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Summary  

Over the past few decades, there has been a significant increase in 
the occurrence of natural hazards worldwide, including floods, droughts, 
fires, and landslides, impacting both urban and natural environments. 
The pivotal catalyst propelling climate change is the escalating 
concentration of greenhouse gases (GHG) in the Earth's atmosphere, 
predominantly characterized by the surge in carbon dioxide (CO2) 
levels. The intensification of atmospheric GHGs, attributed mainly to 
human activities such as industrial processes, deforestation, and the 
burning of fossil fuels, acts as a potent force amplifying the natural 
greenhouse effect and leading to global warming.  

Monitoring natural resources is essential in guiding political 
decisions toward optimal practices for preserving these resources. This 
need is particularly critical as natural resources play a primary role in 
absorbing carbon dioxide; specifically, forests act as fundamental natural 
carbon reservoirs, absorbing carbon dioxide from the atmosphere during 
the process of photosynthesis. However, forest monitoring activities are 
traditionally time and resource-consuming. Nevertheless, nowadays, the 
scientific community can rely on the most recent technological 
innovations, which allow to acquire information about increasingly large 
areas with a greater level of detail and less time. Remote Sensing 
techniques need to be supported by automatic processing methodologies 
in order to manage the amount of data produced efficiently; different 
approaches have been developed depending on the data type.  

This research focuses on the acquisition and processing of LiDAR 
point clouds, which represent a well-established acquisition technique in 
the field of Remote Sensing and provide detailed mapping of the scene. 
More specifically, the aim is to propose a methodology for extracting 
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forest parameters through LiDAR techniques and automated procedures. 
The final goal is to assess woody aboveground biomass and the carbon 
dioxide stocked in it according to different LiDAR acquisition 
techniques and evaluate temporal variations caused by climate changes 
or the natural growth of various tree species. The methodology is tested 
for three case studies: the first scenario concerns a multi-temporal 
analysis of aerial datasets before and after an ice storm occurred in the 
Dinaric Forest (Southwest Slovenia); the second scenario consists of a 
comparison of several terrestrial sensors in a post-forest fire scenario in 
the Italian Western Alps; the last case study delves into the processing 
of oblique point cloud datasets through a multitemporal approach under 
undisturbed conditions in the Hyytiälä boreal forest in Southern Finland. 
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Chapter 1 

INTRODUCTION 

Nowadays, public opinion strongly discusses climate change and the 
actions to be taken to tackle it. Attention is raised due to the increasingly 
frequent news about disastrous flood events, earthquakes, extensive 
fires, prolonged periods of drought, the breaking of record high 
temperatures, etc. Consequences of these events have both short- and 
long-term impact: in the short term, human life may be endangered from 
the occurrence of the event; in the long term, critical issues may occur 
with the water and food supply, as well as there may be, by way of 
example but not limited to, transport, energy or ecosystem crises [1]. The 
goal of the scientific community is to raise awareness among the 
population and policymakers to encourage more environmentally 
friendly individual actions and policies and promote the latest scientific 
developments and innovative strategies for monitoring and analyzing 
climate change and adaptation techniques. 

The leading cause of climate change is the increase in the 
concentration of greenhouse gases (GHG) in the atmosphere, mainly 
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carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and 
fluorinated gases [2]. Although the greenhouse effect is a natural 
phenomenon fundamental to regulating the Earth's temperature and 
guaranteeing livable conditions, excessive concentrations of these gases 
disturb the natural balance of the atmosphere. This imbalance causes an 
increase in the frequency and intensity of the disastrous natural events 
previously mentioned. Various factors cause the rise of greenhouse gases 
in the atmosphere. Among these are deforestation, agriculture, and 
livestock; however, the most incisive factor is the combustion of fossil 
fuels, which humanity exploits to produce energy. 

Various protocols and laws have been issued at national, European 
and international levels since the 1970s to reduce greenhouse gas 
emissions. In addition to man's greater attention to the Earth's health, the 
Earth implements natural strategies to deal with climate change. In 
particular, forests and oceans are the two largest CO2 storage reservoirs: 
forests exploit the chlorophyll photosynthesis of plants and trees to fix 
carbon, producing biomass; oceans, on the other hand, exploit the 
photosynthesis of phytoplankton, which is then deposited on the seabed. 
Forests cover about 31% of the emerged lands [2] and can absorb about 
a third of the carbon dioxide emitted by burning fossil fuels each year 
[3]. However, due to deforestation caused by natural events and incorrect 
forest management by man, this capacity is shrinking; moreover, because 
of deforestation, new CO2 is emitted into the atmosphere during the 
biomass decomposition phase. These reasons make it essential to 
improve the practices and strategies for sustainable and responsible use 
to be adopted in forest management. However, good resource 
management requires in-depth monitoring, which can allow us to 
quantify the carbon absorption capacity of forests more easily, evaluate 
their temporal variability, determine the mutual relationship with climate 
change, etc. Only in this way is it possible to know the phenomenon in 
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its entirety, which makes it possible to provide political decision-makers 
with all the information necessary to adopt the best strategies. 

Monitoring the CO2 emitted by the combustion of fossil fuels does 
not present particular challenges; it can be carried out with different 
strategies, the most precise of which is based on the use of special sensors 
for direct measurements; on the other hand, monitoring the CO2 absorbed 
by trees with sufficient accuracy is an ambitious goal. As a matter of fact, 
not only is it necessary to quantify the biomass of forests, but it is also 
necessary to identify the relationship between the volume of trees and 
the carbon dioxide actually stored in the wood.  

Traditionally, the calculation of the volume of a tree is carried out 
invasively or indirectly; in the first case, the tree is cut down, and its 
weight is measured; in the second case, some indirect parameters are 
measured, such as the Diameter at Breast Height (DBH) and the treetop 
height, which are related to the aboveground biomass (AGB) through 
allometric equations previously calibrated on control data. The advent of 
more advanced technologies based on remote sensing represents the new 
frontier of forest monitoring. Nowadays, it is possible to use techniques 
based on photogrammetry or LiDAR (Light Detection and Ranging) 
sensors to acquire the information necessary to estimate the volume of a 
tree with higher precision and, therefore, evaluate the stocked carbon 
quantity. 

The ease of acquisition that the new instruments have brought makes 
using Artificial Intelligence (AI) essential for data processing. The 
amount of data that can be acquired differs from the capacity a man can 
put in place. Machine Learning (ML) and Deep Learning (DL) 
algorithms are currently the most powerful tools for analyzing large 
amounts of data, learning from past experiences, and providing 
autonomous predictions.  

In the forestry literature, numerous studies exploit this data 
processing procedure [4], [5]; however, at present, there is no 
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standardized procedure to describe the automated forest monitoring 
process in its entirety, which comprehensively explains the data 
acquisition and processing procedure with the final goal of obtaining an 
estimate of the carbon stocked over time in a forest at the single tree 
level. 

The study presented in this thesis aims to fill the scientific gap by 
proposing a semi-automated workflow for estimating forest parameters 
(i.e. aboveground biomass, tree elevation and diameter of the trunk) and 
assessing the carbon captured and stocked within the woody biomass at 
a single tree level starting from LiDAR data acquired through different 
techniques. Three datasets with different characteristics were taken into 
consideration (in terms of forest characteristics and acquisition method), 
and specific research questions were also investigated for each of them. 
Case study A and C address the issue of multitemporality, investigating 
the variation in biomass both as a consequence of the occurrence of 
disastrous events (case study A, with ALS data) and in undisturbed 
conditions (case study C, with oblique acquisitions); additionally, the 
dataset of case study A was also used to validate an improved procedure 
for segmentation at the level of a single tree, while that of case study C 
allowed to evaluate the most influenced features for the segmentation of 
wood and leaf points of the tree. Finally, case study B focuses more on 
testing different acquisition techniques (MLS and TLS) and defining 
which of these allows to correctly identify the greatest number of trees 
and calculate their woody biomass. 

This research is contextualized within the 
climate_change@polito (cc@polito) project at the Department of 
Environment, Land and Infrastructure Engineering (DIATI), which aims 
to analyze and face the effects of climate change developing (i) 
innovative strategies for climate change monitoring and analysis, (ii) 
climate change mitigation techniques and (iii) adaptation solutions. 
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The thesis is structured as follows. In Chapter 2, the concept of 
climate change is introduced and deeply discussed; in particular, causes, 
effects and possible strategies to deal with it are highlighted. Moreover, 
a focus on forest monitoring and the aboveground biomass assessment 
for carbon stocking estimations is presented. Chapter 3 delves into 
sensors and equipment required in the forest monitoring field, describing 
the pros and cons of different acquisition techniques; greater emphasis 
will be placed on LiDAR functioning. In Chapter 4, a literature review 
of point cloud processing techniques and tools (i) for individual tree 
detection (ITD), (ii) aboveground biomass assessment and (iii) stocked 
carbon estimations are described. Chapter 5 introduces three case studies 
analyzed in this thesis by describing the datasets and the main workflow. 
Chapters 6, 7, and 8 describe the experiments conducted and discuss the 
results. Finally, in Chapter 9, conclusions are summarized, and future 
research topics are introduced. 

1.1 Keywords 

Climate Change (CC); Forest monitoring; LiDAR; Point clouds; 
Stocked CO2 assessment; Individual Tree Detection (ITD).
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Chapter 2 

OVERVIEW OF CLIMATE 
CHANGE  

According to the definition given by the Intergovernmental Panel on 
Climate Change (IPCC) [6], climate change (CC) refers to:  

 
“a change in the state of the climate that can be identified (e.g., 
by using statistical tests) by changes in the mean and/or the 
variability of its properties and that persists for an extended 
period, typically decades or longer. Climate change may be due 
to natural internal processes or external forcings such as 
modulations of the solar cycles, volcanic eruptions and 
persistent anthropogenic changes in the composition of 
the atmosphere or land use.” 
 

At the same time, the United Nations Framework Convention on 
Climate Change (UNFCC) [7] defines climate change in Article 2: 
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“Climate change means a change of climate which is attributed 
directly or indirectly to human activity that alters the composition 
of the global atmosphere and which is in addition to natural 
climate variability observed over comparable periods.” 
 

The two definitions of climate change are complementary to each 
other. IPCC emphasises the physical meaning of climate change and how 
to determine it rigorously without dwelling too much on the description 
of the causes; on the contrary, the UNFCCC's definition emphasises the 
causes, particularly humanity's role. If, through the first definition, it 
could be deduced that natural and anthropogenic causes are equally 
influential and determining, the second firmly states that the leading 
causes are directly or indirectly attributable to human activity, which are 
also added causes linked to natural climatic variability. The coexistence 
of different definitions for the same phenomenon highlights how various 
aspects can be stressed depending on the perspective from which it is 
viewed (e.g., political, scientific, economic). From a scientific point of 
view, which is the approach with which this thesis research deals, it is 
essential to rigorously define climate change, identify its causes, and 
analyse its effects to accurately determine the cause-effect relationship 
and propose solutions to protect our climate. 

As stated, the changes are attested by looking at the variation of 
statistical parameters relating to climatic properties over a sufficiently 
long period. More information about which are the parameters to 
consider is given in the definition of climate provided by the IPCC [6]: 

 
“Climate in a narrow sense is usually defined as the average 
weather, or more rigorously, as the statistical description in 
terms of the mean and variability of relevant quantities over a 
period ranging from months to thousands or millions of years. 
The classical period for averaging these variables is 30 years, as 
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defined by the World Meteorological Organization. The relevant 
quantities are most often surface variables such as temperature, 
precipitation and wind. Climate in a wider sense is the state, 
including a statistical description, of the climate system.” 
 

This definition also emphasizes the importance of considering the 
proper time interval when discussing climate change. It is, therefore, 
necessary not to confuse climate change and weather. The latter is 
defined by the World Meteorological Organization (WMO) as natural 
events happening in short time intervals and specific places and times: 

 
“Weather describes short-term natural events - such as fog, rain, 
snow, blizzards, wind and thunderstorms, tropical cyclones, etc. 
- in a specific place and time.” 

 
Even the concept of global warming, often mistakenly interchanged 

with that of climate change, must be clear. The National Aeronautics and 
Space Administration (NASA) refers to global warming as: 

 
“The long-term heating of Earth’s surface observed since the 
pre-industrial period (between 1850 and 1900) due to human 
activities, primarily fossil fuel burning, which increases heat-
trapping greenhouse gas levels in Earth’s atmosphere. This term 
is not interchangeable with the term "climate change.” 
 

Climate change refers to all the effects due to changes in the Earth's 
climate, while global warming relates only to the increase in the average 
temperature on Earth. 

In the following paragraphs, a greater focus will be given to the 
causes of climate change and how human activities have affected it. 
Afterwards, the consequences of climate change will be explored in 
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depth. Finally, the knowledge about the actions undertaken (or to be 
undertaken) to mitigate and adapt to climate change will be deepened. 

2.1 What do we know about climate change? 

The Earth's climate is constantly changing over time. Indeed, the 
main factor responsible for climate change is the greenhouse effect. This 
natural phenomenon consists of taking advantage of greenhouse gases in 
the Earth's atmosphere to retain the heat of the Sun and keep the Earth's 
temperature stable. However, the increase of these gases in the 
atmosphere over time caused an exaggerated overheating worldwide, 
commonly referred to as global warming. Among the greenhouse gases 
that worsen global warming, the most effective is carbon dioxide (CO2) 
due to the highest atmospheric concentrations. Methane (CH4) is the 
second cause because, despite having a greater capacity to absorb solar 
energy, unlike CO2, it lasts much less in the atmosphere; in much smaller 
concentrations, nitrous oxide (N2O) and fluorinated gases are also 
present.  

 

 

Figure 1: Carbon dioxide concentration [ppm] in November 2019 [8]. 
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Figure 2: Temperature anomaly [°C] in 2022 compared to the 1951-1980 
average [9]. 

The natural causes that can provoke the increase in the concentration 
of greenhouse gases are mainly (i) volcanic eruptions, (ii) anaerobic 
decomposition of organic matter, which releases methane, (iii) changes 
in the Earth’s orbit and rotation, (iv) variations in Solar activity. Volcanic 
activities emit sulfur dioxide (SO2) and carbon dioxide into the 
atmosphere; nevertheless, conservative estimates of annual CO2 
emissions from volcanoes are less than 1% of CO2 emissions from all 
anthropogenic activities [10]. Changes in Earth’s orbit alter the way the 
Sun’s energy is distributed with latitude and by season on Earth; these 
orbital changes were minimal over the last several hundred years and are 
insufficient to cause the observed magnitude of change in temperature 
[11]. The intensity of the sunlight that reaches the Earth’s surface 
depends on solar energy. Satellite measurements have recorded minor 
variations in the solar energy emitted that can cause slight variations in 
the Earth's temperature but have not registered an increasing temperature 
trend that fully justifies long-term global warming [11]. 
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Nevertheless, since the 19th century, the impact of human activities 
on climate has increased mainly due to the increase in the use of fossil 
fuels (i.e., coal, oil, and natural gas), which emit GHG into the 
atmosphere when burned. Since the beginning of the Industrial 
Revolution, the atmospheric CO2 concentration has increased by more 
than 40%, with over half the increase occurring since 1970 [11]. Data 
published by the National Oceanic and Atmospheric Administration [12] 
from 1979 to the present shows an increase in the global atmospheric 
CO2 concentration of about 80 parts per million (ppm), and nowadays, it 
settles around 420 ppm (Figure 3). 

 

 

Figure 3: Global atmospheric CO2 concentration [NOAA]. 

According to the United States Environmental Protection Agency 
(EPA), which annually develops an annual Inventory of U.S. 
Greenhouse Gas Emissions and Sinks [13], the sectors that cause the 
highest greenhouse gas emissions in the United States are transportation 
(28%), energy (25%) and industry (23%); the commercial and residential 
sectors and the agricultural sector have a lower impact (13% and 10% 
respectively). Regarding agriculture, specifically intensive farming, the 
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quantities of methane produced by animals through the decomposition 
of animal waste are far from negligible [14]. 

Furthermore, human activities like deforestation seriously endanger 
biodiversity and the Earth's natural capacity to absorb carbon. According 
to the Food and Agriculture Organization of the United States (FAO)’s 
Global Forest Resources Assessment [15], deforestation refers to: 

 
“The conversion of forest to other land use independently 
whether human-induced or not.” 
 

Forests (like oceans and soils), in the context of climate change, are 
commonly identified as natural carbon sinks, defined as “any process, 
activity or mechanism which removes a greenhouse gas, an aerosol or a 
precursor of a greenhouse gas from the atmosphere” [16]. Forests cover 
about 31% of the emerged lands [17]. However, the thesis aims to 
estimate the carbon dioxide absorbed by trees precisely. Rough studies 
at a global level have shown that forests absorb approximately two 
gigatons of carbon [18] and about a third of the carbon dioxide emitted 
by burning fossil fuels each year [3]. Deforestation seriously reduces the 
capacity of forests to stock carbon; its causes can be natural (e.g., floods, 
fires, storms, etc.) or anthropic. It is estimated [17] that almost 90% of 
deforestation worldwide is due to agricultural expansion; more 
specifically, 50% is linked to converting forests into cultivated land, and 
40% is for livestock grazing. Urbanization affects deforestation only 6% 
(even if it is the primary driver in Europe, as shown in Figure 5), and the 
remaining 4% refers to the exploitation of wood resources (Figure 4). 
Between 1990 and 2020, 420 million hectares of forest were lost to 
deforestation (an area equivalent to that of the EU), mainly in South 
America, Congo and Southeast Asia. Furthermore, factors of natural 
origin also partially give rise to deforestation. 
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Figure 4: Global causes of deforestation 2000-2018 [17]. 

 

Figure 5: Regional differences in deforestation drivers (2000-2018) [17]. 

The main consequence of climate change is the increase of the 
average air and ocean temperature near the Earth's surface, mainly 
observed in the past one or two centuries. Time series about Earth’s 
global average surface temperature collected by the National Oceanic 
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and Atmospheric Administration (NOAA) [17] clearly show a positive 
trend. Currently, the average annual temperature is about one °C higher 
than the average temperatures recorded in the twentieth century (Figure 
6). While the 20th-century temperatures average settles at 13.9 °C, in 
2016, the record of 14.9 °C was reached. 

 

 

Figure 6: Global land and ocean temperature anomalies from 1880 to 
2022 [19]. In blue, anomalies below the 20th-century average of 13.9 °C; in 

red, anomalies above the 20th-century average. 

High temperatures and the increasing occurrence of heat waves have 
manifold consequences. Directly, high temperatures expose the world 
population to an increased risk of mortality: dehydration phenomena or 
heat strokes can be fatal; previous diseases, such as cardiac or respiratory 
diseases, can be more severe and recurring due to high temperatures [1]. 
Moreover, increasingly warmer climates facilitate the proliferation and 
spread of diseases carried by pathogens [20]; the increase in 
concentrations of pollutants in the air can cause inflammation of the 
airways and increase the susceptibility to infections, in particular in 
subjects suffering from respiratory diseases (e.g., asthma, bronchitis) 
[21]. Higher temperatures are also expected to cause changes in 
meteorological models and the occurrence of extreme events such as 
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torrential rains, prolonged droughts, wildfires, landslides, etc. It has been 
observed in recent years that the frequency and intensity of these events 
have increased [22]. Flood events or landslides can damage 
infrastructure and endanger the lives of millions of people, especially in 
Europe, where the high population density in areas with high seismic or 
flood risk can be a crucial factor [23], [24]. Wildfires break out and 
spread more efficiently due to high temperatures, putting biodiversity 
and human health at risk and favouring the release of CO2 absorbed by 
plants and trees into the atmosphere [25]. 

Moreover, the reduction of wooded and vegetated areas causes a 
reduced capacity to absorb new carbon dioxide naturally. Also, surface 
water bodies absorb much of the heat from global warming; as a result, 
sea level rises, threatening coastal and island communities, affecting the 
stability of marine ecosystems, and modifying and reducing the 
availability of water resources water supply [26]. The increase of 
greenhouse gases in the atmosphere also affects oceans, which absorb 
them (it is estimated that the oceans today absorb around 25% of the CO2 
produced by human activities, corresponding to around two petagrams 
of carbon per year [27]). This phenomenon causes water acidification, 
endangering marine life [28]. Global warming is affecting the melting of 
glaciers, which conditions mountain and polar ecosystems and water 
supply in regions where glaciers are used as freshwater natural reservoirs 
[29]. Another consequence worth mentioning is the variation of the 
geographical distribution of climatic zones, which can (i) alter the 
distribution and abundance of plant and animal species, (ii) damage 
agriculture and livestock yields, and (iii) put in danger the freshwater 
availability [30].  
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2.2 How can we deal with climate change? 

Tackling climate change is essential to preserve resources and global 
security for current generations and ensure good living conditions for 
future generations. 

Unfortunately, nowadays, it is not possible to make deterministic, 
definitive predictions of how climate will evolve over the next century 
and beyond as it is with short-term weather forecasts [31]. The forces at 
play are disparate, and the current understanding of the climate system 
does not allow us to fully understand how these interact with each other 
and the environment; furthermore, the very magnitude of the forces at 
play is still being determined, both anthropic and natural. Nonetheless, 
the problem must be addressed first by raising awareness among the 
world population. At the same time, the best scientific, technological, 
and political solutions must be implemented. A lack of interest in 
tackling climate change would worsen global warming and its 
consequences, making it even more challenging to guarantee optimal 
living conditions for the entire world population. 

Despite the uncertainty of the forces at play mentioned above and 
the difficulties in describing them with mathematical language, several 
studies have proposed climate models for modelling climate conditions 
and predicting future conditions [32]. Climate models, or General 
Circulation Models (GCMs), are based on well-documented physical 
processes to simulate the transfer of energy and materials through the 
climate system. Mathematical equations characterize how energy and 
matter interact in different parts of the ocean, atmosphere, and land. Once 
the model can correctly reproduce past climate conditions, it is used to 
predict future scenarios. These are achieved by varying complex 
parameters, which attempt to describe equally complex phenomena such 
as demographic trends, economic development, political choices, etc. 
[33]. 
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In literature, several studies have been conducted on climate models 
[34], [35], [36], [37], [38]. Over time, improvements in resolution, the 
number of simulated processes, and better representations of the latter 
have been achieved [31]. Figure 7 shows the global mean temperature 
changes averaged across all Coupled Model Intercomparison Project 
Phase 5 (CMIP5) models relative to 1986–2005 for four different 
scenarios. They differ according to four predicted emission levels. 
According to this study, based on different possible energy policies and 
economic growth patterns, in 2100, the global surface temperature could 
increase between 1 and 4 °C.  

 

 

Figure 7: Global surface temperature change registered and predicted 
according to different emission level scenarios [31]. 

The gravity of the possible future scenarios has led decision-makers 
to act at international levels. The first international treaty that commits 
state parties to reduce greenhouse gas emissions is the Kyoto Protocol, 
ratified in 1997 and entered into force in 2005 [39]. More recently, 
studies have highlighted the need to limit the global temperature to 1.5°C 
above pre-industrial temperature to avert the worst impacts of climate 
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change and preserve a livable planet; this is the main objective set in the 
Paris Agreement, stipulated in 2015, between the members of the 
UNFCC [40]. To cope with global warming, we must mainly try to 
reduce greenhouse gas emissions, favouring (i) the transition towards 
renewable and low-carbon energy sources, (i) improving energy 
efficiency, and (iii) reducing consumption, especially at an agricultural 
and industrial level. 

The Earth has complex natural mechanisms that can influence the 
climate to achieve balance; the carbon sinks are the most effective way 
carbon is naturally stocked in oceans, forests and soil [41]. The oceans 
absorb about 25% of human carbon dioxide emissions. They can produce 
about 50% of the oxygen through the diffusion of carbon dioxide in the 
ocean's surface water and the oceanic photosynthesis of phytoplankton. 
However, this phenomenon can affect the balance of the marine 
ecosystem, as high concentrations of CO2, which reacts in water to form 
carbonic acid, lowers the pH of the water (this process is commonly 
referred to as ocean acidification) [28], [42]. The role of forests has 
already been introduced in the previous Paragraph. Plants, through the 
natural process of photosynthesis, exploit solar energy as they grow to 
convert carbon dioxide and water into glucose and oxygen (O2); in 
parallel, plants start the process of cellular respiration, through which 
they oxidize the sugars produced during photosynthesis to obtain energy. 
using oxygen and producing carbon dioxide. The net balance calculated 
as the difference between the CO₂ absorbed and that produced by a tree 
is generally positive (net CO₂ absorption of approximately 10-30 kg per 
year depending on the size, type of tree and growing conditions), and the 
carbon dioxide remains stored for hundreds of years. In addition to 
directly affecting climate change, they play equally crucial natural 
solutions in protecting urban environments from landslides, floods, and 
strong winds.  
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Finally, soil also stocks carbon in organic matter, which mainly 
derives from the decomposition of plants and other organic remains (e.g., 
leaves, branches). The organic matter is decomposed by soil 
microorganisms (bacteria, fungi) and invertebrates, and a significant 
portion of CO2 is incorporated into the soil in the form of stable organic 
substances such as fulvic acid and humic acid. Furthermore, plants 
release organic compounds from their roots into the soil.  

Furthermore, from a technological point of view, recent 
developments have been directed towards removing carbon dioxide in 
the atmosphere through Negative Emission Technologies (NET). The 
most direct way is the Direct Air Carbon Capture and Storage (DACCS) 
technique, through which the CO2 in the air is extracted through chemical 
processes; other techniques involve afforestation, reforestation forest 
management, and wood utilization [43], [44], [45]. These approaches are 
developed as long-term techniques for storing atmospheric CO2 (carbon 
sequestration). 

2.2.1 Monitoring of CO2 storage capacity 

To know the effects of global warming in their entirety, quantify the 
damages or changes to the global balance, and lay the foundations for 
developing efficient mitigation and adaptation techniques, it is necessary 
to concentrate the first efforts on monitoring the phenomena involved 
and quantifying the quantities involved. The aspects to be explored in 
greater depth would be many and varied; however, the phenomenon on 
which this doctoral thesis focuses is the estimate of CO2 captured by 
forests. Monitoring natural resources, particularly forestry resources, and 
the consequent estimate of the CO2 they capture is a hotly debated topic. 
In the previous Paragraph, the importance of this natural resource 
concerning the increase in greenhouse gas concentration over time has 
already been described, and rough estimates were presented. However, 
it is essential to quantify more accurately the carbon stocking capacity of 
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forests and, in particular, of each individual tree. In this way, it is 
possible to (i) estimate with a greater degree of precision the benefits that 
forests perform as carbon sinks, (ii) monitor the validity of reforestation 
or afforestation practices, and more generally quantify the effects of 
mitigation policies implemented to combat and limit the effects of 
climate change, and (iii) quantify the loss of CO2 storage capacity as a 
consequence of deforestation or destructive events. Natural hazards, in 
fact, not only put human lives at risk but can seriously damage natural 
resources and reduce the storage power of carbon sinks; among these, 
forests are the most sensitive to external disturbances. As an example in 
recent history, the Vaia storm hit North-Eastern Italy in October 2018. It 
caused the fall of millions of trees, destroying tens of thousands of 
hectares of alpine coniferous forests. 

However, carbon dioxide absorbed by plants cannot be directly 
measured on a large scale; on the contrary, it is easier to obtain it 
indirectly through measurements and estimates regarding the volume of 
trees and, therefore, the aboveground biomass. The term "aboveground 
biomass" refers to the total amount of organic matter present in the parts 
of a plant that are above the ground, such as stems, branches, leaves, and 
fruits (Figure 8).  

As anticipated, this measurement is of particular interest in ecology 
and forestry, as it provides crucial information on the amount of carbon 
stored in plants and adds information about the dynamics of the 
ecosystem. On the contrary, belowground biomass mainly refers to the 
roots (Figure 8). Belowground biomass is not the subject of this study, 
as the sensors used cannot acquire any information related to it. 
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Figure 8: Schematization of a tree's subdivision of the aboveground and 
belowground biomass [46]. 

Studies on a global scale quantify the total worldwide biomass at 
approximately 550 gigatons of carbon (Gt C); of this, about 80% refers 
to plant biomass, of which in turn, 60% refers to aboveground biomass 
(320 Gt C), and approximately 24% to belowground biomass (130 Gt C) 
[47].  

2.3 The role of geomatics against climate change 

In recent years, the evolution of geomatics technologies and 
techniques combined with an automatic or semiautomatic data 
processing procedure provides the best approach to accurately assess the 
CO2 stocked in the aboveground biomass. 

Geomatics focuses on obtaining, representing, understanding, 
handling, storing, and sharing georeferenced information, referring to 
data associated with a specific location in a selected reference system.  
Geospatial data can be acquired using different geomatics techniques, 
and they help support decision-makers; in particular, remote sensing data 
are mandatory nowadays in environmental monitoring since they 
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provide comprehensive knowledge of the Earth's surface. In the field of 
environmental monitoring and the fight against climate change, it 
supports the following actions: 

• Monitor greenhouse gas emissions and stocking at a global, 
regional, or local level through specific sensors to support 
climate models; 

• Monitor land use land cover (LULC) to assess the impact on 
carbon absorption and ecological balance; 

• Monitor glaciers and sea levels, analyzing and quantifying 
the main consequences of global warming; 

• Support natural resources management (e.g., forests, 
waterways, agricultural areas) and spatial planning, ensuring 
resilience to the effects of climate change and conservation 
of natural resources and human goods. 

As detailed in Paragraph 3.2, remote sensing instruments and sensors 
can acquire data about the surface of the Earth; as we will see, some 
instruments, such as LiDAR, have the potential to penetrate through 
vegetation and reach the ground. However, it is not possible nowadays 
to acquire below-ground information in the field of remote sensing. As a 
matter of fact, only the visible part of the trees (trunk, branches and 
crown) has been analyzed, while the carbon stock capacity of roots and 
soil was not deepened. Different sensors and different methodologies can 
be used to monitor forests. For the purposes of this thesis, the focus is on 
using LiDAR instrumentation, which uses several automatic and semi-
automatic data processing techniques. The main steps addressed are (i) 
the Individual Tree Detection, (ii) the separation between wood and leaf, 
(iii) the characterization of the aboveground biomass (AGB), and (iv) 
CO2 assessment.  
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Chapter 3 

TECHNIQUES AND 
SENSORS FOR FOREST 
MONITORING 

Forest monitoring is an essential procedure encompassing all 
practices of systematically collecting, analysing, and evaluating forest-
related information. This process is of fundamental importance for 
studying forest health, monitoring ecological dynamics, and managing 
forest resources sustainably, but above all, to cope with environmental 
challenges and climate change. The main parameters of interest in the 
forestry domain concern the characteristics of single trees (age, species, 
height, diameter, volume) as well as forest composition; additionally, 
from a biological point of view, several samplings can be carried out to 
perform biodiversity analysis and to individuate possible diseases or 
parasites. An in-depth analysis of the existing techniques for carrying out 
forest monitoring is proposed in the following paragraphs: specifically, 
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in Paragraph 3.2, in situ, traditional approaches are described, while in 
Paragraph 3.2, the more innovative and indirect methods based on 
remote sensing data are discussed. 

3.1 Direct measurements 

Traditional forest monitoring is carried out through forest inventory 
data collected in situ. Depending on the size of the area under 
examination, it may decide to carry out a complete inventory, in which 
all trees above a predetermined diameter are measured, or to apply a 
sampling strategy. Usually, systematic sampling is more efficient, in 
which the need for statistical precision determines the number of plots, 
and their size varies according to the expected number of measurements 
of the parameters of interest [48]. 

 

 

Figure 9: Examples of diameter tape (on the left), dendrometric caliper 
(in the middle) and hypsometer (on the right) and their functioning. 

The primary information usually collected is related to the location, 
composition, distribution of the forest resource, and tree density over a 
given area. This basic information is necessary to outline general 
assessments at different levels of detail, such as harvest plans and the 
development of provincial or state-level strategies [49]. However, when 
analyzing single trees, the crucial information usually collected is their 
species, the Diameter at Breast Height (DBH), height, age, and health 
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state.  Diameter tapes and dendrometric calipers are the most traditional 
tools for measuring the DBH, while the tree's height is traditionally 
determined with a hypsometer (Figure 9). Both diameter tapes and 
calipers usually have sub-centimeter precision when measuring trees 
with sufficiently regular circular geometries, while greater uncertainties 
and difficulties are observed when the trunk form is very irregular. It is 
specified that the DBH is measured at a height of approximately 1.30 m 
from the ground. 

Ultrasonic or laser hypsometers are frequently employed in field 
measurement in forest scenarios because of their simplicity. Laser 
hypsometers rely on trigonometric principles and combine a laser 
rangefinder and a gravity clinometer; the first is used to measure 
distances from the point of view to the top and the bottom of objects, 
while the latter measures the angle between the lines to each. Laser 
hypsometers are often used when considering longer measures without 
obstacles between the instrument and the target. This condition, 
unfortunately, is not always verified, above all in dense forest scenarios 
[50]. For this reason, ultrasonic hypsometers have been developed: they 
use ultrasounds to measure distance, which improves hypsometer 
usability since it can measure the height even if obstacles (e.g., leaves or 
branches) cover the trajectory from the instrument to the treetop. On the 
other hand, unfortunately, the transmitting speed can easily be affected 
by air temperature and moisture content, affecting the accuracy of the 
measurement. Commercial hypsometers used in forestry reach 
accuracies of approximately 4 cm at a maximum distance of 1500-2000 
meters, depending on the operating principle. 

At an operational level, measuring tree heights as a function of forest 
density is not always possible. Furthermore, the volume and the biomass 
of a tree are particularly challenging to measure: in fact, the only direct 
way involves the tree being harvested and subsequently weighed; 
however, this strategy cannot be carried out on a large scale, as it would 
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effectively destroy the forests we intend to monitor and protect. These 
reasons led to the study and development of empirical equations that take 
into consideration the DBH and other forestry parameters, such as the 
distribution of trees [51], [52], [53]. Regarding the measurement of 
aboveground biomass (AGB), allometric equations are calibrated 
according to tree species considered and based on DBH and height 
measurements [54], [55], [56], [57], [58]. More details about the AGB 
assessment will be addressed in Paragraph 4.4, while the estimate of 
carbon dioxide stocked within the aboveground biomass will be explored 
in greater detail in Paragraph 4.5. 

Direct measurements have the advantage of being very accurate 
concerning the forestry research domain in which they are used; they can 
be used to develop allometric equations to estimate more complex 
attributes without any direct measurement; they can also be stored, 
visualized and processed in a Geographic Information System. However, 
these traditional measurement tools are limited in their operability 
conditions: carrying out measurements in large areas for each tree within 
a large study area and possibly repeating them over time is highly time-
consuming and requires a large workforce. Nowadays, since scientific 
interest is focused on regions of ever more significant extension and 
possibly in analyzing the temporal variability with even relatively 
narrow intervals, direct measurements are more commonly carried out 
on a sample basis and used mainly to validate the results obtained 
through remote sensing techniques [59] or to complement them [60]. 

3.2 Remote Sensing 

The science that includes all territorial and environmental survey 
disciplines using the most recent instrumentation and informatic support 
is commonly referred to as geomatics. This science involves acquiring, 
managing, analyzing, and visualizing geographical data; it includes 



3.2 - Remote Sensing 

29 

several disciplines and technologies, including Remote Sensing (RS), 
which is [61]: 

“the science and art of obtaining information about an object, area, 
or phenomenon through the analysis of data acquired by a device that is 
not in contact with the object, area, or phenomenon under 
investigation.” 

 
In the modern age of technology, the ability to perceive and 

understand the world has been revolutionized by remote sensing. 
Nowadays, progress in the different RS technologies has led to an 
innovative and efficient approach to large-scale study of climate change. 

The field of remote sensing evolved from the interpretation of aerial 
photographs to the analysis of satellite imagery and from local area 
studies to global analyses, with advances in sensor system technologies 
and digital computing. Nowadays, remote sensor systems can provide 
data from energy emitted, reflected, and/or transmitted from all parts of 
the electromagnetic spectrum [62]. The fundamental principle behind 
remote sensing is the interaction between incident radiation and the 
target of interest. This radiation includes visible light, infrared light, 
ultraviolet light, microwave light, and radio waves. By interpreting the 
information in these waves, remote sensing techniques enable insights 
about the Earth. Specifically, the energy source emits electromagnetic 
energy, which travels through the atmosphere, hits the target object, and 
interacts with it (depending on the properties of both the target and the 
electromagnetic energy). The scattered part travels again in the 
atmosphere; finally, the sensor collects and records it. The interaction 
can vary according to the target surface properties and the 
electromagnetic energy. Finally, according to the kind of sensor and 
support considered and the purposes for which they are used, data can be 
transmitted in real-time to an operational base or saved in internal 
memory and subsequently collected by the operator. A simplifying 
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schematization of the operating principle of remote sensing is shown in 
Figure 10. 

 

Figure 10: Basic operating principle of remote sensing [63]. 

The sensors used in the field of remote sensing are disparate. 
Anyway, the first classification in which they can be subdivided relates 
to the origin of the energy source. Sensors can be active or passive; in 
the first case, the sensor itself also produces electromagnetic energy, 
while in the latter, it relies on the energy of an external nature (e.g., the 
Sun). A further classification can be made if the distance from the object 
is considered, affecting the collected data's resolution and extension. The 
sensors used to acquire information can be equipped on aerial supports: 
low Earth orbit satellites, helicopters, airplanes, up to Uncrewed Aerial 
Systems (UAS), which rely on Uncrewed Aerial Vehicles (UAV); 
furthermore, they can be equipped on terrestrial supports, either mobile 
(as in the case of handheld sensors or when provided on cars) or fixed 
(for example mounted on tripods). Sensors and supports must be chosen 
according to the study's goal, considering the phenomena under 
examination, the properties requested to be investigated, and the level of 
detail. A widespread practice also involves using different sensors 
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simultaneously, integrating all the data collected to provide the most 
complete and detailed knowledge of the study area. 

The forestry research field is one of the sectors in which the potential 
of remote sensing is fully exploited, allowing the acquisition of a 
considerable amount of data that would otherwise be impossible or 
highly expensive, time-consuming, and sometimes even risky. Unlike 
traditional field-based sampling, full-coverage RS data enables the 
production of maps of key forestry parameters, which are helpful for 
forest management purposes [64]. Images captured by satellites offer 
detailed spatial data with a high temporal revisit, allowing to deepen the 
variability of forests over time or the consequences of natural disasters 
immediately after (or meanwhile) these happened safely [65]; LiDAR 
sensors are usually involved for mapping forest structures with high 
accuracy with the goal of automatically assess forest attributes needed 
for forest management by experts in the sector; depending on the 
applications, the operability conditions, and the extension of the area 
under consideration, satellite, airborne or terrestrial data can be used. 
Like satellite-based acquisitions, LiDAR point cloud can be acquired 
multiple times; data processing helps detect even small changes, making 
this tool a valuable aid for detailed studies on biomass monitoring.  

In the following subparagraph, knowledge about the sensors used in 
remote sensing will be deepened, emphasising active sensors and 
particularly LiDAR technology, which was explored and considered in 
this thesis. Subparagraph 3.2.2 will discuss the platform in more detail, 
while Subparagraph 3.2.3 will look at the positioning methods for the 
georeferencing point cloud processing. 
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3.2.1 Passive and active sensors 

Passive sensors 

Passive sensors are remote sensing systems that measure the 
naturally available reflected or remitted energy. Passive sensors rely on 
the illumination of the Sun since solar radiation is reflected from the 
surface. Energy can also be naturally emitted (such as thermal infrared), 
and it can be detected if the amount of energy is large enough to be 
recorded regardless of the presence of the Sun. Indeed, the power 
measured by passive sensors depends on several factors, such as the 
surface composition, physical temperature, surface roughness, and other 
physical characteristics of the detected object [66].  

Among the most common passive sensors are traditional 
photographic cameras, multispectral imaging cameras, thermal infrared 
sensors, hyperspectral sensors, and radiometers. Traditional 
photographic cameras (RGB cameras) are the most common sensors 
used in remote sensing, mainly for applications like aerial photography 
and cartography; they can capture visible light, allowing for high-
resolution images of the Earth's surface. However, the visible spectrum 
(wavelength of visible light in air ranges approximately from 400 nm to 
700 nm) defines only a small part of the electromagnetic spectrum. 
Further information can be collected using thermal infrared sensors, 
which acquire in the Near InfraRed (NIR) portion of the spectrum 
between 700 nm and 1 mm, or with hyperspectral imaging sensors, 
which can collect information from across the electromagnetic spectrum 
(typically from visible to Short-Wave InfraRed (SWIR). Figure 11 
shows the electromagnetic spectrum. 

Passive sensor data are limited to reconstructing surfaces visible in 
the image data. For this reason, aerial images in high-density wooded 
areas provide a partial vision of the territory, lacking a description of the 
terrain and the lowest part of the trees, limiting themselves to a mere 
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description of the foliage and the tree crown distribution [67]. 
Nonetheless, numerous studies have been conducted in estimating forest 
parameters through aerial or satellite images [68], [69]. In addition, 
recent developments in photogrammetric processing, such as the SFM 
(Structure From Motion) technique, allow the reconstruction of a three-
dimensional model of the surface of the study area, and it helps in the 
production of high-resolution orthophotos [70]. Thermal cameras can 
also be used in forestry, specifically for forest health monitoring [71] or 
forest fire detection [72]. In contrast, multispectral and hyperspectral 
cameras are primarily used for species classification and mapping tasks 
[73], [74], [75], detecting parasites [76], or estimating the aboveground 
biomass [77]. 

 

 

Figure 11: Schematization of the electromagnetic spectrum. 

The reliability of passive sensors depends on the quality of the 
camera, which is understood as lens quality, stability, and resolution. The 
quality of a camera lens can be identified by several factors, such as its 
sharpness, clarity, color accuracy, and distortion cons. Image 
stabilization refers to techniques to reduce blurring associated with the 
motion of a camera during exposure.  

The resolution of an image can be defined from a spatial, temporal, 
radiometric, and spectral point of view (Figure 12). The spatial resolution 
refers to the amount of detail that can be seen in that image and is 
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measured in terms of pixels per unit length; the temporal resolution 
indicates the frequency with which new images are acquired to represent 
a temporal sequence or the time elapsed between the acquisition of two 
consecutive images; the radiometric resolution indicates how many color 
shades or light intensity levels can be represented in each pixel of the 
image; finally, the spectral resolution indicates the ability of a sensor or 
device to capture information across various wavelength bands of light. 
 

 

Figure 12: Different kinds of resolution, with examples of lower and 
higher resolution data. Spatial resolution relates to pixel size, temporal 

resolution to observation frequency, radiometric resolution to the number of 
unique values, and spectral resolution to bandwidth in the electromagnetic 

spectrum [78]. 

Photogrammetric surveys' relative accuracy (accuracy of individual 
features on a map concerning each other) increases with increasing 
overlap between images, with the quality of the pictures, and using 
Ground Control Points (GCPs). The relative accuracy can be roughly 
estimated to be between one and three times the Ground Sampling 
Distance (GSD). GSD is the distance between two consecutive pixel 
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centres, and it represents the size of the Earth's surface, which is covered 
by each pixel (schematized in Figure 13). It can be calculated as follows: 

 

 𝐺𝐺𝐺𝐺𝐺𝐺 =
𝑑𝑑 ∗ 𝐻𝐻
ℎ

 (1) 

  
Where ℎ refers to the focal length, 𝑑𝑑 is the dimension of the sensor, 

and 𝐻𝐻 is the distance between the sensor and the sensed object. 
 

 

Figure 13: Scheme of the GSD in function of the factors of flight height, 
focal length and geometric resolution of the sensor. Modified from [79]. 

The GSD value is a requirement based on which to decide the 
instrument used and the acquisition distance. Better results are obtained 
by setting reduced distances from the object at the expense of acquisition 
times and vice versa.  

RGB sensors are widely used because (i) they return high-resolution 
images, (ii) they are easily and intuitively interpretable, and (ii) they are 
economical. However, image quality can be affected by atmospheric and 
lighting conditions, and the chemical and physical properties of the 
surface cannot be acquired since the acquired electromagnetic spectrum 
is incomplete. On the other hand, thermal sensors are independent of 
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lighting conditions since they detect thermal radiation emitted by the 
surface, but (i) the spatial resolution is lower than RGB sensors, and (ii) 
they are not very sensitive to minor temperature variations. Finally, 
hyperspectral sensors are indispensable for studying the chemical 
composition of the analyzed object. Still, the drawbacks limit their 
development due to (i) the high cost of production and maintenance and 
(ii) the complexity of interpreting the data. 

Table 1 summarizes the main characteristics of passive sensors. 

Table 1: Main characteristics of passive sensors. 

Passive sensor Spectrum Pros Cons 

RGB sensors 

Visible 
spectrum  

(400 ~ 700 
nm) 

Low cost, easy to 
equip and process 

Limited spectral 
information and 
light-sensitive 

Thermal 
infrared sensors 

NIR spectrum 
(700 nm ~ 1 

mm) 

Thermal analyzes 
and night 

applications 

Limited spatial 
resolution 

Hyperspectral 
sensors Full spectrum 

Detailed spectral 
analysis and 

material 
characterization 

High costs, 
complex, and 
advanced data 

processing 
 

Active sensors 

Active sensors, like Radar or LiDAR, emit electromagnetic radiation 
to illuminate the object; they send a pulse of energy from the sensor to 
the scene and then receive the radiation reflected or backscattered from 
that object [11]. The main advantage of these sensors is that they can be 
used without an energy source and allow night-time acquisitions. Radio 
detection and ranging (Radar) sensors use electromagnetic waves (radio 
waves or microwaves) to map the position (fixed or moving) of objects. 
Since radio waves have a long wavelength, radar sensors are mainly 
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employed in mapping large objects or tracking movement. For this 
reason, this technology does not have significant applications in the 
forestry sector. However, in recent years, several studies have explored 
the functioning of SAR (Synthetic Aperture Radar) concerning forest 
studies. SAR is a particular type of Radar that uses the motion of the 
radar antenna over a target region to provide finer spatial resolution than 
conventional stationary beam-scanning radars. SAR output can be 
considered to monitor forest height [80] and evaluate its variation over 
time as it allows to frequently acquire data in all weather conditions (i.e. 
cloudy areas) and at all hours of the day. However, the characteristics of 
the radar waves and their interaction with the surface make the data 
acquired with the SAR not trivial to interpret; combined with high 
maintenance costs, such instruments are not as widely used as LiDAR. 
Furthermore, even if the spatial resolution is high considering the 
acquisition distance, it is still of the order of magnitude of a meter. 

LiDAR 

Light Detection and Ranging (LiDAR) sensors, or laser scanners 
(Figure 14 shows three examples of different LiDAR sensors), work 
according to the same operating principle as Radar, from which they 
differ because they rely on a LASER (Light Amplification by Stimulated 
Emission of Radiation) light to measure the distance of an object. 

 

 

Figure 14: Examples of LiDAR sensors. 
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A light beam is produced by exciting a gain medium (a material of 
controlled purity, size, concentration, and shape); when excited, it emits 
photons amplified through a system of mirrors, creating a concentrated 
beam of light. In turn, the beam strikes a mirror with a known laser's 
angle of incidence. The laser propagates in space until it hits an object, 
is reflected, and is detected by the sensor, which finally measures the 
position in space of the detected object. Typically, the wavelength of the 
laser light is in the ultraviolet, visible or near-infrared spectrum. The 
output of laser scanner acquisitions is a highly accurate three-
dimensional (3D) representation of the scene, commonly referred to as 
point cloud. As a matter of fact, laser scanners can capture millions of 
3D points per second, acquiring not only geometric information but also 
the target's reflectance features by measuring the laser pulse's return 
strength. 

 

 

Figure 15: Airborne laser scanning timeline [81]. 

Figure 15 shows the timeline of the aerial laser scanner [81], which 
can be used to describe LiDAR generically. Since LiDAR entered the 
market in the 90s, the overall size and weight (initially in the order of 
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tens of kilos) have been significantly reduced, reaching weights of 
around a few kilos; this has allowed, as it will be further discussed, the 
possibility of equipping these instruments on increasingly lighter 
supports such as drones, or handheld/pedestrian LiDAR. 

Not only has the size been reduced, but at the same time, the scan 
rate has increased by approximately 1000 times. Nowadays, laser 
scanners can emit up to 2 million shots per second, with multiple pulses 
simultaneously travelling in the air. 

The first LiDAR sensors could record only the first and last pulses 
in a discrete way; therefore, for each single laser beam, only two echoes 
were recorded. Nevertheless, laser pulses can be totally or partially 
reflected according to the surface properties of the hit object; in some 
cases, the absorbed part of the laser pulses can penetrate the object, 
continue its trajectory, and hit multiple objects. In a forest environment, 
for example, several returns can be recorded relating to different layers 
of vegetation until the pulse hits an object impenetrable by the laser beam 
(e.g., the ground, a wall, a trunk). Discrete LiDAR systems identify 
peaks and record a point (return) at each peak location in the waveform 
curve, while more advanced systems can also record intermediate 
returns. Differently, full waveform LiDARs record a distribution of 
returned light energy: full-waveform LiDAR data are thus more complex 
to process; however, they acquire more information than discrete return 
LiDAR systems. 

Traditional laser scanners operate in linear mode: in this case, they 
use high energy pulses (resulting in long laser pulses); one laser emitter 
and one receiver are mounted in the sensor. This approach allows for the 
acquisition of all the backscattering information (full-waveform). In the 
recent past, very sensitive LiDAR operate in Geiger Mode or Single 
Sensitive Photon mode, the advantage of which is a higher area coverage 
rate; however, due to their high sensitivity, these sensors are more 
subject to point cloud noise. Geiger mode LiDAR, operating with 
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medium energy and short laser pulses, is equipped with an array of 
receivers that only acquire the first echoes. On the other hand, Single 
Sensitive Photon LiDAR use low energy and short laser pulses; the 
emitted laser beam is divided into an array of partial beams (beamlets), 
each with a specific penetration capacity.  

Another development that has occurred over time concerns the 
wavelength affected by the acquisition; from a single wavelength 
(typically near-infrared for topographical purposes), LiDAR can now 
acquire data in a multispectral domain, including visible wavelength. 
This particularity has allowed researcher of different domains to 
approach LiDAR for their purposes; for example, the green wavelength 
can penetrate the surface of water bodies, supporting bathymetric studies 
in shallow or deep water. 

The position of the objects hit by the laser emitted by LiDAR is 
estimated by applying the principles of trigonometry (Triangulation 
Scanner) or direct measurements (Ranging Scanner).  

 

 

Figure 16: Example of a triangulation-based laser scanner. 

Triangulation scanners (Figure 16) consist of a laser emitter and a 
receiver separated by a priori known distance (baseline) on which the 
principle of triangulation is applied. By knowing the angle with which 
the laser beam is emitted after hitting the internal mirror and measuring 
the angle at which the receiver captures the laser, it is possible to estimate 
the target's position. These instruments are widely used in the industrial 
sector [82] since they have millimeter precision (short range). However, 
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since the baseline between the emitter and the receiver cannot exceed 
practical limits of handling, the range of these instruments is very low: 
as a matter of fact, the precision, which is inversely proportional to the 
distance to the object, exceeds one decimeter with distances greater than 
20 meters. 

Ranging Scanners LiDARs are the most commonly used in the 
geomatics and topographic domains as they achieve centimeter precision 
even for large ranges (the order of magnitude can vary from a few 
hundred meters to a few kilometers). In turn, they can be classified 
according to the kind of direct measurement, which can be related to the 
time of flight or the phase shift. Phase shift laser scanning systems 
measure the phase shift between the emitted laser and the same laser 
detected by the receiver after interacting with the target object. 
Subsequently, the phase difference is related to the distance between the 
scanning device and the object's surface according to a pre-defined 
proportion. Time of Flight (ToF) LiDAR systems determine the distance 
d to an object by precisely measuring the round-trip time Δt taken by a 
laser pulse to travel to the target and return to the receiver, dividing this 
quantity in half and multiplying it by the speed of light c in the air (2). 
Typically, phase measurement systems have a reduced range (a few 
hundred meters) compared to ToF ones since it is necessary for the return 
wave to have a specific energy to activate the measurement; however, 
they are faster and more accurate (at low ranges). 

 

 𝑑𝑑 = 𝑐𝑐 ∗
∆𝑡𝑡
2

 (2) 

 
LiDAR can also be classified according to scanning mechanisms: the 

concentrated laser beam produced by the excitation of the gain medium 
can hit an oscillating or rotating mirror, a palmer scanner, or a Risley 
prism (Figure 17). 
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Figure 17: Scanning mechanisms of LiDAR sensors and acquisition 
pattern of a moving sensor – From left to right: oscillating mirror, rotating 

mirror, palmer scanner, Risley prism. Modified from [83]. 

In the case of an oscillating mirror, it oscillates between an initial 
and final position; when the LiDAR is equipped on a moving vehicle, 
the points acquired by a single laser are characterized by a meandering 
pattern, with a greater distribution at the end of the field of view, i.e. 
when the oscillating mirror slows down, stops, and reverses the direction 
of movement. The rotating mirror mechanism is based on the constant 
rotation speed of a polygonal mirror, which produces a homogeneous 
point distribution in the point cloud; on the other hand, this mechanism 
reduces the effective scan rate since the surface near the edges cannot be 
used to reflect the laser beam due to geometric reasons. In the palmer 
scanner mechanism, a tilted mirror (mounted obliquely with respect to 
the laser beam source) rotates with a constant rotation; it causes a conical 
movement of the laser beam, and a circular pattern can be observed in 
the point cloud. As in the case of the oscillating mirror, the density of 
points is greater at the border in this mechanism. The last mechanism 
(Risley prism) relies on two coaxial tilted mirrors, which can rotate with 
the same or different velocities and in the same or different directions; 
according to the combination of velocities speeds and directions, 
different scan patterns can be achieved.  



3.2 - Remote Sensing 

43 

Among the aspects not to be overlooked when deciding to use a 
LiDAR to conduct a survey are the resolution and scanning density. 
Resolution represents the number of points per unit length (or area), 
while density is the distance between two contiguous points. These two 
parameters describe the ability to detect and describe small geometric 
objects accurately; they are not constant (unless considering a sphere 
concentric to the instrument) and depend on the distance and inclination 
of the detected surface concerning the direction of the incident laser 
beam. Furthermore, the phenomenon of laser beam divergence must be 
taken into consideration. The divergence γ [mrad] measures how much 
the laser beam diverges at a specific distance R; it is essential to know 
the footprint of the laser beam when it hits the target by quantifying its 
diameter d as a function of the wavelength λ and the aperture diameter D 
(3): 

 

 𝑑𝑑 = 𝛾𝛾 ∗ 𝑅𝑅 = 2,44 ∗
𝜆𝜆
𝐷𝐷
∗ 𝑅𝑅 (3) 

 
For instance, modern medium-range terrestrial laser scanners have a 

beam divergence equal to 0.14 ÷ 0.35 mrad (resulting in 1.4 ÷ 3.5 cm 
laser footprints at 100 meters distance). Table 2 summarizes the main 
characteristics of LiDAR. 

LiDAR sensors have applications in a wide range of fields, from 
geospatial mapping and classification in urban [84], [85] or natural 
environments [86], [87] to autonomous driving [88], archaeological and 
cultural heritage studies [89], underwater knowledge [90], [91] and 
forestry management. In the forestry domain, LiDAR plays a crucial and 
versatile role. At the same time, LiDAR can provide valuable 
information not accessible using field methods or optical remote sensing 
observations and has benefits in terms of speed of data acquisition, data 
accuracy, costs and coverage compared with traditional methods of 
acquiring the same information in the field [92]. The primary use is that 
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of forest monitoring and management: this can happen through the 
estimation of forest parameters and continuous investigations over time 
[93], [94], [95], [96], evaluating the evolution of restoration plantations 
[97], assessing deforestation effects [98], [99], detecting fires and fire 
damages [100], [101], or by mapping the vegetation structure for 
biodiversity analysis [102]. 

Table 2: Main characteristics of LiDAR sensors. 

Sensor Spectrum Pros Cons 

LiDAR 

Ultraviolet, 
visible or near-

infrared 
spectrum 

Speed and ease of 
data acquisition, 

high precision, 3D 
reconstruction, wide 

operability, 
vegetation 

penetration, variety 
of applications 

High costs, 
weights and 

dimensions for 
very high-

resolution sensors, 
sensitive to fog or 
rain, critical issues 

with reflective 
surfaces 

 
LiDAR is a mighty sensor; however, it is crucial to correctly manage 

and implement the acquired data optimally in a standard reference 
system. It is, therefore, necessary to integrate this sensor with tools 
dedicated to addressing the positioning and orientation of the LiDAR. A 
complete integrated system involves the implementation of a Global 
Navigation Satellite System (GNSS) and an Inertial Navigation System 
(INS), the knowledge of which will be explored in more detail in 
Paragraph 3.2.3.  

3.2.2 Platforms 

When planning a survey, in addition to choosing which type of 
instrument to use, it is equally essential to identify the best way to use it: 
depending on the extension of the area under examination, the precision 
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required, the type of analysis to be carried out, it may be necessary use 
terrestrial (which in turn can be static or dynamic) or aerial support 
(satellites, airborne, drones). 

Aerial 

Since 1972, several hundred satellites have been launched into orbit 
around the globe for Earth Observation (EO) purposes. Nowadays, the 
diversity of EO technology allows for data acquisition through different 
sensors (e.g., optical, infrared, thermal, radar and LiDAR) at different 
spatial, spectral and temporal resolutions [103]. As a matter of fact, over 
time, several satellite constellations have been launched into orbit, such 
as Landsat (the first mission, launched by NASA in 1972), MODIS and 
Sentinel (Figure 18); they differ in the sensors equipped, the spectral 
bands acquired, the spatial and temporal resolution.  

EO satellites monitor the Earth’s land, ocean, atmosphere, 
cryosphere, and carbon cycle from space in real-time and constantly 
transmit that information to the ground [104]. Satellite imagery has been 
widely analyzed, among other objectives, for classification tasks [105], 
glacier melting assessment [106], and risk zone mapping [72]. Even 
though image resolution has improved significantly since the first 
satellite was inaugurated, satellite images are mainly used for medium or 
large-scale studies, while detailed analysis on a small scale is still out of 
reach. In more recent years, active instruments such as SAR and LiDAR 
have also been equipped on satellites; a considerable amount of studies 
have been conducted using satellite SAR data [105], [107], [108], while 
as regards LiDAR, this is not yet systematically used in the research field 
due to poor spatial resolution on the ground. The main applications of 
satellite LiDAR (such as the ICESat satellite, launched by NASA and 
operative from 2003 to 2010) refer to atmospheric investigations [109]. 
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Figure 18: Examples of a Sentinel satellite (on the left) and an aircraft for 
aerial survey [110] (on the right). 

Satellite aerial surveys allow the acquisition of a considerable 
amount of information and survey areas of substantial extension; on the 
other hand, spatial and temporal resolution can be limiting, so aircraft or 
Uncrewed Aerial Systems can be taken into account to acquire data. 
Compared to satellite images, these supports offer greater spatial 
resolutions and acquisition frequencies at the expense of the extension 
of the area, which is reduced locally. Flight planning is the first step to 
performing an aerial survey optimally. It aims, according to the expected 
final result, to (i) define the most suitable platform, (ii) choose the sensor 
(or sensors) to be used, and (iii) communicate the required flight 
characteristics. The extension of the study area, its location (if in an 
urban or rural area, if there are flight restrictions or if the area can be 
flown over without any limitation), the required payload (the aerial 
support must be able to support the weight of the sensor mounted on it), 
the resolution required, and the economic availability are factors that 
influence the decision to consider an aircraft or a UAV, or drones, for 
the aerial survey. Historically, the first platforms used to carry out aerial 
surveys were helicopters or aircraft; they allowed the survey of medium-
sized areas using different types of sensors, which initially had more 
significant weight. When planning an airborne survey, it must be 
considered that the distance between parallel flight strips must be large 
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enough (150-500 m) to allow a safe turning maneuver; the distance can 
be reduced to 50-60 m when helicopters are considered.  

Subsequently, with the advent of drones and the contemporary 
lightening of sensors, the latter has become more versatile for studies in 
very small areas (Figure 19).  

 

 

Figure 19: Examples of UAV (multirotor on the left and the right, fixed 
wing in the middle). 

These are typically used in environmental and urban monitoring, 
cultural heritage, precision agriculture, and forestry. Drones can be 
distinguished according to (i) flight autonomy with a single battery (from 
a few minutes up to half an hour of autonomy for standard drones, while 
recent hybrid models rely on the combustion engine that charges the 
batteries during flight, extending the autonomy up to 2.5-3 hours of 
flight), (ii) the equipped sensor (commercial drones can equip standard 
RGB, thermal, multi-spectral cameras or LiDAR sensor, or they can have 
the predisposition to use additional sensors), (iii) the weight (depending 
on the weight and according to national legislation, heavier drones 
cannot be used in an urban environment or in the presence of civilians 
who are not informed about the flight mission), the type of construction 
(fixed-wing drones, which generate lift with their wings, consuming less 
energy to stay in the air, ensuring more excellent flight stability and 
increasing autonomy, but at the same time making maneuverability and 
the take-off and landing phase difficult, and preventing hovering, or 
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multirotor drones, which are more maneuverable, versatile, and easily 
transportable, at the expense of flight duration). Nevertheless, weather 
and lighting conditions should not be overlooked, as these can affect the 
dataset's quality or severely impact flight range and security.  

 

 

Figure 20: Schematization of the swath width related to flight altitude and 
sensor scan angle parameter [111]. 

When using photographic sensors in aerial surveys, it is also 
necessary to guarantee a certain percentage of overlap (generally 
between 60% and 80%) between contiguous images (longitudinally and 
transversely with respect to the direction of flight). This requirement is 
necessary to process the data using the Structure from Motion (SfM) 
technique, through which it is possible to estimate the 3D position of a 
point using two or more 2D images. Aerial photogrammetry is widely 
used in the forestry domain, mainly for estimating forest parameters and 
health monitoring [64], [112], [113]. On the other hand, the aerial 
acquisition technique through LiDAR is called Aerial Laser Scanning 
(ALS). The requirements for planning ALS surveys concern the overlap 
between adjacent flight strips to ensure complete coverage of the area 
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under examination, the quality assessment analysis, and the increased 
points density. With these sensors, the overlap is typically greater than 
50%. Other parameters to be considered are the footprint diameter 
(previously described) and the swath width (Figure 20). 

The swath width (SW) depends on the flight altitude (h) and the total 
scan angle (ψ) according to (4): 

 

 𝑆𝑆𝑆𝑆 = 2 ∗ ℎ ∗ tan �
ψ
2
� (4) 

 
The mean point density can also be defined a priori as a relationship 

between the number of points acquired per second (equal to the effective 
scan rate) and the area covered per second as follows: 

 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
𝑁𝑁𝑁𝑁.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

=
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑆𝑆𝑆𝑆 ∗ 𝑣𝑣

 (5) 

 
Where 𝑣𝑣 represents the flight velocity. 

Terrestrial 

Terrestrial surveys are typically conducted to acquire information 
about natural or artificial objects with a limited spatial extension; due to 
the oblique and non-nadiral acquisition point perspective, they are not 
used to acquire terrain information [114], [115]. The distances at which 
data are obtained via a terrestrial survey are shorter than those from 
aerial; for this reason, the final output usually has higher accuracy and 
resolution [115], allowing the analysis of specific or localized 
phenomena in areas with limited extensions in a highly detailed manner. 

Terrestrial photogrammetry, or close-range photogrammetry, in 
which acquisition distances reach a maximum of approximately 300 
meters [116], is widely used in the architectural field for the monitoring 
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of assets of cultural and historical interest [117] or for 3D modelling 
[118], as well as for the monitoring of geological features and 
discontinuity characterization [119] or bridge deformation and geometry 
measurement [120]. In the forestry sector, this acquisition methodology 
has been used to estimate the DBH [121] and to reconstruct the stem 
surface [122], [123]. Its strengths lie mainly in this procedure's cost-
effectiveness and ease of data management. 

 

 

Figure 21: Examples of a Terrestrial Laser Scanning data acquisition (on 
the left) and a handheld mobile Laser Scanning System (on the right). 

As with aerial acquisitions, LiDAR can also be used in terrestrial 
acquisitions.  Although the sensors are more expensive than 
photogrammetric ones, they allow obtaining a greater quantity of data, 
even in difficult-to-access areas, in a shorter amount of time. Terrestrial 
acquisitions are called Terrestrial Laser Scanning (TLS) operations. 
They can be static, in which the instrument is positioned on a tripod 
during the acquisition phase, or dynamic, in which the instrument is 
equipped on a moving platform. In the latter case, when the final 
objective is to map an area, we refer to a Mobile Mapping System 
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(MMS), and when a LiDAR is used, we refer to that technique as Mobile 
Laser Scanning (MLS). When, in addition to mapping, an estimate of the 
sensor's position is performed through technological systems and 
algorithms, we talk about SLAM (Simultaneous Localization and 
Mapping) systems (Figure 21). Mobile Mapping systems represent a 
hybrid solution for acquiring medium/large-sized areas, in which the 
movement of the sensor itself compensates for the limited range and 
instrumental point of view. In this case, integration with other sensors 
(described in the following Paragraph) is essential to acquire data 
correctly. 

In literature, it is possible to find a vast number of studies in which 
Terrestrial Laser Scanning (TLS) surveys are conducted in very disparate 
domains, such as cultural heritage [124], Earth science [115], forest 
inventories [125], [126], structures monitoring [127], [128], etc. MMS 
have broad applications in autonomous driving [129], [130], road quality 
assessment [131], [132], Building Information Modeling (BIM) 
generation [133], [134] and vegetation mapping and detection [135], 
[136], [137], [138], [139]. 

Data fusion 

Very often, an integrated approach that combines different types of 
sensors or different platforms is mandatory to obtain a result with a 
greater degree of detail and precision or to achieve unattainable goals 
using a single type of sensor [140], [141], [142], [143], [144], [145], 
[146], [147]. Data integration from different sensors obtained with 
varying types of acquisition is a common practice in geoinformatics and 
environmental monitoring fields. As a matter of fact, since RGB, 
multispectral and SAR images, and LiDAR point cloud can capture 
different types of information about the scene, each of them can be used 
for a particular task. Still, none of them can capture the scene in such a 
complete way as to use a single type of data to replace the others [148], 



3 - TECHNIQUES AND SENSORS FOR FOREST MONITORING 

52 

[149], [150], [151]. For example, hyperspectral images can characterize 
objects' spectral and spatial characteristics. However, it is difficult to 
distinguish objects with similar spectral characteristics but different 
elevation information; compared with these images, LiDAR data have 
accurate three-dimensional information, which can classify objects using 
height information. Therefore, it dramatically improves classification 
results [143]. Integrating RGB images and LiDAR point clouds is 
widespread because combining visual information with three-
dimensional data can significantly enhance the understanding and 
interpretation of the surrounding environment [142]. For this reason, 
instruments that integrate these two sensors are widespread on the market 
(Figure 22).  

 

  

Figure 22: Examples of Hybrid RGB/LiDAR systems. 

In the same way, aerial and terrestrial acquisition are very often 
integrated to obtain a complete description of scenarios in which some 
elements develop in elevation and for which terrestrial acquisitions fail 
to acquire data in the upper part. In contrast, the opposite happens with 
aerial acquisitions [142], [152]. In the forestry domain, data integration 
is often needed to achieve good forest parameters assessment at single 
tree level [153], [154], [155], [156]. Figure 23 shows the final result of 
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an urban environment scenario obtained with an integrated procedure 
between LiDAR and photogrammetric instrumentation with terrestrial 
and aerial acquisitions [142]. 

 

 

Figure 23: Example of data fusion:  LiDAR and photogrammetric point 
cloud obtained through the integration of aerial and terrestrial platforms [142]. 

Furthermore, the importance of accurate planning should not be 
underestimated, as well as data standardization and the adoption of 
advanced analysis methodologies to integrate the different data types 
efficiently. 

3.2.3 Methods for georeferencing 

Geomatics surveys aim to acquire information in space. For this 
reason, aerial or terrestrial platforms comprise an integrated multisensor 
platform in which the acquisition instrument takes care of the data 
acquisition. However, it is equally essential to georeference the acquired 
data, that is, to associate geographical coordinates so that its position is 
known univocally on a map or a terrestrial surface. This process is 
critical to integrate data and enable spatial analyses. Indeed, a Global 
Navigation Satellite System (GNSS) and an Inertial Navigation System 
(INS) are needed to estimate the platform's exact position and orientation 
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to georeference the data acquired. As discussed in the following 
paragraphs, these two systems are complementary. 

On the one hand, GNSS provides a global position but can be subject 
to signal interruptions, multipath and atmospheric variations; on the 
other hand, INS provides estimates of position, velocity and orientation 
based on inertial sensors but may be subject to drift over time. By 
integrating GNSS and INS data, overall positioning errors can be 
reduced; additionally, during GNSS signal interruptions, the INS can 
provide reliable estimates. In this way, an uninterrupted and accurate 
position estimate can be obtained, which is fundamental, among other 
applications (e.g., autonomous driving, seamless positioning) for 
georeferencing collected data. Nevertheless, any interruptions in INS 
data is typically fatal, as the attitudes of the system cannot be determined. 

The following paragraphs briefly mention the basic principles of 
these two systems. 

Global Navigation Satellite System 

GNSS (Global Navigation Satellite System) is a system of 
positioning and navigation based on the reception of radio signals 
between a constellation of artificial satellites and a receiver antenna. To 
date, there are four global operational GNSS constellations: GPS (the 
first constellation launched into orbit for positioning purposes by the 
USA in 1978), GLONASS (Russia), Galileo (Europe) and Beidou 
(China). There are also navigation satellite systems that operate at a 
regional level, such as QZSS (Japan) and IRNSS (India). GNSS relies on 
three main components (segments): a space segment, a control segment, 
and a user segment (Figure 24).  

The space segment comprises MEO (Medium Earth Orbit) satellites 
in orbit around the Earth. It transmits radio signals, maintains an accurate 
time reference, and acquires information from the control segment. The 
latter continuously monitors the orbit of the individual satellites, sending 
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trajectory corrections input and transmitting each satellite's ephemeris 
(i.e., the position). Finally, the user segments are signal receivers 
equipped with an antenna that the end user uses for positioning or 
tracking purposes. Each receiver receives signals from all satellites 
above the horizon and not covered by obstacles (e.g., trees, buildings, 
mountains). The distance of each satellite from the receiver is calculated 
through the signals since this is proportional to the signal's propagation 
time. Finally, by knowing the satellites' ephemeris, the receiver's position 
is calculated through trigonometric relations.  

 

 

Figure 24: GNSS scheme. 

The measurements with which GNSS positioning is obtained can be 
distance (pseudorange) or phase. Pseudorange (ρ) measurements rely on 
the measurement of the propagation time of the radio signal transmitted 
from the j-th satellite to the i-th receiver according to a trigonometric 
relationship (6): 
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𝜌𝜌𝑖𝑖
𝑗𝑗(𝑡𝑡) = � 𝑣𝑣 ∙ 𝑑𝑑𝑑𝑑

𝑡𝑡

𝑡𝑡𝑜𝑜
=

= �(𝑥𝑥𝑗𝑗(𝑡𝑡0) − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦𝑗𝑗(𝑡𝑡0) − 𝑦𝑦𝑖𝑖)2 + (𝑧𝑧𝑗𝑗(𝑡𝑡0) − 𝑧𝑧𝑖𝑖)2 
(6) 

 
There are three quantities to determine (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖, 𝑧𝑧𝑖𝑖) to which is added 

the time difference 𝛿𝛿𝛿𝛿 between the satellite clock and the receiver clock 
(7). For this reason, at least four satellites are needed to obtain a solution. 

 
 𝑡𝑡𝑖𝑖 = 𝑡𝑡𝑗𝑗 + 𝛿𝛿𝛿𝛿 (7) 

 
The main advantages of using the pseudorange measurement method 

are the speed of position estimation (in real-time) and the ease of 
operability, as only one receiver is used. On the other hand, the main 
uncertainties concern the satellite's position calculated through the 
ephemeris and the signal's propagation speed in the atmosphere, 
including ionospheric and tropospheric delays and scintillations. Thus, 
the precision in this positioning method can be a few meters in good 
conditions, but it can drop to tens of meters when interferences disturb 
the signal. 

The phase measurement method is widely used for topographical 
purposes, through which a centimeter accuracy is achieved. In this 
method, the phase difference between the wave transmitted by the 
satellite and that received by the receiver is measured, the frequency of 
which varies due to the Doppler effect due to the relative speed between 
the satellite and the receiver. The equations to solve are the following: 

 

 
𝑃𝑃𝑖𝑖
𝑗𝑗(𝑘𝑘) = 𝜌𝜌𝑖𝑖

𝑗𝑗 − 𝑐𝑐𝑐𝑐𝑇𝑇𝑖𝑖 + 𝑐𝑐𝑐𝑐𝑡𝑡𝑗𝑗 + 𝛼𝛼𝑘𝑘𝐼𝐼𝑖𝑖
𝑗𝑗 + 𝑇𝑇𝑖𝑖

𝑗𝑗 + 𝑚𝑚𝑘𝑘,𝑖𝑖
𝑗𝑗 + 

+ 𝐸𝐸𝑖𝑖
𝑗𝑗 + 𝑐𝑐𝐿𝐿𝑖𝑖

𝑗𝑗 + 𝜀𝜀𝑘𝑘,𝑖𝑖
𝑗𝑗  

(8) 

 𝜙𝜙𝑖𝑖
𝑗𝑗(𝑘𝑘) = 𝜌𝜌𝑖𝑖

𝑗𝑗 − 𝑐𝑐𝑐𝑐𝑇𝑇𝑖𝑖 + 𝑐𝑐𝑐𝑐𝑡𝑡𝑗𝑗 − 𝛼𝛼𝑘𝑘𝐼𝐼𝑖𝑖
𝑗𝑗 + 𝑇𝑇𝑖𝑖

𝑗𝑗 + 𝑀𝑀𝑘𝑘,𝑖𝑖
𝑗𝑗 + 

+ 𝐸𝐸𝑖𝑖
𝑗𝑗 + 𝜆𝜆𝑖𝑖𝑁𝑁𝑘𝑘,𝑖𝑖

𝑗𝑗 + 𝜀𝜀𝑖𝑖
𝑗𝑗  

(9) 
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Where: 

• 𝑃𝑃𝑖𝑖
𝑗𝑗(𝑘𝑘) is the pseudo-range on the k-th frequency; 

• 𝜙𝜙𝑖𝑖
𝑗𝑗(𝑘𝑘) is the carrier-phase on the k-th frequency; 

• 𝑐𝑐𝑐𝑐𝑇𝑇𝑖𝑖 is the bias of the receiver clock multiplied by the speed 
of light; 

• 𝑐𝑐𝑐𝑐𝑡𝑡𝑗𝑗 is the bias of the antenna clock multiplied by the speed 
of light; 

• 𝛼𝛼𝑘𝑘𝐼𝐼𝑖𝑖
𝑗𝑗 represents the ionospheric propagation delay, where 𝛼𝛼𝑘𝑘 

is a known parameter depending on the k-th frequency; 
• 𝑇𝑇𝑖𝑖

𝑗𝑗 is the tropospheric propagation delay; 
• 𝑀𝑀𝑘𝑘,𝑖𝑖

𝑗𝑗  is the multipath error; 

• 𝐸𝐸𝑖𝑖
𝑗𝑗 is the ephemeris error; 

• 𝑁𝑁𝑘𝑘,𝑖𝑖
𝑗𝑗  is the phase ambiguity that must be estimated as an 

integer value in order to achieve centimeter level of accuracy 
using two different receivers acquiring data from identical 
satellites; 

• 𝜆𝜆𝑖𝑖 is the frequency length; 
• 𝜀𝜀𝑘𝑘,𝑖𝑖

𝑗𝑗  are random errors. 

GNSS positioning can be done in Real Time Kinematic mode (RTK) 
or using post-processing techniques. Typically, this second approach is 
used when high-precision positions are required; in RTK mode, only 
centimetric accuracies are achieved. 

GNSS is a handy tool in the geomatics field, as it allows to estimate 
an accurate position on a global scale with a worldwide satellite 
coverage; however, it is also characterized by some limitations. First of 
all, it can be limited (or in extreme cases absent) in severe environments, 
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i.e. in environments in which particular obstacles (e.g., urban buildings, 
tall vegetation, mountains or distinct land conformations) block or 
interfere with the signal; furthermore, radio or other interference can also 
cause inaccuracies in position estimation. In order to have sufficient 
accuracy, it is necessary to have a clear view of the sky and to program 
the data acquisition campaign in such a way as to have the greatest 
number of satellites possible on the horizon line. However, GNSS is 
often integrated with INS to address the limitations mentioned above. 

Inertial Navigation System 

The Inertial Navigation System (INS) is a self-contained navigation 
technique in which measurements provided by accelerometers and 
gyroscopes are used to track the position and orientation of an object 
relative to a known starting point, orientation and velocity [157]. Inertial 
navigation is based on the 1st Newton law, which states that, inside an 
inertial reference frame, it is possible to define a body's motion with 
constant mass, observing the external forces acting on it. The main 
component is the Inertial Measurement Unit (IMU), whose typical 
configurations include one accelerometer (which measures inertial 
accelerations as specific forces) and one gyroscope (which measures the 
rate of rotation) for each of the three principal axes.  

Accelerometers measure specific forces f, while gyroscopes measure 
the rotation rate along specific axes ω. The INS keeps track of the 
movement of an object, quantifying the movement performed in an 
interval of time, starting from a known position. The kinematic relation 
between acceleration, velocity and position is a crucial principle in this 
process since velocity can be obtained by integrating acceleration 
measurements. In contrast, the position can be yielded by integrating the 
velocity. The second fundamental component is the central process unit, 
which elaborates the acquired data; it calculates the velocity and, 
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combining the information related to the direction of the movement, 
estimates the new position of the system. 

INS can be classified according to how they are mounted on the 
object. Strapdown systems are rigidly mounted on the object and move 
integrally with it, while gimballed systems are mechanically isolated 
from the object. Contrary to strapdown systems, gimballed systems are 
more complex but offer better stabilization and performance under 
conditions of high acceleration or vehicle movements (such as in 
aircraft). 

Depending on the IMU model, this may be affected by deterministic 
errors (manufacturing defects minimized by calibration procedure) and 
stochastic errors; as a result, the estimated position drifts after a few 
seconds. In order to limit this error, GNSS and INS are often both 
equipped on the platform and integrated. GNSS and INS integration is 
performed in three different hybridization architectures depending on the 
type of GNSS measurement used and the level of integration: loosely, 
tight or deeply integration. Loosely coupled architectures process GNSS 
and INS data separately, combining data at the final output level. The 
difference between INS and GNSS measurements in terms of position 
and velocity is used to estimate the INS error. Then, the INS navigation 
solution is corrected with the resulting INS error estimate [158]. Tightly 
coupled architectures integrate data deeper since the difference between 
the pseudo-range, carrier phase or Doppler shift measurements obtained 
by GNSS and INS are used [158]. Finally, deep integrating architectures 
integrate the sensors at the signal-tracking loop level. GNSS receiver and 
INS are not independent devices; on the contrary, the INS is an integral 
part of the GNSS.  

There are numerous advantages to integrating the two positioning 
methods described. First of all, in this way, the sampling rate (i.e., the 
number of times per second that the chipset and satellites communicate 
to establish the device location) is higher. In fact, since GPS provides 
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absolute positions at larger time intervals while INS provides position 
and orientation data at much smaller intervals, their integration combines 
the long-term precision of GPS with the sensitivity and response speed 
of INS. When combining a higher sampling rate with a high-quality 
chipset, an adequate number of satellite constellations, a correct choice 
of the antenna selection and its orientation, and finally, with well-
working embedded software and specialized filtering, a better accuracy 
in the position estimation can be achieved. Additionally, the integration 
guarantees excellent continuity and reliability of the service. The INS 
provides a continuous position even when the GPS signal is interrupted 
in particular scenarios (e.g., urban environments) or adverse weather 
conditions. The final information collected is the platform's position in 
an absolute reference system provided by GPS, together with the 
accurate trajectory and attitude that refers to the information acquired by 
the INS.  

The applications are disparate but mainly refer to vehicle navigation. 
The integrated positioning approach has enabled developments in 
assisted navigation and autonomous driving of land road transport, as 
well as in air navigation, flight control and maritime navigation. Finally, 
it plays a crucial role in controlling mobile platforms such as drones or 
generic autonomous vehicles, allowing them to map the surrounding 
environment, plan optimal routes and move autonomously in dynamic 
and complex environments.
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Chapter 4 

LiDAR DATA PROCESSING, 
STATE OF THE ART 

The ever-increasing ease of data acquisition, encouraged by 
technological advancement from a sensor point of view described in the 
previous Chapter, leads to an ever-increasing quantity, quality and type 
of data acquired. Therefore, nowadays, it is indispensable to develop 
automatic or semi-automatic data processing methodologies, which 
allow data to be processed without the direct aid of the operator, as this 
would be time-consuming, highly subject to subjective interpretation, 
and unreliable. This Chapter delves into point cloud collection and 
processing techniques, specifically focusing on standard practices and 
algorithms involved in forestry studies. The first paragraph describes all 
the procedures relating to pre-processing, which are always necessary 
when dealing with LiDAR data; the following paragraphs refer to the 
techniques used to process point clouds in a forest environment, 
describing segmentation algorithms and subsequently delving into 
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methods for estimating woody volume and biomass; finally, carbon 
dioxide estimates techniques are described. 

4.1 Data collection 

Data collection using LiDAR technology consists of all the practices 
required to acquire a complete dataset with all the information necessary 
to conduct in-depth analyses. It consists of planning, configuring the 
sensors and acquisition platforms, and the execution of the survey itself 
and all the preparatory activities. Below, the operative procedures are 
distinguished according to the type of acquisition (i.e., aerial, static 
terrestrial and cinematic terrestrial acquisition). 

Planning starts by defining the objectives of the survey. Before data 
collection, several factors must be considered, including the geographic 
area of interest, the required point density, the desired spatial resolution 
and weather conditions. Planning must also consider potential obstacles, 
such as trees or buildings, that could affect the data quality collected. 
Furthermore, the area of interest must be precisely defined, analyzing 
every characteristic. This operation allows to choose the best type of 
acquisition and sensor to use in the survey phase.  

In the case of aerial acquisitions, it is necessary to define the type of 
aerial support (plane, helicopter or drone) based on parameters such as 
flight altitude, platform speed, sensor field of view, overlap of scanning 
trajectories and other factors that affect the point cloud density. Last but 
not least, the economic aspect must also be taken into consideration in 
terms of price per hectare acquired. The trajectory of the acquisition 
platform must be planned in such a way as to cover the entire area of 
interest uniformly, minimizing the shadow areas and ensuring a 
homogeneous distribution of the LiDAR points. Furthermore, weather 
conditions should not be overlooked, as they can affect the data quality 
and on-site safety. No less important is checking local laws and 
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regulations regarding airspace and ensuring you have permits when 
necessary. Land acquisitions also require a well-structured planning 
phase. In the case of static terrestrial acquisitions, it is necessary to plan 
the scanning positions to ensure complete coverage of the survey area, 
optimizing visibility and minimizing shadow areas. In the case of 
dynamic acquisitions, it is necessary to plan the platform's trajectory 
based on the survey area's characteristics. The trajectory must cover the 
entire area of interest to collect data efficiently; furthermore, it is helpful 
to undertake a closed and possibly intertwined trajectory to ensure 
complete data capture by limiting the effects of the drift of the Inertial 
Navigation System. 

An integrated survey with topographic and GNSS instrumentation 
allows the acquisition of information used in the pre-processing phase to 
register and georeference the point cloud.  Planning and carrying out a 
topographic survey is also necessary, using more traditional instruments 
such as total stations and prisms to create a framework network. Then, 
GNSS receivers are placed to measure the coordinates of the total station 
position. The raw data is collected and subsequently processed. 

4.2 Point cloud pre-processing 

The pre-processing procedures of a LiDAR point cloud concern, first 
of all, registration; subsequently, it is necessary to georeference the 
resulting cloud, filter it and possibly color it by integrating 
photogrammetric sensors (Figure 25). Each of these operations, 
however, represents processes widely discussed in the literature. 
Nonetheless, in this thesis work, they have been summarized as 
preliminary operations and to place greater focus on the subsequent 
operations more closely linked to the thesis objectives. 
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Figure 25: Scheme of pre-processing procedures of LiDAR point clouds. 

Point cloud registration, or scan matching, consists of automatically, 
semi-automatically, or manually relatively aligning two (or more) point 
clouds to obtain a single coherent dataset in a specific coordinate system.  

 

 

Figure 26: Example of point cloud registration of two point clouds 
acquired in an urban environment [159]. 

This procedure affects TLS acquisitions where external information 
such as GNSS is not used; for acquisitions carried out with integrated 
systems (GNSS and INS), the point cloud registration is not performed, 
and the coherent point cloud is obtained considering position and 
movement information for each scan through the georeferencing scan.  
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As a matter of fact, a LiDAR scanning survey of a generic study area 
requires carrying out several to sufficiently and satisfactorily detect 
every part of the area of interest. The alignment procedure is based on 
the use of the spatial rototranslation equation, which calculates the new 
position (𝑥𝑥′,𝑦𝑦′, 𝑧𝑧′) of a point according to (10): 
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𝑅𝑅3𝑥𝑥3 is a 3x3 matrix expressed as a function of the rotation angles 

𝜔𝜔,𝜑𝜑, 𝜅𝜅, each of which relates to the rotation around the x, y, and z axes, 
respectively, while Δ𝑥𝑥,Δ𝑦𝑦 and Δz are the translation components. The 
equation's solution requires estimating three rotation and three 
translation parameters; it is, therefore, essential to know the coordinates 
of at least three points in the two reference systems. Once the parameters 
have been estimated, the rototranslation equation is applied to register all 
the cloud points. The points considered to estimate the parameters must 
be spatially distributed (i.e., not aligned or concentrated in a small 
portion of the area). These points can be automatically or manually 
selected; usually, artificial retroreflective targets can be used (previously 
placed into the acquired scene) or elements characterizing the shapes and 
geometries of the detected objects (e.g., in an urban environment, edges 
of maintenance holes or architectural elements on facades). Their 
radiometric response allows retroreflective targets to be automatically 
detected and usually does not require manual selection. In order to have 
points in common between 2 subsequent scans, it is advisable to plan the 
survey to obtain an overlap of approximately 30%. Various alignment 
techniques have been developed and are present in the literature; among 
them, the Iterative Closest Point (ICP) is the most commonly used. This 
semi-automatic registration algorithm does not require the identification 
of reference points but selects them automatically; subsequently, for each 
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point, it identifies the closest point of the cloud to be registered, estimates 
the rototranslation parameters through a point-to-point mean quadratic 
distance metric minimization, and finally apply the transformation. This 
operation is iterated several times until convergence is reached. The 
advantages of this method lie in the simplicity and ease of 
implementation; furthermore, this method also works for unfiltered point 
clouds. Conversely, it is necessary to roughly align the point clouds to 
speed up the iterative process. 

Subsequently, georeferencing aims to attribute geographical 
information to a given object with respect to a global coordinate system.  

 

  

Figure 27: Examples of retroreflective targets (on the left) and edges of 
regular human-made objects (on the right, in the red circle) to be distinctively 

detected for the alignment procedure. 

In the case of terrestrial point clouds acquired without GNSS 
sensors, it is necessary to carry out a topographic survey, in which the 
markers previously placed in the scene are essential for the point cloud 
co-registration phase. GNSS receivers and Total Station (TS) 
instruments are required in this operation. The topographic net consists 
of acquiring the position of the markers in local coordinates through the 
total station; the GNSS receiver is placed on the same tripod in order to 
know the acquisition position expressed in global coordinates. Finally, it 
is sufficient to apply a rigid rototranslation by replacing the local 
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coordinates of the total station with those described in the global 
reference system. 

 

 

Figure 28: Georeferencing of ALS clouds [160]. 

On the other hand, in the case of aircraft-integrated systems, the 
information acquired from the LiDAR (position of the points in the point 
cloud in the local reference system), from the GNSS (position of the 
sensor) and the INS (trajectory of the sensor) is used simultaneously to 
georeference the cloud. The position of a point in a global reference 
system (𝑥𝑥𝑒𝑒(𝑡𝑡)) can be expressed according to (11): 

 

 𝑥𝑥𝑒𝑒(𝑡𝑡) = 𝑔𝑔𝑒𝑒(𝑡𝑡) + 𝑅𝑅𝑛𝑛𝑒𝑒(𝑡𝑡) ∗ 𝑅𝑅𝑖𝑖𝑛𝑛(𝑡𝑡) ∗ (𝑎𝑎𝑖𝑖 + 
+ 𝑅𝑅𝑠𝑠𝑖𝑖 ∗ 𝑥𝑥𝑠𝑠(𝑡𝑡)) (11) 

 
In which: 

• 𝑔𝑔𝑒𝑒(𝑡𝑡) represents the coordinates of the GNSS receiver 
acquired by the sensor; 
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• 𝑅𝑅𝑛𝑛𝑒𝑒(𝑡𝑡) is the rotation matrix from the navigation system to the 
Earth-Centered, Earth-Fixed (ECEF) coordinate system; 

• 𝑅𝑅𝑖𝑖𝑛𝑛(𝑡𝑡) is the rotation matrix describing the rotation from the 
inertial system to the navigation system; 

• 𝑎𝑎𝑖𝑖 is the level arm (offset between the GNSS antenna and the 
origin of the reference system of the scanner); 

• 𝑅𝑅𝑠𝑠𝑖𝑖  is the rotation matrix describing the rotation from the 
scanner system to the inertial system; 

• 𝑥𝑥𝑠𝑠(𝑡𝑡) is the vector with the coordinates of the laser point in 
the scanner system. 
 

The GNSS and INS data are processed through a Kalman filter to 
estimate the trajectory of the aerial platform in global coordinates [161]. 

After registering and georeferencing the point cloud, the filtering 
phase is essential to improve the data quality. A limitation of the survey 
using LiDAR instrumentation lies in the absence of a logical criterion in 
acquiring points; the laser scanner automatically acquires millions of 3D 
points only according to the methods dictated by constructive 
constraints. As a result, generally, there may be cases in which the points 
acquired in a given area are redundant (e.g., to describe flat surfaces, a 
few points are sufficient, while to describe discontinuities or more 
irregular objects, a more significant number would be needed); 
furthermore, moving elements (people, animals, objects subject to the 
force of the wind, etc.) can generate noise. For this reason, it is necessary 
to filter the cloud to reduce noise and remove undesired points; 
depending on the final objective to be achieved through the use of the 
point cloud, it is also possible to subsample the cloud in order to lighten 
it, and possibly speed up subsequent data processing procedures. 
Subsampling procedures can be random-based or spatial-based; in the 
second case, the 3D space is divided into regular cubic cells (voxel), for 
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each of which a single point is selected. The selection within each voxel 
can be random, or the point closest to the center of gravity can be chosen. 

The final step of coloring is optional. It occurs when the laser scanner 
is combined with photographic equipment; integration can also occur 
within the instrument if hybrid sensors are used (Figure 22). Coloring 
occurs by assigning the RGB value of each raster pixel to each point of 
the point cloud with the same coordinates. 

4.3 Point cloud segmentation 

Segmentation is the procedure of dividing data into significant 
homogeneous areas to facilitate its graphic representation and 
processing. Specifically for point clouds, segmentation refers to the 
process of labelling each point of the point cloud so that points with 
similar characteristics are grouped in order to add important information 
to the dataset and develop subsequent, more specific analyses.  

3D point cloud segmentation can be performed at different scales 
according to the level of detail required. When considering a scene, the 
identification of separate entities (e.g., terrain, buildings, trees, etc.) is 
commonly referred to as semantic segmentation; differently, instance 
segmentation refers to a semantic segmentation in which an object-level 
analysis is also performed, treating multiple objects of the same class as 
a single entity; finally, a further level of detail can be achieved through 
part segmentation, where more information about the composition of 
individual objects is exploited. Point cloud segmentation is a 
fundamental step to further process point clouds effectively; research 
areas that commonly need segmented point clouds concern autonomous 
driving [162], [163], object detection [164], classification tasks [165], 
and feature extraction [166]. Precisely for this study, the segmentation 
processing was applied in forest environments and divided into different 
steps in order to (i) identify the terrain and distinguish it from the rest of 
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the scene (i.e. trees), performing a semantic segmentation; (ii) detect 
individual trees (Individual Tree Detection) as instance segmentation; 
(iii) distinguish, for each tree, the woody part from the leaf part (part 
segmentation). 

The point cloud segmentation research topic is hotly debated due to 
the complexity of the point cloud’s structure. Performing manual 
segmentation is nowadays an unviable solution due to the large quantity 
and density of data; as it will be deepened in the next Paragraph, this 
operation is often carried out only during the validation phase of the 
automatic segmented point cloud when considering small portions of the 
dataset is suitable and less time-consuming. Countless methods and 
algorithms have been developed and discussed in the literature to 
segment point clouds. As already anticipated, a classification into which 
these can be divided concerns the level of detail to which they are 
applied. It can, therefore, be used to identify scenes, individual objects, 
or parts of objects. Segmentation methods can also be classified, 
considering the operational approaches; each technique has strengths 
that make it more suitable for carrying out specific segmentations in 
particular scenarios than others. 

 

 

Figure 29: Scheme of segmentation approaches. 

Edge-based segmentation methods identify the edge of objects and 
regions and then group the point clouds within the boundaries, assigning 
the same label. The edge detection is performed according to selected 
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features, often geometric, such as normal, curvatures and gradients. 
More specifically, the boundary of an object is assigned where changes 
in these parameters above a predefined threshold are detected. This 
approach is widespread [168], [169] in very highly dense point clouds; 
in fact, the main limitations of the edge-based segmentation method 
emerge when considering noisy point clouds or with insufficient or non-
homogeneous point cloud density. Object edges are incorrectly identified 
in these cases, particularly for more complex shapes and object 
structures. Nonetheless, studies have been conducted using segmentation 
methods based on an edge-based approach for straight-line segment 
extraction, point cloud filtering, and ground breaklines extraction with 
ALS data [170]. 

Region-growing methods rely on the position of nearby points with 
similar properties to isolate objects with different features; typically, this 
approach is less sensitive to noise points and uneven point cloud density. 
This method can be further subdivided into seeded-region- or unseeded-
region-based methods. Seeded-region methods require selecting seed 
points around which a region iteratively grows, adding neighbour points 
according to defined thresholds. The final region around each point is 
determined when no neighbour point respects the defined boundary 
conditions. Segmentation using this method is relatively fast and allows 
for setting the best parameters for region detection depending on the 
object or scene to be segmented; however, the result strongly depends on 
the starting seed points for generating the area. In fact, an incorrect 
choice of these points can result in obtaining an incorrectly segmented 
point cloud [167]. The choice of seed points is therefore crucial to get a 
satisfactory segmentation; these points are selected according to the best 
feature that identifies the object of the scene; surface features such as 
normal and curvatures are commonly considered [171]. In contrast, 
unseeded-region methods initially assign all points to a class; 
subsequently, considering one or more features as thresholds, they divide 
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the initial into smaller areas until these constraints are no longer 
respected. This approach has been used to define the geometry of 
buildings [172]; however, it is not commonly widespread as the 
interruption criterion of the subdivision of the point cloud is more 
difficult to identify, often causing over-segmentation [173].  

Model-based methods group points with the same mathematical 
representation according to geometric shapes. The Random Sample 
Consensus (RANSAC) model belongs to this category [174], initially 
developed for image processing, and subsequently adapted in several 
point cloud studies [175], [176], [177]. Model-based methods are 
commonly used to detect plane shapes (e.g., roofs [178]) and spherical 
targets [175] or for feature extraction in the domain of cultural heritage 
[179]. In the forestry domain, this method has been applied to estimate 
forest parameters such as tree stems and height measurements [180], 
direct diameter measurements [181], allometric equations modelling 
based on shape detection [182] and more recently also the volumetric 
estimate of trees [183]. The model-based segmentation approach is 
robust with outliers and can easily help segment easy geometrical shapes; 
conversely, more complex geometries are not as easy to identify, and the 
model exponentially increases processing times to try to reach 
convergence.  

For this reason, this method is not always the best in the case of 
complex natural environments except for the modeling of trunks or 
branches, which can easily be traced back to cylinders or truncated 
cones. The Cloth Simulation Filter (CSF) [181] can also be included 
among the model-based methods. This algorithm is also implemented in 
commercial software (e.g., Cloud Compare) and is used to identify points 
belonging to the terrain. This method is based on the physical principle 
of placing a cloth on the upside-down point cloud: when the cloth is 
sufficiently soft, it adapts perfectly to the distribution of points, allowing 
the Digital Surface Model (DSM) to be obtained; when, however, the 
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cloth has a certain rigidity, it only fits the ground, without following the 
distribution of points that describe elevated elements (e.g., houses or 
trees). In this way, the Digital Terrain Model (DTM) is obtained. The 
rigidity of the cloth is set through parameters; in fact, it is modeled 
through a grid that consists of particles with mass and interconnections, 
whose position is estimated over time. Among the methods developed to 
identify cloud points belonging to the terrain [184], [185], [186], [187], 
this is the most commonly used thanks to its fast processing and ease of 
application and implementation. 

The segmentation approach can also be clustering-based; in this 
case, at first, attributes and features of the point cloud are calculated, and 
then the point cloud is segmented, combining this information and 
setting a threshold for each of them. In this way, it is possible to 
simultaneously consider different characteristics of the point cloud 
(geometric and spatial); however, the quality of the attributes is 
fundamental for a successful segmentation. Therefore, thresholds must 
be defined in a manner consistent with the characteristics of the objects 
to be segmented. Methods that rely on attributes prove to be a robust 
strategy for categorizing points into uniform regions, obtaining both 
flexible and precise results. Nevertheless, these approaches hinge on 
defining the neighbourhood relationships between points and the point 
density within point cloud data. A drawback of such methods is the time-
consuming nature, especially when handling multidimensional attributes 
for extensive point cloud data [188]. This method is commonly used for 
extracting planar geometries, as demonstrated by [189], where each laser 
point defines a plane in the 3D attribute space, and laser points on the 
same planar surface intersect at the position in the attribute space that 
corresponds to the slopes and distance of the planar surface. Other 
studies have been based on the calculation of normal vectors [190] or 
magnitudes of surface normal [191]. The most popular clustering 
methods for point cloud segmentation are centroid-based and density-
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based. In centroid-based cluster methods, each cluster is represented by 
a vector. The most common clustering approach of this type is the k-
Means algorithm: the number of clusters is fixed to k, and the algorithm 
find k-cluster centers and assign points to the nearest cluster center 
minimizing the squared distances from the cluster. The advantages of 
centroid-based methods (particularly the k-Means) lie in the operational 
simplicity, speed and ease of implementation; however, some limitations 
should not be underestimated. First of all, it is necessary to know and 
define a priori the number of clusters into which divide the dataset. 
Furthermore, the procedure is iterative, and the initial points are 
randomly selected; in particular scenarios, therefore, the clustering result 
could vary by running the algorithm several times, losing coherence and 
robustness. On the other hand, density-based clustering methods rely on 
the number of points to define clusters, and they are more robust to 
outliers and noise. Density-Based Spatial Clustering of Applications 
with Noise (DBSCAN) [192] and Hierarchical DBSCAN (HDBSCAN) 
[193] cluster methods fall into this class. They are relatively fast, do not 
require initialization, and the number of clusters does not need to be 
known a priori; unfortunately, they are mainly sensitive to changes in the 
density of different objects. Thus, they require a significant density 
change to detect borders correctly. Several studies have been conducted 
using k-Means for point cloud denoising and simplification [194] and 
segmentation [195], [196], [197], [198] in different scenarios, as well as 
processing examples based on the DBSCAN method are provided by 
[199], [200], [201]. 

In recent years, approaches based on artificial intelligence (AI) have 
been developed and spread rapidly. AI is a technology that enables 
machines to imitate various complex human skills [202]. Artificial 
intelligence algorithms can be macro-classified into Machine Learning 
(ML) and Deep Learning (DL). They allow us to identify patterns within 
datasets through empirical knowledge and make decisions based on the 
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information obtained. ML is an application of artificial intelligence that 
includes algorithms that analyse data, learn from them, and apply the 
acquired knowledge to make informed decisions. Various machine 
learning algorithms (models) have been developed and are massively 
implemented in almost every domain. 

On the other hand, Deep Learning is a portion of ML; specifically, it 
can be seen as an improvement based on artificial neural networks, which 
are artificial connections built similarly to human brain neurons. ML 
algorithms generally need human intervention, while Deep Learning 
algorithms can autonomously learn from data through repetition, 
creating a network capable of making intelligent decisions 
independently. Examples of Machine Learning algorithms are Support 
Vector Machine (SVM), Decision Tree (DT), and k-Nearest Neighbors 
(k-NN). k-Nearest Neighbors algorithm [203] uses proximity to classify 
or predict point clustering based on the assumption that similar points 
are close to each other. This method is supervised (i.e. it needs a training 
set of a previously segmented point cloud); when the algorithm analyzes 
the new (unclassified) data, it classifies points based on their distance 
from the examples in the training set. In this approach, the choice of the 
k parameter is crucial: if it is too small, the classification is done with 
respect to the closest few points and could be affected by noise or 
outliers; on the contrary, if k value is too large, it contemporary increase 
the computational load and therefore the processing times, but it also 
results in greater generalization. However, it has achieved some success 
in the domain of point cloud segmentation [204, p. 3], [205], [206]. 

SVM models aim to find the class separation line that maximizes the 
margin between the classes. The margin is the minimum distance from 
the line to the points of the two classes. The area between the two 
margins is referred to as a hyperplane. It is necessary to define a minimal 
part of the training dataset (the support vectors) based on the definition 
of the separation line and the hyperplane. Support vectors are the values 
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of a class closest to the margins, which are classified with greater 
difficulty using different methods. It is therefore obvious that this 
method works very well when the clusters are well separated from each 
other, while it is less efficient if there is a lot of noise or if the clusters 
overlap. Although the method is memory efficient since it only needs a 
portion of the dataset, it is not suitable for segmenting large point clouds, 
and the training time is high. Studies involving SVM have been 
published concerning surface reconstruction [207], segmentation [208], 
[209], [210], and object detection [211]. Another family of Machine 
Learning algorithm used for segmentation tasks that is worthy of mention 
is the Decision Tree (so called DT). DT models comprise internal nodes 
representing a test on a feature, branches representing the result of the 
clustering, and leaf, the defined classes. The algorithm recursively 
divides the data into subsets according to input features and binary splits, 
ultimately leading to a tree-like structure; the partitioning process 
continues until a stopping criterion is met. The Random Forest (RF) 
algorithm is an ensemble learning technique that aggregates predictions 
from numerous individual decision trees to enhance overall performance 
and generalization. Operating as a bagging algorithm involves 
independently training multiple models and subsequently combining 
their predictions. Incorporating randomness during training, concerning 
both data and the features selected at each split, is designed to mitigate 
overfitting and bolster the model's robustness. Random forest models are 
usually highly high-performance and have a low probability of 
overfitting the dataset; furthermore, they are easier to interpret than other 
models. In the literature, this method is widely used to segment point 
clouds [212], [213], particularly in urban environments [214], [215]. 

Segmentation methods can be implemented in a more complex 
workflow, where clustering at different levels or in complex scenarios is 
carried out. Examples of methods integration are given by [216], [217], 
[218], [219]. 
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4.3.1 Segmentation in the forestry domain 

Several approaches and studies have been presented regarding point 
cloud segmentation in forest environments. The first step is to identify 
single trees to carry out single analyzes. The most commonly used 
methods in literature are described below. 

PyCrown is a well-known open-source seeded-region growing 
segmentation method used in the forestry domain for Individual Tree 
Detection (ITD) [220]. It is fully developed in Python and detects single 
trees starting from seed points defined with spatial analysis raster-based. 
Specifically, the DTM and DSM are generated after detecting ground 
points; then, the Canopy Height Model (CHM) is calculated as a 
difference between the DSM and the DTM; subsequently, a spatial 
search is performed to find local maxima of the CHM which 
automatically detect the treetop position. Finally, the region-growing 
algorithms iteratively define the crown of each tree according to four 
different parameters, which are needed to check the height of 
neighbouring pixels and their distance from the seed points. As a matter 
of fact, according to the tree species, trees have different shapes. When 
the regions are finally defined, all their points are labelled as trees with 
unique labels. This approach is well-suited for segmenting coniferous 
forests since their conical shape allows treetops to be easily detected with 
a low rate of errors. At the same time, it may encounter more difficulties 
in segmenting broadleaves trees. 

Furthermore, the density of the forest also plays an essential role in 
the accuracy of the result. When trees are close together, the canopies 
often interconnect with each other and the region growing algorithm fails 
to detect edges correctly; additionally, submissive trees (in the forestry 
domain, a submissive tree is defined as a tree whose top is lower than the 
treetop of surrounding trees) are not identified by the local maxima 
process since the upper part of other trees dominates them. Since treetop 
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detection is critical, this approach achieves better results for aerial point 
clouds. Figure 30 shows an example of a forest scenario segmented at a 
single tree level using the PyCrown algorithm. 

 

 

Figure 30: Example of single tree level segmentation at plot scale using 
the PyCrown algorithm [221]. 

A different Python-based open-source algorithm is the Forest 
Structural Complexity Tool (FSCT) [222]. It was developed to work 
mainly with terrestrial or high-resolution aerial data and can obtain 
various allometric information. However, it relies on a semantic 
segmentation workflow [223], which aims to work independently from 
the sensor used to acquire the point cloud dataset. As a matter of fact, 
this tool applies a complete workflow, which allows the identification of 
individual trees and the extraction of the main allometric parameters (i.e., 
DBH, height, volume). First, semantic segmentation is carried out to 
distinguish trees from terrain and low vegetation according to a deep 
learning technique, and the DTM is generated. Subsequently, coarse 
woody debris is further identified and excluded from further processing. 
To obtain a skeletonization of the tree, the stem point cloud is cut into 
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parallel horizontal slices, and they are then clustered using the 
HDBSCAN algorithm to get clusters of stems in each slice. The 
DBSCAN algorithm then converts the cluster skeletons into branch and 
stem segments. Finally, the clusters of stem segments are elaborated with 
a cylinder adaptation function, which allows the volume of the tree to be 
calculated and the DBH and height measurements to be extracted. This 
method is consistent, and different studies have integrated it [224], [225]; 
however, the leaf segmentation procedure is not implemented, and the 
results can significantly vary when considering leaf-on and leaf-off 
seasons [226]. 

 

 

Figure 31: Example of single tree level segmentation at plot scale using 
the FSCT algorithm [222]. 

Other studies [227] apply a top-down approach to extract individual 
trees in urban scenarios. In contrast to the method described previously, 
MLS clouds are best suited to this approach. Firstly, trees are 
semantically segmented with a deep network approach; then, tree 
clusters are detected using Euclidean distance clustering. Next, a deep 
network is developed to detect individual trees, combining embedded 
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pointwise directions and detected tree centers. Treeseg [228] is 
implemented in C++ and nearly automatically extracts tree-level point 
clouds based on Euclidean clustering, principal component analysis, 
region-based segmentation, shape fitting, and connectivity testing 
(Figure 32).  
 

 

Figure 32: Example of single tree level segmentation at plot scale using 
the Treeseg algorithm [229]. 

Individual trees can also be extracted from aerial or satellite images 
[230] using a Deep Learning approach [231], [232]. 

In recent years, thanks to technological and data processing 
advances, numerous studies have proposed different methodologies to 
carry out more in-depth analyzes in the forestry sector, and a particular 
objective is to identify the woody part of the tree and distinguish it from 
the leaf. The aim is to isolate the woody part in order to make more 
accurate considerations about the forest biomass. Considering the level 
of detail for this task, terrestrial point clouds are typically used, which 
can be carried out at closer distances, acquiring details that are difficult 
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to detect (primarily related to the lower part of the trees) with aerial 
acquisitions.  

The approach proposed by [233] relies on a three-step procedure: at 
first, intensity values are used to segment the tree point cloud according 
to threshold values roughly; secondly, a k-NN algorithm detects 
misclassified leaf points according to their higher distance from actual 
wood points; finally, a further density-based consideration using 
voxelization was used to evaluate the point density on a larger scale, 
since points belonging to the same voxel are most likely to exhibit the 
same properties. Differently, [234] describes the TLSeparation Python 
library, through which the segmentation process is carried out using four 
approaches relating to geometric features and structural analysis. LeWoS 
open-source Matlab tool [235] detects wood and leaf based only on 
geometric information using a recursive point cloud segmentation and 
regularization procedure. In [236], a graph-based approach is tested, 
while [237] tests a Deep Learning network. 

4.4 Tree volume and aboveground biomass 
characterization 

Several applications require volumetric estimation of objects within 
scenarios acquired from point clouds: as an example, glaciers monitoring 
and change detection analysis [238], [239] or detailed quantifications of 
payload volume during excavations to optimize the number of 
earthmoving loaders required on construction sites [240]. 

In the forestry sector, the volumetric characterization of a tree is 
necessary to quantify the carbon dioxide stored within the woody part. 
However, this operation is not trivial; an accurate estimate is required to 
obtain reliable results. The simplest algorithms are based on the use of 
convex hulls [241]; however, these significantly overestimate the 
volume: gaps between branches are not identified and are included in the 
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calculated volume. More advanced studies have proposed using concave 
hulls [242] to overcome this problem. In this study, the point cloud is 
sliced in the direction orthogonal to the tree elevation, and the concave 
hull is calculated for each slide. Other studies applied a voxel-based 
approach, and the volumes of the voxels containing at least one point are 
summed to obtain the total tree volume [243]. However, this approach is 
highly time-consuming, and the final result depends on the voxel size 
chosen; moreover, incomplete point clouds underestimate the actual 
volume. The currently most used approach is based on cylinder fitting of 
the tree points in order to model the structure of the trunk and branches. 
This approach, also implemented in the FSCT tool previously described 
and deepened in several different studies [244], [245], [246], [247], 
allows for simplifying the structure of the tree skeleton while the missing 
parts are interpolated. In fact, some parts of the tree may have a point 
density that is insufficient to describe small branches or noise points. A 
cylinder fitting-based volumetric assessment of individual trees is also 
implemented in TreeQSM tool [248] written in a Matlab environment. It 
reconstructs the tree structure according to Quantitative Structure 
Models (QSM), i.e., topological ordered cylinder models of trees which 
cover the complete branching structure from the stem’s base up to all tips 
[249] and that can be used to describe quantitatively its geometric and 
volumetric attributes. Figure 33 shows an example of the reconstructed 
tree structure. 

The input point cloud must represent only individual trees with a low 
percentage of noise or leaves points, as well as ground or understory 
information; furthermore, all the tree parts need to be covered by a 
sufficiently dense point cloud to be reconstructed. Initial point cloud 
filtering is performed according to k-NN or point density-based 
approaches to exclude the cloud's most distant and isolated points. The 
cylinder fitting procedure relies on different parameters, which need to 
be optimized according to point density and tree structure; however, 
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some random elements cause minor variations in the reconstruction of 
the tree (and, therefore, of the allometric parameters); the algorithm 
developers, therefore, suggested running the same algorithm multiple 
times on each tree (at least five times) to estimate an average with about 
a few per cent of error. Several studies have applied and tested the 
accuracy of this method [250], [251].  

 

 

Figure 33: Example of reconstructed tree structure [252].  

The volume can also be monitored indirectly using empirical 
allometric equations expressed as a function of other forest parameters. 
They have historically been used based on parameters such as DBH and 
height, which, as already mentioned, are easily measurable in situ. These 
models need to be calibrated for the tree species under consideration and 
possibly need to take into account climatic conditions and any variables 
that can influence forest growth (e.g., forest density). More details about 
the allometric models will be given in Paragraph 4.5, as they will be used 
as a validation method in this study. 
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4.5 Carbon stock assessment 

Estimating the CO2 stored within the woody biomass requires further 
point cloud processing. 

First of all, the volume calculated through one or more techniques 
described in the previous Paragraph must be calculated and multiplied 
by the density of the wood. Tabular density values of different types of 
wood are widely distributed and commonly used [253]; they are 
calculated by measuring the mass and volume of different samples and 
comparing these two values. Since wood is hygroscopic (i.e., it can gain 
or lose moisture depending on the environmental conditions in which it 
is found and consequently can expand or contract), its weight and volume 
are determined by specified moisture contents. Usually, this 
measurement is carried out in a laboratory with zero moisture content. 

Once the biomass is calculated, estimating what percentage of CO2 
is stocked is necessary. Various studies consider that the carbon inside 
trees is equal to 50% of its weight [254], [255] and according to IPCC 
information; however, more in-depth studies [256] demonstrated that 
carbon content in woody biomass has an inevitable variability (between 
47.6 and 52.5%) which depends on the species under consideration. 
However, this work only considered American tree species. Therefore, it 
does not add any knowledge regarding the case studies covered in this 
work.  

4.6 Results validation: methodologies and 
measures 

Results validation is an important procedure that needs to be 
implemented in segmentation workflows. It is required to define the 
quality of the information derived from the data processing. Reference 
outputs can be qualitative or quantitative. In the first case, data are 
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validated according to visual interpretation; on the contrary, a 
quantitative assessment requires ground truth data or differently 
processed data considered ground truth. The next sub-paragraphs present 
accuracy assessment approaches of different point cloud data processes. 

Validating the point cloud segmentation procedure can be highly 
time-consuming. It requires a segmented reference point cloud; this is 
obtained by the operator carrying out the same segmentation procedure 
manually without the help of any automated procedure. For this reason, 
this operation depends on human sensitivity, which varies for each 
person; furthermore, for particularly complex scenarios such as those in 
natural environments, the difficulties to which the operator is subjected 
are more significant.  

One of the metrics to evaluate segmentation results is accuracy; it 
measures how many times a model made a correct prediction across the 
entire dataset. However, it does not provide enough information in the 
case of class imbalance; for this reason, a more complete and widespread 
method is the F1 score. This metric combines two other metrics: 
precision and recall. The precision measures how many objects are 
automatically segmented correctly; recall measures how many objects in 
the scene are correctly identified by the model (detection rate). Precision 
is calculated as follows: 

 

 𝑃𝑃 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 (12) 

 
Equation (13) shows how to calculate the recall: 
 

 𝑅𝑅 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
 (13) 

 
True Positives (TP) refer to objects correctly segmented, while False 

Positives (FP) are objects segmented even if they do not exist; FP is also 
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called commission errors. Finally, a False Negative (FN) is a real object 
that is not segmented and detected (omission error). FN indicate under-
segmentation, while FP over-segmentation.  

In the forestry sector, omission errors can occur when submitted 
trees are not identified or when trees very close to each other are 
considered single; on the contrary, commission errors are common when 
irregular tree structures or undergrowth fool the segmentation algorithm. 

The F1 score combines precision and recall with harmonic mean as 
indicated in Equation (14): 

 

 𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
2 × 𝑃𝑃 ×  𝑅𝑅
𝑃𝑃 + 𝑅𝑅

 (14) 

 
This metric is commonly used for validating ITD segmentation 

based on point cloud [257], [258] or images dataset [259]; some studies 
[260], [261] have evaluated the variation of the F1 Score as a function of 
forestry parameters. Specifically, sparser forests or tree crops are more 
straightforward scenarios in which segmentation performs better; the 
metric's value can quickly decrease as the density increases. 

Segmentation at the tree part level into the trunk and leaf can also be 
done by considering the F1 Score metric [262]. However, given the 
natural irregularity of such a complex natural element, this procedure 
may not be carried out accurately and may be extremely time-
consuming. For this reason, the result of this segmentation can also be 
validated through visual interpretation [263], [264]. Although this 
procedure is equally operator-dependent, it is faster and allows the 
evaluation of the segmentation as a whole, having good feedback on 
whether the woody structure has been identified correctly or if some 
branches have been omitted. 

It would be necessary to weigh the objects under examination to 
validate the results of the volumetric analyses and the biomass estimate. 
In fact, in the case of trees, the rigorous practice involves weighing them 
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after harvesting with a destructive approach. However, this cannot 
always be done and is not a standard or easy practice. In the case of 
environmental scenarios such as forestry ones, harvesting is often 
inconsistent with the purpose of monitoring and biodiversity protection. 
For this reason, the results obtained from remote sensing data processing 
are compared with those obtained through allometric or volumetric 
equations. Although these models only provide estimates which can be 
affected by error, using extraordinarily accurate and case-specific 
models for the scenarios under consideration can provide excellent 
comparison value. The principle underlying allometric models is that one 
part of the organism's growth ratio is proportional to that of another [50]. 
Numerous studies have been conducted on this topic in the literature 
[265]. For example, studies have been proposed with a generic validity 
on specific macro areas at a global or regional level [266]. More in detail, 
[266] directly relates the AGB [kg] of tropical trees to the DBH [cm], the 
Height [m] of the tree and the wood-specific gravity 𝜌𝜌 [g/cm3] as follows: 
 
 𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = 0.0673 ∗ (𝜌𝜌 ∗ 𝐷𝐷𝐷𝐷𝐻𝐻2 ∗ 𝐻𝐻)0.976 (15) 

 
The equation proposed by [55] estimates the aboveground biomass 

[kg] of a tree through a relationship between the height H [m] and the 
Crown Diameter CD [m] as follows: 

 

 
𝐴𝐴𝐴𝐴𝐵𝐵𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 = �0.016 + 𝛼𝛼𝑔𝑔� ∗ (𝐻𝐻 ∗ 𝐶𝐶𝐶𝐶)�2.013+𝛽𝛽𝑔𝑔� ∗

∗ 𝑒𝑒𝑒𝑒𝑒𝑒[
0.2042

2
] 

(16) 

 
𝛼𝛼𝑔𝑔 and 𝛽𝛽𝑔𝑔 are parameters depending on the type of tree (angiosperm 

and gymnosperm trees). Since in the case study in question, the trees are 
gymnosperm, the values considered are the following: 
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 𝛼𝛼𝑔𝑔 = 0.093 
 (17) 

 𝛽𝛽𝑔𝑔 = −0.223 (18) 
 
Furthermore, in this study, an equation has also proposed a 

relationship to estimate the DBH [cm] as a function of Height and Crown 
Diameter (19) when direct measures are not available: 

 

 𝐷𝐷𝐷𝐷𝐻𝐻𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 = 0.557 ∗ (𝐻𝐻 ∗ 𝐶𝐶𝐶𝐶)0.809 ∗ exp �
0.0562

2
� (19) 

 
A recent study [54] developed volumetric models to estimate the 

volume of major tree species in Finland. These models will be considered 
to validate results related to case study C, as it will be deepened in 
Chapter 8. Models were obtained by fitting a volume and taper curve 
model specific to the typical Finnish boreal forests. The model is highly 
complete, as it has been calibrated in such a way as to correctly predict 
the woody volume of trees of all sizes, temperatures and soil types as 
predictors. The equation in question is the following: 

 

 
𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡−1 �𝑎𝑎 + 𝑏𝑏 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷 + 𝑐𝑐 ∗ ℎ + 𝑑𝑑 ∗ 1

ℎ
+ 𝑒𝑒 ∗

𝐷𝐷𝐷𝐷𝐷𝐷 ∗ ℎ + 𝑓𝑓 ∗ 1
𝐷𝐷𝐷𝐷𝐷𝐷∗ℎ

+ εcluster + εplot� ∗
𝜋𝜋∗𝐷𝐷𝐷𝐷𝐻𝐻2∗ℎ

40
+

εtrees  

(20) 

 
Where: 

• The DSH [cm] is the Diameter at the Stump Height, and 
it is related to the DBH value according to Equation (21): 
 

 𝐷𝐷𝐷𝐷𝐷𝐷 =
ℎ

ℎ − 1.3
∗ 𝐷𝐷𝐷𝐷𝐷𝐷 (21)  
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• ℎ is the tree height; 
• Parameters a-c describe the temperature sum; 
• Parameters d-f define the tree species under examination; 
• εcluster, εplot, and εtree are respectively, the zero-mean cluster-, 

plot- and tree-level random effects that follow the standard 
assumption of mixed-effects models [267].  

The results obtained with the different methods are finally compared 
to verify the reliability of one method rather than another. Since the CO2 
estimate cannot be verified in any way other than directly measuring it 
in a destructive way for the tree, verifying volumetric estimates plays a 
crucial role.  
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Chapter 5 

CASE STUDIES AND MAIN 
WORKFLOW 

In this chapter, the in-depth case studies in this thesis are introduced 
and described; furthermore, the data processing workflow is analyzed, 
emphasizing the objectives and main contributions. 

5.1 Case study A: Slovenian Dinaric forest 

The first proposed case study is localized in Southwest Slovenia, 
more precisely in the Dinaric Mountains area. In this area, the Dinaric 
forest is predominant: it is a European beech forest mainly made up of 
Silver fir (Abies alba Mill.), Norway spruce (Picea abies Karst.), and 
European beech (Fagus sylvatica L.) tree species. Airborne LiDAR 
acquisitions and an in-situ measurements campaign were conducted in 
November 2013 within a Life+ ManFor C.BD. project. This case study 
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was deepened based on a collaboration with the University of Ljubljana, 
particularly with Professor M. Kobal.  

Figure 34 shows the study area location. The investigated area 
extends for about 4000 m2 (35.7 meters radius). The LiDAR acquisition 
covered a more significant extension of the forest, but for the aim of this 
study, only a squared area (6400 m2) circumscribed to the circular plot 
was considered. Within the in situ circular plot, 78 trees were manually 
detected, of which 9 were European beech and 63 were Silver fir. Smaller 
trees (DBH ≤10 cm) were not measured; concerning measured trees, 
information was acquired not only about their position (x and y 
coordinates) but also the DBH was measured, and the social status of 
each of them was annotated. 

Additionally, the height of the trees was measured with the purpose 
of future local height curve development. Table 3 summarizes data 
acquired during the in-situ campaign. When considering the extension of 
the square area circumscribed to the circular area, the number of trees is 
87. 

Table 3: Case study A - Trees parameters summary. 

Tree parameters Features Value 

DBH [cm] 
Minimum 10.2 cm 
Maximum 65.9 cm 

Mean 38.6 cm 

Tree height [m] 
Minimum 7.4 m 
Maximum 33.5 m  

Mean 24.5 m 

Social status (%) Dominant and  73,6 % (53 trees)  
Suppressed trees 26.4 % (19 trees) 

Tree species composition (%) Silver fir 87.5% (63 trees) 
European beech 12.5% (9 trees) 
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Figure 34: Case study A - Study area. EPSG: 3912 [268].  

During the winter, in January-February 2014, an extreme ice storm 
occurred in this area, destroying more than half a million hectares of 
forests across Slovenia, including the study area [269]. Following the 
natural hazard, a new aerial LiDAR survey was carried out; a post-event 
in situ survey was also conducted, during which uprooted and damaged 
trees were identified. In the extent of the square area, 57 trees survived. 
In both measurements, a RIEGL LiteMapper-5600 system was equipped 
on an airborne, which kept a flying altitude of 700 m above ground level; 
the point clouds have an average point cloud density of about 150 pts/m2 

and 250 pt/m2 in the 2013 scan and 2014 scan respectively. A RIEGL 
LMS-Q560 laser scanner, an IGI AEROcontrol-IId direct georeferencing 
system, and an IGI DigiCAM digital camera comprise the LiteMapper-
5600 system. Figure 35 shows the point cloud data acquired before (a) 
and after (b) the ice storm. GNSS and INS data were acquired by the 
integrated platform equipped on the airborne. 

The point cloud was georeferenced using the information collected 
by the integrated GNSS/INS system equipped on the airborne. The 
reference system chosen is the Slovenian National Grid (EPSG:3912).  
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(a) (b) 
Figure 35: Case study A - Point cloud (a) pre-ice storm acquisition 

(November 2013); (b) post-ice storm acquisition (April 2014). Color scale 
according to elevation. EPSG: 3912. 

5.2 Case study B: Italian Mompantero forest 

The second study area is located in a highly sloped coniferous forest 
in the Susa Valley, in the Italian Western Alps, precisely in the 
municipalities of Mompantero and Bussoleno (Turin).  

In October 2017, this area was affected by the most severe wildfires 
that occurred in the region during 2017. Overall, this wildfire burned 
almost 4000 hectares, and countless European Beeches (Fagus sylvatica 
L.) and Scots Pines (Pinus sylvestris L.) trees were destroyed [270]. The 
extension of the study area is approximately 70 hectares, and the tree 
vegetation consists almost solely of dense, even-aged P. Sylvestris 
stands. As Figure 36 shows, the survey was conducted in order to cover 
a portion of the forest with tree densities that are very different; as a 
matter of fact, the northern part of the study area was thinned out just 
before the forest fire [271]. 
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Figure 36: Case study B - Study area. EPSG: 32632 [271].  

The survey was conducted using a terrestrial integrated sensors 
approach. A Mobile Mapping System (MMS) survey was conducted 
with the KAARTA Stencil 2 sensor (Figure 21); this platform combines 
a portable laser scanner with a video camera to automatically generate 
and register 3D point clouds. This sensor is low-cost and very 
manageable: these aspects make it very versatile, and multiple complex 
scenarios can be acquired. KAARTA Stencil 2 laser scanner has a 
maximum range of 100 meters, a horizontal and vertical field of view of 
360° and 30°, respectively, and an accuracy of ± 30mm; the video camera 
acquires images with 640x360 pixels resolution and 50 Hz frame rate. 
The IMU system is required to produce a real-time 3D map of the 
scenario. At the same time, the SLAM algorithm leverages the acquired 
images to solve the localization problem, optimize the estimated 
trajectory, and produce a 3D point cloud of the examined area. SLAM 
algorithms solve the computational problem of the three-dimensional 
reconstruction of an environment, simultaneously keeping track of the 
position of the acquisition instrument within it. In fact, the localization 
problem consists of estimating the position and orientation of the agent 



5 - CASE STUDIES AND MAIN WORKFLOW  

96 

in time (2D or 3D) given the map. In contrast, the mapping problem 
involves building a map of the environment where the agent moves (2D 
or 3D) and notes the position. This approach is independent of external 
observations; it can be installed in portable instruments that can be easily 
used in challenging environments, producing 3D data quickly. From an 
analytical and algorithmic point of view, SLAM is approached as an 
estimation problem in which different acquisition and positioning 
systems are combined in a single multi-sensor system in order to benefit 
from the advantages or compensate for the disadvantages of each 
individual sensor. Although the problem presents itself as a chicken-and-
egg problem, several algorithms, such as Particle Filter, Extended 
Kalman Filter, Covariance Intersection, and GraphSLAM, solve it 
approximately. 

The survey was planned with a closed acquisition path to ensure a 
comprehensive area understanding. The acquisition started from the 
northern part of the area and continued downstream with a winding path, 
reaching the southern part; then, the path headed north again, intersecting 
the outward route multiple times until reaching the starting point.  

The acquisition took approximately 13 minutes, covering a 
trajectory of around 550 meters, resulting in a point cloud of 143 million 
points with a point cloud density of approximately 500 pts/m2 (Figure 
38a). Specific settings for forest scenarios were set, including voxel size 
(0.4 m), point cloud resolution in the map file, point cloud resolution for 
scan matching and display (cornerVoxelSize equal to 0.4m, 
surfVoxelSize equal to 0.8m, surroundingVoxelSize equal to 0.6m), 
minimum point-to-point distance for mapping (1 m). In contrast, no 
restrictions on the planarity of motion were set. 
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Figure 37: Case study B – KAARTA Stencil 2 trajectory and point cloud. 
EPSG: 32632. 

 

(a) (b) 
Figure 38: Case study B - Point cloud (a) MMS (KAARTA Stencil 2); (b) 

TLS (RIEGL VZ-400i). Color scale according to elevation. EPSG: 32632. 

The point cloud registration was optimized through two procedures: 
the first reprocesses the alignment of the scans, simulating a lower 
acquisition speed, while the second optimizes the scan through the Loop 
Closure Tool, which forces the overlap of the starting and ending points. 
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The first procedure took approximately 40 minutes, while the Loop 
Closure took 30 minutes. 

 

 

Figure 39: Case study B - RIEGL VZ-400i point cloud. EPSG: 32632. 

A classic topographic survey conducted through the use of total 
stations and GNSS antennas was considered to measure the position of 
13 reflective markers; these were used to georeference the MLS point 
cloud in the WGS84/UTM zone 32N (EPSG:32632) reference system. 

Additionally, a TLS survey was conducted with a RIEGL VZ-400i 
LiDAR. 5 scans were needed to cover the entire extent of the study area 
and were registered using 13 reflective markers (Figure 39). The LiDAR 
was set with a resolution of one point every 6 millimeters at a distance 
of 10 meters; acquisition took approximately 4 hours, resulting in about 
1.5 billion points (Figure 38b).  

The previously described reflective markers were also used to fulfil 
the TLS scans' registration procedure and the entire dataset's 
georeferencing. 
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Table 4: Case study B - Trees parameters summary. 

Tree parameters Features Value 
Number of trees   242 

DBH [cm] 
Minimum 5,2 cm 
Maximum  45,7 cm 

Mean 22,4 cm 

Height (m) 
Minimum 2,3 m  
Maximum 24,1 m 

Mean 9,02 m 

Tree species composition European Beeches  
Scots Pines  

 
In this case study, no ground truth data were collected; as will be 

explored further in the Chapter, the purpose of this survey was initially 
to monitor the area after the fire. Table 4 summarizes the main tree 
parameter values obtained from manual analysis on the point cloud. 

5.3 Case study C: Finnish Hyytiälä forest 

The last case study proposed is located in a 61-year-old (2023) 
boreal forest in southern Finland. More precisely, it covers a portion of 
the Hyytiälä forest field station, a recognized forest educational and 
research center focused on long-term boreal forest zone monitoring 
(Figure 40). Access to this data and the research itself result from a 
collaboration with the Finnish Geospatial Research Institute (FGI), 
where I also had the pleasure of studying abroad during my doctoral 
studies and collaborating with Professor Antero Kukko and his research 
group. 
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Figure 40: Case study C - Study area. EPSG: 3067 [272]. 

The forest is characterized by a predominance of coniferous boreal 
species, including Scots pine (Pinus sylvestris L.) and Norway spruce 
(Picea abies H. Karst), as well as deciduous trees, such as silver birch 
(Betula pentula Roth). It is a monitoring area equipped with disparate 
sensors to acquire various data types, including long-term field 
measurement sites, soil and atmospheric sampling, and continuous 
LiDAR time-series data collection. On top of a 35-meter-high tower, a 
RIEGL VZ-2000i is permanently equipped; this setup is named a 
phenological station and it is commonly referred to as LiPhe [273]. The 
laser scanner is tilted 60 degrees, and it provides an oblique perspective 
of the forest on a portion of almost 4.5 hectares, with an above-canopy 
view of trees, enabling a high spatial-resolution reconstruction of the 
study area. Setting parameters were set in order to acquire with a 
resolution of 1 point every one centimeter at a 100 m range, resulting in 
a very high-dense point cloud. In addition to the position of the points, 
point return number, intensity (expressed in dB), reflectance (dB) and 
the return pulse deviation were collected by the LiDAR sensor. The 
sensor is connected to a separate computer, which fulfils the role of 
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storage and data transmitter; data are automatically collected per hour, 
internally stored, and transmitted daily to a network storage. Moreover, 
local weather parameters are stored and linked to scans; subsequently, 
only the scans acquired during the best weather conditions are considered 
for further analysis (one per month) [273]. Each point cloud has a point 
density of approximately 114000 pts/m2. 

 

 

Figure 41: Case study C - LiPhe setup [273]. 
 

Table 5: Case study C - Trees parameters summary. 

Tree parameters Features Value 
Number of trees   184 

DBH [cm] 
Minimum 15,2 cm 
Maximum  29,4 cm 

Mean 22,1 cm 

Height (m) 
Minimum 14,4 m  
Maximum 25,1 m 

Mean 18,9 m 

Tree species composition 
Scots pine   

Norway spruce  
Silver birch  
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For the purposes of the analyzes conducted in this thesis work, two 
different point clouds were considered (Figure 42): the first was acquired 
during April 2020, and the second during the same month of the 
following year (April 2021). The study area has a reduced extension 
compared to the entire dataset, extending for approximately 0.5 hectares. 

In situ measurement campaigns were organized in the research forest 
field in relation to other research projects [274], [275]; the position of 
184 trees was recorded within the study area, while no additional 
information about tree parameters was available. The coordinates of five 
ground control points were also collected for georeferencing purposes. 

Table 5 summarizes the tree parameters obtained by manually 
processing the point cloud dataset.  
 

 

(a) (b) 
Figure 42: Case study C - Point cloud (a) April 2020; (b) April 2021. 

Color scale according to elevation. EPSG: 3067. 

Oblique point clouds require rectification and georeferencing; since 
the scanning hood is tilted 60 degrees towards the ground, the original 
point clouds are consequently also tilted with respect to the ground. The 
point clouds were rectified with respect to a global reference system 
through a 3D passive rotation (Rωφκ) in which a right-hand system was 
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defined with origin at the scan and z to up. The origin at the scan is 
located 30 m from the ground (tower), providing negative z values. The 
rotation parameters were ω=0, φ= 60 degrees and κ= 90 degrees. 
Subsequently, the georeferencing was based on a Helmert 3D 
transformation: a geometric transformation consisting of a 
rototranslation and scale variation in the plane to apply a change of 
reference system. The general equation of the 3D Helmert transformation 
can be expressed as follows: 
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(22) 

Where: 

• 𝑋𝑋′, 𝑌𝑌′, 𝑍𝑍′ are the transformed coordinates; 
• 𝑋𝑋, 𝑌𝑌, 𝑍𝑍 are the original coordinates; 
• 𝑅𝑅𝑥𝑥, 𝑅𝑅𝑦𝑦, 𝑅𝑅𝑧𝑧 are the rotation matrices around the x, y and z 

axes, respectively. 
• 𝑠𝑠 is the scale factor; 
• 𝑇𝑇𝑥𝑥, 𝑇𝑇𝑦𝑦, 𝑇𝑇𝑧𝑧 are the translation vectors. 

The transformation parameters were computed in the least square 
adjustment based on the coordinates of five ground control points 
collected in the test area through a GNSS receiver in RTK mode (Finnish 
EPSG:3067 – ETRS89/ TM35FIN reference system). 

No point cloud registration is necessary as the acquisitions are done 
through individual scans.  
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5.4 Processing workflow 

The main objective of this study is to develop a semi-automated 
procedure for the complete processing of LiDAR point clouds acquired 
in a forest environment with the final aim of estimating the carbon 
captured and stocked within the woody biomass. A detailed complete 
workflow was developed (schematic in Figure 43) and applied in each 
case study. The crucial points of the processing are (i) the Individual Tree 
Detection, (ii) the separation between wood and leaf, (iii) the volume 
estimation and, therefore, the biomass calculation, and finally, (iv) the 
stocked CO2 assessment. Each step of the workflow was carried out 
using different approaches and algorithms in order to (i) obtain more 
accurate estimates and (ii) evaluate any differences between datasets 
acquired with different sensors. Furthermore, a validation procedure was 
implemented for each step before moving on to the subsequent phases.  

Specifying that the workflow mentioned above was optimized 
iteratively based on the objectives to be achieved and the case studies 
considered is essential. In fact, the case studies were conducted, explored 
and analyzed in a parallel approach. For this reason, as described in the 
following paragraphs, specific analyses relating to some of the main 
objectives were conducted only in specific case studies. Once their 
effectiveness had been ascertained and the fine-tuning procedure 
resulted in optimal results, these approaches were also consolidated for 
the remaining case studies without verifying the improvement they 
entail. Specifically, they concern (i) how to handle single-tree 
segmentation errors caused by over-segmentation during the ITD 
procedure (deepened in case study A) and (ii) the features taken into 
account to separate wood and leaf parts (more details are described in 
case study C). 
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Figure 43: Workflow of this study. 
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5.4.1 Data collection and pre-processing 

Since data collection is different depending on the type of planned 
acquisition, it has been explored in depth in the previous paragraphs. The 
registration and georeferencing phases were also discussed. Below, the 
filtering steps are explored in more detail. 

The point cloud relating to case study A was not subsampled in order 
to preserve the information collected with a low point cloud density. In 
contrast, case study datasets B and C were subsampled to speed up 
subsequent data processing. Concerning the Italian study area (case 
study B), an additional motivation was to make the density of the point 
clouds acquired with different instrumentation comparable. To do this, 
the MLS point cloud was not modified, while the TLS one was reduced 
by discarding approximately four-fifths of the points. The very high 
density of the case study C dataset required subsampling of the point 
cloud. Therefore, the full-resolution point clouds were resampled based 
on a voxelization process, in which the closest point to the center of the 
voxels was kept. A voxel with a 5 cm size was considered, and it reduced 
the point cloud density to approximately 18000 pts/m2. The latter dataset 
also required filtering noise relating to the tower's structure and fixing 
cables. This operation was conducted manually. 

In this study, ground point detection can be included among the pre-
processing operations. Although this operation can be considered a first 
data processing, it is treated in this subgroup of preliminary operations 
as this thesis aims not to delve into further details. The ground point 
detection was performed with the CSF algorithm. The parameters to be 
set are (i) the cloth resolution cloth, which refers to the grid size of cloth 
used to cover the terrain, (ii) the number of maximum iterations, and (iii) 
a classification threshold to classify the point clouds into ground and 
non-ground parts based on the distances between points and the 
simulated terrain, and finally (4) the cloth rigidness. The cloth resolution 
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was equal to 0.1 m, while the maximum iterations and the classification 
threshold were set as default values (500 and 0.5, respectively). The cloth 
rigidness was established according to the terrain conformations of the 
three case studies. A lower rigidness (equal to 2) was used in case studies 
A and B, while a higher value (equal to 3) was set in case study C. In 
fact, in the first two study areas, the conformation of the terrain is steep 
or slightly uneven, while the Finnish study area is flat. 

5.4.2 Individual Tree Detection 

Regarding the Individual Tree Detection, among the methodologies 
proposed in the literature, it was decided to compare the results obtained 
using two open-source Python libraries described in Paragraph 4.3.1: 
PyCrown [220] and FSCT [222]. PyCrown algorithm has been modified 
to improve segmentation performance, specifically reducing over-
segmentation errors. In fact, as previously described, the single tree 
segmentation can be affected by (i) simple omission (the tree is entirely 
automatically undetected), (ii) under-segmentation (two or more trees 
are segmented as a single tree), and (iii) over-segmentation (a single tree 
is sub-segmented into two or more trees). The following procedure was 
implemented to limit over-segmentation. For each treetop identified 
through a local maxima-based approach on the CHM, a radius spatial 
search (1 meter) was added; in the event that the search produces a 
positive result and detects a different treetop in the search area, these two 
are merged, as are the two respective crowns. The usefulness of this 
improvement was tested in case study A. More details about the 
improvements in the code can be found in Appendix A, while Figure 45 
schematizes the main implemented steps. As regards the parameters to 
be set when segmenting with PyCrown, there are four: three of them 
concern the elevation of the pixels close to the treetop, while one 
concerns the distance from it (crown radius). The first parameter defines 
the elevation of neighbouring pixels with respect to the treetop (default 
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parameter 0.7*seed height); the second parameter ensures that the height 
of the neighbouring pixel is greater than the mean of the current height 
of the crown (factor equal to 0.55); the third establishes that 
neighbouring pixels do not exceed a specific elevation (default value 
equal to 1.05*treetop height); finally the maximum radius of the crown 
is set by default to 10 meters. 

Furthermore, an additional parameter can be set about the minimum 
height of a tree; therefore, it is possible to exclude the smaller trees from 
the analysis, which are often not even detected when in situ 
investigations are carried out. In this study, various attempts were made 
to vary the value attributed to the parameters to obtain the best possible 
segmentation. In the end, in all three case studies analyzed, the first 
parameter was decreased to a value equal to 0.45; the second was set 
equal to 0.50; the third was left unchanged (value equal to 1.05); finally, 
the additional parameter regarding the minimum height of the trees was 
set to 2 meters. The maximum crown radius was not fixed, but it was 
modified in each case study. As such, in the first case study, a value of 7 
meters was set, while this was reduced in case B (maximum crown radius 
equal to 5 meters) and increased in case C (15 meters) according to the 
forest characteristics of each area. Figure 44 summarises the main 
workflow adopted in the PyCrown algorithm. 

 

 

Figure 44: PyCrown main workflow summary: in green is the original 
workflow, and in light blue is the improvement proposed in this study. 
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Figure 45: Specific details about the procedure implemented in the 
PyCrown workflow. 

On the other hand, FSCT is a more complete tool that performs 
single tree-level segmentation and contextually allows the extraction of 
forest parameters such as DBH and volume (Figure 46). However, only 
the segmentation procedure was taken into account in this study. In fact, 
using this tool, it is impossible to carry out intermediate control and 
validation steps, which are crucial for the purposes of the analyses 
conducted in this thesis; furthermore, the entire procedure is costly in 
terms of the time and computational power required. For these reasons, 
no parameters have been changed, and the default ones are used.  

The segmentation results obtained using PyCrown and FSCT were 
validated by comparing them with those obtained through manual 
segmentation. Validation was carried out to the best of interpretation 
ability using all available information (point cloud, CHM, in situ data 
when available), and it relies on the F1 score metric. 
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Figure 46: FSCT complete workflow [222]. 

5.4.3 Multi-temporal detection of individual trees 

In case multi-temporal acquisitions were available (case studies A 
and C), an algorithm capable of identifying the same tree in different 
acquisitions was developed. The operating principle is based on the 
concept that the top of a tree does not substantially move from one 
acquisition to another; for each treetop identified in the point cloud at 
time t0, a spatial search is carried out; if a treetop identified in the point 
cloud acquired at time instant t1 is located within the search area, these 
trees are assigned the same tree ID. 

As for the segmentation procedure, a validation based on a 
comparison with a manual multi-temporal point cloud match was 
performed, and the F1 score parameter was considered. Both point 
clouds were processed manually, and the same trees at different time 
instants were matched and then compared to the results of the automatic 
procedure. 
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5.4.4 Wood and leaf separation 

Three approaches have been proposed and tested to identify the 
points relating to the woody part (trunks and branches) and leaf (Table 
6). Specifying that this analysis was carried out only on trees that were 
segmented correctly is essential. In fact, over- or under-segmented trees 
were not considered either because this can affect the quality of the wood 
and leaf segmentation or because the final objective of estimating the 
volume of each individual tree cannot be correctly achieved in those 
cases. 

Table 6: Summary of the proposed approaches for identifying tree woody 
and foliar parts. 

Approach Algorithms Validation 
Approach 1 k-Means 

Visual interpretation Approach 2 Threshold 
Approach 3 Infliction threshold 

 
Table 7 summarizes the features considered in each case study and 

approach. 

Table 7: Features for identifying the woody and foliar parts of the trees in 
each case study and for the proposed approaches. 

Case Study Approach 1 Approach 2 Approach 3 
Case Study A x, y, z, density Anisotropy, linearity, 

verticality, sphericity, 
curvature, PCA1 

Case Study B 

Case Study C x, y, z, density, intensity, 
reflectance 

 
The first methodology is based on the use of the k-Means 

segmentation algorithm. In each scenario, a single tree was used to train 
the algorithm, considering both geometric and radiometric features; 
subsequently, this classification was applied to the remaining trees. The 
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second approach instead distinguishes the two classes using a threshold 
value. This value was calculated uniquely for each tree and was defined 
as the median of the best-fitting skewed distribution of the point cloud 
selected features. The Logistic distribution, the Normal distribution, and 
the Laplacian distribution were considered, and the best one was chosen 
according to minimal mean square errors. The third method relies on the 
unsupervised infliction threshold method proposed by [276]. It employs 
six salient geometric features (local anisotropy, curvature, linearity, 
PCA1, verticality, and sphericity), which have been assessed to be robust 
in previous studies [233], [235]. This approach analyzes the distribution 
of each geometric attribute for individual trees according to Gaussian 
Mixture Model (GMM) fitting and curve fitting techniques. It defines 
threshold values as the infliction points of the fitted distributions. It 
initially performs the geometric feature extraction using eigenvalues and 
normalized eigenvalues. Subsequently, GMM were fitted to curvature, 
anisotropy, PCA1 and verticality features. Low curvature, anisotropy 
and verticality values define non-leaf components, while opposite values 
describe the wood part of the tree. Furthermore, a GMM with two 
components in 1D for each selected feature was fit to determine the 
centroids of the clusters to be used as threshold constraints. The next step 
is needed to extract the infliction points of the curve-fitted distribution 
of the considered attributes according to the sign change of the second 
derivative. 

Regarding linearity and sphericity features, infliction values were 
detected using the previously calculated centroids to narrow down the 
range of values.  Finally, the wood and leaf separation was performed 
based on these thresholds. Additionally, the DBSCAN algorithm was 
implemented to ensure the connectivity of the separated non-leaf 
component; moreover, isolated and clustered noise were eliminated to 
refine the results further. 
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The validation of the results obtained from the three proposed wood 
and leaf separation methods was carried out on visual interpretation. In 
fact, given the large amount of time required to segment leaf manually 
and the strong dependence on the skill and sensitivity of the operator, as 
well as on the quality of the dataset, it was decided to define the best-
performing method by considering which of these would return the most 
continuous and regular woody structure possible, and which would 
recognize the most significant number of points relative to only to the 
larger trunks, but also to the thinner branches in the upper part of the tree. 

5.4.5 Volume and AGB characterization and stocked CO2 
assessment 

The volumetric estimate was carried out using the Quantitative 
Structure Model method implemented in the TreeQSM Matlab tool. 
Among all the outputs extracted, for this study, only volume calculated 
as the volume of cylinders and truncated cones that fit the woody part of 
the tree was considered. In fact, the ITD procedure has not been 
implemented in the workflow, although it performs automatic filtering 
for the separation of leaf and trunk. However, this is not valid if the tree 
has very thick foliage. The default parameters of the tool were considered 
for the analyses. Tabular density values from the literature were used to 
convert tree volume into aboveground biomass. Different values were 
considered depending on the geographical location of the case studies 
and the tree species. 

Validation was carried out using allometric or volumetric equations. 
The parameters on which the equation depends (usually the tree height 
H and the DBH) were measured in situ. When no ground truth data is 
available, these parameters were obtained through manual processing of 
the point cloud: as regards the DBH, this was calculated by measuring 
the diameter of the portion of the point cloud between 1.20 m and 1.40 
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m; the height of the tree was instead obtained by considering the 
elevation of the highest point of the canopy in the point cloud. Different 
allometric equations have been considered, depending on the locality and 
tree species under consideration, and they will be described more 
carefully in the related chapters.  

Finally, regarding the estimate of the CO2 stored in each tree, the 
multiplication factor equal to 0.5 was applied to the aboveground 
biomass. No distinction was made based on species, as, to the best of my 
knowledge, no study has currently developed more accurate species-
specific estimates. The results obtained at the single tree level were also 
extended to the plot area level through linear proportions. In this way it 
is possible to provide more accurate estimates about the reference stand; 
these values are in fact more significant for a 360-degree understanding 
of the phenomenon under analysis 

Regarding data validation, the only non-invasive approach that could 
be implemented was to compare the results obtained with those 
calculated starting from the reference allometric equation used to 
validate the volumetric and biomass estimates. 

5.4.6 Case-specific tasks 

In addition to common objectives, each case study was also 
conducted in order to find answers to specific questions. These will be 
explored in depth in the relevant chapters; however, they are introduced 
below. In case study A, the multi-temporality of the dataset is exploited 
to quantify the damage to which the detected portion of the forest was 
subjected. The multi-temporality of the dataset also characterizes case 
study C; however, in this case, this occurred under undisturbed 
conditions, and the additional objectives are (i) to evaluate forest growth 
without external interventions (natural or human-caused) and (ii) to 
evaluate the usefulness of the oblique point cloud acquisition method for 
monitoring individual trees. Finally, case study B, characterized by a 
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multi-sensor approach, was developed to evaluate the same workflow 
using two different terrestrial acquisition techniques in order to evaluate, 
in case there were differences, which of the two was more suitable for 
the purposes of estimation of forestry parameters and stocked carbon 
dioxide.  

Table 8: Summary of the characteristics of the case studies analyzed. 

Case 
study 

Data 
type Multitemporality Multi-

sensor Specific goals 

A 
ALS 
point 
cloud 

Yes (pre and post 
ice-break) No 

Quantifying the 
damage of a 

disastrous event 

B 

TLS and 
MLS 
point 
cloud 

No Yes 

Comparison 
between two 

different 
acquisition 

methodologies 

C 
Oblique 

point 
cloud 

Yes (undisturbed 
conditions) No 

Evaluation of 
forest growth in 

undisturbed 
conditions 
through an 
innovative 
acquisition 

methodology 
 
Table 8 summarizes the main characteristics of the datasets relating 

to the three case studies proposed in this study to clarify their 
understanding. Finally, Table 9 summarizes all the parameters of the 
different algorithms set for each case study.  

Table 9: Parameters set for each case study. 

Parameter Case Study 
A B C 
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Cloth rigidness - CSF 2 2 3 

PyCrown parameters 

1st height parameter 0.45 
2nd height parameter 0.5 
3rd height parameter 1.05 

Maximum crown radius 7 5 15 
Minimum height tree 2 

𝜌𝜌 [g/cm3] 0.45 0.8 0.51 
% CO2 in AGB 0.5 
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Chapter 6 

CASE STUDY A: RESULTS 
AND DISCUSSION 

The first case study on which the analyzes were focused is located 
in a Slovenian Dinaric forest (Paragraph 5.1). Although the point cloud 
density is not extremely high when compared with that obtainable with 
more recent and developed sensors (about 150 points/m2 in the 2013 
acquisition and 250 points/m2 in the following dataset), the peculiarity 
consists of the multi-temporality of the data in conditions of external 
disturbance. In fact, the two acquisitions were carried out before and 
after an ice storm that destroyed and damaged several hectares of forest. 
Moreover, ground truth data related to each tree's position, height, and 
DBH were collected before the hazard's occurrence. At the same time, 
the tree's health condition was also registered after the ice storm. Based 
on these singularities, the questions that sparked interest in this case 
study are the following: 
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• Is it possible to precisely quantify (i.e., at the level of a single 
tree) the damage to which a forest (or a portion of it) is 
subject using an airborne LiDAR dataset?  

• Is it possible to improve the segmentation quality by 
reducing errors caused by over-segmentation? 

6.1 General overview 

In order to deepen the knowledge about the aforementioned topics, 
the processing workflow described in Paragraph 5.4 was applied to both 
the point clouds. Additionally, a change detection analysis was 
conducted in order (i) to identify the uprooted trees, (ii) to locate the 
survived ones, and (iii) to evaluate the total variation in volumetric, 
biomass, and stocked CO2 terms. An estimate was also made of the loss 
of capacity to store carbon, both (i) following the uprooting of the trees 
and (ii) as a consequence of the damage to the surviving ones. 

Figure 47 shows the terrain points automatically detected with the 
CSF algorithm. The territory is mainly flat; however, a slight depression 
is detected in the central part. 

 

 

Figure 47: Ground points of the study area A. EPSG:3912. 
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After selecting the ITD algorithm that produces the best results, the 
same trees in the two acquisitions were identified, and the results were 
validated through the F1 score. In this scenario, and only for pre-event 
acquisitions, the improvement brought about by modifying the PyCrown 
algorithm to reduce over-segmentation (Figure 44) was quantified (Table 
11). The F1 score was also calculated to evaluate the quality of 
identifying the same tree in the two different acquisitions.  

Identification of trunk and leaf components was subsequently 
performed. Finally, the Quantitative Structure Model was applied for the 
volumetric estimate, from which the biomass and the carbon dioxide 
stocked were estimated. Biomass was additionally calculated by 
considering allometric equations (15) and (16) previously described in 
Paragraph 4.6; automatically extracted values of H and CD were 
considered, while the DBH was estimated according to Equation (19). 
Considering the forest composition in terms of species, the density value 
of Silver fir trees was used in this study; it was considered equal to 0.45 
g/cm3 according to a specific study conducted by [277] concerning 
Slovenian forests. The damage to which the portion of the forest was 
subjected was quantified (i) in absolute terms and (ii) considering only 
the damage suffered by the trees which, however, survived (i.e. not 
uprooted trees).  

Reference aboveground biomass values were obtained with 
Equation (15), in which DBH and H considered values were measured 
in situ or extracted by manual point cloud processing. Equation (16) was 
not used as a reference, as ground truth crown diameter values were not 
available; besides, the tree crown is the part of the tree that varies most 
due to the damage of the ice storm, and using this parameter as a 
reference would be of little significance. In addition, DBH values 
assessed with Equation (19) were compared with ground truth data. 
Table 10 outlines the different tests undergone. 
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 In the published work related to this case study [268], only a small 
portion of these analyzes has been published; besides, the workflow 
applied in that study has improved. For this reason, slight differences in 
the validation procedure of forest parameters can be observed. 

Table 10: Summary of the biomass and DBH estimation and validation 
procedure - Case study A. 

Tree parameter Estimates Validation values 

AGB 

TreeQSM approach 
Equation (15) with in-
situ measured H and 

DBH variables  

Equation (16) with derived 
H and CD variables 

Equation (15) with derived 
H and DBH variables 

DBH Equation (19) with derived 
H and DBH variables Ground truth data 

 
Additionally, to evaluate the reliability of allometric equations, an 

error propagation analysis was conducted to quantify the error in the tree 
parameter (DBH, AGB) assessment as an effect of incorrect input values 
of the dependent variables. The studies were carried out by introducing 
an error bias in the estimated crown diameter in Equations (16) and (19) 
and in the DBH in Equation (15). It was decided to consider only the 
error of these variables and to ignore any errors in estimating the height 
of the trees, assuming that this was obtained with sufficient precision by 
the local maxima algorithm. The error was then evaluated in percentage 
terms in the AGB estimate of Equation (19) due to an error in the 
prediction of the CD of (i) 0.1 m, (ii) 0.2 m, (iii) 0.5 m, and (iv) 1 m. The 
same error bias was introduced to evaluate the allometric Equation (16). 
Finally, similar considerations were made in the allometric equation for 
the AGB estimate (15), considering a systematic error in the estimate of 
the DBH of (i) 1 cm, (ii) 5 cm, and (iii) 10 cm. 
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6.2 Data processing 

6.2.1 ITD 

The Individual Tree Detection performed through the FSCT tool 
yielded no results. Unfortunately, during the processing phase, the error 
shown in Figure 47 is returned. The “ValueError: need at least one array 
to concatenate” error is due to the low density of points. This result was 
expected since this algorithm identifies trees with a procedure that 
analyzes the point cloud from the lower to the upper part of the trees; 
however, (i) the aerial approach of point cloud acquisition and (ii) the 
low density of points mainly located in the lower part of the trees do not 
allow the automatic identification of the trunks. 

 

 

Figure 48: Error resulted during the ITD procedure - Case Study A. 

The segmentation carried out through the PyCrown algorithm, on the 
other hand, produced positive results (Figure 49a-b). Individual trees are 
plotted using random colors. 
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(a) (b) 

Figure 49: Segmented point cloud at single tree level - (a) 2013 and (b) 
2014 point cloud. EPSG:3912. 

Figure 50 compares the position of the treetops and the shape and 
extension of the crowns automatically extracted by the segmentation 
procedure in the same graph. In the 2013 scenario, 76 trees were 
identified, while they dropped to 69 in 2014. Of these, 62 and 49 were 
correctly identified, respectively. 

 

 

Figure 50: Treetops and crowns detection. The 2013 scenario is colored 
in red, and the 2014 scenario is colored in blue. EPSG:3912. 
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As shown in Table 11, the F1 score values are consistent with each 
other (76% in 2013 and 78% in 2014). In detail, this value appeared to 
be compatible with those proposed in the literature and obtained with 
different techniques and algorithms [278], [279]. No cases of simple 
omission were recorded, i.e. all the trees were detected; the main errors 
were due to under-segmentation and over-segmentation. The leading 
causes of erroneous segmentation were the high density of trees and the 
spatial heterogeneity typical of non-anthropized environments. Table 11 
also shows the segmentation results of the 2013 scenario obtained 
through the original PyCrown code (first column). Comparing them with 
those obtained after implementing the improvement to limit over-
segmentation (second column), a difference of about ten percentage 
points in the F1 score value is observed. This result was sufficient to 
extend this modification to the remaining scenarios and case studies 
without further analysis. 

Table 11: Metrics of the segmentation procedure, PyCrown algorithm - 
Case study A. 

Case study A - Metrics 
Individual Tree Detection 

2013 (Original code) 2013 (Improved code) 2014 
TruePositive + FalseNegative 87 87 57 
TruePositive + FalsePositive 85 76 69 

TruePositive 58 62 49 
Precision 0.68 0.82 0.71 

Recall 0.67 0.71 0.86 
F1 score 67% 76% 78% 

 
The results of identifying the same tree in the two different multi-

temporal acquisitions are shown in Figure 51.  
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(a) (b) 
Figure 51:  Segmented point cloud at single tree level with multitemporal 

match - (a) 2013 and (b) 2014 point cloud. The same trees are colored with 
the same colors; blue trees did not have a positive match. EPSG:3912. 

 
Table 12: Metrics of the multitemporal detection of individual trees 

procedure - Case study A. 

Case Study A - Metrics 
Multitemporal detection of individual trees 

2013 2014 
TruePositive + FalseNegative 57 57 
TruePositive + FalsePositive 43 41 

TruePositive 34 34 
Precision 0.79 0.83 

Recall 0.60 0.60 
F1 score 68% 69% 

 
As shown in Table 12, out of 57 trees that survived the natural hazard 

(and therefore present in both LiDAR acquisitions), the multi-temporal 
correspondence was performed correctly for 34 trees in the point cloud 
dataset. The resulting F1 scores are 68% for the first point cloud and 69% 
for the second. It should be noted that the value related to the 2014 
scenario cannot be higher than the F1 score value obtained in the 
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segmentation phase. As a matter of fact, it is not possible to correctly 
match trees if they are not adequately detected simultaneously in the two 
acquisitions. For this reason, the F1 score values related to the 2013 
dataset cannot be compared with each other. However, the number of 
trees correctly identified in the two acquisitions is expected to be 
identical. 

6.2.2 Wood and leaf separation 

The results of the three proposed approaches for segmentation at the 
trunk and leaf levels are shown in Figure 52. Additionally, Figure 53 
plots the woody and foliar components separately. To facilitate 
visualization and understanding, it was decided to show only a tree rather 
than the entire forest point cloud for illustrative purposes. However, the 
results shown on the selected tree are significant for all the processed 
trees.  

 

 

Figure 52: Wood and leaf separation on the same tree: on the left, first 
approach; in the middle, second approach; on the right, third approach - 2013 

scenario. 
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Figure 53 shows the results more clearly, and more specifically, 
Figure 53b highlights the absence of a well-defined woody structure. 

 

       

(a) (b) 
Figure 53: Wood and leaf separation on the same tree: on the left, first 

approach; in the middle, second approach; on the right, third approach. (a) 
leaf component; (b) wood component - 2013 scenario. 

The first two methods return results quite similar to each other, while 
with the third method, a greater number of points are labelled as leaf 
(blue points). From a visual interpretation, there are no doubts about 
correctly identifying the main trunk in the lower part of the tree; 
however, branches are more difficult to identify due to the low point 
density. 
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Figure 54: Wood and leaf separation on the same tree: on the left, first 
approach; in the middle, second approach; on the right, third approach - 2014 

scenario. 

 

 

(a) (b) 
Figure 55: Wood and leaf separation on the same tree: on the left, first 

approach; in the middle, second approach; on the right, third approach. (a) 
leaf component; (b) wood component - 2014 scenario. 
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For comparative purposes, Figure 54 and Figure 55 show the 
segmentation results obtained on the same tree acquired in 2014 between 
the acquisitions that occurred at two different moments. Although the 
point cloud density is slightly higher, this is not enough to achieve better 
segmentation. The tree shown is one of those on which the storm had the 
most negligible impact: if the time instants are compared, only minor 
variations are observed. 

In conclusion, it can be stated that the proposed wood and leaf 
segmentation methodologies are inadequate to complete this task in this 
scenario. However, it should be made clear that the point cloud type does 
not allow a clear identification of the woody structure, even through 
careful manual and visual segmentation. This peculiarity leads to the 
assumption that the validity of the wood and leaf separation data 
processing cannot be assessed based on the results obtained in this 
scenario. 

6.2.3 Error propagation in the allometric equations 

The results of the estimation of the error propagation of Equations 
(16), (19) and (15) are detailed below. All the equations assumed an 
exponential trend in the percentage of error committed, and the 
propagation of the error in estimating the parameters increased as the 
size of the tree (crown diameter) decreased. When evaluating the error 
propagation in the AGB estimation through Equation (16), an error in the 
analysis of the crown diameter equal to one meter could lead to an 
overestimation of the biomass of the trees by up to 30%. The 
overestimation could be reduced and limited to 15% if the overestimation 
of the CD was halved (Figure 56a).  Equation (15) is affected by error 
propagation with the fastest exponential growth compared to the 
previous equations (Figure 56b) since the analyzed parameter (the DBH, 
expressed in centimeters) is squared. For the smallest trees (with DBH 
between 10 and 20 cm), an error in the estimate of 1 cm caused an error 
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in terms of percentage ABG between 10 and 20%; if the DBH was 
overestimated by 10 cm, this error could exceed 70%. If we consider the 
medium/large trees, the percentage error of the ABG is reduced and 
becomes reasonable if the DBH is estimated with a maximum error of 1 
cm. In comparison, it reached values higher than 15–20% for estimates 
affected by more significant uncertainty (5 cm).  

With respect to Equation (19), it was observed (Figure 57) that the 
DBH estimate for trees with a crown described by a diameter between 5 
and 14 m (such as those analyzed in the case in question) was affected 
by a maximum error propagation of about 15% when the error in the 
evaluation of the diameter of the canopy was one meter. Considering the 
errors in this estimate of less than one meter, the percentage of error 
committed was less than 10% for the trees in the study area. 

These considerations highlight (i) the importance of having accurate 
estimates relating to basic forestry parameters but, at the same time, (ii) 
the substantial limitations to which allometric equations are subject. 

 
 

  

(a) (b) 
Figure 56: Error propagation of Equation (16) on the left, and Equation 

(15) on the right for the AGB assessment. 
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Figure 57: Error propagation of Equation (19) for the DBH assessment. 

6.2.4 Forest parameters (DBH and AGB) 
characterization 

The results related to the estimates of forest parameters are described in 
Table 13. In the case of pre-disaster lidar acquisition, the analysis was 
conducted on 29 correctly identified trees; among these, 14 were 
uprooted by the snowstorm, while 15 survived. Regarding the latter, the 
same analyzes were carried out using the point cloud acquired after the 
disastrous event. 
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Table 13: Estimated and reference values of forest parameters - 2013 scenario. 

Tree 
ID 

H 
[m] 

CD 
[m] 

AGBJucker 

[kg] 
DBHJucker 

[cm] 
DBHRef 

[cm] 
AGBChave 

[kg] 
AGBTreeQSM 

[kg] 
AGBRef 

[kg] 
104 24,6 7,9 1383 39,5 54,4 920 39938 1718 
105 30,1 8,2 2130 48,1 60,8 1642 11314 2598 
108 15,7 7,3 532 25,7 43,3 255 4102 708 
113 24,3 8,4 1522 41,3 46,7 990 65115 1259 
114 28,4 6,0 1103 35,7 37,0 868 31383 931 
119 26,7 5,8 931 33,1 31,0 703 31970 620 
120 22,8 8,2 1296 38,4 49,4 808  1323 
128 27,5 8,3 1853 45,1 56,3 1329 33436 2050 
129 25,4 5,7 817 31,2 35,0 598 28290 750 
132 22,0 7,5 1044 34,8 35,1 644 3827 654 
134 14,8 7,0 453 23,9 24,7 209 16028 224 
135 22,2 5,7 638 27,9 29,0 422 40676 456 
136 22,2 8,8 1417 40,0 43,3 853 17490 996 
137 25,1 8,1 1502 41,0 60,8 1010 57785 2175 
504 25,5 8,2 1591 42,1 46,8 1079 11538 1326 
507 16,1 7,6 606 27,2 24,0 294 9887 230 
509 30,0 10,4 3233 58,0 39,6 2366  1122 
513 25,1 7,2 1223 37,4 33,1 844  665 
514 26,9 5,9 954 33,4 33,2 725  715 
515 26,9 8,6 1892 45,5 47,2 1326 62820 1419 
516 27,6 5,9 1020 34,5 37,4 788  924 
518 23,9 8,5 1504 41,1 46,8 966 21585 1246 
522 25,1 5,7 795 30,8 33,0 577 43146 661 
525 21,4 5,2 515 25,3 26,1 336  357 
527 14,1 7,1 419 23,1 23,9 187 54342 200 
530 22,7 7,4 1069 35,2 27,6 677 32760 421 
531 22,9 7,8 1197 37,0 42,5 757 58703 990 
532 14,4 7,9 541 25,9 33,1 239 33470 387 
533 23,5 9,8 1891 45,5 46,8 1161 26811 1224 
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The results were subjected to statistical analyses: precisely, the 
RMSE and bias values were calculated. Table 14 and Table 16 refer to 
the 2013 and 2014 scenarios, respectively 

As can be immediately observed, using an approach based on the 
Quantitative Structure Model encounters several problems. First of all, it 
cannot produce results for all the considered trees; furthermore, the 
estimates provided differ from the reference one by an order of 
magnitude (or more). These limitations are due to the impossibility of 
fitting wood points into hierarchical cylindrical elements, mainly due to 
the low point density and insufficient and incorrect woody and foliar 
point separation. However, when the algorithm manages to fit geometric 
shapes around the points, these are highly oversized, as they fit any point 
identified as wood. For these reasons, the results obtained from this 
model for estimating the AGB are not considered valid. 

Equation (19) tends to underestimate the DBH of trees with a bias of 
about -6 % and an RMSE of 8 cm. On the contrary, Equation (16), 
although it depends, like Equation (19), on H and CD parameters, 
overestimates the AGB by approximately 42% (RMSE equal to 519 kg). 
As regards the estimate of the AGB through Equation (15), consistently 
with the estimates of the DBH of Equation (19) on which it depends, a 
slight underestimation is observed (about -9%, with RSME equal to 
about 452 kg). In fact, the DBH estimates are affected by negative bias 
(6.2%) and an RMSE equal to 8 cm. 

Table 14: Statistical indexes for forest parameters - 2013 scenario. 

Assessment RMSE BIAS 
AGBJucker 519 kg 42,5 % 
DBHJucker 8 cm -6,2 % 
AGBChave 452 kg -9,1 % 

AGBTreeQSM 32040 kg 3797,9 % 
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Similar results are observed in the post-event scenario, showing that 
the best estimate of the AGB is confirmed to be obtained with Equation 
(15). In contrast, Quantitative Structure model estimates are completely 
misleading (Table 15). Consequently, the RMSE and bias values are also 
consistent (Table 16). 

Generally speaking, the estimates obtained through equation (19) are 
affected by a higher error. This result was expected since these estimates 
are validated according to estimates assessed with Equation (15). 
However, comparing results obtained through different equations 
involves an intrinsic bias. 

The estimation of forest parameters using the 2014 acquisition and 
the reference values considered are affected by more significant 
uncertainty. It is logical to think that the DBH of trees does not change 
significantly over a few months; however, since this is estimated as a 
function of the crown diameter and the tree height, different values can 
be obtained if the canopy has undergone significant variations. The same 
happens with respect to the use of allometric equations for biomass 
estimation. In the specific case where most of the trees have suffered 
major damage, these estimates are distorted, as they are generally valid 
only if the tree is undisturbed. However, for the purposes of this study, 
and especially in the absence of direct volumetric estimates carried out 
with QSM, considerations on allometric equations are the best tool 
available. 
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Table 15: Estimated and reference values of forest parameters - 2014 scenario. 

Tree 
ID 

H 
[m] 

CD 
[m] 

AGBJucker 

[kg] 
DBHJucker 

[cm] 
DBHRef 

[cm] 
AGBChave 

[kg] 
AGBTreeQSM 

[kg] 
AGBRef 

[kg] 
504 23 8,4 1387,1 40 46,8 865 9324 1199  

507 13,23 6,6 331,9 21 24,0 143  190  

509 25,45 7,0 1195,6 37 39,6 838 7153 955  

513 20,1 6,6 709,4 29 33,1 420 2932 535  

514 25,77 5,7 842,1 32 33,2 622 5729 686  

515 10,76 14,1 896,8 33 47,2 281 12253 580  

516 24,44 8,5 1572,7 42 37,4 1026 4288 821  

518 27,04 7,0 1312,3 39 46,8 965 12164 1404  

522 20,86 7,4 929,3 33 33,0 552 17456 551  

525 17,99 7,3 685,8 29 26,1 366 14016 302  

527 20,01 6,7 722,8 29 23,9 425 12995 282  

530 12,27 9,0 509,4 25 27,6 194 11830 232  

531 23,59 6,9 1022,5 34 42,5 678 3942 1018  

532 20,69 7,9 1028,9 35 33,1 599 19334 550  

533 12,05 7,7 370,0 22 46,8 143 4045 638  
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Table 16: Statistical indexes for forest parameters - 2014 scenario. 

Assessment RMSE BIAS 
AGBJucker 337kg 55,2 % 
DBHJucker 9 cm -8,7 % 
AGBChave 239 kg -13,3 % 

AGBTreeQSM 10141 kg 1798,1 % 
 
Finally, Table 17 shows an estimate of the AGB loss referring to the 

analyzed trees. Of the 15 surviving trees, the loss is 16% (about 1950 
kg), while the estimate is 34% (about 4200 kg). Roughly assuming that 
similar results can be applied to the remaining trees (for a total of 57 
surviving trees and 30 uprooted trees), using a simple proportion, within 
the area in question, the reference biomass lost from damaged trees is 
approximately equal to 7400 kg, while that relating to uprooted trees is 
about 35300 kg (total of 43,000 kg). The estimates quantify 24,100 kg 
and 16,000 kg, respectively, for approximately 40,000 kg of AGB lost. 

Table 17: Estimate of biomass loss following the disastrous event - Case 
study A. 

Biomass loss 
AGBChave Reference 

[kg] [%] [kg] [%] 
14 uprooted trees 11250 100% 16461 100% 
15 survived trees 4208 34% 1946 16% 

6.2.5 CO2 assessment 

Table 18 shows the results relating to the estimate of the CO2 stocked 
by the trees considered in the two different time instants through 
Equation (15), while Table 19 is related to statistical indexes. Complete 
results are reported in Appendix C, where the carbon dioxide assessment 
is based on AGB values estimated according to (16), and QSM output is 



6 - CASE STUDY A: RESULTS AND DISCUSSION 

136 

also listed. Since CO2 was considered equal to half of the AGB, the bias 
is unchanged, while the RMSE value is halved. 

Regarding the trees considered, the carbon dioxide preserved in the 
uprooted trees is approximately equal to 8232 kg, while that preserved 
in the portion of damaged trees is roughly equivalent to 973 kg. The 
estimates quantify these values at 5627 kg and 1997 kg, respectively. 
The cause of the differences, albeit minimal, is to be found in the changes 
in scenarios. The surviving trees suffered damage and biomass losses; 
however, the estimates' errors increased because the allometric equations 
are not designed to calculate the AGB under external damage. 

Assuming that the damages thus quantified can be extended to the 
entire population of the forest under examination, a loss of carbon 
dioxide of between approximately 20 and 21.5 tons can be estimated. 

Table 18: Estimated and reference values of stocked CO2 - Case study A. 

Tree ID 
2013 scenario 2014 scenario 

CO2Chave [kg] CO2Ref [kg] CO2Chave [kg] CO2Ref [kg] 
104 460 859   
105 821 1299   
108 128 354   
113 495 630   
114 434 466   
119 351 310   
120 404 662   
128 664 1025   
129 299 375   
132 322 327   
134 105 112   
135 211 228   
136 426 498   
137 505 1087   
504 540 663 433 600 
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Table 18: Estimated and reference values of stocked CO2 - Case study A. 

Tree ID 
2013 scenario 2014 scenario 

CO2Chave [kg] CO2Ref [kg] CO2Chave [kg] CO2Ref [kg] 
507 147 115 71 95 
509 1183 561 419 478 
513 422 333 210 267 
514 362 358 311 343 
515 663 709 140 290 
516 394 462 513 411 
518 483 623 482 702 
522 289 331 276 276 
525 168 179 183 151 
527 93 100 212 141 
530 339 211 97 116 
531 378 495 339 509 
532 120 194 300 275 
533 581 612 72 319 

 
Table 19: Statistical indexes for stocked CO2 - Case study A. 

Assessment 
2013 scenario 2014 scenario 

RMSE BIAS RMSE BIAS 
CO2Chave 226 kg  -9,2 % 120 kg  -13,3 % 

6.3 Lesson learnt 

The analyzes of this first case study produced results of considerable 
interest. They are briefly summarized below, and major emphasis is 
placed on the results of greatest interest. 

The segmentation procedure at the single tree level was performed 
sufficiently and consistently with the preciseness proposed by the 
literature. Furthermore, the efficiency of the improvement developed in 
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this study on the original workflow of the PyCrown algorithm was 
demonstrated. However, it was also highlighted that it is not possible to 
process aerial point clouds with low point density through a semantic 
segmentation approach due to the poor quality of the cloud in the lower 
part of the trees. 

However, the distinction between woody and foliar points did not 
produce the desired results. The point cloud is not dense enough to obtain 
segmentation, enabling the woody structure to be uniquely identified.  
Nonetheless, it is essential to highlight that poor segmentation quality is 
also achieved through detailed visual interpretation of the point cloud. 
For this reason, the proposed methodologies need to be tested on point 
clouds with different characteristics (e.g., different acquisition 
perspectives or different instruments). 

Consequently, the aboveground volumetric and biomass estimate 
through QSM is also fallacious due to a low-quality wood and leaf 
separation result. In fact, the algorithm is asked to identify cylindrical 
geometric structures around an insufficiently segmented point cloud at 
the part level. This limitation leads to incorrect results, as cylinders of 
larger dimensions than reality are automatically generated. Additionally, 
if there is undergrowth, this would increase the degree of error. However, 
analyzes have been performed directly through allometric equations. It 
is specified once again that these equations are not designed to monitor 
damage caused by external events; therefore, the estimates are certainly 
affected by an inherent error that cannot be quantified precisely. 

Focusing on the results, it is estimated that approximately 40,000 - 
43,000 kg of wood were uprooted, reducing the carbon-absorbing 
capacity of the analyzed forest (20,000 – 21,500 kg of carbon dioxide 
stocked in uprooted and damaged trees was lost). In this regard, there are 
two aspects to stress. First of all, post-event forest management is 
essential so that all actions aimed at minimizing the dispersion of CO2 
from dead trees back into the atmosphere caused by decomposition are 
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implemented. Furthermore, it must be considered that the damage 
suffered by individual trees affects their ability to grow and absorb 
carbon. Prolonged monitoring over time should be adopted to precisely 
quantify the resilience of trees and how quickly (if possible) they can 
grow again. 

Finally, to answer the questions proposed at the beginning of the 
Chapter, it can be stated that aerial LiDAR data can be used to estimate 
the damage to which a forest is subject in the event of natural disasters. 
Although not rigorous, these estimates provide robust data on which to 
develop further monitoring and management analyses.  Furthermore, it 
was demonstrated that the modification to the single tree identification 
procedure led to a substantial improvement in the final output, reducing 
misclassifications caused by over-segmentation.
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Chapter 7 

CASE STUDY B: RESULTS 
AND DISCUSSION 

The second case study covers a 70-hectare coniferous forest in the 
North-West Italian Alps. The peculiarities of this case study are (i) the 
occurrence of a forest fire before the LiDAR acquisitions, (ii) the 
harvesting of trees in the upper portion of the study area, resulting in 
different tree densities, and (iii) the use of two LiDAR instruments and 
different terrestrial acquisition approaches. 

These characteristics directed the analyzes in order to:  

• Test two different acquisition techniques, differing in 
characteristics and operating methods, to determine if one 
best suits this analysis. 

• Identify individual trees in conditions of fire damage;  
• Calculate the biomass (and stored CO2) relating to surviving 

trees. 
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 Contrary to case studies A and C, the point cloud dataset does not 
include multi-temporal analyses. Furthermore, there is no information 
about the allometric parameters collected in situ with traditional 
instruments. 

7.1  General overview 

Figure 58 shows the ground points segmented according to the CSF 
algorithm. Figure 52a shows that some ground portions were not 
acquired correctly with the TLS in the central part of the analysed area. 
On the other hand, concerning the MLS dataset, ground points are 
identified with greater continuity in the central part of the area. At the 
same time, a lack of data is found in the perimeter areas (Figure 58b). 
This highlights not only the importance of survey planning but also the 
operational difficulties, which can sometimes limit the quality of the 
data. In fact, the high slope of the section in question made movement in 
situ difficult, especially with the terrestrial LiDAR, due to its increased 
weight and size. 

 

 

(a) (b) 
Figure 58: Ground points of the study area B: (a) TLS point cloud; (b) 

MLS point cloud. EPSG:32632. 
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The aboveground biomass assessment was performed after selecting 
the best ITD and wood and leaf separation approaches. Estimated AGB 
values were validated according to Equation (15) results. However, since 
no in-situ data are available, DBH and H measures were entirely 
manually extracted from the point cloud. In this study, the density value 
of coniferous trees was set equal to 0.8 g/cm3. 

Table 20 summarizes the AGB estimation and validation procedure.  

Table 20: Summary of the biomass estimation and validation procedure - 
Case study B. 

Tree parameter Estimates Validation values 

AGB 
TreeQSM output Equation (15) with in-

situ measured H and DBH 
variables 

Equation (15) with derived 
H and DBH variables 

 
The datasets acquired with the different tools were compared in 

terms of accuracy. The Euclidean distance between the points was 
calculated using the commercial 3D Reshaper software. The analysis was 
conducted on the entire point cloud, and a limited portion was filtered to 
eliminate the undergrowth points and highlight the accuracy of 
individual trees (Figure 59). 70% of the points have an accuracy of less 
than 6.3 cm, and 85% have an accuracy of less than 12.5 cm. The figure 
also shows that the points with the least accuracy are mainly located in 
the area with the most significant forest density [271]. 

It should be emphasized that this type of error is also linked to the 
fact that the two acquisitions are not precisely contemporary and that the 
thinnest branches and leaves are subject to the effect of the wind, which 
modifies their position.  
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Figure 59: Accuracy of MLS point cloud compared with TLS dataset. On 
the left is the entire study area; on the right is a portion of individual trees 

[271]. 

7.2 Data processing 

7.2.1 ITD 

The two terrestrial LiDAR acquisitions produced point clouds that 
were positively analyzed with both proposed single-tree level 
segmentation methods. Figure 60 refers to results through the PyCrown 
segmentation, while Figure 63 refers to the FSCT segmentation results.  
It is essential to point out that the FSCT algorithm is particularly 
demanding from a computational point of view. For this reason, in order 
to avoid a lack of memory errors, it was necessary to divide the area 
under examination into five sub-areas, which were processed separately. 
The area boundaries were identified manually, taking care not to 
intersect the tree canopy. In fact, this would have led to segmentation 
errors due to the partial nature of the dataset. Finally, a single point cloud 
dataset merged the processed point clouds. 
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(a) (b) 

Figure 60: Segmented point cloud at single tree level with PyCrown 
algorithm - (a) MLS point cloud and (b) TLS point cloud. EPSG:32632. 

As can be easily observed by comparing Figure 60a and Figure 60b, 
missing trees can be detected in the MLS point cloud. They are mainly 
located in the central part of the study area, but some absent trees are also 
present in the upper part. This phenomenon is even more evident when 
comparing the position of the treetops and crowns of the trees identified 
for both datasets (Figure 61). The TLS point cloud appears to be better 
segmented; nonetheless, many trees are over-segmented or incorrectly 
segmented. 

Analyzing the evaluation metrics, in fact, there is a very low F1 score 
with the MLS point cloud (33%); this value improves only by about 10 
percentage points and stands at 44% relative to the TLS dataset (Table 
21). 

The results are unsatisfactory overall, and the segmentation method 
mentioned above cannot be considered good enough for single tree 
analysis. The leading causes of the poor results obtained are to be found: 
(i) in an incomplete description of the trees in the upper part (particularly 
concerning MLS point cloud), and (ii) in the consequences of forest fire.  

As regards the first point, a clarifying example is represented in 
Figure 62. It shows the same tree acquired with the two proposed 
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techniques. Unfortunately, although the survey was carefully designed 
to survey the area comprehensively, some trees were not fully captured 
by the field view of the MLS LiDAR. The main causes are operational 
difficulty in a steeply sloping area and instrumental limitations. In this 
case, the region growing algorithm around the treetop (if identifiable) is 
not optimized, as the canopy is entirely absent; because of this, the 
algorithm fails to identify trees partially present in the point clouds. 

 

 

Figure 61: Treetops and crowns detected with PyCrown algorithm. MLS 
scenario is colored in red; TLS scenario is colored in blue. EPSG:32632. 

At the same time, due to the consequences of the fire, most of the 
foliage and woody structures are destroyed. For the same reason 
discussed above, the region-growing algorithm encounters critical issues 
in individually segmenting a severely corrupted tree. It follows that an 
approach based on canopy and treetop identification is not the best 
solution in this scenario. 
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Table 21: Metrics of the segmentation procedure, PyCrown algorithm - 
Case study B. 

Case study B - Metrics 
PYCROWN 

MLS TLS 
TruePositive + FalseNegative 242 242 
TruePositive + FalsePositive 126 162 

TruePositive 60 89 
Precision 0,48 0,55 

Recall 0,25 0,37 
F1 score 33% 44% 

 

 

Figure 62: LiDAR acquisition of a single tree, (a) TLS point cloud; (b) 
MLS point cloud. 

In Figure 63, the point clouds segmented with FSCT are shown. 
From a visual interpretation, the results are consistent with those 
obtained through PyCrown. As a matter of fact, some trees are not 
identified with the MLS point cloud. 

A good match between the position of the treetops can be seen when 
taking Figure 64 into consideration. Nonetheless, the results are 
promising. The F1 score values are equal to 68% and 86%, respectively, 
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relative to the MLS and TLS point clouds. The quality of the MLS point 
cloud segmentation is slightly lower (but still acceptable for forestry 
analyses) due to the previously described point cloud characteristics. 

 

 

(a) (b) 
Figure 63: Segmented point cloud at single tree level with FSCT 

algorithm - (a) MLS point cloud and (b) TLS point cloud. EPSG:32632. 

However, paying attention to the distribution of incorrectly 
segmented or completely missing trees is equally important. As a matter 
of fact, the latter is mainly concentrated in the lower part of the area, the 
one in which the distribution of trees is considerably greater. At the same 
time, isolated and not-too-close trees are easily identified. This result 
further confirms what was observed by [278] regarding the effect of 
forest density on ITD. 
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Figure 64: Treetops detected with FSCT algorithm. The MLS scenario is 
plotted in red circles; the TLS scenario is plotted in blue rhombus. 

EPSG:32632. 

In conclusion, the best results in the terrestrial LiDAR point cloud 
case are obtained by processing the point cloud through the FSCT 
algorithm. For this reason, subsequent data processing was carried out 
considering the results obtained with the abovementioned method, while 
the individual trees detected according to the PyCrown algorithm were 
discarded. 

Table 22: Metrics of the segmentation procedure, FSCT algorithm - Case 
study B. 

Case study B - Metrics 
FSCT 

MLS TLS 
TruePositive + FalseNegative 242 242 
TruePositive + FalsePositive 356 300 

TruePositive 203 234 
Precision 0,57 0,78 

Recall 0,84 0,97 
F1 score 68% 86% 
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7.2.2 Wood and leaf separation 

Figure 65 and Figure 68 show the point cloud of an example single 
tree segmented into foliar and trunk parts. In general, satisfactory results 
are observed, as the woody structure can be clearly distinguished: not 
only the part relating to the central trunk but also secondary branches are 
identified. Concerning MLS point cloud, the use of the k-Means 
algorithm in the first segmentation method, however, is the one that 
performs worst among the three proposed methods. The density 
parameter added to the points' position is only sufficient to identify the 
central trunk (among other things, not wholly, since several points 
relating to it are misclassified as leaf class); as regards the branches, only 
the lower ones are partially identified.  

 

 

Figure 65: Wood and leaf separation on the same tree: on the left, first 
approach; in the middle, second approach; on the right, third approach - MLS 

point cloud. 

The second approach returns slightly more robust results. In fact, a 
greater density of points is identified when detecting the trunk. In 
contrast, it is possible to define the boundaries of the lower branches with 
greater clarity and partially identify others. However, some woody parts 
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in the upper part of the tree, around the top, are identified, but the spatial 
continuity in elevation fundamental for QSM purposes is not guaranteed. 

Finally, the third approach segments the point cloud more accurately 
and functionally for the purposes of this study.  

 

  

(a) (b) 
Figure 66: Wood and leaf separation on the same tree: on the left, first 

approach; in the middle, second approach; on the right, third approach. (a) 
leaf component; (b) wood component - MLS point cloud. 

First, contrary to the first two approaches, only a few trunk and 
branch points are misclassified as leaf; furthermore, even the highest 
branches are satisfactorily identified. Although a good part of the leaves 
is identified (as can be clearly seen from Figure 66b), Figure 66a shows 
some leaves misclassified as wood, in particular in the upper part of the 
tree. 

Concerning the TLS dataset, part segmentation results are consistent 
and coherent with what has been described (Figure 60); however, some 
minor differences must be pointed out and discussed. 
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Figure 67: Wood and leaf separation on the same tree: on the left, first 

approach; in the middle, second approach; on the right, third approach - TLS 
point cloud. 

Through all three approaches, but more so in the second and third, 
the trunk structure is classified wholly and correctly exhaustively. 
Through the first two methods, however, only a small percentage of 
points located in the most external part of the trunk are misclassified 
(Figure 68b). Contrary to what occurs with the MLS dataset, the 
branches are identified with greater difficulty: the first approach does not 
identify any of them, and the second identifies only some of them but in 
an unsatisfactory manner. At the same time, the third method is more 
exhaustive (Figure 68a). Additionally, fewer leaves are misclassified as 
trunks; however, since the density of points is lower in the higher part, 
the continuity between the trunks and branches is more intermittent. 

Therefore, the segmentation outputs highlight how an approach 
based on the simple use of a k-Means algorithm is insufficient to segment 
the tree correctly. Generally, slightly better results are observed by first 
applying a threshold (approach 2). However, using only density as a 
discriminating parameter is not the best approach; the third approach, in 
which more features are considered, returns the best results. As expected, 
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the most significant uncertainties occur at the top of the trees. This aspect 
is not only dictated by the fact that the acquisitions were carried out with 
terrestrial approaches, although this could contribute. The leading cause 
lies in the structure of the trees themselves, as in the upper part, the 
branches have minimal dimensions, both in terms of diameter and length; 
furthermore, the quantity of leaves is usually greater. 

 

 

(a) (b) 
Figure 68: Wood and leaf separation on the same tree: on the left, first 

approach; in the middle, second approach; on the right, third approach. (a) 
leaf component; (b) wood component - TLS point cloud. 

Regarding the volumetric estimate using Quantitative Structural 
Models, the woody part of the trees defined through the third approach 
was considered. 

7.2.3 AGB characterization 

To evaluate the AGB assessment quality, the weight estimated 
through QSM was compared with the reference weight calculated as 
expressed in Equation (18). For each LiDAR acquisition, the same 20 
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trees were considered; these were chosen from those correctly segmented 
individually and using the point cloud relating only to the woody part 
obtained as described in the previous Paragraph. Results are tabulated in 
Table 23 and Table 25. 

The first observation and clarification that needs to be made 
concerns the reference values of height and DBH. As previously 
described (Paragraph 5.2), no in situ investigations were conducted. In 
order to have reference values, the point clouds were analyzed manually, 
extracting the forest parameters as follows: the DBH of the trees was 
calculated as the diameter of the circumference that best fit the points of 
the cloud between 1.2 m and 1.4 m above the ground; the height was 
calculated as the difference between the height of the highest and lowest 
point of each tree. However, Table 23 and Table 25 show different values 
between the two acquisitions. Specifically, heights are usually higher 
when calculated relative to the TLS point cloud; the same is observed 
with respect to the DBH. The type of acquisition causes this 
inconsistency. As previously discussed, the MLS point cloud is 
incomplete at the top of the trees due to operational limitations. On the 
other hand, the chosen trajectory of the MLS acquisition allows points 
that describe the trunks to be acquired homogeneously. Although TLS 
acquisitions were carried out from 5 different station points, they did not 
acquire complete information for some trees. For this reason, the points 
of the MLS cloud fit the circumference of the trees with less error 
percentage. However, to avoid distorting the results by comparing them 
with inappropriate (albeit correct) references, it was decided to use the 
forest parameters obtained for each point cloud. 

Out of 20 trees and 40 AGB estimates (one for each dataset), QSM 
failed in the modelling procedure only in 3 cases (twice for the MLS 
dataset and once for the TLS dataset). The failure is related to three 
different trees, and it is caused by an insufficiently complete acquisition 
of each element of the trees (Figure 69). 
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Figure 69: Error resulted during the QSM procedure - Case study B. 

 
Table 23: Estimated and reference values of forest parameters - MLS 

point cloud. 

Tree ID H [m] DBHRef [cm] AGBRef [kg] AGBQSM [kg] 
1 5,80 33,1 185 223 
2 11,81 25,7 226  
3 8,34 23,8 138 213 
4 12,03 26,1 237 613 
5 13,17 28,5 307  
6 12,70 25,6 240 195 
7 10,16 20,4 124 45 
8 12,07 33,4 385 312 
9 13,78 30,3 362 271 
10 10,84 22,9 166 125 
11 11,66 19,2 126 90 
12 12,61 32,2 374 170 
13 9,50 32,3 285 324 
14 13,27 33,3 419 352 
15 14,00 32,5 421 351 
16 12,62 24,2 214 228 
17 6,69 9,4 18 146 
18 8,56 13,3 46 90 
19 8,40 18,5 85 90 
20 5,75 12,7 28 8 
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Table 23 summarizes reference and QSM AGB estimated values. 
The results show an overestimation of the biomass weight 

(approximately equal to 13%) corresponding to an RMSE of roughly 120 
kg when taking into account the MLS-acquired trees; lower errors can be 
recorded through the TLS acquisition (RMSE equal to 95 kg and 
overestimation BIAS of 6%).  

Table 24: Statistical indexes for forest parameters - MLS scenario. 

Assessment RMSE BIAS 
AGBQSM 117 kg 39,8 % 

 
The resulting overestimates (explicitly referring to MLS point cloud) 

must be contextualized. As a matter of fact, there is a substantial 
difference between the values obtained about tree number 17. If this 
value were excluded as an outlier, no significant change in the RMSE 
value would be achieved; however, the bias would drop to approximately 
1%. This value would be consistent with the one calculated for the MLS 
dataset. Therefore, although the predicted and obtained values differ 
slightly, this difference must be sought in the validity of the allometric 
equations. Since these are more accurate only when the tree is growing 
steadily, one might expect the estimates obtained by modeling the wood 
structure after the tree has been damaged to be more reliable; 
furthermore, they are expected to provide greater values than allometric 
equations.  
However, the overestimation observed with the TLS point cloud (Table 
25 and Table 26) may be caused by the DBH values considered. Most 
likely, QSM is more accurate in estimating tree diameter; since the 
analysis is not limited to a height of 20 cm (from 1.20 to 1.40 m above 
the ground) but extends to the entire trunk, this can be reconstructed 
more precisely. 
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Table 25: Estimated and reference values of forest parameters - TLS 
scenario. 

Tree ID H [m] DBHRef [cm] AGBRef [kg] AGBQSM [kg] 
1 11,49 30,5 307 354 
2 11,46 28,5 268 287 
3 10,68 24,3 183 248 
4 13,80 36,9 532 447 
5 13,35 31,2 372 295 
6 14,04 27,7 309 296 
7 11,37 25,8 219 305 
8 12,24 31,9 356 161 
9 14,25 35,5 510 576 
10 11,49 25,5 216 192 
11 13,62 19,9 157 154 
12 11,58 23,9 192 146 
13 10,74 26,3 215 235 
14 14,43 40,8 677 538 
15 13,25 31,6 378 492 
16 10,90 35,4 390  
17 9,55 31,1 266 518 
18 10,52 24,3 181 158 
19 10,97 24,8 196 189 
20 8,56 17,5 78 107 

 
Generalizing, volumetric and aboveground biomass estimates are 

consistent and show high accuracy for forestry survey purposes, enough 
to improve and possibly replace the results of allometric equations. 

Table 26: Statistical indexes for forest parameters - TLS scenario. 

Assessment RMSE BIAS 
AGBQSM 95 kg 5,9 % 
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7.2.4 CO2 assessment 

Table 27 summarizes CO2 estimates, while Table 28 shows 
statistical indexes. Since the correction factor for carbon dioxide 
assessment is a constant value, the same considerations made for the 
latter are also valid for stocked carbon dioxide. Therefore, also in this 
case, excluding tree 17 from the analyzes as it is an outlier, the bias of 
the MLS cloud decreases up to 1%. 

Table 27: Estimated and reference values of stocked CO2 - Case study B. 

Tree ID 
MLS TLS 

CO2QSM [kg] CO2Ref [kg] CO2QSM [kg] CO2Ref [kg] 
1 112 92 221 154 
2  113 180 134 
3 106 69 155 92 
4 306 118 280 266 
5  154 185 186 
6 98 120 185 155 
7 22 62 191 110 
8 156 192 101 178 
9 136 181 360 255 
10 62 83 120 108 
11 45 63 97 79 
12 85 187 92 96 
13 162 143 147 108 
14 176 210 336 338 
15 176 211 308 189 
16 114 107  195 
17 73 9 324 133 
18 45 23 99 90 
19 45 43 118 98 
20 4 14 67 39 
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Table 28: Statistical indexes for stocked CO2 - Case study B. 

Assessment MLS TLS 
RMSE BIAS RMSE BIAS 

CO2QSM 58 kg 40 % 68 kg 6 % 
 
The total estimate of carbon dioxide stored within the 20 trees 

analyzed is approximately equal to 1,9 tons and 3,5 tons, respectively, 
on MLS and TLS point cloud-based analysis. Based on all the 
considerations about the two datasets, it is reasonable to assume that the 
second estimate is more reliable. This leads to the conclusion that 
terrestrial point cloud acquisitions must be programmed with extreme 
care in order to minimize errors. Furthermore, MLS acquisition 
techniques in the operating methods explored in this study seem 
unsuitable for the purposes pursued in this thesis work; nevertheless, 
further studies should be conducted considering handheld LiDARs with 
wider fields of view which could offer better results. 

7.3 Lesson learnt 

This case study focused on comparing two terrestrial data acquisition 
methodologies, evaluating the pros and cons of data acquisition in a 
forest environment subject to forest fire damage. 

The raster-based approach for segmentation at the single tree level 
encounters some critical issues. Added to the difficulty of processing 
datasets with poor quality in the upper part of the tree is a further degree 
of difficulty caused by the damage to which the trees are subject. On the 
contrary, the results obtained via semantic segmentation are acceptable 
and consistent with the values proposed by the literature. Using the latter 
procedure, an F1 score of 86% is obtained relative to the TLS point 
cloud. This value is the highest among all the case studies analyzed 
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(86%). The MLS dataset also performs well; however, limitations related 
to mobile acquisitions caused the F1 score to drop to 68%.  

Separation of wood and leaf points has been performed with 
promising results. All the proposed approaches identify the main trunk; 
however, using the third approach, it is possible to precisely delineate 
the larger and smaller branches (if these are located in the lower part of 
the tree or are bare of leaves). It should be specified that the foliar part 
of the trees was damaged due to the fire, facilitating their separation from 
the woody part. 

As a result of good wood and leaf segmentation, it was possible to 
perform the volumetric modeling of trees through QSM in almost all of 
the cases analysed. The comparison with the values obtained from 
allometric equations is not excellent. However, taking into account the 
limited validity of these equations for quantifying the biomass of 
damaged trees, these results can be considered valid. 

In conclusion, in order to answer the questions posed at the 
beginning of the Chapter, it is possible to segment individual trees in 
post-fire scenarios through semantic segmentation. Furthermore, the 
quality of the terrestrial datasets allows to conduct detailed analyzes of 
the biomass and, consequently, the CO2 stocked in the wood through 
geometric modeling. However, further investigations are needed to 
validate the results obtained through this approach; although the 
allometric equations provide a rough estimate, they have a lower value 
in this case study due to external events that have seriously damaged the 
trees. It is estimated that the carbon dioxide stored in the trees in the 
study area is between 23 and 42 tons. 

Finally, as already mentioned, this case study highlighted the pros 
and cons of static and dynamic terrestrial acquisitions in the forestry 
domain. By analyzing the quality of the point cloud in its entirety and 
considering the evaluation metrics and indexes, the TLS approach 
provides the best results. However, it should not be forgotten that this 
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type of acquisition is characterized, on the other hand, by greater 
operational difficulty and processing times. On the contrary, the MLS 
point cloud has a lower quality, affecting the accuracy of the final results; 
nevertheless, these are still acceptable for large-scale studies in forestry. 
Furthermore, the greater simplicity in the operational phase in scenarios 
with a particular degree of difficulty means that this approach can be 
considered a fair compromise. 
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Chapter 8 

CASE STUDY C: RESULTS 
AND DISCUSSION 

Data acquisitions occurred within the Hyytiälä forest field station, 
which is commonly used for educational and research purposes. The 
instrument used for forest monitoring is a RIEGL VZ-2000i terrestrial 
LiDAR; however, the point cloud acquisition is not conventional. The 
laser scanner is permanently installed on a 35-meter-high tower, 
constantly acquiring information; its position and its orientation in the 
space allow to obtain an oblique point cloud with an innovative and 
unique perspective (more details about the setup can be found in 
Paragraph 5.3). 

The analysis concerned two LiDAR point clouds acquired within a 
year of each other (2020 and 2021) during the same month (April). The 
month was chosen because, in this period, the snow accumulated during 
the winter months should have melted entirely, and there should be no 
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accumulations of it on tree branches. Additionally, the leaf-off season 
helps in the wood and leaf separation procedure.  

Contrary to case study A, no major disturbance events occurred 
during the year under examination. This means that the only changes 
expected to be observed are an increase in biomass following the growth 
of the trees (as a matter of fact, the forest is only 63 years old); however, 
some weaker branches can have broken due to the excessive snow load 
sustained during the winter season. The main aspects to be investigated 
in this case study are: 

• The actual usefulness of an innovative type of acquisition 
such as the oblique one; 

• The evaluation of the temporal evolution of CO2 in 
substantially undisturbed conditions; 

• Establish which features most influence the segmentation of 
wood and leaf. 

8.1 General overview 

Ground truth data regarding the position of the trees within the area 
in question were acquired through in situ surveys, while no additional 
data is available. Segmented ground points are shown in Figure 70. 

 
Some features of these outputs can already be discussed. First of all, 

it can be observed that the single point of view, albeit with a high point 
density, generates shadow cones caused by the trunks and larger 
branches, which hinder the penetration of a certain quantity of laser 
beams. Obviously, the cones become larger and more numerous as they 
move further away from the station point. Secondly, but no less critical, 
the quantity of leaves increases with the distance from the LiDAR, 
making the point cloud further scattered in the perimeter areas of the 
study area. 
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Concerning the ITD task, the maximum extension of the tree crown 
was set equal to 15 meters. Once again, the F1 score was used (i) to 
evaluate the results obtained in ITD procedure and (ii) to validate the 
multi-temporal matching procedure. 

 

 

(a) (b) 
Figure 70: Ground points of the study area C: (a) 2020 point cloud; (b) 

2021 point cloud. EPSG:3067. 

The same methodologies described in the other case studies were 
adopted regarding the separation of trunk and leaf. However, contrary to 
previous case studies, in this study, further analyzes were conducted 
regarding the features to be considered. Additional tests concern the 
contribution of the deviation as an additional feature [272]. 

The volumetric estimates obtained via QSM were finally compared 
with those obtained from the Finland empirical volumetric equation [54] 
detailed in Paragraph 4.6. As ground truth data (DBH and tree height) 
were unavailable, they were extracted from a manual interpretation of 
the point cloud, limited to the trees on which these analyses were 
conducted; DSH values were estimated according to Equation (21). 
Table 29 summarizes the validation procedure. 
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Table 29: Summary of the biomass estimation and validation procedure - 
Case study C. 

Tree 
parameter Estimates Validation values 

AGB 
TreeQSM output  Equation (15) with in-

situ measured H and 
DBH variables 

Equation (15) with derived H 
and DBH variables 

DBH Equation (19) with derived H 
and DBH variables 

Manually extracted 
values 

8.2 Data processing 

8.2.1 ITD 

The Individual Tree Detection procedure was performed with both 
algorithms explored in this study (Figure 71 and Figure 73 refer to 
PyCrown and FSCT outputs, respectively). In fact, the particular type of 
acquisition is to be considered, for all intents and purposes, a middle 
ground between terrestrial and aerial acquisitions. For this reason, it is 
expected that segmentation at the single tree level can be performed 
successfully with both proposed algorithms. 

On the downside, the forest density is high (approximately equal to 
2000 trees/ha). This peculiarity could affect the reliability of the results; 
additionally, even through a visual interpretation, the single tree 
detection procedure is not totally easy.  

Figure 72 emphasizes the difficulty of correctly segmenting very 
close trees, for which the crowns often intersect each other. Nonetheless, 
the results are encouraging. 
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(a) (b) 

Figure 71: Segmented point cloud at single tree level with PyCrown 
algorithm - (a) 2020 point cloud and (b) 2021 point cloud. EPSG:3067. 

 

 

Figure 72: Treetops and crowns were detected with the PyCrown 
algorithm. The 2013 scenario is colored in red, and the 2021 scenario is 

colored in blue. EPSG:3067. 

The F1 score values (Table 30) are equal to 65% and 53% for the 
time instants considered. The difference (27 trees not correctly identified 
relating to the second dataset) is related to an increase in over- and under-
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segmentation errors. Although the scenario should be approximately 
unchanged, these differences could be caused by minimal differences 
between the two acquisitions, such as different foliar coverage. 

Table 30: Metrics of the segmentation procedure, PyCrown algorithm - 
Case study C. 

Case study C - Metrics 
PYCROWN 

2020 2021 
TruePositive + FalseNegative 184 184 
TruePositive + FalsePositive 241 235 

TruePositive 138 111 
Precision 0,57 0,47 

Recall 0,75 0,60 
F1 score 65% 53% 

 
As has already been highlighted in the previous Chapter, also in this 

case study, it was necessary to divide the point cloud into five areas of 
reduced extension in order to process them using the FSCT algorithm 
and then subsequently merge them again into a single dataset. The 
results, however, are not optimal. Numerous trees are not identified; this 
aspect can be observed by comparing the FSCT output of different 
datasets (Figure 73a and Figure 73b) and by comparing PyCrown and 
FSCT results (Figure 71 and Figure 73). The predicted positions of the 
trees further confirm this phenomenon (Figure 72 and Figure 74). 
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(a) (b) 
Figure 73: Segmented point cloud at single tree level with FSCT 

algorithm - (a) 2020 point cloud and (b) 2021 point cloud. EPSG:3067. 

 

Figure 74: Treetops detected with FSCT algorithm. The 2013 scenario 
colored in red, and the 2021 scenario colored in blue. EPSG:3067. 

In this case, the F1 score evaluation metrics are 59% and 56%, 
respectively (Table 31). The different approach the FSCT algorithm 
takes compared to PyCrown leads to several discussion points. First of 
all, this approach is more consistent with canopy variations; for this 
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reason, there is only a difference of 8 unidentified trees between the two 
datasets. Furthermore, the method is highly precise, with values 
approximately equal to 80%. On the other hand, recall is very low 
because many trees are not identified (recall value lower than 50%). 

Table 31: Metrics of the segmentation procedure, FSCT algorithm - Case 
study C. 

Case study C - Metrics 
FSCT 

2020 2021 
TruePositive + FalseNegative 184 184 
TruePositive + FalsePositive 107 94 

TruePositive 86 78 
Precision 0,80 0,83 

Recall 0,46 0,42 
F1 score 59% 56% 

 
As predicted, the two methods behave similarly towards oblique 

point cloud processing. However, it was decided to proceed with 
subsequent processing, taking into consideration the results obtained 
through the PyCrown algorithm. This choice was motivated by the fact 
that it was deemed more appropriate to consider a methodology that 
allows identifying a greater number of trees to be more valid, albeit with 
a greater quantity of trees identified incorrectly. In this way (subject to 
the exclusion of incorrect trees), more consistent results are obtained as 
they refer to a larger sample. 

The procedure of identifying the same tree at different time instants 
produced the results shown in Figure 75. Although no natural 
disturbance occurred in the time interval between the two acquisitions, 
the multi-temporal identification between individual trees does not 
concern all correctly identified trees. This phenomenon emphasizes that 
(i) different errors in terms of single tree detection and (ii) small 
variations in the scenario affect the final result. 
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Approximately 45% of all trees were correctly matched in both the 
LiDAR acquisitions, resulting in an F1 score equal to 57% and 56%). F1 
score would reach approximately 70% if only correctly segmented trees 
were considered. In fact, as already pointed out in Paragraph 6.2, only 
correctly identified matched trees can result in a correct multi-temporal 
match.  

 

 

Figure 75:  Segmented point cloud at single tree level with multitemporal 
match. The same trees are colored with the same colors; blue trees did not 

have a positive match. EPSG:3067. 
 

Table 32: Metrics of the multitemporal detection of individual trees 
procedure - Case study C. 

Case Study A - Metrics 
Multitemporal detection of individual trees 

2013 2014 
TruePositive + FalseNegative 184 184 
TruePositive + FalsePositive 142 151 

TruePositive 84 93 
Precision 0,59 0,62 

Recall 0,46 0,51 
F1 score 52% 56% 
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The reliability of this procedure is slightly lower than that obtained 

in Chapter 6 due to the significant difference in forest density ( 
Table 32). 

8.2.2 Wood and leaf separation 

The analyzes regarding the separation between trunk and leaf 
conducted in case study C are broader than those proposed in previous 
case studies. In fact, regarding approaches 1 and 2 (Table 6), in addition 
to the features already taken into consideration (Table 7), it was also 
decided to consider the deviation feature, which indicates how much the 
points in the cloud deviate from their average position. Therefore, the 
segmentation results performed through the first two approaches will be 
twofold: in one case, the deviation will also be considered, while in the 
other, it will not. 

The analyzes were performed on 20 trees. All silver birch trees were 
chosen to be located homogeneously within the area under examination. 
The choice of tree species was dictated by the will to focus on one of the 
most widespread species in the Finnish national territory and northern 
Europe; additionally, it allowed species-specific discrepancies to be 
avoided. As regards the homogeneous spatial distribution, it was defined 
to investigate if any particularities can be caused by the distance and the 
specific perspective related to the single station point. Figure 76 shows 
the distribution of the selected trees in the study area. 

Figure 77 and Figure 78 show the results of wood and leaf separation 
on a tree acquired during the first point cloud acquisition, while Figure 
79 and Figure 80 refer to the same tree acquired during April 2021. 

As a first point of discussion, it is noted that deviation is not a feature 
that affects the part segmentation result. The results obtained considering 
the deviation (trees II and IV in Figure 77 and Figure 78) are identical to 
those obtained without considering them (trees I and III in the same 
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figures). Furthermore, the segmentation conducted with approaches 1 
and 2 yielded similar results. Generally speaking, the second approach 
correctly identifies a more significant number of woody points, while 
they are misclassified in the first approach. However, the woody 
structure is not fully identifiable. The main trunk is partially 
misclassified into leaf; as regards the branches, these are classified 
slightly better with the second approach. 

 

 

Figure 76: Individual silver birch trees selected for wood and leaf 
separation procedure. EPSG:3067. 

On the contrary, the segmentation performed through the third 
method returns the best results. The woody structure in the lower part of 
the tree (trunk and branches) is correctly identified in its entirety, except 
for the smaller branches. 
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(I) (II) (III) (IV) (V) 

Figure 77: Wood and leaf separation on the same tree: (I) first approach, 
without deviation; (II) first approach, with deviation; (III) second approach, 

without deviation; (IV) second approach, with deviation; (V) third approach - 
2020 point cloud. 

 
(a) (b) 

(I) (II) (III) (IV) (V) (I) (II) (III) (IV) (V) 
Figure 78: Wood and leaf separation on the same tree: (I) first approach, 

without deviation; (II) first approach, with deviation; (III) second approach, 
without deviation; (IV) second approach, with deviation; (V) third approach. 

(a) leaf component; (b) wood component - 2020 point cloud. 
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More outstanding critical issues are observed in the upper part of the 
foliage (Figure 78a), where the branches' size decreases and, 
simultaneously, the quantity of leaves increases.  

However, for modeling purposes using QSM algorithms, it is 
preferable not to have woody points scattered and disconnected from the 
main structure. This result causes an underestimation of the total volume; 
nevertheless, it represents a very low percentage and can be neglected. 
Figure 78 clarifies what has been stated so far. 

 

 
(I) (II) (III) (IV) (V) 

Figure 79: Wood and leaf separation on the same tree: (I) first approach, 
without deviation; (II) first approach, with deviation; (III) second approach, 

without deviation; (IV) second approach, with deviation; (V) third approach - 
2021 point cloud. 

For comparison, the segmentation results obtained on the same tree 
acquired during April 2021 are shown in Figure 79 and Figure 80. 
Segmented trees are similar and completely comparable. It can be 
observed that the foliage is less lush; therefore, a greater number of 
points are classified as branches. Some of these points are misclassified, 
as they are disconnected from the woody structure and would appear to 
be part of the crown. 
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(a) (b) 
(I) (II) (III) (IV) (V) (I) (II) (III) (IV) (V) 

Figure 80: Wood and leaf separation on the same tree: (I) first approach, 
without deviation; (II) first approach, with deviation; (III) second approach, 
without deviation; (IV) second approach, with deviation; (V) third approach. 

(a) leaf component; (b) wood component - 2021 point cloud. 

Comparing the two datasets, it can also be noted that during the year 
between the two acquisitions, an obstruction caused a lack of data around 
the central part of the main trunk. Although this peculiarity, as will be 
discussed in the next Paragraph, does not particularly influence the 
aboveground biomass estimate, it once again points out the limitations 
of a single observation point.  

8.2.3 Forest parameters (DBH and AGB) 
characterization 

Estimates of forest parameters of 20 trees were explored (Table 33). 
Of these, only 12 were correctly identified and automatically matched 
between the two multi-temporal acquisitions (Table 35). Therefore, only 
these were considered in order to compare the estimates with those 
relating to the previous year's dataset. The diameter estimates obtained 
through Equation (19) were compared with manually measured values 
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after carefully interpreting the point cloud. The results are excellent. 
Considering the RMSE and Bias indexes, these are equal to 
approximately 5,4 cm and -10.9%, respectively. The empirical equation 
underestimates the diameter more than what happened in case study A; 
however, the value of RMSE is lower (Table 14). Similar values are 
obtained by analyzing the point cloud acquired in 2021, where the 
underestimation is approximately 8%, and the RMSE value slightly 
increases to 7.3 cm (Table 36). 
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Table 33: Estimated and reference values of forest parameters - 2020 point cloud. 

Tree 
ID 

H 
[m] 

CD 
[m] 

DBHJucker 

[cm] 
DBHRef 

[cm] 
VolKangas 

[L] 

VolQSM 

[L] 
AGBKangas 

[kg] 
AGBChave 

[kg] 
AGBQSM 

[kg] 
1 20,49 3,9 20,6 17,7 255 170 130 187 87 
2 20,1 3,0 16,2 27,7 588 111 300 439 57 
3 25,15 5,2 30,4 29,4 786 897 401 614 457 
4 18,06 3,4 16,5 28,8 581 926 296 427 472 
5 19,05 4,4 21,2 25,8 493 344 251 363 175 
6 20,68 3,8 20,1 22 389 292 199 288 149 
7 18,83 4,2 20,2 24,1 429 564 219 314 288 
8 18,72 4,8 22,4 22,8 384 604 196 280 308 
9 16,5 4,6 19,7 19,9 266 716 136 190 365 

10 19,92 5,1 25,0 21,5 361 440 184 265 224 
11 19,43 4,3 21,3 15,2 182 101 93 132 52 
12 15,96 4,6 19,1 28,7 523 66 267 376 34 
13 15,92 3,2 14,2 19 236  121 168  
14 16,01 5,1 20,6 25,3 412 116 210 295 59 
15 19,14 3,4 17,4 18,8 270 217 138 196 111 
16 20,25 3,7 19,2 20,2 325 455 166 239 232 
17 20,95 4,0 21,2 21 360 248 184 266 126 
18 17,33 1,7 9,3 15,7 175 30 89 125 15 
19 14,44 2,9 12,1 15,7 150 180 77 105 92 
20 18,79 4,0 19,3 22,1 377 360 192 277 184 
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Regarding biomass estimates, the following were taken into 
consideration: 

• the values obtained by multiplying the volumetric 
component obtained through the allometric equation (20 
calibrated for the Finnish trees and the tree density (for 
simplicity, they will be called Kangas results); 

• the values obtained in the same way, but taking into account 
the output of the QSM algorithms (QSM results); 

• the AGB was estimated using the generic allometric equation 
(15), referred to as Chave results. 

QSM results were validated according to Kangas and Chave's results 
(Table 34 and Table 36). As expected, the best validation is obtained 
with respect to the results obtained through Kangas’ equation (RMSE 
119 kg, bias -5,2% in the first acquisition, RMSE 111 kg and bias -5,1 
% in the second dataset).  

The results, although consistent with those obtained in case study A 
and case study B (considering TLS data), are the best among all the case 
studies presented. 

Table 34: Statistical indexes for forest parameters - 2020 scenario. 

Assessment Reference RMSE BIAS 

AGBQSM AGBKangas 119 kg -5,2 % 
AGBChave 162 kg -33,8 % 

DBHJucker DBHReference 5,4 cm -10,9 % 
 
The difference with respect to values obtained through the Chave 

equation places greater emphasis on the importance of using equations 
that are as case-specific as possible. In fact, with a generic equation, the 
assessment has little robustness.  
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Table 35: Estimated and reference values of forest parameters - 2021 scenario. 

Tree 
ID 

H 
[m] 

CD 
[m] 

DBHJucker 

[cm] 
DBHRef 

[cm] VolKangas [L] VolQSM [L] AGBKangas 

[kg] 
AGBChave 

[kg] 
AGBQSM 

[kg] 
2 19,03 3,6 18,1 27,7 563 118 287 416 60 
4 18,34 2,6 13,4 28,8 588 940 300 433 479 
5 20,14 4,8 23,8 25,8 515 380 263 383 194 
8 19,95 5,8 27,6 22,8 404 599 206 298 305 

10 20,59 5,3 26,1 21,5 371 461 189 274 235 
11 18,07 3,8 18,2 15,2 171 176 87 123 90 
12 14,72 4,0 15,9 28,7 490 100 250 347 51 
15 18,62 5,0 23,0 18,8 264 274 135 191 140 
16 20,93 3,9 20,7 20,2 334 481 170 247 245 
17 20,61 3,3 17,8 21 355 356 181 262 182 
18 15,11 2,6 11,6 15,7 156 80 80 110 41 
19 18,20 2,7 13,9 15,7 183 164 93 132 84 
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At the same time, these results are fundamental to state that, without 
specific allometric equations and using a dataset acquired correctly, the 
approach through the construction of QSM represents a valid procedure 
for deepening knowledge about tree biomass. Furthermore, the dataset's 
quality (i.e., the point cloud density and points homogeneous 
distribution) is also fundamental for modeling the tree structure itself. In 
fact, in this scenario, the errors in the construction of cylindrical and 
conical geometric shapes are reduced: the analysis of 20 trees (12 of 
which were described by two different datasets) produced only one 
modeling error (related to tree number 13); additionally, no unreasonable 
overestimation was obtained.  

Finally, it is underlined that a partial cause of the underestimation of 
the biomass can be referred to as the upper branches of the canopy that 
were not identified during the wood and leaf separation procedure. 

Table 36: Statistical indexes for forest parameters - 2021 scenario. 

Assessment Reference RMSE BIAS 

AGBQSM AGBKangas 111 kg -5,1 % 
AGBChave 150 kg -33,8 % 

DBHJucker DBHReference 7,3 cm -7,9 % 

8.2.4 CO2 assessment 

The estimates of the CO2 absorbed by the analyzed trees were 
conducted only with respect to the AGB estimates resulting from QSM 
analysis and Equation (20); the results of Equation (15) were excluded 
based on the considerations made in the previous Paragraph. Table 37 
summarizes the results, while Table 38 summarizes the evaluation 
indexes. Appendix D reports the complete results. 

Focusing on the trees analyzed in the two datasets, an increase in 
CO2 stocked is observed (approximately equal to 1%). Higher growth 
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rates are observed on smaller trees; however, these have a low influence 
on the total absorbed CO2. Indeed, the order of magnitude of the total 
amount of carbon dioxide stocked in the study area makes minor 
irrelevant variations.  

Table 37: Estimated and reference values of stocked CO2 - Case study C. 

Tree 
ID 

2020 acquisition 2021 acquisition 

CO2Kangas [kg] CO2QSM [kg] CO2Kangas 

[kg] CO2QSM [kg] 

1 65 43   
2 150 28 144 30 
3 200 229   
4 148 236 150 240 
5 126 88 131 97 
6 99 74   
7 109 144   
8 98 154 103 153 
9 68 183   

10 92 112 95 118 
11 46 26 44 45 
12 133 17 125 26 
13 60    
14 105 30   
15 69 55 67 70 
16 83 116 85 123 
17 92 63 91 91 
18 45 8 40 20 
19 38 46 47 42 
20 96 139   

 
Therefore, an accurate estimate of the absorption capacity of the 

forest under examination is proposed using the QSM approach. In fact, 
with a simple proportion, it can be estimated that the area considered, 
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which includes 184 trees, absorbed approximately 16 thousand kilos of 
CO2.  

Regarding validation, the same considerations were conducted 
regarding the estimate of aboveground biomass, which can be applied to 
estimate stocked carbon dioxide. The underestimation, which, as already 
seen, can be caused by an intrinsic error of the reference volumetric 
equation and by the volume relating to the small branches not modeled, 
is negligible. 

Table 38: Statistical indexes for stocked CO2 - Case study C. 

Assessment 
2020 acquisition 2021 acquisition 

RMSE BIAS RMSE BIAS 
CO2QSM 60 kg  -2,6 % 55 kg  -5,1 % 

8.3 Lesson learnt 

The last case study analyzed and proposed in this thesis work is 
based on a particular and innovative dataset type. Several talking points 
were developed; the main lessons learned are briefly summarized below.  

Both proposed single tree-level segmentation methodologies (raster-
based and semantic segmentation) positively process the dataset, albeit 
with different characteristics. PyCrown identifies more trees; however, 
false positives are also higher. On the contrary, FSCT is more precise, 
but more trees are omitted. Although the values of the evaluation metric 
are comparable between the two algorithms, it was decided to continue 
with the processing results through PyCrown, assuming that it is 
preferable to identify the greatest number of trees possible at the expense 
of a greater number of misclassifications. Although the acquisitions were 
carried out with the same characteristics and referred to the same study 
area, some trees are classified correctly only in one of the two datasets. 
This peculiarity is due to forest characteristics (e.g., foliar cover, uneven 
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growth, particular atmospheric conditions), which should be explored in 
greater depth. 

Regarding wood and leaf separation, the results observed in case 
study B were confirmed. The first two proposed approaches mainly 
identify the main trunk, while the third outlines the woody structure more 
thoroughly. Additional testing about the deviation feature has shown that 
it does not affect the final result. Since the wood and leaf segmentation 
procedure was tested for the first time on case study C, it was not tested 
on previous proposed studies. 

Biomass assessment using QSM algorithms produced excellent 
results: they are comparable with those estimated through a case-specific 
volumetric equation, while a greater uncertainty results from the 
comparison with a generic allometric equation. However, case-specific 
allometric equations require considerable field study with relative 
validation through field biomass measurements; for this reason, these are 
not widely spread. The tested approach, however, proved to be highly 
valid and capable of replacing empirical estimates. However, the 
requirement is that the quality of the point cloud is excellent. The tree 
must, in fact, be totally acquired and described through a high-density 
point cloud. Minor inaccuracies in the modeling of the tree are observed 
around the smaller branches, which are often omitted. In any case, they 
have a relatively small biomass, and it is not incorrect to neglect them. It 
should be explored further whether the single perspective characteristic 
of this dataset could also cause this underestimation. In fact, some 
branches may be entirely in the shadow cone caused by larger branches 
or other trees. A quick visual interpretation, however, led to the rejection 
of this option. 

The DBH estimates are affected by greater uncertainty but still 
acceptable in the forestry sector. The most significant degree of 
uncertainty derives from using a general and not case-specific allometric 
equation, as in the case of the AGB. 



8 - CASE STUDY C: RESULTS AND DISCUSSION 

185 

To conclude, the innovative acquisition methodology proposed by 
the Finnish research center represents an excellent solution for 
monitoring a portion of the forest over time. The fixed station point 
allows you to analyze point clouds with the same characteristics; the high 
acquisition density allows detailed analyses; multitemporality allows in-
depth studies on forest growth. In one year, an increase of approximately 
1% was recorded in the monitored trees; however, more significant gains 
were measured for younger trees with a faster growth rate. On the other 
hand, some limitations are caused by the single perspective, which 
sometimes does not allow for a complete view. 



 

 



 

 

Chapter 9 

CONCLUSIONS AND 
FUTURE VISION 

This doctoral thesis aims to investigate LiDAR sensors and relative 
methodologies to perform forest parameters assessment at a single tree 
level with a semi-automatic procedure. The reasons that led to this 
research were the need to fill the scientific gap regarding a well-defined 
workflow, which, starting from data acquisition and through different 
processing phases, results in assessing the aboveground biomass and the 
carbon dioxide stocked by the wooden component of trees. In fact, from 
an in-depth study of the literature on point cloud processing 
technologies, methodologies and algorithms, the need to generalize and 
automate this working methodology emerged. The final goal was to 
provide an innovative procedure for estimating the carbon stocked within 
the woody biomass and evaluating the effects of changes over time. 

The approach pursued in this work was developed based on three 
case studies that were different from each other in terms of forest 
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composition and characteristics. The LiDAR datasets were acquired 
according to different methodologies (terrestrial, aerial, oblique) and 
were subsequently processed through semi-automatic and artificial 
intelligence-based algorithms. Specifically, the topics relating to the 
automatic identification of individual trees, the multi-temporal 
identification of the same trees, the wood and leaf separation, and finally, 
the volumetric and biomass characterization were addressed. A unique 
workflow was proposed for processing algorithms and approaches for 
testing different data processing methodologies. The workflow proposed 
in this study represents a unique, complete and integrated process that 
describes each step to obtain the desired results. 

The ITD was investigated through two completely different 
methodologies (Paragraphs 4.3.1 and 5.4.2), which yielded interesting 
results. It has been shown that raster-based algorithms (PyCrown [220], 
which was tested in this study) are more efficient than algorithms that 
perform semantic segmentation (FSCT [222]) when it comes to 
processing low-density aerial point clouds. (case study A) or when using 
oblique datasets in particular high-density scenarios (case study C). On 
the contrary, FSCT has proven to be the best approach when processing 
terrestrial point clouds, whether TLS or MLS (case study B). In 
Paragraph 6.2.1, the usefulness of the improvement introduced in this 
study regarding the PyCrown algorithm was also demonstrated, which 
increases the F1 score from 67% to 76%, and it was subsequently applied 
to the other case studies. In general, the F1 score values obtained with 
the segmentation algorithm best suited to each case study are in line with 
those proposed in the literature (from 76% to 78% in case study A 
through PyCrown algorithm, 68% and 86% relating to point cloud MLS 
and TLS of case study B respectively through FSCT algorithm, and 
finally 65% and 53% in case study C through PyCrown). In the last case 
study proposed, the values are slightly lower (but still acceptable in the 
forest domain to obtain rough estimates) due to the high forest density 
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and differ from each other due to varied forest characteristics (e.g., foliar 
cover, uneven growth, particular atmospheric conditions), to be 
deepened. 

Regarding the datasets characterized by acquisitions that occurred at 
different time instants (case studies A and C), the multi-temporal 
identification procedure of the same tree was carried out as described in 
Paragraph 5.4.3. The results are acceptable (F1 score equal to 69% in 
case study A and between 56% and 59% in case study C) and made it 
possible to evaluate the temporal variation of forest parameters in 
conditions of external disturbance (ice storm in case study A), and under 
undisturbed conditions over an annual time interval (case study C). 
Results allow to state that LiDAR datasets could be used for large-scale 
forest monitoring purposes in undisturbed conditions and scenarios of 
pre and/or post-external disturbance, both human and natural. 

The wood and leaf separation procedure was carried out using the 
approaches described in Paragraph 5.4.4. The methods differ in terms of 
the algorithms and the features considered. Evaluation of the results was 
based on visual interpretation. The procedure did not produce the desired 
results in case study A, for which the density of points was insufficient. 
On the contrary, the results for case studies B and C are satisfactory; in 
particular, the approach based on the unsupervised infliction threshold 
method has proven to produce the best results. Indeed, unlike the first 
two approaches, which mainly identify the main trunk, the woody 
structure can be identified almost wholly. Furthermore, in case study C, 
it was proven that the deviation feature does not affect the quality of the 
segmentation, so this was not explored in depth in the previous case 
studies. 

Regarding the DBH, it was estimated through generic allometric 
equations and the results were validated using in situ measurements; the 
AGB, on the other hand, was estimated using both allometric equations 
(in case study C, reference was made to an equation derived explicitly to 
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have greater validity in the tree species of the Finnish territory) and 
through Quantitative Structure Models (Paragraph 5.4.5). In the absence 
of reference data, the results obtained through the various proposed 
methods were compared. The DBH estimates are affected by 
underestimation for case studies A and C, with RMSEs of approximately 
8 - 9 cm for the first case study and 5,4 – 7,3 cm for the last one. No in-
depth studies were carried out on case study B, for which ground truth 
data are unavailable. Concerning the AGB assessment, the results 
allowed for the deepening of several conclusions. The approach based 
on Quantitative Structure Models requires a complete and sufficiently 
dense description of the entire tree; for this reason, the dataset of case 
study A (for which the density of the point cloud is insufficient, and few 
points describe the part of the tree below the canopy) does not allow this 
approach to be used, making the results obtained unreliable (it 
overestimates of approximately one order of magnitude compared to the 
AGB assessed through allometric equations). Estimates obtained 
through allometric equations generally underestimate biomass compared 
to values calculated through the same equations in which the values of 
the variables are related to ground truth data (underestimates between -
9.1% and -13.3%). The terrestrial acquisitions conducted in case study B 
showed overestimates in the AGB values obtained through the QSM 
approach of approximately 117 kg in the case of MLS point cloud and 
approximately 95 kg for TLS data, with percentages of roughly 40% and 
6%, respectively. However, it should be noted, as extensively discussed 
in Chapter 7, that (i) reference values have been calculated using 
allometric equations, which do not account for any damages that trees 
may undergo due to external disturbance events, and that (ii) incomplete 
or partial tree acquisitions may cause the difference observed between 
the two types of datasets. Finally, case study C is the one where the QSM 
approach works best; indeed, compared to the estimated values through 
the specific equation calibrated for Finnish forests, slight 
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underestimations of about 5% are shown, corresponding to 
approximately 110 - 120 kg in both multi-temporal acquisitions. In this 
particular case, where no major disturbance event has occurred, it can be 
assumed that such estimates may be considered more accurate than those 
obtained through an empirical equation, net of minimum values not 
estimated due to the small size of the smaller and peripheral branches 
(Chapter 8). 

Table 39: Summary of the results obtained in this study according to the 
case study and the task considered. ITD and multitemporal match were 

evaluated according to F1 score values; wood and leaf separation quality 
according to visual interpretation (* = awful result; ***** = excellent result). 

Task Case study 
A B C 

ITD 
PyCrown 76% ÷ 78% 33% ÷ 44% 65% ÷ 53% 

FSCT 68% ÷ 69% 68% ÷ 86% 59% ÷ 56% 
Multitemporal match 69% No 56% ÷ 59 % 

Wood and leaf separation * **** **** 

DBH 
RMSE 8 ÷ 9 cm 

No 
5,4 ÷ 7,3 cm 

BIAS -6,2% ÷ 8,7% -10,9% ÷ -7,9% 

AGB 
RMSE 452 kg ÷ 239 kg 117 kg ÷ 95 kg  119 kg ÷ 111 kg  
BIAS -9,1% ÷ -13,3% 39,8% ÷ 5,9% -5,2% ÷ -5,1%  

CO2 variation (time) -26% ÷ -34%  No +1%  
CO2 variation (acquisition 

methodologies) No 
MLS < TLS 

No 
46% 

 
Based on the characterization of the AGB, it was possible to estimate 

the CO2 absorbed by the trees considered and extend this analysis to the 
areas investigated in their entirety. In case study A, the CO2 loss was 
estimated to be approximately equal to 20 and 21,5 tons according to 
allometric equations (in percentage terms, loss between approximately 
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26% and 34%), while in case study C, an increase in stored CO2 of 
approximately 1% was assessed. Finally, in case study B, a difference 
was observed in the estimate of CO2 absorbed of roughly 1.6 tons relative 
to the 20 trees considered (approximately equal to 46% of the CO2 
estimated relative to the TLS dataset). Last but not least, the economic 
aspect and cost/benefit considerations must be taken into account. 
Generally speaking, handheld LiDARs are low cost sensors, while TLS 
sensors are more expensive. The formers are more manageable and 
easier to use, but they have a smaller field of view than the latter, which 
on the contrary produce a cloud of points that is usually denser. Instead, 
relying on companies that provide the product of a lidar acquisition from 
an airplane or helicopter has a variable cost depending on the extension 
of the area, but does not require the presence in situ of operators (in 
conditions of natural disasters it is essential to safeguard their safety); 
however, it may not be the most suitable choice if the final goal is to 
constantly monitor a large area with multiple acquisitions. 

A summary of the main results obtained in this study is summarized 
in Table 39. 

In conclusion, this study demonstrated the usefulness and versatility 
of LiDAR point clouds for forest monitoring purposes. LiDAR has 
definitely emerged increasingly in recent years within the Remote 
Sensing domain. Nowadays, it stands out as the most complete approach 
for acquiring high-precision 3D data in various conditions and scenarios. 
Also, the enormous amount of data that LiDAR acquires makes it 
essential to develop automated or semi-automated data-processing 
methodologies.  

However, further aspects should be investigated. Firstly, the 
validation procedure must be independent of human intervention to 
reduce the processing time. Furthermore, a notable improvement would 
be achieved through an innovative ITD approach to eliminate 
misclassifications and work effectively with all datasets.  Also, this 
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approach can be adopted to study forests with similar characteristics, 
choosing the sensors and the operational procedures most suitable for the 
case study; nevertheless, the validity of this workflow for substantially 
different forests should be explored. For trees which grow mainly in 
height, whose treetop is easily identifiable, as well as for low forest 
densities, such that the crowns of the trees do not intersect each other, or 
there are no submissive trees, the proposed workflow is optimal. 
However, it may not be the right approach when considering trees with 
a globular or expanded shape, whose crown does not univocally define a 
treetop; further difficulties would be caused by higher forest densities. In 
these cases, further segmentation approaches should be explored.
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Appendix A 

Modified PyCrown algorithm code to reduce oversegmentation 
 
 
# INPUT DATA 
points = gpd.read_file(outFolder+"\PyCrown\\tree_location_top_cor.shp")  
crows = gpd.read_file(outFolder+"\PyCrown\\tree_crown_poly_raster.shp")  
 
#ASSOCIATE THE SAME ID TO TREETOP AND CROWN OF THE SAME TREE 
joined=gpd.sjoin(points, crows, how='inner', op='intersects') 
ID=joined['index_right'] 
ID_list=ID.tolist() 
points['DN']=ID 
points.to_file(outFolder+"\PyCrown\\treetops.shp") 
 
# SPATIAL SEARCH (RADIUS = 1 METER) 
points['buffer'] = points.geometry.buffer(1) 
points['included'] = False  # Initialize flag variable  
result = gpd.GeoDataFrame() 
for i, point in points.iterrows(): 
    if not point['included']:  # Skip point if already included 
        mask = (points.within(point.buffer)) 
        temp = gpd.GeoDataFrame(points[mask]) 
        temp['New_DN'] = point['DN'] 
        result = result.append(temp) 
        points.loc[mask, 'included'] = True  # Update flag variable for included points 
result = result.reset_index(drop=True)  # Reset index for result GeoDataFrame 
result = result[result['included'] == False] 
 
# RELATE OLD ID WITH NEW ONES 
Old_ID=result['DN'].values 
New_ID=result['New_DN'].values 
IDs = np.column_stack((Old_ID, New_ID)) 
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# IMPORT THE ORIGINAL POINT CLOUD DATASET 
file = laspy.file.File(outFolder+"\PyCrown\\Final_Trees.las", mode="r") 
x = (file.x).reshape(-1,1) 
y = (file.y).reshape(-1,1) 
z = (file.z).reshape(-1,1) 
trees = (file.trees).reshape(-1,1) 
returnnumber = (file.return_num).reshape(-1,1) 
File = np.hstack((x, y, z, trees, returnnumber)) 
 
# SUBSTITUTE OLD ID WITH NEW ONES 
newID=[] 
for x in range(len(File)): 
    for j in range(len(IDs)): 
        if File[x][3]==IDs[j][0]: 
               NewClass=IDs[j][1] 
               newID.append(NewClass) 
newID=np.array(newID) 
 
# SAVE A NEW POINT CLOUD FILE WITH IMPROVED SEGMENTATION 
header = laspy.header.Header() 
outfile = laspy.file.File(outFolder+"\PyCrown\\Final_Trees_NO_Overseg.las", mode="w", 

header=header) 
outfile.define_new_dimension(name = "trees", data_type = 9, description = "Trees") 
outfile.define_new_dimension(name = "return_num", data_type = 9, description = 

"return_num") 
xmin = np.floor(np.min((file.x).reshape(-1,1))) 
ymin = np.floor(np.min(y)) 
zmin = np.floor(np.min(z)) 
outfile.header.offset = [xmin,ymin,zmin] 
outfile.header.scale = [0.001,0.001,0.001] 
outfile.x=(file.x).reshape(-1) 
outfile.y=(file.y).reshape(-1) 
outfile.z=(file.z).reshape(-1) 
outfile.trees=newID.reshape(-1) 
outfile.return_num=returnnumber.reshape(-1) 
outfile.close() 
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Modified PyCrown algorithm code to reduce oversegmentation 
 
 
# INPUT FILE AND REFERENCE SYSTEM SETTING 
System=*** #Reference System (EPSG) 
inputFolder = r"C:\..." 
outFolder=r"C:\..." 
Trees_PRE = 

gpd.read_file(inputFolder+"\ABIES_050\\PRE\\PyCrown\\tree_location_top_cor.shp") 
Trees_POST = 

gpd.read_file(inputFolder+"\ABIES_050\\POST\\PyCrown\\tree_location_top_cor.shp") 
RadiusPRE = 

gpd.read_file(inputFolder+"\ABIES_050\\PRE\\PyCrown\\tree_crown_poly_smooth.shp").Rad
ius 

RadiusPRO = 
gpd.read_file(inputFolder+"\ABIES_050\\POST\\PyCrown\\tree_crown_poly_smooth.shp").Ra
dius 

 
# EXTRACT TREETOP POSITION 
x=Trees_PRE['geometry'].x 
y=Trees_PRE['geometry'].y 
x_list = x.tolist() 
y_list = y.tolist() 
RadiusPRE_list= RadiusPRE.tolist() 
IDindex_PRE = len(x) 
ID_PRE_list=np.arange(IDindex_PRE).tolist() 
Trees_PRE_Tops=(x_list, y_list, RadiusPRE_list, ID_PRE_list) 
Trees_PRE_NewTops = list(zip(*Trees_PRE_Tops)) 
Trees_PRE_NewTops_array=np.array(Trees_PRE_NewTops) 
 
xx=Trees_POST['geometry'].x 
yy=Trees_POST['geometry'].y 
xx_list = xx.tolist() 
yy_list = yy.tolist() 
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RadiusPOST_list= RadiusPOST.tolist() 
IDindex_POST = len(xx) 
ID_POST_list=np.arange(IDindex_POST).tolist() 
Trees_POST_Tops=(xx_list, yy_list, RadiusPOST_list, ID_POST_list) 
Trees_POST_NewTops = list(zip(*Trees_POST_Tops)) 
Trees_POST_NewTops_array=np.array(Trees_POST_NewTops) 
 
# MATCH THE CLOSEST “POST” TREETOP TO EACH “PRE” TREETOP 
delta=0.1 
pairings_PRE = {} 
pairings_POST = {} 
distances = {} 
pairings = {} 
 
Trees_POST_NewTops.sort() 
def dist_squared(a, b): 
    return (a[0] - b[1])**2 + (a[1] - b[0])**2 
for idx, point in enumerate(Trees_PRE_NewTops): 
    contenders = Trees_POST_NewTops[bisect(Trees_POST_NewTops,(point[0]-point[2]-

delta, 0)) : bisect(Trees_POST_NewTops,(point[0]+point[2]+delta, 0))] #point[2] è il raggio di 
ricerca! 

    contenders = list(map(lambda p: (p[1], p[0], p[2], p[3]), contenders)) 
    contenders.sort() 
    contenders = contenders[bisect(contenders,(point[1]-point[2]-delta, 0)) : 

bisect(contenders,(point[1]+point[2]+delta, 0))] 
    matches = [(dist_squared(point, p2), point, p2) for p2 in contenders if 

(dist_squared(point, p2) <= point[2]**2)] 
    if matches: 
        pairings_PRE[idx] = min(matches)[1] 
        pairings_POST[idx] = min(matches)[2] 
        distances[idx] = (min(matches)[0])**0.5 
        pairings[idx] = min(matches) 
         
same_PRE = list(pairings_PRE.items()) 
same_PRE_array = np.array(same_PRE) 
data_array_PRE=same_PRE_array[:,1] 
IDPRE=[k for x,y,z,k in data_array_PRE] 
same_x_PRE = [x for x,y,z,k in data_array_PRE] 
same_y_PRE = [y for x,y,z,k in data_array_PRE] 
same_PREist=list(zip(IDPRE, same_x_PRE, same_y_PRE)) 
same_PRE_array = np.array(same_PRE_list) 
same_POST = list(pairings_POST.items()) 
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same_POST_array = np.array(same_POST) 
data_array_POST=same_POST_array[:,1] 
IDPOST=[k for x,y,z,k in data_array_POST] 
same_x_POST = [y for x,y,z,k in data_array_POST] 
same_y_POST = [x for x,y,z,k in data_array_POST] 
same_POST_list=list(zip(IDPOST, same_x_POST, same_y_POST)) 
same_POST_array = np.array(same_POST_list) 
 
MatchPRE=[] 
for i in range(len(Trees_PRE_NewTops_array)): 
    for j in range(len(same_PRE_array)): 
        if ((Trees_PRE_NewTops_array[i][0]==same_PRE_array[j][1]) and 

(Trees_PRE_NewTops_array[i][1]==same_PRE_array[j][2])): 
             MatchPRE=np.append(MatchPRE,Trees_PRE_NewTops_array[i], axis=0) 
MatchPRE=MatchPRE.reshape(-1,4) 
MatchPRE[:,[0, 3]] = MatchPRE[:,[3, 0]] 
MatchPRE[:,[1, 3]] = MatchPRE[:,[3, 1]] 
MatchPRE[:,[2, 3]] = MatchPRE[:,[3, 2]] 
 
MatchPOST=[] 
for i in range(len(Trees_POST_NewTops_array)): 
    for j in range(len(same_POST_array)): 
        if ((Trees_POST_NewTops_array[i][0]==same_POST_array[j][1]) and 

(Trees_POST_NewTops_array[i][1]==same_POST_array[j][2])): 
             MatchPOST=np.append(MatchPOST,Trees_POST_NewTops_array[i], axis=0) 
MatchPOST=MatchPOST.reshape(-1,4) 
MatchPOST[:,[0, 3]] = MatchPOST[:,[3, 0]] 
MatchPOST[:,[1, 3]] = MatchPOST[:,[3, 1]] 
MatchPOST[:,[2, 3]] = MatchPOST[:,[3, 2]] 
 
## MATCHING ARRAY (IDPRE, XPRE, YPRE, IDPOST, XPOST, YPOST) 
Match=np.hstack((MatchPRE[:,:3],MatchPOST[:,:3])) 
 
# MATCH THE CLOSEST “PRE” TREETOP TO EACH “POST” TREETOP 
pairings_PRE_inv = {} 
pairings_POST_inv = {} 
distances_inv = {} 
pairings_inv = {} 
 
Trees_PRE_NewTops.sort() 
def dist_squared(a, b): 
    return (a[0] - b[1])**2 + (a[1] - b[0])**2 
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for idx, point in enumerate(Trees_POST_NewTops): 
    contenders = Trees_PRENewTops[bisect(Trees_PRE_NewTops,(point[0]-point[2]-

delta, 0)) : bisect(Trees_PRE_NewTops,(point[0]+point[2]+delta, 0))] #point[2] è il raggio di 
ricerca! 

    contenders = list(map(lambda p: (p[1], p[0], p[2], p[3]), contenders)) 
    contenders.sort() 
    contenders = contenders[bisect(contenders,(point[1]-point[2]-delta, 0)) : 

bisect(contenders,(point[1]+point[2]+delta, 0))] 
    matches = [(dist_squared(point, p2), point, p2) for p2 in contenders if 

(dist_squared(point, p2) <= point[2]**2)] 
    if matches: 
        pairings_PRE_inv[idx] = min(matches)[2] 
        pairings_POST_inv[idx] = min(matches)[1] 
        distances_inv[idx] = (min(matches)[0])**0.5 
        pairings_inv[idx] = min(matches) 
         
same_PRE = list(pairings_PRE_inv.items()) 
same_PRE_array = np.array(same_PRE) 
data_array_PRE=same_PRE_array[:,1] 
IDPRE=[k for x,y,z,k in data_array_PRE] 
same_x_PRE= [y for x,y,z,k in data_array_PRE] 
same_y_PRE = [x for x,y,z,k in data_array_PRE] 
same_PRE_list=list(zip(IDPRE, same_x_PRE, same_y_PRE)) 
same_PRE_array = np.array(same_PRE_list) 
 
same_POST = list(pairings_POST_inv.items()) 
same_POST_array = np.array(same_POST) 
data_array_POST=same_POST_array[:,1] 
IDPOST=[k for x,y,z,k in data_array_POST] 
same_x_POST = [x for x,y,z,k in data_array_POST] 
same_y_POST = [y for x,y,z,k in data_array_POST] 
same_POST_list=list(zip(IDPOST, same_x_POST, same_y_POST)) 
same_POST_array = np.array(same_POST_list) 
 
MatchPRE_inv=[] 
for i in range(len(Trees_PRE_NewTops_array)): 
    for j in range(len(same_PRE_array)): 
        if ((Trees_PRE_NewTops_array[i][0]==same_PRE_array[j][1]) and 

(Trees_PRE_NewTops_array[i][1]==same_PRE_array[j][2])): 
             MatchPRE_inv=np.append(MatchPRE_inv,Trees_PRE_NewTops_array[i], 

axis=0) 
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MatchPRE_inv=MatchPRE_inv.reshape(-1,4) 
MatchPRE_inv[:,[0, 3]] = MatchPRE_inv[:,[3, 0]] 
MatchPRE_inv[:,[1, 3]] = MatchPRE_inv[:,[3, 1]] 
MatchPRE_inv[:,[2, 3]] = MatchPRE_inv[:,[3, 2]] 
 
MatchPOST_inv=[] 
for i in range(len(Trees_POST_NewTops_array)): 
    for j in range(len(same_POST_array)): 
        if ((Trees_POST_NewTops_array[i][0]==same_POST_array[j][1]) and 

(Trees_POST_NewTops_array[i][1]==same_POST_array[j][2])): 
             MatchPOST_inv=np.append(MatchPOST_inv,Trees_POST_NewTops_array[i], 

axis=0) 
MatchPOST_inv=MatchPOST_inv.reshape(-1,4) 
MatchPOST_inv[:,[0, 3]] = MatchPOST_inv[:,[3, 0]] 
MatchPOST_inv[:,[1, 3]] = MatchPOST_inv[:,[3, 1]] 
MatchPOST_inv[:,[2, 3]] = MatchPOST_inv[:,[3, 2]] 
 
## MATCHING ARRAY (IDPRE, XPRE, YPRE IDPOST, XPOST, YPOST) 
Match_inv=np.hstack((MatchPRE_inv[:,:3],MatchPOST_inv[:,:3])) 
 
# DELETE DUPLICATES MATCHES 
index_inv=[] 
for i in range(len(Match_inv)): 
    for j in range(len(Match_inv)): 
        if Match_inv[i][0]==Match_inv[j][0] and i!=j: 
            index_inv=np.append(index_inv,Match_inv[i][:], axis=0) 
index_inv=index_inv.reshape(-1,6) 
index_inv = np.unique(index_inv, axis=0) 
 
corretto=[] 
for i in range(len(index_inv)): 
    for j in range(len(Match)): 
        if index_inv[i][0]==Match[j][0]: 
            corretto=np.append(corretto,(Match[j][:])).reshape(-1,6) 
corretto=np.unique(corretto,axis=0) 
 
Match_inc = np.array([x for x in Match_inv if x not in index_inv]) 
 
Match_new = np.vstack((Match_inc, corretto)) 
ID = len(Match_new) 
ID=np.arange(ID).reshape(ID,1) 
ID=ID+5000 
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## FINAL ARRAY OF MATCHING TREETOPS (ID5000, IDPRE, XPRE, YPRE, 

IDPOST, XPOST, YPOST) 
Match_fin=np.hstack((ID, Match_new)) 
 
# FINAL ARRAY OF NON MATCHING TREETOPS 
 
## PRE SCENARIO ARRAY  (ID1000, IDPRE, XPRE, YPRE) 
index_nomatchPRE=[] 
NoMatchPRE_pre=Trees_PRE_NewTops_array 
for i in range(len(Trees_PRE_NewTops_array)): 
    for j in range(len(Match_fin)): 
        if ((Trees_PRE_NewTops_array[i][0]==Match_fin[j][2]) and 

(Trees_PRE_NewTops_array[i][1]==Match_fin[j][3])): 
            index_nomatchPRE=np.append(index_nomatchPRE,[i], axis=0) 
index_nomatchPRE=index_nomatchPRE.reshape(-1,1) 
index_nomatchPREindex_nomatchPRE.astype(int) 
NoMatchPRE_pre=np.delete(Trees_PRE_NewTops_array, index_nomatchPRE, axis=0) 
ID_NoMatchPRE=len(NoMatchPRE_pre) 
ID_NoMatchPRE=np.arange(ID_NoMatchPRE).reshape(ID_NoMatchPRE,1) 
ID_NoMatchPRE=ID_NoMatchPRE+1000 
NoMatchPRE = np.hstack((ID_NoMatchPRE, NoMatchPRE_pre[:,3:])) 
NoMatchPRE = np.hstack((NoMatchPRE, NoMatchPRE_pre[:,:2])) 
 
## POST SCENARIO ARRAY (ID2000, IDPOST, XPOST, YPOST) 
index_nomatchPOST=[] 
NoMatchPOST_pre=Trees_POST_NewTops_array 
for i in range(len(Trees_POST_NewTops_array)): 
    for j in range(len(Match_fin)): 
        if ((Trees_POST_NewTops_array[i][0]==Match_fin[j][5]) and 

(Trees_POST_NewTops_array[i][1]==Match_fin[j][6])): 
            index_nomatchPOST=np.append(index_nomatchPOST,[i], axis=0) 
index_nomatchPOST=index_nomatchPOST.reshape(-1,1) 
index_nomatchPOST=index_nomatchPOST.astype(int) 
NoMatchPOST_pre=np.delete(Trees_POST_NewTops_array, index_nomatchPOST, 

axis=0) 
ID_NoMatchPOST=len(NoMatchPOST_pre) 
ID_NoMatchPOST=np.arange(ID_NoMatchPOST).reshape(ID_NoMatchPOST,1) 
ID_NoMatchPOST=ID_NoMatchPOST+2000 
NoMatchPOST = np.hstack((ID_NoMatchPOST, NoMatchPOST_pre[:,3:])) 
NoMatchPOST = np.hstack((NoMatchPOST, NoMatchPOST_pre[:,:2])) 
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## ASSIGN THE SAME ID TO SAME TREES AND SAVE THE OUTPUT 
inFile_PRE_Final = 

laspy.file.File(inputFolder+"\ABIES_050\\PRE\\PyCrown\\Final_Trees_NO_Overseg.las", 
mode="r") 

inFile_POST_Final = 
laspy.file.File(inputFolder+"\ABIES_050\\POST\\PyCrown\\Final_Trees_NO_Overseg.las", 
mode="r") 

 
trees_PRE = (inFile_PRE_Final.trees).reshape(-1,1) 
x_PRE = (inFile_PRE_Final.x).reshape(-1,1) 
y_PRE = (inFile_PRE_Final.y).reshape(-1,1) 
z_PRE= (inFile_PRE_Final.z).reshape(-1,1) 
FilePRE = np.hstack((x_PRE, y_PRE, trees_PRE)) 
#(ID(5000 e 1000), IDPRE, XPRE, YPRE) 
MatchNoMatchPRE= np.vstack((Match_fin[:,:4], NoMatchPRE)) 
 
trees_POST = (inFile_POST_Final.trees).reshape(-1,1) 
x_POST = (inFile_POST_Final.x).reshape(-1,1) 
y_POST = (inFile_POST_Final.y).reshape(-1,1) 
z_POST = (inFile_POST_Final.z).reshape(-1,1) 
FilePOST = np.hstack((x_POST, y_POST, trees_POST)) 
MatchNoMatchPOST= np.hstack((Match_fin[:,:1], Match_fin[:,4:])) 
#(ID(5000 e 2000), IDPOST, XPOST, YPOST) 
MatchNoMatchPOST= np.vstack((MatchNoMatchPOST, NoMatchPOST)) 
 
classificationPRE=[] 
for x in range(len(FilePRE)): 
    for j in range(len(MatchNoMatchPRE)): 
        if FilePRE[x][2]==MatchNoMatchPRE[j][1]: 
               NewClass=MatchNoMatchPRE[j][0] 
               classificationPRE.append(NewClass)  
 
classificationPOST=[] 
for x in range(len(FilePOST)): 
    for j in range(len(MatchNoMatchPOST)): 
        if FilePOST[x][2]==MatchNoMatchPOST[j][1]: 
               NewClass=MatchNoMatchPOST[j][0] 
               classificationPOST.append(NewClass)  
               
header = inFile_PRE_Final.header 
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outfile = 
laspy.file.File(outFolder+"\ABIES_050\\PRE\\PyCrown\\Final_Trees_NO_Overseg_matched.l
as", mode="w", header=header) 

outfile.x=x_PRE.reshape(-1) 
outfile.y=y_PRE.reshape(-1) 
outfile.z=z_PRE.reshape(-1) 
outfile.trees=np.array(classificationPRE).reshape(-1).astype(int) 
outfile.close() 
 
header = inFile_POST_Final.header 
outfile = 

laspy.file.File(outFolder+"\ABIES_050\\POST\\PyCrown\\Final_Trees_NO_Overseg_matched
.las", mode="w", header=header) 

outfile.x=x_POST.reshape(-1) 
outfile.y=y_POST.reshape(-1) 
outfile.z=z_POST.reshape(-1) 
outfile.trees=np.array(classificationPOST).reshape(-1).astype(int) 
outfile.close()
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Table 40: Estimated and reference values of stocked CO2 - 2013 scenario. 
(Case study A). 

Tree ID CO2Jucker [kg] CO2Chave [kg] CO2QSM [kg] CO2Reference [kg] 
104 692 460 19969 859 
105 1065 821 5657 1299 
108 266 128 2051 354 
113 761 495 32558 630 
114 551 434 15692 466 
119 465 351 15985 310 
120 648 404  662 
128 926 664 16718 1025 
129 409 299 14145 375 
132 522 322 1914 327 
134 226 105 8014 112 
135 319 211 20338 228 
136 709 426 8745 498 
137 751 505 28892 1087 
504 796 540 5769 663 
507 303 147 4943 115 
509 1617 1183  561 
513 611 422  333 
514 477 362  358 
515 946 663 31410 709 
516 510 394  462 
518 752 483 10793 623 
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Table 40: Estimated and reference values of stocked CO2 - 2013 scenario. 
(Case study A). 

Tree ID CO2Jucker [kg] CO2Chave [kg] CO2QSM [kg] CO2Reference [kg] 
522 397 289 21573 331 
525 258 168  179 
527 210 93 27171 100 
530 535 339 16380 211 
531 598 378 29351 495 
532 271 120 16735 194 
533 946 581 13406 612 

 
Table 41: Statistical indexes for stocked CO2 - 2013 scenario. (Case study 

A). 

Assessment RMSE BIAS 
CO2Jucker 260 kg 42,5 % 
CO2Chave 226 kg  -9,2 % 
CO2QSM 17987 kg 4814,8 % 
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Table 42: Estimated and reference values of stocked CO2 - 2014 scenario. 
(Case study A). 

Tree ID CO2Jucker [kg] CO2Chave [kg] CO2QSM [kg] CO2Reference [kg] 
504 694 433 4662 600 
507 166 71  95 
509 598 419 3577 478 
513 355 210 1466 267 
514 421 311 2864 343 
515 448 140 6127 290 
516 786 513 2144 411 
518 656 482 6082 702 
522 465 276 8728 276 
525 343 183 7008 151 
527 361 212 6497 141 
530 255 97 5915 116 
531 511 339 1971 509 
532 514 300 9667 275 
533 185 72 2023 319 

 
Table 43: Statistical indexes for stocked CO2 - 2014 scenario. (Case study 

A). 

Assessment RMSE BIAS 
CO2Jucker 169 kg 55,2 % 
CO2Chave 120 kg  -13,3 % 
CO2QSM 5249 kg 1933,7 % 
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Appendix D 

Table 44: Estimated and reference values of stocked CO2 - 2020 scenario. 
(Case study C). 

Tree ID CO2Chave [kg] CO2Kangas [kg] CO2QSM [kg] 
1 94 65 44 
2 220 150 29 
3 307 200 229 
4 214 148 236 
5 182 126 88 
6 144 99 75 
7 157 109 144 
8 140 98 154 
9 95 68 183 

10 133 92 112 
11 66 46 26 
12 188 133 17 
13 84 60  
14 148 105 30 
15 98 69 56 
16 120 83 116 
17 133 92 63 
18 63 45 8 
19 53 38 46 
20 139 96 92 
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Table 45: Statistical indexes for stocked CO2 - 2020 scenario. (Case study 
C). 

Assessment Reference RMSE BIAS 

CO2QSM CO2Kangas 60 kg -2,6 % 
CO2Chave 80 kg -32,1% 

 
Table 46: Estimated and reference values of stocked CO2 - 2021 scenario. 

(Case study C) 

Tree ID CO2Chave [kg] CO2Kangas [kg] CO2QSM [kg] 
2 208 144 30 
4 217 150 240 
5 192 131 97 
8 149 103 153 

10 137 95 118 
11 62 44 45 
12 174 125 26 
15 96 67 70 
16 124 85 123 
17 131 91 91 
18 55 40 20 
19 66 47 42 

 

Table 47: Statistical indexes for stocked CO2 - 2021 scenario. (Case study 
C). 

Assessment Reference RMSE BIAS 

CO2QSM CO2Kangas 55 kg -5,1 % 
CO2Chave 75 kg 33,9 % 
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