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Abstract

Information overload is a major problem affecting today’s society. The continuous
stream of information makes it impossible for individuals to process and understand
the vast amount of information available to them. Automatic content understanding
is a research field that aims to alleviate this problem by efficiently extracting relevant
information from unstructured sources (e.g., text documents). Natural Language
Processing (NLP) is a branch of artificial intelligence involving automatic interpre-
tation and manipulation of human language. The use of NLP techniques is key to
many automatic content understanding tasks, such as information extraction and text
summarization.

Our research aims at investigating and developing methods for automatic content
understanding to alleviate the effects of information overload. We focus on three
specific data types: academic articles, news stories, and podcasts. In order to auto-
mate the extraction of relevant information from unstructured sources, we explore
and present several methodologies tailored to each domain.

Our contributions in the field of scientific literature analysis aim at providing
researchers with resources to navigate the ever-growing amount of scientific papers.
First, we analyze citation context to assess whether reading the full text of a publica-
tion is likely to be useful for understanding the referencing paper, thereby reducing
the amount of time spent on literature search. Second, we devise two different mod-
els that process scientific papers to extract a results-oriented overview of its main
contributions (namely, the highlights) and facet-specific summaries tailored to the
needs of different types of readers. Finally, we explore the potential of unsupervised
summarization models to generate slides for scientific talks, thus providing authors
with an initial draft of their presentation.

As part of our work in the news domain, we concentrate on the task of news
timeline generation, a process for automatically creating a timeline of specific
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events that summarizes the most important developments that happened during
event unfolding. We present a pipeline that summarizes what happened at each
date and then selects salient dates according to graph-based centrality measures.
Since the methodology is specifically tailored to the English language, we separately
investigate the same problem in multilingual settings and propose a solution that,
given a set of documents in multiple languages, incorporates cross-lingual alignment
and automatic machine translation to generate timelines in a target language.

Finally, we investigate the challenge of podcast summarization and propose an
extractive summarization approach that leverages multimodal information (i.e., audio
and text) to identify the most important segments of an episode. Our system relies
on an end-to-end deep learning architecture that jointly learns feature representations
from both modalities. It combines text and audio features using a late-fusion strategy
and is trained to score and select relevant segments from the spoken content. By
automatically selecting and concatenating the most important portions, this method-
ology can provide both a textual and an audio summary of a podcast episode. Our
system is further enhanced by proposing a select-and-rewrite approach that can
generate a more fluent summary by rearranging and rewriting selected segments
using a state-of-the-art sequence-to-sequence model.

The research domains investigated in this thesis share the need to manipulate
linguistic information and, more specifically, human language. Therefore, we exten-
sively use NLP techniques to understand the semantics of language and automatically
process unstructured content. Considering a broad range of scenarios, this thesis
examines how NLP can enhance the understanding of human language and facilitate
the processing of large volumes of data.
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Chapter 1

Introduction

Natural Language Processing (NLP) is the research field at the intersection of
linguistics, Artificial Intelligence, and computer science. Its goal is to automate
human language comprehension, understanding, and generation. People use natural
language to communicate, which consists of a finite set of symbols (letters, words,
punctuation marks, etc.) that are arranged according to grammar rules. Essentially,
NLP is the development of computational models that can automatically understand
natural language text, i.e., to extract meaning from text.

The volume of written content on the World Wide Web has grown dramatically
over the past few years, making NLP an increasingly important field. A vast amount
of text is generated and consumed by personal computers, smartphones, and smart
devices, making it difficult for humans to read and process all of this information. The
Internet has fundamentally changed the way we communicate, consume information,
and work. It has established the transition into the information age [20], where we
are overwhelmed with textual data that requires processing and analysis. Companies’
and economies’ competitiveness is strongly dependent on access to information and,
more importantly, on the knowledge that can be extracted from such data. NLP is
the key to unlocking the value in this data by providing the ability to automatically
extract meaning and understanding from text.

Access to information used to be time-consuming and difficult, but with the
advent of the Internet, we are now able to access to a wide range of information in
seconds. Despite this is an undeniable advancement for individuals, businesses, and
societies, it has also brought a new challenge: information overload.
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Information overload is the condition of having too much information to ef-
fectively process it. It refers to the challenges that arise when a large amount of
information is available, and it is difficult to filter the relevant information. Alvin
Toffler was the first to propose this theory [179] and the importance of this phe-
nomenon has grown in importance in recent years due to the exponential growth of
the Internet and the amount of data available online.

Information overload may have negative effects on productivity, decision making,
and overall well-being [60]. It can also lead to suboptimal decisions, as people are
unable to process all the available information and identify the most relevant one.
Information retrieval and NLP can help to mitigate this problem by providing meth-
ods to effectively filter and process information. Specifically, the recent advances in
deep learning have enabled the development of models that are able to automatically
understand and process textual data, and thus, can be used to address this problem.

Deep learning, however, is not limited to NLP applications and has been suc-
cessfully applied to a variety of other domains and data modalities. In the field of
computer vision, for example, it has led to the development of applications such
as facial recognition and object classification by automatically learning to extract
relevant features from images. Similarly, in the field of NLP, it has led to applications
covering text classification or summarization which rely on the understanding of
language to automatically process text data.

Deep learning methodologies make it possible to develop models that automat-
ically extract relevant features from data. These models can be trained on large
databases without having to rely on human supervision. This allows for the de-
velopment of models that are able to generalize to new data. In NLP, the use
of self-supervised techniques (e.g., training objectives that do not require human-
annotated data) has led to the development of pre-trained language models that are
able to provide reliable starting point for many natural language understanding tasks.
By fine-tuning the model on a small dataset, transfer learning allows the knowledge
learned from a pre-trained model to be applied to another task. As a result, these
pre-trained models can be used to build a wide variety of applications with a limited
amount of data.

The joint use of self-supervision and transfer learning makes it possible to
automatically understand written content and alleviate the problem of information
overload by efficiently extracting relevant information from large volumes of data.
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News articles, for example, often contain a large amount of information that may
be irrelevant to a particular reader. A system capable of understanding content can
automatically filter news articles to only present the most relevant ones to the reader,
which allows for a better focus on the most relevant information. Similarly, long
documents such as reports or research papers can be summarized to reduce the
amount of information that needs to be processed by the reader. Those approaches
require both the ability to read and understand the text, as well as the ability to
identify the most relevant information.

Most of the contributions discussed in this thesis focus on the task of content
summarization, which entails the generation of a summary that contains the most
important information from a given text. Automatic summarization is essential for
mitigating information overload, since it can enable users to quickly read short sum-
maries of long documents. The dissertation discusses how deep learning can address
the challenges that may arise when applying automatic summarization to different
domains and provides a detailed evaluation of the proposed solutions. It presents a
thorough exploration of several application domains, including scientific document
analysis, temporal event summarization, and spoken language understanding.

This dissertation focuses on the following research objectives:

• Examine how traditional machine learning techniques and modern deep learn-
ing approaches can be applied to extract and summarize textual and multimodal
content.

• Analyze the benefits of leveraging the semantic representations learned by
deep learning models for content summarization.

• Develop models that can effectively utilize temporal and multilingual informa-
tion for content summarization.

• Explore different application domains and conduct a comprehensive evaluation
of the proposed methods.

Through these objectives, we propose a set of models that can effectively sum-
marize textual and multimodal content, and demonstrate their effectiveness across
multiple fields. The application domains considered in the present dissertation
encompass:
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• Scientific publications: summarizing a scientific paper requires an in-depth
analysis of the document structure and citation-level exploration of its content.

• News summarization: summarizing news articles poses a number of chal-
lenges due to (i) the rapid development of newsworthy events, which calls for
monitoring the news timeline and related aspects; (ii) the presence of global
data sources, which require effective cross-lingual information retrieval and
analysis.

• Spoken-content summarization: the summarization of speech content (e.g.,
podcasts) calls for effective multimodal modeling, as it requires the joint
analysis of information from acoustic and textual sources.

1.1 Dissertation outline

This thesis is organized as follows. Chapter 2 introduces the main contributions of
the thesis, analyzing the main challenges and providing an overview of the different
application domains where machine learning and deep learning can be used for
content understanding and summarization.

Detailed information about the methodologies used in this dissertation is pre-
sented in Chapter 3, which covers the background of deep learning and NLP. These
concepts include word embeddings, neural architectures, and sequence-to-sequence
models, which form the foundation for deep learning in this field.

The task of scientific literature analysis is the focus of Chapter 4. It introduces
the domain of scientometrics and explains the different types of data that can be used
to analyze scientific literature. It then describes the contributions of this thesis in
this field and shows how deep learning models can be used to analyze the citation
context and extract summaries from research papers.

Chapter 5 discusses the importance of time in text analysis and how to model
temporal information that is present in text data. It introduces the task of news
timeline generation along with the solutions proposed in both single-language and
multilingual settings.

Chapter 6 focuses on the task of comprehending spoken content from a mul-
timodal perspective. It discusses how text and audio modalities can be combined
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together to understand spoken content. The chapter also outlines the task of spoken
content summarization and describes how deep learning models can be used to
leverage both textual and acoustic features to summarize spoken content.

Each chapter also discusses the future directions in its respective field, high-
lighting both the challenges and the opportunities that lie ahead. Finally, Chapter 7
concludes the dissertation by summarizing the main findings and discussing general
recommendations for future research.



Chapter 2

Research contributions

This chapter introduces the application domains and the research contributions of this
thesis. The ubiquitous nature of text data has led to the analysis of natural language
in a variety of contexts, such as scientific documents, news articles, and spoken
content. While each of these domains presents unique challenges, they all share
the common goal of extracting and summarizing the most important information.
Indeed, extracting or generating summaries can be beneficial across all of these areas,
as it can enable users to quickly obtain an overview of the most valuable information.

2.1 Scientific literature analysis

Over the past few years, the amount of scientific literature has increased dramatically.
This makes it challenging for researchers to keep up to date with the latest advances
in their field. The introduction of digital libraries and online journals has simplified
the access to scientific literature, but it has also resulted in more information that
researchers need to process. In parallel, open-access journals and pre-print servers
(e.g., ArXiv1 or PubMed 2) have greatly sped up the process of paper submission and
publication. Consequently, there is a constant stream of new papers, which makes
keeping up with the latest advances even more challenging for researchers.

Similar to other fields, the increasing amount of scientific literature has con-
tributed to information overload. Hence, text mining algorithms have been designed

1www.arxiv.org
2https://www.ncbi.nlm.nih.gov/pmc/

www.arxiv.org
https://www.ncbi.nlm.nih.gov/pmc/
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to process large collections of scientific papers to detect relevant patterns and trends.
These methods can be used to identify new research directions, find hidden patterns,
or identify potential collaborators.

The task of automatic text summarization is a useful tool for researchers who
would like to stay up-to-date with their field’s latest developments. Particularly, the
task of summarizing scientific papers aims at creating a short summary that contains
the most significant information from a paper. Researchers can use this summary to
quickly ascertain whether a paper is relevant to their interests, as well as provide a
starting point for further reading. Automatic content understanding is a key tool for
helping researchers to focus on the most relevant papers and for identifying emerging
topics. Text summarization can be tailored to the needs of researchers, and can be
used to generate summaries that highlight the most important findings of a scientific
publication.

It is essential to recognize that scientific papers have highly technical language
and formal structures, thus affecting the challenges automatic text summarization
systems must overcome. In contrast to general-purpose texts, scientific papers
are usually long, contain specialized terminology, and have a strict structure that
includes elements such as the abstract, introduction, methods, results, and discussion.
Various readers may be interested in different sections as each of them may present
different information. The abstract, for example, may not be enough to provide a
full understanding of the paper, whereas the discussion may provide information
that cannot be found in the abstract. A reader that is interested in exploring the
main findings of a paper may be interested in having a quick overview of the results,
whereas a reader that wants to reproduce the outcomes of the work may prefer to
have a summary that includes the details of the methodology.

The variability of information found within a scientific paper, combined with
the different needs of the reader, make it challenging to summarize scientific papers,
which requires an understanding of the underlying semantics. By leveraging deep
learning techniques we investigate how content understanding methodologies can be
used for scientific literature analysis.

• Using a semantically-grounded approach we analyze and classify the citation
context of scientific papers to discover whether the full text of the referenced
paper is worth reading, based on the expectation that the full text contains
additional information related to the citation context.
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• We present a methodology that is specifically tailored to extract sentences that
describe the main results and/or contributions of a scientific paper.

• We build a model that generates different summaries covering specific aspects
of scientific papers. The methodology allows for a fine-grained analysis of the
publications by analyzing the discourse facets and exploiting their underlying
structure.

The in-depth analysis of the content and the format of scientific papers can help us
better understand the research itself. Through this understanding, we can increase
the efficiency of literature searches and create summaries that will be beneficial to
the scientific community, providing them with better knowledge discovery tools.

2.2 The importance of time in text analysis

In the current landscape of text analysis, the study of temporal aspects of texts is
of utmost importance. As online news sites are constantly publishing a stream of
articles, issues raised by information overload and the proliferation of online content
are increasingly relevant to online journalism. Understanding the evolution of content
over time is critical for establishing the context of events, and news timelines can
provide valuable insight into how events are evolving over time.

Similarly to academic articles, the volume of online news makes it difficult for
readers to identify the most important and interesting stories. The average person
is not able to read all the news pertaining to a particular topic and must prioritize
which articles to read. Automatic content understanding allows for identification of
the most important news stories, as well as modeling the evolving context of events.

Long-term events, such as the evolution of a disease outbreak or the progress
of a political campaign, require the ability to track the evolution of the event over
time. Early in the unfolding of events, we are often able to gather the most pertinent
information, so it is critical to identify and track these developments at this stage.
An overall timeline can provide a valuable overview of the event’s development, and
can be used to identify key turning points or major milestones.

Considering time-related information is therefore critical for understanding and
analyzing the evolution of events reported in online news articles. We propose a new
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technique for detecting salient dates associated with a specific event, and then using
these dates to summarize how the event evolved over time. We also explored the use
of multilingual resources for this task and investigated the potential of cross-lingual
summarization for events reported in multiple languages.

2.3 Multimodal content understanding

Although text still is the most common form of online communication, spoken
content (such as podcasts and videos) is also gaining in popularity. Users can be
interested in spoken content for a variety of reasons, including to obtain information
about a particular topic, to entertain themselves, and to learn something of interest.
Many platforms host large amounts of spoken content. Following the same pattern
as with text, it is becoming more and more difficult for users to identify the most
worthwhile information. It can be helpful to quickly identify the most relevant
content in order to mitigate the adverse effects of information overload. Hence, users
need a way of identifying the most relevant content without having to listen to the
entire podcast or watch the entire video.

As spoken content is typically less structured than text, its automatic analysis
presents several challenges. The audio material is diverse as it includes news pro-
grams, interviews, speeches, and lectures, as well as multimodal (e.g., mainly text
and audio). The conventional approaches to analyzing speech are based on a two-step
process. In the first step, the audio is transcribed into text and in the second step
it is analyzed using NLP techniques. The automatic transcription of audio content,
however, is a challenge in itself, as transcription quality is rarely completely accurate.
The resulting errors can introduce noise into the automatic analysis of spoken content.
For instance, automated transcription may not identify key words in specific domains
and may introduce grammatical errors, thus confusing the interpretation of the text.

Analyzing only the transcriptions of audio content is also problematic because it
reduces the analysis to one modality, whereas spoken content is often multimodal.
Speech contains significant information not only through the words that are spoken,
but also through other modalities, such as intonation and pauses. The emotions
conveyed by speakers through their tone and nonverbal communication can provide
helpful contextual information. Whenever the analysis is limited to the words
spoken in the audio, this information is lost. As part of our contribution in this
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field, we combine information from transcriptions and audio signals to summarize
speech recordings. We aim to enhance the automatic analysis of spoken content by
leveraging the multimodal information in the audio signal. The analysis focuses on
podcast episodes, a form of spoken content that is gaining popularity over the last
few years.

Podcasts are audio files that can be downloaded from the Internet and played on
smartphones or computers. They are typically episodic, with each episode covering a
specific topic. Podcast episodes are typically less structured than written documents,
and their length can vary (e.g., from minutes to several hours). Adding an automatic
summary to each podcast episode makes it easier for users to quickly identify key
points and decide whether they want to listen to the entire episode.



Chapter 3

Background

Natural language is the primary mean we use to communicate and express our
thoughts. The purpose of this chapter is to give a brief overview of the field of
NLP and, more broadly semantic content understanding, from the early days to
the current state of the art, with a focus on the deep learning-based approaches.
Section 3.1 reviews the history of NLP and discusses the fundamentals of statistical
and neural-based approaches. The most important findings for the design of neural
language models, as well as their implication for the research topics discussed in this
thesis are summarized in Section 3.2 and a specific focus on language understanding
and generation is provided in Section 3.2.4 and Section 3.2.5, respectively. Finally,
an in-depth analysis of the text summarization task is provided in Section 3.3.

3.1 Natural Language Processing: A brief history

The end goal of NLP is to let machines be able to understand text written by
humans in natural language. The academic interest in NLP can be traced back to the
1950s when the mathematician Alan Turing proposes the imitation game, a test to
evaluate the ability of a given machine to exhibit intelligent behavior [183]. The test
was structured as a conversation, with questions formulated by humans in natural
language and responses generated by an automated system that should be able to (i)
understand the semantics of the conversation and (ii) interact in natural language (i.e.,
English). Since then, the research community has investigated different approaches
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to let a machine understand natural language and generate text similar to human
beings.

During the 1960s, the research community focused on generating handwritten
rules for modeling human language (primarily English). At that time, data-driven
approaches were not considered practical due to the high overhead of processing,
the large amount of data needed, and the lack of effective learning algorithms.
Manually-defined rules were the only viable option for modeling language. They
were formulated to take into account local linguistic dependencies in specific NLP
tasks, e.g., Machine Translation [192]. However, those approaches had some major
drawbacks. They heavily relied on the expertise of the rule designers and were often
difficult to maintain and extend to new languages. Moreover, the rules failed to
capture the global statistical patterns in language, crucial for many NLP tasks.

It was only in the late 1980s that statistical methods pushed the field forward,
thanks to the increasing computational power of computers and the availability of
large text corpora. They overcome the limitations of previous approaches and enable
the modeling of long dependencies in language while automating the learning process
and minimizing the need for manual effort [108]. This fundamental change from
traditional to statistical methods laid the foundations for the design of new machine
learning algorithms based on Decision Trees [146] or Hidden Markov Models [7]
that have been successfully applied in several NLP tasks such as part-of-speech
tagging [35] and coreference resolution [116].

While applying statistical methods, language processing and generation tasks
were based on the concept of n-grams. An n-gram is defined as a contiguous
sequence of n items from a given text snippet. They can be defined in terms of
words or characters. For example, a word-based bi-gram (where n is set to 2) for
the sentence "natural language processing was born in the 1950s" will include
"natural language", "language processing", "processing was" and so on. Similarly, a
char-based bi-gram will be "na", "at", "tu", "ur", "ra", "al" and so on. In both cases,
the idea is to take a sequence of items and apply statistical methods to find out which
of them are likely to occur together. This simple yet effective definition allowed
the design of new innovative systems in the field of text mining [174], information
retrieval [125] and, text generation [113] to name a few. Leveraging the n-gram
definitions it was possible to define new way for representing documents according
to their constituents’ words.
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Bag-of-words text vectorization The process of mapping text into vectors is
known as text vectorization. Early approaches in this domain leverage the co-
occurrence of words inside the text to generate a vector representation. This method
is known as bag-of-words. Given a document D containing a given sequence of
words (w1,w2, ...wn) ∈ D, the bag-of-words representation of D corresponds to a
vector where each dimension refers to a specific word wi. Each vector cell is set
to 1 if the corresponding word appears in the document while is set to 0 otherwise.
Although those approaches are used in some of the more recent commercial systems,
they still have major disadvantages. First, it is challenging to manipulate vectors
because of their high dimensionality. Second, the vectors are sparse, meaning many
cells are set to 0, which makes computation difficult and memory-intensive. Lastly,
the vectors can not encode contextual information; hence, words that are related to
each other, within the same context, are not represented by similar vectors.

Vector Space Model (VSM) A fundamental problem of the bag-of-words ap-
proach is the binary encoding of the presence of a word in a document. While this
vectorization technique is straightforward to use, it does not encode the frequency of
a word in a document. This issue motivated the development of the Vector Space
Model (VSM) [162]. It was originally proposed in the context of information re-
trieval and has been extensively used in several NLP applications. With the VSM
approach, each word in a document is encoded according to its frequency, rather
than its presence. Similarly to the previous case, given a document D containing
a given sequence of words (w1,w2, ...wn) ∈ D, the representation of D corresponds
to a vector where each dimension refers to a specific word wi. In its original for-
mulation, each vector cell is set to the frequency of the corresponding word inside
the document. This allows for a more accurate encoding of the documents and can
be seen as a generalization of the bag-of-words approach. This methodology has
also been extended by replacing the word frequency with the term frequency-inverse
document frequency (TF-IDF) [161] that adds another term to the word frequency,
the inverse document frequency (IDF), in order to down-weight words that appear
in many documents (e.g., words that are very common in the collection, thus, less
discriminative). Even though this approach is more accurate than bag-of-words, it
still fails to address other issues related to sparse vectors, high dimensionality, and
the inability to encode context information.
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Latent Semantic Analysis (LSA) Latent Semantic Analysis (LSA) [37] is a statisti-
cal technique that has found a variety of applications in NLP, including text clustering
and classification, query expansion, and information retrieval. The LSA approach is
based on the Singular Value Decomposition (SVD) [53], a linear algebra technique
that is used to compress a matrix and to provide the latent semantic relationships of
the data. In this context, the matrix is the so-called term-document matrix, where
each row corresponds to a term in the vocabulary and each column corresponds to a
document in the collection. LSA serves as a text vectorization technique for repre-
senting documents in a lower-dimensional space. The new representation is based on
the SVD of the term-document matrix, which is used to find the latent relationships
among the terms and the documents. In this way, the information that is contained in
the high-dimensional matrix is condensed into a lower-dimensional space, and the
documents are represented by linear combinations of the latent concepts that have
been extracted from the original matrix. In contrast to bag-of-words and VSM, LSA
does not consider words in isolation, but instead, considers the relationships among
them. It overcomes the issues of data sparsity and high dimensions by creating a
new, lower-dimensional space that contains the latent concepts of the original sparse
matrix. While LSA overcomes the sparsity issue it still fails to address some of the
problems related to the previous approaches. It does not consider the context and
the word order, thus, while it can leverage the relationships among words, it cannot
identify their semantic meaning and does not consider their sequential order.

With the introduction of deep learning in the early 2000s, researchers have started
to focus on the semantic level of language. The objective of those research efforts is
to learn the representation of language by extracting latent semantic relationships
among the words. Section 3.2 examines the major developments in semantic-based
methodologies used in modern NLP systems.

3.2 Bridging the gap between deep learning and NLP

Since the advent of deep learning, methods and approaches used to understand
natural language have radically changed. Models using deep learning have proven
highly effective for tasks related to NLP and its semantic understanding. Compared
to traditional methods, they focused on the encoding of text into latent vector spaces
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to capture the relationship between text and its meaning through the understanding
of the context.

3.2.1 Semantic word embeddings

Aware of the limitations of previous text vectorization approaches, leveraging the
generalization capabilities of deep learning, the new generation of text embeddings
was based on the distributional hypothesis [59], according to which, words that occur
in similar contexts tend to have similar meanings. While LSA represented the first
attempt to apply the distributional hypothesis in the field of NLP, it was not able to
learn the semantic relationships among words. The advancement in computational
power and the theoretical basis of the hypothesis enabled the design of machine
learning models for mapping words into high-dimensional vector spaces so that
similar words will be mapped to similar vectors.

The first approaches generate these dense vector representations, for individual
words, using shallow neural networks. Word2Vec [123] and GloVe [142] are some
examples of word embedding models. These approaches relies on self-supervised
learning to automatically generate effective representations of words, without need-
ing any manual annotation. Their training procedure was based on the definition
of a context window C that defines the context associated with a given target word
w as concatenation of the k previous and k next words in the text sequence. The
Word2Vec model consists of a single fully-connected layer that can be trained using
two different methodologies,

• CBOW (Continuous Bag of Words): The model takes as input the context C
and is trained to predict the target word w.

• Skip-Gram: The model takes as input the target word w and is trained to
predicts the words that are part of the context C.

A sketch of both training procedures is shown in Figure 3.1. The model map each
unique word in the training corpus to a single vector. In the beginning, word vectors
are randomly initialized and they are adjusted during the training process using
CBOW or Skip-gram training objectives. It is worth noting that the training process
does not need any human annotation and can run in unsupervised settings. Once
trained, word embeddings shows the ability to capture the semantic relationships
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The quick brown fox jumps over the lazy dog.
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Fig. 3.1 Sketch of Word2Vec training strategies.

among words. The similarity between two words (wi,w j) is often computed using
the cosine of the angle between their vector representations (−→wi,

−→w j).

sim(wi,w j) =
−→wi ·−→w j

∥−→wi∥∥−→w j∥

This similarity measure has become the de facto standard for measuring the
degree of semantic similarity between two words. Word embedding models are
used both in research and commercial NLP systems to overcome the problems of
traditional methods, such as the bag-of-words approach. However, they still have
limitations when it comes to semantic content understanding,

1. Out-of-vocabulary words (OOV): vector representations are generated only for
words that appear in training data. In the case of a new word, they are unable
to infer the vector representation.

2. Contextualized representation: each word is represented by a single static
vector. During training, the context is used to learn the vector mapping, but
once trained, the vector remains the same regardless of the context in which
the word is found.

3. Sentence and document representation: text snippets are vectorized by aver-
aging the vectors for the constituent words, losing sequential structure and
context of the sentence.
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Fig. 3.2 Visualization of feed-forward and recurrent architectures.

The OOV issue has been partially mitigated by leveraging sub-word units and
word compositionality [12]. The sub-words are generated using character n-grams,
and allow for the extraction of vector representations for out-of-vocabulary words
by adding the vectors of their constituent sub-words. However, limitations 2 and 3
remained unsolved. The static nature of word embeddings, as well as the aggrega-
tions required for document/sentence representations, adversely affect the semantic
understanding of text.

3.2.2 Recurrent neural networks

Recurrent neural networks (RNNs) define a specific neural network architecture
that can process sequential data. In their original definition, they extend standard
feed-forward networks for handling sequences of arbitrary lengths [40]. Due to their
inherently sequential nature, this design is particularly suitable for the NLP domain,
where textual data should be analyzed within their context. This is possible through
the introduction of cycles in network design that allows the information flow to
persist through different time steps.

Compared with standard neural networks, RNNs have a feedback loop that
allows them to exploit previous inputs during the computation at a given time step.
Figure 3.2 illustrates the architectures of a feed-forward network and a recurrent
network. Using the two variants on the right, we can compare the same RNN
architecture in standard form and unrolled form for a sequence of length 4. In the
unrolled form, for each time step, the RNN cell is replicated, allowing extended
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visualization of its inputs, outputs, and feedback loops. Recurrent architectures
have been applied to a wide range of tasks such as machine translation [39], text
summarization [129] and speech recognition [124]. The recurrent architecture is
capable of handling long sequences, but suffers from vanishing gradients problem
during training. LSTMs [62] have been shown to partially mitigate this problem by
introducing a gate mechanism that permits better gradient flow through the network.
Recurrent networks are capable of reaching state-of-the-art accuracy in a variety of
domains but require long training on large corpora. Training recurrent networks is
thus computationally expensive. The computation at each time step depends on all
the previous steps, making parallelization of training algorithms more difficult.

3.2.3 The transformer model

The application of deep learning methodologies to NLP has led to several devel-
opments over the years. Nevertheless, large training datasets are also necessary to
enhance model generalization and effectiveness. As a result, training such models
has become much more time consuming and computationally intensive. The primary
limitation of recurrent neural networks, discussed in Section 3.2.2, is their sequen-
tial structure. This hinders the parallelization of computation during training and
inference, thereby slowing down the training process.

This problem was addressed by transformers [187], which have shown to achieve
state-of-the-art results in a number of NLP tasks. The original transformer architec-
ture is a sequence-to-sequence model proposed for the task of automatic machine
translation. It is composed of an encoder and a decoder, the encoder is responsible for
converting the source sequence into a sequence of vectors; the decoder is responsible
for converting the vector sequence into the target text. Throughout the document, we
will refer to the transformer as the encoder-decoder architecture. The most important
novelty of transformer-based models is the introduction of attention mechanism that
is in charge of learning the relationship between two elements in the sequence.

Attention mechanism The attention mechanism enables the model to focus on
different parts of the input sequence by using learnable weights. Considering a
sequence of n ordered tokens S : w1,w2, ...wn, the transformer model represents each
element wi with a query qi, a key ki, and a value vector vi. For a given token pair
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Fig. 3.3 Visualizing the computation of attention in transformer-based models.

(wi,w j) the self-attention score is computed as the dot products between the query
vector and key vector. Figure 3.3 shows the inner working of attention mechanism for
a sequence of three tokens. The illustration shows the first step of the computation,
when attention scores between the first token and all subsequent ones are calculated.

The dot product between the query vector of the first word q1 and all other
key vectors is computed to obtain the attention scores a11,a12,a13 that refer to the
relative importance of the first, second and third token, respectively, for the semantic
representation of w1. Note that, at each step, attention scores are also estimated for
a given token and itself, thereby defining self-attention. To compute the context
vector for a given token, the attention scores are normalized by applying the softmax
function to obtain a probability distribution. Using normalized attention scores as
weights, the context vector is obtained as a linear combination of the value vectors vi

of all tokens in the sequence.

Unlike recurrent networks, transformer models allow the computation of context
vectors to be parallelized, improving the computational efficiency of the model.
Self-attention, on the other hand, requires the computation of attention scores be-
tween each pair of tokens in the sequence, resulting in an o(n2) complexity with
the sequence length n. Due to this limitation, the inputs and the outputs of modern
transformer architectures are limited to a fixed threshold, usually 512 or 1024 tokens.
Recent advances in transformer architectures have improved the computational effi-
ciency of transformer models by introducing the concept of sparse self-attention [9],
thus allowing the model to focus on a subset of the entire text and process longer
sequences.
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Fig. 3.4 Examples of different strategies for self-supervised learning.

3.2.4 Natural language understanding

Natural Language Understanding (NLU) is a subfield of NLP whose goal is to extract
structured information from natural language. The original transformer model was
proposed for sequence-to-sequence tasks: both the input and the output of the model
are a sequence of tokens. NLU tasks, on the other hand, analyze the input sequence
and provide a vector representation for each token in the sequence. This is exactly
what the encoder in transformer models is trained to do.

BERT (Bidirectional Encoder Representations from Transformers) [38] is an
encoder model based on the transformer architecture. It leverages a two step process
to address NLU task: pre-training and fine-tuning. In the pre-training stage, the
model learns to create an effective representation of the language by exploiting large
corpora. This step does not require task-specific annotations, and it can be performed
with only unlabeled data. In the second step, the pre-trained model is fine-tuned
by leveraging task-specific annotations. During self-supervised training, the model
leverages specific pre-training tasks,

• Masked language modeling: the model is presented with a text sequence
containing masked words (i.e., each word is replaced with the standard token
[MASK]) and its objective is to predict the original masked words. A sketch of
the process is shown in Figure 3.4(a).

• Next-sentence prediction: the model is presented with pair of sentences. In one
case, the second sentence follows the first in text and the others are randomly
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selected. The model’s objective is to predict whether the second sentence is
consequential to the first one. The process is depicted in 3.4(b).

This approach allows the generation of training examples without explicit an-
notation and the model can learn a representation of language that is effective for
many NLU tasks. The model is then fine-tuned by adding a specific head (e.g., clas-
sification layer) on top of the pre-trained model. Literature refers to this approach
as transfer learning, since it transfers the knowledge of the pre-trained model to
a specific task. Since the proposal of the original BERT model the idea behind
encoder-based architectures, pre-trained using self-supervised strategies, has been
extended by proposing dynamic masking [105], windowed attention patterns [9] and
different pre-training objectives [27].

3.2.5 Natural language generation

Natural language generation (NLG) is the process of creating text with a specific
meaning in natural language. Unlike NLU, NLG’s primary objective is not to
comprehend a text, but to generate new one with a certain meaning. The use
of attention mechanisms in deep learning models has recently proven to be very
successful for addressing the NLG tasks. In particular, it allows the model to focus
on the most relevant parts of the input while generating the output. GPT (Generative
Pre-trained Transformer) [149, 150, 13] identifies a series of decoder-based models
that have shown great performance in various NLG tasks (i.e., narrative text and
dialogue generation). They use the transformer’s original decoding architecture
and incorporate self-supervised learning for model pre-training. Considering the
language generation objective, the pre-training strategy is formulated as a language
modeling task: the model is trained to predict the next word in a sequence given
the previous context. An illustration of the self-supervised strategy is shown in
Figure 3.4(c).

Those models have shown impressive generalization capabilities and have out-
performed many prior models on various NLG tasks. Recently, GPT-3 [13] has been
proposed as one of the largest neural language models with 175 billion trainable
parameters. It has demonstrated impressive ability to perform NLG tasks, including
translation [58], question answering [128], and poem composition [36], even without
model fine-tuning on those specific tasks.
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Fig. 3.5 High-level overview of the automatic summarization pipeline.

3.3 Automatic Text Summarization

Automatic summarization is one of the primary topics for most of the research
works proposed in this thesis. This is one of the most studied tasks in NLP and, in
its most general form, can be defined as the process of extracting or generating a
short and coherent summary from a longer document. The original definition has
been extended to cover different use cases, such as the summarization of multiple
documents, structured data, or multimedia content.

3.3.1 General framework for automatic summarization

The task of summarizing a document can be considered a specific area of general
document understanding; indeed, this can be viewed as a way to extract the most
relevant and useful information from a document. Even though this task could be
defined differently according to specific requirements and use cases, it is possible to
define a general framework that describes the main steps involved in an automatic
summarization system.

Figure 3.5 shows an high-level pipeline of the automatic summarization process.
The first step of the process aims at defining the input of the system, which could be a
single document or a collection of documents. This choice will have a direct impact
on the next steps of the process, as the system will have to extract the most relevant
information from the input data. According to the type of input data, the system
can be classified as a single document or a multi-document summarization system.
In the first case, it is assumed that the input is a single document and the system is
responsible for extracting the most relevant information from it. Multi-document
summarization systems, on the other hand, require multiple documents as input and
they are responsible for combining information from several sources to generate a
summary.
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The second step of the process focuses on the pre-processing of the input data.
This phase is aimed at cleaning, normalizing, and parsing the input data to obtain a
structured format that can be processed by the system. At this stage, the input text
is often split into sentences or words in order to be processed by the system. The
pre-processing step may also include other operations, such as filtering, stemming,
or stop-words removal. However, these operations are not always performed and
they may vary according to the domain, the type of input data, and the requirements
of the system.

Pre-processed data are then analyzed to extract a set of features that can be
accessed by the summarization algorithm. The features extraction phase is aimed
at gathering useful information that can be employed by the system to identify the
most relevant information in the input data. This step is strongly dependent on
the domain, the type of data, and the machine learning algorithm selected for the
summarization task. Generally, it involves extracting traditional features such as the
position or length of sentences in a document, but it can also employ more advanced
features such as text embedding models that typically provide semantic-aware vector
representations.

After the features extraction phase, the input data are fed to the summarization
model that is responsible for generating the summary. It can be either supervised
or unsupervised, according to the design of the system. In the former case, the
model requires a set of training data that can be used to learn the parameters of the
summarization algorithm. In the latter case, the system does not require a training
set, and the summarization process is typically based on a heuristic approach. More
details about different types of models are provided in the next sections.

Finally, the output summary is generated by the system. The summary is typically
a shorter version of the original document and can be provided in various formats,
such as a list of sentences or a set of key phrases. Depending on the summarization
model, the output summary can be extractive (i.e., it is composed of sentences
or fragments of the original document) or abstractive (i.e., it is composed of new
sentences that are generated by the model and do not necessarily appear in the original
document). A detailed description of both extractive and abstractive summarization
models is reported in Section 3.3.2.

The general framework described in this section can be seen as a high-level pipeline
describing the main steps involved in an automatic summarization system. According
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to the summarization models, data modalities, and different formulations of the
problem, the pipeline could involve different steps and components.

3.3.2 Extractive and Abstractive summarization

As introduced in the previous section, automatic summarization approaches can
be generally categorized into two different categories: extractive and abstractive
methodologies. Extractive methods select the most relevant sentences in the input text
to be included in the output summary. They do not require any phase of generation
since the output summary is a combination of selected sentences. On the other hand,
abstractive methods synthesize summaries by rewriting and paraphrasing the input
text. Consequently, they enable the summarization process to go beyond simple
sentence selection. Even though they both aim for the same goal, namely to create
a summary that covers all relevant information of the text, they present different
challenges.

Extractive summarization The idea of sentence selection underpins all extractive
methods. The main challenge of this summarization task is how to select the most
pertinent sentences to include in the summary. The majority of extractive methods
determine the relevance of each sentence in the document first, and then rank them
according to their estimated value. The summary is then composed by concatenating
the most relevant sentences. A wide variety of extractive summarization approaches
have been proposed in the literature, and they are heavily influenced by the char-
acteristics of the input document. Chapter 4 provides an in-depth analysis at how
extractive summarization is conducted on scientific documents.

Abstractive summarization Abstractive approaches generate a summary by writ-
ing novel sentences rather than extracting them. It is a more challenging task because,
in addition to identifying the most relevant information, the summarizer requires the
ability to compress and paraphrase the document content. Since the introduction
of transformer-based models for abstractive summarization task, there has been a
significant advance in this field; sequence-to-sequence models [92, 200] have shown
impressive capabilities both in understanding and generation tasks. Transformer-
based models, however, are computationally expensive and have difficulty handling
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long sequences (such as long documents). This hinders their practical use for the
summarization of long texts and they require specific countermeasures to handle this
limitation.

3.3.3 Unsupervised text summarization

Both the estimation of text relevance for sentence selection and the ability to write
human-like summaries are challenging tasks, and often require supervision. In the
summarization setting, supervised learning requires annotated data consisting of
pairs of texts and their corresponding human-written summaries. Since summary
generation is a complex task that cannot be easily automated, such data collections
can be expensive and difficult to create. To overcome the lack of training data, unsu-
pervised summarization approaches have been proposed for automatically extracting
key information from texts. Using semantic similarity or lexical co-occurrence, these
methods are able to identify key sentences in the input text. Due to the inherent
complexity of generative tasks, unsupervised approaches usually rely on extractive
summarization, i.e., selecting key sentences from the input text and concatenating
them to create the final summary.

Among the most successful unsupervised methods there are,

• Graph-based approaches [122, 41, 152], which represent sentences in a text as
nodes on a graph, with edges weighted based on a similarity measure between
them. The relevance of a sentence is then calculated using a graph-based
ranking algorithm, such as PageRank [138], to select the top-ranked sentences.

• Topic modeling techniques [114, 15] which comprehend a set of methods
leveraging latent semantic analysis [90] to identify the topics in a text and then
summarize its content by selecting the most relevant sentences for each topic.

• Optimization-based models [99, 98] that consider the text summarization prob-
lem as the maximization of a submodular function with a budget constraint.

• Clustering-based methods [48, 52, 89] that cluster sentences in the input
text based on a specifically-designed distance metric and then pick the most
representative sentences in each cluster for the final summary.



26 Background

The community has focused on extractive approaches because they do not require
text generation capabilities, which are difficult to automate. Yet, such approaches are
less flexible than abstractive ones as they can only be used to select key sentences
from the input text.

By leveraging the generation capabilities of large-scale language models [13]
and their ability to capture long-term semantic dependencies among words, it has
become possible to automatically generate summaries from texts. Those models
usually leverages inductive biases in source document structure to generate training
examples without explicit human annotation [206]. They also add specific pre-
training objectives to enhance summary fluency and domain specialization [196].
However, when using abstractive summarization models, especially in unsupervised
setting, it is not ensured that the generated summaries are factually correct. Often,
summary sentences are distorted by hallucinations, making it difficult to apply them
to practical applications [115].

3.3.4 Learning to summarize text through human references

In several scenarios, unsupervised summarization models are not able to capture
the essential information in the input text. In this setting, humans can provide
reference summaries for training supervised summarization systems. Manually-
written references can be used to train supervised models to generate summaries
that are similar to the given examples. Training data for machine learning models
usually consists of pairs of input texts and corresponding human-written summaries.
While supervised approaches are often more successful than unsupervised methods,
it remains difficult to produce summaries that are both accurate and fluent. Both
extractive and abstractive summarization models have been proposed for supervised
summarization.

Extractive strategies leverage sentence-level features to learn a machine learning
model that is able to efficiently identify important sentences from the input text. The
advancement in semantic text representation guided by deep learning models has
fostered the design of advanced summarizers. The sentence selection and ranking
has been implemented by using simple RNN-based classifiers that extract relevant
sentences [129] or more complex training procedures leveraging reinforcement learn-
ing [130]. Contextualized text representation is extensively used in those models to
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estimate sentence scores. Some models propose to produce more effective sequence
representations by designing hierarchical architectures to represent sentences [205]
or even the whole document [203]. The introduction of transformer-based models,
which learn text representations leveraging attention mechanisms, has led to the
proposal of extractive summarization methods, which estimate sentence relevance by
exploiting inconsistencies among attention scores at different encoding levels [66].

The abstractive model, on the other hand, can generate text summaries that match
human-written references. The literature on abstractive summarization includes a
variety of methods including template-based methodologies [137, 189] that rely on
custom sentence structures to generate summaries, and graph-based approaches [126,
176] that build a graph data structure to better represent the document. More recent
approaches use comprehensive neural models rather than traditional approaches that
are composed of individual components [100]. They rely on sequence-to-sequence
architectures that use an encoder to process the input text and a decoder to generate
the abstractive summary. The literature includes a wide variety of models leveraging
convolutional [158] or recurrent [141] networks for encoding the input text and
recurrent networks for the generating the summary [77].

In 2018, the introduction of the Transformer architecture [187] created a significant
impact on the field of abstractive summarization. Custom pre-training strategies
have been shown to be effective for training abstractive summarization models on
un-annotated corpora [92]. The most effective pre-training strategies exploit (i) multi-
task learning to generate more effective text representations [151], (ii) the generation
of important sentences that have been masked from the source document [200] and,
(iii) the joint optimization of multiple word prediction using prior context [145].

Lately, the use of large transformer models in reinforcement learning setting achieved
impressive results for abstractive summarization [172]. Large language models are
trained on explicitly collected human feedbacks and effectively generalize to unseen
contexts and domains. Despite the clear advantages of this approach, it has many
disadvantages, including the need for a large number of expensive human feedbacks.
Furthermore, training large models can be extremely time-consuming and expensive,
limiting the reproducibility of these methods.
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3.3.5 Metrics for evaluating text summarization approaches

The evaluation of automatic summarization systems, or, more broadly, language
generation models is a difficult task that has been extensively studied in the litera-
ture [160]. The ability to compare results between different methods is essential to
measure the progress of any scientific field. In text summarization, the evaluation
is typically performed by comparing the generated summaries with the references
annotated by humans. A good candidate summary should have the following proper-
ties:

• Informativeness: the summary should contain the most important aspects of
the source text.

• Fluency: there should be an appropriate syntactic structure and proper gram-
matical relations between sentences.

• Conciseness: the summary should be as succinct as possible while retaining
the main ideas of the source text.

Currently, there is no single solution for the automatic evaluation of summariza-
tion systems that can effectively assess all these properties. At present, ROUGE
(Recall-Oriented Understudy for Gisting Evaluation) [97] is the most common evalu-
ation framework. It comprehends a set of scores that measure the overlap between
system-proposed summaries and its corresponding human reference,

• ROUGE-N: it measures the n-gram overlap between the predicted and refer-
ence summary. A n-gram is defined as a sequence of n consecutive words.
Typical values for n used in the literature are n = 1,2,4. They are typically
used to measure the informativeness of the system summary.

• ROUGE-L: it measures the longest common subsequence (LCS) between the
predicted and reference summaries. LCS is a sequence of words that appear
both in the predicted and reference summaries.

• ROUGE-W: it is a weighted variant of ROUGE-L score. Summaries that
contain several common consecutive words are preferred over those with only
longer common sequences. Keeping track of the number of consecutive n-
gram matches, it rewards more sentences with higher numbers of consecutive
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matches. Together with ROUGE-L they are commonly used to assess the
fluency of the proposed summary.

• ROUGE-S: it measures the bi-gram (i.e., n-gram with n = 2) match between
the two summaries. In this case, bi-gram are not only consecutive words but
allow gaps of any length.

For each score, some settings (e.g., when summaries have fixed length thresh-
olds) consider recall as reference metric, while in other cases, also precision and F1
measures are included in the evaluation. ROUGE-scores have shown to be highly cor-
related with human judgement, thus they are the de facto standard for the evaluation
of text summarization systems. However, they also have some relevant limitations.
First, they only consider the lexical similarity between the predicted and reference
summary. Second, they only consider whether a word (or a sequence of words)
appears in the summary, and disregard its context or position. ROUGE-scores were
originally proposed for extractive summarization, in which the reference summary is
often a distilled version of the source document.

Since the community has made remarkable progress in abstractive summarization,
mostly due to neural models, it has begun to consider more effective evaluation
metrics that aim to overcome some of the limitations associated with ROUGE-scores.
Especially in the context of generative tasks, metrics need to extend beyond lexical
similarity and consider also the semantic relationship with the reference summary.
Recently, the community has proposed a number of alternative evaluation metrics to
address the limitation above.

• BERT-score [202] is a metric that leverages the similarity between tokens in a
candidate text and their counterparts in the reference text. It leverages token
representations obtained by pretrained transformers models. Token similarity
is obtained by computing the cosine similarity between the contextual word
embeddings.

• Sentence-BERT score [153] is computed by exploiting transformer-based
architectures specifically trained for the Semantic Textual Similarity (STS)
task. Unlike BERT-score, it computes semantic similarity comparing the
representations of entire reference and candidate summaries.
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• SUPERT [49] is a metric that does not require the use of any reference sum-
mary. It was originally proposed for the multi-document summarization
task (i.e., provide a single summary for multiple source documents). It cre-
ates pseudo-reference summaries automatically and then leverages specific
transformer-based models to compute the semantic similarity with the system-
proposed summary.

Although the community has made progress in this direction, it is still seeking
alternative solutions to better capture the semantic similarity to the reference sum-
mary [43]. The above list is by no means exhaustive, but rather it is meant to provide
an overview of the current state-of-the-art.

Even though researchers have made significant progress toward the development
of automated summary assessment, the gold standard remains human judgment.
Unfortunately, the process is time-consuming and expensive, making it unsuitable
for large-scale summarization. Also, human evaluation is usually not reproducible
and highly subjective, and as a result, is unreliable as the only metric for algorithm
development or benchmarking.



Chapter 4

Natural Language Understanding for
Scientometrics

Scientometrics is the research branch that applies statistics and computational meth-
ods to the study of scientific literature. Its major goal is to quantify and visualize
patterns and trends in scientific publications. In scientometrics, NLP can be ap-
plied to extract and analyze large amounts of bibliographic data from a quantitative
perspective. This chapter provides a review of the related literature in Section 4.1
and introduces the research contributions in the analysis of scientific citations in
Section 4.2. We then provide the details of methodologies for the extraction of
results-oriented highlights (Section 4.3), facet-specific summaries (Section 4.4), and
unsupervised extraction of presentation slides (Section 4.5). Finally, Section 4.6
introduces some of the current challenges and provides an overview of the future
directions in the domain of scientometrics and scientific summarization research.
A graphical taxonomy of the contributions featured in this chapter is provided in
Figure 4.1.

4.1 Natural Language Processing for scientometrics

NLP methodologies can be used to address several tasks in scientific literature analy-
sis. The contributions discussed in this chapter focus on the analysis of bibliographic
data. The objective is to extract structured information needed to support scientific
research and knowledge discovery.
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Fig. 4.1 Graphical overview of the topics and contributions covered in Chapter 4

An essential aspect of scientometrics is the analysis of citation context (i.e., the
text surrounding the citation) to aid in its semantic understanding [72]. Section 4.1.1
discusses research works that exploit the citation context to automatically extract
information about the citation purpose.

Scientometrics literature, however, also includes an high number of studies
aiming at summarizing the content of scientific articles. It involves the development
of automated summarization techniques tailored to address challenges in the scientific
domain. These techniques are discussed in Section 4.1.2.

4.1.1 Citation analysis

Citations are an essential part of scientific literature. They are used to (i) reference
other authors’ previous work, (ii) recognize the influence of prior work on the current
research, and (iii) support the scientific claims of a study. Therefore, understanding
the semantics of citations is of paramount importance in the scientific domain.
Citation context analysis helps in this understanding by extracting information from
the text surrounding the citation.

Large-scale data collections The use of machine learning algorithms in this
domain is advancing at a rapid pace due to the availability of large datasets [73, 29,
197, 22].
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SciCite [29] is one of the most comprehensive data collection containing annota-
tions for the citation intents of a variety of scientific publications. Each reference is
annotated with one of the following classes:

• Background: when the citations provide context, which includes details about
a topic or problem. They are also used to highlight some specific points within
the publication.

• Method: when the citations mention some specific methods, tools or datasets
which are used in the current study.

• Results/Comparison: when the citations are used to support or compare results
presented in the current study.

The dataset covers 6,627 publications containing 11,020 annotated references.

ACL-ARC [73] is a smaller, yet large-scale dataset containing annotated pub-
lication in the field of Computational Linguistics. It covers a more fine-grained
set of classes that comprehends: background, motivation, uses, extension, compari-
son/contrast and future works. The complete dataset contains 186 paper with a total
of 1,941 annotated references.

Following a similar approach, a more comprehensive dataset has been proposed
by Pride and Knoth [144]. It is built on the premise that the contributors of the papers
included in the data collection can provide the most accurate annotation for each
citation. It contains 11,233 references annotated by surveying the original authors
of each publication. At present, this is the most comprehensive dataset in terms of
variety of annotators and number of disciplines.

CL-SciSumm [22] is a research competition aiming at fostering academic re-
search in the automatic summarization of scientific articles. The organizers propose
the identification of the citation intent as one of the tasks. Given a collection of pub-
lications P and a citing paper c ∈ P that cites a referenced paper r ∈ P, the proposed
task is to identify the span in r that mostly reflects the citation in c. In addition,
for each identified citation span, the organizers propose to classify what facet this
citation is focusing on. To address the aforementioned tasks the authors propose the
manual annotation of a portion of SciSummNet dataset [197]. The annotation covers
the references of 40 publications belonging to the field of Computational Linguistics.
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In early works on citation context analysis, a linguistic approach was proposed.
Citation context has been used as an indexing tool for retrieving citations [121],
to identify its polarity and potential impact [61], or to build classification models
that can extract additional information [177, 167]. In recent years, large-scale
benchmarks have allowed researchers to identify the intent behind a specific citation
using data-driven methodologies [70]. Several studies have explored the use of both
traditional and contextualized word embedding to automatically determine citation
intent [157, 74]. The semantic analysis of citation context has also been applied
to extend beyond the detection of the citation intent and identify specific roles or
properties in the citation context [44].

Even though NLP tools have shown to be extremely effective at studying citation
context, citation networks can provide additional information that can be helpful
to understand the dynamics of the citation process. Using graph modeling [10] or
multi-task learning [29], citation networks have been used to enrich citation context
with additional information that can contribute to the intent detection task. The
development of semantically-linked publication networks can also be supported by
integrating structured data from the citation network and high-level information from
the citation context [45].

Many other research directions have arisen from the broader scope of citation
context analysis. It has been used to develop large scale citation indexes [135],
detect citation polarity [69, 191], and categorize publications based on referenced
articles [120].

4.1.2 Scientific document summarization

The automatic summarization of scientific publications involves composing brief
summaries of research articles. In a nutshell, the objective is to provide readers
with an overview of the paper so that they can quickly understand the most relevant
aspects. Clearly, this task has several practical applications. Researchers are often
overloaded with research material available on their field and spend considerable time
browsing full-text papers and abstracts. Even though the abstract can be considered a
summary itself, it is generally provided by the authors and may not contain all of the
necessary information to fully understand the purpose, approach and contribution of
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the research. In contrast to short-document summarization, scientific summarization
involves several unique aspects,

• The structure of scientific papers tends to be well-defined. It usually in-
cludes an introduction, sections describing the methodology, results and dis-
cussion [168].

• Using citation networks and sharing common ideas, scientific papers can
benefit from external sources for summarization [197].

• The length of scientific papers is generally long and they usually contain lots
of information. Consequently, the summarization task may become more
challenging.

• The full text of the article may have mathematical symbols and equations,
depending on its field of research. Additionally, the terminology can be
specific to a field and may require specialized knowledge. This can interfere
with document understanding and hinder the automatic summarization process.

These unique features of scientific papers have stimulated extensive research
in this area. Much of the current literature on scientific summarization pays par-
ticular attention to extractive methodologies. Researchers have proposed machine
learning models trained on specific sets of features to extract general-purpose sum-
maries [83, 94]. Scientists, however, look for several perspectives and aspects of a
paper in the summary, since scientific publications are typically multifaceted. The
analysis of paper citations has been shown to be helpful both for general-purpose
summarization [119] and for generating facet-aware summaries [31, 32]. Supervised
learning can be also used to tailor the summarization process for specific objectives,
such as the extraction of results-oriented highlights that help the reader grasp the key
findings of a scientific publication [33].

Although it can be a more interesting problem from a research perspective, the
field of abstractive summarization has received less attention due to its inherent
difficulties. However, the recent advances in neural models has helped to bridge the
gap between extractive and abstractive summarization. For the generation of facets-
specific summaries, recurrent networks have been used. These networks effectively
comprehend context and paraphrase peculiar aspects of the source document [30].
Recent trends in text generation have been driven by transformer-based architectures.
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The problem, however, is that these models cannot effectively handle long sequences,
preventing them from processing long documents.

To overcome this limitation, they are mostly used for the extreme summarization
task (e.g., to analyze a shorter version of the document to produce a single sentence
summary) [14, 110] or combined with extractive approaches (e.g., abstractive sum-
marization is applied on a selection of relevant sentences). Recently, transformer
models have been extended to handle long sequences by introducing alternatives
to the original attention to prevent exponential complexity growth with sequence
length [9, 78]. In the context of scientific abstractive summarization, these models
have shown to outperforms hybrid extractive-abstractive methodologies generating
short and coherent summaries for scientific documents [194].

4.2 Full text analysis for citation context understand-
ing

The analysis of citation context has shown to be useful in several scenarios. Our
contribution in this field aims at analyzing the value of the full text of the paper for
understanding the citation context [85]. Paper’s sections can be usually divided in two
main classes: open and closed access. Open access sections (i.e., title and abstract)
of articles are publicly available, while those in closed access are usually available to
institutional partners or by paying a fee. The full text of a paper contains primarily
closed access sections that provide the most detailed and accurate description of the
study’s findings.

Considering a paper’s incoming citations and their citation context (i.e., citances),
in our study, we seek to identify those sections whose content is relevant to the
citation context, thus, reading them is recommended. Based on the categorization
of open and closed access sections, our goal is to answer the following research
questions:

1. How can we analyze the semantic correlation between citations and section in
the reference paper?

2. Can we use machine learning to identify citations that need full-text explo-
ration, beyond just reading the abstract and title of cited articles?
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To answer the aforesaid questions we leverage the ScisummNet dataset [197].
It contains 1,000 papers in the field of Computational Linguistics with their corre-
sponding abstract, full text and citation networks (e.g. citation sentences, citation
counts). Each citance is labeled with the sentences from the cited paper that are
relevant to the citation context. This is the only dataset containing fine-grained labels
for citances, thus providing an unique opportunity for measuring the correlation
between citances and the full text of the reference paper.

4.2.1 Correlation analysis

To estimate the correlation between citances and each section of the cited paper,
we build a classification model that can predict whether a given citance points to
a specific publication. The machine learning classifier leverages a set of features
identified by calculating similarity scores between the citation and each section of
the cited paper,

• Semantic similarity: we estimate semantic similarity using word- and sentence-
level embedding models. For this purpose, we use the Word2Vec [123] model
for word-level similarity and, Sent2Vec [139] and BERT [38] for sentence-
level comparisons.

• Syntactic similarity: we measure lexical similarity using ROUGE-1, -2, and -L
scores [97] to compare the n-grams overlap at different levels of granularity.

The features are used to generate a binary classification dataset, where each
record is denoted by the pair (p,c), where p represents a paper and c represents a
citance. Records are assigned a positive label if c references p, and a negative label
otherwise. We use the dataset to train classification models that can estimate the
significance of input features in the classification process. This will enable us to gain
some insights related to the first research question. To ensure consistency across
different papers, we apply domain-specific regular expressions to section titles and
categorize them into a pre-defined set of classes: title, abstract, introduction, related
works, method, experiments and conclusions.

The classification models include Decision Trees, Random Forests, Gradient
Boosting, and AdaBoost, which allow the extraction of feature importance. Fig-
ures 4.2 and 4.3 show the importance of sections and features type, respectively.
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Fig. 4.4 Dataset generation procedure, citance classification.

Title, abstract, and method are clearly the most influential sections overall. The
strong correlation with open access sections supports the investigation for our sec-
ond research question. Among the features types considered in the experiment,
BERT-based similarity is selected as the most relevant. Most likely, this is due to the
semantic information that BERT has the capability of capturing, which other feature
types do not. The second most relevant feature type is the ROUGE-1 score, which
indicates that syntactic matches between individual words can have an impact on
classifier predictions.

4.2.2 Identification of citation contexts requiring full-text reading

The second research question is about automating the identification of cases when
reading the open access sections of the paper is not enough to understand the citation
context. In other words, it aims at discovering when reading the full text of the
paper is required to understand a citation from a referencing paper. It could support
researchers by identifying those instances in which they ought to read a paper’s full
text to gain a complete understanding of the citing context.

To build the classification models we leverage the annotations provided in the
ScisummNet dataset. Each citance c could refer to one or multiple sentences of
the reference paper si ∈ r, found in either the open or closed access sections. We
create a binary classification dataset by labeling as positive the citances referring to
open access sections, as negative the ones that refer to closed access sections; if a
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Table 4.1 Performance analysis of the classifiers on the ScisummNet dataset. α = 0.5

Classifier AUC Accuracy Negative class

Precision Recall F1-Score

AdaBoost 0.90 0.90 0.92 0.97 0.94
Gradient Boosting 0.91 0.91 0.94 0.96 0.95

Decision Tree 0.71 0.87 0.93 0.93 0.93
Random Forest 0.90 0.91 0.93 0.97 0.95

citance refers to both open and closed access sections, we apply a similarity-based
labeling mechanism. When the similarity between the referenced sentences exceeds
a threshold α , we label the citance as positive, otherwise negative. Figure 4.4 depicts
the procedure for citance labeling. Each entry in the dataset is identified by pair (p,c)
where p is the reference paper and c is the citance referring to p. Several threshold
values are evaluated without significant differences in the classification results [85].

We evaluate the classifiers’ performance using the Area Under Curve (AUC),
overall accuracy, and precision, recall and F1-score of the negative class. To evaluate
whether the classifier can successfully address the most significant cases, we focus on
the results of the negative class (i.e., the classifier predicts that the full text analysis
is required). Results reported in Table 4.1 shows that all the classifiers achieve
high accuracy and F1-score, with a lower performance for Decision Tree. Both the
precision and recall of the negative class are higher than 90%, thus indicating that the
classifier is able to successfully identify the cases that require the full text analysis.

An article’s full-text certainly provides additional information that can be helpful
to the reader. However, it is not clear if exploring sections of the paper beyond the title
and abstract will yield better insights into citing snippets. According to the findings
of this study, lexical and semantic features can be used to train a classification model
that differentiates between cases that show clear benefits and those that do not. The
classifier is able to accurately predict the majority of the cases where the full text
is not expected to provide additional insights into the citing snippets. The results
of this analysis demonstrate that this approach can effectively help in reducing the
effort required for citation analysis, which can be a time-consuming process.
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4.3 Highlights extraction from scientific publications

The summarization of scientific publications has received significant attention in
the field of scientometrics. Summarization models for scientific publications aim to
provide (i) a concise overview of the most relevant aspects of the documents or (ii) a
summary that highlights specific content according to the user specifications.

Reviewing related literature is usually a demanding task for scholars, requiring
them to browse through an extensive collection of documents. Usually, they focus on
identifying the main findings of the publications to determine if they apply to their
research. To facilitate this task, several research journals have developed publication
highlights, brief summaries of findings, in bullet-point format, that deliver a quick
overview of the most significant results reported in the research paper1. These
summaries are usually authored by the paper’s authors and are usually limited to 3 to
5 sentences.

Our contribution in this field aims at providing a novel method to automatically
extract paper’s highlights from the full text [16]. To address this problem, we design
a supervised summarization pipeline tailored to the selection of highlights. The goal
of the proposed method is to facilitate annotation of newly published articles (by
providing suggestions for highlights) as well as automatic extraction of highlights
from past articles that do not include them, which is a common problem in older
publications. Our model relies on regression algorithms to identify K sentences
within a scientific article, whose content is most likely to be correlated with its
highlights (K is an user-defined parameter, generally set between 3 and 5).

4.3.1 Feature extraction

To analyze article content, full-text articles are divided into sentences using punctua-
tion, and each article Ai ∈A is represented as a set of distinct sentences {s1,s2, ...sn}∈
Ai. To represent sentences, we define a specific set of features.

• Symbols count: it indicates the number of non-alphabetical symbols in the
sentence. Symbols will be used only rarely in highlight sentences because they

1https://www.elsevier.com/authors/tools-and-resources/highlights

https://www.elsevier.com/authors/tools-and-resources/highlights
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are designed to provide a brief summary of the article’s findings rather then
specific details of the methodology.

• Parts Of Speech (POS): It is a set of features indicating the presence of nouns,
adjectives, conjunctions, proper nouns, and present-form verbs in the sentence.
According to Krapvin et al. [80], there is a strong correlation between the
presence of specific POS types in the sentence and its relevance.

• Sentence position: it is a feature indicating the position of the sentence in the
document. We design a position score ranging between 0 and 1. It is computed
according to the following formula:

f (s) =


− ls

m/2
+1, if ls ≥

m
2

+
ls

m/2
−1, if ls <

m
2

(4.1)

Where ls is the sentence offset with respect to the initial sentence of the paper,
and m is the maximum offset in the considered article. This feature is designed
to reward sentences that appear at the beginning or at the end of the paper
since these parts usually contain the most informational content, while the
center of the paper generally includes more technical details.

• TF-ISF word relevance [131]: it corresponds to the Term Frequency-Inverse
Sentence Frequency (TF-ISF), a feature that estimate the overall importance
of a sentence. Those text passages containing many highly relevant terms
tend to be correlated with highlights. To avoid biasing the TF-ISF score, we
remove stopwords (e.g., very common words that does not convey any specific
meaning) from the paper’s sentences.

• Semantic relevance: we compute the overall semantic relevance of the sentence
in the document by leveraging Word2Vec [123] and Sent2Vec [139]. This is
done by modeling each sentence in the document as a node on a graph whose
edges are weighted in accordance with the cosine similarity between sentence
embeddings. For Word2Vec model, sentence embeddings are obtained by
averaging the corresponding word vectors, while Sent2Vec already provides a
single embedding vector for each sentence. PageRank [138] is used to estimate
overall sentence relevance.
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Fig. 4.5 Highlights extraction pipeline.

• Sentence similarity with the abstract: even though highlights and abstracts
serve different purposes, the abstract of the paper usually contains the overall
summary of the research paper. For each sentence we compute syntactic
similarity (i.e., using ROUGE-L) and semantic similarity (i.e., using Word2Vec
and Sent2Vec sentence representations) with the abstract of the corresponding
paper.

These features are designed to capture the main elements that characterize a
highlight sentence. For each sentence si ∈Ai, we compute a feature vector v(si)∈Rd ,
where d is the number of features defined above.

Regression model We train a regression model to estimate the highlight score of
a given sentence ĥ(si) ∈R in the range [0,1]. The advantage of regression models
is that they predict continuous scores for the input sentences, allowing us to rank
and select the top-K sentences as highlights. To obtain the highlight score of each
sentence in the training set, it is annotated according to the maximum similarity
score between the corresponding sentence and any of the article’s highlights. We use
ROUGE-L F1-score to estimate the similarity between a sentence and its highlights.
In most cases, papers have more than one highlight sentence, so the label score
of candidate sentences is determined according to the maximum score with the
highlights. The extraction process does not take into account sentences in open access
sections of the paper (i.e., title and abstract), because highlights aim at providing
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additional information beyond those sections. Figure 4.5 shows the pre-processing
and labeling steps to generate the data for the regression model.

4.3.2 Benchmark data collections

Table 4.2 Statistics for the CSPubSum, BIOPubSumm and AIPubSumm data collections.

# Paper Abstract

#W #S #W #S

CS train 10131 8236.63 262.26 316.81 10.61
test 150 6010.78 196.08 297.91 10.22

BIO train 8068 4894.24 160.75 371.04 13.23
test 2690 4946.15 160.91 364.54 13.16

AI train 198 10594.16 344.73 429.73 13.43
test 66 11028.37 352.89 413.66 13.36

We train and evaluate our approach on three different data collections specifically
designed for automatic highlight extraction:

• CSPubSumm [33] consists of 10,131 and 150 articles for the training and test
set, respectively. The articles are annotated with their corresponding set of
highlights. It is a collection of journal articles from the Computer Science
domains.

• BIOPubSumm [16] is our newly collected dataset containing articles from
Biology and Medicine domain. It contains 10,758 articles split into into training
and test set with a 80%/20% ratio, respectively. Each article is accompanied
by a gold set of highlights.

• AIPubSumm [16] is a smaller data collection we collected from Artificial
Intelligence domain. It includes 198 training articles and 66 test articles with
their corresponding set of highlights.

Each dataset contains articles from different publications and they aim to cover a
broad range of topics and writing styles. The statistics of the datasets are summarized
in Table 4.2. #W and #S represent the average number of words and sentences in
an article or in its abstract, respectively, while # represents the number of articles in
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Table 4.3 ROUGE-L F1-score results comparison. Highest scores are reported in boldface
and significant differences with respect to the best performing method are marked with *
(p-value < 0.05).

K Sub- Text- Lex- DT RF MLP GB LSTM DT RF MLP GB
Modular Rank Rank CLF CLF CLF CLF CLF REG REG REG REG

CSPubSumm
3 0.235* 0.209* 0.257* 0.276* 0.298 0.272* 0.273* 0.295 0.303* 0.313 0.309* 0.316
4 0.228* 0.205* 0.237* 0.258* 0.284* 0.254* 0.254* 0.278* 0.291* 0.297* 0.297* 0.303
5 0.213* 0.193* 0.217* 0.239* 0.265* 0.239* 0.240* 0.256* 0.270* 0.278* 0.278* 0.284

BioPubSumm
3 0.221* 0.208* 0.227* 0.248* 0.253* 0.250* 0.250* 0.243* 0.259* 0.275* 0.278 0.28
4 0.215* 0.197* 0.223* 0.236* 0.241* 0.239* 0.238* 0.231* 0.250* 0.265* 0.27 0.271
5 0.204* 0.185* 0.199* 0.222* 0.227* 0.225* 0.224* 0.219* 0.237* 0.249* 0.258 0.257

AIPubSumm
3 0.180* 0.195* 0.225* 0.256 0.277 0.27 0.268 0.235* 0.256 0.283 0.28 0.289
4 0.175* 0.187* 0.212* 0.247 0.271 0.252 0.253 0.226* 0.256 0.274 0.267 0.281
5 0.166* 0.177 0.201* 0.227* 0.263 0.235 0.236 0.215* 0.244 0.263 0.259 0.266

each data collection. The instructions to reproduce the data collections together with
qualitative examples of the system output are publicly available2.

4.3.3 Experimental results

In our empirical evaluation we evaluate several regression models that aim to estimate
the score of each sentence in an article. Specifically, we evaluate Decision Trees (DT),
Random Forest (RF), Gradient Boosting (GB) and Multi-Layer Perceptron (MLP)
regression models. Using the same algorithms, we also compare our regression
models with classification-based approaches and present the results for the three data
collections. For a comprehensive evaluation, we also compare our approach to several
unsupervised baselines (e.g., CoreRank [178], LSARank [171], Submodular [99],
TextRank [122] and LexRank [41]) that estimate overall sentence relevance but are
not tailored to highlights extraction.

We use the ROUGE score [97] to evaluate the quality of the automatically
extracted highlights. Specifically, we use ROUGE-L F1-score to compare the quality
of the candidate highlights with the ground-truth. Table 4.3 presents the results of
the evaluation with CSPubSumm, BioPubSumm and AIPubSumm data collections.
We report the results for 3 values of K that are commonly required by journal editors
when preparing the paper submission (i.e., K = 3, 4 and 5). The column labeled as

2https://github.com/MorenoLaQuatra/domain-specific-academic-dataset

https://github.com/MorenoLaQuatra/domain-specific-academic-dataset
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Sub-Modular, Text-Rank and Lex-Rank reports the performance of the unsupervised
baselines, while the columns with CLF and REG refer to classification-based and
regression-based models, respectively.

The results show that our regression-based models outperform unsupervised
baselines and classification-based models across all data collections. Our best
performing model is the regression model leveraging Gradient Boosting algorithm
that achieves the highest average F1-score across all three datasets. The results
show that regression models are more accurate than classification-based models
in extracting highlights. This is likely due to the fact that regression allows us to
consider fine-grained score assigned to each sentence in the article when identifying
the highlights. In contrast, classification models require the assignment of labels at
the sentence level, which results in a more coarse-grained assignment of scores to
sentences.

4.4 Exploiting pivot words to model discourse facets
in scientific papers

Results-oriented summaries of scientific papers play an important role in scien-
tific communication. They allow readers to ascertain whether a paper is relevant
to their own research by providing a summary of the paper’s key contributions.
However, different readers may be interested in different kinds of information in a
paper. Researchers interested in the methodological detail of a paper will prefer a
summary that emphasizes the section describing the research methodology, while
researchers interested in the scientific contribution of a paper will favor a summary
that emphasizes the section discussing the paper’s results.

Providing a richer overview of a scientific paper requires the use of scientometric
models to identify and summarize the different aspects of the document, such as
the overview of the state of the art, the main findings and future directions. Results-
oriented summaries focus on the most significant findings of the article, while facets-
oriented summaries also highlight additional aspects of the paper, thus providing
a more complete overview. We address the problem of generating facets-focused
summaries of scientific documents by decomposing the task into two sub-tasks:
discourse facet classification and discourse facet summarization [84].
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Discourse facet classification The task of discourse facet classification has been
originally proposed as part of the CL-SciSumm shared task [22]. Considering a
reference paper R and a set of citing papers that cite it, the task is to label each
citation c with the discourse facet it belongs to. In this case, each citation is provided
with a snippet of the paper text corresponding to the citation context. The task
requires to label each citation context with a discourse facet, depending both on the
information conveyed by the context and the content of portion of the paper text the
context refers to. The discourse facets that can be associated to a citation context c
are: Method, Results, Aim, Implication, and Hypothesis.

We frame the task of discourse facet classification as a text classification problem.
We define a set of features for each citation c and we use them to train a machine
learning model to label c with a discourse facet.

Discourse facet summarization The task of discourse facet summarization con-
sists in generating summaries for a scientific paper p that are oriented to the different
discourse facets identified in the paper. The idea is to provide a set of summaries
that focus on different aspects of the paper p. In particular, given a set of discourse
facets F , the facet summarization task entails the extraction of a summary for each
discourse facet in F .

We use supervised extractive summarization to automatically generate summaries
for the different discourse facets of a reference paper. Specifically, our approach
relies on regression models that learn to predict the importance of the sentences in
the reference paper, with the aim of identifying the most salient sentences for each
discourse facet. To train our models, we use the same set of features that we use to
train the models for discourse facet classification.

4.4.1 Feature engineering

The machine learning models that we train for the tasks of discourse facet classifica-
tion and summarization are based on a set of hand-crafted features. These features
are aimed at capturing different aspects of the citation context that are relevant for the
prediction of the discourse facet as well as the relevance of a sentence with respect
to a particular facet.
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Most of those features rely on the concept of pivot words, which are defined as
the most discriminative words that can be used to identify a particular facet. The
occurrence of pivot words in the citation context or in the cited snippet is a strong
signal of the presence of a particular facet [47]. Leveraging training data, we can
automatically learn pivot words for each of the discourse facets.

Defining as R the reference paper, C the citing paper, c→ ∈C the context of the
citation and c← ∈ R the cited text snippet, we extract features that can be grouped
into three categories: structural-based, similarity-based and relevance-based. Those
features are extracted for each pair of citation context and cited text snippet (c→,c←).

Structural features Structural features aims at capturing patterns in the position
or in the length of the citation context and cited text snippet. In particular, we extract
the following features:

• The relative position of c← in R.

• The relative position of c→ in C.

• The length of c← expressed in terms of number of words.

• The presence of symbols (e.g., non-aphabetical characters) in c←.

• The section in which c← appears. To ensure consistency in the section labeling,
we utilize the IMRaD classification scheme [168].

All features extracted from the position of the citation context and cited text
snippet are normalized to the length of the overall document.

Similarity features Similarity features estimate syntactic and semantic coherence
of the text span to the facet class by leveraging pivot words. Pivot words are learned
using the methodology proposed by Fu et al. [47]. The pivot words for each facet are
extracted from the training data and are subsequently used to compute the following
similarity features:

• The number of pivot words appearing in c←. For each facet class we define a
separate feature to compute the frequency of occurrences of the corresponding
pivot words.
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• The number of pivot words appearing in c→. Similarly to the previous case, we
define a separate feature for each facet to compute the frequency of occurrences
of the corresponding pivot words in c→.

• The semantic distance between words occurring in c← and the pivot words of
each facet. We use the Word2Vec model [123], trained on a large collection of
scientific papers [33], to compute word embeddings and we estimate the score
using Word Mover Distance [82] between c← and the pivot words.

• The semantic distance between words occurring in c→ and the pivot words of
each facet. We follow the same strategy employed for the semantic distance of
the cited text snippet.

Those features are designed to capture the lexical and semantic coherence of the
cited text snippet and citation context with the discourse facet. The intuition is that,
if the cited text and citation context are semantically and syntactically coherent with
a facet class, then it is likely that their content belongs to that facet class.

Relevance feature This feature estimates the overall relevance of the cited text
span within the reference paper. For each reference paper R we generate a graph
GR = (VR,ER) whose nodes VR are the sentences in R (including c←), and the edges
ER are computed using the cosine similarity between the embeddings of the sentences
in R. Sentence embeddings are computed using SciBERT [8] and the edge weights
are computed using the cosine similarity between the sentence embeddings. The
overall relevance of c← is estimated using its PageRank score [138] within GR.

Using a set of features covering various aspects of citing context and referenced
text snippet, we aim at generating a comprehensive representation that can be used
both to predict the discourse facet and to estimate the sentence relevance for summary
generation.

4.4.2 Discourse facet classification

Given a reference paper R and a set of citing papers C, the task is to label the pair
consisting of the citation context c→ ∈C and the cited span c← ∈ R with a label l
representing the discourse facet of the citation. We use the features described in
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Section 4.4.1 to train a Gradient Boosting classifier to predict the discourse facet of
the citation.

Dataset To train and evaluate the machine learning models we use the data collec-
tion released by CL-SciSumm organizers [22]. It contains 40 reference papers and
the corresponding annotations of the discourse facet for each citation. It contains 40
reference papers and contains the annotation of the discourse facet for each citation.
It also contains the citation context in the citing paper and the identifier of the cited
snippet in the reference paper. We select 75% of the reference papers to generate
training examples and 25% for testing. To reproduce our results and to allow for a
fair comparison with future work, the train/test splits are made publicly available for
research purposes3.

Pivot words are crucial for the effectiveness of the proposed methodology. To
extract the most relevant pivot words both in citing and cited snippets we leverage
the open-source implementation of the mining algorithm proposed by Fu et al. [47]4.
It capitalizes on the idea that the occurrence of specific words is strongly correlated
with the text attribute class. In our context, pivot words are words that are strongly
correlated with a specific discourse facet.

Evaluation metrics We adopt the standard evaluation metrics for classification
tasks, i.e., precision, recall, and F1-score. The precision describes the percentage of
correctly classified citations out of all the considered citations, whereas the recall is
the percentage of correctly classified citations out of all the citations that should have
been classified as a specific label. The F1-score is the harmonic mean of precision
and recall. Since the discourse facet classification is a multi-class classification task,
we report,

• the macro average, i.e., the average of the metrics over all the classes;

• the micro average, i.e., the metric over all the classes computed considering
true positives, false positives, and false negatives with respect to all classes.

3https://github.com/MorenoLaQuatra/Auto-Scientific-Annotation
4https://github.com/FranxYao/pivot_analysis

https://github.com/MorenoLaQuatra/Auto-Scientific-Annotation
https://github.com/FranxYao/pivot_analysis
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Table 4.4 Results of the system comparison for the discourse facet classification task. Best
results are highlighted in boldface.

System Metric type Precision Recall F1-score

Poli2Sum
Micro Average 0.59 0.59 0.59
Macro Average 0.24 0.22 0.23
Weighted Average 0.77 0.59 0.67

CIST
Micro Average 0.67 0.67 0.67
Macro Average 0.24 0.24 0.23
Weighted Average 0.81 0.67 0.73

Pivot-Based Classification
Micro Average 0.77 0.77 0.77
Macro Average 0.36 0.55 0.41
Weighted Average 0.88 0.77 0.81

• the weighted average, i.e., the metric over all the classes computed by weighing
the scores for each class according to their support (the number of instances
for each label);

System comparison We compare the performance of our system, namely Pivot-
Based Classification, with our previous system designed for the CL-SciSumm shared
task (Poli2Sum) [83] and the best-performing system presented in the shared task
(CIST) [94]. Similarly to Pivot-Based Classification, Poli2Sum relies on machine
learning classifiers trained on a set of hand-crafted features but it does not consider
pivot words for classifying the discourse facets of the citations. CIST, instead, relies
rule-based classification models that generate a set of rules for categorizing the
discourse facets of citation considering both the citing and the cited sentences.

Discourse facets have different distributions in the CL-SciSumm dataset. The
method facet is the most frequent with 69.6% of the citations, followed by result
(12.9%), aim (7.7%), implication (7.4%) and hypothesis (2.2%). Using machine
learning-based classifiers to predict the hypothesis facet is practically unfeasible
since there are too few training examples (i.e., 18 over 808 samples). To better
compare the systems, we describe the performance for the four most frequent facets.

Table 4.4 reports the results obtained by the three systems on the test set. From the
table, we observe that our system outperforms both Poli2Sum and CIST, achieving
the best results in all the considered evaluation metrics. This indicates that pivot
words are effective for the identification of the discourse facets of a citation and the
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Fig. 4.6 Feature importance analysis in discourse facet classification.

set of features used by our system is able to capture a more comprehensive set of
information to classify the discourse facets of a citation.

Feature relevance analysis In addition to standard evaluation metrics, we perform
a feature relevance analysis to assess the relevance of the features used to classify
discourse facets. Towards this end, we examine the feature importance scores
provided by the trained classification model. To gauge the importance of each feature
type we aggregate feature importance scores for all features of a specific type and
for all facet classes, thus obtaining the probability that the feature type is relevant for
the overall classification outcome.

Figure 4.6 shows the distribution of feature importance scores for features of
different types. Overall, features related to pivot words occurrence (count) or seman-
tic distance are the most relevant both considering the citing context and the cited
snippet. This is consistent with the argument that the presence of pivot words is a
reliable indicator of the purpose of the citation and that the cited snippet generally
contains words that are semantically close to the pivot words. The number of oc-
currences of pivot words in the citing context, however, is not considered a relevant
feature by the classification model. The reason may be that the simple count of pivot
words in the citing context is weakly correlated with the target class because noise in
the input data might affect it.
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4.4.3 Facet-specific summarization

Generating facet-specific summaries for scientific publications requires both the
identification of the sentences that pertain to a specific discourse facet and the ability
to select the most salient ones to include in the summary. Given a reference paper R
and a set of papers citing R, the goal is to extract different summaries, one for each
discourse facet. Each summary consists of a set of sentences extracted from R.

We address this task by adopting a supervised extractive summarization approach
that is trained to rank sentences in a document according to their importance for a
specific discourse facet. Given a discourse facet f ∈ F , for each sentence in R we
extract the features described in Section 4.4.1 and train a regression model to predict
the importance of the sentence for the discourse facet f that we want to summarize.

The label for the regression task is obtained by measuring the ROUGE-L [97]
score between each sentence in R and the reference summary. During inference, the
sentences are ranked according to the importance scores predicted by the regression
model and they are iteratively included in the summary until the threshold on length
of the summary is reached.

Data collection The dataset proposed for the CL-SciSumm shared task contains,
for each reference paper, a community summary including the most important sen-
tences for each discourse facet. We split each summary into four different summaries
by leveraging sentence-level labels that identify the discourse facet for each sentence.
This allows us to obtain a labeled dataset consisting of reference papers that we
want to summarize and a set of reference summaries, one for each discourse facet.
Similarly, for the evaluation of the system on the test set, we split the community
summary of each reference paper into four different summaries and use them as
references for the evaluation.

To evaluate the summaries generated by the system, we use the ROUGE-2 F1-
score between the system’s summary and the reference summary, separately per
discourse facet. To assess the effectiveness of the proposed approach, we tested
and compare a range of different regression models, including Linear Regression
(LR), Decision Trees (DTR), Random Forest (RBR), AdaBoost (ABR), Multi-Layer
Perceptron (MLPR), and Gradient Boosting (GBR). All the models are trained on
the same set of features and labels, and they are evaluated on the same test set. To
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(b) Implication facet
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Fig. 4.7 Results comparison for the discourse facet summarization task.

further validate the effectiveness of integrating pivot words in the proposed regression
models, we evaluate each of them with (Full) and without (No Pivot) the features
extracted using pivot words.

Wa also compare the models with an unsupervised baseline (BERT-PR Rank)
that extract the summary by computing the overall importance of each sentence
according to the PageRank [138] algorithm. Specifically, each paper is modeled as a
directed graph, in which the nodes represent its sentences and the edges’ weights are
computed according to the cosine similarity between the sentence vectors obtained
using SciBERT [8]. The sentence relevance is computed by running PageRank on
the graph, and the sentences are then ranked based on their PageRank score.

Figure 4.7 shows the ROUGE-2 F1-score for each model separately on each
discourse facet. Comparing Full and No Pivot results, we can observe that the
pivot words are effective in all the models and improve the ROUGE-2 F1-score
significantly. Further, we observe that, in the majority of cases, the removal of the
pivot words results in lower ROUGE-2 F1-score than the unsupervised baseline,
supporting the value of these additional features.
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Linear Regression, AdaBoost and Multi-Layer perceptron models show the best
results among the supervised models. While MLPR outperforms the other models on
the implication and results facets, the Linear Regression model shows the best results
on the method. Overall, the majority of models trained with the full set of features
are able to reach a ROUGE-2 F1-score of more than 0.25, whereas the unsupervised
baseline (BERT-PR Rank) reaches ROUGE-2 F1-scores in the range of 0.03-0.15,
depending on the discourse facet.

The promising results obtained both for the discourse facet classification and
summarization tasks support the hypothesis that the proposed features are effective
in modeling the relation between a citation context and its corresponding referenced
text snippet. To foster further contributions in this direction, we make (i) the list of
pivot words, (ii) the facet summaries, (iii) the automatic facet assignments predicted
by our models and (iv) some qualitative examples are available to the community 5.
Specifically, we release the automatic facet assignments (i.e., the prediction of the dis-
course facet classification model) for all the papers of the ScisummNet dataset [197],
a larger data collection that does not include the labels of the discourse facets.

4.5 Unsupervised slide generation from academic pa-
pers

Academic publications are usually presented at scientific conferences in the form of
a talk, which is typically accompanied by slides. The slides are intended to be used
during conference presentations, to supplement the live explanation of the presenter.
Slide generation is traditionally a manual process that requires a significant amount
of time and efforts. The authors of scientific papers must manually select and prepare
slides that provide an overview of their research work.

This section discusses a technique for automatic slide extraction from academic
papers, which does not require training data [17]. While general-purpose summaries
for scientific papers are widely available [29, 30, 56], the specific case of slide
generation from academic papers has received less attention in the literature. We
formulate the slides generation problem as an extractive summarization task. Slides
are expected to be shorter than the full paper and each slide should be focused on

5https://github.com/MorenoLaQuatra/Auto-Scientific-Annotation

https://github.com/MorenoLaQuatra/Auto-Scientific-Annotation
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Fig. 4.8 Sketch of the slides extraction pipeline.

a particular aspect of the paper. Previous approaches addresses the problem using
supervised learning methods [67, 165] that require a training dataset of academic
papers and their corresponding slides. In contrast, we investigate the use of an
unsupervised method that does not require annotated training data.

4.5.1 Proposed pipeline

Our unsupervised pipeline for slide generation is shown in Figure 4.8. The process
consists of the following steps, which are performed using standard NLP tools and
custom-defined heuristics:

1. Pre-processing: this step is required to standardize the input data format. The
full text of each paper is divided into sections, and for each section, the text is
broken up into sentences.

2. Sentence importance assessment: we tested several ranking methods to esti-
mate sentence importance. They assign a score to each sentence indicating its
overall relevance in the publication.

3. Keyphrase extraction: this is an optional step that extract noun phrases from
paper’s sentences. Slide content is usually organized in bullet points. Each
bullet point typically contains a keyphrase that summarizes an important
concept. In this step, we extract noun phrases (i.e., a set of words including
a noun and modifying elements) that can be used to better estimate sentence
relevance for the main paper’s contributions.

4. Sentence selection: we propose two different unsupervised pipelines for se-
lecting sentences.
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• ILP-based pipeline: this approach exploits overall sentence relevance
and jointly maximize (i) sentence diversity, (ii) sentence importance, and
(iii) relevance of key phrases. The optimization step is performed using
integer linear programming (ILP).

• Summarization-only pipeline: this method simply leverages unsupervised
algorithms to rank and select the most relevant sentences.

5. Slides generation: the last stage in the pipeline aims at generating the presen-
tation slides. By combining the information gathered at the previous steps,
presentation slides are generated according to established guidelines [67].

4.5.2 Evaluation metrics

In order to evaluate the performance of the proposed approach, we use the ROUGE
evaluation metric [97]. Similarly to previous studies [67, 165], we use the F1-
measure of ROUGE-1 and ROUGE-2 scores to measure the overlap between the
generated slides and the ground truth. However, the content of the slides needs
further analysis in order to determine its adequacy for a presentation. We therefore
proposed a new metric tailored toward the slide generation problem. Specifically, we
consider the coverage of specific facets of the paper during slides evaluation.

The content of the ground-truth slides is first categorized into 4 classes following
the IMRaD scientific paper structure [168] (e.g., Introduction, Method, Results and
Discussion). Then, we use ROUGE scores to compare the generated slides with
each category of the ground truth. Our goal is to provide an in-depth analysis of
slides generation approaches that not only focuses on the overall overlap between
generated slides and ground-truth slides, but also considers whether the slides cover
all essential paper content. We denote the proposed metrics as facet-specific ROUGE
scores because they can be used to evaluate the performance of slides generation
approaches according to specific discourse facets of the paper.

4.5.3 Experimental results

To assess the performance of the proposed unsupervised pipelines we evaluate three
pipeline configurations:
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1. Supervised ILP-based pipeline: a set of regression models are trained using
supervised learning to estimate sentence relevance. Specifically, we tested
Support Vector Machines (SVR), MultiLayer Perceptron (MLP), Gradient
Boosting (GB), Decision Tree (DT), and Random Forest (RF). Each model
is trained on the features proposed by PPSGen model [67]. The estimated
relevance scores are then used to obtain the final paper’s slides using ILP that
jointly optimize the objectives discussed in the previous section.

2. Unsupervised ILP-based pipeline: we use several unsupervised summarization
approaches that are able to provide a relevance score for each sentence in
the paper. Similarly to supervised approaches, those scores are used as input
for the ILP optimization stage. Specifically, we use LSA-based methods
(e.g., ELSA [15] and LSARank [171]), graph-modeling approaches (e.g.,
TextRank [122] and LexRank [41]) and models leveraging semantic sentence
embeddings [153] (e.g., Centroid-BERT [89]).

3. Unsupervised summarization-only pipeline: the performance of standard un-
supervised models has been evaluated using the same approaches used in the
previous version, but without integrating ILP optimization objectives.

The slides generation task depends on the availability of a dataset of papers
equipped with their corresponding slide decks. Our evaluation was based on a real
data collection of 195 academic papers and their corresponding presentation slides6.
Slides in the data collection have been manually annotated by the authors of the
corresponding papers. We use the full data collection as test set to evaluate the
proposed unsupervised pipelines, while, for the supervised methods we train the
regression models using leave-one-out cross-validation (LOOCV).

Table 4.5 summarizes the results of the evaluation in terms of standard and facet-
specific ROUGE scores. As expected, supervised methods outperform unsupervised
approaches in standard ROUGE metrics, since the latter are based on a general-
purpose sentence retrieval models, which cannot be trained on the specific task of
slide generation. On the other hand, ILP optimization is able to significantly improve
the performance of unsupervised models, without requiring a supervised training
phase.

6The data collection is available upon request at https://github.com/hairav/SlideSpawn
(latest access: June 2022)

https://github.com/hairav/SlideSpawn
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Table 4.5 ROUGE scores obtained using the three configurations of the proposed pipeline.
The results are reported for the overall evaluation as well as all the considered facets.
The highest scores, for each column, are highlighted in bold and statistically significant
improvements (p < 0.05) are marked with *.

Overall Introduction Method Results Discussion
Approach R1-F R2-F R1-F R2-F R1-F R2-F R1-F R2-F R1-F R2-F

Supervised ILP-based pipeline

MLP 0.256* 0.106 0.035* 0.000* 0.035* 0.001 0.044 0.001 0.053 0.003
SVR 0.257* 0.105 0.037* 0.003 0.038* 0.002 0.044 0.001 0.048* 0.002
GB 0.258 0.104 0.042 0.003 0.040 0.001 0.044 0.001 0.053 0.003
DT 0.248* 0.096* 0.037* 0.003 0.045 0.001 0.044 0.001 0.051* 0.002
RF 0.263 0.109 0.032* 0.003 0.038* 0.002 0.043 0.000 0.046* 0.002

Unsupervised ILP-based pipeline

ELSA 0.241* 0.089* 0.045 0.003 0.041 0.001 0.041 0.000 0.06 0.003
Centroid 0.233* 0.078* 0.026* 0.000* 0.032* 0.000* 0.044 0.000 0.052* 0.003
LexRank 0.233* 0.078* 0.026* 0.000* 0.032* 0.000* 0.044 0.000 0.052* 0.003
TextRank 0.232* 0.078* 0.026* 0.000* 0.032* 0.000* 0.044 0.000 0.052* 0.003
LSARank 0.223* 0.065* 0.042 0.003 0.036* 0.001 0.024* 0.000* 0.059 0.003

Unsupervised summarization-only pipeline

ELSA 0.218* 0.060* 0.033* 0.001 0.026* 0.000* 0.032* 0.000 0.033* 0.001*
Centroid 0.230* 0.070* 0.041 0.004 0.020* 0.000* 0.026* 0.000* 0.040* 0.001
LexRank 0.218* 0.058* 0.045 0.001* 0.024* 0.000* 0.044 0.001 0.054 0.000*
TextRank 0.214* 0.060* 0.029* 0.001* 0.025* 0.000* 0.044 0.001 0.029* 0.000*
LSARank 0.220* 0.064* 0.026* 0.001* 0.026* 0.000* 0.036* 0.000 0.032* 0.001*

Considering facet-specific ROUGE metrics, we observe that the unsupervised
ILP-based pipeline perform on-par or outperforms the supervised ones in the In-
troduction and Discussion facets, while the latter are able to provide better scores
in the Methods and Results ones. We believe that this could be probably due to
the fact that the slide generation task is easier for the Introduction and Discussion
since these sections usually contain general discussions about the paper’s topic and
do not include specific details or mathematical formulae. In contrast, the Methods
and Results sections contain specific details about the paper’s topic, which are more
difficult to summarize and require the use of a supervised model. This observation is
further confirmed by the results of the unsupervised summarization-only pipeline,
which, compared with the unsupervised ILP-based pipeline, is able to provide similar
or better results for the Introduction facet.
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4.6 Future research directions

Researchers have made great progress in mining scientific publications to extract
useful knowledge and information. The automated analysis of scientific citations and
semantic understanding of publications’ content represents an important and valuable
area of research that can have a significant impact on the way we perform research.
Both NLP and Scientometrics are fields whose interconnected nature has generated
considerable interest in recent years. Scientometrics, in particular, has a long history
of using data from research publications to understand and identify trends. In
recent years, however, the availability of electronic publications and advances in
NLP have led to new opportunities for integrating computational techniques into
this discipline. The application of NLP can be used to complement and enhance
traditional bibliometrics approaches by providing more accurate data to support
analysis.

The citation context analysis, in particular, represents an important area of fu-
ture research. The context of citations provides valuable information that can be
analyzed to better understand the purpose of citations and how papers are related.
Machine learning has proven to be successful in this domain. The semantic represen-
tations provided by modern language models allow to build accurate models that can
effectively analyze and predict the purpose of citation.

This research line highlighted the importance of the interaction between Sciento-
metrics and NLP. It can have many benefits that can help the automatic analysis of
scientometric data. Even though NLP has been used successfully in many different
scientometrics tasks, there are still many opportunities for improvement. Research
papers have standardized structures that provide valuable information that can be
used as an inductive bias in training large-scale deep learning models. Those models
are usually trained leveraging self-supervised learning objectives that allow to learn
useful representations that are transferable to other tasks. The use of constrastive
learning [155] and self-supervised learning objectives for the automatic analysis of
scientometric data is a promising direction for future research. Those techniques
usually leverages the structure of texts and documents, thus they can be used to
design specific self-supervised objectives to effectively train large language models
without the need for manual annotations.
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The task of automatic summarization of scientific documents is a challeng-
ing task that has many potential applications. Sequence-to-sequence transformer
models [151, 92] are the current state-of-the-art in the field of abstractive text sum-
marization. Despite several attempts to adapt those models to the analysis of long
sequences [194], there are still many challenges that need to be addressed. One of the
main limitations is the computational resources required to train those models. There-
fore, future research should focus on novel architectures specifically designed for
summarizing long scientific documents, as well as ways to reduce the computational
cost of training these models.

Finally, the automated analysis of a scientific publication strongly relies on spe-
cific scientific concepts discussed in a paper. Recognizing domain-specific concepts
is a challenging task, as the language used in scientific papers can be technical and
often includes domain-specific vocabulary. The ability to better understand the lan-
guage used in scientific documents can be instrumental in identifying emerging trends
and potential research areas in a given field [64]. Identifying scientific concepts
discussed in a paper can also be used to improve the generation of semantically-rich
summaries of research papers. A key focus of future research should be on devel-
oping novel models that can effectively detect domain-specific scientific concepts
discussed in a paper.



Chapter 5

Time matters in Text Summarization

NLP focuses on the analysis of user-generated content. It is primarily used to
extract information from unstructured text and to support several end-user tasks (e.g.,
question answering, text summarization, or conversational assistant). Understanding
the time dimension is crucial in this context, as it is a fundamental element of
human communication. For instance, in politics [63], in business [164] and in social
media [19] the temporal dimension is often crucial to extract useful information
from user-generated content. The aim of this chapter is to provide an overview
of methods and challenges related to temporal analysis in text summarization by
grounding the discussion in a real-world scenario. Section 5.1 review the main
studies in the field, exploring the effect of the time dimension in text summarization.
Sections 5.2 and 5.3 outline our contributions in single and multi-lingual timeline
summarization, respectively. Finally, Section 5.4 explores the main challenges in the
field and potential future developments. A graphical overview of the contributions
presented in this chapter is shown in Figure 5.1.

5.1 Temporal information in text summarization

Temporal information is often present in user-generated content. Political speeches,
social media posts and news articles often contain references to time-related content
to emphasize a specific event and provide contextual information. The temporal
dimension is often crucial in the process of gathering, understanding and presenting
information to a human audience. Text summarization aims at extracting the most
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Summarize Dates First: A 
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Fig. 5.1 Graphical overview of the topics and contributions covered in Chapter 5

relevant information from source texts and presenting it in a concise way. The
concept of time is often crucial in this process as it may provide the user a concise
understanding of the most relevant events, their temporal ordering and the temporal
relationships between them.

Temporal and timeline summarization are two tasks designed to provide relevant
information from a collection of documents by focusing on the chronological order
of events. They are both considered sub-tasks of multi-document summarization
since they both require the identification of the most relevant information from a
collection of documents pertaining to a specific event.

5.1.1 Temporal summarization

Temporal summarization aims at finding and extracting information about specific
events. It is commonly used for monitoring purposes to provide timely information
about the most relevant happenings (e.g., accidents or natural disasters). Compared
to the standard summarization task, it entails the analysis of document streams and
the temporal ordering of events. Each document in the stream contains time-related
information (e.g., a publication time stamp) and refers to a specific event. The main
task is usually broken-up in two different subtasks:

1. Filtering: the event is represented by a text query. The objective is to identify
all documents in the document stream that contain relevant information (i.e.,
those that provide information about the event).
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2. Summarization: the objective is to emit novel information once it becomes
available from an event stream (i.e., those documents that have been retained in
the previous step), disregarding the information that has already been emitted
at previous timestamps.

The task was originally proposed at the TREC conference [1]. The main goal
is to detect and track events as they unfold (i.e., in real-time or near-real-time). For
example, the query Buenos Aires rail disaster [1] can be used to follow the progress
of the disaster in the document stream, consisting in a set of news articles published
over the course of several days. The filtering step is focused on identifying docu-
ments that contain relevant information about the disaster (e.g., articles reporting
information about the event), while the summarization step is focused on generating
live updates about the disaster as more and more information becomes available
(e.g., new information about the death toll, or the causes of the disaster). The task
participants were asked to address one or both of the two main subtasks: filtering
and summarization. The temporal information, in this case, is typically represented
as a timestamp and it is used to organize the information in a stream. The majority
of the approaches apply traditional information retrieval techniques to identify docu-
ments containing event-related information and incrementally estimate their novelty
using both the publication timestamp and previously emitted summaries [118, 207].
Throughout the years, the original task has been extended to include microblogging
data [101] or updated event streams [117].

5.1.2 Timeline summarization

News articles and microblogging data provide valuable temporal information both
considering their publication dates and their contents. Given an interest topic, the
timeline summarization (TLS) task aims at generating a timeline of events that
happened around the topic, where each event is described by a short summary.
Unlike temporal summarization, this task does not focus on real-time updates for
specific events, rather it provides an overview of the events that happened around a
topic, thus allowing the users to have a global perspective of the events. For example,
while temporal summarization may be interested in real-time updates about a specific
episode (e.g., Buenos Aires rail disaster), timeline summarization could be interested
in generating a timeline of a topic that usually spans over longer time spans (e.g.,
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COVID-19 pandemic). The process involves the selection of salient dates and the
creation of summaries explaining the events that occurred on these dates. Therefore,
the timeline contains important dates, as well as a description of the events connected
to them, thus providing a holistic viewpoint.

The interest on timeline summarization has been growing over the last few years
as it can be useful for several applications. It can be used, for instance, for automatic
content curation, providing an overview of events that happened around a specific
topic, or to retrieve the most influential events over time by considering the most
significant ones from a temporal perspective [188]. The TLS task aims to reach two
different goals:

• Select salient dates: find the most important dates for a specific topic, which
can be used to illustrate the evolution of a phenomenon over time. It should
consider all relevant events as well as their temporal ordering.

• Date summarization: for each selected date, summarize the most important
events that occurred around that date. It leverages the text content of the source
documents to provide a summary of the most relevant events.

Clearly, the extraction of temporal information from text is essential to tackle the
task of timeline summarization. It can be used both for assessing the relevance of
dates as well as linking events to specific dates (e.g., sentences in a news articles could
refer to events that occurred in the past or will take place in the future). The body of
research in timelime summarization has focused on the design of methodologies to
address one or both of the tasks above.

The selection of salient dates has been investigated as an independent task. In
this case, the goal is to determine the most important dates for a given topic via
information retrieval (IR) approaches. The re-ranking methodology proposed by
Kessler et al. [76] identifies date references in text content and uses them to train
a machine learning model that can estimate date relevance according to a specific
set of features. The system uses annotations provided by journalists and domain
experts to train a supervised classifier. However, large-scale annotated data is not
always available, and therefore relying on supervised learning is not feasible in many
cases. The same problem has been addressed by unsupervised approaches leveraging
graph-modeling techniques [181]. Dates are modeled as nodes in a graph and the
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links between nodes are computed according to article publication date and in-text
references.

Using text summarization techniques, extractive and abstractive approaches
are used to generate dates summaries. The task is usually modeled as a multi-
document summarization task, where the intent is to generate a summary that contains
information extracted from different documents. The methodologies to address the
summarization task in TLS use topic modeling for generating an overview of the
event timeline [175] or combines user-specified queries with topic identified in news
articles [26].

To generate a timeline, which requires the identification and summarization of
salient dates, the single task of date selection or summarization is not sufficient.
Therefore, existing approaches tackle both tasks either through a joint optimization
formulation [112, 109] or by proposing a sequential pipeline leveraging unsuper-
vised [133, 199, 96] or supervised learning [11, 51] for date selection. For each
topic, the model outputs include a list of dates relevant to that topic along with brief
summaries that highlight the most important events.

5.2 Summarize Dates First: A Paradigm Shift in Time-
line Summarization

This section introduces our contribution to the field of timeline summarization. Our
approach is based on the idea that we should summarize dates first (SDF), meaning
that for each candidate date, we extract a short summary highlighting the main events
that occurred during that timeframe [86]. Once the summaries for all dates have been
extracted, we select the most relevant dates as the ones that should be highlighted
in the timeline. Comparing the proposed pipeline to the existing approaches, it has
three main differences. First, compared with joint optimization approaches [112], it
address the timeline summarization task by decoupling the summary generation from
the date selection tasks. Second, it reverses the order on how dates are summarized
and selected, meaning that it generates summaries for all dates before selecting the
ones that are most relevant to the timeline. This allow us to leverage date summaries
during the selection process. Third, compared with supervised approaches [51], the
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Fig. 5.2 Sketch of the proposed model for the Timeline Summarization task.

proposed pipeline is fully-unsupervised, thus it does not require the annotation of a
gold-standard timeline to train the model.

5.2.1 Timeline summarization pipeline

Figure 5.2 shows a sketch of the proposed model. The pipeline takes in a set of
documents with their publication timestamps and generates a timeline consisting of
a short summary for each selected date. It is composed of a 3-step process:

(a) Temporal Tagging: the text of each publication is processed with Heidel-
Time [173], a rule-based system that detect and normalize temporal expressions
in the text content (e.g., it converts "10th of March 2020" to "2020-03-10").
Each temporal expression is converted to a single timestamp and associated to
the span of text in which it occurs. At this stage, we associate each sentence
(i) to the referenced date, if a date is mentioned, (ii) to the publication date,
otherwise.

(b) Per-date summary extraction: this step leverages unsupervised summarizer to
extract the most relevant sentences for each date. In detail, for each date, we
consider the set of sentences that contain a timestamp referring to that date
and we use the summarizer to extract the most relevant sentences. It is worth
noting that, the summarization step is applied to all dates, i.e., date selection
is not yet performed at this stage. The output of this step consists of a set of
dates with a corresponding summary provided as a list of relevant sentences.
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Fig. 5.3 Comparison of standard date-level references parsing and our proposed high-level
graph enrichment.

(c) Summary-driven date selection: this step takes in the set of date-summary
pairs, and it performs a selection of the most relevant dates. The selection step
leverages graph modeling techniques. Each date is represented as a node in a
directed graph and the edge between two dates is weighted according to,

• the temporal references, detected at step (a), from one date to another,

• the similarity of their corresponding summaries extracted at step (b).

To estimate the relevance of a date we experiment with different graph-
centrality algorithms (e.g., node degree or PageRank [138]).

Through the decoupling of summarization and date selection steps, the system
can be easily customized, as different summarization techniques can be applied and
the selection process can be tailored to support different use cases. The inversion of
the order of the selection and summarization steps in the pipeline allows the selection
process to access the summary of each date, thus it can be used during the date
selection to identify the most relevant dates.

High-level temporal references The TLS task aims at selecting relevant dates at
day-level, thus temporal references for estimation of single date relevance are usually
restricted to this level of granularity. However, by accessing the date summary, it is
possible to exploit high-level temporal references (e.g. references to months or years).
Given a sentences si published on a date di and containing a temporal expression
referencing a certain month m, the system can extract the set of all dates d j ∈ m and
compute the similarity of the summary of each date d j with the sentence si. The
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similarity score is used to enrich the weights of the edges connecting di and d j in
the graph. An example comparing the standard parsing of temporal references and
our proposed graph enrichment is reported in Figure 5.3. It is possible to note that
by exploiting the high-level temporal references (HLTR) in the sentence, the system
could update graph weights by exploiting a wider range of temporal references.

5.2.2 Benchmark TLS datasets

The proposed pipeline does not require supervision nor training data for the gen-
eration of the timeline. Therefore, we evaluated our pipeline on four benchmark
datasets for timeline summarization:

• Timeline 17 [182]: the dataset contains 19 manually-annotated timelines
covering 9 different topics. Each topic is covered, on average, by 36.42
articles and the average timeline length is 242.47 days. It covers a variety of
topics including: Egyptian protest, H1N1 outbreak, Haiti earthquake and other
global events.

• Crisis [180]: this data collection covers 4 long-span armed conflicts (i.e.,
Egyptian revolution, Libya war, Syria war and Yemen crisis). Each topic is
covered by 4,560.75 articles on average and the average timeline length is
387.86 days.

• Entities [51]: the dataset covers 47 entities from the news domain, including
people and organizations. Each entity is covered by 1,086.49 articles on
average and the mean coverage period is 19.02 years.

• Covid-TLS [86]: we propose a new dataset covering the COVID-19 outbreak.
The dataset contains a single timeline with 26,376 articles and a coverage
period of 266 days.

For all the benchmark datasets, more than 50% of the references detected by
HeidelTime [173] are not date-level references, thus the proposed graph enrichment
could provide a significant contribution to the system performance.
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5.2.3 Model configurations

The model proposed to address the TLS task leverages graph modelling to estimate
the importance of dates and unsupervised summarization models to extract single-
date summaries. The date selection process is guided by a directed graph G(N,E)
generated for each topic. Graph nodes ni,n j ∈ N represent dates and the edges from
ni to n j are weighted according to the temporal references and the similarity between
their respective summaries.

To enrich the graph using high-level temporal references (HLTR), we use the
syntactic similarity between the sentence containing the high-level temporal expres-
sion and the summary of the target date. Specifically, we use ROUGE-2 precision
to compute the similarity between two text snippets. The choice of this similarity
function is motivated by the need to compare text of different lengths, and by the
fact that we aim at identifying overlapping of specific event information (e.g., proper
nouns or locations). However, this approach can be seamlessly extended to other
similarity metrics (e.g., semantic similarity using contextualized text embedding).
In our experiments, we only use high-level references for months to reduce the
inference costs and avoid data sparsity.

Once the graph G(N,E) is generated using explicit temporal references and
graph-enrichment techniques, the salience of each date can be estimated using
different graph centrality algorithms.

• PageRank[138]: it estimates the importance of a node according to the number
of links pointing to it and the importance of the nodes that point to it. This al-
gorithm has been originally proposed to estimate the importance of a webpage
in the World Wide Web, but it was later adapted to estimate the importance of
any node of a graph. In the same way, we use it to estimate the salience of a
date node in a directed graph generated from a date selection task.

• HITS[79]: it is a centrality estimation method that computes two different
relevance scores, one for hubs and one for authorities. Hubs are nodes that
point to relevant nodes, while authorities are pointed by relevant nodes. In our
settings, we consider the authority score because we aim at finding those dates
that are referenced by many other relevant dates.
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• Degree centrality: the degree of a node is defined as the sum of the weights of
incoming and outgoing connections. We consider both standard degree score
and the in-degree of a node that only looks at incoming connections, on the
premise that dates referenced by many others are likely to be relevant.

In our experiments, we used the centrality measures outlined above to determine the
salience of dates and report their performance for each benchmark dataset.

The generation of summaries for each date is a crucial step in the proposed
pipeline. It serves both as a proxy to estimate high-level temporal references and to
generate the summaries of dates that are included in the final timeline. The lack of
large-scale annotated datasets hampers the development of supervised summarization
models, thus we opt for unsupervised extractive approaches. Our study compares
several methods that have produced effective results in the text summarization task.

• Graph modeling: we test TextRank [122], LexRank [41], CoreRank [178] and
TextRank-BM25 [5]. The first two are classic graph-based methods while
CoreRank [178] is an approach that combines the submodular optimization
and graph modelling for extractive summarization. TextRank-BM25 [5] is a
variant of the TextRank algorithm that uses the BM25 score [156] to compute
the similarity between two sentences.

• LSA-based approaches: we use ELSA [15], a recently-proposed unsupervised
method that combines latent semantic analysis and frequent itemsets mining
to extract key sentences.

• Embedding-based models: we evaluate modified versions of SubModular [99],
Centroid-Rank [147], Centroid-Opt [50], EmbeddingRank [138] that use con-
textualized sentence embeddings [153] to rank sentences.

5.2.4 Experimental evaluation

Timeline summarization is a challenging task that combines both the selection of
relevant dates and the generation of a short summary for each of them. Standard
metrics for evaluating summarization models, such as ROUGE [97], are not adequate
for this task, since they do not consider the selection of the relevant dates. Therefore,
ad-hoc evaluation criteria have been proposed in the literature in order to evaluate
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model performance [111]. Those metrics are variants of standard ROUGE and aim at
simultaneously assessing the model’s ability to identify salient dates and summarize
them.

• ROUGE-concat: it merges date summaries both for the system and reference
timelines and evaluates them using standard ROUGE measures. It replicates
the standard ROUGE evaluation by discarding the date information and com-
paring summaries as plain text.

• ROUGE-agreement: it evaluates the quality of the proposed timeline by sepa-
rately comparing summaries for each date. It assumes that both the system and
the reference timelines should agree on the set of salient dates. It incorporates
the temporal information by requiring an exact match for dates in reference
and system timelines to be considered for the evaluation.

• ROUGE-alignment: it is based on the idea that dates in the system and refer-
ence timelines could not match exactly but still refer to the same event. To
address this issue, this metric aligns dates first, and then compute the ROUGE
scores by evaluating the system summary against the reference summary
corresponding to the aligned date.

The metrics above quantify different aspects of the model performance, hence, we
report results for all three of them.

Model comparison We evaluated the proposed methodology through an extensive
set of experiments, including date selection and summarization results. We compare
the proposed model against (i) an unsupervised baseline proposed by Chieu &
Lee [26] that generates daily summaries leveraging custom temporal heuristics
and information retrieval techniques, (ii) a state-of-the-art unsupervised model that
defines ad-hoc constraints to jointly optimize date selection and summarization
objectives [112] and, (iii) the DateWise approach that uses supervised regression
algorithms to determine date relevance and unsupervised summarization to extract
summaries from selected dates [51]. Optimal parameters for each method were
determined separately, according to the dataset, using grid search.
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Table 5.1 Performance comparison for the date summarization task. Best-performing results
for unsupervised pipelines are highlighted in bold and statistically significant performance
worsening are starred.

Model Method
concat agreement alignment

R1-F1 R2-F1 R1-F1 R2-F1 R1-F1 R2-F1

Timeline 17

Chieu & Lee [26] U 0.275* 0.065* 0.028* 0.008* 0.057* 0.014*
TLS+reweighting [112] U 0.383 0.092 0.094 0.025* 0.109 0.028

(our) Degree, TextRank-BM25 U 0.401 0.101 0.106 0.033 0.120 0.035
DateWise [51] S-DS 0.385 0.097 0.107 0.032 0.120 0.035

Crisis

Chieu & Lee [26] U 0.368 0.066 0.028* 0.005* 0.051* 0.009*
ASMDS+DateRef [112] U 0.333* 0.07 0.051 0.011 0.073 0.016

(our) In-degree-HLTR, TextRank-BM25 U 0.360 0.073 0.064 0.014 0.086 0.018
DateWise [51] S-DS 0.347 0.075 0.071 0.023 0.089 0.026

Entities

Chieu & Lee [26] U 0.275 0.053 0.025* 0.011 0.038* 0.012
TLS+reweighting+DateRef [112] U 0.275 0.053 0.039 0.013 0.051 0.015

(our) In-degree-HLTR, TextRank-BM25 U 0.275 0.052 0.041 0.011 0.051 0.014
DateWise [51] S-DS 0.271 0.051 0.045 0.014 0.057 0.017

Covid-TLS

Chieu & Lee [26] U 0.203 0.021 0.008 0.001 0.017 0.001
ASMDS+TempDiv+DateRef [112] U 0.249 0.036 0.028 0.001 0.03 0.001

(our) Pagerank-HLTR, TextRank-BM25 U 0.439 0.076 0.062 0.011 0.072 0.012
DateWise [51] S-DS 0.318 0.038 0.036 0.005 0.040 0.006

Date summarization results Table 5.1 reports the comparison of different methods
for the date summarization task. It reports the performance in terms of concat,
agreement and alignment metrics using ROUGE-1 and ROUGE-2 F1-score. The
proposed method performed best, on average, compared to the other unsupervised
approaches. On Timeline 17 our approach outperforms or, at least, is comparable
to the state-of-the-art supervised methods. Since there is only one timeline for
Covid-TLS, we cannot train the DateWise model on it. We instead train it on the
Entities dataset and test it on Covid-TLS. The results obtained by our method on this
dataset are significantly better than all the others for all the evaluation metrics.

Date selection performance We evaluate the date selection task by leveraging
information retrieval formulation of precision (P), recall (R) and f1-score (F1). Given
the set of dates selected by the system STd and the corresponding set of ground-truth
dates GTd the metrics are defined as follows:
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Table 5.2 F1-score performance comparison for the date selection task. Best-performing
results for unsupervised pipelines are highlighted in bold and statistically significant perfor-
mance worsening are starred.

Model Type Timeline 17 Crisis Entities CovidTLS

Chieu & Lee [26] U 0.230* 0.166* 0.09* 0.176

Martschat & Markert [112] ASMDS U 0.531 0.278 0.163 0.685
TLS-constraint U 0.527 0.266 0.180 0.679

Proposed method

In-degree U 0.549 0.302 0.197 0.689
HITS U 0.553 0.206 0.095 0.679
Pagerank U 0.537 0.175 0.161 0.623
Degree U 0.532 0.275 0.117 0.679

DateWise [51] S 0.544 0.295 0.205 0.679

P =
|STd

T
GTd|

|STd|
(5.1)

R =
|STd

T
GTd|

|GTd|
(5.2)

F1 = 2 · P ·R
P+R

(5.3)

In Table 5.2 we compare the date selection performance of the proposed model
and the competitors using the f1-score; it is obtained by taking the harmonic mean of
precision and recall, thus giving a better representation of the overall performance of
the model. Our model achieves the best f1-score among all unsupervised approaches
and outperforms supervised models in three out of four datasets. Among the proposed
graph-based algorithms, the in-degree centrality achieves the best performance
overall (i.e., it is the best performing method on the majority of the datasets).

Unsupervised summarization The proposed pipeline relies on unsupervised sum-
marization models to extract date summaries. By fixing the date selection configu-
ration, we investigate the summary quality extracted by the different unsupervised
summarization models. Table 5.3 shows the average scores of the summaries ex-
tracted by each unsupervised summarization model. We evaluate the timeline ex-
tracted by each method using the same set of metrics proposed for the standard TLS
task. The TextRank-BM25 [5] method shows the best performance overall across
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Table 5.3 Performance comparison of different unsupervised models. Best-performing results
are highlighted in bold and statistically significant performance worsening are starred.

Summarizer concat F1 agreement F1 alignment-m21 F1

R1 R2 R1 R2 R1 R2

Timeline 17

TextRank 0.363* 0.084* 0.086* 0.023* 0.097* 0.025*
LexRank 0.370* 0.084* 0.088* 0.025* 0.100* 0.027*
CoreRank 0.371* 0.091* 0.092* 0.024* 0.105* 0.026*
TextRank-BM25 0.401 0.101 0.106 0.033 0.120 0.035
ELSA 0.389* 0.097 0.100 0.029 0.114 0.032
SubModular 0.367* 0.082* 0.086* 0.024 0.098* 0.025
Centroid-Rank 0.365* 0.082* 0.084* 0.023 0.096* 0.025
Centroid-Opt 0.372* 0.082* 0.084* 0.021* 0.097* 0.023*
EmbeddingRank 0.365* 0.084* 0.087* 0.022 0.098* 0.024*

Crisis

TextRank 0.311* 0.058* 0.043* 0.009 0.062* 0.012*
LexRank 0.312* 0.056* 0.042* 0.009* 0.059* 0.012*
CoreRank 0.356 0.075 0.060 0.014 0.080 0.017
TextRank-BM25 0.360 0.073 0.064 0.014 0.086 0.018
ELSA 0.338* 0.064* 0.061 0.015 0.081 0.018
SubModular 0.337 0.057* 0.050* 0.009 0.068* 0.012*
Centroid-Rank 0.335* 0.056* 0.047* 0.008* 0.065* 0.011*
Centroid-Opt 0.337* 0.057* 0.049* 0.009* 0.068* 0.012*
EmbeddingRank 0.337 0.056* 0.048* 0.008* 0.066* 0.011*

Entities

TextRank 0.238* 0.041* 0.030* 0.007* 0.040* 0.010*
LexRank 0.245* 0.043* 0.032* 0.008* 0.041* 0.010*
CoreRank 0.258* 0.049 0.038 0.012 0.048 0.014
TextRank-BM25 0.275 0.052 0.041 0.011 0.051 0.014
ELSA 0.258* 0.044* 0.036* 0.009 0.046* 0.011*
SubModular 0.249* 0.040* 0.031* 0.007* 0.040* 0.009*
Centroid-Rank 0.251* 0.042* 0.032* 0.008* 0.041* 0.009*
Centroid-Opt 0.251* 0.041* 0.032* 0.007* 0.041* 0.009*
EmbeddingRank 0.250* 0.041* 0.032* 0.007* 0.041* 0.009*

Sars-Cov-2

TextRank 0.452 0.061 0.045 0.004 0.054 0.004
LexRank 0.460 0.066 0.052 0.005 0.061 0.006
CoreRank 0.381 0.053 0.044 0.003 0.051 0.004
TextRank-BM25 0.438 0.077 0.063 0.011 0.072 0.012
ELSA 0.427 0.065 0.048 0.005 0.056 0.005
SubModular 0.423 0.055 0.051 0.006 0.059 0.006
Centroid-Rank 0.417 0.053 0.050 0.005 0.058 0.006
Centroid-Opt 0.435 0.057 0.049 0.005 0.057 0.006
EmbeddingRank 0.426 0.056 0.049 0.006 0.057 0.007
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all data collections. Except for traditional baselines (i.e., LexRank and TextRank)
embedding-based models underperform all other methods. Those approaches strug-
gle to cope with named entities, which are essential for extracting event-specific
summaries that capture the main actors and events. Syntactically-grounded methods,
leveraging word co-occurrences, are more effective since they include features that
enable them to better model key terms and entities identifying the events.

5.3 Cross-lingual timeline summarization

The field of timeline summarization has been heavily dominated by English-only
approaches in the past years. In many real-world scenarios, however, we need to
analyze data written in other languages. In this context, we explore the problem of
cross-lingual timeline summarization (CL-TLS) task. Given a set of news articles
written in multiple languages and covering a specific topic, the goal is to automat-
ically detect relevant dates and generate summaries for each of them in a target
language. The proposed CL-TLS task can be seen as a generalization of the standard
TLS task, where the input documents are multilingual and the output summaries are
written in an user-specified target language.

We address the task by using two different approaches that are able to cope
with multiple languages: automatic machine translation (MT) and cross-lingual
alignment. Automatic machine translation involves translating the news articles into
the target language and then applying existing TLS models. Cross-lingual alignment,
on the other hand, is based on the idea of representing documents in a language-
independent space, where documents in different languages can be compared with
each other [154, 18]. In the latter case, the summarization task relies on specific
summarization models that leverage aligned embedding representations to select the
most salient sentences.

5.3.1 CL-TLS pipeline

The input of the pipeline consists of a set of documents, in multiple languages, that
cover a specific event or topic, whereas the output consists of date summaries written
in a target language. The proposed methodology consists of three different modules:
date selection, summarization and machine translation. We present three alternatives
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Date selection Single-date 
summarization Timeline generationTranslation

2020-03-10

2020-03-23

2020-03-31

Fig. 5.4 Early translation, CL-TLS pipeline.

2020-03-10

2020-03-23

2020-03-31

Date selectionSingle-date 
summarization Timeline generationTranslation

Fig. 5.5 Mid translation, CL-TLS pipeline.

that combine automatic machine translation, cross-language alignment, and standard
TLS modules, namely early, mid and late.

• Early: it is the most intuitive approach and incorporates the translation step
up front in the process. Figure 5.4 shows an overview of the pipeline. The
translation of the input documents is followed by the date selection and sum-
marization steps, essentially as in a standard TLS pipeline.

• Mid: the cross-language alignment facilitates the repositioning of the summa-
rization step before translation. This approach is shown in Figure 5.5. Before
proceeding with the translation step, for each date, we apply language-specific
summarization models that summarize the text of each date, separately per
language. After the summarization step, we proceed with the translation of

Date selection Timeline generation

Translation

Skip

Date-specific cross-lingual 
sentence ranking

2020-03-10

2020-03-23

2020-03-31

Fig. 5.6 Late/Skip translation, CL-TLS pipeline.
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the sentences extracted by the summarizers. The final step select salient dates
using graph-based approaches.

• Late: it is the most challenging of the three approaches and aims at pushing
forward the translation step after the date selection and summarization stages.
Figure 5.6 shows the details of this approach. Date selection is the first step
in the pipeline. After that, the summarization step uses a set of cross-lingual
models to rank sentences according to their estimated relevance. The final date
summary can be obtained using either of the following methods:

– Translation: top-scored sentences are translated in the target language, if
needed.

– Skip: the ranked list is filtered retaining only the sentences in the target
language. The top-scored sentences are then selected to form the final
summary. In this case, there is no need for a translation step.

At the end of the summarization step, the final timeline is generated, similarly
to other approaches.

By fixing both the machine translation as well as the date selection models, we
independently evaluate the proposed pipelines. Accordingly, we use the mBART
model [103] to translate sentences in the target language, and graph-ranking tech-
niques to select the dates (in light of the results discussed in the Section 5.2, we use
the in-degree of a node as ranking score).

5.3.2 Multilingual data collection

The cross-lingual timeline summarization task (CL-TLS) requires two different types
of data: the first one is a collection of news articles covering the same topic, written
in a set of different languages; the second one is a collection of reference timelines,
written in a specific target language. Existing datasets for the TLS task are not
suitable to address the CL-TLS task, as they contain English-only news articles and
English-only reference timelines. Consequently, we propose a novel multilingual
dataset called ML-Crisis (MultiLingual-Crisis). It extends the existing Crisis [180]
dataset by including three new languages, in addition to English: Italian, Spanish and
French. Each language covers four topics, each with its own ground-truth timeline
in the target language.
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Table 5.4 ML-Crisis dataset statistics.

Language Avg. # articles Avg. # sentences Avg. # timeline dates

English 5114.25 33801.75 25.75
Spanish 197.75 7135.0 45.25
French 117.25 6369.5 65.75
Italian 102.75 5448.75 96.25

ML-Crisis is generated by crawling GlobalVoices [132] and querying Google
News1. Both sources contain multilingual news articles.

1. We define manually-generated keywords for each pair of language and topic
ti, l j ∈T ,L . For instance, considering the topic related to the lybia war and
the Italian language, we use the following keywords: ’bengasi, tripoli, scontri,
manifestanti, gheddafi’.

2. Similarly, for each pair, we define a reference time period r(ti, l j)

3. For each language and topic, we query GlobalVoices to retrieve topic-related
articles within the reference period. We discard articles that include fewer than
two keywords per topic.

4. Using the date range filter set accodingly to the reference period, we query
Google News for multilingual articles. Even in this case, we only include news
articles that contains at least two topic-specific keywords.

5. We manually collect language-specific timelines for each topic from publicly
available resources. Professional journalists from global news agencies typi-
cally use standardized and relatively more formal language to report events.
CL-TLS systems are evaluated using the collected timelines.

ML-Crisis convers 4 different topics and the same number of languages. Each
topic is associated with a list of keywords (also defined in the corresponding lan-
guages), a large set of articles in multiple languages, a reference period, and a
reference timeline. Dataset statistics are reported in Table 5.4.

1https://news.google.com

https://news.google.com
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5.3.3 Metrics for evaluating cross-lingual timeline summariza-
tion models

The evaluation of the CL-TLS task should consider the ability of the model to both
generate relevant summaries in the target language and to select relevant dates. The
metrics for evaluating standard timeline summarization models do not measure
supplemental information provided by multilingual enrichment. In order to evaluate
the performance of the CL-TLS task, we propose two additional metrics:

• Enrichment-based (ECL-ROUGE): it aims at measuring the added value of
including other languages in the TLS process. It focuses on comparing the date
summaries for dates missing in the source articles of the target language. Given
a target language Li and a topic t, we remove from the reference timeline of
Li all the dates that are found in the news articles of the target language. This
aims at measuring the enrichment provided by other languages. We compare
the modified reference timeline with the system output and compute standard
TLS scores. For this metric, single-language TLS systems can not get non-zero
scores by construction.

• Focused-based (FCL-ROUGE): It evaluates whether the model can improve
content selection by incorporating information available in additional lan-
guages. Contrary to ECL-ROUGE, it focuses on dates that are only available
in news articles published in the target language. In this case, we modify the
reference timeline by keeping only those dates that are available in the target
language. Similarly to the other metric, the scores are computed by comparing
the modified reference timeline with the system output.

For both metrics, we use specific scores defined for the standard TLS task (see
Section 5.2.4).

5.3.4 Experimental evaluation

The validation of the proposed CL-TLS models is conducted using the novel ML-
Crisis dataset. All the tests were run leveraging the news articles from the four
languages available in the dataset (English, Italian, French, and Spanish). For the
unsupervised summarization phase, we use a subset of the summarizers discussed
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Table 5.5 Contribution of additional language for date-level enrichment(%).

Additional Language
Source Language English Spanish French Italian

English 0.0 0.02 0.04 0.02
Spanish 0.18 0.0 0.07 0.05
French 0.40 0.19 0.0 0.16
Italian 0.42 0.26 0.15 0.0

in Section 5.2.3. For the late configuration, we need to estimate sentence relevance
using text in different languages. To this end, we compute sentence relevance
using embedding-based summarizers that exploit multilingual sentence embedding
models [154].

Multilingual contribution The contribution of multiple languages in the CL-TLS
task is crucial. We quantify the contribution of each language to the ML-Crisis
dataset by counting the number of dates from the reference timeline that were
added by each additional language. When considering language pairs, we report in
Table 5.5 the percentage of salient dates added by additional languages. Italian is
the language that most benefits from additional information; English news articles
reveal 42% of the dates in the reference timeline that were not included in the
Italian articles. Unsurprisingly, English is the language that least benefits from
additional information, having the lowest contribution from other languages. French
and Spanish benefit from extra information provided by other languages, with the
former being more influenced by other languages than the latter.

Experimental results - standard TLS metrics Each language available in ML-
Crisis is separately set as target language for evaluation. The input of the CL-TLS
system is the set of multilingual news articles in all languages while the system
timeline is generated in the target language. We test all the pipeline variants and
compare them with the single-language equivalent. Using the input documents in
the target language is the only option for the latter case.

We report the performance of several unsupervised approaches for the sum-
marization phase. Specifically, we use ELSA [15], TextRank-BM25 [5], and Cor-
eRank [178] as standard summarization model and, similarly to our previous contribu-
tion, we evaluate embedding-based versions of SubModular [99], Centroid-Opt [50],
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Table 5.6 TLS evaluation for the Italian Language. All results are reported in terms of
F1-score and highest scores for each metric are reported in boldface.

Summarizer Date F1 Concat Agreement Alignment
R1 R2 R1 R2 R1 R2

Single

ELSA 0.2535 0.3517 0.0779 0.0296 0.0041 0.0441 0.0051
TextRank-BM25 0.2535 0.3496 0.0794 0.0276 0.0041 0.0420 0.0051
CoreRank 0.2535 0.3253 0.0742 0.0282 0.0042 0.0414 0.0052
EmbeddingRank 0.2535 0.3587 0.0810 0.0298 0.0045 0.0444 0.0055
Centroid-opt 0.2535 0.3502 0.0771 0.0272 0.0037 0.0417 0.0049
Submodular 0.2535 0.3511 0.0781 0.0269 0.0037 0.0410 0.0048

Early

ELSA 0.2688 0.4855 0.1567 0.0591 0.0076 0.0766 0.0091
TextRank-BM25 0.2688 0.4816 0.1659 0.0651 0.0108 0.0849 0.0131
CoreRank 0.2688 0.5043 0.1652 0.0604 0.0090 0.0806 0.0113
EmbeddingRank 0.2688 0.4550 0.1545 0.0586 0.0078 0.0763 0.0095
Centroid-opt 0.2688 0.4783 0.1615 0.0595 0.0078 0.0778 0.0095
Submodular 0.2688 0.4657 0.1584 0.0594 0.0080 0.0767 0.0097

Mid

ELSA 0.2929 0.4851 0.1571 0.0609 0.0073 0.0802 0.0092
TextRank-BM25 0.3113 0.4818 0.1651 0.0706 0.0122 0.0898 0.0143
CoreRank 0.3133 0.5211 0.1636 0.0628 0.0095 0.0857 0.0116
EmbeddingRank 0.3198 0.4586 0.1585 0.0713 0.0109 0.0882 0.0130
Centroid-opt 0.3114 0.4856 0.1632 0.0726 0.0110 0.0919 0.0129
Submodular 0.3002 0.4745 0.1608 0.0660 0.0104 0.0855 0.0125

Late Translate

EmbeddingRank 0.2688 0.5062 0.1597 0.0590 0.0083 0.0760 0.0100
Centroid-opt 0.2688 0.5056 0.1601 0.0591 0.0083 0.0760 0.0100
Submodular 0.2688 0.5065 0.1602 0.0591 0.0083 0.0761 0.0100

Late Skip

EmbeddingRank 0.2688 0.3093 0.0757 0.0338 0.0058 0.0427 0.0064
Centroid-opt 0.2688 0.3078 0.0755 0.0336 0.0058 0.0427 0.0064
Submodular 0.2688 0.3104 0.0759 0.0337 0.0058 0.0427 0.0064
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Table 5.7 TLS evaluation for the French Language. All results are reported in terms of
F1-score and highest scores for each metric are reported in boldface.

Summarizer Date F1 Concat Agreement Alignment
R1 R2 R1 R2 R1 R2

Single

ELSA 0.2999 0.4235 0.1222 0.0456 0.0086 0.0654 0.0114
TextRank-BM25 0.2999 0.4315 0.1299 0.0505 0.0112 0.0714 0.0144
CoreRank 0.2999 0.4259 0.1233 0.0440 0.0077 0.0636 0.0102
EmbeddingRank 0.2999 0.4108 0.1224 0.0432 0.0082 0.0621 0.0106
Centroid-opt 0.2999 0.4242 0.1233 0.0444 0.0083 0.0640 0.0107
Submodular 0.2999 0.4186 0.1228 0.0453 0.0096 0.0648 0.0122

Early

ELSA 0.3446 0.4317 0.1423 0.0709 0.0089 0.0989 0.0117
TextRank-BM25 0.3446 0.4070 0.1515 0.0823 0.0172 0.1143 0.0219
CoreRank 0.3446 0.4468 0.1500 0.0773 0.0134 0.1075 0.0172
EmbeddingRank 0.3446 0.3767 0.1366 0.0708 0.0092 0.0999 0.0132
Centroid-opt 0.3446 0.3945 0.1406 0.0721 0.0102 0.1011 0.0137
Submodular 0.3446 0.3811 0.1353 0.0713 0.0095 0.1003 0.0131

Mid

ELSA 0.2651 0.4226 0.1399 0.0540 0.0077 0.0788 0.0101
TextRank-BM25 0.2694 0.4229 0.1556 0.0674 0.0156 0.0971 0.0199
CoreRank 0.2837 0.4479 0.1452 0.0657 0.0127 0.0927 0.0163
EmbeddingRank 0.2430 0.3833 0.1415 0.0540 0.0113 0.0829 0.0153
Centroid-opt 0.2344 0.4057 0.1419 0.0528 0.0096 0.0816 0.0131
Submodular 0.2535 0.3945 0.1423 0.0558 0.0107 0.0829 0.0142

Late Translate

EmbeddingRank 0.3446 0.4346 0.1333 0.0715 0.0093 0.0991 0.0122
Centroid-opt 0.3446 0.4365 0.1337 0.0714 0.0091 0.0993 0.0120
Submodular 0.3446 0.4350 0.1334 0.0715 0.0092 0.0991 0.0121

Late Skip

EmbeddingRank 0.3446 0.3896 0.0990 0.0540 0.0080 0.0721 0.0099
Centroid-opt 0.3446 0.3917 0.0996 0.0540 0.0080 0.0720 0.0099
Submodular 0.3446 0.3915 0.0997 0.0540 0.0080 0.0720 0.0099
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Table 5.8 TLS evaluation for the Spanish Language. All results are reported in terms of
F1-score and highest scores for each metric are reported in boldface.

Summarizer Date F1 Concat Agreement Alignment
R1 R2 R1 R2 R1 R2

Single

ELSA 0.3478 0.4104 0.1394 0.0849 0.0302 0.1010 0.0325
TextRank-BM25 0.3478 0.4114 0.1441 0.0935 0.0338 0.1118 0.0374
CoreRank 0.3478 0.4242 0.1383 0.0821 0.0264 0.0998 0.0294
EmbeddingRank 0.3478 0.4002 0.1332 0.0873 0.0321 0.1038 0.0345
Centroid-opt 0.3478 0.4049 0.1318 0.0875 0.0277 0.1040 0.0300
Submodular 0.3478 0.3934 0.1352 0.0845 0.0314 0.1011 0.0339

Early

ELSA 0.3063 0.3108 0.1030 0.0564 0.0097 0.0708 0.0115
TextRank-BM25 0.3063 0.3345 0.1136 0.0669 0.0149 0.0860 0.0182
CoreRank 0.3063 0.3627 0.1125 0.0596 0.0097 0.0775 0.0125
EmbeddingRank 0.3063 0.3068 0.1072 0.0565 0.0089 0.0726 0.0112
Centroid-opt 0.3063 0.3093 0.1034 0.0580 0.0090 0.0742 0.0115
Submodular 0.3063 0.3089 0.1089 0.0577 0.0095 0.0742 0.0121

Mid

ELSA 0.2659 0.3356 0.1180 0.0547 0.0196 0.0752 0.0218
TextRank-BM25 0.2467 0.3577 0.1307 0.0579 0.0209 0.0796 0.0239
CoreRank 0.2561 0.3390 0.1130 0.0479 0.0134 0.0711 0.0160
EmbeddingRank 0.2806 0.3125 0.1131 0.0564 0.0142 0.0773 0.0171
Centroid-opt 0.2567 0.3146 0.1112 0.0445 0.0081 0.0657 0.0107
Submodular 0.2640 0.3098 0.1086 0.0529 0.0129 0.0726 0.0157

Late Translate

EmbeddingRank 0.3063 0.3665 0.1094 0.0581 0.0083 0.0732 0.0099
Centroid-opt 0.3063 0.3670 0.1096 0.0582 0.0084 0.0731 0.0099
Submodular 0.3063 0.3668 0.1095 0.0584 0.0083 0.0735 0.0099

Late Skip

EmbeddingRank 0.3063 0.4301 0.1292 0.0779 0.0234 0.0936 0.0256
Centroid-opt 0.3063 0.4319 0.1310 0.0792 0.0251 0.0950 0.0273
Submodular 0.3063 0.4306 0.1292 0.0779 0.0235 0.0936 0.0256
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Table 5.9 TLS evaluation for the English Language. All results are reported in terms of
F1-score and highest scores for each metric are reported in boldface.

Summarizer Date F1 Concat Agreement Alignment
R1 R2 R1 R2 R1 R2

Single

ELSA 0.2254 0.3018 0.0460 0.0323 0.0037 0.0420 0.0044
TextRank-BM25 0.2254 0.3238 0.0568 0.0413 0.0075 0.0522 0.0088
CoreRank 0.2254 0.2994 0.0575 0.0362 0.0070 0.0490 0.0090
EmbeddingRank 0.2254 0.2869 0.0481 0.0369 0.0051 0.0480 0.0064
Centroid-opt 0.2254 0.3079 0.0521 0.0373 0.0053 0.0491 0.0069
Submodular 0.2254 0.2942 0.0508 0.0369 0.0053 0.0486 0.0066

Early

ELSA 0.2298 0.2807 0.0374 0.0285 0.0049 0.0357 0.0054
TextRank-BM25 0.2298 0.3213 0.0516 0.0410 0.0077 0.0538 0.0092
CoreRank 0.2298 0.2823 0.0549 0.0387 0.0090 0.0499 0.0107
EmbeddingRank 0.2298 0.2868 0.0485 0.0347 0.0040 0.0453 0.0048
Centroid-opt 0.2298 0.2955 0.0481 0.0369 0.0050 0.0470 0.0063
Submodular 0.2298 0.2889 0.0496 0.0344 0.0054 0.0454 0.0068

Mid

ELSA 0.1829 0.3003 0.0462 0.0205 0.0026 0.0320 0.0048
TextRank-BM25 0.2082 0.3246 0.0570 0.0357 0.0083 0.0478 0.0112
CoreRank 0.1568 0.2926 0.0483 0.0227 0.0047 0.0360 0.0081
EmbeddingRank 0.1707 0.2960 0.0451 0.0253 0.0050 0.0406 0.0073
Centroid-opt 0.1445 0.3063 0.0440 0.0201 0.0041 0.0314 0.0059
Submodular 0.1637 0.2985 0.0456 0.0204 0.0038 0.0348 0.0058

Late Translate

EmbeddingRank 0.2298 0.2915 0.0427 0.0222 0.0037 0.0317 0.0047
Centroid-opt 0.2298 0.2931 0.0423 0.0221 0.0037 0.0317 0.0047
Submodular 0.2298 0.2920 0.0428 0.0223 0.0038 0.0319 0.0048

Late Skip

EmbeddingRank 0.2298 0.2839 0.0397 0.0236 0.0041 0.0321 0.0046
Centroid-opt 0.2298 0.2842 0.0396 0.0234 0.0041 0.0319 0.0046
Submodular 0.2298 0.2842 0.0398 0.0237 0.0041 0.0322 0.0046
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Table 5.10 Evaluation of CL-TLS metrics. All scores are reported as F1-scores.

Target Date F1 Concat R2 Agreement R2 Alignment R2
language ECL FCL ECL FCL ECL FCL ECL FCL

English 0.0 0.2298 0.0 0.0337 0.0 0.0049 0.0 0.0054
Spanish 0.0526 0.3440 0.0604 0.1008 0.0148 0.0226 0.0181 0.0240
French 0.2007 0.3869 0.1082 0.1088 0.0112 0.0187 0.0158 0.0219
Italian 0.1802 0.3648 0.1369 0.1070 0.0072 0.0133 0.0092 0.0147

EmbeddingRank [138] that leverage multilingual sentence embeddings [154] to
estimate sentence ranking (see Section 5.2.3).

Tables 5.6, 5.7, 5.8, and 5.9 reports the results obtained when setting the target
language to Italian, French, Spanish and English, respectively. Unsurprisingly,
Spanish and English are the two languages that least benefit from the support of
other languages. Since those two languages are the least affected by the inclusion
of other languages in the reference timeline, we observed, on average, a lower level
of improvement that was obtained in all multilingual settings. Both Italian and
French, on the other hand, are the languages that most benefit from the inclusion
of other languages in the reference timeline. The mid-translation pipeline shows
better performance than all the others for Italian while early-translation improves
the performance for French considering agreement and alignment metrics. For those
languages, we also run statistical significance tests [136] comparing the performance
of the early-translation pipeline with the other approaches. By setting the significance
level to p = 0.05, we compare the results obtained by embedding-based summarizers
(i.e., those available across all pipelines). We observe that the results obtained
using early and mid pipelines are statistically superior to the others considering
the ROUGE-1 alignment metric. Neither the late-translate nor late-skip pipelines
perform significantly better in any of the four target languages, recommending further
investigation of these approaches.

Experimental results - CL-TLS metrics To evaluate the impact of cross-lingual
enrichment for timeline generation, we conduct an analysis according to the evalua-
tion criteria discussed in Section 5.3.4. Leveraging the early-translation pipeline and
TextRank-BM25 summarizer for all target languages, we report the FCL and ECL
ROUGE-2 scores in Table 5.10. Given the limited contribution of other languages to
English (see Table 5.5), its ECL scores never exceed 0. The results for Italian and
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French confirm the previous findings regarding the benefit of the cross-lingual enrich-
ment, with high ECL-scores both for date selection and concat metrics. Considering
FCL scores, the English language shows very limited benefits from the cross-lingual
enrichment, whereas all other languages gain a significant amount of information
from the multilingual data. This results confirm that the English language already
contains enough information to be used for the task, whereas for other languages the
cross-lingual enrichment plays a significant role.

5.4 Challenges and future works

This chapter provided an overview of the temporal aspects of the summarization task,
focusing on timeline summarization both from single and multilingual perspective.
Despite its unique characteristics and challenges, this task is still under-explored,
especially in multilingual settings. The main goals of the task are the identifica-
tion of the most relevant dates and the selection of the most salient information.
When considering multiple source language, cross-lingual information retrieval and
enrichment are crucial to identify the most relevant terms and entities.

Timeline summarization research has focused mainly on unsupervised models,
however, the cross-lingual scenario highlighted the benefit of additional information
sources. The inherent complexity of the task and the variety of events that can be
represented in a timeline, require the development of specific models and features.
The lack of annotated datasets is a major challenge for the development of effective
and accurate methods for timeline summarization, expecially in multilingual settings.
In the current context, datasets are limited in term of size and the kind of information
that can be represented.

The recently proposed TLS-Covid19 [140] and Timeline-100 [95] datasets can
help the community in this direction. The former is an English-Portuguese dataset
with annotated information about the COVID-19 pandemic. It covers 178 sub-topics
and contains more than 100,000 news articles, thus providing a comprehensive
overview of the events that have occurred since the outbreak of the pandemic. The
availability of multiple languages for this dataset may also help the community in
analyzing the multilingual challenges of the task. Timeline-100 is a multi-topic
dataset covering different fields (e.g., economy, military, and education among
others). It includes more than 10,000 English news, as well as 100 manually-
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annotated reference timelines. The release of new datasets and the improvement of
current methods can also help with the development of effective learning models.

The majority of the existing datasets for timeline summarization are text-based.
This task, however, can be very useful in guiding automated content curation from
large multimedia archives. In this perspective, the task can benefit by the inclusion of
multimodal information, such as images and videos, to create a better understanding
of the events and their relations with other events and entities. The generation of
the topic timeline can also be enhanced by the use of computer vision models to
automatically identify and label the entities and events from images and videos.
This scenario may require the use of recent multimodal models. For example, the
recent CLIP model [148] provides cross-modal embeddings for natural language and
images; the application of this approach to the task of timeline summarization could
be an interesting research direction.

Another open question to be explored in the future is the integration of multi-
lingual information in the timeline generation. It was shown in this chapter that
single-language approaches could be adapted to solve this problem, but its perfor-
mance is still far from the state-of-the-art results achieved on English. The CL-TLS
task is, however, very useful when multilingual information is available, as the
identification of the most relevant dates and information in multiple languages can
help to understand the process of events unfolding across the globe. Consequently,
future research may focus on cross-lingual entity linking and cross-lingual event
extraction to overcome the current issues of the task and propose more effective
methods to generate multilingual timelines.

Most existing approaches for the TLS task are based on extractive summariza-
tion. However, the task can also be addressed from the perspective of abstractive
generation [170, 25], which is more challenging but can generate more fluent sum-
maries. The abstractive approach has the advantage of overcoming the limitation
of the extractive approach (i.e., it can only select sentences from source articles).
In this direction, the use of sequence-to-sequence models can help to improve the
current performance of the task. The use of abstractive summarizers, however, is not
straigthforward. They may require the design of specific strategies to ensure that
the correct ordering of the events is considered in the summary and to prevent the
generation of false information [195].
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Finally, timeline summarization can be improved with the introduction of new
evaluation metrics, such as evaluating the temporal awareness of systems. In this
chapter, the timeline generation task was assessed exclusively using automatic
evaluation metrics, but this approach does not account for the temporal coherence of
the timeline. This aspect is especially relevant for multilingual summarization. The
events can be described differently across languages, and creating a coherent timeline
can be challenging. The inclusion of human evaluation as further assessment can
help to better validate the temporal coherence of the generated timeline.



Chapter 6

Understanding and summarizing
spoken language

Natural language understanding is a challenging task that has been extensively
studied in computer science, particularly in the text domain. Natural language,
however, is not limited to the written form but is also expressed through other
modalities such as recorded speeches. The ability to comprehend speech is crucial
for artificial intelligence since it is humans’ primary mode of communication. This
chapter aims at providing some insights into automatic content summarization of
spoken language. In Section 6.1 we provide an overview of the research works that
focus on spoken content analysis, discussing the main application domains and the
most common deep neural network architectures used for this task. Section 6.2
introduces our first contribution to this field by introducing a multimodal approach
for the extractive summarization of podcasts. Section 6.3 is dedicated to our second
contribution, the participation to the TREC 2021 Podcast Track, where we propose
a deep learning-based abstractive summarization approach. Finally, Section 6.4
outlines future research directions that could be explored in this field. Figure 6.1
provides an overview of the contributions discussed in this chapter, as well as the
relevant fields of study.
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Fig. 6.1 Graphical overview of the topics and contributions covered in Chapter 6

6.1 Related works on spoken content analysis

The analysis of spoken content is a challenging task which has attracted the attention
of the research community in the past decades. It has been successfully applied in
various research fields, such as automatic speech recognition [24], speaker identi-
fication [4], and speech synthesis [201] among others. Traditional approaches to
the analysis of spoken content were largely based on handcrafted and statistical
features [91, 42], however, this field has considerably benefited from the advent of
deep learning architectures, which allow to automatically learn audio representations
that are capable of capturing the inner structure of the data. Access to a large amount
of digital speech, e.g., in the form of podcasts or call recordings, has also been
an essential factor in the development of deep learning models, since they allow
data-driven models to be trained using self-supervised learning [3].

6.1.1 Audio representation learning

Within the past decade, the field of text processing has undergone a profound trans-
formation, with deep learning architectures greatly improving performance across
various tasks. They are able to learn latent representations that model the inner
structure of the data, thus providing a better understanding of their meaning. Incor-
porating this concept to the analysis of audio sequences would enable the design of
models capable of automatically learning representations that capture the semantics
of the input signal.
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Analyzing audio signals, however, is much more challenging than text analysis.
Unlike textual sequences, which are directly related to a finite set of symbols, acoustic
sequences are continuous signals that change over time, which makes discretization
an essential step for their analysis. Convolutional neural networks (CNN) are the
most popular neural architectures to extract high-level features from image data,
and they have been successfully applied to audio signals [193]. CNNs can learn
to detect patterns in the input signal and extract features related to its semantics.
These models have been successfully applied to various tasks, such as acoustic scene
classification [6] and sound source separation [21].

The use of self-attention mechanisms in transformer-based architectures has
shown impressive performance in the field of NLP. However, they operate on discrete
symbols (e.g., words or tokens) so they can not be directly applied to acoustic
signals. Wav2Vec 2.0 [3] is a transformer-based architecture designed for the task of
Automatic Speech Recognition (ASR). It relies on a quantization step that converts
raw speech into a discrete sequence of symbols, which can then be processed by the
transformer model. By masking some parts of the input signal, the model is trained
to predict the correct quantized representation of the signal at the masked positions.
Similarly to transformer models for NLP, signal masking allows the model to learn
global patterns and long-term dependencies in the input signal. In these settings,
a model can be trained on audio signals without having to rely on transcripts or
any other type of supervision. Wav2Vec 2.0 is primarily designed to learn feature
representations for ASR tasks, however, these representations may be useful for
a wide range of tasks in the audio domain as well. The original architecture has
also been extended by including clustering techniques during the feature-extraction
phase [65] or denoising pre-training objectives [24].

Transformer models have been shown to have potential for learning useful feature
representations in the audio domain. However, they tend to be too geared toward
ASR and speech-related tasks [190], thus potentially lacking the ability to learn
general feature representations that could be tranferred to other audio-related tasks.
The generalization of transformer-based architecture to other audio tasks is an open
research area that is currently being explored [54, 55].
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6.1.2 Textless NLP

The deep learning revolution in the field of NLP has been characterized by the ability
to automatically extract semantic representations from text. Spoken content analysis,
offers instead a unique opportunity to learn representations directly from speech
signals that are much richer than the text transcriptions. A new research trend in
the field of NLP has recently been identified as textless NLP [88]. It seeks to learn
from speech signals in an end-to-end manner, rather than extracting textual features
through automatic speech recognition. ASR, which is an essential part of traditional
spoken content analysis, might not be needed for many applications, including
speaker identification, speaker diarization, and emotion recognition. Additionally,
it may hinder effective feature learning, since (i) the automatic transcription might
not be accurate enough for the task at hand, and (ii) only a small portion of the
information in speech can be captured in text.

Generative models have been used to tackle various speech-related tasks without
ASR. Speech emotion conversion, for example, can be formulated as a domain-
adaptation problem, in which the goal is to learn to convert speech signals from one
emotion to another [81]. Textless models are able to generate emotion-converted
speech without ASR, thus removing the need for text transcriptions or alignments.
Similar models have been proposed for speech-to-speech machine translation [68],
natural dialogue generation [134], and speech resynthesis [143]. Textless NLP has
been gaining considerable research interest and popularity in recent years. In Sec-
tion 6.4.2 we identify various research opportunities in this field and the challenges
that need to be addressed.

6.1.3 Spoken content summarization

Most of the contributions discussed in this thesis pertain to text summarization,
which involves generating a shorter, more concise version of a document without
altering its original content. The notion of summarization can be applied to spoken
content as well. Therefore, the task of summarizing spoken content becomes the
problem of extracting or generating a summary from an audio file. A summary can
be either spoken (audio) or written (text), and it should be concise, accurate, and
include most of the information presented in the original audio snippet.
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Most spoken summarization approaches involves a two-steps process: first,
automatic speech recognition (ASR) converts the audio waveform into text; then,
the summarization system generates the summary from the transcribed text. Those
approaches have the advantage of being generic and applicable to any spoken content,
however, the automatic speech recognition step may introduce transcription errors,
which are propagated to the summarization step. To mitigate the error propagation
problem, Li et al. [93] propose a hierarchical ASR and summarization system aiming
to minimize errors by combining semantic segmentation and merging algorithms.
Similarly, the abstractive summarization of meeting recordings has been addressed
by using hierarchical models that impose diversity at inference time by modeling
utterance-level attention distribution during training [107].

Two-stage approaches, however, remain limited by the automatic speech recog-
nition component and may not be ideal for specific domains where the speech
recognition process is challenging. An alternative approach is to develop systems
that work directly on the audio waveform. These models can be directly applied to
audio snippets without the need for transcription, which makes them more robust to
errors in automatic speech recognition.

Recent studies have shown that combining acoustic features with traditional
summarization objectives provides a promising solution for summarizing spoken
content [102]. Most of these approaches leverage transformer-based models to learn
acoustic features from the raw audio waveform in an end-to-end manner. Their main
drawback is the high computational cost, which can be problematic when scaling
to large data sets, especially when dealing with long audio recordings. Recent
proposals of efficient architectures that harness restricted-attention mechanisms can
reduce computational complexity and generate insightful summaries of spoken audio
content [166].

6.2 MATeR: Multimodal Audio-Text Regressor

Audio podcasts have gained increasing popularity as a way to consume audio content
and are widely used for entertainment and educational purposes. They provide a
convenient way for a user to consume audio content and are often long-form, which
makes it challenging for users to identify their topic and decide whether they are
worth listening to. Our contribution to the field is to devise methodologies for
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automatically generating short summaries of podcast episodes, thereby providing
users with a quick overview of the podcast content without having to listen to the
entire podcast.

Podcasts typically contain spoken content, and thus an automatic summarization
of podcasts can be performed using the two-stage approach outlined in Section 6.1.3.
The first stage is to transcribe the spoken content of the podcast using ASR, and
the second stage is to produce a summary of the transcribed text [186]. Although
this approach to podcast summarization is straightforward, it has several limitations.
First, ASR results are often error-prone, and therefore the transcript may be incorrect,
which can adversely affect the summarization results. Second, considering only
the transcript in the summarization process can lead to suboptimal results, as the
spoken content incorporates other important cues, such as intonation, which are not
conveyed in the transcript. Hence, it would be beneficial to consider audio data in
the podcast summarization process to complement the transcribed text.

To address the aforementioned limitations, we propose a multimodal architecture
that incorporates both the acoustic features and the transcribed text of a podcast,
namely MATeR (Multimodal Audio-Text Regressor) [185]. The system leverages
an end-to-end deep learning architecture to predict the relevance score of each
sentence in the transcript, and then generates a summary by selecting the most
relevant sentences. MATeR architecture is depicted in Figure 6.2. It includes three
main components: (i) an acoustic encoder that extracts features from the podcast
recording; (ii) a text encoder that extracts features from the transcript; and (iii) a
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multimodal fusion network that combines the acoustic and text features to predict
the relevance score of each sentence.

Text Encoder The text encoder is designed to extract robust representations of
sentences included in the podcast transcripts. The transformer architecture [187]
can provide effective encoding strategies across a variety of NLP tasks. Pre-training
transformer models with large corpora enable efficient transfer learning for down-
stream tasks, supporting the fine-tuning of powerful text encoders even with limited
training data. In our work, we use BERT tranformer model [38] pre-trained on
English language corpus.

The encoder model takes as input a sequence of text tokens corresponding to each
sentence in the transcript. The tokenized sequence is mapped to token embeddings,
which are then passed to a transformer-encoder stack. Our model needs to generate
fixed-length representations of variable-length input sequences, thus we leverage
on a special [CLS] token inserted at the start of the sequence. The embedding
vector corresponding to [CLS] is taken as the sentence embedding for the whole
sequence [153]. Each sentence is represented by a 768-dimensional vector which
encodes information from the entire input sequence.

Audio Encoder The audio encoder aims to extract features from the audio wave-
form and aims at capturing the contextual structure of the speech signal. It imple-
ments the Wav2Vec 2.0 model [3], which, similarly to the text counterpart, is a
self-supervised model trained on large amounts of speech data. The audio encoder
includes a feature extraction step followed by a stack of transformer layers. The
feature extractor leverages a convolutional neural network to obtain frame-level rep-
resentations (i.e., audio tokens), which are then passed to the transformer layers. This
results in a sequence of audio tokens that are processed by the transformer stack to
learn contextualized representations that capture both local and global dependencies
in the audio waveform.

The model, similarly to the text encoder, generates a sequence of contextualized
audio tokens, whereas a single representation is needed for the entire waveform.
Thus, contextualized tokens are passed through an average pooling layer to obtain a
single audio vector (i.e., the audio encoder output) that represents the entire input
sequence as a 768-dimensional vector.
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Multimodal Fusion Network Audio and text encodings are combined to produce
multimodal sentence representation. Each modality-specific module encodes dif-
ferent information, which can be exploited to model the relationship between the
two modalities. Text and audio embeddings are first concatenated to form the joint
embedding vector, which is then passed to the multimodal fusion network for further
processing. The fusion module consists of a set of fully-connected layers, which
are trained to predict a relevance score rs given the joint embedding vector. The
relevance score vector rs ∈ R is a real-valued vector in the range [0,1] and indicates
the importance of the audio-text pair in the podcast episode.

In our model, the fusion network comprises three fully-connected layers, each
having a width of 1536 and a rectified linear unit (ReLU) activation function [127].
The relevance score for multimodal input is calculated by applying a sigmoid function
to the output of the third fully-connected layer. During training we use the Mean
Squared Error (MSE) loss to minimize the difference between the predicted relevance
score for the training examples and the ground truth relevance score. The loss is
back-propagated through the multimodal fusion network and uni-modal encoders to
update parameters of the entire model.

6.2.1 Data collection and labeling process

The training and validation of MATeR require a dataset containing the audio of the
podcast, its transcription and a ground-truth summary that can be used to train the
model. The Spotify Podcast Dataset [28] was used for this purpose. It includes
100,000 podcast episodes spanning over 18,000 different shows, with their audio
files, transcriptions and metadata. The dataset does not contain any specific summary
of the podcast content, but it does provide the author’s description of the podcast
episodes. This description, which is typically short, was used as the ground-truth
summary of the podcast content. A random sample of 10% of the episodes in the
dataset was used to generate the train set while the test set consisted of 1% of the
data.

The transcriptions in the data collections are partitioned into sentences and
annotated with their corresponding start and end times to obtain aligned audio-text
pairs (e.g., the input of MATeR). Given a text-audio pair as input, our system predicts
its relevance score within the podcast. Table 6.1 provides statistics of the data
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Table 6.1 Statistics of the podcast dataset used for training and testing MATeR model.

Episode per Show Sentence per Episode Words per Sentence Words per Description
Avg # Max # Avg # Max # Avg # Max # Avg # Max #

Train 5.77 ± 16.33 351 84.52 ± 56.97 574 72.85 ± 33.34 175 61.56 ± 60.22 709
Test 5.38 ± 13.71 122 78.07 ± 49.91 501 75.99 ± 31.77 183 68.81 ± 54.25 461

collection reporting the average and maximum number of (i) episodes per show, (ii)
sentences per episode, (iii) words per sentence, and (iv) words per description.

Podcasts’ description cleaning The podcast description is a short summary of the
podcast content, which is provided by the content creator and may contain advertising
and other unrelated content. For example, the description may include the links to
other products from the same publisher, to other episodes, and to the social media
accounts of the content creator. In order to prevent bias in the summarization process,
we manually label 2200 sentences, pertaining to 400 podcast descriptions, and
fine-tune a BERT-based model to predict whether each sentence contains irrelevant
content or not. We split the annotated sentences into training and test sets, with a
ratio of 80% and 20%, respectively. The resulting data collection contains 39.2%
and 35.4% of irrelevant sentences in the training and test sets, respectively.

We capitalize on the contextualization capabilities of BERT by using, for each
sentence, the previous one as context and concatenating both sentences with a special
token (i.e., [SEP]). For the first sentence in the podcast description, we use a special
token (i.e., __START__) as the context. We fine-tune the binary classification model
using Adam optimizer [106] and a constant learning rate η = 10−5 for 2 epochs.
The fine-tuned model achieves an overall accuracy of 0.92 on the test set.

The resulting model is used to label all sentences in the podcast descriptions in
our data collection. We remove sentences containing irrelevant content, keeping only
the sentences that are relevant to the podcast itself. The automated process acts as an
initial filtering step for podcast descriptions and can also be used for other tasks of
interest in the podcast domain. Both the manual annotation as well as the fine-tuned
model have been made accessible for research purposes1.

1https://github.com/MorenoLaQuatra/MATeR

https://github.com/MorenoLaQuatra/MATeR
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Data labeling The relevance score rs of a sentence in a podcast episode s ∈ P is
represented by a float value in the range [0,1], with 0 meaning that the sentence is
not relevant to the podcast description and 1 meaning that the sentence perfectly
match the description. Podcast descriptions differ greatly from podcast transcripts
in their writing style; while the former is more colloquial and free, the latter is
usually written in a structured way, sometimes reporting the podcast topics in a bullet
point list. Thus, the use of lexical features to label podcast descriptions would be
ineffective and we instead use a semantic approach.

The relevance score is computed according to the semantic similarity of each
sentence s ∈ P with its corresponding podcast description Pd . Specifically, the score
is computed by leveraging the cosine similarity between the sentence and the podcast
description embeddings. To obtain an accurate estimation of the semantic similar-
ity, we use Sentence-BERT model [153] to encode the sentences and the podcast
descriptions. It leverages BERT model and is fine-tuned for the Natural Language
Inference (NLI) task. Given a premise and a hypothesis, the model is trained to
predict whether the premise entails, contradicts, or neither entails nor contradicts the
hypothesis. The NLI task has proven to be helpful for generating semantic-aware
sentence embeddings, as the model is required to identify the semantic relationships
between premise and hypothesis [34].

Figure 6.3 shows an example of the data labeling process. The podcast sentences,
on the left, and the podcast description, on the bottom, are encoded using Sentence-
BERT and each sentence vector is separately compared with the description vector.
Although only the textual content is considered in the annotation phase, labels are
assigned to the audio-text pairs. The final dataset is composed of text, audio pairs
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coupled with their estimated rs score, that is used as target label to train the MATeR
model.

6.2.2 Experimental evaluation

The proposed architecture is trained to rank podcast’s sentences according to their
overall relevance to the podcast description. The top-ranked sentence is extracted as
the summary of the podcast, and it is compared to the podcast description written by
the original author. In order to capture both the relevance of the generated summary
and its fluency, semantic and lexical similarity metrics are used to evaluate the
quality of the generated summaries. The lexical evaluation is carried out using the
well-established ROUGE metric [97], while the semantic evaluation is carried out
using BERT-based sentence similarity, which aims to capture the semantic similarity
of the generated summary to the original description. Among ROUGE scores, we
consider ROUGE-1, ROUGE-2, and ROUGE-L, which are computed based on
the overlap between unigrams, bigrams, and longest common subsequences. In
order to determine semantic similarity, the embedding of the generated summary is
computed using the Sentence-BERT model [153] and compared to the embedding of
the podcast’s description.

Podcast’s transcript are generally very long, containing on average∼ 84 sentences
of ∼ 73 words each, as reported in Table 6.1. Typically, Transformer-based models
have input token limitations of 512 or 1024. MATeR overcomes this issue by
processing each sentence in a podcast transcript separately to estimate its relevance
score. The length of the text hinders the use of standard supervised extractive
summarization models [104, 204] which consider the sequence of sentences in a
podcast transcript as a whole.

To evaluate the effectiveness of MATeR, we compared it with several of the
standard extractive summarization models that can handle long text sequences.

• LEAD-1: the summary is extracted by selecting the first sentence of the
podcast’s transcript.

• TextRank [122]: it is an unsupervised baseline that ranks transcript’s sentences
according to their relevance score computed using the TextRank algorithm.
The top-ranked sentence is selected as the summary.
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Table 6.2 Comparison of podcast summarization approaches using Rouge-1, Rouge-2, Rouge-
L, and SBERT scores. Highest scores for each metric are reported in boldface and statistically
significant performance improvement (p-value= 0.05) are starred.

Method R1-P R1-R R1-F1 R2-P R2-R R2-F1 RL-P RL-R RL-F1 SBERT

LEAD-1 0.150* 0.170* 0.142* 0.014* 0.013* 0.011* 0.129* 0.147* 0.122* 0.350*
TextRank 0.154* 0.177* 0.147* 0.015* 0.016* 0.013* 0.133* 0.154* 0.127* 0.363*
CoreRank 0.176* 0.179* 0.157* 0.030* 0.024* 0.023* 0.152* 0.154* 0.135* 0.418*
TextRank-BM25 0.156* 0.203* 0.159* 0.017* 0.020* 0.015* 0.132* 0.174* 0.135* 0.414*
HiBERT 0.186* 0.219* 0.184 0.036* 0.033* 0.031* 0.162* 0.191* 0.160 0.482

MATeR-text 0.162* 0.168* 0.143* 0.016* 0.016* 0.013* 0.140* 0.146* 0.123* 0.348*
MATeR 0.193 0.225 0.188 0.042 0.041 0.036 0.168 0.197 0.164 0.490

• TextRank-BM25 [5]: the summary is extracted according to the TextRank
algorithm, with the similarity scores being computed using the BM25 retrieval
function [156].

• CoreRank [178]: it is an unsupervised baseline that leverages both submod-
ular function optimization and graph-based representations of the podcast’s
transcript. The CoreRank algorithm provide a set of sentences that are ordered
according to their relevance scores. We extract the summary considering the
top-ranked sentence in the set.

• HiBERT [203]: it is a supervised baseline that relies on hierarchical Trans-
formers to extract the summary. The HiBERT model is fine-tuned using the
same training set used to train the MATeR model. It provides a binary label for
each sentence in the podcast’s transcript, indicating whether or not it should
be included in the summary. We use the posterior probability of the predicted
label to rank sentences and extract the summary considering the top-ranked
one.

• MATeR-text: it is the text-only version of the proposed architecture. It is
composed of a text encoder and a regressor layer. The model is trained by
using the transcript only. The final summary is extracted considering the
top-ranked sentence, based on the estimated importance score.

Table 6.2 reports the results obtained by the above-listed models using ROUGE-1
(R1), ROUGE-2 (R2), ROUGE-L (RL), and Sentence-BERT (SBERT) evaluation
metrics. For ROUGE-based scores, we include the Precision (P), Recall (R) and
F1-score (F1)
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Table 6.3 Qualitative comparison of MATeR, HiBERT, and MATeR-text for the extraction of
podcasts’ summaries. Text including topic’s description or a catch phrase is highlighted in
green and blue, respectively.

Author’s provided description

Brandon Bozarth is a Spiritual coach and teacher that focuses on the process of integration. Being an avid studier of
neuroscience, quantum physics, ancient teachings, consciousness, metaphysics, psychology, behavior design and so on... he
progressively has become a leader and catalyst to the what he calls the new earth. That new earth that is being birthed, a world
based in love, collaboration, community, and growth. Brandon teaches people how to remember who they are from the higher
realms and the history of our existence. He teaches deep spiritual Self empowerment and that miracles are a natural part of our
existence. Brandon breaks down the complicated but fascinating history of our galactic universe and is able to contact and
channel different beings from other dimensions to communicate information from the higher realms right to us. We talk about
starseeds, alien races, our galactic history in relationship to those alien races and a heavy dose of quantum concepts such a
inter-dimensionality and the construct of time. This is a juicy one guys!

MATeR HiBERT MATeR-text

Of our existence he teaches deep spiri-
tual self empowerment and that Miracles
are natural part of our existence Brendan
breaks down the complicated but fasci-
nating history of our Galactic Universe
and is able to contact and channel differ-
ent beings from other dimensions to com-
municate the information from the higher
Realms straight to us. I’m very excited for
you guys to hear this episode. It’s going
to be a good one.

And even dating some of the shows will
be just me rambling about my mystical
experiences and new discoveries. In other
shows will have guests to open up New
Perspectives and Views. I hope you’ll join
me on this journey as we discuss in open
up about what spirituality in today’s world
really looks like

with so much love. I was just like crying
from Love and having this conversation
with one of the beans. He was blue. It was
kind of like a guide of mine named Grace
and who really just represents the state of
grace and offers that to me and then the
other one was an artery is being which is
orange. So they represent themselves as
the color orange. Typically there. They
have a like a phone number you could say
which is a eight-pointed orange star kind
of the long star and that’s kind of like

As expected, the LEAD-1 approach performs worst. This is because it uses the
simplest selection technique, i.e. selecting the first sentence of the podcast transcript,
which is usually not an accurate summary of the entire podcast. In contrast, the
TextRank, CoreRank, and TextRank-BM25 models perform quite similarly, with
CoreRank performing slightly better than the other two. This is probably due to the
similarity of these approaches, which are based on similar graph-based selection
techniques.

The HiBERT model, which is trained in supervised settings, outperforms all the
other methods except for the MATeR model. This is not surprising since HiBERT
is fine-tuned to select sentences from podcast transcripts, while the unsupervised
models are not. Finally, the MATeR model outperforms all the other methods, both
supervised and unsupervised, according to all the evaluation metrics. Furthermore,
we report the results of a MATeR-text model that only extracts summary information
using text-based features. This model performs significantly worse than MATeR,
indicating that audio information is indeed helpful to extract summary sentences.
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Qualitative evaluation Table 6.3 shows a qualitative comparison of the three best
methods (i.e. MATeR, HiBERT, and MATeR-text) for the extraction of a podcast’s
summary. For the sake of readability, we highlight sentences according to their intent
using different colors.

Both MATeR and HiBERT are able to extract the podcast’s summary quite
accurately, whereas MATeR-text is not able to extract any sentence that introduces
the podcast. Although HiBERT can find a sentence that contains some information
about the podcast’s topic as well as a catch phrase, MATeR is able to find a sentence
that contains more information about the podcast’s topic. MATeR’s proposal has
a higher quality summary since it can leverage both acoustic and textual content,
whereas HiBERT only relies on textual content. Speaker’s intonation, emotion, and
word stress are important elements in speech, which are not captured in the textual
content only. More details on the qualitative evaluation as well as the audio samples
extracted by each method are provided in the official project repository2.

6.3 Select and rewrite approach for podcast summa-
rization

The analysis of podcast content is challenging because audio content is unstructured,
and transcripts could contain noisy information due to automatic speech recognition
(ASR) errors. The podcast track at Text REtrieval Conference (TREC) [75] aims
at fostering research in various aspects of podcast information access. The 2021
edition of the podcast track comprises two tasks: segment retrieval and podcast
summarization. Podcast segment retrieval is a traditional information retrieval task
in which, given a query, the goal is to retrieve the most relevant podcast segments of
two minutes in length. Podcast summarization, instead, focus on the generation of a
single summary for each podcast episode.

Similarly to the MATeR model [185] described in Section 6.2, we address the
podcast summarization task by proposing a multimodal strategy that combines the
audio and the transcriptions of a podcast. The goals of the proposed task are twofold:
(i) to generate a short audio summary, up to 60 seconds, from the podcast, and
(ii) to provide a textual summary of the podcast episode that can be displayed in

2https://github.com/MorenoLaQuatra/MATeR

https://github.com/MorenoLaQuatra/MATeR
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Fig. 6.4 Select and rewrite architecture for podcast summarization.

the interface of a podcast player. Our aim is to generate two summary types that
are complementary, so that the listener can choose the summary type that is more
suitable according to the context of use and the available time. The proposed strategy
combines both audio and text features for the selection of the most relevant content
of the podcast and then rewrites the selected content, i.e., it generates a summary
leveraging the selected segments [184]. A sketch of the proposed framework’s
architecture is illustrated in Figure 6.4.

6.3.1 Multimodal sentence selection

The first step of our strategy is to select the most relevant podcast segments for
the generation of the summary. This step is performed by a multimodal sentence
selection model (steps 1A, 1B and 2 in Figure 6.4), which is trained with the aim of
providing a set of sentences that are representative of the podcast content.

Feature extraction The proposed sentence selection model is based on the com-
bination of acoustic and textual features. The text encoder generates sentence
representations by using a MPNet [169] model optimized for the generation of
semantic-aware text embeddings. Each sentence vector consists of 768 features, and
the model can handle sentences up to 512 tokens. The audio features are extracted
by leveraging the OpenSmile toolkit, which extracts 88 low-level descriptors from
the raw waveform of the audio segments. Features are collected over one second
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of audio signal (i.e., less than one sentence) and then aggregated over time using
the mean, maximum, minimum, and standard deviation functions. The resulting
vectors are concatenated to obtain a 352-dimensional feature vector. The multimodal
representation of each sentence is obtained by concatenating the audio and text
embeddings, i.e., each sentence is represented as a 1120-dimensional vector.

Sentence selection model The selection step relies on a fully-connected architec-
ture that is optimized to score the relevance of each audio-text pair. It is trained,
using the regression objective, to predict the sentence-level relevance score, which is
a real value in the range [0,1]. Similar to MATeR (see Section 6.2), the relevance
score for each sentence is computed by using the cosine similarity between the text
representation of the sentence and the embedding of the podcast description. The
depth of the network is set to seven and the width for the first three layers is set to
1120, while the last four layers have a width of 768. The final layer outputs a real
value that corresponds to the relevance score of the audio-text pair.

6.3.2 Podcast summary generation

The output of the sentence selection step is a ranked list of audio-text pairs. Summary
generation entails (i) the selection of top-ranked audio snippets to generate an audio
summary, and (ii) the selection of top-ranked sentences to generate an abstractive
summary of the podcast episode.

Audio summary We take the top-ranked audio segments from the list of audio-text
pairs to generate the audio summary. The task organizers set the maximum length of
the audio summary to be 60 seconds. Starting from the top, we include the audio
segments until the duration of the summary reaches 60 seconds. We re-rank the
top-ranked audio fragments based on their original order in the podcast episode. The
final summary is then a sequence of relevant audio segments, following the order of
their appearance in the podcast episode.

Abstractive summary generation The text summaries are generated using a
filtered set of sentences from the podcast episode. Similar to the audio summary, we
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take the top-ranked sentences from each of the ranked audio-text pairs to obtain a set
of sentences that have the highest relevance within the podcast episode.

To generate a fluent and concise summary, we apply an abstractive summarization
step on top of the selected sentences. The abstractive summarization system relies
on LongFormer Encoder-Decoder architecture (LED) [9] that can handle long text
sequences. This model is based on the transformer architecture while introducing
some modifications to reduce the computational complexity of the attention mecha-
nism. Instead of computing the attention between each token and all the others in
the sequence, the attention is only computed between the current token and a local
window of nearby tokens. This allows us to process long sequences of text while
significantly reducing the computational cost of both model training and inference.

In order to generate text summaries that closely match the description provided
by the podcast author, we fine-tune the pre-trained LED model on the Spotify Podcast
dataset [28] which is used for the TREC podcast track. We use the output of the
selection step as the training data to fine-tune the model. The maximum number of
sentences that can be input into the model is set to 50. During testing, we use the
fine-tuned model to generate podcast summaries leveraging the top-ranked sentences
derived from the selection process. In the experimental section, we investigate the
impact of three parameters for the abstractive summarization model: the minimum
and maximum summary length and the number of input sentences.

6.3.3 Experimental evaluation

In order to determine the effectiveness of the proposed systems, track’s organizers
conduct a manual evaluation of each run submitted by task’s participants (i.e., each
team can submit up to 4 runs). Human assessors evaluate the overall quality of the
written summaries on a four-step scale: Excellent (4), Good (3), Fair (2) and Bad (1).
They also provide explicit evaluation of some specific characteristics of the summary
according to a set of boolean attributes [75].

Q1 Does the summary include names of the main people (hosts, guests, characters)
involved or mentioned in the podcast?

Q2 Does the summary give any additional information about the people mentioned
(such as their job titles, biographies, personal background, etc)?
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Q3 Does the summary include the main topic(s) of the podcast?

Q4 Does the summary tell you anything about the format of the podcast; e.g.
whether it’s an interview, whether it’s a chat between friends, a monologue,
etc?

Q5 Does the summary give you more context on the title of the podcast?

Q6 Does the summary contain redundant information? In this specific case, lower
scores are better.

Q7 Is the summary written in good English?

Q8 Are the start and end of the summary good sentence and paragraph start and
end points?

The audio summary is evaluated by using a binary scale; the assessor provide a
positive judgement when the audio captures the essence of the podcast, a negative
score otherwise. The questions can be grouped according to their target. The first
group (Q1-Q2) aims at measuring the effectiveness of the summarization model in
capturing the main people involved in the podcast, as well as their attributes. The
second group (Q3-Q5) evaluates the ability of the proposed system to identify the
main topic(s) of the podcast, and to provide relevant context. Finally, Q6 evaluates
the redundancy of the summary while Q7-Q8 assess its grammar and overall fluency
in written English.

Podcast data collection The training data for the podcast summarization task is
based on the Spotify Podcast Dataset [28] and contains the audio file and transcript
of 100,000 podcast episodes, together with the corresponding descriptions provided
by the authors. Following the same approach used in MATeR (see Section 6.2.1), we
filter podcast’s descriptions to remove advertising and non-relevant information.

The test set, instead, is provided from task organizers and do not overlap with
training data. It includes 1,000 podcast episodes, and only the audio files and their
transcripts are provided to the participants.

System configuration Participants are allowed to submit up to four runs, each
with a different system configuration. The proposed method combines the selection
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of N top-scored audio-text pairs with the generation of summaries having minimum
and maximum length ml and Ml respectively. Therefore, we submit four systems
with different values for N, ml and Ml to evaluate the contribution of the selection
and rewriting phases.

• N = 25, ml = 32, ML = 128 (hereafter, 25,32−128): the input of the summary
generation module consists of the 25 top-scored sentences. The final summary
has a minimum length of 32 words and can be up to 128 words long.

• N = 50, ml = 32, ML = 128 (hereafter, 50,32− 128): same settings as the
first system but with the number of selected sentences increased to 50. The
selection model in this case provides more information as input to the summary
generation module.

• N = 50, ml = 64, ML = 128 (hereafter, 50,64−128): in this case, the length
of the output summary is constrained to be at least 64 words, thus forcing the
summary to be longer and more descriptive.

• N = 100, ml = 32, ML = 128 (hereafter, 100,32−128): in this run, the num-
ber of top-scored sentences is increased to 100 to provide more information
to the summary generation module. The selection phase, in this case, is less
effective and may provide some redundant or non-relevant information to the
summary generation module.

The audio summaries generated by the proposed system do not differ across
different runs. Indeed, the summary is automatically generated based on the ranked
list of audio-text pairs to met the audio length constraint. Only the textual summary
differs between the proposed runs.

Results The assessors were asked to evaluate a subset of 193 podcast episodes
randomly sampled from the test set. The results of the proposed system are shown
in Table 6.4. Our model is compared against the baseline provided by the task’s
organizers that extract the first minute of a podcast episode as an audio summary and
use its transcription to produce the textual summary.

Analyzing the score for the audio summary, all our submissions outperforms the
baseline proposed by the organizers. This could be mainly due to the multimodal
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Table 6.4 Human evaluation results. The highest score for each assessment question is
highlighted in bold.

Model (N,ml−ML) Quality Q1 Q2 Q3 Q4 Q5 Q6 ↓ Q7 Q8 Audio

baseline 0.772 0.549 0.326 0.606 0.427 0.536 0.451 0.456 0.187 0.957
25,32−128 0.974 0.354 0.255 0.645 0.513 0.523 0.183 0.806 0.594 0.978
50,32−128 0.860 0.323 0.234 0.615 0.437 0.500 0.204 0.811 0.615 0.989
50,64−128 1.010 0.378 0.285 0.682 0.503 0.562 0.292 0.715 0.536 0.983

100,32−128 0.917 0.333 0.256 0.606 0.446 0.497 0.182 0.776 0.601 0.994

nature of our system that uses information from both audio and textual data. Speaker
expressions, indeed, are often missed by automatic transcription, but can be exploited
by our system to generate more informative and engaging summaries.

Considering the quality score provided by the assessors for the textual summary,
we can see that our system is able to improve the quality of the summaries when
compared to the baseline. The highest quality score, in this case, is reached by
the system with higher ml threshold for the abstractive summary (i.e., the system
is required to generate a summary containing at least 64 tokens). This is in line
with what we expect, since the system is able to provide longer summaries and may
include more information for the end-user.

All the submitted runs, however, are significantly worse than the baseline consid-
ering the evaluation for Q1-Q2. Modern abstractive summarization models, indeed,
are able to provide fluent and concise summaries (e.g., better scores for Q6-Q8) but
often they are not factually accurate [115]. The simple baseline proposed by the
organizers, which is not based on neural networks, is able to provide more factually
accurate summaries. This result is expected, since the baseline does not account
the text rephrasing but rather extracts the first sentence of the podcast transcript
to form the summary. The use of neural networks to generate abstractive sum-
maries usually leads to higher levels of fluency and conciseness, but requires specific
countermeasures to preserve the factual accuracy.

Finally, when compared with the baseline, the summaries generated by our
approach achieves higher scores for Q3-Q5 indicating that our methodology is better
at identifying the main topic(s) of the podcast and provides relevant context for the
listener. Thus, selecting relevant content from the podcast first to remove redundant
content, and then generating a summary which focuses on the relevant parts further
validates our select and rewrite approach. According to the results of the human
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assessment, when compared with other participants, our system ranked first based
on the quality score of textual summaries while it ranked second when considering
audio summaries.

6.4 Challenges and opportunities of multimodal audio
analysis

In this chapter we presented our contribution to the analysis of spoken content for the
task of podcast summarization. The presented methodologies leverage multimodal
audio representations to create a system that efficiently summarizes podcast episodes
by extracting the most valuable information, and, potentially, generates more concise
and fluent summaries by using modern transformer models. The analysis of spoken
content poses several challenges that represent interesting research directions for
future works.

6.4.1 Multimodal nature of spoken content

Speech is multimodal by nature, and, as such, should be analyzed according to the
multiple sources of information that characterize it. Research in NLP has achieved
notable results by developing uni-modal approaches that mainly leverage text. Natu-
ral language processing and understanding, however, are rapidly evolving towards
multi-modal approaches that are able to exploit multiple sources of information that
can contribute to the understanding of the spoken content.

In this context, multimodal approaches can leverage complementary modalities
such as text and audio to build richer representations of the content and provide a
better understanding of the semantics of the underlying concepts. In this way, the
application of language processing techniques to the text modality can be supple-
mented with the use of specific audio processing techniques. This can contribute to
the generation of richer and more complete representations of the spoken content.

The generalization of uni-modal concepts to the multi-modal domain, however, is
not trivial, and requires the design of specific solutions that are able to effectively bind
and align the complementary sources of information to facilitate the understanding of
the speech. Aligning multiple modalities is actually challenging due to the difficulty
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of determining the mapping between multiple sources of information that can be
used to match and align the different modalities [87]. While the alignment of text and
visual modalities is a well-established and mature research field that has provided
effective solutions to the problem [148, 46], matching text and acoustic data remains
an emerging area of research that is still in its infancy.

The use of contrastive learning has shown to be an effective way to simplify
the process of aligning multiple modalities. The general idea is to learn data repre-
sentations in self-supervised manner by providing positive and negative examples
to a neural model. The use of those approaches to learn latent representations of
text and visual data is considered one of the most effective approaches to their
alignment [198]. Recent studies have demonstrated that contrastive learning can be
effectively used to align text and audio when combined with ad-hoc self-supervised
objectives [159].

6.4.2 Towards textless NLP models

As discussed in Section 6.1.2, spoken content does not necessarily have an accom-
panying written transcript, which can impede the development of data-driven NLP
methods. In addition, spoken content is characterized by complex acoustic phe-
nomena, such as disfluencies, hesitations, and mispronunciations, which are not
necessarily reflected in the transcript. Therefore, transcript-based NLP methods
may not be able to effectively handle spoken content and may be limited to a small
number of tasks and domains.

A recent trend in the NLP community is the development of textless NLP method-
ologies, which aim at developing NLP methods that do not require transcribed text.
Future development of the proposed methodology for audio summarization can be
extended to a textless framework by developing models for audio-only sequence
modeling, where the input to the model is raw speech waveforms, without any ac-
companying text. The use of these models can both eliminate the requirement of
transcripts, that may contain errors, and leverage low-level acoustic feature to learn
high-level representations.

Radicalizing the concept behind textless models, it is possible to envision that, in
the future, large textless models might be used to generate audio summaries (rather
than just selecting relevant sections of speech). Sequence-to-sequence models, that
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are currently the state of the art in text-based summarization tasks, can be adapted
to generate audio summaries by optimizing them for the analysis of raw speech
waveforms, as opposed to transcribed text. Using as input the speech signal, the
model can learn to (i) identify important sections of the speech using acoustic features
such as prosody, (ii) learn to conceptually abstract complex acoustic phenomena
such as hesitations and stutters, and (iii) generate the audio summary using the voice
of the original speaker.

Modeling such systems, however, is a challenging task that requires considerable
research efforts. First, the model must be capable of effectively modeling raw audio
waveforms, which have a high degree of variability and dimensionality. Second, it
must be trained using self-supervised learning, as large-scale annotations for audio
summaries are not readily available, and therefore it is not possible to train the
model using only manual annotations. Third, the model must be capable of modeling
the topic of the speech and generating a summary that is coherent and contains
content relevant to its topic. Finally, the generation of speech using a specific target
voice is a nontrivial task that relies on modeling the original speaker’s voice to
generate natural and intelligible speech. In light of the limitations of current voice
synthesis systems, this task remains challenging and requires specific attention from
the scientific community [23].

Ethical considerations The development of textless NLP architectures, including
generative audio models, raises a number of ethical considerations. First, the genera-
tion of realistic synthetic speech requires the inclusion of physical characteristics of
the voice, such as age, gender, and accents. If the model is not properly trained on a
diverse enough dataset, it may result in bias, which may be reflected in the gener-
ated speech. Second, the generation of synthetic speech may be used for malicious
purposes, such as creating fake audio content. The latter raises a number of ethical
considerations, including the possibility of generating misleading and false content
and the possibility of violating the privacy of the person that is imitated.

The discussion of future research directions needs to include such concerns,
even if they are not directly limited to the application of textless NLP in the context
of audio summarization. Indeed, the ethical considerations of developing audio
synthesis models are broader, and may be extended to the development of other
applications that use synthetic speech as input or output.



Chapter 7

Conclusions

The purpose of this dissertation was to examine the use of deep learning in the
domain of Natural Language Processing and its application to the summarization task.
Although access to large amounts of information is considered a major advantage of
the modern world, it also entails a strain on the cognitive processes of individuals
The sheer volume of information available on the Internet, for example, has resulted
in information overload, a condition in which individuals may be overwhelmed
by the amount of information available. The abundance of content has also led to
an increase in the need to automatically distill relevant information from multiple
sources.

NLP can help reduce information overload by providing methods that are able
to automatically process and understand linguistic information. Throughout this
dissertation, we present applications of deep learning, a subset of machine learning
that is especially well-suited to process unstructured or complex data, including
natural language. We specifically focus on the task of summarization whose aim is
to provide a concise and coherent overview of a document while retaining its most
important information.

The need for effective summarization models is particularly important in academia,
in which scholars are often required to assess large amounts of literature to keep up
with the latest advances in their field. Besides understanding and reading the papers,
they should be able to quickly identify the key points and main contributions of each
article. In this context, we leverage the understanding of citation context to auto-
matically identify the purpose of a citation. By exploiting both the citation context
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and the full-text of the referenced paper we propose a classification model that is
able to detect whether reading the target paper is likely to be useful to understand
the citing paper. We then turn our attention on the task of extracting highlights from
the full-text of scientific publications, that consist in short sentences, in bullet-point
format, that provide a quick overview of the publication’s results. By leveraging
linguistic and structural characteristics of the text, we propose a machine learning
model that can automatically identify highlights within scientific publications. In
the academic domain, however, identifying the different aspects of a paper is crucial
to a comprehensive understanding of the work. Toward this end, we also propose a
methodology that automatically identifies discourse facets in a given publication and
produce a summary tailored to each of them. Finally, we explore the applicability of
unsupervised summarization models for automatically generating slides presentation
for a research paper. Researchers often use slides to disseminate their work, and
their automatic generation could greatly reduce their workload.

Information overload, however, is a general phenomenon that does not affect
only the academic world. In our daily lives, we are constantly overburdened with
information, which can often make it difficult to select the information we need to
focus on. This is especially true for online news, where there are so many articles
published every day that it is impossible to read them all. Therefore, we address
the task of automatically summarizing news stories by considering the temporal
aspect of the information. We tackle the timeline summarization task whose goal
is to provide a summary for a list of news articles pertaining to a specific topic.
First, we summarize the events that occurred at each date, and then we combine the
information to create a single timeline that includes both the most significant dates
and the most significant events that occurred at those dates. Furthermore, we examine
whether cross-lingual settings can be used to improve timeline summarization by
leveraging information in multilingual news corpora.

Aside from text, spoken content is another source of information that we use on a
regular basis. Increasing availability of multimedia content, such as audio and video,
has made it possible to access a vast amount of information that was previously
unavailable. Automatically processing this type of content is often more difficult than
processing text, as it requires the ability to recognize and understand spoken language.
In our contribution, we focus on the problem of automatic summarization of audio
content, specifically podcasts. Audio podcasts have become increasingly popular,
as they provide a convenient way to consume information while commuting or



7.1 Future research directions 115

doing other activities. Due to the wide variety of podcasts available, it is difficult for
listeners to retrieve the most relevant content. Therefore, automatic summarization of
podcasts helps listeners quickly find the information they are looking for. We tackle
the problem using both extractive and abstractive summarization approaches. In the
extractive approach, we leverage a multimodal ranking model that exploits both the
audio signal and the speech transcription to identify the most important segments.
The abstractive approach, first selects important segments using multimodal ranking,
and then leverages them to generate a summary using a sequence-to-sequence model.

In conclusion, we presented several methods for automatic summarization of text
and audio content that can be used to effectively handle information overload. We
found that deep learning techniques efficiently and effectively learn representations
of text and audio suitable for the summarization task. The versatility of deep learning
for natural language understanding, and specifically its potential for automatic
summarization, was demonstrated by investigating a variety of different domains.
These methods can help us cope better with information overload and make better
use of the overwhelming amount of information available to us.

7.1 Future research directions

In addition to the future research directions that are already outlined for each chapter,
we would like to mention a few additional general areas where we believe further
research should be conducted.

The computational cost of training and testing the models is a common challenge
in all the tasks we have covered and, more broadly, in all methodologies that use deep
learning models. As the models become more complex, training becomes more time-
consuming, and, in some cases, it becomes prohibitive to retrain the models from
scratch. Transfer learning [38, 3] could provide a solution, which consists of reusing
models that have already been trained on large amounts of data. The approach is
very effective and has largely been responsible for deep learning’s success in the
past few years, but it also has some limitations. Firstly, even fine-tuning a large,
state-of-the-art model requires considerable computational resources, which may not
be available to many researchers. Secondly, fine-tuning a pre-trained model might
not be the ideal solution for all tasks, as, in some cases, using different pre-training
objectives or starting from scratch may be more effective [57]. In this context, it is
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important to develop methods that can train large models efficiently or can reduce
the model size without significantly affecting performance [163].

Another relevant direction for future work is to develop methods that are able to
generalize to different modalities. In the context of podcast summarization, we have
already explored the use of audio and text modalities. However, other tasks might
also benefit from using multiple modalities, such as visual and textual modalities for
video summarization. Considering deep learning research at a high level, most of the
architectures still rely on induction biases to achieve good generalization on specific
modalities. In the future, it would be possible to design modality-agnostic machine
learning models which can be generalized to any type of input data by developing
techniques that are not biased towards a specific modality. Perceiver [71] and
Data2Vec [2] are recent examples of architectures that can learn data representations
that are agnostic to the input data modality.
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