norm, the p”*-Wasserstein distance between X and Y corresponds to:

1

Wy(X.Y) 1= inf (Zux—mx)noo") ,

xeX

if pe [1,0), else if p = oo, it corresponds to:

Wy (X,Y) :=inf <sup||x—¢(x)||oo).
¢ \xex

The most commonly used distance among persistence diagrams is Wy, which is also called
matching distance in the Size Theory context or bottleneck distancein [58, 55].

Another less frequently used distance is the Hausdorff distance.

2.5.2 Definition. Given X and Y finite sets of points in the metric space defined by the real plane
with the infinity norm, the Hausdorff distance between X and Y corresponds to:

dy(X,Y) := max< supinf ||x — y||s,supinf ||x — y||le 7 -
xex YeY yeyxEX

On the same X and Y, the matching distance is in general greater than or equal to the Hausdorff
distance. Among the persistence tools reviewed so far, only Dionysus [145] computes the
Wasserstein distance of persistence diagrams. An optimized version of the Wasserstein distance
computation is implemented in the library Hera [122]. Other distances are computable through
the library TDA Package [84] based on GUDHI, PHAT and Dyonisus.
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Multipersistence distances. In the multiparameter setting, one wants to quantify distances
among persistence spaces (Definition 1.7.9). According to what already reviewed in Section 2.4.1
the persistence space is a slice-compatible invariant. The foliation method reviewed in Sec-
tion 2.4.2 allows to generalize the matching distance to multiple parameters, through the notion of
multidimensional matching distance [27]. The distance between two persistence spaces is defined
in terms of the matching distance over slices.

2.5.3 Definition. Let X, Y be two persistence spaces. If the line [ and m are as in Formula (2.3),
we indicate by X; the persistence diagram of the slice corresponding to the restriction to the line /.
The multidimensional matching distance between X and Y is

D(X,Y) :=sup min m; Wy (X},Y)).

| i=l..n

2.5.2 Stability

In order to apply statistics to the invariant computations, stability is the main property to seek.
The leading results for the stability of the matching distance are provided, in the context of
Size Theory, by D’ Amico, Frosini and Landi [58] for continuous functions in the 0"-homology,
and then extended to any homology degree in [44]. In the context of homology inference, the
same result is proved by Cohen-Steiner, Edelsbrunner and Harer [55] for tame functions in
any homology degree. For the multiparameter case, with respect to multidimensional matching
distance, stability of the Persistent Betti numbers, equivalent to the rank invariant, is proved
in [44]. The multidimensional matching distance finds application in the retrieval of textured
3D objects by mixing photometric and geometrical features in [15]. With respect to Hausdorff
distance, the stability of persistence space is proved in [49]. In [161], theoretical stability with
respect to Wasserstein distance is proved under suitable hypothesis.

Algebraic stability is introduced by Chazal et al. [52] with respect to a pseudometric on persistence
modules. The pseudometric is constructed by means of interleaving distance of persistence
modules, that is, relating objects at an algebraic level. The purpose is that of allowing for
comparisons among, not simply several filtrations of the same space, but also different spaces.
A multiparameter formulation of multidimensional matching distance is proved to be stable by
Micheal Lesnick in his Phd thesis [132]. The visualization tool RIVET, released in public domain
by Lesnick and Wrights in 2016 [197], applies this algebraic formulation of distance and compute
1t.
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2.5.3 Towards Statistics

Since any notions of addition or mean is unfeasible for persistence diagrams, some authors
propose larger environments to allow for such operations. For instance, persistence landscapes
are theoretically introduced in [25] with the aim of allowing for such operations for statistical
purposes by means of classical results such as a law of large numbers and a central limit theorem.
The new environment is exploited in [161], where a multiscale kernel approach is applied
to persistence landscapes. Persistence landscapes can be computed through the Persistence
Landscape Toolbox [69].

2.6 Discussion

Computational and theoretical issues, in our state-of-the-art review, highlight the discrepancy
between one-parameter persistence maturity and its multiparameter counterpart. From a com-
putational point of view, the amount of methods available for the multiparameter persistence is
not comparable to those for the one-parameter case. Qualitatively, if we compare the persistence
pipeline above to the multiparameter analogue, the difficulty in interpreting results is evident as
well as the lack of algorithms able to compute descriptors in feasible time. From the theoretical
point of view, invariants and representations to be computed are still to be well-assessed in
multipersistence and this has led to a wide variety of possibilities to be evaluated. In particular, in
the case of preprocessing methods, which is more tightly related to the purposes of this thesis,
there is no available notion to declare a preprocessing optimal in reducing the size of the input
filtration. We give our contribution to this problem in Chapter 5. Moreover, there is no available
tool which is able to do the entire pipeline. We give our contribution to this problem in Chapter 6.
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3 Preliminaries on Morse-based preprocessings for
persistence

In this chapter, we focus on two algorithms in the state of the art which are necessary preliminaries
to the algorithm introduced in Chapter 4. The first algorithm is called ProcessLowerStars and
was first introduced in [162]. The second algorithm is called Matching and was first introduced
in [4]. They share the common trait of providing with a discrete gradient compatible with
a filtering function (Definition 1.6.2) and, thus they can be thought of as preprocessings for
persistence computations. Another similarity is that both the algorithms construct the output
discrete gradient by independently processing certain lower stars (Definition 3.1.3). The final
discrete gradient in output is simply the disjoint union of the outputs of an auxiliary function
called HomotopyExpansion, introduced in [162].

Dissimilarities between the two algorithms are of two kinds: in their generality and in the
computational efficiency. From the generality point of view, the algorithm ProcessLowerStars
is limited to scalar-valued filtering functions, thus it can be thought of as a preprocessing for
one-parameter persistence only. Moreover, authors formally present the algorithm when the
filtering function is defined over a cubical complex (Definition 1.1.8). Whereas, the algorithm
Matching admits vector-valued filtering functions, thus generalizing the lower star partition
method to a suitable preprocessing for multipersistence computations. Moreover, authors prove
the algorithm formal correctness when the filtering function is defined over a simplicial complex
(Definition 1.1.1). From the computational efficiency point of view, saying that both algorithms
run HomotopyExpansion “independently” over a partition into lower stars assumes different
meanings for the two algorithms here presented. We call local the algorithm ProcessLowerStars
since the algorithm, not simply runs HomotopyExpansion over a partition into lower stars but
the entire process can be performed in parallel. We call global the algorithm Matching since the
algorithm, although running HomotopyExpansion over a partition into lower stars, requires a
global queue to select which lower stars where to run the auxiliary function. Hence, it cannot be
broken into a parallel process.

The (dis)similarities observed in this chapter allow us to present the algorithm of Chapter 4 as
another Morse-based persistence preprocessing by lower stars which is: suitable for multiper-
sistence, local, and valid for both simplicial and cubical complexes. In Section 3.1, we review
the auxiliary function HomotopyExpansion able to find a discrete gradient within a single lower
star. In Section 3.2, we review the algorithm ProcessLowerStars. In Section 3.3, we review the
algorithm Matching.
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3.1 Finding a discrete gradient over a single lower star:
HomotopyExpansion

In this section, we review an auxiliary function introduced by Robins, Wood and Sheppard in [162]
and we call it HomotopyExpansion since, as the authors highlight, it finds discrete vectors by
applying successive homotopy expansions. Since HomotopyExpansion is at the base of the
three algorithms described in Section 3.2, Section 3.3 and Chapter 4, we elaborate the formalism
introduced by the authors in order to get a common description.

The section is structured as follows. In Section 3.1.1, we make the input assumptions explicit
and show some useful properties of the output and the input elements. In Section 3.1.2, we
describe the auxiliary function. In Section 3.1.3, we remark some complexity aspects related to
the auxiliary function which will be useful when considering next algorithms.

3.1.1 Input and output formalization

In this section, we make the assumptions on the input for the auxiliary function HomotopyEx-
pansion explicit. By presenting our assumptions on the input, we show some useful properties
holding. At the end of the section, we state the properties of the output retrieved. As already stated,
the assumptions slightly differ from the ones proposed by the authors in [162]. To begin with, in
the referred work, the auxiliary function receives in input a gray scale digital image, formalized as
a cubical complex. Here, we present HomotopyExpansion acting over a regular cell complex
X with the intersection property in order to capture both the cubical and the simplicial complex
cases. For convenience, we report Definition 1.1.12 adapted to regular cell complexes below.

3.1.1 Definition. A regular cell complex X with the intersection property is a regular cell complex
such that, for every two cells in X, the corresponding topological closures have either empty
intersection or their intersection is a unique cell in X.

As a further difference, in [162], the auxiliary function receives as input the lower star of a
vertex with respect to a scalar-valued filtering function. Here, we present HomotopyExpansion
receiving in input a lower star of a general cell with respect to a vector-valued filtering function.
The filtering function is obtained by a vector-valued function defined over the vertexes of the
complex through the following construction.

3.1.2 Definition (Vertex-induced filtering function). Given a function f : Xo — R" over the
vertexes of a cell complex X, the vertex-induced filtering function from f is the function f: X —
R defined by setting, for each cell a € X, and each 1 <i < n,

fi(a) :== max fi(v).

VGXO
vLa
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For each cell a, the filtering function f defines the following subset of the star of a.

3.1.3 Definition (Lower star). The lower star of a with respect to f is the set

Low(a) := {t € Starx(a) | f(b) < f(a)}.

In Figure 3.1, we show an example of a lower star with respect to e one-parameter filtration.

80 2:3 03 % 3
o)
24 o4 4
“ ;:6 O,
(a) (b)

Figure 3.1: a triangulation (a) of the plane filtered by a single parameter over vertexes. In (b), the lower star of the
vertex 5.

As a first property of lower stars, we have the following one.

3.1.4 Proposition. Lower stars of cells in X form a covering for X.
Proof. 1t follows from each cell belonging, at least, to its own lower star. [

Lower stars with respect to functions extended from vertexes satisfy the following important
property with respect to level sets under f.

3.1.5 Proposition. For every a € X, there exists one, and only one, level set Lset = f~!(f(a))
such that.
Low(a) < Lset.

Proof. By construction of the extension f from the function f, f(b) > f(a), for any b € Low (a).
By assumption, if b € Low(a), then f(b) < f(a) and this concludes the proof. O
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As a final difference, in [162], the auxiliary function depends on a special ordering over cells in
the lower star induced by a suitable lexicographic order. Here, we present HomotopyExpansion
receiving in input an indexing i over Low ¢(a) compatible with the coface partial order relation «
in X. This more general form is compatible with our usage of the auxiliary function in Section 3.3.

3.1.6 Definition (Indexing). Any injective function i : A — Tot with Tot a totally ordered set is an
indexing over A. If A admits a partially ordered relation <, then i is compatible with < if, for all
a,beA,

a<b = i(a) <i(b)

To summarize, in this work HomotopyExpansion receives in input:

e X : aregular cell complex with intersection property;

e Lowy(a) : the lower star of a cell a € X with respect to the vertex-induced filtering function

I

e i: anindexing over Low(a) compatible with the coface partial order « on X.

As regards the computed output properties, we refer the reader to Definition 1.4.5 for the notion of
discrete gradient, and to Definition 1.4.7 for the notion of Morse set relative to a discrete gradient.

HomotopyExpansion(X,Low(a),i) returns:

e V : adiscrete gradient over X with cells in Low ¢(a);

e M : the Morse set relative to V, i.e., M = M(V) restricted to Low s(a).

3.1.2 Description

In this section, we describe the auxiliary function HomotopyExpansion. We refer to the pseu-
docode in Algorithm 1. HomotopyExpansion exploits the following auxiliary data structures:

e declared : alength |Low(a)| array of Booleans;

e Ord0 and Ord1 : two ordered lists! with ordering given by increasing values of elements
under the indexing i;

'Ord0 and Ord1 are equivalently described as priority queues in [162] but we present them as ordered lists since,
actually cells entering before others have no priority. Only the indexing imposes the priority as it happens in an
ordered list. Moreover, the algorithm requires to perform element removals which are not standard operations over a
priority queue.
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and the following auxiliary functions:

e num_ undeclared _facets(b,Low (a)) which counts the number of facets ¢ of b in Low ¢(a)
such that declared|i(c)] =false ;

e unpaired_ facet(b,Low(a)) returns the only facet ¢ of b such that undeclared[i(c)] =
false;

e add_ cofacets(c,Low(a),0Ordl) adds to Ordl all cofacets d in Lows(a) of ¢ such that
num_ undeclared _ facets(c,Low(a))= 1.

d) (e) ()

Figure 3.2: step-by-step action of HomotopyExpansion over a the lower star of vertex 5 with respect to a scalar
function.

We describe HomotopyExpansion by following the example in Figure 3.2.

The array declared keeps track of the cells in Low ¢(a) already classified either as part of the list
M or as part of a pair in the list V. At the beginning, declared is initialized with all entries set
to false. In Figure 3.2(a), we show the lower star of vertex 5 with respect to the one-filtration
indicated by filtering values over vertexes. The darker cells are part of the lower star of 5. The
two ordered lists Ord0 and Ord1 assign priorities to the multiple possible pairing of cells.
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In the first for loop at line a in Algorithm 1, Ord0 and Ordl are initialized. The function
num_ undeclared _ facets(b,Low(a)) counts the number of facets ¢ of b in Low (a) with de-
clared[i(c)] = false. A cell enters Ord0 when all of its facets in Lows(a) are already declared.
Hence, in this for loop, only a enters Ord0. Cells in Ord0 are suitable either to form a pair in V
with a higher-dimensional cell or to be added to M. In the example of Figure 3.2 vertex 5 enters
Ord0 since it has no facets in its lower star. A cell b enters Ord1 when b has only one facet c,
pointed by unpaired _ facet(b), still to be declared. In this for loop, all cofacets of a in Low ¢(a)
are added to Ord1. The cells in Ord1 are suitable to form a pair in V with a lower-dimensional
cell. In the example of Figure 3.2 the edges [5,1],[5,2],[5,3],[5,4] enters Ord1 since they have
only vertex 5 as their cofacets in the lower star of 5. The indexing i ensures that, in the two
ordered lists, faces take priority over cofaces.

In the two nested while loops at lines 12 and 13, the first cell b in Ord1 is set to form a pair in
V with the cell ¢ pointed by unpaired facet(b). Both ¢ and b are updated as true in declared
and all of their cofacets suitable to enter Ord1 are inserted in such ordered list by function
add cofacets. In the example of Figure 3.2(b), vertex 5 is paired with the edge [5, 1] having
maximum priority in Ord1. The inner while loop ends when there is no cell to be extracted from
Ord1. At that point, the first cell in Ord0 is declared critical and all of its cofacets suitable of
entering Ord1 are inserted in such ordered list. In the example of Figure 3.2(c), we see the red
edge [5,2] declared critical since the list Ord1 is empty and, thus, no pairing is available for the
cells [5,2],[5,3],[5,4], currently in Ord0. This allows to update both Ord1, with the triangle
[5,3,2], paired with [5,3] in Figure 3.2(d). In the example, the procedure terminates with no
additional critical cells declared. In Proposition 4 in [162], authors show that the outer while loop
breaks if and only if all cells have been declared.
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Algorithm 1 HomotopyExpansion(X,Low ¢(a), )

Input: X cell complex # regular, with intersection property
Input: Low/(a) list of cells in X # Low(a) is the lower star of a in X with respect to f
Input: i indexing over the cells of Low(a) # i compatible with incidence relations in X restricted to Low 7 (a)
Output: V list of pairs of cells # discrete gradient over Low s (a)
Output: M list of cells # Morse set relative to V

1: set V,M to be empty lists

2: set Ord0,0rd1 to be empty ordered lists # values of nodes in Ord1,0rdO are ordered by increasing values under i

3: setdeclared to be an array of length | Low (a)| with Boolean values equal to false
#in declared entries are ordered according to increasing values of i
4: for all b in Low(a) do
5: #num_undeclared _facets(b,Lowy(a)) which counts the number of
facets c of b in Low(a) such that declared[i(c)] =false

6: if num_ undeclared _facets(b,Low s (a))= 0 then

7 insert b into Ord0

8: else if num_undeclared _facets(b,Low/(a))= 1 then
9: insert b into Ord1

10:  endif

11: end for

12: while Ord1+# ¢ or Ord0# & do
13: while Ord1# & do

14: b « the first element in Ord1

15: remove b from Ord1

16: if num_undeclared _facets(b, Low(a))= 0 then

17: insert b into Ord1

18: else

19: ¢ < unpaired_ facet(b,Low(a)) # unpaired_ facet(b,Low (a)) returns the only facet ¢ of b such that un-
declared[i(c)] = false

20: add (c,b) to V

21: declared[i(c)] < true

22: declared[i(b)] < true

23: remove ¢ from Ord0

24 add_ cofacets(c,Low(a),Ord1) #add _cofacets(c,Low(a),Ord1) adds to Ord1 all cofacets d of ¢ in
Low(a) such that num _undeclared _ facets(c,Lows(a))= 1

25: add _ cofacets(b, Low s (a),0rd1)

26: end if

27: end while
28:  if Ord0# J then

29: b < the first element in Ord0

30: remove b from Ord0

31: append b to M

32: declared[i(b)] « true

33: add_ cofacets(b,Low s (a),0rd1)
34 end if

35: end while
36: return (V,M)
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3.1.3 Complexity remarks

In this section, we discuss the complexity of HomotopyExpansion and highlight a difference in
time complexity analysis between the simplicial and the cubical case.

We indicate with Star, the star of a in X, as defined in Section 1.1. The cardinality of Star is an
upper bound for the cardinality of the input Low s(a).

To describe the complexity of the auxiliary function HomotopyExpansion, we assume two facts:

e Star is stored so that visiting the (co)facets of any cell in Star takes linear time in the number
of (co)facets?;

e the ordered lists Ord0, Ord1 are implemented as self-balancing binary search trees, so that
inserting, and removing an element from the tree is logarithmic in the length of the tree.
The storage cost of each tree is linear in the length of the tree.

The number of operations performed by HomotopyExpansion is obtained by counting the repeti-
tions of the following simple operations:

e visiting the cofacets of b € Low ¢(a) is linear in the number of cofacets of b in Low s(a). All
cofacets c of b are visited to update num_undeclared facets(c), and to possibly activate
the function unpaired facet(c). This happens whenever b is classified. Each cell is visited
as a cofacet once per each of its facets. Since each cell ¢ has a fixed number of cofacets in
Low (a) there are order O(|Low s(a)|) cells to visit in Low ¢(a). The time contribution is
O(| Low,(a));

e updating (inserting to and removing from) an ordered list is logarithmic in the length of the
list. Each cell in Low (a) enters each list at most once. So, at most 4| Low s(a)| elements
updatings are performed. Since the maximal size of each list is [Low s(a)|, the contribution
is O(| Low,(a)] -log | Low (@)

e searching for the first element in an ordered list is logarithmic in the length of the list. Not all
cells are selected as the first element in an ordered list, but only the cells found critical and
the cells declared in a discrete vector with a lower dimensional cell. So, at most |Low (a)|
first element searches are performed. The contribution is O(|Lows(a)| -log|Lows(a)|).

The time complexity of HomotopyExpansion is, thus, dominated by the contribution of the
ordered list operations and we get

O(|Low(a)| -log|Low ¢(a)|).

ZFor instance, the representation of a complex described in Section 6.1 meets this requirement.
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The space required by the operations performed does not exceed the space necessary to represent
Low(a).

In the following remark, we highlight a property of the auxiliary function treated in this section
when compared to functions acting on the entire cell complex X. The remark will be useful for
analyzing the complexity of the algorithms in Section 3.2, Section 3.3 and Chapter 4.

3.1.7 Remark. In the case of X being a cubical complex, each cube a has |Star| bounded by a
constant const(d) depending on the dimension d of the complex. Hence, for low dimensions d Ho-
motopy Expansion can be considered a constant operation. On the contrary, if X is a simplicial
complex, there is no upper bound for the cardinality of the star of a simplex. Hence, Homotopy
Expansion cannot be considered a constant operation, independently from the dimension.

3.2 A local preprocessing algorithm for one-persistent homol-

ogy:
ProcessLowerStars

In this section, we present the algorithm ProcessLowerStars introduced by Robins, Wood and
Sheppard in [162]. ProcessLowerStars retrieves a discrete gradient compatible with a scalar-
valued filtering function. Hence, it can be thought of as a preprocessing for one-parameter
persistence. Details for ProcessLowerStars are provided since the algorithm of Chapter 4 gener-
alizes the same procedure to vector-valued filtering functions. For convenience in comparing the
procedure to other algorithms, we do not describe the algorithm in [162] as it is done by the au-
thors. We describe ProcessLowerStars by means of the auxiliary function HomotopyExpansion
described in Section 3.1.

The section is structured as follows. In Section 3.2.1, we make the input assumptions explicit
and show some useful properties of the output and the input elements. In Section 3.2.2, Process-
LowerStars is described. In Section 3.2.3, we remark some complexity aspects related to the
ProcessLowerStars which will be useful in comparison to the algorithm described in Chapter 4.

3.2.1 Input and output formalization

In this section, we make the assumptions on the input for the algorithm ProcessLowerStars
explicit. By presenting our assumptions on the input, we show some useful properties by high-
lighting the local nature of the algorithm. At the end of the section, we state the properties of the
output retrieved.

According to the authors, ProcessLowerStars requires in input a cubical complex Q as in Defini-
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tion 1.1.8 with no restriction on the embedding dimension. By Remark 1.1.13, a cubical complex
is a special case of a regular cell complex with intersection property.

Furthermore, ProcessLowerStars requires in input a scalar-valued function f defined over the
vertexes of Q. For the correctness of the procedure f is assumed to be injective. A general
scalar-valued filtering function can be made into an injective one, with a controlled difference
with respect to the infinity norm, by simulation of simplicity [82].

There are no other input requirements. However, in our presentation, we make it explicit a
further implicit feature which affects the output retrieved by the algorithm. We remark this
aspect in view of a different choice implemented by the algorithm we describe in Section 3.3. In
ProcessLowerStars, each k-cell g has its vertexes [g] := [v1,...,vx] represented in decreasing
order of values under f, i.e., in such a way that f(v;) > --- > f(v,). This implicit representation
is clearly possible whenever a cell is completely determined by its vertexes which, by Proposition
4.7.13 in [20] holds, more generally, for regular cell complexes with intersection property. A
particular class of indexings over the cells (Definition 3.1.6) is the following one.

3.2.1 Definition (Lexicographic indexing). For each cell a in a a regular cell complex with
intersection property X, let [a] be the tuple of vertexes of a ordered by decreasing values under f.
We denote by <, the lexicographic order over tuples [a] with a € X. A lexicographic indexing
over X is an indexing such that, for all cells a,b € X

[a] <. [P] = (<o) (a) < i(<00)(B).

To summarize, ProcessLowerStars receives in input:

e () : acubical complex;

e f: areal-valued injective function on the vertexes of Q,

and implement:
e i(<,.,) : an implicit lexicographic indexing on Q.

Under the input assumptions for ProcessLowerStars, we focus on two properties of the lower
stars of vertexes, defined according to Definition 3.1.3 when the function f defined over the
vertexes is extended to higher-dimensional cells by f (Definition 3.1.2). The two of them follow
rather clearly and are both used in [162]. The first result makes it explicit the local nature of the
algorithm and it ensures that the algorithm can be possibly parallelized. We provide our own
proof of this fact.
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3.2.2 Proposition. Under the input assumptions for ProcessLowerStars, lower stars of vertexes
in Q form a partition for Q.

Proof. It follows from the definition of vertex-induced filtering function. Indeed, in the special
case of f being a scalar-valued function, each cell has the same value as one of its vertexes.
Moreover, being f injective, no cell belongs to two different vertex lower stars. U

Our proof makes explicit use of the filtering function being a scalar function. Otherwise, vertex
lower stars do not cover the entire cubical complex. The second property relate lower stars to
level sets. We do not give formal proof of it since the proof of Proposition 3.3.1 can be easily
adapted to this case.

3.2.3 Proposition. Under the input assumptions for ProcessLowerStars, for every v € Qy, the

level set Lset = f~!(f(v)) satisfies
Low(v) = Lset.

As regards the output retrieved by ProcessLowerStars, we refer to Definition 1.4.5 for the notion
of discrete gradient, and to Definition 1.4.7 for the notion of Morse set relative to a discrete
gradient. According to Definition 3.1.2, let f be the vertex-induced filtering function from f.
Then, ProcessLowerStars(Q, f) returns:

e V : adiscrete gradient over Q compatible with f;

e M : the Morse set relative to V, i.e., M = M(V).

The output V is guaranteed to be a discrete gradient by Proposition 5 in [162]. The compatibility
with function f, as defined in Definition 1.5.2, follows directly from the construction since all
discrete vectors are found within a single level set.

A discrete gradient compatible with a function £ is also compatible with the ﬁltration~QJz induced
on Q by f. Hence, the retrieved output determines a filtered Morse complex M/ which is a
compatible Morse reduction of Q/ in the sense of Theorem 1.5.8. This ensures that Process-
LowerStars is a valid preprocessing for computing one-parameter persistence in any possible
way.

For the case of cubical complexes embedded in a 3D space, Theorem 11 in [162] (explicitly
reported in this thesis as Theorem 5.1.1) relates the elements in the Morse set M to homology
changes along the filtration induced by f. The idea is that, up to embedding dimension equal to
3, there are no spurious critical cells detected by ProcessLowerStar. Theorem 5.1.1 is crucial
for the purposes of this thesis. Indeed, it inspires Section 5.1 to formalize an optimality property
of a discrete gradient compatible with a filtration, and Section 5.2 to generalize the introduced
optimality property to the multiparameter setting.
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3.2.2 Description

In this section, we describe the algorithm ProcessLowerStars. We refer to the pseudocode in
Algorithm 2. ProcessLowerStars runs the following auxiliary functions:

e ComputeLowerStar for extracting the lower star of a vertex;

e HomotopyExpansion for finding discrete vectors and critical cells in a vertex lower star
(see Section 3.1).

Algorithm 2 ProcessLowerStars(Q, f)

Input: Q cubical complex

Input: f: Qp — R function # f is injective
Output: V list of cell pairs #V is a discrete gradient compatible with the max-
extension of f
Output: M list of cells # M is the Morse set of V
1: V.M are empty lists
2: for all vin Qg do # independently from the order

3:  Lowy(v) < ComputeLowerStar(v,Q)
# Low ¢(v) is the list of cells in the lower star of v
4 (Viow ) MLow f(v)) — HomotopyExpansion(Q,Low¢(v), f)
# classifies all cells in Low s(v) as either part of a
pair in V| o, s(vyora cell in My o £(v)
append V| ow vy oV
append My ow,(v) to M
end for
return (V, M)

The algorithm processes all vertexes in Q in a for-cycle (lines 2-7 in Algorithm 2). By Proposi-
tion 3.2.2, there is no preference in the vertex process and the for-cycle can be possibly broken
into a parallel or distributed approach.

For each vertex v, the auxiliary function ComputeLowerStar first extracts Starg(v), i.e., the star
of v. Then, it visits Starg(v) to select those cells a satisfying condition f(a) < f(v). Finally,
ComputeLowerStar (v, Q) returns the list Low ¢(v) of so-selected cells to be given in input to the
auxiliary function HomotopyExpansion. According to Section 3.1.1 the latter returns a discrete
gradient V| oy (v over Low £(v) which updates the output list V, and the corresponding Morse set
My ow . (v) which updates the output list M.
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3.2.3 Complexity remarks

In this section, we discuss the complexity of ProcessLowerStars. First, we analyze each single
auxiliary function. Then, we adapt the analysis to the simplicial case. This latter part is of special
interest for the complexity analysis of the algorithm reported in Section 3.3 and the one presented
in Chapter 4.

To describe the complexity of the algorithm, we focus on the two auxiliary functions: Com-
puteLowerStar and HomotopyExpansion. We assume the input cubical complex to have dimen-
sion d. We indicate with Star the vertex star with maximal cardinality in X.

ComputeLowerStar. In a cubical complex representation, faces and cofaces are implicitly
indicated by manipulating cell indexes. Thus, the star of a vertex needs not to be explicitly
represented. Visiting the star takes linear time in the cardinality of the star. Comparing two floats
is considered to take constant time, so that a single lower star extraction is performed in linear
time in the cardinality of the star.

The procedure is repeated for every vertex in the cubical complex. We can overestimate the
number of visited cells in the following way:

> |Star(v)| <|Star||Qo|. (3.1)

ve Q()

Recall that in a cubical complex |Star| is bounded by a constant depending on d. Hence, the
overall time cost is O(|Qp|) with no extra space required.

HomotopyExpansion We observe that, for cubical complexes, the working assumptions intro-
duced in Section 3.1 to analyze the complexity of this auxiliary function are fulfilled. As already
observed in Remark 3.1.7, running the auxiliary function HomotopyExpansion has a time cost
bounded by a constant depending on d. Moreover, the space required does not exceed the space
needed to represent each vertex lower star. This motivates the authors of [162] to consider each
call of the auxiliary function to have constant cost. The iteration of the auxiliary function for each
vertex in the cubical complex makes the overall contribution of HomotopyExpansion linear in
the vertexes.

The time complexity of ProcessLowerStars is given by two contributions that are linear in the
vertexes of the cubical complexes, thus providing an overall time complexity of

O(|Qo|)- (3.2)

The space required by the operations performed does not exceed the space necessary to represent

0.
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The simplicial case. Now, we emphasize two facts about ProcessLowerStars applied to simpli-
cial complexes that are of interest for this thesis. A first fact is about the validity of the algorithm.
Indeed, there is no theoretical obstacle to apply the same procedure to a simplicial complex §
rather than to a cubical complex Q. Indeed, Proposition 3.2.2 holds also for simplicial complexes
and, as seen in Section in 3.1, the auxiliary function HomotopyExpansion applies to regular cell
complexes with intersection property, including the simplicial case by Remark 1.1.13.

As the second fact, the complexity analysis is not the same and it is important to remark those
differences since, the first generalization of ProcessLowerStars to the multiparameter case,
discussed in Section 3.3, is presented for simplicial complexes. Thus, differences in the complexity
analysis cannot be explained as depending on the multiparameter case. Most of them, instead, are
given by the simplicial setting.

Indeed, for ComputeLowerStar, we express the time cost in the simplicial case linearly in the
number of simplices in Section 4.4.1 through Formula (4.2). Indeed, for simplicial complexes,
there is no fixed upper bound for the cardinality of the star of a vertex. For the same reason, when
analyzing HomotopyExansion, as remarked in Section 3.1.3, the time complexity of each call of
HomotopyExpansion over a vertex v is not in general bounded by a constant and its contribution
is given by O(| Low ¢(v)| -log|Low¢(v)|). We have a call for each vertex v € S and thus

D [Low(v)| - log| Low s (v)]. (3.3)

veSo

The logarithmic term can be overestimated by log| Star | which makes it independent from the
vertex v. We take the logarithmic term out of the sum. By Proposition 3.2.2, lower stars form a
partition of S. Hence, globally, the cost of ProcessLowerStar is dominated by the contribution of
HomotopyExpansion and thus, in the simplicial case, we get

O(|S|log|Star|). (3.4)

By comparing Formula (3.2) to Formula (3.4), we have that the number of vertexes have been
replaced by the number of cells and, moreover, we cannot get rid of the parameter | Star |. Indeed,
this latter, in the worst-case, can possibly reach the same order of magnitude as [S].

3.3 A global preprocessing algorithm for multipersistent ho-
mology:
Matching

In this section, we present the algorithm Matching introduced by Allili, Kaczynski, Landi, and
Masoni in [4]. Matching retrieves a discrete gradient compatible with a vector-valued filtering
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function generalizing the algorithm treated in Section 3.2. The algorithm can be thought of
as a preprocessing for multiparameter persistence. Details for Matching are provided since
the algorithm is proved to be equivalent to the one treated in Chapter 4. For convenience in
comparison to other algorithms, we do not describe the algorithm in [4] as it is done by the authors.
Rather, we describe Matching by means of the auxiliary function HomotopyExpansion we have
introduced in Section 3.1.

The section is structured as follows. In Section 3.3.1, we make the input assumptions and the
output properties explicit by following what the authors outlined. Additionally, we explain some
crucial dissimilarities with respect to the algorithm of Section 3.2 generalized by Matching. This
emphasizes the global nature of the algorithm as opposed to a local nature. In Section 3.3.2,
Matching is described. In Section 3.3.3, we remark some complexity aspects related to Matching
which will be useful in comparison to the algorithm described in Chapter 4.

3.3.1 Input and output formalization

In this section, we make the input assumptions for Matching explicit. Afterwards, we state the
properties of the output retrieved. At the end of the section, we show some properties of lower
stars of general cells holding under those assumptions which provides preliminaries for Chapter 4
and highlight the global nature of the algorithm.

According to [4], Matching requires in input an abstract simplicial complex S as in Definition 1.1.6
with no constraints on the dimension of the complex. By Remark 1.1.13, an abstract simplicial
complex is a special case of a regular cell complex with intersection property.

As a second input, Matching requires a vector-valued function f = (fi,..., f,) vertex-induced
(Definition 3.1.2) by a function f defined over the vertexes of S with no restriction on the number
of function components n. For the correctness of the procedure f is assumed to be component-wise
injective, i.e., injective on each function component f;. A general vector-valued filtering function
can be made into a component-wise injective one, with a controlled difference with respect to the
infinity norm, by simulation of simplicity [82] applied to each component.

We state a property which is already implied by Proposition 3.6 in [3] and which paves the
way to the correctness of the algorithm presented in Chapter 4. We give our proof on how the
correspondence between simplex lower stars and level sets of Proposition 3.2.3 generalizes to
multiparameter case. In view of the algorithm in Chapter 4, we express the result in terms of
regular cell complexes X with intersection property, as in Definition 3.1.1.

3.3.1 Proposition. For any component-wise injective function f : Xo — R defined over the
vertexes of a regular cell complex with the intersection property and any non-empty level set Lset
of f there exists a unique cell a € X such that

Lset = Lows(a)
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and Lset = f~!(f(a)).

Proof. Letue R" be such that Lset := f~!(u) is non-empty. In order to prove uniqueness, suppose
there are two cells a,a’ € X such that Low ¢(a) = Lset = Low¢(a’). Notice that, a,a’ € Lset, since
any cell belongs to its own lower star. Moreover, condition Low ¢(a’) = Low¢(a) implies that
a’' € Low(a) and a € Low ¢(d’) at the same time. By definition of lower star, we get in particular
d < aanda «d, thatis a’ = a. Now, we show that there exists a € X such that Lset = Low ¢(a).
Since f is component-wise injective on vertexes, for each component f;, there exists a unique
vertex v; € X such that f;(v;) = u;. By assumption, for each b € Lset, f;(b) = fi(v;). By construction
of f from f, we have that v; is a vertex of all cells in Lset. By Proposition 4.7.13 (i) in [20], in a
regular cell complex with intersection property, any cell is completely determined by its vertexes.
Hence, the vertexes vy, ..., v, determine a unique cell a in X. By construction, f(a) = u, implying
a € Lset. By Proposition 4.7.13 (i1) in [20], if the vertexes of a are also vertexes of another cell b,
then a « b. Thus, for each b € Lset, b » a which proves Lset = Low ¢(a). The opposite inclusion
is given by Proposition 3.1.5. Hence, we conclude that Lset = Low s(a) which concludes our
proof. ]

This means that there is an injective but not necessarily surjective map between non-empty level
sets and cells in X. Let P be the set of cells in X corresponding to non-empty level sets. Since the
non-empty level sets form a partition for X, we get the following result.

3.3.2 Proposition. Given a regular cell complex with the intersection property X and a vector-
valued filtering function f which is vertex-induced from a component-wise injective function f
on vertexes of X, the lower stars Low ¢(a), for a € P, form a partition of X.

There is an additional input required. The third input is, according to Definition 3.1.6, an indexing
J on S. The indexing has to be compatible both to the coface partial order « among simplices and
to the values under f. Explicitly, J has to satisfy, the following property

Vs#teS,s«tor f(s)< f(t) = J(s)<J(t). (3.5)

The role of the indexing J is twofold. On the one hand, J locally determines the priority for the
retrieval of discrete gradient in the same way as a lexicographic indexing does for the algorithm in
Section 3.2. On the other hand, J determines the global process ordering for simplices in the input
complex. In this sense, as opposed to the algorithm already treated in Section 3.2, the approach is
global and cannot be parallelized. The introduction of a global indexing on simplices is motivated
by the multiparameter case. Indeed, under the input assumptions for Matching, authors show
how differently from the scalar-valued case vertex lower stars (Definition 3.1.3) subdivide the
input simplicial complexes. The analogue for Proposition 3.2.2 does not hold, in general, for
vector-valued filtering functions f. Consider, for instance, the edge in Figure 1.10(c) having
incomparable vertex values of function components. Nonetheless, from Proposition 3.1.4, we
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know the lower stars to cover S when all the simplices, and not simply the vertexes are involved.
However, this by no means is a partition since simplex lower stars overlap as it happens for the
lower star of the edge and the ones of the vertexes in Figure 1.7(a).

To summarize, Matching receives in input:

e §: an abstract simplicial complex;

e f : a vector-valued filtering function which is vertex-induced from a component-wise
injective function f on the vertexes of S;

e J: an indexing over S.
As regards the output retrieved by Matching, we refer to Definition 1.4.5 for the notion of discrete

gradient, and to Definition 1.4.7 for the notion of Morse set relative to a discrete gradient. Then,
Matching(S, f,J) returns:

e V : adiscrete gradient over S compatible with f;

e M : the Morse set relative to V, i.e., M = M(V).

The output V is guaranteed to be a discrete gradient by Theorem 3.8 in [3]. The compatibility
with function f follows directly from Proposition 3.7 in [3].

A discrete gradient compatible with a function f is also compatible with the filtration S/ induced
on S by f. Hence, the retrieved output determines a filtered Morse complex M/ which is a
compatible Morse reduction of S/ in the sense of Theorem 1.6.8. This ensures that Matching is a
valid preprocessing for computing multipersistence in any possible way.

3.3.2 Description

In this section, we describe the algorithm Matching. We refer to the pseudocode in Algorithm 3.
Matching runs the following auxiliary functions:

e ComputeLowerStar for extracting the lower star of simplex. It corresponds to the simplicial
version of auxiliary function in Section 3.2 with the same name;

e HomotopyExpansion (see Section 3.1) for finding discrete vectors and critical simplices
in a lower star of a simplex,

and exploits the auxiliary data structure
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Algorithm 3 Matching(S, f,J)

Input: S simplicial complex

Input: f:S — R” function # extended from a component-wise injective func-
tion f on the vertexes

Input: J:S — R indexing # J compatible with f and «

Output: V list of cell pairs # discrete gradient compatible with f

Output: M list of cells # M is the Morse set of V

1: set V,M to empty lists
2: set classified to an array of length |S| with false Boolean values
# in classified entries are ordered according to in-
creasing values of J

3: for all sin S do # simplex processing in ascending order of J(s)
4:  if classified[J(s)] =false then
5: Low f(s) < ComputeLowerStar(s, )
# Low ¢(s) contains the simplices in the lower star
of s wrt. f
6: (Viow () MLow,(s)) < HomotopyExpansion(S, Low(s),J)

# classifies all cells in Low (s) as either part of a
pair in V| f(syora cell in My oy, £(s)
append Viow,(s) toV
append M ., (s) oM
: for all # in Low(s) do
10: classified[J ()] « true

11: end for
12: endif
13: end for

14: return (V,M)

e classified, a length |S| array of Booleans.

The algorithm processes all simplices in S in a for-cycle. As observed in the previous section,
lower stars of simplices do not form a partition of the input simplicial complex. Hence, simplices
have to be processed according to increasing values of the indexing J. This implies that, as
opposed to the local algorithm of Section 3.2, Matching cannot be broken into a parallel or
distributed approach.

The auxiliary data structure classified is initialized with all entries set to false. For each simplex s,
at line 4 in Algorithm 3, the algorithm checks whether s is classified. An already classified simplex
is not processed. A classified simplex s is passed to the auxiliary function ComputeLowerStar.
The auxiliary function ComputeLowerStar extracts Starg(s), i.e., the star of s. Then, the auxiliary
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function visits Starg(s) to select each simplex ¢ satisfying condition f(t) < f(s). The so-obtained
list Low (s) of simplices is given in input to the auxiliary function HomotopyExpansion. Ac-
cording to Section 3.1.1 the latter returns a discrete gradient VLow,(s) over Low () which is used
to update the output list V, and the corresponding Morse set M £(s) which is used to update
the output list M. As a simplex is classified either as an element in a discrete vector in V or as a
critical simplex in M, the algorithm updates the corresponding entry in classified with value true.

3.3.3 Complexity remarks

In this section, we provide our complexity analysis of Matching. First, we make our assumptions
explicit. The assumptions are satisfied by the implementation of the algorithm we propose in
Section 6.1 where we compare the algorithm performances to the performances of the algorithm
of Chapter 4. Afterwards, we focus on the auxiliary structures and their impact on the overall cost.
Then, we analyze each single auxiliary function in a parallel way with respect to what we did in
Section 3.2.3. Finally, we compare our analysis to the one provided by the authors and the one
related to the algorithm in Section 3.2.3. In doing this, we discriminate between differences due
to the simplicial case and differences due to the vector-valued input filtering function.

Assumptions. We assume the input simplicial complex to have dimension d. We indicate with
Star the simplex star with maximal cardinality in S. Recall, from Remark 3.1.7 that, in a simplicial
complex, | Star| is not bounded by a constant and it is possibly as large as |S|. Moreover, we
assume some information about the simplicial complex to be computed and stored to simplify the
discussion.

e for each simplex s € S, the value f(s) can be retrieved in linear time in the number of the
vertices of s from the offline-stored values of f. The corresponding extra space required is
considered to be constant;

e for each cell s € S, we assume that the boundary and coboundary can be retrieved in linear
time in their size. Visiting the boundary or coboundary of s takes linear time in the size of
the boundary or coboundary, respectively;

e for the auxiliary function HomotopyExpansion, we make the same assumptions of Sec-
tion 3.1.3. Hence, each call over Low(s) takes time O(|Low (s)|log|Low(s)|) and
requires an additional space which is negligible with respect to the storage cost of the input
representation.

Auxiliary structures. The auxiliary structure classified globally keeps track of the classified
simplices all along the algorithm. This requires an O(|S|) extra space. Moreover, all simplices in
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S need to be processed in the for-cycle. This requires to add the extra space of a global queue of
size O(|S|). Both the auxiliary structure extra spaces are not negligible with respect to the cost of
representing the algorithm inputs.

ComputeLowerStar. In a simplicial complex, the cardinality of Star is not bounded by a
constant. Visiting the star takes linear time in the cardinality of the star. Comparing two floats is
considered to take constant time, so that a single lower star extraction is performed in linear time
in the cardinality of the star. According to Proposition 3.3.1, the auxiliary function is repeated
for every lower star corresponding to a non-empty level set and P indicates the set of simplices
whose lower stars are non-empty level sets in a such a way that |P| is the number of non-empty
level sets under the filtering function.

We estimate the time cost in the following way:

> IStarg(s)]. (3.6)
seP
Depending on the input, we have
[So| < [P| < [S].
Hence, in Formula (3.6), each j-simplex can be counted from j+ 1 times (the number of its
vertexes) to ii(l) (,](j:i) times (the number of its faces). The time cost Time of the auxiliary
function satisfies the following inequalities:

d d j+1 i+l
Z(;H)\Sj] < Time < Z 1551 (k+1). (3.7)
j=0 j=0 k=0

In both extremal cases, we have linearity in |S| but under very different proportionality coefficients.
For the extra space required, we recall that, for simplicial complexes, implicit (co)boundary
representations are not possible in general. By assumption, the extra space is linear in the size of
the star, and linear in | Star | in the worst-case. Hence, it does not exceed the space required for
representing the algorithm input.

HomotopyExpansion. By assumptions, each call of the auxiliary function HomotopyExpan-
sion over the lower star Low(s) of a simplex s takes time O(|Low(s)|-log|Low(s)|) and
requires an additional space which is negligible with respect to the storage cost of the input
representation. We have a call for each simplex s € P and thus

> [Low/(s)| - log | Low (s)|. (3.8)
seP

The logarithmic term can be overestimated by log| Star | which makes it independent from the
vertex v. We take the logarithmic term out of the sum. By Proposition 3.3.2, lower stars over
simplices in P form a partition of S, so we have that [S| = > p |[Low¢(s)|.
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Thus, globally, the cost of Matching is dominated, in time, by the contribution of HomotopyEx-

pansion and thus, we get
O(|S|-log|Star]), (3.9)

and in runtime space, by the contributions of classified and global queue of the for-cycle

O(|S])-

Comparison to other analyses. The time cost analysis slightly differs from the one proposed by
the algorithm authors in [4] where the given worst-case complexity is expressed by O(|S| - | Star| -
log | Star|). We obtained a lower worst-case estimation by making the set P explicit. Indeed, our
analysis takes into account that only lower stars of simplices in P are processed and, only there
HomotopyExpansion is called. Thus, we do not confute the complexity analysis given by authors
but we provide an input-dependent one. In Section 4.4, we see how the same worst-case analysis
applies to the algorithm of Chapter 4, this time, independently from the input.

In the simplicial case, we compare the time cost analysis provided, in Section 3.2, for Process-
LowerStars and, in this section, for Matching. Formula (3.4) is equivalent to Formula (3.9). This
means that the filtering function being vector-valued rather than scalar-valued does not affect the
worst-time complexity. In fact, a vector-valued filtering function is more likely to have more level
sets and, thus a value |P| closer to |S| than to |Sp|. Indirectly, this affects the average-case of both
the contributions of HomotopyExpansion and ComputeLowerStar.

In conclusion, as seen at the beginning of this section, the global nature of Matching affects
directly the runtime storage cost. We will see in Chapter 4 an equivalent algorithm preserving, in
the case of vector-valued filtering functions, the local nature of the algorithm in Section 3.2. From
the time cost point of view, the global nature of algorithm Matching preserves the same worst-case
holding for scalar-valued filtering functions. A relevant difference in between local and global
approaches is highlighted by the contribution of the auxiliary function ComputeLowerStar. The
experimental tests in Section 6.1 make it clear the advantages of the local algorithm of Chapter 4
over Matching. Indeed, the former algorithm will be shown to keep, through a local approach, the
time complexity of ComputeLowerStar in the best case of Formula 3.7 independently from the
kind of input. Matching instead, depending on the input, can possibly have a ComputeLowerStar
contribution closer to the worst case of Formula 3.7. The more components the filtering function
has, the more level sets are likely to be close to |S| in number.
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4 A local Morse-based preprocessing algorithm for
multipersistent homology:
ComputeDiscreteGradient

In this chapter, we present the algorithm ComputedDiscreteGradient we introduced in [115].
ComputeDiscreteGradient retrieves a discrete gradient compatible with a vector-valued filtering
function generalizing to multiparameter filtrations the local nature of the algorithm treated in
Section 3.2, as opposed to the algorithm in Section 3.3 which generalizes to multiparameter
filtrations the same algorithm by means of a global approach. The algorithm can be thought of as
a preprocessing for multiparameter persistence.

The chapter is structured as follows. In Section 4.1, we make the input assumptions and the
output properties explicit. In Section 4.2, we formalize the main novelty of the proposed algo-
rithm, that is the retrieval of a well-extensible indexing on the vertexes of the input complex.
We show how this guarantees a local nature to ComputeDiscreteGradient. In Section 4.3,
ComputeDiscreteGradient is described. In Section 4.4, we provide our complexity analysis of
ComputeDiscreteGradient with special emphasis on comparisons to algorithms in Section 3.2
and Section 3.3. In Section 4.5, we prove the ComputeDiscreteGradient correctness by showing
equivalence to the algorithm reviewed in Section 3.3. In Section 4.6, we describe the algorithm
presented in [93] to retrieve an actual filtered Morse complex out of the discrete gradient output
by ComputeDiscreteGradient.

4.1 Input and output formalization

In this section, we make the input assumptions for ComputeDiscreteGradient explicit.

As a first input, the algorithm requires a regular cell complex with the intersection property
X (Definition 3.1.1). This requirement is the same we state in our review of the algorithm in
Section 3.1. By Remark 1.1.13, this includes both cubical complexes, required by the algorithm
in Section 3.2, and simplicial complexes, required by the algorithm in Section 3.3.

As a second input, the algorithm ComputeDiscreteGradient requires a vector-valued function
f="(f1,---»fu) : Xo — R" defined over the vertexes of the input cell complex. As already
done for the algorithm of Section 3.3, for the correctness of the procedure f is assumed to be
component-wise injective, i.e., injective on each function component f;. A general vector-valued
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filtering function can be made into a component-wise injective one, with a controlled difference
with respect to the infinity norm, by simulation of simplicity [82] applied to each component.
As opposed to what is done for the global algorithm in Section 3.3, the input is the function f
and not function f, that is the corresponding vertex-induced function (Definition 3.1.2). This is
coherent to the requirements for the local algorithm in Section 3.2. The algorithm is valid for any
number n of parameters in the multifiltered complex. Furthermore, the algorithm is agnostic in
the dimension d of the input complex.

To summarize, ComputeDiscreteGradient receives in input:

e X : aregular cell complex with intersection property;

e f: avector-valued function on the vertexes of S which is component-wise injective function.

As regards the output retrieved by ComputeDiscreteGradient, we refer to Definition 1.4.5 for
the notion of discrete gradient, and to Definition 1.4.7 for the notion of Morse set relative to a
discrete gradient. Then, ComputeDiscreteGradient (X, f) returns:

e V : adiscrete gradient over X compatible with £, i.e., the multiparameter filtering function
which is vertex-induced by f;

e M : the Morse set relative to V, i.e.,, M = M(V).

The output V is guaranteed to be a discrete gradient compatible with the function f by the equiv-
alence to algorithm in Section 3.3 proved in Section 4.5. A discrete gradient compatible with
a function f is also compatible with the filtration & / induced on X by f. Hence, the retrieved
output determines a filtered Morse complex M/ which is a compatible Morse reduction of X Ji
in the sense of Theorem 1.6.8. The algorithm described in Section 4.6 allows to retrieve a M/
from a discrete gradient given by ComputeDiscreteGradient. This ensures that ComputeDis-
creteGradient is a valid preprocessing for computing multipersistence in any possible way. This
persistence-preserving reduction in the number of cells and non-trivial filtration steps is proved to
satisfy an optimality property we have introduced and which is fully treated in Chapter 5.

4.2 Well-extensible indexing

In this section, we formalize the main novelty of the proposed algorithm, that is the retrieval of a
well-extensible indexing on the vertexes of the input complex. We show how this guarantees a
local nature to ComputeDiscreteGradient. The results of this section are in particular useful for
the complexity analysis provided in Section 4.4.
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With reference to the formalization of the input provided in the previous section, let X be a regular
cell complex with the intersection property and f = (f1,..., fy) : Xo — R" a component-wise
injective function defined over the vertexes of X. The algorithms presented in Section 3.2 and
Section 3.3 share the common trait of acting over a partition into lower stars (Definition 3.1.3)
where to independently build the output discrete gradient by means of the auxiliary function
HomotopyExpansion we describe in Section 3.1. The algorithm in Section 3.2, detects the
partition into lower stars by processing all vertexes in X and, for each of those vertexes, computing
its lower star. The algorithm in Section 3.2, detect the partition into lower stars by processing all
cells in X and, for each of those cells, deciding whether or not to compute its lower star. To do
so, an indexing over all the cells in X with suitable properties is required in input. The partition
into lower stars where to run HomotopyExpansion is thus constructed runtime and not a priori
defined. Instead, ComputeDiscreteGradient produces its own well-extensible indexing I, this
time restricted to vertexes of X to a priori define the partition where to act. Let [ : X — R be the
indexing over X vertex-induced by I defined over the vertexes. Explicitly, we have
Vie{l,...,n}, fi(a) :== max f;(v) and  I(a):= max I(v).

ve Xy veXp
v<a v<Ka

4.2.1 Definition (Well-extensible indexing). Let f : Xy — R” be a function defined over the
vertexes of a cell complex X. A well-extensible indexing with respect to f is an indexing I over Xy
such that, for all a,b € X,

flay<f®) = Ia)<I(b)

The cell complex X is subdivided into index-based lower stars.

4.2.2 Definition (Index-based lower star). For each vertex v in a cell complex X, the index-based
lower star of v is the set

Low;(v) := {a e Starx (v) | I(a) < I(v)}.

Clearly index-based lower stars correspond to lower stars of vertexes with respect to a scalar-
valued filtering function that is vertex-induced from an injective one. Hence, they form a partition
by Proposition 3.2.2 even in the case of non-well-extensible indexings /. However, cells in the
same index-based lower star might have different values under 7. We subdivide the index-based
lower star of each vertex v into level sets

K(v):=Low;(v)/_  with a~b< f(a)=f(b).

The well-extensible assumption guarantees the following compatibility between index-based
lower stars and level sets of f.
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4.2.3 Proposition (Index-based partition compatibility with level sets). Let X be a regular cell
complex with the intersection property, and f : Xo — R" a component-wise injective function on
the vertexes of X. Let I be a well-extensible indexing with respect to f. Then, for any non-empty

level set Lset = f!(f(a)) with a € X, there exists one, and only one, vertex v < a such that

Lset < Low;(v).

Proof. By Proposition 3.3.1, for a component-wise injective function f over the vertexes of X,
each level set f~!(f(a)) is equal to the lower star Lows(a). By Proposition 3.2.2, the cell a
belongs to the index-based lower star Low; (v) of a unique vertex v € X, so that by Proposition 3.1.5,
we get I(a) = I(v). Moreover, since [ is injective on vertexes, we have that v « a. Now consider a
cell b € Low ¢(a) which, by Proposition 3.1.5, implies f(a) = f(b), that is both f(a) < f(b) and
f(a) > f(b). By I being well extensible, we get [(b) = I(a) which gives us Low ¢(a) < Low;(v)
and concludes the proof. 0

The Proposition 4.2.3 ensures that each non-empty level set of £ is entirely contained in one, and
only one, index-based lower star. As a corollary of Proposition 4.2.3, we get the following set

equality.
x=|] [] Lset (4.1)
veXo LseteK (v)

4.3 Algorithm description

In this section, we describe the algorithm ComputeDiscreteGradient. We refer to the pseudocode
in Algorithm 4 and the notation introduced in Section 4.1, for the input and output formalism, and
in Section 4.2 for the auxiliary structures. The example in Figure 4.1 presents an overview of the
main steps of the divide-and-conquer approach of the algorithm. The algorithm is described by
means of the following auxiliary functions:

e Computelndexing computes the well-extensible indexing / (see Figure 4.1(a)-(b));

e ComputelndexLowerStar extracts the list Low;(v) containing the index-based lower star
of the vertex v (see differently colored parts in Figure 4.1b);

e SplitIndexLowerStar computes the list K(v) of all lists of level sets with respect to f in
Low;(v) (see Figure 4.1c);
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Figure 4.1: (a) the filtering function values are depicted as pairs. The vertex indexing I is depicted within square
brackets. (b) I is propagated to all the simplices. Colors indicate simplices belonging to the same index-based lower
star. (c) For each lower star, the level sets Lset; are built collecting simplices having the same function value f. Pairs
and critical simplices are created via homotopy expansions within each Lset;. (d) The discrete gradient is obtained as
the union of all the pairs and critical simplices classified in the lower stars. Critical vertices are depicted in blue and
the critical edge is depicted in green.

e HomotopyExpansion computes the lists Vi oy, (), With the discrete vectors, and My oy, ()
with the corresponding Morse set My oy, () = Mpow,(v) (VLow,(v)> restricted to the index-
based lower star Low;(v) (see Figure 4.1d). HomotopyExpansion is the auxiliary function
is introduced in Section 3.1.

ComputeDiscreteGradient implements:

e i(<,,) : an implicit lexicographic indexing on X. Each k-cell a has its vertexes [a] :=

[vl,...,v|a‘] represented in decreasing order of values under /, i.e., in such a way that
I(v1) > -+ > I(v)y), with |a| the number of vertexes of a. Cells are implicitly totally
ordered by

[a] <Lex [b] g i(<L6X>(a) g i(<L6X>(b)’
where <, is the lexicographic order between tuples of kind [a].

ComputeDiscreteGradient. The algorithm retrieves a well-extensible indexing /, stored in a
length |Xp| array, by means of the auxiliary function Computelndexing, and then, it processes
all vertices, one by one, in a for-cycle according to increasing values of /. However, the body
of that for-cycle can be also implemented in parallel since index-based lower stars of vertexes
form a partition for X as remarked in Section 4.2. For each vertex v, at line 4 in Algorithm 4,
the algorithm calls the auxiliary function ComputelndexLowerStar(v,,X ) which returns the list
Low;(v) of cells in the index-based lower star of v. At line 5 in Algorithm 4, the list is passed
to SplitLowerStar to obtain a list K(v) with all lists of level sets of f relative to the vertex v.
For each list Lset € K(v), at line 7 in Algorithm 4, the auxiliary function HomotopyExpansion
returns the discrete vector list Vi g, and it corresponding critical cell list My ¢ With respect to the
implicit lexicographic order i(<,.,). The lists Vi ¢t and M s¢; are appended to the final output lists
V and M to be returned.
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Algorithm 4 ComputeDiscreteGradient(X, f)

Input: X regular cell complex with intersection property
Input: f: Xy — R" component-wise injective function

Output: V list of cell pairs # discrete gradient compatible with f

Output: M list of cells # Morse set of V
1: V.M are empty lists
2: [ — Computelndexing(Xp, f) # I is a well extensible indexing with respect to f
3: for all v in X do # independently from the order

4:  Lowj(v) « ComputelndexLowerStar(v,I,X)
# Low;(v) is a min-heap with the cells in the index-
based lower star of v partially ordered by increas-
ing values of f
50 K(v) < SplitIndexLowerStar(f,Low;(v))
# K(v) contains the lists of level sets in Low;(v)

6:  for all Lset in K, do # independently from the order
7: (ViLset, MLset) < HomotopyExpansion(X, Lset, (<)) #
classifies all cells in Lset as either part of a pair
in Ve Or a cell in My gt
8: append Vi ¢ to V
9: append M et to M
10:  end for
11: end for

12: return (V,M)

4.3.1 Auxiliary functions

In this section, we describe in more detail the auxiliary functions of ComputeDiscreteGradient.

Computelndexing There are different ways to obtain a well-extensible indexing I. A well-
extensible indexing guarantees correctness. In our approach, Computelndexing is a heap sort
algorithm which produces I by ordering all vertexes v according to the values f;(v).

4.3.1 Proposition. The indexing / computed by Computelndexing is well-extensible.

Proof. Computelndexing computes an indexing / since f] is injective, and, by definition, for
any two vertexes v and w in X, fi(v) < f(w) is equivalent to I(v) < J(w). To see that [ is well-
extensible, we notice that the condition f(a) < f(b) implies fi(a) < fi(b). Thus, a vertex v € b
exists such that f;(v) > f;(w) for every vertex w < a. This implies I(v) > I(w), for every vertex
w « a. Thus, we conclude that [(a) < I(b). O
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ComputelndexLowerStar. ComputelndexLowerStar extracts the list Star(v) with elements
all cells in the star of v in X. The cells in Star(v) are processed and, for each cell q, if the first
entry in [a] equals to v, then a is added to the index-based lower star Low;(v). The auxiliary
function returns the list of cells Low;(v).

SplitIndexLowerStar. The values under f are associated with vertexes only. The auxiliary
function SplitIndexLowerStar initializes an associative array to tag each level set in Low;(v) by
its value under f. The associative array is implemented so that a tag appears after all the tags
preceding it. The level set with tag equal to f~'(f(v)) is initialized with the element v. The
auxiliary function SplitIndexLowerStar processes all elements in Low;(v) but v with order given
by i(<,.,), so that each processed cell has only few vertexes more than some already processed
cell (one vertex more in the simplicial case). For each a € Low;(v), the value f(a) is computed
through the maximum rule defining vertex-induced filtering functions (Definition 3.1.2) for each
component. If the value is not in the associative array, then a new value is added and a new
level set list is initialized with the element a. Otherwise, the cell is added to the level set list
corresponding to the value tag to be found in the associative array of tags. The auxiliary function
returns the list K, containing all level set lists.

HomotopyExpansion. The last step consists in the actual pairing of cells, within each level set
Lset in K(v), performed by the subroutine HomopotyExpansion. The auxiliary function Homo-
topyExpansion is the one presented in Section 3.1 and used for describing both by the algorithm
of Section 3.2 and that of Section 3.3. HomotopyExpansion requires a regular cell complex
with intersection property, a lower star of some cell along with an indexing of the lower star
cells compatible with the incidence cell relations. The requirements for HomotopyExpansionare
satisfied. Indeed, the complex X is a suitable input. By Proposition 3.3.1, each level set Lset in
K(v) is a lower star for some cell. The indexing i(<,,,) is a lexicographic indexing and, thus it is
compatible with the coface relation « over X. The main idea of HomotopyExpansion is that, two
cells, say k-cell a and (k + 1)-cell b, are paired via homotopy expansion when a has no unpaired
faces and b has only one unpaired face (i.e. a). This is achieved by means of two lists whose
elements are ordered according to increasing values of i(<,.,): Ord0 and Ord1. The ordered lists
are used for selecting which cells in Lset are paired respectively with a higher or with a lower
dimensional cell. It is proved in Proposition 3.6 in [3] that, in HomotopyExpansion, all cells in
Lset are either classified as critical or paired with another cell and this happens exactly once per
cell. This produces the two lists: V| ¢ containing all pairs found in Lset, and My (¢ with all the
remaining cells. Finally, the lists V containing all independent contributions of Vi ot and My g 1S
output by ComputeDiscreteGradient.
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4.4 Complexity

This section is devoted to the complexity analysis of ComputeFormanGradient whose pseu-
docode is reported in Algorithm 4. First, we make our notation and assumptions explicit. In
Section 4.4.1, we provide our analysis of ComputeDiscreteGradient. In Section 4.4.2, we dis-
cuss the analysis provided and we compare our analysis to those provided for the algorithms in
Section 3.2 and Section 3.3.

To fix the notation, the input complex is assumed to be a d-dimensional cell complex X. Parameters
involved in the complexity analysis are expressed in terms of cardinality |- | of sets used in
Section 4.3. Moreover, we indicate with Star(a) the star of a cell a € X, and, with Star, the cell star
with maximal cardinality in X. Recall, from Remark 3.1.7 that, in a simplicial complex, |Star| is
not bounded by a constant and it is possibly as large as |X|. Whereas, in a cubical complex | Star |
is bounded by a constant.

In our analysis, we assume some information about our complex to be computed and stored; this
will simplify the discussion by focusing on the complexity of the introduced algorithm only.

e for each cell in X the number of its vertexes is assumed to be constant.

e for each Star(v), the value f(a), for all cells a € Star(v) can be retrieved in linear time in
the number of the vertices of cells in Star(v) from the offline-stored values of f;

e for each cell a € X, we assume that the boundary and coboundary can be retrieved in linear
time in their size and co(boundary) is stored off-line. Visiting the boundary or coboundary
of a takes linear time in the number of cells in the boundary or coboundary, respectively;

e for the auxiliary function HomotopyExpansion, we make the same assumptions we made
explicit in Section 3.1, so that to apply the same complexity analysis.

All these assumptions are satisfied by the implementation of ComputeDiscreteGradient de-
scribed in Chapter 6 to perform our experimental tests.

4.4.1 Analysis

In this section we provide our time and space complexity analysis of ComputeDiscreteGradient.
Here, we analyze separately the contribution of each auxiliary function involved in ComputeDis-
creteGradient. For each auxiliary function, we make its time and storage cost contribution to the
overall process explicit.
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Computelndexing. Here, the vertices are sorted according to a single component of the input
function. Thus, it requires O(|Xp| -log |Xo|) operations. The extra space required is O(|Xp|).

ComputelndexLowerStar requires the extraction of the star of each vertex v which can be
performed in constant time by assumption. Then, all cells in the star need to be visited in order
to check whether their first vertex is v which takes O(| Star(v)|) time. The procedure is repeated
for all vertexes in the input complex. Since, by assumption, the number of vertexes of any cell
is constant, each cell is counted a constant number of times as part of a vertex star. Hence, the
overall time cost is O(|X|). In particular, since for a simplicial d-complex, each j-cell is extracted
as part of j + 1 different stars of a vertex, we get that the overall number of visited cells is

d
> Istar(v)] = > (j+1)IX;l. (4.2)
Jj=0

veXy

Since, for a cubical d-complex, each j-cell is extracted as part of 2/ different stars of a vertex, we
get that the overall number of visited cells is

d
D IStar(v)| = > 27|x)]. (4.3)
veXo j =0

This implies in both cases a time complexity contribution of O(|X|). By assumption, there is no
extra space requirement.

SplitIndexLowerStar requires visiting all cells in the vertex index-based lower star Low;(v).
By assumption, the cost of retrieving all values of f for cells in Low;(v) is linear in the number of
vertexes of cells in Low;(v). By assumption, the number of vertexes per cell is constant, hence
the number of vertexes of cells in Low;(v) has the same order of |Low;(v)|. In particular, in the
cubical case the cost of computing f is constant since the number of cells in the star is bounded
by a constant depending on the complex dimension, and it is linear in | Low;(v)|, in the simplicial
case. The cost of determining whether or not a cell in Low;(v) is in a new level set is O(log |K,|)
since it requires to process, at most, a length |K,| associative array implemented to tag the level
set values whose tags are ordered compatibly with the values of f. The overall cost of each call is
given by the sum of the cost of computing values of f, which is O(|Low;(v)|) and that of creating
the level set lists, which is O(|Low;(v)|-log|K,|), this latter dominating the complexity. For
general v, the worst-case of |K,| is bounded by the cardinality of the worst case index-based lower
star and, thus ultimately, by the worst-case star, indicated by Star, so that we can overestimate the
logarithmic term by log| Star|. Since Proposition 3.2.2 applies also to regular cell complexes with
the intersection property, index-based lower stars form a partition of X, we get that the overall
time cost contribution of the auxiliary function is

O(|X| -log|Star|).

In particular, in a cubical complex the time cost becomes linear in |X|. The extra space required is
O(|Star|) since the filtering function f needs to be represented for each cell in Low;(v).
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HomotopyExpansion works over each level set Lset € K, within a lower star Low;(v) of a
vertex v. By the complexity analysis in Section 3.1, here taken by assumption, each call of the
auxiliary function HomotopyExpansion over the level set Lset takes time O(|Lset|-log |Lset|)
and requires an additional space which is negligible with respect to O(|Lset|). By Formula (4.1),
we have a call of HomotopyExpansion for each Lset € K, and each vertex v € Xy and, thus the
overall number of operations is given by

Z Z |Lset|log | Lset . 4.4)

veXp Lsetek,,

The logarithmic term can be overestimated by log | Star | which makes it independent from both
the level set in K, and the vertex v in Xy. We take the logarithmic term out of the sum. Again by
Formula (4.1), we have that [X| = >,y > ceex, | Lset|. Thus, the overall time contribution of
the auxiliary function HomotopyExpansion is

O(|X|-log|Star|), 4.5)

with a negligible extra space contribution.

ComputeDiscreteGradient From the analysis of each single auxiliary function contribution,
it follows that the main time contributions are given by the ordering of the vertexes performed
by Computelndexing, the level set splitting performed by SplitIndexLowerStar, and the classi-
fication of the cells performed by HomotopyExpansion. The global time computational cost is

O(|Xo|log|Xo| + |X|log| Star]). (4.6)

The extra space required is given by the ordering of the vertexes performed by Computelndexing
O(|Xo|), and the level set splitting performed by SplitIndexLowerStar O(|Star|). The global
extra storage cost is

O(|Xo| + | Star]). 4.7)

Case O(|Star|) = O(|X]|). Itis possible that a single star has the same order of magnitude as the
whole complex X. This happens, for instance, in the case of a cell complex X with a single cell of
high dimension. In that case, we get an overall time complexity of O(|Xp|log|Xp| + |X|log|X]),
and an extra space required of O(|Xy| + |X]).

Case O(|Star|) = O(1). This happens when the number of cells incident to a single cell is
bounded by a constant value which is negligible with respect to the parameters |Xy| and |X|.
In that case, we get a time complexity of O(|Xy|log|Xp| + |X|), and an extra space required of
O(|Xol)-
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4.4.2 Discussion

We first discuss a key aspect of the algorithm ComputeDiscreteGradient relative to its runtime
storage cost. Afterwards, we compare the time cost analysis provided to, first, the analysis of
the algorithm presented in [4], we call Matching, and we review in Section 3.3, secondly, to the
one-parameter case analogue of our algorithm introduced in [162], we cal ProcessLowerStars
and we review in Section 3.2.

Runtime storage cost. Under our assumptions, the key aspect of the space complexity analysis
of algorithm ComputeDiscreteGradient(X, f) is that, unless O(| Star|) = O(|X|), the runtime
storage cost does not exceed the space required for representing the input and the output. The
entities that are assumed to be stored off-line are: the simplicial complex X, the function f, the
star of each vertex, the boundary of each cell, the discrete gradient V, and the Morse set M. The
entities that need to be stored runtime are: the indexing /, the ordered lists Ord0 and Ord1, and the
local values of filtering function f over each index-based lower star. Computelndexing produces
an indexing over the vertexes and the call of the function requires an extra storage cost which is
proportional to the number of vertexes in X. So, the space required is negligible with respect to
the space required by the representation of the whole complex X. The space required by the other
entities is, in the worst-case, proportional to the number of cells in the star of a vertex. In this case
also, the contribution is dominated by the contribution of the cell complex representation.

Comparison to the algorithm Matching in Section 3.3. The time complexity analysis pro-
vided for Matchingin [3] excludes the construction of the indexing J over the cells of the input
complex which is directly taken as input. As reviewed in Section 3.3, Matching applies Homo-
topyExpansion to exactly the same level sets as ComputeDiscreteGradient does. In [3], authors
express the overall cost differently from ours but the input-dependent worst-case time analysis of
Formula (3.9) applies:

O(|X|log|Star|). (4.8)
Nevertheless, there is a relevant time cost difference between the two algorithms which is relative
to the different number of stars which need to be visited in order to apply HomotopyExpansion.
Indeed, Matching visits a whole star through its auxiliary function ComputeLowerStar to pro-
duce a lower star, for each level set of f . Instead, in ComputeDiscreteGradient, a whole star is
visited by function ComputelndexLowerStar only for each vertex in the input complex. This
means that, in our case, Formula (4.2) gives the global exact number of cells visited by Com-
putelndexLowerStar. Instead, the number of cells visited by ComputeLowerStar in Matching
depends on the input-dependent number |P| of level sets, satisfying

Xl < P < |X].

In the case of |P| = |Xp|, the two algorithms visit the same number of cells. In the case of
|P| = |X|, it means that each cell belongs to a different level set. Since each j-cell has (,J{i})
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Jj+1

different k-dimensional faces, each j-cell belongs to exactly (k i

amount of visited cells is given by

d Jt1 j+l
2, | Star(a)| = J;)IXA;) (k N 1)- (4.9)

acX

) cell stars. In that case, the

By comparison of Formula (4.9) to Formula (4.2), we get that, in both cases, the number of
visited cells is proportional to the number of cells in the input complex. This justifies the
same asymptotical complexity analysis. However, the linearity is satisfied under very different
proportionality coefficients. Those coefficients increase the closer |P| is to |X| and the higher the
dimension d is. We made this aspects explicit with practical tests discussed in Section 6.1.

From the storage cost point of view, the biggest difference between the two algorithms is given
to the local nature of ComputeDiscreteGradient as opposed to the global nature of Matching.
Indeed, at runtime and even by imposing O(| Star| << O(|X|)), Matching might exceed the cost
of the input and output representation since it needs to keep track of the classified cells all along
the computations globally and it needs to implement a global queue with length |X|. This, not
simply affects the runtime storage cost, but it also prevents a parallel implementation. Comparison
tests under the same implementation are treated in Section 6.1.

Comparison to ProcessLowerStars in Section 3.2. The complexity analysis of ProcessLow-
erStars applies to the case when X is a cubical complex and the function f takes scalar-values.
The algorithm results linear in the number of vertexes in X. We look at it as a special case of our
analysis. Indeed, the restriction to scalar-valued functions, eliminates the need of introducing
the indexing / for the vertexes since the role of the indexing is directly played by the values of
the input function f. So, there is no need of considering the contribution of Computelndexing.
Moreover, the level sets correspond to lower stars of vertexes rather than general cells. So, Homo-
topyExpansion is repeated |X| times. Finally, in an embedded cubical complex, the number of
cells incident to a vertex is constant for each vertex. So, the time cost of HomotopyExpansion
is considered to be constant constant. Under the same bounds on the input assumptions, our
complexity analysis of ComputeDiscreteGradient is coherent to that provided by author for
ProcessLowerStars.

Final remarks on the complexity of ComputeDiscreteGradient. In Section 3.3, we remarked
how the input-dependent worst-case time complexity of Matching in Formula (3.9) preserves,
for vector-valued input functions with n components, the same worst-case asymptotical analysis
as ProcessLowerStars, valid for the case n = 1, when applied to regular cell complexes with the
intersection property rather than to cubical complexes. The analysis provided in Section 4.4.1
shows that the local nature of ComputeDiscreteGradient provides the same time complexity
without being input-dependent. However, in fact, the parameter n acts indirectly on the average-
case by increasing the number |P| of level sets. The number |P| affects the number of calls of
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the auxiliary function HomotopyExpansion and the effective time contribution of the auxiliary
function SplitIndexLowerStar. In this section, we also saw how additional bounds on the
maximal number | Star | of cells in the star of a single cell in the input complex make the global
time linear. These bounds are satisfied by the case of cubical complexes in low dimensions and
by the datasets we use to perform our tests in Chapter 6. From the point of view of the runtime
storage cost, the local nature of ComputeDiscreteGradient requires, in practical cases an extra
space smaller than the necessary footprint required for representing the input and the output. A
non-negligible extra space is required only if O(| Star|) = O(|X|). Instead, the global nature of the
algorithm Matching requires an extra space of the same order as the representation of the input
complex. Compared to the algorithm ProcessLowerStars, ComputeDiscreteGradient needs an
extra space linear in the number of vertexes to sort the vertexes of the complex. This procedure is
not needed in the case n = 1.

4.5 Correctness

In this section, we provide a formal proof of correctness for algorithm ComputeDiscreteGradient.
We formalize the correctness statement as follows:

“The vector field returned by algorithm ComputeDiscreteGradient with input (X, f)
is a discrete gradient field V and the corresponding Morse set M is compatible with
the filtered complex X/.”

As already mentioned, the discrete gradient retrieved by the algorithm ComputeDiscreteGradient
is independently given by the outputs of the auxiliary function HomotopyExpansion (for details,
see Section 3.1). Each call of the auxiliary function HomotopyExpansion runs over a single part
in the partition into level sets according to the input function. The strategy to prove correctness
consists in showing equivalence to the Matching algorithm reviewed in Section 3.3 and introduced
in [4], fully proved to be correct in [3] and described in Section 3.3.

Observe that the algorithm Matching is introduced by authors to act over simplicial complexes
(Definition 1.1.1) whereas the algorithm ComputeDiscreteGradient acts, more generally, on
regular cell complexes with intersection property (Definition 3.1.1). However, the correctness
for the algorithm Matching easily extends to regular cell complexes with intersection property.
Indeed by Proposition 3.3.2, the algorithm Matching outputs a list of discrete vectors found
independently over a partition of the input cell complex. Discrete vectors are locally found by the
auxiliary function HomotopyExpansion and, Proposition 5 in [162] implies that, over each lower
star, the output is a valid discrete gradient. The union of all the independent discrete gradients
returned by the auxiliary function HomotopyExpansion form a discrete gradient by Theorem
3.8 in [3]. The Theorem is proved for simplicial complexes, but the only assumption related to
simplicial complexes used by the authors to prove the result is the intersection property. Hence,
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the proof is easy to adapt to regular cell complexes with intersection property since, by definition,
intersecting cells determines a single cell. The compatibility with the input filtered complex is
guaranteed by Theorem 3.7 in [3].

First, we adapt the correctness result in [3] for the algorithm Matching in order to highlight
the partition the algorithms acts on, and to show that the partition is the same for the algorithm
ComputeDiscreteGradient. This allows us to say that the two algorithms act on the same
partition of the input complex. Finally, we show precisely the conditions guaranteeing the same
outputs for the two algorithms. This ensures full equivalence between the two algorithms and then
correctness for the algorithm ComputeDiscreteGradient.

4.5.1 Corresponding partitions

In order to find a discrete gradient compatible with a filtered complex X'/ algorithm Matching
requires in input three objects (X, f,J), where the additional part with respect to ComputeDis-
creteGradient is the indexing J over X. The indexing J is required to satisfy the following
condition of compatibility with the coface relation and the filtering function values:

Va#beX,a<bor fla) < f(b) = J(a)<J(b). (4.10)

We refer to the pseudocode of Matching reported in Algorithm 3. The algorithm Matching
processes all cells in X in a for-cycle. The indexing J defines the order for visiting the cells of X.
For each cell q, if the cell is found unclassified (line 4 in Algorithm 3), the algorithm extracts the
lower star of the cell Low (a)

Lows(a):={ceX |c»an f(c) < fla)}.

Then, the algorithm calls HomotopyExpansion(X,Low¢(a),J). By Proposition 3.6 in [3], dis-
crete vectors and critical cells are found as part of a single lower star of a cell. The union of all
lower stars of cells in X forms a covering of X but not necessarily a partition. The global tracking
of cells performed by the array classified allows to skip lower stars of cells already considered
as part of the lower star of another cell. This prevents to classify a single cell more than once.
At line 4, the if-condition ensures to call HomotopyExpansion only for the lower stars of cells
found unclassified. All along this section, we indicate by P the set of the cells found unclassified
at line 4 by Matching. Then, Proposition 3.6 in [3] directly implies the following property of the
lower stars actually processed by Matching.

4.5.1 Lemma. Let (X, f,J) be a suitable input for Matching. Then, the lower stars Low ¢(a) for
a € P form a partition of X.

Hence, both algorithms build their output by running HomotopyExpansion on a partition of the
input complex X:
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e Matching finds the discrete gradient independently over each lower star Low s(a) with
acP,

e ComputeDiscreteGradient finds the discrete gradient independently over each level set
Lset € K(v) with v € Xp.

We show in the following lemma that the two partitions are the same.

4.5.2 Lemma. Let f : Xo — R" be a component-wise injective function and P the set of cells in
X found unclassified by the algorithm Matching at line 4 in Algorithm 3. Then, for any a € P,
the lower star Low ¢(a) is a level set under f.

Proof. Let (X, f,J) be a suitable input for the Matching algorithm. Let a be a cell in P, that
is a is found unclassified at line 4 of the Matching Algorithm 3. This means that a has not
been processed as part of the lower star of some other cell ¢ € X with J(c) < J(a). Let Lset be
the level set under f containing a. By Proposition 3.3.1, there exists a cell ¢’ € Lset such that
Lset = Low¢(a’). By input assumptions on J, all cells b # &’ in Low (a') satisfy J(b) > J(d').
That is to say that b is found classified at line 4 in the Algorithm 3 or, equivalently, b ¢ P. So, the
only possible cell in the level set Lset belonging to P is a’ which implies a’ = a. [

4.5.2 ComputeDiscreteGradient and Matching are equivalent

4.5.3 Proposition. For any input (X, f) for ComputeDiscreteGradient, there exists a suitable
input indexing J : X — R for Matching such that the output of Matching(X, f,J) equals that of
ComputeDiscreteGradient (X, f).

Proof. By Lemma 4.5.2 along with Proposition 3.3.1, the two algorithms run the auxiliary
function HomotopyExpansion over the level sets Lset under the function f. For ComputeDis-
creteGradient, the global output is independently given by the outputs of each call of Homotopy-
Expansion(X,Lset, 7). From input (X, f) for ComputeDiscreteGradient, we want to construct
a suitable indexing J over all the cells in X for the input of Matching such that each call of
HomotopyExpansion(X,Lset,J) gives the same output. Let I be the well-extensible indexing
on vertexes returned by ComputeDiscreteGradient(X, f). We know from Proposition 3.3.1 that,
any level set Lset under f satisfies Lset = Low t(a) for some unique a € Lset. Let P be as in
Lemma 4.5.2. By Lemma 4.5.2, we know that a € P. For each a € P, we indicate by J, the
inclusion-compatible indexing i(<,.,) over Lset providing the order in the ordered lists Ord0,
Ord1 in HomotopyExpansion(X, Low f(a),(<...)) Let g be any injective function P %> R which
is compatible with £, i.e., f(a) < f(b) implies g(a) < g(b) (obtained, for example, by topological
sorting). Clearly, the level sets under f form a partition of X. Thus, by Lemma 4.5.2, it follows
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that for every cell b € X there exists a unique cell a, € P such that b € Low (a;,). This implies that
we can extend g to a map G : X — R still compatible to f by setting G(b) := g(ap,). Thus, for any
simplex b, we get associated a pair of real numbers GJ(b) = (G(b),J,,(b)). Choose J : X — R
to be an injective map imposing a total order equivalent to the lexicographic order over pairs of
the form GJ(b).

GJ(a) <. GI(b) = J(a) <J(b).

We need to show that J satisfies the input requirements for algorithm Matching. In other words, J
has to satisfy:

Va#beX,a<bor fla) < f(b) = J(a)<J(b). (4.11)

By definition of £, the relation a « b with a # b implies f(a) < f(b). By compatibility of G with
f, it follows that f(a) < f(b) implies G(a) < G(b). In the case G(a) < G(b), by equivalence of J
with the lexicographic order over GJ, we get J(a) < J(b). In the case G(a) = G(b), by injectivity
of g, it follows that a, b belong to the same lower star Low ¢(a), where a € P. Being J; compatible
with the incidence relation «, we get J(a) < J(b). Otherwise, suppose that f(a) < f(b). This
implies necessarily G(a) < G(b) and, thus, J(a) < J(b). By Lemma 4.5.2, the two algorithms call
HomotopyExpansion with the same input. Hence, they produce the same output. [

As a corollary, we get the correctness of ComputeDiscreteGradient.

4.5.4 Corollary. Algorithm ComputeDiscreteGradient with input (X, f) returns a discrete gra-
dient V compatible with the filtered complex X"

Proof. Each input (X, f) determines the filtered complex X 7, By Proposition 4.5.3, the discrete
gradient V is the same as the one retrieved by Matching with a suitable input representing the
same filtered complex X/. By Proposition 3.6 in [3], Algorithm Matching returns a discrete
gradient V with its relative Morse set M which is compatible with the filtered complex X/. [

The following proposition completes the equivalence between the algorithms ComputeDiscrete-
Gradient and Matching. In particular, it states that all possible gradients retrieved by Matching
can be obtained by the divide-and-conquer strategy of ComputeDiscreteGradient.

4.5.5 Proposition. Let (X, f,J) be a suitable input for Matching. Let f : X, — R" be the restric-
tion of f to the vertexes. Then, the output of Matching(X, f,J) equals that of ComputeDiscrete-
Gradient(X, f), provided that, for each level set Lset under f , the function HomotopyExpansion
is given (X,Lset,J) as input.

Proof. Analogously to the proof of Proposition 4.5.3, by Lemma 4.5.2 along with Proposi-
tion 3.3.1, the two algorithms run the auxiliary function HomotopyExpansion on the level sets
Lset of the function f. The global output is independently given by the output of each call
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of HomotopyExpansion(X,Lset,i), with i a general indexing over X compatible with the co-
face relations among cells. The output depends on i in assigning the order to the ordered lists
Ord0, Ordl1. In general, ComputeDiscreteGradient sets i = i(<,.,) where <, follows from the
well-extensible indexing returned by Computelndexing. Instead, Matching sets i = J. Hence,
ComputeDiscreteGradient finds exactly the same discrete gradient as Matching, provided that
(X,Lset,J) is given to HomotopyExpansion as input. ]

This last statement provides not simply correctness, but it also states that ComputeDiscreteGra-
dient is as general as Matching. This means that the introduction of the well-extensible indexing
over the vertexes which is needed in algorithm ComputeDiscreteGradient can be performed for
every possible input.

4.6 From a discrete gradient to the Morse complex:
BoundaryMaps

In this section, we describe the algorithm BoundaryMaps introduced in [93] to retrieve the Morse
complex associated to a discrete gradient either on a simplicial complex or on a cubical complex.
Hence, it is a suitable post-processing to the algorithms in Section 3.2, Section 3.3 and Compute-
DiscreteGradient. The algorithm is applied as a post-processing of ComputeDiscreteGradient
in the experimental tests in Section 6.2, Section 6.3, and Section 6.4. First, we make the input
assumptions and the output properties explicit. Then, we review the algorithm BoundaryMaps in
the simplicial case. Finally, we adapt the same algorithm to the cubical case.

4.6.1 Input and output formalization

As a first input, the algorithm requires a cell complex X which is either a simplicial (Defini-
tion 1.1.1), or a cubical complex (Definition 1.1.8). As a second input, the algorithm requires
a discrete gradient V on X (Definition 1.4.5). As a last input, the algorithm requires a critical
cell ¢, that is ¢ belongs to the Morse set M relative to the discrete gradient V, i.e., M = M(V)
(Definition 1.4.7).

To summarize, BoundaryMaps receives in input:

e X : either a simplicial or a cubical complex;
e V : adiscrete gradient on X

e ¢ : acritical cell in the Morse set relative to V.
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As regards the output retrieved by BoundaryMaps, we refer to Definition 1.2.1 for the notion
boundary map (¢) in a chain complex, and we refer to Formula (1.7) for the definition of incidence
Morse function ks : M x M — Z;. Then, BoundaryMaps(X,V,7) returns:

e B(t) : the boundary map d(a) of s € M. The boundary map is represented by the list
B(t) where each element is a value identifying a cell 5. Since we only consider incidence
functions with Z; coefficients, if the number of occurrences of values identifying s is even,
then xy(¢,s) = 0, otherwise Ky (t,s) = 1.

By Definition 1.4.8, the list of boundary maps B(t) for any t € M defines the Morse complex
(M(V), ku) induced by the discrete gradient V on X.

As a remark on the output retrieved by BoundaryMaps, we recall from Definition 1.6.3 that, if
the input discrete gradient is compatible with a (multi)filtered complex X, then the output Morse
complex gets induced a filtered structure M compatible with X'. This makes BoundaryMaps a
valid post-processing to the algorithms in Section 3.2, Section 3.3 and ComputeDiscreteGradient
to get the corresponding Morse complex which preserves the compatibility with a filtration.

4.6.2 Description in the simplicial case

In this section, we focus on the case of X being a simplicial complex to describe the algorithm
BoundaryMaps as done in [93]. The algorithm is implemented for the experimental results in
Chapter 6. For the input and the output of the algorithm, we take the notation of the previous
section. The pseudocode of BoundaryMaps is reported in Algorithm 5. First, we make the
representation of entities in the simplicial case explicit. Then, we describe the auxiliary functions
called by BoundaryMaps. Afterwards, we describe the procedure of the algorithm. Finally, we
provide some computational remarks on the simplicial case.

For representing the simplicial complex X, we assume a representation such that the top-simplices
incident to a given vertex can be retrieved in linear time with respect to the number of top-simplices
incident to the vertex. Moreover, we assume to have constant access to the vertexes of a cell. This
property is met by representations such as the adjacency-based IA* data structure [30] and the
incidence-based implementation for triangle meshes described in Section 6.1.2.

For representing the discrete gradient, our description assumes the representation introduced
in [86] for triangular meshes and in [193] for tethrahedral meshes. The discrete gradient V is
represented by a bit-array as an attribute for each top-simplex ¢ in X. In the bit-array, each entry
defines a possible discrete vector between faces of 7. Discrete vectors are given by valued-1 entries
in the array.

The algorithm BoundaryMaps calls the following auxiliary functions:
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Algorithm 5 BoundaryMaps(X,V ,t)

Input: X, d-dimensional regular cell complex

Input: V, discrete gradient on X

Input: ¢, critical cell

Output: B(z), boundary maps as collections of arcs
L Q-
2: Q.enqueue(t) # Q is an empty queue
3: while Q # J do

4: ty < Q.dequeue()

5:  for s egetFacets(f, X ) do # sy is afacetof 11 in X

6: if isPaired(s;,V) then # 51 is not critical

7: 11 —getPairComponent(s,V)  # (s;,11) €V

8: Q.enqueue(ty)

9: else # s 1is critical
10: add(B(t),t0,s1) # the value identifying s, is appended to B(t)
11: end if
12:  end for

13: end while
14: return B(t)

e getFacets(,X) returns a list of facets of the simplex ¢ in X. This is done in linear time in
the dimension of the simplex ¢, since each facets is obtained by removing a vertex from
those defining ¢;

e isPaired(s,V) returns the value True if s belongs to a discrete vector (s,7) in V, and the
value False otherwise. In the former case it also returns the paired cell. This is done by
examining all the top simplices in the star of a vertex w of s. For each top-simplex its
bit-vector is visited limitedly to the entries defining suitable pairs (s,z). The operation
requires O(|t,,|), where 1,, denotes the set of top simplices incident in a vertex w of a.

e getPairComponent(s,V) is used to return, in the pseudocode, the cofacet ¢ of s returned
by isPair(s, V).

Starting from a critical cell ¢ of dimension k, a breadth-first traversal is performed by navigating
from ¢ to its adjacent k-cells passing through their shared (k — 1)-cells (by intersection property,
adjacent k-cells share one, and only one, facet). The breadth-first traversal is supported by a queue
Q. Given a k-cell 7g extracted from the queue Q (row 8), we examine all of its facets in X, returned
by the auxiliary function getFacets (row 11). For each (k — 1)-cell sy, if s; is part of a discrete
vector together with a k-cell ¢; returned by function isPair (row 12), ¢ is added to the queue (rows
15 and 16). If s is a critical cell, then the value identifying s, is appended to B(¢). When the
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while-loop terminates, the list B(z) is returned.

Algorithm 5 is executed for a critical k-simplex ¢ in the Morse set M(V) relative to a discrete
gradient V. A cell 1y is popped out from Q up to k times, with k the number of facets of #y. For
each facet s; of 1y we check whether it is paired or not which takes, by assumption at most time
O(|tw|). Then, we can conclude that each iteration of the while loop takes O(k - |t|), where ¢ is the
maximal-sized set of top-simplices incident in w. Hence, the algorithm has O(q -k - [t|) worst-case
time complexity, where ¢ is the number (counted with multiplicity) of k-simplices of X inserted
in the queue Q. In practical cases, time complexity is dominated by the factor g. Concerning
the retrieval of the boundary map for all critical cells, we can build degenerate cases where each
critical cell is connected, through a V -path, to all the cells of the same dimension in X. This raises
the complexity to be cubic in the number of cells. In practice, each cell belongs to the descending
path of a limited number of critical cells (possibly zero). In Section 6.4.3, we see the measured
timings for BoundaryMaps applied to some entire Morse sets of large size.

4.6.3 Description in the cubical case

In this section, we focus on the case of X being a cubical complex embedded in a d-dimensional
space to describe the algorithm BoundaryMaps. The algorithm is implemented for the experi-
mental results in Section 6.4. Our description adapts the presentation of the algorithm in [93] to
the cubical case. For the input and the output of the algorithm, we take the notation of the previous
section. The procedure and pseudocode of BoundaryMaps in the cubical case is the same as for
the simplicial case and it is reported in Algorithm 5. First, we make the representation of entities
in the cubical case explicit. Then, we describe dissimilarities with respect to the simplicial case of
the auxiliary functions called by BoundaryMaps. Afterwards, we describe the procedure of the
algorithm. Finally, we provide some computational remarks on the cubical case.

A cubical complex embedded in a d-dimensional space is represented as a regular grid. A regular
grid is defined by a graph G = (N,A) where N is the set of cells forming the regular grid and A is
the set of incidence relations between the cells in N. Representing a regular grid is a much easier
task than representing a simplicial complex. The regular distribution and connectivity of the cells
in G makes it possible to encode the topology of the complex implicitly. By enumerating the cells
in N, we can extract any relation in A using index calculations without any overhead. Facets and
cofacets of a given cell are retrieved in linear time with respect to the number of facets or cofacets,
respectively. The number of facets of a k-cell is at most 2k, and the number of cofacets is at most
2k.

In the case of a regular grid, the discrete gradient is encoded by assigning a Boolean value to each
arc o in A, where the two cells connected by o are paired in V. Then, the discrete gradient is
encoded as an array of bits of length |A]|.

The algorithm BoundaryMaps calls the same auxiliary functions as in the simplicial case with
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the following differences:

e getFacets(z,X) is performed by index calculations in linear time in the number of facets of
L

e isPaired(s, V) is performed by index calculation in linear time in the number of cofacets of
s.

From the computational point of view, we focus on the dissimilarities with the simplicial case. A
cell ¢y is popped out from Q up to 2k times equal to the number of facets of ¢ rather than k&, but this
provides a linear contribution in the same way. For each facet s of 79 we check whether it is paired
or not which takes at most time O(k) instead of depending on the number of top-simplices incident
in a vertex. Then, we can conclude that each iteration of the while loop takes O(kz). Hence,
the algorithm has O(q - kz) worst-case time complexity, where ¢ is the number (counted with
multiplicity) of k-cells of X inserted in the queue Q. Again, in practical cases, time complexity is
dominated by the factor g. Differently from the simplicial case, parameter k can be considered
constant. Degenerate case with O(g) = O(|Xy|) exist also in the cubical case and parameter g
dominates the final time cost. In Section 6.4.3, we see the measured timings for BoundaryMaps
applied to some entire Morse sets of regular grids of large size and notice the advantage of the
cubical case over the simplicial one.
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S Optimality by relative homology

As exposed in Section 1.4, a notion of optimality is commonly associated with a complex through
a discrete Morse function defined on it. Intuitively, in this case, optimality means that each
critical cell corresponds to a change in topology when moving from one filtration step, induced
by sublevel sets with respect to the Morse function, to the other. In this chapter, we deal with a
notion of optimality that applies to a complex already equipped with a filtration. In doing this, we
express optimality as a property of a discrete gradient compatible with a filtered complex instead
of a discrete Morse function.

The chapter is structured as follows. First, we discuss the case of one-parameter filtered complexes.
In particular, we formalize, into more general terms, the optimality notion expressed in [162] for
the specific case of regular grids under a scalar-valued filtering function. Under this formalization
of optimality, the algorithm proposed in [162], and generalized by our algorithm described in
Chapter 4, retrieves an optimal discrete gradient, for cubical complexes realized in a 3D space, an
so, the algorithm itself is called optimal. We discuss why this one-parameter notion of optimality
for a discrete gradient does not generalize to the multiparameter case. As a first contribution, we
translate the one-parameter notion of optimal discrete gradient equivalently in terms of relative
homology. Afterwards, we move to the multiparameter case and provide our second contribution
about optimality. This consists in generalizing the optimality definition via relative homology to
the multiparameter case. Successively, as a third contribution, we prove that a Morse complex
compatible with a multiparameter filtered complex induced by sublevel sets of a filtering function
preserves the relative homologies involved in the optimality definition. This fact is used in the
final part to guarantee that the one-parameter optimality of the algorithm in [162] holding for
3D cubical complexes is preserved in the multiparameter case by our algorithm described in
Chapter 4. Finally, we show an additional case where optimality of the algorithm described in
Chapter 4 holds, that is for abstract 2-dimensional simplicial complexes.

All along this chapter, we assume to be given a Lefschetz complex with intersection property X,
a filtration X of X (either one or multiparameter), a discrete gradient V compatible with X, its
Morse set M = M(V), and the corresponding filtered Morse complex M.

5.1 One-parameter optimality in terms of relative homology

In this section, we focus on the case of one-parameter filtrations. The purpose is that of formalizing
a notion of optimality for V with respect to X'. We take inspiration from the property proved for
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the algorithm ProcessLowerStars [162] reviewed in this thesis in Section 2.3.

5.1.1 Theorem (Theorem 11 in [162]). Given a grayscale digital image, g : D — R and its
associated cubical complex Q, let x, be the u" voxel in the ordering of the greyscale values, Q"
be the sublevel set for the value g(x,), and Lowg(x,) the lower star of x,. Then, for each critical
k-cell y € Low,(x,) identified by the algorithm ProcessLowerStars either

i) v is a positive cell, i.e., ¥ creates a new k-cycle in Hi(Q"), or

ii) v is a negative cell, i.e., ¥ fills in a (k— 1)-cycle from Hy_;(Q"~1).

In order to look at the property in Theorem 5.1.1, into more general terms, we consider a filtered
complex X, we take two successive filtration grades u — 1 and u € Z and the corresponding
inclusion-induced maps of homology

0 H (XU — H(XY),

for all integers k. With respect to these family of inclusion-induced maps, we observe two facts:

a) a positive k-cell creates a non-trivial homology class not existing before, so it generates a

non-trivial homology class in coker; —Lu,

b) a negative k-cell either fill in an independent loop or make two independent loops become

dependent. So, it generates a non-trivial homology class in ker l,?__]l’”

All along this section, we denote by my () the number of new critical k-cells in M = M(V) at
grade u € Z, that is
my () := | MM (5.1)

5.1.2 Definition (One-parameter optimality). A discrete gradient V compatible with a one-
parameter filtered complex X is optimal with respect to X if, for all u € Z and integers k,

u—1l,u

my(u) = dimcokert!™ " + dimker'”|

We can express the property for the algorithm ProcessLowerStars expressed in Theorem 5.1.1
as the property of finding a discrete gradient satisfying Definition 5.1.6. In order to show the
coherence between Definition 5.1.2 and Theorem 5.1.1, we notice that we can totally order all
identifications of a pair or a critical cell performed by ProcessLowerStars in a single Low,(x,).
Let ¢(u) be the number of identifications occurred in Low, (x,). For each [ from 1 to #(u), define
Q(1) as the cubical subcomplex of Q" with cells identified either as critical or in a discrete vector
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when, or before, the /" identification is performed by ProcessLowerStars. This allows us to
consider the filtered complex

Q"' = 0(0) = --- < Q(r(u) := O". (5.2)

We recall the following useful fact from Section 4 in [162].

(*) All discrete vectors preserve homology along the filtration (5.2): the homology changes
from Q(0) to Q(¢(u)) only occur when a critical cell is added.

The following propositions ensure that, we can express the property for the algorithm Process-
LowerStars expressed in Theorem 5.1.1 as the property of finding a discrete gradient satisfying
Definition 5.1.6.

5.1.3 Proposition. Under the assumptions of Theorem 5.1.1. If one denotes by [cy]| the homology
class in H(Q") created by the positive k-cell y in Low,(x,), then the set

P := {[cy] | 7 positive cell in Low,(x,)}

. . —1
is a basis for coker l;: .

Proof. Elements in P’ are non-trivial classes in coker l,? —lu by fact a) and are linearly independent
by definition. The set P! is a set of generators for coker l;: ~lu by fact (*). [

5.1.4 Proposition. Under the assumptions of Theorem 5.1.1. If one denotes by [cy]| the homology
class in Hy_1(Q""") destroyed by the negative k-cell yin Low,(x,), then the set

N¢_; := {[cy] | 7 negative cell in Lowg(x,)}

. ) 1
is a basis for kert, |

Proof. Elements in N}, are non-trivial classes in ker l,?__ll " by fact b) and are linearly independent

u—1l,u

by definition. The set N}’ , is a set of generators for kert, ™ by fact (*). [

The key point in the formalization of the optimality notion in Definition 5.1.2 is to relate the
number of critical cells to precise algebraic terms. As an example, in Figure 5.1, we see how the
just-provided definition of optimal discrete gradient depends on the considered filtered complex.
Indeed, a discrete gradient might be, with respect to a given filtration 5.1(a), optimal, and, with
respect to another filtration 5.1(b), non-optimal.

The translation of optimality into the multiparameter case is not straightforward as explained by
the following remark.
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(b)

Figure 5.1: in (a) an optimal discrete gradient with respect to the filtered complex obtained by sublevel sets under the
filtering function values depicted for each cell. In (b), the same discrete gradient with a different filtering function.

5.1.5 Remark. The fact that multiparameter filtration are defined using a partial order among
grades instead of a total order makes two peculiar facts possible. When considering the homology
of the union of two steps with incomparable grades, on the one hand, a new homology class can
be created even if no new cell is added. On the other hand, at a single step, a new cell can destroy
some homology class existing only in the union of filtration steps and not in a single filtration step.
As an example, see Figure 5.2. Thus, the idea of positive and negative cells might be ineffective in
the multiparameter case.

c d c d c d c d
O O O O
a a b a a b
d d d d
o (o) (o] o
o O% o] o0

(a) (b)

Figure 5.2: in the top-right corner of (a), we have a new homology class with no associated critical cell. In the
top-right corner of (b), we have a critical cell killing a homology class obtained by union of incomparable steps and
never-existing along the filtration.

This means that the simple idea of capturing homology changes between single filtration steps is
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not sufficient to establish whether a critical cell is necessary or not. This prompts us in finding
an equivalent way of expressing the same property in a generalizable way. To this purpose, we
exploit the following well-known consequence of long exact sequences of relative pairs, holding
for every homology degree k and every filtration grade u € Z:

cokert! " @kery " = H (X", X"71). (5.3)

This leads us to the restate Definition 5.1.2 equivalently as follows.

5.1.6 Definition (Optimality for one-filtrations). A discrete gradient V compatible with a filtered
complex X is optimal with respect to X if, for all u € Z and integers k,

my(u) = dim Hp (X", X"~ 1),

This last definition captures in a single algebraic term the two necessary characteristics for critical
cells to reflect the filtered structure of a one-parameter filtration, that is being either positive or
negative. In the next section, we present a generalization of Definition 5.1.6 to the multiparameter
case.

We close this section by giving an example to clarify that not all filtered complex admit an optimal
discrete gradient.

Figure 5.3: a triangulation of a duncehat filtered by vertex indexing.

5.1.7 Example. Consider the one-filtration of a cone over the triangulation of the duncehat
showed in Figure 5.3. We imagine a ninth vertex, indexed by 9, connected to all vertexes of the
dunce hat, with all the additional tetrahedra, triangles and edges built on top of the simplices
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of the dunce hat. The considered filtering function is the vertex-induced one. We focus on the
filtration grade u = 9, whose corresponding filtration step is the lower star of the vertex 9. We
know the dunce hat to be homotopy equivalent to a point, so we deduce that Hy(X", X"~ ") has
dimension 0. Hence, an optimal gradient should have no critical cells in the lower star of vertex
9. However, since the dunce hat does not admit a perfect Morse function (see Section 1.4) and all
possible discrete vectors in the lower star of 9 but a unique discrete vector containing vertex 9
are in one-to-one correspondence with discrete vectors on the dunce hat, we have provided an
example of one-filtration with no possible optimal discrete gradient.

The example above is compatible with our optimality results for algorithm ComputeDiscrete-
Gradient proved later on in Section 5.4. Indeed, the simplicial complex proposed has dimension
3. More specifically, we think that the crucial fact is that the simplicial complex proposed
admits lower stars not embeddable in R3. In Figure 5.4, we see how the algorithm Compute-
DiscreteGradient necessarily finds more critical cells than what expected from optimality in
Definition 5.1.6. First, the vertex 9 is paired to edge [9, 1]. This latter corresponding to point 1 in

Figure 5.4: ComputeDiscreteGradient acting on the lower star of vertex 9 in the cone of Figure 5.3.

the base representation in Figure 5.4(a)-(b)-(c). In Figure 5.4(a), all discrete vectors found by the
algorithm with no need of classifying any critical cell. In Figure 5.4(b), the triangle corresponding
to the red edge is classified as critical since it belongs to Ord0 but its possible pairings with
higher-dimensional cells have not yet entered Ord1. In Figure 5.4(c), all cells in the cone are
classified. The last tetrahedron, corresponding to the red triangle in (c) is classified critical and it
balances the homology class created by the red edge.

5.2 Multiparameter optimality

In this section, we generalize to multiparameter filtrations the notion of optimality by relative
homology introduced in the previous section in Definition 5.1.6. The idea consists in replacing
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the single filtration grade u — 1 preceding u in Definition 5.1.6 by all filtration grades preceding u
when it belongs to Z" with a general integer n > 1. Thus, we consider the union of all filtration
steps included in X* and we call that union of cell complexes the union preceding u. The union
preceding u can be expressed as a finite union by taking only those steps preceding X“ which are
maximal. Those, if multiple, are necessarily incomparable. All along this chapter, for i from 1
to n, we set grades u' = u — e’ with ¢’ € Z" such that the i" entry equal to 1 and all other entries
equal to 0. The definition of Formula (5.1) given in the previous section for ny (u) is generalized
by the following one

n .
my(u) = M MY |-
i=1
The following definition generalizes Definition 5.1.6 to the multiparameter case

5.2.1 Definition (Optimality). For any integer n, a discrete gradient V compatible with a mul-
tiparameter filtered complex X is optimal with respect to X if, for all u € Z"* and integers
k,

my(u) = dim Hy, <X“,X“1 RS uX”n> .

5.2.2 Remark. Differently from the one-parameter case, the union preceding a single grade does
not necessarily correspond to an actual step in the filtration. See, for instance, Figure 5.2.

The given definition is clearly a generalization of Definition 5.1.6. However, Remark 5.2.2
highlights a crucial difference which needs to be captured by our generalized definition. Indeed,
the relative homology considered in Definition 5.2.1 is not related anymore to the inclusion-
induced maps 1 belonging to the filtration. Instead, the analogue of Formula (5.3) still holds but
for the following family of inclusion-induced maps:

i Hy (X“1 U uX“”) s H (XY,
This means that Formula (5.3) generalizes to the multiparameter case as:
coker j; @ker j;_; = Hy (X“,X”l U UX"”) )

This means that we have moved the homology changes to be captured by the optimality property,
from those occurring from one step to another, to those occurring from what we already expect
by the union of previous incomparable steps and what actually happens at a step. Coming back
to Remark 5.1.5, we see how this point of view interprets the two cases exposed therein. On
the one hand, a new homology class can be created even if no new cell is added. This has no
corresponding relative homology class. Indeed, there is no critical cell to be captured. On the
other hand, at a single step, a new cell can destroy some homology class existing only in the union
of filtration steps and not in a single filtration step. This gives a homology class in ker j.
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5.3 Filtered Morse complexes preserve relative homology

The aim of this section is to show that the relative homology of each filtration step with respect to
the union preceding the same step is preserved when moving from a one-critical filtered complex
X to a filtered Morse complex M compatible with X'

In this section, we assume that the filtered complex X is one-critical. For example, it might
be obtained by sublevel sets with respect to a filtering function ¢ : X — Z" as observed in
Remark 1.6.5.

5.3.1 Proposition. For each integer n > 1, each filtration grade u € Z", and each homology degree
k,
H, (X“,X“1 U uX”") ~ H, (M”,M“1 U uM””> .

Proof. We claim that, forall 1 <i<n, Hk(X“1 U UXY) Hk(M”1 U---UM"). For simplifying
the notation, we denote by i the grade u/, by X"/ the union of Lefschetz complexes X! U --- U X/,
and by M“' the union of Lefschetz complexes M' U --- U M'.

We proceed inductively on i. The base step is provided by Theorem 1.6.8 which implies that the
inclusion-induced maps from Hy(M") to Hy(X") are isomorphisms for all integers k. Now, consider
the MV-triples (XV+1 X X*+1) and (MY+! MY M+1). Inclusion-induced maps connect the
chain complexes of the components in (MY, MY MI*1) to those in (XVi+!, XV X*1) and
commute with the maps in the two short exact sequences. From Theorem 1.3.12, we obtain the
corresponding long exact Mayer-Vietoris sequences, depicted by rows in the following diagram:

= B (XY OH (X —— H (XY O X)) —— H (X A X ——

o |

= H(MY) @ H (M) —= H (MY UM™Y —= H (MY A M) —

where, by Theorem 6.13 in [164] maps (pkl, O, (p,il are given by naturality property from the
corresponding chain complex maps and, thus, make the diagram commute. By the Five Lemma,
if all (p,?, (p,g are isomorphisms, then ¢ is an isomorphism.

Each map (p,l is given as direct sum of two maps. The first map is an isomorphism by inductive
assumption. The second one is the isomorphism implied by Theorem 1.6.8. For the maps
(p,%, we notice that, once indicated by u — 1 the grade with i"-entry defined by u; — 1, then
Xl = xVin X+ and M*~1 = MY ~ M+, Indeed, the filtrations are one-critical. This means
that there is no cell in the intersection X/ ~ X'*! that might be outside X“~!, and the converse
inclusion is obvious. Thus, the maps (p,? are the isomorphisms implied by Theorem 1.6.8. Hence,
the Five Lemma applies and, for all i from 1 ton— 1, Hy(X' U 0 X)) = Hy(M' U --- O MITT)
which proves our claim.
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Consider now the inclusions of X" into X* and of M“" into M*. This allows us to consider the
relative pairs (X*,X“") and (M",M"“").

By Theorem 1.3.10, the two relative pairs induce each a long exact sequence of homology
corresponding to the rows in the following diagram:

> Hy(X") —— H (X", X" ——= H_ (X)) —— ..

IVkIJ ‘Vkl W1?1j

. —— Hy(M") —— H(M*,M°") — Hy_ (M""), — ...

where, maps l//,l s Wi, l//,? are inclusion-induced and make the diagram commute by applying the
same argument as for maps q)kl, q),?. The maps l,l/,i are the isomorphisms implied by Theorem 1.6.8.
The maps l//,f are the isomorphisms of our claim. Hence, by the Five Lemma, we get that y; are
isomorphisms. Thus, Hy (X", X"“") =~ Hy(M",M"“") which concludes our proof. H

A crucial application of Proposition 5.3.1 is that optimality of V compatible with X’ can be directly
checked on the associated filtered Morse complex M. Moreover, the following Lemma gives a
sufficient condition to check, independently for each filtration grade u, that the number my (u)
of k-cells in any level set M"\ (M“1 U uM"”) is the one expected by considering relative

homology.

5.3.2 Lemma. Let u € Z" be any filtration grade of a filtered Morse complex M, and 0" the
collection of boundary maps for the relative pair (M", M Wy UM “n) If, for all integers k and

all k-cells a e M\ (M* G- M), it holds that O'a = 0, then

VkeZ, dimH; <M”,M“1 U uM“n> =my(u).

Proof. Fix an integer k. Notice that my(u) is the cardinality of M,’:\(M,’j1 U -~ UM!") and thus,
the dimension of the space of relative k-chains in the desired relative pair (M", M Wy UM .

If, for all a € M,?\(M,’jl U U M,’fn) we have that &lrfla = 0, then the dimension of the space of

relative k-cycles is the same as that of relative k-chains, that is my (u). If, for all a € M}’ +1\(M1?jr

UM ,’jil), we have that &f}rla = 0, then the dimension of the space of relative k-boundaries is

0. Hence, the dimension of the relative k"-homology of the desired relative pair is n(u). This
concludes our proof. O

IU
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5.4 Algorithm ComputeDiscreteGradient is optimal

As anticipated at the beginning of this chapter, an algorithm capable of finding an optimal discrete
gradient is said to be optimal itself. In this section, we detect two cases which guarantee our
algorithm ComputeDiscreteGradient, described in Chapter 4, to be optimal. In both cases, we
do not require further assumptions on the input filtering function. Additional requirements has to
be satisfied by the input cell complex.

The first additional requirement for the input cell complex is that of being a cubical complex em-
bedded in R3. This generalizes the optimality result of Theorem 11 in [162] to the multiparameter
case. The second additional requirement is that of being an abstract 2-dimensional simplicial
complex. Recall that a suitable input for ComputeDiscreteGradient is a pair (X, f) where X is a
regular cell complex with intersection property, and f : Xo —> R" is a component-wise injective
function. This kind of input represents the filtered complex X/ denoting the filtered complex
induced by the function f vertex-induced from f as in Defition 3.1.2. The output retrieved by
ComputeDiscreteGradient applied to (X, f) is a pair (V,M) where V is a discrete gradient and
M = M(V) is the corresponding Morse set. The output pair represents a filtered Morse complex

M/ compatible with X'/

5.4.1 Optimality for 3D regular grids

The following theorem generalizes Theorem 11 in [162] to the multiparameter filtrations.

5.4.1 Theorem. Let (Q, f) be a suitable input for algorithm ComputeDiscreteGradient and let
(V,M) be the output retrieved. If Q is cubical complex with vertexes in a 3D space, then V is

optimal with respect to the filtered complex Q.

Proof. By Proposition 5.3.1, it suffices to show that, for each filtration grades u € Z"* and each
integer k, we have that my (u) = dimHk(M”7M”1 U---UM"Y). By Lemma 5.3.2, it is sufficient to
prove that each critical k-cube g in M" satisfies &lr{elq = 0, with 0" the family of relative boundary

maps with respect to the relative pair (M*, M Wy UM “"). This is guaranteed by Lemmas 8, 9
and 10 in [162]. OJ

5.4.2 Optimality for abstract simplicial 2-complexes
Here, we consider (S, f) a suitable input for ComputeDiscreteGradient with S a simplicial 2-
dimensional complex. Before stating our optimality results, we need to state some local properties

holding for simplicial complexes of any dimension. In fact, we focus our attention on each level
set Lset of S under the extended function f. The output retrieved by ComputeDiscreteGradient
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applied to (S, f) is a pair (V,M) where V is a discrete gradient and M = M (V) is the corresponding
Morse set. The output pair represents a filtered Morse complex M/ compatible with X'/ Recall
from Chapter 4, that we have a call of the subroutine HomotopyExpansion for each level set Lset.
According to Theorem 3.3.1, we define z to be the unique simplex in S such that Low (z) = Lset.
All along this section, we introduce the notation s(*7) to indicate a simplex s € Low ¢(z) such
that dims — dimz = p, along with the obvious extensions of the notions of (+p)-paths and
(+p)-connected components in Low ¢(z).

5.4.2 Remark. Let z be a simplex in S. Each (+p)-simplex s € Lows(z) has exactly p faces in
Low(z). Indeed, if s and z differ in dimension by p, then s has p faces incident to z. None of those
faces can have values under f higher than z, otherwise s would not be part of the lower star.

5.4.3 Lemma. For each level set Lset, if K is a (+1)-connected component in the lower star
Low(z) = Lset and ¢*+1) is the first simplex in K to be classified as critical by HomotopyEx-
pansion. Then ¢(*1 is the only possible critical (+1)-simplex in K belonging to M".

Proof. Let ¢(*1) be the first (+1)-simplex in K to be classified as critical by HomotopyExpansion
in Low¢(z). Assume by contradiction that there is a simplex st in K other than ¢(+1) to be
classified as critical. The subroutine HomotopyExpansion declares a simplex in Ord0 critical
when the ordered list Ord1 is found empty. We focus on the moment when ) s already
classified and s(*1 is in Ord0 and Ord1 is empty. Since K is (+1)-connected, there exists a
(+1)-path T from s(+1) to ¢(+1) in K whose simplices satisfy s <2 S S}(,t}) < tr(flz) > >

sgﬂ) < t1(+2) > s(()H) such that s£+1) = s(t1) and s(()H) = ¢+ Let the index i, with 1 <i < r,

(+1) (+1)

i+1 i
(+2)-simplices have exactly two faces inside Low (z), the simplex ti(jlz )

l(ill ) is not yet classified, the simplex tl.(:_rlz ) cannot be critical. Indeed, a simplex is made critical
(+1) ((+2)

if all of its faces have been classified. Secondly, the pair (s; " .7,/

l(rlz ) 1(111 ). Moreover, there cannot be a pair (ti(j:l2 ),w(+3)) inV
(+2)

since this requires tl.(j_rlz ) inside Ord0, that is all faces of i to be already classified. Hence, the

simplex tl.(j:lz ) is still in Ord1 which contradicts Ord1 being empty. Since c(*1) remains the only

possible critical (+1)-simplex in K, this concludes the proof. O

be the smallest index such that s is not yet classified. Since s is already classified and
has entered Ord1. Since
s
) cannot be in V since the

last face of ¢ to be classified is s

5.4.4 Lemma. For each level set Lset, if K is a (+1)-connected component in the lower star
Lows(z) = Lset, then

(i) there exists one and only one simplex <1 in K such that, for any simplex st ek , there
is a V-path " from s(+1) to ¢(*1 in K;

(ii) when HomotopyExpansion classifies as critical a simplex a(*?) in K, any s(+1) € K has
already been classified.
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Proof. Let ¢(+1) be the first (+1)-simplex in K classified by HomotopyExpansion as part of
Low f(z).

For proving (i), we construct recursively the V-path I'. We assume a (+1)-simplex s; and a
V-path T; = {(s0,%),- .-, (si—1,%i—1)} (empty in case i = 0) from sp to s; < #;_; with s9 = s(+1)
and s; # s forevery i # j. If 5; = D then T = I Ifs; # (1), by Lemma 5.4.3, s; cannot be
critical. Moreover, it cannot be that (z,s;) € V since that would have been the first classification in
Lset, even before D), Since, by Proposition 3.6 in [3], all simplices in Low f(z) are eventually
i(+2) exists in K such that (s;,#;) € V and this
classification is performed after that of D), By Remark 5.4.2, there is a unique face sl(:ll ) of t;in
Low(z) different from s;. In particular, s;; is classified before #; because (s;,#;) € V implies that
the other faces of #; are classified before 7;. Now, we set I';11 =T U {(s;,#;)} and we update the
input of the recursive argument by setting s; = s;;-; and I'; = I';; {. Eventually, the procedure will
reach s; = c(“), by finiteness of K and by observing that each pair (s;;1,%;11) is classified before
(si,t;) while ¢+ is the first (+1)-simplex classified by assumption, and all s;’s are different.
For proving the uniqueness of (1), consider a simplex &(*1) in K satisfying condition (i) and
different from c(*1). Then, there exists a V-path from ("1 to ¢(*1. If &+1) satisfies point (i)
then, in particular, there is a V-path from D) to &+ This gives a cyclic V-path which, by
Theorem 3.8 in [3], is a contradiction.

To prove (ii), let a(+?) be a critical simplex in K. The simplex c(*1) is classified before a{*2) by
definition of ¢(*1). By point (i), each simplex s(*!) in K admits a V-path

classified and being K (+1)-connected, a simplex ¢

1 2 1 2
AN A A )
from s(+1) to ¢(*1). The pair (sl(+1),tl(+2)) is available for classification as c¢(*1) is already

classified. Notice that, by Remark 5.4.2, each (+2)-simplex has exactly two faces in Low ¢(z).

Thus, as each pair (sl(+1),ti(+2)), with 1 < i <, is classified, the pair (sl(fll),ti(jlz)) becomes
available for classification and this happens for all (+1)-simplices in K. Hence, if there is no pair
in K available for classification, then all (+1)-simplices in K have already been classified which

concludes our proof. 0

5.4.5 Definition (Branching V-path). A V-path I = {(s;,#;) }o<i</ branches in W < V' if and only
if there exists another V-path I' = {(5,7;) fo<j<r in W such that (s;,7;) = (5,;) for some indexes
i<l—1land j<r—1,and (Si+1,li+1) ¢ I" and (§j+17fj+1) ¢l

5.4.6 Lemma. For each level set Lset, let V] .o be the subset of discrete vectors in V whose cells
are in Lset. Then, there is no V-path from any (+1)-simplex to any (+1)-simplex that can branch
in Vi get.

Proof. LetT = {(SI(H) ) ti(+2) ) }o<i<i be a V-path in Vi . Assume by contradiction that I" branches

inside V{ ¢r. This means, there exists in Vi ¢t a V-path T = {<§§~+1) , fj(~+2))}0< j<r such that (s;,1;) =

(5;,7;) for some indexes i </—1and j <r—1and (si41,4+1) ¢ T and (5;41,7,41) ¢ I'. However,
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this implies s;41 # §4+1, that is ¢; is a (+2)-simplex with three different faces s;, si+1 and §;44
inside Low f(z) which is contradiction by Remark 5.4.2. O

The previous lemmas, valid for HomotopyExpansion on each level set, are used to prove the
following result for ComputeDiscreteGradient.

5.4.7 Theorem. Let (S, f) be a suitable input for algorithm ComputeDiscreteGradient and let
(V.M) be the output retrieved. If S is an abstract simplicial d-complex with d < 2, then'V is

optimal with respect to the filtered complex ST

Proof. By Proposition 5.3.1, it suffices to show that, for each filtration grades u € Z"* and each

integer k, we have that my (u) = dimHk(M”,M”1 U---UMY). By Lemma 5.3.2, it is sufficient to
prove that each critical k-simplex s in M satisfies &,zels = 0, with 0"! the family of relative boundary
maps with respect to the relative pair (M“,M“l U---uM"). Let Lset" be M“\(M“1 U UMY,
Observe that the subroutine HomotopyExpansion builds the output (V,M) independently over
each Low"”. According to Theorem 3.3.1, we define z to be the unique simplex in S such that
Lows(z) = Low". Let a*P) be a critical simplex in Low/(z). We separately treat the cases
p=0,1,2. A simplex a(*% is critical in Lows(z) when a{*) = z. Since each separatrix links
two different critical simplices, each possible separatrix ends outside Low ¢(z), so that we have
arela(-i-O) —0.
A simplex a(*!) is critical in Low /(z) when its only face z inside Low /(z), has been matched to
another simplex. Hence, we get 0™a(t1) = 0.

For a simplex a(*2), we prove that 0"'a(*2) = 0 by analyzing all the V-paths from a(*2) to some
critical (+1)-simplex in Low(z). Let K be the (+1)-connected component of Low ¢(z) such that
a+?) belongs to K. Notice that no V-path from a*?) can reach simplices outside K. By Lemma
5.4.4(i), the two faces of a{*2) admit each a V-path to the same simplex ¢(t1) € K. If ¢(+1) is
not critical, then there is no V-path from a(*?) to a critical (+1)-simplex in Low(z). Hence,
orelg(+2) = . Suppose on the contrary that (1) is critical. By Lemma 5.4.6, a V-path starting
from a(*2) cannot branch inside Low(z), in particular inside K. This means that precisely two
V -paths connect a2 to ¢+, By definition of incidence coefficient (not only for coefficients in
Z, as assumed here), we get oelg(+2) — 0, O]
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6 Experimental analysis and evaluation

This chapter reports the details and the results of the experimental tests we performed to evaluate
the performances of the new algorithm ComputeDiscreteGradient described in Chapter 4. In
Section 6.1, we evaluate the efficiency of our divide-and-conquer approach compared to the
global approach of the algorithm proposed in [4] and reviewed in our preliminaries in Section 3.3
whose pseudocode is reported in Algorithm 3. In Section 4.5, we proved the two algorithms to
be equivalent and, in this chapter, we see the practical advantages of our algorithm. As a second
issue, we evaluate the impact of ComputeDiscreteGradient as a preprocessing for computing
multipersistence invariants. Indeed, the discrete gradient retrieved by our algorithm can be used
to obtain a filtered Morse complex which preserves all multipersistence features. In general, the
so-obtained filtered Morse complex is smaller in terms of cells and filtration grades than the
original one. We evaluate the impact in time and storage cost performances of this filtration
reduction when applied to multipersistence computations. To the best of our knowledge, this is the
first experimental evaluation of a filtration reduction for enhancing multipersistence computations.
This second issue will be addressed both in Section 6.2 and Section 6.3. The former applies
the filtration reduction to the computation of the complete information of persistence, that is
the persistence module of a multiparameter filtration (Definition 1.6.7). The latter applies the
filtration reduction to the computation of an approximate version of the persistence space (recall
Definition 1.7.9) through the method of foliations first introduced in [17]. Finally, in Section 6.4,
we examine the experimental tests performed over large simulation data to evaluate the feasibility
of our method in the practical analysis of real-size data.

6.1 Comparison to the Matching Algorithm

In this section, we compare the time and storage cost performances of our new algorithm Com-
puteDiscreteGradient described in Chapter 4 to the algorithm Matching, introduced in [4] and
described in our state-of-the-art review in Section 2.4. As discussed in Section 4.5, the two
algorithms are equivalent. Same inputs correspond to same outputs.

6.1.1 Method

The two algorithms are tested on a single thread implementation and compared over three
triangulations of shapes whose vertex coordinates belong to R? : a torus, a sphere, and a Gorilla.
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Each triangulation is subdivided by recursively applying the Catmull-Clark algorithm [40] adapted
to triangle meshes. This way we obtain three triangle meshes with a different number of cells for
the same shape. This provides us with nine different triangle meshes to test. Each dataset to be
tested is composed by one of the nine triangle meshes and, the two-parameter filtering function
given by the x and y coordinates of the vertexes. The datasets are described in Table 6.1. For each
dataset, we are indicating the number of parameters in the filtration (column Parameters), the total
number of simplices (column Original), total number of critical simplices in the resulting discrete
gradient (column Critical) and the resulting compression factor (column Original/Critical).

Cells Compression factor

Dataset | Parameters | Original  Critical Original/Critical
1.3M 0.035M 37.9

Torus 2 53M 0.11M 453
21.5M  0.77M 27.7

29M  0.28M 10.2

Sphere 2 11.7M 0.11M 10.2
47.1M  0.46M 10.1

3.8M 0.4M 9.5

Gorilla 2 15.2M 1.6M 9.4
60.9M 6.4M 9.4

Table 6.1: Datasets used for the experiments. For each of them, we indicate the number of parameters in the
filtration (column Parameters), the number of simplices in the original dataset (column Original), number of critical
simplices retrieved by ComputeDiscreteGradient and Matching (column Critical) and the compression factor
(column Original/Critical).

In order to guarantee a fair comparison, the same representations of the datasets have been used for
implementing both algorithms. We measure time and storage performances along with scalability
properties of the two algorithms with respect to the number of cells in the dataset.

6.1.2 Implementation

Both algorithms have been implemented in C++ based on the MDG library [85]. The latter
provides an efficient encoding for both a 2-dimensional or 3-dimensional simplicial complex as
well as a compact encoding for the discrete gradient.

Triangle mesh representation. A triangle mesh X is a simplicial 2-complex formed by vertices,
edges, and triangles. To compactly encode the relations among these simplices we are using
an incidence-based data structure. The incidence-based data structure encodes vertices and
triangles in the triangle mesh which gives |Xp| + |X;| entities to be stored explicitly, plus some
additional relations. For each triangle, we encode 3 arcs giving a reference to its vertexes. For
each vertex instead, we encode the list of triangles incident in it, given by the same 3 arcs in
the opposite direction. The total footprint required for encoding X is 7|X,| + |Xo|. This kind
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of representation fulfills the assumptions for the description and the complexity analysis of
the algorithm ComputeDiscreteGradient of Chapter 4, and the description of the algorithm
BoundaryMpas in the simplicial case provided in Section 4.6.2.

Filtering function representation. The two-parameter filtering function determined by the x
and y components is stored for vertexes, only. For each vertex and each parameter, a floating point
is stored. The filtering values of the extension to simplices of higher dimensions s is retrieved only
locally, over each vertex star. It can be retrieved in linear time in the number of the vertices of s.

Discrete gradient representation. The discrete gradient is here encoded by adopting the rep-
resentation described in [86]. The latter focuses on encoding all the gradient pairs locally to
a triangle s in X. The faces of dimension 1 of s are three edges, each one having two faces of
dimension O (vertices). Thus, there are 9 possible gradient pairs internally to a triangle. If we
consider also the possible pairs between ad edge of s and an adjacent triangle we get 12 possible
gradient pairs and thus 2'> = 4096 possible combinations. However, according to [193], the
restrictions imposed by the discrete gradient (i.e. that each simplex can be involved in at most
one pairing) imply that we have only 97 valid cases for a triangle. We can encode all these cases
using only 1 byte per triangle and, thus, encoding the gradient only requires |X;| bytes. In this
case, the auxiliary function isPaired in Algorithm 5 acts in the following way. Given a cell s in
the triangle mesh, we can find the corresponding cell 7 such that (s,7) € V by considering all the
triangles in the star of a vertex w of s and visiting the gradient encoding of those triangles incident
to s. This procedure requires, in the worst case, O(|t,,|) operations, where t#,, is the set of triangles
incident to some vertex w of s. This cost satisfies the assumptions in the review of the algorithm
in Section 4.6 for the retrieval of the boundary maps.

6.1.3 Results

The experiments have been performed on a dual Intel Xeon E5-2630 v4 CPU at 2.20Ghz with
64GB of RAM.

Timings are shown in Figure 6.1. ComputeDiscreteGradient takes between 0.89 seconds and 4.8
minutes to finish depending on the dataset and it is generally 7 times faster than our implementation
of Matching.

Other than time efficiency, our divide-and-conquer strategy also requires a limited use of memory.
The memory consumption is shown in Figure 6.2 where we are reporting the maximum peak
of memory used by the two algorithms. ComputeDiscreteGradient uses up to 10 gigabytes of
memory and it is twice more compact than the our implementation of Matching,.
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Figure 6.1: Timings required by ComputeDiscreteGradient (in blue) and Matching (in orange).
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Figure 6.2: Maximum peaks of memory (in gigabytes) required by ComputeDiscreteGradient (in blue) and
Matching (in orange).

6.1.4 Discussion

Time performances show the practical efficiency of ComputeDiscreteGradient compared to
Matching. As seen in Section 4.4, the expected asymptotical complexity over a simplicial
complex X with worst case-sized vertex star Star is O(|X|log|Star|) for both algorithms. The
datasets considered in these tests satisfy O(|Star|) = O(1). Thus, we expected linearity in the
number of simplices which is confirmed by our tests. In Figure 6.3, we show the trends as the
number of simplices increases. The linearity is confirmed for both algorithms but under very
different slope coefficients. The latter is determined by the different number of stars to be retrieved
and visited. In the case of ComputeDiscreteGradient, we need to process each vertex star. In
the case of Matching, we need to process a star for each level set determined by the dataset.
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Figure 6.3: Trend in the timings for ComputeDiscreteGradient (in blue) and Matching (orange).

Storage cost results show the advantage of the divide-and-conquer approach of ComputeDiscrete-
Gradient over Matching. The storage cost difference between the two implementations grows
linearly in the number of simplices in the datasets. As seen in Section 4.4.2, the advantage is due to
the different runtime storage costs. In particular, the runtime storage cost for Matching is affected
by the global queue over all the simplices in the dataset and the need of tracking all classified
cells. Both of them are performed locally, over each level set, by ComputeDiscreteGradient.

6.2 Impact on the computation of the persistence module

In this section, we apply ComputeDiscreteGradient in a pipeline for computing multipersistence.
Indeed, our algorithm accepts as input a representation of a multiparameter filtration. The discrete
gradient retrieved by our algorithm can be used to obtain a filtered Morse complex which preserves
all multipersistence features. In general, the so-obtained filtered Morse complex is smaller in
terms of cells and filtration grades than the original one (see Table 6.2). We evaluate the impact
in time and storage cost performances of this filtration reduction. To the best of our knowledge,
this is the first experimental evaluation of a filtration reduction for enhancing multipersistence
computations. In this test, we evaluate, in particular, the impact in computing the complete
information of persistence, that is the persistence module of a multiparameter filtration. In the
next section, we evaluate our impact with respect to another invariant for multipersistence, namely
the persistence space. We compare

We perform the persistence module computation by the open-source library Topcat [154]. Topcat
is currently the only open-source library for retrieving a representation of the persistence module.
However at the moment, Topcat has strong limitations in terms of time and memory costs.
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6.2.1 Method

The datasets we consider correspond to six small triangulations of a torus and a sphere with
vertexes in R? synthetically produced.

Original Reduced Original/Reduced
Dataset | Cells Grades | Cells Grades | Cells Grades
38 8x8 4 5x5 9.5 2.56
Sphere 242 42x42 20 10x10 12.1 17.64
2882 482x482 | 278 92x89 | 10.36 29.36
96 16x16 8 9x9 12 3.16
Torus 4608 768x768 | 128 65x66 36 137.49
7200 1200x1200 | 156 70x80 | 46.15 257.14

Table 6.2: Dataset sizes subdivided into original and reduced datasets. Each one reports the number of cells
(column Cells) and the number of grades along each parameter (column Grades). The compression factor (columns
Original/Reduced) is reported in terms of cells and global number of grades.

Each triangulation has a different number of simplices so to consider several resolutions of the
same shape. This provides us with six different triangle meshes to test. Each dataset to be tested
consists of one of the six triangle meshes and the two-parameter filtering function given by the x
and y coordinates of the vertexes. We call these datasets the original datasets. Subcolumn Cells in
column Original in Table 6.2 reports the number of cells for each triangle mesh. We keep the
number of simplices small due to the strong limitations of Topcat. The number of values for x
coordinates and y coordinates is reported in subcolumn Grades in column Original in Table 6.2.

Each original dataset is given as input to ComputeDiscreteGradient to retrieve the corresponding
discrete gradient. Starting from the discrete gradient, we compute the boundary maps of the
corresponding filtered Morse complex as described in [92] through the algorithm of Section 4.6.
This can be done by retrieving the connections between pairs of critical cells, using the V-paths.
Once the boundary maps have been represented, the filtering function values of the original dataset
make the representation of the filtered Morse complex complete. The computed filtered Morse
complex is called the reduced dataset. Subcolumn Cells in column Reduced in Table 6.2 reports
the number of critical cells for each filtered Morse complex. Filtration steps with no corresponding
critical cell are not considered in the filtered Morse complex. The number of remaining filtration
grades for x coordinates and y coordinates is reported in subcolumn Grades in column Reduced
in Table 6.2.

For each original and each reduced dataset, the Topcat library algorithm for computing the
persistence module is applied. We measure time cost of the reduced dataset retrieval along with
time and storage costs for each persistence module retrieval performed by the Topcat algorithm.
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6.2.2 Implementation

The triangle meshes, the filtering functions and the discrete gradient used in this test are represented
as in Section 6.1.2. The algorithm ComputeDiscreteGradient is implemented in C++ based on
the MDG library [85] as discussed in detail in Section 6.1.2. Here the implementation is single
threaded only. We have modified the Topcat library to adapt it to support one-critical filtrations of
general cell complexes rather than only simplicial complexes in order to support a representation
of the filtered Morse complex.

Datasets, original and reduced, are represented as text files indicating, for each cell, its first grade
of appearance in the filtration, and all of its facets. In the case of reduced datasets, they are
produced by applying Algorithm 5 to the output produced by ComputeDiscreteGradient.

6.2.3 Results

The experiments have been performed on a dual Intel Xeon E5-2630 v4 CPU at 2.20Ghz with
64GB of RAM.

Original Reduced Reduction Time

Persistence Module Persistence Module

Dataset | Cells Grades Time Memory | Cells Grades Time Memory
38 8x8 0.3 0.24 4 5x5 0.18 0.1 0.0264
Sphere | 242 42x42 4.4 0.86 20 10x10  0.28 0.2 0.0244
2882 482x482 - - | 278 92x89 243 1.5 0.0473
96 16x16 0.5 0.1 8 9x9 0.25 0.2 0.0255
Torus 4608 768x768 - -| 128 65x66  7.96 24 0.0643
7200 1200x1200 - -| 156 70x80 12.05 3.0 0.0815

Table 6.3: Timings (in seconds) and storage costs (in gigabytes) for the persistence module retrieval over the original
(columns Original) and the corresponding reduced (columns Reduced) datasets. Timings (in seconds) for the getting
the reduced dataset from the original one are reported in column Reduction Time. Columns Cells and Grades reports
the number of cell in the dataset and the number of grades in along each parameter, respectively. Where no entry is
visible, the computation is failed.

We combine time contributions of the running of ComputeDiscreteGradient applied to each
original dataset together with the retrieval of the corresponding filtered Morse complex. Column
Reduction Time in Table 6.3 reports the timings for the sum of the two timings. We measure
time and storage costs for each persistence module retrieval performed by the Topcat algorithm.
Columns 7ime in Table 6.3 reports the measured timings for the running of Topcat in the original
and reduced cases. Columns Mem. in Table 6.3 reports the measured maximal memory peaks for
the running of Topcat in the original and reduced cases.

Table 6.3 shows the results obtained by computing the persistence module of different datasets in
the original and reduced cases. Where no result is reported, the storage space required exceeds
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that of the machine used for the tests. Where possible to compare, we see that the persistence
module retrieval takes approximately half of the time required in the original case for the two
smallest datasets (row 1 and row 4 in Table 6.3). Where not possible to compare, timings over
reduced datasets are affordable and range from 7.96 to 24.3 seconds. All maximal peaks measured
for the memory usage are significantly below the machine RAM limits of 64GB. This suggests
a very fast increasing rate of storage costs in the ones where the computations have failed. The
measured reduction timings, ranging from 0.0244 to 0.0815 seconds are negligible with respect to
all persistence module timings and not significantly affected by the different number of cells in
the (tiny) considered datasets.

6.2.4 Discussion

The tests performed suggest an effective impact of the proposed preprocessing. The preprocessing
makes all the datasets persistence module retrievable with reasonable time and space costs.
The preprocessing reduces both the number of cells and the number of grades in the filtration
considered and this leads to remarkable differences in time and space costs. Moreover, the
preprocessing time cost is negligible with respect to the persistence module retrieval. As reviewed
in Chapter 2, the asymptotical time complexity of the algorithm implemented in Topcat is given
by O(|F||X|*) with |F| the number of filtration grades in the multiparameter filtration and X the
cell complex filtered by the filtration of the dataset. Our datasets are too small to highlight the
cubical dependence in the number of cells. On our datasets, the biggest contribution to the results
comes from the liner dependence in the number of filtration grades since it increases way faster
and it makes computation fail even for not very big datasets.

However, the failure of tests over, for instance, the Sphere dataset with 2882 cells and 482x482 fil-
tration grades, suggests that a filtered Morse complex of the same size would make the persistence
module retrieval fail. This does not give an exact perception of the size of an hypothetical original
dataset having such a corresponding reduced dataset. However, it is enough to deduce that our
preprocessing does not make the persistence module computation feasible over reasonably large
datasets. The bottleneck is given by the storage costs.

In conclusion, our preprocessing provides effective speed-ups in computing the persistence
module. Further enhancements are in need in order to reach feasibility over large datasets. Smaller
representations of multipersistence through invariants, such as the persistence space, are preferable
to perform computations. In the next section, we show our tests for the persistence space retrieval.
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6.3 Impact on the Foliation Method

In this section, we apply ComputeDiscreteGradient in a pipeline for computing multipersistence.
As in the previous section, our algorithm accepts as input a representation of a multiparameter
filtration. The discrete gradient retrieved by our algorithm can be used to obtain a filtered Morse
complex which preserves all multipersistence features. In general, the so-obtained filtered Morse
complex is smaller in terms of cells and filtration grades than the original one. The goal of this
section is to evaluate our impact with respect to the retrieval of an approximate version of the
persistence space associated, as an invariant, to multipersistence. In particular, we focus on the
foliation method [17] we described and reviewed in Section 2.4.2. The foliation method is a
way of determining the persistence space (Definition 1.7.9) by applying several one-parameter
persistent homology computations over different one-parameter linearization of a multiparameter
set of filtration grades, called slices. The totality of the possible linearization would give the
persistence space. In practice, the greater the number of slices considered, the more accurate is
the approximation of the persistence space.

The purpose is not that of evaluating our reduction impact over an efficient implementation of the
foliation method but giving evidence of that impact independently from the implementations or
motivations for applying the foliation method. Indeed, the foliation method is not to be thought of
as a final goal. Rather, it is a mean to encode some of the multipersistence features in a longer
pipeline. For instance, in the original work [17], the final motivation is that of comparing shapes
by means of the matching distance between two approximated persistence spaces.

6.3.1 Method

In our tests, we only consider the case of two-parameter filtrations, i.e., n = 2. The datasets we
consider correspond to four triangulations from the Princeton Shape Benchmark [171] whose
original size is reported in Table 6.4 column Cells.

Cells Compression factor
Dataset | Parameters | Original Reduced Original/Critical
Shark 2 9.49K 1.11K 8.54
Turtle 2 10.86K 1.20K 9.07
Gun 2 27.82K 3.14K 8.85
Piano 2 119.08K  10.95K 10.87

Table 6.4: Datasets used for the experiments. For each of them, we indicate the number of parameters in the filtration
(column Parameters), the number of thousands of simplices in the original dataset (column Original), number of
critical simplices retrieved by ComputeDiscreteGradient (column Reduced) and the compression factor (column
Original/Reduced).
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Each dataset to be tested is composed by one of the four triangle meshes X and, by the two-
parameter filtering function given by the x and y coordinates of the vertexes, i.e., by the function
¢ : X —> R? defined by ¢(x,y,z) = (x,y). We call these datasets the original datasets.

Then, we apply the following:

a) Reduction Phase: original datasets are processed, as described in Section 6.2, to retrieve
corresponding reduced datasets.

Timings for this phase are reported in column Reduction Time in Table 6.5. Datasets, original and
reduced, are represented as text files indicating, for each cell, its first multigrade of appearance
in the filtration, and all of its facets. The text files are given as input for the second phase of our
experiments, depending on a fixed integer parameter @ from 2 to 10:

b) Line Extraction: uniformly selecting ®? lines of non-negative slope in the Euclidean plane
(from 4 to 100 lines);

c) Foliation Phase: computing the persistence space of the original and reduced datasets over
the same selected w? slices corresponding to the lines extracted at the previous point.

These two phases are performed by a Python script based on the Pandas Data Analysis Library.

Line Extraction A number of ®? lines are extracted depending on the processed original dataset.
Each original dataset comes associated with its filtering function ¢ : X — R? defined over vertexes
by ¢(x,y,z) = (x,y). For each component i = 1,2, we detect parameters C; := max,ex ¢;(x) and
ci = mingey ¢;(x). Each line is determined by two parameters. The first is the slope coefficient A
ranging from O to J independently from the dataset, and, the second one is a base point b ranging
in an interval of the bisector of the II and IV quadrant dependening on the processed original
dataset. We uniformly select @ values for A. For each A value, points (c1,C;) and (Cy,c,) are
projected over the bisector along direction A, this way delimiting the interval range for the base
points. We uniformly select @ values for b in the so-obtained interval. All possible values for
A and b are combined to represent the @? possible lines. The line [ is the line of unit vector
m = (cos(A),sin(A)) passing though b and, thus indicated by / = (m,b). This phase is applied
once per original dataset. The extracted lines determine slices for both the original and reduced
dataset computations in the next phase. Timings, for the case of 100 lines are reported in column
Line Extraction in Table 6.5.

Foliation phase Each extracted line [ = (m,b) is processed in a for-cycle. However, compu-
tations over each line are one another independent. In order to highlight, in our test, the parts
depending on Python script and those based on the routines in PHAT for computing PH, we
subdivide the foliation phase into three steps applied to both the original and reduced datasets:
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1y

2)

3)

building persistence input: in this step, each cell s in the original dataset is represented by a
unique id number. The id’s are preserved in the reduced dataset. A dictionary D assigns to
each id a single-parameter filtration grade obtained via:

dl(s5) 1= minmi-maxm.
=12 =12 m

im
Cells in the reduced and in the original datasets are sorted by increasing values under ®' and,
where equal, we preserve the id order. Facets, for each cell, are updated according to the new
ordering via D to form the input boundary matrix required by PHAT routine to compute PH.
For the case of 100 slices, timings for this step, are reported in column Building Pers. Input in
Table 6.5;

computing persistence: 1n this step, the boundary matrix built in the previous step is passed
to the PHAT routine to compute PH. The computations are performed via five different
algorithms: the standard algorithm for persistence [80] and four optimizations, namely the
twist algorithm [53], the chunk algorithm [11], the spectral sequence algorithm [75] and the
row algorithm [177]. For the case of 100 slices and the standard algorithm, timings for this step,
are reported in column Computing Persistence in Table 6.5. Timings for the other algorithms
are reported in Figure 6.5;

reindexing persistence output: PHAT returns the list of persistence pairs (i, j) relative to the
current slice. PHAT always assumes the step-by-step filtration induced by the column order of
the input boundary matrix. Let C be the indexing of the columns. Hence, we get i < j with
i, j € C. This way, a returned persistence pair (i, j) may or may not have positive persistence,
i.e., the corresponding values under ®' may or may not be different. In this step, we verify
whether or not (i, j) has posixtive persistence. For positive (i, j), we find the corresponding
cell id through the dictionary D defined in step 1). For the case of 100 slices, timings for this
step, are reported in column Reindexing Pers. Output in Table 6.5.

6.3.2 Implementation

The triangle meshes, the filtering functions and the discrete gradient are represented as described

in Section 6.1.2. The algorithm ComputeDiscreteGradient is implemented in C++ based on

the MDG library [85] as discussed in detail in Section 6.1.2. Here the implementation is single
threaded only. The origninal and reduced datasets are represented as text files indicating, for each

cell, its first grade of appearance in the filtration, and all of its facets. In the case of reduced datasets,

they are produced by applying Algorithm 5 to the output produced by ComputeDiscreteGradient.
The line extraction and slice restriction phases are performed by a Python script based on the
Pandas Data Analysis Library. For each line /, the slice is obtained by sorting all cells in the

dataset according to increasing values of ®'. We keep track of the original indexing of cells as read
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from the input text file through a dictionary. For any of the five algorithms implemented in PHAT,
the corresponding PHAT function is called within the Python script. The algorithms implemented
in PHAT accepts the filtration of the data as implicitly given by the order of appearance of
cells provided in input. Then, PHAT retrieves persistence pairs with respect to that step-by-step
filtration so that the PHAT output depends on the ordered given in input. The dictionary allows us
to translate PHAT outputs with respect to the two-parameter filtration in the input text file for the
entire dataset. Moreover, we can distinguish persistence pairs with positive persistence from the
others by comparing filtering function values for the two cells in the same pair.

6.3.3 Results

Tests are performed by an Intel Core 17 CPU 940 at 3.20GHz with 16GB of RAM.

To address our first task, in Figures 6.4, we compare time performances with slices ranging from
4 to 100, and the one-parameter persistence over each slice computed by the standard algorithm
implemented in PHAT. For each dataset, we show, on the left, the global timings for the foliation
phase b), on the right, the focus on the persistence computation of step 2). In both cases, the
analyzed datasets highlight the linear dependency of the foliation method on the number of
slices considered. For reduced datasets (orange line), the slope coefficient is smaller than for the
original datasets (blue line) more evidently for global timings rather than for the persistence focus.
Moreover, we juxtapose (dashed green line) the sum of the foliation timings for reduced dataset
(orange line) to the timings of phase a) for obtaining the reduced dataset. For global timings,
the dashed green line is always below the blue line meaning that, in our tests, a preprocessing
reduction is preferable independently from the number of considered slices. Instead, for the
persistence focus, only the case of 4 slices shows the blue line just below the green dashed line.
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Figure 6.4: time performances plotted with respect to a number of slices varying form 4 to 100 over the same dataset.
Datasets considered are triangle meshes: (a) Shark, (b) Turtle, (c) Gun, and (d) Piano. In all the figures, on the left,
performances are indicated in blue for the original dataset and in orange for the corresponding reduced dataset. On
the right, we show the same plotting with respect to step 2) in the foliation phase only.
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Foliations Time
Reduction Line Building Computing Reindexing Foliations
Dataset | Cells Pairs Time Extraction | Pers. input Persistence Pers. output Total
9491 4744 9.04 191 1.45 12.42
Shak |y 554 G140 O 0.86 1.15 0.21 0.84 2.22
10861 5426 10.21 2.11 1.53 13.87
Turde | g7 594 B 0.12 0.63 1.22 0.22 0.84 2.29
27826 13873 27.49 5.65 2.69 35.85
Gun 3144 1532 102|028 ) 3.18 0.60 0.99 477
. 119081 59349 118.14 26.56 10.33 155.91
Piano | 10055 5086 (79| 114 0-85 11.09 2.26 1.65 15.01

Table 6.5: Timings (in seconds) required for computing the persistence pairs on 100 uniformly sampled slices.
Datasets are reported by rows. For each triangle mesh, the first row is for the original dataset and the second one for
the reduced dataset considered over the same 100 slices. Column Cells reports the number of cells in the filtration.
Column Pairs reports the average number of persistence pairs found per slice. In parantheses, the number of pairs
with positive persistence (equal for original and reduced filtrations). Reported timings are subdivided into phases
a), for the reduced dataset retrieval (column Reduction Time), b), for the retrieval of the 100 slices (column Line
Extraction), and c), for the foliation method (column Foliations Time). The latter subdivided into step 1), for preparing
the 100 inputs for computing PH (column Building Pers. input) , step 2), for computing PH via the standard algorithm
(column Computing Persistence ), and 3), for detecting positive pairs and reindexing the cell id’s in the PH output
(column Reindexing Pers. output).

In order to show partial results in the different phases of our test, we arbitrarily fix the number
of considered slices to 100. In Table 6.5, we report the results obtained when the one-parameter
persistence is computed by the standard algorithm implementation of PHAT. We notice that, by
reducing the number of cells of approximately one order, we get a one-order reduction on all
phases. Results in column Reduction Time, phase a), are independent from the number of slices
considered. As expected, greater original datasets have higher timings, from 0.11 to 1.14 seconds.
Column Line Extraction results, phase b), depend on the 100 selected slices with negligible
differences between datasets. Both columns are to be added to column Foliation Total, phase
c), in order to get the results for the entire experiment pipeline. For phase c), total timings for
a reduced dataset range from the minimum of 2.22 (Shark triangle mesh) to the maximum of
15.01 seconds (Piano triangle mesh). Whereas, total timings for an original dataset ranges from
12.42 (Shark triangle mesh) to 155.91 seconds (Piano triangle mesh). Partial results in column
Foliations Time highlight the sum (over the 100 slices) of the partial contributions of steps 1),
2), and 3). The highest contribution is showed in column Building Pers. Input for step 1). This
is due to our implementation of the sorting and reindexing of facets. We need it to set up the
input for computing PH over a slice. Instead, step 2) and 3) give smaller contributions. For step
1) and step 2), results for the reduced dataset reflect the one-order reduction in the number of
cells. For step 3), the ratio between reduced and original results is higher due to the different
percentage of positive pairs (necessarily the same for both original and reduced datasets). Indeed,
in columns Pairs we show the average amount of persistence pairs found per slice. We notice that
the percentage of positive persistence pairs (in parentheses) over all retrieved persistence pairs (on
the left) is more significant for the reduced dataset (second row), thus affecting results for step 3).
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Figure 6.5: timings for 100 slice computations via the five algorithms for persistence implemented in the PHAT
library. Original datasets (a) are compared to reduced datasets (b).

However, this also means that our reduction avoids to consider many spurious persistence pairs
and this affects the size of the output representation.

In order to address our second issue, in Figure 6.5, we report results limited to step 3) in the
foliation phase. Here, we compare the equivalent five algorithms for computing PH applied to
the 100 slices case. Timings measured for original datasets (a) are compared to those for reduced
datasets (b). Different colors for the bars correspond to the different five algorithms implemented
in PHAT. Differences among bars in (a) are negligible with respect to the gap in height between
bars in (a) and in (b). Moreover, different datasets have a different favorite PHAT algorithm. This
confirms that in the foliation method, the number of slices impacts time performances way more
strongly than optimizations over the single slice. Moreover, our tests suggest that a multiparameter
reduction strategy such as the one tested as a preprocessing in these experiments, is preferable
than focusing on one-parameter persistence optimizations only. Finally, we notice that, in our test,
performances of the standard algorithm are comparable to the considered optimizations. This
was not expected according to [11]. Our choice of triangle meshes datasets, that is low geometric
dimensions with cell stars limited in size, may explain that results.

6.3.4 Discussion

As anticipated at the beginning of the section, the purpose of these experiments was not that of
evaluating our reduction impact over an efficient implementation of the foliation method, but
rather giving evidence of that impact independently from the implementations or motivations
for applying the foliation method. Our tests confirm that the time complexity in the foliation
methods is dominated by the number of slices to be considered. Our reduction effectively impacts
the kind of linear dependency on the number of slices by simply considering the reduction in
terms of number of cells. In particular, our tests show that the proposed preprocessing is effective
also for a small number of considered slices, from 4 on. For 100, arbitrarily fixed as the number
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of slices considered, our tests confirm that the reduction in terms of number of cells, directly
implies advantages in the foliation method computations. Moreover, our tests suggest that a
multiparameter reduction strategy such as the one tested as a preprocessing in these experiments,
is preferable than focusing on one-parameter persistence optimizations only.

In these tests, we have compared the original and the reduced datasets over exactly the same
slices. As a future task, we wish to highlight our preprocessing properties in reducing the number
of grades in a multiparameter filtration as highlighted in Section 6.2 for the computation of the
persistence module. This would restrict the possible slices to choose and the impact on the
foliation method of that reduction in terms of grade is still to be evaluated.

6.4 Evaluation on Real-sized data

In this section, we test time performances of our new algorithm ComputeDiscreteGradient,
described in Chapter 4, when applied to simulation data of real size.

6.4.1 Method

Simulation Datasets. The simulation datasets considered for these tests correspond to the
seven rows reported in Table 6.6. The first three datasets are triangle meshes, each having three
scalar fields defined on the vertices laying on R? (see [45] Section 6.2 - Db2 for details on
the functions). The last four datasets are collections of time-varying scalar fields defined on
a regular grid. For our experimental analysis, we have coupled a subset of the original scalar
fields, on a single time step. The Hurricane Isabel WRF Model Data describes the simulation
of the Hurricane Isabel. The first dataset Hurricane, is created by coupling the scalar fields
describing pressure (weight of the atmosphere above a grid point) and temperature. The second
dataset Hurricane,;; still combines the temperature measurement with two scalar fields describing
the density of clouds in the atmosphere distinguishing between rain clouds and ice clouds.
The turbulent combustion simulation instead is a simulation of temporally-evolving plane jet
flames. Combustion,,, presents two scalar fields describing vorticity and combustion-generated
OH. Combustiony,, instead combines the scalar field describing mixture fraction and the one for
chi distribution. Hence, the datasets considered are both simplicial and cubical complexes. The
number of parameters in the filtering functions of the datasets vary from 2 to 3.

We measure time performances for the discrete gradient retrieval via ComputeDiscreteGradient
over a single and a parallel implementation. Starting from the discrete gradient, we compute the
filtered Morse complex. This is done by expliciting the boundary maps as described in [92] and
discussed in more details in Section 6.2. Moreover, we measure timings for the retrieval of the
filtered Morse complex.
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6.4.2 Implementation

Algorithm implementation The algorithm ComputeDiscreteGradient has been implemented
in C++ based on the MDG library [85]. The latter provides an efficient encoding for both triangle
meshes and regular grids, as well as a compact encoding for the discrete gradient. The parallel
implementation version is based on OpenMP.

Triangle meshes and filtrations are represented as described in Section 6.1.2.

Regular Grids. A regular grid is a special case of a 3-dimensional cubical complex. It is
represented as a graph G = (N,A) where N is the set of cells forming the regular grid and A is the
set of incidence relations between the cells in N. Representing a regular grid is a much easier task
than representing unstructured meshes (such as triangle meshes). The regular distribution and
connectivity of the cells in G makes it possible to encode the topology of the complex implicitly.
By enumerating the cells in N, we can extract any relation in A using index calculations without
any overhead.

Discrete gradient representation. In the case of triangle meshes, the discrete gradient is
encoded in the same way as described in Section 6.1.2. In the case of a regular grid, the discrete
gradient is encoded by assigning a Boolean value to each arc & in A, where the two cells connected
by « are paired in V. Then, the discrete gradient is encoded as an array of bits of length |A|. As
discussed in Section 4.6.3, this ensures that the time for accessing to the discrete vector (s,) given
s 1s linear in the number of cofacets of s. Since the number of cofacets of a single cell, in a cubical
complex of low dimension, is considered constant, we consider to have constant access to (s,1).

6.4.3 Results

Experiments have been performed on a MacBook Pro with a 2.8GHz quad-core processor and
16GB of memory. We can see that the compression factor obtained goes from 40x to 7.6x in
the worst case. The efficiency provided by our algorithm in computing the discrete gradient is
remarkable. We have compared a single threaded implementation with a parallel implementation
based on OpenMP. On average, the parallel implementation achieves a 2.7x speedup when working
on triangle meshes and a 3.6x speedup when working with regular grids.
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Dataset Size Fields |M| Single TlmePSr.allel Time M.
Neptune 12M simpl 3 1.4M (8x) 2.1m  0.8m (2.5x) 7.3m
Statue 30M simpl 3 2.1M (15x) 6.lm 2.1m (2.9x) 12.1m
Lucy 84M simpl 3 | 56M(I15x) 154m 5.6m(2.7x) 22.9m
Hurricane,, ~ [S00x500x 100] 2 | 122M(16x) 46.Im 112m (4.1x) 13.4m
Hurricane,; [500 x 500 x 100] 3 57M (40x) 47.8m 12.2m (3.9x) 17.0m
Combustion,, [480 x 720 x 120] 2 43.1M (7.6x) 58.2m  18m (3.2x) 23.7m
Combustiony,, [480x720x 120] 2 | 459M (7.3x) 67.2m 18.6m (3.5x) 20.lm

Table 6.6: Results obtained computing the discrete gradient and the boundary maps on three triangle meshes and
four volumetric images. For each dataset, we indicate its size (number of cells for triangle meshes or resolution of the
volume datasets), number of scalar values for each point (Fields), number of critical cells obtained (|M|), and timings
required for computing the discrete gradient (Time G.) and the boundary maps (Time M.).

6.4.4 Discussion

The algorithm is easy to parallelize and the actual performances have been tested on real-sized
datasets with realistic simulation filtering values. Our tests suggest that the pipeline from a dataset
with a vector-valued function and the filtered Morse complex is feasible for data of interesting
sizes. Our reduction in terms of cells might be a first step towards an efficient computation
of multidimensional persistent homology. This evidences along with the results obtained in
Section 6.3 suggest a strong practical advantage in exploiting ComputeDiscreteGradient as a
preprocessing for multipersistence computations via the foliation method. However, the tests
of this section compared to the results in Section 6.2 show an important gap between what can
be reduced by ComputeDiscreteGradient and what can be exploited in the computation of the
persistence module. As last remark, we observe that the Time M. column reports, generally, higher
timings than column Single in Time G.. This suggests that, optimizations in the retrieval of the
Morse complex when a discrete gradient is already given, would lead to even better performances.

As a conclusion to this chapter, the practical advantage of considering our algorithm as a pre-
processing for multipersistence is confirmed by all tests. The proposed method scales well with
dataset sizes. However, the practical problems of performing multipersistence computations,
mainly depend on the invariant to be computed. There are good perspectives for the foliation
method but still very limited perspective for the persistence module retrieval.

In the next chapter, we discuss properties of algorithm ComputeDiscreteGradient, not simply as
a preprocessing for multipersistence, but as a visualization mean.
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7 A discrete approach to multivariate data visual-
ization

In this chapter, we present our contribution in the context of data visualization of multivariate
fields. Our contribution of this part is, at the moment, disconnected from the previous parts of the
thesis. However, in our future works section, we will see how the two parts suggest promising
research topics for the future. Both theoretical and experimental aspects for this part of the
thesis have been developed in collaboration with Federico Iuricich (University of Maryland (MD),
USA). The main focus of this part consists in showing the visualization perspectives related to a
discrete gradient compatible with a multiparameter filtering function such as the one retrieved
by the algorithm of Chapter 4. In Section 7.1, we review some preliminary notions on Morse
Theory applied to data visualization. In this part, we see the multiplicity of the notions in moving
from the univariate to the multivariate setting and we provide the basis for the classification of
state-of-the-art methods in Section 7.2. In Section 7.3, we present our contribution. In Section 7.4,
we discuss limitations of our visualization by critical cells and we report our observations on the
compatibility of critical cells and Pareto-related notions from the discrete, the smooth, and the PL.
settings.

7.1 Preliminary notions in topology-based visualization

In this section, we review the necessary definitions to generalize to the multivariate setting the
notion of a critical point in the smooth case. This provides the necessary background for describing
the literature in topology-based visual analytics of multivariate data in Section 7.2 and discussing
our contribution in Section 7.3 and Section 7.4. In doing this, it is necessary to move to the smooth
counterpart of discrete Morse Theory. In Section 7.1.1, we quickly describe some preliminaries
on critical point notions in the univariate case. The relation between Morse Theory and, simple
homology and persistent homology motivates our point of view. This part it is not supposed to be
an actual background, rather to provide motivations for our on-going research in the field.

In Section 7.1.2, we introduce the main notions which apply to the multivariate case, namely the
Jacobi and the Pareto critical point definitions. For each of them, we review the main results for
relating those notions one another and to the notion of homology. The definitions reported in this
section refer, in their content, to the work of Smale [179]. The terminology which is adopted
slightly differ from Smale’s ones to be consistent with the state-of-the-art in multivariate data
visualization.
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7.1.1 Ciritical points in the univariate setting

The main tool provided by topology in the context of data visualization is Morse Theory [142,
139], a branch of Mathematics in between Topology and Differential Geometry which studies
differential manifolds on the base of properties of smooth scalar functions defined over it. For
both Morse Theory and its discrete counterpart called discrete Morse Theory (see Section 1.4)
which constitutes the main focus of this thesis, there is no comprehensive generalization to the
multivariate case.

Morse Theory focuses on the subclass of smooth functions whose critical points (points were
the gradient is null) are isolated and non-degenerate, that is the Hessian matrix in that point has
maximal rank. Those functions are called Morse functions. For each critical point, the number of
negative eigenvalues of the Hessian matrix defines the critical index. The index is the analogue for
the dimension of a critical cell in discrete Morse Theory [87]. Weak and strong Morse inequalities
(smooth analogues of Formulas (1.4.2)) relate critical points of Morse functions to the homology
of the shape.

Morse-based subdivisions. By visualizing critical points, and their reciprocal connections
through integral lines and regions of influence, Morse Theory is at the base of topological
consistent segmentation techniques and compact field representations we review in Section 7.2.
The level sets of a Morse function ¢ : D — R provides a way to subdivide a topological space D.
The abstract notion of a Reeb graph is defined in [159] with respect to a Morse function, then first
introduced in the context of Computer Graphics in [172].

7.1.1 Definition. Given a a Morse function ¢ : D — R, the Reeb graph R(¢) is the quotient space
of D obtained by considering one equivalence class -one node- for each connected component in a
level set with respect to ¢. The topology of R(¢) is the quotient topology inherited from D. Thus,
the graph structure of R(¢) is given by setting an arc between any two nodes whose respective
connected components are adjacent in D.

Nodes from a level set merge or separate in correspondence of critical level sets.

Another subdivision is obtained by following the discrete field associated to a Morse function. The
paradigm consists in simplifying the representation of the scalar field under study by considering
as equal all points in the domain with the same behavior with respect to the gradient of the scalar
field of interest. Each point admits an integral line through it. Separatrices and integral lines of
the gradient field are interpreted as ascending paths when traversed according to the gradient field
orientation, and descending paths, otherwise.

7.1.2 Definition. The ascending (descending) Morse complex of a Morse function ¢ : D — R
over a smooth manifold of dimension d is the d-dimensional cell complex where each cell is
defined as follows. The points in D whose ascending (descending) path ends in the same critical
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point p of index k are considered part of the same k(d — k)-cell associated with p. The cell
corresponding to a critical point p is a face of the cell corresponding a critical point p’, if the
gradient field of ¢ admits a separatrix from p’ to p.

By subdividing a domain D into its cells in the ascending or descending Morse complex, we get
a Morse-based segmentation. As a remark, all along this thesis we have dealt with the Morse
complex of Definition 1.4.8 which is a discrete counterpart of a descending Morse complex. If
each non-empty intersection of a descending and an ascending cell is transversal, their connected
components define the Morse-Smale MS-complex, which encodes both dual constructions, ascend-
ing or descending. In the MS complex, two points are equal if their respective integral lines share
the same critical extrema points in their support.

With respect to the gradient field of a Morse function, critical points are equivalently:

e null points (singular points);

e ending points of ascending/descending paths (stationary points).

We will see in Section 7.1.2 how these two properties separate in the multivariate case.

Morse-based simplifications. Additionally, there is a strong interplay in between one-parameter
persistent homology and Morse Theory. In the preceding parts of the work of this thesis, we
have looked at Morse Theory as a way of decrease the computational persistent homology costs.
Here, we focus on how persistence supports Morse-based visualization techniques. Indeed, by
considering the filtration obtained by sublevel sets with respect to a Morse function, one obtains
that each critical point of index k from O to the dimension d of the differential manifold, corre-
sponds to, either the birth of a k"-homology class, or the death of a (k — 1)®-homology class in
the first sublevel set where the critical point appears. Critical points corresponding to birth or
death of short-living topological features are removed from the Morse-based subdivision. Hence,
one-parameter persistent homology provides a criterion to simplify, in a topologically consistent
way, any Morse-based subdivision.

This simplification paradigm has no straightforward generalization to the multivariate case since
there is no (or there are too many) notions of persistence to measure the lifespan of a homology
feature along a multiparameter filtration. Moreover, as seen in Remark 5.1.5 for the discrete case,
homology changes are not necessarily given by a new cell entering a multiparameter filtration,
so the relation between critical cells and multiparameter persistence need further studies. In that
direction, we gave our contribution by proposing the optimality notion of Chapter 5 which can
help in relation critical cells and homology changes along a multiparameter filtration.
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7.1.2 Critical points in the multivariate setting

In this section, we introduce two possible generalizations of critical points of a scalar field to a
multivariate setting. In the last part of this section, we see in Theorem 7.1.6 how to relate one of
those critical point generalization to multiparameter persistent homology (see Section 1.6).

We recall from Section 7.1.1, that a critical point is both singular and stationary for the gradient
field of a scalar field. For the definitions in this section, we follow Smale’s work [179] as adapted
in [136]. In the following, we set (¢1,...,¢,) = ¢ : D < R? — R" to be a continuous function
defined over a smooth manifold D, with n < d. To simplify the review, we assume D to be
embedded in RY so that points in D are expressed by global coordinates x = (xp,...,x,). In this
section, we denote by V¢;(x) the gradient of ¢; in x € D, for i from 1 to n.

The property of a critical point of being singular for a vector field is generalized to the multivariate
setting by the following definition.

7.1.3 Definition (Jacobi point). Let ¢ : D < RY — R with n < d be a C?>-function on a smooth
manifold D. A point x € D is a Jacobi point if

A1, Ay € R such that ) 4;Ve;(x) = 0

In the univariate case, the fact that critical points were singular was at the base of merging and
splitting of nodes in a Reeb graph (Definition 7.1.1). We will see in Section 7.2.2 how Reeb
graphs generalize to Reeb space [78].

The property of a critical point of being stationary for a gradient field, i.e., the critical point is an
extremum point of ascending/descending paths, is generalized to the multivariate setting by the
following definition implied by Proposition 3 in [136].

7.1.4 Definition (Pareto critical point). Let ¢ : D < RY — R" with n < d be a C?>-function on a
smooth manifold D. A point x € D is a Pareto critical point if

A >0,...,2, > 0€Rsuch that Y 2;V¢i(x) = 0
i

In the univariate case, the fact that critical points were stationary was at the base of ascending
and descending Morse complex subdivisions (Definition 7.1.2). In the multivariate case, there is
no counterpart to the ascending or descending Morse complex. We will see in Section 7.2 that
finding subdivisions based on Pareto notions is an active research field.

Smale in [179] distinguishes points satisfying Definition 7.1.4 from what is commonly meant
in Game Theory or Economics contexts by local Pareto optimum. The meaning of a local
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Pareto optimum p € D is that there is no possibility of moving from p and increasing all scalar
components of ¢ at the same time.

7.1.5 Definition (Pareto optimum). Let ¢ : D < RY — R” be continuous function on a smooth
manifold. We say that x € D dominates y € D through ¢ if ¢(x) > ¢(y) (dually, y is dominated
by x through ¢). A point x € D is called local Pareto optimum if it admits a neighborhood whose
points do not dominate x.

This corresponds to an optimality notion valid in an ascending framework. Reciprocally, one
can consider x as a local Pareto optimum if it admits a neighborhood with no points dominated
by x and this provides the analogue for the descending framework. The formal relation between
local Pareto optima and Pareto critical points of Definition 7.1.4 is investigated in the work of
Smale [179] for the smooth setting, and in the work of Lovison [136], for the PL setting. It is
shown that, under certain transversality and genericity conditions, Pareto critical points include
local Pareto optima from both the ascending and the descending frameworks and many more
points.

As we can see in Figure 7.1, in the case n = 2, the
Definition 7.1.4 capture a special case of Jacobi
point which is satisfied when the gradients of ¢;
and ¢, are collinear but point in opposite directions.
Indeed, for points on the red curves, values of the
two scalar functions increase in opposite directions,
whereas, for points on the green curves, values of
the scalar functions increase along the same direc-
tion. If we, change the sign of the first component (a)
@1 measuring the x coordinate, we get that green "
arcs become Pareto critical points. Moreover, we
notice that the two red arcs in the outer circle in Fig-

ure 7.1 have a different local character. Indeed, the /- \ .
right-upper arc collects Pareto optima points which \ J
are also Pareto optima with respect to the ascending

framework. Whereas, the left-bottom arc collects
Pareto optima points with respect to the descending
Jframework. The converse holds for the inner red (b)

arcs. In the same example we notice how critical  gigure 7.1: (a) a smooth torus embedded in the 3D
points of the single scalar fields bound both the sets Euclidean space. (b) the 2D projection of the torus
of Pareto critical points and Jacobi points. This is on the xy-plane delimited by red and green curves.
not always the case. What holds in general is that Engcf;?q) P&retoz)cftf:rll;’z;?;s Wgh_res%egtthtorél;
both definitions of Pareto critical point and Jacobi "4 p(lint7 Sy are Jacobi point7 Sy with rye' spect E) the
point specialize to critical point in the univariate gyme functions.

case.
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In the univariate setting, Pareto critical and Jacobi points are equivalent notions. In general, Pareto
critical points are no longer equivalent to Jacobi points. As a weaker property, we have that a
Pareto critical point is a Jacobi point. Moreover, we can retrieve Jacobi points from Pareto critical
points. We take ¢ as in Definition 7.1.4. Then, we take q)(i’_) the function whose components
are those of ¢ but the signs of the first i components is the opposite one, i.e., q)k(”*) = — @, with
k=1,...,i. We denote by PU:7) the set of all Pareto critical points with respect to q)(i’_) with i
from O to n — 1. We denote by J the set of all Jacobi points of any of the functions ¢(i7’) with i
from O to n — 1. We get that

This means that Jacobi points can be retrieved from Pareto critical points.

Recently, Cerri and Frosini [46] have related some multipersistence properties to Pareto critical
points. Here, we briefly report the main result for our purposes and, in doing this, we warn the
reader that we change the terminology used in [46] for the sake of coherence with the rest of the
thesis. In [46], the rank invariant is called multidimensional size function since it is defined in a
context of Size Theory. Moreover, a Pareto critical point is called pseudo-critical point. Theorem
2.13 in [46] can be stated in the following terms. Recall from Definition 1.7.2 the definition of the
rank invariant and its source set A .

7.1.6 Theorem. Let ¢ : D € R — R" be a continuous function on a smooth manifold D. Let M
be the multiparameter filtration obtained by the sublevel sets of ¢ and (u,v) € A% .. If (u,v) is a
discontinuity point for the rank invariant ranky; then

e cither u is a discontinuity point for ranky(-,v);

e or v is a discontinuity point for ranky (u, -).

Moreover, in the former case, a projection © : R" — RP exists such that u is either a Pareto
critical point or a non-differentiable point of o ¢. In the latter case, a projection @ : R" — R?
exists such that v is either a Pareto critical point or a non-differentible point of T o §.

This result is of crucial interest for further developments of the work of this thesis. Indeed, the
result relates the notion of Pareto critical point, which generalizes univariate critical points to the
multivariate setting, to a property of an invariant for multipersistence. As already discussed, there
is no multivariate counterpart to discrete Morse Theory. In our opinion, multipersistence might
help in connecting the Pareto properties of the smooth setting to the discrete gradient compatible
with multiparameter filtrations.
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7.2 State of the art in topology-based visualization

Visualization aims at capturing and rendering relevant features in data. Challenging tasks in
Visualization comprise the integration of both scientific and information visualization, and the
detection of relevant features [116]. In particular, the demand for meaningful concise representa-
tions interest different visualization areas such as the analysis of spatio-temporal, multi-model,
multi-modal, vector-fields data and, for what is our concern, multi-variate data [121]. Other
comprehensive surveys in visualization techniques can be found in [195, 91]. Topology provides
tools which aim at capturing the significant information of data in a simplified object and in a
robust way with respect to noise. A recent survey on topological methods for the visualization
context is [109]. First, we review topology-based methods for univariate scalar fields. In other
words, our setting is that of a scalar field data over a shape, that is a domain with geometrical
attributes. Afterwards, we address topology methods for analyzing multivariate data, that is many
scalar fields at a time with possibly heterogeneous values.

7.2.1 Univariate data visualization

In the univariate case, that is when a single scalar field is taken into account, topology has already
revealed its advantages. In particular, it provides simplified and robust tools for feature-tracking,
1sosurface traversal and segmentation of the domain based on Morse Theory. We classify the
methods in univariate topology-based data visualization into two main paradigms:

e value-driven are those methods referring to the notion of Reeb graph [159] (Definition 7.1.1).
The retrieval of the Reeb graph provides a compact representation of the scalar field based
on its level sets. For this reason, we call the topological methods related directly or indirectly
to the Reeb graph as value-driven;

e monotony-driven are those method referring to the notion of an ascending/descending
Morse complex (Definition 7.1.2). The paradigm consists in simplifying the representation
of the scalar field under study by considering as equal all points in the domain with the
same behavior with respect to the gradient of the scalar field of interest. For this reason,
we call the topological methods related directly or indirectly to the Morse complex as
monotony-driven.

7.2.1.1 Value-driven Paradigm
Most of value-driven applications refer to the notion of contour tree, which is a Reeb graph in
the special situation of a simply connected domain D. Contour trees [129] are easier to compute

and their retrieval can be performed in any dimension of the domain [38]. Moreover, a method
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that makes a Reeb graph into a contour tree for volumetric meshes only is proposed in [189].
Among the possible applications to visualization, we report those for isosurface traversal [129],
volumetric rendering simplification [39], transfer function design for volume rendering [192], and
similarity estimation among different isosurfaces [186, 110]. Comprehensive surveys of the Reeb
graph algorithms applied to visualization can be found in [19, 157]. We subdivide value-driven
techniques into:

e vertex-based [172];
e approximate [18, 110, 196];
e critical-based [158, 72]

Vertex-based. The first combinatorial algorithm for 2D meshes and PL scalar functions for the
Reeb graph retrieval is proposed in [172]. It considers a level set for each vertex in the domain
and then use adjacency relation on the domain to define the arcs in the Reeb graph.

Approximate. Approximate algorithms for the Reeb graph retrieval are proposed in [18, 110,
196] for PL domains. These methods speed up the computations. Their result is not precise but
depends on a tolerance parameter set by the user which defines how far apart to sample values on
the target space. Then, connected components of the respective level sets are computed and then
connected according to adjacency relation in the domain D.

Critical-based. The topology of one level set can only change when changing the scalar value
by moving across some critical value. Algorithms exploiting the role of critical points has shown
to be more accurate and fast [158, 72]. They compute, for each critical point, the connected
component of the level set passing through it. Next, it suffices to consider the adjacencies in the
segmentation induced by the critical level sets cuttings in the domain to retrieve adjacency among
nodes.

7.2.1.2 Monotony-driven Paradigm

The second abstract structure exploited in topology-based approaches is the Morse complex in
either the ascending or descending forms. We subdivide monotony-driven techniques into:

e ascending or descending PL methods [60, 59, 137, 105, 97, 68, 140, 191, 163] where scalar
fields over vertexes are extended to higher dimensional cells linearly with respect to the

barycentric coordinates of the cell. These techniques refer to the notion of PL critical cell [6,
7,791,
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e Morse-Smale complex PL methods [182, 79, 77, 24, 156, 14, 165, 166, 5] where scalar
field is PL-extended from vertexes and the purpose is that obtaining a Morse-Smale domain
decomposition which combines ascending and descending decompositions [79, 77];

e discrete methods [43, 123, 101, 162, 102, 99, 173, 175, 193] where scalar fields over
vertexes are extended to higher dimensional cells by the maximum-rule in Definition 3.1.2.
These techniques refer to discrete Morse Theory [87].

Ascending or descending PL. methods. Methods for PL functions refer to the definition of
critical point according to Banchoff [6, 7], then, extended to higher dimensional spaces by
Edelsbrunner et al.[79]. A comprehensive survey for Morse-based segmentation techniques can
be found in [61]. Algorithms based on piecewise linear Morse Theory, and compute the ascending
(or descending) Morse complex by growing the top cells, here called regions, from seeds located
at the minima (or maxima). [60, 59, 137, 105]. The construction of another approach, called
stable flow complex [97], can be obtained through a region-growing approach [68]. The watershed
transform is an alternative framework to Morse Theory analogue to the ascending Morse complex
which segment the domain according to the so-called topographic distance. It has been first
defined for grey-scale images. [140, 191]. The watershed transform has also been defined for
C?-differentiable functions over a connected domain, having the property that the gradient is
non-null everywhere except possibly at some isolated points. This includes Morse functions.[140,
163].

Morse-Smale complex PL methods If each non-empty intersection of a descending and an
ascending cell is transversal, their connected components define the Morse-Smale (MS) complex,
which encodes both dual constructions, ascending or descending. In the MS complex, two points
are equal if their respective integral lines share the same critical extrema points in their support.
The notion of Morse-Smale complex has found applications to different fields [130, 103, 100,
104] such as fluid dynamics and distance field definition. However, the Morse-Smale complex
construction is feasible only up to dimension 3 in the domain with some limitations in feasibility
over real-size data. The notion of Quasi Morse-Smale complex as the PL counterpart to the MS
complex is introduced in [79, 77] for PL domains. Algorithms for the retrieval of the Quasi
Morse-Smale complex can be subdivided according to the kind of domain. For triangular and
tetrahedral meshes, we have [182, 79, 77, 24, 156, 14]. For regular grids, we have algorithm
computing derivatives numerically [5] or analitically [165, 166].

Discrete methods. Methods for discrete functions refer to the definition of critical point accord-
ing to Forman’s discrete Morse Theory [87]. Methods from discrete Morse Theory allows to
retrieve all the Morse and Morse-Smale cells in a derivative-free way. The subdivision is obtained
by traversing the V-paths, that is discrete analogues for integral lines available when the discrete
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gradient is computed. The algorithms of this kind [43, 123, 101, 162, 102, 99, 173, 175, 193] start
from a discrete scalar function f defined over the vertices of a cell complex, and aim at construct-
ing a discrete gradient that best fits function f. Discrete methods are dimension-agnostic and they
have shown practical advantages in computational feasibility over real-size data with respect to
PL-methods. Our method, described in Section 7.3.2, constitutes a multivariate counterpart of
those algorithms.

7.2.2 Multivariate data visualization

Recently, multivariate data have become a more and more challenging task for Data Analysis.
The need for simplified representations and the search for significant features has got more and
more demanding. Likewise for the univariate case, the aim of topology-based approaches is to
offer robust and qualitative tools for rendering, segmenting and analyzing multivariate data. A
possible approach consists in considering juxtaposed modalities of multiple linked views [194].
This way however, the relationships between the different scalar fields are not taken into account
or left to the user to explore. Hence, for topology-based techniques, the challenge becomes to
provide features which, not simply belong independently to each single scalar field but somehow
capture their relationships.

A first topological method developed for the two scalar fields over a 3D domain can be found in
[168] where the method called comparison of largest contour is first set and then, generalized
to multifields in [167]. In the bivariate case, the two field’s contour trees are independently
computed and simplified into a largest contour segmentation. By area measure of spatial overlaps,
contour similarities of different fields are computed and represented as an edge-weighted bipartite
graph. The drawback is that the selection of the contours to analyze as well as the active study of
relationships among the original fields is left to the user.

We review how the two univariate paradigms, namely the valued-driven and the monotony-driven
finds generalization to the multivariate case to address the components relation-aware task.

7.2.2.1 Value-driven Paradigm

We classify in this class those techniques which refer directly or indirectly to the topological
changes along level sets in the multivariate data. The main topological structure these methods
refer to is the Reeb space, that is the multivariate analogue of a Reeb graph. The definition of
the Reeb space is proposed in [78] for PL functions. The Reeb space R(f) of a PL function f
(generic according to [78]) defined over a d-manifold D and taking values in R” is the quotient
space D/ ~ with p ~ ¢ if and only if p and ¢ belong to the same connected component of a single
level set of f. The topology of R(f) is the quotient topology inherited from D. This no longer
leads to a graph structure but to a cell complex structure whose dimension depends on n and
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two cells are adjacent if their corresponding connected components in the level set are. Many
different structures have been proposed so far. Analogously to what already done for univariate
visualization, we subdivide the value-driven techniques into:

e approximate methods [178, 36, 73, 185, 125] to retrieve the Reeb space;

e Reeb-related methods [76, 37, 124] as those methods retrieving auxiliary attributes of the
Reeb space;

e critical-based methods as those methods exploiting PL Jacobi cells as critical cells for com-
puting the Reeb-related representations [50, 51] or as a mean for numerical approaches [152,
151, 150].

Approximate methods. A simplicial complex called Mapper is introduced in [178] in the
context of Topological Data Analysis and address the problem of multiple different entities of
the Reeb space mapped to the same region in the target space R” and provide a partial clustering
technique for multivariate data. Each vertex corresponds to a connected component in the function
target space pulled back on the domain. A simplex is defined when the vertices have corresponding
intersecting components. This procedure can be performed at different resolution, that is according
to the coarseness of the starting coverings to discriminate between persistent and artificial features.
The Joint Contour Net [36] is proposed as an approximate version of the Reeb space which
depends on a fixed tolerance in an analogous way to univariate approximate approaches. Joint
Contour Nets are applied in [73] to nuclear scission processes and in [185] to Lattice Quantum
Dynamics, a physical approach to model strong nuclear force.

Reeb-related methods. Fiber surfaces [37] generalize the notion of isosurfaces and they were
initially introduced as a valid feature towards visualization via multifield transfer functions [125].
An algorithm for their exact retrieval is proposed in [124], where the method allows for a user-
guided selection of values of interest. In analogy with the univariate case critical-based approaches,
other methods are based on a generalization of critical points to the multivariate case called Jacobi
set. The Jacobi set of n real-valued Morse functions defined on a common d-manifold is the set
of all points where the function’s gradients are linearly dependent, which is directly related to
the rank of the Jacobian matrix. It follows that when n > d all points become trivially Jacobi,
so the interesting setting requires n < d. Alternatively, the Jacobi set is the closure of the set of
all critical points of one scalar field restricted to all preimages of the remaining scalar fields. In
analogy with the univariate case, nodes in the Reeb space determine a topological change among
the level sets when they belong to the Jacobi set. The Jacobi set is defined for PL functions in
[76] together with the main reference algorithm for the Jacobi set retrieval.
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Critical-based methods. The PL definition of the Jacobi set is adapted to the Fiber surface
retrieval in [187]. The algorithm returns a Reeb Space segmentation, simplified by adapting the
algorithm in [124] to the extraction of Jacobi Fiber surfaces, that is fiber surfaces containing
Jacobi points. The method is used to perform interactive clutter reduction. In [50] the Jacobi
structure is introduced as the Jacobi set mapped to the target space of f. An approximate version
by means Joint Contour Nets [51] allows to define a topology consistent simplification scheme
based on Reeb Skeleton, the dual of the decomposition via Jacobi structure, and Range and
Geometric Measures to impose a total order among such components. Jacobi inspires also
numerical techniques aimed at rendering a single volume function out of the multiple scalar fields
in a way compatible with the relationships among scalar fields. These methods are based on the
local and global comparative measures introduced in [76] for a domain whose dimension is less
than the number of fields involved and share the common trend of assigning scalar value O to
points in the Jacobi set, when the definition is applicable. In [150], the comparative measure
is used to define a variation density function which is applied to isosurface selection. Then, in
[152], the same idea is reformulated for any number of fields into a gradient-based measure for
the evaluation of the local coherence among the different scalar fields. The global comparison
measure defined in [76] is also applied to define a simplification of Jacobi sets robust to noise in
[151].

7.2.2.2 Monotony-driven techniques.

Monotony-driven techniques have not found an exact transposition of the subdivision by as-
cending/descending Morse complex (Definition 7.1.2) in the multivariate case since monotony
loses meaning in that case. However, in analogy with the univariate case, critical points can be
described as stationary points with respect to a single vector field which replaces and agrees with
the multiple gradient fields given by the data components. The aim is to subdivide the domain into
regular regions, where it is possible to describe the behavior of the different scalar fields as regions
of equal behavior with respect to a single vector-field, and critical regions where this cannot be
done. All monotony-driven techniques are based on Pareto-related notions. In our review, we
classify methods according to the Pareto notion they are related to:

e PFareto critical-based methods [136] are those methods referring to the definition of Pareto
critical point (Definition 7.1.4);

e Pareto optima-based methods [180, 113, 114, 112] are those methods referring to the defini-
tion of local Pareto optimum (either in the ascending or descending, or both frameworks of
Definition 7.1.5) .

Pareto critical-based methods. In the PL setting, Pareto critical points are detected in [136]
by checking directly the linearity condition in Definition 7.1.4. Pareto critical points have
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the advantage of admitting, under certain generic and transversality conditions for ¢ [179], a
multivariate analogue for the critical index (in the univariate case, the critical index defines a
critical point as a maximum, minimum or a saddle). Algorithms cannot yet fully capture and
exploit this stratification of the set of Pareto critical point performed by the critical index. Whereas
local Pareto optima have the advantage of being decidable by analyzing the function values within
a neighborhood of the inspected point. The discrete approach we describe in Section 7.3 is
empirically found to be closer to Pareto critical-based methods than Pareto optima-based methods.
However, the classification of our method needs further insights.

Pareto optima-based methods. The notion of local Pareto optimum is exploited in the barrier
tree (a forest in the multi-variate case) generalization [180] to poset-valued landscapes. That
technique is limited to graphs but it provides the only fully discrete monotony-driven subdivision
for multivariate data. The function values are attributes of the vertexes and they are never
extended to edges in the graph. The neighborhood of a vertex is formed by the adjacent vertexes.
Basins, which are the leaves in the barrier tree, are generated by local Pareto minima that is
vertex not strictly dominating vertexes in their neighborhood. In this sense, leaves in the barrier
tree are generated by local Pareto optima points in the descending framework in the sense of
Definition 7.1.5. This can be thought of as a generalization to the multivariate setting, for graph
domains, of an ascending segmentation like the ones described in Section 7.2.1.2. Saddle points
are found in a watershed-like approach as points where two basins merge. However, theoretically
saddles should not be single points but set. So, only one representative element is extracted.
Saddles and basins are arranged in a dendrogram representation called barrier tree. The discrete
approach of barrier trees inspires the PL notion of Pareto cell introduced in [113] where the domain
is a simplicial complex embedded in a d-dimensional space and the vector-valued function ¢ takes
values in R" with n < d. In [113], a point is a local minimal point if it admits a neighborhood
with no dominated points. A point is a local maximal point if it admits a neighborhood with no
dominating points. A point is a local optimal point if it is both minimal and maximal local Pareto
point. A cell is a minimal/maximal/optimal Pareto cell if the same character holds for all points
in its interior where, for PL functions, the character can be checked over a single interior point.
Those definitions are applied in [114] to the retrieval of a Reachability graph, which decomposes
the domain into, regular regions, subdivided into either ascendent-sets or descendent-sets, and
Pareto extrema regions, as collections of minimal, maximal and optimal cells. This is the only
example of PL-subdivision in the monotony-driven paradigm. We remark that, maximal and
minimal Pareto cells in [113] have, in their interior, local Pareto optima points in the sense of
Definition 7.1.5 in the ascending framework or in the descending one, respectively. Whereas
optimal Pareto cells in [113] are those cells with interior points that are local Pareto optima
points in both frameworks. In this sense, they, not simply transpose the Barrier tree construction
for higher-dimensional domains in the PL setting, but they also capture both the ascending and
the descending frameworks. There is no proved relation between Pareto minimal/maximal or
optimal cells in the PL setting presented in [113] and smooth Pareto critical points as defined
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in [136]. However, Pareto cells, as defined in [113], are shown in [111] to be also Jacopi point as
defined in the PL setting in [76]. This allows Huettenberg et al. in [114] to remove noise from the
reachability graph according to an adaptation of the simplified techniques for Jacobi sets in [151].
This method is applied to quality control in car manifacturing in [111].

The TTK: Topology Toolkit [188] is a publicly available platform, integrated with the Visualization
tool Paraview. TTK implements many of the visualization instruments here reviewed, such as:
critical points, integral lines, persistence diagrams, persistence curves, merge trees, contour trees,
Morse-Smale complexes, fiber surfaces, Jacobi sets, Reeb spaces.

7.3 Critical features in the multivariate discrete case

In this section, we discuss our results in the context of multivariate data visualization. In
Section 7.1.1, we have recalled the relationship between Morse Theory and univariate data
visualization. Here, we present our results, in [115], obtained by applying the algorithm Com-
puteDiscreteGradient presented in Chapter 4 to visualization purposes. As opposed to the
preliminary notions presented in Section 7.1, our setting is fully discrete. First, we show a toy
example of a discrete gradient retrieved by the algorithm ComputeDiscreteGradient to motivate
our approach. Then, we present our experimental results to test the significance of visualization.

7.3.1 A motivating example

As already seen in Section 7.1.1, persistent homology plays a crucial role in univariate data
analysis. Indeed, it provides a criterion to simplify critical cells in a topological consistent way.
In this section, we see, through an example, how this paradigm fails when moving from the
univariate and the multivariate case. In doing this, we motivate the definitions in the following
section and the experiments discussed in Section 7.3.2.

In Figure 7.2, we consider two scalar fields f| and f;, each with a compatible gradient depicted
by arrow, for indicating discrete vectors, and a symbol “x”, for indicating critical cells. We focus
on the red function f,. In the univariate case, it is the persistence descriptor (the persistence
diagram or the persistence barcode) obtained by studying the sublevel sets under f, to suggest the
threshold value for persistence in order to discriminate the signal from the noise. Each critical
cell corresponds to an extremal value for the life-span of a homology class. By applying the elder
rule [80], we can pair critical cells so that each pair bounds the life of a homology class. In the
example, the persistence pairs are given by the critical vertex with number 3 paired to the critical
edge with number 6, and the critical vertex with number 2 paired to the critical edge with number
7. Removing noise from function f; according to the persistence of pairs means successively
canceling a persistence pair and updating the remaining incidence structure in the Morse complex

144



(OF3

Figure 7.2: at the top, a discrete gradient over a discrete line compatible with function fj (in green) and function f>
(in red). At the bottom, in blue, a discrete gradient compatible with the two functions together.

(see Equation (1.7) for the definition of incidence function). For the two pairs, the persistence is
given by the difference between function values of the components: we get persistence equal to 3,
for the pair (3,6) and equal to 5 for the pair (2,7). In this sense, the persistence feature indicated
by the pair (3,6) is less informative, from the topological point of view, than the one indicated by
(2,7).

As anticipated in Section 7.1.1, this paradigm has no straightforward generalization to the multi-
variate case since there is no (or there are too many) notions of persistence to measure the lifespan
of a homology feature along a multiparameter filtration. Moreover, as seen in Remark 5.1.5, there
is no counterpart for persistence pairs since homology changes are not necessarily given by a new
cell entering a multiparameter filtration.

In the multivariate case, critical cells seem to highlight the reciprocal behavior of multiple
function components in the following sense. In Figure 7.2, the blue line shows a discrete gradient
compatible with both functions at the same time. We notice that this multi-compatible discrete
gradient needs to declare critical, necessarily, all critical cells with respect to each function
component, moreover, all cells where the two discrete gradients disagree. In this sense, critical
cells of a discrete gradient compatible with multivariate data highlight where in the domain the
multiple scalar data have different monotony. When moving to higher dimensional domains,
the meaning of critical cells needs further insights. Empirical tests, like the one in Figure 7.3,
have shown that critical cells tend to gather into clusters in correspondence of regions where the
multiple discrete gradients of the scalar components disagree. To highlight this, in the next section,
we propose a way of collecting critical cells into clusters. The cluster definition addresses, on the
one hand, the necessity of compactly describing where multivariate data grow in disagreement
one another, on the other hand, the necessity to provide simplification criteria in the multivariate
setting.
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Figure 7.3: a triangulation of a 2-dimensional sphere embedded in the 3D Euclidean space. Colored points indicate
critical cells found according to the function @ (x,y,z) = (x,y). In blue, critical vertexes, in green, critical edges, and
in red, critical triangles.

7.3.2 Visualization through critical clusters

Here, we show some experimental results presented in [115]. In the experiments, we visualize
cubical datasets of the Hurricane Isabel simulation and the Turbulent combustion simulation
described in Section 6.4 and depicted in Figure 7.4.

© @

Figure 7.4: a visualization of the temperature (a) and the pressure (b) scalar fields in the hurricane Isabel dataset.
The vorticity (c) and the dioxide concentration (d) scalar fields in the Turbulent combustion dataset. Values increase
from blue to red.

We look at regular grids through their associated Hasse diagram, that is the incidence graph whose
nodes are the cells in the regular grids and undirected arcs link facets to cofacets. We recall
Definition 1.6.3 for the notion of Morse complex compatible with a multivariate function. Starting
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from the discrete gradient we collect the sets of connected critical cells in the Hasse diagram of the
regular grid. We call minima-clusters the collection of critical 0-cells connected by critical 1-cells.
They can be easily computed using an union-find data structure defined on the critical O-cells
and by linearly processing all the critical 1-cells. Each O-cell initially forms a minima-cluster
on its own. Sweeping on the critical 1-cells, we consider only those having two critical O-cells
V1,2 on their boundary. If v{,1, belong to different minima-clusters, they are merged. Dually,
maxima-clusters are defined as collections of critical d-cells connected by critical (d — 1)-cells
and they are computed in a similar fashion. Maxima- and minima-clusters are easily encoded as
segmentations defined on the vertices/d-cells of the dataset (i.e. an integer label for each element).
For visualization purposes, we do not directly show minima- or maxima-clusters. Rather, we show
the area where minima- and maxima-clusters overlap. Minima- and maxima-clusters overlap
in those areas where the function is more chaotic. By considering the nodes corresponding to
cells in a minima-cluster as belonging to the dual regular grid, we can intersect minima- and
maxima-cluster to get critical clusters. While the extremal-clusters are not a rigorous estimator for
evaluating differences among multiple functions, they are fast to compute and, more importantly,
they provide an interactive framework to help the user to eliminate noise. As a preliminary way
of removing noise compatibly with multivariate data, we propose to filter out critical clusters
according to their size in number of cells. In Figure 7.5, we visualize critical clusters relative to

Figure 7.5: critical clusters relative to the hurricane Isabel dataset colored according to increasing number of critical
cells in the same cluster, from cold to warm colors. Only clusters above a threshold size are depicted. From left to
right the threshold value is: 10, 100, 400, 2000.

Figure 7.6: critical clusters relative to the Turbulent combustion dataset colored according to increasing number of
critical cells in the same cluster, from cold to warm colors. Only clusters above a threshold size are depicted. From
left to right the threshold value is: 50, 1000, 5000, 15000.

the Hurricane Isabel dataset. In Figure 7.6, we visualize critical clusters relative to the Turbulent
combustion dataset. Clusters are filtered out according to the number of cells they contain form

left to right. The right-most picture shows that the discrete gradient has its largest critical cluster in
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correspondence of the eye of the hurricane. For the Hurricane Isabel dataset, since the gradients of
the temperature and the pressure scalar fields do not agree in the eye of the hurricane, this is where
biggest critical clusters are located. In Figure 7.7, we see the behavior of the discrete gradient of

Figure 7.7: at the top, a visualization of a 2D slice of the scalar fields of the Hurricane Isabel: temperature field (a)
and pressure field (b). At the bottom, the univariate discrete gradient associated to the temperature field (c) and the
pressure field (d).

temperature and pressure fields on two different 2D slices of the domain, taken transversaly.

For the Turbulent combustion dataset, the visualization is more chaotic. In Figure 7.8, we extract
two 2D transversal slices form the domain. There, we can see the role of critical clusters depicted
in black. By looking at values of the scalar fields in the neighborhood of critical clusters, we see
that critical clusters highlight region where, for instance, vorticity grows when sweeping through a
critical cluster from right to left whereas dioxide concentration does the converse. In other words,
the two scalar fields have opposite behavior through critical clusters.

Figure 7.8: a visualization of a 2D slice of the scalar fields of the Turbulent combustion simulation: vorticity (a) and
dioxide concentration (b). Juxtaposed in black, the critical clusters.
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7.4 Towards a new definition of Pareto critical cells

In this section, we report our observations on the correspondence between critical cells and Pareto-
related notions from the discrete, the smooth, and the PL settings. In doing this, we discuss some
limitations of our visualization by critical cells proposed in this thesis in Section 7.3. This section
is motivated by the difficulties we have found in knowing what to expect when experimentally
comparing several Pareto-related notions present in the literature. We have decided to shed some
light in reciprocal meaning of different Pareto-related notions chosen in the literature for the
discrete, the smooth, or the PL setting. This is a preliminary study aimed at obtaining a motivated
definition of (discrete) Pareto critical cell coherently compared to other existing Pareto-related
notions.

The first Pareto-related notions is treated in Section 7.4.1 and it is the notion of local Pareto
minima defined in the barrier tree approach [180] as the only other method, in the literature of
multivariate topology-based subdivisions, which is fully discrete. As a second Pareto-related
notion, in Section 7.4.2, we treat the smooth case of Pareto critical points. As a last Pareto-related
notion, in Section 7.4.3, we treat the piecewise linear (PL) Pareto cells as defined in [114].

7.4.1 Discrete critical cells and discrete local Pareto minima

In this section, we compare (discrete) critical cells relative to a discrete gradient compatible
with a multiparameter filtration to the notion of local Pareto minima in [180]. We first recall the
definition of local Pareto minimum and then we present our tests on simple datasets to support the
comparison.

As mentioned in Section 7.2, the local Pareto minima in the barrier tree approach presented
in [180] applies to graph domains. we have a function f = (fi,..., f,) defined over the nodes
N of the graph G = (N,A). Nodes adjacent to a given node v € N define the set N(v). A node v
forms a basin if

WeNw), fO)<fv)= V=

By considering, the notion of lower star of a vertex with respect to f as in the Definition 3.1.3, we
get that basins are generated by nodes v in the graph satisfying the following equivalent condition

Lows(v) = {v}.

Since all discrete gradient compatible with f have, as critical, only those vertexes that are
“alone” in their lower star, we expect correspondence between critical vertexes and local Pareto
minima as defined in [180]. In the example of Figure 7.9, we have compared critical cells found
by ComputeDiscreteGradient and the basins originated by our implementation of the barrier
tree method over a triangulation of the plane. In Figure 7.9(c), blue dots in the interior of the
triangulation show the basins found in correspondence of the region where the two scalar fields
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Figure 7.9: (a)-(b) two scalar fields defined over a square grid with increasing values from colder to warmer colors.
(c) blue dots indicate basins through the barrier tree method. (d) colored dots indicate critical cells obtained through
ComputeDiscreteGradient: blue for vertexes, green for edges, red for triangles.

of Figure 7.9(a)-(b) do not agree. In Figure 7.9(d), blue dots indicate critical vertex found by
ComputeDiscreteGradient over the same dataset. This correspondence suggests that critical
cells of a discrete gradient compatible with a multivariate filtration is a possible generalization to
simplicial complexes of discrete local Pareto minima as defined in [180]. However, for higher-
dimensional cells, the fact of being found critical it is not necessarily related to being alone in the
lower star. Hence, if we call strongly critical those critical cells a € X such that

Low(a) = {a},

we would be interested in understanding whether strongly critical cells capture interesting proper-
ties. Strongly critical cells are candidate to define discrete Pareto critical cells.

7.4.2 Discrete critical cells and smooth Pareto critical points

In this section, we compare (discrete) critical cells relative to a discrete gradient compatible with
a multiparameter filtration to the notion of Pareto critical point with respect to a multivariate
function (Definition 7.1.4).

We have empirically noticed a correspondence like the one in Figure 7.10 between discrete
critical cells and Pareto critical points. Indeed, by comparing Figure 7.10(a) to Figure 7.1(b), we
notice a surprising similarity which deserves further insights. We plan to perform experimental
comparisons in this sense which are not part of the work of this thesis.

A first obstacle to that correspondence, at the moment, is that we know that this correspondence can
be clearer or more obscure depending on component-wise perturbation performed via simulation
of simplicity [82] in order to apply ComputeDiscreteGradient. In Figure 7.10(c), we see how
the Pareto correspondence is affected by that.

There is another obstacle to perfect correspondence with Pareto critical points, namely the strong
dependence on the triangulation and on the data perturbation we empirically noticed in our
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experiments. For the case of the triangulation, the results obtained on the torus of Figure 7.10(a)
is not as similar to what we expect from the smooth case as the results obtained for the sphere in
Figure 7.3. We suggest that a central role in that is played by the triangulation. The closeness
to the smooth Pareto critical notion varies a lot by changing triangulation and, in the case of the
torus, we can conjecture that the triangulation is sufficiently well-suited with respect to the x
and y coordinates taken as scalar fields. For the role played by the data perturbation performed
by simulation of simplicity before the retrieval of the discrete gradient, we notice the difference
between Figure 7.10(a) and Figure 7.10(b).

Empirical tests give some hints about the definition of critical cluster. We have noticed that our
definition of critical cluster in the previous section might be changed in order to capture the cluster
suggested by Figure 7.1. Indeed, critical clusters in Figure 7.1 corresponds either to minima- or
maxima-clusters from the previous section. However, they are not given by intersecting those.
Hence, we do not detect the four clusters suggested in the figure since the intersection of maxima-
and minima-clusters is always empty.

We are currently working on a definition of discrete Pareto critical cell to form a new notion of
critical Pareto cluster able to capture the four of the clusters in Figure 7.1. One can consider all
critical cells to be discrete Pareto critical cells but, that choice, as already noticed in Section 7.3.2,
might leave too many critical cells to visualize. Alternatively, for the specific example of the torus
in Figure 7.1, it would be enough to define discrete Pareto critical cells as strongly critical cells
defined in the previous section. These two are the extremum possibilities. After that, discrete
Pareto critical cells might be arranged into clusters, called Pareto clusters by detecting connected
components in the Hasse diagram as done for maxima-/minima-clusters in Section 7.3.2. Facets
relations among Pareto clusters might be defined by following the discrete gradient, so that to
obtain a Pareto graph whose nodes are Pareto clusters and whose arcs connect two Pareto clusters
connected by gradient paths. This graph structure would be the only discrete counterpart to the
Reachability graph presented in [114].

Finding formal relationships between the smooth and the discrete settings is a challenging task
which has its roots in the univariate case. We suggest that homology might be a contact point
between smooth and discrete setting. We know the critical cells retrieved by ComputeDis-
creteGradient to form a Morse complex which preserves the multipersistence information. In
Theorem 7.1.6, authors have found a relation between Pareto critical points and discontinuity
points of the multipersistence invariant called rank invariant (Definition 1.7.2). A possibility
would be that of studying the discrete counterpart for discontinuities in the rank invariant, so that
to define a suitable notion of discrete Pareto critical cell such that Theorem 7.1.6 translates in
those terms.
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Figure 7.10: critical cells over a triangulation of a thorus (a) embedded in R® with scalar valued functions given by
the x and y coordinates of vertexes. (b) gradient paths connecting critical cells from one cluster to another. In blue
paths from edges to vertexes, in red, from triangles to edges. (c) a perturbation of vertex coordinate.

7.4.3 Issues in comparing discrete critical cells to PL Pareto cells

In this section, we consider the issues in comparing (discrete) critical cells relative to a discrete
gradient compatible with a multiparameter filtration to the notion of Pareto cell as defined in [113]
for the PL setting.

As discussed previously in Section 7.2.2.2, for multivariate functions d-dimensional simplicial
complex with d > n, authors define in [113] Pareto extrema cells by locally analyzing the level
sets of the PL extension in the star of each cell. Pareto extrema are subdivided into Pareto minima,
that is cells without dominating cells in their star, Pareto maxima, that is cells without dominated
cells in their star, and Pareto optima, that is cells without both dominating and dominated cells in
their star. We have not yet performed comparison tests of the two methods.

Finding formal relationships between the discrete and the PL settings is a challenging task which
has its roots in the univariate case (we refer to [134] for insights on the relation between critical
cells in the PL or discrete settings). Our future plan is to proceed empirically to separate discrete-
PL issues from the multivariate specific ones. Up to now, we have considered simple cases, such
that of Figure 7.10(a), we expect the two method to agree in the following sense. Triangles
incident to critical cells should be declared as Pareto optimal. For the clusters with critical
triangles and edges (red and green), the algorithm proposed in [113] should find two Pareto
maximal cells bounding the cluster. For the clusters with critical vertexes and edges (blue and
green), the algorithm proposed in [113] should find two Pareto minimal cells bounding the cluster.
As a first thing, we notice that there is no direct correspondence between dimensions of critical
cells and the character of Pareto extrema. As a second thing, this simple case should suggest a
more global correspondence. However, that correspondence should become more subtle when
considering examples like the one in Figure 7.10(c) or, even worse, in Figure 7.3. Hence, we plan
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to better investigate the comparison between the two methods.

Differently from what we plan to do for the comparison with smooth Pareto critical point dis-
cussed in the previous section, we cannot rely on an implicit comparison through multipersistent
homology. Indeed, we are not aware of any relation between Pareto cell in the PL setting as
described in [113] and multipersistence of sublevel sets. Moreover, according to authors in [42],
the standard PL extension does not preserve homotopy retracts of sublevel sets with respect to the
approximate smooth function, thus affecting multipersistence compatibility between the smooth
and the PL settings. That motivates author to introduce an axis-wise linear extension which is
proved to preserve the desired compatibility under retracts. Further developments in this sense
will shed some light in the theoretical comparison of our discrete approach and that PL notion of
Pareto extrema cells.
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8 Concluding Remarks

In the work of this thesis, we have mainly dealt with theoretical and computational issues in
multipersistent homology computation. In the last part, we have also given our contribution in the
context of discrete approaches for multivariate data visualization. Here, we recall the main issues
we have addressed. Then, in Section 8.1, we review the results we have discussed along the thesis
with respect to the detected issues. Afterwards, in Section 8.2, we introduce our current works.
Finally, in Section 8.3, we report the main open perspectives on our topic. From the state of the
art review in Chapter 2 for computational issues in Persistent Homology (PH), we addressed the
following issues:

1) computating Multiparameter Persistent Homology (MPH) is not feasible over any reasonably
sized datasets;

2) the only available MPH computational optimizations were preprocessing algorithms based
either on multigraded Betti numbers (Definition 1.7.13), which was not available when we
began our work, or discrete gradients from Discrete Morse Theory (DMT) (see Section 1.4);

3) no preprocessing algorithm had impact evaluation over MPH computations;

4) there was no notion of optimality for a discrete gradient compatible with a filtration, either with
one or multiple parameters. There was, instead, a preprocessing algorithm (see Section 3.2)
for the one-parameter persistence case that is optimal for cubical complexes embedded in R3.
The multiparameter counterpart of that optimality was not straightforward to define;

5) the algorithm treated in Section 3.2 was already generalized to the multiparameter case by
the algorithm we treated in Section 3.3, but the multiparameter algorithm required in input a
simplicial rather than a cubical complex, the algorithm was not parallelizable and it was not
feasible over reasonably-sized data.

Additionally, from our state of the art review in topology-based data visualization in Section 7.2,
we addressed the following issues:

a) discrete approaches in univariate data visualization outperform other approaches in terms of
scalability in the size of the domain and dimension-independence but discrete approaches in
monotony-driven multivariate data visualizations were limited to graph domains;

b) multivariate data visualization methods have no counterpart to PH as a topological mean to
perform noise removal;
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¢) monotony-driven multivariate methods refer to multiple Pareto-related notions from the smooth,
the PL, and the discrete case which demand for further insights on their reciprocal relationships.

8.1 Results

Here, we highlight the contributions of the work of this thesis by referring to the issues listed in
the previous section and by following the chapter structure of this thesis.

In Chapter 3, we provided a unified description of the preprocessing algorithm of Section 3.2 for
one-persistent homology (1-PH) and the preprocessing algorithm of Section 3.3 for multiparame-
ter persistent homology (MPH). These are the two algorithms of point 5) and our presentation
allows to analyze the algorithm complexity in terms of space and time by discriminating between
dissimilarities either due to simplicial/cubical complexes or due the changes from 1-PH to MPH.
We have highlighted the local character of the 1-PH preprocessing as opposed to the global
character of the MPH preprocessing. Moreover, we have provided an input-dependent worst-time
estimation of the MPH preprocessing. This analysis makes it clear that the two preprocessing
algorithm might have the same worst-case time complexity depending on the input. In fact, we
have discussed how the presence of multiparameter in place of one parameter affect the average
case rather than the worst-case time. Our complexity analysis explains that the global character of
the MPH preprocessing limits its performances over any reasonably-sized datasets, especially due
to its runtime storage cost which, possibly exceeds the footprint required for the input and output
representation.

In Chapter 4, motivated by issue 2) and, in order to address issue 1), we have proposed an
MPH preprocessing algorithm. The algorithm retrieves a discrete gradient compatible with a
multiparameter filtration. From the discrete gradient retrieved, we can apply a Morse reduction
which is compatible with the given multifiltration. MPH computations of any kind can be applied
to the Morse reduced object rather than the original one. The same output is guaranteed but the
Morse reduced object is likely to be smaller in terms of filtration and cell complex sizes. We have
formally proved the equivalence of the proposed algorithm with the one treated in Section 3.3,
thus proving its correctness. We have provided our complexity analysis of the proposed algorithm
which highlights its local character as opposed to the global character of the MPH preprocessing
of Section 3.3. The local character of the proposed MPH preprocessing allows for parallel and
distributed implementations. Moreover, the local character shows the theoretical advantages of the
proposed algorithm over the only available equivalent MPH preprocessing. The worst-case time
complexity is the same as in the equivalent algorithm but the estimation is not input-dependent
anymore. We have discussed in detail how the storage managing of the two equivalent MPH
preprocessing is different. In particular, the runtime storage cost of our local MPH preprocessing
does not exceed the footprint required for the input and output representation.
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In Chapter 5, we have addressed issue 4) by restating the optimality proved for the 1-PH prepro-
cessing algorithm (Section 5.1) over cubical complexes embedded in R® into more general terms
as a property of a discrete gradient compatible with a one-parameter filtration. This optimality
notion relates relative homology to the number of necessary critical cells to capture the MPH
properties of the filtration. The proposed optimality notion admits a multiparameter generalization
we have introduced in this thesis. We have showed that a Morse reduction compatible with the
filtration preserves the properties of relative homology in the optimality definition. This has led
us to formally prove that our MPH preprocessing algorithm of Chapter 4 is optimal in the case of
cubical complexes embedded in R? (like in the 1-PH case where it was already known) and in the
case of abstract simplicial complexes of dimension 2.

In Chapter 6, we have evaluated the local MPH preprocessing introduced in Chapter 4 through
four experiments.

The first experiment was meant to evaluate the advantages of our proposed local approach over its
equivalent global approach to be tested on the same implementation. Our theoretical complexity
analysis has been confirmed by that test. Our local approach outperforms the global one in
both terms of space and time costs. From the time cost point of view, both algorithms shows
a linear dependency in the number of cells belonging to the input cell complex. However, the
proportionality coefficient defining the linear dependency is much lower in the case of the local
approach. From the storage cost point of view, the contributions of the runtime storage cost is
much lower in the local case as expected from the analysis of Section 4.4 and Section 3.3.3.
The second and third experiments address issue 3) by proposing an impact evaluation of our local
approach as a preprocessing for MPH: in the former case, applied to the persistence module
retrieval (Definition 1.6.7), that is to the complete information of MPH, in the latter case, applied
to the persistence space retrieval through the foliation method. Computing both the persistence
module and the persistence space suffers of high time and storage costs as underlined in issue
1) and in all considered datasets the applied Morse reduction reduced the size of the original
dataset. In the case of the persistence module retrieval, our local MPH preprocessing increases
of up to about 50 times the size of the input complex that can be treated, and up to about 250
times the size of the filtration that can be treated. In all considered datasets (rather small), the
the Morse reduction allows to complete the pipeline. Some non-reduced datasets have failed for
running out of memory. These failures for rather small datasets suggest that, at the moment, our
Morse reduction is not enough to make the persistence module computation feasible over real-size
data. In particular, we detected memory costs as a bottleneck for current persistence module
computational methods. Optimizations of current algorithms require better handling of memory
usage in terms of size of the filtration and number of cells in the input complex. In the case of the
persistence space retrieval, our local MPH preprocessing shows its advantages in all considered
datasets. The foliation methods allows to retrieve the persistence space by multiple iterations of
1-PH computations. One goal was that of evaluating the tradeoff between the number of iterations
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and the advantages of the MPH preprocessing. We found that in all considered datasets, the Morse
reduced datasets outperforms the corresponding original dataset, regardless of the number of
iterations applied. Moreover, we have found that our MPH preprocessing is preferable over all
considered 1-PH optimized algorithm to be iterated.

The fourth experiment addresses the issue 1) by proposing our Morse reduction compatible with
a multiparameter filtration over simulation datasets with both simplicial and cubical complexes
of up to about 80M cells, and up to 3 filtration parameters. In the worst case, timings are about
18 minutes in the discrete gradient retrieval and about 23 minutes for the Morse reduced dataset
retrieval. The reduction factor in the number of cells is up to 40x. These promising results confirm
the scalability of our MPH preprocessing over larger datasets. However, at the moment, MPH
computation are not made feasible over datasets of reasonable size by our MPH preprocessing.
Indeed, only the visualization tool RIVET [197] can handle Morse reduced datasets of millions of
cells to retrieve an equivalent version of the persistence space. However, the visualization tool
requires in input a simplicial complex whereas our Morse reduced datasets are not necessarily
simplicial complexes but rather cell complexes. For the persistence module computation, no
available method can handle Morse reduced datasets of millions of cells. Yet the limitations we
have found are around 2K cells with 10K filtration grades.

In Chapter 7, we have presented our preliminary results in the context of multivariate data visual-
ization via a discrete Morse-based approach. We have studied the properties of a discrete gradient
V compatible with a multiparameter filtration (Definition 1.6.2) in the context of multivariate
visualization. We have proposed a visualization method based on critical clusters to address
issue b). The tests show that critical clusters capture region where scalar field components have
opposite growing direction. By filtering out critical clusters according to their size in terms
of number of cells, we focus on the biggest regions where opposite growing directions occur.
We have classified our method as a discrete and monotony-driven approach to multivariate data
visualization. With respect to other methods, ours does not propose yet an actual monotony-driven
subdivision but only the critical points defining it. Under the assumptions for applying algorithm
of Chapter 4, we have compared the critical cells of V' to the Pareto-related notions of issue c).
To address issue a), we have found that critical cells of V generalize the Pareto-related notion
underlying the only other discrete method among the monotony-driven ones that was limited to
graph domains. Issue c¢) suggests to compare our critical cluster method to other smooth or PL.
monotony-driven techniques. We have detected the notions of Pareto critical cell (Definition 7.1.4)
and that of Pareto optima (Definition 7.1.5) as the notions to compare to. For the smooth case,
we have empirically showed a correspondence between critical cells of V' and Pareto critical
points. Moreover, we have suggested further insights in the role of the triangulation and the
perturbation adopted to formalize that relation. Additionally, we have detected MPH itself as a
mean to relate smooth Pareto-related notions and critical cells of V. For the PL case, we have
found that correspondences might be more subtle to prove than in the smooth case due to the
lack of MPH relation. Moreover, correspondences between critical cells and critical PL-cells are
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known to be subtle also in the univariate case. Empirical tests might shed some light on the topic
that was too large to be investigated in this thesis and constitute current research.

8.2 Current work

In this section, we list the current works in developing the work of this thesis. We refer to the
issues numbering of the beginning of this chapter. We are currently working on three main fronts.

Developing of issue 4): we are working on proving the optimality of the algorithm we proposed
in Chapter 4 also for simplicial complexes embedded in R>.

Developing of issue 4): we are working on finding relations in between the optimality notion
proposed in Chapter 5 and the notion of multigraded Betti numbers (Definition 1.7.13).

Developing of issue a): as anticipated in Section 7.4.2, we are working in defining (discrete)
Pareto cells with respect to a multivariate function so that to obtain a discrete characterization
through MPH by means of a discrete version of Theorem 7.1.6. Pareto cells would be at the base
of a notion of Pareto cluster to overcome the critical cluster visualization method proposed in
this thesis. Finally, we are working on proposing a Pareto graph as a compact representation of a
multivariate field able to capture the role of the discrete gradient connecting critical cells. Pareto
clusters would be the nodes and directed arcs would connect Pareto clusters admitting a V-path
from at least one Pareto cell from one cluster to another. That graph representation would provide
a fully discrete counterpart to the Reachability graph already proposed in the PL setting in [114].

8.3 Future perspectives

In this section, we provide our point of view for future directions of our work. As already done in
the previous section, we refer to the issues numbering of the beginning of this chapter.

Developing of issue 1): on the one hand, the work of this thesis has given its contribution to
the issue of MPH computation by providing a Morse reduction technique compatible with MPH.
As already observed, this gives promising results but does not completely solve the issue, espe-
cially for computing the persistence module. Developing algorithms able to receive in input cell
complexes rather than simple simplicial complexes will help in fully exploiting Morse reduction
preprocessings. For instance, we think that a good starting point would be the visualization
tool RIVET [197]. Enhancing the runtime storage cost of MPH computation would give the
opportunity of evaluating MPH computational perspectives. On the other hand, in this thesis we
have seen how the computational issues in MPH are strictly connected to theoretical issues of
reducing and interpreting the information captured by MPH invariants. Some MPH invariants
were not taken into account in this thesis for evaluation, such as QR-barcodes [141] for the lack
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of a public available tool. Finally, we think that theoretical insights in the interplay between
the optimality notion we proposed in this thesis and multigraded Betti numbers can help in
developing a preprocessing technique able to exploit the filtration size reduction, not simply for
the persistence module computationa, like we did in Section 6.2, but also for slice-compatible
invariants we were not able to propose in this thesis. In the case of PH, feasibility of computations
over larger data sets has opened the way to statistics of PH invariants in the direction of topological
a preprocessing for machine learning techniques. In the case of MPH, this way is not yet feasible
due to computational constraints and it is premature to propose this issue. Future perspectives
in statistics contexts are determined by feasibility issues of MPH computational techniques and
theoretical answers to the information captured by MPH invariants.

Developing of issue b): as already suggested in several parts of this thesis, we suggest an
interplay between MPH and visualization of multivariate data which deserves further insights.
The optimality notion we proposed in Chapter 5 and Theorem 7.1.6 reported from the work of
Cerri and Frosini [46] goes in that direction. We believe that further insights in the topic can
have positive impact both on defining topology-consistent noise removal techniques valid for
multivariate data and on clarifying the relations among several Pareto-related notions available in
the smooth and in the discrete case, as anticipated in Section 7.4.2.
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Index

V-path, 15 Dimension of a cell complex, 6

k-connected component in a simplicial Dimension of a simplicial complex, 2
complex, 4 Discrete gradient, 15

k-path, 3 Discrete gradient compatible with a

(Hyper)cube, 5 multifiltration, 22

Discrete gradient compatible with a
one-filtration, 18

Discrete Morse function, 14

Discrete vector, 15

Discrete vector field, 15

Abstract simplex, 4

Abstract simplex dimension, 4

Abstract simplicial complex, 4

Algebraic persistence space, 45
Ascending/descending Morse complex, 132

Edge, 2
Betti numbers of a complex, 10 Elementary interval, 5
Boundary map, 9 Embedding dimension of a complex, 2, 5
Boundary matrix, 38 Embedding space, 2, 5
Boundary of a cell, 6 '
Boundary of a simplex, 3 Fiber barcode, 46
Filtered Lefschetz complex, 18
Cell complex, 6 Filtration multigrades, 21

Cell function, 14
Cellular incidence function, 11

Cha%n complex, 7 Hausdorff distance, 52
Cha¥n group, 7 Homology, 8
Chain module, 7 Homology functoriality, 8

Chain morphism, 8 Homology of a Lefschetz complex, 11
Closure of a simplicial subset, 2

Grade poset, 21

Coboundary of a cell, 6 Index-based lower star, 79

Coboundary of a simplex, 3 Indexing, 58

Compatible Morse complex, 18, 22 Intersection of Lefschetz subcomplexes, 12
Complete boundary matrix, 40 Invariant, 24

Coreduction pair, 41

Jacobi point, 134
Corresponding multigraded module, 30 acobi poin

Critical cell, 14 Lefschetz chain complex, 11
Critical index, 14 Lefschetz complex, 10
Cubical complex, 5 Lexicographic indexing, 64
CW complex, 6 Lower star, 57
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Matching distance, Bottleneck distance, 52

Mayer-Vietoris triple, 13

Morse complex, 16

Morse filtered complex, 18

Morse incidence function, 16

Morse inequalities, 15

Morse multifiltered complex, 22

Morse set, 16

Morse-Smale complex, 133

Multidimensional matching distance, 53

Multifiltered Lefschetz complex, 21

Multigrade, 21

Multigraded Betti numbers, 31

Multigrades comparable and incomparable,
21

Multiparameter filtering function, 22

Multiparameter filtration, 21

Multiparameter matching distance, 53

Multiparameter multiplicity function, 28

Multiparameter Persistence module, 23

Multipersistent Homology, 23

multipersistent homology class, 23

One-critical filtration, 22
One-parameter filtering function, 19
One-parameter filtration, 18
One-parameter multiplicity function, 26
One-parameter optimality, 100, 103
One-parameter persistence module, 20
One-persistent Homology, 20

Optimal discrete Morse function, 15
Optimality, 105

Oriented simplex, 8, 9

Pareto critical point, 134
Pareto optimum, 135
Perfect discrete Morse function, 15
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Rank invariant, 25, 45
Reduction pair, 41
Reeb graph, 132
Regular cell-complex, 6
Regular grid, 5

Regular grid in R?, 5
Relative homology, 13
Relative pair, 12

Simplicial chains, 9
Simplicial complex, 2
Simplicial homology, 9
Simplicial topology, 3
Singular homology, 9
Slice, 44
Star of a cell, 6
Star of a simplex, 3
Strongly critical cell, 150
Structure Theorem’s decomposition into free
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Sublevel filtration, 19, 22

Tetrahedron, 2
Triangle, 2

Union of Lefschetz subcomplexes, 12
Union preceding u, 105
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