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Abstract

Recent years have seen the emergence of Machine Learning models, which are accurate
but lack transparency in their decision-making processes. The field of Explainable Artifi-
cial Intelligence has emerged to address this issue, but many questions remain unanswered.
This Ph.D. Thesis presents two key contributions: (i) a novel variant of a local rule-based
explanation method that provides stable and actionable explanations, and (ii) an investi-
gation into the relationship between Data Privacy and Explainable Artificial Intelligence,
examining their synergies and tensions.

For (i), an improvement of a local explanation method is designed, using factual logic
rules to explain black-box decisions and providing actionable counterfactual logic rules for
suggesting changes in instances to achieve different outcomes. Explanations are generated
from a decision tree that mimics the local behavior of the black-box model. The decision
tree is obtained through a stability and fidelity-driven ensemble learning approach, where
neighbor instances are synthetically generated using a genetic algorithm guided by the
black-box behavior.

Regarding (ii), two perspectives on privacy are addressed: (a) how Explainable Artificial
Intelligence can enhance individuals’ privacy awareness and (b) how Explainable Artificial
Intelligence can compromise privacy. A framework called Expert is developed to predict
users’ privacy risk and provide explanations, focusing on human mobility data. Addition-
ally, a visualization module is incorporated to display mobility data explanations on a map.
To assess privacy exposure, instead, a new membership attack for Machine Learning mod-
els is proposed, and a methodology called reveal is introduced to evaluate the privacy
risks associated with local explainers based on surrogate models. The experimental analy-
sis demonstrates that global explainers pose a more significant threat to individual privacy
compared to local explainers.

These findings highlight the delicate balance between explainability and privacy in de-
veloping Artificial Intelligence systems.
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Chapter 1

Introduction

In the modern world, people are generating an enormous amount of data through their
use of social media, apps, websites, and other digital tools. During the last few years,
the availability of smartphones and wearable devices, technologically highly sophisticated,
allow us to track numberless statistics about users, starting from the movements during
the day, the appointments and commitments, as well as the social interactions. Companies
and organizations exploit this data to gain a better understanding of their customers and
provide more personalized experiences. In particular, the abundance of data available allows
for advanced analyses and research that were once impossible. Given this data-rich setting,
in the past few years, there has been a significant increase in research related to Data
Mining, Machine Learning, and Artificial Intelligence, with applications in a wide range
of fields, including economics, marketing, and healthcare. We actually employ Artificial
Intelligence systems every day of our lives for a multitude of tasks: from language translators
to recommendation systems that can suggest movies, music, and contacts to marketing
chatbots and automated financial investing or social media monitoring. However, the use
of these new technologies gives rise to several concerns.

In fact, the increased reliance on data threatens the Privacy of people whose data are
used for the purposes mentioned above. In particular, the public release of human data
issues concerns about personal information being leaked or individuals being re-identified,
even if the data has been de-identified. One reason for this is that meta-identifiers such as
behavior or address can still be utilized to recognize specific individuals within a dataset.

When employing Machine Learning and Artificial Intelligence techniques, privacy issues
are harder to perceive and identify, but privacy risks always exist. Indeed, these kinds of
models are often trained on sensitive data, such as medical records, weblogs, or human
mobility data, which can lead to the disclosure of personal information through the discov-
ery of hidden patterns. Their learning and use lead to the attribute disclosure problem,
where personal information is revealed, or even the identity disclosure problem, where the
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individual can be re-identified. To address these concerns, Europe introduced the General
Data Protection Regulation (GDPR) [1], aimed at protecting individuals’ privacy rights.

The scientific research in this area is focused on studying two main challenges: how to
evaluate privacy risks and how to design effective privacy protection methods. Privacy risk
evaluation techniques involve using Machine Learning and statistical models to assess the
level of privacy risk to users in a given dataset. Privacy protection methods aim to minimize
the risk of user re-identification by ensuring a minimum level of privacy protection.

In recent years, several methods combining privacy risk evaluation and privacy protec-
tion techniques have been proposed [2–4]. These methods first evaluate the user’s risk and
then apply privacy protection methods to minimize the risk. To assess the privacy risk,
different techniques can be used to simulate various re-identification attacks, depending on
the attacker’s level of knowledge. Based on the results of the evaluation, the appropriate
anonymization method can be applied to reduce the user’s risk.

However, these techniques have some limitations. First, the algorithms employed may
not be efficient or scalable, making them unsuitable for processing large datasets. Indeed,
these algorithms require computing the privacy risk for all possible background knowledge
that an attacker may possess, which is time-consuming [5]. Additionally, these techniques
assume a static dataset as input and are not incremental, meaning that if a record changes,
the computation of the privacy risk must be restarted from the beginning. In an era
with millions of new records generated per hour, this approach is not ideal. Another
limitation is that re-identification techniques are data-dependent, and the type of input
data determines the type of theorized attack. This limitation requires developing new re-
identification attacks for each new type of data. Finally, these techniques are developed
from the companies’ perspective and not the user’s, as the attacks are tailored to an entire
dataset and not to the evaluation of a single individual’s privacy risk.

Recently, with the advent of Machine Learning, the Data Privacy scenario changed.
When working in this setting, in fact, the sensitive data employed in the training of the
models can be kept private, avoiding the release of them to the public. However, several
attacks on the privacy of Machine Learning models have been published recently. In fact,
these models, during the training phase, learn information from sensitive data, which can
then be exploited by a malicious attacker to undermine the privacy of people within the
training dataset. Examples of such privacy attacks are the Membership Inference Attack,
with the goal of determining the membership of a person to the original training dataset,
or the reconstruction attacks.

To address these challenges, several privacy-preserving techniques have been proposed
in the literature. Differential privacy [6] is one of the most prominent approaches to privacy
protection in the context of data analysis. It provides a rigorous mathematical definition of
privacy, which ensures that the inclusion or exclusion of an individual’s data in a dataset
does not affect the outcome of the analysis significantly. Differential privacy can be applied
either to the original dataset or to the Machine Learning model. In both cases, it achieves
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privacy protection by adding random noise to the output of the analysis, which ensures
that an individual’s data cannot be inferred from the output. This technique has been
successfully applied to a variety of data analysis tasks, including Machine Learning [7, 8].
However, the addition of noise may also affect the accuracy of the analysis, which can
be a trade-off between privacy and utility. Another approach to protecting privacy is
homomorphic encryption, which enables the analysis of encrypted data without the need
to decrypt it [9]. This technique ensures that the data remains secure while enabling the
analysis to be performed. However, homomorphic encryption is still in its infancy, and the
techniques are computationally intensive, which limits their practical use.

The usage of Machine Learning models endangers not only user privacy but also the
transparency and ethical integrity of the decision-making process. These models, often
referred to as ”black-box models,” are complex and opaque, making it difficult to compre-
hend the process behind their decisions. Black-box models, such as Deep Neural Networks,
Ensemble classifiers, and Support Vector Machines, are frequently used by Artificial Intelli-
gence systems due to their high accuracy, but they can also be trained on biased and unfair
datasets, leading to unfair or incorrect decisions. The reliance on these opaque models
poses a risk of violating ethical principles and creating decision systems lacking in trans-
parency. Companies across various industries have begun integrating black-box models into
their products and applications, which can result in safety and liability concerns. In safety-
critical applications like medicine, finance, and automation, this is especially relevant. The
GDPR introduced a set of clauses also for automated decision-making in response to these
concerns, including the “right of explanation” for individuals to obtain “meaningful ex-
planations of the logic involved” when automated decision-making is employed. However,
the implementation of such a principle is challenging, and it requires technology capable of
explaining the logic for the decisions of black-box models. Without such technology, the
right to an explanation will remain a distant goal. Therefore, the need for an explanation
technology is urgent and represents a significant scientific challenge. For these reasons, the
field of Explainable Artificial Intelligence is nowadays one of the most studied. However,
there are several challenges.

As a first concern, explanations can be provided at different levels of granularity and
can target different stakeholders [10]. For example, explanations can be provided at the
individual level to explain the prediction for a specific instance or at the group level to
explain the behavior of the model for a specific subgroup of instances [11]. Explanations can
also target different audiences, such as domain experts, non-expert users, or regulators [12].

One of the most interesting challenges is to develop generalizable explanation techniques
that work across different types of models and domains, obtaining an agnostic method. An-
other challenge is to ensure that the explanations provided are meaningful and actionable for
the intended audience [13]. Finally, there is a need for evaluation metrics and benchmarks
to assess the quality of the explanations provided by different techniques [14–18].

The use of Machine Learning algorithms presents two main limitations: they might
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jeopardize privacy, and their complexity makes it challenging for humans to comprehend
them, leading to difficulties in evaluating their effectiveness. Privacy issues and lack of
transparency in the use of Machine Learning models are widely acknowledged in various
regulations and documents, both in Europe and worldwide, indicating their significance in
ensuring ethical Artificial Intelligence practices. These concerns are specifically highlighted
in the Ethics Guidelines For Trustworthy AI1, a crucial publication by the High-Level
Expert Group on Artificial Intelligence. Although these two issues may initially seem
distinct, they are actually interconnected [19–21]. Providing explanations to users can
address the need for transparency but may compromise the privacy of other users whose
information is revealed in the explanation. On the other side, techniques like differential
privacy, used to protect user privacy, may affect the accuracy and transparency of the
model, obtaining explanations that are not faithful to the original data [22].

This Ph.D. Thesis is funded by the XAI European Project ERC (Grant Id 834756).

1.1 Contribution and Organization of the Thesis

This Ph.D. thesis addresses two key research questions. The first question is whether it
is possible to provide stable and actionable explanations that help users understanding
how Artificial Intelligence systems work and why they make certain decisions. The second
research question concerns the relationship between Privacy and Explainability. We explore
how Explainable Artificial Intelligence methods can help understanding users’ privacy risks
by providing more transparency into the decision-making processes of Artificial Intelligence
systems. However, we also examine the potential privacy exposure associated with the
explanation methods, particularly with regard to surrogate-based explainers.

The thesis begins with Part I, which first provides an overview on the types of data
and Machine Learning models used throughout the rest of the thesis (Chapter 14); then,
it presents an overview of the literature related to Explainable Artificial Intelligence and
Privacy in Chapter 2 and Chapter 3, respectively. Chapter 4 concludes this part by dis-
cussing the laws and rules that try to govern the Artificial Intelligence field. The content
of Chapter 2 is mainly based on material that appeared in the following publication:

Francesco Bodria, Fosca Giannotti, Riccardo Guidotti, Francesca Naretto, Dino
Pedreschi and Salvatore Rinzivillo. Benchmarking and Survey of Explanation
Methods for Black Box Models, Accepted to Data Mining & Knowlege Discovery,
2023.

Part II addresses the first research question, starting with a benchmark of existing ex-
planation methods. Based on this evaluation, we propose a new, local, post-hoc explanation

1Link to the Ethics Guidelines for a Trustworthy AI
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method that is more stable and actionable than existing approaches. This method gener-
ates rules and counterfactuals that can be used to improve the interpretability of Artificial
Intelligence systems. This Part is composed of two chapters, the first one, Chapter 5, in
which is presented the benchmark of explanation methods available in the literature, and
the second one, Chapter 6, that defines a new explanation method. This Part is mainly
based on the works that appeared in the following publications respectively:

Francesco Bodria, Francesca Naretto, Fosca Giannotti, Dino Pedreschi. Bench-
mark analysis of black-box local explanation methods. XAI.it - Italian Workshop
on Explainable Artificial Intelligence, pages 73-87, 2022.

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Francesca Naretto, Franco
Turini, Dino Pedreschi and Fosca Giannotti. Stable and actionable explanations
of black-box models through factual and counterfactual rules. Data Mining and
Knowledge Discovery, 2022

Finally, in Part III, we explore the relationship between Privacy and Explainability in
greater depth. We analyze how explanations can help users become more aware of their pri-
vacy risks, as well as the potential privacy risks associated with surrogate-based explainers.
In particular, in the first part we tackle the possible synergies between Explainable Artifi-
cial Intelligence and Privacy, focusing on the task of privacy risk assessment. The literature
in this setting evaluates the data privacy risk of people by simulating privacy attacks, ex-
ploiting some well established framework, such as PRUDEnce [2]. However, these methods
have high computational complexity, provoking practical limitations in online user-centric
applications that require an up-to-date privacy exposure indicator. For this reason, we pro-
pose and develop Expert, a framework which exploits Machine Learning models to predict
the privacy risk. In addition, this framework also provides users with explanations. In this
way, the explanations are exploited to increase the user understanding about their privacy
risks. This contribution presented in Chapters 8 & 9 is based on the following publications:

Francesca Naretto, Roberto Pellungrini, Anna Monreale, Franco Maria Nardini,
Mirco Musolesi. Predicting and Explaining Privacy Risk Exposure in Mobility
Data, Discovery Science - 23rd International Conference, DS 2020.

Francesca Naretto and Roberto Pellungrini and Nardini, Franco Maria and
Fosca Giannotti. Prediction and Explanation of Privacy Risk on Mobility Data
with Neural Networks, ECML/PKDD 2020 Workshops, XKDD2020.

Francesca Naretto, Roberto Pellungrini, Daniele Fadda, Salvo Rinzivillo. EX-
PHLOT: EXplainable Privacy assessment for Human LOcation Trajectories,
Submitted to ECML/PKDD 2023.
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After the presentation of possible synergies, in Part IV we analyze the possible tensions
about Privacy and Explainable Artificial Intelligence. We begin this part with Chapter 11
which present the definition of a novel membership attack, namely Aloa, in which the main
objective is to infer the membership of some records with minimum amount of attacker’s
information. Following, in Chapter 12 we propose a privacy risk assessment framework
for local and global explainers and we demonstrate that they may lead to higher privacy
exposure compared to black-box models. The works on which this Part is based are the
following:

Simone Rizzo, Francesca Naretto, Anna Monreale. Agnostic Label-Only Mem-
bership Inference Attack. Submitted to 17th International Conference on Net-
work and System Security, 2023.

Francesca Naretto, Anna Monreale, Fosca Giannotti. Evaluating the Privacy
Exposure of Interpretable Global Explainers, The Fourth IEEE International
Conference on Cognitive Machine Intelligence (CogMi), 2022.

Francesca Naretto, Anna Monreale, Fosca Giannotti. Evaluating the Privacy
Exposure of Interpretable Global and Local Explainers. Submitted to

Our findings sheds light on the delicate balance that must be struck between explainabil-
ity and privacy in the development of Artificial Intelligence systems. Through this research,
we hope to contribute to developing more secure, transparent, and ethical AI systems that
can benefit society while respecting individual Privacy and rights.
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Part I

Setting the stage
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The extensive use of Machine Learning algorithms across a range of domains, including
healthcare, finance, and social media, has given rise to concerns about the potential privacy
violations faced by individuals, as well as the possibility of bias or discrimination in the
outputs generated by Artificial Intelligence models. Additionally, ensuring the explainabil-
ity of Artificial Intelligence has become crucial in building trust and accountability in these
systems. In fact, users and stakeholders are often skeptical about the usage of these systems
due to their opaqueness. The significance of this issue is also due to the current legislation,
such as the General Data Protection Regulation, which governs the use of personal data,
and the Artificial Intelligence Act, which was recently published and regulates the use of
Artificial Intelligence systems. The goal of this Ph.D. thesis is to delve into the theoretical
foundations, algorithms, and practical applications of both Data Privacy and Explainable
AI, and to propose innovative solutions to tackle the challenges and trade-offs between these
two concepts.

The first Part of this Ph.D. Thesis provides an overview of the fundamental concepts and
algorithms necessary for understanding the research presented in this work, focusing on the
two core research areas of Privacy and Explainable Artificial Intelligence. The Part begins
by outlining the background and motivation for the research conducted, which includes a
comprehensive review of the relevant literature.

The related literature about Explainable Artificial Intelligence is described in details
in Chapter 2, while the state of the art in the context of Privacy is presented in Chapter
3. Regarding the Explainable Artificial Intelligence topic, the Chapter starts with a pre-
sentation of the taxonomy of the field, presenting the core concepts, such as the difference
between local and global explanations, and post-hoc and intrinsic methods. In Section 2.2,
the state-of-the-art in the field of explanation methods for tabular data is presented, or-
ganized depending on the kind of output of the explanation methods: feature importance,
rule, counterfactual and example. In particular, we present Lime, Lore and Shap, three
local post-hoc tabular explanation methods exploited in this Thesis, as well as trepan, a
global post-hoc explanation method based on trees. Following, in Section 2.3, it is reported
the state-of-the-art explanation methods for sequential data, such as Attention methods
and Shaplets-based methods. The Chapter concludes with a description of the evaluation
measures for validating the goodness of explanations, in Section 2.4. In this last part, we
present two different kind of evaluation metrics: qualitative, based on the user experience,
and quantitative, based on the mathematical validation of the output of the explanation
methods.

Following the topic of Explainable Artificial Intelligence, we present the other core topic
of this Thesis, which is Privacy, in Chapter 3. This Chapter begins by describing the various
algorithms and methods used in the field of Data Privacy, including a detailed explanation
of their underlying principles, which are the basis for the majority of the works presented
in the rest of the Thesis. The topic of Privacy is composed of two main research fields: the
Privacy Risk Assessment, in which the objective is to evaluate the privacy risk exposure of
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the data under analysis, and the Privacy Protection, in which protection mechanisms are
proposed to shield the Privacy of the users. The Privacy Risk Assessment is a core topic in
this Thesis and is presented in Section 3.2: firstly we describe the privacy risk assessment
methodologies available in the state-of-the-art for assessing the Privacy on a given dataset.
We then deal with the assessment of privacy exposure in the context of Machine Learning
models, which is a recent threat to the sensitive data of the users which are part of the
training data of the model. Lastly, we present the Privacy Protection mechanisms, such
as K-anonymity and Differential Privacy. We conclude this Chapter with a description of
the concept of Privacy by design and User Centric Privacy Protection Methods, which are
inspiring concepts for the problems tackled in this Thesis.

We conclude this Part by presenting the existing regulations for Explainable Artificial
Intelligence and Privacy in Chapter 4, focusing on the General Data Protection Regulation
and the recently published Artificial Intelligence Act.

By the end of this Chapter, the reader will have a comprehensive understanding of the
theoretical and practical aspects of the research in the field of Data Privacy and Explainable
AI, which will serve as a foundation for the subsequent chapters that delve into the details
of the studies. In reference to the Data and Machine Learning models utilized in the
subsequent Sections of this Thesis, their detailed presentation is omitted from this Section
due to its already extensive length. It is important to acknowledge that these data and
machine learning models are widely accepted and established within the current state of
the art. This is not the case for the literature related to Explainable AI and Privacy, where
we focus on recent research and the emerging challenges. For this reason, we prefer to
present in this Part these concepts in details, while a more comprehensive understanding of
the formalization of the employed data and the specific types of machine learning models
employed, we refer interested readers to consult the Appendix 14.
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Chapter 2

Explainable Artificial Intelligence

Today Artificial Intelligence is one of the most important scientific and technological ar-
eas, with a tremendous socio-economic impact and a pervasive adoption in many fields
of modern society. The impressive performance of Artificial Intelligence (AI) systems in
prediction, recommendation, and decision making support is generally reached by adopting
complex Machine Learning (ML) models that “hide” the logic of their internal processes.
As a consequence, such models are often referred to as “black-box models” [23–25]. Ex-
amples of black-box models used within current AI systems include deep learning models
(neural networks with several layers) and ensemble models, such as Random Forest (rf)
and GCForest (GcForest), presented in Section 14. The high performance of such models
in terms of accuracy has fostered their adoption, even if the opaqueness of black-box models
may hide potential issues inherited by training on biased or unfair data [26]. Thus there is
a substantial risk that relying on opaque models may lead to adopting decisions that we do
not fully understand or, even worse, violate ethical principles. Companies are increasingly
embedding ML models in their AI applications, incurring a potential loss of safety and
trust [27]. These risks are particularly relevant in high-stakes decision making scenarios,
such as medicine, finance and autonomous systems. In 2018, the European Parliament
introduced in the GDPR, a set of clauses for automated decision-making in terms of a right
of explanation for all individuals to obtain “meaningful explanations of the logic involved”
when automated decision making takes place. Also, in 2019, the High-Level Expert Group
on AI presented the ethics guidelines for trustworthy AI. Despite divergent opinions among
legals regarding these clauses [28–30], everybody agrees that the need for the implementa-
tion of such a principle is urgent and that it is a huge open scientific challenge. An in-depth
analysis on the regulations for AI systems and Data Privacy is proposed below, in Section
4.

As a reaction to these practical and theoretical ethical issues, in the last years, we
have witnessed the rise of a plethora of explanation methods for black-box models [14,
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16, 23] both from academia and from industries. Thus, eXplainable Artificial Intelligence
(xai) [31] emerged as investigating methods to complement AI, to make accessible and
interpretable the internal logic and the outcome of the model, making such process human
understandable. Due to the increasing interest into this subject, the landscape of xai is
nowadays enormous. For this reason, in Section 2.1 we first present the taxonomy we
refer to for this Thesis. Following, we describe the state-of-the-art methods for explaining
tabular data, in Section 2.2, as well as the methods for sequence data, in Section 2.3. All
the material presented in this Section is part of a survey on xai published in [11]. Given
the speed at which new algorithms are being published in this area, the same taxonomy
presented below and categorization adopted in our work are exploited in a XAI Live Survey1

where the existing methods are further analyzed and continuously updated with emergent
approaches.

In the following, we first present the taxonomy of xai, in Section 2.1, describing the
main structure of the methods available in the field. Then, we move to explanation methods
for tabular data, presented in Section 2.2. The description of these methods is organized
depending on the kind of output explanation considered, namely feature importance, rules,
counterfactuals and examples. We then present the methods for sequence data, in Section
2.3, also in this case they are presented based on the kind of output explanations. Lastly, we
conclude the Chapter by presenting the actual state of the art in the context of evaluation
measures for xai methods, in Section 2.4.

2.1 Explainable Artificial Intelligence taxonomy

In this Section we present a novel taxonomy of xai methods based on the type of explanation
returned. The categorization presented here refers to the Survey [11], written during my
Ph.D. In this work, we highlighted the need for an updated systematic categorization of
explanation methods, based on the type of explanation returned. Our approach aims at
proposing a categorization from the point of view of the users. In fact, a user which
requires an explanation first know which data he/she is dealing with, then the type of
explanation they can have for that data type, and finally, he/she can select the best xai
method that can be used to obtain such explanation among the available one, comparing
the properties offered by the method as well as a first general evaluation. Hence, our fist
division regards the kind of input data used and the kind of explanation the user is looking
for. A general overview of the landscape of xai methods is presented in Table 2.1: in this
table are present the most popular kinds of data and explanation kinds. A reader should
use Table 2.1 as follows. First, he/she should identify through the column header the data
type of her problem setting. After that, each row offers an alternative type of explanation
with an example. For instance, if we are interested in images, we should look to the

1https://kdd-lab.github.io/XAISurvey/
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second column. Here we can find saliency maps and concept attribution as image-specific
explanation types. The last rows reports visualizations and examples of prototypes and
counterfactuals, i.e., instance-based explanations, which are available independently from
the data type analyzed. Finally, once the reader has selected the desired/most-suitable
explanation type on Table 2.1, she can find in the corresponding section an overview of the
most well-known and used explanation methods able to return that kind of explanation.
For the sake of completeness, other types of data, increasingly present in literature, such
as graphs [32] and time series [33], have been included in a separate section.

To summarize the taxonomy of the xai methods, we propose a small diagram, in Fig-
ure 2.2. In the following, we summarize the fundamental distinctions adopted to annotate
such approaches presented in Figure 2.2:

- INtrinsically (IN) explainable methods are explainable by design methods that re-
turns a decision, and the reasons for the decision are directly accessible because the
model is transparent.

- Post-Hoc (PH) explanation methods are black-box explanation are that provides ex-
planations for a black-box model that takes decisions.

- Global (G) explanation methods aim at explaining the overall logic of a black-box
model. Therefore the explanation returned is a global, complete explanation valid for
any instance;

- Local (L) explainers aim at explaining the reasons for the decision of a black-box
model for a specific instance.

- Model-Agnostic (A) explanation methods can be used to interpret any type of black-
box model;

- Model-Specific (S) explanation methods can be used to interpret only a specific type
of black-box model.

In addition to the taxonomy just presented, it is worth mentioning that in the context of
xai there are different terms and definitions used differently according to different areas
of the field. In the following we clarify the most popular terms in this context with the
definition we refer to in the remaining of this Thesis:

- Explanation [16, 23] is an interface between humans and an AI decision-maker that
is both comprehensible to humans and an accurate proxy of the AI. Consequently,
explainability is the ability to provide a valid explanation.

- Interpretability [23], or comprehensibility [34], is the ability of stakeholders to under-
stand relevant aspects of the modeling process. Interpretability and comprehensibility
are tied to the evaluation of the model complexity.
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Figure 2.2: Existing taxonomy for the classification of explanation methods.

- Transparency [16], or equivalently understandability or intelligibility, is the capacity
of a model of being interpretable itself. Thus, the model allows humans to direct
understand its internal mechanism and its decision process.

- Complexity [10] is the degree of effort required by a user to comprehend an explana-
tion. The complexity can consider the user background or eventual time limitation
necessary for the understanding.

2.2 XAI for Tabular data

In this section, we present a selection of approaches for explaining decision systems acting
on tabular data. In particular, we present the following types of explanations based on:
Features Importance (FI, Section 2.2.1), Rule (RB, Section 2.2.2), Prototype (PR) and
Counterfactual (CF) (Section 2.2.5). Table 2.1 summarizes and categorizes the explainers.
The methods are sorted by the explanation type they produce. For every explanation
method is provided the author name, the year of publication, and the data type it can
handle. In addition, Table 2.1 specifies if the method is intrinsic (IN) or Post-hoc (PH), if
it provides Global explanations (G) or Local one(L), and if it is an Agnostic method(A) or
a model Specific one (S). Methods with code available are highlighted in blue.

2.2.1 Feature Importance for Tabular data

Feature importance is one of the most popular type of explanation returned by local expla-
nation methods. For feature importance-based explanation methods, the explainer assigns
to each feature an importance value which represents how much that particular feature was
important for the prediction under analysis. Formally, given a record x, an explainer f(·)
models a feature importance explanation as a vector e = {e1, e2, . . . , em}, in which the value
ei ∈ e is the importance of the ith feature for the decision made by the black-box model b(x).
For understanding the contribution of each feature, the sign and the magnitude of each value
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ei are considered. W.r.t. the sign, if ei < 0, it means that feature contributes negatively
for the outcome y; otherwise, if ei > 0, the feature contributes positively. The magnitude,
instead, represents how great the contribution of the feature is to the final prediction y. In
particular, the greater the value of |ei|, the greater its contribution. Hence, when ei = 0 it
means that the ith feature is showing no contribution for the output decision. An example of
a feature based explanation is e = {age = 0.8, income = 0.0, education = −0.2}, y = deny .
In this case, age is the most important feature for the decision deny , income is not affecting
the outcome and education has a small negative contribution.

LIME Local Interpretable Model-agnostic Explanations [35], is a local model-agnostic
explainer which returns explanations as features importance vectors. The main idea of
Lime is that the explanation may be derived locally from records generated randomly in
the neighborhood of the instance that has to be explained. The key factor is that it sam-
ples instances both in the vicinity of x (which have a high weight) and far away from x
(low weight), exploiting πx, a proximity measure able to capture the locality. We denote
b the black-box and x the instance we want to explain. To learn the local behavior of
b, Lime draws samples weighted by πx. It samples these instances around x by drawing
nonzero elements of x uniformly at random. This gives to Lime a perturbed sample of
instances {z ∈ Rd} to fed to the model b and obtain b(z). They are then used to train the
explanation model g(·): a sparse linear model on the perturbed samples. The local feature
importance explanation consists of the weights of the linear model. A number of papers
focus on overcoming the limitations of Lime, providing several variants of it. Lime [36] is
a deterministic version in which the neighbors are selected from the training data by an
agglomerative hierarchical clustering. iLime [37] randomly generates the synthetic neigh-
borhood using weighted instances. aLime [38] runs the random data generation only once
at “training time”. kl-lime [39] adopts a Kullback-Leibler divergence to explain Bayesian
predictive models. qlime [40] also consider nonlinear relationships using a quadratic ap-
proximation. A part from tabular data, Lime can be used also on other data types. In
Figure 2.3 (upper part) are reported examples of Lime2 explanations relative to our exper-
imentation on Adult (a/b) and German (c/d) 3. We predicted the same record using LG
and CAT, and then we explained it. Interestingly, for Adult (plots a/b), Lime considers
a similar set of features as important (even if with different values of importance) for the
two models: on 6 features, only one differs. A different scenario is obtained applying Lime
on German (plots c/d): different features are considered important by the two classifiers.
However, the confidence of the prediction between the two classifiers is quite different: both
of them predict the output correctly, but CAT has a higher value, suggesting that this could
be the cause of differences between the two explanations.

SHAP SHapley Additive exPlanations [41], is a local model-agnostic explanation method

2We refer to the original version of Lime
3For reproducibility reasons, we fixed the random seed.
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computing features importance by means of Shapley values4, a concept from cooperative
game theory. The explanations returned by Shap are additive feature attributions and
respect the following definition: g(z′) = ϕ0 +

∑M
i=1 ϕiz

′
i, where z′ ≈ x as a real number,

z′ ∈ [0, 1], ϕi ∈ R are effects assigned to each feature, while M is the number of simpli-
fied input features. Shap retains three properties: (i) local accuracy, meaning that g(x)
matches b(x); (ii) missingness, which allows for features xi = 0 to have no attributed
impact on the Shap values; (iii) stability, meaning that if a model changes so that the
marginal contribution of a feature value increases (or stays the same), the Shap value also
increases (or stays the same). The construction of the Shap values allows to employ them
both locally, in which each observation gets its own set of Shap values; and globally, by
exploiting collective Shap values. We highlight that Shap can be realized through differ-
ent explanation models that differ in how they approximate the computation of the Shap
values. In particular, there are five strategies: KernelExplainer is the model-agnostic one,
while LinearExplainer, TreeExplainer, GradientExplainer, and DeepExplainer are model-
specific. Besides, similalry to Lime, Shap can be used on other data types. We applied
LinearExplainer to LG, TreeExplainer to XGB, and KernelExplainer to CAT. In Figure 2.3
(lower part) we report the application of Shap on Adult through the force plot showing
each feature contributes to push the output value away from the base value, which is an
average among the training dataset’s output values. The red features are pushing the out-
put value higher, while the ones in blue are pushing it lower. For each feature is reported
the actual value for the record under analysis. Only the features with the highest Shap
values are shown in this plot. In the first force plot, the features that are pushing the value
higher are contributing more to the output value: from a base value of 0.18 it is reached
an actual output value of 0.79. In the force plot on the right, the output value is 0.0, and
Age, Relationship and Hours Per Week are contributing to pushing it lower. Figure 2.4
(left and center) depicts the Shap values through a decision plots: the contribution of all
the features are reported in decreasing order of importance. The line represents the feature
importance for the record under analysis and it starts at its actual output value. In the
first plot, predicted as > 50k, Occupation is the most important feature, followed by Age
and Relationship. For the second plot, instead, Age, Relationship and Hours Per Week are
the most ones. Besides the local explanations, Shap also offers a global interpretation of
the model-driven by the local interpretations. Figure 2.4 (right) reports a global decision
plot that represents the feature importance of 30 records of Adult.

DALEX [42] is a local and global, post-hoc, model-agnostic explanation method.
Dalex reveals the features importance through an implementation of a variable attribution
approach [43] that consists of a decomposition of the model’s predictions in which each
decomposition can be seen as a local gradient and it is used to identify the contribution of

4We refer the interested reader to: https://christophm.github.io/interpretable-ml-book/shapley.
html
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each attribute. Dalex also allows the calculus of Shap values. In Figure 2.5 are reported
local explanations returned by Dalex for XGB on Adult. On the left are reported two
explanations for a record classified as class > 50k, while on the right for classified as < 50k.

MAPLE [44] is a local post-hoc model-agnostic explainer that can also be used as a
transparent model due to its internal structure. It combines random forests with feature
selection methods to return feature importance based explanations. In particular, Maple
is based on SILO, employed for obtaining a local training distribution based on the random
forest leaves, and on DStump used to rank the features by importance. Maple considers
the best k features from DStump to solve a weighted linear regression problem. Similarly
to Lime, it returns these coefficients as features explanation.

CIU Contextual Importance and Utility [45], is a local, post-hoc, model-agnostic ex-
plainer based on the idea that a feature that might be important in a context may be
irrelevant in another one. ciu explains the model’s outcome based on the contextual impor-
tance (CI) approximating the overall importance of a feature in the current context, and on
the contextual utility (CU) estimating how good the current feature values are for a certain
output class. CI and CU are calculated through Monte Carlo simulations. We highlight that
ciu does not require creating a surrogate model to employ for deriving the explanations.
EBM, Explainable Boosting Machine [46] is an intrinsic local and global model specific
method. EBM is a variant of a Generalized Additive Model (gam) [47], i.e., a generalized
linear model that incorporates nonlinear forms of the predictors. For each feature, EBM
uses a boosting procedure to train the generalized linear model: it cycles over the features,
in a round-robin fashion, to train one feature function at a time and mitigate the effects
of co-linearity. In this way, the model learns the best set of feature functions, which can
be exploited to understand how each feature contributes to the final prediction. NAM,
Neural Additive Models [48] is a local model-specific explainer defined as a variant of gam
but tailored for neural networks. nam aims at combining the performance of deep neural
networks, with the inherent intelligibility of gam. As a result, nam is able to learn graphs
that describe how the prediction is computed by training multiple deep neural networks
in an additive fashion such that each neural network attends to a single input feature.
CoFrNets Continued Fractions Nets [49] is similar to nam but instead of approximating
activations using neural networks, it uses continued functions. The output of a neuron is
calculated as a continuous fraction of the previous one until it gets to the input layer. The
propriety of continued fractions to represent every possible real number allows CoFrNets
to express any possible function as in Neural Networks. On the other hand, since it is a
simple fraction calculation, it is possible to compute the contribution of each input to the
final output and produce feature importance explanations.

Features Importance-based Explainers Comparison. Feature importance based
explanation methods provide an importance value for each feature of the record in the input.
The importance of the features is computed in different ways, depending on the kind of
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Figure 2.3: TOP : Lime application on the same record for Adult (a/b), German (c/d):
a/c are the LG model explanation and b/d the CAT model explanation. All the models
correctly predicted the output class. BOTTOM : Force plot returned by Shap explaining
XGB on two records of Adult: (e), labeled as class 1 (> 50K) and, (f), labeled as class 0
(≤ 50K). Only the features that contributed more (i.e. higher values) to the classification
are reported.

explanation methods exploited. The majority of the explainers are post-hoc and local, even
if there are examples of methods that also provide global explanations, allowing an in-depth
analysis of the overall behavior of the machine learning model (Shap, Dalex and ciu).
Some explainers, such as Lime and all its variants, create a synthetic neighborhood set used
to train a surrogate model, and extract the features’ importance from it. These methods
are suitable for context in which the explanation is online, since they are very efficient, as
they use randomization techniques and surrogate models that are very simple and quick to
train. As a weak point, the randomicity and the simplicity of the surrogate models may not
best represent the data space under analysis. On the other hand, explainers that do not
require the creation of a surrogate model but based on some mathematical procedure such
as game theory for Shap, the decomposition of predictions exploiting local gradients for
Dalex, or Monte Carlo simulations for ciu might require a longer computational time w.r.t.
Lime-like approaches. In addition, their internal workings may be difficult to understand,
shifting the difficulty from understanding the machine learning model to understanding how
the explanation method works. Among feature importance-based explainers, model-specific
explainers, such as nam and CoFrNets, are tailored for explaining neural networks and
aim at approximating the activation functions. Overall, these explanation methods are fast,
except for the model-agnostic variants of Shap and Dalex, because they might require a

18



Figure 2.4: Shap on Adult: a record labelled > 50K (top-left) and one as ≤ 50K(top-
right). They are obtained applying the TreeExplainer on a XGB model and then the
decision plot, in which all the input features are shown. At the bottom, the application of
Shap to explain the outcome of a set of records by XGB on Adult. The interaction values
among the features are reported.

greater computing time due to their different approximations. Unfortunately, the output
provided by these explainers is usually quite difficult to understand for non-experts since
there are several variables and the plots provided are usually non-self-explanatory. As an
example, we can think of Shap: in the plots in output, each feature importance is given by
the output value, the base value, and, depending on the kind of explanator exploited, one
or more arrays of feature importance.

2.2.2 Rule-based Explanation

Decision rules give the end-user an explanation about the reasons that lead to the final
prediction. A decision rule r, also called factual or logic rule [50], has the form p → y,
in which p is a premise, composed of a Boolean condition on feature values, while y is
the consequence of the rule. In particular, p is a conjunction of split conditions of the

form xi∈[v
(l)
i , v

(u)
i ], where xi is a feature and v

(l)
i , v

(u)
i are lower and upper bound values

in the domain of xi extended with ±∞. An instance x satisfies r, or r covers x, if every
Boolean conditions of p evaluate to true for x. If the instance x to explain satisfies p, the
rule p → y represents then a candidate explanation of the decision g(x) = y. Moreover,
if the interpretable predictor mimics the behavior of the black-box in the neighborhood of
x, we further conclude that the rule is a candidate local explanation of b(x) = g(x) = y.
We highlight that, in the context of rules, we can also find the so-called counterfactual
rules [50]. Counterfactual rules have the same structure of decision rules, with the only
difference that the consequence of the rule y is different w.r.t. b(x) = y. They are important
to explain to the end-user what should be changed to obtain a different output. An example
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Figure 2.5: Explanations of Dalex for two records of Adult: b(x) = 0 (≤ 50) (left),
b(x) = 1 (> 50K) (right) to explain an XGB in form of Shapley values (top), break down
plots (bottom). The y-axis is the features important, the x-axis the positive/negative
contribution.

of a rule explanation is r = {age < 40, income < 30k, education ≤ Bachelor}, y = deny . In
this case, the record {age = 18, income = 15k, education = Highschool} satisfies the rule
above. A possible counterfactual rule, instead can be: r = {income > 40k, education ≥
Bachelor}, y = allow .

ANCHOR [51] is a global and local model-agnostic method that outputs rules, called
anchors, as explanations. The idea is that, for decisions on which the anchor holds, changes
in the rest of the instance’s feature values do not change the outcome. Formally, given a
record x, r is an anchor if r(x) = b(x). To obtain the anchors, Anchor perturbs the
instance x obtaining a set of synthetic records employed to extract anchors with precision
above a user-defined threshold. Anchor exploits a multi-armed bandit algorithm [52]
for the synthetic generation of the dataset, and rely on bottom-up approach and a beam
search to find the anchors. Figure 2.6 reports some rules obtained by applying Anchor
to explain XGB trained on Adult. The first rule has a high precision (0.96%) but a very
low coverage (0.01%). It is interesting to note that the first rule contains Relationship and
Education Num, which are the features highlighted by most of the explainers analyzed so
far. In particular, in this case, for having a classification > 50k, the Relationship should
be husband and the Education Num at least bachelor degree. Education Num can also be
found in the second rule, in which case has to be less or equal to College, followed by the
Maritial Status, which can be anything other than married with a civilian. This rule has
an even better precision (0.97%) and suitable coverage (0.37%).
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Figure 2.6: Two example of explanations of Anchor and Lore for Adult to explain an
XGB model. xi is the the original instance, ranchor is the rule provided by Anchor, rlore
is the rule provided by Lore, and clore is the counterfactual rule provided by Lore for
obtaining the other prediction.
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LORE LOcal Rule-based Explainer [50], is a local model-agnostic explainer that pro-
vides explanations in the form of rules and counterfactual rules. Lore is tailored explicitly
for tabular data. It exploits a genetic algorithm for creating the neighborhood of the record
to explain. Such a neighborhood produces a more faithful and dense representation of the
vicinity of x w.r.t. Lime. Given a black-box b and an instance x, with b(x) = y, Lore
first generates a synthetic set Z of neighbors through a genetic algorithm. Then, it trains
a decision tree classifier g on this set labeled with the black-box outcome b(Z). From g, it
retrieves an explanation that consists of (i) a factual decision rule, that corresponds to the
path on the decision tree followed by the instance x to reach the decision y, and (ii) a set
of counterfactual rules, which have a different classification w.r.t. y. This counterfactual
rules show the conditions that can be varied on x in order to change the output decision.
In Figure 2.6 we report the factual and counterfactual rules of Lore for the explanation
of the same records showed for Anchor. It is interesting to note that, differently from
Anchor and the others models proposed above, Lore explanations focuses more on the
Education Num, Occupation, Capital Gain and Capital Loss, while the features about the
relationship are not present.

RuleMatrix [53] is a model-agnostic explainer that provides both local and global
explanations, specifically tailored for the visualization of the rules extracted. Given a
training dataset and a black-box, rulematrix executes a rule induction step, in which a
rule list is extracted by sampling the input data and their predicted label by the black-
box. Then, the rules extracted are filtered based on thresholds of confidence and support.
Finally, it outputs a visual representation of the rules.

Local Rule-based Explainers Comparison. The rule-based methods presented are
all based on creating a surrogate model from which to extract the rules. In this category
we find Anchor and rulematrix, which provide both local and global explanations by
relying on simple rule extraction methods. The simplicity of these methods make them ef-
ficient even if, as in the case of Lime-like approaches, they may suffers in terms of goodness
of explanations provided. Lore is the only explainer that provides only local explanations.
Differently from the other methods, does not require to have access to the original train-
ing data, and, due its synthetic generation process, provides more faithful explanations.
Thus, it may be good in settings where the black-box training dataset is unavailable, while
rulematrix and Anchor, need to access the training data. Rule-based explanations are
considered closer to human reasoning w.r.t. the feature importance-based explanations.
In addition, they exploit easy to understand mechanisms, allowing users of different back-
ground to understand how the explanation method works, increasing the trust. However,
these explainers usually require a greater running time w.r.t. the feature importance ones.
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2.2.3 Global Tree-based Explainers

One of the most popular ways for generating explanation rules is by extracting them from
a decision tree. In particular, due to the method’s simplicity and interpretability, decision
trees explain black-box models’ overall behavior. Some explanation methods acting in
this setting are model-specific explainers exploiting structural information of the black-box
model under analysis.

TREPAN [54] is a model-specific global explainer tailored for neural networks. Given
a neural network b, trepan generates a decision tree g that approximates the network by
maximizing the gain ratio and the model fidelity. In particular, to leverage abstraction,
trepan adopts n-of-m decision rules on which only n out of m conditions must be satisfied
in order to fire the rule.

DecText is a global model-specific explainer tailored for neural networks [55]. dectext
resembles trepan with the difference that it considers four different splitting methods. It
also considers a pruning strategy based on fidelity to reduce the final explanation tree’s
size. In this way, dectext can maximize the fidelity while keeping the model simple. Both
trepan and dectext are presented as model-specific explainers but they can be practically
employed to explain any black-box as they do not use any internal information of neural
networks.

MSFT [56] is a global, post-hoc, model-specific explainer for random forests that re-
turns a decision trees. msft is based on the observation that, even if random forests contain
hundreds of different trees, they are quite similar, differing only for a few nodes. Hence,
it adopts dissimilarity metrics to summarize the random forest trees using a clustering
method. Then, for each cluster, an archetype is retrieved as an explanation.

CMM Combined Multiple Model procedure [57], is another global, post-hoc, model-
specific explainer for tree ensembles. The key point of cmm is the data enrichment. Given
an input dataset X, cmm first modifies it n times. On the n variants of the dataset, it
learns a black-box. Random records are generated and labeled using a bagging strategy on
the black-boxes. The authors were able to increase the size of the dataset to build the final
decision tree.

STA Single Tree Approximation [58], is another global, post-hoc, model-specific ex-
plainer tailored for random forests. In sta the decision tree is constructed by exploiting
test hypothesis on the trees in the forest to find the best splits. The explainers proposed
are tailored for a specific machine learning model: trepan and DecText explain neural
networks, while cmm and sta are tailored for random forests and msft is for any ensem-
ble method. Among them, some explainers exploit an enrichment of the data to improve
the extraction of the tree (cmm, trepan, DecText), while the others exploit the training
dataset by applying some strategies based on dissimilarity metrics (msft) or test hypothesis
(sta). Among the different methods, only DecText and trepan apply some strategies
with the goal of maximizing the model fidelity, even if they are tailored for small feed-
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forward neural networks. The exploitation of trees to explain the global behavior of a more
complex machine learning model have several benefits, such as a fast computation and a
simple process to extract the explanations, based on transparent strategies. However, the
trees extracted may be very deep, making the explanation model difficult to understand
even in cases of simple datasets. Furthermore, the effectiveness of such explanations for
very deep feed forward networks has not be judged yet.

2.2.4 Global Rule-based Explainers

In this section we present global explainers that do not extract decision trees as global
interpretable model but lists or sets of rules. The majority of the methods described in
the following extract rules by exploiting ensemble methods or rule-based classifiers. The
explainers considered are all agnostic.

SkopeRules is a global, post-hoc, model-agnostic5 explainer on the rulefit [59] idea
to define an ensemble method and then extract the rules from it. skope-rules employs
fast algorithms such as bagging or gradient boosting decision trees. After extracting all the
possible rules, skope-rules removes rules redundant or too similar by a similarity thresh-
old. Differently from rulefit, the scoring method does not solve the L1 regularization.
Instead, the weights are given depending on the precision score of the rule.

Scalable-BRL [60] is an interpretable rule-based model that optimizes the posterior
probability of a Bayesian hierarchical model over the rule lists. The theoretical part of this
approach is based on [61].

GLocalX [62] is a global model-agnostic post-hoc explainer which adopts the local
to global paradigm, i.e., to derive a global explanation by subsuming local logical rules.
GLocalX start from an array of local explanation rules and following a hierarchical bottom
up fashion merges those covering similar records and expressing the same conditions.

Global Rule-based Explainers Comparison. This small section comprises global
explanation methods that extract rules in entirely different ways: either they exploits an
ensemble method (skope-rules), a rule-based model (scalable-BRL) or several local ex-
planations (GLocalX). In terms of goodness of explanations, skope-rules and scalable-
BRL are tailored for an overall explanation of the machine learning model, focusing mostly
on the data in input. GLocalX, instead, exploits local explanations and hence is able
to tackle the problem from a different point of view, merging several local explanations.
The output of these methods is a list of rules and even if there are techniques to filter out
meaningless rules, the complexity of the explanation may be huge.

Rules-based Explainers Comparison. In this section, we presented a great variety
of methods that provide logical rules as explanations exploiting different strategies. Inde-
pendently from the strategy, due to the simplicity of the rules, they are often the preferred

5https://skope-rules.readthedocs.io/en/latest/skope_rules.html
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explanation for non-expert people. The majority of the explainers presented in this sec-
tion are based on the extraction of decision trees as surrogate models (Lore, trepan,
cmm, sta, dectext, msft), or ensemble methods based on decision trees, such as skope-
rules. The remaining methods that do not rely on decision trees extract the rules in other
ways, such as rule-based classifiers (again a surrogate model), as in the case of Anchor,
scalable-brl and of rulematrix. To further increase the comprehensibility of the ex-
planation, some explainers correlate the explanations by graphical visualizations, such as
rulematrix, Anchor and skope-rules. Overall, the majority of the explainers require
a long computing time due to the different enrichment of the data or the use of rule-based
classifiers, which are among the longest interpretable models to train. Hence, they may
be better fitted for offline explanations. Depending on the complexity of the ML model in
input, the explanations may be complex, such as deep trees or long lists of rules.

2.2.5 Prototype-based Explanations

A prototype, also called archetype or artifact, is a record highlighting the characteristics
which identify a group of objects belonging to the same class. Prototypes serve as examples,
i.e., the user can understand the black-box reasoning by looking to records similar to the
prototype. Thus, a prototype is a local explanation. A prototype can be (i) a record of the
training set close to the input data x, (ii) a centroid of a cluster to which the input x belongs
to, or (iii) even a synthetic record generated following an ad-hoc process. Depending on the
explanation method considered, different definitions and requirements to find a prototype
are can be considered.

MMD-CRITIC [63] is a before the model explanation method which produces proto-
types and criticisms as explanations using Maximum Mean Discrepancy (MMD) measure.
While prototypes explain the dataset’s general behavior, criticisms represent records that
are not well explained by the prototypes. MMDCritic selects prototypes by measuring the
difference between the distribution of the instances and the instances in the whole dataset.
The set of instances nearer to the data distribution are called prototypes, and the farthest
are called criticisms.

ProtoDash [64] is a variant of MMDCritic. However, differently from MMDCritic,
protodash also returns non-negative weights which indicate the importance of each pro-
totype.

PS Prototype Selection (ps) [65] seeks a set of prototypes that better represent the
data under analysis by solving a set cover optimization problem with constraints on the
properties the prototypes. After that, the prototypes are employed to learn a nearest
neighbor rule classifier to be used as model.

TSP Tree Space Prototype [66], is a local post-hoc explainer tailored for explaining tree
ensemble methods. The goal of tsp is to find prototypes for each class in the tree space of
the tree ensemble b w.r.t. a given notion of proximity between trees.
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Privacy-Preserving Explanations(ppe) [19] is a local post-hoc model-agnostic ex-
plainer that outputs prototypes and shallow trees as explanations while considering the
concept of privacy in explainability while producing privacy protected explanations. The
trade-off between privacy and comprehensibility is obtained through micro aggregation of
the data, i.e., clustering. The clusters’ centroids are used as prototypes for the finale ex-
planation/prediction.

Protoype-based explanation comparison The strength of prototypes is the pos-
sibility of analyzing black-box behavior by comparison between the record under analysis
and its analogues, which is a type of reasoning widely used by humans. Moreover, they
allow data analysis before and after the black-box is applied. For this reason, in this section
we may find explanation methods that are before the model, i.e. they explain the dataset
without considering the black-box model, such as MMDCritic, ps and protodash. On
the other hand, local post-hoc explainers, such as tsp and ppe, provide prototypes based
on the decisions of the black-boxes. Among the different methods proposed, one of the most
promising ones id MMDCritic because outputs both prototypes and criticisms. In this
setting we can also find a novel application, namely ppe, which produces privacy-protected
prototypes, creating a link between two crucial ethical concepts: transparency and privacy.
Indeed, using prototypes as explanations, although it may be useful for end-user under-
standing, may release sensitive information about the users in the training set, when the
explanation method exploits the training dataset.

2.2.6 Counterfactual-based Explanations

Counterfactual explanations suggest what should be different in the input instance to change
the outcome of the black-box model [67, 68], i.e., they describe a dependency on the at-
tributes that led to a particular decision. Counterfactual explanations can be considered
as prototypes’ opposite. Thus, also counterfactuals are local explanations. In [69], coun-
terfactual explanations are formalized as follows. Given a black-box model b that outputs
the decision y = b(x) for an instance x, a counterfactual explanation consists of an instance
x′ such that the decision for b on x′ is different from y, i.e., b(x′) ̸= y, and such that the
difference between x and x′ is minimal. The different values between x and a counterfac-
tual x′ reveals what should have been different in x for having a different outcome. An
ideal counterfactual is minimal because it should alter the values of the variables as little
as possible to find the closest setting under which y is returned instead of ¬y. Concern-
ing counterfactual explanations, there are many properties which are desired for this kind
of explanations and for the explanation methods returning them. Examples are validity,
minimality, similarity, plausibility, discriminative power, actionability, causality, diversity,
efficiency, robustness, etc. [67, 70, 71]. To better understand the complex context and the
many available possibilities, we refer the interested reader to [69, 72–74] while we briefly
present only the most representative methods in this category.
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WACH [67] is among the first paper to propose a counterfactual explainer, and prob-
ably is the most famous one. The loss function minimized by [67] is defined as λ(b(x′) −
y′)2 +d(x, x′) where the first term is the quadratic distance between the desired outcome y′

and the classifier prediction on x′, and the second term is the distance d between x and x′.
λ balances the contribution of the first term against the second term. The distance function
d adopted is a crucial characteristic in any counterfactual explainer. In [67] is adopted the
Manhattan distance weighted with the inverse median absolute deviation of each feature.

CEM Contrastive Explanations Method [75], is a post-hoc and model-specific explainer
tailored for neural networks. In particular, CEM can return Pertinent Positives (PP),
which can be seen as prototypes, and are the minimal and sufficient factors that have to be
present to obtain the output y; and Pertinent Negatives (PN), which are counterfactuals
factors, that should be minimally and necessarily absent. Given x, CEM considers x1 =
x + δ, where δ is a perturbation applied to x. CEM is formulated as an optimization
problem over the perturbation variable δ.

C-CHVAE [76] is a local model-agnostic post-hoc explainer that accounts for plausi-
bility when generating counterfactuals. Indeed, the loss function optimized controls that
counterfactuals are not local outliers and that are close to correctly classified observations.
Moreover, this method can generate counterfactuals without requiring a distance function
for the input space at the cost of using a Variational AutoEncoder.

DICE Diverse Counterfactual Explanations [77] is a model-agnostic post-hoc explainer
which solves an optimization problem with constraints to account for plausibility and diver-
sity evaluated through distance functions. Plausibility avoiding the generation of unfeasible
counterfactuals while diversity provides different ways of changing the outcome class.

FACE Feasible and Actionable Counterfactual Explanations [78] is a model-agnostic
post-hoc explainer that focuses on returning actionable counterfactuals, i.e., records co-
herent with the input data distribution. In particular, FACE uncovers “feasible paths”
for generating counterfactual, i.e, the shortest path distances defined via density-weighted
metrics starting form the input instance. Finally, it uses a shortest path algorithm to find
all the records that satisfy the requirements.

CFX [79] is a model-specific post-hoc explainer for Bayesian Network Classifiers. The
explanations are built from relations of influence between variables, indicating the rea-
sons for the classification. In particular, this method’s main achievement is that it can
find pivotal factors for the classification task that, if removed, would lead to a different
classification.

Counterfactual-based Explanations comparison Counterfactual-based explana-
tions are gaining attention during the past few years due to their ability to suggest what
to do to achieve a different outcome w.r.t. the one predicted by the black-box. There are
several characteristics to consider in a counterfactual, such as plausibility, which requires
the explanations to be feasible, and actionability, so that the counterfactual can not suggest
changing the values of unfeasible variables, such as age or sex. Satisfying these character-
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istics is of utmost importance because otherwise the counterfactuals obtained may not be
applicable or understandable by the end user. For example, a counterfactual might require
changing age or height, factors that cannot be changed, thus making the counterfactual
unfeasible. Among the methods proposed, c-chvae deals with the plausibility of the coun-
terfactuals proposed and FACE tackles both the plausibility and the actionability. The
majority of the algorithms proposed solves an optimization problem based on a distance
function and some perturbation of the original data (CEM, wach, c-chvae) and only a few
methods exploit different approaches, such as Variational Autoencoder, as c-chvae. Most
of the proposed methods are local and post-hoc, with cfx and CEM specifically designed
for certain models, while the others are agnostic. Among the different methods proposed,
CEM is a promising solution since it provides both prototypes and counterfactuals, allowing
for an in-depth analysis, such as MMDCritic and Lore.

2.3 XAI for Sequence data

Due to the tremendous amount of data generated by sensors over time, there is a widespread
diffusion of ML models working on sequence data and in particular on time series [82]. A
sequential data has been defined in Section 14.1.2. There are areas such as the medical
or the financial field where temporal data is of particular importance and where black-box
ML models are applied to provide support on decision-making for various tasks. For this
reasons, recently we are assisting to emerging proposal for explainability related to time
series [33]. The most important difference with the other types of data relies on the type
of explanation produced.

2.3.1 Attention-based Explainers

Attention was first proposed for images in [83] to improve the model performance. The
authors managed to show through an attention layer which parts of the image contributed
most to realize the caption. Formally, the attention layer is indeed a layer to put on top of
the model that, for each word, ij of the sentence x generates a positive weight αij , i.e., the
attention weight. This value can be interpreted as the probability that a word ij is in the
right place to focus on producing the next word in the caption. Attention mechanisms
allow models to look over all the information the original sentence holds and learn the
context [84,85]. Therefore, it has caught the interest of XAI researchers who started using
these weights as an explanation. The explanation e of the instance x is composed of the
attention values (α), one for each feature xi. Attention is nowadays a delicate argument,
and while it is clear that it augments the performance of models, it is less clear if it helps
gain interpretability and the relationship with model outputs [86].

Attention Based Heatmap [87] is a local, intrinsic, model-specific explainer, based
on the attention mechanism. It produces a heatmap explanation similar to the one used
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Type Name Ref. Authors Year Data Type IN/PH G/L A/S

lrp [80] Bach et al. 2015 ANY PH L A
Lime [35] Ribeiro et al. 2016 ANY PH L A
Shap [41] Lundberg et al. 2017 ANY PH G/L A
Maple [44] Plumb et al. 2018 TAB PH/IN L A
ebm [46] Nori et al. 2019 TAB IN G/L A
nam [48] Agarwal et al. 2020 TAB IN L S
ciu [45] Anjomshoae et al. 2020 TAB PH L A

FI

dalex [42] Biecek et al. 2020 ANY PH G/L A
trepan [54] Craven et al. 1996 TAB PH G S
msft [56] Chipman et al. 1998 TAB PH G S
cmm [57] Domingos et al. 1998 TAB PH G S

dectext [55] Boz et al. 2002 TAB PH G S
sta [58] Zhou et al. 2016 TAB PH G S

scalable-brl [60] Yang et al. 2017 TAB IN G/L A
Lore [50] Guidotti et al. 2018 TAB PH L A

rulematrix [53] Ming et al. 2018 TAB PH G/L A
Anchor [51] Ribeiro et al. 2018 ANY PH G/L A
glocalx [81] Setzu et al. 2019 TAB PH G/L A

RB

skoperule [59] Gardin et al. 2020 TAB PH G/L A
ps [65] Bien et al. 2011 TAB IN G/L S

MMDCritic [63] Kim et al. 2016 ANY IN G S
protodash [64] Gurumoorthy et al. 2019 ANY IN G A

PR

tsp [66] Tan et al. 2020 TAB PH L S
cem [75] Dhurandhar et al. 2018 ANY PH L S
cfx [79] Albini et al. 2020 TAB PH L S
dice [77] Mothilal et al. 2020 TAB PH L A

c-chave [76] Pawelczyk et al. 2020 TAB PH L A
CF

face [78] Poyiadzi et al. 2020 ANY PH L A

Table 2.1: Summary of methods for explaining black-boxes for tabular data. The methods
are sorted by explanation type: Features Importance (FI), Rule-Based (RB), Counterfac-
tuals (CF), Prototypes (PR), and Decision Tree (DT). For every method, there is a data
type on which it is possible to apply it: only on tabular (TAB) or any data (ANY). If it is
an Intrinsic Model (IN) or a Post-Hoc one (PH), a local method (L) or a global one (G),
and finally if it is model-agnostic (A) or model-specific (S).
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Figure 2.7: Attention based heatmap matrix
generated from the method presented in [88].
The row and the columns of the matrix cor-
respond to the words in the sentence “Read
the book, forget the movie!”. Each matrix
value shows the attention weight αij of the
annotation of the i-th word w.r.t. the j-th.

Figure 2.8: Attention based representation
of BERT for a sentence taken from imdb us-
ing the visualization of [90]. The greater the
attention between two words, the bigger the
line. Here is selected only the attention re-
lated to the word “sucks”.

for SMs by using the weights of the black-box. It can only be applied to attention-based
methods, such as BERT, in which the weights αij of the attention layers are used as score for
every word in the sentence. The higher the score, the more important the word, therefore
the redder the heatmap.

Attention Matrix [88] looks at the dependencies between words for producing expla-
nations. It is a self-attention method, also called intra-attention, which relates different
positions of a single sequence to compute its internal representation. The attention of a
sentence x composed of N words can be understood as an N ×N matrix, where each row
and columns represent a word in the input sentence. The matrix values are the attention
values of every possible combination of the tokens. This matrix is a representation of val-
ues pointing from each word to every other word [89] (Figure 2.7). We can also visualize
this matrix with a focus on the connection between words [90] as in Figure 2.8, where the
thickness of the lines is the self-attention value between two tokens.

Attention Based Explainers Comparison. Attention is a mechanism good for im-
proving the model performance but not usable for explanation. As described in [86], it is
unclear what relationship exists between attention weights and model outputs. Learned
attention weights are frequently uncorrelated with gradient-based measures of feature im-
portance, and it is possible to identify very different attention distributions that nonetheless
yield equivalent predictions.

2.3.2 Shaplet-based explainers

Shapelet is the most characteristic explanation for time series data. They are time series
subsequences that are maximally representative of a class. Shapelets are more interpretable,
faster, and more accurate than k-Nearest Neighbors (kNN) [91] which is a traditional ap-
proach to perform time series classification [92]. As usual, SMs can be used to highlight
which part of the series has contributed the most to the classification. In the following, we
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briefly illustrate some peculiar explainer for time series classification.
In [93], is introduced a transparent by design method named Weighted-kNN that

extends the classic majority-voting kNN by proposing weighting schemes. By emphasizing
the nearer neighbors using a weighting scheme, it is possible to improve the kNN classi-
fier’s quality and stability. The nearest neighbors are considered part of the prototypical
explanation.

LASTS, i.e., Local Agnostic Shapelet-based Time Series explainer [94], is a variation
of abele for time series. As explanation lasts returns exemplars and counterexamples
composed of subseries with a shapelet-based rule. An example of a rule is: “if these
shapelets are present and these others not, then x is classified as y”.

DOCTORXAI [95] is a local post-hoc model-specific explainer acting on sequential
data in the medical setting. In particular, it exploits a medical ontology to perturb the
data and to generate neighbors. doctorxai is designed on healthcare data, but it can
theoretically be applied to every type of sequential data with an ontology.

Time Series Explainers Comparison. For time series data, kNN weighting schemes
are the most common approach. Shaplet-based explanations are promising, and new ap-
proaches using autoencoders or ontologies are being developed to improve time series ex-
planations.

2.4 Evaluation Measures for Explanations

There is a wide debate on how to evaluate the quality of the explanation methods and often
it is formulated as properties of the returned explanations aimed at capturing concepts
as goodness and usefulness of explanations [14–18, 23]. In the following, we describe a
selection of established methodologies for the evaluation of explanation methods both from
the quantitative and qualitative point of view which are typically used to judge the output
of XAI methods. Quantitative evaluation focuses on the performance of the explainer and
on on the goodness of the explanations returned. In the following, we present the general
idea of each metric used later on for benchmarking. Since every metric may vary in its
application depending by data type, further details are provided into the various sections.

- Fidelity aims to evaluate how good is f at mimicking b. There are different imple-
mentations of fidelity, depending on the type of explanator under analysis [50]. For
example, in methods where there is a creation of a surrogate model g to mimic b,
fidelity compares the prediction of b and g on the instances used to train g.

- Stability aims at validating if similar instances obtains similar explanations. Stability

can be evaluated through the Lipschitz constant [96] as Lx = max
∥ex−ex′∥
∥x−x′∥ ,∀x′ ∈ Nx

where x is the explained instance, ex the explanation and Nx is a neighborhood of
instances x′ similar to x.
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- Deletion and Insertion [97] are metrics that remove the features that the explanation
method f found important and see how the performance of b degrades. The intuition
behind deletion is that removing the “cause” will force the black-box to change its
decision. Among the deletion methods, there is the Faithfulness [96]. It aims to val-
idate if the relevance scores indicate true importance: we expect higher importance
values for attributes that greatly influence the final prediction6, a public library writ-
ten in Python. Given a black-box b and the feature importance e extracted from
an importance-based explanator f , the faithfulness method incrementally removes
each of the attributes deemed important by f . At each removal, the effect on the
performance of b is evaluated. In general, a sharp drop and a low area under the
probability curve mean a good explanation. On the other hand, the insertion metric
takes a complementary approach. Typically, insertion and deletion evaluations are
tailored for specific type of explainers called Feature Importance explainers for tab-
ular data, Saliency Maps for image data, and Sentence Highlighting for sequential
data.

- Monotonicity [98] can be seen as an implementation of an insertion method: it eval-
uates the effect of b by incrementally adding each attribute in order of increasing
importance. In this case, we expect that the black-box performance increases by
adding more and more features, thereby resulting in monotonically increasing model
performance.

- Running Time: the time needed to produce the explanation is also an important
evaluation.

It is worth noting, to the best of our knowledge, there are currently no purely objective
evaluation measures that can select the best explainer. A different approach to evaluate
explainers consists in generating a synthetic ground truth explanations and compare them
with those returned by the explainers [99]. However, this evaluation method through syn-
thetic explanations cannot be transferred to an objective evaluation on real data because if
we knew the ground truth explanation, we would not need an explainer. Qualitative eval-
uation is important to understand the actual usability of explanations from the point of
view of the end-user: they satisfy human curiosity, find meanings, safety, social acceptance
and trust. In [10], the evaluation criteria for the qualitative evaluation are systematized
into three categories:

- Functionally-grounded metrics aim to evaluate the interpretability by exploiting some
formal definitions that are used as proxies. They do not require humans for valida-
tion. The challenge is to define the proxy to employ, depending on the context. As

6An implementation of the faithfulness is available in aix360
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an example, we can validate the interpretability of a model by showing the improve-
ments w.r.t. to another model already proven to be interpretable by human-based
experiments.

- Application-grounded evaluation methods require human experts to validate the spe-
cific task under analysis [100, 101]. They are usually employed in specific settings.
For example, if the model is an assistant in the decision making process of doctors,
the validation is done by the doctors.

- Human-grounded metrics evaluate the explanations through humans who are not
experts. The goal is to measure the overall understandability of the explanation in
simplified tasks [102, 103]. This validation is most appropriate for general testing
notions of the quality of an explanation.

2.5 Discussion

In this Chapter, we presented an overview of the state of the art in the field of Explainable
Artificial Intelligence (XAI), with a specific focus on methods applicable to tabular data
and time series. The choice of these two types of data si due to the fact that they play a
significant role throughout the remainder of this thesis.

For tabular data, a variety of explanation techniques have been developed, including
rules, counterfactuals, feature importance, and examples. Among the popular methods
in this domain, we have discussed Shap (SHapley Additive exPlanations), Lime (Local
Interpretable Model-agnostic Explanations), and Lore (Local Rule-based Explanations).
They are all local methods, hence they explain only one single instance at a time, and
agnostic, meaning that they can explain every kind of ML classifier. It is worth noting
that Lime is widely used but also considered the most fragile method in terms of its sta-
bility. Surrogate-based models, despite their usefulness, suffer from instability due to the
inherent randomness in their approach. On the other hand, Shap, with its solid theoretical
foundation, has the potential to generate reliable and faithful explanations by providing
a comprehensive understanding of the underlying model. However, the explanations pro-
vided by Shap are difficult to understand for a non expert. In addition, the only available
agnostic Shap method requires an approximation for the computation of the feature im-
portance, which takes a long computational time. Regarding rule-based and counterfactual
explanations, they have gained attention in recent years due to their logic formalization,
which enables a deeper understanding of the internal decision-making process of AI mod-
els. However, the literature lacks standardized metrics for comparing such models, which
presents an area for future research.

Regarding time series data, xai methods are relatively less abundant due to the inherent
complexity of this data type. Nonetheless, we can still find techniques such as feature
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importance, often based on shaplets, as well as rule-based and counterfactual explanations.
The analysis presented in this Chapter goes beyond the theoretical perspective by also

considering a practical evaluation. In fact, we empirically tested several xai methods,
specifically focusing on the most popular ones that have readily available Python libraries.
By comparing the outputs of these methods and utilizing state-of-the-art metrics for quan-
titative analysis, we have identified various limitations and challenges in this domain.

One major finding is the instability exhibited by the majority of the existing methods,
as they tend to provide different explanations for the same input record. Additionally, many
explanations are not faithful either to the ML model itself (indicating that the surrogate
models employed in xai methods do not accurately mimic the behavior of the black-box
classifier) or to the black-box model’s behavior (meaning that the features deemed im-
portant by the xai method do not align with the actual importance as perceived by the
black-box model).

These limitations must be carefully considered, as the availability of faithful and stable
explanations is crucial for enhancing user trust in ML models and promoting the widespread
applicability of such models in various real-world contexts, such as autonomous driving.

Overall, this Chapter provided a comprehensive review of the current state of the art in
xai, highlighting both the theoretical foundations and practical evaluations. The limitations
and challenges found highlights the importance of further research and development to
address these issues and advance the field of xai.
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Chapter 3

Data Protection in Artificial
Intelligence

Data privacy is a critical issue in today’s digital age, as the vast amounts of personal
information collected and stored by organizations, governments, and individuals can be
vulnerable to unauthorized access and misuse [104]. The term Data Privacy refers to the
protection of personal information from unauthorized access, use, disclosure, alteration,
or destruction. Personal information can include a wide range of data, such as names,
addresses, social security numbers, financial information, medical records, and browsing
history. The increasing use of technology has made it easier to collect, store, and share
this information, but it has also made it more difficult to protect the release of sensible
information. In fact, during the past ten years, data privacy has been intensively studied
due to the increased usage of AI systems, in which sensible data of the users are employed
to train various models, also in critical contexts, such as hospitals, hence these data may
be at risk. In practice, the availability of human data allow researchers and companies
to study and improve their services through the use of these data. However, in order to
do so, human datasets are released to allow people to work with them. Unfortunately,
there have been several circumstances in which personal information was unintentionally
disclosed, such as the Cambridge Analytica scandal and many others that followed during
the last few years, such as the leak of data from Uber [105]. Due to this situation, a growing
number of people are having concerns about their privacy. Meanwhile, the majority of the
countries around the world are working on new privacy laws. This is due to the fact that
the majority of the countries in the world recognized the privacy of the individual as a
fundamental right that has to be protected. Privacy law was born due to the presence of
new technologies and it is quickly evolving in order to keep up with technological innovation.
In 2018 the European Union applied the General Data Protection Regulation (GDPR) [1]:
a law for the data protection and the privacy of the individuals in the European Union. It
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addresses the provisions and requirements to apply during the processing of personal data
of individuals. Moreover, some basic privacy rights are stated, such as the right to erasure
and the right to rectification. Not only the European Union updated its law, but also US
and China, highlighting the fact that people are concerned about their privacy. These new
regulations forced companies and organizations to re-define their activities in order to be
compliant with the law. An in-depth analysis on the regulations for Data Privacy and
Artificial Intelligence Systems is presented in Section 4.

During the past years, Data Privacy has evolved: while initially the focus was on the
public release of the data, with the purpose of assessing whether the sensitive information
contained within data could be discovered by malicious users, nowadays, with the increasing
use of ML, data privacy research also includes the analysis of these models. In the following,
the first approach is referred to as Privacy of the data, in which the goal is to analyze a
dataset for the public release, while the second approach, related to ML, is referred to
Privacy of the model.

In the remaining of this Chapter we overview the field of Data Privacy, first presenting
the Privacy-by-Design methodology and then, focusing on privacy risk assessment tech-
niques, presented in Section 3.2, which have the goal to evaluate the privacy risk of users,
and privacy protection techniques, described in Section 3.3, in which the goal is to protect
users privacy, avoiding privacy breaches.

3.1 Privacy by design

The main challenge in the setting of data privacy for data mining and machine learning
applications is the data and models quality. In particular, the trade-off between the quality
of the released data or machine learning models and the privacy protection level guaranteed
( [2,106]). In fact, increasing the privacy protection of the dataset leads to a loss in quality,
that is critically important for data mining and machine learning based services. Therefore,
there is the need of finding a solution that ensures the individuals in the dataset to be safe
while allowing companies and researchers to use the dataset for research purposes as well
as different machine learning models and services.

A seminal work in this setting is the one proposed by Ann Cavoukian in [107]. Here,
the author theorized the concept of privacy-by-design: a methodology to embed the privacy
protection into the design of the service and information system. There are seven principles
to fulfill the privacy-by-design:

1 A proactive system and not a reactive one. The main idea is to prevent privacy
breaches. In order to do so, the main task is to develop services in which the privacy
aspects are handled before invasive events happen.

2 Privacy as a default setting. Privacy is part of the system and therefore is a concern
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of the companies and not of the single individual.

3 Privacy embedded into the design of the service. The main idea is to embed the pri-
vacy protection into the service, differently from the traditional methods that protect
the dataset retrospectively;

4 Full functionality – positive-sum, not zero-sum. The final goal is to have a privacy
system in which there aren’t trade-offs. All the privacy requirements have to be
satisfied.

5 End-to-end security – full life-cycle protection. The privacy has to be assured during
all the steps of the life-cycle of the data in the system. This is linked with the
constraint of having privacy measures embedded into the system by design.

6 Visibility and transparency – keep it open. The privacy measures embedded into the
system must be visible and transparent to the users and the providers. Moreover,
these measures have to be subjected to independent verification.

7 Respect for user privacy – keep it user-centric. The main subject of privacy is the
individual that generates data. For this reason, the systems have to be user-friendly
and in general user-oriented.

From these guidelines, different works have been proposed. One of the most interesting
for the purposes of this thesis is resented in [106] by Monreale et al. In this paper, the
authors applied the concept of privacy-by-design for big data data analytics and social
mining. Their goal is to protect the dataset for the specific purpose of the data mining
application that has to be applied. In order to achieve this goal, the main idea is to up-
grade from a reactive system, where the dataset is protected retrospectively, to a proactive
system, in which the privacy protection is embedded into knowledge discovery technologies
by design (as depicted in the guideline point 1). In their work, they proposed a method-
ology for purpose-driven protection, i.e. a methodology that depends on the kind service
and analysis to be developed. In this way, the privacy requirements are incorporated into
the service from the beginning. Therefore, it becomes feasible to overcome the trade-off
between privacy protection and quality of the service, due to the fact that only the specific
service is considered and not a general analytical setting. The methodology proposes to
design a privacy-protection strategy tailored to the service to be developed and the type
of attacks on data that may jeopardize individual privacy. Moreover, this technique is ap-
plicable to every kind of datasets. This general methodology can be extended to take into
consideration also machine learning models and their protection that can be obtained also
without perturbing data but directly acting on the models. As a consequence, instead of
considering only privacy attacks and protection strategies for data, the methodology needs
to consider also attacks and mitigation techniques tailored to machine learning models.
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3.2 Privacy Risk Assessment

The objective of Privacy Risk Assessment techniques, also called privacy evaluation, is to
determine the privacy risk of the users in a dataset. The main idea behind these techniques
is that the privacy risk of an individual depends on how difficult it is to discover information
about hims/her, given a dataset under analysis.
Due to the advent of ML models and in general of AI Systems, which employ real human
data to learn complex tasks, the Privacy Risk Assessment now focuses on two settings:

• Privacy of the data. The privacy of the dataset when publishing a dataset. This is
the most studied approach, in which the objective is to evaluate the risk of privacy for
the users in a dataset, before knowing for which task the dataset is going to be used.
This task is crucially important not only for ML applications, but also for various
studies of different kinds;

• Privacy of the model. The privacy of the users when publishing a ML model trained
exploiting the data under analysis. In fact, the ML model learns patterns and cor-
relations among the data in the training set and this information may be found and
exploited by a malicious adversary.

In addition at the distinction between privacy risk assessment for the data or for the models,
we can distinguish also between different kinds of information disclosure: attribute disclo-
sure and identification disclosure [104]. In the first case, the intruder is able to discover
personal information about an individual, such as the value of an attribute in a masked
dataset, or information about the user, such as age, gender, location, or occupation. In
this case, usually the malicious adversary possesses some external information that allows
him/her to create a link with the masked data. As an example of attribute disclosure,
we can consider a ML model trained on medical records that contain information about
patients’ diagnoses, treatment history, and other sensitive information. The model may
be able to predict certain attributes of individuals, such as whether they have a particular
medical condition or not. In the case of identification disclosure, instead, the intruder is
able to correctly identify an individual in the masked dataset. Also in this setting, the
attacker might posses some external information that simplifies his/her task. For example,
considering again the setting of privacy risk for ML models, if a model is trained on facial
recognition data, the model may be able to identify individuals based on their facial fea-
tures. The field of identification disclosure is crucial in this Thesis and we approach the
problem both from the point of view of the privacy risk of the data, but also looking at
the privacy of the model. Technically, to evaluate the risk of identification disclosure of the
user in a dataset or from a model, we employ re-identification algorithms. They try to link
the individuals with the attacker’s external knowledge to evaluate the probability of being
re-identified. In practice, these algorithms simulate a privacy attack to the dataset. The
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privacy attack can be of different types, depending on the kind of data in input and on the
knowledge the attacker has.
An important aspect when designing this kind of attacks is the background knowledge of
the attacker. This is due to the fact that this kind of algorithms try to simulate possible sce-
narios of the real life, in which a potential malicious attacker can exploit different knowledge
to obtain the information he/she wants. The attacker combines the background knowledge
with the released dataset in order to enable new inferences and disclose the identity of users.
There are several re-identification algorithms available: the traditional methods are based
on statistical properties, but there are also ML models employed to evaluate the user’s
probability of being identified ( [104], [2], [106], [108]). For the privacy evaluation of the
data, in the following we present PRUDEnce, a framework for the privacy risk assessment
and protection [2]. In the ML scenario, the most popular attack on identification disclosure
is called Membership Inference attack (Mia) [109]. Training data membership inference at-
tacks aim to determine whether a given data point was present in the training data used
to build a model. Although this may not at first seem to pose a serious privacy risk, the
threat is clear in settings such as health analytics where the distinction between case and
control groups could reveal an individual’s sensitive conditions. This type of attack has
been extensively studied in the adjacent area of genomics [110], [111], and more recently in
the context of ML [112], [109]. In the following, we present the state of the art in the field
of privacy risk assessment, with a focus on the attacks and techniques proposed for the two
kind of data exploited in this Thesis, e.g. tabular and sequential data. We will start with
privacy risk assessment techniques available for analyzing the risk in the data, in Section
3.2.1, as well as the ones for studying the privacy of ML models, in Section 3.2.2.

3.2.1 Privacy risk assessment for data

The field of privacy risk assessment for data has been widely studied for several years now,
on account of the need to assess the privacy risk of individual in the data before conduct-
ing any kind of analysis with them. One of the core point of the state of the art in this
field is PRUDEnce, a framework which allows for the evaluation of the privacy risk for the
individuals in a real dataset, proposed by Pratesi et al. in [2]. PRUDEnce is a general
procedure for the privacy risk computation and protection which has been employed in dif-
ferent contexts, such as human mobility data, one of the kind of data exploited also in this
Thesis, but also purchase data [113,114]. In this Thesis, PRUDEnce has been exploited as
a background procedure to assess the privacy risk of the users in a dataset for the works
presented in the Part III. Technically, PRUDEnce’s main goal is to allow the publication of
the dataset while maintaining also the data utility for the final service. In fact, the setting
under analysis considers a Data Analyst that requests a dataset to a Data Provider with the
task of developing an analytical service. Clearly, the Data Analyst has some requirements
about the data, critically important to develop the analytical service. However, the Data
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Provider has to preserve the privacy of the individuals in the dataset. Given this setting,
the Data Provider aggregates, selects and filters the original dataset D. In this way, it
produces a set of datasets ⟨D1, D2, ..., Dz⟩ with different data structure and/or aggregation
of the data. This procedure can be done several times, until the Data Provider considers
the data delivery safe.
In particular, the procedure the Data Provider has to follow for the data delivery is com-
posed by 4 steps:

1. Identification of attacks: identify a set of possible attacks that a malicious adver-
sary might conduct in order to re-identify the individuals in the mobility datasets
⟨D1, D2, ..., Dz⟩;

2. Privacy risk computation: simulate the attacks identified in the previous point and
compute the set of privacy risk values for every individual in the datasets ⟨D1, D2, ..., Dz⟩;

3. Dataset selection: among the datasets ⟨D1, D2, ..., Dz⟩, we select D as the dataset
that has the best trade-off between the privacy risks and the quality of the data. This
trade-off is tailored by the privacy risk that is tolerated and the requirements of the
data that the Data Analyst asked for;

4. Risk mitigation and Data delivery : apply a privacy-preserving transformation on the
chosen dataset D to eliminate the residual privacy risk. The result of this operation
is a filtered mobility dataset Dfilt. When Dfilt is adequately safe, it is delivered to
the Data Analyst.

The step two, called Privacy risk computation, is the one that evaluates the privacy risk of
the individuals in the dataset. The privacy risk computation procedure theorized in [2] is
general and requires the definition of a privacy attack. In fact, only the privacy attack is
data-dependent. The privacy risk computation defined in PRUDEnce is the following:

1. Define an attack, based on a specific background knowledge category;

2. Consider a set of background knowledge configurations B1, B2, ..., Bm;

3. For all the configurations B1, B2, ..., Bm, compute all the possible instances b ∈ Bk

and its probability of re-identification;

4. For each individual, select the maximum privacy risk, i.e., the maximum probability
of re-identification across all the instances b ∈ Bk.

In this way, the authors provided an exhaustive privacy risk evaluation technique, by consid-
ering all the possible background knowledge the attacker could have over a given dataset (or
dataview of the original dataset). They generated different scenarios, starting from the one
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with minimum knowledge (only one information for each user) to the worst case scenario,
that corresponds to the background knowledge equal to the original dataset. Clearly, the
adversary background knowledge is context-dependent and determines the possible kinds
of attacks. As an example, in the case of human mobility dataset, such as the ones em-
ployed for this Thesis, the background knowledge could be a set of locations visited by
the user. In this setting the probability of re-identification is defined as the probability
of correctly associate a record to a unique user, given the background knowledge under
analysis. Mathematically, the probability of re-identification for each user corresponds to
the division between the number of records that match the background knowledge over
the total number of records in the dataset that matches the background knowledge. In
formulae,

PrD(d = u|t) =
suppu(t)

suppD(t)
(3.1)

in which D is the dataset under analysis, t the background knowledge considered and d the
record under analysis. As mentioned earlier, in the attack proposed in [2] all the possible
background knowledge an attacker could have has been considered. Therefore, the formulae
in Eq. (3.1) has to be computed for each background knowledge under analysis. The risk
of re-identification, also called privacy risk, corresponds to the maximum value among the
different re-identification probability results, mathematically

Risk(u,D) = max(PrD(d = u|t)) (3.2)

Overall the background knowledge t ∈ BK. Employing this re-identification technique we
analyze all the possible configurations of the privacy attack defined in the procedure in step
1. Therefore, this methodology provides an exhaustive analysis.
In [2] the authors also proposed some privacy attacks specifically tailored for human mobility
data. However, considering all these scenarios requires a long time to compute. Therefore,
from a computational point of view, it is inefficient, especially when dealing with big data.
Moreover, it is developed from the point of view of the companies and not of the user. In
fact, in this setting, the attacks are tailored for an entire dataset, such as the ones stored
in the servers of the companies, and are not suited for the evaluation of the privacy risk of
only one person at the time. In particular, if a new record arrives, we need to recompute
the privacy risk for every user in the dataset.
In order to solve these problems, Pellungrini et al. proposed a machine learning based
approach for human mobility data [5]. Their idea is to employ machine learning algorithms
to evaluate the privacy risk of the users. Technically, they employed the privacy risk
computation procedure theorized in [2], but they proposed other kinds of privacy attacks
for human mobility dataset and improved the efficiency of the privacy evaluation algorithm.
In fact, they trained a machine learning model in order to let it learn the relation between
the patterns present in the mobility data and the associated privacy risk. In order to do so,
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they employed a Random Forest regressor and a Random Forest classifier. For the training
of these machine learning models the authors labelled different human mobility dataset. In
order to do so, they employ the re-identification attack proposed in [2]. In this way, for each
input record there is an associated label that defines its privacy risk. They did this procedure
just once, at the beginning of the computation, in order to train the model. They tested
their predictive method with different kinds of aggregated data as input. In particular,
they employed raw trajectories, frequency vectors and probability vectors. With regards
to frequency vectors, they computed a vector for each user composed by tuples containing
(location, frequency) for each location visited at least one time by the user under analysis.
The probability vectors, instead, are vectors composed by (location, probability) tuples, in
which the probability denotes the probability of finding that location among the ones visited
by the user under analysis. In this way, they provide an efficient and flexible approach for
privacy evaluation. Moreover, the results obtained are very promising: they are able to
identify with high accuracy the class of people for which the privacy is at risk. They also
evaluated the performances of the model when tested over a dataset that wasn’t used for
the training, showing that this approach does not depend on the specific dataset in input.

3.2.2 Privacy risk assessment for ML models

The increasing prevalence of smart technology in everyday life, such as self-learning and
auto decision-making systems, is largely due to advancements in ML. Applications such as
Gmail’s spam filtering (Dada et al., 2019 [115]), YouTube’s video recommendations [116],
text correction software [117], and speech recognition [118] all utilize ML algorithms to
improve their functionality. Additionally, ML is used in cybersecurity for spam detection
[119]), malware detection [120], fraud detection [121], and bot detection [122].

While ML models can greatly enhance the capabilities of a system, it also presents
potential vulnerabilities regarding the privacy of the users in the dataset exploited during
the training phase. Attackers may exploit flaws in ML systems to infiltrate and manipulate
them for malicious purposes, potentially compromising the system’s reliability, confiden-
tiality, and availability. As an example, we refer to [123], in which the authors showed
that the use of ML models in healthcare can compromise the privacy of the patients by
exposing some personal information. In the work of Fredrikson, the sensible information
exposed was the patient’s genetic markers. However, the privacy threats are not limited
only to the medical context: in fact, in [124], the authors presented real privacy dangers
of using deep learning in finance. In this field, the records used for the training and the
model parameters are considered confidential. Hence, if these information are exposed, it
is considered a privacy exposure.

Up to now, we can divide the existing threats in this context into two groups: (i) the
first one, called direct information exposure, deals with direct, intentional or unintentional
data breaches; while the second group of privacy attacks in this setting, called (ii) inferred
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information exposure, in which the attacker actively tries to infer information from the
ML models. Regarding the group (i), it is composed by direct data breaches, such as
data sharing by transmitting confidential information without the proper encryption. An
example of this kind of exposure can happen with ML as a service (MLaaS). In this case,
in fact, there still is ambiguity about how the data are processed, if the data are sent
to the cloud or processed locally, or even what happens to the data when the process is
finished. Due to these ambiguities, private data can be exposed directly from the owner
and then incur in privacy exposures. However, in this dissertation, we mostly focus on
the second group of attacks, since we focus on the setting in which there are not direct
data exposures, but rather malicious adversaries that tries to infer information clearly kept
private. This group of attacks is composed by many different kinds of attacks, growing
day by day. They are often referred to as privacy attacks on the model and can be divided
into two categories: (i) white-box attacks and (ii) black-box attacks. White-box attacks
refer to attacks where the attacker has access to the model’s architecture and parameters,
allowing them to make targeted attacks exploiting this knowledge. Black-box attacks, on
the other hand, refer to attacks where the attacker does not have access to the model’s
architecture and parameters, but can use the black-box as a Machine Learning as a Service,
knowing only the input and output shape. Clearly, the last approach requires less knowledge
with respect to the first one, hence the black-box attacks are commonly considered most
threatening. For this reason, in this Thesis we refer to the last kind of attacks and in the
following we describe in details the literature related to it. The remaining of this Section
is organized as follows: we first present the Membership Inference attacks, in Section 3.2.2,
in which the objective of the attacker is to determine the membership of a given record to
the training dataset. In particular, we describe the Membership Inference Attack [109], the
first attack of this kind published, and the Label Only Membership Inference Attack [125],
exploited in the remaining of this Thesis. Then, we present the other kinds of privacy
attacks available for attacking ML models: firstly, model inversion and attribute inference
attacks, in Section 3.2.2, following, we describe the model stealing attacks, in Section 3.2.2,
and we conclude with Section 3.2.2 the presentation of this kind of attacks with the property
inference attacks.

Membership Inference

In this Section we present the membership inference attacks against ML models. This kind
of attacks speculates whether or not the given data instance has contributed to the training
step of the target model. The underline assumption is that if a record was used in the
training phase of a model, it would gives a higher confidence score with respect to a record
that was never seen by the trained ML model. In this setting, the first and most popular
attack is the Membership Inference Attack (Mia), proposed by Shokri et al. [109]. The
procedure of Mia is quite complex, since it needs to train shadow models able to mimic
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the behaviour of the black-box model. Then, exploiting the information of the shadow
models, Mia fits one attack model for each output class of the original model. An in
depth description of this methodology is reported below. Starting from this work, several
other attacks have been proposed. Long et al. [126] proposed another approach in which the
objective is to evaluate the membership of a given instance with more accuracy with respect
to the Mia. To achieve this goal, they modify the shadow training, by creating shadow
models with and without the instance under analysis. Then, the procedure follows similar
to Mia. They show that they are able to achieve more precise results, but the procedure
is adding an overhead affecting the computational time. To overcome this limitations,
Salem et al. [127] proposed a methodology able to attack the ML model, but with fewer
assumptions and less steps in the procedure. In fact, they showed that is not necessary to fit
several shadow models, the knowledge of the target model structure and not even dataset
resembling the training dataset distribution, Clearly, relaxing these assumptions fasten
the procedure, degrading the effectiveness of the attack only by a small amount. Another
interesting approach of this kind shows that it is not even necessary to obtain the confidence
vector when dealing with text data [128]. Lastly, Hayes et al. [129] presented an application
of the Membership Inference Attack to the Generative Adversarial Networks (GANs). In
this setting there are both white-box and black-box attacks. Since we are interested in
black-box models we focus on this kind. In the following, we describe in details two attacks
which are going to be exploited in the remaining of this Thesis. In particular, we present the
most popular attack, called Membership Inference Attack (Mia) [109], and his variation,
the Label Only Membership Inference Attack [125].

Membership Inference Attack This method aims to identify if a specific data record
was included in the training dataset for a model. When an adversary is aware of a record,
discovering that it was utilized to train a model suggests that there has been a leak of
information through the model. This can result in a violation of privacy, such as determining
that a patient has a certain disease based on the knowledge that their clinical record was
used to train a model related to that disease. This attack belongs to the privacy risk
assessment techniques in particular to the identification disclosure methods. The objective
of the attacker is to build a binary classification model Figure 3.1 that can recognize such
differences in the target model’s behavior and use them to distinguish members from non-
members of the target model’s training dataset based solely on the target model’s output.
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Figure 3.1: Membership inference attack in the black-box setting. The attacker queries the
target model with a data record and obtains the model’s output. The output is made by
the vector of probabilities, one per class, that the record belongs to a certain class. This
prediction vector, along with the label of the target record, is passed to the attack model,
which infers whether the record was in or out of the target model’s training dataset.

To carry out this attack we need some assumptions:

• Access to the black box’s query function, which allows us to see the predict probability
(also called confidence values) for any input data we try.

• Knowledge of the input and output format of the model, as well as the type of machine
learning architecture and how it was trained.

• Background knowledge about the population of the dataset used to train the model.

The attack succeeds if the attacker can correctly determine whether this data record was
part of the model’s training dataset or not. The typical measurements for determining the
success of an attack are precision (the percentage of records identified as members that
are members of the training dataset) and recall (the percentage of actual members of the
training dataset that are correctly identified as members by the attacker). The intuition
of this attack is that a good machine learning model is one that not only classifies its
training data but generalizes its capabilities to examples it hasn’t seen before [109]. This
goal can be achieved with the right architecture and enough training data. But in general,
machine learning models tend to perform better on their training data. Due to this be-
havior, we will always have higher confidence in the output of already-seen data than new
ones. The attack model then learns to distinguish between the training inputs classified
with high confidence and other, non-training inputs that are also classified with high con-
fidence by finding the right decision boundary on the relation between input and confidence.
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The algorithm starts by training shadow models1 to mimic the behavior of the black box.
The dataset used to train these models is a disjointed set from the actual training set and
can be generated in different ways:

• Model-based synthesis: in this method we randomly generate data inputs and submit
them to the black box and by looking at the class confidence if it has a very high
one we can assume it was part of the tr set otherwise not. We continue to generate
samples till we have a sufficient number of samples for each target class.

• Noisy real data: The attacker may have access to very similar data to the target
model’s training data. What we do is simply add noise to the data like adding
standard deviation in each feature and for binary features flipping the bits.

• Statistics-based synthesis: In this approach instead the attacker can have statistical
information on the data, like the marginal distribution of different features. In this
way, it can sample new examples similar to the ones used by the target model.

Let’s call this dataset Dshadow, we split it in two datasets Dtrain
shadow and Dtest

shadow by following
the 80-20% common split (Figure 3.2). Given k shadow models we divide the Dtrain

shadow and
Dtest

shadow in k sub-dataset each of them (x, ytrue) ∈ Dshadowi
where y = f i

black box(X) and
we train each shadow model to imitate the output y generated by querying the black box.
After training the shadow models in different portions of the starting Dshadow we merge
their results in (x, ytrue, yshadow, in/out) ∈ Dattack where yshadowi

= fshadowi
(x) and in/out

is assigned knowing that input data was coming from Dtrain
shadow or Dtest

shadow. Once we have
the Dattack ready, we can train different attack models one for each class to increase the
accuracy. So, we split Dattack into ctarget partitions one for each class and train a model
specialized on prediction of the membership status for x.

1shadow model is a blank model with the same architecture as the black box. The idea is that similar
models trained on relatively similar data records using the same training algorithm behave similarly.
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Figure 3.2: To train the attack model, the inputs and outputs from the shadow models are
used. The Training dataset of a shadow model is queried in the model to get the output,
and label it as “in.” These output vectors are then added to the training dataset of the
attack model. Additionally, the shadow model is queried with a separate test dataset not
used in training, and label the outputs as “out.” These are also added to the attack model’s
training dataset. This creates a dataset that represents the behavior of the shadow models
on both their training and test datasets. Finally, multiple attack models are trained, each
targeting a specific output class of the target model.

The success of the attack is correlated to the overfitting2 of the model. From different
studies and analyses the more the model is overfitted the more vulnerable to membership
inference. Usually, the overfitting is estimated by the (traintest) gap [130] which is the
difference between the accuracy of the target model on its training and test data. It was
demonstrated in the plots of [109] that, as expected, bigger (train-test) accuracy gaps are
associated with higher precision of membership inference.

Label only membership inference attack Label-only MI attack is a type of attack
that targets a machine learning model by only using the hard labels (outputs) it produces
[125]. This is different from traditional Membership Inference attacks, which require access
to a model’s “confidence vector,” assigned to the output. In real-world scenarios, this
information may not be available (confidence masking)3. The label-only MI attack can
still be successful granting similar performance as the traditional attack (using confidence).

2Overfitting in machine learning occurs when a model is trained too well on the training data, and as
a result, performs poorly on new, unseen data. This happens when the model is too complex and can
memorize the noise in the training data, rather than learning the underlying pattern

3One time of protection against MIA attacks where the black-box model does not show the confidence
probabilities.
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The concept behind this is that by analyzing how model’s predictions change when a small
change is made to the input data, we can gauge the model’s confidence in its predictions.
This is known as “model robustness.” A model is typically more reliable on data it has
already seen during training, but may be less reliable on new data. Theoretically, the
robustness of a model can be measured by determining the distance of a given point to the
closest decision boundary4 (see Figure 3.3).

Figure 3.3: This diagram shows an example of decision boundary spitting the data in class
A and class B. We can see two examples: the red dot and the green one. For the red one,
after having created a batch of examples with Gaussian noise, we can see that some of them
are miss-classified, instead for the green one, all of them are correctly classified. This gives
us information about how close is the point to the decision, approximating the confidence
vector for that example. The model is more robust to perturbation on the green point than
the red one providing the information that is more probable to be part of the training set.

The greater the distance, the higher the model’s confidence; the closer to the bound-
ary, the lower the confidence. The algorithm of this attack differs from the traditional
MIA attack, where instead of using multiple shadow models here they trained only one
shadow model in all the Dshadow and instead of using multiple attack models one per class
they used only one attacker trained on the shadow model’s predictions. To perturb the
input they used a Gaussian noise whereas, in the attacker model, they use an iterative
algorithm to find the best cut on the robustness score to classify the points as members
or non-members of the training set. In the paper, they demonstrated that the “confidence
masking” protection against MIA attacks is insufficient to prevent the leakage of private
information. From the experimental results, they have shown that training with differen-
tial privacy or strong L2 regularizations are the only current defenses that meaningfully
decrease leakage of private information, even for points that are outliers of the training
distribution, highlighting again how overfitting is related to the success of the attack.

4A decision boundary is the region of a problem space in which the output label of a classifier is ambiguous.
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Model inversion and Attribute Inference

In this Section we present model inversion and attribute inference attacks. This kind
of attacks targets the privacy of the attributes. In this setting, the adversary tries to
infer sensitive attributes of a given record from a released model, knowing only some non
sensitive attributes. In this context we can find the work of Fredrikson et al [123], in
which the authors exploits publicly available linear regression models to recover sensitive
attributes, such as genomics information about the patient, from simple information about
the patient, like age, height and age. Technically, the attack is formalized as a maximization
of the posterior probability estimate of the sensitive attributes. Another interesting work
in this setting is the one proposed by Salem at al. [131], in which the authors proposed a
model inversion attack for online learning. They exploit a generative adversarial network
to infer the sensible information exploiting the difference in the model before and after the
gradient updates. Lastly, He et al. [132] proposed a novel set of attacks to compromise the
privacy of queries at test time in the context of collaborative deep learning systems. This
attack seems threatening since with no access to other participants’ data, the attacker can
recover an arbitrary input fed into the collaborative system.

Model Stealing

In this Section we describe the model stealing attacks, which can be of two kinds: hyper-
parameter and parameter inference. This kind of attacks are tailored for contexts in which
there is only a black-box access to the ML model. This kind of access is one of the most
common since trained ML models are considered intellectual properties, hence extracting
the model can be considered a privacy breach. As a consequence, the attacker in this setting
tries to learn parameters or hyper-parameters information of the model to proceed later
with even more complex attacks. In this context we can find a work of Tramer et al. [133],
in which the authors presented an attack that finds parameters of a model simply observing
its predictions in the form of confidence values.

Property Inference

Another kind of attack against ML models is the property inference. This kind of attacks
tries to infer specific patterns of information by attacking the target model. An example
of these attacks is the memorization attack [134], in which the objective is to find sensitive
pattern of the training dataset from the model.

3.3 Privacy Risk Protection

The main purpose of the techniques and tools proposed in this Section is to protect the
privacy of the users in the dataset. As in the case of privacy risk assessment techniques,
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also in this setting the problem of protecting the privacy of the users can be tackled from
the point of view of the data or from the one of the ML models, specifically in the training
phase. In the following, we first describe the techniques that work on the data, in Section
3.3.1, then we present the ones modifying the ML training phase, in Section 3.3.2.

3.3.1 Data protection mechanisms

This Section presents the relevant literature in the context of privacy protection mechanisms
that works on data. The main purpose of the techniques and tools proposed in this Section is
to lower the privacy risk of the user in the dataset by masking the original data. Therefore,
at the end of the privacy protection process, the output dataset is a modified version of the
original one with a lower privacy risk. In practice, with the techniques proposed in Section
3.2, we are able to assess the privacy risk of the users and if we find that there is a high
risk of privacy breaches, we can apply one of the protection techniques presented in the
following.

The main concern when applying this kind of methods is on the data utility : the mask-
ing method increases the protection of users’ privacy, but often the final dataset is no longer
useful for other applications, such as data mining and ML algorithms, that try to mine the
data to find patterns and correlations. This is due to the fact that protection techniques
try to obfuscate original information by adding noises or by reproducing the same informa-
tion multiple times, losing possible trends and patterns in the data. Therefore, the main
challenge in this setting is to find a trade-off between humans’ privacy risk and the data
quality of the masked dataset.
To achieve this goal, in [2], the first step is to evaluate the level of the privacy risk of the
users in the dataset by employing some re-identification attacks, like the one proposed in
Section 3.2. Then, a privacy protection method is applied to lower the overall privacy risk,
given the dataset under analysis. Depending on the initial privacy risk level of the dataset,
the variations applied from the masking method can be more or less onerous.

In this setting the mechanisms proposed are applied directly on the data, hence they are
not compulsorily related to the context of ML. In fact, we can find two kinds of protection
mechanisms in this context: either context-free procedures, in which the data is protected
independently of the purpose that the data will be used for, or context-aware methods, in
which it is assumed to know the context where the data is going to be used. This last group
of procedures usually tackles the problem of achieving a good privacy-utility trade-off due
to the greater knowledge of the setting they have.

When dealing with context free procedures, a first simple and naive solution is the naive
data anonimization. With this name we refer to the simple removal of identifiers from the
data, such as names and addresses. Clearly, this is a starting point, but it is not enough to
provide privacy protection as shown in [135].

However, there are other solutions in this setting. First of all, K-anonimity [136],
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which is one of the most popular and employed method due to its simplicity. The objective
of this technique is to provide a dataset in which each participant’s information cannot be
distinguished from at least k−1 other participants whose information is in the dataset. The
k-anonymity method and works as follows: first, it analyzes the quasi-identifiers present in
the data, so that it is then able to generalize them up to the point in which an individual’s
data entry is indistinguishable from others k − 1 entries in the dataset [136]. k is a user-
defined variable and therefore this technique allows the user to define the privacy protection
level for the dataset. Different variants of this methodology have been proposed, depending
on the kind of data considered. As an example, k-anonimity has been applied for human
mobility datasets, but also in the context of querying tabular database ( [137], [138], [139]).

However, Aggarwal et al. [140] showed that the k-anonimity technique perform poorly
when dealing with high dimensional data. In addition, depending on the different back-
ground knowledge considered during the evaluation of the privacy protection method, k-
anonymity may not guarantee privacy [141]. For these reasons, different approaches have
been adopted to protect user privacy comprehensively. In [141] the notion of l-diversity
is theorized. With this technique, each equivalence class has at least l “well represented”
values for each sensitive attribute. This technique improved the privacy achievement of k-
anonymity, but it has some limitations. In particular, there are re-identification attacks able
to achieve attribute disclosure, as it has been proven in [142]. In [142] the author presented
another approach, specifically designed to overcome this limitation: t-closeness. In this
approach, the distribution of values of a sensitive attribute in any equivalence class needs
to be close to the empirical distribution (i.e., the distance between the two distributions
should be no more than a threshold t).

In this context we also find another popular solution: Differential Privacy. It is
another approach for solving the problem of protecting the individuals of a dataset from
privacy breaches. The first theoretical definition of differential privacy was published by
Dwork in [143], in which there is also a rigorous mathematical definition of the concept of
privacy and privacy breaches. The main concept of differential privacy is that the protection
of the dataset should be independent on the kinds of information it contains. Technically,
an algorithm is said to be deferentially private if its behavior changes in a small way if a
single user is added or is removed from the dataset. Therefore, regardless the details of
anyone in the dataset, the privacy of the individuals are still guaranteed [104]. Technically,
the first formulation of the differential privacy refers to the definition of ϵ-differential privacy
(ϵ −DP for short in the following), which states that, for ϵ ≥ 0, an algorithm A satisfies
ϵ − DP if and only if for any pair of datasets D,D1 that differs in only one element, we
have:

P = [A(D) = t] ≤ eϵP[A(D1 = t)]∀t (3.3)

in which P = [A(D) = t] denotes the probability that the algorithm A outputs t. Following
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this definition, the privacy loss is:

PL = ln
P = [A(D) = t]

P = [A(D1) = t]
(3.4)

Considering the privacy loss, the differential privacy mechanisms try to approximate the
effect of considering or not an individual as part of the dataset. In practice, this procedure
aims at ensuring that each individual included in the data has a small effect.
There are many different methodologies that allows for achieving a differentially private
dataset. One of the most common method is the Laplace Mechanism [143]. In this approach,
given a target function f and a fixed privacy budget ϵ ≥ 0, the randomized algorithm is
Af (D) = f(D) + x, where x is a perturbation random variable, drawn from a Laplace
distribution. In addition, the authors also defined ∆f , which is the global sensitivity of the
function f . The formal definition is: ∆f = sup|f(D) − f(D1)|, in which all the different
pairs (D,D1), that differs in only one element, are considered. Clearly, the main objective is
to find the best sensitivity, dataset wise. However, it is not always easy to find it, especially
in the case of deep learning models [144]. The differential privacy has become more and
more important also due to an important characteristic: the composition property. Given
two mechanisms, with privacy budget ϵ1 and ϵ2 applied to the same dataset, together they
use a privacy budget of ϵ1 + ϵ2. Hence, the composition of multiple differential private
mechanisms consumes a linearly increasing privacy budget. This is a crucial characteristic
since it allows to employ this mechanisms also in decentralized settings. Hence, before
sharing the data, each participant can apply a differential privacy randomization method
and achieve a local differential privacy.
Recently, Google proposed RAPPOR [145] to allow web browser developers to privately
collect usage statistics. In addition, there is also the Pufferfish framework [146]. It can be
used to create new privacy definitions tailored for specific applications.

Another procedure that belongs to this category is the Semantic Security. The main
idea of this methodology is that the advantage of an adversary with background infor-
mation should be cryptographically small. In this setting, the advantage of an adversary
refers to a measure of how successfully an adversary can attack a cryptographic algorithm.
Theoretically, this approach seems interesting, however, up to now it is not feasible in
practice [147].

Lastly, there are Information Theoretic privacy methodologies. They are context-
aware procedures, in which the solutions proposed model the datasets exploiting informa-
tion about the tasks the data are used for. In this context, there is an interesting work
from Huang et al. [135]. In their work, they propose a context-aware privacy framework,
called generative adversarial privacy (GAP), that exploits Generative Adversarial Networks
(GAN) to generate protected datasets. The framework is composed by two components:
one sanitize the data by removing private attributes, while the other exploits the GAN to
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try to infer private information. Hence, their approach focuses on the data and also the
privacy protection level is defined through them.

3.3.2 Training Phase protection mechanisms

In this Section are outlined the most common mechanisms for protecting the privacy of
the users when using ML models during the training phase. We remark that this kind
of methods are tailored for neural network models. In this setting, there are mainly two
techniques: differential privacy and encryption.

We presented the formal definition of differential privacy in Section 3.3.1, when it is
applied to the data in a context-free manner. However, there is also another variant of this
technique, which aims at modifying ML algorithms to satisfy differential privacy. In this
context, the differential privacy mechanisms can be applied at different levels: either on
the input data, on the loss or objective function, on the gradient updates, on the output
and on the labels [8]. Clearly, when the differential privacy is applied to the input data,
this corresponds to the first case, proposed above in Section 3.3.1. For the case of objective
function perturbation and output perturbation, there are methods available only for convex
objective functions [148]. The most popular way to apply differential privacy in ML models
is the gradient perturbation. This kinds of techniques requires the gradient norms to be
bounded, which is not always the case, especially for deep learning models. To overcome
this problem, usually the procedure of clipping the gradient is applied [149]. Recently, Bu
et al. [150] proposed to apply the Gaussian Differential Privacy to deep learning models to
better analyze the privacy budget exhaustion during the training. Overall, there is a great
amount of works in this context, which tries to apply different variants of the differential
privacy. However, the application of differential privacy methods have one main limitation:
the clipping mechanisms and the addition of noise yields loss of utility.

For this reason, also other mechanisms have been explored. In particular, Homomor-
phic Encryption [151–153]. These algorithms are tailored for neural network methods and
they still suffers from many limitations. As an example, only the linear functions can be
computed in this setting. Due to this limit, the application of this kind of methods are still
in its infancy.

3.4 Discussion

In this Chapter, we provided an overview of the state of the art in Privacy, with a focus on
two main directions: privacy of the data and privacy of the ML models. The first direction
examines the privacy of users’ data, particularly in cases where datasets are released, as
an example release for research purposes or for marketing purposes. The second direction
addresses the privacy of users when the actual data is kept private, but the ML model
trained on that data is made public.
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Beside the two directions already mentioned, in the context of privacy, there are two pri-
mary tasks are considered: privacy assessment and privacy protection. Privacy assessment
mainly revolves around simulating privacy attacks on datasets or ML models to evaluate
their privacy exposure. On the other hand, privacy protection aims to strike a balance
between preserving the quality of data and safeguarding privacy. One popular strategy for
privacy protection is differential privacy, which involves adding noise to the original data.
While this approach effectively protects privacy, it can also obscure patterns and valuable
insights within the data when utilized for data mining and ML purposes. Also in this
setting, the privacy protection techniques can be applied to the data or to the ML models.

The analysis conducted in this Chapter focuses mostly on privacy risk assessment meth-
ods for data publishing which is one of the major topics of this thesis. Our analysis reveals
that these methods tend to be slow, not available as online services, and often operate at
the group level rather than the individual level, due to the formalization of the attacks
exploited but also due to the structure of the processes proposed. In terms of privacy risk
assessment for ML models, the findings raise concerns, even though executing such attacks
requires a complex setup involving shadow models and attack models. This complexity
makes it challenging for attackers to successfully compromise the ML model. However,
the direction proposed by LabelOnly, an attack method with less requirements with re-
spect to the standard Mia, is leading the way for more powerful and faster attacks in this
contexts.

Overall, this Chapter highlights the importance of privacy in both data and ML models.
The identified limitations in privacy risk assessment methods underscore the need for more
efficient and individual-level assessments, especially for data publishing. Similarly, while
privacy protection strategies such as differential privacy offer strong privacy guarantees,
further research is necessary to mitigate the potential loss of valuable information due to
added noise. Future work should also focus on addressing the challenging task of assessing
privacy risks in ML models, considering the intricate nature of the available attacks.

By addressing these challenges and advancing the field of privacy, we can enhance
user trust, promote responsible data practices, and facilitate the development of privacy-
preserving ML models that can effectively balance privacy concerns with data utility.
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Chapter 4

Artificial Intelligence laws and
rules

This Ph.D. dissertation discusses some of the ethical issues in the context of Artificial Intel-
ligence extremely important nowadays: Privacy and Explainable AI. In fact, thanks to the
technological advancements made during the last two decades, Artificial Intelligence (in the
following referred to as AI) has been applied in various contexts of our daily life, thus also
making it a requirement for ethical discussion regarding the use of these systems, as well
as legislation to regulate their proper usage. To appreciate how much AI is an embedded
component of our lives, we need only to mention that products that use AI include inter-
active maps and navigators, text editors with auto-corrector or auto-completion services,
or digital assistants, such as Alexa, now present in most of our homes, as well as social
networks. In addition, there are also biometric re-identification systems, such as face recog-
nition systems for unlocking our phones, but also for surveillance and security, exploited by
government facilities and airports. Last but not least, AI is also crucial in recommendation
systems, which are exploited during working tasks, such as the one in the Google products,
and during free time, such as Spotify or Netflix suggestions. From this brief description
of how much AI is now an indispensable part of our lives, we can now clearly sense the
need, highlighted in recent years, to evaluate the ethical aspects of AI use and possible
regulation of its use. In fact, in 2017 Chouldechova pointed out that nowadays, companies
are increasingly embedding ML models in their AI applications, incurring a potential loss
of safety and trust [27]. To overcome these problems, there is the need of tackling the
trustworthyness of AI products. In particular, the field of data privacy has been tackled
firstly. The reason behind it is that the growing proliferation of technology, the capacity
to amass, stockpile, and exchange information has been greatly facilitated, albeit at the
cost of concomitant challenges in safeguarding sensitive information. Notably, data privacy
has undergone heightened scrutiny over the preceding decade, owing to the expanded use
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of AI systems, which necessitate the use of sensitive data from users for model training,
particularly in critical domains like hospitals, thereby placing such data at greater risk. In
practical terms, human data availability allows researchers and companies to scrutinize and
improve their services by leveraging these data. Yet, to accomplish this, human datasets
must be made accessible to allow for their utilization. Unfortunately, inadvertent disclosure
of personal information has occurred several times, exemplified by the Cambridge Analytica
debacle and subsequent episodes, such as the data breach at Uber. [105]. The significance
of Data Privacy in the context of AI is not the only ethical consideration that has been
identified. An example of great importance is the article published in 2016 by ProPublica1

which exposed the racial bias present in the algorithm COMPAS, utilized by US judges to
determine the recidivism risk of prisoners. This incident was caused by the algorithm being
trained on biased real-world data, where most released Black and Latino individuals was
found to have committed crimes again. Consequently, the algorithm learned and replicated
this discriminatory pattern, without taking into account the circumstances of the crimes
committed. What makes this case particularly noteworthy is that the discrimination of
the algorithm was identified through an explanation of its reasoning. As a result of this
and other similar cases, explainability in AI algorithms has become increasingly critical in
recent years.

As a result, there has been a growing recognition in recent years that legal frameworks
need to be adapted to account for the ubiquitous presence of AI in various aspects of our
lives. Given the anticipated growth of AI applications in the future, legal experts have
highlighted the need to update existing legal instruments or develop new ones to address
these technological developments and their associated legal implications.

In the remaining of this Chapter we first describe the principal components of the Gen-
eral Data Protection Regulation, in Section 4.1, a core regulation for Europe which impacts
also the majority of the other countries of the worlds. Then, we conclude the Chapter by
presenting other relevant laws and regulations for Artificial Intelligence in industrialized
nations, in Section 4.2.

4.1 General Data Protection Regulation

Personal data holds high value: corporations like Facebook and Google earn revenue by
trading personal data with advertisers. Given the enormous financial interests involved,
estimated to be around trillion dollars, the European Union at the beginning of the second
decade of year 2000, started questioning whether such companies prioritize the best interests
of their users. Starting from this need, the European Union on the 25 of May 2018 published
the GDPR (General Data Protection Regulation) [1]. It is a legislative instrument that lays
down a set of rules governing companies’ use and management of personal data, regardless of

1ProPublica
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their number of employees or incomes. The term personal data is crucial for the GDPR since
it refers to any information that can be used to identify a specific individual. Essentially,
it encompasses any confidential details that one would prefer to keep private and out of
unauthorized possession. Various examples of personal data include but are not limited to:
name, phone number, address, date of birth, bank account number, passport number, social
media posts, geotagging, health records, race, religious affiliation, and political opinions.
To illustrate, think of personal data as a jigsaw puzzle, in which each individual piece alone
may not carry significant meaning, but when interconnected, they portray a comprehensive
and vivid picture of one’s life. The main concern when using personal data is that of data
breach. A data breach refers to any incident that results in the unauthorized loss, theft,
destruction, or alteration of personal data. Unfortunately, such breaches occur frequently
in modern times. As an example, one of the most famous incidents involved Equifax, a
credit reporting agency in the United States, in which almost half of the population of the
country had their personal information, including name, date of birth, and social security
number, stolen as a result of a data breach. Another notable case involved Cambridge
Analytica, a political consulting firm that surreptitiously acquired information from 50
million Facebook profiles, and subsequently provided it to the 2016 Trump campaign in the
USA. These examples of incidents highlight the significant real-world repercussions of data
breaches. The GDPR and similar legal frameworks from other countries seek to regulate
such incidents to minimize the harm caused to individuals and organizations.

The GDPR grants internet users several new rights to protect their data privacy. The
most important ones, also cited in other regulations around the world, are the right to
know how exactly your data is being collected and used, the right to request information
about the personal data collected about you, free of charge and the right to have your
data deleted from records (in case you need to disappear). In addition, the GDPR also
allows for the right to have any mistakes in your data corrected and for the right to refuse
data processing, including marketing efforts. To ensure compliance with these rights and
avert personal data breaches, GDPR requires each company to define a document called a
Data Protection Impact Assessment (DPIAs). DPIAs are required for companies engaging
in high-risk data processing activities that could potentially impact people’s freedoms. By
conducting a DPIA, a company can assess the potential risks associated with such activities
and implement necessary measures to ensure the protection of personal data. When a
data breach occurs, the affected company must notify their supervisory authority within 72
hours, as well as inform users in a timely manner. This ensures that users can take necessary
measures to protect their personal information. Examples of such high-risk activities include
the usage of new technologies for data processing, tracking the location of individuals and
processing genetic or biometric data. In addition to the DPIAs, all businesses must have
a Privacy Policy that clearly outlines their data processing activities. The privacy policy
must include contact details of the company and its representatives, explanations about
the reason why the company is collecting user data along with the period of time the
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information will be retained, a list of the rights that users have with respect to their data
and also the contact details for an EU representative and Data Protection Officer.

There are two key categories of people cited in the GDPR: the Data Controller and the
Data Processor. These two categories of people are very important to the understanding of
this work, as they are the foundational part of the PRUDENCE method [2], our basis for
calculating the privacy risk. The data controller is responsible for determining the purposes
and methods of processing personal data within an organization. If an organization is
responsible for deciding why and how personal data should be processed, it is considered
the data controller. Employees who process personal data within an organization do so to
fulfill the tasks of the data controller. An organization becomes a joint controller when it
collaborates with one or more organizations to determine the why and how of personal data
processing jointly. Joint controllers must enter into an agreement outlining their respective
responsibilities for complying with GDPR rules. Key elements of the arrangement must be
communicated to individuals whose data is being processed. The data processor is a third-
party entity that processes personal data only on behalf of the controller. The processor’s
obligations towards the controller must be outlined in a contract or legal document. This
includes the handling of personal data once the contract has been terminated. Common
activities of data processors include providing IT solutions such as cloud storage. The data
processor may subcontract a portion of its task to another processor or appoint a joint
processor only with prior written authorization from the data controller. There may be
instances where an organization serves as both a data controller and data processor.

The GDPR imposes strict penalties on individuals or organizations that violate its
provisions in handling personal data. To ensure that companies comply with the legal and
ethical standards of personal data processing, non-compliance can lead to severe financial
penalties, including a maximum fine of up to 20 million euros or 4% of the annual global
turnover of the guilty company. The GDPR became law in 2018 and since then, several
well-known companies have already been penalized for non-compliance. To name a few,
British Airways received a fine of 230 million dollars for exposing the booking details of
500,000 passengers in a cyber attack. Google, instead, faced a smaller penalty of 57 million
dollars for withholding crucial information from users while setting up new Android phones,
preventing them from knowing the nature of the data collection practices to which they
were agreeing. These examples involve a great amount of money due to the severity of the
damage committed but also to the size of the company, which in these cases is enormous.
Although the severity of penalties may vary depending on the size of the business, all
organizations are held to the same standards when it comes to complying with the GDPR.
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4.2 Soft law for Artificial Intelligence in industrialized na-
tions

It is very interesting that this need to update legal instruments has occurred almost si-
multaneously in most developed states. In fact, albeit with different declinations and with
different social and ethical concerns, even non-democratic countries, such as the People’s
Republic of China, have proposed soft-law programs intending to create hard-law instru-
ments.

In 2019, President Donald Trump signed the American AI Initiative [154], which has
since been amended and renamed the National Artificial Intelligence Initiative Act, effective
January 2021. The goal of the act is to promote technological advancement within the
country, while maintaining high standards of quality and safety during both the production
and use of AI. The act seeks to protect privacy, freedom, and civil rights as core values in
the use of AI, to secure the United States’ economic advantage. President Biden has called
for the establishment of federal offices to enforce these laws.

Similarly, in 2018, the European Union (EU) initiated a Communication Letter to the
European Parliament, titled ”Artificial Intelligence for Europe”2, to promote AI develop-
ment in three key areas. The first pillar aims to encourage the use of AI in both public
and private sectors to consolidate Europe as a leading technological power. The second
pillar seeks to govern AI-related social and economic transformations, and the third pillar
involves building ethical and legal guarantees for the development of reliable and human-
centric AI. These three pillars were included in an official act called the Coordinated Plan
on Artificial Intelligence3, which has been signed by all member states, including Norway
and Sweden.

It is noteworthy that the European Union has identified specific areas for technological
advancement: health, mobility, security, energy and industrial production, and financial
services, as stated in the Coordinated Plan on Artificial Intelligence. The EU’s commitment
to creating a favorable environment for the development of ethical, reliable, and human-
centric AI products was expressed as early as 2018. This goal has been reiterated in
subsequent official documents, including the Ethics Guidelines for Trustworthy AI produced
by the High Level Expert Group. The group highlights key criteria for the development
of ethical AI applications, including respect for privacy, transparency, accountability, fair
behavior, and security. It emphasizes the importance of making the EU a key center for
developing such technologies.

Currently, in the European context, member states have not created individual AI
legislation for each state, except for the United Kingdom. Having already initiated the
procedure for leaving the European Union at the time of the first official act on AI, they

2Link to the official communication for the Artificial Intelligence for Europe on the 25 April 2018
3Link to the Coordinated Plan on Artificial Intelligence
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decided to proceed independently. In 2018, the UK published the AI Sector Deal4, a policy
paper outlining guidelines for AI in the UK, with particular emphasis on the search for
talent and resources in this area, including from abroad. Investments and aid to companies
in the sector then supported these ideas. Similarly to the European prototype, an AI
Council was also established in the UK - a group of experts to help implement the above
legislation. In 2021, a new document, called the National AI Strategy, was also issued,
which, like the European one, clearly references a desire to be a leader in the AI field. In
contrast to European ideals, however, the UK’s focus is on investment, while seeking to
limit inequality and respect public interest.

Looking beyond the European context, the Asian continent has also made significant
strides in the field of AI. China, in particular, began considering the AI industry from a
legislative standpoint as early as 2017 with the publication of the New Generation Artificial
Intelligence Development Plan5. Like their European and American counterparts, there is a
clear intention to establish China as the world leader in AI, with the creation of an expert
group known as the AI Strategy Advisory Committee. The timeline for development is
ambitious, with a projected value of €128 billion for the AI industry by 2030. Notably, some
national companies have been identified for specific support to consolidate their position,
such as Alibaba for smart city apps and Tencent for image diagnostics. Ethical values are
also referenced, albeit indirectly.

Japan and South Korea have also initiated national AI development plans in the Asian
context. The Japanese approach is particularly interesting6, as their development plan
focuses heavily on addressing current societal issues such as slow economic growth and
an aging population. Healthcare is their primary focal point due to the aging population,
followed by mobility and the industrial production of robots, in which Japan currently holds
a global advantage. Like the UK, there is also a declared intention to attract talent from
abroad.

Alongside these regulations, there are also various soft law documents, which are decla-
rations of intent, developed by international organizations or groups of experts or research
centers. The list of these documents is very long, but we will briefly discuss some of the
most essential documents for the European context, as it is closer to our context.

In 2021, UNESCO published a document called the Recommendation on the Ethics of
Artificial Intelligence which focuses on respecting the fundamental rights of human beings
when interacting with AI. The document emphasizes the need for transparency, a funda-
mental ethical value of Explainable AI. The document mentions the need to understand the
results given by AI and the possibility of human control over the behavior of AI, thus citing
the concept of human-centered AI. Lastly, the document highlights the need to direct the

4Link to the AI Sector Deal, last update May 2019
5

6Link to the Japan plan to the development of Artificial Intelligence
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development of AI towards collective well-being and environmental sustainability, moving
towards a greener direction, which has not been mentioned by world powers individually.

In 2019, the G20 also published an annex on AI7. In this case, the world powers mainly
focused on the development of a human-centered artificial intelligence, respecting equity,
safety, transparency, and accountability.

Finally, one of the most important documents at the European level is the previously
mentioned Ethics Guidelines for Trustworthy AI, published by the High-Level Expert Group
in 2019. This document is significant because it is currently one of the most comprehensive
available. It presents guidelines for achieving an AI that respects ethical principles, and
seven fundamental principles are listed: human intervention and oversight, technical robust-
ness, safety, data privacy and governance, transparency, non-discrimination and fairness,
social and environmental well-being, and accountability.

4.2.1 The Artificial Intelligence Act for the EU

The last section of this chapter concerns the recent AI Act8. In fact, on April 21, 2021, the
European Commission made public a proposal for a Regulation addressed to the European
Parliament and the Council establishing rules on AI and amending certain Union legislative
acts. In particular, at the beginning of this regulation, several laws are mentioned that
legitimize its existence, in particular Article 114 TFEU, regarding the functioning of the
internal market, as well as Article 16 of the same treaty, regarding the personal data of
European citizens.

In addition to these legal statements, it is interesting to note that this regulation is
actually the result of a very extensive work that started more than three years before its
publication, which involved many AI experts, including researchers, industrialists, and not
just political figures.

The project under analysis aims to address the dangers connected to some AI appli-
cations, without forgetting to promote the development and diffusion of this technology,
without limiting the market. Given these premises, the Commission has chosen to propose
a risk-based approach. This approach had already been selected in other contexts by the
European Union, including the GDPR. Therefore, having chosen a risk-based approach,
the Proposal divides AI applications into four risk classes, subjecting each risk class to a
different regulatory regime. In the various annexes published together with the regulation,
we find lists of technologies prohibited within the European Union, due to the potential
harm to human dignity, as well as to a wide range of individual rights. In this list, we find,
for example, social credit rating systems that have prejudicial consequences for the subjects
involved in contexts not connected to that in which the starting data was collected, as well
as systems that exploit the person’s vulnerabilities.

7G20 annex
8Link to the AI act
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Among the various systems considered high risk and therefore prohibited, we also find
real-time biometric identification systems. However, unlike others, these systems have been
deemed important for security purposes. Therefore, they are allowed only in missing persons
cases, to prevent terrorist attacks, or to pursue suspects of serious crimes.

Apart from this aspect of prohibited systems, there are also listed high-risk systems. In
this context, it is not easy to understand exactly what the high-risk systems are. Certainly,
those listed in Annex III are considered high-risk, but not only: there are several annexes,
not easy to understand, that delimit the risk perimeter through different annexes.

Examples of high-risk systems are those used in credit activity and for managing mi-
gratory flows. For these high-risk systems, there are stringent rules to be followed. For
example, there are requirements in terms of the quality of the datasets used, transparency
of the decision-making process applied, comprehensibility of the results, as well as the pos-
sibility of human control and intervention in case of doubts about the behavior of the AI
under analysis. Given all these requirements, the Proposal of the AI Act cites the need
to create a procedural and documentary risk management system. This process is dele-
gated to the technology supplier company under analysis. Once this documentary process
is drafted, the market entry of a high-risk AI product will not be easy, as the product
must undergo a procedure that evaluates its compliance with the requirements. In case of
a positive outcome, the CE mark will be placed.

The other category of risk for AI systems is the so-called non-risk category. In this case,
the Proposal still recommends evaluating transparency, data origin, and all the analyses
required in case of high risk, but in this context, they are not binding, and no conformity
evaluation is necessary for placing the product on the market.

Finally, the Proposal also analyzes AI that interacts with humans. Examples of these
products are so-called Deep fakes, where AI is capable of generating and manipulating ex-
tremely realistic content, as well as products capable of detecting user emotions or profiling
users based on their biometric data. In these cases, regardless of the risk the product poses,
specific transparency obligations are required: these products must inform the user who is
using them that they are interacting with an intelligent agent and not a human being, as
well as an explicit reference to what the AI’s goals are in that context, such as emotional
or biometric profiling.

All these constraints and precautions that need to be taken not only for banned and
high-risk AI but also for non-risk AI, if not met, will result in sanctions. At present, as
this is only a proposal, figures have been proposed for sanctioning non-compliance with
the law, with higher sanctions in the case of prohibited AI. However, these figures could
still change. Moreover, no sanctions have been chosen for each non-compliance, leaving the
choice of appropriate sanctions for these cases to the Member States.

From a regulatory point of view, the AI Act is a Proposal and is therefore not yet in
force. The Proposal was presented on April 21, 2021, and since then, a public consultation
procedure lasting 3 months has begun, followed by a period of re-discussion of the proposed
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text. Following this, there is a complex legislative process before the Proposal becomes
law. Therefore, it is still not possible to know whether the text will actually become law
and with what modifications, or even when this will happen, if it happens. Nevertheless,
most parliamentarians are confident in the need for a legislative act regarding the risk
assessment of products containing AI. Even in the case of a positive outcome, once the law
is approved, there will surely be a transition period to allow sector operators to comply
with the requirements.

In conclusion, the current state of AI law consists of proposals, intentions, and per-
spectives, but not binding regulations. This perspective is not only European but global,
as most developed countries have expressed strategic development plans at both national
and supranational levels, but none of these plans are binding or enforceable in court. In
practice, there are few disciplines of hard law currently in effect. However, this trend is
understandable when we consider the fact that AI is a rapidly developing technology that
lacks any form of regulation. Thus, it is necessary to start with broad ethical principles
before delving into specific applications.

Despite the absence of hard law, several states are working on creating specific regu-
lations for AI, the most significant of which is the European AI Act. The importance of
the AI Act is not due to being in Europe but to what is commonly known as the “Brussels
effect.” This effect has been seen in the past, specifically with the GDPR, which came into
effect in May 2018 and quickly became a world standard. The AI Act appears to be going
in the same direction, with a clear extraterritorial scope that applies to any AI system or
service that impacts European citizens, regardless of where its provider or user is located.
The AI Act adopts a risk-based approach that bans certain technologies, proposes strict
regulations for “high-risk” ones, and imposes stringent transparency criteria for others. If
adopted, the AI Act will undoubtedly significantly impact the EU and beyond. A crucial
question is whether we have the technology to comply with the proposed regulation and to
what extent the requirements of this regulation can be enforced.

Additionally, there is a desire to steer technological development towards user-centered
AI without stopping the market and technological process.

4.3 Discussion

This Chapter analyzes the legal aspects of Privacy and Explainable AI. The increasing
integration of AI in various aspects of our daily lives necessitates ethical discussions and
regulatory measures to ensure responsible usage. The Chapter emphasizes the importance
of evaluating ethical aspects and potential regulations due to AI’s pervasive presence in
technologies like interactive maps, digital assistants, biometric systems, and recommenda-
tion algorithms.

Data privacy emerges as a crucial ethical concern, as AI systems often rely on sensitive
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user data for training. However, the widespread collection, storage, and exchange of data
present challenges in safeguarding personal information. High-profile incidents, such as the
Cambridge Analytica scandal and Uber’s data breach, highlight the inadvertent disclosure
of personal data and the risks associated with it. The significance of data privacy in AI
applications is further exemplified by the European Union’s introduction of the General
Data Protection Regulation (GDPR) in 2018, which establishes rules for companies’ use
and management of personal data.

The Chapter also addresses the implications of data breaches, which involve the unau-
thorized loss, theft, or alteration of personal data. Several high-profile data breaches,
including Equifax and Cambridge Analytica, underscore the real-world consequences of
such incidents. The GDPR and similar legal frameworks aim to regulate data breaches and
minimize the harm caused to individuals and organizations.

Overall, the Chapter presents a small overview of the legal regulations for privacy and
explainability in AI. It emphasizes the need for responsible usage, legislation, and regulatory
measures to safeguard personal data, mitigate algorithmic bias, and prevent data breaches
in an increasingly AI-driven world.
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Part II

Local Post-hoc Explanations for
Tabular Data
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This Part of the Thesis deals with the topic of Post-hoc Explanations for tabular data,
explained locally. The field of Explainable Artificial Intelligence can be divided into two
main categories: explainable by design methods, in which the explanation is intrinsic, part
of the Machine Learning model, or post-hoc methods, in which the objective is to provide an
explanation for a Machine Learning model not interpretable and already trained, hence from
the outside of the model. We focus our work on the latter kind of Explainable methods. In
this setting, the methods can be of two different kinds: local, hence focusing on explaining
the reasons for the particular prediction for a single record, of global, explaining the overall
behaviour of the Machine Learning model. In this Part, we focus on the local explanations.

This Part starts with a benchmark of the local post-hoc explanation methods available
in the literature, presented in Chapter 5. The analysis presented in this Chapter is published
in [11] and in [155]. In particular, we focus our analysis on Shap, Lore, Lime and Dalex,
among the most popular xai methods with available Python libraries. To compare these
methods’ explanations output, we exploit the state-of-the-art metrics for this particular
setting, such as fidelity and insertion and deletion methods. From the analysis conducted, it
is evident that the explanation techniques developed so far suffer from numerous limitations.
First, most of these methods exploit approximation or randomization techniques, making
the generated explanations unstable: given an input record multiple times to the same
methods, we never receive the same explanation in the output. This is a considerable
limitation for us as it limits the system’s reliability and thus may lead users to have less
confidence in the AI system. In addition to this limitation, there is the problem that most
of these methods provide explanations that are not faithful to the black-box under analysis.
This result is evident from the values of metrics such as insertion and deletion, in which
variables considered most important are removed from the record under analysis to see how
the black-box prediction changes. Lastly, the explanations currently provided are complex
for a non-expert user to understand, as they are composed of multiple different indices and
codifications, which makes the process of understanding the explanation difficult.

To overcome these limitations found during the benchmark, we designed and developed
a new version of Lore. Lore is a local explanation algorithm specific for tabular data,
which returns factual rules and counterfactual rules. It is based on a genetic algorithm,
which is exploited to generate a synthetic neighborhood around the point under analysis.
After creating this neighborhood, Lore extracts a surrogate model, from which it later
extracts the explanation. To overcome the above limitations, we generate multiple neigh-
borhoods, extract a surrogate model for each of them, and then merge them through a
procedure consisting of filters and pruning, allowing the creation of a more stable surro-
gate. In addition, we allow the creation of constraints on the variables to have actionable
counterfactual rule explanations. The new version of Lore is presented in Chapter 6 and
this work has also been published in [13].

66



Chapter 5

Benchmark of Local Post-hoc
explanations

In this chapter we present a technical analysis of state-of-the-art methods in the context
of post-hoc and local explanations for tabular data. As presented in the chapter 2.1, the
field of Explainable AI and in particular of post-hoc local explanations, is a remarkably
flourishing field at this time and thus several papers have been published, although most of
them are only presented in a theoretical way and do not have a usable library. Therefore, in
this chapter the methods under analysis are the state-of-the-art ones that are also provided
with a usable and maintained library. We focus on local explanations, in which given
an input record the explainer provides a specific explanation, which offers reasons for the
classification in analysis. In addition, these explanations are post-hoc, in that we assume
that the classifier has already been trained and is working, so the explainer performs its
work only by query functions, such as predict and predict proba (the former returns the
predicted class, while the latter returns the probability vector, in which the membership
probabilities of each class are present). Ultimately, the focus in this case is on tabular data.
This choice is due to the fact that tabular data is the most widely used data in the field of
Data Mining and Data Privacy, and for this reason, research on this type of data was the
first to be tackled in XAI as well.

The field of validating the goodness of an explanation is still an open challenge due to
the plurality of explanations available and the different ways in which these explanations
are extracted. This field is composed of two main kinds of explanation validation: quan-
titative, in which the focus is on the technicality of the explanations, in particular on the
performance of the explainer, and qualitative, in which users are tested for empirically val-
idating the comprehension of the explanations. For the time being, in the state of the art,
the two most widely used metrics for validating explanations for tabular data are fidelity,
stability, faithfulness and monotonicity. In the following we remark the general behavior
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and objectives of these metrics, however, an in-depth description of these metrics can be
found in Section 2.4.

5.1 Dataset

For the tabular data we consider three benchmark datasets: all of them have different char-
acteristics that may affect the performance of the explanation methods. For all of them, we
apply a standard pre-process: we replaced the categorical variables using a TargetEncoder,
we replaced the missing values using the mean (of median) of the column under analysis,
and we removed the outliers by visualizing the statistical distribution of the variables. We
analyzed Adult1: a binary classification with the task of predicting if a person earns more
or less than 50K per year. It has 14 attributes (numerical and categorical) and 48842
records. Then, we considered German2: a binary classification for predicting the credit
risk of a person. It has 20 attributes, mostly categorical, with 1000 records. Lastly, Com-
pasM3: a multi-class dataset, in which the goal is to predict the recidivism of a convicted
person, with 3 classes of risk recidivism. It has 21800 records and 10 variables, all of them
categorical except age.

5.2 Black-box models

For comparing the explanations, we define and train three ML models for each dataset:

• Logistic Regression (lg), a simple model based on probabilities, but prone to noise
and overfitting,

• XGBoost4 (xgb), a ensemble model, with overall better prediction performance with
respect to lg,

• CatBoost5 (CatBoost), a variant of gradient boosting algorithm tailored for han-
dling missing values and categorical data.

The performance of the black-box models are reported in Table 5.1. In the table is reported
the weighted F1 score. This score is calculated by taking the mean of all per-class F1 scores
while considering each class’s support. In this way we take into account the imbalance
among the classes. From this table we can clearly see that all the ML models perform well,
with a slightly lower F − 1 score for the lg model for all the datasets. This behaviour was

1Adult: https://archive.ics.uci.edu/ml/datasets/adult
2German: https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
3CompasM: https://www.kaggle.com/datasets/danofer/compass
4https://xgboost.readthedocs.io/en/stable/
5https://catboost.ai/
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Adult German CompasM
black-box LG XGB CAT LG XGB CAT LG XGB CAT
F1-score 0.65 0.82 0.80 0.66 0.75 0.79 0.63 0.69 0.68

Table 5.1: Weighted F1 score for the various black-boxes and datasets.

Fidelity Faithfulness
Dataset Black-Box

Lime Shap Dalex Anchor Lore Lime Shap Dalex

Adult
LG 0.98 (0.21) 0.61 (0.43) 0.35 (0.03) 0.99 (0.05) 0.98 (0.03) 0.10 (0.30) 0.38 (0.37) 0.08 (0.03)

XGB 0.98 (0.03) 0.88 (0.02) 0.64 (0.07) 0.98 (0.03) 0.98 (0.04) 0.03 (0.32) 0.36 (0.49) 0.27 (0.31)
CAT 0.96 (0.32) 0.78 (0.51) 0.70 (0.15) 0.99 (0.21) 0.98 (0.43) 0.10 (0.32) 0.44 (0.37) 0.11 (0.30)

German
LG 0.98 (0.06) 0.91 (0.23) 0.57 (0.21) 0.73 (0.09) 0.98 (0.12) 0.23 (0.60) 0.19 (0.63) 0.20 (0.03)

XGB 0.99 (0.10) 0.82 (0.02) 0.65 (0.03) 0.80 (0.03) 0.98 (0.21) 0.16 (0.26) 0.44 (0.21) 0.31 (0.09)
CAT 0.98 (0.05) 0.67 (0.12) 0.63 (0.09) 0.62 (0.31) 0.98 (0.35) 0.34 (0.33) 0.43 (0.32) 0.33 (0.12)

CompasM
LG 0.95 (0.31) 0.83 (0.41) 0.23 (0.03) 0.53 (0.46) 0.82 (0.03) 0.12 (0.56) 0.41 (0.54) 0.11 (0.08)

XGB 0.97 (0.21) 0.43 (0.33) 0.45 (0.23) 0.67 (0.42) 0.87 (0.03) 0.19 (0.44) 0.56 (0.38) 0.13 (0.13)
CAT 0.98 (0.27) 0.54 (0.10) 0.55 (0.30) 0.22 (0.92) 0.81 (0.02) 0.22 (0.42) 0.57 (0.32) 0.18 (0.07)

Table 5.2: Comparison on fidelity and faithfulness of the explanation methods. We report
the mean and the standard deviation over a subset of 50 test set records. In bold are
reported the best results obtained, while we underline the second best result for each metric.

expected since the lg model is the most simple model among the one selected. For the
German dataset we can see that the CatBoost is the model performing better. This is
due to the great number of categorical variable that are present in this dataset: CatBoost
is tailored for handling them, while the other models may suffer from the presence of this
great amount of categorical data. Lastly, the overall performance of the ML models for
the CompasM dataset are lower w.r.t. the other two datasets. This is due to the fact
that this dataset is a multi-class classification, making it more difficult to achieve higher
performance. For these experiments the datasets were split into train and test with ratio
80%− 20%.

5.3 Explanation methods

For validating the local and post-hoc explanations on tabular data, we refer to five expla-
nation methods, already presented in Section 2.2, all with a working library available in
Python. We consider Lime, one of the first local post-hoc explanation methods that outputs
feature importance. The process of Lime starts with a synthetic generation of records, used
as a training set for training a surrogate model tailored for the locality of the record under
analysis, easier to interpret w.r.t. the black-box model we aim at explaining. Practically,
for creating and running the Lime explainer we selected the Gaussian random sampling
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Stability
Dataset Black-Box

Lime Shap Dalex Anchor Lore

Adult
LG 24.37 (2.74) 1.52 (4.49) 5.40 (0.10) 22.36 (8.37) 21.76 (11.80)

XGB 10.16 (6.48) 2.17 (2.18) 6.00 (0.06) 26.53 (13.08) 30.01 (20.52)
CAT 0.35 (0.43) 0.03 (0.01) 4.3 (0.04) 6.51 (4.40) 27.80 (70.05)

German
LG 18.8 (0.73) 19.01 (23.4) 12.54 (0.05) 101.0 (62.7) 622.1 (256.7)

XGB 26.08 (14.5) 38.43 (30.6) 5.12 (0.10) 121.4 (98.4) 725.8 (337.2)
CAT 2.49 (9.91) 15.92 (10.71) 3.54 (0.9) 123.7 (76.86) 756.7 (348.2)

CompasM
LG 0.51 (0.21) 0.54 (0.10) 11.42 (19.24) 112 (23.52) 321.3 (261.4)

XGB 0.676 (0.30) 13.67 (21.64) 6.00 (0.06) 97.20 (18.04) 229.1 (39.61)
CAT 2.49 (9.91) 14.22 (10.01) 4.33 (0.04) 100.7 (60.60) 526.9 (341.5)

Table 5.3: Comparison on the stability metric. We report the mean and the standard
deviation over a subset of 50 test records.

Figure 5.1: Critical difference plot for Nemenyi test (α = 0.05). We compare the tabular
explanations in terms of fidelity and stability computable for all the explanation kinds.

generation, with 5000 synthetic samples to generate for each record to explain. In the
context of feature importance, we also consider Shap, one of the most popular explainers.
The process of Shap is based on game theory, in which each variable is associated with an
importance value, called Shap values. To calculate the Shap values, e.g. the importance
of the variables, the approach follow the structure of a game, in which every variable is
a player. The game is played with or without the variable to understand the changes in
the prediction outcome. In practice, there are several implementations to extract Shap
values, depending on the kind of black-box to explain as well as the kind of approximation
we are aiming at. For the experiments of this Chapter we considered the LinearExplainer,
an explainer able to exactly calculate the Shap values for linear models. We applied it for
the LogisticRegression. Then, we considered the TreeExplainer, another exact computation
of Shap values for tree-based models, to explain XGBoost and KernelExplainer for Cat-
Boost. Then, we consider Dalex, another feature importance method that allows for the
calculation of the feature importance in several ways. For these experiments we select the
break down. We also consider Anchor and Lore, which outputs rules (also counterfactual

70



rules for the latter). Anchor perturbs the instance x obtaining a set of synthetic records
employed to extract anchors with precision above a user-defined threshold. The anchors are
rules with a particular property: for decisions on which the anchor holds, changes in the
rest of the instance’s feature values do not change the outcome. In this setting, we require
a coverage of 0.95 for Anchor. Regarding Lore, instead, the process is similar to the one
of Lime, with the exception that the synthetic generation is based on a genetic algorithm,
hence with a focus on the locality of the record under analysis. For the application of Lore
we select the genetic and random synthetic generation, with 4000 records to create.

5.4 Metrics for validating an explanation

To evaluate the goodness of the explanations extracted with the different methods avail-
able we refer to some quantitative metrics. As discussed in Section 2.4, the objective of
evaluating the goodness of post-hoc explanations is still an open challenge, but there are
two main distinctions: quantitative and qualitative measures. For the first one the focus is
on the technicality of the explanations, in particular on the performance of the explainer,
while the qualitative metrics, refer to users for empirically validating the comprehension
of the explanations. In this work, we refer to quantitative measures. In the following we
briefly describe all the metrics used in this benchmark.

For tabular data, one of the metric most used is the fidelity : the objective of this metric
is to measure how good the explanation method is at mimicking the black-box decisions.
In other words, it analyzes the completeness of the explanation method E w.r.t. the black-
box model b. To validate the fidelity, there is no a single formula in the literature. In fact,
depending on the kind of explanation method considered, the evaluation of fidelity may have
a different specialization [50]. In methods where there is a creation of a surrogate model g
to mimic b, such as Lime, the fidelity is computed with the accuracy of the predictions of
g w.r.t. b on the instances used to train g [50]. For methods without a surrogate model, a
very simple model can be created using the explanation and then the fidelity is computed
as the accuracy of such model on the prediction of the black-box. The closer to one, the
better.

Another measure we considered is the stability : it aims at validating how stable the
explanations are for similar records. The main idea is that, if we have two similar records,
also the explanations should be close. To calculate this metric the Lipschitz constant [96] is
exploited: given a record to explain x and a neighborhood Nx and x′ composed of instances
similar to x, the explanation method E provides explanations ex and ex′ and the stability

is computed: Lx = max
∥ex−ex′∥
∥x−x′∥ , ∀x′ ∈ Nx. Intuitively, the higher the value, the better is

the model to present similar explanations for similar inputs.
Other metrics have been proposed [99] with the aim of validating the goodness of expla-

nations by changing the input record, depending on the explanations. The idea is that it is
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possible to validate the correctness of explanations by removing (in order of importance) the
features that the explanation method considers important. By doing so, if the explanation
is faithful, then the performance of the black-box b should degrades. The intuition behind
this deletion methods is that removing the “cause” will force the black-box to change its
decision. In this work, we consider the faithfulness [96], which aims at validating whether
the importance scores obtained from the explanation method indicate true importance.
An implementation of the faithfulness metric exploited in these experiments is available
in aix360. Mathematically, given a black-box b and the feature importance e extracted
from an explanation method, the faithfulness removes attributes in order of importance
given by e. At each removal, the effect on the performance of b is evaluated and these
values are then employed to compute the overall correlation between feature importance
and model performance. It results in a value range [−1, 1]: the higher the value, the better
the faithfulness.

We also consider monotonicity that takes the complementary approach w.r.t. faithful-
ness. It evaluates the effect of b by incrementally adding each attribute in order of increasing
importance. In an opposite way than before, we expect that the black-box performance
increases by adding more and more features, thereby resulting in monotonically increasing
model performance6. Beside these metrics, during the comparison of different explanation
methods, standard metrics like accuracy, precision and recall are also evaluated, as well as
the running time.

5.5 Discussion of the results

The results obtained from the applications of the metrics proposed in Section 5.4 are re-
ported in Table 5.2 for the fidelity and faithfulness, while in Table 5.3 we report the stabil-
ity. The monotonicity is not reported since for every method it was False, showing that no
method is compliant with this requirement. To obtain this results we explained 50 records
from the test set of each dataset. With respect to the fidelity, the best results are obtained
by Anchor, followed by Lore and Lime. Shap and Dalex, instead, achieved the worst
results, with particularly low values for Dalex. This behaviour might be due to the differ-
ent process for constructing an explanations: while Lore and Lime have a similar approach
of constructing a synthetic neighbourhood around the record under analysis, while Shap
and Dalex do not follow this approach. Overall we can see that our experiments show
that rule-based methods have very high fidelity, correctly replicating the black-box behav-
ior. Regarding the faithfulness, instead, all the models do not reach optimality. Among
the methods under analysis, Shap achieves the best performance, being the metrics with
values between −1 and 1: the intuition is that the most important features for Shap are
actually important also for the black-box model under analysis. However, since the results

6An implementation of monotonicity and faithfulness is available in aix360
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are lower that 50% in all cases except for the CompasM with the xgb, this behaviour is
not happening for all the records under analysis. Nevertheless, Shap turns out to be the
best in this context, followed by Dalex and Lime. In terms of stability, Lore is the best
method, followed by Anchor. Again, the rule-based models seems to be the one perform-
ing better with respect to the metrics considered. However, we can clearly see that the
standard deviation for all these experiments is quite high, highlighting that the models are
suffering from instability.

In Figure 5.1, we report an overall ranking evaluation of the explanation methods in
terms of fidelity and stability. From this plot, we can clearly see that Lore and Anchor,
which are the rule-based methods, perform better than the feature importance ones consid-
ering both the metrics. This result is particularly interesting because feature importance
methods are more studied than logical explanations even though the latter are more similar
to human thinking. [155].

This fact is also highlighted by the results on stability, that are good for Lore, even if
not perfect, followed by Anchor. Regarding the feature importance methods, Lime also
has excellent fidelity, but unfortunately this method suffers in terms of stability due to its
random generation of the neighborhood. Shap and Dalex, instead, do not exhibit a good
fidelity but are better in terms of stability w.r.t. Lime.

From the empirical analysis conducted in this Chapter, it is clear that the various
methods proposed in the literature still suffer from several limitations. First, in terms of
faithfulness no method performed well, as well as in terms of stability, although in this case
the rule-based methods are better than those based on feature importance. In addition,
the feature importance based methods propose explanations more difficult to understand
for a non-expert user, while the rule-based ones are easier to understand thanks to the logic
nature of the rules.

5.6 Discussion

In this Chapter, we introduced a benchmark for explanation methods for tabular data,
exploiting metrics from existing literature to facilitate quantitative comparisons among dif-
ferent explanation methods. In particular, we considered feature and rule based explanation
methods, which are among the most popular methods for tabular data.

The quantitative analysis results indicate that rule-based explanation methods exhibit
superior performance for tabular data, demonstrating higher fidelity and stability with
respect to the feature importance methods. The rule-based methods provide explanations
that accurately reflect the decision-making processes of black-box models.

Overall, no single method emerged as the dominant choice, underscoring the challenge
of simultaneously achieving effectiveness and robustness in generating explanations.

As future work, we aim to address the limitations of the presented methods by proposing
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a novel methodology focused on producing stable explanations. We strive to ensure that
given the same input multiple times, consistent explanations are obtained.
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Chapter 6

Stable and Actionable Local
Explanations

One of the primary challenges for Artificial Intelligence (AI) applications is to provide
meaningful and stable explanations for the decisions made by black-box classifiers, according
to previous studies [31, 156] and in agreement with the benchmark presented in Section
5, in which the critical issues of the methods in the literature are highlighted, including
limitations in terms of stability. Despite the requirement by regulators that automated
decisions should be explained, new algorithms for decision-making continue to be developed,
resulting in a lack of transparency in ML models that can perpetuate or reinforce forms of
injustice by learning biased habits from the data. For this reason, a variety of proposals
for explaining classification models have emerged, ranging from global approaches to local
and model-agnostic to model-specific approaches.

The aim of this research is to explain the decisions made by black-box classifiers on
specific input instances by providing meaningful and stable explanations of the involved
logic. The objective is to achieve a model-agnostic method that works by analyzing the
input-output behavior of the black-box locally, in the instance’s neighborhood to explain.
The research is based on several assumptions: (i) the language used to offer explanations
should be as close as possible to a formal reasoning language such as propositional logic,
and the user should be able to understand the semantics of elementary logic rules taught in
secondary schools or undergraduate courses; (ii) explanations are interesting if they answer
both the factual and counterfactual questions about why a specific decision was made and
what conditions would change the black-box decision; and (iii) the black-box system can
be queried multiple times to reconstruct its logic completely.

Using logic rules is a step toward making explanations comprehensible, but it is not
enough to achieve meaningful explanations. The reconstruction logic of the black-box in the
neighborhood of the instance to explain should be consistent with the black-box decisions,
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a property known as fidelity. Additionally, the counterfactual answer should consist of a
minimal number of changes to the feature values of the instance to explain (minimality),
and such changes should allow for actionable recourse, a property known as actionability.
The approach used for generating explanations should also guarantee stability of its output
against local perturbations of the input, and it should be general enough to encompass not
only tabular data but also images, texts, and multi-label data.

This research aims to advance state-of-the-art approaches, including previous work such
as Factual Local Rule-based Explanations (FLore) [50], by proposing a comprehensive
method that extends the coverage of comprehensibility, fidelity, minimality, and generality
to also include stability and actionability. The proposed method is Stable and Actionable
Local Rule-based Explanations (loresa), which builds a simple, interpretable local decision
tree predictor from an ensemble of balanced sets of neighbor instances generated through
a genetic algorithm. Each set is used to extract a decision tree classifier, which is then
merged into a single decision tree classifier. loresa provides a (counter)factual explanation
from the decision tree that approximates the behavior of the black-box around the instance
being explained. The (counter)factual explanation is a pair composed of the factual rules
that characterize the conditions for a specific black-box decision and the counterfactual
rules that indicate the minimal number of changes required in the feature values to change
the black-box decision.

6.1 Problem Formulation and Explanation Definition

We first set the basic notation for classification models. Afterwards, we define the black-box
outcome explanation problem, and the notion of explanation that our method will be able
to provide.

A classifier is a function b : X (m) → Y which maps data instances (tuples) x from a
feature space X (m) with m input features to a decision y in a target space Y of size L = |Y|,
as presented in Chapter 14.2. We write b(x) = y to denote the decision y taken by b, and
b(X) = Y as a shorthand for {b(x) | x ∈ X} = Y . If b is a probabilistic classifier, we denote
with bp(x) the vector of probabilities for the different labels. The domain of a feature can be
continuous or categorical. In this case, we assume that a predictor is available as a function
that can be queried at will. In the following, b will be a black-box predictor, whose internals
are either unknown to the observer or they are known but uninterpretable by humans.
Examples include neural networks, SVMs, ensemble classifiers [23, 24]. Instead, we denote
with c an interpretable (comprehensible) predictor, whose internal processing leading to
a decision c(x) = y can be given a symbolic interpretation which is understandable by a
human. Examples of such predictors include rule-based classifiers, decision trees, decision
sets, and rational functions [23,24], as presented in Section 14.2.1.

Given a black-box b and an instance x, the black-box outcome explanation problem
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consists of providing an explanation e for the decision b(x) = y. We approach the problem
by learning an interpretable predictor c that reproduces and accurately mimes the local
behavior of the black-box. An explanation of the decision is then derived from c. By local,
we mean focusing on the behavior of the black-box in the neighborhood of the specific
instance x, without aiming at providing a description of the logic of the black-box for all
possible instances. The neighborhood of x is not given, but rather it has to be generated
as part of the explanation process. However, we assume that some knowledge is available
about the characteristics of the feature space X (m), in particular the ranges of admissible
values for the domains of features and, possibly, the (empirical) distribution of features.
Nothing is instead assumed about the training data/process of the black-box.

Definition 1 (Black-Box Outcome Explanation) Let b be a black-box, and x an in-
stance whose decision y = b(x) has to be explained. The black-box outcome explanation
problem consists of finding an explanation e ∈ E belonging to a human-interpretable domain
E.

Interpretable predictors are specific of the black-box and of the instance to explain and
they must agree with the black-box decision.

Definition 2 (Explanation through Interpretable Model) Let c = ζ(b, x) be an in-
terpretable predictor derived from the black-box b and the instance x using some procedure
ζ, and s.t. c(x) = b(x). An explanation e ∈ E is obtained through c, if e = ε(c, x) for some
explanation logic ε over c and x.

These definitions are parametric in the domain E of explanations, which has to be
instantiated. We define it by adopting a combination of factual and counterfactual rules.
Formally, we define an explanation e as:

e = ⟨r = p→ y,Φ⟩

The first component r = p → y is a factual decision rule describing the reason for the
decision value y = b(x) = c(x). The second component Φ is a set of counterfactual rules,
namely rules describing a (minimal) number of changes in the feature values of x that
would change the decision of the predictor to y′ ̸= y. As an example, the following is an
explanation for the decision to reject the loan application of instance x0 = {age = 22, sex =
male, income = 800 , car = no}:

e=⟨r={age≤25, sex=male, income≤900}→deny ,

Φ={{income>900}→grant , {sex=female}→grant}⟩

In this example, the decision deny is due to the age lower or equal than 25, the sex that
is male, and an income lower or equal than 900 (see component r). In order to obtain a
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different decision, the applicant should have a greater income, or be a female (see component
Φ).

In a factual rule r of the form p→ y, the decision y is the consequence of the rule, while
the premise p is a boolean condition on feature values. We assume that p is a conjunction

of split conditions of the form ai∈[v
(l)
i , v

(u)
i ], where ai is a feature and v

(l)
i , v

(u)
i are lower

and upper bound values in the domain of ai extended with1 ±∞. An instance x satisfies
r, or r covers x, if the boolean condition p evaluates to true for x, i.e., if sc(x) is true
for every sc ∈ p. The rule r in the example above is satisfied by x0, and not satisfied
by x1={age=22, sex=male, income=1000 , car=no}. We say that r is consistent with the
interpretable predictor c, if c(x) = y for every instance x that satisfies r. Consistency
means that the rule provides a sufficient condition for which the predictor outputs y. If the
instance x to explain satisfies p, the rule p→ y represents then a candidate explanation of
the decision c(x) = y. Moreover, if the interpretable predictor mimics the behavior of the
black-box in the neighborhood of x, we further conclude that the rule is a candidate local
explanation of b(x) = c(x) = y.

Consider now a set δ of split conditions. We denote the update of p by δ as p[δ] = δ ∪
{(a ∈ [v

(l)
i , v

(u)
i ]) ∈ p | ∄w(l)

i , w
(u)
i .(a ∈ [w

(l)
i , w

(u)
i ]) ∈ δ}. Intuitively, p[δ] is the logical condi-

tion p with ranges for attributes overwritten as stated in δ, e.g., {age≤25, sex=male}[age>25]
is {age>25, sex=male}. A counterfactual rule for p is a rule of the form p[δ] → y′, for
y′ ̸= y. We call δ a counterfactual. Consistency w.r.t. c is meaningful also for counterfac-
tual rules, denoting now a sufficient condition for a reverse decision y′ of the predictor c.
A counterfactual δ describes which features to change and how to change them to get an
outcome different from y. Continuing the loan example, changing the income to any value
> 900 will change the predicted outcome of b from deny to grant . A desirable property
of a consistent counterfactual rule p[δ] → y′ is that it should be minimal [67, 158] with
respect to x. Minimality can be measured (see [50]) with respect to the number of split
conditions in p[δ] not satisfied by x. Formally, we define nf (p[δ], x) = |{sc ∈ p[δ] | ¬sc(x)}|
(where nf (·, ·) stands for the number of falsified split conditions2). In the loan exam-
ple, {age>25, income>1500} → grant is a counterfactual with two conditions falsified. It
is not minimal as the counterfactual r = {age≤25, sex=male, income>900} → grant has
only one falsified condition. In summary, a counterfactual rule p[δ] → y′ is a (minimal)
motivation for reversing the decision outcome of the predictor b.

In this work, we add to the properties of consistency and minimality of counterfactual
rules, the one of actionability (also called feasibility), which is intended to prevent generating
invalid or unrealistic rules. E.g., a counterfactual split condition age ≤ 25 is not actionable

1Using ±∞ we can model with a single notation typical univariate split conditions, i.e., equality (a = v
as a ∈ [v, v]), upper bounds (a ≤ v as a ∈ [−∞, v]), strict lower bounds (a > v as a ∈ [v + ϵ,∞] for a
sufficiently small ϵ). However, since our method is parametric to a decision tree induction algorithm, split
conditions can also be multivariate, e.g, a ≤ b+ v for a, b features (as in oblique decision trees [157]).

2When clear we write nf as shorthand of nf (p[δ], x).

78



Algorithm 1: loresa (x, b,K,U)

Input : x - instance to explain, b - black-box, K knowledge, U constr.
Output: e - (counter)factual explanation of x

1 D ← ∅; // init. empty set of decision trees

2 for i ∈ {1, . . . , N} do
3 Z(i)

= ← genetic(x,fitnessx=, b,K); // neighborhood generation

4 Z
(i)
̸= ← genetic(x,fitnessx̸=, b,K); // neighborhood generation

5 Z(i) ← Z= ∪ Z ̸=; // merge neighborhoods

6 Y (i) ← b(Z(i)); // apply black-box

7 d(i) ← buildDecisionTree(Z(i), Y (i)); //build decision tree

8 D ← D ∪ {d(i)}; // add decision tree to list

9 c← mergeDecisionTrees(D); // merge decision trees

10 r = (p→y)← extractDecisionRule(c, x); // factual rule

11 Φ← extractCounterfactuals(c, r, x, U); // extract counterfactual

12 return e← ⟨r,Φ⟩;

for a loan applicant of age 30 because she cannot change her age. Formally, we assume
a set U of constraints on features of the form: a = x[a], meaning that the attribute
a cannot be changed (e.g., age = 30 or sex = male); or, a ≤ x[a] (resp., a ≥ x[a]),
meaning that the attribute a cannot be increased (resp., decreased). Actionability requires
that the premise p[δ] of a counterfactual rule must satisfy the conditions specified in U ,
i.e., p[δ]→ U |p[δ] is a true formula, where U |p[δ] are the constraints in U involving attributes
occurring in p[δ]. Going back to our example if U = {age = 22}, then the counterfactual
{age>25, income>1500} → grant is not actionable.

We can now formally introduce our notion of explanation.

Definition 3 (Explanation) Let c = ζ(b, x) be an interpretable predictor such that c(x) =
b(x), and U a set of constraints. A local (counter)factual explanation e = ⟨r,Φ⟩ is a pair
of: a rule r = (p → y) consistent with c and satisfied by x; and, a set Φ = {p[δ1] →
y′, . . . , p[δv]→ y′} of counterfactual rules for p consistent with c such that p[δi] satisfies U ,
for i = 1, . . . , v.

Unless otherwise stated, we will simply write “an explanation” instead of “a local
(counter)factual explanation”. According to Definition 2, we will design a solution to the
outcome explanation problem by defining: (i) the function ζ that computes an interpretable
predictor c for a given black-box b and an instance x, and (ii) the explanation logic ε that
derives a (counter)factual explanation e from c and x as in Definition 3.
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6.2 Local Rule-based Explanation

We propose loresa, a stable and actionable local rule-based explanation method, de-
scribed in Algorithm 1 as extension of Lore [50]. loresa takes in input a black-box b,
an instance x to explain, a set of constraints U , and a knowledge base K which con-
tains information about feature distributions (domain of admissible values, mean, vari-
ance, probability distribution, etc.). loresa first generates N sets of neighbor instances
Z = {Z(1), . . . , Z(N)} of x through a genetic algorithm. The knowledge base K is exploited
in genetic mutation to be consistent with the distributions of the features. Next, loresa
labels the generated instances with the black-box decision. For each labelled neighborhood
Z(i) a decision tree d(i) is built, and all such trees are merged into a single interpretable
predictor c still in the form of a decision tree. Rules and counterfactual rules are extracted
from c, satisfying the constraints in U .

loresa fits the definitions of the previous section as follows: lines 1-9 in Algorithm 1
implement the ζ function for extracting the interpretable decision tree c, which approxi-
mates locally the behavior of the black-box b; and lines 10-11 implement the function ε to
extract the (counter)factual explanation e from the logic of the decision tree.

Stability of the explanation process follows from the “bagging-like” approach of building
and aggregating several decision trees. In fact, it is well-known that decision trees are
unstable to small data perturbations [159]. Bagging is a widespread method to stabilize
decision trees [160]. Experiments will confirm this by contrasting stability metrics of loresa
with its “single-tree” version Lore. Resorting to bagging, however, produces a collection
of interpretable explainers. We need then to aggregate them at symbolic level – which is
different from standard bagging, where aggregation is at prediction time. For this, we have
a merging procedure in line 9 of Algorithm 1.

The actionability of the counterfactuals follows from taking into account the constraint
set U on admissible feature changes (Alg. 1, line 11). The search for counterfactuals will
also consider the minimality requirement.

In the following, we discuss the details of loresa by motivating the design choices by
the expected properties of the explanation process: locality, fidelity and stability, compre-
hensibility, actionability, and generality.

6.2.1 Locality: Neighborhood Generation

The goal of this phase is to identify sets of instances Z(i), whose feature are close to the ones
of x, in order to be able to reproduce the behavior of the black-box b locally to x. Since
the aim is to learn a predictor from Z(i), such a neighborhood should be flexible enough to
include instances with decision values equal and different from b(x). In Algorithm 1, first

we extract balanced subsets Z
(i)
= and Z

(i)
̸= (lines 2–3), where instances z ∈ Z

(i)
= are such

that b(z) = b(x), and instances z ∈ Z
(i)
̸= are such that b(z) ̸= b(x), and then we define Z(i)
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= Z
(i)
= ∪Z(i)

̸= (line 4). We depart from instance selection approaches [161], and in particular
the ones based on genetic algorithms [162], in that their objective is to select a subset
of instances from an given training set. In our case, instead we cannot assume that the
training set used to learn b is available, or not even that b is a supervised machine learning
predictor for which a training set exists. Instead, our task is similar to instance generation
in active learning [163], which also includes evolutionary approaches [164].

We adopt an approach based on a genetic algorithm which generates Z
(i)
= and Z

(i)
̸= by

minimizing the following fitness functions:

fitnessx=(z) = Ix ̸=z + d(x, z) + l(bp(x), bp(z))

fitnessx̸=(z) = Ix ̸=z + d(x, z) + (1− l(bp(x), bp(z)))

where d : X (m) → [0, 1] is a distance function in the feature space (hence d(x, z) is close
to zero when two instances are similar with respect to their features), l : R → [0, 1] is a
distance function in the label space with respect to the prediction probability bp (hence
l(bp(x), bp(z)) is close to zero when two instances are similar with respect to their label
probabilities), and the function Ix̸=z returns zero if z is not equal to x, and ∞ otherwise.
The genetic neighborhood process tries to minimize these fitness functions. Therefore,
fitnessx=(z) looks for instances z similar to x (term d(x, z)), but not equal to x (term Ix ̸=z),
for which the black-box b has a similar behavior (term l(bp(x), bp(z))). On the other hand,
fitnessx̸=(z) leads to the generation of instances z similar to x, but not equal to it, for which
b returns a different decision. We underline that fitnessx=(x)=fitnessx̸=(x)=∞. Hence, the
minimization occurs for z ̸= x.

A key element for the fitness functions are the distances d(x, z) and l(bp(x), bp(z)).
Concerning d(x, z), we account for mixed types of features by a weighted sum of Simple
Matching distance (SM) for categorical features, and of the normalized Euclidean distance
(NE)3 for continuous features. Assuming h categorical features and m−h continuous ones,
we use:

d(x, z) =
h

m
· SM (x, z) +

m− h

m
·NE (x, z).

Our approach is parametric to d, and it can readily be applied to improved heterogeneous
distance functions [165]. In the following, a small parenthesis dedicated to a comparison of
a few distance functions to see the behaviour of the parametric structure of our model.

Comparison among distance functions A key element of the neighborhood genera-
tion is the distance function used by the genetic algorithm. In this section we show how
the explanations of loresa are affected by different distance functions. For example, [67]
shows that considerable differences of the counterfactual instances occur at the variation

3See NormalizedSquaredEuclideanDistance at Wolfram.
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X distance silhouette fidelity coverage precision complexity instability
c
o
m
p
a
s neuclidean .54 ± .22 .99 ± .00 .44 ± .16 1.00 ± .03 4.97 ± 2.15 .21 ± .32

cosine .50 ± .24 .99 ± .00 .43 ± .16 1.00 ± .02 5.00 ± 2.11 .24 ± .39
nmeandev .27 ± .26 .99 ± .00 .29 ± .18 .99 ± .11 5.10 ± 1.86 .24 ± .44

f
i
c
o neuclidean .52 ± .17 .98 ± .01 .40 ± .21 .98 ± .10 9.49 ± 3.77 .07 ± .04

cosine .54 ± .12 .98 ± .01 .39 ± .19 .99 ± .07 9.88 ± 3.66 .27 ± .31
nmeandev .14 ± .17 .98 ± .01 .19 ± .19 .94 ± .21 9.78 ± 3.52 .18 ± .16

g
e
r
m
a
n neuclidean .70 ± .57 1.00 ± .00 .87 ± .11 1.00 ± .00 .98 ± .84 .80 ± 1.97

cosine .66 ± .57 1.00 ± .00 .78 ± .18 1.00 ± .00 1.09 ± .90 .97 ± 1.33
nmeandev .61 ± .60 1.00 ± .00 .85 ± .15 1.00 ± .00 .73 ± .66 .90 ± 1.27

b distance silhouette fidelity coverage precision complexity instability

D
N
N

neuclidean .61 ± .17 .99 ± .01 .55 ± .20 1.00 ± .02 6.96 ± 3.97 .12 ± .38
cosine .62 ± .14 .99 ± .01 .56 ± .19 1.00 ± .01 6.54 ± 3.82 .13 ± .38

nmeandev .12 ± .23 .99 ± .01 .21 ± .24 .96 ± .19 6.22 ± 3.04 .13 ± .45

N
N

neuclidean .50 ± .27 .99 ± .01 .32 ± .18 .99 ± .10 6.93 ± 3.79 .84 ± .99
cosine .50 ± .24 .99 ± .00 .32 ± .15 .99 ± .07 6.88 ± 3.76 1.08 ± 1.26

nmeandev .31 ± .31 .99 ± .01 .37 ± .23 .99 ± .09 6.93 ± 3.76 1.00 ± 1.17

S
V
M

neuclidean .48 ± .25 .99 ± .01 .39 ± .17 .99 ± .10 7.28 ± 4.18 .18 ± .09
cosine .46 ± .27 .99 ± .01 .39 ± .15 .99 ± .06 7.32 ± 4.22 .56 ± .15

nmeandev .28 ± .27 .99 ± .01 .28 ± .21 .96 ± .18 7.56 ± 4.40 .22 ± .32

Table 6.1: Aggregated evaluation metrics over datasets (top) and black-boxes (bottom)
w.r.t. distance functions in the neighborhood generation of loresa.

of the distance function adopted by their stochastic optimization approach. As alternative
distances to the normalized euclidean distance (neucliden) adopted by loresa, we report
results using the cosine distance and the normalized mean deviation (nmeandev) distance.
Experiments over the compas, fico and german datasets, and over DNN, NN, and SVM
black-boxes are reported in Table 6.1. There is no major difference in terms of fidelity and
precision, whilst neucliden has the best performance or is a close runner up for all other
metrics.

With regard to l(bp(x), bp(z)), we account for sparse numeric vectors by adopting the
cosine distance. If b is not a probabilistic classifier, then l(bp(x), bp(z)) is replaced by
identity checking, namely l(b(x), b(z)) = 0 if b(x) = b(z), and 1 otherwise.

Genetic algorithms [166] are inspired by the biological metaphor of evolution and are
based on three distinct aspects. (i) The potential solutions of the problem are encoded
into representations that support the variation and selection operations. In our case, these
representations, generally called chromosomes, correspond to instances in the feature space
Xm. (ii) A fitness function evaluates which chromosomes are the “best life forms”, that
is, most appropriate for the result. These are then favored in survival and reproduction,
thus shaping the next generation according to the fitness function. In our case, these
instances correspond to those similar to x, according to d(·, ·), and those similar/different
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Algorithm 2: genetic(x,fitness, b,K)

Input : x - instance to explain, fitness - fitness function,
b - black-box, K knowledge base

Params: n - population size, g - nbr of generations,
pc - prob crossover, pm - prob mutation

Output: Z - neighbors of x

1 P0 ← (x | ∀1, . . . , n); i← 0; // population init.

2 while i < g do
3 P ′ ← crossover(Pi, pc); // mix records

4 P ′′ ← mutate(P ′, pm,K); // perform mutations

5 S ← evaluate(P ′′,fitness, b); // evaluate population

6 Pi+1 ← select(P ′′, S); // select sub-population

7 i← i + 1 // update population

8 Z ← Pi

9 return Z;

parent 1 25 male 800 yes
parent 2 30 female 2k no

↓
children 1 25 female 2k yes
children 2 30 male 2k no

Figure 6.1: Crossover.

parent 25 male 800 yes
↓ ↓

children 27 male 1k yes

Figure 6.2: Mutation.

to the outcome returned by the black-box bp(x), according to l(·, ·), for the fitness function
fitnessx= and fitnessx̸= respectively. (iii) Mating (called crossover) and mutation produce
a new generation of chromosomes by recombining features of their parents. The final
generation of chromosomes, according to a stopping criterion, is the one that best fits the
solution.

Algorithm 2 generates the neighborhoods Z
(i)
= and Z

(i)
̸= of x by instantiating the evo-

lutionary approach described in [167]. Using the terminology of the survey [164], it is an
instance of generational genetic algorithms for evolutionary prototype generation. How-
ever, prototypes are a condensed subset of a training set that enable some optimization
in training predictors. We aim instead at generating new instances that separate well the
decision boundary of the black-box b. The usage of classifiers within fitness functions of
genetic algorithms can be found in [168]. However, the classifier they use is always the
one for which the population must be selected or generated from and not another one (the
black-box) like in our case. Algorithm 2 first initializes the population P0 with n copies of
the instance x to explain. Then it enters the evolution loop that begins with the crossover
operator applied to a proportion pc of Pi: the resulting and the untouched instances are
inserted in P ′. We use a two-point crossover which selects two parents and two crossover
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Figure 6.3: Black-box boundary: purple vs green. Starred instance x. Uniformly random
(1st) and genetic (2nd) neighborhoods. In the (3rd) and (4th) plot is reported the density
with levels in the bar (best view in color).

features and swap the crossover feature values of the parents (see Figure 6.1). Next, a
proportion of P ′, determined by the pm probability, is mutated (see Figure 6.2) by exploit-
ing the feature distributions given by the knowledge4 base K. Mutated and unmutated
instances are added in P ′′. Instances in P ′′ are evaluated according to the fitness function,
and the top n of them w.r.t. the fitness score are selected to become Pi+1 – the next genera-
tion. The evolution loop continues until g generations are completed5 The best individuals
are returned. loresa runs Alg. 2 twice, once using the fitness function fitnessx= to derive

neighbor instances Z
(i)
= , and once using the function fitnessx̸= to derive Z

(i)
̸= . Finally, setting

Z(i)=Z
(i)
= ∪Z(i)

̸= guarantees that Z(i) is balanced.
Figure 6.3 shows an example of neighborhood generation for a black-box consisting of

a random forest model on a bi-dimensional feature space. The figure contrasts uniform
random generation (1st , 3rd plots) around a specific instance x (starred) to our genetic
approach (2nd , 4th plots). The latter yields a neighborhood that is denser in the boundary
region of the predictor. The density of the generated instances is a key factor in extracting
correct and faithful local interpretable predictors and explanations. For instance, a purely
random procedure like the one adopted in Lime [35] does not account for sources of vari-
ability, like the randomness of the sampling procedure in the neighborhood of the instance
to explain [169]. On the contrary, the genetic approach of loresa is driven by minimiza-
tion of the fitness functions, hence less variable neighborhoods are generated. As a further

4K is assumed to include the probability mass functions of discrete features and the density function of
continuous features. In experiments, K is empirically estimated from the set of instances to explain (not
used for training the black-box) by taking the frequencies of values for discrete features, and by selecting
the best fit of the empirical density of continuous features with one of the following families of distributions:
uniform, normal, exponential, gamma, beta, alpha, chi-square, Laplace, log-normal, power law. We also
assume that features are independent, hence, we do not infer the joint distribution.

5In the implementation of loresa, we set the number of instances n = 500, the number of generations
g = 20, the probabilities of crossover pc = 0.7 and of mutation pm = 0.5. In the following are also reported
experiments showing the effect of varying these parameters.
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issue, simply centering the neighborhood generation on the instance to explain may not be
the best strategy to approximate the black-box decision boundary. [170] and [171] propose
neighborhood generation approaches that enhance locally important features with respect
to globally important ones by moving the center of the generation towards the decision
boundary. The two fitness functions in the genetic generation procedure of loresa enforce
the same effect.

6.2.2 Comprehensibility

We achieve high-level comprehensibility of explanations by extracting them in the form
of factual rules and sets of counterfactual rules. Given the decision tree c, we derive an
explanation e = ⟨r,Φ⟩ as follows. The factual rule r = p → y is formed by including in
p the split conditions on the path6 from the root to the leaf satisfied by x, and setting
y = c(x) = b(x). By construction, r is consistent with c and satisfied by x. Consider
now the counterfactual rules in Φ. Algorithm 3 looks for all paths in the decision tree c
leading to a decision y′ ̸= y (line 1). For one of such paths, let q be the conjunction of split
conditions in it. By construction, q → y′ is a counterfactual rule consistent with c. Notice
that the counterfactual δ for which q = p[δ] has not to be explicitly computed7. All such
q’s can be ranked by the number of split conditions not satisfied by x, a.k.a. the number of
features to be changed in x. The q → y′’s with minimal number of changes are returned as
counterfactuals (lines 6-8).

6.2.3 Actionability

The counterfactuals provided by loresa support actionable recourse. This is implemented
in Algorithm 3 by filtering from the candidate counterfactuals q → y′ those not satisfying
the constraints U on features (lines 4-5). Since both the premise q and the constraints U
are logic formulae, the test amounts at checking validity of the implication q → U |q. For
the basic form of constraints that we have considered (conjunction of equality/comparison
conditions) the test is straightforward. In principle, however, more complex premises (e.g.,
multivariate) can be dealt with by resorting to automatic theorem proving.

Let assume that the decision tree in Figure 6.4 is the merged decision tree c. Let
x={age=22, sex=male, income=800, car=no} be the instance for which the decision deny
(e.g., of a loan) has to be explained. The path followed by x is the leftmost in the tree. The

6The set of split conditions in the path is also called a direct reason, and it is not necessarily minimal.
Minimal sets (called sufficient conditions, or prime implicant explanations) are considered in [172,173]. We
do not further purse minimizing the factual explanation as experiments shows loresa returns very small
rules.

7However, it can be done as follows. Consider the path from the leaf of p to the leaf of q. When moving
from a child to a father node, we retract the split condition. E.g., ai ≤ v

(u)
i is retracted from {aj ∈ [v

(l)
j , v

(u)
j ]}

by adding ai ∈ [v
(l)
i ,+∞] to δ. When moving from a father node to a child, we add the split condition to δ.
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age ≤ 25

sex = male

income ≤ 900

deny grant

age ≤ 17

deny grant

income ≤ 1500

car = no

deny grant

grant

true false

Figure 6.4: Example of decision tree locally mimicking the black-box behavior.

decision rule extracted from the path is {age≤25, sex=male, income≤900}→deny . There
are four paths leading to grant : q1={age≤25, sex=male, income>900}, q2={17<age≤25, sex=female},
q3={age>25, income≤1500, car=yes}, and q4 ={age>25, income>1500}. The number of
changes for the qi’s are as follow: nf (q1, x)=1, nf (q2, x)=1, nf (q3, x) =2, nf (q4, x)=2.
Therefore, the set of minimal counterfactuals is Φ={q1→grant , q2→grant}. Assuming that
U={sex=male}, then q2→grant is not actionable, hence the set of actionable counterfac-
tuals is Φ={q1→grant}.

Finally, we point out that an actionable counterfactual rule q → y′ can be used to
generate an actionable counterfactual instance. Among all possible instances that satisfy
q → y′, we choose the one that differ minimally from x. This is done by looking at the
split conditions falsified by x: {sc ∈ q | ¬sc(x)}, and selecting for features appearing in an
sc the lower/upper bound that is closer to the value of the feature in x. For instance, the
q1→grant counterfactual instance of x is x′ = {age=22, sex=male, income=900+ϵ)}. We
also check that x′ constructed in this way is a valid counterfactual, i.e., b(x′)=grant . If this
does not occur, x′ is not returned as a counterfactual instance.

6.2.4 Generality

Following the approach of Lime [35], loresa can be adapted to work on images and texts.
Moreover, inspired by [95], we show how it deals with multi-label data.

Image and Text Data. In the pre-processing strategy of Lime, an instance in the form
of an image or a text is mapped to a vector of binary values. For images, each element
in the vector indicates the presence/absence of a contiguous patch of similar pixels (called
super-pixels). For words, it indicates the presence/absence of a specific word in the text.
This reduces the problem to the analysis of tabular data, and we can reuse loresa as
introduced so far. Due to the binary nature of data involved, the genetic neighborhood
approach boils down to generate instances by suppressing super-pixels or words from the
instance to explain. This is close to the way that Lime works, but with a fitness optimizing
approach instead of a purely random suppression. As for Lime, the generated instances
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may not be realistic images or texts.
Multi-labelled Data. The formulation of loresa admits so far binary and multi-class

black-boxes. Multi-labelled classifiers return, for an input instance x, one or more class
labels. This case is common, for instance, in health data, where more than one disease
may be associated with a same list of symptoms. In particular, probabilistic multi-labelled
classifiers return a vector of probabilities bp(x) whose sum is not necessarily 1, as in the
multi-class case. Rather, the ith element in bp(x) is the probability that the ith label is
included in the output (with a typical cut-off at 0.5). loresa can be extended to (prob-
abilistic) multi-labelled black-boxes by adopting multi-class decision trees in the function
buildDecisionTree() of Algorithm 1. Factual rules will be of the form p → y1, . . . , yk, with
k ≥ 1. Counterfactual rules will be of the form p[δ]→ y′1, . . . , y

′
k′ , with k ≥ 1 and such that

{y1, . . . , yk} ≠ {y′1, . . . , y′k′} (but possibly with proper inclusion).

6.3 Experiments

After presenting the experimental setting and the evaluation metrics, we compare loresa
against the competitors through: (i) a qualitative comparison of explanations provided, (ii)
a quantitative validation of the explanations based on synthetically generated ground truth,
and (iii) a quantitative assessment of the proposed method and comparison with state-of-
the-art approaches in terms of several metrics8. Moreover, the Appendices report further
experiments: (iv) comparing different neighborhood generation methods, (v) showing the
impact of different distance functions in genetic neighbor generation, (vii) illustrating the
effect of the parameters on the genetic neighbor generation, (vii) providing statistical evi-
dence of the differences among loresa and its competitors, and (viii) reporting on running
times.

6.3.1 Experimental Setup

We experimented with ten tabular datasets, one image dataset, one text dataset, and one
multi-labelled dataset. Table 6.2 reports the dataset details. Almost all tabular datasets
have both categorical9 and continuous features. For most of the datasets, instances regard
attributes of an individual person, and the decisions taken by a black-box target socially
sensitive tasks.

8loresa has been developed in Python, using deap [174, https://github.com/DEAP/deap] for ge-
netic neighborhood generation, and the optimized version of CART [175] offered by scikit-learn (https:
//scikit-learn.org/stable/modules/tree.html) for decision tree induction. The source code of loresa,
the datasets, and the scripts for reproducing the experiments are publicly available at https://github.com/
francescanaretto/LORE_sa. Experiments were performed on Ubuntu 20.04 LTS, 252 GB RAM, 3.30GHz
× 36 Intel Core i9.

9The number of features is calculated prior to one hot encoding.
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tabular data images text multi-l.
# adult bank churn compas compas-m fico german iris wine-r wine-w mnist 20news medical

n 32,561 150k 3,333 7,214 7,214 10,459 1,000 150 1,599 54,898 70,000 18,846 978
m 10 13 19 11 11 23 20 4 11 11 28×28 37,096 1449
L 2 2 2 2 3 2 2 3 6 7 10 2 45

Xbb .83 .89 .85 .81 .64 .72 .76 .91 .71 .55 .99 .91 .52
X .80 .89 .83 .75 .61 .69 .70 .87 .55 .41 .98 .75 .98

Table 6.2: Top: datasets summaries. n: instances, m: fetures, L: labels. Bottom: average
accuracy of all black-boxes (DNN, NN, RF and SVM) on training Xbb and test X.

DNN NN RF SVM

X .69 ± .24 .75 ± .17 .78 ± .12 .68 ± .16
Xbb .72 ± .26 .76 ± .17 .88 ± .11 .77 ± .13

Table 6.3: Average accuracy and stddev of the black-box classifiers.

A random subset of each dataset, denoted by Xbb, was used to train the black-box
classifiers while the remaining part, denoted by X, was used as instances to explain – in
brief, the explanation set. For tabular data, the split was 70%-30% and stratified w.r.t. the
class attribute. For mnist, 20news, and medical we followed the split custom in the
relevant literature10. We denote with Ŷ = b(X) the decisions of b on X, and with Y =
c(X) the decisions of c on X. We assume that the dataset used to train the black-box is
unknown at the time of explanation. Hence, we can only rely on the set X of instances
to explain. Indeed, the knowledge base K is derived from the explanation set as stated
in Footnote 4. Similarly, information about features’ domains required by the competitor
methods is computed from X.

We trained and explained the following black-box models: Random Forest (RF), Sup-
port Vector Machine (SVM) and Neural Network (NN) as implemented by scikit-learn,
and Deep Neural Networks (DNN) implemented by keras11. For each black-box, for each
dataset, we performed a random search for the best parameter setting12. Average classifi-
cation accuracies are shown in Table 6.2 (bottom) and in Table 6.3. We compare loresa
against Lime [35], Maple [44], Shap [41], Anchor [51] and brl [53]. We also compare
the counterfactuals of loresa with the stochastic optimized counterfactuals Soc [176] as
implemented by the alibi library13, and against the brute force coutnerfactual explainer
(bf) as implemented by the fat-forensics library14. Unless stated otherwise, default
parameters are used for loresa and all the other methods15.

10http://qwone.com/~jason/20Newsgroups/, http://yann.lecun.com/exdb/mnist/
11Black-boxes: https://scikit-learn.org/, https://keras.io/.
12Details of the parameters can be found in loresa repository.
13https://github.com/SeldonIO/alibi
14https://fat-forensics.org/.
15We highlight that for SHAP we used the KernelSHAP explainer that can be adopted for any black-box
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6.3.2 Evaluation Metrics

We evaluate the performances of explanation methods under various perspectives. The
measures reported in the following are stated for a single instance to be explained. The
metrics obtained as the mean value of the measures over all the instances in the explanation
set X, can then be used to evaluate the performances of the explanation methods. Let x ∈ X
be an instance to explain.

Correctness. We will evaluate the correctness of explanations under controlled situa-
tions where ground truth is available. Let e and ẽ be the binary vectors indicating the
presence/absence (1/0) of a feature in the explanation for x of a given method, and in the
ground truth respectively. For rule-based explanations, presence means that the feature ap-
pears in the premise of the rule. For feature importance vectors, presence means that the
feature has non-zero magnitude. We measure the correctness of an explanation w.r.t. the
ground-truth using the f1-score:

f1-score(e, ẽ) = 2 · recall(e, ẽ) · precision(e, ẽ)

recall(e, ẽ) + precision(e, ẽ)

where the precision is the percentage of features present in e that are also in ẽ, and the
recall is the percentage of features in ẽ that are also in e.

When ground truth is not available, we will consider the following measures to evaluate
specific properties of an explanation process.

Silhouette. We measure the quality the neighborhood16 in a local approach by measuring
how similar is x to instances in Z= compared to instances in Z ̸=. Let d(x, S) denote the mean
Euclidean distance between x and instances in S. Inspired by clustering validation [175],
we define:

silhouette(x) =
d(x, Z̸=)− d(x, Z=)

max{d(x, Z̸=), d(x, Z=)}

High silhouette results from accurate neighborhood generation (Section 6.2.1).
Fidelity. It answers the question: how good is the interpretable predictor c at mimicking

the black-box b? Fidelity can be measured in terms of accuracy [10] of the predictions
Y = c(Z) of the interpretable predictor c w.r.t. the predictions Ŷ = b(Z) of the black-box

model. Also, as background knowledge for SHAP we used the medoid of the training set. We highlight
that, different choices of the background knowledge can significantly impact on the outcome as illustrated
in [177, 178]. However, we relied on the medoid because as illustrated in the tutorial for KernelSHAP on
tabular data provides the best trade-off between reliability and efficiency. We did not compare against other
counterfactual explainers as this is out from the purpose of the analysis conducted. We refer to [69] for a
comprehensive survey and benchmarking.

16In order to evaluate the neighborhood generated by an explainer, it must be available. brl, Maple
and Shap do not use a notion of neighborhood to return the explanation. However, the Shap library allows
access to the permutation of x tested to determine the Shapely value approximations. We used this set of
instances as the neighborhood for Shap.
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b, where Z is the neighborhood of x generated by the local method. High fidelity of c results
from both accurate neighborhood generation (Section 6.2.1) and predictive performance of
the learning algorithm.

Complexity. It is a proxy of the comprehensibility of an explanation, with larger values
of complexity denoting harder to understand explanations [24]. For rule-based explanations,
as complexity we adopt the size of the rule premise (for loresa we consider only the factual
rule). Low complexity results from general (non-overfitting, stable) local interpretable
surrogate predictors and a direct method to extract the rule. For feature importance
vectors, as complexity we adopt the number of non-zero features. For instance in Lime are
those of the local surrogate linear regressor.

Stability. It measures the ability to provide similar explanations to similar instances.
Also named robustness or coherence, it is a crucial requirement for gaining trust by the
users [179]. We measure it through the local Lipschitz condition [96]:

instability(x) = maxxi∈Nk(x)
∥ei − e∥2
∥xi − x∥2

(6.1)

whereNk(x) is the set of the k = 5 instances in X\{x} closest to x w.r.t. Euclidean distance,
e is the binary vector of the explanation of x, and ei is the binary vector of the explanation
of xi ∈ Nk(x). Intuitively, the larger is the ratio the more different are the explanations for
instances close to x. Low instability (or, high stability) results from general (non-overfitting,
stable) local interpretable surrogate predictors. While low instability could be the result
of under-fitting, this is not the case of local explanation methods which, being local and
being based on random components, are not prone to exhibit the same explanation for
different instances. In addition, we consider also sensitivity of a local explanation method
to randomness introduced in the neighborhood generation. This is measured by the distance
of explanations generated for a same instance over multiple calls to the explanation method:

instabilitysi(x) = max ei,ej∈Ek(x)∥ei − ej∥2 (6.2)

where Ek(x) is the set of the explanations obtained by calling the method k = 5 times
on the same input instance x. A low same-instance instability is obtained when similar
explanations are returned over multiple runs. Instances and explanations are normalized
before calculating the instability measure.

Coverage and Precision. These measures apply to rule-based explanations p → y only
(for loresa we consider only the factual rule). Let Z be the neighborhood of x generated
by the local method. The coverage of the explanation is the proportion of instances in Z
that satisfy p. The precision is the proportion of instances z ∈ Z satisfying p such that
b(z) = y. Coverage and precision are competing metrics which respectively estimate the
generality of the rule and the probability it correctly models the black-box behavior locally
to the instance to explain. They depend both on the characteristics of the neighborhood
generation (Section 6.2.1) and on the predictive performance of the learning algorithm.
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Changes. An indicator of the quality of a counterfactual is the number of changes
w.r.t. the instance x. For a set of counterfactual instances, such as those provided by
Soc, we count the mean number of features whose value is different from x. For a set of
counterfactual rules p[δ] → y, provided by loresa, we count the mean number of falsified
split conditions nf (p[δ], x). For loresa, we expect a small number of changes thanks to
the selection of counterfactual paths in the surrogate predictor with minimum number of
changes (Section 6.2.2). However, actionability of counterfactuals maybe achieved at the
cost of a larger number of changes (Section 6.2.3).

Dissimilarity. We measures the proximity between x and the counterfactual x′ generated
as the distance between x and the counterfactual instance x′ that we obtain by applying
to x the changes described by p[δ]. We calculate the distance using the same function
described in Section 6.2.1. The lower the better.

Plausibility. We evaluate the plausibility of the explanations in terms of the good-
ness of the counterfactuals returned by using the following metrics based on distance and
outlierness [180].

Minimum Distance Metric. As a straightforward but effective evaluation measure, we
adopt proximity. Given the counterfactual x′ returned for instance x, x′ is plausible if it
is not too much different from the most similar instance in a given reference dataset X.
Hence, for a given explained instance x, we calculate the plausibility in terms of Minimum
Distance MDM = minx̄∈X/{x} d(x′, x̄) where the lower the MDM , the more plausible is x′

the more reliable is the explanation, because x′ resembles a real instance in X.
Outlier Detection Metrics. We also evaluate the plausibility of the counterfactuals by

judging how much they appears as outliers. The lower the scores the more plausible they
are. In particular, we estimate the degree of outlierness of a counterfactual x′ returned for
an instance x by employing the outlier detection technique Isolation Forest (IsoFor) [181].

6.3.3 Qualitative Evaluation

We qualitatively compare loresa explanations with those returned by competitors on an
instance x of the compas-m dataset, assuming a NN as the black-box. The instance and
the explanations are shown in Figure 6.5.

The factual rule r of loresa clarifies that x is considered at high risk of recidivism
because of his young age and of the number of previous detections. The counterfactuals Φ
show that the risk would have been lowered to Low for an older individual, or Medium for
various reasons some of which are not actionable, e.g., different age, sex or race. The coun-
terfactuals Φ∗ are obtained by considering the set of constraints U={ age=20, age cat=Less
than 25, race=Afr.-Am., sex=Male}. In this case, the decision b(x) would have been dif-
ferent only with a lower number of prior arrests or with a larger number of days between
the screening and the arrest.

The competitor rule-based explainers suffer from a few weaknesses. Anchor returns
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x = {age = 20, priors cnt = 3, days b screen arrest = 0,
is recid = 1, is violent recid = 0, two year recid = 1,
length of stay = 1, age cat = Less than 25, sex = Male,
race = Afr.-Am., charge degree = F}

b(x) = High
loresa
r = {age ≤ 20.5, days b screen arrest ≤ 0.50,

priors cnt > 2.5, 0.5 < length of stay ≤ 3.5,
sex = Male, race ̸= Asian } → High

Φ ={ { age > 28.5 } → Low, {age > 23.5} → Medium,
{sex = Female} → Medium, {race = Asian} → Medium
{days b screen arrest > 7.5} → Medium,
{priors cnt ≤ 2.50} → Medium } }

Φ∗ ={ { days b screen arrest > 7.5 } → Medium,
{ priors cnt ≤ 2.50 } → Medium }

Anchor
e = {age cat=Less than 25 > 0.0, age cat=25 - 45 ≤ 0.0,

age ≤ 25.0, days b screen arrest ≤ 1.0,
0.0 < race=Afr.-Am. ≤ 1.0, race=Caucasian ≤ 0.0,
race=Asian ≤ 0.0, race=Other ≤ 0.0,
priors cnt > 2.0, 0.0 < length of stay ≤ 1.0,
0.0 < two year recid ≤ 1.0, 0.0 < is recid ≤ 1.0,
0.0 < charge degree=F ≤ 1.0, charge degree=M ≤ 0.0,
sex=Female ≤ 0.0, sex=Male ≤ 1.0 } → High

brl

e = {12.04 < age ≤ 34.41} → High
Lime
e = [(age, 0.02), (priors cnt, -0.01),

(is violent recid, 0.002),
(days b screen arrest, 0.002), (sex=Male, -0.002),
(charge degree=M, 0.002), (is recid, 0.001),
(age cat=25 - 45, 0.001),
(charge degree=F, -0.001) ]

Shap

e = [(age, -0.7) ]
Maple
e = [(age, -1.84), (priors cnt, 0.19),

(two year recid, 0.04),
(days b screen arrest, -0.28), (sex=Female, 0.06),
...
(charge degree=F, -0.02),
(charge degree=M, 0.02) ]

Soc
e = {[(age, 17.31)], [(priors cnt, 4.34)],

[(age cat=25 - 45, 1.0), (race=Other, 1.0)],
[(is violent recid, 10), (charge degree=M, 10.)] }
b(x[e]) = Medium

Figure 6.5: Explanations for an instance x of the compas-m dataset classified as High risk
of recidivism by a NN black-box.

various conditions, involving many features, in order to guarantee high precision. Thus, its
explanation result hard to read and unnecessarily complex. brl bases its explanation on a
rule with a single feature, which on the example instance is age. Even though it is (partly)
correct, the user can hardly trust such a simple and minimal justification. We will show
next that brl is indeed not particularly good in mimicking black-boxes’ behaviors. The
feature importance-based explainers Lime, Shap and Maple provide a list of features with
a score of their relevance in the decision. The most important features for Lime, i.e., age
and priors cnt, are in line with the factual rule of loresa. Shap attributes the decision of
the black-box only to age. Maple provides a (unnecessarily long) list of features (shortened
for space reasons) with scores in agreement with the other explainers. Regarding counter-
factuals, Soc suggests a set of changes to x’s feature values turning the risk prediction to
Medium. Compared to Φ∗, the changes are either non-actionable (e.g., age=17.31) or less
informative or impossible (e.g., priors cnt=4.34).

Explanations on Images, Texts & Multi-label Data. We compare loresa explanations
for images and texts with Lime explanations.

Figure 6.6 shows such comparison on two images of mnist. Both methods adopt the
same segmentation shown in the second column of the figure. The factual explanations of
loresa, shown visually in the 3rd column of Figure 6.6, clearly attribute the classifications
for 9 and 4 to the presence of super-pixels s8, s6, s4 and s7, s0, s4, respectively. The absence
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loresa

r1 = {s8, s6, s4 } → {9}
Φ1 = { {¬s6} → {4}, {¬s8} → {6} }
r2 = {s7, s0, s4 } → {4}
Φ2 = { {¬s0} → {9}, {¬s4} → {9} }

Figure 6.6: Explanations of loresa and Lime for two instances x (one per row) of the
mnist dataset classified as 9 and 4 by a RF black-box. Meaning of columns is 1st: instance
x, 2nd: superpixel segmentation, 3rd: loresa factual rule, 4− 5th: loresa counterfactuals,
6th: Lime explanation, 7th: Lime counterfactuals (towars unspecified class).

of some of such super-pixels (4th column), would have changed the black-box decision as
shown in Φ1 and Φ2. For instance, the image of 9 would have been classified as 4 if the
area of the super-pixel s6 would have been white. The explanation returned by Lime are
less intuitive both when considering only the super-pixels pushing the classification towards
a class (5th column), or pushing the classification towards another (unspecified) class (6th

column).
Figure 6.7 reports the explanations of loresa, Lime and Anchor for a text from the

20news dataset. All methods adopt the same document vectorization. loresa shows that
the text is classified as atheism because of the simultaneous presence of some words in the
factual rule. The absence of specific words in the counterfactual rules would change the
classification to christian. Lime explanation is in agreement with the one of loresa as the
words edu, com and religion have negative weight on the classification towards atheism.
The explanation of Anchor highlights the presence of religion and religious, but it also
includes less meaningful words.

Figure 6.8 reports an example of explanation derived for multi-labelled classification
using the medical dataset. The instance x is labelled with the diseases corresponding to
Class 12 and Class 38. The explanation is the conjunction of symptoms in the factual rule
r. A single label would have been returned by the black-box if cough were absent and,
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x = {Could an atheist accept a usage in which religious literature
or tradition is viewed in a metaphorical way? [...] It’s also entirely
unclear, and to me quite unlikely, that one could take a contemporary
religion like that and divorce the metaphoric potential from the
literalism and absolutism it carries now in many cases.}
b(x) = atheism

loresa
r = {Christianity, com, religion, edu, religious,

atheist, believes, cons} → atheism
Φ ={ {¬ religion} → christian, {¬ com} → christian,

{¬ religious} → christian, {¬ edu} → christian }

Lime
e = [(Christianity, 0.05), (want, 0.04), (edu, -0.02),

(com, -0.02), (good, 0.02), (religion, -0.02)]

Anchor
e = {religion, religious, set, an } → atheism

Figure 6.7: Explanations of loresa and Lime for
an instance x of the 20news dataset classified as
atheism by a NN black-box.

x = {15-month, chest, cough,
fever, focal,
male, normal,
pneumonia, x-ray}

b(x) = {Class 12, Class 38}
r = {¬ hydronephrosis,

cough, fever,
minimal }
→ { Class 12, Class 38 }

Φ ={ {¬ cough, ¬ pneumonia}
→ {Class 12},
{¬ cough, hypertrophy}
→ {Class 38} }

Figure 6.8: loresa explanations for
an instance x of the medical dataset
classified as Class 12 and Class 38
by a RF black-box.

Figure 6.9: Correctness metric by varying the total number of features m+u. Left: synthetic
rule-based classifiers. Right: synthetic linear regressors.

either pneumonia were absent or hypertrophy were present. We cannot compare with Soc,
because it is not able to deal with multi-labelled classification.

In conclusion, we believe that the reported examples of factual, counterfactual, and ac-
tionable explanations of loresa offer to the user a clearer and more trustable understanding
than what is offered by the other explainers.

6.3.4 Ground Truth Validation

By synthetically generating transparent classifiers and using them as black-boxes, we can
compare the explanations provided by an explainer with the ground-truth decision logic of
the black-box [99]. In particular, the f1-score() metric accounts for the correctness of the
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explanations.
In order to have a comparison as fair as possible among methods returning different

types of explanations, we build two types of black-boxes: rule-based classifiers and linear
regressor-based. The former are closer to rule-based explainers, the latter to feature impor-
tance explainers. In both cases, we start from datasets of m binary informative features and
u Gaussian-noise uninformative features. The total number of features m + u varies over
{2, 4, 8, 16, 32, 64, 128} and, for a fixed m + u, we generate 100+100 such datasets where
m < min{32,m + u}17. The informative features are generated following the approach
of [182] implemented in scikit-learn18. Thus, we have 700 synthetic datasets for training
rule-based classifiers and 700 for training linear regressors. Each dataset contains 10,000
instances, 1000 of which are used as explanation set.

Rule-based black-boxes are obtained by training a decision tree from a synthetic dataset,
and then extracting rules from such a decision tree. The ground-truth explanation for an
instance x is the rule satisfied by x in the black-box. Linear regressors black-boxes are
obtained by an adaption of the approach of [183]. The ground-truth explanation for an
instance x is the gradient of the instance in the decision boundary closest to x. Additional
details19 can be found in [99].

Figure 6.9 reports the f1-score metric at the variation of the total number of features
m + u in synthetic datasets. Each point shows the mean f1-score over the explanation
sets of such datasets. loresa outperforms the other explainers when m + u ≤ 16. For
larger values of m + u, loresa performance is comparable to those of Lime and Shap for
rule-based classifiers, and slightly lower than their performance for linear regressors.

6.3.5 Quantitative Evaluation

We quantitatively assess the quality of loresa and of the competitor explainers through
the other evaluation metrics of Section 6.3.2.

In order to evaluate the importance of the trees merging strategy employed by loresa
for deriving the single local decision tree, we implemented a variant that avoids the merg-
ing operation. We call it loredsa and works as follows. After learning the decision trees
d(1), d(2), . . . , d(N) on their corresponding local neighborhood Z(1), Z(2), . . . , Z(N) labeled
by the back-box b, we use each tree d(i) for labeling its training neighborhoods, Z(i),

17We specified 32 as maximum number of features m because typically tabular datasets with columns
having clear and interpretable semantics have less than 30 features (like those used in the experiments).
Thus, since our purpose is not to perform a scalability test but a correctness test, we selected this upper
limits.

18https://scikit-learn.make classification.
19We highlight that the transformation of features importance and of rules into binary vectors indicating

the presence of a feature is a simplification adopted to make possible the comparison of explainers returning
different types of explanations using the same metric.
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silhouette fidelity complexity instability instabilitysi
Anchor .116± .51 .912± .21 4.950± 8.20 .174± 0.29 .651 ± .949

brl .019± .30 .869± .09 1.998 ± 1.23 .889± 0.45 n.a.
Lime .444± .49 .904± .23 9.733± 1.47 .787± 1.58 .159 ± .142
Lore .408± .49 .996± .01 4.917± 3.69 .123± 0.22 .259 ± .847
Maple .127± .56 .949± .09 29.014± 3.25 .651± 1.66 n.a.
Shap .463± .56 n.a. 6.070± 3.84 .608± 0.58 .017 ± .052
loresa .569 ± .46 .992 ± .20 3.986 ± 3.93 .073 ± 0.07 .107 ± .081

lored
sa .569 ± .46 .999 ± .01 5.105 ± 4.29 .083 ± 0.08 .107 ± .066

Anchor Lore brl loresa lored
sa

coverage .284 ± .32 .492 ± .27 .344 ± .30 .742 ± .27 .485 ± .26
precision .912 ± .21 .993 ± .07 .732 ± .22 .772 ± .26 .998 ± .02
h-mean .433 ± .25 .657 ± .11 .468 ± .25 .694 ± .25 .615 ± .22

Table 6.4: Aggregated evaluation metrics over experimental datasets and black-boxes.

i.e., Y
(i)
d = d(i)(Z(i)). Then, we compute the union of the new labeled neighbors, i.e.,

DZ =
⋃

∀i∈[1,N ] (Z
(i), Y

(i)
d ) and we use DZ to learn the final decision tree c.

For sake of compactness, to quantitatively compare all the explanation methods we
report only aggregate results, i.e., mean and standard deviation of the metrics over all
datasets and black-boxes. Table 6.4 (top) reports the silhouette, fidelity, complexity, insta-
bility, and instabilitysi metrics. loresa overcomes all the other explainers on 3 metrics, and
it is runner-up on the other 2 metrics.

As expected, loresa considerably improves the complexity and the two instability met-
rics with respect to its predecessor Lore while maintaining the same level of fidelity. In
terms of complexity, loresa is the second best performer after the brl approach which,
on the other hand, has lower performance on the other metrics and is one of the most
stable. The only competitors with lower instability are Shap and Maple which provide
more complex explanations. Moreover, our experimental results show that loresa has also
lower complexity and instability with respect to loredsa highlighting the importance of
the merging procedure for the stability. The better performance of loresa is paid with a
slightly higher runtime required to get an explanation due to the merging procedure that is
on average 315.59 ± 185.74 seconds among all datasets and black-box models 315.59, while
it is on average 285.23 ± 179.83 seconds for loredsa. We underline that having an efficient
implementation of this algorithm is not the focus of this work. Nonetheless, in Table 6.6
we report the running time (in secs) of producing an explanation for three experimental
datasets and for the SVM black-box. loresa performances are in line with Anchor and
Soc, and better than Maple and brl. They are instead worse than Lime and Shap. The
vast majority of running time (> 90%) of loresa is used by the genetic neighborhood gener-
ation. The implementation, however, can be readily sped up by parallelising the generation

of Z
(1)
= , Z

(1)
̸= , . . . , Z

(N)
= , Z

(N)
̸= (2 ·N independent calls to Algorithm 2).
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method RF SVM NN DNN

Anchor 3.02 3.04 3.33 3.41
brl 3.72 3.77 3.96 1.72
Lime 3.93 3.03 4.25 3.33
Maple 3.67 4.00 3.61 1.41
Shap 3.15 3.45 3.71 3.19
Lore 2.09 2.36 2.61 1.41

method compas adult german

Anchor 4.48 ± 6.43 101.60 ± 203.72 2.81 ± 0.84
Lime 1.49 ± 0.24 3.10 ± 0.83 0.20 ± .03
Maple 743.62 ± 0.02 34643.04 ± 0.01 273.08 ± 0.02
brl 53.20 ± 0.01 621.20 ± 0.68 33.10 ± 0.02
Shap 0.29 ± 0.31 0.46 ± 0.60 0.86 ± 0.15
Soc 3.52 ± 0.02 39.18 ± 2.80 4.72 ± 0.07
Lore 8.02 ± 0.36 62.48 ± 4.55 7.76 ± 0.19

Table 6.6: Running time (mean ± stdev) in secs for SVM.

Figure 6.10: Instability metric by varying the number N of decision trees in loresa.

Figure 6.10 shows how instability behaves varying the number N of local neighbor-
hoods/decision trees generated by loresa. Similar results are obtained for loredsa. There
is a (local) minimum at N = 5, which is the value set by default in loresa. Finally, with
respect to the instabilitysi metric20, we point out that brl and Maple are deterministic
methods, hence the metric does not apply to them. Shap, which has the best performances,
bases its explanation process on permutations of x with respect to a set of base values. Us-
ing a single background value as the medoid of the training set, as suggested in SHAP
tutorials’ can markedly limit the variability of the permutations of x. This explains the low
instabilitysi value. On the other hand, different background values could lead to different
explanations [177,178].

In Table 6.4 (bottom) we report the coverage and precision metrics for the rule-based
explainers under analysis. Furthermore, to capture both measures with a single value, we
also report the harmonic mean (h-mean) of coverage and precision. We notice that, loresa,
loredsa and Lore overcome Anchor and brl for both indicators. loresa considerably
improves the rule coverage paying something in precision; however, looking at the h-mean
loresa is the best performer. This is another beneficial effect of the bagging-like approach,
which improves on generality (less overfitting) of the interpretable predictor. A Friedman

20Differently from instability, the instabilitysi metric is not normalized – see (6.1), (6.2). Hence, the
columns for the two metrics in Table 6.4 (top) cannot be compared to each other.
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method ovr adult bank churn compas compas-m fico german iris wine-r wine-w

Anchor 3.12 3.08 3.24 3.24 3.05 3.11 3.11 3.80 4.14 3.02 2.82
brl 3.72 3.65 3.87 3.53 4.36 3.79 3.38 3.56 4.01 3.91 3.50
Lime 3.74 3.10 4.08 3.88 4.53 4.15 3.54 2.81 4.15 3.62 3.90
Maple 3.46 3.54 3.21 2.70 3.36 4.26 3.85 2.11 3.48 4.41 3.92
Shap 3.49 3.27 2.85 3.57 3.45 3.89 4.62 3.31 3.52 3.67 3.51
loresa 2.19 2.12 2.27 2.32 2.12 2.02 2.21 2.22 2.82 2.35 2.17

Table 6.7: Mean rank of explainers by dataset over all combinations of black-boxes and
metrics (silhouette, fidelity, complexity, instability).

silhouette fidelity

complexity instability

Figure 6.11: Critical difference diagrams using the Nemenyi test at α = 0.05. The name
Lore in the plots indicate the loresa method.

test [184] on each of the metrics rejects the null hypothesis of zero difference among the
methods (p-value < 10−5). In the following, a small parenthesis on the Friedman test is
presented.

Statistical tests Tables 6.7 and 6.5 report the mean rank values (ranging from 1 to 6)
among the different explainers for a given dataset (resp., black-box) over all combinations
of black-boxes (resp., datasets), and of the evaluation metrics of silhouette, fidelity, com-
plexity, and instability. The first column of Tables 6.7 reports the overall mean rank. It is
readily checked that loresa ranks the best in general (p-value < 0.001 using a Wilcoxon
signed rank test), for each dataset, and for each black-box. For the compas-m, bank and
fico datasets and for the RF and SVM black-boxes, loresa ranks markedly higher than
the competitors. Figure 6.11 shows four Critical Difference (CD) diagrams [184]. They dis-
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Soc bf loresa lored
sa

dissimilarity 0.170 ± 0.27 0.056 ± 0.07 0.093 ± 0.03 0.111 ± 0.00
MDM 0.166 ± 0.28 0.067 ± 0.08 0.026 ± 0.00 0.019 ± 0.01
IsoFor 1.074 ± 0.09 1.221 ± 0.36 1.007 ± 0.00 1.060 ± 0.07

Table 6.8: Aggregated evaluation metrics estimating the proximity of the counterfactual
explanations in terms of dissimilarity and the plausibility as MDM and IF scores. The
lower the better for all the measures: in bold the best performer, in italic the runner up.

play the statistical significance of the observed paired differences in performances between
pairs of the explanation methods. Two methods are tied if the null hypothesis that their
performances are the same cannot be rejected using the Nemenyi test at α=0.05. loresa
performs better than the compared methods with regards to fidelity, and the differences
are statistically significant. For each of the other metrics, the method tied to loresa is
always a different one. Hence, loresa wins over any other method in at least 3 out of the
4 metrics.

Table 6.8 compares loresa with the merging variant and with two competitors with
respect to the counterfactual part of the explanation. We highlight that loresa is not
an explainer directly returning counterfactual instances on its own. However, counterfac-
tual instances can be created by modifying the instance under analysis x according to the
counterfactual rules in Φ. We notice that the brute force approach bf has the lowest dis-
similarity but loresa and loredsa achieve closer results. Soc is the worst performer with
respect to this metric, meaning that the counterfactual instances returned by Soc are not
highlighting minimal changes with respect to x to change decision. Furthermore, loresa
alternatives return the most plausible counterfactuals with respect to the the MDM and
IsoFor metrics. There is not a clear winner but overall the plausibility scores of loresa are
better being always the best performer or the runner up, i.e., lower, than those of bf and
Soc, enabling it to be used also as a possible counterfactual explainer.

In Table 6.9, we compare loresa with the counterfactual explainer Soc that is typi-
cally used as a baseline [69]. Mean and standard deviations are reported for the number
of counterfactual instances (Soc) or counterfactual rules ( loresa) produced, and the
changes metrics (number of changes to instance x to revert the black-box outcome). For
all the reported datasets and black-boxes, loresa produce less changes than Soc. On the
other hand, Soc returns more counterfactuals. The number of counterfactuals returned
by loresa could be increased trading off with changes, simply by relaxing the requirement
of minimality in Algorithm 3. Let us now denote with loresa with underlined a the exe-
cution of loresa with in input dataset-specific constraints U stating features that cannot
be changed: age, race, sex , native-country , marital -status for adult; age for bank; state,
state-area, state for churn; age, age-cat , race, sex for compas-m (shown as cps-m in the
table). As expected, it turns out that loresa produces less counterfactuals its counterpart
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X Explainer no. cf. changes b Explainer no. cf. changes
a
d
u
l
t Soc 9.6 ± 1.0 3.8 ± 2.7

D
N
N

Soc 9.9 ± 0.7 2.6 ± 1.7
loresa 2.9 ± 2.7 1.3 ± 0.5 loresa 2.4 ± 1.6 1.2 ± 0.5
loresa 1.8 ± 1.7 2.2 ± 0.4 loresa 1.2 ± 0.4 2.5 ± 0.5

b
a
n
k Soc 3.5 ± 2.4 1.6 ± 0.6

N
N

Soc 7.2 ± 2.4 5.0 ± 3.3
loresa 1.4 ± 0.9 1.3 ± 0.5 loresa 2.5 ± 2.4 1.3 ± 0.5
loresa 1.6 ± 0.8 1.5 ± 0.2 loresa 1.4 ± 0.9 2.2 ± 0.4

c
h
u
r
n Soc 8.4 ± 1.8 5.8 ± 3.7

R
F

Soc 7.5 ± 2.3 3.6 ± 2.7
loresa 2.0 ± 1.9 1.5 ± 0.7 loresa 2.4 ± 2.1 1.3 ± 0.6
loresa 1.5 ± 0.9 2.3 ± 0.5 loresa 1.9 ± 1.2 2.2 ± 0.5

c
p
s
-
m Soc 5.2 ± 1.8 2.9 ± 1.4

S
V
M

Soc 6.9 ± 3.5 3.2 ± 2.7
loresa 3.5 ± 2.2 1.1 ± 0.3 loresa 3.0 ± 2.3 1.2 ± 0.5
loresa 1.8 ± 1.1 1.3 ± 0.2 loresa 1.6 ± 1.1 2.2 ± 0.4

Table 6.9: Aggregated evaluation metrics for counterfactuals over experimental datasets
and black-boxes. loresa is loresa with constraints U in input.

Algorithm 3: extractCounterfactuals(c, r, x, U)

Input : c - decision tree, r - rule, x - instance to explain, U - constraints
Output: Φ - set of counterfactual rules for p

1 Q← getPathsWithDifferentLabel(c, y); // get paths with y′ ̸= y

2 Φ← ∅; min ← +∞; // initialize counterfactual set

3 for q ∈ Q do
4 if not q → U |q then
5 continue; // skip rule if constraints not satisfied

6 qlen ← nf (q, x) = |{sc ∈ q | ¬sc(x)}|
7 if qlen < min then Φ← {q → y′}; min ← qlen;
8 else if qlen = min then Φ← Φ ∪ {q → y′};
9 return Φ;

ignoring the actionability. This is due to the filtering of the counterfactual rules that do
not satisfy the feature constraints. On average, such counterfactual require more changes
to the instance x to explain, but still less than Soc.

6.5 Discussion

In this Chapter, we introduce loresa, a method for tabular local explanations that is
independent of the underlying black-box model. loresa generates informative and factual
decision rules as well as actionable counterfactual rules.

Through an exhaustive experimental evaluation comparing loresa with state-of-the-
art methods, we demonstrate significant improvements in the stability of explanations.
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Additionally, loresa consistently ranks among the top performers or runners-up in various
quantitative metrics. The stability of the explanations is achieved by employing a novel
bagging-like approach that generates and aggregates multiple local decision trees.

For future work, we envision several directions to expand the applicability of loresa.
Firstly, we acknowledge that synthetically generated instances may not fully capture cor-
relations among attributes, such as age and education level. To address this, we propose
integrating domain knowledge, such as dependencies or causal relationships, into the gen-
eration of neighborhood instances and the inference process of the interpretable predictor.

Secondly, in the context of multi-class problems, it is worth exploring alternative defini-
tions of fitness ̸= to guide the selection of counterfactual rules towards specific class values.
For instance, in a credit risk rating scenario, there might be a need to provide counterfac-
tuals that lead to a lower risk label.

101



Chapter 7

Summary of Part II

In this Part, we presented a benchmark of the most popular Explainable AI methods for
local, post-hoc and tabular explanations. This analysis highlighted several limitations of
the state-of-the-art algorithms. In particular, the explainable methods available are unsta-
ble, slow and difficult for a non-expert user to understand. For this reason, we proposed
loresa, a black-box agnostic method for local explanations providing informative, factual
decision rules and actionable counterfactual rules. An exhaustive experimental evaluation
with state-of-the-art methods has shown that loresa largely improves as per stability of
explanations while ranking top or runner-up in several other quantitative metrics. The sta-
bility of the provided explanations is achieved by adopting a novel bagging-like approach in
generating and aggregating several local decision trees. In addition, the loresa approach
holds significant importance not only in terms of enhancing stability and actionability but
also in its suitability for a general audience without expertise in computer science and
mathematics. One noteworthy aspect is that the explanations provided by the approach
are expressed in the form of logical rules, resembling the familiar human logic of ”if-then-
else.” This characteristic renders them easily comprehensible even for individuals without
technical knowledge. This is a crucial consideration as many existing explanation methods
in the literature shows good performance in terms of quantitative metrics but are challeng-
ing for non-experts to grasp due to their reliance on complex mathematical formulations.
Consequently, a notable advantage of loresa lies in its ability to generate explanations that
are accessible and understandable to a wider range of individuals.

Several potential directions can be identified for future work to broaden the applicability
of loresa. Firstly, it is worth considering the integration of domain knowledge, such as
dependencies or causal relationships among attributes, into the generation of neighborhoods
and/or the inference process of the interpretable predictor. This would address the issue
of synthetic instances not accurately reflecting correlations among attributes, for instance,
between age and education level.
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Secondly, in the context of multi-class problems, alternative definitions of fitness ̸= could
be explored to guide the selection of counterfactual rules towards specific class values. For
example, in the domain of credit risk rating, it may be necessary to generate counterfactuals
aimed at achieving a lower risk label.

Another interesting area for future research involves adapting loresa to handle im-
ages and texts. The binary encoding approach, which models the presence or absence of
super-pixels/words, encounters similar challenges as encountered by Lime, resulting in the
generation of unrealistic synthetic instances. To overcome this limitation, more sophisti-
cated encodings, such as those utilizing autoencoders, can be employed to generate realistic
neighborhoods of images and texts (Guidotti et al., 2019).

Lastly, it is important to note that loresa assumes unrestricted querying of the black-
box model. However, when limitations on the number of admissible queries are in place,
such as in real-world scenarios, the neighborhood generation phase must account for these
constraints. In such cases, an active learning variant of the genetic approach can be adopted
to optimize the limited number of queries.
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Part III

Predicting and Explaining the
Privacy Risk

104



This Part presents our research on the interplay between Privacy and Explainable AI,
with a focus on utilizing explanations to enhance users’ awareness on privacy risks.

Data Privacy is a significant concern in the digital age due to the vast amounts of
personal information that organizations, governments, and individuals collect and store.
An area of growing research interest is big data analytics, including mobility data analytics,
which is crucial for new knowledge-based services and applications. However, the use of
this type of personal data raises concerns about potential leakage of sensitive information
[104]. For example, analyzing mobility data can reveal details of individuals’ private lives
[185]. Similar privacy issues arise in other contexts, such as supermarket purchases or
weblogs. To mitigate privacy risks while retaining the valuable data characteristics useful for
Data Mining and Machine Learning application, researchers have developed tailored privacy
protection techniques [186] [187] [188] [3]. For enabling a practical application of these
techniques, Pratesi et al. proposed PRUDEnce [2], a framework for systematic individual
privacy risk assessment based on personal datasets, presented in Section 3.2.1. PRUDEnce
assists data controllers in complying with the EU GDPR (Section 4). It is based on the idea
that the privacy risk assessment can be performed by simulating an attacker who wants
to exploit a privacy attack on a dataset. At this point, the privacy risk value associated
with a user is given by the probability of success of that privacy attack. PRUDEnce
assumes a worst-case scenario approach for the privacy risk computation, and therefore,
it evaluates all the possible background knowledge configurations for a potential adversary
generating them with a combinatorial approach directly from the data of a user. After an
exhaustive evaluation of all possible attack configurations, it computes the maximum risk of
re-identification (or privacy risk). Therefore, while the framework provides a comprehensive
methodology for worst-case privacy risk assessment, its computational complexity is high.
Moreover, PRUDEnce is designed to support data providers (companies) in identifying
portions of data with high privacy risk by simulations of the attacks. The computation
requires the availability of the entire dataset, like that stored in the servers of the companies.
The high computational complexity becomes a non-negligible practical limitation in some
online user-centric applications where it is useful to have a continuously up-to-date indicator
of privacy exposure. In other words, PRUDEnce is not suited for providing personalized
recommendations in terms of risks associated with sharing personal trajectories. Indeed,
for any new user requiring risk evaluation, the system should re-compute the privacy risk
against the whole dataset. Moreover, it does not provide any explanation of the privacy risk
derived by the system. In user-centric applications, providing users with an explanation of
the reasons for the identified privacy risk might contribute to raising their self-awareness.

In this thesis, to overcome the computational complexity drawback and to enhance users’
awareness, we propose Expert, an EXplainable Privacy ExposuRe predicTion framework
that exploits (i) machine learning (ML) models for predicting a user’s individual privacy
risk and (ii) local explainers for producing explanations of the predicted risk.

This framework is modular and can be tailored to specific data input and explanation
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Figure 7.1: The general structure of the proposed framework Expert.

requirements to achieve desired outcomes. By utilizing the Expert framework, users can
gain a better understanding of privacy risks associated with their data, allowing them to
take appropriate measures to protect their privacy.

Figure 7.1 depicts the architecture of Expert, which is composed of two main modules:
the privacy risk prediction module, which takes as input the user’s data and, exploiting a
trained ML model, predicts the privacy risk level of that user, and the explanation module
which produces the explanation of the predicted risk.

For the prediction task, Expert has to exploit ML models able to handle the class-
imbalance problem effectively; this is because in the context of privacy risk prediction, two
scenarios are frequent: (i) most of the users in the data have a low privacy risk due to
the simulation of an attack based on a limited background knowledge; or (ii) most of the
users have a high privacy risk typically due to a strong background knowledge possessed
by the adversary. However, in any case, the objective of Expert is to have a predictor
that preserves the privacy of risky users while providing the freedom of using data-driven
services to users with low privacy risk.

In this thesis, we instantiate this framework for assessing and explaining privacy issues
in mobility data. We present different variants of the framework, depending on the kind of
Machine Learning models exploited, as well as the Explainable AI techniques considered.
In Chapter 8, we present Expert for human mobility profiles, which are expressed by a
tabular setting. In this case, we first derive some indicators describing human mobility
from raw trajectories. Then, we apply some Machine Learning models tailored for this kind
of data to predict the privacy risk, as well as Explainable AI methods, such as Lore and
Lime. Then, in Chapter 9, we present a variant that works directly on human trajectories
in their raw format. In other words, the system directly works on sequential data. This
variant is designed to optimize prediction performance by exploiting a customized Machine
Learning structure for providing fast and accurate predictions, as well as a visualization tool
for better exploring the explanation obtained. The work presented in this Part is published
in [189–191].
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Chapter 8

EXPERT for Mobility Profiles

In this chapter we present how to design and develop Expert for predicting and explaining
the privacy risk of mobility profiles, i.e., sets of mobility indicators describing and summariz-
ing the mobility behavior of an individual. In the last 10 years, in the field of mobility data
analytics important effort has been dedicated to the mathematical modelling of the main
aspects of human mobility dynamics [192,193] and the use of mobility features for studying
and understanding various phenomena such as pollution [194], well-being of a region, public
health [195], and so on. However, most of the mobility indicators describe characteristics
of the mobility at individual level and thus, this can lead to risk of re-identification. As
a consequence, the privacy risk assessment has to be conducted also in case the analytical
framework leverage mobility indicators and thus, does not access directly raw trajectory
data. In this particular context, first, Expert extracts from human mobility data an indi-
vidual mobility profile describing the mobility behavior of any user. Second, for each user
it exploits PRUDEnce to compute the associated privacy risk. Third, it uses the mobility
profiles of the users with their associated privacy risks to train a ML model. Finally, for
a new user, along with the prediction of risk, Expert also provides an explanation of the
predicted risk. Expert exploits two state-of-the-art explanation techniques, i.e., Shap [41]
and Lore presented in Chapter 6. Thus, the ML model is the result of several steps: (i)
the empirical computation of the individual privacy risk, (ii) the extraction of individual
profiles from human mobility data, summarizing users’ mobility behavior, and (iii) the
training of a ML model.

8.1 Learning a Prediction Model for Privacy Risk of Mobility
Profiles

The objective of our approach is to train a ML model to predict the privacy risk level of
users based solely on their individual mobility profile. Thus, given a human mobility dataset
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of n user trajectories, we propose to derive the training dataset ⟨M,Γ⟩, where M is a set
of n individual mobility profiles, and Γ is the vector of their associated privacy risk levels.
Since, the privacy risk is related to a specific attack (see Section 3.2.1), the procedure for
building a training dataset depends on the adversary attack modelling. As a consequence,
given a specific attack, characterized by a background knowledge configuration Bh, the
procedure performs the following two steps:

• Mobility Profile Extraction: Given a mobility dataset D, for every user trajectory Tu

we propose to extract a mobility profile to characterize her mobility behavior. To this
end, we propose to derive a set of well-known mobility features (presented in the next
section). We denote by Mu ∈M the mobility feature vector of a user.

• Privacy Risk Computation: For each user u a privacy risk value is computed by
simulating an attack with background knowledge configuration Bh on the mobility
dataset D. Since the goal is to predict the privacy risk level, the privacy risk vector
is discretized to get a set of risk classes1, and the vector of n user’s privacy risk levels
Γ.

After the execution of the above two steps, we get a training set ⟨M,Γ⟩. The derived training
dataset ⟨M,Γ⟩ is used to train a predictive model which will be used within Expert to
immediately estimate the privacy risk level of previously unseen users, whose data were not
used in the learning process. Clearly, in prediction time, in order to predict the privacy risk
of a new trajectory instance the process requires, first the computation of the mobility profile
for that user and then, the application of the predictive model. Among the different ML
methods, we propose to employ models able to handle classification tasks with imbalanced
data. Indeed, as we show in our experiments, one of the characteristics of our training
data is that most of the users have high privacy risk. Our goal is to get a predictor able
to guarantee the privacy protection of risky users while providing the freedom of using
data-driven services to users with low privacy risk. Thus, the optimal predictor should
be characterized by a low probability of misclassifying a high risk user as a low risk one,
while maintaining also good performance with respect to the classification of low risk users.
In this section, we propose to apply the GcForest model [196], a decision tree ensemble
approach with performance highly competitive to deep neural networks in a broad range
of tasks. It is especially suitable to handle highly extra-imbalanced data [197]. GcForest
relies on multiple layers of parallel forests of trees whose output is then concatenated to
re-represent data to subsequent layers. In our experiments we compare GcForest against
models such as decision tree, logistic regression, and random forest.

1In our experiments we discretize the risk in two main classes: low risk (privacy risk ≤ 0.5) and high risk
(privacy risk > 0.5).
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8.1.1 Mobility Profile Extraction

The goal of this step is to construct the matrix M representing the set of individual mobility
profiles, expressed by a set of mobility features that describe and summarize the mobility
behavior of an individual. In our setting, we employ measures widely used in the literature
[5, 198]. Some of them describe only the mobility behaviour of an individual, while others
describe an individual mobility behaviour in relation to collective mobility characteristics.
Table 8.1 reports all the mobility measures used in the study. First of all, we define V
as the number of visits of a user, it corresponds to the total number of locations in the
user’s trajectory. To quantify the erratic behaviour of a user during the day we compute
the average number of daily visits V , dividing V by the total number of days in the period
of observation. Locs, instead, is the number of distinct locations visited by a user during
the period of observation, while Locsratio represents the fraction of locations covered by a
user. We compute it by dividing Locs by the total number of locations available in the
territory. We also evaluated some measures about the distances travelled by the users.
We define Dmax as the maximum distance travelled by each user, i.e. the longest trip for
each user. This measure is then employed for the computation of Dtrip

max: it is the ratio
between the maximum distance travelled Dmax and the maximum distance that is possible
to travel in the area of observation. We also consider Dsum, i.e., the sum of all the distances
travelled by a user. This value is then used in the definition of Dsum, which is the average
of Dsum over the period of observation (expressed in days). We also consider the radius of
gyration [199] representing the characteristic distance travelled by a user during the period

of observation and is defined as rg =
√

1
N

∑
i∈Lwi(ri − rcm)2, in which i ∈ L is the visited

location by a user, wi represents a user’s frequency of visits at a location i, ri denotes the
geographical description of the location i and it is a bi-dimensional vector, while rcm is
the center of mass of the user under consideration. Mathematically, the latter is defined
as rcm = 1

V

∑
1∈L ri. We also measure the mobility entropy E as the predictability of a

user’s trajectory. We employ the Shannon entropy measure [200]: E = −
∑

i∈L pi log2 pi, in
which pi is the probability of the location i for the user under analysis. For each user, we
also consider three locations that characterize a user’s mobility: the most visited location,
the second most visited location and the least visited location. Typically, the most visited
location corresponds to user’s home, while the second most visited location is users’ work
place. For each one of these locations, we evaluate the frequency of visits during the period
of observation wi, where i represents the specific location under analysis. We also define wi

as the daily average of the frequency of visits at the location i for the user under analysis.
Then, we denote by wpop

i the frequency of visits divided by the popularity of the location, i.e.
the total frequency of the location in the dataset. In this way, we normalize the frequency
of the user for a particular location considering the behaviour of all the users in the dataset.
For these three locations, we also consider Ui, i.e., the number of distinct users that visited
the location i in the period of observation. Out of Ui, we also compute U ratio

i , in which
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Notation Description Notation Description

V visits V daily visits
Dmax max distance Dsum sum distances

Dtot
max

max distance over total
max distance for a user

Dsum Dsum per day

Dtrip
max Dmax over area Locs distinct locations

Locsratio Locs over area Rg radius of gyration
E mobility entropy Ei location entropy

Ui individuals per location Uratio
i Ui over individuals

wi location frequency wpop
i wi over the total frequency of location i

wi daily location frequency PTj Path time per user

Table 8.1: Mobility features of the individual mobility profile.

the number of distinct users that visited the location i is divided by the total number of
users in the dataset. The last measure we consider for each of the three locations is the
entropy. In this case, we compute a location entropy Ei, that represents the predictability
of a visit at the location i defined as: E = −

∑
u∈Ui

pu log2 pu, where Ui is the set of users
that visited the location i and pu is the probability that a user u visited the location i.
When working with trajectories, we have also a temporal information: each trajectory is
composed by ⟨li, ti⟩, in which ti is the timestamp corresponding to time of arrival of a user
at a location li. We exploit this information to compute the path time [198], i.e., the time
occurring between the first and last visit of a trajectory.

8.1.2 Privacy risk computation

The goal of this module is to compute for each user trajectory in D a privacy risk value by
using a re-identification attack. We propose to apply the PRUDEnce framework (Chapter
3.2.1) that enables the definition and simulation of any desired privacy attacks over the
entire dataset. Several attacks might be defined on the basis of the type of background
knowledge possessed by an adversary [2, 5]. We instantiate our risk computation using
the location sequence attack, introduced in [187,201], where the adversary knows a subset
of the locations visited by the individual and the temporal ordering of the visits. Given
an individual u, we denote by L(Tu) the sequence of locations li ∈ Tu visited by u. The
background knowledge category of a location sequence attack is defined as follows:

Definition 4 Let h be the number of locations li of an individual u known by the adversary.
The Location Sequence background knowledge is a set of configurations based on h locations,
defined as Bh = L(Tu)[h], where L(Tu)[h] denotes the set of all the possible h-subsequences
of the elements in the set L(Tu).

We indicate with a ⪯ b that a is a subsequence of b. Each instance b ∈ Bh is a location
subsequence Xu ⪯ L(Tu) of length h. Given a record T ∈ D we define the matching function
as: matching(T, b) = true if b ⪯ L(T ), false otherwise. PRUDEnce uses this function
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to compute the probability of re-identification for any instance of background knowledge
enabling the privacy risk computation for each trajectory, as presented in Section 3.2.1.

8.2 Risk Explanation Module

The last module of Expert is the explainer aiming at providing the end-user with an
explanation for the predicted risk label. The objective is to increase users’ awareness about
the privacy risks. Expert is modular with respect to the explainer allowing the use of
any explanation method suitable to tabular data. Since the goal is to explain a specific
decision, local methods [13, 41, 202] are more suitable for this task. The main difference
between them is the type of explanation returned. Lime [202] and Shap [41] are mainly
based on the notion of feature importance and Lore [13] instead provides a logical rule-
based explanation for the prediction. In our experiments we considered Lore and Shap
as explainers. Given our ML model and an individual trajectory belonging to a user u,
transformed into the mobility profile Mu and labeled with a specific privacy risk level ru
by our model, Lore builds a simple, interpretable predictor by first generating a balanced
set of neighbor instances of the given Mu through an ad-hoc genetic algorithm, and then
extracting from such a set a decision tree classifier. A local explanation is then extracted
from the obtained decision tree. The local explanation is a pair composed by (i) a logic
rule, corresponding to the path in the tree that explains why Mu has been labeled as ru by
the predictor, and (ii) a set of counterfactual rules, explaining which changes in Mu would
invert the risk class assigned. Shap (SHapley Additive exPlanations) is a local approach
for interpreting model predictions that assigns to each feature an importance value for a
particular prediction. Moreover, for each model’s prediction Shap defines an explanation
model. The main idea is that the explanation model is an interpretable approximation of
the original model and works with simplified input data. Shap exploits the collaborative
game theory to determine the importance value of a feature for the instance prediction.

8.3 Experiments

We experimentally validate the different components of our framework by analyzing the
performance of: i) the prediction module implemented with different machine learning
models by varying their complexity; and ii) the explanation module by comparing two
state-of-the-art approaches.

8.3.1 Data

We use data containing GPS tracks of private vehicles in Tuscany (Italy) provided by Octo
Telematics. We selected trajectories from an area comprising two major urban centers,
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Prato and Pistoia, considering the period from 1st May to 31st May 2011, for a total of
8651 distinct vehicles. We performed two different transformations of the original data in
order to obtain two different datasets. In the first dataset, called Istat, trajectory points
are generalized according to the geographical tessellation provided by the Italian National
Statistics Bureau (ISTAT): each point is substituted with the centroid of the geographical
cell to which it belongs. We then remove redundant points, i.e., points mapped to the
same cell at the same time, obtaining 2274 different locations with an average length of
31.9 points per trajectory. With respect to the second dataset, called Voronoi, we first
apply a data-driven Voronoi tessellation of the territory [203], taking into consideration the
traffic density of an area, and then we used the cells of this tessellation to increase the
granularity of the original trajectories. The algorithm also performs interpolation between
non adjacent points2. We obtained 1473 different locations with an average length of 240.2
points per trajectory.

For both datasets we computed the mobility features M to extract the users’ mobility
profiles and the privacy risk according to the simulation of the location sequence attack
(Section 8.1) with four background knowledge configurations Bh using h = 2, 3, 4, 5, getting
four different risk datasets, Γh=2,3,4,5. We discretized the risk values in intervals: [0, 0.5]
and (0.5, 1] named low and high risk class, respectively. Then, we built our classifica-
tion datasets merging each risk dataset with the feature-based mobility profiles: ⟨M,Γh⟩,
as explained in Section 8.1. To better handle the imbalance in the data, we learned our
predictive models using stratified sampling, undersampling and 5-fold cross-validation. Ta-
bles 8.3 & 8.2 report the class balance after under-sampling the majority class. We also
performed hyper-parameter tuning by grid search in the parameter space3.

8.3.2 Predicting the Privacy Risk

We validate the effectiveness of the prediction module of Expert by comparing four dif-
ferent ML models: Decision Tree (dt), Logistic Regression (lg), Random Forest (rf)4,
and GCForest (GcForest)5. Decision Tree and Logistic Regression are two well-known,
white-box models. Random Forest and GCForest [196] are ensemble models proven to be
effective when dealing with imbalanced data. This task is characterized by strong imbal-
ance of the two risk classes, therefore being a challenging machine learning problem, where
the classifier performance in terms of accuracy is less significant due to the dominance of
the majority class on the metric.

Indeed, as discussed in Section 8.1, our desiderata is a classifier with a conservative
approach with respect to high risk users, to avoid their misclassification as low risk users.

2Voronoi tessellation obtained by using: http://geoanalytics.net/V-Analytics/
3Hyper-parameter settings: https://github.com/francescanaretto/prp
4https://scikit-learn.org/stable/
5https://github.com/kingfengji/GCForest
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Bh
Class

Balance
Under-
sampling

Metric dt lg rf GcForest

h=2
High=77
Low=23

High=40
Low=60

F1high 0.92 (0.00) 0.92 (0.00) 0.94 (0.00) 0.94 (0.02)

Phigh 0.90 (0.01) 0.91 (0.01) 0.91 (0.00) 0.92 (0.01)
Rhigh 0.93 (0.01) 0.96 (0.00) 0.95 (0.00) 0.96 (0.00)
F1low 0.69 (0.02) 0.71 (0.01) 0.75 (0.01) 0.75 (0.01)
Plow 0.73 (0.02) 0.77 (0.01) 0.81 (0.01) 0.82 (0.01)
Rlow 0.66 (0.02) 0.42 (0.03) 0.70 (0.09) 0.70 (0.02)

h=3
High=93
Low=7

No under-
sampling

F1high 0.96 (0.00) 0.92 (0.00) 0.97 (0.00) 0.97 (0.03)

Phigh 0.95 (0.01) 0.94 (0.01) 0.96 (0.00) 0.96 (0.00)
Rhigh 0.96 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00)
F1low 0.70 (0.02) 0.71 (0.01) 0.75 (0.01) 0.79 (0.03)
Plow 0.72 (0.02) 0.77 (0.03) 0.83 (0.03) 0.84 (0.03)
Rlow 0.70 (0.06) 0.41 (0.03) 0.70 (0.04) 0.74 (0.05)

h=4
High=95
Low=5

No under-
sampling

F1high 0.96 (0.00) 0.96 (0.00) 0.97 (0.00) 0.97 (0.00)

Phigh 0.96 (0.05) 0.95 (0.00) 0.96 (0.00) 0.97 (0.00)
Rhigh 0.97 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00)
F1low 0.73 (0.02) 0.70 (0.02) 0.77 (0.02) 0.80 (0.02)
Plow 0.75 (0.02) 0.80 (0.01) 0.85 (0.02) 0.85 (0.09)
Rlow 0.70 (0.01) 0.45 (0.03) 0.74 (0.05) 0.76 (0.03)

h=5
High=96
Low=4

No under-
sampling

F1high 0.96 (0.04) 0.96 (0.00) 0.97 (0.00) 0.97 (0.00)

Phigh 0.96 (0.04) 0.95 (0.00) 0.97 (0.00) 0.97 (0.00)
Rhigh 0.96 (0.01) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00)
F1low 0.73 (0.03) 0.70 (0.03) 0.78 (0.02) 0.80 (0.02)
Plow 0.72 (0.03) 0.80 (0.05) 0.83 (0.02) 0.85 (0.02)
Rlow 0.70 (0.03) 0.46 (0.03) 0.75 (0.04) 0.76 (0.03)

Table 8.2: Predictive models evaluation on mobility profiles derived from Istat.

On the other hand, we aim at achieving high precision and recall for both high and low risk
users. As a consequence, for the performance evaluation of the machine learning models,
we select the following indicators: i) precision (Phigh) and recall (Rhigh) on high risk; ii)
precision (Plow) and recall (Rlow) on low risk; and iii) the two corresponding F1-Score for
low (F1low) and high (F1high) risk. In a setting where the size of high risk class is larger than
that of the low risk one, achieving good performance for the low risk users is difficult. The
results for the two datasets are shown in Tables 8.2 and 8.3. We note that Istat represents
a typical situation in the privacy context, where a high number of risky users exists. We
also built Voronoi to present a balanced situation and to verify how our models behave
in such a case. In general, we found that the ensemble methods have good performance
in terms of both F1-Score on high risk and F1-Score on low risk. This means that these
models are suitable for our target. More precisely, we observe that, although GcForest
and RF have comparable performance, for Istat, that is extra imbalanced, GcForest
performs slightly better than RF on the low risk class. Moreover, ensemble methods also
outperform the white-box classifiers and again, their advantage is more evident in Istat;
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Bh
Class

Balance
Under-
sampling

Metric dt lg rf GcForest

h=2
High=28
Low=72

High=30
Low=70

F1high 0.71 (0.02) 0.65 (0.07) 0.75 (0.02) 0.80 (0.01)

Phigh 0.73 (0.01) 0.73 (0.02) 0.78 (0.01) 0.79 (0.01)
Rhigh 0.74 (0.04) 0.77 (0.03) 0.72 (0.02) 0.80 (0.03)
F1low 0.87 (0.00) 0.86 (0.01) 0.89 (0.01) 0.89 (0.00)
Plow 0.70 (0.01) 0.89 (0.01) 0.87 (0.01) 0.90 (0.02)
Rlow 0.85 (0.01) 0.82 (0.02) 0.91 (0.01) 0.86 (0.01)

h=3
High=55
Low=45

No under-
sampling

F1high 0.88 (0.01) 0.88 (0.01) 0.92 (0.01) 0.92 (0.01)

Phigh 0.89 (0.01) 0.88 (0.01) 0.91 (0.00) 0.91 (0.00)
Rhigh 0.86 (0.02) 0.89 (0.03) 0.92 (0.01) 0.92 (0.01)
F1low 0.84 (0.02) 0.82 (0.01) 0.87 (0.01) 0.87 (0.01)
Plow 0.80 (0.02) 0.83 (0.03) 0.88 (0.09) 0.88 (0.01)
Rlow 0.89 (0.02) 0.81 (0.02) 0.87 (0.01) 0.86 (0.01)

h=4
High=57
Low=43

High=40
Low=60

F1high 0.91 (0.00) 0.90 (0.00) 0.93 (0.00) 0.93 (0.00)

Phigh 0.91 (0.01) 0.88 (0.00) 0.92 (0.00) 0.94 (0.01)
Rhigh 0.91 (0.02) 0.92 (0.01) 0.92 (0.01) 0.91 (0.01)
F1low 0.84 (0.01) 0.80 (0.01) 0.87 (0.01) 0.87 (0.01)
Plow 0.84 (0.03) 0.84 (0.01) 0.85 (0.01) 0.85 (0.01)
Rlow 0.84 (0.02) 0.77 (0.03) 0.88 (0.01) 0.88 (0.02)

h=5
High=62
Low=38

High=50
Low=50

F1high 0.93 (0.01) 0.93 (0.01) 0.94 (0.00) 0.94 (0.01)

Phigh 0.92 (0.03) 0.90 (0.01) 0.94 (0.01) 0.95 (0.02)
Rhigh 0.93 (0.02) 0.93 (0.02) 0.94 (0.01) 0.94 (0.01)
F1low 0.83 (0.01) 0.80 (0.03) 0.86 (0.01) 0.86 (0.02)
Plow 0.83 (0.03) 0.83 (0.03) 0.86 (0.03) 0.86 (0.02)
Rlow 0.84 (0.03) 0.84 (0.03) 0.87 (0.02) 0.86 (0.03)

Table 8.3: Predictive models evaluation on mobility profiles derived from Voronoi. Each metric is
averaged over the 5-fold cross validation.

especially, they considerably improve the classification scores for the more difficult category
of low-risk users. Indeed, we found that GcForest increases of 0.04–0.06 (0.09–0.13) points
the Rlow (Plow) of dt and of 0.28–0.33 (0.05–0.07) points the Rlow (Plow) of LR. Clearly,
these results contribute to have GcForest with the best F1low for every value of h, while
still maintaining a conservative behaviour highlighted by the high values of recall on high
risk class (Rhigh). Regarding Voronoi, we further notice that, although the data are
more balanced, the ensemble methods always maintain the conservative approach for high
risk users (high Rhigh) while improving the overall classification for low risk users (F1low).
Overall, these results suggest that GcForest is the most suitable option for our specific
predictive task with RF as a close second one.

8.3.3 Explaining the Privacy Risk

Regarding the explanation task in our experiments, we employed Lore [13] and Shap [41].
We adopted the following experimental methodology: we selected the best models from the
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Setting Jaccard Coherence
Top-k

Features
RF 0.133 ± 0.063 0.472 ± 0.381

GcForest 0.096 ± 0.101 0.393 ± 0.038
No-zero
Features

RF 0.133 ± 0.063 0.816 ± 0.250
GcForest 0.165 ± 0.072 0.767 ± 0.232

Table 8.4: Shap vs Lore in the Istat
dataset with h = 2.

LORE wpop
home ≤ 0.36, Uhome ≤ 1722, E ≤

1.09, wwork ≤ 0.82 =⇒ HighRisk

Figure 8.1: Shap vs Lore: Table 8.4 quantifies the similarity between the two explanations. Shap
visualization (right) and the Lore rule (left) represent the explanations for a specific record classified as
high risk by GcForest.

k-fold validation presented above and its associated train and test datasets. In particular, we
used a RF and a GcForest model for h = 2 on the Istat dataset. For Shap we trained
the Kernel Explainer on the training dataset. For Lore, we chose a genetic generation
of the neighborhood and the Euclidean distance as distance among the neighbors. We
performed a comparative analysis to evaluate the compactness and comprehensibility of
returned explanations. To this end, we considered the diversity of the explanation structure
provided by the two methods: Lore outputs rules with premises of variable lengths, while
Shap, outputs the importance of each feature in the data. Thus, we considered two different
settings: i) no-zero features, where in the Shap result we only keep features with importance
values different from zero; and, ii) top-k features, that tries to automatically identify the k
features with highest importance values. The value k depends on the record explanation
under analysis. To detect the best k for each explanation, we used an elbow-like approach
which, given the Shap result, first sorts in descending order the importance values and
then, calculates the segment s bounded by the biggest and the smallest importance values.
At this point, it selects the importance value m with the maximum distance from the
segment s. Thus, only features with importance values greater than or equal to m are kept.
For analyzing the compactness of the explanations we considered their average lengths:
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Lore explanations have an average length of 2.9 ± 1.3 (RF) and 3.8 ± 1.4 (GcForest),
against the average lengths of paths of the decision tree of 7.8 ± 1.5. Shap explanations
have an average length of 17.1 ± 3.1(RF) and 16.2 ± 3.2 (GcForest) for the no-zero
features setting, which decrease to 9.8 ± 6.3 (RF) and 8.3 ± 7.1 (GcForest) for the
top-k features setting. Hence, Lore provides more compact explanations with respect to
the paths of the decision tree and the Shap importance values. We also compare the
two explanation types in terms of semantic coherence. To this end, we propose to use the
Jaccard similarity to highlight the degree of common features used for the explanations and
coherence measure aiming at capturing the percentage of features used in Lore explanations
which are important also in Shap explanations. The Jaccard similarity measure, is defined

as 1
n

∑n
i=1

F lore
i ∩F shap

i

F lore
i ∪F shap

i

while the coherence is defined as 1
n

∑n
i=1

F lore
i ∩F shap

i

|F lore
i | . Here, Fi refers

to the set of features included in the explanation for the record i. Table 8.4 reports the
results of the coherence analysis. Regarding the no-zero features setting, we found out that
the Jaccard similarity is close to zero, highlighting that the intersection of the two feature
sets is quite small compared to their union. Concerning the coherence, a value equal to 1
means that all the features of Lore are also in Shap explanations. Results highlight that
Shap explanations contain the majority of the features used by Lore. In the top-k features
setting, we observe a general decrease in the values of both measures. This means that the
majority of the features that Lore uses in its rules are actually among the least important
features of Shap. Thus, when considering only the top-k features the discrepancy between
Shap important values and Lore increases. Our analysis highlights that the two methods
consider different important features for providing explanations. Lore explanations tend
to be more compact and easy to understand due to the logic structure of the rules. Shap
outputs a visualization and a large amount of information, which might potentially be
difficult for a user to navigate. Indeed, a large number of the values of the importance
features are close to zero. Moreover, given a feature used in an explanation, Lore provides
a richer information that could help in understanding more about certain mobility habits
that contribute to a specific risk value. For example, let us analyze Figure 8.1, where
we provide Shap (right) and Lore (left) explanations for a high risky user according to
GcForest. With Shap a user can only understand which feature (with its specific value
indicated between parentheses) is important or not for classification, while the Lore rule
provides a user with a more detailed motivation, which includes the set of conditions on
features that a user satisfies. For example, for the Lore explanation a user can understand
that their risk depends on the fact that she travelled more than 0.09 km (Dmax), their
home location is visited by less than 1772 distinct users, and their work location is not
enough popular in the data. This reasoning is not supported by the Shap result. After the
local explanation evaluation, we also performed a comparative analysis of global feature
importance among all the ML models (Table 8.5). An interesting result is that the number
of locations (Locs) is the most important feature for lg, dt and GcForest, while for RF
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dt lg rf GcForest
Locs (0.45) Locs (0.35) Dsum (0.15) Locs (0.07)
Dmax (0.10) Ehome (0.14) Locs (0.13) Uwork (0.04)
Uwork (0.06) Ework (0.12) Locsratio (0.08) Locsratio (0.03)

Dsum (0.06) Wwork (0.10) Dsum (0.07) Uhome (0.03)

Uhome (0.06) Dsum (0.08) Uwork (0.07) Dtrip
max (0.02)

Table 8.5: Global top-5 most important features of machine learning models.

it is in the second position. Moreover, LR is the only one which considers the entropy of
locations (home and work) as important features.

8.4 Discussion

In this Chapter we introduce Expert, a framework designed to predict and explain users’
privacy risks associated with the analysis of mobility data.

Expert exploits ML techniques that are specifically suited for handling extra-imbalanced
data. In addition, it leverages local explainers to provide users with meaningful explanations
regarding the predicted privacy risk.

Through an empirical evaluation using real-world data, we demonstrate the effective-
ness of Expert in accurately predicting privacy risks and enhancing users’ self-awareness
regarding potentially risky mobility behaviors. However, one main limitation of the frame-
work is that it relies on domain expertise for extracting users’ profiles, which is necessary
for the prediction process. In addition, the explanations provided by Expert are tied to
the extracted features, making them challenging for non-expert users to understand.

Our future research agenda aims to address these limitations. Specifically, we plan to
substantiate the prediction module by incorporating a machine learning model that does
not require the extraction of mobility features. This approach will streamline the prediction
process and make it more accessible to a broader range of users.
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Chapter 9

EXPERT for Human Trajectories

In the previous Chapter we described Expert for individual mobility profiles, showing good
prediction performance for the detection of the privacy risk, as well as several possibilities
for the explanations to provide to the end user. However, this first variant of the framework
has several limits: firstly, this approach requires the pre-processing of the trajectories, to
obtain the individual mobility profiles. In addition, explaining this mobility profiles may
be difficult for non experts since it exploits in depth concepts in the field of human mobility
analysis. To overcome these issues, we propose an alternative version of Expert tailored for
raw Human Trajectories. Our aim is to provide analysts with an actionable framework to
predict and visualize privacy risk with an integrated explanation. The general architecture
of this new variant of Expert is shown in Figure 9.1.

9.1 EXPERT for Trajectories: the predictive model

The Expert’s objective is to predict the privacy risk of a human trajectory while pro-
viding the analyst with also an explanation to increase user awareness. Privacy risk is
a continuous value in the interval [0, 1]. However, we decide to model the problem as a
binary classification. Indeed, we are interested in distinguishing between high risk and
low risk users, in such a way that higher-risk users can be protected. Technically, we
discretize the privacy risk obtained from the location-based attack: low risk or 0 (privacy
risk ≤ 0.5) and high risk or 1 (privacy risk > 0.5). The Γ vector generated in this way
is then joined to the mobility dataset D and we use ⟨D,Γ⟩ to train a classification model.
To avoid the problem of having to craft and compute features to be used as input data,
Naretto et al. [190] propose to use methods applicable to raw trajectory data. In particular,
we propose to address the privacy risk classification problem using state-of-the-art mod-
els, such as Long-Short Term Memory networks (lstm), Rocket and InceptionTime,
introduced in the first Part of this thesis, in Section 14.2.2. We compare their performance
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Figure 9.1: The general structure of the proposed framework.

and tie-efficiency to find the best method for our task. Regarding lstm, they are a special
kind of Recurrent Neural Network. They resemble the mnemonic approach of a person, in
the sense that they have a memory on which they can read and write information, as well
as delete the ones that are no longer needed. In this way, LSTMs are able to remember
information about their inputs over a long period of time, avoiding the problem of van-
ishing gradients. The core idea that makes LSTM possible is that each cell is composed
by a memory and three gates, each with a different purpose. Their combination makes it
possible to have a memory that resembles the human one. The main intuition is that the
gates protect and control the memory cell by allowing the information to pass through or
not. This kind of neural networks have been considered the state-of-the-art for time series
classification for many years. However, during the last years, other methods for time series
classifications have become quite popular due to their extremely good performance, such as
Rocket and InceptionTime. However, lstm are still extensively used and they are fast
in time prediction, but quite slow to train, especially if compared with Rocket. Rocket
is a fast and accurate time series classification algorithm that uses random convolutional
kernels. At the operational level, we can divide the algorithm into two parts: a first part in
which k randomly generated convolutional kernels are used to calculate a feature map from
which, for each kernel, two aggregated features are extracted (ppv and maximum value); a
second part in which the aggregated features are passed to a linear classification algorithm
to obtain the actual result. The number k of kernels is the only hyper-parameter of the
model. In theory, Rocket can be used for both variable-length and fixed-length time se-
ries. To implement it for variable-length time series, however, kernels must be applied to all
the time series in the dataset, i.e. kernels must be shorter than the length of the shortest
time series. In the case where the length of the series varies greatly, as in our case, this
approach is very inconvenient, because finding a kernel set that performs well overall and is
applicable to any time series is difficult. We, therefore, chose a fixed-length approach, using
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Figure 9.2: Exphlot analytical pipeline. Starting from the generalized trajectories (a) a
privacy prediction model (d) is trained from a set of observations generated by a privacy
risk model (b). The prediction is explained by means of Shap values (e) that are visualized
within an analytical dashboard (f)
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a padding that, being low amplitude or zero, keeps the result of the convolution operation
on those segments close to zero and constant, and is thus cut off in the calculation of the
features (ppv and maximum value). We chose Rocket over Minirocket [204] as the latter
eliminates the random component in the choice of kernels’ characteristics. Therefore, even
though Minirocket is generally faster, we believe that a set of varied kernels fits better
for our case, to capture the most diverse pattern possible. InceptionTime is an ensemble
time series classification algorithm based on an ensemble of inception architectures. The
Inception model is composed by convolutional layers and simultaneously applies several
filters of different lengths to the input time series. This structure alleviates the vanishing
gradient problem by enabling a direct flow of the gradient. It cannot be used on time series
of variable length. To evaluate the performance of the models in choosing the best models
and to compare them, we used a “conservative” approach. First and foremost, we wanted
to protect high-risk users by preventing them from being classified as low-risk, so that
their sensitive data would not be treated carelessly. Secondly, we wanted to maximize the
possibility of sharing the data of low-risk users, thus preventing them from being classified
as high-risk. For this reason, when choosing the models, we first took into account the
recall of both classes, giving priority to the class representing high privacy risk (high), and
the precision of both classes. The metrics considered for the models evaluation are: the
overall accuracy, precision, and recall of the individual classes and F1 score.

9.2 EXPERT for Trajectories: Risk Explanation Module

For the Explanation Module of Expert our goal is to provide an explanation that is
informative for both experts and users in the dominion of Human Mobility data. We chose
to employ Shap to generate an attribution-based explanation for our models. Our aim is
to indicate, for each individual, what parts of his movement lead to higher privacy risks.
Given the nature of our specific ML models, we must employ the Kernel Explainer, which
is the agnostic explainer of the Shap library. Clearly, depending on the size of the given
data, the computation is more accurate but also longer in time. One possible solution,
suggested also by the authors of Shap, is to exploit K-means clustering by selecting a large
k and then feeding all the centroids obtained to the Kernel Explainer. In this way, we are
able to represent the whole space under analysis by considering a small number of records.
However, this solution for mobility data is not enough: Shap considers each location of
the trajectory as a variable and for computing the Shap values all the permutations of
variables are calculated as well as their relative interactions. This procedure is exponential
in time if the number of variables is high, as in our case. The computation of Shap values
becomes therefore unfeasible in a reasonable time. Mitchell et al. [205] propose several
sampling strategies that can in theory speed up Shap values computation. However, many
of the proposed strategies work under assumptions of bounds to the possible values or
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shape of the data. For human mobility, these bounds may not hold. For these reasons, we
decide to apply the PermutationExplainer with a dynamic mask. This method can take
as input a user-defined mask that allows certain features to be hidden, thus decreasing the
individual evaluations made on these and the complexity of the calculation. In our setting,
each feature corresponds to a location of the geographical map of our human mobility data.
We used a binary mask to hide the features with the highest entropy, fully evaluating the
locations with the lowest entropy. We formally define location entropy for each location i
in the dataset with the Shannon Entropy equation: Ei = −

∑
u∈Ui

pu log2 pu, where pu is
the probability that individual u visits location i and Ui is the set of all individuals visiting
location i. This choice is motivated by several works in the field of privacy for mobility
data. The importance of location entropy for privacy is thoroughly discussed by Rodriguez-
Carrion et. al. [206], while in the work of Pellungrini et al. [5] entropy is proven to be one of
the most important predictive features/locations also in ML models. The intuitive concept
behind it is that location entropy is a measure of anonymity, in the sense that if a user passes
through high-entropy locations, where therefore many different other people pass through,
the uniqueness of his mobility profile is lost as it is blurred by the general movement.
We, therefore, hide the top 70% of the highest entropy locations, evaluating only the 30%
with the lowest entropy. In this way, we are focusing on those locations that have fewer
individuals visiting in a more sporadic way and thus we are focusing on explaining high-risk
predictions. Thus, we are able to speed up the computation of the Shap values. This is a
key milestone of this work, since speeding up the process of providing an explanation makes
possible to achieve an on-line interaction with the framework, one of our main objectives.

9.3 EXPERT for Trajectories: Risk and Explanation visual-
ization module

The effective visualization of mobility properties can provide a boost to gaining deeper
insights into spatial and temporal patterns. To manage the complexity of spatial resolu-
tions, a widely adopted solution leverages spatial aggregation based on spatial partition-
ing [203,207]. The process organizes close entities into groups and, for each group, a single
centroid point is determined. Then the centroid points are used as seeds to partition the
territory. In the scope of the current work, the data related to geography is linked to multi-
ple dimensions and attributes, like mobility indicators, privacy risk prediction, and feature
relevance. Moreover, many of these indicators may have multiple spatial scales, for exam-
ple ranging from an urban building block resolution to a city district. Thus, we designed a
visual interface where the set of locations of each trajectory is presented within two linked
displays: a dynamic map with embedded graphics and a bubble chart (see Figure 9.10). The
dynamic map shows for each location a visual mark, a circle, whose visual properties are
linked to internal indicators of the location it represents. Each circle is driven by two visual
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variables, the area of the circle and the fill color, which both encode the same quantitative
value. Without loss of generality, we can assume that these quantitative values are mapped
to the [0, 1] interval, in order to implement a pair of scale functions to determine the area
and the color of each circle. The Bubble Chart contains the same set of circles of the map
(to create conceptual links between the two displays) located accordingly to the respective
values on the two axes. The user can decide which attributes are associated with which
value. Any selection/filter activated on the Bubble Chart is propagated to the map (and
viceversa).

The Shap values are computed for every single individual trajectory. However, the
domain expert is interested in the analysis of collective behavior. Thus, we aggregate the
individual explanations into a global one using the aggregation procedure available within
the Shap library. This is especially important for all those instances where the data is not
public or is under strict confidentiality constraints. From a geographical point of view, we
considered for each location l the set of all the trajectories crossing l. For this subset of
trajectories, a set of indicators is computed, such as number of trajectories, and risk of re-
identification. For the latter, we compute several statistical indicators to have a compact
representation of the distribution: min, max, first quartile, third quartile, median, and
average.

This design achieves multiple objectives. First, it provides a user-driven exploration
of the Shap values, since the analyst can evaluate and compare the contribution of each
location to the risk prediction and let the user visually identify zones containing locations
with similar characteristics. Second, the possibility of navigating the map allows for a
deeper investigation of local areas and provides a solution to limit cluttering when the
number of locations is high. Third, geographic mapping allows a topological exploration of
close locations, enabling the identification of general patterns, i.e. urban areas versus rural
areas. Fourth, the expert can exploit the linked display to investigate relevant cases that
are not directly evident from the map. The possibility of cross-selecting visual elements
enables better identification of patterns and rules of the data.

9.4 Experiments

9.4.1 Dataset

For validating Expert we used GPS tracks of private vehicles, provided by Octo Telematics
[208], an insurance company. We selected trajectories from the city area of Prato and Pistoia
(Italy), with 8651 users observed in a period of one month, from 1st May to 31st May 2011.
The data are collected by a GPS device that detects the position every 30 seconds, when
the vehicle is not in motion the device automatically stops recording positions. The dataset
considered is composed of one trajectory for each user. Hence, each trajectory contains
all the points visited by the user in temporal order. On these trajectories, we applied a
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transformation, in the following called Voronoi, in which the territory is split in tiles based
on a data-driven Voronoi tessellation [203]. This approach considers the traffic density of
an area to create the tiles. Then, we used the cells of this tessellation to generalize the
original trajectories. The algorithm applies interpolation between non-adjacent points1.
The outliers were removed for each dataset h using a DBScan algorithm that takes into
account also the label. After this pre-processing step, we obtained 1473 different locations,
with an average length of 240.2 per trajectory. Given the processed dataset D, for an
in-depth validation of Expert, we considered four background knowledge configurations
Bh using h = 2, 3, 4, 5 obtaining four different risk datasets, Γh=2,3,4,5 where, we recall, h
represents the length of the background knowledge of the simulated attacker. We discretized
the risk values in two classes: low, when the privacy risk is in the interval [0, 0.5] and
high for the interval ]0.5, 1]. At this point, we merged the privacy risk data with the
trajectories to obtain the classification datasets for our supervised learning task, following
the methodology explained in Chapter 3.2.1. Hence, we obtained 4 different datasets for
our experiments. We remark that the datasets with the highest and lowest background
knowledge are highly imbalanced, having the Dh=2 with the 71% of users belonging to the
low class, while for Dh=5 has the 63% of records in the high class. This is to be expected,
as when the knowledge of the attacker is small, such as h = 2, the attack is less effective,
having fewer people re-identified.

9.4.2 Expert Privacy risk prediction module

For all the models we split our datasets, using 80% for training and validation (10%) and
20% for testing. We selected the best hyperparameters for both models through an extensive
grid search, presented in the following.

We validate the effectiveness of the privacy risk prediction for trajectory data by using
the Long Short Term Memory (lstm) [209], Rocket and InceptionTime. The code for
the experiments was written in Python 3.6 with Tensorflow 2.0 and Keras 2.2.5 2.

This prediction task has two challenges described in the following. Firstly, the two risk
classes are strongly imbalanced. Table 9.1 reports the distribution of the two classes for
the Voronoi dataset. We observe different imbalance between the classes. Interestingly,
h = 2 shows the higher imbalance with the least represented class being the high risk one.
Another challenge is due to the length of the trajectories. Indeed, as highlighted in Figure
9.4, the trajectories considered are quite long.

In this setting our main goal is to obtain a conservative classifier from the point of
view of users with high privacy risk. In practice, we aim at predicting correctly the users
that have a high privacy risk to avoid to release highly sensitive data. At the same time,
we want to give the possibility of sharing the data of people that have a low privacy risk.

1Voronoi tessellation obtained using http://geoanalytics.net/V-Analytics.
2Code available on https://github.com/francescanaretto/Privacy-Risk-onMobility-Data-with-LSTMs
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Dataset h = 2 h = 3 h = 4 h = 5
high low high low high low high low

Voronoi 28% 72% 55% 45% 57% 43% 62% 38%

Table 9.1: Class distribution for the Voronoi dataset.

Hence, we also want to reduce the probability to classify low risk users as risky ones. For
these reasons, we focused on obtaining classifiers that have a good precision and recall on
the two classes.

For all the methods proposed in this section we padded the trajectories so to have a
dataset with sequences of the same length.

Regarding the lstm, we selected the network structure proposed in Figure 9.5: there
are 2 layers of lstm neurons, with 35 neurons in the first lstm layer and 20 in the second
layer. Each layer has a recurrent dropout of 0.3 and the layer of dropout is 0.2. With
this architecture, we executed a hyper-parameter tuning by performing grid search in the
parameter space. We considered as parameters the number of epochs, the size of the batch
and the optimizer. The results obtained from the grid searches are reported in Table 9.3.
iii) We applied 5-fold cross validation with stratified sampling to validate our methodology.
For our experimentation we used a small dataset (8651 trajectories) and we show in Table
9.1 that it is also suffers from class imbalance. For these reasons, during the training of
our models, we found several cases of overfitting, which are typical in this setting. We
solved the overfitting problem for all models by introducing an early stopping criterion
driven by a validation set, with patience of 4, i.e., the training of the neural network stops
if no gain on validation is observed for 4 consecutive epochs. Moreover, we added dropout,
both internally in the lstm layers (0.3 for each layer) and externally, between layers (0.2).
Finally, we decreased the neurons for each layer (obtaining 35 and 20 neurons, respectively)
and limited the neural network complexity to two layers of lstm (as presented in Figure
9.5). These measures allows us to avoid the overfitting of the lstm. To further analyze the
resulting models, we plot the neural network: in Figure 9.6 we presented the histograms
of the weight distributions per kernel, and within each kernel, per gate. The shapes of the
weights distributions in the kernel layer show a homogeneous distribution, while for the
recurrent layer the gates have a Gaussian-like shape. Lastly, the bias can be found close to
zero and close to one, that is what we expected, due to the setting of our problem. Overall
these plots indicate that the trained lstm does not overfit3.

For the application of Rocket, we choose to generate 10000 random convolutional
kernels, which is the maximum number of kernels allowed to obtain an improvement in
prediction performance while avoiding an increase in computational time. We selected the
fixed length approach, with kernels of length {2, 7, 9, 11}. In principle, every classifier can

3The analysis of the lstm has been performed with the see-rnn package: https://github.com/

OverLordGoldDragon/see-rnn

125

https://github.com/OverLordGoldDragon/see-rnn
https://github.com/OverLordGoldDragon/see-rnn


Figure 9.3: Distribution of the lengths of the trajectories for the Voronoi dataset.

Figure 9.4: This plot shows the log-scale frequency distribution of the lengths of the tra-
jectories for the Voronoi dataset.

be applied, but we limit our analysis to linear models, as in the original paper of Rocket.
To find the best hyper-parameters for each of the four configurations of our dataset, we
conducted an extensive grid search, considering: scaling the dataset, with Standard Scaler or
Normalization, balancing the dataset, with over or under sampling techniques and several
linear classifiers, such as the Ridge or the SDG classifier. The result of this analysis is
reported in Table 9.2.

Regarding InceptionTime, we applied normalization to all the datasets which improves
performances in all settings. In addition, we estimated parameters by grid search and
found that the default ones worked better for all the datasets except Dh=2, the one with
the highest imbalance between the classes. Therefore, for Dh=2 we have batch size = 16,
nb filters = 32, depth = 9, kernel size = {8, 4, 2}, use bottleneck = True, use residual =
False. For the other datasets we maintain defaul parameteres batch size = 64, depth = 6,
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Figure 9.5: The structure of our neural network. We choose two lstm layers with a Dropout
layer in between, to avoid overfitting.

Dataset Scaling Rebalancing Model Hyperparam

h = 2 Std
RandomUnderSampler

60% (0) - 40% (1)
RidgeClassifier

alpha = 10,
class weight =None

h = 3 Original Original RidgeClassifier
alpha = 10,

class weight =None

h = 4 Norm Original SGDClassifier
alpha = 0.46,

class weight =balanced

h = 5 Std
RandomOverSampler

40% (0) - 60% (1)
SDGClassifier

alpha = 0.1,
class weight=None

Table 9.2: Best choice configurations for Rocket for each of the four datasets.

nb filters = 32, kernel size = {10, 20, 40}, use bottleneck = True, use residual = False.
The predictive performance of Rocket, InceptionTime, and lstm are reported in

Table 9.4. Overall, all the models perform well, achieving good precision and recall for both
classes, even in unbalanced settings. For the most unbalanced case, which is the h = 2,
Rocket and InceptionTime perform better than lstm, showing better generalization
capabilities. However, Rocket achieves the highest recall on class high, which is the
most important class for our setting, being the class of the users with high risk of privacy.
InceptionTime, instead, while having generally good metrics, does not perform well on
the recall for high class. The real benefit of Rocket over other models is in training
time. Table 9.5 presents a comparison of the training time between InceptionTime and
Rocket. While training the lstm model can take many hours, the other two models are
faster. Rocket is the quickest, with a training time of just a few minutes, allowing us to
achieve the online interaction with the end user we are aiming at.

9.4.3 Mobility Privacy Risk Explanation

To provide an explanation in this context we refer to Shap. When using Shap, we can
obtain a local explanation of a prediction based on the importance of each feature. While
Shap is primarily used for extracting local explanations, summing up the local explanations
can provide a global explanation as well.

In this study, we first analyze the use of Shap tailored for lstm models. By applying
Shap, we aim to demonstrate the limitations of using this approach for these types of
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Figure 9.6: The histograms represent the weight distributions on the lstm per kernel, and
within each kernel, per gate.

models. Specifically, we will focus on the limitations in terms of computational time and
the actual comprehensibility of the explanations obtained. To address these limitations, we
propose a visualization tool for the explanations obtained applying Shap.
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Bh Parameter Istat Voronoi

h=2
Batch 64 64
Epoch 20 100

Optimizer Adadelta Adamax

h=3
Batch 64 32
Epoch 20 100

Optimizer Adamax Adadelta

h=4
Batch 64 64
Epoch 40 80

Optimizer Adadelta SGD

h=5
Batch 64 32
Epoch 40 20

Optimizer Adadelta Adamax

Table 9.3: The results obtained from the grid search of each model.

h = 2 h = 3
Rocket Inception Lstm Rocket Inception Lstm

Acc 0.81 0.84 0.80 0.88 0.87 0.88
Plow 0.91 0.88 0.90 0.89 0.86 0.90
Phigh 0.63 0.72 0.62 0.88 0.88 0.88
Rlow 0.81 0.89 0.81 0.84 0.85 0.84
Rhigh 0.80 0.70 0.76 0.91 0.89 0.92
F1 0.78 0.80 0.76 0.88 0.87 0.88

h = 3 h = 4
Rocket Inception Lstm Rocket Inception Lstm

Acc 0.90 0.89 0.89 0.91 0.90 0.92
Plow 0.90 0.87 0.90 0.87 0.86 0.89
Phigh 0.90 0.91 0.89 0.93 0.93 0.94
Rlow 0.86 0.89 0.84 0.88 0.88 0.89
Rhigh 0.93 0.90 0.92 0.92 0.92 0.93
F1 0.90 0.89 0.89 0.90 0.90 0.91

Table 9.4: Metrics of Rocket, InceptionTime and lstm compared for each dataset h.
For precision P and recall R we present the values for both classes (high and low risk.
From a privacy perspective Rhigh is the most important value as it represents the fraction
of correctly predicted high risk individuals.

SHAP to explain LSTMs In the following, we report the results obtained by applying
Shap to the lstm model trained with background knowledge h = 2. In particular, we
trained the explainer on the same training set employed for the training of the lstm model.
Then, we tested it on the test set on which we also tested our lstm model. We remark that
the same locations can be found multiple times in a trajectory and hence in Shap since it
considers each point of the trajectory as a feature. We present our results by anonymizing
the names for the different locations. This is due to privacy issues: we trained our models
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InceptionTime Rocket lstm

Dataset Training Test Time Training Test Training Test

h = 2 16h49min 6sec 2min32sec 44sec 8h50min 60sec

h = 3 20h7min 6sec 3min 40sec 5h30min 60sec

h = 4 4h 4sec 7min 16sec 5h50min 60sec

h = 5 9h24min 5sec 8min 17sec 6h15min 60sec

Table 9.5: Training times on the train set and prediction times on the test set for ROCKET
and InceptionTime. Overall Rocket is the fastest model in training.

on real human mobility data, and presenting the real explanation provided by Shap could
reveal some sensitive information such as home and work address.

A first result we obtained from the application of Shap confirmed our expectations
from the lstm: Shap does not consider as important the padding added to normalize the
trajectories. In Figure 9.8, we report the result obtained by the application of Shap on a
record that the lstm classified as high risk. In Figure 9.9, we also report the explanation
of a record that was classified as low risk. For each record, we plot the expected value and
the shap values of the actual class predicted by the black-box model.

To analyze the results obtained, we look at the locations suggested by Shap. For each
local explanation, we look at the top 3 most important locations for the prediction, as
indicated by Shap. Then, we considered the top 3 most frequent locations of the same
trajectory. Thus, we investigate how many users have one of their 3 most frequently visited
locations as their top 3 most important locations for prediction. The results obtained are
shown in Table 9.6. It is interesting to note that for the low risk class the top 3 locations
that Shap considers most important are the most frequent ones in the trajectory of the
user under analysis (the first and the second most frequent locations cover more of the 90%
of the records). For the high risk class, the distribution is smoother, but the majority of
the locations under analysis are among the first and the second most frequent locations.
Theoretically, if the attacker knows information such as the most frequent locations (home
address and the workplace), she has an advantage in the process of identity discovery.
However, we discover that both for the high risk and the low risk class, the majority of
the locations that Shap considered important, are among the top-2 most frequent locations
of the user under analysis. Analyzing this result further, we found another interesting
evidence: the relative frequency, presented in Table 9.6. At the beginning of the section we
mentioned that Shap considers each location in the trajectory as a variable and hence it
assigns to each of it an importance value. For each user, we first sorted, in decreasing order,
the locations by their Shap values and selected the top-3 locations with the highest Shap
values. These locations are the most important for the classification of that individual as
indicated by Shap. For each of these 3 locations, we computed the frequency of visits of the
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user under analysis. Regarding the user, we are also able to compute the total number of
visits she made during the period of observation. We then calculated the ratio between the
frequency of visits of the top 3 locations and the total number of visits for that individual.
Finally, we averaged it over the total number of users, obtaining an averaged normalized
relative frequency. For the low risk class, the frequencies are quite high, while for the
high risk class they are lower. This result suggests that for the people that are in the low
risk class, the most important location for the prediction of their privacy risk is a location
that they tend to visit often. In contrast, for the high risk class, we can see that the most
important location is, on average, one visited less often. An example of this phenomenon
is reported in Figure 9.9, that is an explanation of a record labeled as low risk: here
Feature 336, indicated by Shap as the most important location for the prediction of the
subject, is the second most frequent location (work address) in the trajectory of the subject.
Moreover, Feature 338, indicated by Shap as the second most important location for the
prediction of the subject, is the most frequent location (home address) in the trajectory
of the subject. A similar situation can bee seen for the record in Figure 9.8. In this case
the top seven Features for the prediction are all the most frequent locations for that user.
These preliminary results suggest a connection between privacy risk (and consequently the
explanation given by Shap), and the individual movement behavior of users. Moreover,
the explanation of Shap indicates that the frequency of visit is a much more determining
factor for the lower class of risk, suggesting, as expected, that visiting more frequently the
same location may hide one user’s movement in the crowd.

In the case of Shap, local explanations can be summed up to obtain a global explanation
as shown in Figure 9.7. This plot represents the explanation for all records predicted as
high risk. In this case it is very difficult for the analyst to understand which are the most
relevant locations that contribute to the high (or low) risk.

Both in the case of local explanations and of global ones, the plots generated by Shap
are often complex and require additional analysis to be useful. In our case, we found that
computing certain average values, such as the relative frequency, was necessary to gain
meaningful insights from the plot. In addition, the features used in our study, such as lati-
tude and longitude points, require semantic context to be properly interpreted. Therefore,
relying solely on the Shap plot without considering the associated feature semantics may
lead to incorrect or incomplete conclusions. Summing up, the linear layouts proposed by
Shap has two main limitations: first, the high number of features does not allow a clear
reading of those locations with smaller contributions; second, the topological and spatial
relations among locations are not evident.

In addition, the computation of the Shap values for long trajectories require a huge
amount of time and space, making the process unfeasible for an on-line setting, such as the
one of Expert.

The visual interface introduced in Section 9.3 addresses these two limitations. Fig-
ure 9.10 shows a screenshot of the interface showing the Shap values associated with the
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Figure 9.7: Shap Force Plot visualization of the contributions of various locations towards
high risk. The standard visualization does not provide any significant information to
domain experts.

Figure 9.8: The local explanation obtained employing Shap. This record was classified as
high risk with high probability.

Figure 9.9: The local explanation obtained employing Shap. This record was classified as
low risk with high probability.

prediction of high risk for each location.
This visualization allows an analyst to immediately understand which areas of the map

present the highest contribution for the model towards risk classification. Our map allows
for a much more intuitive understanding of the contributions of each location with respect
to the classical Shap visualization.

Moreover, our visualization can help the analyst understand the dependence of privacy
risk on the mobility behaviors of the collectivity. For example, the cluster of locations in
Figure 9.10 along a country road shows a high contribution to the high risk, confirming the
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Figure 9.10: Visual interface for the exploration of explanation and prediction of privacy
risk. Each circle represents the contribution to the prediction of high risk, with area and
color proportional to the value.
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Class High Class Low
Shap Rank

Relative Freq. Loc. Users Relative Freq. Loc. Users

top 1 0.350 (0.261)
f1 0.493

0.605 (0.273)
f1 0.649

f2 0.200 f2 0.273
f3 0.082 f3 0.013

top 2 0.344 (0.26)
f1 0.477

0.609 (0.27)
f1 0.640

f2 0.196 f2 0.264
f3 0.089 f3 0.0176

top 3 0.349 (0.26)
f1 0.501

0.554 (0.28)
f1 0.635

f2 0.183 f2 0.252
f3 0.088 f3 0.018

Table 9.6: Exploration of the locations highlighted by Shap. We considered separately users classified
as high risk from the ones that are low risk. The column Shap Rank refers to the locations ranked by
importance values: for each user, we first sorted, in decreasing order, the locations by their Shap values
and selected the top-3 locations with the highest Shap values. The relative frequency column reports the
average frequency of all the top-3 locations for each user, as explained in details above. The columns Loc
and User have to be considered together: for each user, given the location that Shap has identified as top
i − th, we report if it corresponds to one of the top-3 most frequent places of the user. In the table, we
show the percentage of users who have Shap’s top i − th location as the j − th frequency of visits. As an
example, for the low risk case, almost 65% of the users have the top-1 location of Shap that is also her
most frequently visited location.

intuition that low-traffic roads are more prone to privacy exposures. Moreover, the urban
surroundings present a lower level of risk, even if it is possible to visually detect different
privacy levels in two close municipalities: the south-east town has very low-risk levels; the
north-west town has a higher risk level.

9.5 Exploring results with the Visual Dashboard

In this Section we show how the visual interface can help the analyst and/or the end-user
to investigate the properties of the data after the risk prediction and explanation have
been computed. We begin the presentation of this visual tool in Section 9.5.1, in which
the general framework is presented with the different widgets and components. Then, we
present two ways in which the visual dashboard can be exploited:

• Aggregate visualization. This visualization is tailored to analyst, which aims at under-
standing the general mobility behaviour of the overall dataset, with the overall most
important locations for the privacy risk prediction highlighted. This visualization is
presented in Section 9.5.2;

• Single user visualization. This visualization is tailored to the end-user, having the
objective to visualize her mobility, with the most important locations for the privacy
risk highlighted. This visualization is reported in Section 9.5.3.

134



Figure 9.11: Overview of the web application

9.5.1 Visual Widgets and HOW-TO user guide

The visual dashboard is composed of multiple widgets:

• on the left the sidebar contains details about the dataset that is loaded in the in-
terface. The user can choose to explore different datasets, obtained accordingly with
the exploration described in Section 9. The dimensions to be explored are (1) the
model predictor to use for risk prediction (this visualization is limited to Rocket and
InceptionTime which are the ones performing best in this setting, as described in
the experiments (Section 9.4) and (2) one of the four datasets, depending on the level
of knowledge of the attacker, specifically h = 2, h = 3, h = 4, h = 5. The general
appearance of the visualization tool is depicted in Figure 9.12.

• The central map is implemented by means of a tile-base background map and a
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Figure 9.12: Selection of the set of locations to be displayed. (Left) Selector for the predic-
tion model to be used. (Right) Selection of one of the four datasets

customized visualization overlayed. The visualization of the location is following the
mapping described in Section 9.4.3. In the top part of this map, the user can select a
series of indicators derived from the privacy risk estimation and explanation: number
of total trajectories, number of trajectory with low risk, number of trajectories with
high risk, minimum Shap value, max Shap value. In the example of Figure 9.11, the
Shap max value is displayed. The area and fill color of each circle is proportional to
this value. The location, of course, is determined as the centroid of the corresponding
Voronoi cell. The map can be browsed by usual gestures (pan, zoom, change of
background map). The user can also select a specific location by clicking on the
corresponding circle (see Figure 9.13).

• The bubble chart on the bottom is representing the set of locations and circles of the
map on a set of orthogonal axes. In this parallel view, the user can further explore
the relation of the privacy risk contribution and other properties of the data. This
display is also interactive and it is possible to click on circle to highlight the location
on the map and show details in the right box.

• The box on the right is populated when a location is selected and it shows additional
detail of the location with statistics of the privacy risk predicted in that location.
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Figure 9.13: Selection of a location by clicking on the corresponding circle. On the right, a
box shows additional details of the location

9.5.2 Aggregate Visualization of mobility privacy risk

In this Section we report the aggregate visualization, one of the two possible usages of
this visualization tool for Expert. This visualization is tailored for analysts, having the
objective is to explore and analyze the overall mobility behaviour of the dataset under
analysis. The goal then is to provide the analyst a visualization in which he/she can
observe the overall importance of the locations. For an in-depth analysis, we present to the
analyst not only the most important locations, based on the Shap values, but also other
statistics, such as the number of trajectories passing from the location under analysis, being
them high or low risk, and the distribution of the risk. In the following, we present the
possible visualization for the analyst through pictures. We report a visual comparison of
the four datasets (depending on the level of knowledge the adversary possesses) for the
Rocket predictor. In Figure 9.14, we can observe the overall behaviour of the users in the
dataset with adversary knowledge h = 2. This is the most difficult setting for the attacker,
which can exploit only a knowledge of 2 locations per trajectory. For this reason, it is also
the setting in which the privacy exposure is lower, as described in Section 9.4. However,
from this first visualization we can already see the areas most important for predicting the
high risk. Moving on, in Figure 9.15, we have the same trajectories as before, but this
time with an attacker knowledge of 3 locations. Visually, we can observe that this dataset
already has more important locations for the high risk prediction. This pattern is even
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Figure 9.14: Visualization for Rocket and h = 2

more observable when looking at Figure 9.16 and 9.17, in which the attacker knowledge
increases. By clicking on the specific location, the analyst obtains statistics about it.

9.5.3 End-user Visualization of mobility privacy risk

In this Section we present how the visual tool can be exploited from the point of view
of a single end-user. In this case, in fact, the user is primarily interested in observing
her trajectories, with the most important locations for the risk prediction highlighted. An
example of this kind of visualization is provided in Figure 9.18, in which we can observe
the mobility behaviour of a single user, classified as high risk by the Rocket predictor,
for the attacker’s background knowledge h = 3. In this case, the locations visited by the
user are reported in a scale of purple, with a darker color for the most important locations
for the prediction at hand. From this first visualization, the end-user will have a general
overview of her mobility. However, for an in-depth analysis we also provide Figure 9.19,
in which the user can observe her trajectories (in purple scale), as well as the aggregate
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Figure 9.15: Visualization for Rocket and h = 3
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Figure 9.16: Visualization for Rocket and h = 4
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Figure 9.17: Visualization for Rocket and h = 5
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Figure 9.18: Visualization for a single record, predicted as high risk, with Rocket and
h = 3

visualization of the overall dataset. In this way, the user can observe her behaviour with
respect to the people’s overall behavior. In particular, for the user under analysis, we can
observe that her trajectory does not contain locations that are actually important for the
prediction of high risk for most people in the dataset.

9.6 Discussion

In this Chapter we introduce a variant of Expert, which is a privacy assessment, prediction,
and explanation framework specifically designed for human mobility data represented as
trajectories.

We enhance existing privacy risk assessment frameworks by employing machine learn-
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Figure 9.19: Visualization for a single record, predicted as high risk, with Rocket and
h = 3
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ing models tailored for sequential data, including InceptionTime, lstm, and Rocket.
Additionally, we develop heuristic techniques to compute Shap values efficiently and create
a customized visualization tool for human mobility data analysis.

Our framework demonstrates accurate prediction of privacy risk in human mobility data
and effectively explains the predictive models using fast Shap value calculation. The visu-
alization tool provides an intuitive and interactive map-based representation, showcasing
the essential contributions and information about the privacy risk.

To validate our framework, we conducted experiments on real, confidential human mo-
bility data, revealing new insights into the nature of privacy risk. Our work equips privacy
analysts and experts in the field with an interactive and actionable tool for understanding
the privacy risk of human mobility data in a fast and intuitive manner.

In terms of future directions, we aim to leverage the efficiency of privacy risk prediction
by developing a visual analytics environment. This environment will couple prediction
and visualization, enabling experts to analyze the results of different privacy mitigation
techniques. It will serve as a ”what-if” simulation module, allowing analysts to modify
the data and assess privacy risk in an interactive process. This functionality will greatly
assist in developing appropriate privacy protection measures based on techniques such as
generalization or deletion.

Another interesting direction involves integrating additional data quality measures into
the framework. This will enable further experimentation with different protection measures
on the data prior to its release, providing more comprehensive insights into the effects of
these measures on privacy.
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Chapter 10

Summary of Part III

In this Part we analyzed a possible synergy between Data Privacy and Explainable Artifi-
cial Intelligence, by tackling the problem of increasing the user self-awareness in the task of
privacy risk assessment. In particular, we present Expert, a framework that addresses the
computational complexity issue of the state-of-the-art methodology for privacy risk assess-
ment, namely PRUDEnce, and enhances users’ awareness by leveraging Machine Learning
models to predict individual privacy risks. Lastly, Expert exploits local explainers to pro-
duce explanations of predicted risks. The proposed framework is modular so that it can be
tailored to specific data input and explanation requirements to achieve desired outcomes.
In this Thesis, we present two main variants of Expert, both tailored for human mobility
data, which are among the most dangerous sensitive data due to their structure. The first
variant deals with human mobility data in the form of tabular data, with features extracted
from the trajectories. The second one, instead, works directly with the trajectory data. For
both of the cases, we present an in-depth analysis both on the privacy risk prediction mod-
ule, analyzing the best classifiers depending on the task under analysis, as well as on the
privacy risk explanation module. In particular, for the tabular setting, Expert were able
to provide good prediction performance and high-fidelity explanations. However, the usage
of features makes the comprehensibility of the explanation difficult, if not impossible. In
fact, these explanations are tailored just for experts, which can understand the meaning of
every single feature and can hence have an overall understanding of the reasons that lead
the classifier to a particular prediction. Given these results, we then move to the second
setting, in which Expert analyzes the privacy risk directly on the raw trajectories. In this
case, we conducted an in-depth analysis to provide the end-users with a high-performing
classifier for sequential data, also considering the time consumption of the training pro-
cedure to achieve an online interaction. For Expert with trajectories, in particular, we
propose a visualization tool for the trajectory setting, in which the user can visualize her
mobility behaviour on a map, with different visualizations for the locations that are more
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important for the prediction under analysis. By utilizing the Expert framework, users can
gain a better understanding of privacy risks associated with their data, allowing them to
take appropriate measures to protect their privacy. In particular, the last variant of this
framework has two main targets: the end user, that is the subject of the data under analysis,
who can see its movements through a single map visualization, but also the analyst, who
can study the aggregate data visualization of Expert. Therefore, the framework can have
two different uses: in the first case it can be used by the user to improve the understanding
of his or her privacy risk and possibly make appropriate changes, while in the second case
it can be used as an analysis tool, useful in both research and industry contexts, to analyze
the data prior to the publication of actual datasets.
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Part IV

Privacy exposure of explanation
methods
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In this Part we analyze the relationship between Explainable Artificial Intelligence and
Privacy from the perspective of the privacy exposure of explanation models.

In fact, one of the possible drawback of Artificial Intelligence systems based on ML
models is their potential vulnerability against different attacks, such as Model Inversion
attack [210] and Membership Inference Attack (Mia) [109], presented in the first part of
this Thesis, in Chapter 3.2.2. These privacy attack methods can potentially infer the data
used for training the model by simply querying the model. Thus, privacy mechanisms such
as differential privacy [143] are typically applied to counter the potential privacy exposure.
However, the problem of privacy attacks against the Machine Learning models may also
affect explanation methods. In fact, explainers are learned functions derived by exploiting
the predictive knowledge of a black-box model learned on a private dataset. Thus, they
could leak information about this private dataset. Despite this potential risk, only a few
works address privacy issues in Explainable Artificial Intelligence [19, 20]. For this reason,
in this Part we analyze this research problem in depth, focusing on membership attacks. We
start this Part by presenting, in Chapter 11, the formal definition of a novel membership
attack, namely Aloa, a variant of the LabelOnly attack, presented in Chapter 3.2.2.
Aloa is a membership attack whose objective is to determine the membership of people
in the training data of the black-box model. Therefore, by applying this attack against
a black-box we obtain the privacy exposure of the model under analysis. Following, in
Chapter 12 we present reveal, a privacy risk assessment framework for global and local
explainers bases on surrogate models. The Chapter related to Aloa describes the work
published in [211], while part of the contribution related to reveal is published in [212]
and the remaining contributions are submitted to a journal paper [213].
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Chapter 11

Agnostic Label-Only Membership
Inference Attack

The increasing prevalence of smart technology in everyday life, such as self-learning and
auto decision-making systems, is largely due to advancements in Machine Learning: ap-
plications such as Gmail’s spam filtering (Dada et al., 2019 [115]), YouTube’s video rec-
ommendations (Mwinyi et al., 2018 [116]), text correction software (Ghosh & Kristensson,
2017 [117]), and speech recognition (Nassif et al., 2019 [118]) all exploits Machine Learning
algorithms to improve their functionality. While Machine Learning (ML) can greatly en-
hance the capabilities of a system, it also presents potential vulnerabilities. Attackers may
exploit flaws in machine learning systems to infiltrate and manipulate them for malicious
purposes, potentially compromising the system’s reliability, confidentiality, and availability.
Adversarial attacks, such as crafting special input data and poisoning the training dataset,
are commonly employed by attackers to evade intrusion detection systems and mislead ML
classifiers. In addition to these attacks on ML models, in which the objective is to make
the model behave badly, the study of attacks on the privacy of machine learning models has
recently attracted much attention from the scientific community. One of the most popular
privacy attacks against ML models is the Membership Inference Attack (Mia) [109], which
aims to discern between records that were used during the training phase of the machine
learning model and not. An in-depth description of Mia is proposed in Section 3.2.2. This
kind of attack is very risky for privacy and secrecy. In fact, knowing the membership of
a record to a sensitive dataset used for training a model might enable the re-identification
of users and inference of their sensitive data [104]. Moreover, reconstructing part of the
training data of a model could conflict with trade secrets. Indeed, sometimes training data
might be the result of successful corporate experience and investments which can lead to
important competitive advantages. Thus, organizations owning such data do not want to
disclose them to competitors. This type of attack was first published in 2017 by Shokri
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et al. [109], and then some variants have been proposed. Another interesting attack is
Label-Only Membership Inference Attack [125], a variant of Mia in which the adversary
determines the membership of a record to the training data of a machine learning model
only using its hard predictions and knowledge about statistics of the training data. It ex-
ploits this knowledge for computing a robustness score of the model representing a proxy
for the model prediction confidence. In this Chapter, we present Aloa (Agnostic Label-
Only Membership Inference Attack) an enhanced variant of the LabelOnly attack, with
improved performance and good stability in the prediction metrics. As LabelOnly, Aloa
only exploits the hard labels of the predictions without the need to access the confidence
vectors, a requirement that is mandatory in the original version of Mia. However, differ-
ently from LabelOnly we design a perturbation mechanism, enabling the computation of
a robustness score of the machine learning model, which is data agnostic to the training
data distributions. In other words, our attack model, used during the learning of the attack
model, does not exploit the knowledge of the distribution of the features in the training
data. The robustness score is the key factor in determining the record membership. We
evaluate Aloa using three datasets having different characteristics. The experimental re-
sults highlight that our attack allows for better stability with respect to the standard Mia
and an enhanced performance up to 3 percentage points in terms of accuracy in predicting
the records membership. Even if this enhancement may seem small, for the privacy setting,
this is extremely risky since it means that the adversary may have a higher probability of
re-identifying people in the dataset. In addition, we relax the assumption that the attacker
needs a dataset following the same distribution as the original training dataset, making
the attack easier to perform with respect to the competitors. In the following, we present
the methodology of Aloa in Section 11.1 and consequently, we present the experiments
conducted in Section 11.2.

11.1 Aloa methodology

In this Section we present Aloa (Agnostic Label-Only membership inference Attack),
which is a variant of LabelOnly attack, presented in Section 3.2.2. The LabelOnly
attack is based on the assumption of knowing the statistical distributions and the domain
of the features in training data of the black-box. This knowledge is exploited for applying
a perturbation to each feature tailored to its type and its statistical distribution. Contrary
to the LabelOnly, we propose a variant of this attack completely agnostic with respect
to the training data and the type of classifier to be attacked.

Threat Model. A membership inference attack aims to determine whether or not
a given data record belongs to the training dataset of a specific classification model. To
conduct an attack, the adversary can exploit specific prior knowledge that can be accessed.
For this attack, we assume an adversary has black-box access to the classifier b. In other
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Algorithm 4: Aloa (b, Ds, pmin, pmax, k, n)

Input : b - classifier,
Ds - dataset for training the shadow models,
pmin, pmax - perturbation percentage range,
k- number of neighbours to be generated

Output: thresholdsplit - split threshold found for the dataset Ds

1 {Ds1 , . . . , Dsk} ← RandomSample(Ds, k)
2 S ← ∅; D ← ∅; Scores← ∅
3 for i ∈ {1, . . . , k} do
4 Dtrain

si
, Dtest

si
= split train test(Dsi)

5 S ← S ∪ train shadow(Dtrain
si

)
6 DIn

si
← Assign the In label to each record in Dtrain

si

7 DOut
si
← Assign the Out label to each record in Dtest

si

8 D ← D ∪DIn
si
∪DOut

si

9 for xi ∈ D do
10 N i

x ← Noisy Neighborhood Generation(xi, pmin, pmax, n)
11 rScorexi ← Robustness Score(N i

x, S, b(x
i))

12 Scores← Scores ∪ rScorexi

13 thresholdsplit ← Iterative Thresholding(D,Scores)
14 return thresholdsplit

words, the adversary can only query the model to obtain a prediction and, as in [125],
the model only returns hard labels to queries. The adversary does not know the model
architecture, e.g., the type of classifier, its hyper-parameters used for the training, and
the algorithm used for the training. Lastly, the adversary has knowledge about the total
number of classes, the class labels, and the input format. To perform Aloa we do not need
to know distributions of the original training dataset, nor during the training of the shadow
model, nor in the perturbation mechanism, in contrast to LabelOnly.

Learning ALOA. Given a black-box b, trained on a dataset Dtrain
b , Aloa attack

targets it by exploiting only the hard labels, i.e. b(x) = ŷ, and deriving a robustness score
by an agnostic data perturbation. This score enables Aloa to determine if a record x
belongs to the training data Dtrain

b of the black-box model under attack. The pseudo-code
of the algorithm is reported in Algorithm 4. The process to create Aloa model requires as
input a dataset Ds: (xi, yi)s in which xis has the same format of training data of b and yis
is the predicted class obtained querying the black-box model b. Given the agnostic nature
of Aloa, it does not rely on any assumptions about Ds, which may include a completely
random dataset.

After querying the black-box model for labeling each xis, Aloa splits the dataset Ds into
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training and testing datasets, obtaining Dtrain
s and Dtest

s respectively, and then it trains one
or more shadow models, si(·) on sub-samples of Dtrain

s (lines 6-7). The goal is to mimic the
behaviour of b, by also having the knowledge of which records are part of the training set
and which are not. In particular, as reported in Algorithm 4, Aloa constructs a dataset
D, where assigns the label In to each record in the training data of the shadow models and
the label Out to those belonging to their test data (lines 8-10).

At this point, Aloa performs its core process: the agnostic perturbation of the data
used for training and testing a given shadow model (line 12, Alg. 4). We call this procedure
Noisy Neighborhood Generation and we report its pseudo-code in Algorithm 5. For each
data record xis of the shadow dataset Ds, it generates a neighborhood of n records obtained
perturbing the values of its attributes. Since the goal is to perturb each data record in their
local vicinity without using any knowledge of the dataset’s domain or attributes distribu-
tion, making the algorithm completely domain agnostic, our perturbation mechanism adds
noise values to each attribute of the record under analysis. Given an instance xis composed
by m attribute-value pairs (aj , vj), to generate the noise value for perturbing vj Aloa adds
or subtracts to vj a noise values ν = p×vj (lines 10-14, Alg. 5). The value p is a percentage
randomly generated from a uniform distribution in the range [pmin, pmax] (line 5, Alg. 5).
The noise value ν is added or subtracted with a probability equal to 50% (i.e., following a
Bernoulli process).

After this perturbation, Aloa computes for each record in the shadow dataset the
robustness score to estimate the confidence of the shadow model s in predicting the record
label (line 13, Alg. 4). This score is formally defined as follows:

rScorexi
s
(Nxi

s
) =


0 if s(xis) ̸= b(xis)∑

x′∈N
xis

F (s(x′),s(xi
s))

|N
xis

| otherwise
(11.1)

Where F (s(x′), s(xi)) is a function returning 0 in case the shadow model predicts a label
for the neighbor x′ which is not coherent with the label predicted for xi. In other words,
in case the shadow model is faithful to black-box model on xi, the robustness score on
this record is computed as the fraction of perturbed records having coherent labels with
xi. This score has values in the range [0, 1]: values close to 1 mean that the classifier is
robust to perturbations, thus the model is confident in predicting the record; while values
close to zero register low confidence of the classifier in the prediction, indeed, in this case,
several neighbors have the opposite class label to the record under analysis, meaning that
the model is unsure of the prediction since it is very close to the boundary.

Once each record of the shadow dataset has its robustness score, we get a dataset where
for each record xis we have its score rScorexi

s
and the label In, in case xis belongs to the

training dataset of the shadow model, or Out if it belongs to the test dataset. Now, using
the iterative thresholding procedure, Aloa finds the threshold value on the score that
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Algorithm 5: Noisy Neighborhood Generation(x, pmin, pmax, n)

Input : x - a record composed by m attribute-value pairs (aj , vj),
pmin, pmax - perturbation percentage range,
n - number of neighbours to be generated

Output: Nx - Set of new generated records

1 Nx ← ∅
2 for t ∈ {1, . . . , n} do
3 x′ ← x
4 for j ∈ {1, . . . , |x′|} do
5 p← randomNumber(pmin, pmax)
6 if vj == 0 then
7 vj == randomNumber()
8

9 else
10 ν ← vj × p
11 if randomBoolean() == True then
12 vj ← vj + ν
13 else
14 vj ← vj − ν

15 Nx ← Nx ∪ {x′}
16 return Nx

optimizes the accuracy in separating records with class label In and Out (line 15, Alg. 4).
ALOA application. Once Aloa has been trained, an adversary can use it to determine

whether a given record belongs to the training dataset of the black-box model b or not.
Given a record x, having the same shape as the records Dtrain

b on which the black-box was
trained, our attack performs the following steps:

1. Aloa applies the Noisy Neighborhood Generation procedure, presented in Algorithm
5, to the record x. The result is a set of synthetic neighbors Nx which are perturbed
through our agnostic procedure;

2. Exploiting the neighborhood Nx, Aloa computes the Robustness Score rScore of the
record x applying Eq. (1);

3. The best threshold value thresholdsplit, found during the training of Aloa, is used
to discern whether the record x is part of the training set or not: if rScore ≥
thresholdbest then it will be predicted as part of the training set, otherwise not.
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11.2 Aloa experiments

In this section we report the results obtained testing Aloa attack, presented in Section
11.11. We organize this section as follows: first, we present the datasets used and their
pre-processing (Section 11.2.1); then, we describe the different trained black-box models
on which we tested the validity of our attack (Section 11.2.2). Lastly, in Section 11.2.3 we
present the results of Aloa attacks to all the ML models, comparing the performance with
respect to the original Mia and LabelOnly attack, and discussing the privacy risk of each
of them.

11.2.1 Datasets

We use three classification datasets, each with different characteristics. We consider Adult,
a bench-marking dataset composed of 48, 842 records and 15 variables, both numerical and
categorical. This dataset describes employees with information like age, job, capital loss,
capital gain, marital status, etc. The labels have values <= 50K or > 50K (in the following
referred to respectively as Class 0 or Class 1), indicating whether the person will earn more
or less than 50k in a fiscal year. This dataset was also used as a validation set of the attack
for the Membership Inference Attack [109] and LabelOnly [125]. We perform Aloa also
against Bank, which is a public dataset containing information on the customers of a bank,
intending to classify the people as good or bad creditors. It is formed by 150, 000 records
and 10 numerical variables, with information like age, monthly income and the number of
loans already opened. The selection of this dataset is due to the huge amount of records
available as well as the peculiarity of having only numerical variables. Lastly, we also
consider Synth dataset, which is a synthetic dataset generated by exploiting a Gaussian
mixture model. It has 30, 000 records and 30 numerical variables, with 15 classes. The
selection of this dataset is due to the multi-class problem and to test the behaviour of the
attack in a controlled environment due to the synthetic creation of the dataset.

For Adult, we removed the null values and analyzed the Pearson correlation among
the variables, dropping some of them to obtain a correlation degree less than 80%. For the
remaining categorical variables, we applied a one-hot encoding. For Bank, we removed
the null values and the correlation analysis did not highlight any correlation value higher
than 75%; thus we did not drop any variable. No further pre-processing was needed since
the variables were all numerical. For Synth, instead, we did not perform any kind of
pre-processing since the dataset was synthetically generated.

After the pre-processing step, we split each dataset into two subsets: (i) 70% of the
original dataset (called Db) is used to train and test the black-box models; (ii) the remaining
30% of the pre-processed data dataset (called Ds) is used for the learning process of the
different attacks.

1The code developed for the experiments is in Python 3.8 and will be available upon acceptance
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Data Metric DT DT-O RF RF-O NN NN-O
TR Acc 0.84 1 0.84 1 0.83 1

Adult
TS Acc 0.81 0.78 0.82 0.85 0.82 0.79
TR Acc 0.78 1 0.81 1 0.78 0.97

Synth
TS Acc 0.77 0.69 0.79 0.78 0.78 0.70
TR Acc 0.84 1 0.98 1 0.93 1

Bank
TS Acc 0.61 0.59 0.87 0.89 0.92 0.90

Table 11.1: Prediction performance of the black-box models for all the dataset selected. We
report the Accuracy score both for the training set and the testing one to better appreciate
the difference in performance in generalization capability for the generalized and overfitted
models. Overall, we achieve good performace for all the models presented.

11.2.2 Black-boxes

Given each pre-processed dataset Db, we split it into Dtrain
b (70% of it) and Dtest

b (30% of
it). We use Dtrain

b for training the black-box models. The ML models selected are described
in the following:

1. Decision Tree (dt), selected for its simplicity, but prone to overfitting and to noise
data;

2. Random Forest (rf), an ensemble model composed of multiple decision trees, with
better performance with respect to the dt;

3. Neural Network (nn), a feed-forward network with some hidden layers, varying from
1 to 3, depending on the data in input;

For all selected models, we trained two variants: one, called regularized, with very good
performance and with a good level of generalization, and another version called overfitted
on purpose, thus specific to the input training dataset and with poor generalization capa-
bilities. The choice of learning two variants of ML models resides in the fact that it has
been experimentally proved that Mia leads to higher privacy risk when attacking overfitted
models ( [214, 215]). For this reason, in our experiments, we also want to evaluate how
privacy exposure changes in relation to the level of overfitting of black-box models. We
report the classification performance of these models in Table 11.12. The results reported
in this table show that all the black-box models have an overall good performance, with
comparable performance for the rf and nn models, and a slightly worse prediction perfor-
mance for the dt models, as expected. The model performance reported in the table also
shows a different behaviour of the regularized models w.r.t. the overfitted ones.

2The results reported refer to the best set of hyperparameters determined by a grid search. The results
were validated with a 3 fold cross validation
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11.2.3 Evaluation of ALOA and comparison against competitors

In this section we present the privacy threats obtained by applying Aloa, LabelOnly
and the original Mia to the trained black-boxes. In order to train all the attacks we need
to have the shadow dataset Ds having the same format as the data used for training the
black-box model. We employed two variants of this dataset, denoted as Dstat

s and Drand
s , in

our experiments. The former was designed to have the same statistical distribution as the
original training dataset, whereas the latter was generated completely at random. We used
Dstat

s for learning the LabelOnly attack because the procedure described in [125] requires
training the shadow models on a dataset with similar distributions to those of the training
data of the black-box, and it also exploits the distribution knowledge in the computation
of the robustness score. Although, Aloa does not require the use of Dstat

s , as it is agnostic
to the training data distributions, we conducted experiments with both Dstat

s and Drand
s to

evaluate the effectiveness of Aloa and having a complete comparison with LabelOnly.
To ensure a clear understanding of the performance of the attack, we have balanced the
Ds used for creating the attack models: having 50% of the rows of class In and 50% of
class Out. This setting is the same used in [125] to make clear the comparison between
our proposal and the attacks in the literature. Indeed, the balanced setting enables the
possibility to compare the attack performance based on accuracy that, in this case, cannot
be influenced by the under or over representation of one class with respect to the others.
In this way, if the attack has more than 50% of accuracy, it poses a threat to privacy.

The results of the attacks are reported in Table 11.2 for Adult, Bank and Synth.
Aloa was run three times for each black-box, with n = 1000 perturbations for each record
of Ds (the same n is used for the training of LabelOnly attack), pmin and pmax set to
0.10 and 0.50 respectively, and a Bernoulli probability p = 0.50 for adding or subtracting
the noise value. Mia was created with 8 shadow models and nn as final attack models.
For LabelOnly we applied the same hyper-parameters as in the work [125]: n = 1000
perturbations, with a Bernoulli flip probability of 0.60% and a Gaussian noise with σ = 0.04.
We remark that Mia and LabelOnly were tested on the Dstat

s due to the assumptions
needed, while Aloa was tested both on Dstat

s and on Drand
s .

Regarding Adult dataset, Mia and LabelOnly attacks performance is coherent with
the one presented in their original papers. For the Mia, overall the attack against regularized
models is not effective, apart from the decision tree with 51% of accuracy. On the other
hand, the overfitted models are easily attacked, in particular rf-o and nn-o. However,
the attack on the dt-o is not posing a privacy threat. This result may be due to the poor
prediction performance of the dt-o for Adult. In fact, the overall accuracy of the model is
48%, suggesting that the model is not able to learn patterns in the data. Hence, the attack
cannot have sufficient information from the confidence. By looking at the LabelOnly
attack, it is not effective for all the regularized models, while it poses privacy threats
for all the overfitted ones. Analyzing Aloa in both experimental settings, we have the
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same performance as LabelOnly on the overfitted models with 54% dt, 55% rf, 60%
nn. Instead, by looking at the regularized models, we have in general better performance:
the attack has gained 1-3% points in the attack compared to LabelOnly. With Aloa
based on Dstat

s we are always better than LabelOnly except for the regularized nn, for
which we have the same performance. Hence, for Adult dataset Aloa poses the worst
privacy threats both for the overfitted and regularized models. Among the ML models, the
attack generates more privacy leakage for the rf and nn models. This finding is reasonable
because, as highlighted in prior works, more complex models learn more information.

For Bank dataset, the results are in line with the ones described for Adult, even if
overall they are slightly lower. Interestingly, the improvement in terms of privacy threats
posed by Aloa is more significant for the rf-o model (+3%) and lower for the nn-o one
(+1%). This result may be due to the different structure of this dataset: it is composed of
only a few numerical variables.

In Synth dataset we can better appreciate the effectiveness of Aloa: the trend is again
that the attacks undermine the privacy more in the case of overfitted models, while regu-
larized ones remain in danger, but with a lower privacy risk. Both Aloa and LabelOnly
have better privacy threats with respect to Mia. However, Aloa in both settings shows
better or comparable performance with respect to LabelOnly with an improvement for
rf-o and nn-o. Comparing the two experimental setting of Aloa, our results indicate that
the performance of our attack is generically consistent for both Dstat

s and Drand
s , showing at

most a discrepancy of 1% in accuracy. More importantly, they also demonstrate that even
if our attack assumes an adversary with weaker knowledge with respect to LabelOnly, we
achieve higher or comparable privacy risks. These findings have significant implications for
privacy protection in ML models.

Overall, the experiments show that Aloa poses a worrying privacy risk, especially if the
model is overfitted. The more complex a model is, the easier it is to overfit and experience
higher privacy leakage. Comparing Aloa against the LabelOnly attack, we note that we
have comparable or better performance for the overfitted models. This behaviour may be
the result of the agnostic perturbation we perform, which is independent of the distributions
of the input variables and hence Aloa is not affected by the slight changes in the data.
We remark that this property is valid for both case where we use Dstat

s and Drand
s since

the perturbation mechanism remains always agnostic. Regarding Aloa against the original
Mia, the performance of our method is overall better with the exception of rf-o. For this
model, in fact, the accuracy of the Mia attack is always higher w.r.t. both LabelOnly and
Aloa, highlighting that in the case of overfitted rf the added knowledge of the prediction
probability has a greater impact in this setting. However, for the regularized rf and nn,
instead, Mia shows higher accuracy and precision for the In class but an extremely low
recall and hence F1 score, showing that this attack is not stable.

To conclude, Aloa performed overall better than the LabelOnly, with an improve-
ment up to 3%. Although this may seem like a small increase, it is a significant improvement
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Adult Bank Synth

Attack Model PIN RIN F1IN Acc PIN RIN F1IN Acc PIN RIN F1IN Acc

dt 0.51 0.53 0.52 0.51 0.50 0.58 0.54 0.51 0.49 0.51 0.50 0.49
dt-o 0.48 0.62 0.55 0.48 0.49 0.49 0.49 0.49 0.51 0.47 0.49 0.51
rf 0.45 0.27 0.34 0.47 0.53 0.16 0.24 0.51 0.73 0.04 0.08 0.51

rf-o 0.59 0.68 0.63 0.61 0.67 0.60 0.63 0.65 0.90 0.86 0.88 0.88
nn 0.53 0.04 0.08 0.50 0.45 0.03 0.06 0.50 0.52 0.30 0.38 0.51

MIAstat

nn-o 0.55 0.94 0.69 0.59 0.53 0.85 0.65 0.54 0.58 0.59 0.58 0.58

dt 0.50 0.62 0.55 0.50 0.51 0.79 0.62 0.51 0.58 0.84 0.69 0.62
dt-o 0.52 0.85 0.65 0.54 0.59 0.98 0.74 0.65 0.63 1.00 0.77 0.70
rf 0.51 0.78 0.62 0.51 0.50 0.76 0.61 0.51 0.54 0.94 0.68 0.57

rf-o 0.53 0.83 0.65 0.55 0.55 0.84 0.66 0.57 0.56 1.00 0.72 0.61
nn 0.50 0.55 0.53 0.50 0.50 0.70 0.58 0.50 0.51 0.91 0.65 0.51

LabelOnlystat

nn-o 0.56 1.00 0.71 0.60 0.59 0.80 0.68 0.63 0.54 1.00 0.70 0.57

dt 0.51 0.81 0.63 0.52 0.51 0.80 0.62 0.51 0.58 0.84 0.69 0.62
dt-o 0.53 0.86 0.65 0.54 0.59 1.00 0.74 0.66 0.63 1.00 0.77 0.70
rf 0.52 0.51 0.52 0.52 0.51 1.00 0.67 0.52 0.54 0.83 0.66 0.57

rf-o 0.54 0.65 0.59 0.55 0.56 0.98 0.71 0.60 0.58 0.96 0.72 0.63
nn 0.53 0.49 0.51 0.53 0.50 0.76 0.60 0.49 0.51 0.89 0.65 0.52

ALOAstat

nn-o 0.56 1.00 0.72 0.60 0.58 0.98 0.73 0.64 0.55 1.00 0.71 0.59

dt 0.52 0.83 0.64 0.53 0.49 0.66 0.56 0.49 0.59 0.81 0.68 0.62
dt-o 0.53 0.86 0.65 0.54 0.59 0.95 0.73 0.64 0.63 0.95 0.76 0.70
rf 0.51 0.44 0.47 0.52 0.49 0.71 0.58 0.48 0.54 0.97 0.69 0.57

rf-o 0.55 0.66 0.59 0.55 0.56 1 0.72 0.60 0.57 0.98 0.72 0.62
nn 0.50 0.64 0.56 0.50 0.50 0.68 0.58 0.51 0.51 0.91 0.66 0.52

ALOArand

nn-o 0.56 1 0.72 0.60 0.60 0.84 0.70 0.64 0.54 1 0.70 0.58

Table 11.2: Results of the attacks on the three datasets for all the black-box models se-
lected. In bold are highlighted the highest privacy risks. We remark that for the Mia and
LabelOnly we exploit the statistical dataset Dstat

s , while Aloa was tested both on the
Dstat

s and on the Drand
s , showing that it is completely agnostic w.r.t. the data and good

stability. Aloa is the one with the highest privacy threats overall, showing good stability
since we achieve similar performance for all the datasets.

in the context of privacy assessment, where every gain in performance can shed light on the
privacy leakage of a model. Additionally, Aloa is more stable and the perturbation em-
ployed is data agnostic, without knowledge of the distribution of the features. Importantly,
our attack showed better results in attacking regularized models compared to others.

Comparison between regularized and overfitted models. Recently, several works
have empirically shown that if the model being attacked is overfitted, the attack will be
much more damaging to the users of the training set [214, 215]. For this reason, we study
the behavior of both models that generalize well and those that are overfitting. From the
results in Table 11.2, all the overfitted models exhibit a higher degree of privacy leakage
than regularized models, as evidenced in all three datasets, and particularly in the third one.
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Figure 11.1: These two box plots show the robustness score behaviour for overfitted and
regularized nn on Synth dataset. It is possible to see that the overfitted model exhibits a
larger difference between the average In and Out robustness scores, which could potentially
enable an attacker to distinguish between the two classes more easily. This confirms the
existing link between model overfitting and privacy risk and the train-test gap [130]. On
the other hand, the regularized model displayed a smaller gap between the two classes,
indicating that separating the two classes is more difficult.

This dataset highlights the vulnerability of models that are not properly regularized and
exhibit a gap between training and test accuracy. As outlined in [130], the gap between
training and test accuracy is directly proportional to the efficacy of the accuracy of an
attack - the larger the gap, the more effective the attack. To better analyze this aspect,
we took advantage of the Synth dataset, which allows for a controlled study in which ML
models achieve excellent performance and it is easy to overfit ML models. In Figure 11.1,
it is possible to examine the difference in the performance of Aloa for nn and nn-o trained
on the Synth dataset. In particular, we present a box plot on the robustness score, which
shows that the overfitted model exhibits a larger difference between the average In and
Out robustness scores, which could potentially enable an attacker to distinguish between
the two classes more easily. In this way, we empirically prove the existing link between
model overfitting and privacy risk as well as the train-test gap [130].

Analysis on the number of shadow models. There are many conflicting opinions
in the literature about the use of shadow models, i.e., models that mimic the behavior of
the original black-box. In fact, in the first publication of Mia [112] the authors used a
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Figure 11.2: The performance of Aloa by changing the number of shadow models from 1
to 10 for the nn-o trained on the Adult dataset. It is clear that the performance of the
attack are not affected by the number of shadow models.

large number of shadow models, while in LabelOnly [125], the authors present an attack
model exploiting only one shadow model. We present the results with only one shadow
model like [125] because we analyzed the effectiveness of using different shadow models,
and our results highlight that for our purposes, using one or k models does not lead to any
improvement. This behavior can be clearly seen in Figure 11.2, in which the performance
of the attack on Adult is the same whether using only one or ten shadow models. Given
this finding, our experiments were conducted with just one shadow model due to the better
performance in terms of time.

11.3 Discussion

In this Chapter, we introduce Aloa, a variant of the LabelOnly membership inference
attack. Our proposed attack is designed to be completely data agnostic, both in terms
of shadow model training and perturbation mechanism. The perturbation employed in
Aloa does not rely on any knowledge about the statistical distributions or domains of the
features in the training data. This agnostic approach is a significant advantage from a
privacy protection perspective, as it highlights the vulnerability of models to attacks that
can be executed without any specific knowledge or assumptions.

Our experimental results demonstrate that Aloa outperforms the traditional Labe-
lOnly attack, achieving an improvement of up to 3% in terms of attack accuracy, despite
assuming an adversary with weaker prior knowledge. In the context of privacy assessment,
even small gains in attack performance can provide valuable sensitive insights into the
individuals represented in the data.

Additionally, Aloa exhibits good stability in terms of prediction performance compared
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to standard Mia attacks. It also demonstrates superior results in attacking regularized
models when compared to other existing attacks. These findings highlight the robustness
and effectiveness of Aloa as a method for evaluating the privacy of machine learning
models.

Overall, Aloa offers a more comprehensive and reliable approach for assessing the
privacy risks associated with machine learning models. Its agnostic nature and improved
attack accuracy make it a significant concern for privacy protection, emphasizing the need
for enhanced privacy measures and defenses.
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Chapter 12

Evaluating the privacy exposure of
Explainers

Employing sensitive data to train Machine Learning algorithms poses privacy issues, even
if the data are kept private. With the widespread availability of big data, a new era is
started in which decisions are being made based on the knowledge distilled from digital
traces generated by the use of digital tools that are now present in everyday life. These
traces are being collected and analyzed at individual, group, and societal levels, allowing for
the development of powerful Artificial Intelligence (AI) systems that can be used in critical
domains such as medicine, finance, and autonomous vehicles. However, these AI systems are
often based on complex ensemble models and neural networks that are referred to as ”black
box” models due to their opaque internal structure and decision-making process. This
lack of transparency and interpretability can limit the trust in these systems, especially in
high-stakes decision-making. To address this, the eXplainable Artificial Intelligence (XAI)
literature has developed two families of explainers: local explainers, which explain the
reason for a specific instance classification, and global explainers, which explain the logic
of the machine learning model as a whole. Additionally, AI systems based on machine
learning models are vulnerable to various attacks, such as Model Inversion attacks and
Membership Inference attacks, which can infer the data used for training the model by
simply querying the model. In recent years, the number of privacy attacks of this kind
increased considerably, having several variants of these attacks, with different assumptions
at the beginning [125, 214, 216]. Thus, privacy mechanisms such as differential privacy
are applied to counter potential privacy exposure. During the last year, other works have
addressed the problem of the privacy threats posed by explainers. In particular, in [20],
the authors attack the privacy of back propagation based explanations, which exploits the
gradient, and perturbation based methods, such as SmoothGrad and LIME. Due to the
structure of the explanations, they limit their analysis to neural networks, showing that
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Figure 12.1: Schema of reveal, for Privacy Exposure of black-box models and their ex-
plainers. The framework is composed by three modules: the first one, Attack Training is
devoted to train the chosen attack against the black-box and its explainer. Following, the
Attack Application applies the trained privacy attacks to a dataset predicting the mem-
bership of each record. Lastly, the Attack Evaluation evaluates the changes of the privacy
exposure when attacking the black-box and its explainer.

the back propagation-based explanations give rise to privacy risk, especially for minorities,
while LIME and SmoothGrad do not. Lastly, also Quan et al. [21] deal with this topic from
the point of view of images. They evaluate the effectiveness of the Membership Inference
Attack and of the Evasion Attack against several explainers, such as SmoothGrad, LIME,
IntGrad and GradCam.

In contrast to existing literature, our work introduces a novel framework, called reveal
(pRivacy Exposure eValuatE surrogAte expLainer), for systematically evaluating the pri-
vacy risk associated with black-box models and their explainers, whether they are local or
global, based on surrogate models. This framework is agnostic to the black-box structure
and is generic in the privacy attack and the surrogate-based explainers used. The primary
goal of reveal is to detect any changes in privacy exposure that may occur when publish-
ing the black-box and/or its explainers. In the following, we first define the methodology
of reveal, in Section 12.1 and then present the experiments, both for the local and global
explainers, based on surrogate models, in Section 12.2.1.

12.1 Methodology

In this Section, we introduce reveal (pRivacy Exposure eValuatE surrogAte expLainer), a
framework designed for assessing the privacy risk of black-box models and their explainers
based on surrogate models. This framework, depicted in Figure 12.1, consists of three
main modules: Attack-Training, which trains the attack models to be simulated, Attack-
Application, which executes the trained attacks and Attack-Evaluation, which quantifies the
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privacy exposure introduced by an explainer. Algorithm 6 reports the pseudo-code of the
whole assessment framework.

The instantiation of the three modules depends on the assumed threat model, the type
of privacy attack to be performed, as well as the type of surrogate explainer used for
explaining the black-box model. In the following, we describe the objective and role of each
module within the framework.

Algorithm 6: PrivacyRiskExposure(b, E, Dtest, Attackb, AttackE , BK)

1 (Ab, AE)← Attack-Training(b, E,Attackb, AttackE , BK)
2 (Dtest

b-member, D
test
E-member)← Attack-Application(Ab, AE , D

test)
3 [∆Acc,∆P ,∆R]← Attack-Evaluation(Dtest

b-member, Dtest
E-member)

4 return [∆Acc,∆P ,∆R,∆F1 ]

Algorithm 7: Attack-Training (b, E,Attackb, AttackE , BK)

1 Xtrain
a ← GenerateAttackDataset(BK)

2 Yb ← b(Xtrain
a )

3 Ab ← Learning: Attackb(X
train
a , Yb),

4 YE ← E(Xtrain
a )

5 AE ← Learning: AttackE(Xtrain
a , YE),

6 return Ab, AE

Attack-Training Module Given the back-box model b and its explainer E, the first
module aims at learning two privacy attack models: the first one, namely Ab, is tailored
to attack the black-box model b, while the second one, referred to as AE , is tailored to
attack the explainer E. As explained in Section 3.2.2, different attacks can be conducted
for auditing a machine learning model. However, one of the most used attacks is the
membership inference attack [109], aiming at inferring the membership of records to the
training data of the machine learning model. This type of attack is also the foundation
of other attacks aiming at extracting records from training data [217]. In this thesis,
we propose to instantiate the model under analysis with learning algorithms for training
these kinds of attacks. We highlight that the function Attackb(·), aiming at learning the
attack model Ab, can be different from AttackE(·) that is used for learning AE . This
difference could be due to the fact that the black-box and the explainers might be ML
models completely different that do not allow the attack under similar assumptions. For
example, we could have a black-box that does not return the confidence vector for each
prediction while its explainer could return it. Consequently, AttackE(·) could exploit this
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additional information. The two functions executed in this module may be implemented
using one of the algorithms available in the literature, such as the Membership Inference
Attack [109], the Label-Only Attack [125], the Aloa Attack introduced in Chapter 11 or any
other attack for ML models. Moreover, global and local explainers might require to design
and develop a slightly different learning procedure for the attack. As an example, in the
following, we propose learning an ensemble of attack models for attacking local explainers
and assessing the privacy risks introduced by these types of explainers. The pseudo-code of
this module is reported in Algorithm 7. We highlight that before training the two attacks,
this module also generates the dataset Xtrain

a useful for learning the attacks. Such a dataset
is labeled by using both the black-box (line 2, Alg. 7) and the explainer (line 4, Alg. 7).
The type of attack dataset generated strongly depends on the background knowledge of
the adversary BK. For example, if an adversary knows the distribution of the black-box
training data, the attack can exploit this knowledge for the generation of the attack dataset.
The performance of the attacks can be heavily affected by the properties of this dataset.

Algorithm 8: Attack-Application(Ab, AE , Dtest)

1 Dtest
b-member ← Ab(D

test)
2 Dtest

E-member ← AE(Dtest)
3 return (Dtest

b-member, D
test
E-member)

Attack-Application Module The second module of our framework is called Attack -
Application and applies the attack models learned in the previous module Ab and AE for
inferring the membership of individual records to the training of b. The pseudo-code of
this module is reported in Algorithm 8. In particular, given a set of records Dtest, this
module conducts the two attacks against the black-box and the explainer, respectively, and
for each record outputs their membership prediction inferred by the two attack models, i.e.,
the labeled datasets Dtest

b-member and Dtest
E-member (line 1-2, Alg. 8). The two sets of labeled

records are the base for computing and assessing the Privacy Risk Exposure for both the
black-box model and its explainer. The instantiation of this module strongly depends on
the attacks learned in the previous module and on the type of explainers (global vs. local).
Indeed, later in this chapter, we will show that this module is the main difference between
the assessment of global and local explainers.

Attack-Evaluation Module The output of the second module is then fed into the third
and final module, the Attack-Evaluation module. This module aims to analyze and quantify
the change of privacy risk exposure between the black-box model b and its explainer E.
The analysis can be performed using different metrics that evaluate the performance of the
attack models in predicting the membership of the individual records to the training data

165



Algorithm 9: Attack-Evaluation(Dtest
b-member, Dtest

E-member)

1 Cb-member ← ConfusionMatrix(Dtest
b-member)

2 CE-member ← ConfusionMatrix(Dtest
E-member)

3 [∆Acc,∆P ,∆R,∆F1 ]← Compute∆(Cb-member, CE-member)
4 return [∆Acc,∆P ,∆R,∆F1 ]

of b. This module first evaluates the confusion matrix for the attack against the black-box,
Ab (line 1, Algorithm 9), then for the attack against the explainer, AE (line 12 Algorithm
9). From these partial results, the module performs the evaluation in terms of standard ML
metrics. In particular, this module computes the difference in privacy exposure in terms of
accuracy (∆Acc) , precision (∆P ), recall (∆R) and f-measure (∆F1) of the two attack models.
In other words, each ∆µ is computed as ∆µ = ∆E

µ −∆b
µ, where µ denotes one of the metrics

among accuracy, precision and recall. Analyzing only accuracy for evaluating membership
inference attacks could be inadequate because these metrics associates equal costs to false
positive (false memberships) and false negative (false non-memberships). The first type
of error reduces the utility of the attack, while the second one reduces the identification
of real members. An attack should maximize the true positive rate (or recall) because it
measures how many members are identified. We highlight that negative values of ∆ for a
given measure µ mean that the explainer tends to mitigate the privacy risks of the black-
box, i.e., the explanation procedure is confusing the attack; positive values of ∆ instead
highlight higher privacy risks due to the level of transparency introduced by the explainer;
lastly, ∆ = 0 means that pairing an explainer with a black-box classifier is not increasing
the privacy risks.

12.1.1 REVEAL for global and local explainers

reveal is a framework for assessing the privacy exposure in black-boxes and their explain-
ers. The methodology presented is generic and can work with any ML model, as well as
any surrogate-based explainer, but needs to be instantiated differently depending on the
attack considered due to the different background knowledge possessed by the adversary.
In this thesis, we propose to instantiate such a framework with attacks belonging to the
family of membership attacks and we investigate the impact of different levels of adver-
sary background knowledge on the success of the attack. In particular, we investigate the
privacy exposure of global and local explainers under the attacks Mia, LabelOnly and
Aloa. Although we have already described Mia and LabelOnly in Chapter 3.2.2 and
Aloa in Chapter 11, in the following, we will report a compact description of these three
attack models for facilitating the reader in the understanding of the rest of the chapter.
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Membership Inference Attack Mia [109] assume that a ML algorithm is used to train
a classifier b that captures the relationship between data records and their labels. In order
to attack b trained on Dtrain

b , Mia defines an attack model A(·): it is a machine learning
model able to discern if a record was part of the training dataset Dtrain

b or not. Note that,
Dtrain

b is composed by (xi, yio)b, where yio is the true labels associated to xib. In practice, the
attack A(·) is a binary classifier that predicts In if the record was part of the training set or
Out otherwise. A(·) is trained on a dataset Dtrain

a : (xi, yi)a, where each xia is composed by
the label predicted by the classifier b for a record under analysis and its probability vector yi

of length L obtained by querying a shadow model si(·) mimicking b; while yia is the correct
membership label and that can be In or Out. The attack model A(·) is a voting model
composed of L machine learning models: one for each output class of the classifier model
under attack. The key factor in this attack is the knowledge of the probability vector: given
how the probabilities in yb are distributed around the true value of the record, the attack
model computes the membership probability Pr{(x, y) ∈ Dtrain

b }, which is the probability
that x belongs to the In class, i.e., it is part of the training set. To obtain the dataset
(xi, yi)a, on which the Mia model A(·) is trained, the authors used shadow models. In
the original paper, the authors assume a black-box setting in which there is no knowledge
about either the type of classifier to be attacked or the training dataset used to train it. In
the following, we use the term black-box model to indicate the classifier to be attacked. To
overcome the limitation of absence of knowledge on data and model, they employed a set
of k shadow models si(·): machine learning models trained to mimic the decisions of the
black-box model b(·) we would like to attack. These shadow models are trained on Dtrain

s :
(xi, yi)s, in which xis has the same format and similar distribution w.r.t. to the dataset
employed to train the black-box model X, while yis is the predicted class obtained querying
the black-box model b(·). After the training, we know which record was part of the training
dataset (class In) for each shadow model and which was part of the test one (class Out).
Hence, we can exploit this information to create a supervised training dataset for training
the attack model A(·), which is Dtrain

a .
We highlight that the datasets employed for training the shadow models are disjoint

from the unknown dataset used to train the black-box model. Shokri et al. [109] tested
different kinds of training data for the shadow models: (i) a random dataset, where data
are randomly generated and then labeled querying the black-box model; (ii) a statistical
dataset, in which the attacker knows the statistical distribution of the original training
dataset, hence he/she can exploit this information to create a synthetic dataset; (iii) a
noise dataset, in which the attacker knows a portion of data from the same distribution of
the original training dataset, but with some noise. These different types of training datasets
for the shadow models allow for privacy attacks of different strengths: from the least severe
attack, the random one, to the most powerful, i.e., the noise one. Clearly, the three types
of datasets correspond to three different levels of background knowledge of the adversary.
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Label Only Attack Membership Inference Attack Choquette-Choo et al. [125] de-
sign a variant of Mia which relaxes some requirements of the original attack. An in-depth
description of this attack model is reported in Section 3.2.2. Given a black-box model b,
LabelOnly ALO(·) targets it by exploiting only the hard labels, i.e., the output predic-
tions of the model under analysis. Hence, the probability vector yi, employed by Mia,
is not exploited in LabelOnly. In particular, it develops a procedure that derives the
robustness of a model to perturbations and uses it as a proxy for model confidence in its
predictions. The basic intuition is that records which exhibit high robustness belong to
the training dataset. ALO(·) exploits a dataset Dtrain

s for training only one shadow model
s(·), i.e., a ML model mimicking the decision of black-box model b. The dataset Dtrain

s :
(xi, yi)s is composed of records with the same format and similar distribution w.r.t. to
the dataset employed to train the black-box model b, and is labeled by the predicted class
obtained querying b. After training the shadow model, we know which record was part of
the training dataset (class In) of the shadow model and which was part of the test one
(class Out). For each tuple xis the algorithm generates a set of records resulting from its
perturbation and labels the generated records using the trained shadow model. Analyzing
the percentage of generated records having the same predicted class of xis, the algorithm
computes the robustness score of the black-box with respect to the xis classification. Then,
the attack uses an iterative thresholding procedure on the robustness scores, assigned to
each record of the training and testing dataset of the shadow model, to find a threshold
on the scores to well separate the records with class In and Out. The attack will use this
threshold for classifying new records as part of the training of the black-box or not.

Agnostic Label Only Attack Membership Inference Attack Aloa, a variant of
the LabelOnly attack, has been presented in Chapter 11. Similarly to the LabelOnly,
Aloa does not require access to the probability vector. However, this privacy attack has
weaker assumptions regarding LabelOnly, since it does not need to know any statistics
about the data used for training the ML model to attack. Aaloa(·) exploits a dataset Dtrain

s

for training only one shadow model s(·), i.e., a ML model mimicking the decision of black-
box model b. The dataset Dtrain

s : (xi, yi)s is composed of randomly generated records with
the same format of the training dataset of the black-box model b, and is labeled by the
predicted class obtained querying b. At this point, similarly to the other attacks, we know
which record was part of the shadow model’s training dataset (class In) and which was
part of the test (class Out). At this point, Aloa generates a set of synthetic records by
perturbing the record under analysis. This perturbation procedure is completely agnostic
and does not exploit any kind of statistics about the original dataset. As in LabelOnly,
the percentage of generated records having the same predicted class of the record under
analysis is used to compute the robustness score of the black-box. At this point, the
robustness score is exploited to find the threshold that best separates the classes In and
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Out.

REVEAL for global explainers

Instancing reveal for the assessment of the privacy risk exposure of global explainers is
straightforward. A global explainer based on a surrogate model E is a ML model which is
imitating the global behavior of a black-box classifier b. As a consequence, it is enough to
follow the procedure described in the previous section, implementing the training of one of
the membership-based attack models presented above. In particular, in the first module,
Attack-Training, trains both (i) a privacy attack, named Ab, against b is trained, being it
Mia, LabelOnly or Aloa; and (ii) a privacy attack, named AE , against the explainer E.
Then, these two attacks are fed into the Attack-Application module, which applies these
attacks to a test dataset, namely Dtest. The result will be to obtain two labeled datasets:
one which for each element of the dataset has the membership class In or Out determined
by the attack Ab, and one with the class determined by the attack AE . Lastly, in the Attack-
Evaluation module it is quantified the probability of success of the two attacks computing
the difference in the performance of both concerning precision, recall, and accuracy.

REVEAL for local explainers

When employing the reveal framework to assess the privacy vulnerability of a black-box
model and its local models, it is essential to tailor the attack methodology to the specific
scenario being analyzed, where E represents a collection of local surrogate models. In this
context, each local explainer is customized to describe a small portion of the decision bound-
ary of the black-box. Therefore, to ensure that the entire decision boundary of the black-box
model b is properly described, it is imperative to consider a variety of local explainers that
capture different types of local knowledge. This means that if an adversary wants to jeop-
ardize the privacy of a black-box attacking its local explainer, it needs to generate a set of
local explainers that all together approximate the black-box’s global behavior. To this end,
we propose a privacy attack procedure designed to target local surrogate-based explainers.
Specifically, the procedure assumes E as a set of local surrogates, i.e., E = e1, e2, . . . , en.
Following the pseudo-code outlined earlier in Algorithm 7, the AttackE is computed as an
ensemble of multiple attacks, with one attack tailored for each local surrogate model in E.
The resulting ensemble of attacks is denoted as AE = Ae1, Ae2 , . . . , Aen and is passed, along
with the attack tailored for the black-box model Ab, to the Attack-Application module. In
this setting, the module needs to evaluate the effectiveness of the ensemble of attacks AE .
The application of AE can be instantiated in different ways, depending on the specific in-
formation assumed by the attack. In the following, we present two ways for implementing
Attack-Application in the local setting depending on the knowledge the attack produces.
In particular, we consider two approaches: the Confidence Vector Approach, based on the
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prediction probabilities vectors, applicable to every membership attack based on ML at-
tack models, such as the original Mia; and the Threshold Approach, tailored for the attacks
which do not create a ML model, but a thresholding procedure, such as LabelOnly and
Aloa.

For the Confidence Vector Approach, we apply an evaluation procedure that ex-
ploits the prediction probabilities vectors outputted by the attack models. This setting is
tailored for methods such as Mia, which trains a ML attack model for each target out-
put from the black-box model. Having created these attacks based on ML models, we
assume to have access to the prediction confidence vectors, c = [cIn, cOut], where cIn is
the probability that the record belongs to class In, while cOut is the probability that the
record belongs to class Out and the sum of all the two elements is equal to 1. Hence, we
exploit this information to identify among the different attacks only the ones that are the
most confident record-wise. Technically, for each record x, we apply all the attack models,
obtaining a confidence vector for each one, i.e., Cx = {cA1 , cA2 , . . . , cAn}, where n is the
number of attacks for the n local explainers. At this point, for each vector cAi , we compute

the absolute difference between the two probabilities, i.e., di = |cAei
In − c

Aei
Out|.

Once we get the corresponding d value for each attack model, we select only the attack
models expressing significant confidence in their decisions. To this end, we select the models
Aej having a dj value above the average. In particular, we use the following constraint for
selecting the attack set: {Aej |dj ≥ (avg(d1, d2, . . . , dn) + σ(d1, d2, . . . , dn))}, where σ is the
standard deviation. Among the top attack models selected, we apply a majority voting
procedure to select the final membership prediction for each record.

In the case of Threshold Approach, the Attack-Evaluation strategy is tailored for
membership attacks that do not train ML models as attacks but use a thresholding proce-
dure. Examples of attacks of this family are LabelOnly and Aloa. In this setting, we
exploit the different information available, which is the threshold found and used by each
attack for the membership prediction. Given the record x under analysis, by applying the
attack Aei and we obtain a robustness score sAei , which is compared to the score threshold
stAei for determining In or Out class. Hence, we exploit the absolute distance between
the robustness score and the score threshold (i.e., di = |sAei − stAei |) to identify the most
reliable attacks. In particular, we are interested in the attacks which have a greater distance
between the robustness score of the record and the score threshold. We select only the top
attack models, exploiting the elbow method, i.e., we select the most important models with
a d value greater or equal to the one corresponding to the knee in the curve of the ordered d
values Formally, we select the following set of attack models: {Aej |dj > elbow(d1, . . . , dn)}.
We apply a majority voting strategy to obtain the final membership prediction on the set
of attack models selected. These two evaluation methods presented are only two possible
initializations, dependent on the privacy attack considered.
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Data Class Balance Metric dt rf trepan-rf nn trepan-nn

Adult
C1 = 24%
C0 = 76%

F11 0.63 (0.02) 0.70 (0.02) 0.98 (0.00) 0.67 (0.02) 0.77 (0.02)
P1 0.60 (0.01) 0.69 (0.02) 0.99 (0.00) 0.69 (0.02) 0.82 (0.00)
R1 0.58 (0.05) 0.87 (0.03) 0.98 (0.01) 0.67 (0.03) 0.73 (0.01)
F10 0.90 (0.00) 0.86 (0.00) 0.99 (0.00) 0.89 (0.00) 0.99 (0.00)
P0 0.87 (0.01) 0.95 (0.00) 0.98 (0.00) 0.90 (0.00) 0.99 (0.00)
R0 0.92 (0.01) 0.80 (0.01) 0.99 (0.00) 0.89 (0.01) 0.98 (0.01)

Synth

Class Balance Metric dt rf trepan-rf nn trepan-nn

C2 = 33%

C1 = 33%

C0 = 33%

F12 0.77 (0.01) 0.99 (0.01) 0.95 (0.01) 1.00 (0.00) 0.72 (0.01)
P2 0.96 (0.01) 0.98 (0.01) 0.94 (0.00) 1.00 (0.00) 0.75 (0.00)
R2 0.96 (0.01) 1.00 (0.00) 0.98 (0.01) 0.99 (0.01) 0.70 (0.01)
F11 0.81 (0.02) 0.89 (0.01) 0.82 (0.01) 0.93 (0.01) 0.67 (0.01)
P1 0.83 (0.00) 0.88 (0.00) 0.84 (0.00) 0.94 (0.00) 0.64 (0.00)
R1 0.80 (0.00) 0.89 (0.01) 0.80 (0.01) 0.93 (0.01) 0.72 (0.01)
F10 0.80 (0.02) 0.88 (0.01) 0.82 (0.01) 0.93 (0.01) 0.89 (0.01)
P0 0.80 (0.00) 0.89 (0.00) 0.80 (0.00) 0.92 (0.00) 0.90 (0.00)
R0 0.82 (0.00) 0.88 (0.01) 0.86 (0.01) 0.94 (0.01) 0.88 (0.02)

Bank

Class Balance Metric dt rf trepan-rf nn trepan-nn

C1 = 8%
C0 = 92%

F11 0.35 (0.01) 0.77 (0.01) 0.99 (0.01) 0.78 (0.01) 0.84 (0.01)
P1 0.38 (0.01) 0.83 (0.01) 0.98 (0.02) 0.77 (0.01) 0.86 (0.00)
R1 0.34 (0.01) 0.75 (0.04) 0.99 (0.01) 0.76 (0.04) 0.82 (0.01)
F10 0.95 (0.02) 0.92 (0.01) 0.99 (0.01) 0.77 (0.01) 0.95 (0.01)
P0 0.95 (0.00) 0.91 (0.00) 0.99 (0.00) 0.78 (0.00) 0.96 (0.02)
R0 0.95 (0.00) 0.92 (0.01) 0.98 (0.01) 0.79 (0.01) 0.95 (0.01)

Table 12.1: Predictive performance of the models for Adult, Synth and Bank dataset
on the test set. The results are validated with 3-fold cross-validation (we provide the mean
and the standard deviation between brackets). This table highlights the extremely good
predictive performance of trepan w.r.t. dt and rf, which is almost always the best model,
except for Synth. trepan was trained to exploit an enriched dataset, but in this case we
tested the predictive performance on the same test set of the black-boxes for comparison
purposes.

12.2 Experiments

In this section, we present the experiments conducted to validate our methodology. We
focus on tabular data and will use the datasets Adult, Bank and Synth introduced in
the previous chapter in Section 11.2.1. Section 12.2.1 presents the ML models employed in
reveal for our experiments.

12.2.1 Machine Learning models and Explainers

For validating the proposed assessment methodology we used Adult, Bank and Synth
datasets. We split each dataset into two subsets: (i) 70% of the original dataset (called Db)
is used to train and test the black-box models; (ii) the remaining 30% of the pre-processed
data dataset (called Ds) is used for the learning process of the different attacks.

On each of the three datasets we train different ML models: a simple Decision Tree (dt),
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a simple explainable by design method which is exploited as a benchmarking; a Random
Forest (rf), an ensemble method based on trees; and a feedforward Neural Network (nn).
We chose these ML methods to examine the behavior of our methodology on models that
have completely different structural characteristics. The training results of these models
are reported in Table 12.1. Overall, the performance of the models is good, except for the
dt, which suffers greatly from the imbalance between the classes, especially high in the
case of the Bank dataset.

After having trained the ML models, we also train the explainers. For the global case
we consider trepan, a tree-based explainer fitted on an enhanced version of the original
training dataset, labeled by the black-box model b. Therefore, we train a trepan-rf model
for explaining the rf and a trepan-nn model for the nn. The performance of the trepan
model is reported in Table 12.1, from which it is possible to see that the performance of the
trepan models is extremely good for all the datasets. For the local case, instead, we select
Lore, a post-hoc agnostic explainer that exploits a local dt surrogate model to extract
rules and counterfactual rules. In this case, we train one local surrogate model for each
record to explain. The average fidelity of these models is 0.97± 0.08.

12.2.2 Reveal results

After the fitting of the black-box models and their explainers, we can now test the perfor-
mance of reveal. Following the experimental setting presented in [109], we consider two
settings for the fitting of the shadow models: the worst case scenario, called noise dataset
from now on, and the best case scenario, called random dataset. In the case of the noise
dataset, we assume the attacker has access to a noise version of a set of data from the
same distribution of the data exploited in the training set of the black-box. Technically,
we add 10% of noise to a piece of the original dataset not exploited during the training of
the black-box. For the random case, instead, we assume the attacker does not know the
dataset used for training the black-box, apart from the number of variables of the original
data. Therefore, the adversary randomly generates a dataset and labels it by querying the
black-box. The choice of these two types of dataset is due to the different settings they
create: the noise dataset assumes a favorable setting for the attacker, who, through some
public information or misappropriation of information, is able to obtain a piece of data
from the same distribution as the original one, albeit with some noise. This setting is unre-
alistic, but it is also the one in which the Mia allows greater privacy exposure. In addition,
LabelOnly requires knowledge of statistical information from the original data, so this
setting is in line with the assumptions of this attack. For the second setting, on the other
hand, zero knowledge on the part of the attacker is assumed, and it is, therefore, a more
realistic but also more worrisome case, as having a privacy risk, in this case, is much worse
than the previous setting because it requires less knowledge on the part of the attacker. In
addition, it is interesting to see the behavior of the various attacks in this setting: based on
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the work in the literature, we expect to have a decrease in privacy exposure for Mia and
LabelOnly, while performance should remain roughly similar for the Aloa case, which is
specifically developed for this setting.

For each combination of black-box model, explainer and kind of dataset to generate the
shadow models, we train Mia, LabelOnly and Aloa, both for the global and the local
explanations. Due to the different methodologies applied for the local and global case, in
the following, we present the results separately.

Results attacking the Global Explainers To evaluate our methodology, we attack
both the black-box models and their surrogate-based explainers employing three different
attacks: Mia, LabelOnly and Aloa. For training each Mia, we train 6 shadow models
with the objective of mimicking the black-boxes. The shadow models are trained to employ
the best set of hyper parameters found using a grid search. All of the shadow models
have an accuracy above 80%. Then, from the shadow models, we extract the supervised
training dataset Dtrain

a to train the attack model. We remark that the Mia creates an
attack model composed of a ML model for each label L. Hence, in our case, we obtain
two (or three for the Synth dataset) rf attack models for each attack. This procedure is
applied only in the Mia attack since LabelOnly and Aloa only produce one final attack
model, independently of the number of classes the black-box model considers. Hence, for
Mia, for the different attack models, we first search for the best set of hyperparameters,
obtaining an accuracy above 94% for all the models when tested on a portion of test data
Dtest

a . For the LabelOnly and Aloa, we have just one shadow model, a rf as for the Mia,
with an accuracy above 80%. After the fitting of the shadow model, both of the models
require the computation of the robustness score, done creating 1000 perturbations for each
record, and the final attack model is not a ML model but a thresholding model, adaptively
selected depending on the data in input.

Regarding the global explainers, the results are reported in Table 12.2 and in 12.3,
respectively for the noise dataset and the random dataset. In the tables are reported
F1, P and R for the In class, which is the most important class for this setting, since
it represents the re-identified users. Most importantly, we report the ∆R, our evaluation
metric for testing the privacy exposure change. This metric reports the difference between
the recall of the black-box models w.r.t. the dt, as well as the difference between the recall
of the black-box models with respect to the corresponding trepan models. In this setting
the recall of the In class is particularly important since it describes how many training
records we can reconstruct. A positive value for ∆R means that the privacy exposure of
the dt or of the trepan model is higher w.r.t. the black-box models. From both of the
settings, i.e. noise or random, we can see that for all the models, we have a positive ∆R,
highlighting worse privacy issues when attacking the dt and trepan models w.r.t attacking
the black-boxes.
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For the Mia attack, we can notice that we have a higher privacy exposure for the dt and
the trepan models w.r.t. the black-boxes in both of the settings, i.e. noise and random.
The only exception to this trend is ∆R(dt − rf) for Bank, in which the rf has a higher
privacy exposure w.r.t. the dt, even if for a small amount. The negative values for this
metric may be due to the poorer performance of the dt in this setting, which also makes the
attack less robust. Regarding the black-boxes, it is possible to see that overall the random
poses a smaller privacy treats, which is insignificant in the case of nn (the highest recall in
this setting for nn is 0.33 for Synth).

We have the same trends presented for Mia also for LabelOnly, especially for the
noise setting, even if the ∆R(·) show lower values w.r.t. the Mia. This result is due to the
fact that this attack is better in attacking the black-box models w.r.t. Mia; hence there
is a privacy exposure both when attacking the explainers and the black-boxes. Regarding
the random case, LabelOnly obtains a higher privacy exposure w.r.t. Mia, even if with a
decrease in performance w.r.t. the noise case. In particular, LabelOnly can attack both
the nn and the rf for the Synth dataset. The trend of a higher privacy exposure for the
black-boxes in LabelOnly w.r.t. Mia can also be seen for the rf of Bank and for the
nn of Adult, even if in a smaller way. However, we remark that the Synth dataset is the
only synthetically generated dataset.

The performance of Aloa are similar to the LabelOnly for the noise case. We can
also notice similar results regarding ∆R(·): the values are lower w.r.t. Mia, but all the
attacks show a privacy exposure, both for the explainers and the black-boxes, the first
higher than the latter. For the random setting, instead, Aloa shows a higher privacy
exposure w.r.t. LabelOnly and Mia. This result was expected due to the procedure of
the attack. In fact, Aloa does not require any kind of background knowledge about the
original training dataset, not even its statistics. Therefore, having a privacy exposure with
this attack highlights an even more dangerous setting since the attacker can perform it with
the only assumption of knowing the shape of the input data, which is public information
for on-demand services.

Figure 12.2 reports the Critical Difference Plot, showing the overall ranking of the three
different attacks against global surrogate-based explainers and their black-boxes, both in
the noise and random settings. From this plot, we can observe that there is no statistical
difference among the attacks, showing an overall threatening setting for the privacy of
the people in the training datasets. Regarding the ranking, Aloa against the trepan
models is the one which exposes the highest privacy risk, followed by Mia and LabelOnly
against trepan. However, the three methods against the global explainers have close values
in the ranking, with a clear separation between them and the attacks against the black-
boxes. In fact, all the attacks against the black-boxes are less powerful w.r.t. the attacks
against the explainers, even if the level of privacy exposure remains high. For the attacks
against the black-boxes, the ranking is Aloa, LabelOnly and Mia, but the last one is
the lowest in the rank, significantly separated from Aloa and LabelOnly. We remark
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that, although this analysis highlights that the difference in performance among the three
attacks is not statistically significant, we need to consider that Aloa is working with very
poor background knowledge by the adversary.

Results attacking the Global Explainers To evaluate our methodology we attack
both the black-box models and their surrogate based explainers employing three different
attacks: Mia, LabelOnly and Aloa. For training each Mia, we train 6 shadow models
with the objective of mimicking the black-boxes. The shadow models are trained employing
the best set of hyper parameters found using a grid search. All of the shadow models have
an accuracy above 80%. Then, from the shadow models, we extract the supervised training
dataset Dtrain

a to train the attack model. We remark that the Mia assumes the attack
model as an ensemble model composed of a ML model for each label L. Hence, in our case,
we obtain two (or three for the Synth dataset) rf attack models for each attack. Also in
this case, for the different attack models, we first search for the best set of hyperparameters,
obtaining an accuracy above 94% for all the models, when tested on a portion of test data
Dtest

a . For the LabelOnly and Aloa we have just one shadow model, a rf as for the Mia,
with an accuracy above 80%. After the fitting of the shadow model, both of the models
require the computation of the robustness score, done creating 1000 perturbations for each
record, and the final attack model is not a ML model but a thresholding model, adaptively
selected depending on the data in input.

Regarding the global explainers, the results are reported in Table 12.2 and in 12.5,
respectively for the noise dataset and the random dataset. In the tables are reported
F1, P and R for the In class, which is the most important class for this setting, since it
represents the users that are re-identified. Most importantly, we report the ∆R, which is
our evaluation metrics for testing the changing in privacy exposure. This metric reports
the difference between the recall of the black-box models w.r.t. the dt, as well as the
difference between the recall of the black-box models with respect to the corresponding
trepan models. In this setting the recall of the In class is particularly important since it
describes how many training records we can reconstruct. A positive value for ∆R means
that the privacy exposure of the dt or of the trepan model is higher w.r.t. the black-box
models. From both of the settings, i.e. noise or random, we can see that for all the models
we have a positive ∆R, highlighting worse privacy issues when attacking the dt and trepan
models w.r.t attacking the black-boxes.

For the Mia attack, we can notice that we have a higher privacy exposure for the dt and
the trepan models w.r.t. the black-boxes in both of the settings, i.e. noise and random.
The only exception to this trend is ∆R(dt − rf) for Bank, in which the rf has a higher
privacy exposure w.r.t. the dt, even if for a small amount. The negative values for this
metric may be due to the poorer performance of the dt in this setting which make also the
attack less robust. Regarding the black-boxes, it is possible to see that overall the random
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poses a smaller privacy treats, which is insignificant in the case of nn (the highest recall in
this setting for nn is 0.33 for Synth).

We have the same trends presented for Mia also for LabelOnly, especially for the
noise setting, even if the ∆R(·) show lower values w.r.t. the Mia. This result is due to the
fact that this attack is better in attacking the black-box models w.r.t. Mia, hence there
is a privacy exposure both when attacking the explainers and the black-boxes. Regarding
the random case, LabelOnly obtains a higher privacy exposure w.r.t. Mia, even if with a
decrease in performance w.r.t. the noise case. In particular, LabelOnly can attack both
the nn and the rf for the Synth dataset. The trend of an higher privacy exposure for the
black-boxes in LabelOnly w.r.t. Mia can be seen also for the rf of Bank and for the
nn of Adult, even if in a smaller way. However, we remark that the Synth dataset is the
only synthetically generated dataset.

The performance of Aloa are similar to the LabelOnly for the noise case. We can
notice similar results also in the case of the ∆R(·): the values are lower w.r.t. Mia, but
all the attacks show a privacy exposure, both for the explainers and the black-boxes, the
firsts higher than the latter. For the random setting, instead, Aloa shows a higher privacy
exposure w.r.t LabelOnly and Mia. This result was expected due to the procedure of
the attack. In fact, Aloa does not require any kind of background knowledge about the
original training dataset, not even the statistics of it. Therefore, having a privacy exposure
with this attack highlights an even more dangerous setting, since the attacker can perform
it with the only assumption of knowing the shape of the input data, which is a public
information for on-demand services.

Figure 12.2 reports the Critical Difference Plot, showing the overall ranking of the three
different attacks against global surrogate-based explainers and their black-boxes, both in
the noise and random settings. From this plot we can observe that there is not a statistical
difference among the attacks, showing an overall threatening setting for the privacy of the
people in the training datasets. Regarding the ranking, Aloa against the trepan models
is the one which exposes the highest privacy risk, followed by Mia and LabelOnly against
trepan. However, the three methods against the global explainers have close values in the
ranking, with a clear separation between them and the attacks against the black-boxes. In
fact, all the attacks against the black-boxes are less powerful w.r.t. the attacks against the
explainers, even if the level of privacy exposure remains high. For the attacks against the
black-boxes, the ranking is: Aloa, LabelOnly and Mia, but the last one is the lower in
the rank, significantly separated from Aloa and LabelOnly.

176



Attack Data Metric dt rf trepan-rf

Mia

Adult

F1In
0.79 (0.01) 0.70 (0.01) 0.77 (0.01)

PIn 0.80 (0.02) 0.80 (0.03) 0.80 (0.00)
RIn 0.77 (0.01) 0.67 (0.01) 0.72 (0.02)
∆R 0.10 - 0.05

Metric dt nn trepan-nn
F1In

0.79 (0.01) 0.63 (0.02) 0.70 (0.01)

PIn 0.80 (0.02) 0.79 (0.00) 0.79 (0.03)
RIn 0.77 (0.01) 0.53 (0.03) 0.64 (0.00)
∆R 0.24 - 0.11

Metric dt rf trepan-rf

Synth

F1In
0.77 (0.01) 0.76 (0.01) 0.78 (0.00)

PIn 0.70 (0.01) 0.70 (0.00) 0.70 (0.00)
RIn 0.85 (0.02) 0.82 (0.01) 0.87 (0.03)
∆R 0.03 - 0.05

Metric dt nn trepan-nn
F1In

0.77 (0.01) 0.78 (0.02) 0.79 (0.01)

PIn 0.70 (0.01) 0.70 (0.00) 0.79 (0.03)
RIn 0.85 (0.02) 0.88 (0.03) 0.90 (0.00)
∆R 0.03 - 0.02

Metric dt rf trepan-rf

Bank

F1In
0.67 (0.01) 0.71 (0.03) 0.75 (0.03)

PIn 0.65 (0.02) 0.67 (0.02) 0.67 (0.00)
RIn 0.67 (0.01) 0.80 (0.02) 0.85 (0.00)
∆R -0.10 - 0.05

Metric dt nn trepan-nn
F1In

0.67 (0.01) 0.30 (0.00) 0.69 (0.00)

PIn 0.65 (0.02) 0.79 (0.01) 0.65 (0.00)
RIn 0.67 (0.01) 0.25 (0.02) 0.72 (0.02)
∆R 0.42 - 0.47

Attack Data Metric dt rf trepan-rf

LabelOnly

Adult

F1In
0.73 (0.01) 0.81 (0.01) 0.79 (0.00)

PIn 0.81 (0.01) 0.82 (0.00) 0.80 (0.00)
RIn 0.70 (0.02) 0.81 (0.01) 0.81 (0.03)
∆R -0.09 - 0.00

Metric dt nn trepan-nn
F1In

0.73 (0.01) 0.73 (0.02) 0.79 (0.01)

PIn 0.81 (0.01) 0.80 (0.00) 0.79 (0.03)
RIn 0.70 (0.02) 0.67 (0.03) 0.80 (0.00)
∆R 0.03 - 0.13

Metric dt rf trepan-rf

Synth

F1In
0.85 (0.01) 0.98 (0.01) 0.97 (0.00)

PIn 0.86 (0.01) 0.83 (0.00) 0.82 (0.00)
RIn 0.84 (0.02) 0.82 (0.01) 0.93 (0.03)
∆R 0.02 - 0.11

Metric dt nn trepan-nn
F1In

0.85 (0.01) 0.86 (0.02) 0.81 (0.01)

PIn 0.86 (0.01) 0.80 (0.00) 0.81 (0.03)
RIn 0.84 (0.02) 0.90 (0.03) 0.90 (0.00)
∆R -0.06 - 0.00

Metric dt rf trepan-rf

Bank

F1In
0.79 (0.01) 0.78 (0.01) 0.79 (0.00)

PIn 0.80 (0.01) 0.80 (0.00) 0.79 (0.00)
RIn 0.78 (0.02) 0.76 (0.01) 0.80 (0.03)
∆R 0.02 - 0.04

Metric dt nn trepan-nn
F1In

0.78 (0.01) 0.78 (0.02) 0.79 (0.01)

PIn 0.80 (0.01) 0.80 (0.00) 0.80 (0.03)
RIn 0.78 (0.02) 0.77 (0.03) 0.78 (0.00)
∆R 0.01 - 0.01

Attack Data Metric dt rf trepan-rf

Aloa

Adult

F1In
0.78 (0.01) 0.81 (0.01) 0.79 (0.00)

PIn 0.81 (0.01) 0.79 (0.00) 0.79 (0.00)
RIn 0.76 (0.02) 0.80 (0.01) 0.81 (0.03)
∆R -0.04 - 0.01

Metric dt nn trepan-nn
F1In

0.78 (0.01) 0.64 (0.02) 0.78 (0.01)

PIn 0.81 (0.01) 0.81 (0.00) 0.78 (0.03)
RIn 0.76 (0.02) 0.53 (0.03) 0.79 (0.00)
∆R 0.23 - 0.26

Metric dt rf trepan-rf

Synth

F1In
0.85 (0.01) 0.72 (0.01) 0.83 (0.00)

PIn 0.86 (0.01) 0.84 (0.00) 0.72 (0.00)
RIn 0.84 (0.02) 0.62 (0.01) 0.80 (0.03)
∆R 0.22 - 0.20

Metric dt nn trepan-nn
F1In

0.85 (0.01) 0.85 (0.02) 0.72 (0.01)

PIn 0.86 (0.01) 0.81 (0.00) 0.75 (0.03)
RIn 0.84 (0.02) 0.90 (0.03) 0.83 (0.00)
∆R -0.06 - -0.07

Metric dt rf trepan-rf

Bank

F1In
0.79 (0.01) 0.77 (0.01) 0.77 (0.00)

PIn 0.80 (0.01) 0.65 (0.00) 0.79 (0.00)
RIn 0.78 (0.02) 0.78 (0.01) 0.79 (0.03)
∆R 0.00 - 0.01

Metric dt nn trepan-nn
F1In

0.79 (0.01) 0.79 (0.02) 0.79 (0.01)

PIn 0.80 (0.01) 0.80 (0.00) 0.80 (0.03)
RIn 0.78 (0.02) 0.78 (0.03) 0.80 (0.00)
∆R 0.00 - 0.02

Table 12.2: Results of the application of Mia, LabelOnly and Aloa with the setting
noise for global explainers. The values reported are the mean over a 3 fold cross validation,
with the standard deviation between brackets.

177



Attack Data Metric dt rf trepan-rf

Mia

Adult

F1In
0.72 (0.01) 0.49 (0.01) 0.78 (0.01)

PIn 0.78 (0.02) 0.77 (0.01) 0.79 (0.00)
RIn 0.66 (0.01) 0.36 (0.01) 0.77 (0.00)
∆R 0.30 - 0.41

Metric dt nn trepan-nn
F1In

0.72 (0.01) 0.43 (0.02) 0.77 (0.01)

PIn 0.78 (0.02) 0.70 (0.01) 0.78 (0.01)
RIn 0.66 (0.01) 0.32 (0.01) 0.76 (0.00)
∆R 0.33 - 0.44

Metric dt rf trepan-rf

Synth

F1In
0.80 (0.01) 0.70 (0.01) 0.77 (0.00)

PIn 0.71 (0.01) 0.85 (0.00) 0.70 (0.00)
RIn 0.98 (0.04) 0.78 (0.01) 0.84 (0.03)
∆R 0.20 - 0.06

Metric dt nn trepan-nn
F1In

0.80 (0.01) 0.45 (0.02) 0.80 (0.04)

PIn 0.71 (0.01) 0.69 (0.00) 0.70 (0.04)
RIn 0.98 (0.04) 0.33 (0.02) 0.90 (0.02)
∆R 0.65 - 0.57

Metric dt rf trepan-rf

Bank

F1In
0.70 (0.02) 0.68 (0.03) 0.73 (0.03)

PIn 0.65 (0.04) 0.71 (0.02) 0.64 (0.06)
RIn 0.70 (0.10) 0.65 (0.02) 0.85 (0.10)
∆R 0.05 - 0.20

Metric dt nn trepan-nn
F1In

0.70 (0.02) 0.27 (0.04) 0.65 (0.02)

PIn 0.65 (0.04) 0.70 (0.10) 0.65 (0.03)
RIn 0.70 (0.10) 0.23 (0.02) 0.69 (0.10)
∆R 0.47 - 0.46

Attack Data Metric dt rf trepan-rf

LabelOnly

Adult

F1In
0.30 (0.01) 0.46 (0.01) 0.78 (0.01)

PIn 0.78 (0.02) 0.77 (0.01) 0.79 (0.00)
RIn 0.55 (0.01) 0.35 (0.01) 0.80 (0.00)
∆R 0.20 - 0.50

Metric dt nn trepan-nn
F1In

0.30 (0.01) 0.33 (0.02) 0.67 (0.01)

PIn 0.78 (0.02) 0.77 (0.01) 0.68 (0.01)
RIn 0.55 (0.01) 0.52 (0.01) 0.66 (0.00)
∆R 0.03 - 0.14

Metric dt rf trepan-rf

Synth

F1In
0.79 (0.01) 0.80 (0.01) 0.80 (0.00)

PIn 0.80 (0.01) 0.78 (0.00) 0.79 (0.00)
RIn 0.78 (0.04) 0.76 (0.01) 0.80 (0.03)
∆R 0.02 - 0.04

Metric dt nn trepan-nn
F1In

0.79 (0.01) 0.82 (0.02) 0.73 (0.02)

PIn 0.80 (0.01) 0.80 (0.00) 0.68 (0.01)
RIn 0.78 (0.04) 0.77 (0.02) 0.77 (0.02)
∆R 0.01 - 0

Metric dt rf trepan-rf

Bank

F1In
0.72 (0.02) 0.70 (0.03) 0.72 (0.03)

PIn 0.79 (0.03) 0.65 (0.02) 0.76 (0.06)
RIn 0.76 (0.12) 0.73 (0.02) 0.75 (0.10)
∆R 0.03 - 0.02

Metric dt nn trepan-nn
F1In

0.72 (0.02) 0.47 (0.04) 0.57 (0.01)

PIn 0.79 (0.03) 0.65 (0.06) 0.66 (0.00)
RIn 0.76 (0.12) 0.46 (0.00) 0.61 (0.01)
∆R 0.30 - 0.20

Attack Data Metric dt rf trepan-rf

Aloa

Adult

F1In
0.77 (0.01) 0.82 (0.01) 0.77 (0.01)

PIn 0.82 (0.02) 0.78 (0.01) 0.77 (0.00)
RIn 0.76 (0.01) 0.78 (0.01) 0.82 (0.00)
∆R 0.02 - 0.04

Metric dt nn trepan-nn
F1In

0.77 (0.01) 0.63 (0.02) 0.77 (0.01)

PIn 0.82 (0.02) 0.81 (0.01) 0.77 (0.01)
RIn 0.76 (0.01) 0.52 (0.01) 0.77 (0.02)
∆R 0.24 - 0.25

Metric dt rf trepan-rf

Synth

F1In
0.86 (0.03) 0.71 (0.00) 0.83 (0.00)

PIn 0.84 (0.01) 0.82 (0.00) 0.73 (0.00)
RIn 0.83 (0.03) 0.70 (0.00) 0.80 (0.03)
∆R 0.13 - 0.10

Metric dt nn trepan-nn
F1In

0.86 (0.03) 0.84 (0.01) 0.72 (0.00)

PIn 0.84 (0.01) 0.80 (0.10) 0.72 (0.02)
RIn 0.83 (0.03) 0.89 (0.02) 0.86 (0.01)
∆R 0.06 - 0.03

Metric dt rf trepan-rf

Bank

F1In
0.76 (0.20) 0.85 (0.03) 0.76 (0.01)

PIn 0.77 (0.01) 0.64 (0.02) 0.79 (0.01)
RIn 0.75 (0.02) 0.78 (0.02) 0.80 (0.00)
∆R 0.03 - 0.02

Metric dt nn trepan-nn
F1In

0.76 (0.20) 0.77 (0.00) 0.79 (0.01)

PIn 0.77 (0.01) 0.10 (0.10) 0.78 (0.00)
RIn 0.75 (0.02) 0.74 (0.11) 0.78 (0.09)
∆R 0.01 - 0.04

Table 12.3: Results of the application of Mia, LabelOnly and Aloa with the setting
random for global explainers.
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Figure 12.2: Critical difference plot for Nemenyi test with α = 0.05 for the attacks per-
formed on the global explainers and their black-boxes. The values reported results from
the ranking procedure. They highlight that Aloa, Mia and LabelOnly against trepan
have a small difference among them, while the attacks against the black-boxes are lower in
the rank and clearly separated from the first three.

Results attacking the Local Explainers In this setting, we attack the local surrogate
explainers. Differently from the global case, the local surrogate is a simple ML model which
describes the behaviour of the black-box model close to the record under analysis and not
the overall behaviour, as in the case of the global explainers. For this reason, we apply
a different procedure presented in the methodology. In this setting, the procedure works
as follows: firstly, in the Attack training procedure, we fit an attack for each surrogate
model created (E = {e1, e2, ..., en}) together with the attack against the black-box model
b, obtaining AE(·), Ab(·). Then, in the Attack application procedure, we consider the
resulting attack models as part of an ensemble classification method, having AE(·) as an
ensemble of different attacks. The last procedure, Attack evaluation, can be instantiated
in different ways, depending on the attack considered. In 12.1.1, we presented the different
instantiation of reveal in case the attack produces the prediction probabilities vector or
not. In this experiment, we use the approach which exploits the probability vectors for
Mia, while we exploit the other approach for LabelOnly and Aloa.

For the experiments conducted, for each dataset considered we select a set of records
to explain from the test set exploiting a K-means clustering procedure, with k being the
best value for the dataset under analysis. The choice of k is made by exploiting the elbow
method. Due to computational limitations, we explain 3 records for each quantile of each
cluster. Regarding the training of the local surrogate models obtained with Lore, the
procedure requires synthetically generating a local neighbourhood around the record x
under analysis and then fitting a local surrogate dt on the generated neighbours. Therefore,
there are different parameters to set, in particular for this setting are important the kind
of generation of the neighbourhood and the number of synthetic records to create. We
conducted a search on these variables, obtaining similar results when considering the genetic
and random generation, genetic and probabilities generation and the counterfactual first
search generation. The other kinds of generations, such as the random one, show lower
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performance. Regarding the number of synthetic records to create, we use 10000. Similarly
to the case of the global explainers, for each local surrogate model we train a Mia attack,
with 6 shadow models, with accuracy above 80%. Also in this case, the models created for
the attack are all rf. The same setting is applied to LabelOnly and Aloa.

The results of the attacks against the local explainers are reported in Table 12.2 and in
12.3, respectively for the noise dataset and the random dataset. In this setting, we observe
a lower privacy exposure of the explainers w.r.t. the global setting. This result can be
observed by analyzing the values of the ∆R: while in the global case, we mostly have positive
values, highlighting an increase in privacy exposure when attacking the explainers instead
of the black-boxes, in the local case, the values are closer to zero, with some negative values,
implying that attacking the black-boxes produce a higher privacy exposure than attacking
the local explainers. Regarding the noise case, Mia produces the highest privacy exposure,
with positive ∆R for all the configurations considered. However, the setting changes in the
random case, having a lower privacy exposure for Mia and LabelOnly. Aloa, instead,
gives similar results both for the noise and random case. This result can also be seen in
Figure 12.3, in which is presented a Critical Difference plot for the Recall of the various
attacks performed against the local explainers and their black-boxes. Also in this case, as in
the global case, there is not a significant statistical difference among the attacks presented.
However, in this plot, we can observe that Aloa and LabelOnly against the black-boxes
are the highest in the rank, showing a higher privacy exposure w.r.t. Aloa against Lore
and Mia against Lore, which is in the fourth position, equally matched and significantly
separated from the first two. mia occupies the lowest positions of the ranking against the
black-boxes and LabelOnly against the local models, with a clear distinction between
them and the first fourth of the rank.
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Attack Data Metric rf nn

Mia

Adult

F1In
0.60 (0.00) 0.43 (0.02)

PIn 0.54 (0.02) 0.30 (0.00)
RIn 0.68 (0.02) 0.70 (0.02)

∆RIn 0.01 0.17
Metric rf nn

Synth

F1In
0.73 (0.03) 0.70 (0.02)

PIn 0.71 (0.01) 0.66 (0.00)
RIn 0.84 (0.02) 0.70 (0.00)

∆RIn 0.02 0.18
Metric rf nn

Bank

F1In
0.77 (0.01) 0.69 (0.01)

PIn 0.64 (0.02) 0.68 (0.03)
RIn 0.83 (0.00) 0.69 (0.00)

∆RIn 0.03 0.44

Attack Data Metric rf nn

LabelOnly

Adult

F1In
0.77 (0.23) 0.28 (0.10)

PIn 0.78 (0.78) 0.73 (0.12)
RIn 0.75 (0.21) 0.30 (0.10)

∆RIn -0.06 (0.01) -0.37 (0.04)
Metric rf nn

Synth

F1In
0.72 (0.02) 0.75 (0.07)

PIn 0.68 (0.03) 0.65 (0.08)
RIn 0.78 (0.01) 0.82 (0.02)

∆RIn -0.04 0.08
Metric rf nn

Bank

F1In
0.58 (0.02) 0.50 (0.00)

PIn 0.66 (0.05) 0.64 (0.01)
RIn 0.52 (0.00) 0.48 (0.05)

∆RIn -0.24 0.29

Attack Data Metric rf nn

Aloa

Adult

F1In
0.74 (0.00) 0.45 (0.02)

PIn 0.79 (0.02) 0.51 (0.06)
RIn 0.72 (0.02) 0.40 (0.03)

∆RIn -0.08 (0.01) -0.13 (0.04)
Metric rf nn

Synth

F1In
0.73 (0.00) 0.62 (0.00)

PIn 0.70 (0.01) 0.60 (0.01)
RIn 0.76 (0.02) 0.65 (0.00)

∆RIn -0.10 (0.01) -0.25 (0.04)
Metric rf nn

Bank

F1In
0.65 (0.01) 0.43 (0.01)

PIn 0.58 (0.02) 0.47 (0.00)
RIn 0.71 (0.04) 0.58 (0.09)

∆RIn -0.07 (0.01) -0.20 (0.04)

Table 12.4: Results of the application of Mia with the setting noise locally.

Attack Data Metric rf nn

Mia

Adult

F1In
0.41 (0.00) 0.46 (0.03)

PIn 0.30 (0.00) 0.70 (0.01)
RIn 0.64 (0.01) 0.35 (0.04)

∆RIn 0.28 0.03
Metric rf nn

Synth

F1In
0.64 (0.03) 0.38 (0.00)

PIn 0.60 (0.01) 0.35 (0.04)
RIn 0.71 (0.02) 0.38 (0.01)

∆RIn -0.07 +0.05
Metric rf nn

Bank

F1In
0.16 (0.05) 0.46 (0.03)

PIn 0.27 (0.02) 0.34 (0.09)
RIn 0.12 (0.01) 0.90 (0.01)

∆RIn -0.53 -0.13

Attack Data Metric rf nn

LabelOnly

Adult

F1In
0.67 (0.23) 0.34 (0.10)

PIn 0.77 (0.25) 0.73 (0.12)
RIn 0.60 (0.21) 0.20 (0.10)
∆RIn +0.25 -0.22

Metric rf nn

Synth

F1In
0.71 (0.02) 0.63 (0.01)

PIn 0.65 (0.04) 0.70 (0.01)
RIn 0.76 (0.02) 0.60 (0.00)
∆RIn 0.00 -0.17

Metric rf nn

Bank

F1In
0.52 (0.03) 0.47 (0.00)

PIn 0.65 (0.20) 0.60 (0.00)
RIn 0.50 (0.00) 0.44 (0.01)
∆RIn -0.23 -0.02

Attack Data Metric rf nn

Aloa

Adult

F1In
0.69 (0.02) 0.42 (0.05)

PIn 0.75 (0.02) 0.50 (0.01)
RIn 0.66 (0.01) 0.38 (0.01)

∆RIn 0.12 -0.02
Metric rf nn

Synth

F1In
0.70 (0.01) 0.59 (0.03)

PIn 0.71 (0.04) 0.60 (0.03)
RIn 0.70 (0.00) 0.60 (0.01)

∆RIn 0.00 -0.10
Metric rf nn

Bank

F1In
0.68 (0.04) 0.45 (0.04)

PIn 0.65 (0.00) 0.36 (0.00)
RIn 0.69 (0.02) 0.60 (0.00)

∆RIn -0.09 -0.14

Table 12.5: Results of the application of Mia with the setting rand locally.
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Figure 12.3: Critical difference plot for Nemenyi test with α = 0.05 for the attacks per-
formed on the local explainers and their black-boxes. The values reported results from the
ranking procedure. Aloa and Mia against the black-boxes are the highest in the rank,
posing a higher privacy threat. The ranking values show a clear separation between them
and the other attacks.

Analysis on the number of records explained. For the local setting, the attack model
AE is an ensemble of multiple attacks, one against each of the local surrogate models created
exploiting Lore. For this set of experiments, we create a local surrogate model for a set
of records selected based on a K-means clustering procedure, explaining 3 records for each
quantile of each cluster. Intuitively, it is the expectation that as the number of records
explained increases, the privacy attack will yield better and better results. This is because
explaining more records implies having more local surrogates, which thus better describes
the data space under analysis. Consequently, attacking more local models that better
describe the space under analysis should also improve the ensemble method of attacks.
To validate this insight, we increase the number of records explained for each cluster. In
particular, we consider Aloa with the noise dataset, which is the setting that shows a higher
privacy exposure, and increase the number of elements for each of the datasets considered,
ranging from 40 records up to 120 records. The results are reported in Figure 12.4. From
this plot, it is possible to observe that, with a small number of records, the performance
of the attack is low, highlighting that with few local explanations, the risk of privacy is
low. This result aligns with our expectations, as limited local surrogate availability cannot
represent all facets of the data space under analysis. However, the increase in the number of
records explained also leads to an increase in privacy exposure, reaching a plateau starting
from 80 records explained for all the datasets, i.e., starting from 80 records the increase in
the number of records do not show an increase in privacy exposure. This behaviour in the
analysis of the privacy risk is a finding already reported in literature [2] for the setting of
Data Privacy.

182



Figure 12.4: Results of Aloa increasing the number of records explained for the local
setting. Starting from 80 records explained all the datasets reach a plateau in the privacy
exposure.

12.3 Discussion

In this Chapter we introduce reveal, a framework designed to assess the privacy exposure
of black-box models and their surrogate-based explainers, both local and global. This
method is applicable to various types of black-box models and privacy attacks, making it
a generic tool for privacy assessment.

Through our analysis, we uncover that attacking the privacy of explainers gives privacy
exposures. The level of privacy risk varies depending on the specific privacy attack em-
ployed. Aloa stands out as a concerning privacy attack that requires minimal knowledge
assumptions from the attacker, yet still achieves significant privacy breaches.

In our investigation, we observe that global explainers exhibit higher privacy exposure
compared to their corresponding black-box models. This disparity is not observed in the
case of local explainers, where the level of privacy exposure remains the same or even
decreases compared to their black-box counterparts.

The results obtained from reveal highlight a worrying scenario in which user privacy is
at risk, particularly when global explainers are used. These findings emphasize the delicate
balance that must be maintained between explainability and privacy in the development of
AI systems.

Understanding the trade-offs and vulnerabilities associated with explainability tech-
niques is crucial for ensuring the privacy and security of sensitive user data. Further re-
search and attention should be directed towards developing privacy-preserving methods
for explainability, enabling the development of AI systems that provide both transparent
decision-making processes and robust privacy protection.
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Chapter 13

Conclusion

In this Ph.D. Thesis, we have addressed two main research questions. The first concerns the
possibility of providing stable and actionable explanations that aid users in comprehending
how Artificial Intelligence systems operate and the reasons that lead them to make par-
ticular decisions. The second research question revolves around the relationship between
Privacy and Explainability. Both ethical values are essential in establishing Trustworthy
Artificial Intelligence, but fulfilling one may potentially harm the achievement of the other
and vice versa. As a result, we examined the relationship between these two ethical values,
analyzing both their synergies and tensions.

The Thesis starts by presenting the relevant literature for this work, namely Ma-
chine Learning, Privacy, and Explainable AI. After laying the foundation for notation and
methodologies, we presented the work conducted to answer the two research questions.

The first question originated from a benchmark analysis of the most popular post-hoc
and local explanation methods for tabular data. In particular, we focused on: Lime, Lore,
Shap, Dalex and Anchor. Some of them are feature importance methods, which output
an importance value for each feature (Lime, Shap, Dalex), and the others are rule-based
methods. Hence the output is in the form of logic rules, composed of a set of premises and a
consequence. We analyzed these methods by exploiting the state-of-the-art metrics in this
field, such as stability, fidelity and monotonicity. The results of this benchmark highlighted
that the available methods in the literature still suffer from many limitations: most of the
explainers are unstable. Hence if we feed the same record to the explainer more times, the
output explanations will be different. This is a worrying problem since it makes the end
users unsure about the reliability of the model itself. The situation does not improve when
considering other metrics. In fact, none of the analyzed methods gave satisfactory results
in terms of insertion and deletion metrics. This type of metric is essential in the context
of feature importance explanations since it analyzes the goodness of the result obtained
by directly testing the classifier. If the explanation states that a given feature is very
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important, this metric eliminates (or inserts) that feature to see an actual change toward
the final prediction. Unfortunately, a negative result in this context further undermines
the reliability of Machine Learning models and their explainers. Therefore, it is clear
that the various methods proposed in the literature still suffer from several limitations. In
addition, the feature importance-based methods propose explanations that are more difficult
to understand for a non-expert user, while the rule-based ones are easier to understand
thanks to the logical nature of the rules. In particular, the explainable methods available
are unstable, slow and difficult to understand for a non-expert user. To address these issues,
we have proposed loresa, which is a black-box agnostic method for local explanations that
provide informative, factual decision rules and actionable counterfactual rules. We first
formalized the explanation algorithm and conducted an extensive experimental evaluation,
comparing loresa with the state-of-the-art methods. The results demonstrate that loresa
significantly improves the stability of explanations while ranking top or runner-up in several
other quantitative metrics. We achieve stability of the explanations by utilizing a novel
bagging-like approach in generating and aggregating several local decision trees.

There are a few potential directions for future work to expand the applicability of
loresa. Firstly, the synthetically generated instances may not respect the correlations
among attributes, such as age and education level. Hence, it is worthwhile extending the
approach by integrating domain knowledge, such as dependencies or causal relationships
among attributes in the neighborhood generation and/or in the inference of the interpretable
predictor. Finally, loresa assumes that the black-box can be queried as many times as
required. In cases where this is not possible, the neighborhood generation phase must
consider constraints on the number of admissible queries, such as adopting an active learning
variant of the genetic approach.

We then analyzed a possible synergy between Data Privacy and Explainable Artificial
Intelligence: how to increase user self-awareness in the task of privacy risk assessment. In
particular, we proposed Expert, a framework that addresses the computational complexity
issue of the state-of-the-art methodology for privacy risk assessment, namely PRUDEnce,
and enhances users’ awareness by leveraging Machine Learning models to predict individual
privacy risks. Expert also exploits local explainers to produce explanations of predicted
risks. The proposed framework is modular, so that it can be tailored to specific data in-
put and explanation requirements to achieve desired outcomes. This Thesis introduces two
main variants of the Expert framework, specifically designed for analyzing human mobility
data. This type of data is considered highly sensitive due to its particular structure. The
first variant focuses on mobility profiles composed of features extracted from the trajectories
and modeling the mobility behaviors of individuals; the second variant works directly with
the raw trajectory data. For both variants, a comprehensive analysis is presented on the
privacy risk prediction module, including an evaluation of the best classifiers, depending on
the specific task at hand, as well as on the privacy risk explanation module. Regarding the
setting based on mobility profiles, Expert provides good prediction performance as well as
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high fidelity explanations. However, the usage of features makes the comprehensibility of
the explanation difficult, if not impossible. In fact, these explanations are tailored just for
experts, which can understand the meaning of the features exploited during the training
phase of the Machine Learning model and hence, (s)he can gain an overall understand-
ing about the reasons that lead the classifier to a particular prediction. After obtaining
promising results with the first variant of Expert that deals with mobility tabular data,
we proceeded to analyze the second setting, which involves analyzing the privacy risk di-
rectly on the raw trajectories. To this end, we conducted an investigation to develop a
high-performing classifier for sequential data that takes into account the time consump-
tion of the training procedure to achieve real-time interaction. In addition to the privacy
risk prediction module, we also analyzed the privacy risk explanation module, developing
a visualization tool that enables users to visualize their mobility behavior on a map, with
different visualizations for the locations that are more relevant for the prediction under
analysis. We provided to the end-user both an aggregate visualization of the entire dataset
and an individual visualization. The first one is tailored to analysts, having the objective
to explore and analyze the overall mobility behavior of the dataset under analysis. The
individual visualization, instead, is tailored to the end-user interested in observing her/his
trajectories, with the most important locations for the risk prediction highlighted.The ob-
jective of Expert is to help users understand the privacy risks associated with their data
and take necessary steps to protect their privacy. However, there are two areas for future
improvement. Firstly, a major improvement is needed in the context of explanations. In
fact, while in the context of tabular data there are many explainers available, such as Lime,
Shap and Lore, in the context of raw trajectories, we only exploited Shap with a masking
methodology due to the necessity of providing online explanations. However, other types
of explainers are also available and could be explored further to achieve faster and more
quantitative explanations. Secondly, regarding Expert for trajectories, the visualization
aspect of the framework can be enhanced by developing a visual analytics environment that
couples privacy risk prediction and visualization. This would allow analysts to modify data
and reassess privacy risks in an interactive manner, and experiment with different protec-
tion measures before releasing the data. Additionally, integrating additional data quality
measures could further aid in developing appropriate privacy protection measures.

Lastly, we analyzed the dangers of using Explainable Artificial Intelligence with respect
to the Privacy, focusing on the privacy exposure of explanation methods. We introduced
a novel privacy attack called Aloa, which is a variant of the LabelOnly approach. It
can be used against black-box models and it is completely data agnostic, meaning it does
not require any knowledge of the statistical distributions and domains of the features in
the training data. Our experiments show that Aloa outperforms the traditional Labe-
lOnly attack in terms of attack accuracy while assuming an adversary with weaker prior
knowledge. This is a significant improvement in the context of privacy assessment, where
any gain in performance can provide valuable, sensitive insights into the individuals repre-
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sented in the data. In addition, the agnostic nature of our attack raises concerns from a
privacy protection perspective, as it can be easily executed without any specific knowledge
or assumptions. We also found that Aloa is stable in terms of prediction performance and
performs better in attacking regularized models compared to other attacks. In conclusion,
Aloa is a more robust and effective method for evaluating the privacy of ML models.
Then, we presented reveal, a framework for assessing the privacy exposure of the black-
box models and their surrogate-based explainers, being them local or global. The method
proposed is generic and can be exploited for every kind of black-box model and of privacy
attacks. The analysis conducted shows that attacking the privacy of the explainers, being
local or global, gives rise to privacy exposures. Depending on the privacy attack considered,
we have different levels of privacy risks, rising to particularly concerning situations with
Aloa, a privacy attack that has a very little assumption of knowledge on the part of the at-
tacker and yet still manages to achieve good results in terms of privacy breaches. However,
global explainers show higher privacy exposure concerning their black-boxes, while this is
not the case for local explainers, which show similar or lower levels of privacy exposure than
their corresponding black-boxes.

The results obtained from the use of reveal raise concerns about the potential risks
regarding the privacy of the users represented in the training data of machine learning
models, mainly when global explainers are utilized. These findings emphasize the delicate
balance that must be achieved between Explainable AI and Privacy in the development of
Artificial Intelligence systems. As a future direction, we identify the need to develop miti-
gation strategies for explainers, which is a challenging task as it involves a trade-off among
the accuracy of the explainer, the level of privacy protection, and the comprehensibility of
the explanation. A possible approach could be to introduce generalization mechanisms for
the explainers to find the optimal balance among these characteristics.
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Chapter 14

Data and Machine Learning
Models

In this Ph.D. Thesis we focus our attention on Machine Learning models for tabular and
sequence data. In this Chapter, we first present the terminology and the structure of the
kinds of data in input. Following, we describe the state of the art of Machine Learning
models for tabular and sequence data, with a focus on the methods employed in the exper-
iments of this Thesis. This Chapter is organized as follows: in Section 14.1 we formalize
the data considered, presenting the terminology related and the mathematical formulation
of this kind of data. Then, in Section 14.2 we propose the state-of-the-art classifiers for
tabular data (Section 14.2.1), and the ones for the sequence-based data (Section 14.2.2).

14.1 Data

In this Section we introduce the formal definition of the data exploited in this Thesis. In
particular, we first present the formalization of the tabular data. This kind of data is
exploited through the remaining of this Thesis. Following, we present the formalization of
the sequence data. For this last kind of data, we focus on the formalization of sequential
data for human mobility, namely trajectories, which are used in Chapter 9 in the context
of privacy risk assessment, particularly relevant for this kind of data.

14.1.1 Tabular Data

A tabular dataset is a collection of data in the form of a table in which each column
represents a variable and each row corresponds to a record of the dataset, e.g. a matrix.
The values of the variables may be numeric, continuous or integers, depending on the
variable under analysis, or categorical, as in the case of representation of information such
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as sex, colors, locations, or ordinal, in the case of categorical information in which there is a
relative order, as an example, the size of clothes. Technically, we refer to a tabular dataset
as X = (N,M), in which N is the number of rows, or records, and M is the number of
columns.

14.1.2 Sequence Data

Another kind of data exploited in this Thesis is the sequential one. In this case, instead
of having a matrix representation of the dataset, each record is a list of events, with a
relative order among them. A sequence x = {t1, t2, . . . , tm} ∈ Rm×d is an ordered set of
m real-valued observations (or time steps), with dimensionality d. A sequence, also called
time series, is univariate when d = 1, while, when d > 1 we name x a multivariate time
series. This kind of data is extremely used in every day life: recording the values a sensor
is registering is a sequential data, as well as the items brought at the supermarket and the
web logs. Among them, for this Thesis we focused on a particular kind of sequential data:
the trajectories from human mobility. In fact, human mobility data contain information
about the movement of individuals during a given period of observation. They are typically
collected by electronic devices, such as mobile phones and GPS devices installed in vehicles
[218]. All the movements of a user in the period of observation are described using a
sequence of spatio-temporal data points, i.e., a trajectory. In other words, each sequence
item is a pair composed of a geographic location, often expressed in coordinates (generally
latitude and longitude), and a timestamp indicating when the user stopped in or went
through that location.

Trajectory A human mobility trajectory is a temporally ordered sequence of pairs, Tu =
(l1, t1), (l2, t2), . . . , (lm, tm), where li = ⟨xi, yi⟩ is the location identified by the latitude xi
and longitude yi, while ti (i = 1, . . . ,m) denotes the corresponding timestamp such that
∀1 ≤ i ≤ m ti < ti+1.

We denote by D = T1, . . . , Tn the mobility dataset that describes the complete history
of movements of n individuals, in a specific period of observation.

14.2 Machine Learning Models

In this Ph.D. Thesis different classifiers for different tasks and kind of data are employed.
Research in this branch of science has been receiving great interest for many years now, and
because of this there are categorizations and different types of methods. In the following,
we present the basic concepts of Machine Learning, and then focus more on the classifiers
for specific data and tasks, starting from the one for tabular data, in Section 14.2.1, and
then focusing on the classifiers for sequence data, in Section 14.1.2.
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In the context of Machine Learning models (in the following referred to as ML for
short), the first division is among supervised or unsupervised ML algorithms. Each of these
approaches identifies a different objective in ML. In the rest of this Thesis, supervised
models are employed.

In the case of supervised learning algorithms, we possess a ground truth knowledge of our
data, that we can exploit during the training of the machine learning model. Technically,
the dataset employed for the training of the model has a label associated to each record, de-
noting the target value of the record. In this way, the objective of the classifier is to learn to
correctly label each record with the correct target value. To achieve this goal, the objective
of a supervised learning model is to learn a function that approximates the relationships
between the input records and their output values. In the setting of supervised learning
algorithms, we can have two main kinds of tasks: classification and regression methods.
In the case of classification algorithms, the goal is to predict a discrete or categorical class
label. Therefore, the ML model has to predict the class the observation belongs. Being
them supervised algorithms, they employ already known records with associated output
class to learn the relations between data and classes. There are several learning algorithms
that belong to this category, such as Decision Trees, Logistic Regression, Support Vector
Machine, and the majority of the ensemble methods. In the case of regression models,
instead, the goal is to predict a continuous quantity. The machine learning model estimates
the most likely output value, learning the mapping function between the input variables and
the continuous output value. Belonging to this category we can find several ML algorithms,
such as Support Vector Regression, Linear Regression and several variants of Regression
trees.

The other kind of algorithms in ml are the unsupervised learning algorithms. Differently
from supervised learning algorithms, in this setting there is no basic knowledge about the
expected outputs. Therefore, given the input, the output is unknown. In this case, the goal
is to infer relationships among data and their structures. There are two main sub-categories
of unsupervised learning algorithms: clustering algorithms and associations methods. In
the case of clustering algorithms, the goal is to find the division of the dataset into classes.
In order to do so, some of the algorithms might require additional knowledge, such as k-
means, that requires as input parameter the number of clusters we are looking for. In this
category, there are several algorithms, such as k-means, db scan, hierarchical clustering
and so on. For the case of associations algorithms, they extract association rules from the
dataset. These rules exploit patterns in the data, such as Apriori algorithm.

In formulas, a classifier is a function b : X (m) → Y which maps data instances (tuples)
x from a feature space X (m) with m input features to a decision y in a target space Y of
size L = |Y|, i.e., y can assume one of the L different labels (L = 2 is binary classification,
L > 2 is multi-class classification). We write b(x) = y to denote the decision y taken by b,
and b(X) = Y as a shorthand for {b(x) | x ∈ X} = Y . If b is a probabilistic classifier, we
denote with bp(x) the vector of probabilities for the different labels. Hence, we have that
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b(x) = y is the label with the largest probability among the L values in bp(x). An instance
x consists of a set of m attribute-value pairs (ai, vi), where ai is a feature (or attribute)
and vi is a value from the domain of ai.

14.2.1 Classifiers for Tabular Data

In this Ph.D. Thesis we focus on supervised classifiers, i.e., methods in which the correct
classification is exploited during the learning procedure, for tabular data. Technically, given
a tabular data in the form X = (N,M) we assume to have L = (N, 1) which is a list of
target classes, one for each record in the dataset X. In this way, the objective of the
classifier is to learn to correctly classify the target value associated to the record under
analysis. Classification of tabular data has been a fundamental problem in ML for decades,
with numerous applications in diverse domains such as finance, healthcare, and marketing.
Classifiers play a pivotal role in identifying patterns and making predictions from tabular
data. However, there is no one-size-fits-all solution to this problem, and choosing the right
classifier for a particular task can be challenging. In recent years, ML has emerged as a
powerful tool for developing and evaluating classifiers for tabular data. In the following, we
present some of the most popular classifiers for tabular data, employed also in the remaining
of this Thesis.

Intrinsic Explainable ML methods

While many sophisticated ML algorithms have been developed, simple models, such as
decision trees and logistic regression, remain widely used and relevant.

Despite their simplicity, this kind of models have been shown to achieve high accuracy
on many benchmark datasets. They are often used as a baseline model for more complex
algorithms, and can provide valuable insights into the underlying relationships between the
features and the target variable. In fact these models are also called intrinsic explainable
due to their simplicity it is easier to follow the decision making inside the model.

In this Chapter we will explore the strengths and weaknesses of logistic regression, in
Section 14.2.1 as well as decision trees in Section 14.2.1.

Logistic Regression model The logistic regression (lg for short in the following) is
a probability model, built on labelled samples. It is based on a mathematical function,
employed the first time during the 19th century in statistics for the description of growths
in population. Nowadays it is widely used in statistic as well as ML domains. It is suitable
for predictions in which the input is composed by numerical values, being them discrete or
continuous. The output of this method is composed by discrete or categorical classes. In
particular, depending on the kind of output considered, there are three types of lg models:
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• binary logistic regression, in which the possible outcomes are only two: 0 or 1, that
can represent categorical values, such as “risk” and “not risk”, or “fraud” and “not
fraud”.

• multinomial logistic regression, in which the possible outcomes are a number of cat-
egories (at least three). These categories are without ordering, such as the classes of
food (Vegan, Vegetarian, Not Vegetarian).

• ordinal logistic regression, in which the possible outcomes are a number of categories
with ordering among them. An example of this setting is when the outcome is a
rating over discrete numbers, such as from 0 to 5.

Technically, the lg method is composed by two main functions: a linear regression
function and a sigmoid function (also called logistic function). The input data are fed into
a linear regression function, Section 14.1, in which h(xi) represents the predicted value for
the input xi, while β is the vector of the regression coefficients. The output of this linear
function is then fed into a sigmoid function, Eq. (14.2), in order to map this continuous
value in a discrete value, that can be 0 or 1. In fact, as we can see from the plot of the
logistic function, depicted in Figure 14.1, the function squashes the values between 0 and
1. However, the function is continuous between 0 and 1, allowing values that are between
these two extremes. In order to classify the output as class 0 or class 1, the lg method
requires a threshold value, also called boundary value. This value, that is usually set to 0.5,
provides the model a decision boundary for considering the output belonging to the class 0
or 1.

h(xi) = βTxi (14.1)

g(z) =
1

1 + e−z
(14.2)

Therefore, the formula that is employed for the prediction with the lg model is reported
in Eq. (14.3). It is composed by a linear regression function followed by a sigmoid function.
It models the probability that the input record belongs to the default class. In this way, the
output value is always bounded between 0 and 1. In particular, it tends to 0 if the value of
z tends to negative infinity, while it tends to 1 if the value of z tends to positive infinity.

h(xi) = g(βTxi) =
1

1 + e−βT xi
(14.3)

The lg model aims at predicting an output value such that the error difference between
the predicted value and the true value is minimum. Therefore, for the optimization of
the parameters, a gradient descent algorithm is employed to minimize the value of a cost
function. In doing so, we minimize the error difference between the predicted and the actual
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Figure 14.1: The plot of a sigmoid function (also called logistic function). The output
value of the function g(x) is always bounded between 0 and 1. When the value of z goes to
positive infinity, g(z) tends to 1, while when the value of z goes to negative infinity, then
g(z) tends to 0.

value. In this setting, the cost function employed is the log likelihood of parameters.
In order to derive the formula for the log likelihood of parameters, we consider the the
formula in Eq. (14.3) for the computation of the predicted value. From the output of this
previous formula, we can now compute the conditional probability associated to each record,
defined in Eq. (14.4). Here, (h(xi))

yi represents the value computed when the predicted
output is equal to 1, while (1− h(xi))

1−yi is the one computed when the predicted value is
equal to 0.

P (yi|xi;β) = (h(xi))
yi(1− h(xi))

1−yi (14.4)

From the conditional probability computed in Eq. (14.4), we can derive the likelihood of
parameters, defined as the plausibility of a value for the input record under analysis, given
the input record xi and a specific parameter value for β, as represented in the formula in
Eq. (14.5). Then, the log likelihood of parameters is employed as cost function for the lg
method, using the formula expressed in Eq. (14.6). In this way, the cost function for the
logistic regression method is proportional to the inverse of likelihood of parameters.

l(β) =

n∏
i=1

(h(xi))
yi(1− h(xi))

1−yi) (14.5)

J(β) =

n∑
i=1

(−yi log(h(xi))− (1− yi) log(1− h(xi))) (14.6)

Decision Tree A decision tree (dt for short in the following) is a decision-support tool,
that employs a tree-like model of decisions and their possible consequences. Based on this
concept, in machine learning, dt are a predictive model that learns a tree-based structure
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that goes from the observations available in the training set, to conclusions about the tar-
gets (in the leaves of the tree). The goal of the learning process is to create a model that
predicts the value of a target variable based on the inputs variables. If the targets are
discrete or categorical values, then the model is called classification tree, while in the case
of continuous target values, the model is called regression trees.
Given a training set, in which each record is composed by several features with finite dis-
crete domains, a dt has the internal nodes that represent decision about a specific feature.
That is, each internal node is labelled with an input feature and a threshold value (or more
than one, if the target is multi-labelled). Depending on the thresholds, the outgoing arcs
available lead to different decision nodes. One important characteristic of the dt is that
they list all the possible combinations of input features.
In general, given a a training dataset, there are many dt which fit the data. For this reason,
one of the main concerns in this setting, is the selection of the best model of dt. How-
ever, the size of the search space for the optimal dt is exponential in the number of input
features. Therefore, it is unfeasible to evaluate all the models in order to select the best
one. In order to overcome this limitation, several efficient algorithms have been proposed.
They construct sub-optimal dt with a good accuracy and in a reasonable amount of time.
These algorithms are usually greedy search, that are based on locally optimum decisions
for the splitting phase. In this setting there are several algorithms available, such as Hunt’s
algorithms, CART, ID3, SLIQ and so on. The majority of the algorithms available are a
top-down approach that recursively applies a test and split procedure to the remaining part
of the training dataset. For example, Hunt’s algorithm, that is one of the earliest proposal,
at each step takes as input the training samples that reach the decision node under analysis,
Dt and tests if they belong to the same target class or to different ones. If the target class
is the same, it means that the branch under analysis is concluded. Otherwise, the data in
Dt are split using an input feature.
The decision of the best splitting feature among all the possible input features deter-
mines the diversity among the different algorithms and strategies available. When a greedy
approach is employed, the choice is on the feature for which the split produces nodes
with purer classes [219]. In practice, it selects the split that minimizes the impurity of
the resulting smaller training set. In order to evaluate the impurity of the split, there
are several measures available, such as Gini index, that is computed using the formula
Gini(t) = 1−

∑
j [p(j|t)]2, in which t represents the decision node under analysis and p(j|t)

is the relative frequency of the class j for the node t. The goal is to find the split that has
the closest value to zero. Another measure that is often employed is the entropy, defined as
Entropy(t) = −

∑
j p(j|t log p(j|t). In this setting, an entropy value closes to zero means

that the split produces two datasets that are pure, while a value closes to the logarithm
implies that the records are equally distributed among the classes, that we want to avoid.
Lastly, the misclassification error can be evaluated as well: Error(t) = 1 − maxi P (i|t),
in which P (i|t) represents the number of records that belongs to each class. Among these
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numbers, the maximum one is selected. Also in this case, an output value closes to zero
represents the purer split. Once one of these measures is selected, the available splits for
the node under analysis are computed and for each one the degree of impurity is evaluated.
The one with lowest degree of impurity is then selected.

The dt have several advantages: first of all, they are fast and easy to implement.
Moreover, once the model has been created, the prediction task corresponds to follow a
path in the dt. Therefore, it is fast and it is easy to interpret, especially when the training
set has a small number of features. Another great advantage is that it is robust to noises
and it is able to handle irrelevant or redundant attributes.
However, there are also a number of disadvantages in using dt. First of all, the space of
possible dt is exponentially large and depends on the number of input features. Therefore,
the greedy strategies are not suitable for finding the best dt. Moreover, the relationships
among features are not taken into consideration. In fact, each decision boundary involves
only an attribute each time. Another important limitation of dt is the overfitting: if the
dt goes too deep, it learns a model that fits really well only the data in the training set.

Ensemble methods based on trees

Ensemble methods have become increasingly popular in recent years as a powerful approach
for improving the accuracy and robustness of ML models. Ensemble methods combine
multiple models to create a single, more accurate model, by aggregating the predictions of
individual models. Ensemble methods have been shown to achieve state-of-the-art perfor-
mance on many benchmark datasets, and are widely used in industry and academia. They
are particularly useful for handling complex datasets with high-dimensional features and
nonlinear relationships between the features and the target variable.

In this Section, we will discuss some of the recent advancements and challenges in these
models, and explore avenues for future research. We start with the presentation of Random
Forest then, we move to advanced methods, such as XGBoost and CatBoost to conclude the
presentation of DeepForest , a novel approach which merges the ensemble method theory
with the structure of the neural networks

Random Forest Random Forest (rf for short in the following) were proposed for the
first time in 1995, by Tin Kam Ho [220]. rf is a method part of the ensemble methods. The
general idea of ensemble learning algorithms is that they construct a set of classifiers from
the training data and the final prediction is carried on by combining the predictions made
by multiple classifiers. The main idea behind this ensemble method is the so called wisdom
of crowds: a large number of relatively uncorrelated small and simple classifiers, operating
as a committee, will outperform any of the individual constituent models. Intuitively, the
crowd of classifiers protect each other from the errors, providing that they are not all mak-
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ing the same mistakes. In fact, even if some of the classifiers are wrong, other are right, so
as a group the classifiers still make the correct prediction. rf are hence part of the ensemble
learning methods, composed by a set of decision trees, presented above in Section 14.2.1.
Each dt is built considering a random subset of the training data. Therefore, the resulting
forest of trees is composed by trees that are built using different training samples. This
increases the diversity in the forest. In fact, different sub-spaces generalize their classifica-
tion in complementary ways, obtaining a combined classification improvement. In this way,
rf is more robust and also less prone to overfitting, due to their structure and creation.
During the prediction step, the record in input is fed to every dt in the forest. At this
point, if the task is a classification one, the final output is computed with a majority vote.
In the case of regression tasks, instead, the final result is the average of all the individual
dt estimates.
The main advantage in using rf is that they achieve high accuracy and less variance, mean-
ing that the predictions are correct for a large range of different records. Moreover, they
overcome the main limitations of the decision trees, by avoiding overfitting and increasing
the robustness. In terms of complexity, rf is a fast method, both from the point of view of
the creation of the model as well as in the prediction step. In fact, even if the complexity of
the creation of the model is higher w.r.t. a single dt, it can be easily parallelized. However,
the simplicity of the decision trees allows for simple and straightforward interpretation of
the result, but in the case of random forests the interpretability task is more complicated.
Another important limitation is in the number of decision trees. In fact, in random forests
the number of decision trees is a user-defined parameter and it is often difficult to find the
best trade-off among the number of trees, the overfitting and the interpretability of the
model.

In the original formulation, the author addresses the problem of avoiding overfitting by
exploiting the random subspace method in the feature space. Later, in 2006, Leo Breiman
and Adele Cutler proposed the introduction of the bagging method, e.g. the selection with
replacement of a random sub-set of the training dataset for each dt. This change was
proposed to control the variance of a collection of dt. In the rest of this Thesis work we
refer to the rf as implemented in the Scikit-Learn library of Python1 which contains the
last version of the rf with the bagging method.

XGBClassifier XGBClassifier (eXtreme Gradient Boosting), also called xgb, is an en-
semble method for classification and regression tasks, based on gradient boosting. Gradient
boosting is a ML technique in which the model is an ensemble additive model made of weak
learners. Technically, given a differentiable loss function to optimize, the process starts fit-
ting one single weak learner, usually a dt very small, called stump, with depth and number

1Implementation of rf used in the experiments of this Thesis Scikit-Learn library
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of nodes constrained. Then, the first dt is evaluated, given the loss function. Based on
the loss of this first dt, another one is fitted to improve the predictions, focusing on the
errors of the previous one, by adjusting the weights of the input records. Then, the process
continues up until one of the ending condition is met, such as maximum number of weak
learners or reaching of the wanted result in the loss function. This procedure, also called
additive procedure, is employed by different kinds of ML models, such as AdaBoost and
xgb. xgb is a variant of the Gradient Boosting, proposed by Tianqi Chen [221] in which
decision trees are created sequentially. The key of the success of xgb resides the use of
weights: each feature has a weight assigned when fed into the dt to predict the label. The
weight of variables predicted wrong by the tree is increased and these variables are then
fed to the second dt. In this way, several dt are trained and then use to make better
predictions w.r.t. just a single tree. xgb is one of the best classifiers for tabular data up
to now, both in terms of prediction performance and of computational time. In fact, the
library available for Python is parallel, allowing a fast train even if the ensemble models
are huge. In addition, xgb works well with big amount of data, even if there are missing
values.

CatBoost CatBoost is a ML algorithm developed by Yandex, a Russian technology
company [222]. It is based on the gradient boosting algorithm, which is a technique for
building ensemble models merging several weak classifiers. It is especially designed to work
with tabular data and it is used for a variety of tasks such as classification, regression, and
ranking.

One of the key features of CatBoost is the ability to handle categorical variables with
high cardinality, e.g. categorical variables with a large number of unique values. An ex-
ample of this kind of categorical data might be a variable about the education: depending
on the level (high school, bachelor degree, master degree etc.) and the field of education
(economics, mathematics, philosophy) there may be a great number of different categor-
ical values the variable can assume. To achieve great performance with categorical data,
CatBoost exploits a unique algorithm, called ordered boosting, which sorts the categor-
ical variables based on their impact on the target variable and then combines them with
numerical features exploiting gradient boosting. CatBoost also has built-in features for
handling missing values, which uses a combination of gradient boosting and random forests
to build the final model. In this way, the model improves its accuracy and generalization.
Another advantage of CatBoost is its ability to handle imbalance in the target variable,
e.g. if one class has significantly more samples than the others. It does this by adjusting the
weights of the samples during the training process. In addition, CatBoost includes several
regularization techniques to prevent overfitting, such as L2 regularization, feature selection,
and early stopping. CatBoost also supports GPU acceleration, which can significantly
speed up the training process for large datasets.
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Deep Forest Deep Forest, also called GcForest, is an ensemble method for classification
tasks, tailored for tabular data, as well as images and text [196]. The GcForest has a
cascade structure, composed of layers, as in the case of Neural Networks (nn ). Each layer
is made of ensemble methods, such as rf, XGBClassifier or ExtraTrees. The model works
as follows: each record in input is fed to the first layer of the GcForest structure, which
outputs a prediction probability vector for each of the sub-model of the layer. These vectors
are concatenated to the record in input and fed to the next layer. Hence, going deep in the
structure of the model, the layers have more information on which to make a prediction:
not just the input record, but also the prediction probability vectors of the layer above.
The structure of the GcForest is also depicted in Figure 14.2. This structure of the
model was inspired by the structure of the nn. In fact, in their paper, the authors aim at
proposing a novel ML model that takes the positive parts of the nn and overcome some
of their disadvantages. In particular, from the experiments presented in their work, the
author showed that the GcForest models are faster to train w.r.t. the nn, since they do
not require hyper-parameter settings and their structure is apt to parallel implementation,
making the computational time even less. In addition, nn with tabular data do not achieve
the best performance, while the GcForest being composed of ensemble models, shows
better performance.

ML methods for tabular classification

Artificial neural networks Neural networks are computing systems that are inspired
by the biological neural networks that constitute the brains of the animals. They were
first theorized in 1943 by McCulloch and Pitts in [223]. They are composed by a collection
of connected units, called neurons. The connections among these neurons are capable of
transmitting signals from a neuron to another one. The resulting structure aims at learning
to approximate some function f∗, by analyzing the examples in input. One of the simplest
scenarios that is often employed as an example of neural networks is a classification task, in
which the neural network has to learn the function f∗ given the input x and the expected
output y: y = f∗(x). There are a great number of tasks the neural networks are able to
solve, both in a supervised and in an unsupervised learning manner. Depending on the type
of task required, the kinds of artificial neural networks employed may vary. In the following,
we are briefly presenting the basic structure of artificial neural networks for introducing the
Long-Short Term Memory neural network, that is the model we employed for this project.

Neurons are the basic component of artificial neural networks. A neuron k is composed
by a neuron state, also called activation, ak(t), that depends on the time t. The state of the
neuron is updated iteration after iteration evaluating the activation function. Given the
input value and the neuron state at the previous time t, it computes the new neuron’s state
at time t + 1: ak(t + 1) = f(ak(t), vk(t), θk). Therefore, the activation function depends
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Figure 14.2: Structure of the GcForest model. Given a record in the form of a feature
vector, it is fed into this cascade model, in which each layer is making predictions based
on the sub-models (in the pictures there are forests). At the end of each layer the feature
vector in input is correlated with the prediction probability vectors of the sub-models. The
final prediction is given by the aggregation of the ones in the last layer and among them,
the maximum one.
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on the value in input from the previous neurons vk(t), the actual value of the neuron state
ak(t) and a threshold θk that can be set to clearly discern among the possible outputs of the
model. The result of the activation function is then fed into the output function, in order
to obtain the actual output to deliver to other neurons in the successive timestamp. The
output function is defined as ok(t) = fout = (ak(t)). However, the output function could
simply be the identity function. The other fundamental components of the neural networks
are the connections, i.e. the edges between neurons. They represent the actual network
structure of an artificial neural network. They transmit messages only in the direction from
the starting neuron m to the ending neuron k. Each connection between two neurons has a
weight assigned wkm. These weights are adjusted during the computation. Moreover, there
could be a bias term, added at the total weighted sum of inputs. The bias factor works as
a threshold for the activation function.
Therefore, the basic structure of a neural network is composed by layers of neurons, in which
each neuron in a layer is connected with other neurons in the successive layer. Hence, each
neuron has some input connections, from which it receives the input values on which it
learns, and some output connections, on which it sends the output of its internal compu-
tation. Technically, there are several input connections for each neuron, therefore there is
the need of a function, called propagation function, that computes the input value for the
neuron k given the output values of the m predecessor neurons. In this way, we obtain the
value of vk(t) previously defined as the value calculated from the previous networks and the
actual input for the activation function. The mathematical formulation of the propagation
function is vk(t) =

∑
m(xm(t)wkm + bk), where wkm is the weight of the connection under

analysis, while bk is the bias term. In Figure 14.3 a simple neuron is depicted. Only two
layers differ from the model described above: the input layer, in which the neurons don’t
have any input connections, but only output connections; and the last layer, in which there
are not output connections.

The main goal of neural networks is to solve a specific task learning a class of functions
F from a set of observations. In particular, the main task is to find f∗ ∈ F that solves
the task in an optimal sense. Therefore, the learning process employs a cost function, also
called loss function, C, C : F → R, such that the optimal solution has the minimum cost:
C(f∗) ≤ C(f) ∀f ∈ F . In this way, the network has a way to evaluate how far away a
solution is from the optimal solution. For the case in which the solution is data dependent,
the cost function depends on the observation. There are several kinds of loss function that
can be employed. Depending on the kind of task to solve, such as regression or classification,
the loss function varies. For regression tasks, usually the squared error can be used, while
for classification tasks, the categorical crossentropy, as well as the binary crossentropy, are
employed. The learning process of neural networks involves the update of the weights.
One of the most used methods is called back-propagation algorithm, proposed the first time
in [224]. It is a method for the update of the weights for supervised learning algorithms,
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Figure 14.3: The simplest possible neural network is composed by a single neuron: the
perceptron. The perceptron depicted here receives several inputs x1, x2, ..., xm that are
multiplied by their weights wk1, wk2,...,wkm. The summing junction, also called propaga-
tion function, sums all these inputs and weights with a bias factor bk. The result of the
propagation function vk is then fed into the activation function, which then outputs the
actual output of the perceptron.

that follows a gradient descent approach, exploiting the chain rule. Technically, at the first
iteration the weights are set randomly. Then, the training step computes an output value,
based on the initial random weights and on the input values. Employing the loss function,
the network defines the difference between the expected output and the actual one. At this
point, the value of the loss function is employed to update the weights associated to the
connections. With the backpropagation algorithm, the weights at the timestamp t + 1 are
computed based on the weights at the previous timestamp t, the learning rate η and the
cost function c: wij(t + 1) = wij(t)− η ∂C

∂wij
+ ϵ(t).

One of the simplest kind of neural network is the feedforward neural network, in which the
information flows from the input layer through the intermediate computations up to the
output layer. The structure of a feedforward neural network is depicted in 14.4. Frequently,
instead, there are also feedback connections, in which the outputs of the model are fed back
into itself. The neural networks that have also feedback connections are called recurrent
neural networks (RNN). A particular kind of RNN is the Long-Short Term Memory.

14.2.2 Classifiers for Sequence Data

A ML model able to classify time series is a model that takes in input a time series and
outputs a label indicating the class to which the time series belongs. Time series classifica-
tion (TSC) is a challenging task, as time series can have variable lengths and shapes, and
can contain noise and uncertainties.

There are several types of machine learning models that can be used for TSC, including
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Figure 14.4: The basic structure of a feedforward neural network. The first layer is the
input layer, in which there are no input connections. Then, there could be a number of
hidden layer. The last layer is the output layer, that outputs the final value computed by
the network.

traditional statistical methods, such as k-nearest neighbors (KNN), support vector machines
(SVM), and decision trees, as well as deep learning methods, such as recurrent neural
networks (RNNs), convolutional neural networks (CNNs), and transformers.

Traditional statistical methods for TSC typically extract hand-crafted features from the
time series, such as statistical moments, spectral coefficients, and autocorrelation functions,
and use these features as input to a classifier. Deep learning methods, on the other hand,
learn features directly from the time series using deep neural networks, which are composed
of several layers of processing units that learn progressively more complex representations
of the input data.

Among the deep learning models used for TSC, CNNs have shown to be particularly
effective, as they can extract relevant features from time series by applying convolutions
over different temporal windows. InceptionTime is an example of a CNN-based model that
has achieved state-of-the-art performance on several TSC benchmarks.

Overall, the choice of the most appropriate model for TSC depends on several factors,
such as the complexity and variability of the time series, the size of the dataset, and the
available computational resources.

Recurrent Neural Networks and lstm

Recurrent Neural Networks (RNNs) were first introduced by David Rumelhart’s in 1986
in [225]. RNNs are the state of the art algorithms for the analysis of sequential data. They
are a kind of neural networks able to handle time series data, due to its ability to exhibit a
temporal dynamic behaviour. In practice, they are able to remember their inputs, due to
their internal structure that works as a memory. Therefore, the final result depends on the
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Figure 14.5: A simple RNN cell. On the left hand side the state of cell is unrolled in order
to show the behaviour during consequent timestamps.

historical context of the input and not only on the last value seen by the model. Technically,
in RNNs the information cycles through a loop: at each time step, in order to output a
result, the network analyses the new input that is fed into the network as well as what it has
learned previously. Therefore, at each time step, the RNN model has two inputs: the new
example and “its memory value”. This neural network basic neuron is depicted in Figure
14.5, in which there is a “vanilla” RNN. On the right hand side we can see the unrolled
network, based on the different time steps. The novelty of this kind of neural network is
the Backpropagation Through Time (BPTT) concept. It is a gradient-based technique for
training recurrent neural networks. It is backpropagation algorithm especially tailored for
sequence data. Hence it is a gradient-based technique employed in the learning process.
Technically, at each time step it unfolds the network and then the backpropagation algo-
rithm is applied. In this way, the gradient method is computed in order to compute the
values for the weights of the network. The structure described so far produces an efficient
neural network, able to memorize information during its training. In particular, when ap-
plied for small problems, these neural networks are able to learn long-term dependencies
with good accuracy. However, when applied on real problems, RNN suffers from two main
limitations: exponential gradient and vanishing gradient. Both these problems arise during
the training of the neural network with BPTT, when the gradients are being propagated
back up to the initial layer. The main problem is that the values of the gradients from
the deepest layers undergo a number of matrix multiplication (due to the chain rule of the
backpropagation). For this reason, if the initial value was small, it will continue shrink-
ing until it vanishes (hence having a vanishing gradient problem) or otherwise if the value
is large, it will keep on getting larger, up until it explodes (having an exploding gradient
problem). Both for the case of vanish gradient and of exploding gradient, the main problem
is that these values make the learning algorithm stops the learning process (or it slows it
down considerably).
For the case of exploding gradient, there are some possible alternatives, such as the trunca-
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Figure 14.6: A cell of a LSTM neural network at time t. The new input is xt, while ht − 1
is the output value of the previous iteration. LSTM cells are composed by three different
gates, respectively a forget gate (ft), an input gate (it) that together determine the new
cell state value, and an output gate (ot).

tion of the gradient. However, for the vanishing gradient problem, there is not a straight-
forward solution. In order to solve this issue, Long Short Term Memory (LSTM) neural
networks were proposed in 1997 by Hochreiter and Schmidhuber in [209].

LSTM networks are a special kind of recurrent neural network in which the memory is
“extended”. They resemble the mnemonic approach of a person in the sense that they have
a memory on which they can read and write information, as well as delete the ones that
are no longer needed. In this way, LSTMs are able to remember information about their
inputs over a long period of time, avoiding the problem of vanishing gradients.
The core idea that makes LSTM possible is that each cell is composed by a memory (also
called state cell) and three gates: input, forget and output gate. Each gate has a different
purpose and their combination makes it possible to have a memory that resembles the
human one. In Figure 14.6, there is depicted a LSTM cell at the timestamp t. Ideally, the
gates protect and control the memory cell by allowing the information to pass through or
not.
The first gate that operates is forget gate. It determines what information is not necessary

and hence can be thrown away. As we can see from Figure 14.6, this gate takes as input the
new value that is fed into the network at this time stamp (xt) and the old value computed
at the step before (ht−1). Then, this gate evaluates a sigmoid function over these values.
In Eq. (14.7) it is possible to find the mathematical formula applied for this step. With
the notation Wf we refer to the matrix of weights for this gate and by bf we refer to the
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bias applied for the current gate.

ft = σ(Wf ∗ [ht−1, xt] + bf ) (14.7)

The output ft from Eq. (14.7) is a number between zero and one, respectively denoting the
willingness to maintain this information or to get rid of this information, considered not
important. This result is then multiplied with the old cell state (Ct−1).
At this point, the input gate operates in order to determine what to store into the cell
memory. It is actually composed by the computation of two functions. The first one
takes as input the same data as before (ht−1 and xt) and applies a sigmoid function.
The second one, instead, feds the same inputs into a hyperbolic tangent layer to obtain
a vector of new candidate values, that could be added to the state. In Eq. (14.8) there
is the mathematical formulation of the computation of the input gate, while Eq. (14.9)
represents the computation of the vector of candidate values. These two outputs will then
be multiplied.

it = σ(Wi ∗ [ht−1, xt] + bi) (14.8)

C1
t = tanh (Wc ∗ [ht−1, xt] + bc) (14.9)

At this point, it is possible to compute the new value for the cell state. The new value
depends on the old one as well as on the results of the input and output gate (Eq. (14.10)).

Ct = ft ∗ Ct−1 + it ∗ C1
t (14.10)

At this point, the new cell state has been updated and there is only the output gate that
still has to operate. It determines which information to output at this current time stamp.
It does so by applying a sigmoid function (Eq. (14.11)) and then by multiplying this result
with a hyperbolic tangent function. This is done in order to obtain an output between
[−1; 1] (the formula in Eq. (14.12)).

ot = σ(Wo ∗ [ht−1, xt] + bo) (14.11)

ht = ot ∗ tanh t (14.12)

LSTM networks can be applied in different contexts. Usually, they are employed mostly
for classification and prediction with data in the form of sequences, such as texts or time
series data. They have been employed for language translation, text generation, handwriting
recognition and labelling of images. There are several kinds of possible LSTM networks
that are depicted in Figure 14.7. For the purposes of this Thesis, we focused our attention
on the many-to-one kind of network. In fact, the setting of our problem corresponds to the
binary classification of time series data. The two classes available represent the “at risk”
class and the “not at risk” class for the task of privacy risk assessment, presented in the
following, in Chapter 3.2.
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Figure 14.7: Different kinds of application of LSTM networks. In the first picture there is
a one-to-one network, in which there is only one fixed-size input at each time-stamp. The
second picture shows a one-to-many network, such as in the case of labelling of images.
Then, a many-to-one network is depicted. This is the case of classification of time series
data. A many-to-many network like the one depicted is employed for language translator.
In the last picture, instead, there is a many-to-many network in which the output is syn-
chronized with the input. This kind of networks are employed usually in contexts in which
the output has to be delivered real-time, such as the labelling of videos.

Inception Time

Inception Time, a model proposed in [226], is an ensemble of deep Convolutional Neural
Network (CNN) models aimed at providing a solution for Time Series Classification (TSC)
that is similar to the role of “AlexNet” in computer vision. The authors achieved state-of-
the-art accuracy on the UCR repository, which is the largest publicly available repository
for TSC, while also reducing learning time compared to many other algorithms in the
literature. It is important to note that the complexity of InceptionTime increases almost
linearly with the length of the time series.

InceptionTime consists of an ensemble of five deep learning models, each of which con-
sists of a cascade of Inception modules. While each model has the same structure, their
weights are randomly initialized differently. The Inception modules simultaneously apply
multiple filters of different lengths to the input time series, which allows the model to ex-
tract relevant features from both long and short time series. Notably, the time series have
one dimension less than images, enabling the use of longer and more complex filters than
those used in image recognition.

To provide more insight into the structure of InceptionTime, we will now present a
detailed overview of the inception networks. As previously mentioned, InceptionTime is
constructed using an ensemble of five Inception networks with randomly initialized weights.
The classifier of each Inception network is comprised of two residual blocks, as illustrated in
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Figure 14.8: Inception Network for time series classification

Figure 14.8. Each residual block is composed of three Inception modules and is connected
to the next block’s input through a shortcut linear connection. This helps to alleviate the
vanishing gradient problem by enabling a direct flow of the gradient. After the residual
blocks, a Global Average Pooling layer is used to extract the average of the residual block’s
output over the time dimension. Finally, a fully connected softmax layer with a number
of output neurons equal to the final number of classes is utilized. We will now provide a

Figure 14.9: Inside of the inception module, for semplicity the bottleneck layer is represented
with size m = 1

detailed description of the Inception module, as presented in Figure 14.9. It is important to
note that the input to the module is a multivariate time series (MTS) with M dimensions.
Firstly, a ”bottleneck” layer convolves the input with m filters of length 1 and stride 1.
This operation reduces the size of the time series from M to m ≪ M , thus decreasing
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its complexity and preventing overfitting on small datasets. Next, filters of varying sizes
are simultaneously applied to the output of the bottleneck layer. In order to maintain
invariance to small perturbations, a MaxPooling operation is also performed in parallel.
The MaxPooling output is produced by taking the maximum value of the time series within
a sliding window of a given size. After MaxPooling, another bottleneck layer is applied
to further reduce dimensionality. Finally, the outputs of each independent and parallel
operation are concatenated to form the output MTS. These operations are repeated for
each Inception module in the network, enabling the model to extract features of varying
granularity from the time series through the use of multiple Inception modules with filters
of different lengths. The filters’ weights are initially set using Glorot’s uniform technique
[227], and the model is trained using the Adam optimization algorithm [228]. The default
configuration of the proposed Inception module consists of three sets of 32 filters, with each
set having a different filter length l ∈ 10, 20, 40, as well as a MaxPooling operation. The
default bottleneck size is set to m = 32. The Receptive Field (RF ) is a crucial concept in
understanding how convolutional neural networks (CNNs) process time series data. Each
neuron in a CNN depends on a region of the input signal, and the RF of a neuron can be
defined as the region in the input space that the neuron can ”see” and influence.

For time series data, the RF can be seen as the maximum field of view of the network,
and a larger RF allows the network to detect longer patterns in the time series. The formula
for computing the RF for a network of depth d with each layer having a filter length of ki,
i ∈ [1, d], assuming convolutions with a stride of 1, is given by:

RF =

d∑
i=1

(ki − 1) (14.13)

From this equation, we can see that increasing the number of layers and increasing the
length of the filters both increase the RF . However, adding one layer to the network only
relatively increases the RF , while expanding the length of all filters greatly increases the
RF as it increases the RF of all layers.

In the context of InceptionTime, the use of multiple Inception modules with filters of
different lengths allows the network to have a large RF and capture features at different
scales, from small details to longer patterns. Additionally, the use of residual connections
and ensambling multiple networks further improves the performance and stability of the
model.

Rocket

Rocket [229] is a powerful and efficient algorithm for time series classification that achieves
state-of-the-art accuracy on datasets in the UCR archive while reducing computational
complexity. This is achieved through the use of a large number of random convolutional
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Figure 14.10: Inside of an Inception module.

kernels, which transform the time series into features that are then used to train a linear
classifier. The model uses only one layer with a large number of kernels, keeping the time
to compute convolutions low as the weights are not learned. The only hyper-parameter for
this model is the number of kernels, which is set to 10000 in the original paper [229]. This
hyper-parameter determines the trade-off between accuracy and computation time, and
it is proven that increasing the number of kernels above this threshold does not improve
accuracy significantly.

One of the key features of Rocket is its resistance to configuration changes. The
algorithm gave similar levels of accuracy on the development dataset despite many other
possible configurations. This indicates that the model is able to generalize well to new
problems, making it a useful tool for time series classification in a wide range of applications.
Another advantage of Rocket is its ability to run in parallel on multiple CPU cores, making
it even more efficient than other state-of-the-art algorithms. The random convolutional
kernels are applied to each time series independently, resulting in a set of features for each
time series. The features extracted are the ppv, max, and min of the convolved time series.
The ppv is the proportion of positive values in the convolved time series and it can be seen
as a measure of how much the kernel matches the pattern in the time series. The max and
min are the maximum and minimum values of the convolved time series, respectively, and
they can be seen as measures of the strength of the match between the kernel and the time
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Figure 14.11: Residual connection in an In-
ception Network. The first number in the
box Conv1D indicates the kernel size while
the second indicates the size of the stride.

series.
After applying the random convolutional kernels, the resulting features are standardized

to have zero mean and unit variance. Then, a linear classifier is trained using the resulting
features. The linear classifier can be any linear model, such as logistic regression or support
vector machines. In the original paper, a linear support vector machine (SVM) is used. The
number of kernels k is a hyperparameter that can be tuned to balance between accuracy
and speed. The authors found that k = 10, 000 is a good trade-off between accuracy and
speed.

One of the advantages of Rocket is that it is highly parallelizable, as each kernel can
be applied to the time series independently. This makes it well-suited for large datasets
with many time series. Additionally, the fact that the random convolutional kernels are
generated randomly and independently of the time series means that Rocket can generalize
well to new datasets without requiring fine-tuning of hyperparameters. The process involves
the application of each kernel to the input time series, which produces a feature map
by performing a sliding dot product between the kernel and time series. This operation
calculates the dot product of the kernel ω with time series X at position i using dilation d as
follows: [Xi ∗ω =

∑lkernel−1
j=0 Xi+(j×d)×ωj , where d is the dilation.] After obtaining feature

maps, Rocket generates two aggregate features for each kernel, namely, the maximum
value and the proportion of positive value (ppv) that shows the percentage of the input
time series matching a given pattern in the kernel. This process has a linear computational
complexity with respect to the number of examples and the length of the time series, and
must be applied to both training and test sets. The formulation is O(k · n · linput), where
k is the number of kernels, n is the number of examples, and linput is the length of the
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time series. Finally, the transformed features are utilized to train a linear classifier. The
Rocket algorithm can be used with any classifier, but it has been found to yield better
results with certain types of classifiers, including logistic regression and ridge regression.
Logistic regression and stochastic gradient descent (SGD) are particularly suitable for very
large datasets because they allow for fast training, with the complexity of SGD being
proportional to the number of parameters (determined by the number of features and
the number of classes), but linear on the number of examples. On the other hand, ridge
regression is a classifier trained with L2 regularization, which works well when the number
of features is greater than the number of training samples. While ridge regression is less
scalable than SGD for large datasets, it can make use of generalized cross-validation to
determine appropriate regularization.
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