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Chapter 1 
 

Introduction 

1.1 Motivation 

Worldwide consumption of raw materials presents constantly increasing trends 

which, within the EU, are predicted to persist in the following decades (OECD, 

2019). As a result, the need for secure and sustainable supply of mineral resources, 

becomes critical, increasing the significance of mineral exploration.  

Exploration for minerals is challenging, since new prospects are currently 

pursued at increasing depths (Decrée & Robb, 2019) and often, in the proximity of 

existing mines, where noise, accessibility and environmental-impact issues exist. 

To be successful, modern mineral exploration methods should become 

technologically advanced, ensuring high efficiency, economic viability and 

environmental sustainability. Compared to the geophysical techniques traditionally 

employed in mineral exploration (mainly magnetic, gravity, EM, GPR), seismic 

methods, can provide higher resolution even at great depths, but are less common 

due to their higher costs. Therefore, the development of innovative, low-cost and 

environmentally-friendly seismic-processing methods, adapted to the 

characteristics of mineral exploration sites, is necessary. 

Smart Exploration is a project funded by the EU’s Horizon 2020 research and 

innovation programme, with the aim of developing cost-effective and 

environmentally friendly geophysical tools and methods for mineral exploration 
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(www.smartexploration.eu). Its main focus is the development of advanced seismic 

(active and passive), electromagnetic and potential-field processing and modelling 

methods and novel instrumentation, suitable for near-mine acquisitions. In addition, 

the project aims at generating new exploration targets, by re-processing available 

legacy data and combining them with data acquired through pioneering field 

experiments into 3D common Earth models. In total, 27 partners (universities and 

research institutions, SMEs and mining and civil stakeholders) from nine EU 

countries, including Politecnico di Torino, are involved in the project.  

The current thesis belongs to the project’s outcomes, and has supported the 

development of innovative seismic-processing methods, tailored to mineral 

exploration, as part of WP3 (work-package 3) of Smart Exploration, as well as the 

development of new exploration targets, related to WP4. In particular, the thesis 

focuses on one of the key-steps of the land seismic-processing workflow, the 

characterization of the near surface, and aims at innovative, low-cost and low-

impact solutions, which can provide information also on deeper structures, 

including the exploration targets. 

The shallow subsurface is typically characterized by low-velocity and highly 

heterogeneous (weathered) layers, which can affect the imaging of the deeper 

structures, if not properly accounted for (Sheriff, 2002). This problem is normally 

mitigated through the application of static corrections (statics), which correct for 

the wave travel-times within the weathering layer, based on a shallow velocity 

model (i.e., based on the thickness and velocity of the weathering layer, as well as 

topography). The accuracy of the static corrections, depends on the accuracy of the 

estimated velocity model and can affect the effectiveness of the subsequent 

processing steps (e.g., velocity analysis, NMO correction, migration) and the 

quality of the final seismic images and interpreted models (Marsden, 1993a; Cox, 

1999).  

Apart from statics, the estimation of the near-surface velocities can be valuable 

in several other stages of the seismic processing workflow. For example, it can be 

used to optimize the velocity model used in migration or of the initial model used 

in Full Waveform Inversion. Moreover, in the context of mineral exploration, the 

knowledge of the near-surface conditions is necessary also for purposes related to 

mine planning. For instance, possible shallow weakness zones, such as faults and 

fractured zones, can pose hazards during excavation (Donnelly, 2018) and should 

http://www.smartexploration.eu/
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be properly predicted during the mine-safety assessment. Estimation of the near-

surface lithology can help to properly organize the mine infrastructure and select 

the appropriate excavation techniques and gear, predict the most suitable mine-

waste disposal locations, avoid possible environmental impacts from acid mine 

drainage, etc. 

Finally, accurate shallow velocity models can assist the construction of high-

quality, reliable geological models and the relevant interpretation.  

In mineral exploration, near-surface characterization with seismic methods is a 

challenging task. Mineral-exploration sites are typically characterized by hard-rock 

geology, which is usually highly complex, presenting high degree of heterogeneity. 

As addressed widely in literature (e.g., Eaton et al., 2003, and references therein), 

these types of settings are inherently related to complex propagation phenomena 

causing high levels of noise in the data.  

In such conditions, body-wave (BW) seismic methods routinely used to 

estimate the statics (e.g., uphole methods, various refraction-based methods), can 

prove inefficient. Most of these methods require the picking of first breaks, which 

can be a demanding, time-consuming and, therefore, costly process (Marsden, 

1993b), especially for noisy data. In addition, these methods present intrinsic 

limitations in presence of lateral heterogeneity and low-velocity anomalies, such as 

the common faulting and fracturing of the hard rock (Buske et al., 2015), which 

challenge their overall applicability to mineral exploration. 

In this work, an alternative approach to characterize the near surface, based on 

surface waves (SW), is proposed. These waves travel along the free surface 

in/through the shallowest portions of the subsurface, carrying high energy. In 

vertically heterogeneous media, their propagation velocity depends on the 

frequency (geometric dispersion). This property can be extracted from the seismic 

data in the form of dispersion curves (DCs) (Aki & Richards, 1980) and can be used 

to estimate the subsurface velocities. In exploration, SW are typically considered 

as noise (groundroll) to be removed, since they can mask BW reflections.  However, 

their sensitivity to the near-surface properties and their high energy makes them 

ideal candidates for the characterization of the weathering layer. Successful 

applications of SW methods to retrieve SV  and PV  static corrections in hydrocarbon 

exploration (e.g., Roy et al., 2013; Boiero et al., 2011; Douma & Haney, 2011; 

Miao et al., 2016), serve as proof of concept.  
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Besides resource-exploration, SW methods are popular in numerous near-

surface applications, such as engineering investigations, environmental studies etc. 

The most common SW analysis tools are the so-called multichannel SW methods 

(or MASW, Park et al., 1998; Xia et al., 1999), for which, the DCs are retrieved 

from the seismic traces of arrays of receivers, regularly positioned in-line with a 

common source. The picked DCs are considered local and 1D and they are inverted, 

by means of 1D forward modelling, to retrieve 1D SV  models. To map the lateral-

property distribution, the usual approach is to apply spatial windowing on the 

records and invert the windowed data separately, to retrieve an ensemble of laterally 

distributed 1D models (Miller et al., 1999; Xia et al., 2004). 

On a different scale, in global seismology, SW generated by earthquakes or 

ambient noise have been widely used to map the laterally varying structure of the 

Earth’s crust and mantle (e.g., Ritzwoller & Levshin, 1998; Kennett & Yoshizawa, 

2002; Sabra et al., 2005; Shapiro & Campillo, 2004). In this case, the most popular 

SW method is SW tomography, for which the input DCs are retrieved between 

different pairs of receivers and are inverted in a tomographic approach to estimate 

2D/3D (depending on the receiver geometry) velocity distributions. In SW 

tomography, the adopted forward modelling is also 1D, and therefore, the 

tomographic models are laterally distributed 1D models (quasi-2D/3D). However, 

the DCs are not considered local but as average between the receiver pairs and are 

inverted in a manner which allows the estimation of the local SV  at several grid 

points (Kennett & Yoshizawa, 2002). Depending on the spatial and wavelength DC 

coverage and the superposition between different receiver-pair paths, high 

resolution can be achieved (Yin et al., 2016).  

In hard-rock sites, the use of SW remains under-exploited, as suggested by the 

sparsity of relevant literature (8% in the last five years). The so-far experience has 

shown that for SW, these sites are indeed a challenge, since the DCs retrieved from 

hard rock are of low quality, noisy, narrow-banded and poorly dispersive, affecting 

the possibility of extracting high-quality velocity models (e.g., Pileggi et al., 2011).  

In mineral exploration, the difficulties for SW methods are amplified, since 

acquisition usually takes place in the vicinity of active mines, where the mining 

operations increase the levels of noise in the data. This is a critical challenge for 

SW processing, especially when the DCs are extracted with two-station approaches, 
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for which the contribution of each seismic trace to the picked DCs is high, making 

the method highly unstable (Socco et al., 2014; Ikeda & Tsuji, 2018). 

Moreover, man-made structures, related to the mining infrastructure, act as 

sharp lateral variations, which cannot be described by the existing SW modelling 

tools. Lithological variability is a challenge, particularly for the processing and 

inversion scheme of MASW, for which the lateral resolution depends on the width 

of the spatial window used in the DC extraction. The minimum window size is, in 

turn, bounded by the data quality and spectral resolution (e.g., Foti et al., 2015), and 

therefore adequate lateral resolution might not be possible.  

Mineral exploration is an industrial application, the task of which is to facilitate 

investment decisions and mine-development strategies. This narrows the data-

processing time availability and is a challenge, particularly for SW tomography, for 

which a large number of DCs between several receiver pairs are extracted from the 

data. The inherent 2  ambiguity of the two-station method (e.g., Bloch & Hales, 

1968), coupled with the instability of the DCs (e.g., Socco et al., 2014), demands 

high levels of experienced-user intervention during data processing (Lin et al., 

2017), which decrease the objectiveness of the obtained results and make the 

method difficult to be automated.   

An additional source of ambiguity is the selection of the processing parameters, 

i.e., the source-first receiver offset and the minimum and maximum receiver 

separation. SW processing assumes plane-wave propagation, which is valid only if 

the traces are outside the near-field region (Richart et al., 1970; Wielandt, 1993), 

while if the receivers are too far from the source (in the far-field), low-quality 

traces, suffering from attenuation, might be introduced in the DC extraction, 

reducing its quality (Bullen & Bolt, 1985). Although relevant also in multichannel 

processing, near- and far-field effects are particularly disruptive when only two 

receivers are used for the DC extraction (Foti, 2002; Lin et al., 2017). To avoid 

them, various empirical relationships between the optimal offset with respect to the 

measurable wavelength have been proposed, but no common consensus on a 

globally-acceptable rule has been reached (Foti et al., 2018). Several literature 

examples have shown that these rules are inadequate and that these phenomena are, 

instead, data and site dependent (e.g., Yoon, 2005; Ivanov et al., 2008; Bodet et al., 

2009). A common recommendation is to select the processing parameters based on 

tests on data samples (Park et al., 1999) which, however, requires high levels of 
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expertise and increased processing times, introducing additional obstacles towards 

the automation and objectiveness of the DC extraction.  

A critical limitation of all SW methods is that the DCs are mainly sensitive to 

SV , while in exploration PV  statics are required. The commonly adopted solution, 

is to assume an a priori value of the Poisson’s ratio ( ) during SV  inversion, and 

then use it to convert the SV  model into PV  (e.g., Strobbia et al., 2010). However, 

this approach includes the risk of wrong a priori assumptions, which can affect the 

estimation of SV  and PV  (Foti & Strobbia, 2002; Ivanov et al., 2019). Moreover, it 

can substantially increase the costs, since it requires additional data and/or 

supplementary processing stages to obtain a reliable a priori  estimate (e.g. 

Abudeif, 2016).  

Last but not least, mining industry is driven by high sustainability and 

environmental standards, often legally formulated, as well as safety and social 

approval criteria. To this end, the use of passive-seismic sources for exploration is 

a promising tool. This approach, removes the need for active-seismic sources, 

making exploration more environmentally friendly and less disruptive, as well as 

cheaper and feasible also in areas where accessibility issues exist, and therefore an 

active source cannot be easily transported and operated. An additional advantage of 

passive-seismic data is that they usually contain lower frequencies, with respect to 

the signal generated by active sources, which allows the measurement of longer SW 

wavelengths. In the framework of SW analysis, since the penetration depth of SW 

depends on their wavelength, this translates to deeper investigation.  

Nevertheless, the extraction of high-quality DCs from passive-source data is 

not straightforward. The direction of propagation of SW with respect to the 

receivers’ location is unkown, while the data usually contain low-energy SW signal. 

To ensure that useful information is contained in the data, the field measurements 

are usually performed over long time periods, leading to large datasets which are 

difficult to be processed, especially when a manual DC picking is adopted. Finally, 

ambient noise usually lacks high-frequency SW information, impeding the retrieval 

of accurate velocity estimates at shallow depths. 

The current thesis addresses these limitations through novel methodological 

implementations, to further develop SW methods and improve their applicability to 

mineral exploration.  
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The methodological advancements proposed in the thesis can be summarized 

as: 

• A multichannel SW-based method for the estimation of PV  statics, referred 

to as SW direct statics estimation method. The method uses as input the 

groundroll portion of the seismic measurements, without the need of any 

additional information. Its core is the Wavelength-Depth method (Socco et 

al., 2017; Socco & Comina, 2017), a SW technique based on the the skin-

depth of SW, which allows the direct transformation of the DCs into SV  and 

PV  models and statics.  

• A high-resolution PV  statics estimation method, named as SW tomostatics 

estimation method. The method combines a fast, suitable for exploration, 

SW tomography, which provides a high-resolution SV  model, with the W/D 

method, which provides . Also this workflow is solely based on SW and 

is applicable to both 2D and 3D, active- and passive-source seismic datasets. 

• A data-driven, fast and almost fully automatic, method for the optimized 

selection of the processing parameters (source-receiver offset and receiver 

distance), which does not involve any empirical criteria or subjective 

decisions.  

• A fully automatic, data-driven two-station SW processing method, designed 

to provide a large number of DCs at minimal time-requirements without any 

operator-involvement costs.  

• An automatic passive-source seismic data pre-processing method, which 

allows to detect and isolate the time-windows of the passive records which 

contain useful SW information and estimate the direction of SW 

propagation within each time-window.  

The proposed methods are tested on synthetic data and applied on three seismic 

exploration datasets, acquired in two of the validation sites of  “Smart Exploration”: 

A legacy (acquired in 2016) 2D active-seismic and a newly (2019) acquired 3D 

active-seismic dataset from the iron-oxide mining site of Ludvika (central Sweden) 

and a 2D/3D active- and passive-seismic dataset acquired in 2018 in the apatatie 

mine of Siilinjärvi in Finland. The results are validated in the thesis through 

comparison with independently derived information (geological models and 

traditional BW-based statics estimation methods).  
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Finally, in addition to our SW analysis, we also exploit the possibility of using 

seismic interferometry for the retrieval of seismic reflections from mineral-

exploration passive-source seismic data. Since ambient-noise data are typically 

dominated by SW, we test and optimize a strategy to efficiently pre-process the data 

and isolate the portions of the noise which contain BW signal. 

1.2 Structure of the thesis 

The second chapter of the thesis, presents the fundamentals of SW propagation 

and the typical stages of the most common SW-analysis schemes. Particular focus 

is given on the stage of SW processing, applied for the extraction of the SW DCs 

from the raw seismic data.  

Chapter 3 discusses the significance of mineral exploration in Europe and its 

current status, as well as the role of “Smart Exploration” project in the on-going 

effort of optimize the state-of-the-art exploration methods. The seismic datasets, 

acquired at two mining sites associated to “Smart Exploration” and used in this 

thesis, are also presented. The challenges of hard-rock sites and their impact to SW 

analysis is discussed along with a relevant state of the art. 

The fourth chapter presents the proposed SW direct statics estimation method.  

It is applied on the 2D datasets from the mining sites of Ludvika and Siilinjärvi. 

The statics and resulting seismic sections, are compared with the ones retrieved 

with standard BW-based methods. 

Chapter 5 presents the novel, fully automatic two-station processing method. 

The proposed data-driven technique for the detection and exclusion of near- and 

far-field effects is also presented in this chapter. The methods are applied on a 

synthetic dataset and on the 3D dataset from the mining site of Ludvika. 

The sixth chapter presents the SW Tomostatics method. Statics are computed 

for the same datasets used in Chapter 4, and the results of both methods are 

compared.  

In Chapter 7, we present the fully automatic passive-source seismic data pre-

processing scheme. The method is applied on portion of the 3D passive-seismic 

dataset from the mining site of Siilinjärvi. The retrieved DCs are inverted jointly 

with curves extracted from active-seismic measurements on the same area, to 

retrieve a 3D SV  model at a wide depth range. In the same chapter, we also present 
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and apply the method to isolate BW-dominated portions of the record and retrieve 

the reflections with seismic interferometry.  

The final chapter presents the most important conclusions derived by the work 

of the thesis and provides recommendations for future work.  
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Chapter 2 
 

Surface-wave methods 

Surface waves (SW) are seismic waves which travel only within the shallowest 

layers of the subsurface. In vertically heterogeneous media, their propagation is 

characterized by geometric dispersion, represented by curves relating the SW phase 

velocity and frequency (dispersion curves – DCs). Most SW methods use this 

property to infer the subsurface characteristics: the wavefield, generated by active 

(man-made) or passive (ambient noise or earthquakes) seismic sources and 

measured by a set of receivers undergoes a stage of processing, to extract one or 

more DCs. The DCs are inverted to estimate the subsurface seismic velocities. 

Regardless how they are inverted, the core of the different methods is the 

extraction of the DCs from the raw seismic data. In this chapter, focusing on SW 

processing, the most common SW methods are demonstrated and compared. 

2.1 Fundamentals of surface-wave propagation  

Surface waves are seismic waves which exist only in the presence of an 

interface, such as the earth’s surface. Their energy propagates in a direction parallel 

to the surface with a cylindrical wavefront and reduces exponentially with the 

distance from the surface, becoming negligible at a depth which depends on their 

wavelength. Their propagation is, therefore, affected only by the properties of a 
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limited subsurface portion with thickness depending on the propagating 

wavelength. 

For a source that acts on the surface, most of the generated energy is 

transformed into SW, rather than BW (Richart et al., 1970). In addition, since SW 

energy spreads with a cylindrical wavefront only in the direction of propagation, 

their geometric attenuation is significantly lower than the one of BW, which 

propagate with a spherical wavefront (Aki & Richards, 1980). For these reasons, 

SW usually dominate the seismic records.  

Since the depth of penetration of SW depends on their wavelength (frequency), 

different propagating SW frequencies sample different depths. In a homogeneous 

medium, SW velocity is constant and depends on the medium properties, and 

mainly on SV . In particular, the phase velocity of SW is lower than SV , and for 

Rayleigh waves propagating in a homogeneous medium, the phase velocity ( RV ) is 

in the range of 0.87 0.96S R SV V V  , depending on  (Richart et al., 1970). 

If the medium is vertically heterogeneous (layered, Figure 2.1a), different SW 

frequencies are influenced by materials with different SV , and therefore their phase 

velocities vary. This phenomenon is called “geometric dispersion” and it is 

represented by curves which relate the phase velocity of SW with their frequency, 

called dispersion curves (DCs, Figure 2.1b).  

 

 
 

Figure 2.1: Surface-wave dispersion. a) Vertically heterogeneous SV  model. 

Dispersion curve a) fundamental mode and b) fundamental (black) and higher 

(grey) modes.  
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Mathematically, SW are solutions to the elastic equations of motion, under the 

assumptions of zero stress at the surface and zero stress and strain at infinity 

(boundary conditions). Their description forms the basis of SW forward modelling. 

In a linear elastic, homogeneous medium, the SW solution is relatively simple since 

there exists only one value of velocity for each frequency which satisfies the 

boundary conditions. In a vertically heterogeneous medium, closed-formed 

solutions have been found only for a medium which is layered and isotropic, with 

a free surface parallel to the plane of isotropy.  

Assuming continuity of strains and stresses at the layer interfaces, the equations 

of motion can be described as an eigenvalue problem for which, a non-trivial 

solution exists if and only if the wavenumbers and frequencies obey the following 

relationship, known as Rayleigh secular function: 

 ( ), ( ), ( ), , 0R jF z G z z k f   =   (2.1), 

where f  is the frequency, G  and   are the Lame parameters,   is the mass 

density, k  is the wavenumber: 

 
2

R

fk
V


=  (2.2), 

while the subscript j  corresponds to different modes of SW propagation, occurring 

due to the constructive interference of the waves at the boundaries of the layers. For 

a layered medium consisting of a finite number of homogeneous layers overlying a 

homogeneous half-space, finite number of modes are possible (Figure 2.1c). At the 

lowest frequencies, only the lowest-velocity mode, called fundamental, is present 

while the higher modes, corresponding to higher velocities, appear only above 

specific cut-off frequencies.  

Different methods exist to solve the eigenvalue problem, the most popular ones 

being the propagator matrix algorithms. In this family, the approach firstly 

introduced was the transfer matrix method of Thomson (1950) and Haskell (1953), 

which has been subsequently improved by Knopoff (1964) and Dunkin (1965). 

Other methods of this type are the stiffness matrix method (Kausel & Roësset, 

1981) and the method of reflection and transmission coefficients (Kennett, 1974), 
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while several optimizations of all these algorithms also exist (e.g., Wang & 

Rokhlin, 2001; Liu, 2010; Ke et al., 2011; Harvey, 1981). Apart from their 

differences, all matrix-based methods describe the elastic wave propagation in the 

layered model as a matrix equation, formed by the properties of the layer materials 

and solved by imposing the SW boundary conditions and layer-continuity.  

The Thomson-Haskell method (used in this work), models the subsurface as a 

stack of laterally homogeneous linear elastic or viscoelastic layers, characterized 

by their SV , pV ,   and h . The stresses and strains in each layer are described in 

terms of these parameters, and dependency of the layers among each other 

(continuity conditions) and from the free surface and infinite half space (boundary 

conditions) is forced. This forms a single matrix equation for the entire system. The 

secular function can be found by imposing the matrix determinant equal to zero.  

The roots of the secular function provide the modal DC. 

The computed modes are theoretically possible but their existence in the 

seismic data also depends on the energy characteristics of the system, which are not 

described in the secular function. In many situations, the energy partitioning 

between the modes does not allow the recognition of all of them in the data. Their 

energy distribution depends mainly on the energy of the source and on the velocities 

and attenuation of the layers and, often, especially in stratigraphic conditions where 

the velocity increases with depth, only the fundamental mode is detectable. 

However, higher modes might also be energetic and the possibility to separate them 

depends on the similarity of their velocities and on the resolution of the measured 

wavenumbers, which in turn, depends on the test configuration and processing 

method (see Section 2.2). If the difference of the velocities is lower than the 

wavenumber resolution, the separation of the modes is not possible and the 

measured DC is a superposition of the different modes: it is an apparent DC (Socco 

& Strobbia, 2004). 

Therefore, a complete modelling of SW should account also for the energy, 

frequency and geometrical characteristics of the simulated source-receiver 

configuration and the dissipative phenomena within the layers. However, due to the 

complexity of this simulation, most SW methods assume that the measured DCs 

coincide with the ones computed numerically and often consider only the 

fundamental mode.  



 

14 
 

Apart from the phase velocity, SW are also characterized by a group velocity (

gV ) which is the velocity of their waveform envelope. In a vertically heterogeneous 

medium, also group velocity is dispersive and multimodal and its value, at each 

frequency, is related to phase velocity according to 

 
1

1
( )

R
g R

dVdV V k
dk d


 

−

 
= = − 

 
 (2.3). 

From eq. 2.3 it is clear that if the phase velocity decreases with frequency 

(normal dispersion), group velocity is lower than the phase velocity.  

2.2 Surface-wave acquisition 

The purpose of acquisition is to measure the signal of the propagating SW, by 

recording the wavefield generated by a seismic source. In land seismic surveys, the 

signal can be generated on purpose, using an active seismic source (e.g., weight 

drops, explosives, vibrating sources) or, in the case of passive seismic acquisition, 

it can have a natural origin, such as earthquakes or ambient noise. The signal is 

recorded by a system of receivers (typically geophones in land seismics), deployed 

together with the sources (if present) along a line (2D acquisitions, e.g., Figure 2.2) 

or spread over an area in regular or irregular carpets (3D acquisitions). 

In seismic reflection for resource-exploration, the acquisition is typically not 

optimized for SW retrieval, since exploration methods are usually based on the 

analysis of BW, while SW are considered as noise to be removed. Due to their 

energy dominance, though, the measurement of SW does not impose severe 

acquisition requirements, and high-quality SW can usually be extracted from 

common exploration datasets, assuming that no analog filtering techniques to 

remove them (e.g., receiver groups, low-cut filters) have been applied during 

acquisition.  
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Figure 2.2: Illustration of a typical 2D active-seismic acquisition configuration. 

Moreover, the frequency content of the signal generated by the exploration-

seismic sources and measured by the receivers, usually allows the extraction of 

broadband DCs. Both vibrating and impulsive sources, typically used in 

exploration, produce frequencies which are usually considered adequate for near-

surface characterization (Foti et al., 2015). Explosive sources might not be ideal for 

SW analysis, due to their necessary burying, although several examples have shown 

that broadband SW signal can be retrieved also with this source type (Foti et al., 

2018).  

Passive-seismic sources (ambient noise or earthquakes) usually generate lower 

frequencies (Park et al., 2005). In the context of SW analysis this is beneficial, since 

it leads to longer propagating SW wavelengths and, thus, deeper investigation. 

Nevertheless, due to their common lack in high frequencies, resolution at shallow 

depths cannot be achieved from passive SW measurements.  

From the receiver standpoint the, common in exploration, vertical geophones 

are considered acceptable (Socco & Strobbia, 2004). MEMs and accelerometers 

can also be used, and are usually characterized by a flat frequency response in a 

wider frequency band with respect to geophones. Nevertheless, they present the 

disadvantage of lower S/N (Hons & Stewart, 2008).   

The adopted acquisition parameters might also influence the quality of the DCs. 

As it will be discussed in Section 2.3, the extraction of the DCs with SW processing 

is based on spectral analyses of the continuous wavefield generated by the source, 

assuming that it is energetically dominated by its SW component. The continuous 
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SW wavefield can be described as the contribution of m  different modes (Aki & 

Richards, 1980) according to 

 ( ) ( ) ( )( )1, ,
2

mi t k x
m

m
u x t A x e d 

 


+
−

−

=   (2.4), 

where x  is the distance from the source and   is the angular frequency. m  is the 

amplitude term, which depends on the source spectrum ( ( )P  ), the instrument (

( )I  ) and site ( ( )mR  ) response, the attenuation coefficient ( ( )ma  ) and the 

geometric attenuation ( 1
x ) and is equal to (Aki & Richards, 1980) 

 ( ) ( ) ( ) ( )
( )

,
ma x

m m m
eA x I P R

x



   
−

=  (2.5), 

while phase term ( ( ), x  ) is equal to 

 ( ) ( ), x k x  = −  (2.6). 

In terms of signal processing, the acquisition is a discrete sampling and 

windowing, in space and in time, of the wavefield and, similar to any sampling 

procedure, the fidelity of the reconstructed signal depends on the sampling 

parameters.   

Time sampling usually has a minor effect (Socco & Strobbia, 2004), since the 

time windows used in exploration are normally long enough to contain the entire 

SW traveltimes. In addition, the temporal SR is usually high, allowing the retrieval 

of the high-frequency components of the signal, in accordance with the Nyquist 

sampling criterion.  

On the other hand, space sampling, defined by the position and number ( N ) of 

the receivers, can have a more severe effect on the reconstructed signal, due to the 

finite number of receivers typically used. The properties of the retrieved DCs, 

influenced by the space sampling parameters, are the frequency band and spectral 

resolution of the curves as well as their ability to describe only SW propagation 

phenomena, excluding possible artefacts.  
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2.2.1 Receiver spacing 

The receiver spacing is the spatial sampling rate which defines the maximum 

wavenumber and, as a consequence, the minimum wavelength that can be reliably 

measured.  If the receiver separation is x , the Nyquist theorem states that  

 1 2
2Nyquistk

x


=


 (2.7), 

and therefore, the maximum wavenumber that can be sampled ( maxk ) is 

 maxk
x


=


 (2.8), 

and the minimum wavelength that can be reliably retrieved is min 2 x =  . In 

practice, this theoretical lower wavelength limit is rarely reached in SW processing 

due to the fast attenuation of high frequencies and the achievable min  of the DCs 

is usually data and site dependent (Foti et al., 2018). Nevertheless, if shorter 

wavelengths are expected, spatial aliasing can be overcome with dedicated 

acquisition schemes and/or processing techniques (Foti et al., 2002), or based on a 

priori information (see Section 2.3.5). 

2.2.2 Array length 

Even though no theoretical upper limit on the measurable wavelengths exists, 

the possibility to retrieve long wavelengths from the records is related to the quality 

of the signal recorded far from the source, due to geometric attenuation. In this 

sense, the array length, which affects the distance of the farthest geophone from the 

source, has an impact on the retrievable frequency band. Several empirical rules 

suggest that the maximum wavelength which can be measured in the data equals 

the receiver array length (e.g., Park & Carnevale, 2010). Nevertheless, such 

empirical rules are not universal and the longest measurable wavelength is also a 

factor of the offset, energy and frequency band of the source, as well as the medium 

velocities and attenuation (e.g., Ivanov et al., 2008).  

Furthermore, in signal processing terms, the receiver array is a window in 

space, the length of which ( L ) defines the achievable wavenumber resolution, 

necessary to discriminate different SW modes. In particular, according to the 
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Rayleigh criterion, the wavenumber resolution equals 2
L

 , which means that 

longer receiver windows provide higher resolution. An additional effect of spatial 

windowing is that the convolution of the window spectrum with the spectrum of 

the signal can produce spectral leakage and artefacts (e.g., due to the main and side-

lobes of the spectrum of the window). This, in turn, affects the possibility to resolve 

small wavenumber differences, i.e., to properly measure the phase velocities. A 

longer window produces less artefacts and is, therefore, preferable in terms of 

wavenumber resolution. 

Finally, the optimal array length is also related to the expected lateral 

subsurface-property variability and might affect the possibility of retrieving a DC 

which is representative of the actual subsurface conditions. When a long array is 

deployed, its location is more likely to cross a laterally heterogeneous area, which 

cannot be described by the theoretical assumptions of SW modelling. Therefore, 

with respect to the assumption of lateral homogeneity, the shorter the receiver array, 

the more accurate the DC.   

2.2.3 Source-receiver offset 

The distance between the source and the nearest receiver ( 1x ) is a parameter 

that can severely influence SW processing, since it is related to the possible 

presence of near-field and far-field effects. The term near-field describes the area 

in the vicinity of the seismic source, where Rayleigh waves are not fully developed 

into plane waves (Richart et al., 1970; Wielandt, 1993). If measurements in this 

area are used for SW analysis, the plane wave-propagation assumption of SW 

modeling is violated, causing wrong model estimations. In addition, in the near-

field, strong interference of BW might be present, since BW can be highly energetic 

in the vicinity of the source, even though their geometrical spreading is greater with 

respect to SW. Therefore, assuming that SW are dominant in the near-field can 

produce errors in the estimation of the DCs (typically underestimation of the phase 

velocities, Zywicki & Rix, 2005; Strobbia & Foti, 2006).   

The far-field effects describe the reduction of the S/N of the SW signal far from 

the source due to the geometrical attenuation (Bullen & Bolt, 1985), which might 

reduce the quality of the retrieved DCs and estimated models (Park, 2011).  
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Due to the dispersive nature of SW, these phenomena are frequency dependent, 

and the near-field and far-field offset regions vary for different wavelengths (e.g., 

Bodet et al., 2009). The wavelength values affected by the near- and far-field 

effects, are usually estimated based on empirical rules of thumb, in relation with 

the source offset. The most commonly accepted definitions of the near- and far-

field are summarized in Table 2.1 and plotted in Figure 2.3. The variability of these 

rules shows that such an empirical approach lacks reliability and several studies 

have shown that near- and far-field offset ranges are data and site dependent (e.g., 

Yoon, 2005; Ivanov et al., 2008; Tremblay & Karray, 2019) and cannot be defined 

universally.  

 

Table 2.1: Commonly used empirical relationships for the determination of the 

near- and far-offset regions. 

 Near-offset Far-offset 

Heisey et al. (1982) 13x   1

2
x

   

Sánchez-Salinero (1987) 1

2
x

    

Gucunski & Woods (1991) 12x    

Ganji et al. (1998) 13x   1

2
x

   

Park et al. (1999) 12x    

Foti et al. (2015) 1
12

2
x x   1

3
x

   
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Figure 2.3: Commonly used empirical relationships for the determination of the 

near- and far-offset regions. 

2.3 Surface-wave processing 

 The aim of processing is to estimate the DCs from the acquired data and, 

ideally, it should provide DCs which are broadband, accurate, and representative of 

SW propagation within the measured subsurface portion, to ensure that the 

inversion will provide a reliable velocity estimate.  

Processing allows the extraction of both group and phase-velocity DCs. The 

retrieval of group velocity is based on computing the peaks of the envelope of the 

SW signal, measured by at least one receiver. The measurement of phase velocity 

is based on the computation of the phase or phase-velocity difference of different 

frequencies of the SW signal, between at least two positions. Group velocity DCs 

are rarely used in exploration, mainly because group velocity is influenced by a 

shallower subsurface portion than phase velocity (e.g., Ritzwoller et al., 2001), and 

therefore, phase velocity DCs allow deeper subsurface investigation. On the other 

hand, group velocity can be valuable for the optimization of the phase velocity 

retrieval, if the separation of different SW modes is challenging. Therefore, this 

section focuses on the phase-velocity processing, but a method to isolate SW modes 

using the group velocity information is also discussed in Section 2.3.5. 

Regarding the extraction of phase velocity DCs, several processing methods 

exist, and they are commonly classified in two categories:  
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• multichannel methods, which are based on the analysis of the wavefield 

sampled by multiple receivers; 

• two-station methods, for which the DC is estimated using the recordings 

of two receivers only.  

In the following, the most popular processing techniques will be demonstrated 

and compared, adopting the aforementioned distinction, even though, it will be 

shown that multichannel and two-station processing is mathematically equivalent. 

For the demonstration, we will initially refer to a simple 2D active-seismic 

acquisition configuration (Figure 2.2), while the applicability of the methods to 3D 

acquisition setups and to passive-source data will be discussed in Section 2.3.4.  

All methods assume a laterally homogeneous subsurface model, plane wave 

propagation and dominance of the fundamental mode of SW in the records. 

Discussion on the performance of the methods when these are not fully respected 

is given in Section 2.3.5.  

Finally, it is important to note that here we address only the most fundamental 

SW processing methods. Based on the same basic principles, a great variety of more 

advanced processing tools have been developed, but their analysis is out of the 

scope of this dissertation.  An extensive overview can be found in Park & Ryden 

(2007),  Socco et al. (2010) and Pelekis & Athanasopoulos (2011). 

2.3.1 Multichannel processing methods 

Multichannel methods are based on the application of a wavefield transform on 

a gather recorded by a receiver array, to convert it from its original space-time (

x t− ) domain, into a different domain (usually frequency – wavenumber or f k− , 

frequency – slowness or f p− , and frequency – phase velocity or f v− ). In the 

new domain, the data appear as an image of the energy distribution (dispersion 

image) where, due to the high energy of SW and their characteristic dispersive 

pattern, the DC can be identified and picked as the coordinates of the spectral 

maxima.  

2.3.1.1 Analysis in the f-k domain 

Seismic data processing in the f k−  domain is commonly applied as a filtering 

technique in seismic exploration, mainly for the removal of the groundroll from the 
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recorded data, since in exploration SW are considered as coherent noise. It was 

proposed as a method to extract the SW DCs by Nolet & Panza (1976), and it has 

been used as the basis of several more elaborated, high-resolution SW processing 

techniques (e.g., Serdyukov et al. 2019).   

Referring to Figure 2.2, we assume a linear receiver array, composed by N  

receivers at a constant spacing of x . The length of the receiver spread is 

( )1L N x= −  . The wave is generated by an impulsive source, in-line with the 

receiver array, at offset 1x  from the first receiver. The N -channel record is denoted 

as ( ),iu x t , where ( )1 1ix x i x= + −   is the distance of the i -th ( 1,2...i N= ) 

receiver from the source and t  stands for time.   

The simplest implementation of the f k−  transform is a 2D (temporal and 

spatial) discrete Fourier transform of the wavefield ( ),iu x t . First, the temporal 

discrete Fourier transform is applied to ( ),iu x t . 

 ( ) ( ) 2

1
, , i

N
j fx

i i
i

U x f u x t e −

=

=  (2.9), 

and its subsequent spatial Fourier transform computes the f k−  spectrum, which 

can be described as 

 ( ) ( ) ( )
^

( )

1
, , i

N
jk f x

i
i

U f k U x f e −

=

=  (2.10), 

where 1j = − . Plotting the amplitude of ( )
^

,U f k  provides an image of the energy 

density as a function of f  and k , where the DC is picked as the coordinates of the 

spectral maxima ( DCf  and ( )DC
k f ). From these, the phase velocity of the DC can 

be computed as 

 ( )
( )

2 DC
DC

DC

fv f
k f


=  (2.11). 
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2.3.1.2 Analysis in the f-p domain 

The transformation in the f p−  domain has been proposed as a method to 

estimate the SW DCs by McMechan and Yedlin (1981). It is a two-step process, 

based on two linear transformations: the application of a slant stack transformation 

on the wavefield ( ),u x t , and its subsequent temporal Fourier transform.  

The first step, the slant stack transform (also known as Linear Radon or p −  

transform), converts ( ),u x t  from its original domain into the domain of slowness 

(or ray parameter) p  and intercept time,  . The slowness equals the inverse of the 

velocity and corresponds to the slope of ( ),u x t  with respect to its x  direction. The 

transformation is performed by steering the record with different values of slowness 

( Tp ), which are chosen according to the range of the expected velocities. At each 

step, all the traces of ( ),u x t  are summed along slope Tp  at all intercept times, 

converting the original wavefield into a new domain, the p −  domain: 

 ( ) ( )
1

, ,
N

T T i i
i

u p u t p x x 
=

= = +  (2.12). 

In the second step, temporal (along  ) Fourier transform is applied on each trace 

of the ( ), Tu p  gather, resulting in the ( )ˆ , TU f p  spectrum: 

 ( ) ( ) ( )2

1

ˆ , ,
N

j f
T T

i
U f p u p e  


−

=

=  (2.13). 

The peaks of the amplitude of the ( )ˆ , TU f p  spectrum ( DCf , DCp ), corresponding 

to the DC, are picked and the phase velocity is computed as 

 ( )
1

DC
DC

v f
p

=  (2.14). 

2.3.1.3 Analysis in the f-v domain - Phase Shift method 

The Phase Shift method (Park et al., 1998) is a special implementation of the 

f p−  transform, the basic difference being that the slant stack is performed after 

the temporal Fourier transform.  
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Considering the representation of the spectrum ( , )iU x f  in terms of amplitude iA  

and phase ( )i f :  

 ( )

1
( , ) i

N
j f

i i
i

U x f Ae −

=

=  (2.15), 

the only variable that contains information on the velocity ( ( )v f ) is the phase term   

which can be defined as 

 
2( ) ( ) ( )

( )
i

i I i
fxf f k f x

v f


 = − =  (2.16), 

where, ( )I f  is the phase of the source. Assuming different testing phase velocities 

Tv , a phase shift is computed for each trace and frequency as: 

 
2( ) i

Ti
T

fxf
v


 =  (2.17), 

and applied on the ( , )U x f  wavefield. Slant stacking along all Tv  values, leads to 

the estimation of the summed amplitude: 

 
( )

1

ˆ ( , ) ( , ) i

N
j f

T i
i

U f v U x f e  −

=

=  (2.18). 

The value of v  for which ˆ ( , )TU f v  is maximized, corresponds to the phase 

velocity ( DCv ) of the DC at each frequency.  

2.3.1.4 Equivalence between the multichannel methods 

The spectral estimators of the three fundamental multichannel SW processing 

techniques presented in this chapter ( f k− , f p−  and f v− ) are summarized in 

Table 2.2. Recalling that t px= +  and that, ( ) 2 ( )f fpx k f x = = , it is evident 

that the three transforms are mathematically equivalent.  
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Table 2.2: Summary of the common multichannel spectral estimators 

Method Spectral Estimator 

f k−  
^

( ( ) )

1
( , ) ( , ) i

N
jk f x

i
i

U f k U x f e −

=

=  

f p−  ( 2 )

1

ˆ ( , ) ( , )
N

j f
T T

i
U f p u p e   −

=

=  

f v−  ( )

1

ˆ ( , ) ( , ) i

N
j f

T i
i

U f v U x f e  −

=

=  

2.3.2 Two-station processing methods 

Two station methods allow the estimation of the phase velocity, by measuring 

the time at which different frequencies of the highest-amplitude event recorded by 

two receivers, in-line with a common source and located at known distance x  from 

each other, become in-phase. Therefore, two-station methods include two basic 

operations: the analysis of a pair of traces in different frequencies, by means of a 

temporal Fourier transform, and the measurement of their phase difference at 

different time lags. The most common approach to measure the phase difference is 

cross-correlation, which provides a measure of the similarity of two waveforms, 

reaching its maximum when the two highest-amplitude events are in-phase. 

Depending on whether cross-correlation of the traces is applied in frequency or in 

time domain, different implementations of the two-station method have been 

developed. 

2.3.2.1  Frequency-domain cross-correlation 

The two-station method in the frequency domain was introduced by Sato (1955) 

and has been widely used as a tool to extract phase velocity DCs from both active  

and passive (e.g., Meier et al., 2004; Fry et al., 2010) SW measurements. The 

method assumes the wavefield ( , )iu x t , 1,2i =  measured by two receivers only. If 

( , )iU x f  is the corresponding temporal Fourier transform, the cross-power 

spectrum can be computed as: 
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
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=

=

 (2.19), 

where *  denotes the complex conjugate, ( )f  is the phase of the source, 

( ) ( )i if k f x =   ( 1,2i = ) is the phase of the  i -th trace and 1 2( ) ( ) ( )f f f   = −   

is the phase difference between the two traces at each frequency. The (unknown) 

phase difference can be computed from the cross-power spectrum according to 

 
 
 

12

12

Im ( )
( ) arctan

Re ( )
C f

f
C f

 =  (2.20). 

allowing the computation of the phase velocity, according to 

 
( )2

( )
( )

f x
v f

f





=


 (2.21). 

2.3.2.2 Time-domain cross-correlation 

Bloch & Hales (1968) proposed an alternative implementation of the two-

station method, based on the time-domain cross-correlation of the two traces. For 

this approach, the wavefield ( , )iu x t , 1,2i =  is decomposed into monochromatic 

traces of different frequencies 0 min max[ , ]f f f , and cross-correlation is performed 

on the filtered traces, frequency by frequency. For the decomposition in different 

frequencies, one of the most common approaches is the multiple filtering technique 

(MFT) of Dziewonski & Hales (1972). For this method, each trace is Fourier-

transformed and then analysed into harmonics by means of a series of narrow-

banded Gaussian band-pass filters. The filters are centered at different frequencies 

0f , ranging within a user-defined limit min max[ , ]f f  and have the following form: 

 

2
0

0( , )
f f

fH f f e


− 
−  

 =  (2.22), 

where,   is a constant describing the size and rate of decay of the Gaussian filter.  
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The filter is multiplied by the spectrum of the traces, and by means of 

inverse Fourier transform, a harmonic, containing amplitudes only at 0f  can be 

retrieved: 

 0 0
0

1( , ) ( , ) ( , )
2

ift
i iu x t U x f H f f e df





=   (2.23) 

Cross-correlation of the 0( , )iu x t  trace pairs is performed for all the central 

frequencies 0( , )iu x t . The results are combined into a matrix containing the cross-

correlation amplitudes computed for each frequency and time lag, onward referred 

to as cross-correlation matrix. The maxima of the matrix, indicating the SW arrival-

time ( DCt ) at each frequency, are picked and the DC is computed as 

 DC
DC

xv
t


=  (2.24). 

Assuming that the gaussian window used in the MFT is narrow enough, not to 

oversmooth the spectrum of each trace, the method is equivalent to the frequency-

domain cross-correlation. Let 0 1( , )u x t  and 0 2( , )u x t  be two monochromatic ( 0 =

) signals, resulting after application of MFT to ( , )iu x t . Their cross-correlation 

yields 

 1 0 1 1 0 1( ) ( )
12 1 2( ) j t j tu t A e A e   − + +

=  (2.25), 

and is maximized when 

1 0 1 2 0 2

1 2
2 1

0

0

0 (2.26),

DC DC

DC DC

DC

DC

t t

t t

x
v

xv

   

 











+ = +

−
− =

 
=


=


                   

 

which is identical to eq. 2.21. 
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2.3.2.3 Surface-wave interferometry 

The cross-correlation of two traces approximates the Green’s function that 

would be measured at one of the two receivers, if a source was located at the 

position of the other (e.g., Weaver & Lobkis, 2001; Wapenaar, 2004). This principle 

is the basis of seismic interferometry, a method that has been developed and 

received increasing attention in the last 20 years, primarily because it allows to 

construct virtual-source seismic datasets, even in the absence of an actual active 

source (passive data). The estimation of DCs from the SW component of the 

Green’s function with SW interferometry is essentially equivalent to the DC 

estimation with the two-station methods, and is widely applied to earthquake (e.g., 

Shapiro & Campillo, 2004; Shapiro et al., 2005), ambient-noise (e.g., Yao et al., 

2006) and active-source seismic data (e.g., Halliday et al., 2010).  

2.3.3 Equivalence between multichannel and two-station methods 

Several experimental studies have shown that multichannel and two-station 

methods provide DCs of great similarity (e.g., Martin, 2011; Garofalo et al., 2016; 

Sasanakul et al., 2019). Here, their mathematical comparison is performed, using 

the expression of the DC computed for only two traces by all the presented methods. 

Two-station f-k transform  

Considering only two traces, corresponding to a distance ix ( 1,2i = ) from a 

common source, the expression of the f k−  transform (eq. 2.9) becomes: 
2

( )

1
 (2.27),( , ) ( , )                                        ijk f x

i
i

U f k U x f e−

=

=  

which, in terms of amplitude ( iA ) and phase ( ( )i f ) spectrum, can be expressed 

as 

 

2
( ) ( )

1
2

( ( ) ( ) )

1
 (2.28).

 ( , )

                                        

i i

i i

j f jk f x
i

i

j f k f x
i

i

U f k Ae e

Ae





− −

=

− +

=

=

=




 

Eq. 2.28 is maximized when  

 1 1 2 2  (2.29),( ) ( ) ( ) ( )                              DC DCf k f x f k f x + = +  
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and therefore 

 1 2

2 1

(2.30).
( ) ( )( )                                              DC

f fk f
x x

 −
=

−
 

Since 2 fk
v


=  

2 1

1 2

(2.31).
2 ( ) 2 ( )( )                     

( ) ( ) ( )DC
f x x f xv f
f f f

 

  

− 
= =

− 
 

 

Two-station f-p transform  

 

The f p−  transform (eq. 2.21) of two traces ( 1,2N = ) can be expressed as 

2
2 ( )

1
2

2 ( )

1
 (2.32).

ˆ ( , ) ( , )                     

( , )           T i

j f f
T T i T

i

j fp f xjt
T i T

i

U f p u t p x p e

u t p x p e e

 







−

=

−

=

= = +

= = +




 

and in terms of amplitude and phase spectrum as 

2
( ) 2 ( )

1
(2.33).ˆ ( , )                                   i T if j p f x

T i
i

U f p Ae e

=

=  

Eq. 2.33 is maximized when  

1 1 2 2 (2.34). ( ) 2 ( ) ( ) 2 ( )                          T DC T DCf fp f x f fp f x   + = +  

from which, the slowness corresponding to the DC is given by 

 1 2

2 1

 (2.35),
( ) ( )( )                                       

2 ( )DC
f fp f
f x x

 



−
=

−
 

and the phase velocity of the DC equals 

 2 1

1 2

(2.36).
2 ( ) 2 ( )( )   =                    

( ) ( ) ( )DC
f x x f xv f
f f f

 

  

− 
=

− 
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Two-station f-v transform  

 

The f v−  transform (eq. 2.26) for 1,2N =  is given by 

 
2

( )

1
(2.37),ˆ ( , ) ( , )                               ij f

T i
i

U f v U x f e −

=

=  

or, in terms of amplitude and phase spectrum  

 
2

( )( )

1
(2.38).ˆ ( , )                              Ti ij fj f

T i
i

U f v Ae e  −−

=

=  

ˆ ( , )TU f v  is maximized when 

1 21 2

1 2
1 2

2 1

1 2

(2.39).

( ) ( ) ( ) ( )     

                  
2 2( ) ( )                       

( ) ( )

2 ( ) 2( ) =           

 

                        
( )

 

( ) (
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 T T

DC DC

DC

f f f f

fx fxf f
v f v f

f x x f xv f
f f f

   

 
 

 

  

+ = +

+ = +

− 
=

− 

 

Eq. 2.31, 2.36 and 2.39 are identical to the expression of DCv  retrieved by the 

presented two-station methods (eq. 2.21 and 2.26). Therefore, under the 

assumptions of lateral homogeneity and plane wave propagation, in the absence of 

noise and other recorded events and if only two traces are considered, the DCs 

estimated by the two-station and multichannel methods are equivalent.  

Their equivalence can be proven also for DCs estimated from more than two 

traces, as we will demonstrate here for the f k−  transform. The derivation for any 

other multichannel processing method is straightforward. Let N  be an arbitrary 

number of receivers located at 1,...,n nNx x , with 1 1nx x=  and 2nNx x= . The f k−  

spectrum is maximized when  

( )
1 1 2 2( ) ( ) ( ) ( ) . .. . = ( ) ( 4) 2. 0

N Nn DC n n DC n n DC nf k f x f k f x f k f x  + = + +=   

As a result, for any  , 1, 2,...,l m N , the expression of the phase velocity remains 

equal to the one of eq. 2.21: 
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  ( )2 1

1 2

2.41 ,
2 ( ) 2 ( ) 2 ( )( )  

( ) ( ) ( ) ( ) ( )
l m

DC
m l

f x x f x x f xv f
f f f f f

  

    

− − 
= = =

− − 
     

and since a laterally homogeneous medium is assumed, ( )DCv f  is also equal to 

the average of all the individual receiver pair contributions 

( )
, 1

2.42 .
2( )

( ) ( )

N
l m

DC
l m m l

x xfv f
K f f


 =

−
=

−
            

where ( 1)
2

N NK −
=  is the number of the possible receiver pairs.  

Eq. 2.41 and 2.42 show that in a laterally homogeneous medium, the DC 

extracted from any pair of traces or by any combination of multiple traces of the 

considered record is always identical and equal to the average DC of the individual 

pairs of races. The only difference is that the simultaneous processing of the N  

traces, leads to the estimation of one DC for which the contribution of the K  

possible pairs is averaged (Figure 2.4a). On the other hand, if N  receivers are 

available, the use of only two traces at a time allows the extraction of K  DCs 

(Figure 2.4b). Nevertheless, the resulting N -channel DC and the K  two-station 

DCs, carry the same information content: the contribution of the K  trace couples. 
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Figure 2.4: Simplified scheme of a) Multichannel and b) Two-station SW 

processing, and of c) MASW inversion and d) of SW tomography. 

2.3.4 Applicability to irregular source-receiver geometries, 3D 

seismic acquisition setups and to passive-source seismic data 

We have demonstrated the mathematical background of the most fundamental 

SW processing techniques, using as reference a regular 2D active-seismic 

acquisition setup. For 2D profiles with non-uniform receiver spacing, the use of the 

2D Fourier transform to compute the f k−  spectrum, presented in Section 2.3.1, is 

restricted. In this case, the f k−  spectrum can be computed with more complicated 

algorithms (e.g., the MUltiple SIgnal Classification (MUSIC) algorithm - Schmidt, 

1986). The rest of the presented multichannel and two-station methods do not 

present any mathematical limitation with respect to the receiver spacing, and are 

therefore directly applicable to irregular 2D profiles.  

Concerning the processing of 3D active-seismic data, the application of two-

station methods is straightforward, as long as the acquisition spread contains pairs 

of receivers, in-line with common shots. The application of multichannel 
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processing is also possible, but requires a form of data rearrangement based on the 

source-receiver offset (e.g., Boiero et al., 2011; Wang et al., 2015). 

Regarding passive-source data, a difference with respect to real-data 

processing is that the position of the passive source is unknown (see Chapter 7 for 

details). In this case, the SW propagation direction should be estimated prior to the 

DC extraction, otherwise the measured velocity will correspond to a projection of 

the true phase velocity on the receiver array (Boschi et al., 2013). For this reason, 

for passive-source SW analysis, the data are usually collected by areal arrays of 

receivers and are processed with methods which allow the estimation of the SW 

propagation direction. The DCs are then extracted, considering only the portions of 

the data which have been recorded by receivers in-line with the estimated SW 

propagation azimuth.  

Such a method, used in this dissertation, has been proposed by Zywicki (1999). 

It is a special implementation of the f k−  transform, based on the conventional 

frequency-domain beamforming method (Johnson & Dudgeon, 1993). For this 

method, the f k−  spectrum is computed by steering the receiver coordinates 

towards different azimuths and phase velocities (or, equivalently, towards different 

values of the xk  and yk  components of wavenumber) using the following steering 

vector: 

 ( ) [ ,..., ]jje e−−
= N1 kxkxe k  (2.43), 

where k  is the vector of testing wavenumbers and e  is the phase shift 

corresponding to each testing k . The beamformer applies a phase shift ( )e k  on the 

temporal Fourier transform of the original record ( , )iu x t , which in vector notation 

is given as 

 1( ) [ ( , ), , ( , )]f U x f U x f 

=U  (2.44), 

and T  denotes the vector transpose. The output of the beamformer is expressed as 

 ( , )Z f =k e WU  (2.45), 
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where 
1 0 0

0 0
0 0 N

w

w

 
 

=
 
  

W  is the Hermitian transpose and W  is a diagonal matrix 

containing shading weights iw , which control the contribution of each receiver in 

the spectral estimation: 

 
1 0 0

0 0
0 0 N

w

w

 
 

=
 
  

W  (2.46). 

The conventional frequency domain beamforming applies uniform and equal 

to unity shadowing for all sensors. Zywicki (1999) recommends for Rayleigh-wave 

analysis the use of shading weights based on the approximation of their geometrical 

spreading ( i iw x= ). This geometrical spreading normalization or similar 

amplitude or energy normalizations are customary in SW analysis and, for 

generality, will be omitted in the following demonstrations.  

The power spectrum of Z  ( ( , )P fk ) provides the value of the energy 

associated with each azimuth and wavenumber at each frequency. Neglecting W , 

the power spectrum can be computed as 

 

( , )
( ) ( ) ( ) ( )
( ) ( )

P f
f f



 



=

=

=

k ZZ
e k U U e k
e k Re k

 (2.47), 

where R  is the spatiospectral correlation matrix, containing the cross-power 

spectra between all possible couples of observations: 

 

1 1 1 2 1

2 1 2 2 2

1 2

( ) ( )* ( ) ( )* ( ) ( )*
( ) ( )* ( ) ( )* ( ) ( )*

( ) ( )* ( ) ( )* ( ) ( )*

N

N

N N N N

U f U f U f U f U f U f
U f U f U f U f U f U f

U f U f U f U f U f U f

 
 
 =
 
 
 

R (2.48), 

and * indicates the complex conjugate.  

The peaks of ( , )P fk  at each frequency provide the magnitude of k , which 

can be used for the estimation of the phase velocity according to eq. 2.9. The 
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direction of k  indicates the azimuth of the dominant energy, which can be 

computed as 

 
( )arctan
( )

x

y

k f
k f


 

=   
 

 (2.49). 

Therefore, the transform allows to estimate, apart from the phase velocity, also 

the direction of the propagating SW energy. If the position of the source is known, 

as in the linear array example of Figure 2.1, the beamformer output can be 

expressed in a simplified form as  

 ( )

1
( , ) ( , ) i

N
jk f x

i
i

Z k f U x f e
=

=  (2.50), 

which is equivalent to the f k−  spectrum retrieved by the simple 2D Fourier 

transform (eq. 2.9).  

2.3.5 Implementation to real-data processing  

It has been demonstrated that under the assumptions of plane wave propagation, 

laterally homogeneous velocity distribution and dominance of the fundamental SW 

mode in the recorded data, the basic SW processing methods are mathematically 

equivalent. Nevertheless, due to the discrete nature of real-data processing and 

because the aforementioned assumptions might not always be fully respected, 

differences among the methods may arise.  

Among the various multichannel techniques, although numerous studies on 

synthetic and real data (e.g., Tran, 2008; Martin, 2011; Zhao, 2012) have shown 

that the retrieved DCs are often very similar, choices during the method 

implementation, such as the discretization of the testing velocity or slowness 

values applied for the computation of the f p−  and f v−  slant stacked 

amplitudes, or different amplitude normalization or geometrical spreading 

compensation factors, might produce minor differences in the quality of the 

retrieved images (e.g., Dal Moro et al., 2003). Nonetheless, these kinds of 

operations do not alter the actual data content of the transformed dispersion image, 

which, as shown in this chapter, is identical for all multichannel methods. 
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Regarding two-station methods, their practical implementation might give rise 

to certain challenges. One of the most widely discussed shortcomings is related to 

the effect of spatial aliasing (e.g., Al-Hunaidi, 1992; Rosenblad & Bertel, 2008; 

Foti et al., 2011).  Due to the use of the arctangent function in eq. 2.20, the computed 

  is a wrapped phase, having an uncertainty of one cycle ( 2 ). To estimate the 

unwrapped phase, an integer n  of 2  should be added to  , prior to the 

application of eq. 2.21, in the following manner:  

 ( ) ( ) 2unwrapped wrappedf f n   =    (2.51) 

The decision of a proper n  value is not straightforward, and in practice, the 

correct DC is typically estimated by computing with eq.2.21 several values of ( )v f  

using different n  values. The ( )v f  curves,  are visually compared with a reference 

on the expected phase velocities in the investigated area, which can be retrieved for 

instance by previous studies (e.g., Lin et al., 2008) or based on the known velocity 

distribution in the area (e.g. Bakırcı et al., 2012; Boschi et al., 2013). Throughout 

the thesis, we will use as reference a DC resulting from multichannel processing of 

the same dataset. Multichannel DCs are considered  reliable references (e.g., Ikeda 

& Tsuji, 2020), since the inclusion of a high number of receivers in the spectral 

computation, and therefore the denser spatial discretization, makes them less prone 

to spatial aliasing. Once the reference DC has been obtained, the ( )v f  curve which 

is nearest to the reference is selected as the estimated two-station DC, DCv .  

Since reliable a priori knowledge of the expected phase velocities is not always 

realistic, especially in heterogeneous sites, the two-station method carries a high 

degree of uncertainty. Moreover, an additional manual quality control is usually 

necessary, to ensure that for the entire frequency band, the picked phase velocities 

follow the same cycle and portions of the DC are manually deleted if they present 

“jumps” to wrong cycles (Lin & Chang, 2004). 

Similar manual “cleaning” operations are normally performed also during 

multichannel SW processing, to remove portions of the DCs falling on undesired 

spectral maxima (Foti et al., 2018). Nevertheless, due to the lower number of DCs, 

such a manual intervenion is not critical, as opposed to the increased processing-

time and operator-intervention requirements of two-station processing, which make 

this approach ill-suited to large-scale applications.  
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Another critical limitation of the two-station methods is their inability estimate 

the desirable phase velocities (usually corresponding to the fundamental SW 

mode), if several SW modes or other recorded events, such as BW or noise, are 

dominant in the data. The cross-correlation function of the two traces is maximized 

when the highest-amplitude events of both traces are in-phase, regardless the nature 

of these events. If higher SW modes or other types of waves are highly energetic, 

the maximum amplitude might be related to a different event for each trace, leading 

to a wrong estimation of the phase velocity.  

A possible solution is to filter the traces prior to the computation of the cross-

power spectrum, in order to isolate the fundamental mode, based on its group 

velocity. A common method for the computation of the group velocity is based on 

the MFT, described in Section 2.3.2. With this method, the traces can be 

decomposed into monocromatic signals, 0u , containing energy only around 0f . For 

the group velocity estimation, the quadrature of each 0u  trace is computed as 

 0 0( , ) Im( ( , ))q i iu x t u x t= −  (2.52), 

where 0 ( , )iu x t  is the Hilbert transform of 0( , )iu x t , and its envelope as 

 ( ) ( )
22

0 0 0( , ) ( , ) ( , )i i q iE x t u x t u x t= +  (2.53). 

The value of time, corresponding to the maximum value of the envelope, equals 

the group arrival time ( 0( )gt f ) from which, the group velocity can be computed as 

 0
0

( )
( )

i
g

g

xv f
t f

=  (2.54). 

Repeating the same computation for all 0 min max[ , ]f f f , allows the estimation 

of the group velocity DC for each original trace. To filter the traces, before the 

application of the two-station processing, a time-window centered at the group 

arrival time is applied on each trace, ensuring that cross-correlation will be 

performed only for fundamental mode. For processing also higher modes, different 

pre-processing techniques can be adopted (e.g., Khosro Anjom et al., 2021). 
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To avoid numerical artefacts in the computation of the phase velocity, Yao et 

al. (2005) recommend to filter around the group velocity using a time-window with 

cosine shoulders: 

 ( )

0 0
0 0

0
0

0 0
0 0

0

1 if

cos if

0 elsewhere

( ) ( )

2( )
2 2, ( )1

g g

g

g

n nt f t t f
f f

t t f
fw t f t t f

f f
f




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


− +
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





 
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 



 

(2.55) 

where n  is the (constant) ratio between the half-window length and the period of 

interest and, according to Yao et al. (2005) should be in the range of 2-3.  

For multichannel processing, such a filtering is not necessary since, assuming 

adequate spectral resolution, all multichannel methods allow the separation of the 

different modes in the spectra. In particular, if sufficiently energetic, higher modes 

appear as separate spectral maxima at distinct velocities, with respect to the 

fundamental mode, and can be picked to obtain a multimodal DC (e.g., Tselentis & 

Delis 1998; Park et al., 1999). 

An additional challenge for two-station methods is the presence of random 

noise in the data. In presence of noise, the use of a large number of receivers in the 

spectral computations can be advantageous since, according to eq. 2.42, the 

contribution of each individual trace in the multichannel DC computation is 

statistically reduced with increasing number of receivers. Therefore, using a large 

number of receivers, reduces the influence of low S/N traces in the spectrum and 

makes multichannel processing more stable. For the same reason, also near/far-field 

effects are expected to be less damaging in multichannel processing (Foti et al., 

2002).  

Finally, an important apsect to be considered is the effect of lateral variations 

in the subsurface velocity. Boiero and Socco (2010) have shown that two-station 

and multichannel methods are equivalent also in the case of smooth (linear) lateral 

variability, as long as the same subsurface portion is covered by the receivers. In 

this case, the DC measured for any number of receivers covering the entire path, is 

equal to the average slowness (velocity) along the path.  
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On the other hand, two-station and multichannel methods are not anymore 

equivalent if sharp lateral variations are present in the subsurface. Depending on 

their properties, such discontinuities might act as strong impedance contrasts, 

causing the back-reflection or attenuation of the energy of the propagating SW 

(Hyslop & Stewart, 2015). This introduces a complexity on the measured 

wavefield, (Lin & Lin, 2007; Roy et al., 2013; Evangelista & Santucci de Magistris, 

2015), and regardless the processing method and number of traces, the measured 

phase velocity cannot be easily interpreted in relation to any specific subsurface 

velocity. Therefore, sharp lateral variations are a challenge for SW processing and 

should be detected and filtered out from the data, prior to the DC extraction. 

Methods to detect the presence and location of sharp lateral variations are discussed 

in Section 4.1. 

2.4 Surface-wave inversion 

Surface-wave inversion leads to the estimation of the subsurface properties 

based on the information contained in the experimental DCs. The inversion 

estimates the parameters (commonly the layer SV  and thickness) of a synthetic 

layered model of which the forward response (synthetic DC) closely matches the 

experimental one. It can therefore be regarded as the solution to an optimization 

problem, of which the objective function is a measure of the distance between the 

synthetic and experimental DCs.  

 Several approaches can be adopted for the solution of the inverse problem. 

The, widely used, local-search algorithms start from an initial (trial) synthetic 

velocity model, compute the corresponding synthetic DCs, and update the model 

based on the comparison of the synthetic DCs with the experimental ones. These 

methods are fast, but suffer from a well-known disadvantage. They may converge 

to local minima, different than the optimal solution (global minimum), which 

makes them highly dependent on the choice of the initial model. Global-search 

algorithms, on the other hand, look for the best-fitting model, over a wide range of 

possible parameters within a predefined model space. Detailed reviews of the most 

common algorithms in SW analysis can be found in Foti et al. (2011). 

Regardless the specific algorithm, used to minimize the objective function, a 

distinction between the existing SW inversion schemes can be made, based on 
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whether the measured DCs are considered in the inversion as local properties or as 

average along the receiver paths. Concerning this aspect, two popular SW inversion 

schemes exist:  

• the scheme which assumes local DCs and velocity models and,  

• the scheme of SW tomography, which assumes path-average 

distribution of the phase velocities. 

Traditionally, regardless the mathematical equivalence of the various DC-

estimation techniques, the SW processing method associated to these schemes 

differs. 

DCs resulting from multichannel SW processing are usually inverted as 1D 

curves, with a method commonly referred as MASW (Multichannel Analysis of 

Surface Waves- Park et al., 1998; Xia et al., 1999), an acronym which was 

established for a specific processing and inversion method, but is widely used as a 

general term to describe any type of multichannel processing and 1D inversion 

combination. The same generalization will be made in the current thesis.   

For MASW, a DC estimated from an array of receivers is considered local and 

1D, located at the center of the array. Possible lateral heterogeneity of the medium 

below the receivers is neglected and the inverse problem is solved assuming a 1D 

layered model, based on the forward modelling algorithms discussed in 2.1.1. Due 

to the lower sensitivity of the DCs to PV  and   (Nazarian & Stokoe, 1984; Xia et 

al., 1999), the values of these parameters are assigned a priori, and inversion is run 

only for the layer thickness and SV . Therefore, the typical output of MASW is a 1D 

SV  model, located at the center of the receiver array (Figure 2.4c). 

The method is a standard investigation tool in several engineering applications, 

such as bedrock mapping (Miller et al., 1999), soil classification (Kanlı et al., 2006; 

García Nieto et al., 2018), road construction (Park et al., 2018), pavement testing 

(e.g., Ryden et al., 2003; Ryden & Park, 2004). In exploration, where the multifold 

acquisition schemes are favorable for multichannel DC extraction, MASW is 

gaining increasing interest as a method to estimate the static corrections (e.g., Roy 

et al., 2010; Miao et al., 2016). 

In principle, since multichannel and two-station methods are equivalent, a DC 

extracted from a two-station processing method could be inverted as a 1D curve. In 
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fact, SASW (Nazarian & Stokoe, 1984), the precursor of MASW in the field of 

geotechnical engineering, is based on the extraction of the DCs with the two-station 

methods and their inversion as local curves, outputting a 1D SV  model. Several 

experimental studies have shown that the retrieved models from MASW and SASW 

are equivalent (e.g., Garofalo et al., 2016). Nonetheless, in the field of engineering, 

MASW is gaining increasing interest over SASW, due to the higher reliability of 

the DCs retrieved by multichannel processing (Park & Ryden, 2007). 

The inversion scheme of SW tomography is almost exclusively associated with 

two-station SW processing. SW tomography is a well-established method in 

regional and global-scale studies, where it is commonly applied for the 

determination of 3D models of the earth’s structure, using SW generated from 

ambient noise or earthquakes (e.g., Ritzwoller & Levshin, 1998; Kennett & 

Yoshizawa, 2002; Shapiro & Campillo, 2004; Sabra et al., 2005). The method is 

less common in the scale of exploration, even though successful applications on 

active (e.g., Swoboda et al., 2013; Socco et al., 2014) and passive (Picozzi et al., 

2009) seismic exploration data have proven its validity as an exploration tool.  

The input to SW tomography is a set of DCs, corresponding to different 

crossing paths between pairs of receivers. In this case, the experimental DCs are 

not treated as local 1D curves, but their path-average nature is accounted for, in a 

manner which allows the estimation of the local distribution of SV . Kennett & 

Yoshizawa (2002), provide a comprehensive description of this technique, 

formulating the classic SW tomography as a two-step process: The first step 

(tomography), assumes that the local properties of the medium between two stations 

have a linear contribution to the average phase velocity measured by the DC and 

therefore, that strong velocity contrasts are absent (see Section 2.3.3.1). The area 

between the receivers is discretized into a grid, and the grid (local) phase velocities 

at a given frequency (or period) along a specific receiver path are estimated as the 

ones that average into the observed DC. Since each grid point might belong to 

multiple crossing receiver paths, its velocity should be tuned, to satisfy all the 

corresponding observed DCs. Therefore, the final result is, for each frequency, a 

map of the local phase velocities for the entire grid, which all satisfy the entire set 

of path-average DC. In the second stage, the local DCs, corresponding to each grid 
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position, are inverted to estimate local 1D models, using a 1D forward model 

(Figure 2.4d). 

To improve its efficiency, several authors (e.g., Boschi & Ekström, 2002; 

Boiero, 2009; Fang et al., 2015; Mohammadi et al., 2020; Zhang, 2020) proposed 

modifications of SW tomography, to avoid the intermediate stage of phase-velocity 

map building, and invert the path-average DCs directly for local SV  models. The 

method of Boiero (2009), used in this thesis and described in detail in Chapter 6, 

computes the path-average phase velocity distribution resulting from an assumed 

local SV  distribution, and updates the SV  model to fit the path-average DCs.  

In all SW tomography approaches, the achievable lateral resolution of the 

produced velocity model depends on the spatial coverage of the DC paths and, in 

general, a dense coverage allows higher lateral resolution (Bijwaard & Spakman, 

2000). To optimize the vertical resolution and investigation depth, a wide 

distribution of path lengths is necessary, since different receiver separations are 

responsible for different frequencies (wavelengths) of the DCs (see Section 2.2).  

Considering the equivalence of all the SW processing methods, a set of 

multichannel DCs could be used as input to SW tomography, possibly with higher 

reliability, since the multichannel DCs are more stable in presence of other recorded 

events and noise (see Section 2.3.5). Such an approach has been recently proposed 

by (Hu et al., submitted) for a 2D velocity model estimation. However, using 

multiple receivers for each path and at the same time achieving a high degree of 

path overlap and azimuth coverage, necessary for 3D SW tomography, would 

require a larger number of receivers than typically available. Therefore, the 

common convention, which associates MASW with DCs retrieved from multiple 

receivers and SW tomography with DCs retrieved by two-station methods and is 

adopted in the following chapters. 

2.5 Conclusion  

Surface-wave methods are based on the extraction of DCs from the acquired 

seismic data with SW processing, and the subsequent inversion of the DCs to 

retrieve SV  models. Depending on how the DCs are measured and inverted, SW 

methods can be categorized under the schemes of MASW and SW tomography.  
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In this chapter it has been shown that the DCs are mathematically equivalent, 

regardless the number of receivers and data processing applied for their 

computation. The main difference between MASW and SW tomography is the 

manner in which the DCs are treated in the inversion. In MASW, a multichannel 

DC is inverted as a 1D curve, to estimate a 1D velocity model, characterizing the 

entire subsurface portion below the array. SW tomography uses DCs measured 

from several pairs of receivers and inverts them simultaneously as path-average 

curves. Being based on 1D forward modelling algorithms, MASW and SW 

tomography, should, if the assumption of laterally homogeneous subsurface models 

is respected, output the same SV  model.  

In real-world applications, the theoretical hypotheses of SW analysis are 

seldom met entirely, and the choice and implementation of the method to be used 

should consider the intended application and site conditions.  
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Chapter 3 
 

Background 

3.1 Mineral Exploration in Europe - Smart Exploration 

“Metallis ex usu hominum sublatis, tollitur omnis ratio & tuendæ sustentandæ 

ualetudinis, & tenendi cursum uitæ cultioris. Etenim homines fSdissimam et 
miserrimam uitam degerent inter feras, ni metalla essent, redirent ad glandes at 
syluestria poma & pruna: herbis & radicibus euulsis uescerentur, unguibus 
foderent speluncas, in quibus noctu iacerent, interdiu in syluis & campis passim 
more bestiarum uagarentur, quæres quia hominis ratione, prestantissima & optima 
naturæ dote, prorsus est indigna, adeóne quisquam erit stultus aut pertinax, ut 
metalla ad uictum uestitum necessaria esse, & ad uitam hominum tuendam 
pertinere, non concedat?” 
 
“If we remove metals from the service of man, all methods of protecting and 
sustaining health and more carefully preserving the course of life are done away 
with. If there were no metals, men would pass a horrible and wretched existence in 
the midst of wild beasts; they would return to the acorns and fruits and berries of 
the forest. They would feed upon the herbs and roots which they plucked up with 
their nails. They would dig out caves in which to lie down at night, and by day they 
would rove in the woods and plains at random like beasts, and in as much as this 
condition is utterly unworthy of humanity, with its splendid and glorious natural 
endowment, will anyone be so foolish or obstinate as not to allow that metals are 
necessary for food and clothing and that they tend to preserve life?”  

 
GEORGIUS AGRICOLA, De Re Metallica (Translated from the first edition) 
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The famous quote from the “'Father of Mineralogy'”, dating back to more than 

half a millennium ago, can be fairly considered valid today. Mined raw materials 

lie on the technological root of all modern industrial societies, and one could 

reasonably argue that the history of human civilization, starting from the “stone 

age” and reaching to the “Fourth Industrial Revolution”, projects the advancement 

of mining endeavour. Man, as a “tool making animal” was, is and will be 

irrevocably connected to the extraction of mineral resources. 

The importance of mining grows rapidly with the evolution of technology and 

today, the extraction of mineral resources is the basis of a wide range of production 

activities, such as the energy and construction industry, the production of chemicals 

and fertilizers, automotive and aerospace products, electronics etc. (Azapagic, 

2004; Dubiński, 2013). The increasing complexity of the produced goods makes 

the supply of diverse mineral resources critical. Even though recycling is gaining 

increasing attention as a source of materials, relevant projections show that mining 

will continuously rise in the coming decades. For instance, OECD predicts that in 

the forthcoming 40 years, the global demand for raw materials will increase to more 

than twice its current levels (OECD, 2019), and in economic developed regions 

(Europe and OECD America), mining is predicted to undergo a 70%-80% increase 

of its current levels.  The same analysis forecasts that also recycling will face a 

rapid growth, but will not be sufficient to mitigate the projected increase of demand. 

Thus, the stability of the future economic and social growth depends to the effective 

exploitation of current mining resources and the discovery of new raw-material 

deposits.  

Being the cradle of the modern industrialized economy, Europe has been a 

mineral-exploitation pioneer for decades. In the 20th century, though, with new 

“players” emerging in the global economic stage, ore extraction in Europe started 

to face a downturn and has been gradually replaced by -more competitive- global 

market imports (DW, 31/01/2007; Schüler et al., 2017; Ritchie, 2019) 

Nonetheless, the economic conditions present constant and rapid changes. 

International competition, increasing demand in ores and high market friction, point 

out to the necessity of a secure raw material supply within the EU.  In this context, 

since 2008, the EU has adopted the “raw materials initiative”, which comprises of 

three major pillars: a) fair and sustainable supply of raw materials from global 

markets, b) sustainable supply of raw materials within the EU and c) resource 
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efficiency and supply of ‘secondary raw materials' through recycling (European 

Commission, 2008).  

To promote the second pillar, a quantum leap in the efficient use of land, 

materials and labour in the industry is necessary to make the intra-EU raw materials 

market sustainable and competitive. To this end, the development of advanced and 

more efficient mineral exploration methods is of utmost importance.  

“Smart Exploration” is a project funded by the EU’s Horizon 2020 research and 

innovation programme, for the development of cost-effective and environmentally 

friendly mineral exploration solutions (www.smartexploration.eu). The project was 

initiated in November 2017 and has been active until November 2020, focusing on 

the development of measuring systems and geophysical methods (mainly seismic, 

electromagnetic and potential-field). The project engaged 27 seven partners, 

including research institutions, SMEs, and stakeholders (mining companies and one 

municipality), based in 9 EU countries and six green-field and brown-field 

validation sites, located in Sweden, Finland, Greece, Kosovo and Portugal. 

Politecnico di Torino, has been one of the project partners since the initiation 

of the project and was involved in the development of novel seismic processing 

methods, optimized for mineral exploration. The research work of the current thesis 

was conducted in association with Smart Exploration, and has been used for the 

geophysical characterization of two sites among the six pilots associated to the 

project. 

3.2 Mining site of Blötberget in Ludvika, central Sweden 

3.2.1 Study area and geology  

The first site, Blötberget, is located in the mining area of Ludvika in central 

Sweden (Figure 3.1) and belongs to one of the country’s most significant mineral 

districts, Bergslagen. The iron ores of Bergslagen have been exploited for centuries, 

supporting fundamental sectors of the Swedish industrial activity, and mainly the 

production of steel.  

The Bergslagen district belongs to the Svecokarelian orogen in the 

Fennoscandian Shield. The iron ore comprises mainly of banded iron formations, 

skarn-type and apatite-rich iron oxides, among which, the apatite-rich iron oxides 

are dominant (Geijer and Magnusson, 1944). It exists as sheet-shaped horizons, 

http://www.smartexploration.eu/
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formed within dacitic to andesitic, feldspar porphyritic metavolcanic host rocks. 

Both the host rocks and the mineralization have been intruded by dacitic, andesitic 

and basaltic dykes and subvolcanic and synvolcanic, granitic to intermediate 

plutonic rocks. Additional post-mineralization intrusions of granite–aplite–

pegmatite and metamorphism are present and are responsible for severe 

deformation of the rocks (Allen et al., 1996). 

The area of focus, Blötberget, is known for its high-quality apatite-rich iron-

oxide deposits. The mineralization consists mainly of magnetite and hematite with 

presence of apatite and quartz-silicate minerals. Magnetite is the dominant mineral 

of the ore and it is distinguished from hematite, which has a slightly different 

mineralogy, having a higher content in quartz and feldspar. Both magnetite and 

hematite appear as separate horizons, which present a steep dip (approximately 45°) 

towards the south-southwest down to a depth of 500 m. At this depth, the dip 

becomes less abrupt until a depth of at least 800 m – 850 m.  

The Blötberget ores have been subject to mining since the sixteenth century. In 

1979, all mining activities were ceased, due to a significant drop in the price of iron, 

which severely affected the production of this commodity in Europe. Recently, 

favorable economic conditions have led to a renewed interest and in 2010 permits 

for exploration and production were given to Nordic Iron Ore (NIO). The company 

(www.nordicironore.se) estimates the mineral resources (down to 800 m) to be: 

45.4 million tons of 41.7 % iron (estimated), 9.6 million tons of 36.2 % iron 

(indicated) and 11.8 million tons of 36.2 % iron (proven). The initiated activities 

focus on increasing the existing knowledge on the depth and lateral extent of the 

deposits. This information is critical for the economic assessment of the ores and 

for planning the mine-facility installation. 

file:///C:/Users/User/OneDrive%20-%20Politecnico%20di%20Torino/PhD%20Progress/PhD%20thesis/Corrected%20first%20version/%ce%a4%cf%85%cf%80%cf%89%ce%b8%ce%b5%ce%b9%cf%84%cf%89/www.nordicironore.se
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Figure 3.1: a) Map pointing to the area of interest. b) Geological map of the 

Blötberget area in central Sweden, where the seismic survey lines of the 2016 (grey) 

and 2019 (black) are shown. The map was reprinted with the kind permission of the 

Geological Survey of Sweden. 

3.2.2 Earlier studies 

Maries et al. (2017) present and extensive study of the physical properties of 

the mineralization and host rocks in Blötberget, based on downhole and laboratory 

measurements. Triple-sonic full-waveform logging, performed in four of the 

existing boreholes (white dots in Figure 3.1b), showed that all lithological units, 

including the near-surface, present high seismic velocities, with PV  ranging 

between 5000 m/s and 6500 m/s and SV  in the range of 3000 m/s and 4000 m/s. 

Laboratory measurements on core samples indicated that the mineralized bodies 
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present significantly higher densities (> 4000 Kg/m3) than the host rock, leading to 

high values of acoustic impedance, which justify the suitability of reflection seismic 

to detect the mineralization.  

Regarding the near-surface lithology, the logging measurements showed that 

the first 100 m consist mainly of metasedimentary argillitic rocks and granite, the 

density values of which vary between 2500 and 3000 Kg/m3. These lithological 

units appeared in several boreholes as outcrops and no core samples or 

measurements indicated the existence of soft unconsolidated materials. 

Nonetheless, the existence of soft sediments on the surface is possible, since 

Blötberget is known for its swampy environment.  

In total, three high-resolution active-source seismic field campaigns (in 2015, 

2016 and 2019) have been conducted, with the target of increasing the existing 

knowledge on the extension of the mineralization. The acquisition details and 

processing results of the 2015 survey are presented in Malehmir et al. (2017). The 

results of the 2015 dataset processing provided confirmation of the suitability of 

reflection seismic for this site, since strong reflections appeared in correspondence 

with the known location of the mineralized bodies. Moreover, the resulting 

unmigrated sections provided evidence of deeper continuation of the mineralized 

horizons, which led to the campaigns of 2016 and 2019 (both used in this work) for 

further investigation.  

3.2.3 Seismic dataset of 2016  

The acquisition parameters of the 2016 survey are summarized in Table 3.1. 

The data were recorded within a period of five days, along the profile shown in grey 

in Figures 3.1b and 3.2. The line had a total length of approximately 2200 m, and 

was deployed in a direction which crosses the known mineralization, as indicated 

by the total-field aeromagnetic data map of Figure 3.2, acquired by the Geological 

Survey of Sweden. The map presents strong magnetic anomalies intersecting the 

line in two zones (yellow dashed circles in Figure 3.2). The seismic recording 

equipment included 427 cabled geophones (10 Hz) spaced at 5 m, and 24 wireless 

stations (10 Hz) spaced at 10 m, while the seismic shots were stroke with a 500-Kg 

mini skid-steer mounted vertical drop-hammer, along the profile plotted in red in 
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Figure 3.3a. The recording time made available was 10 s (reduced to 2 s for 

processing) and the SR  was 1 ms.  

 

Table 3.1: Acquisition and recording parameters of the 2016 and 2019 

seismic surveys in the Blötberget mining area in Sweden. 

 September 2016 April-May 2019 
Type of survey Active-source 2D Active-source 2D  

Acquisition 
system 

Sercel Lite 428 Sercel Lite 428 

Number of 
profiles 

1 11 (receivers in 9, shots in 
11) 

Receivers 427 cabled and 24 wireless 
(10 Hz) 

Cabled and wireless 10 Hz 

Number of 
receiver 

locations 

451 1266 

Receiver interval 5 m (cabled) - 10 m 
(wireless) 

10 m – 20 m 

Source 500-kg mini skid-steer 
mounted vertical 
drophammer 

32 t vibrator (20 s sweep 
length, 10-160 Hz linear 
sweeps) 

Number of shot 
locations 

387 (times 3 shots per 
location) 

1051 (times 3 sweeps per 
location) 

Shot interval 5 m 10 m – 20 m 
Record length 10 s (reduced to 2 s for 

processing) 
5 s (reduced to 2 s for 
processing) 

Sampling rate 1 ms 1 ms (resampled at 2 ms) 
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Figure 3.2: Total-field aeromagnetic map of the area in central Sweden showing the 

location of the 2016 (grey) and 2019 (black) seismic profile and existing boreholes 

(white dots). The total-field magnetic map was kindly provided by the Geological 

Survey of Sweden. 

 

 
Figure 3.3: Source and receiver geometry of the seismic data acquired in a) 2016 

and b) 2019. 
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The dataset of 2016 has served as a validation dataset to benchmark, compare 

and combine a variety novel exploration solutions developed within Smart 

Exploration by various research groups. Balestrini et al. (2020) applied an 

interferometric method to suppress the SW contained in the data, improving the 

retrieval of BW reflections. Even though their target was to remove the groundroll 

contained in the data, they showed that SW are highly energetic and broadband, an 

encouraging finding with respect to the work of the current thesis, which focuses 

on the use of groundroll as the input signal to SW analysis. 

The high SW contamination has been addressed also in the conventional 

processing of Markovic et al. (2020). Their work resulted in the migrated stacked 

section shown in Figure 3.4. The section indicates the existence of two SE-dipping 

reflectors (“M1” and “M2” in Figure 3.4), which match the position of the known 

mineralized bodies (blue and red surfaces in Figure 3.4). The section shows that the 

mineralization probably extends deeper than the known depth of 850 m, by 

approximately 350 m. This implies a 30 % increase of the resources, if the thickness 

and lateral extent are assumed constant. Supplementary reflections in the footwall 

of the known mineralization were also detected, and may be related to additional 

ore bodies. Apart from the mineralization, a set of NW-dipping reflectors (“R1”, 

“R2” and “R3” in Figure 3.4) were detected and have been interpreted as 

lithological contacts (faults). 

Bräunig et al. (2020) applied an advanced prestack depth imaging workflow, 

which led to an improved mapping of the structure of the mineralization. Their 

result fortified the indications that the mineralization extends deeper than originally 

known and that subvertical faults exist, showing that the faults probably cross-cut 

the mineralization. In their work, they addressed the issue of near-surface imaging, 

showing that shallow layers are characterized by a complex system of faulting and 

fracturing, leading to severe scattering of the BW signal. To better account for this 

complexity, Bräunig et al. (2020) performed first-break tomography and retrieved 

a high-resolution shallow velocity model, which was fed to their final migrated 

model, improving its quality.  

 The current work focuses on an improved characterization of the complex 

near-surface environment of Ludvika and the estimation of static corrections. 

Chapters 4 and 6 present two novel SW-based static solutions and their application 

on the 2016 dataset. The first workflow, is a fast statics estimation method, based 
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on multichannel SW DC estimation, limited inversion steps and simple data 

transform methods. The second workflow is a high-resolution statics estimation 

method, based on SW tomography. The two workflows have been validated within 

Smart Exploration and compared with the results of conventional approaches. They 

have both been included in a complete seismic imaging workflow presented in the 

deliverable “D10” of the project.  

 

 
Figure 3.4: Migrated seismic section which resulted from the conventional 

reflection seismic processing of the Ludvika legacy dataset with (a) density logs 

(zoomed on the right side) and (b) the ore bodies (blue and red horizons). The 

section suggests the mineralization probably continues deeper than the known depth 

(850 m), to a depth of approximately 1200 m. Supplementary reflections in the 

footwall of the known ore bodies could be additional resources (from Markovic et 

al., 2020))  
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3.2.4 Seismic dataset of 2019  

The survey of 2019 was conducted within Smart Exploration, in order to 

estimate the 3D geometry of the mineralization, and to confirm its depth extension 

(see for details Malehmir et al., 2021). An additional task was to investigate further 

the number and geometry of the cross-cutting faults indicated in 2016 data 

processing. This information is critical, not only for the estimation of the complete 

internal structure of the mineralization -and therefore of the existing reserves- but 

also for planning the mine infrastructure, since the existence of such weakness 

zones in the near-surface affects the safety during the exploitation phase of the 

mine.  

The acquisition parameters of 2019 are shown in Table 3.1. The acquisition 

(black in Figures 3.1b and 3.2 and black and red in Figure 3.3), included 1266 

cabled and wireless receivers deployed along 9 lines, and 1051 shot positions shot 

along 11 lines. The receivers and source points were uniformely spaced along each 

line, at 10 or 20 m distance. A broadband (10 Hz -160 Hz) linear 32 t vibrator was 

used as source, performing 3 sweeps at each source location. Each shot was 

recorded by all the receivers, in order to achieve cross-line azimuth coverage. In 

total, the 3D dataset included 1,330,566 traces which, after resampling to a SR of 2 

ms and a record length of 2 s, sized 15.1 GB of computer memory.  

The dataset is currently being reprocessed by various groups of Smart 

Exploration. In the current work, high resolution 3D SV  and PV  models have been 

estimated through SW analysis and are presented in Chapters 5 and 6.  

3.3 Mining site of Siilinjärvi, eastern Finland 

3.3.1 Study area and geology  

The Siilinjärvi mine is located in the municipality of Siilinjärvi, 20 km north of 

city of Kuopio in Finland (Figure 3.5a). It is the only operating mine producing 

phosphorus within the EU. Phosphorus is a commodity listed as one of the 27 

critical raw materials for the EU, necessary for the production of agricultural 

fertilizers (European Commission, 2017). The production activities on the site date 

back to 1979, when open-pit extraction was initiated by Kemira Oy. Since 2007, 
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the mine has been operated by Yara International and its current annual production 

is approximately 11 Mt of ore (O’Brien et al., 2015).  

In Siilinjärvi, the phosphorus-bearing mineral is apatite, found within a 

carbonatite-glimmerite complex (Figure 3.5b). The apatite is currently extracted 

from two open pits: the main pit, called Särkijärvi (Figure 3.5b) and a satellite pit, 

named Saarinen, and is processed to produce phosphoric acid on-field, in a 

concentrator installed in the proximity of the Särkijärvi pit. A significant by-product 

of the mine is gypsum, which is currently deposited on a 2 × 1 km wide pile, on the 

southwest of the Särkijärvi pit (Figure 3.5b).  

Intrusions of basaltic diabase dykes and a tonalite-diorite body can be found 

within the carbonatite-glimmerite complex. The tonalite-diorite intrusion is located 

southwestern of the main mine pit, while the intruded diabase dykes are present 

throughout the entire ore body. The thickness of the dykes varies within a range of 

a few centimeters to several meters and most of them present a steep dip (Mattsson 

et al., 2019). Their dominant orientations are northwest–southeast and north–

northwest/south–south. Towards the south of the main pit, the diabase dykes 

intersect each other and the tonalite-diorite body, creating a complex structural 

environment.  
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Figure 3.5: a) Map pointing to the area of interest. b) Map of the geology of the area 

south of the Särkijärvi pit. The geological map has been kindly provided by Yara. 

Base map: Elevation model, 2008-2019, 2 m x 2 m © National Land Survey of 

Finland. 

3.3.2 Earlier studies  

A wealth of information related to the structure and seismic properties of the 

mineralization and surrounding rocks is available from earlier studies. Malehmir et 
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al. (2017) present the results of downhole logging (full-waveform sonic, magnetic 

susceptibility, formation resistivity, temperature, fluid conductivity and natural 

gamma) and laboratory measurements. In the same work, also the data and results 

of a seismic survey performed at the site in 2014 are presented. The purpose of their 

study was to identify the physical properties of the rocks, identify potential 

weakness zones and gain knowledge on the extension of the mineralization, towards 

the south of the main mine pit.  

The laboratory measurements showed that the P-wave velocities of diorite and 

fenite fall within 5400 m/s – 6100 m/s and 5300 m/s – 5800 m/s, respectively.  The 

carbonatite-glimmerite and the diabase dykes were found to present a larger 

variability of PV , between 4800 m/s and 6500 m/s. The dykes were found to present 

the highest density values (2750 kg/m3 – 3050 kg/m3) and the fenite the lowest ones 

(2580 kg/m3 – 2680 kg/m3). The values of density measured for the carbonatite-

glimmerite were found to range between 2800 kg/m3 - 2950 kg/m3 and for diorite 

between 2650 kg/m3 and 2900 kg/m3.  

The sonic logs indicated in-situ P-wave velocities between 2500 m/s and 7000 

m/s, with the highest values corresponding to diabase and diorite. The lowest ranges 

were associated with carbonatite, which was found to be highly fractured in various 

zones and different depths.  Based on these measurements, Malehmir et al. (2017) 

concluded that the carbonatite could potentially be reflective.  

The seismic survey consisted in four lines, two of which were deployed inside 

the Särkijärvi pit and two towards the south of the pit. The data were processed for 

seismic reflection and first-break tomography. The tomographic velocity models 

presented several low-velocity zones, which were associated with thin (a few 

meters) glacial-rock overburden layers (blue in Figure 3.6). Deeper low velocity 

anomalies were found in the area towards the east of the pit, and were associated to 

the shearing of the ore body, due to intrusion of the tonalite-diorite and diabase 

dykes. The location of these anomalies was confirmed by the seismic reflection 

results, which at the same positions revealed strongly dipping (> 70o) reflectors.  
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Figure 3.6: P-wave tomography and unmigrated 2D reflection processing results of 

two seismic lines acquired in 2014 inside the Särkijärvi pit (from Malehmir et al., 

2017) 

 

Malehmir et al. (2017) pointed out that the low S/R of the data, the high near-

surface variability and the presence of dipping reflectors, imposed challenges to the 

data processing. Nonetheless, the final results were consistent with the known 

geology of the area, confirming the suitability of seismic methods to characterize 

the site.  

In summary, so far it has been shown that the carbonatite-glimmerite orebody 

is expected to present lower density and, due to fracturing, lower seismic velocities 

with respect to the ones of the host rocks and to the tonalite-diorite and diabase-

dyke intrusions.  

3.3.3 Seismic dataset of 2018 

Between September 20 and October 5 of 2018, a 2D/3D active- and passive-

source seismic field campaign was conducted in Siilinjärvi, in the framework of 

Smart Exploration. A crew of more than 20 members (mainly young professionals) 

belonging to several partner-affiliations of Smart Exploration was involved in the 

seismic data acquisition (Figure 3.7). Apart from the seismic measurements, also 

Ground Penetrating Radar (GPR) and magnetic total field data were collected 

during the same period and Unmanned Aircraft Vehicle (UAV) based magnetic 

data are planned to be acquired in the future.  

The aim of the seismic survey was: a) to study the lateral and depth extent of 

the ore body, the knowledge of which is vital for the further development of the 

mine; b) to assess the distribution of the diabase dykes, which are waste for the 

mine production and their total volume affects the total reserves, and c) to estimate 
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potential weakness zones, critical for the safety of the mining activity and its 

environmental impact. Therefore, the area of the survey included (Figure 3.8): 

• A) The area in the of the main mine pit, where the focus was to map the 

extension of the mineralized body, especially towards the south of the 

main pit, and possible subsurface structures, which could affect the 

stability of the pit. 

• B) The forest area of the mine which is an area of great interest for the 

reserve estimation and long-term planning of the mine.   

• C) The area of the gypsum pile, where the target was to map the 

continuation of the mineralized body beneath the pile and possible 

fractured zones, which would allow the infiltration of the highly acid 

(pH < 2) drained water from the gypsum pile. 

Considering the areas of interest and logistical restrictions, the equipment was 

deployed, as shown in Figure 3.8: a) three source-receiver lines, named as SM1, 

SM2 and SM3 in Figure 3.8 (the red stars show the position of the shots); b) an 

irregular carpet of receivers, recording both active shots and ambient noise  (black 

dots in Figure 3.8); c) additional shots within the area of the open pit (blue stars in 

Figure 3.8); d) four calibration shots (yellow stars in Figure 3.8). During the striking 

of all the shots (along the three lines, within the pit and the calibration shots), all 

the receivers in the irregular carpet were active. 

 
Figure 3.7: Members of the Smart Exploration crew participating in the seismic 

field survey in Siilinjärvi in 2018. 
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Figure 3.8: Map of the Siilinjärvi survey area. Black dots correspond to the 

receivers, red stars show the position of the shots along the seismic lines, blue stars 

show the shots in the main mine pit, and yellow stars indicate the four calibration 

blasts in the forest. The dashed yellow and white rectangle indicate the two areas 

of focus of this work. 
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The purpose of the joint use of the seismic lines and the irregular receiver carpet 

was to provide a detailed imaging, at different scales, of the subsurface beneath the 

survey area. The 2D lines were aimed at retrieving a high-resolution depth image 

of the mineralization along the profiles, and were designed with a dense source-

receiver geometry. A combination of 10-Hz cabled and wireless geophones were 

used, spaced at 5 m (SM1) and 10 m (SM2 and SM3), while the shot spacing was 

equal to 20 m for all the lines.  

The irregular receiver carpet was designed for a wide spatial coverage, 

necessary to image the continuity and shape of the mineralization. It consisted of 

578 10-Hz vertical geophones (Figure 3.9) connected to wireless stations, which 

contained a GPS locator, a transmitting antenna and an analogue-to-digital 

converter. In order to continuously transmit the data of each station to the central 

recording van, the wireless stations had to communicate with each other. To ensure 

this, two neighboring stations had to be at a maximum distance of 50 m from each 

other, which was the main constraint given by the equipment in use.  

In presence of obstacles (e.g. vegetation), this distance had to be further reduced 

to approximately 40 m. The array was aimed at recording both ambient noise and 

the active data. Hence, it recorded continuously for 13 days during which period 

the active shots were blasted. The data were recorded with a sampling rate of 2 ms 

and stored in 1-minute segy files, having a total size of almost 800 Gb. The active 

shots were tracked in the records based on their known time occurrence and stored 

as separate 6 s-long shot gathers.  

In this work, we use the data from line SM1 and the forest area to test the 

proposed SW workflows since they are of great interest for the near-future 

development of the mine. Processing of the remaining portions of the survey is 

planned for the future. 
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Figure 3.9: A planted 10-Hz geophone connected to a wireless station, belonging 

to the irregular grid of receivers of the 2018 Siilinjärvi seismic survey. 

 

Acquisition of the active-seismic data in line SM1 

 

The source-receiver layout of SM1 is shown in zoom in Figure 3.10, and its 

acquisition parameters are given in Table 3.2. The line had a total length of 1360 m 

and consisted of 262 geophones (combination of cabled and wireless, shown in light 

and dark blue in Figure 3.10 and Figure 3.11a). A number of 59 explosive shots 

(magenta in Figure 3.10) and 10 shots stroke by a 520-Kg mini skid-steer mounted 

vertical drophammer (yellow in Figure 3.10) at a spacing of 5 m, in the locations 

where it was not possible to use explosives, due to safety reasons, were used. The 

gap of the receiver- and source-positions at distance 750 m - 840 m from the first 

receiver, was caused by an intersecting railway and an adjacent to it road, where 

the equipment could not be deployed. A narrower gap at distance 1200 m – 1230 m 

from the first receiver was caused by an intersecting dirt road.  

 
Figure 3.10: Map of the Siilinjärvi survey area, zoomed around active line SM1. 
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Table 3.2: Acquisition and recording parameters of the seismic data acquired 

along line SM1 in Siilinjärvi. 

2018 seismic survey – line SM1 

Type of survey Active-source 2D  
Number of active channels 262 (147 cabled and 115 wireless) 
Receiver interval 5 m  
Receiver frequency 10 Hz 
Source Explosives and 500-kg mini skid-steer 

mounted vertical drophammer 
Number of shot locations 387 (times 3 shots per drophammer-shot 

location) 
Explosive charge weight 125 or 250 g 
Shot-hole depth 2-3 m 
Bobcat source pattern  4-5 shots per location 
Shot interval 20m (explosives) /5 m (drophammer) 
Record length 6s 
Sampling rate 1 ms 

 

 
 

Figure 3.11: Members of the Smart Exploration crew in the Siilinjärvi mining area 

a) deploying the cabled receiver system along line SM1 and b) gathering the 

wireless recorders used in the active seismic lines. 

 

 

 

 



 

64 
 

Acquisition of the active and passive-seismic data in the forest area 

 

The survey map, focused around the forest area, is shown in Figure 3.12 and 

the acquisition and recording parameters are summarized in Table 3.3. The array 

comprised of 273 receivers, which were deployed considering the requirements of 

SW tomography: for this method, as discussed in Chapter 2, a widespread source-

receiver azimuth distribution and separation between receiver pairs (path length) is 

desirable. Nonetheless, in the forest area of Siilinjärvi a perfectly uniform 

distribution was not possible, due to logistical constraints. The main challenge was 

the density of the forest and its slippery terrain, which posed limitations to the 

deployment of the equipment. Therefore, for safety reasons and for the 

effectiveness of the deployment and recollection of the equipment, most of the 

receivers were placed along or as close as possible to the paths of the forest and 

only few receivers were located out of the paths, to guarantee optimal subsurface 

illumination given the position of the sources.  

To assess the suitability of this deployment, the azimuthal illumination of the 

shots towards the array (polar histogram in Figure 3.13a) and the distribution of the 

length of all the available paths (histogram in Figure 3.13b) were estimated. The 

paths were well distributed over all azimuths and the path length was well 

distributed around a maximum of 300 m.  
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Figure 3.12: Map of the Siilinjärvi survey area, zoomed around the forest region. 

 

Table 3.3: Acquisition and recording parameters of the active- and passive-

source seismic data acquired in the forest area in Siilinjärvi 

2018 seismic survey – forest area 
Type of survey Active-source  

3D  
Passive-source 

3D 
Number of active channels 273 273 
Receiver frequency 10 Hz 10 Hz 
Number of shot locations 103 (along SM2), 50 (along 

SM3) and 4 calibration shots 
- 

Source Explosives  - 
Charge weight 125 or 250 g - 
Shot-hole depth 2-3 m - 
Record length 6s 13 days 
Sampling rate 2 ms 2 ms 
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Figure 3.13: Design of the 2018 Siilinjärvi seismic survey in the forest area. a) Polar 

histogram of the total azimuthal coverage given by all the used shots and the 

receivers. b) Histogram of the path length distribution. 

3.4 State of the art 

Mineral-exploration sites are commonly characterized by hard-rock 

(crystalline) geology. The potential of seismic-exploration methods to characterize 

such environments is a scientific topic which has received increasing attention in 

the last three decades, in parallel with the growing interest towards deeper 

mineralizations, which makes seismic methods more and more attractive. 

Numerous examples (extensive reviews can be found in e.g., Eaton et al., 2003; 

Malehmir et al., 2012; Buske et al., 2015), have shown that seismic methods can 

provide high-resolution images of the mineralization targets and host rocks and 

assist mine-planning. Nevertheless, with respect to the sedimentary environments 

of hydrocarbon exploration, for which most seismic exploration methods have been 

developed and tested, hard-rock environments are characterized by higher 

geological complexity. They are typically related to significant heterogeneity, 

ranging from fine-scale discontinuities, such as cracks (Levander et al., 1994; 

Holliger, 1997), to larger-scale rock-property alternations (L’Heureux et al., 2009). 

As a result, rocks act as highly scattering environments which can distort the 

propagating seismic wavefield (amplitude, traveltime and spectral distortions), 

causing increased levels of background noise in the recorded data (Cheraghi et al., 

2013). 



 

67 
 

In addition, local discontinuities related to tectonic activities (Eaton, 1999), 

such as vertical and sub-vertical faults and fractures are also common. Together 

with the,  rugged topography, velocity contrasts (Bona et al., 2013), overburden 

materials (Hobbs, 2003) and rock anisotropy, caused by metamorphism or tectonic 

processes (Salisbury et al., 2003; Bongajum et al., 2012), they have also been 

associated to reductions of the S/N.  

 Such low-data quality affects also the results of SW processing, causing the 

DCs obtained from hard-rock sites to be noisy, discontinuous, narrow-banded and 

poorly dispersive. This behaviour can be observed in Figure 3.14a, where we show 

literature examples (reproduced from Hollender et al., 2017) of dispersion images 

obtained from a hard-rock site. Considering that the quality of the inverted models 

depends on the bandwidth and quality of the DCs (see Section 2.4), the retrieval of 

accurate models can be a challenge. This is not the case with the DCs from soft 

sites, encountered in most SW applications, where the DCs are typically 

characterized by smooth dispersive patterns and broad frequency band (e.g., Figure 

3.14b, reproduced from Olafsdottir et al., 2018).   
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Figure 3.14: Example dispersion images, extracted from a) a hard-rock site 

(reproduced from Hollender et al., 2017) and b) a soft site (reproduced from 

Olafsdottir et al., 2018). 

 

 
Figure 3.15: Publications (journal papers and expanded abstracts) on EAGE’s 

“Earthdoc” and “SEG digital library” from January 2014 to December 2018. 
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As a cosequence, although SW methods are very popular in near-surface 

characterization, their application to crystalline environments remains limited and 

only a few literature examples have dealt with SW analysis in hard-rock sites. From 

an extensive literature review in the most common repositories for applied 

geophysics (SEG Digital Library and EAGE’s EarthDoc), between 2014 and 2018 

only 8 % of the SW-related literature refers to hard-rock applications (Figure 3.15). 

Most of these works concern seismic-site characterization, where hard-rock 

geology is common, while only 2 % of the recent publications refer to mineral 

exploration (Figure 3.15). 

In the field of seismic-site characterization, examples have shown that apart 

from the low data quality, additional challenges should be expected. Strong 

impedance contrasts due to soft overburden layers overlying the hard rocks (e.g., 

Albarello, 2011) are challenging for SW processing and inversion. According to 

Bergamo et al. (2011) and Pileggi et al. (2011), if the overlying layers are 

sufficiently thick, higher modes should be expected. Other challenges are velocity 

inversions and strong heterogeneity (Ladak, 2020) as well as the possible 

inadequacy of the acquisition parameters to properly measure the long wavelengths 

caused by the high seismic velocities ( Pileggi et al., 2011).  

Nevertheless, previous experiences show that SW can provide valuable 

information at hard-rock sites. For example, Albarello & Gargani (2010) showed 

that SW DCs can be used effectivelly for soil classification, while Pileggi et al. 

(2011) and Picozzi et al. (2009) showed that SW analysis at hard-rock sites benefits 

from the longer propagating wavelengths, which allow deeper investigation (80–

100 m in their examples). Useful guidelines were proposed by Cercato et al. (2010), 

who dealt with shallow-bedrock examples, and proposed muting the data to 

separate the SW fundamental mode from other waves that are generated due to the 

property contrast. Casto et al. (2009) underlined the need to use all available a priori 

information, to better constrain the bedrock depth in SW inversion. Foti et al. (2011) 

discussed that the high achievable lateral resolution of SW tomography can be 

valuable to delineate the lateral variability of hard-rock sites, stressing though the 

need to account for the presence of sharp lateral variations.  

 Concerning mineral exploration, Hollis et al. (2018) showed that the long 

wavelengths retrieved from ambient-noise and inverted with SW tomography can 

delineate the geological boundary of a mineral deposit. Sharma et al. (2018) 
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confirmed that ambient-noise SW records provide great investigation wavelengths 

and estimated a 1D SV  profile at a mineral-exploration site. Several case studies 

dealt with the existence of sharp lateral heterogeneities and showed that they can 

be delineated with SW. For example, Rector et al. (2015) applied active SW 

tomography to image old mine workings, introducing a new acquisition scheme. 

They showed that SW phase velocities and amplitudes are sensitive to the presence 

of voids. Similar conclusions about the sensitivity of SW to lateral variations were 

made by Sherman et al. (2014) and Ivanov et al. (2016), who applied SW-based 

methods for locating voids and mine workings in historical mining sites. 

Nevertheless, apart from hard-rock geology, the characteristics and operational 

requirements of mineral exploration impose additional challenges which should be 

overcome to efficiently apply SW methods.  

When the data are acquired in the vicinity of active mines (brown fields), noise 

due to the production or supporting activities of the mine (Adam et al., 2000) can 

severely degrade the quality of the recorded data (e.g., Harrison, 2009; Ahmadi, 

2015) and, therefore, the possibility of extracting high-quality DCs. Typical noise 

sources are the transportation and production vehicles and in-mine ore-processing 

facilities. Due to the variability of these sources and their short distance from the 

acquisition sites, the noise filtering and separation from the SW signal can be 

challenging (e.g., Adebisi, 2012). On the other hand, several examples have shown 

that the BW (e.g., Cheraghi et al., 2013) and SW (e.g., Sharma et al., 2018) created 

by these sources can be used as useful signal by acquiring passive-source data. 

Being driven by the industrial interests of the mining sector, and with usually 

lower available budgets than the ones invested in hydrocarbon-exploration, mineral 

exploration demands SW methods to be cost-effective. This imposes that the 

operational time and computational resources used for SW analysis should be 

minimized. 

Moreover, sustainable, resource-efficient and environmentally friendly 

development strategies are necessary to receive “social license” to operate. This can 

impact seismic exploration since the data acquisition, commonly utilizing active-

seismic sources (e.g., explosives), might be restricted by legislation and safety 

regulations. Moreover, exploration might not be welcome by the local 

communities, due to the generated noise and disturbance of the surrounding 
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industrial and civil activities. This can lead to data acquired with sources providing 

low S/N or using irregular layouts, which requires the design of customized 

processing solutions. 

Finally, a challenge for SW methods, when used for exploration, is that they 

should be able to provide PV  models, to be compatible with reflection-seismic 

workflows (e.g., for statics estimation). On the other hand, SW propagation is 

mainly sensitive to SV  (Section 2.4). This is usually solved by assuming  a priori 

values of  in the DC inversion and use it to convert the inverted  SV  model into 

PV . However, this approach is prone to errors for both SV  and PV  (Foti & Strobbia, 

2002; Karray & Lefebvre, 2008; Ivanov et al. 2019) estimations. To avoid them, 

the a priori selection of  is usually performed with caution, on the basis of 

independent information (e.g., geological maps and previous studies), or 

performing additional investigations, such as borehole measurements or other 

geophysical methods (Ivanov et al., 2000; Strobbia et al., 2010; Abudeif, 2016; 

Anukwu et al., 2020). Nevertheless, even such an informed selection of  is risky 

and can introduce uncertainties due to inherent limitations of the performed 

methods. Moreover, the acquisition of additional data and/or the performance of 

extra processing steps might increase the overall costs. 

To overcome these challenges, novel SW methodologies, tailored to mineral 

exploration, are proposed in the following chapters.   

3.5 Conclusion 

Mineral exploration is of paramount importance for Europe’s current and future 

financial and social growth. Seismic methods, although still infrequent in the 

exploration for minerals, can be valuable to provide high-resolution images of the 

ore bodies, which are currently sought at great depths. The use of SW methods, 

rarely applied to such challenging hard-rock settings, as tools to characterize the 

near-surface and improve target prospecting can be valuable in this contecxt. 

Considering that the hard-rock geology can trigger long SW wavelengths, 

potentially reaching to the mineralization targets, increases the importance of 

developing SW techniques, tailored to these environments.  
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We have presented the seismic datasets which will be used throughout the 

thesis to demonstrate the developed methodological tools. The datasets have been 

acquired at two mineral exploration sites of great significance within the EU. Apart 

from the importance of the datasets for the validation of novel methods, developed 

within the thesis and in Smart Exploration, their size and unique characteristics 

make them important sources of information on Europe’s mineral deposits. To this 

end, the new data and target generation and integration objective is one of the values 

of Smart Exploration.  
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Chapter 4 
 

Multichannel SW analysis for 

mineral exploration – SW direct 

statics estimation method 

4.1 Introduction 

In this chapter, we propose a method to estimate the statics based on 

multichannel SW processing, onward referred to as “SW direct statics estimation 

method”. The proposed technique is designed to overcome the limitations of 

multichannel SW processing in presence of sharp lateral variations, as well as the 

low sensitivity of the DCs to PV  and it can provide the statics in a fast and efficient 

manner, avoiding excessive inversion steps.  

The method is applied to two seismic mineral exploration datasets, acquired at 

the iron-oxide mining site of Ludvika (Sweden) and at the apatite mine of Siilinjärvi 

(Finland). The output statics and resulting stacked sections are compared with the 

ones retrieved by routinely used BW-based methods and with existing geological 

information.   
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4.2 Method 

A schematic representation of the SW direct statics estimation method is 

presented in Figure 4.1 and its basic steps (labelled as “A”-“F”) are described in the 

following paragraphs.  

 
Figure 4.1: Scheme of the proposed SW direct statics estimation method. 
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A. Identification of sharp lateral variations 

The first step of the workflow is the identification of possible sharp lateral 

variations and the estimation of their position (process #1), to avoid the extraction 

of DCs from windows which cross sharp discontinuities in the following step “B”.  

The key-concept behind the employed methods is that, regardless the inability 

of the existing SW modelling tools to describe them, sharp lateral variations affect 

significantly the propagation of SW. In particular, when SW, propagating parallel 

to the surface, encounter a subsurface target, back-reflections or trapping of theιr 

energy within the discontinuity might be caused. These phenomena, affect 

significantly the measured energy of the SW signal, causing local decays or 

amplifications at the position of the discontinuity. Therefore, SW energy can be 

regarded as an attribute of the recorded data, which is highly sensitive to the 

presence of sharp lateral variations in the near-surface and can be used to estimate 

their location.  

Four methods based on the measurement of SW energy from multichannel 

seismic data are included in the workflow: the method of a) Energy, b) Decay 

exponent, c) Attenuation coefficient and d) Autospectrum. The methods have been 

originally introduced in the works of Nasseri-Moghaddam et al. (2005), Zerwer et 

al., (2005) and Bergamo & Socco (2014), and further optimized by Colombero et 

al. (2019). All methods are directly applicable to raw data, without the need of pre-

processing or availability of a priori information on the subsurface structure.  

The MATLAB codes used in this work have been implemented by Bergamo & 

Socco (2014) and by Colombero et al. (2019). They involve fast computations and 

are mostly automatic, apart from the selection of a limited number of processing 

parameters, necessary for the computation of the decay exponent and the 

attenuation coefficient, which is based on manual testing.  

a) Energy 

The computation of the energy of the seismic traces has been introduced as a 

technique for the detection of sharp lateral variations by Nasseri-Moghaddam et al. 

(2005). The energy of the traces is obtained for each receiver i  of a shot gather as 

 
2

,i f i i
f

E A r=  4.1, 
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where ,f iA  is the amplitude of the trace at frequency f  and the factor ir  is the 

distance of the receiver, applied to compensate for the SW geometrical spreading. 

Once the value of iE  of each trace has been retrieved, it is normalized to the 

maximum iE  of all traces.  Following Colombero et al. (2019) the computation of 

4.1 is repeated for all shots and the results for each receiver and each shot are 

stacked, normalized to the global maximum and visualized into an energy-distance 

( E r− ) plot. This is done because, according to Colombero et al. (2019), stacking 

enhances the relative impact of the actual subsurface structure on the E r−  plot. If 

a localized target exists in the subsurface, the plot is expected to present sudden 

increases or decays, due to the back-reflections of the waves on the target’s 

boundaries or the amplification of energy within the target. A search for such strong 

energy anomalies allows the estimation of the target’s location.  

b) Energy decay exponent 

The decay exponent method has been introduced and implemented to multifold 

data by Bergamo & Socco (2014). It is based on the computation of the energy 

decay exponent ( ) of the recorded data, which can be defined as 

 1 1i i

i i

E r
E r

−

+ +
 

=  
 

 (4.2), 

where iE  and 1iE +  are the values of energy of the traces i  and 1i + , respectively, 

and ir  and 1ir+  are their distance from the shot. In a laterally homogeneous medium 

with no intrinsic attenuation, the value of   corresponding to SW is equal to one, 

following the equation of geometrical spreading (Richart et al., 1970); 

compensating for the geometrical spreading,   becomes zero. Strong deviations 

from this theoretical value can be associated with back-reflections of the waves 

and/or trapping of their energy caused by subsurface discontinuities and can be, 

therefore, indicative of their location.  

In practice, after the value of iE  of all the traces has been obtained with eq. 4.1, 

a spatial window is applied and shifted along the seismic line. At each position,   
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is computed as the slope of the E r−  plot in bilogarithmic scale, according to 

(Bergamo & Socco, 2014): 

 1 1log logi i

i i

E r
E r

+ +
   

= −   
   

 (4.3). 

The size of the window is a compromise between the S/N of the final 

computation and the lateral resolution. For each window, the values of   from all 

available shots are averaged and the related standard deviation is computed for 

positive and negative offsets. If the plot of the resulting   presents strong 

fluctuations, having higher magnitudes than the standard deviation and presenting 

opposite trends for positive and negative offsets, these can be associated with the 

location of subsurface discontinuities, which interfere in the propagation of waves 

and cause local attenuation or amplification of energy.  

c) Attenuation coefficient 

Bergamo & Socco (2014) proposed the use of the trace energy to estimate the 

attenuation coefficient f , which can also be used as an indicator of the location of 

sharp lateral variations. Compensating for the geometrical attenuation, f  can be 

defined from 

 12 ( )
, 1 ,

f i ir r
f i f iE E e  +− −

+ =  (4.4), 

where , 1f iE +  and ,f iE  are the values of energy recorded at each frequency f  by 

two receivers, located at distances 1ir+  and ir  from the shot, respectively. Its value 

is a measure of the attenuation of energy at different frequencies and offsets and is 

expected to present significant fluctuations in the presence of local subsurface 

discontinuities.  

For the computation of f  from multichannel data, Bergamo & Socco (2014) 

propose the application of a moving spatial window on the recorded gathers, in a 

similar manner as in the method of the energy decay exponent. The window is 

moved along the seismic line and, at each position, f  is computed from the slope 

of the E r−  plot, considering natural logarithmic scale in E : 
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

+

+

 
= − −  

 

 (4.5). 

The local slope at all i  positions within the window is averaged, and the 

resulting mean attenuation coefficient of the window ( ,f wa ) is normalized with 

respect to the global (along the whole line) average ( fa ) and to the related standard 

deviation ( ( )fstd a ): 

 
( )

,
,

f w f
f w

f

a a
a

std a

−
 =  (4.6). 

According to Colombero et al. (2019), this nosrmalization allows sudden 

variations of fa  to be highlighted, providing a robust estimation of the position and 

shape of subsurface targets.  

Finally, if more than one shots are available, ,f w  is computed for all the 

shots, following Colombero et al. (2019), the resulting absolute  ,f w  values are 

stacked to provide a single ,f w  image, as a function of offset and frequency.  

d) Autospectrum 

The method has been introduced by Zerwer et al. (2005) and is based on the 

measurement of the autospectral density iG  of the seismic traces at each receiver 

position i , which can be obtained as the sum of the squares of the real and imaginary 

parts of the discrete Fourier transform of each trace, iY , according to 

 ( ) ( )  ( ) 
2 2

Re Imi i iG f Y f Y f= +        (4.7) 

The plot of iG  is an alternative way to visualize the energy content of the 

seismograms as a function of offset, which provides information also on its 

frequency (or wavelength) distribution. Similar to the previous methods, if more 

than one shots exist, the iG  of all the shots can be summed, to enhance the S/N.  If 

a subsurface target is present along the seismic line, the iG  plot is expected to 
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exhibit sudden accumulations or decays at the target’s position and only within the 

frequency bands affected by it. This, apart from the location of the targets, provides 

a qualitative imaging of the shape and depth extent of the anomaly, since the 

penetration depth of SW is proportional to their wavelength.  

B. Extraction of the dispersion curves 

Once the location of the sharp lateral variation has been estimated, a set of DCs 

along the investigated area is extracted. We adopt the method and corresponding 

MATLAB code of Socco et al. (2009), which allows the retrieval of a set of local 

DCs, by applying a moving spatial window on the traces.  

First, the necessary processing parameters (the window length, the minimum 

and maximum source-receiver offset and the step of the moving window) are 

chosen by the user (process #2), on the basis of tests on sample shot records. An 

optional user-defined parameter, used as input to the method, is a “mask”, outlining 

the spectral region where the energy maxima corresponding to the DC lie. The 

“mask” ensures that during the following automatic DC picking (process #3), only 

the spectral region of interest is used for the extraction of the DCs. 

Based on these parameters, the entire dataset undergoes a fully automatic DC 

picking (process #3). For each window position and each shot (within the selected 

offset range), a wavefield transform is applied on the windowed data, and the 

maxima of the spectrum corresponding to each shot (further individual DC), inside 

the pre-defined “mask”, are picked and saved. To account for possible irregularities 

in the data geometry, all the computations were carried out in the f v−  domain (see 

Section 2.3.4 for details). 

The spectral computation is repeated for all the shots, within the selected offset 

range, and the resulting spectra are stacked, to increase the S/N. The maxima of the 

stacked spectrum provide the stacked DC corresponding to the specific window, 

while its assigned position is the centre of the spatial window.  

To improve the quality of the DCs, once all the curves have been estimated, an 

optional manual quality control is performed and, if necessary, parts of the picked 

DCs, which do not correspond to SW, are deleted (process # 4). Although manual, 

this step has been implemented into an efficient procedure, requiring minimal user 

intervention, involving a selection of the undesirable parts of the DC directly on the 
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spectral image. Given the low number and high quality of the DCs typically 

resulting from multichannel processing (see Section 2.3.5), process # 4 is expected 

to be a fast and straightforward step.  

Finally, a set of N  stacked DCs (and N  subsets of individual DCs) is 

retrieved, each one located at the centre of the window used for its estimation.  

C. Clustering of the dispersion curves 

A clustering algorithm is applied to the estimated DCs, to divide them into sets 

of curves which present uniform distributions of the phase velocities (process # 5). 

This allows stage “E”, where the W/D and z  are estimated for the site, to be 

performed only for a reference DC from each cluster (Socco et al., 2017), and 

reduce the time and computational costs of the workflow. Alternatively, process # 

5 can be avoided and stage “E” can be performed for the total of N  DCs, output 

from stage “B”.  

The clustering method adopted here has been proposed by Khosro Anjom et al. 

(2017). It is a hierarchical clustering algorithm which does not require any a priori 

information on the number of clusters (uniform zones) and their location. The 

definition of the clusters is based on the dissimilarity of the DCs, measured as the 

Euclidean distance between the phase velocities at each frequency, within the 

common frequency band of all the DCs. As a linkage criterion between the DCs of 

the clusters, the average distance of each component of a cluster with respect to the 

distance of each component of all the other clusters is used. The algorithm outputs 

a dendrogram, indicating the number ( cN ) of the clusters (uniform zones) and the 

DCs allocated to each one of them.  

D. Reference curve selection 

For the estimation of the W/D, the necessary inputs are a single DC from each 

cluster (considered as a reference DC) and its corresponding SzV  model.  

Socco et al. (2017) have shown that the estimation of the W/D of a cluster is 

stable and rather independent on the choice of the reference DC. In particular, they 

have proven that the impact of the reference DC selection on the final time-average 

velocity estimate of the entire cluster (stage “F”) is low (2 % –10 %), even at sites 

where SV  varies laterally (up to 150 %).  
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For optimal results, an automatic QC method (Karimpour, 2018) is applied to 

allow the highest-quality DC to be used as reference. For each DC, the method 

computes the following quality index (QI): 

 ( )1
max( )

PN

PN

NSD ND NFBQI
NSD ND NFB

 (4.8), 

where NSD  is the standard deviation of each DC, with respect to the DCs of the 

individual shots used for spectral stacking, summed for all frequency components 

and normalized to the maximum standard deviation; NDPN  is the difference of the 

average DCs extracted from positive- and negative-offset shots, summed for each 

frequency and normalized to the maximum difference and NFB  is the reciprocal 

of the frequency band ( FB ) of each DC, normalized to the maximum FB  of all the 

DCs. The DC having the maximum QI  is selected as reference for each cluster j . 

Reference Monte Carlo SV  inversion, reference SzV , W/D and z  estimation 

The second input to the W/D computation is a SzV  model associated to the DC. 

Any reliable information on the SzV  distribution, such as logging information or 

borehole measurements, can be used as input. Alternatively, SzV  can be obtained 

directly from the data, by inverting the reference DCj of each cluster to estimate a 

1D SV  profile at the position of the curve.  

For the inversion, we use the Monte Carlo algorithm of Socco & Boiero (2008), 

which is an efficient global-search inversion method that performs an optimized 

random sampling of the model parameter space, based on the scale properties of the 

DCs. The layer SV , h  and  are randomly sampled over a user-defined model 

space, and the layer   is assumed constant (process # 7). The synthetic DCs, 

corresponding to the generated models, are computed based on the Haskell and 

Thompson forward modeling (Thomson, 1950; Haskell, 1953) and the best-fitting 

SV  model is retrieved based on a statistical Fisher test (process # 8). The inverted 

SV  model is then transformed into SzV  according to 

 
i

n
Sz

i

n Si

h
V h

V

 (4.9), 
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where ih  is the thickness and SiV  is the S-wave velocity of the i -th layer, while n  

is the number of layers down to the depth ( z ) of the profile.  

Once both the reference DCj of each cluster j  and its corresponding 
jSzV  model 

have been retrieved, the experimental W/D is estimated (process # 9) following 

Socco et al. (2017): an automatic search tool, compares the SzV  and the DC (in the 

domain of wavelength and phase velocity), identifying couples of wavelength and 

depth, for which the phase velocity is equal to the SzV . The couples are interpolated 

with a polynomial fit, resulting in a continuous relationship of the wavelength and 

depth, the W/D relationship.  

Once the W/Dj of the cluster has been retrieved, the estimation of the 

corresponding 
jz  is achieved by means of an automatic sensitivity analysis 

(process # 10). Using the reference 
jSV  model of each cluster and trial values of , 

a set of synthetic DCs is retrieved by means of forward modelling. These are used, 

together with the reference 
jSzV  model, to compute a set of simulated W/D curves, 

each one corresponding to a different value of . An automatic comparison of the 

simulated W/D curves with the experimental one is performed, and value of  is 

retrieved as the  of the synthetic W/D that matches the experimental W/D. This 

process is repeated for all depth values of the experimental W/D, leading to the 

estimation of the 
jz  profile of the cluster.  

E. Wavelength–depth transformation, time-average S-wave and P-

wave velocity and statics estimation 

The W/Dj relationship of each cluster is used to transform all the DCs of the 

cluster into SzV  with a simple transformation of the coordinates of the DC. In 

particular, the wavelength components of each DC are converted into depth values, 

based on the cluster’s W/Dj, and the phase velocities are set equal to SzV . This 

process results in a set of N  1D SzV  profiles, located at the same positions as the 

DCs. 

Subsequently, the estimated 
jz  of each cluster is used to convert the estimated 

SzV  profiles belonging to the cluster into PzV , following Socco & Comina (2017): 
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 2 2
2 1

z
Pz Sz

z

V V  (4.10). 

Finally, the computation of the one-way time (static shift) at the selected 

(floating) datum plan dz  is carried out using the values of each 1D PzV  profile, 

resulting from eq. 4.10, at dz : 

 
d

d
d

Pz z

zt
V

 (4.11), 

where dt  is the one-way time at datum depth dz . To obtain the source and receiver 

statics, the one-way times are interpolated at the source and receiver positions, 

respectively.  

4.3 Case study 1: Seismic line from the Ludvika mining 

site, Sweden (2016)  

We present the application of the direct statics estimation method on the portion 

of the seismic line of Ludvika (2016), shown in green in Figure 3.3a.  All the 

computations of the workflow were performed by a standard single-core 

commercial laptop.  

4.3.1 Workflow application and results 

Figure 4.2 illustrates the results of the sharp lateral variation detection methods.  

The plot of the normalized E , stacked for all the shots, is given in Figure 4.2a. 

After testing windows with length between 10 m and 70 m, the decay exponent and 

attenuation coefficient were computed using a window of 55 m. The plot of  , 

stacked for all the negative-offset shots ( neg , blue) and for all positive-offset shots 

( pos , red) is shown Figure 4.2b, where the error bars denote the corresponding 

standard deviation. The plot of ,f w  as a function of frequency and distance is 

given in Figure 4.2c. Finally, the autospectrum method, applied to the individual 

traces of each gather, provided the stacked normalized G  plot of Figure 4.2d.   
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The results of the four methods were examined together, to identify the most 

critical zones, indicating possible presence of sharp lateral variations.  

Two, particularly strong, localized anomalies were identified by all the 

methods, and are marked by the black lines labelled as “2” and “3” in Figure 4.2. 

Between them, the plots of E  and G  present a strong peak, indicating the possible 

presence of a local target. At its boundaries, pos  and neg  (Figure 4.2b) show 

prominent peaks, while the plot of ,f w  (Figure 4.2c) presents sharp increases. 

Such a pattern can be associated with the presence of sudden changes in the 

subsurface due to localized targets (e.g., fractured zones, changes in lithology and 

man-made structures), and therefore, their positions (Table 4.1) were stored, to be 

excluded from the extraction of the DCs.  

The same pattern can be recognized in the plots of   and ,f w , at additional 

locations, labelled as “4” - “8” in Figures 4.2b and 4.2c, which are not associated 

with any significant variation in the plots of E  and G . Nevertheless, due to the 

strong signature and correspondence on the plots of   and ,f w , their locations 

were considered reliable and were also stored for further use.   

Since these anomalies affect low frequencies (mostly < 40 Hz), they are 

probably related to deep subsurface structures.  Considering that a water stream 

crosses the line at between the locations “2”-“5” (Figure 3.1a), we can conclude 

that these anomalies are all probably related to the fracture-system of the river. The 

area between lines “6” and “7”, due to its longer lateral extent, could be related to 

shallow fracturing of the rock. The energy anomaly of line “8” presents a narrower 

separation between pos  and neg , with respect to all the other black lines, and the 

plot of ,f w  presents a peak only at high frequencies (> 30 Hz), meaning that the 

heterogeneity is shallow. A possible cause can be the local reduction of the bedrock 

depth, creating a velocity contrast at shallow depths. 

Coherent in the results of all methods appear the larger-scale anomalies, 

indicated by the green and orange boxes in all panels of Figure 4.2. The green box 

marks an area 316 m long, where the plot of E  (Figure 4.2a) presents continuous 

peaks, terminating at the location labelled as “1” in Figure 4.2a. In the same area, 

the plot of pos  (red Figure 4.2b) presents constant fluctuations, while neg  (blue 
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Figure 4.2b) preserves positive values, indicating strong energy attenuation. Inside 

the green box, the plots of ,f w  (Figure 4.2c) and G  (Figure 4.2d) show strong 

and almost continuous anomalies.  

Similarly, the orange box in all panels of Figure 4.2 depicts an area where all 

the methods presented significant and continuous abnormalities.  

Due to their long lateral extent, both these anomalies are probably related to 

large-scale geological features. A comparison with the total-field aeromagnetic data 

map of Figure 3.2 reveals that at the NW and SE ends, the selected portion of the 

seismic line intersects two magnetic lineaments, which correspond to oxide-bearing 

formations, in the positions shown by the yellow circles in Figure 3.2. Hence, we 

can assume that the energy anomalies are related to the shallow expression (highly 

fractured zones) of deeper iron-oxide bodies. 

Due to their consistency in all plots of Figure 4.2, the boundaries of the two 

boxes, labelled as “1” and “9”, were stored, to be omitted from the DC extraction. 
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Figure 4.2: Sharp lateral variation detection on the Ludvika 2016 dataset. Plot of 

the a) stacked normalized energy, b) average decay exponent for positive-offset 

(blue) and negative-offset traces (red), c) stacked normalized attenuation coefficient 

and d) stacked normalized autospectrum. The error bars in panel (c) indicate the 

standard deviation. The estimated positions of the sharp lateral variations are 

labelled as “1”- “9” and are listed in Table 4.1. 
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Table 4.1: Locations of the sharp lateral variations estimated for the 

processed portion of the Ludvika 2016 seismic line. 

Sharp lateral variation Position on the seismic line (m) 
1 316 
2 366 
3 407 
4 436 
5 461 
6 567 
7 792 
8 881 
9 1074 

 

The sample shot records, used to test the optimal processing parameters, were 

randomly chosen from three different areas along the line, located between 0–365 

m, 568–791 m and 882–1073 m, to avoid the effect of lateral variations. The 

parameters that provided the optimal results and were chosen for the DC extraction 

are presented in Table 4.2.  

An example stacked f v  spectrum, computed from the receiver window 

centred at 1190 m, is plotted in Figure 4.3a. The spectral “mask”, manually drawn 

by the operator around the spectral maxima and automatically applied on the entire 

dataset, is depicted in black in Figure 4.3b. The automatically picked DC before the 

manual cleaning is plotted in grey in Figures 4.3c and 4.3d, and the cleaned DC, 

which was the final output of this step, is plotted in black in Figure 4.3d. 

 

Table 4.2: Windowing parameters for the DC extraction 

Processing parameter Value 

Window size 75 m 
Step 15 m 

Minimum offset 10 m 
Maximum offset 300 m 
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Figure 4.3: Example a) stacked f v  spectrum, with b) the user-defined spectral 

“mask” (dashed). c) In grey, the automatically picked spectral maxima and, d) in 

black, the picked DC after cleaning.  

 

Figure 4.4: Multichannel DCs picked from the Ludvika 2016 dataset. The vertical 

axis represents the wavelength. The colour scale provides the phase velocity, given 

by the colour bar. The reference DC is highlighted in black. The estimated positions 

of the sharp lateral variations are labelled as “1”- “9”. 
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Repeating the same operation for all window positions, except those in Table 

4.1, a set of 80 DCs were automatically extracted along the line. In Figure 4.4, the 

DCs are plotted as a pseudo-section, in the wavelength-phase velocity domain: each 

DC is plotted at the location corresponding to the centre of the window, and the 

vertical axis represents the wavelength. The phase velocity is given by the colour 

scale.  

Observation of the pseudo-section of Figure 4.4 shows that the spatial 

distribution of the DCs varies significantly along the line, and there exist several 

gaps. Some of them correspond to the positions of the sharp lateral variations (Table 

4.1), and the rest are positions where the spectra did not present clear maxima and, 

therefore, no DC could be picked. 

In Figure 4.5a, the DCs are plotted in the frequency–phase velocity domain. 

The DCs are all concentrated in one frequency and phase–velocity region, with no 

obvious separation in different groups and the variability of the phase velocity 

(indicative of the lateral variability of SV ) is, at maximum, 80% (Figure 4.5b).  

Their clustering (Figure 4.5c), did not present any separation in groups and, 

therefore, it was decided to consider only one reference DC.  
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Figure 4.5: a) The multichannel DCs. Different colours correspond to different 

positions and dashed black to the reference DC (located at 1022 m). b) Maximum 

phase velocity variability at each wavelength of all the extracted DCs. c) Result of 

the DC clustering. 

 
Figure 4.6: Quality index (QI) of the extracted DCs. The highest QI value is circled 

in black.  

 

For the reference DC selection, the QI was computed according to eq. 4.8, for 

each DC and the results are plotted against the DC position in Figure 4.6. The DC 

with the highest QI was the one at position 1022 m (circled in Figure 4.6, black in 

Figure 4.4 and black dashed in Figure 4.5a), and it was the one chosen as reference.  
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For the Monte Carlo inversion of the reference DC, one million profiles were 

randomly generated simulating a three-layered model (two layers plus half space). 

The layer thickness and SV  were randomly sampled, within the model space 

boundaries, plotted in Figure 4.7a (dashed blue). The value of  was fixed at 2000 

kg/m3 for the shallow layers and 2800 kg/m3 for the half space. The value of  for 

all the layers was randomly sampled from a wide range (0.1 – 0.45), which is 

reasonable for typical near-surface materials (e.g. Gercek, 2007).  

In Figure 4.7a, the accepted models are presented in a colour scale that indicates 

the misfit between their synthetic DCs and the experimental DC. The DCs of the 

best-fitting models are presented in Figure 4.7b (using the same colour scale) and 

are compared with the experimental one (black dots).  

Using eq. 4.9, the best-fitting model (red in Figures 4.7a and 4.8a) was 

transformed into the SzV  model shown in black in Figure 4.8a. The SzV  model was 

then compared with the reference DC (black dots in Figure 4.8a) to obtain the W/D 

relationship, which is plotted in Figure 4.8b.  

 

 
Figure 4.7: Monte Carlo inversion results. a) Best-fitting models. In red, the 

reference SV  profile, and in dashed blue, the model parameter space. b) Synthetic 

DCs of the best-fitting models compared with the experimental DC (black points). 

The colour scale indicates the misfit and is given by the colour bar. 
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Figure 4.8: a) Reference 1D SV  model (red), reference SzV  model (black line) and 

reference DC (black dots). b) Experimental W/D curve. 

 
Figure 4.9: a) Experimental (black dashed) and synthetic W/D curves (different 

colours, depending on ). b) Estimated z . 

 

Figure 4.9a reports the sensitivity analysis performed to retrieve  z : using the 

SV  profile of Figure 4.8a (red), a set of synthetic W/D relationships (different 

colours in Figure 4.9a) were computed, changing the value of   from 0.1 to 0.45 

with a step of 0.05. Comparison of the synthetic W/D curves with the experimental 

one (black dashed in Figure 4.9a) led to the estimation of the z  profile, plotted in 

Figure 4.9b. Its value cannot be directly compared with local log measurements, 
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since it is a smooth profile. Nevertheless, it lies within reasonable values, according 

to Maries et al. (2017).  

The W/D relationship of the reference DC was used to transform all the other 

DCs into SzV . The resulting 1D SzV  profiles are plotted in Figure 4.10a, at the 

positions of their corresponding DCs. The vertical axis represents the depth and the 

value of SzV  is given by the colour scale, while the depth of each profile depends 

on the wavelength of its corresponding DC. It can be observed that the estimated 

values (between 1400 m/s and 2500 m/s) suggest the presence of near-surface 

materials of high SV  and are in agreement with the geological information on the 

site (Maries et al., 2017). 

The PzV  model, estimated from the SzV  1D profiles (Figure 4.10a) at each 

position and the z  (Figure 4.9b) according to eq. 4.10, is plotted in Figure 4.10b. 

Figure 4.11 reports the estimated one-way traveltime (static shift), computed with 

eq. 4.11. for different datum depths, down to the investigation depth of the PzV  

model of Figure 4.10b (90 m). 
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Figure 4.10: Pseudo-2D a) SzV  and b) PzV  model. The thickness of the 1D profiles 

is illustrative. 

 
Figure 4.11: One-way time (static shift) at various datum depths (indicated in 

different colours). 
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Figure 4.11: One-way time (static shift) at a datum depth of a) 40 m and b) 50 m. 

In red, the SW direct statics and in black, the BW tomostatics (Bräunig et al., 2020). 

One-way time difference between SW direct statics and BW tomostatics at a datum 

depth of c) 40 m and d) 50 m. Distribution of the one-way time difference ( t ) 

between the SW direct statics and BW tomostatics at a datum depth of e) 40 m and 

f) 50 m. The sum of occurrences in (e) and (f) is 205. 

 

Evidently, the lateral resolution of our estimated statics depends on length of 

the spatial window used for the DC extraction (75 m). To evaluate the quality of 
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the result, we compare the retrieved statics with the ones retrieved by a standard 

BW tomography by Bräunig et al. (2020) for the same dataset. Being an accepted 

method for near-surface PV  estimation, BW tomography serves as a benchmark.  

The statics are compared at two datum plans (40 m, shown in Figure 4.11a and 

50 m, shown in Figure 4.11b), which were chosen as examples, because they are 

deeper than the known depth to the bedrock. The SW direct statics are shown in red 

and the ones resulting from BW tomography are shown in black. Their difference 

at the two datum depths, is plotted in Figures 4.11c and 4.11d, respectively, where 

in blue we define the interval of ± 1 ms (equal to the SR), within which the 

difference is considered negligible. According to the histogram of Figure 4.11e, 

7.8% of the measurements present a difference that is out of the range of ± 1 ms for 

the computation at 40 m datum, while for the 50 m datum, 8.29% are out of ± 1 ms 

range (Figure 4.11f). The comparison confirms that the direct SW statics estimation 

presents a low error with respect to the benchmark. 

 
Figure 4.12: Brute stack a) before any statics, b) after application of P-wave 

traveltime tomostatics and c) after application of SW direct statics. The red arrows 

indicate a strong reflector. 
 

Figure 4.12a presents the stacked section before any statics. The resulting brute 

stacks, after the application of the BW tomostatics and the SW direct statics at 40 

m datum, are shown in Figures 4.12c and 4.12d, respectively. It can be observed 

that the SW direct statics resulted in an improved coherency of the reflector 

(indicated by the red arrows) with respect to the section with no statics, and similar 

quality with respect to the BW tomostatics.  
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This comparison shows that the proposed SW-based workflow can provide 

statics which are of similar quality with the ones achieved by a method routinely 

used in seismic exploration. Therefore, it can be regarded as a valid alternative to 

estimate the statics, which is completely independent from BW data and, therefore, 

can be useful when obtaining BW is less effective (e.g. when first-break traveltimes 

cannot be easily picked due to noise). 
 

Table 4.4: Breakdown of the time requirements of the SW direct statics 

estimation for the processed portion of the Ludvika 2016 dataset.  

Workflow stage Automation level Time 

A. Identification of sharp lateral variations 

Automatic,  
only a manual selection 
of window length for   

and   computation 

10 min 

B. Extraction of the dispersion curves   

• Selection of processing parameters Manual 20 min 
• Windowing, wavefield transform 

and automatic maxima picking Automatic 10 min 

• DC QC and cleaning Manual 10 min 

C. Clustering of the dispersion curves Automatic <1 min 

D. Reference curve selection and Monte 
Carlo   inversion, reference, W/D and 
estimation 

  

• Reference DC selection Automatic <1 min 
• Model space definition Manual  <1 min 
• Reference SV  inversion and 

conversion to SzV  
Automatic ~120 min 

• W/D estimation Automatic < 1 min 
• z  estimation Automatic < 1min 

E. Wavelength–depth transformation, SzV , 

PzV  and statics estimation 
Automatic 2 min 

Total: ~175 min 
 

The time requirements and automation level of the different stages of the 

workflow for this dataset are listed in Table 4.4. In total, from raw data to statics 

delivery, the workflow required approximately 175 min to run on a standard 
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commercial laptop from which, only a limited fraction (< 35 min) required the work 

of an operator. Compared to the conventional method (BW tomostatics), which 

requires a long and highly operator-dependent stage of first-break picking and the 

computationally demanding first-break tomography, the proposed statics 

estimation is considerably faster. Moreover, it is faster than most typical SW 

methods, since most of the processes (estimation of the W/D relationship and the 

z , transformation of all the DCs into SzV  and PzV , computation of statics) are 

automatized and based only on data transforms, requiring very little computational 

effort. The methods for the detection of sharp lateral variations and the process for 

the extraction of the DCs are completely automatic, except for some preliminary 

tests required for processing parameter selection, and an optional manual cleaning 

of the DCs. The only computationally demanding, but completely automatic, task 

is the inversion of the reference DC, which required 2 hours to run on a commercial 

laptop. 

4.4 Case study 2: Seismic line SM1 from the Siilinjärvi 

mining site, Finland (2018)  

We present the application of the method to the active 2D seismic dataset of 

line SM1 from the Siilinjärvi mining site in Finland (Section 3.3.3). According to 

our a priori knowledge on the site, the near-surface is expected to be highly 

variable, since intense lithological variability has been mapped at the location of 

line SM1 (Figure 2.10). Specifically, it is known that towards the south of the main 

mine pit, where line SM1 is located, shallow intrusions of vertical and sub-vertical 

diabase dykes are present within the mineralization, while the work of Kauti et al. 

(2019) has shown that also horizontal dykes are present within the ore body.  

4.4.1 Workflow application and results 

The results of the sharp lateral variation detection step of the workflow are 

presented in Figure 4.13. Figure 4.13a, shows the resulting stacked and normalized 

E . The results of the decay exponent and the attenuation coefficient methods, for 

a window length of 100 m, are shown in Figures 4.13b and 4.13c, respectively, 

while Figure 4.13d presents the stacked normalized G . We note that the colour 
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scale of Figures 4.13c and 4.14d is exaggerated, to enhance the visualization of the 

results.  

All methods indicated the presence of sharp lateral variations, since abrupt 

changes in the measured quantities can be depicted in all the plots of Figure 4.13.  

Their appearance, though, lacks coherency among the different methods and their 

identification, particularly in the plots of ,f w  and G , is highly ambiguous, due 

to their low contrast with respect to the background values. Nevertheless, 

simultaneous examination of all the results allowed the detection of some 

interesting features that could be reliably associated with local subsurface targets. 

In particular, the plots of E  and G  present large-scale anomalies at the eastern end 

of the line, highlighted by the black box in Figures 4.13a and 4.13d. In this area, 

the plots of ,f w  and   do not present any reliable results, probably due to the 

lack of positive-offset shots at the eastern portion of the seismic line (Figure 3.10). 

Nevertheless, due to the coherency of the anomalies within the black box in the 

plots of E  and G , its western boundary (“3” - 1064 m) was disregarded from the 

DC extraction. Smaller-scale anomalies can be depicted in the plots of   and  

,f w , at the locations outlined by the black dashed lines (“1” at 252 m, and “2” 

at 359 m) in Figures 4.13b and 4.13c, while the G  plot provides an interesting 

feature corresponding to position “2” only. The locations of the black dashed lines 

were also saved and omitted during the DC extraction. 
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Figure 4.13: Same as Figure 4.2, computed along line SM1. The estimated positions 

of the sharp lateral variations are labelled as “1”- “3”. 

 

The selected processing parameters for the multichannel analysis are 

summarized in Table 4.5. An example of the multichannel DC extraction can be 

seen in Figure 4.14a, where we present the f v−  spectrum of the window located 

at distance 250 m and the spectral maxima (black dots) corresponding to the picked 

DC. In total, 23 multichannel DCs were extracted along the line and are plotted in 
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Figure 4.14b where, despite the significant level of noise, a clear dispersive trend 

can be identified at high phase velocities, in agreement with the expected hard-rock 

environment of the site. The result of the clustering algorithm applied to the DCs, 

is the dendrogram of Figure 4.14c, that shows two major clusters, which we 

interpret as two separate zones of uniform characteristics. The first cluster, which 

will be onward referred to as “Zone 1” (green in Figures 4.14b and 4.14c), extends 

from 0 m to 750 m (Figure 3.10) and contains 13 DCs. The second one, named as 

“Zone 2” (red in Figures 4.14b and 4.14c), extends from 850 m to 1360 m (Figure 

3.10) and contains 10 DCs. Between the two zones, no DCs were picked due to the 

gap of the receiver line (Figure 3.10).  

 

 Table 4.5: Windowing parameters for the DC extraction of line SM1. 

Processing parameter Value 

Window size 100 m 
Step 50 m 

Minimum offset 10 m 
Maximum offset 580 m 
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Figure 4.14: a) example f v−  spectrum and its corresponding picked DC (black) 

b) Multichannel DCs (dots) and estimated reference DCs (lines) c) Clustering result 

and d) QI of the DCs of each zone. The circles indicate the DCs with the highest 

QI. In all panels, green and red represent the two main clusters, corresponding to 

Zone 1 and Zone 2. 

 

In Figure 4.14b, it can be observed that the DCs of the two clusters carry 

different characteristics, with presence of higher phase velocities in the curves of 

Zone 1, with respect to Zone 2. The QI of the DCs, computed separately for each 

cluster according to eq. 4.8, is plotted in Figure 4.14d at the corresponding DC 

position. The positions of highest-QI DCs, which were chosen as reference for Zone 

1 (250 m) and Zone 2 (1050 m), are highlighted in Figure 4.14d, by the red and 

green circles, respectively. The reference DCs are plotted as green (Zone 1) and red 

(Zone 2) lines in Figure 4.14b. 
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Figure 4.15: a) Model-space boundaries for the Monte Carlo inversion (blue 

dashed) and estimated reference SV  (solid lines) and reference SzV  (dots). Plot of the 

estimated b) W/D relationship and c) z . In all panels, green stands for Zone 1 and 

red for Zone 2. 

 

For the Monte Carlo inversion of each reference DC, one million 4-layered (3 

layers plus halfspace) SV  profiles were randomly generated from the model space 

outlined in blue dashed in Figure 4.15a. The value of   was fixed at 2500 kg/m3 

for the shallow layers and 2800 kg/m3 for the halfspace, while  was randomly 

sampled between 0.1 and 0.4, to be wider than the expected values on the site 

(Malehmir et al., 2017). Figure 4.15a shows, for Zone 1 and Zone 2, the inverted 

reference 
1SV  and 

2SV  models (solid green and solid red, respectively) and their 

corresponding 
1SzV  and 

2SzV  (green and red dots, respectively), computed using eq. 

4.9. Figure 4.15b shows, in the same color scale, their estimated W/D1 and W/D2 

and Figure 4.15c, the corresponding 1z  and 2z . 

The transformation of the DCs into SzV  models, using the corresponding W/D 

relationship for each cluster, provided the pseudo-2D SzV  model plotted in Figure 

4.16a. The corresponding PzV  model is plotted in Figure 4.16b, and the PV  static 

shift, computed for different values of (floating) datum depth between 40 m and 

120 m, is plotted in Figure 4.16c. 
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Figure 4.16: Pseudo-2D a) SzV  and b) PzV  model. The thickness of the 1D models 

is illustrative. c) Estimated P-wave one-way traveltime (static shift). The dashed 

lines and black box in (a) and (b), indicate the estimated positions of the sharp 

lateral variations shown also in Figure 4.13. The green box shows a high-velocity 

zone, indicated also as a green box in Figure 4.17. 

4.4.2 Discussion of the results 

The SW direct statics estimation method has led to the retrieval of the PV  static 

corrections for the seismic line SM1 of the Siilinjärvi mining site. The sharp-lateral 

variation detection methods identified the location of subsurface anomalies, which 

could be associated to the known lithological variations in the area.  

The energy anomalies, denoted as “1” and “2” in Figures 4.13b and 4.13c, 

present strong localization, and therefore, they are probably related to subsurface 

targets of narrow lateral extent. A comparison of these locations with the geological 
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map of the area, zoomed around line SM1 (Figure 4.17), shows that they correspond 

to the intrusions of the tonalite within the (mineralized) carbonatite-glimmerite 

body. The larger-scale anomaly, highlighted by the black box in Figures 4.13a and 

4.13d, is located eastern to the contact of the carbonatite-glimmerite with the fenite 

bedrock (Figure 4.17). Considering that the maximum frequency affected by the 

black-box anomaly in the Autospectrum plot (Figure 4.13d) increases from 35 Hz 

to 60 Hz towards the east, the anomaly could be indicative of a rise of the bedrock.  

 

 
Figure 4.17: Geological map of the Siilinjärvi mining area (provided by Yara), 

zoomed around line SM1, with an elevation model 2008-2019, 2 m x 2 m © 

National Land Survey of Finland. The dashed lines and the black boxes, indicate 

the estimated positions of the sharp lateral variations of Figure 4.13. The green box 

highlights a high-velocity area, also indicated as a green box in Figure 4.16. 

 

Similar conclusions can be reached by observing the time-average velocity 

models of Figures 4.16a and 4.16b. Although no DCs were picked at the exact 

locations of the targets denoted by the dashed lines (“1” and “2” in Figures 4.13b,c 

and 4.16a,b), higher velocities appear at shallow depths in their proximity, probably 
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related to the intrusions of the tonalite. The time-average velocity models confirm 

the rising of the fenite bedrock in the area of the black box (Figures 4.13a,d and 

4.16a,b), since the velocities appear to increase in the eastern side of the black box 

in both the SzV  and the PzV  models (Figure 4.16a and 4.16b).  

  Overall, the SzV  and PzV  values were higher in Zone 1, probably due to the 

tonalite intrusion (Figure 4.17). Moreover, the green box in Figures 4.16a and 

4.16b, denotes an area (between 600 m and 950 m), where the velocities appear 

higher than in the surrounding models. These are probably related to the large-scale 

diabase dyke which intersects the line at the same position and is highlighted also 

by a green box in Figure 4.17. 

Therefore, it can be concluded that the resulting time-average velocity models 

are in agreement with the geological information on the site, increasing the 

reliability of our statics estimate. 

4.5 Conclusion 

In this chapter, a method for the estimation of the PV  static corrections, based 

on multichannel SW processing, has been presented. Being based mainly on simple 

data transforms, the method provides the statics in a computationally efficient 

manner, faster than the conventional BW-based approaches, which require first-

break picking, and to most SW methods, which involve excessive inversion stages. 

The workflow has been successfully applied to the seismic datasets from the iron-

oxide mining site of Ludvika in Sweden and from the apatite mine of Siilinjärvi. 

The estimated velocity models were in agreement with the known geology and the 

retrieved PV  statics presented negligible difference with respect to statics computed 

through P-wave tomography. The quality of the resulting stacked section showed 

that the workflow can be considered as a valid alternative to estimate the statics.  
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Chapter 5 
 

Optimized automatic two-station 

SW processing 

5.1 Introduction 

In this Chapter we present a novel, optimized, two-station processing scheme. 

For our method, the processing parameter selection is optimized with a novel, data-

driven approach, which requires only minimal operator intervention, and the rest of 

the steps are completely automatic. We describe the fundamental stages and their 

mathematical background, and show the application of the method to a simple 2D 

synthetic model and to the more challenging 3D active-seismic dataset from the 

mining site of Ludvika in Sweden, described in Section 3.4. 

5.2 Method overview 

An overview of the method is given in the flowchart of Figure 5.1. As a first 

step, the receiver pairs and shots (blue in Figure 5.1), to be used for the extraction 

of the DCs, are selected. The receiver-pair and shot combinations which are 

collinear are found. From these, the shots outside the near- and far-field region are 

identified and selected, using a novel data-driven method which estimates the near- 

and far-offsets as a function of wavelength. The selected shots, receivers and 
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acceptable wavelength ranges are provided as input parameters to the DC picking 

and cleaning process (red in Figure 5.1). 

The DC extraction from each of the selected receiver pairs and shots is based 

on the computation of the cross-correlation matrix between the corresponding 

traces. The individual matrices corresponding to the same receiver pair are stacked, 

and a DC is automatically picked by tracking the maxima at each frequency, on 

both the individual-shot and the stacked matrices. To ensure that the correct maxima 

are picked, the velocities of a reference DC are used as a guide.  

Based on the individual-shot DCs, the standard deviation of the phase velocities 

is computed, to be used as the experimental uncertainty during the inversion of the 

stacked DC. An automatic cleaning is applied on the stacked DCs, to ensure that 

only picked maxima which are related to SW fundamental mode are kept.  

Finally, an outlier detection (green in Figure 5.1) compares the stacked DCs 

among each other, to remove curves with unrealistic phase velocities, resulting 

from possible errors in the previous steps or due to low data quality.  

Once the final set of stacked DCs has been retrieved, a portion of them is 

randomly selected and compared with DCs picked manually for the same receiver 

pairs, by means of an automatic QC (yellow in Figure 5.1). The QC allows to 

identify whether the quality of the picking is satisfactory. 
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Figure 5.1: Flow-chart representation of the proposed method 

5.3 Synthetic model description 

The proposed method will be demonstrated using the synthetic 2D model that 

we plot in Figure 5.2. The model, consists of three layers (Table 5.1) and is split at 

60 m distance into two laterally-homogeneous areas (“Zone 1” and “Zone 2” in 
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Figure 5.2). The simulated dataset consists of 101 receivers, spaced at 1 m, and 25 

shots, spaced at 5 m (black dots and red circles in Figure 5.2, respectively). The 

simulated record length was equal to 2 s and the sampling interval was equal to 1 

ms. 

 Table 5.1: Synthetic model parameters. 

 Layer 1 Layer 2 Layer 3 

(m)h  2 Zone 1: 8 Zone 1: 7 
Zone 2: 12 Zone 2: 3 

( )3
Kg

m  2000 2100 2200 

( )/SV m s  90 140 200 
( )/PV m s  180 240 350 

 

Figure 5.2: Synthetic model. The colors indicate SV , given by the color bar. As dots 

and asterisks, the simulated receivers and shots, respectively.  

5.4 Selection of the receiver pairs, shots and wavelength 

ranges 

In this stage, the receiver pairs, shots and wavelength ranges for which DCs can be 

reliably extracted, are found. 
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5.4.1. Azimuth-based sorting of shots and receivers  

From the entire set of seismic gathers, we identify pairs of traces which have 

recorded – at least one – common in-line shot. Collinearity is of great importance 

since, as discussed in Section 2.3.4, extraction of DCs corresponding to SW which 

propagate in an off-line direction, leads to erroneous phase-velocity measurements. 

In 3D datasets, co-linearity is ensured by selecting the appropriate source-receiver 

combinations, based on their azimuth angle, . In 2D seismic datasets, all the 

receivers are in-line with the sources, and therefore co-linearity is not of question. 

However,  is again measured, to ensure that the shot is not located between the 

two receivers. 

Description of the method 

The proposed technique is summarized in the pseudocode of Table 5.2. Let xR  

and yR  be two vectors, containing the x - and y - coordinates of the receivers, 

respectively. As iR  we denote the i -th receiver of the dataset, located at 

( ) ( ) ( )( ), ,i i x yx y i i= R R . Correspondingly, the k -th shot, kS , is located at 

( ) ( ) ( )( ), ,k k x yx y k k= S S .  

First, the azimuth ( ijk ), between each of the possible receiver pairs ( i jR R ) and 

each of the available shots ( kS ) of the dataset is computed, according to:  

  

 1

2 22 2
cos i k i k j k j k

ijk

i k i k j k j k

x x y y x x y y

x x y y x x y y
 (5.1). 

The same computation is performed for all the kS  shots and the same i jR R  

pair, and in the end, only the kS  for which o0ijk  (e.g., Figure 5.3a), are 

considered suitable for the specific i jR R  pair. In 2D datasets, this ensures that 

o180ijk  (e.g., Figure 5.3b). 
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Running this check for all possible receiver pairs, a total of pairsN  receiver pairs 

and their corresponding in-line shots, the number of which ( 1 2R R
SN ) will be different 

for each pair depending on the acquisition geometry, is identified.  

 
Figure 5.3: Azimuth computation ( ijk ) between two random receivers iR  and jR  

and a shot kS . In (a) the angle is o0ijk . In (b) the angle o180ijk . 

 

Table 5.2: Azimuth-based sorting of receiver-pairs and shots pseudocode. 
------------------------------------------------------------------------------------------------------------  
Algorithm: Azimuth-based sorting of receiver-pairs and sources 

Input: x- and y- coordinates of the Nr receivers, Rx and Rx. x- and y- coordinates of the 

Ns shots, Sx and Sy. 

Output: Set of Npairs, receiver pairs. Npairs sets of NS

 R1R2

 shots in-line with each pair 

------------------------------------------------------------------------------------------------------------  
1   for i  from 1 to Nr-1 

2   for j  from i+1 to Nr 

3   for k  from 1 to NS

 R1R2

 

% Compute the azimuth between the i,j,k triplet                         

4     do θ = compute_azimuth (Rxi, Ryi, Rxji, Rxj, Rxk, Rxk) 

% Check collinearity 

5       if |𝜃| = 0  % Slight azimuth tolerance may be permitted, depending on the dataset 

characteristics 

% If colinear save the receiver pair and the shot 

6         save i and j to Npairs  

7         save k to NS

 R1R2

 

8      end 

9   end 

10 end 

11 end 

------------------------------------------------------------------------------------------------------------  
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5.4.2 Detection and exclusion of near- and far-field effects 

The 1 2R R
SN  shots found in-line with each of the pairsN  receiver pairs are located 

at various offsets ( 1x ) (e.g., Figure 5.4). From these, only a limited portion can be 

reliably used for the DC extraction, and only for limited wavelength ranges 

( )min max,λ λ . In particular, as discussed in Section 2.2.3, only shots which are outside 

the near- and far-field region of the two traces can be used for the DC estimation, 

to avoid biasing the theoretical assumptions of SW analysis, which would lead to 

wrong phase velocity measurements. Here, we propose a method to detect these 

regions as functions of the path length 
1 2R Rd  and measured wavelength, which both 

influence the near- and far-field offset values (see Section 2.2.3 for details).  

For our method it is necessary to pick the DCs from all the 1 2R R
SN  shots in-line 

with all the pairsN  pairs, and for a broad wavelength band (workflow stages in red 

in Figure 5.1). Once the near- and far-field regions have been detected, the picking 

is performed again only for the acceptable 1 2R R
SN  shots and wavelength ranges. This 

second round of picking provides the DCs that will be further inverted whereas the 

first round is only used to optimize the processing parameters.  

 

Figure 5.4: Scheme depicting a set of 1 2R R
SN  shots, corresponding to an 1 2R R  

receiver pair. 

Description of the method 

The proposed method is summarized in the pseudocode of Table 5.3. Each DC, 

corresponding to a receiver pair 1 2R R  and a shot 1 2R
S
Rk N  (Figure 5.4), is described 

as a set of: 
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• A phase-velocity vector, 1 2R R
kv  

• A wavelength vector, 1 2R R
kλ  

• The path length 
1 2R Rd  

• The source offset, 1
kx  

For each 1 2R R  pair, using the DCs of the 1 2R
S
Rk N  individual shots, we 

compute the mean phase velocity ( 1 2R R
v ) at each i  wavelength as:  

 

1 2

1 2

1 2

1 2

( )
( )

R
S
RN

k

S

R R

R R k
R R

i

N
i =

 v
v  (5.2), 

where 1 2 ( )R R
k iv  is the phase velocity at a wavelength 1 2R R

ki λ . The key idea of our 

method is that the DCs corresponding to the same receiver pair should be identical, 

independently from the source location. If any of the DCs presents inconsistent 

phase velocities at a specific wavelength range, its corresponding offset probably 

lies within the near/far-field regions (e.g., according to O’Neill (2003), Bodet et al., 

(2009), Foti et al. (2018), near-field is associated with phase-velocity 

underestimation). To detect them, we compute a misfit: 

 
1 21 2

1 2

1 2

( ) ( )( , )
( )

|| ||
R RR R

R R
R R

k i ik i
i

−
=

v vm
v

 (5.3), 

which shows the distance of each individual DC from the mean 1 2R R
v , at each 

wavelength. Since the k -th shot is located at a distinct offset 1
kx  from the receiver 

pair, we associate misfit 1 2 ( , )R R k im , to the corresponding value of  1
kx .  

We compute eq. 5.3 for all the 1 2R R  pairs, and compute a matrix of the 

normalized global misfit from all the DCs of the dataset as 

 

1

1 2

1

1 2

2

2

1

( , )
( , )

R R
s

R R

k

N

Rk

R R k

Rx i
k i

=

 



m
M  (5.4) 
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Plotting M  versus wavelength and offset, allows to identify, at each offset, the 

wavelength range ( )min max,λ λ  for which the misfit is low, and which is, therefore, 

most likely unaffected by near- and far-field effects. The low-misfit zones are 

manually picked on a user interface, creating a “mask” of acceptable offset vs 

( )min max,λ λ .  

To account also for the dependence of the near- and far-field from 
1 2R Rd , we 

classify the receiver pairs into groups depending on their path lengths 
1 2R Rd  and 

compute the misfit M  separately for each group. A “mask” corresponding to each 

group is picked separately.  

The shots at offsets outside the “mask” are disregarded from the 1 2
S
R RN  

selection. For the accepted shots, the corresponding acceptable ( )min max,λ λ  ranges 

are transformed into ranges of frequency, i.e., ( min max,f f ), and used in the DC 

computation. To transform the wavelengths into frequencies, we use the average of 

all the 1 2R R
v  computed according to eq. 5.2 for all the receiver pairs. 
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Table 5.3: Detection and exclusion of near- and far-field effects pseudocode. 
------------------------------------------------------------------------------------------------------------  
Algorithm: Detection and exclusion of near- and far-field effects 
Input: Set of Nselected_pairs sets of NS

 R1R2

 DCs (vdc, λdc , x1, dR1R2), in a limited range of dR1R2 

Output: “Mask” of acceptable NS

 R1R2 

vs frequency, for each receiver pair 

------------------------------------------------------------------------------------------------------------  
1   for i  from 1 to Nselected_pairs 

2     for j  from 1 to NS

 R1R2

 

3       Read vdcj , λdcj, x1, dR1R2 

% Compute mean phase velocity of each individual DC                         

4       do vm,i = compute_mean_DC (vdc,j) 

% Compute misfit of each individual DC wrt mean phase velocity                       

5       do mi,j = compute_misfit (vm,i) 

6     end 

7 end 

% Compute the global misfit, for all the selected pairs and all the offsets                       

8 do M = sum_misfit_of all_pairs_and_same_offset (m) 

% Plot the global misfit and select a “mask” enclosing the low-misfit zones                       

9 do plot M 

9 do mask=select_low_misfit_zones_on_the_plot (M) 

------------------------------------------------------------------------------------------------------------ 
 

Examples 

As an example, we show in Figure 5.5, the misfit M  computed from all the 

DCs of the Ludvika 2019 dataset (see Section 3). The values of M  in panels (a)-

(d), have been computed from DCs with 
1 2R Rd  between 0 m – 100 m , 100 m – 200 

m , 200 m – 300 m and  400 m – 450 m, respectively.  

In all panels, the colorscale indicates the misfit, and the straight lines 

correspond to the most commonly used empirical relationships between 1x  and λ  

(see Table 2.1), for the determination of the near- and far-field regions. The red 

dashed lines define the low-misfit areas and have been picked as the offset vs 

( )min max,λ λ  “masks”. After this step, the cross-correlation matrices will be 

computed for each pair, only considering the shots in the offset and wavelength 

range defined by the mask. For instance, for two receivers at distance 80 m from 

each other, we will use only the shots at offset between 20 m and 560 m (Figure 

5.5a). For the shot at 500 m offset, only wavelengths between min 77 m =  and 

max 110 m =  will be considered in the DC computation. Therefore, the finally 

retrieved DCs will contain data points which are, most likely, unaffected by near- 

and far-field effects.  
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It can be noticed that our estimation of acceptable offset ranges is different than 

the one of the empirical rules. To validate our method, we performed the entire 

processing workflow using both approaches, and our data-driven method provided 

a higher-quality dispersion image. Further discussion on this comparison can be 

found at the end of this chapter (Section 5.11).  

 

 
Figure 5.5. In all panels, the colorscale indicates the misfit M  (eq. 5.4). The straight 

lines correspond to the most common empirical definitions of the near- and far-field 

(Table 2.1). In red dashed, our estimation of the near- and far-field limits.  
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5.5 Cross-correlation matrix computation and stacking 

This stage is based on the two-station method, as originally formulated by 

Bloch & Hales (1968). The theoretical background of the method is described in 

detail in Section 2.3.2. Here, we provide the basic mathematical definitions 

necessary for the implementation of the method in the discrete (in terms of both 

time and space) domain of data processing.  

In summary, a pair of traces is analysed into monochromatic components, using 

a frequency-domain narrow band-pass filtering, as originally proposed by 

Dziewonski & Hales (1972). The analysed traces are then cross-correlated, 

frequency by frequency, to retrieve the cross-correlation matrix. In the end, the 

matrices corresponding to the same receiver pair and different shots are stacked, 

and the same operation is performed for all the receiver pairs and shots, selected in 

the previous stage.  

5.5.1 Description of the method 

The method is summarized in the pseudo-code of Table 5.4. Inputs are the 

traces k
ru  recorded by a receiver pair rR  (  1, 2r ), for all its selected k  shots (

( )1 21, R R
Sk N ). The path length corresponding to the receiver pair, 1 2R Rd , is also 

known.  

Each trace k
ru  is a discrete finite signal  k

r nu , ( )1, Tn N . Its length ( TN ) depends 

on the sampling parameters and equals T
TN SR= , where T  is the record duration 

and SR  is the temporal sampling rate. The sampling parameters will be onwards 

assumed constant and the trace will be simply denoted as k
ru .  

We define the domain for which the cross-correlation matrix will be computed, 

i.e.: 

• A phase-velocity vector Cv , containing Vs  velocities between min max( , )v v : 

 min( )j V j V= + Cv  (5.5), 

where 
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 max min
V

V

V V
s


−

=  (5.6). 

• A frequency vector Cf , containing fs  frequencies between min max( , )f f : 

 min( ) fi f i = + Cf  (5.7), 

where  

 max min
f

f

f f
s


−

=  (5.8). 

The values of minf  and maxf  are those selected as in Section 5.4.2. The values 

of minv  and maxv  are input by the user, based on the expected phase velocities in the 

recorded data.  

The two k
ru  traces are analysed into monochromatic ( ( )min max,if f f  ) 

components ,if k
ru , using the technique of Dziewonski & Hales (1972). Specifically, 

the traces are transformed in frequency domain using the Discrete Fourier 

Transform (DFT): 

 ( )k k
r r=U u  (5.9), 

where  denotes the DFT operator. A band-pass filter is applied ( )min max,if f f   

on the k
rU  spectra, to isolate their individual frequency responses: each of the k

rU  

spectra is multiplied by a narrow window, which, following Dziewonski & Hales 

(1972), was chosen to be a Gaussian function ifG  centred at if : 

 

21
2

i

i

f
f e 

− 
−  

 =
Cf

G  (5.10), 

where   is the standard deviation of the Gaussian function. The filtered spectra can 

be therefore expressed as:  

 ,i if k f k
r r=U G U  (5.11), 
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where  denotes the Hadamard element-wise multiplication. The filtered spectra 

are converted back to time domain applying the inverse Fourier transform: 

 ( ), ,1i if k f k
r r

−=u U  (5.12), 

where 1−  is the inverse DFT.  

Following the classical definition of the cross-correlation function between two 

discrete signals  A n  and  B n : 

 ( )     
n

nA B m A n B m


=−

= +   (5.13), 

the cross-correlation between ,
1

if ku  and ,
2

if ku  is performed, over a time-lag vector 

Lt , which is computed based on the velocity range min max( , )v v  and the path length 

1 2R Rd . Specifically, we compute the time range: 

 1 2 1 2( , ) ,R R R R
min max

max min

d dt t
v v

 
=  
 

 (5.14), 

and we discretize it, using the temporal SR  of the signal, into time steps as: 

 min min( , ) ,min max
t t

R
N N

SR S
 

=  
 

 (5.15). 

The time-lag vector Lt  is then computed as: 

 ( ) ( )min min max, 1, ,L n N N N= + t  (5.16). 

The cross-correlation results ( )min max,if f f   form the cross-correlation matrix: 

 ( ) ( ) ( ) ( )1, 2,, =
i i

k k k
f f Li n n   C u u t  (5.17). 

It is the matrix of the cross-correlation of all the min max,if f f  

components of the signal 1, i

k
fu  and of the signal 2, i

k
fu  shifted by the elements n  
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of Lt . To transform the matrix from a function of time into a function of phase 

velocity, we compute: 

 ( ) ( )
1

1 2
orig

R R Ln d n −
=Cv t  (5.18). 

Since the velocities in orig
Cv  have a one-to-one correspondence to the time lags 

Lt , the elements n  of the matrix ( ),k i nC , are related to a specific value of velocity 

( )orig nCv . To convert the matrix into the chosen velocity discretization, ( )jCv , 

following Yao et al. (2006), we perform a 1D spline interpolation of its values with 

respect to the velocities. The final matrix is of the form  ( ),k k i j=C C . 

The same process is repeated for all the selected shots, i.e., ( )1 21, R R
Sk N  , 

leading to the estimation of 1 2R R
SN  matrices kC  for the same 1 2R R  pair.  

Considering that the cross-correlation is a representation of the similarity of the 

two signals, the computed matrices will present a maximum when the dominant 

events of the two traces become in-phase, i.e. at the travel-time (or equivalently the 

velocity) of the dominant propagating waveform between 1 2R R  (with a 2  

ambiguity, resulting from the periodicity of the transformed signal as described in 

detail in Section 2.3.2).  

Assuming that the highest energy levels are carried by the SW fundamental 

mode on both traces, the maximum of the cross-correlation is expected to represent 

the phase velocity at each frequency. Therefore, the cross-correlation matrix is the 

dispersion image that will be used in the following stage to pick the DC. 

Since high levels of random noise could reduce the relative weight of the SW 

event in the cross-correlation, we take advantage of the repetitive ( k ) 

measurements over the same 1 2R R  pair, contained in the 1 2R R
SN  shot gathers, to 

improve the S/N. We sum the individual matrices kC , normalizing for the source-

offset, and retrieve a stacked cross-correlation matrix for the receiver pair ( stackC ): 

 
1

1stack k
k

k x
=C C  (5.19). 
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Table 5.4: Cross-correlation matrix computation and stacking pseudocode. 
------------------------------------------------------------------------------------------------------------  
Algorithm: Cross-correlation matrix computation and stacking  

Input: Inter-receiver distance (dR1R2), number of shots selected from the “butterfly” 

method (k) 

Output: Set of k individual cross correlation matrices (Cind), Stacked cross-correlation 

matrix (Cstack) 

------------------------------------------------------------------------------------------------------------  
1 for k from 1 to Nshot 

2     read trace1k(t) trace2k(t) 

3     read fmin, fmax, vmin, vmax 

% Transform the traces in the frequency domain                         

4     do [trace1FT(f) , trace2FT(f)] = fft (trace1k(t) , trace2k(t)) 

5     for fi   from fmin to fmax 

% Apply Gaussian window 

6        [trace1 FT 
fi

(f) , trace2 FT 
fi

(f)] = GaussianWindow (trace1FT (f), trace2FT (f) , fi ) 

% Transform the filtered traces in time domain 

7        [trace1
fi

(t) , trace2
fi

(t)] = ifft (trace1 FT 
fi

(f) , trace2 FT 
fi

(fi))  

% Compute the individual cross-correlation matrix  

8      for t from 1 to tlags 

7          xcorr_t(fi,t) = xcorr (trace1
fi

(t) , trace2
fi

(t))   

8 end 

9     end 

% Convert the matrix from a function of frequency and time to a function of 

frequency and phase velocity  

10     Cind (f,v,k) = spline (
𝑡𝑙𝑎𝑔𝑠

𝑑𝑅1𝑅2
⁄ , xcorr_t(f,t), [vmin,vmax])   

11 end 

% Compute the stacked cross-correlation matrix 

12 do Cstack = sum (Cind (f,v))              

 

5.5.2 Examples 

In Figure 5.6, we demonstrate the method, using, as an example, two traces 

(Trace 1 and Trace 2, in Figure 5.6a), from the synthetic dataset presented in Section 

5.3. The traces represent the records of two receivers at distance 
1 2

10 mR Rd =  from 

each other and a shot located at distance 1 4 mx =  from the first receiver. In Figure 

5.6b we show, using the same colours as in Figure 5.6a, the corresponding filtered 

traces, after applying a Gaussian filter around 20 Hz. We computed the cross-

correlation of the filtered traces for the velocity interval between 50 m/s – 400 m/s, 

and therefore, for the time interval between 0.025 s – 0.2 s. The resulting cross-

correlated trace is shown in Figure 5.6c.  

Performing the cross-correlation of the traces filtered around all frequencies 

between 10 Hz and 60 Hz (with a step of 0.5 Hz), resulted in the individual-shot 

cross-correlation matrix plotted in Figure 5.6d. Finally, in Figure 5.6e, we show the 

cross-correlation matrix in the frequency – phase velocity domain, resulting from 
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the spline interpolation of the matrix of Figure 5.6d. We note that for this synthetic 

model, stacking of different individual-shot matrices did not modify the result due 

to the absence of noise in the traces.  

 
Figure 5.6: a) Two synthetic traces. b) The same traces after frequency band-pass 

filtering around 20 Hz. c) Cross-correlation of the traces in panel (b). Cross 

correlation matrix as a function of d) frequency and time and, e) frequency and 

phase velocity.   

 

In Figure 5.7 we demonstrate the effect of stacking different individual-shot 

matrices, using an example belonging to the 3D dataset of Ludvika. In Figure 5.7a, 

we show the cross-correlation matrix computed for a pair of receivers, at distance 
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of 
1 2

522 mR Rd =  from each other, considering a shot at distance 1 100 mx =  from 

the first receiver. The matrix presents maxima which follow a clear dispersive trend 

-characteristic of SW- in the lowest frequency band (approximately 10 Hz – 40 Hz), 

while above 40 Hz, the dispersive trend is interrupted, probably due to the 

dominance of high-frequency noise. In Figures 5.7b – 5.7d, we show the matrix 

corresponding to the same receiver pair, but gradually stacking 2, 5 and 9 

individual-shot matrices, corresponding to shot-offsets between 100 m – 190 m. It 

can be observed that the dispersive pattern in the low-frequency portion of the 

matrix becomes clearer and more energetic.  

Figure 5.7: a) Individual-shot matrix and stacked matrix after summation of b) 2, c) 

5 and d) 9 individual-shot matrices, corresponding to different shots and the same 

receiver couple. 
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5.6 DC Picking 

Here, a DC is picked on both the individual and the stacked cross-correlation 

matrices kC  and stackC . The process is identical for both kC  and stackC  and, thus, 

we will onward generalize the description of the proposed technique, omitting the 

indices and referring to the input of the method as the cross-correlation matrix C .  

The key idea of the method is that the phase velocities of SW will correspond 

to maxima on the matrix (since we assume that SW are the most energetic events 

of the original traces), which follow a smooth dispersive trend along the different 

frequencies (since the DC is an inherently smooth function between the phase 

velocity and frequency).  

However, at each frequency, the matrix presents maxima at several velocities (

2  ambiguity), and to decide which ones to pick, we compare them with an a priori 

reference on the expected phase-velocity ranges. Throughout the thesis, we always 

use as reference, a multichannel DC located near to the receiver pair, which can be 

obtained using the workflow presented in Chapter 4.  

A problem which arises is that the reference DC might be narrow-banded with 

respect to the matrix C . On the other hand, we would like to pick the DC for the 

entire frequency band for which useful SW signal exists. To do so, we pick a 

maximum on the cross-correlation matrix, at a frequency where reference 

information exists, and we use it as a starting point (a “seed”), to pick the entire 

curve, following a smooth trend.  

Since, however, starting from only one point carries high degree of uncertainty, 

e.g., because the reference DC might not correspond to the correct C  maxima in 

the entire frequency band of the matrix, we will consider the picked curve only as 

a candidate DC. We will pick several candidate curves, starting from every 

frequency where the reference velocities are known, i.e., from every possible seed 

and, in the end, we will select the candidate that is closest to the reference DC at all 

frequencies.  

In the following, we describe the technique, with reference to the pseudocode 

of Table 5.5 and the flowchart of Figure 5.8.  
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Figure 5.8: Flow-chart representation of the proposed DC picking method. 

5.6.1 Description of the method 

Input to the method are the cross-correlation matrix C  ( kC  or stackC ) and the 

vectors which define its frequency and phase velocity coordinates: 

( )
T

min maxf f= Cf  and ( )
T

min maxv v= Cv , respectively. The reference DC is 

input as a vector ( )
T

1 RR r rdpf f= f , containing its frequency values, and a vector 

( )
T

1 RR r rdpv v= v  containing its phase velocity, where Rdp  is the number of data 

points of the reference DC. We denote as CBf  a vector containing the CBn  elements 
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which are common in Cf  and Rf  (i.e., the common frequency band between the 

cross-correlation matrix and the reference DC). 

 

A. Local maxima detection 

For each frequency within the common frequency band, i.e., for each seed CBf f  

where ( )seed seedf i= Cf , we find the corresponding local maxima of C , by searching 

for elements j  such that: 

 ( ) ( )  , , 1 , 1,..seed seed vi j i j j s   =C C  (5.20), 

i.e., for the elements of ( ),seedi jC  with a cross-correlation amplitude larger than 

their neighbouring (in the velocity direction) ones. We refer to the vector containing 

all the ( )jCv  satisfying eq. 5.20 as LMv . 

 

B. “Seed” point selection 

The value of ( )seed seedf i= Cf  is the frequency of the “seed” point. To find its 

velocity, ( )seed C seedv j= v , we identify the element of LMv  nearest to the reference 

DC. If seed
refv  is the phase velocity of the reference DC at frequency seedf , i.e.:   

 ( )seed
ref R R seedfv = =v f  (5.21), 

then the “seed” velocity, seedv , is: 

 ( ) ( )( ) ,seed seed
seed LM LM ref LM ref LMk     k i iv v v=  −  −  v v v v (5.22). 

Combining seedf  and seedv , a “seed” point, ( ) ( ) ( ) , ,seed seed seed seedP f v i j= C Cf v  is 

defined. 

C. Candidate curve picking 

The “seed” point, ( ),seed seedP f v , is the first point of the candidate curve. 

Therefore, the velocity of the candidate curve, candv  , at a frequency seedf  is: 
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 ( )cand seed seedi v=v  (5.23). 

To update candv  for all the frequencies between seedf  and maxf , a counter jj  is 

initialized to zero and then, max1, seedf fii
f

 −
  

 
, jj  is incrementally updated, 

until ( ),seed seedi ii j jj+ +C  becomes a local maximum, according to eq. 5.20. The 

value of candv  is then updated as: 

 

( )

( )

( )
or

( )

cand seed seed

cand seed seed

i ii j jj

i ii j jj

+ = +

+ = −

C

C

v v

v v
 (5.24) 

depending on the   direction where the first local maximum was encountered.   

This process is schematized in Figure 5.9. The blue squares are points of an 

assumed cross-correlation matrix and the numbers on the squares indicate the cross-

correlation amplitude at each point. The red square with the blue circle in Figure 

5.9a is the “seed” point, found as the local maximum (having a cross-correlation 

amplitude of 43) of the matrix, nearest to the velocity of the reference DC (green 

square) at frequency seedf . In the first iteration along frequency (so for 1ii = ),  a 

search is performed to check if seedv  ( 0jj = ) is a local maximum. In this case it is 

not, since it does not have an amplitude higher than its neighbouring (in the velocity 

direction) points. Therefore, a second check is performed for the cross-correlation 

amplitude at ( )1seedj Cv . In this case, ( )1seedj −Cv  presented a local maximum 

(amplitude of 44), and therefore it was picked as the point of the candidate curve at 

( )1seedi +Cf  (it became red in Figure 5.9b). In the next iteration, so for 2ii = , the 

same check is performed, i.e., we check which of the components of the matrix 

along the column of ( )2seedi +Cf  is the one that is a local maximum, nearest to 

( )1seedj −Cv  and so on, until a point has been picked for all the frequencies between 

seedf  and maxf  (Figure 5.9c). 

The same process is repeated “backwards” in the interval ( )min , seedf f  : starting 

from ( ),seed seedP f v  and reducing seedi  by min1, seedf fii
f

 −
 
 

, the nearest to seedv  
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local maxima of ( ),seed seedi ii j jj− C  are identified and their Cv  coordinates 

update the vector candv . When this process is finalized for all the frequencies, the 

complete candidate curve ( Cf , candv ) has been retrieved, starting from a single 

( ),seed seedP f v  point.  

In the end, the process is repeated seed CBf f  , i.e., starting from every “seed” 

inside the common frequency band, to pick a set of CBn  candidate curves.  

 
Figure 5.9: Picking of a candidate curve. In all panels, in green, the reference DC 

and in red with a blue circle, the seed point; in grey, the points to be checked as 

local maxima and in red, the points identified as local maxima.  
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D. Best candidate curve detection  

The CBn  candidate curves, picked from all the seeds, are compared with the 

reference DC in their entire common CBf , to identify the best candidate, i.e. the 

candidate curve which is nearest to the reference and is, therefore, most likely 

representative of the actual SW dispersion. For each q  candidate DC, we compute 

the 1l  norm distance of its velocity ( )q
cand iv  from ( )R iv  within the common 

frequency band: 

 ( ) ( ) ( )
1

, 1,
CBn

q
q cand R CB

i
d i i i n

=

= −  v v   (5.25). 

The velocity of the best candidate is the one that minimizes 5.25, i.e.: 

 : arg min( )
bestq best

cand q
q

q d=v   (5.26). 

The picked DC from the cross-correlation matrix C  is: 

  ,
bestq

cand= Cdc f v  (5.27). 

For the same receiver pair, DCs are picked on all of its computed individual kC  

and on the stacked stackC , but only the DC from stackC  (stacked DC) will be used in 

the inversion, since it is considered more reliable. The purpose of picking the DCs 

also from the kC  (individual DCs), is that they can provide a measure of the 

experimental uncertainty, to be used as a weight in the inversion of the stacked DC. 

In particular, we compute as the experimental uncertainty, the standard deviation 

of the phase velocities of the individual DCs. The following DC cleaning steps, will 

be applied only on the stacked DC. 
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  Table 5.5: DC picking pseudocode. 
------------------------------------------------------------------------------------------------------------  
Algorithm: DC Picking  

Input: Stacked or individual cross-correlation matrix (C), Velocity ( cv ) and frequency (

Cf ) domain of the cross-correlation matrix, velocity ( Rv ) and frequency ( Rf ) of the 

reference DC 

Output: Picked DC (DC) 

------------------------------------------------------------------------------------------------------------  
1 read C, fC, vC 

2 read fR, vR 

% Find the common band between cross-correlation matrix and reference DC                         

4 do fCB = find_common_band (fC, fR) 

% Start searching from the first element of the common frequency band 

5 for fseed from 1 to fCB 

% to find the seed velocities at each fseed 

6     do vseed = Find_local_maxima (C(:,fseed))   

% Start picking the maxima at all the other frequencies of the cross-correlation matrix 

7        for fci from 1 to fR 

% looking for the local maxima nearest to the seed  

8           do vcand = Find_nearest_local_maxima (C(:,fci))  

9           tb= tb+1 

10        end   

% You have created one candidate curve Now find the candidate curve for the next 

seed 

12      end 

% Now find the L1 norm distance of all the candidate curves from the reference DC   

13 do d(i) = computeL1_norm (v
i

cand(fCB) , vR (fCB)) 

% Now find the best candidate 

14 do vBEST = find_vcand_with_min_d(i) (d, vcand) 

% Create the DC 

15 do DC = [ fC vBEST ] 

16 end 

------------------------------------------------------------------------------------------------------------  

5.6.2 Examples 

As example, in Figure 5.10 we show the DC picking on the stacked cross-

correlation matrix of Figure 5.7d.  
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Figure 5.10: Picking the DC on the stacked cross-correlation matrix of Figure 5.7d. 

In green, the reference DC and in blue, the picked candidate curve. In (a)-(c), the 

stars are the “seed” points. In (d), in black, the limits of the common frequency 

band between candidate and reference DC. In red, the best candidate.  

  

In Figure 5.10a, the reference DC (green) is superimposed on the matrix. The 

common frequency band between the reference DC and the matrix is between 17 

Hz and 34 Hz.  The first “seed” point, found as the local maximum of the matrix, 

nearest to the reference DC at 17 Hz, is plotted as an asterisk in Figure 5.10a, while 

the picked candidate curve is shown in blue. In the same manner, all the frequencies 

between 17 Hz and 34 Hz were used as “seed” frequencies and different candidate 

curves were obtained. Corresponding to most of the “seed” frequencies, the same 



 

133 
 

candidate curve was obtained, e.g., for the “seed” at 25 Hz, shown in Figure 5.10b 

the candidate DC (blue line) is the same as the one of Figure 5.10a. Nevertheless, 

the “seeds” obtained for frequencies >32.5 Hz, provided a candidate curve at lower 

velocities, as for instance the “seed” at 34 Hz (asterisk in Figure 5.10c), which 

provided the candidate shown in blue in Figure 5.10c. When all candidates were 

retrieved, their distance from the reference DC was computed, according to eq. 

5.25, for their common frequency band (17 Hz – 34 Hz, black dashed in Figure 

5.10d). The best candidate, which minimized the distance from the reference, was 

the one shown in red in Figure 5.10d, and it was saved as the picked DC for the 

specific matrix. The error bars indicate the phase-velocity standard deviation, 

computed from the DCs picked on the individual-shot cross-correlation matrices 

(not shown in Figure 5.10) and saved, to be used as the experimental uncertainty 

during the inversion. 

For our synthetic example, the best candidate, picked on the cross-correlation 

matrix of Figure 5.10e, is shown in Figure 5.11 in red while, in green, we show the 

reference DC. It is apparent that in this case, the picked DC is almost identical to 

the reference DC, and therefore, even a single “seed” point would be sufficient to 

pick the correct maxima on the matrix.  

 
Figure 5.11: In red, the DC picked from the synthetic cross-correlation matrix, 

shown also in Figure 5.9e. In green, the reference DC. 
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5.7 DC Cleaning 

The method described in the previous stage resulted in a DC which was picked 

as a set of local maxima of the stacked cross-correlation matrix along its entire 

frequency band.  

Nevertheless, so far there has been no guarantee that the picked maxima are 

indeed representative of SW dispersion. The cross-correlation presents a maximum 

at the time-lag when the entire recorded waveform, or at least its most energetic 

component, becomes in-phase. If the recorded traces were dominated by SW in the 

entire frequency band, the picked curve is expected to present a smooth and 

dispersive pattern, corresponding to uniform (along frequency) and always high 

cross-correlation amplitudes (as for instance the curve shown in red in Figure 5.11). 

If the recorded traces were not dominated by SW, the cross-correlation would 

only indicate the time when two, spurious for our purpose, events became in-phase. 

If SW were dominant only within a specific frequency band, then only an 

“effective” portion of the picked curve would be related to SW, while the rest of it 

would again be spurious.  In both cases, the cross-correlation amplitudes at the DC 

coordinates would not be uniform (always high) and the picked curve would not be 

smooth and dispersive in the entire frequency band: at each frequency, a different 

event of different amplitude and velocity would dominate the cross-correlation. 

Such a behaviour can be observed, for instance, in the curve shown in red in Figure 

5.10d.  

The method proposed here, establishes the frequency band for which the picked 

curve is representative of SW dispersion. The main idea of our method is to search 

for bands where the cross-correlation amplitudes drop and the smoothness of the 

curve presents “breaks”, signifying a transition to a non-SW related event. In our 

global workflow, the method is applied only on the stacked DC, since this will be 

the final outcome to be inverted. Therefore, to simplify the description, we onward 

refer to the stacked DC and the stacked cross-correlation matrix, respectively, as 

DC and C . 
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5.7.1 Description of the method 

The proposed method is summarized in the pseudocode of Table 5.6. Input to 

the method is the stacked cross-correlation matrix C  and the picked DC, which 

corresponds to a discrete set coordinates of C . It contains dpn  data points and is 

structured as  

• A vector of frequencies: ( )
T

1 min maxdpDC nf f f f= =  =f  

• A vector of phase velocities: ( )
T

1 dpDC nv v= v  

The vector containing the cross-correlation amplitudes at the coordinates of the 

DC is denoted as cc : 

 ( ) ( ) ( )( ) , , where DCi i j j i= =Ccc C v v  (5.28). 

Our method, in essence, detects the ( )DC if  frequencies where the value of ( )icc  

presents a significant drop and at the same time, the value of ( )DC iv  suddenly 

changes. To detect them, we make a quantitative analysis of the trends of cc  and  

DCv  with respect to DCf . The adopted approach can be easily described, neglecting  

the discrete nature of our problem, and assuming that cc  and DCv  are functions 

over a continuous space f , i.e.,   

 

( )

( )

min max

min max

( ) : ,
and

( ) : ,

DCV f f f R

CC f f f R

→

→

 (5.29). 

We perform a search for frequencies bf , for which ( )bCC f  is a local minimum 

and the rate of change of DCV  over f , i.e. its derivative DCdV
df

,  presents local 

extrema. We therefore impose that: 
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Condition 1:  

 
2

20 and 0
b bf f

dCC d CC
df df

=   (5.30), 

and that 

Condition 2: 

 
2

2 0
b

DC

f

d V
df

=  (5.31). 

When both conditions are fulfilled, this signifies a breaking point, i.e. a 

frequency bf  where a new event becomes dominant.  

This process splits the  ( )min max,f f  band into distinct intervals. In particular, if 

we assume that a number of bn  breaking points, i.e.,  1 nbb b bf f f=  , satisfy eq. 

5.30 and eq. 5.31, and by setting as 
0 minbnf f=  and as 

1 maxbnb
nf f

+

=  (so that the first 

interval begins from minf  and the last ends to maxf ), the produced intervals can be 

defined as: 

 ( ) ( )1 , , 1
l lint b b bl f f l n
−

=  +f  (5.32). 

Their union is the entire ( )min max,f f : 

 ( ) ( )min max
(0 1)

,
b

int
l n

f f l
  +

= f  (5.33). 

To select which of the intf  subsets corresponds to the DC, we make the 

assumption that in the traces, the energetically dominant event in the broadest 

frequency band, is the SW. We therefore anticipate that the part of the cross-

correlation matrix associated with SW, presents, with respect to all the other parts, 

the highest CC  for the broadest frequency band. Under this assumption, we 

perform a search for the broadest band for which the CC  amplitude is maximized. 
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This can be easily achieved in a continuous space, by computing the area below 

the curve (the integral), of CC  with respect to f , that we denote as l
CCA , 

separately for each intf , and select the interval with the maximum l
CCA  value. We 

therefore seek maxl : 

Condition 3:       
1

max 1 arg max arg max ( ) 0, ,
bl

bl

f
l
CC b

l l f

l A CC f df l n
+

+= =   (5.34). 

The phase velocity of the “cleaned” DC is then the restriction of the function 

( )DCV f  in ( )max max 1
, llf f

+
 and its frequency is ( )maxint lf . 

For our discrete implementation, the DC is the set ( ), ( )DC DCi if v . Therefore, to 

check whether a point of the DC is a local minimum (and therefore satisfies 

Condition 1) it is preferable, instead of using an unstable numerical differentiation 

scheme, to check for points i  which satisfy: 

 ( ) ( 1)i i cc cc  (5.35), 

i.e., which have a value lower than their neighbours. To check whether the rate of 

change of the phase velocity presents peaks (Condition 2), we approximate the 

derivative of DCv  as: 

 
( 1) ( ) d DC DC

DC
i i

f

+ −
=

v vv  (5.36), 

and look for its local extrema by checking: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

1 1

d d d d
DC DC DC DC

d d d d
DC DC DC DC

i i i i

i i i i

 +   −



 +   −

v v v v

v v v v
 (5.37). 

The ( ), ( )DC DCi if v  points which satisfy eq. 5.35 and eq. 5.37, are the 

coordinates where cc  presents a local minimum and, at the same time,  presents 

a “break”: the breaking points bp . If bpn  breaking points exist, the frequency 

vector  DCf  is split into 1bpn +  intervals ( )int lf , within which, the cross-correlation 
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amplitude cc  and the phase velocity DCv  vary smoothly. We approximate the 

integral l
CCA  as: 

 ( )
( ) ( )

( )
1

, cc bp
l i l

l i l n
  +

= 
bp bp

A cc  (5.38), 

and retrieve its maximum value (Condition 3): 

 ( ) ( ) ( )max
max max max,cc cc cc ccl l l  l l=    A A A A   (5.39). 

Finally, the frequency band of the cleaned DC is 

 ( ) ( ) ( )int max max max max( ) , 1, , 1cleaned DCl l l l= = +  +  
T

f f f bp bp bp (5.40), 

i.e. the part of DCf  that starts from the breaking point ( )maxlbp  up to the next 

breaking point 1)( maxl +bp . The phase velocity of the cleaned DC equals 

 ( ) ( ) ( )max max max, 1, , 1cleaned DC l l l= +  +  
T

v v bp bp bp  (5.41). 

The picking and cleaning processes are repeated for the picked DCs of all the pairsN  

selected receiver pairs, leading to the estimation of a _DC cleanN  cleaned DCs.  

  



 

139 
 

  Table 5.6: DC Cleaning pseudocode. 
------------------------------------------------------------------------------------------------------------  
Algorithm: DC Cleaning  

Input: Stacked cross-correlation matrix C, Phase Velocity (vDC) and frequency (fDC) of 

the picked DC 

Output: Picked DC (DC) 

------------------------------------------------------------------------------------------------------------  
1 read C, fDC, vDC 

% Compute the value of C at fDC and vDC                       

2 do cc = C(vDC, fDC) 

% Find the local minima of cc 

3 do lm=find_local_minima(cc) 

% Compute the derivative of vDC                       

4 do vDC

d

 = der(vDC)  

% Find the local extrema of vDC

d 

at the local minima of cc 

5 do bp=find_local_minima/maxima(cc(lm))  

% Find the intervals of the frequency band between the bp points 

6 do Int= break_fDC_into_intervals 

% Find the integral of cc inside the intervals 

7 do Area=cc*Int 

% And find its maximum  

8 do clean_fDC=find(max(Area)) 

% Compute the phase velocity corresponding to clean_fDC 

9 do clean_vDC= vDC(clean_fDC) 

------------------------------------------------------------------------------------------------------------  

5.7.2 Examples 

In Figure 5.12, we demonstrate the cleaning of the DC of Figure 5.10d. In 

Figure 5.12a, we plot the cross-correlation amplitude ( CC ) corresponding to the 

DC, as a function of frequency. The triangles are the local minima of CC , which 

were in total 4. Their corresponding frequencies are checked for local extrema on 

DCdV
df

 (plotted in Figure 5.12b). In total, three local extrema are identified at 

frequencies corresponding to local minima and are plotted as black triangles in 

Figure 5.12b. Therefore, the black triangles are the breaking points bp  that split the 

frequency band of the DC into four intervals ( ,1 ,4int intf f− ), for which we separately 

compute the corresponding area below the plot (integral) of CC  with respect to the 

frequency, CCA .  
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Figure 5.12:  Plot of a) the (normalized) cross-correlation amplitude and b) the 

derivative of the phase velocity of the DC. The red triangles are the local minima 

of (a), and the black triangles are also local extrema of (b). c) Same as (a), color-

coding the area below the curve between ,1 ,4int intf f− . 

 

 
Figure 5.13. Same as in Figure 5.10d. In red, the portion of the DC which was kept 

after the DC cleaning.  

 

 In Figure 5.12c, we plot again the CC , color-coding the areas CCA (

,1 ,4CC CCA A− , respectively). The interval with the largest area (coloured in red), is 
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,2intf , corresponding to a frequency band of 15 Hz – 37.5 Hz. Therefore, the only 

portion of the DC that is considered reliable and kept is the one within ,2intf  (red 

circles in Figure 5.13), and rest of the curve is disregarded.  

5.8 Removal of outlier DCs 

With the cleaning process described in Section 5.7, each DC were cleaned from 

low-amplitude and discontinuous frequency bands, and therefore all the DCs have 

a smooth trend and correspond to high cross-correlation values. Nevertheless, the 

cleaning did not take care of the following issue: it is possible that the achieved 

smooth trend of the DCs falls on wrong velocities, e.g., because several maxima of 

a cross-correlation matrix were very close to the reference DC and the wrong 

maxima were picked.  

Assuming that such problems are exceptions, we deal with these DCs as outliers 

and detect them, based on their phase velocity, among all the other DCs. The key 

idea is that the phase velocity at a given frequency of a set of curves, whose paths 

scan the same subsurface zone (such as the paths shown as lines in Figure 5.14, 

which overlap in the area highlighted in grey and denoted as “A”), should be 

internally consistent (Zahedi, 2020). DC data points which belong to wrong 

maxima will have a significantly different velocity with respect to all the other DCs 

in the same zone, allowing their detection. 

However, a set of DCs which scan the same confined portion might have 

different velocities, not due to mistakes in the DC picking, but because their paths 

are different and might be crossing subsurface portions which are laterally 

heterogeneous. For instance, the paths in Figure 5.14, overlap inside the zone 

denoted as “A” but each one of them scans different areas, which might have 

different properties.  To ensure that the information on the lateral variability of the 

subsurface properties is preserved, we reject a DC only if it is detected as an outlier 

in most of the locations along its path.  

To do so, we compare the phase velocities of the DCs, using their position 

(given by the coordinates of the corresponding path) and wavelength. We therefore 

consider our domain as a 3D ( x y λ− − ) volume and discretize it into voxels. In 

each voxel, we evaluate the distribution of the phase velocities of all the included 

DC points and detect the ones which are outliers using a median-based analysis. To 
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characterise the entire DC as an outlier and remove it from the dataset, we check if 

its data points have been flagged as outliers in more than half the voxels to which 

it belongs.  

 
Figure 5.14: Illustration of paths (lines) between different receivers (triangles).  

5.8.1. Method description 

We describe the method with reference to the pseudocode of Table 5.7. The 

input of this method is the dataset of the _DC cleanN  cleaned DCs, output from the 

cleaning stage of the workflow. Each k  DC, corresponding to a different 1 2R R  

receiver pair, contains a different number of data points, ,dp kn , and is structured as: 

•  A vector of frequencies ( ),

T

1 dp kk nf f= f , 

• A vector of phase velocities ( ),

T

1 dp kk nv v= v . 

A vector ( )
T

1 1 2 2,k k k k kx , y x , y=p , contains the x y−  coordinates of the 

corresponding receivers 1kR  and 2kR , respectively. The DC wavelengths   are 

computed as: 

 1
k k k

−=λ v f  (5.42). 

Given these inputs, in the following, the k -th DC ( kDC ) of the dataset will be 

referred to as the tuple:  
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 ( ), , ,k k k kλ v p  (5.43). 

Moreover, we will refer to each point of the DC individually as a data point. As the 

i -th data point of the k -th DC ( ,i k ), we will refer to the tuple: 

 ( ), ,, v , ,i k i k kλ kp  (5.44), 

where  ,1... dp ki n . 

3D space parameterization 

The minimum value of the x -coordinates of the entire set of _DC cleanN  DCs is 

denoted as minx  and the maximum as maxx , and, respectively, for the y -coordinates 

as miny  and maxy . The minimum wavelength of all the DCs is denoted as minλ  and 

the maximum maxλ . We consider the 3D ( )x y λ− −  space which encloses the spatial 

and wavelength coordinates of all the DCs, and has the following dimensions 

(Figure 5.15): 

 min max min max min max( , ) ( , ) ( , )y y λ λx x    (5.45). 

We perform a discretization of the 3D space as following:  

• Τhe x y−  dimension is uniformly discretized on a user-defined N M  

grid. Therefore, the x -axis is split into N  parts with size max minx x
N
− , 

and the y -axis into M  parts with size  max miny y
M
− . 

• The discretization on the λ -axis corresponds to the L  unique 

wavelength values contained in all the DCs, i.e., in all the 

( )_k DC clean¸k 1,Nλ  vectors, rounded to a common decimal.  

Therefore, the λ  discretization is such that each data point of the dataset can be 

associated to only one λ  grid, but it can be associated to several x y−  grids, 

depending on the length and location of the corresponding  path. We note that the 

suitability of the chosen N  and M  values is not critical at this stage and it will be 
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verified in a later stage of the process. Therefore, a reasonable “guess” is sufficient 

to begin with.  

With these limits and discretization, our 3D space, onward referred to as voxel 

space, can be described as:  

 

in  parts in  parts in  parts

min max min max min max( , ) ( , ) ( , )
N M L

x λx y y λ=  V  (5.46). 

Each ( ), ,n m l  element of V  is a voxel with dimensions: 

 1 1 1( , ) ( , ) ( , )mn m ln lx x y λ λy+ + +   (5.47). 

 
Figure 5.15: a) Scheme of the created 3D voxel workspace and its discretization. b) 

Two different DCs. Their paths are shown in the same colour in (a). 

Allocation of data points to voxels 

Once the voxel space has been constructed, the phase velocity of each data point 

is ascribed to voxels, depending on their x y λ− −  correspondence. Specifically, 

one specific i -th data point of the k -th DC is considered to correspond to one 

( ), ,n m l  voxel, if the following conditions are met: 

• Condition 1: The path connecting the kp  coordinates crosses the 

1 1( , ) ( , )n mn mx x y y+ +  area and, 
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• Condition 2: 1,l i k l   + . 

The two conditions might be fulfilled by data points belonging to different DCs, 

crossing the same 1 1( , ) ( , )n mn mx x y y+ +  area and having the same iλ . For instance, 

the data points A and B in Figure 5.15b, have the same wavelength but belong to 

kDC  and 'kDC , respectively. The two curves correspond to two different paths 

(shown with the same colorscale in Figure 5.15a), which cross the same ( ), ,n m l  

voxel. Using all the ( ,i k ) data points that correspond to the same ( ), ,n m l  voxel, 

i.e., all the data points for which Conditions 1 and 2  hold true, we build a vector 

, ,n m ld , which contains their corresponding ,i kv  values: 

 ( )
T

, , ,n m l i kv= d  (5.48). 

Detection of outlier data points 

The distribution of values in , ,n m ld  is used in a statistical analysis, to check for 

outlier velocities in the voxel. We use as a metric the centrality of the distribution, 

i.e. its median ( ). We follow the standard median-based outlier detection, 

according to which, the measured distribution is split into quartiles. The median 

estimator is the second quartile, 1/2 , while the distance between the lower quartile 

1/4  and the upper quartile 3/4  is the inter-quartile distance. We flag a data point 

as an outlier in a voxel if (Condition 3): 

 

( )

( )

, 3/4 , , 3/4 , , 1/4 , ,

, 1/4 , , 3/4 , , 1/4 , ,

( ) 1.5 ( ) ( )

( ) 1.5 ( ) ( )

i k n m l n m l n m l

i k n m l n m l n m l

v

v

  

  

 +  −



 −  −

d d d

d d d
 (5,49), 

i.e., if its velocity is larger than the upper quantile by more than 1.5 times the inter-

quantile distance, or, if it is lower than the lower quantile by more than 1.5 the inter-

quantile distance. 
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Detection and removal of outlier DCs 

We characterize a DC as an outlier based on how "often" its data points have 

been flagged as outliers in the voxel space. Specifically, we define a function  

  

 ( )
1 has data points in  voxel

, , ,
0 other i

 ( , , )
w se

n
n m l

m l
=   


k
k

DC
DCP  (5.50), 

which takes the value 1 if Conditions 1 and 2 are true for any component of kDC . 

Additionally, we define a function  

 ( )
1 has an outlier in  voxel

,
0 other

 ( , , )
i

,
se

,
w

n m l
n m l 

=   


k
k

DC
DCO (5.51), 

which takes the value 1 if Conditions 1 and 2 are true for any component of kDC  

and if any of the components was flagged as an outlier, according to Condition 3. 

We then compute: 

 
( )

( )

1 1 1

1 1 1

,

, ,

,

,

,
N M L

n m l
N M L

n m l

n m l
e

n m l

= = =

= = =

  

 

=






k

k

DC

kP

DC

DC

O
 (5.52) 

and if 1
2

e 
kDC , i.e., if the data points of kDC  were flagged as outliers in more 

than half the voxels, kDC  is considered an outlier and removed from the dataset.  
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  Table 5.7: Removal of outlier DCs pseudocode. 
------------------------------------------------------------------------------------------------------------  
Algorithm: Removal of outlier DCs  

Input: Ndc_clean picked and clean DCs (including their velocity vdc, wavelength, λdc, 

coordinates pdc (x,y)(i) 

Output: Outlier DCs 

------------------------------------------------------------------------------------------------------------  
% Compute the voxel space                       

1  do V = [min_of_all_x max_of_all_x],[min_of_all_y max_of_all_y],[min_of_all_λ 
max_of_all_λ] 
% Split it in voxels                       

2  do all_voxels = V/(N,M,NL) 

% Check in all the voxels                       

3  for voxel from 1 to all_voxels 

% And all the DCs                       

4    for dc_k from 1 to Ndc_clean 

5      read vDC,k, λDC,k,  pDC,k 

% Check if the i-th component of the DC belongs to the voxel                      

6        if dc_k(i) =belongs_to(voxel) 

% Create a vector with all the velocities in the voxel                      

7          do d(voxel) = [d(voxel), vDC,k(i)] 

% and flag that the DC k has a data point that belongs to a voxel                      

8           do P(k,i)=1 

9        end 

10    end 

11 end 

% Detect outlier velocities at each voxel with the median criterion 

12  for voxel from 1 to all_voxels 

13    for dc_k from 1 to Ndc_clean 

14        if dc_k(i) =outlier_in(d(voxel)) 

% Flag that the DC k has a data point that is outlier in a voxel                      

15           do O(k,i)=1 

16        end 

17    end 

18 end 

19 if O(k)/P(k) 

20    do dc_k=outlier 

21 end 

------------------------------------------------------------------------------------------------------------  

5.8.2 Examples 

In the following, we demonstrate the outlier-detection method, using three 

synthetic examples. In the first case, the phase velocity distribution of the DCs is 

uniform and no outlier DCs exist. The second case presents the results when an 

outlier DC is introduced, and the third case shows the results when the subsurface 

properties change abruptly (strong phase velocity variability exists), but no outlier 

DCs are introduced.  
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Case 1: No outlier data points, no outlier DCs 

In Figure 5.16a, we show a set of synthetic DCs computed, using the forward 

modelling described in Socco et al. (2014), for 121 1D layered synthetic velocity 

models, the properties of which are presented in Table 5.8. The location of the 

models was assumed at the positions indicated by the green asterisks in Figure 

5.16b, and for the modelling we assumed the receiver geometry shown as black 

triangles, and the intra-receiver paths shown as lines. 

 

  Table 5.8: Properties of the synthetic 1D models. 
 Cases 1 and  2 Case 3 

Number of layers 6 6 

Layer SV  375 - 600 m/s ± 1% 

375 - 600 m/s ± 1%  
and 

550 - 800 m/s ± 1% 
for x = 0 – 40 m and y=10 – 40 m  

Layer   0.2 m/s 0.2 m/s 
Layer ρ  1 m 1 m 
Layer h  4 m + halfspace 4 m + halfspace 

 

The colour-scale in Figure 5.16b, indicates the phase velocity of the DCs at a 

wavelength of 3 m, while the black lines show the dimensions of the voxel 

discretization in the x y−  plane. The complete voxel-space is shown in Figure 

5.16c, where the colours represent the median phase velocities, computed at each 

voxel (same colorscale as in Figure 5.16b). 

In Figure 5.16d, we show the resulting boxplots computed according to eq. 5.49 

for the voxels at 3 mλ =  (Figure 5.16b). The median phase velocity is shown as a 

red line and the length of the boxes corresponds to the intra-quantile distance. No 

phase velocities were measured outside the boundaries set in eq. 5.49, and therefore 

no outliers were detected. The result (not shown) was the same for all the voxels of 

Figure 5.16c. 
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Figure 5.16: Case 1- a) Synthetic DCs.  b) Slice of the voxel space at 3 mλ = . In 

green, the position of the synthetic 1-D models and, as black triangles, the positions 

of the receivers. c) Voxel space. d) Boxplot of the detection of outlier data points.  

Case 2: Outlier data points, one outlier DC 

In Figure 5.17a, we show the same DCs as in Figure 5.16a but, for testing, we 

included the “dummy” DC shown in red in Figures 5.17a and 5.17b, where we 

present the slice of the voxel space at 3 mλ = .  

The boxplot of Figure 5.17c, shows the result of the outlier-data point detection 

for all the voxels at 3 mλ = . The red crosses show the phase velocities, which in 

six voxels (denoted by the red crosses in Figure 5.17c), were detected as outliers 

according to eq. 5.49. They all belong to the “dummy” DC. The result was the same 

for the voxels at all λ  (not shown here), and therefore, according to eq. 5.52 

1e =
kDC  and the “dummy” DC was detected as an outlier. 

 

Case 3: Outlier data points, no outlier DCs 

In Figure 5.18a we show the DCs corresponding to 121 synthetic 1D models, 

for which we used the same geometry as in Figure 5.16b, but imposed lateral SV  

variability among them. Specifically, most of the models had the same properties 
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as in Figure 5.16b, but for the models in within the red box of Figure 5.18b, we 

used higher SV  values, in the ranges shown in Table 5.8. As a result, the DCs which 

crossed the red-box region, presented higher phase velocities than the rest of the 

DCs, as clearly indicated in the slice at 3 mλ =  (Figure 5.18b). We note that in this 

case, the red DC (used as a “dummy” DC in the previous example), resulted from 

the forward modelling and was therefore “true” and corresponding to the local 

properties of the red box. 

Therefore, in this case, the red DC was flagged as an outlier (red crosses circled 

in dark red in Figure 5.18c), only in one voxel (red cross in Figure 5.18b). 

Considering that it passed through 4 voxels (green crosses in Figure 5.18b), the 

value of e
kDC  was equal to 0.25, and therefore the DC was not considered as an 

outlier. 

 

Figure 5.17: Case 2- a) Synthetic DCs. In red, the “dummy” DC. b) Same as in 

Figure 5.16(b). In red, the voxels corresponding to the “dummy” DC. c) Same as in 

Figure 5.16 (d). 
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Figure 5.18: Case 3- Same as in Figure 5.17. In (b), the box shows the high-velocity 

zone, the crosses show the “dummy” DC path and the red cross, the voxel in which 

the “dummy” DC was detected as an outlier.  

Discretization suitability check 

Since our outlier detection was based on the median estimator, an important 

consideration is whether the applied discretization of the 3D space, and the resulting 

distribution of the velocities in , ,n m ld , were suitable for a reliable statistical result.  

In particular, even though the median is a powerful outlier detector, “the value 

of the median depends on only one or two central inputs” (Beliakov et al., 2011) 

and therefore it is almost insensitive to a concentration of outlier values that could 

signify a bimodal distribution.  

For example, in Figure 5.19a, the values of “A” clearly cluster around the 

number 5. The median in this case properly predicts the central value 5, suggesting 

that the number 15 is an outlier. For “B” and “C”, the distribution becomes bimodal, 
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i.e. the values concenter around 5 and around 15. In these cases, the values around 

15 should not be thrown away as outliers. Instead, the spatial discretization should 

change so that the two groups do not lie within the same voxel.  

To check if the distribution of the velocities within , ,n m ld  is adequate for a 

statistically reliable estimation, we perform the following test. Supposing an ideal 

population , ,n m ld , of which the distribution is adequate for a representative median 

estimation and that , ,n m ld  is only a sample of , ,n m ld . The median of the actual , ,n m ld  

equals , ,( )n m l d  while an approximation of  the median of  , ,n m ld  can be found using 

the Hodges–Lehmann estimator on , ,n m ld , i.e., , , , ,( ) ( )n m l n m l d d . Their distance 

indicates how far our distribution is from a statistically-reliable population.  

In the example of Figure 5.19a, the distance between  and  increases 

drastically from “A” to “C”, suggesting that the distribution of “C” is not reliably 

represented by the median. 

 In practice, we retrieve , ,n m ld  starting from different N  and M  values, while the 

discretization in λ , which is determined by the data, remains fixed. Each time we 

compute, separately for each voxel, a “median-estimation error” , as:  

 , , , ,
, ,

, ,

( ) ( )
( )

n m l n m l
n m l

n m l





−
=

d d
d

 (5.53). 

We then compute the summation of , ,n m l  of all the voxels: 

 , ,V n m l
N M L

E
 

=   (5.54), 

and the N  and M  which VE  is minimized, are selected as the discretization of the 

outlier detection. 
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Figure 5.19: Examples of distributions and their computed median   and 

theoretical median .  

5.9 QC of the picked DCs 

The methods proposed in the previous sections are implemented in a tool that 

can virtually carry out automatic DC picking in a fully data-driven way. 

Nevertheless, the performances of this automatic process may be strongly 

dependent on the quality of the dataset. Hence, it is important to be able to assess 

the quality of the automatic picking results. This can be done by using a sub-set of 

DCs which are also picked manually, as benchmark, to validate the automatic 

picking results for the whole dataset. Manual picking is based on human 

observation, which can avoid possible pitfalls, such as following the wrong maxima 

on the cross-correlation matrix or insufficient cleaning of the picked curve. Thus, 

the manually picked DCs are considered as a benchmark for our method.   

For the comparison, we apply the automatic DC quality-control (QC) approach, 

presented in detail in Chalabiyev (2020). The method evaluates how similar an 

automatically picked DC is to a DC picked manually for the same receiver couple, 

by comparing the correspondence of their frequency bands and their phase velocity 

difference. 

5.9.1 Description of the method 

We denote as autoDC  and  manDC , the a DC picked automatically (with our 

workflow) and manually, for the same 1 2R R  receiver pair. The automatically picked 

DC contains ,dp auton  data points and is structured as: 
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• A vector of frequencies ( ),

T

1 dp autoauto nf f= f , 

• A vector of phase velocities ( ),

T

1 dp autoauto nv v= v . 

The respective vectors of the manually picked DC are: 

• ( ),

T

1 dp manman nf f= f , 

• ( ),

T

1 dp manman nv v= v . 

First, we evaluate the number of data points of the automatically picked DC 

which lie in the same frequency band as the manually picked one. The number of 

data points at frequencies which exist in the manually picked DC but are absent 

(discarded) from the automatically picked one, is denoted as ,dp disgn , while the 

number of points (frequencies) which exist in the automatically picked DC but not 

in the manually picked one is denoted as ,dp extran .  

The number of data points in the common frequency band is then: 

 , , ,
common
dp auto dp auto dp extran n n= −  (5.55). 

We use as a metric to evaluate the portion of the automatically picked DC that lies 

within the common frequency band, the following effectiveness ratio: 

 ,

,

100%
common
dp auto

effec
dp auto

n
A

n
=   (5.56). 

An effectiveness of 100% means that the entire automatically picked DC lies 

within the common frequency band, while an effectiveness of 0 % means that there 

are no common frequency bands between the two curves. 

To compare the DCs in terms of phase velocity, we assume that the manually 

picked velocities correspond to the correct cross-correlation maxima. If the 

automatically picked curve corresponds to the correct maxima as well, it should 

have equal phase velocities with the manually picked DC. If the phase velocities 

are different, it means that the automatically picked DC corresponds to wrong 

maxima.   
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We denote as ,
common

cv dp auton n  the number of data points within the common 

frequency band and for which the velocities of automatically picked DC are equal 

to the velocities of the manually picked DC. Thus, for any such point we will have 

that: 

 ( ) ( )auto auto man mani i=v v  (5.57). 

The similarity of the automatically picked DC to the manually picked one can 

be then evaluated with the following index: 

 
,

S cv
ind

dp man

n
n

=  (5.58). 

An index of 1 means that the two DCs are identical, having the same frequency 

band and equal velocities. An index of 0 means either that there is no common 

frequency band between the two curves, or that there is no data point with equal 

velocity inside the common frequency band.    

The effectiveness ratio (eq. 5.56) is examined together with the similarity index 

(eq. 5.58), to describe how well the two curves match. This evaluation is performed 

only for a sample of DCs, before the actual processing of the entire dataset, to 

indicate the expected effectiveness of our method. 

5.10 Case study 1: Synthetic model 

We describe the application of our method to the synthetic dataset presented in 

Section 5.3. With the workflow presented in Chapter 4, we extracted two reference 

multichannel DCs, using separately all the receivers located in each zone. The 

reference DCs are plotted in Figure 5.20a as black, corresponding to “Zone 1” and 

red, corresponding to “Zone 2”, dots.  Their position (the midpoint of each zone) is 

indicated as triangles of the corresponding colour in Figure 5.2.  

For the extraction of the DCs with our two-station workflow, the decision of 

the input processing parameters (receiver pairs and shots to be used and frequency 

band for the cross-correlation matrix computation) was not critical, since near- and 

far-field effects were not introduced in the model. To ensure that a large number of 

DCs would be picked, we used all the pairs of receivers with path length between 
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1 m and 45 m (in total 4214). For each pair, a DC was picked on the stacked cross-

correlation matrix, computed by summing the individual matrices of all the shots.  

For each DC, we used the appropriate reference DC, depending on whether the 

receivers were located within “Zone 1” or “Zone 2”. For the pairs of which the path 

crossed both zones, we used the reference DC which was nearest to the pair, 

although this choice was not critical, since the phase velocities of the two reference 

curves were similar, and, in the frequency band 20 Hz – 60 Hz, identical.  

The DCs picked from the 4214 pairs are plotted in Figure 5.20b. All the DCs 

show smooth velocity transitions, and no unrealistic “breaks” are present. 

Therefore, the DCs did not undergo the cleaning and outlier removal stages of the 

workflow. In Figure 5.20c, we plot, in different colours, the achieved DC coverage, 

measured as the number of curves crossing each location at each wavelength. Due 

to the large number of DCs, the coverage was dense and in most positions along the 

line, higher than 200 (the coverage of 200 is indicated by the black dashed lines in 

Figure 5.20c) down to a wavelength of approximately 35 m.  

In Table 5.9, we present a breakdown of the runtimes of the computations of 

the different processing stages, on a single-core commercial laptop. In total, from 

raw data to the whole set of DCs, the data processing lasted approximately 39 

minutes.  
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Figure 5.20: a) Reference multichannel DCs. b) DCs resulting from our workflow. 

c) Plot of the DC coverage. The dashed lines correspond to a coverage of 200. 

 

  Table 5.9: Breakdown of the processing workflow runtimes. 
Workflow stage Automation level Runtime 
Cross-correlation matrix computation and 
stacking Automatic 482.83 s 

DC picking Automatic 1853.12 s 
Total: 2357.58 s 

5.11 Case study 2: 3D dataset from the Ludvika mining 

site, Sweden (2019)  

Here, we present the results of the proposed two-station DC extraction method 

on the 3D dataset acquired in 2019 in the Ludvika mining site in Sweden. The 

purpose of this application was to extract a set of DCs, covering the entire 
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investigation area, to be used as input to the model estimation and statics 

computation method based on SW tomography, presented in the following chapter.  

Input to the workflow was the raw dataset in SEG-Y format, provided by 

“Smart Exploration”. The file, having a total size of 5.5 Gb, was split into separate 

shot gathers in MATLAB format, to be compatible with the routines corresponding 

to the stages of the workflow. All the computations were performed by a 10-core 

workstation.   

5.11.1 Workflow application and results 

Before extracting the DCs with the proposed two-station method, a set of 

multichannel reference DCs were extracted from the dataset, to obtain an initial 

estimation of the phase velocity distribution in the area.  

For the multichannel DC extraction, the method presented in Chapter 4 was 

applied. Using the parameters summarized in Table 5.10, the DCs (in total 40) 

shown in Figure 5.21a were picked, while the locations associated to the curves are 

shown as dots in Figure 5.21b.  

 

Table 5.10: Windowing parameters for the reference DC extraction from the 
Ludvika 2019 dataset. 

Processing parameter Value 

Window size 100 m 
Step 50 m 

Minimum offset 10 m 
Maximum offset 580 m 

 

The DC clustering revealed four clusters, shown in different colors in Figure 

5.21. Within each cluster, the DCs presented smooth transitions of the phase 

velocity and, based on the location of the curves of each cluster, we identified the 

following uniform zones in the investigated area: a) a zone in the north-western side 

of the area (“Zone A”, red in Figure 5.21), where the phase velocities were in the 

range of 1700 m/s and 2700 m/s, in agreement with the existing lithological 

information (Maries et al. 2017); b) a narrow zone of relatively lower phase 

velocities (in the range of 1700 m/s – 2000 m/s), referred to as “Zone B” and shown 

in green in Figure 5.21; c) a zone (“Zone C”) of significantly lower velocities (<500 
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m/s, blue in Figure 5.21) in the north-eastern end of the area, where old mine-

tailings are known to exist. The tailings appear as shallow, unconsolidated 

overburden materials, which probably cause such low phase velocities; d) a zone 

(“Zone D”) extending from the center and reaching to the south-eastern end of the 

area. This zone shows a concentration of high phase velocities (mostly > 2700 m/s, 

purple in Figure 5.21), suggesting the presence of a shallow bedrock. 

 

Figure 5.21: a) Multichannel DCs picked from the Ludvika 2019 3D dataset. b) 

Position and, c) clustering of the multichannel DCs. The colors correspond to the 

four clusters estimated for the site. Circled in (b), the position of the DC plotted in 

red in Figure 5.30. 
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Figure 5.22: Distribution of the number of in-line shots corresponding to each of 

the receiver pairs selected for processing. 

 
Figure 5.23: DCs picked with the proposed method before (blue) and after (red) the 

outlier-removal method application. 

 

For the extraction of the DCs with our workflow, we first detected the pairs of 

receivers, colinear with at least one common shot position which were found to be 

1584456 in total. With the method described in Section 5.4.2, several of the shot 

positions were found to be in the near- and far-field regions of their corresponding 

receiver pairs and were rejected with the application of the “masks” plotted in 

dashed red in Figure 5.5. As a result, the number of receiver pairs was also reduced, 
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since several of them did not have any in-line shot in the accepted offset ranges. 

The number of remaining pairs, selected for processing, was 105576. The number 

of shots accepted for each pair varied according to the distribution presented in 

Figure 5.22. 

The cross-correlation matrix computation, DC picking and DC cleaning stages 

of the proposed workflow were applied to the selected receiver pairs. For each one 

of them, we chose as reference for the DC picking, the nearest to it multichannel 

curve, from the set of DCs shown in Figure 5.21a.   

The resulting picked and cleaned DCs can be seen in blue in Figure 5.23, where 

it can be observed that, even though a large number of receiver pairs was processed, 

the number of retrieved DCs was significantly lower (in total 22336). This was due 

to the fact that several low-quality DCs were rejected during the DC cleaning,  

In particular, in several cases, the input traces were highly corrupted by noise 

and the DC picking produced maxima at phase velocities similar to the ones of the 

reference curves, but which did not present the smooth and dispersive pattern 

expected from SW (e.g., Figure 5.24a). In these cases, the picked curves presented 

frequent “breaks” along their frequency band, resulting in multiple local minima of 

their cross-correlation amplitude (Figure 5.24b) and several local peaks of their 

phase velocity gradient (Figure 5.24c). Applying the criteria described in Section 

5.7.1, the portions of the curves that were kept after cleaning (arrow in Figure 5.24d 

and red in Figure 5.24a) were limited to very short frequency ranges. 

Considering that a great number of cross-correlation matrices produced high-

quality, broadband curves (e.g., Figure 5.25), we applied a posterior rejection of 

curves with low number of data points (less than 10, corresponding to a frequency 

band of 5 Hz). 
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Figure 5.24: a) Example cross-correlation matrix. In blue, the picked maxima and 

in red, the DC after cleaning. b) Cross-correlation amplitude. c) Phase velocity 

gradient. d) In color, the cross-correlation amplitude integral. As red triangles, the 

local minima of (b) and as black triangles, the local peaks of (c). The arrow shows 

the frequency band that was accepted.  

 
Figure 5.25. Same as Figure 5.24, but for a high-quality cross-correlation matrix. 
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Figure 5.26: a) Path-length and b) azimuth distribution of the picked DCs before 

(blue) and after (red) the outlier removal.  

 

The remaining DCs (blue in Figure 5.23), presented similar phase velocities to 

the ones of the multichannel DCs of Figure 5.21a, and although two-station curves 

are not expected to cluster, a group of DCs clearly presented the low velocities of 

“Zone C” (Figure 5.21), related to the mine-tailings (the example of Figure 5.25 

refers to one of these low-velocity DCs).  

The path-length and azimuth distributions of the DCs (blue in Figures 5.26a.  

and 5.26b, respectively) were wide, while a dense spatial DC coverage was 

achieved over the entire investigation area, at all available wavelengths (down to 

350 m). This can be depicted in the coverage maps of Figure 5.27, where we plot 

as black dots the positions of the sources and receivers, and as colored lines, the 

intra-receiver paths corresponding to each DC. The different panels depict the 

coverage at different wavelength ranges ((a) to (f): 2 m – 20 m, 22 m – 40 m, 42 m 

– 80 m, 82 m -140 m, 142 m – 200 m and 202 m – 350 m). The different colors 

indicate the mean phase velocity of the data points of the DCs that belong to the 

wavelength range of each panel, and is specified in the colorbar.  
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Figure 5.27. Spatial coverage of the DCs (blue in Figure 5.23) at different 

wavelength ranges. The lines are the intra-receiver paths and their color is the phase 

velocity, described in the colorbar. The arrows highlight outlying velocities. In (a), 

the grid is a “slice” of the voxel space. In red, the grid point corresponding to the 

position in circle in Figure 5.20b. 

 

The coverage maps show that certain paths presented velocities which were 

abnormal, with respect to the overall trends in their corresponding location and 

wavelength. As an example, the arrows in Figure 5.27 point to some of these paths, 

which were clearly outlier DCs, resulting from the picking of wrong maxima of the 

cross-correlation matrix.  

To detect and eliminate them from the DC set, the outlier removal, described 

in Section 5.8, was applied. The x y−  dimensions of the discretization of the voxel 

space that was chosen for the application of the method, are indicated by the grid 

in Figure 5.27a. In Figure 5.28a, we plot, in the same wavelength range, the paths 

of the DCs that were detected as outliers. In the rest of the panels of Figure 5.28, 

we plot coverage of the detected outlier DCs in the remaining wavelength intervals. 

The arrows in Figure 5.28 depict the same outliers shown in Figure 5.27. 
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Figure 5.28. Same as Figure 5.27, but corresponding to the DCs found as outliers. 

 
Figure 5.29. Same as Figure 5.27, but corresponding to the DCs that remained after 

cleaning the outliers of Figure 5.28.  
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The total number of the DCs which remained after the outlier removal was 

equal to 15188. The DCs are plotted in red in Figure 5.23, while their path-length 

and azimuth distributions are shown, again in red, in the histograms of Figures 

5.26a. and 5.26b, respectively. Their corresponding spatial coverage maps are given 

in the panels of Figure 5.29. It can be observed that, even though, a considerable 

amount of DCs were disregarded, the coverage remained dense over the entire 

investigation area. 

In addition, the outlier phase velocities were removed, and at the same time, 

smooth phase velocity variability in the lateral direction was maintained. A 

comparison of the coverage maps with the velocities (Figure 5.21a) and the location 

(Figure 5.21b) of the different clusters of multichannel DCs, shows overall 

agreement of the phase velocity distribution along the area, although information 

on the local phase velocities cannot be directly retrieved from Figure 5.29. This is 

because many of the paths refer to long distances, and their corresponding velocities 

might be affected by the local subsurface properties of different environments. 

For a more meaningful comparison between the multichannel DCs and the two-

station DCs, we computed the mean phase velocity, at each wavelength, of all the 

two-station DCs falling within the grid highlighted in red in Figure 5.27a, excluding 

the curves having paths longer than 200 m. The resulting “mean DC” is plotted in 

black in Figure 5.30 and it is compared with a multichannel DC (red in Figure 5.30) 

located in the same grid. The curve belongs to “Cluster 1” and its exact location is 

highlighted by the black circle in Figure 5.21b  

It can be observed that the two DCs show similar phase velocities at each 

wavelength, with a maximum difference (at a wavelength of 150 m) of 287 m/s 

(approximately 12% of the two-station DC phase velocity). Considering that the 

computation of the multichannel DCs is stable, due to the use of several traces, 

these DCs can be considered as a benchmark for our method. The good fitting of 

the two curves in Figure 5.30 proves the robustness of our result.  
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Figure 5.30. In red, the multichannel DC located in the red grid in Figure 5.27a 

(also shown as a black circle in Figure 5.20b); in black, the mean phase velocity of 

all the two-station DCs in the same grid. 

 

To evaluate the effectiveness of the proposed method, with respect to the 

possible outcome of a manual DC picking, we applied the QC method described in 

Section 5.9. We compared a set of DCs (red in Figure 5.31) picked manually by an 

experienced operator from 100 randomly selected trace couples of the dataset, with 

the DCs picked by our automatic method (black in Figure 5.31) from the same trace 

couples. Both approaches rejected the same 13 cross-correlation matrices due to 

low quality, and therefore only 87 DCs were picked by both.  

A visual inspection of Figure 5.31 reveals that the two sets of curves present 

similar frequency bands and phase velocities. This is confirmed by the values of the 

effectiveness ratio (eq. 5.56) and similarity index (eq. 5.58), which are plotted in 

Figures 5.31a and 5.31b, respectively. In Figure 5.32a, it can be observed that 86% 

of the automatically picked DCs presented an effectiveness ratio of more than 90 %. 

This means that more than 86 % of the curves contained more than 90 % of common 

frequency components with the manually picked ones. The plot of the similarity index 

(Figure 5.32b) shows that more than 57 % of the automatically picked DCs had a 

similarity index, with respect to the manually picked ones, of more than 0.9, while only 

10 % of the curves showed similarity indexes less than 0.7. This proves that, not only 

the automatically picked curves contained data points at the correct frequencies, but 

also that most of the data points presented correct phase velocities.  
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Figure 5.31. DCs picked manually (red) and automatically (black) for the same 

random selection of receiver couples.  

 

 
Figure 5.32. a) Effectiveness and b) Similarity index.  

 

At the same time, the automatic approach presented the advantage of lower 

processing-time requirements, with respect to the manual picking. Specifically, for 

the computation of the curves, the automatic method ran for 768.70 s while the 

manual picking required the constant occupation of an operator for 2134.5 s, using 

the same 10-core workstation. Therefore, for this small experiment, our method was 
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faster by approximately three times, with respect to the manual approach. Such a 

gain in time is particularly important if we consider the size of the entire dataset. 

In Table 5.11 we present the runtimes of the different stages of our method on 

the entire dataset of Ludvika. In total, the processing of the 1584456 receiver pairs 

lasted 128 min, without considering the first run of the cross-correlation matrix 

computation and stacking and DC picking stages, which were performed initially, 

for all possible shot positions, to allow the computations of the first stage (selection 

of the receiver pairs, shots and wavelength ranges). This initial run was longer 

(25.05 h), since it involved a high number of computations, but it was completely 

automatic and therefore did not require the occupation of an operator. 

 

Table 5.11: Breakdown of the processing workflow runtimes on the Ludvika 2019 
dataset. 

Workflow stage Automation level Runtime 

Selection of the receiver pairs, 
shots and wavelength ranges  

Automatic, apart from a 
manual drawing of the 

“masks” on a user 

interface  

5.2 min  
+25.05 h for the 

initial run of the DC 
extraction for all 

possible pairs and 
offsets 

Cross-correlation matrix 
computation and stacking Automatic 20.72 min 

DC Picking Automatic 79.53 min 

DC Cleaning Automatic 5.8 min 

Removal of outlier DCs Automatic 14.67 min 

QC of the picked DCs Automatic 2.1 min 
Total: 128 min + 25.05 h 

 

Regarding the time gain with respect to the manual picking, it should be noted 

that for the manual DC picking of this small-scale experiment, we did not perform 

any investigation on the optimal source-receiver offset values, and we adopted the 

same values used for the automatic picking (falling within the limits set by the red 

dashed lines in all the panels of Figure 5.4). Usually, though, the optimal source-

receiver offset range is decided upon tests on sample data, using values in the ranges 

of the empirical rules presented in Table 2.1. This procedure requires several trial 
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and error DC pickings, until the operator decides which parameters are fairly 

appropriate, based on experience. Such an approach, apart from its high demands 

in time and expertise, also encompasses the risk of selecting suboptimal parameters, 

jeopardizing the quality and of the final result. 

As an example, we show in Figure 5.33a, a stacked cross-correlation matrix, 

computed for a pair of receivers at distance 70 m from each other, according to one 

of the criteria of Table 2.1. In particular, we estimated an individual-shot matrix for 

each one of the shots which obeyed 1
13

3
x

λ x  , i.e., in the range between the black 

dashed and continuous lines in Figure 5.4a. These matrices were stacked, producing 

the matrix shown in in Figure 5.33a. It can be observed that the quality of this matrix 

is poor, and no dispersion can be detected. On the other hand, computing and 

stacking the individual-shot matrices for the offsets and wavelengths inside the 

“mask” (red dashed line in Figure 5.4a), resulted in the stacked matrix shown in 

Figure 5.33b. The matrix, although corresponding to a narrower frequency band, is 

of higher quality, presenting maxima with a clear dispersive pattern, indicative of 

SW.   

 
Figure 5.33: Stacked cross-correlation matrix, computed considering a) the offsets 

and wavelengths between the black lines in Figure 5.4a and, b) the offsets within 

the red dashed line in Figure 5.4a. 
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5.12 Discussion 

In our proposed method, we firstly detect the receiver pairs which are colinear 

with a common shot, by imposing that the receiver-pair and shot azimuth is equal 

to zero, i.e., that o0ijk  . We note that this limit might reduce dramatically the 

number of accepted receiver pairs and shots, since a precise alignment of the 

acquisition equipment is improbable. In practice, a slight azimuth tolerance might 

be necessary, as for instance proposed by Diaz-Segura (2020) or Foti et al. (2018). 

In our datasets, due to the abundance of sources and receivers, we imposed a o1  

limit (Figure 5.3b), to obtain as accurate results as possible. 

In Section 5.5, the selected receiver pairs are used for the computation of the 

cross-correlation matrix, along the frequency range defined by the method of 

Section 5.4.2, and a velocity range ( Cv ), defined by the user. In general, wide 

velocity ranges can be selected, to ensure no information loss, since a “cleaning” of 

the unwanted ranges is performed automatically in a later stage (Section 5.7). 

Nevertheless, the computation of the matrix in a wide Cv  space requires more 

computations and therefore, the available computational resources should be 

accounted for the selection.  

In Section 5.6, the DC picking is facilitated by means of a multichannel DC, 

which serves as an a priori reference on the local phase velocities in the investigated 

area. The choice of a multichannel DC as reference is justified by the fact that its 

computation involves a large number of traces, making the DC stable and of high 

S/N, and it does not involve the possibility of cycle-skipping, which makes its 

picking reliable (see for details Sections 2.3.1 and 2.3.5). It is a common solution 

(e.g., Sadeghisorkhani et al., 2018; Kästle et al., 2016), adopted also in more time-

demanding manual picking techniques. Our automatic approach involves several 

cross-checks ensuring that, even if the reference phase velocities are not appropriate 

in the entire frequency band of the matrix, the picking is driven by the longest 

frequency band for which the reference velocities are trustworthy. In this sense, it 

is of equivalent reliability with most of the existing two-station SW processing 

methods. Nevertheless, any a priori knowledge on the expected local phase 

velocities at the position of the concerning receiver pair (e.g., through forward 
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modeling using the velocity information from drillholes or logs) would also be 

appropriate. 

The proposed optimized two-station method has been here applied to extract 

DCs of the fundamental mode of Rayleigh waves, since based on tests and from our 

multichannel analysis (see Chapter 4), higher SW modes were not present in any of 

the processed datasets. If present, higher modes might cause erroneous phase 

velocities in the frequency bands where they are dominant and the DC might present 

“jumps” from one mode to another. In this case, they would be automatically 

recognized and rejected since the automatic cleaning is designed to reject DC 

branches that are associated to jumps. Nevertheless, the effect of energetic higher 

modes can also be present without jumps, e.g., because there is a smooth passage 

of the energy from one mode to the next one. Therefore, it is recommended to apply 

an appropriate data pre-processing to isolate the modes prior to the DC picking. For 

instance, the method of Dziewonski & Hales (1972), which filters the fundamental-

mode data based on the SW group velocity or the method of Khosro Anjom et al. 

(2021), which isolates the modes based on reference mode-velocities, can be 

applied. 

Moreover, the method can be directly applied to process any other types of SW 

(e.g., Love waves, Scholte waves, Lamb waves, other guided waves) and the 

picking can be adopted also to multichannel processing.  

Finally, although here they are applied as parts of the presented workflow, the 

near- and far-field detection method (Section 5.4.2) and the outlier-removal method 

(Section 5.8) could be used as standalone tools, to optimize any DC picking 

approach.  

5.13 Conclusion 

We presented a novel two-station method, which allows the extraction of a 

large number of DCs, in a reliable, fast and automatic manner. The method was 

tested on a relatively simple 2D synthetic dataset, efficiently achieving a high DC 

coverage. Applied to the more challenging and large-scale dataset of Ludvika 

(2019), the method provided DCs of similar quality to the ones retrieved with a 

manual DC picking, through an automatic and fast process. Therefore, the method 

can be considered convenient for industrial applications and large-scale datasets.  
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Chapter 6 
 

SW tomography for mineral 

exploration – SW tomostatics 

estimation method 

6.1 Introduction 

We propose a method to estimate high-resolution long-wavelength PV  statics 

(SW tomostatics), which combines SW tomography, a technique which allows the 

retrieval of high-resolution SV  models, with the Wavelength-Depth (W/D) method, 

which allows to estimate .  

We test the method on a synthetic 2D dataset (Section 5.8), to benchmark its 

effectiveness on laterally heterogeneous sites. We apply it to the 2D and 3D seismic 

datasets from the iron-oxide mining site of Ludvika in Sweden (Section 3.2) and to 

line SM1 from the active-seismic dataset from the Siilinjärvi apatite (phosphate) 

mining site in Finland (Section 3.3.3). For both sites, the retrieved SW tomostatics 

are applied on the 2D stacked sections and are compared with BW statics.  
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6.2 Method 

Details on the fundamentals and common approaches to SW tomography can be 

found in Section 2.4. In Figure 6.1, we outline the SW tomostatics estimation 

method. It consists of:  

• the set of multichannel processes (labelled as “A” in Figure 6.1) of the 

W/D method, which lead to the estimation of the reference apparent 

Poisson’s ratio ( z ), characterizing different uniform subsurface zones, 

and, 

• the succession of steps that leads to the estimation of the tomographic 

SV  model (labelled as “B”-“F” in Figure 6.1).  

The two results ( z  and SV  model) are combined to provide the time-average 

PV  ( PzV ) model, from which the statics are computed.  
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Figure 6.1: Scheme of the proposed SW tomostatics estimation method. 

A. Estimation of the reference 𝝂𝒛  

The first part of the workflow is the same as stages “C” – “E” of the SW direct 

statics estimation method, described in detail in Section 4.2. In summary, an 

automatic processing is applied on the data to extract a set of multichannel DCs 

from spatial windows of receivers. The DCs are clustered, and each cluster is 

assumed to correspond to a uniform subsurface zone. The highest-quality DCs of 

each cluster are found, according to the method of Karimpour et al. (2018). They 

are considered reference, and are inverted to provide the reference SV , W/D 

relationship (Socco et al. 2017) and z  of each cluster (uniform zone). 

B. Two-station DC extraction 

The method to extract the DCs between different pairs of receivers, to be used 

as input to SW tomography (step “D”), is described in Sections 5.4-5.5. The 
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automation tool described in Sections 5.4-5.8, can be applied to perform the DC 

extraction in an efficient way.  

C. Initial model selection 

The initial model for the inversion is constructed as a regular grid of K  1D 

profiles ( km ), over the area covered by the receivers. Therefore, it is a pseudo-2D 

or pseudo-3D model, depending on the distribution of the grid points. 

Each 1D profile is defined by its layer h , SV ,  and  . Although the inversion 

presents low sensitivity to the value of , to obtain as accurate results as possible, 

we use the z  estimated in step “A”, after transforming it into interval , with the 

method described in Khosro Anjom et al. (2019). The initial SV  is also the one 

retrieved in step “A” and the initial   is chosen based on a priori information on 

the lithology of the site.   

The model-grid dimensions (distance between the K  grid points and number 

and thickness of the layers) are set based on a priori information on the geology of 

the area and on the reference models estimated in “A”, to allow the expected lateral 

and vertical velocity variations to be mapped. Nonetheless, since the achievable 

lateral and vertical resolution is bounded by the bandwidth and the spatial coverage 

of the data and their sensitivity to the different model parameters ( Garofalo, 2016), 

the model dimensions are set with the following data-driven approach. Trial 

inversion runs are performed, using different grid dimensions, and the grid that 

minimizes the final inversion misfit is selected. 

D. Tomographic SV  inversion 

For the tomographic inversion, we use the method developed by Boiero (2009). 

It is a damped weighted least-squares inversion algorithm, which estimates SV  

directly from the DCs, avoiding the phase-velocity map building stage of the 

common SW tomography methods used in global seismology (see Section 2.4). 

In particular, the forward modelling is built by computing the accumulated 

phase along the path 
1 2R Rl  between the two receivers, corresponding to each DC, at 

each angular frequency  , as: 
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where ( ),p l   is the slowness, at each location along 
1 2R Rl .  

 The corresponding traveltime ( )
1 2R Rt   is then computed as: 
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i.e., as the integral (summation) of the slowness of each propagating phase between 

each segment of the path, idl , where 
1 2i R RIdl l= . To find the local slowness at each 

point i  along 
1 2R Rl , bilinear interpolation of the slowness corresponding to its four 

surrounding grid points is performed: 
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where ikf  is the bilinear interpolation coefficient, which takes non-zero values 

only for the four grid points surrounding point i , and kp  is computed by the 

Haskell (1953) and Thomson (1950) forward modelling for the km  model 

parameters. Finally, the phase slowness along 
1 2R Rl  is computed as: 
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 (6.4), 

i.e., as the average of the local slownesses along 
1 2R Rl .  

The inversion is performed by minimizing the misfit function Q : 

 ( ) ( ) ( ) ( )1 1( ) ( )
TT

obs obs obs p Rp pQ d d− −  = − − + − −
    

d m C d m R m C R m (6.5), 

where obsd  is the vector of the observed slowness (reciprocal of the DCs), ( )d m  is 

the vector of the theoretical DCs computed based on the model parameters ( m ) 
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and obsC  is the covariance matrix of the experimental uncertainties, used as a weight 

for each data point.  

The inversion code uses a regularization, built as a set of horizontal and vertical 

constraints pR  which relate the model parameters between corresponding layers of 

neighboring models. Their strength (i.e., the maximum allowed property variation) 

is chosen according to a priori information on the expected velocity variability of 

the site and is defined by the covariance matrix RpC  (Auken & Christiansen, 2004). 

If no a priori information is available, Boiero (2009) recommends to perform trial 

inversions with increasing constraints, and choose the highest constraint that does 

not increase the final misfit, due to oversmoothing.  

The model at the n -th iteration can be described as: 

 
( )( ) ( )
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1 1 1
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(6.6), 

where the Jacobian G  is the sensitivity matrix that contains the partial derivatives 

of ( )d m  with respect to the model parameters, and d  is the Marquardt damping 

parameter (Marquardt 1963), used to stabilize the solution.  

To evaluate the final result, the following RMS error is computed 

 
( ) ( )( )

( )

2

2
obs syn

i

i i
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e i

−
= 

v v
 (6.7), 

where obsv  and synv  stand for the phase velocity of each experimental and 

corresponding synthetic DC, respectively, e  is the experimental uncertainty and 

the summation is over all frequencies i . 

E. Checkerboard test 

Once the final SV  model has been estimated, its resolution is evaluated by 

means of a checkerboard test. Velocity perturbations, in the form of positively and 

negatively perturbed blocks, are applied on the inverted model. Synthetic DCs are 

generated for the perturbed model, using the forward modelling described in step 

“D” and considering the receiver pairs of the experimental DCs. The synthetic DCs 
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are inverted with SW tomography. If the velocity perturbations are accurately 

reconstructed by the inversion, the resolution is inferred by the size of the 

perturbation blocks. Since the resolution is not known a priori, different 

checkerboard tests are performed, using different block sizes, until the smallest 

possible dimensions for which the inverted result is accurate, are found.  

F. 𝑽𝑺𝒛, 𝑽𝑷𝒛 and statics computation 

The inverted SV  model is converted into SzV , according to: 

 
i

n
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i

n Si

h
V h

V

=



 (6.8), 

where ih  and SiV  are the thickness and SV  of the i -th layer down to a depth 

i
n

z h= . The PzV  model is then computed, separately for each of the uniform 

zones, as: 

 2 2
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−

=
−

 (6.9), 

where z  is the reference apparent Poisson’s ratio, estimated through the W/D 

method for each zone. Finally, the static shift 
dzt  is computed at a (floating) datum 

dz  as: 

 
d

d

d
z

Pz z

zt
V =

=  (6.10). 

6.3 Case study 1: Synthetic model 

We present the application of the SW tomostatics estimation method to the 

synthetic dataset presented in Section 5.8.  

The two reference multichannel DCs (Figure 5.20a), were used for the W/D 

method (step “A”) and were inverted to retrieve the reference SV  models of the two 

zones (Figure 6.2a). In Figure 6.2b, we show the SzV  models computed from the 
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models of Figure 6.2a, according to eq. 6.8. The SzV  models were combined with 

the reference DCs (Figure 6.2b), to retrieve the W/D relationship of each zone, 

(Figure 6.2c). According to the process described in stage “E” of Section 4.2, the 

reference z  of each zone was estimated (Figure 6.2d).  

 
Figure 6.2: a) Inverted reference SV  models from the synthetic dataset. Reference 

b) SzV  (solid) and DC (dashed), c) W/D, and d) z . In all panels, black corresponds 

to “Zone 1” and red, to “Zone 2”.  
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Figure 6.3: a) SV  and, b) PzV  model c) Static shift at 18 m, estimated from the model 

in (b) (green) and from the true model (orange). In black, the low-coverage zones. 

 

The pseudo-2D SV  model estimated by the tomographic inversion of the two-

station DCs is shown in Figure 6.3a. The result shows great similarity to the true 

model (Figure 5.2), apart from the sides of the model, where the DC spatial 

coverage was very low (black in Figure 5.2c and in Figure 6.3). The estimated PzV  

model is shown in Figure 6.3b, while the static shift, calculated at the largest 

investigation depth (18 m) according to eq. 6.10, is compared to the true values in 

Figure 6.3c. The comparison shows that, apart from the low-coverage areas, the 

estimated static-shift values are similar to the true ones, with a maximum difference 

of 6 %, at the position of the discontinuity. 

This synthetic example shows that SW tomography, coupled with the W/D 

method, leads to an accurate estimation of the P-wave statics, even at laterally 

variable sites.  



 

183 
 

6.4 Case study 2: Ludvika mining site, Sweden 

Here, we apply the SW tomostatics estimation method on the portion of the 

seismic line of the Ludvika 2016 dataset and on the Ludvika 2019 dataset (see 

section 3.2 for details). 

6.4.1 2D seismic dataset (2016) 

Reference 𝜈𝑧 

For this dataset, only one reference DC was estimated (Figure 4.5a) and was 

used for the computation of the reference SV  and z  models (Figures 4.8a and 4.9b, 

respectively). 

Two-station DC extraction  

In Figure 6.4a, we show an example of the two-station DC picking, in this case 

performed semi-automatically. The DC (black in Figure 6.4a) was picked on the 

cross-correlation matrix, as the maxima nearest to the reference DC (green in Figure 

6.4a).  

In total, 109 DCs were picked (Figure 6.4b) and the retrieved phase velocities 

were in the range of 1500 m/s – 3000 m/s, which is reasonable for the area of 

Ludvika. The DCs presented a wide wavelength and spatial coverage and 

significant overlap, as shown in the spatial coverage plot of Figure 6.4c, where the 

colorscale indicates the number of DCs crossing each location along the line at each 

wavelength. The red lines show the locations and wavelengths for which the 

coverage was found higher than zero. Μost of the line was covered by, at least, one 

DC in the wavelength range of 18 m – 140 m, although denser coverage was 

achieved for wavelengths between 20 m – 120 m. 
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Figure 6.4: Two-station DC extraction on the Ludvika 2016 dataset. a) Example 

stacked cross-correlation matrix, computed for a pair of traces at distance 70 m from 

each other and using 13 shots. Black corresponds to the picked DC and green to the 

reference DC. b) All the picked DCs. c) DC coverage along the line. In red, the 

zero-coverage limit. The circle indicates that the location of a velocity anomaly. 

  

Initial model selection 

The initial model is described in Table 6.1. It consisted of 60 1D models, the 

dimensions of which were decided upon testing. The initial SV  was set based on 

the reference SV  model (Figure 4.8a),   was chosen based on the available a priori 

information and  was set according to the reference z  (Figure 4.9b). After tests 

using different velocity constraints, a lateral constraint of 100 m/s was chosen for 

the inversion.  
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 Table 6.1: Properties of the initial model used for the Ludvika 2016 
dataset. 

` SV  (m/s)    (kg/m3)  (-)  h  (m) 

1-3 3250 2000 0.3 5 
4-6 3250 2000 0.3 8 
7-9 3250 2000 0.3 13 

Halfspace 4000 2800 0.3 - 
 

Tomographic inversion 

The inverted pseudo-2D SV  model, resulting after nine iterations, is shown in 

Figure 6.5, while in Figure 6.6a, we show the error between the experimental DCs 

and the synthetic curves corresponding to the final inverted model, computed 

according to eq. 6.7. 

 
Figure 6.5: Pseudo-2D SV  model. The circle indicates a strong velocity anomaly. 
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Figure 6.6: a) RMS error between the experimental DCs and the theoretical DCs 

corresponding to the final inverted model. b) The worst- (path # 18) and c) the best- 

(path # 39) DC fitting.  

 

In Figure 6.6b, we plot the experimental DC of the worst-fitting path (# 19, 

with an RMS error of 3.37), compared with the corresponding theoretical DC. Even 

though the theoretical DC is overestimated, its trend is in general compatible with 

the experimental one, and nearly identical to it in the highest frequency band. For 

comparison, we also provide the curves corresponding to the best-fitting path (# 39, 

with an RMS error of 0.2) in Figure 6.6c.  

The inverted model presents high SV  values (1500 m/s – 3200 m/s), which are 

reasonable according to the available downhole-logging information (Maries et al., 

2017). In particular, the model presents an increase of SV  with depth, reaching to 

approximately 3000 m/s - 3200 m/s at the bedrock, the depth of which appears to 

vary along the line.  

Several low-velocity anomalies were estimated at shallow depths, the most 

striking of which is the one located in the central portion of the model, marked by 

the circle in Figure 6.5. According to the DC coverage plot of Figure 6.4c, this zone 

(marked also by a circle in Figure 6.4c) was densely covered by data, and therefore 



 

187 
 

the presence of this shallow SV  anomaly can be considered reliable, given the input 

data.  

 

Checkerboard test  

For the checkerboard test, SV  perturbations of 8 % were applied in the form of 

square blocks on the inverted model. After testing different perturbation-block 

dimensions, the smallest block sizes that could be recovered are the ones shown in 

Figure 6.7a.  

For the inversion of the generated synthetic DCs no property constraints were 

applied, to allow the recovery of the velocity perturbations. In Figure 6.7b, we plot 

the SV  perturbation estimated after the inversion, which shows great similarity to 

original one (Figure 6.7a), indicating the achieved resolution. 

Since all the velocity anomalies of the inverted model of Figure 6.5 are of 

greater size than the estimated resolution at each depth, their estimated size can be 

considered reliable.  

 
Figure 6.7: a) “True” and (b) inverted perturbation (%) applied to the SV  model of 

Figure 6.5 for the checkerboard test. 

 

𝑉𝑆𝑧 , 𝑉𝑃𝑧 and statics computation 

The tomographic SV  model was converted into pseudo-2D SzV  (Figure 6.8a), 

and into pseudo-2D PzV  (Figure 6.8b). The SW tomostatics, at different floating 

datum depths within the investigation depth of the tomographic model are plotted 

in Figure 6.9a.  
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Figure 6.8: Pseudo-2D a) SzV  and b) PzV  model.  

 

The statics at the datum depths of 40 m and 50 m, which are already below the 

estimated depth to bedrock, are shown in green in Figures 6.9b and 6.9c, 

respectively. They are compared to the BW tomostatics (black), retrieved at the 

corresponding depths from the tomographic PV  model of Bräunig et al. (2020), and 

to our estimated (red) SW direct statics (Figure 4.11).  

For the same depths, in Figures 6.9d and 6.9e, we present the distribution of the 

one-way traveltime difference ( t ) between the SW tomostatics and the BW 

tomostatics. In both cases, more than 80 % of the static values have differences 

within 1  ms, which is equal to the SR  and is, hence, considered negligible.  

In Figure 6.10, we compare the stacked section before any statics (Figure 6.10a) 

and after the BW tomostatics of Bräunig et al. (2020) (Figure 6.10b), the SW direct 

statics (Figure 6.10c, shown also in Figure 4.12c) and the SW tomostatics (Figure 

6.10d). Details on the retrieval stacked sections can be found in Brodic et al. (2020). 

The SW tomostatics solution (Figure 6.10d) led to a seismic section of similar 

quality to the one obtained using BW tomography, with a significant improvement 

in the observed coherency and continuity of the reflector (red arrows in all panels 

of Figure 6.10), compared to the results without any statics. Moreover, compared 
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to the section resulting from the SW direct statics (Figure 6.10c), the SW 

tomostatics provided a slight improvement in the quality of the reflector. 

 
Figure 6.9: Static shift at a) various depths and, a datum of b) 40 m and c) 50 m. In 

(b) and (c), in green, the SW tomostatics, in red, the SW direct statics (Section 4.3) 

and in black, the BW tomostatics (Bräunig et al., 2020). Distribution of the one-

way time difference ( t ) between the SW tomostatics and BW tomostatics at d) 40 

m and e) 50 m. In orange in (d) and (e), the SR  of 1  ms.  
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Figure 6.10: Brute stack a) before any statics and after b) BW tomostatics, c) SW 

direct statics and d) SW tomostatics. The main reflectors are highlighted by the 

arrows.  
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6.4.2 3D seismic dataset (2019) 

Multichannel DC extraction and reference z  estimation 

In Figure 6.11a, the four reference DCs estimated in Section 5.11 are plotted as 

dashed lines of the same color as their corresponding cluster. The W/D process, 

applied on the reference DCs, is demonstrated in Figure 6.11. For estimating the 

reference SV , the Monte Carlo inversion of the reference DCs was carried out 

generating 106 random models within the SV  and h  space that we show in grey in 

Figure 6.11b. For each layer,  was randomly sampled in the range between 0.1 

and 0.45, and   was set constant at 2 kg/m3. 

 In Figures 6.11a and 6.11b, we plot as solid lines the best-fitting synthetic DCs 

and their corresponding SV  models, respectively. The lowest-misfit SV  models 

(dashed in Figure 6.11b) were used together with their corresponding DCs (dashed 

in Figure 6.11a) to retrieve the W/D of each cluster, plotted in Figure 6.11c. In 

Figure 6.11d, we present the reference z  (dashed) and  (solid) of each cluster. It 

can be observed that in all clusters, the value of    was found nearly constant at 

0.35 at depths shallower than 60 m, in agreement with the z  values retrieved from 

the 2016 dataset (the geometry of which corresponds to the one of Cluster 1).  

At larger depths, Cluster 2 does not present significant  and SV  variation, 

indicating that its related lithology remains constant with depth. For Clusters 1 and 

3, the value of SV  increases and the value of  decreases and attains values which 

are reasonable for the stiffer formations expected at the site. For example, for the 

deepest layer of Cluster 1 (having SV =3050 m/s), which was found to be the 

dominant cluster in the entire area, the value of  equals 0.17. This SV −  

combination, provides a /P SV V  of approximately 1.6 which, according to Maries 

et al. (2017), could be attributed to a low-velocity granite.  

Regarding Cluster 4, as shown in Figure 5.17b, its DCs are located in an area 

where it is known that the tailings of the old mine have been deposited as 

overburden materials. The presence of this layer is probably responsible for the 

extremely low SV  values (< 500 m/s), estimated for the cluster, and explains the 

different estimated . 



 

192 
 

 
Figure 6.11: In all panels, red corresponds to Cluster 1, green to Cluster 2, purple 

to Cluster 3 and cyan to Cluster 4. Corresponding to each cluster: a) Reference 

(experimental) DC (dashed) and synthetic (solid) DCs, corresponding to the best-

fitting models of the Monte Carlo inversion, shown in the same colorscale in (b). c)  

W/D and d) reference z  (dashed) and  (solid), of each cluster.  
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Two-station DCs 

The two-station processing applied to the raw data, is described in Section 5.9. 

From the extracted 15888 DCs, we used for the inversion only 5860, due to 

restrictions in the available computer memory. The selection of the DCs to be used 

was random, to maintain the original wide azimuth and path-length distribution. 

The new, downsized, set of DCs is plotted in Figure 6.12a. The plots of the 

corresponding path-length and azimuth distribution of the DCs are given in Figures 

6.12b and 6.12c, respectively. It can be observed that, even reduced in number, the 

DCs still presented wide ranges of azimuths and path lengths.   

 

 
Figure 6.12: a) Downsized (number of 5860) set of DCs used in the tomographic 

inversion. b) Azimuth and c) path-length distribution of the DCs in (a). 
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Figure 6.13 Spatial coverage of the DCs of Figure 6.12(a) at a wavelength range of 

a) 2 m – 20 m, b) 22 m – 40 m, c) 42 m – 80 m, d) 82 m – 140 m, e) 142 m – 200 

m and f) 202 m – 350 m. The colorscale indicates the average phase velocity of the 

DC at each wavelength range and is specified in the colorbar.  

 

In the different panels of Figure 6.13, we plot the spatial coverage of the DCs 

(the lines correspond to the intra-receiver path of each DC), for the same 

wavelength intervals as in Figure 5.29, where we plot the coverage of the original 

DC set. It can be observed that also the new set of DCs presents adequate spatial 

coverage at all wavelengths, apart from the longest-wavelength interval (202 m - 

350 m, in Figure 6.13f), where the coverage is low, due to the originally lower 

number of long-wavelength data points. 

 

Initial model selection 

The initial model for the inversion was gridded as 390 uniformly spaced 1D 

profiles, the positions of which are shown as black dots in Figure 6.14. the 

properties of the layers are given in Table 6.2.  



 

195 
 

To define the initial SV  and , we compared the position of each profile with 

the position of each reference DC (Figure 5.21b), to relate each profile to a cluster. 

The cluster to which each profile was found to belong is given by the color of each 

dot in Figure 6.14, where the color-coding of the clusters is given in the colorbar. 

Depending on the cluster, we chose for each profile and each layer (depending on 

the layer depth), the appropriate reference SV  (dashed in Figure 6.11b) and  (solid 

in Figure 6.11d).  

For the inversion regularization, we imposed a lateral constraint of 100 m/s 

between the models. The constraints were interrupted at the limits of cluster 4 (cyan 

in Figure 6.14), where the tailings of the old mine exist, and the low phase velocities 

(< 500 m/s) were measured. Imposing a strong constraint would not allow to 

retrieve such a velocity contrast during the inversion.   

 

 Table 6.2: Properties of the initial model used for the Ludvika 2019 
dataset. 

   Cluster 1 Cluster 2 Cluster 3 Cluster 4 
Layer h    

SV   SV   SV   SV   

 (m) (kg/m3) (m/s) (-) (m/s) (-) (m/s) (-) (m/s) (-) 

1-2 20 2000 2100 0.34 1610 0.31 1550 0.34 390 0.24 
3-4 30 2000 2100 0.34 1610 0.31 2560 0.34 760 0.37 
5 40 2000 3000 0.18 2200 0.35 3500 0.33 3000 0.18 

Half 
-space - 4000 4000 0.18 4000 0.18 4000 0.18 4000 0.18 

 

 
Figure 6.14: Position of the 1D profiles of the initial model. The different colors 

correspond to the different clusters (specified in the colorbar).  
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Tomographic inversion 

In Figure 6.15 we present slices of the final tomographic model at different 

depths. In Figure 6.16, we show the misfit computed for different wavelength 

ranges and for each DC path, as the absolute difference (%) between the 

experimental and the theoretical DCs, resulting from the inversion. All of the curves 

present a misfit lower than 25 %, while more than 83 % of the data points present 

a misfit lower than 10 %. 

It can be observed that the inverted model presents increasing SV  with depth, 

in agreement with the geological information in the area (Maries et al., 2017). 

Lateral velocity variability can be detected down to a depth of 140 m, where the 

velocity becomes nearly constant. This could be attributed to the low coverage at 

great wavelengths (Figure 6.13f), although the high values of velocity indicate 

bedrock formations, where variability is expected to be limited. As anticipated from 

the low velocities of the DCs corresponding to Cluster 4, the north-eastern zone of 

the model (indicated by the purple arrow) presents, down to a depth of 20 m, 

significantly lower SV  (< 500 m/s), probably related to the tailings dam. In addition, 

two high-velocity zones in the central and in the south-western portion of the model 

appear consistent at a wide depth range (20 m – 70 m), while, at all depths, a strong 

low-velocity anomaly (indicated by the circle in Figure 6.15) is evident. Its velocity 

and position suggest that it is the same low-velocity anomaly detected by the 2D 

SW tomography on the 2016 dataset, shown also as circle in Figure 6.5. 
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Figure 6.15: Inverted SV  model of the Ludvika site, at a) 20 m, b) 40 m, c) 70 m, 

d) 100 m, and e) 140 m. The arrow points to a region with extremely low velocity, 

and the circle indicates an anomaly, shown also as a circle in Figure 6.5. 
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Figure 6.16: Spatial distribution of the DC misfit at a wavelength range of a) 2 m – 

20 m, b) 22 m – 40 m, c) 42 m – 80 m, d) 82 m – 140 m, e) 142 m – 200 m and f) 

202 m – 350 m.  

 

Checkerboard test 

In Figure 6.17a, we present the negative and positive velocity perturbations of 

8 %, which were applied on the model of Figure 6.15, to create the checkerboard 

model. In Figure 6.17b, we show the velocity perturbations, retrieved by the 

inversion of the synthetic DCs, generated for the checkerboard model. It can be 

observed that most of the velocity perturbations at depths 20 m – 100 m were 

recovered by the inversion. An exception was the positive velocity perturbation at 

100 m depth (inside the box in Figure 6.17), which was not accurately 

reconstructed. Moreover, in the deepest portion of the model (depth of 140 m), only 

the perturbations in the southern portion could be recovered, due to the low spatial 

DC coverage at the north-eastern side of the area at the longest wavelengths (Figure 

6.13f). Nevertheless, no significant lateral variations were detected in this depth 

range in our inverted SV  model (Figure 6.15e), and therefore the lack of lateral 
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resolution in this limited area, was not considered critical. As a result, we conclude 

that all the detected velocity anomalies of our estimated SV  model (Figure 6.15) are 

within the resolution limits.  

 
Figure 6.17: Velocity perturbations a) of the checkerboard model and, b) from the 

inversion of the checkerboard synthetic DCs. The box indicates a velocity 

perturbation which could not be accurately recovered. 

 

𝑉𝑆𝑧 , 𝑉𝑃𝑧 and statics computation 

To estimate the statics, the SV  model of Figure 6.15 was converted into SzV , 

according to eq. 6.8. To convert it into PzV , we used, depending on the cluster 

allocated to each model (Figure 6.14), the appropriate z  from the ones presented 

in Figure 6.11d. PzV  was then computed according to eq. 6.9 and was used for the 

computation of the static shift, according to eq. 6.10. Although the statics could be 

computed for the entire investigation depth of the model (down to 140 m), for 

comparison with the statics computed from the 2016 data (Figures 6.9a and 6.9b), 

we present in Figures 6.18a and 6.18b, the static shift computed at a (floating) 

datum of 40 m and 50 m, respectively.  
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Figure 6.18: Static shift at a) 40 m and b) 50 m. The colors indicate the one-way 

time, given in the colorbars. The line corresponds to the processed portion of the 

2016 dataset and the circle indicates a strong velocity anomaly (also in the circle in 

Figure 6.5). 

 

𝑉𝑃 model estimation 

Although not necessary for the computation of the statics, for which the input 

is the time-average velocity model, the information that was retrieved through our 

workflow allowed to estimate also a (layered) PV  model of the shallow subsurface. 

This model can be valuable in different stages of the seismic processing workflow, 

such as for the refinement of the shallow portion of the velocity model used for 

migration.  

To estimate PV , we applied eq. 6.9 (omitting the subscript z  which denotes the 

time-average quantities), the tomographic SV  model of  Figure 6.15 and reference 

 profiles (solid lines in Figure 6.11d). Since the depths of the layers of the  

profiles did not coincide with the ones of the layers of the tomographic model, for 

each cluster we associated the proper  not according to depth, but based on the 

value of SV  of each layer. In particular, in Figure 6.19 we show as dots, the SV  and 

 of each layer of the clusters of Figure 6.11b and 6.11d, respectively. The color-

coding represents the cluster number. Based on these combinations, we chose, 

depending on the cluster related to each profile of the tomographic model (Figure 

6.15) and the SV  of each of its layers, the appropriate . The estimated PV  model 

is shown, at different depths, in Figure 6.20. 
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Figure 6.19: Combinations of SV  and  of each layer of the reference models 

shown in Figures 6.11b and 6.11d, respectively. 
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Figure 6.20: Estimated PV  from the Ludvika 2019 site at a) 20 m, b) 40 m, c) 70 m, 

d) 100 m, and e) 140 m.  
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6.4.3 Discussion 

We have applied the SW tomostatics estimation workflow on the 2016 (2D) 

and 2019 (3D) seismic datasets from the Ludvika mining site, Sweden. In both 

cases, the workflow provided reliable models and statics, at a wide depth range, 

down to 85 m (in the 2D case) and 140 m (in the 3D case). 

The comparison of the statics estimated for the 2016 dataset (green in Figures 

6.10b and 6.10c), with the conventional BW tomostatics (black in Figures 6.10b 

and 6.10c), which we consider as a benchmark, has shown that our estimate was 

accurate and led to a stacked section of similar quality with the one resulting from 

the BW tomostatics (Figure 6.11). In both cases, the improvement of the continuity 

of the reflector (red arrows in all panels of Figure 6.11), with respect to the no-

statics case, was apparent. Therefore, we conclude that our method can be used as 

an alternative to the standard BW-based methods, when retrieving the BW first-

breaks is not possible or highly time-consuming (e.g., due to high levels of noise in 

the data). 

With respect to the quality of the stacked image achieved by the SW direct 

statics (Figures 4.10c and 6.10d), which are based on multichannel SW processing, 

the one achieved by the SW tomostatics was slightly improved. Thus, with respect 

to the SW direct statics, the SW tomostatics can be considered as a higher resolution 

method to retrieve the static corrections.  

Regarding the computational-time requirements, though, the SW direct statics 

method is, inarguably, a lower-cost alternative, since for the analysed portion of the 

Ludvika 2016 dataset, the computation of the direct statics from the raw data, 

required only 175 min (Table 4.4), using a single-core commercial laptop. Using 

the same computational equipment, the SW tomostatics estimation required 

approximately 11.4 hours (Table 6.3). We note though, that the only operation 

which required extensive operator involvement was the picking of the DCs, which 

in this case was performed semi-automatically.  

For the 3D dataset from 2019, the automatic two-station processing method, 

presented in Chapter 5, allowed a large number of DCs to be picked, without the 

involvement of an operator. This led to a dense DC spatial coverage at all locations, 

increasing the reliability of the inverted model (Figure 6.15). Additionally, the 

checkerboard test (Figure 6.17) showed that the achieved lateral resolution was 
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adequate with respect to the size of the estimated velocity anomalies, increasing the 

confidence of the final result.  

Table 6.3: Breakdown of the time requirements of the SW tomostatics 
estimation for the processed portion of the Ludvika 2016 dataset. 

Workflow stage Automation level Time 

A. Estimation of the reference z  

Automatic,  
apart from the 

processing 
parameter selection 

173 min 

B. Two-station DC extraction 

Semi-automatic in 
this case 

(automatic option 
available, see 

Chapter 5) 

90 min 

C. Initial model selection Automatic 

Included three trials of 
the tomographic 

inversion (accounted 
for below) 

D. Tomographic inversion Automatic 3x100 min 

E. Checkerboard test (performed 
three times to identify the optimal 
parameters) 

  

• Building of the 
checkerboard model, 
forward modelling 

Automatic 20 min 

• Checkerboard model 
tomographic inversion Automatic 100 min 

F. SzV , PzV  and statics estimation Automatic 2 min 

Total: ~11.4 h 
 
The investigation depth of the 3D model was greater (140 m) with respect to 

the 2D model estimated from the 2016 data (85 m). This was due to the fact that the 

receivers of the 2019 acquisition covered a larger area, leading to longer available 

intra-receiver paths and, therefore, longer DC wavelengths (at maximum 350 m 

with respect to the maximum wavelength of 140 m in the DCs from the 2016 

dataset).  

The multichannel analysis on the 2019 dataset led to the estimation of values 

of  , which are in agreement with the one estimated from the 2016 dataset, in the 

common locations and depths of the two profiles (bottom left panel of Figure 6.11d 
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for the 2019 dataset and Figure 4.9b for the 2016 dataset). In Figure 6.21, we 

compare the 3D statics estimated from the 2019 dataset (Figure 6.18) with all the 

static solutions estimated from the 2016 dataset (Figures 6.9a and 6.9b). Since the 

2016 geometry covered only a portion of the one of 2019 (their overlap is the black 

line shown in Figure 6.18), we limit our comparison along the common line. In 

Figures 6.21a and 6.21b we show in purple, the one-way P-wave traveltime (static 

shift) estimated from the 3D model along the line, at a datum of 40 m and 50 m, 

respectively.  

All the static solutions are similar and, compared to the SW tomostatics of the 

2016 dataset, the ones of 2019 are nearly identical, depicting clearly the large time-

shifts (dashed circle in Figure 6.21b), caused by the low-velocity anomaly which 

was detected in both tomographic models (black circle in Figure 6.5 and in Figure 

6.15).  

 
Figure 6.21: Static shift at a) 40 m and b) 50. In purple, the SW tomostatics 

computed from the 2019 3D dataset along the line shown in black in Figure 6.15. 

In green, the SW tomostatics, in red, the SW direct statics and in black, the BW 

tomostatics (Bräunig et al., 2020), all computed from the 2016 2D dataset. 

 

Since the two datasets and their processing were independent, we are highly 

confident about the reliability of this low-velocity anomaly, although no prior 

information on its origin exists. In Figures 6.22a and 6.22b, we plot again the 

estimated 3D SV  and PV  models, after interpolating for better visualization. The 

low-velocity anomaly is indicated by the blue arrow. It can be observed that it 

presents a lateral extension of approximately 400 m and appears consistent 
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throughout the entire investigation depth. A possible explanation for this anomaly 

could be the local fracturing of the shallow rock.  

One of the most striking features of the models, is the shallow (down to 20 m 

depth) low-velocity ( SV < 500 m/s) layer, in the north-eastern zone, where the 

tailings dam of the old mine is located. In the same zone, the refraction-static 

solution of (Malehmir et al., 2021), reproduced in Figure 6.23b, also presented 

extremely low PV  (approximately 700 m/s – 1000 m/s), although a direct 

comparison of the two velocity models is not straightforward, since they refer to 

different depths. However, this velocity match serves as a benchmark of our  

estimation.  
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Figure 6.22: a) SV  and b) PV  model retrieved from the Ludvika 2019 dataset. 

 

In the position where the model intersects the railway and road (red arrow in 

Figure 6.22), a narrow low-velocity zone is evident in the entire investigation depth. 

The area south to this zone, presents particularly high velocities at all depths, 

reaching a maximum SV  of 3500 m/s and PV  of 6000 m/s. In the same area, 

Malehmir et al. (2021) have detected a sudden increase of the bedrock PV  (Figure 

6.23c), reaching similar values to our PV  estimate. According to Malehmir et al. 

(2021), this velocity jump could be explained by the presence of a normal fault in 
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the vicinity of the railway intersection, which has caused the rise of the bedrock 

(Figure 6.23d), and therefore the higher velocities. Our estimated local low-velocity 

anomaly at the intersection of the models with the railway (red arrow in Figure 

6.22), could indicate the surface-location of this fault. 

Further south to the railroad, a second narrow low-velocity zone is evident in 

Figure 6.22 (yellow arrow). The works of Bräunig et al. (2020) and Markovic et al. 

(2020) have shown that the southern portion of the mineralization is cross-cut, at a 

depth of approximately 1200 m, by a fault. The cross-cutting fault is assumed to 

extend at shallow depths towards the southern portion of the model, and our 

estimated low-velocity anomaly indicates the predicted position of its shallow 

expression.  

 

 
 

Figure 6.23: Reproduced from to Malehmir et al. (2021), a) LiDAR elevation map, 

b) shallow- PV  model, retrieved from 3D refraction static solution, c) bedrock PV  

and d) bedrock depth.  

6.5 Case study 3: Line SM1, Siilinjärvi mining site, Finland 

We apply the SW tomostatics method to line SM1 (Figure 3.10) from the 

active-seismic dataset acquired in 2018 in the Siilinjärvi mining area in Finland 

(Section 3.3). 
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Estimation of the reference z  

Description of the extraction of the multichannel DCs and of the estimation of 

the reference SV , z  and  profiles for the two (Zone 1 and Zone 2) identified 

clusters can be found in Section 4.4.  

 

Two-station DC extraction  

The two-station processing parameters are presented in Table 6.4. For the DC 

picking, the reference multichannel DCs (solid in Figure 4.14b) were used as 

indicators of the local phase velocity in each zone. In Figure 6.24a, we show, as an 

example, the stacked cross-correlation matrix computed for two receivers located 

in Zone 2 (located at 880 m and 1240 m).  
 

 Table 6.4: Processing parameters of the two-station method in Line SM1. 

Processing parameter Value 
Minimum receiver separation  50 m 
Maximum receiver separation  600 m 

Minimum offset  50 m 
Maximum offset 580 m 

 

In total, we extracted 274 DCs, which are plotted in the frequency - phase 

velocity domain in Figure 6.24b, and in the wavelength – phase velocity domain 

Figure 6.24c. The frequency band of the curves extends from 8 Hz to approximately 

50 Hz, and the DCs present high phase velocities, in agreement with the geological 

information on the site (Malehmir et al., 2017). The wavelengths (Figure 6.24c) 

vary from a minimum value of 28.5 m to a maximum of 615 m, even though, 

according to the histogram of Figure 6.24d, nearly 91% of the wavelength 

measurements are limited in the range between 30 m - 160 m, where the wavelength 

distribution is wide (Figure 6.24e). In Figure 6.25, we indicate the DC spatial 

coverage which, in the wavelength range of 30 m – 160 m, is larger than zero along 

the entire line (the dashed line shows the boundaries of the non-zero coverage 

region).  
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Figure 6.24: a) Example cross-correlation matrix. Extracted path-average DCs in 

(b) frequency – phase velocity and, (c) phase velocity – wavelength domain. d) 

Distribution of wavelengths between 28.5 m and 615 m, with (e) an inset showing 

enlarged view of distances between 30 m and 160 m.  

 
Figure 6.25: Plot of DC coverage as a function of wavelength along the line. The 

color scale represents the coverage and the dashed lines show the limits of non-zero 

coverage. 
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Initial model selection 

The initial model is described in Table 6.5. The grid was set as 100, evenly 

spaced 1D velocity models, with a maximum depth of 80 m, which is deeper than 

the known bedrock depth (Da Col et al., 2020) and was therefore considered 

adequate for the static shift computation. The initial SV  and  were set, depending 

on the position of the 1D models with respect to Zone 1 and Zone 2, according to 

the reference SV  (solid in Figure 4.15a), and  (dashed in Figure 4.15) models. The 

density was selected following Malehmir et al. (2017). The inversion regularization 

was set by imposing lateral SV  constraints of 150 m/s, which were interrupted at 

the transition between the two uniform zones (at 800 m). 

 

 Table 6.5: Properties of the initial model used for the line SM1 SW 
tomography. 

` Initial model - Zone 1 Initial model - Zone 2 

Layer SV  
(m/s) 

  
(kg/m3)  (-) h (m) SV  

(m/s) 
  

(kg/m3)  (-) h (m) 

1 2354 2500 0.25 20 2613 2500 0.332 20 
2-3 2354 2500 0.34 10 2613 2500 0.3135 10 
4-7 2830 2500 0.327 10 2608 2500 0.2936 10 

Halfspace 3300 2800 0.351 - 3300 2800 0.2977 - 
 

Tomographic inversion, 𝑉𝑆𝑧 , 𝑉𝑃𝑧 and statics estimation 

The inversion result, after 10 iterations, is the pseudo-2D SV  model shown in 

Figure 6.26a. The estimated SV  ranges between 1650 m/s and 3000 m/s, which are 

in agreement with the known geology of the site (Malehmir et al., 2017). The model 

presents strong lateral heterogeneity, with presence of high velocities at shallow 

depths, in the area between 500 m and 900 m. The overburden layer presents several 

vertical high-velocity anomalies between 0 m – 40 m depth, and its thickness 

increases abruptly in the area corresponding to Zone 2. The SV  model was 

transformed into SzV  by applying eq. 6.8, and to PzV , using eq. 6.9 and the 

corresponding 1z  and 2z  (Figure 4.15c), depending on the position along the line. 

In Figure 6.26b we plot the one-way time (static shift), computed according to eq. 

6.10 for different (floating) datum depths within the model investigation thickness.  
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Figure 6.26: a) Tomographic SV  model. b) Static shift for different datum depths, 

indicated by the different colors. 

 

Checkerboard test 

The checkerboard test is presented in Figure 6.27. The model was created by 

applying a SV  perturbation of ±8% (according to the pattern shown in Figure 6.27a) 

to the retrieved model (Figure 6.26a).  

The inversion of the synthetic DCs corresponding to the checkerboard model, 

provided the SV  perturbation shown in Figure 6.27b. Comparing the inverted 

perturbation model(Figure 6.27b) with the “true” one (Figure 6.27a), we observe 

that most of the velocity blocks were accurately reconstructed for the entire 

investigation depth, apart from the ones inside the square in Figure 6.27b. We can, 

therefore, conclude that our resolution equals, at least, the perturbation-block size 

for the entire model, excluding the ones in the area of the square (Figure 6.27b). 

Comparing these results with the retrieved SV  model (Figure 6.26a), we conclude 

that all detected velocity variations are within the resolution limits, implying the 

reliability of our estimation. 
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Figure 6.27: a) “True” and b) inverted checkerboard perturbation. The square in 

panel (b) depicts a zone where the perturbation blocks were not accurately 

reconstructed. 

 

To interpret the estimated tomographic SV  model of Figure 6.26a, we 

superimpose it to a geological model, built by Yara Suomi Oy prior to the seismic 

survey based on surface-geology and drillhole information, shown in Figure 6.28. 

It can be observed that the two models are in good agreement, providing similar 

structural information. The low velocities of our SV  estimate correspond to the 

appearances of the carbonatitic rocks (light purple in Figure 6.28), the SV  of which 

are known to range between 2000 m/s and 2500 m/s. The high-velocity anomalies 

of the tomographic model, given by the blue arrows in Figure 6.28, match the 

intrusions of the higher-velocity tonalite-diorite (grey) in the carbonatite complex, 

reinforcing the reliability of the geological model. The high-velocity zone which 

appears at shallow depths in the tomographic model in the area indicated by the 

green box, can be associated to a larger-scale high-velocity, horizontally oriented, 

folded diabase dyke that is not captured by the geological model shown in Figure 

6.28. This result fortifies the indications of Kauti et al. (2019), who have shown, 

based on production drilling data, that a large-scale horizontal diabase dyke can be 

expected at this depth in the southern part of the pit, in the immediate vicinity of 

SM1. 

The low- SV  anomaly (white box), which appears on the tomographic model 

above the interpreted diabase intrusion (green box), is probably related to the 

railway and road (Figure 3.10) that crosses the seismic line at this position. Finally, 

the black arrow indicates a higher-velocity anomaly within the low-velocity 
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carbonatite area, which cannot be interpreted by the geological model. It could be 

indicative of yet another, smaller-scale diabase dyke, and/or the low-velocity 

anomalies around it could be related to large shear zones that run at the eastern 

contact to the carbonatite complex. 

 

 

Figure 6.28: Superposition of the estimated tomographic SV  model (Figure 6.26) to 

the geological model of the area, provided by Yara Suomi Oy. 

 
Figure 6.29: Stacked seismic sections a) without long-wavelength statics, b) after 

standard refraction statics and c) after SW-tomostatics. 

 

The estimated SW tomostatics have been used both for the long-wavelength 

statics and for further redatuming. The datum depth was chosen as 70 m, to ensure 

that the entire overburden thickness is accounted for. In Figure 6.29a, we report the 
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stacked section without long-wavelength statics and in Figure 6.29b the section 

after applying refraction-tomography statics, computed based on a 3-layered 

velocity model. In Figure 6.29c, the stacked section after applying SW tomostatics 

is presented. All the results include the residual statics, resulting after two rounds 

of velocity analysis (the details of the overall prestack processing workflow have 

been described in Laakso, 2019). Comparison reveals that the SW tomostatics 

improved the consistency of both shallow and deep reflections with respect to the 

section without the long-wavelength statics and provided similar results with the 

standard refraction-based static solution. 

The most significant improvement can be observed with respect to the deep 

reflectors, indicated in Figure 6.29 by the red arrows. These, in Figure 6.29c 

become longer and more coherent compared to the no-statics case (Figure 6.29a), 

and similar to the case of refraction-tomography statics (Figure 6.29b). Of great 

interest are the shallow reflections (down to 1000 m depth), since they refer to the 

currently mineable depths and are related to the intrusions of diabase and tonalite-

diorite into the carbonatite ore body. Here, the effect of the SW tomostatics is again 

beneficial. Most of the shallow reflections (within the green boxes in all panels of 

Figure 6.29) appear more coherent in the section after the SW-tomostatics 

correction with respect to the no long-wavelength statics section and of similar 

quality compared to the section after the refraction-tomography statics.  

6.6 Conclusion 

We have shown that the SW tomostatics method is an effective approach to 

estimate the PV  statics. It combines SW tomography, which provides a high-

resolution SV  model, with the W/D method, which can efficiently estimate  , 

using only the SW content of exploration seismic data.  

Application of the method to the presented mineral-exploration datasets 

showed that it is as a valid alternative to the standard statics-estimation methods, 

particularly beneficial in presence of lateral heterogeneity. It led to stacked sections 

of, at least, equal quality to the ones resulting from the conventional BW approach, 

while the result was slightly improved with respect to the multichannel, lower-

resolution, SW direct statics.  
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In terms of processing-time requirements, the W/D process is efficient since it 

is completely automated and most its processes are simple data transformations, 

requiring simple and fast computations. The applied tomographic inversion 

algorithm is completely automated and optimized for exploration, since it estimates 

directly SV , skipping the phase-velocity map building stage of the common SW 

tomography schemes. The most demanding process is the extraction of the path-

average DCs, input to SW tomography, which can be largely accelerated by the 

automation option proposed in Chapter 5.  

Finally, although the case studies presented here regarded typical active-source 

seismic datasets, the method is applicable to passive-source data as well, requiring 

only an additional pre-processing stage. A fast and efficient pre-processing method 

of passive-source seismic data is presented in the Chapter 7.  
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Chapter 7 
 

Processing of passive seismic data 

7.1 Introduction 

In this Chapter, we present a fully-automated passive-source data pre-

processing method, to identify the portions of the data which contain useful SW 

information and estimate the azimuth direction of SW propagation, necessary for 

an accurate phase velocity measurement with the two-station processing. 

We apply the method to the ambient-noise dataset from the forest area of the 

Siilinjärvi mining site (Section 3.3). From the detected windows, we extract the 

DCs and invert them, together with DCs extracted from active data (Da Col et al., 

2020), to retrieve a high-resolution model in a wide depth range.  

Moreover, we develop a workflow to optimize the retrieval of seismic 

reflections with passive seismic interferometry. Its basis is the illumination 

diagnosis (Vidal et al., 2014), used to isolate the time windows which contain useful 

BW signal and to perform the interferometry only on these windows. The method 

is applied on the portion of the same data recorded along lines SM2 and SM3 

(Figure 2.8).  
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7.1.1 Overview of passive-source SW methods 

Passive-seismic methods have proven to be valuable exploration tools since 

they can be used to investigate the subsurface without the utilization of active 

seismic sources. As a result, they are cost-effective and environmentally friendly. 

Moreover, they allow exploration in areas where the use of active sources is 

logistically inconvenient or restricted by safety regulations. 

Compared to BW methods, typically used for resource-exploration, SW 

analysis is more attractive for passive investigations, since ambient seismic noise 

is typically dominated by SW. Moreover, the SW signal contained in ambient noise 

is usually of lower frequency (longer wavelength), with respect to the one produced 

by active sources which, in the context of SW analysis, allows deeper investigation. 

For this reason ambient-noise SW tomography is widely used as the primary 

investigation tool for the characterization of the deep structures of the earth in 

regional to continental-scale applications (Ritzwoller & Levshin, 1998; Kennett & 

Yoshizawa, 2002; Shapiro & Campillo, 2004; Sabra et al., 2005; Yao et al., 2006; 

Yang et al., 2007; Lin et al., 2009; Bao et al., 2015). In the field of natural-resource 

evaluation, passive SW tomography is mainly used for the characterization of deep 

geothermal reservoirs (e.g., Lehujeur et al., 2017; Martins et al., 2020; Planès et al., 

2020), while promising examples have shown its potential also in hydrocarbon 

(e.g., Bussat & Kugler, 2009) and mineral (e.g., Hollis et al., 2018; Lynch et al., 

2019) exploration.  

Apart from SW tomography, passive-source data are used also in the scheme 

of MASW for various applications, such as engineering investigations (Park et al., 

2019) and site characterization (e.g., Rahman et al., 2016). Often, the combination 

of active and passive measurements is preferred, to retrieve wide wavelength 

coverage, increasing the investigation depth (e.g., Yoon & J. Rix, 2004;  Luke et 

al., 2008; Comina et al., 2011).  

The use of noise for the extraction of the DCs is different from the analysis of 

active-source data (see Chapter 2), since the location of the source with respect to 

the receivers is unknown. It has been shown that under the assumption of a 

spatially- and temporally-diffuse noise-field, the source position can be disregarded 

during processing since, if a long enough time window is used, off-line propagation 

phenomena will eventually average out (Campillo, 2006; Gouédard et al., 2008). 
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Nevertheless, these assumptions are rarely met entirely and usually the SW content 

of noise presents directivity (e.g., Roux, 2009; Le Feuvre et al., 2015).  

To optimize the phase-velocity estimation, the direction of propagation of SW 

should be estimated prior to the DC extraction and only receivers in-line with this 

direction should be used for two-station processing. A common approach to 

estimate both the phase velocity and the direction of the energetically dominant 

event with multichannel processing, is is to deploy an areal receiver geometry and 

process the data with a beamforming technique. A commonly used method is the 

frequency-domain beam-forming (FDBF) of Zywicki (1999), described in detail in 

Section 2.3.4, but other similar tools can be found in literature (e.g., Park et al. 

2004). To estimate the phase velocities with the two-station method,  Roux (2009) 

performs beamforming on the data recorded by a network of 3C receivers to 

compute the SW azimuth. A rotation of the 3C data from different receiver pairs is 

performed towards the identified azimuth, and the rotated data are processed with 

seismic interferometry. 

Here we present a fully-automatic pre-processing scheme suitable for the 

extraction of DCs from passive-source data with the two-station method. Our 

method detects the time windows of the entire record dominated by SW and 

estimates the SW propagation direction using the FDBF technique. The detected 

windows and their corresponding azimuths are used in the two-station processing 

(Chapter 5) to extract the DCs only from receiver pairs aligned with the estimated 

azimuth.  

7.2 Pre-processing scheme for SW analysis 

The main idea of our method is that if a SW event, originating from a specific, 

unknown, location, is recorded at a specific time window, it will be energetically 

dominant in a wide frequency band and it will present traveltimes (velocity), 

characteristic of SW, allowing its detection. To avoid having windows capturing 

more than one SW arrivals, a check is performed to ensure that a recurrent dominant 

azimuth is measured in a wide frequency band, while a quality-control is performed 

to ensure that only the highest-quality SW data are considered. 
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7.2.1 Description of the method 

An overview of the method is given in Figure 7.1. As a first step, the raw noise 

record is split into short time windows, to be processed separately. Since our goal 

is to find the windows which carry characteristics of SW only, the length of each 

window should be long enough to capture possible SW arrivals to all the receivers, 

but short enough to isolate them from other events (additional SW arrivals or other 

events such as BW, coherent noise etc.). A priori information on the expected phase 

velocities in the area can be useful for the selection of the proper window size.  

Each window is transformed into the f k−  domain with the FDBF, which 

computes the power-spectral density ( , )P f k  of the signal, as a function of 

frequency and of the vector of the xk  and yk  wavenumbers, k . The value of 

( , )P f k  represents the frequency and wavenumber distribution of the energy of the 

windowed signal. Its maxima at each frequency are located at the xk  and yk  values 

of the dominant event in the record.  

To check whether the dominant event is a SW arrival, we  pick the maxima of 

the ( , )P f k  amplitude ( , )PA f k  at each frequency if , and use their corresponding 

xk  and yk  coordinates ( max
,x ik , max

,y ik ) to compute the wavenumber magnitude:  

 ( ) ( )
2 2max max

, ,x i y ii
k k k= +  (7.1). 

The velocity of the dominant event is then computed as  

 
2

i
i

fV
k


=  (7.2) 

We compare the computed velocity with an envelope of the expected SW phase 

velocities in the area, a “dispersion region”, frequency by frequency. If a 

satisfactory portion (larger than a pre-defined “cut-off” criterion) of the computed 

iV  values fall within the “dispersion region”, the panel is considered as SW-

dominated. If not, the window is considered dominated by other kinds of events and 

is disregarded from further processing. The used “cut-off” criterion is a compromise 

between the number and quality of the retrieved DCs but, given the long records 
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usually acquired in passive surveys, strict criteria may be applied, to accept only 

the highest-quality SW signal without jeopardizing the retained information. 

 

 
Figure 7.1: Scheme of the proposed SW pre-processing workflow of passive-

seismic data. 

 

For the SW-dominated windows, we use the max
,x ik  and max

,y ik  values to compute 

the direction of SW propagation. The direction is computed only at the frequencies 

where the signal is highly energetic, to ensure that we only measure the direction 

of SW and not of other events which might be dominant in a limited frequency 
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band. To do so, we only use the frequencies jf  at which ( , )PA f k  presents peaks 

and compute the corresponding azimuth as: 

 
max
,1

max
,

tan j y
j

j y

k
k

 −
 

=   
 

 (7.3). 

Since SW arrivals, originated by different azimuths, might be dominant at 

different frequencies, several values of j  might be estimated. To assess whether 

the window contains a coherent SW event (coming from one direction), we evaluate 

the occurrences of j  and check whether the same j  has been measured, at least 

in half of the jf  frequencies. If not, we consider the window unsuitable for the DC 

estimation and disregard it from further processing. If a recurrent (in at least half 

the dominant frequencies) j  appears, the window is considered suitable, and it is 

saved along with its j , to be used as input to the DC extraction with the two-station 

method (Chapter 5).  

7.3. SW analysis of the passive-seismic dataset from the 

Siilinjärvi mining site 

The passive- and active-source dataset, acquired in the forest area of the 

Siilinjärvi mining site, is described in Section 3.3.3. The purpose of recording both 

active and passive data was to retrieve SW information on a wide wavelength range, 

to be used with SW tomography for the estimation of a high-resolution model in a 

wide depth range, possibly indicating the mineralization target.  

Details on the processing and of the active-source data can be found in Da Col 

et al. (2020). In total a number of 433 DCs were extracted, covering the entire area. 

The DCs presented frequencies in the range of 5.5 Hz and 49.5 Hz, corresponding 

to wavelengths between 32 m and 672 m. Here we present the processing applied 

to the passive-source data and the tomographic inversion of the combined active-

passive DC set. 
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7.3.1. Pre-processing of the data 

The 1-minute SEG-Y files of the 13-day ambient-noise record were split into 

2-s windows. This window length was considered adequate, given that the 

minimum phase velocity estimated in the area from our active SW tomography was 

approximately 1650 m/s and the maximum distance between the receivers was 

slightly larger than 2000 m. In total 334880 windows were extracted.  

The spectral computation with the FDBF method was performed in a frequency 

range between 2 Hz - 20 Hz, since our target was to extract SW DCs in the low-

frequency bands, which were not sufficiently covered by the active-source DCs 

(only 8% of the active-source DC had a minimum frequency lower than 6.2 Hz). In 

Figure 7.2, we demonstrate the application of FDBF process on one of the 2-s 

windows. In Figure 7.2a, we show examples of the f −k  spectra computed for 

different frequencies, plotted against xk  and yk . The spectral maxima were picked 

at all frequencies and their amplitude values, ( , )pA f k , are plotted in Figure 7.2b.  

The xk  and yk  coordinates of the spectral maxima were used to compute, at 

each frequency, the wavenumber magnitude k , according to eq. 7.1. The velocity 

was computed from the estimated k  at each frequency, according to eq. 7.2, and 

is plotted in Figure 7.2c. In the same figure, we plot in red, the “dispersion region”, 

i.e., the range of the expected phase velocities, which was set based on the velocities 

of the active-source DCs. For this example, 85 % of the picked data points had a 

velocity within the dispersion region, and the window was considered dominated 

by SW.  

The frequencies of the locally maximum values of the spectral amplitude (peak 

frequencies) were identified and are highlighted by the circles in Figure 7.2c. The 

azimuth was computed only at those frequencies, to ensure that only SW are 

examined. The azimuth computation is schematized in the panels of Figure 7.2a 

which correspond to the peak frequencies, i.e., the panels highlighted with the 

rectangles of the same color-coding as their peak frequencies in Figure 7.2c.  

The histogram of Figure 7.2d depicts the occurrences of the estimated azimuths 

at the peak frequencies. It can be observed that the azimuth of 240o was estimated 

for half (3 out of 6) the peak frequencies, and therefore the signature of the dominant 
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SW event was considered coherent. This azimuth was assigned to the specific time 

window, which was saved for further processing with the two-station method.  

 
Figure 7.2: a) f −k  spectrum computed at different frequencies. b) Amplitude 

( , )PA f k  at each frequency. The circles indicate the peak values. c) Velocities at 

each frequency. In red, the “dispersion region”. d) Distribution of the SW 

propagation azimuths.  



 

225 
 

 

The same process was repeated for all the time windows of the dataset. The 

results showed that 25691 windows contained dominant SW signal and the 

corresponding azimuth was estimated. The total number of SW occurrences 

compared to the number of 2-s windows of each day is shown in Figure 7.3a, while 

the histogram of all the azimuth directions is reported in Figure 7.3b.  It was found 

that a cluster of 16272 events originated at an azimuth between 200° and 240° 

(according to the reference system shown in Figure 7.3c), while a second cluster of 

6505 events was found at an azimuth of 42° - 60°.  

 
Figure 7.3: a) Analyzed 2-s windows (orange) and 2-s windows containing SW 

signal (blue) for each recording day. b) SW occurrences for each azimuth. c) Map 

of the array with indication of the azimuth reference system. In red, the receivers 

used in Figure 7.4. 

7.3.2 Extraction of the SW DCs from the noise time-windows  

For the extraction of the DCs we used the method described in Chapter 5. The 

only difference with respect to the active-source data processing shown in Chapter 

5 was that, instead of active-shot gathers, we used as input the individual time 

windows which were found as SW dominated. We identified, for each time 

window, all the receiver pairs aligned with the dominant azimuth and performed 

the cross-correlation matrix computation for each one of them. For each pair, the 

matrices computed from all the windows were stacked, to increase the S/N and, in 

the end, only one DC was (semi-automatically) picked on the stacked cross-

correlation matrix.  
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Figure 7.4: a) Example stacked cross-correlation matrix and picked DC (black). b) 

In black, the picked DC of (a), and in red, the active-source DC. DCs from the 

passive (black) and active (red) data in the c) frequency – phase velocity domain 

and, d) phase velocity – wavelength domain. 

 

In Figure 7.4a, we show, as an example, the stacked cross-correlation matrix, 

computed for the receiver pair highlighted in red in Figure 7.3c. In Figure 7.4b, we 

compare the same DC in the wavelength – phase velocity domain with the DC 

retrieved from the active data, for the same pair. The two DCs almost overlap in the 

wavelength region between 110 m – 320 m, showing a continuous trend and 

matching phase velocities, proving that the DCs from the ambient-noise data can 

be considered reliable.  
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Figure 7.5: a) Azimuth and b) path-length distribution, of the DCs from the 

ambient-noise dataset. 

 

In total, 1473 DCs were picked and are plotted in black in Figure 7.4c, in the 

frequency-phase velocity domain and in Figure 7.4d, in the phase velocity-

wavelength domain. The distribution of the path azimuths of all the DCs is shown 

in Figure 7.5a. It can be observed that although we observed peaks in the estimated 

azimuths around 200°- 240° and 42° - 60° (Figure 7.3b), this did not translate to 

corresponding peaks in the DC azimuth coverage. Instead, the distribution of DC 

azimuths is rather homogeneous, apart from a peak in the 150° and 330° direction. 

This was due to the fact that, for the extraction of the DCs, the cross-correlation 

matrices, computed for the same receiver pair and different time windows, were 

stacked, and only one DC was extracted for each receiver pair.  

Moreover, due to the random geometry of the receivers, several receiver pairs 

with different path lengths existed at the same azimuths and, therefore, a wide range 

of path lengths was included in the DC set (Figure 7.5b).  

The curves from the passive-source data show similar trends with the 433 

active-source DCs (red in Figures 7.4c and 7.4d), but they are characterized by 

longer wavelengths. In fact, the maximum wavelength of the passive-source DCs 

(1200 m, reached by 14 DCs) is nearly double the one of the active-source curves. 

We consider the long wavelengths reliable since the passive-source DCs are 

consistent among each other, in their entire wavelength range. This can be observed 

in Figure 7.6, where we plot the spatial DC coverage at different wavelength ranges, 

indicated in the title of each panel. The curves present consistent lateral velocity 
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variability along the entire investigation area and at all wavelengths. The DC 

coverage is nearly full at all locations and wavelengths between 81 m and 700 m, 

while it remains dense also in the wavelength intervals between 61 m and 80 m and 

between 801 m and 1000 m. Nevertheless, the coverage at wavelengths between 40 

m and 60 m was almost zero (Figure 7.6a) since our processing involved only low 

frequencies and the highest-frequency information was retrieved from the active-

source processing. In Figures 7.7a, 7.7b and 7.7c we show the coverage achieved 

with the combination of active- and the passive-source DCs at wavelength ranges 

40 m – 60 m, 61 m – 80 m and 81 m – 100 m. Compared to the corresponding 

panels of Figure 7.6 (Figure 7.6a-7.6c), the increase in the DC coverage is apparent.  
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Figure 7.6: Spatial coverage maps of the passive-source DCs. The lines are the 

intra-receiver paths of the DCs at different wavelength ranges, indicated in the 

panel-titles. The colorscale indicates the average phase velocity of the DCs, given 

in the colorbar.  
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Figure 7.7: Spatial coverage maps of the combined active- and passive-source DC 

sets, between a) 40 m – 60 m, b) 61 m – 80 m, c) 81 m – 100 m.  

7.3.3 Tomographic inversion of active- and passive-source DCs  

We performed a tomographic inversion of the combined set of active- and 

passive-source DCs, using the method described in Chapter 6. The properties of the 

initial pseudo-3D model, selected for the inversion, are presented in Table 7.1. The 

initial SV  and   selection was based on the logging information presented in 

Malehmir et al. (2017). In particular, we used the information from well R628, 

which was the closest to the forest area. For the initial , the assumed values were 

in the ranges of the ones estimated by the W/D process along line SM1 (Figure 

5.15), which is located northern to the forest area. According to Lanaro & 

Fredriksson (2005), the selected values are reasonable for the lithology of the site.  
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Table 7.1: Properties of the initial model used active SW tomography in the 
Siilinjärvi forest area. 

 Active SW tomography initial model – Forest area 
Layer SV  (m/s)   (kg/m3)  (-) h  (m) 

1 2200 2700 0.27 30 
2 2300 2700 0.27 60 
3 2400 2700 0.27 60 
4 2600 2700 0.25 60 
5 2800 2700 0.25 60 
6 3000 2700 0.25 60 
7 3200 2700 0.25 60 

Halfspace 3500 2700 0.25 - 
 

For the spatial discretization, we assumed 420 uniformly distributed grid 

points, at 44 m from each other. After testing different vertical-discretization 

dimensions, we concluded that the best DC fitting was achieved assuming 7 layers, 

reaching a maximum depth of 480 m. 

We used a lateral SV  constraint of 150 m/s for the first four layers and of 500 

m/s for layers 5-7. These were found to be the strongest constraints which did not 

increase the inversion misfit.  

The final SV  model, obtained after 12 iterations, is shown in Figure 7.8, as 

slices of SV  at different depths. The model presents a clear mapping of the low- SV  

values (around 2000 m/s and 2800 m/s), which have been attributed to the 

carbonatite ore formation (Da Col et al., 2020). In addition, down to 240 m, the 

model presents several high- SV  (around 3500 m/s) anomalies, which have been 

attributed to the intrusions of diabase dykes in the ore body. At 240 m depth (Figure 

7.8d), the shape of the high-velocity anomalies is preserved but the model is 

characterized by higher SV  (up to 4000 m/s). The layers between 330 m and 480 m 

(Figures 7.8e-g) present a greater extent of high- SV  zones (3300 m/s – 4000 m/s) 

and lower lateral variability. 
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Figure 7.8: SV  model. Velocity slices at a) 30 m, b) 90 m, c) 150 m, d) 240 m, e) 

330 m, f) 420 m and, g) 480 m. 
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Figure 7.9: a) Percentage misfit of the theoretical DC data points with respect to 

their corresponding experimentally retrieved DC points. b) Map of the Normalized 

RMS misfit of the DCs along the analysed two-station paths.  

 

The histogram of Figure 7.9a shows the misfit (%) between the experimental 

and theoretical (computed for the inverted model) DC points. In Figure 7.9b, we 

present the mean RMS misfit of each DC (path). It can be observed that the misfit 

is lower than 12.5 % for more than 75 % of the data points, and there are no zones 

over the area with concentration of high misfits.  

The checkerboard model was created by applying a ±8% velocity perturbation 

on the inverted model of Figure 7.8, according to the pattern shown in Figure 7.10a. 

The SV  perturbations obtained after the inversion are presented in Figure 7.10b. It 

can be observed that the velocity perturbations at depths 30 m - 330 m were well 

reconstructed, apart from the south-western portion of the slice at 90 m, which we 

indicate with the red box in Figure 7.10. At depths 330 m – 480 m, the quality of 

the inverted checkerboard model reduces, especially at 330 m depth, where the 

perturbations in a southern portion of the model (blue in Figure 7.10) appear 

smoothened. Nevertheless, the dimensions of the rest of the perturbation blocks at 

all the other layers are clearly identified in the inverted checkerboard model.  

Therefore, it can be concluded that the resolution of the experimentally-

retrieved SV  model of Figure 7.8 equals, at least, the size of the perturbation blocks 

of Figure 7.10a, except for the zones indicated by the red and blue boxes. 
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Comparing the resolution with the dimensions of the velocity anomalies of the 

inverted model of Figure 7.8, we conclude that all of them are resolvable.  

 

 

Figure 7.10: a) “True” and b) inverted checkerboard velocity perturbation. The 

boxes indicate velocity perturbations which could not be accurately recovered. 
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Figure 7.11: a) 3D view of portion (240 m - 420 m) of the final tomographic model. 

b) Comparison of the slices in (a) with the geological bodies of interest. The 

diabase-dyke model pre-dates the seismic survey and has been built by Yara based 

on surface geological and borehole data.  
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7.3.4 Discussion 

The presented method allowed to efficiently detect and isolate the portion of 

the 13-day ambient-noise dataset which contained coherent SW signal and estimate 

its azimuth direction.  

Although the azimuths estimated for the SW occurrences were distributed, most 

of the occurrences originated at an azimuth between 42° - 60° (Figure 7.3b). These 

were probably related to the factory of the mine, located towards the NE of the 

forest area, where the apatite concentrate is processed on site to produce phosphoric 

acid and fertilizers. The occurrence peaks at 200° - 240°, were probably caused by 

a workshop, located W-SW of the forest area, where industrial machines are 

produced and tested.  

Nevertheless, the azimuth coverage of the DCs (Figure 7.5a) was not affected 

by these peaks and was fairly uniform. The DCs presented similar phase velocities 

with the curves estimated from the active-source data in their common frequency 

band (Figure 7.4a), which serves as a validation of our estimation. The passive-

source DCs contained slightly lower-frequencies (at minimum 3.5 Hz) with respect 

to the active-DC frequencies (at minimum 5.5 Hz), which due to the high phase 

velocities in the area, increased significantly the measured wavelengths 

(approximately 1200 m in the passive-source DCs, compared to 672 m in the active-

source ones). 

As a result, the inverted SV  model was deeper than the one estimated from the 

active SW tomography (Da Col et al., 2020), and reached to a depth of almost half 

a km. The model presented a clear image of the shallowest portion of the 

mineralization, known (see Section 3.3.2) to be characterized by lower SV  

compared to the granite-gneiss host-rock and to the diabase-dyke intrusions. Such 

low velocities were clearly mapped in our model and are indicated by the magenta 

arrow in Figure 7.11a, where we plot slices of the SV  model at different depths.  

In the same figure, the brown arrow points to a high- SV  zone, enclosing the 

low- SV  carbonatite area. A comparison of our model, with the pre-existing 

geological model (Figure 7.11b), built by the owning company (Yara), proves that 

this high- SV  region correlates well with the geologic model of the granite-gneiss 

(brown). The diabase dykes, shown in black in the geological model, are recognized 
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in the SV  model as linear high-velocity anomalies, cross-cutting the low-velocity 

carbonatite complex. Finally, at all depths, an additional high- SV  anomaly (black 

arrow in Figure 7.11a) was found in the tomographic model. This anomaly could 

be indicative of a, so far unmapped, horizontal diabase dyke. 

Following the low velocities of our SV  model, the existing geological model of 

the carbonatite ore body was prolonged towards the south. The new 3D model of 

the mineralization is presented in purple in Figure 7.11b. Its southern extension is 

wider and deeper than originally assumed and can be used to guide future drilling 

efforts and to plan the new open pit in the area.  

Due to the large size of the dataset (almost 800 GB), the pre-processing 

computations required around 3 weeks, running in parallel on a 10-core 

workstation. However, the processing was automatic and did not require the work 

of an operator. Including only the accepted time windows the dataset was 

downsized to approximately 61.5 GB. The time required for the two-station 

processing, stacking and semi-automatic DC picking was approximately 1 week, 

while the tomographic inversion required approximately 6.5 hours on the same 10-

core workstation. 

7.4 Illumination diagnosis on the Siilinjärvi passive-seismic 

dataset for the retrieval of BW reflections 

Seismic reflections can be extracted from passive-source data with seismic 

interferometry, which estimates the Green’s function between pairs of receivers as 

if one of the receivers would be a source. Although this method has been 

successfully applied to ambient-noise and earthquake data for the extraction BW 

(e.g., Draganov et al., 2009), the typical dominance of SW in the ambient-noise 

records poses limitations to the retrieval of high-quality reflections. A possible 

solution, to enhance the retrieval of BW, and at the same time reduce the 

computational cost of the processing stage, is to use only the portion of the records 

where BW are dominant, applying the illumination diagnosis method proposed by 

Vidal et al. (2014). Here, we optimize and apply illumination diagnosis on the 

ambient-noise data recorded along lines SM2 and SM3 (details in Section 3.3) at 

the Siilinjärvi mining site. 
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7.4.1 Description of the method 

The workflow is schematized in Figure 7.12. It uses as input ambient-noise data 

recorded along two perpendicular lines (denoted as line A and line B in Figure 

7.12). This is done to ensure that a SW event, travelling in a direction perpendicular 

to the seismic line is not misinterpreted as a BW, due to its higher apparent velocity. 

The records from both lines are split in shorter time windows, the length of which 

is selected as a compromise between computational costs and ability to isolate 

individual reflections, based on the expected BW traveltimes on the site. 

 
Figure 7.12: Workflow representation of the proposed method.  
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To select the optimal pre-processing, which will increase the possibility of 

detecting the reflections with the illumination diagnosis and evaluate its 

performance, a sample of the data for which the BW dominance is known a priori 

is used for testing (green in Figure 7.12). Once the optimal parameters have been 

identified, they are used to process the entire dataset (blue in Figure 7.12).  

The retrieval of reflections is based on seismic interferometry, a method which 

allows to estimate the Green’s function ( ( , , )A BG tx x ) between two receivers, 

located at Ax  and Bx , as if there were a source at one of them (e.g., at Ax ). 

Assuming sources at positions sx , this is possible with the following expression of 

seismic interferometry with cross-correlation: 

 ( ) ( )0
1{ ( , , )} ( ) , , , ,A B A S B S S

D

G t S t u t u t d
c



   − x x x x x x x (7.4), 

where it is assumed that the sources have the same autocorrelation function ( )0S t , 

  denotes the real part,   is the density and c  the velocity of the medium at and 

inside the source boundary D , ( ), ,A Su t−x x  is the (time-reversed) wavefield from 

a source at sx  observed at Ax  and   denotes convolution.  

For ambient-noise sources, assuming that they have the same autocorrelation 

function 0 ( )S t , the Green’s function can be retrieved, according to Wapenaar & 

Fokkema (2006), as: 

 ( )  ( ) ( )0, , ( ) , ,A B A BG t S t u t t   − x x x x  (7.5), 

where ( ),Au t−x  is the (time-reversed) wavefield from the uncorrelated noise 

sources observed at Ax , and   stands for the ensemble average. The ensemble 

averaging in field observations can be substituted from the summation of discrete 

time windows, as long as the overall recording time is long. Therefore, eq. 7.5 can 

be substituted from  

 ( )  ( ) ( )( )0, , ( ) , ,A B A B i
i

G t S t u t t   − x x x x  (7.6), 
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where i  stands for the separate time windows.  

When eq. 7.6 is applied to receivers at variable Bx  and a constant virtual-source 

at Ax , a correlated common-source panel can be retrieved: 

 ( ) ( ) ( ), , , ,i
A B i A i BC t u t u t= − x x x x  (7.7). 

The illumination diagnosis method of Vidal et al. (2014), makes use of the fact 

that the events of ( ), ,i
A BC tx x  that pass through 0 st =  and the virtual-source 

position Ax , contain the illumination characteristics of the source, i.e., all the 

necessary information to conclude whether a noise source emits mainly SW or BW. 

According to van Der Neut (2013), these events are called the virtual-source 

function.  

The method of Vidal et al. (2014) studies the virtual-source function based on 

the  slant-stack transform of the common virtual-source panel of eq. 7.7 at 0 st =  

and the location of the virtual source Ax : 

 ( ) ( ), , ,i i
A B A B A BC p C p d= −  x x x x x x  (7.8), 

where p  is the slowness. Eq. 7.8 is computed for all panels, and every time, a search 

is performed for the slowness 
A

ipx , for which the source function takes its maximum 

value, i.e., the slowness of the dominant event in the panel: 

 ( ) ( )
max

, ,
A

i i i
A AC p C p=xx x  (7.9). 

Once this has been performed for every panel, the absolute values of 
A

ipx  for 

which eq. 7.9 was satisfied, are compared with a pre-defined limit slowness limp , 

representing the threshold between the expected SW slowness from the one of BW. 

Therefore, each panel undergoes the following automatic check: 
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(7.10). 

where R  is the maximum acceptable ratio between the maxima of ( ),
A

i i
AC pxx  

which are lower, and the ones which are higher than limp . This means that if a noise 

panel has a dominant slowness 
A

ipx , which is larger than limp ,  it is automatically 

rejected from the retrieval of the reflection response. Moreover, a panel is rejected 

also if it has a 
A

ipx  lower than limp , but if less than R  maxima of ( ),
A

i i
AC pxx  

were characterized by a slowness lower than limp . This way, not only the panels 

dominated by SW are rejected, but also the panels which are dominated by BW but 

have a high content of SW energy.  

In Figure 7.13, we show an example of this process to line SM3. In Figure 

7.13a, we show a correlated panel, computed by cross-correlating the trace that was 

selected as a virtual source (located at the intersection of lines SM2 and SM3, 

shown as a green star in Figure 7.2) with all the other traces of the line. We indicate 

the position of the virtual source at 0t =  s as a black dot, while the slope of the red 

line corresponds to a slowness of 45 10  −−   s/m, used as the first trial slowness for 

which the slant stack at 0t =  s was computed.  

The corresponding normalized slant-stack result is shown as a dot in Figure 

7.13b. In Figure 7.13c, the red lines indicate all the used trial slownesses, and their 

corresponding slant-stack results are shown in Figure 7.13d. The green lines in both 

figures indicate the limit slowness, chosen as 42.5 10  − s/m, which was slightly 

higher than the SW velocity of the DCs extracted for the site (Figure 7.4c). The 

slowness of 43.77 10  − s/m was found to provide the highest slant-stack result 

(magenta star in Figure 7.13d). It is higher than the limit slowness of SW (green 

lines in Figure 7.13c) and, therefore, the panel was estimated to be dominated by 

SW and was disregarded from seismic interferometry. 
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Figure 7.13: a) Example correlated panel from line SM3. As dot, the virtual-source 

position. The line corresponds to 45 10  p −= −   s/m. b) Normalized slant stack, 

along 45 10p −= −   s/m and 0 st = . c) and d), same as (a) and (b), but for 

slownesses between 45 10  −−  and 45 10  −  s/m. In green, the limit of  42.5 10  −  

s/m. In (d), the star shows the slowness of the maximum slant-stack result.  

 

In practice, the dominant slowness is computed for all the noise panels and for 

both perpendicular lines and, for each line, the panels which are estimated as BW-

dominated by the check of eq. 7.10, are flagged. In the end, only panels which are 

flagged as BW-dominated in both lines are considered for the interferometry, i.e., 

for the summation of eq. 7.6. 
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This stage is performed only for one virtual-source position ( Sx  in Figure 7.12), 

and then, the correlated panels corresponding to other virtual sources are computed 

and stacked, only for the time windows identified in the illumination diagnosis.  

7.4.2 Application to the dataset 

We analyse the data recorded by the 45 and 62 receivers, spaced at 50 m, along 

lines SM2 and SM3, respectively. It was decided to perform our analysis on 10s-

long time-windows of the noise record, since these provided the best compromise 

between the retrieval of high-quality BW energy and computational cost. We 

computed the corresponding correlated panels, using as virtual sources the receivers 

located at the intersection of lines SM2 and SM3.  

In Figure 7.14, we show samples of amplitude spectra, computed for 300 

randomly selected panels from both lines. It can be observed that significant levels 

of energy at a frequency band that could be related to BW (20 Hz – 80 Hz) were 

detected. Nevertheless, the raw correlations clearly suffered from high-amplitude 

noise (for instance the amplitude spikes that appear around 52 Hz – 57 Hz).  

 
Figure 7.14: Amplitude spectra computed for 300 randomly selected 10-s noise 

panels of line SM2 (top) and SM3 (bottom) and stacked for all traces.  
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Table 7.2: Time periods during the Siilinjärvi ambient-noise acquisition 

period, when military jets passed near to the acquisition area. 

 
 

To design the pre-processing strategy for optimizing the retrieval of BW, we 

performed tests on windows which “captured” the passing of military jets, which 

occurred at known time periods during the acquisition and were expected to contain 

significant BW energy, due to the plane waves generated by the jets. In Table 7.2, 

we present a list of these time periods, and in Figure 7.15a and 7.15b we show, 

respectively, the 10-s records of line SM2 and SM3 which captured the passing of 

a jet on 25/09/2018 at 11:27 am (highlighted in red in Table 7.2). In both records, 

a high-amplitude event is clearly visible.  

The corresponding raw correlations are plotted in the top panels of Figures 

7.16a and 7.16b, respectively, while the bottom panels show the corresponding 

stacked amplitude spectra. The two panels present high levels of noise, which 

hinders the identification of the wave, particularly for line SM3 (Figure 7.15b). In 

Figures 7.16c and 7.16d, we respectively present the same correlations (top) and 
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their spectra (bottom), after applying a band-pass filter (20 Hz – 80 Hz) and 

deconvolving using a short window extracted around t=0 s from the autocorrelated 

virtual-source trace.  

The quality of the event of interest (highlighted in blue in Figures 7.16c and 

7.16d) was significantly improved, and the event can be easily recognized in both 

panels. Therefore, it was decided to apply the same filtering on the entire dataset, 

prior to the illumination diagnosis. 

 
Figure 7.15: Raw noise time-window, capturing the passing of a military jet that 

occurred on 25/09/2018 at 11:27 am, recorded on line a) SM2 and b) SM3. 
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Figure 7.16: Correlated panels (top) and amplitude spectra (bottom) of line SM2 a) 

raw and c) filtered, and SM3 b) raw and d) filtered. 
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We tested the performance of the illumination diagnosis by assessing its ability 

to identify the panels of Figures 7.16c and 7.16d (labelled as “1” in Figures 7.17a 

and 7.17b, respectively) as BW-dominated and discriminate them among five 

additional, randomly selected 10-s panels, numbered from “2” to “6” in Figures 

7.17a (line SM2) and 7.17b (line SM3). The discrimination result is given in Figures 

7.17c and 7.17d, for lines SM2 and SM3, respectively. The crosses represent the 

slowness of the maximum-amplitude event in the p −  spectrum for each panel, 

and are compared with the threshold limp  (green lines in Figures 7.17c and 7.17d). 

Events with limp p  were characterized as BW (blue in Figures 7.17c and 7.17d) 

and the ones with limp p  were flagged as SW (magenta in Figures 7.17c and 

7.17d). These results show that only the panels of interest (labelled as “1” and 

highlighted by the red box in Figures 7.17a and 7.17b) were identified as BW-

dominated for both lines, while panel “4”, identified as BW-dominated only in line 

SM2, was excluded from further processing, proving the efficiency of the method. 

 
Figure 7.17: a) Test correlation panels for line a) SM2 and b) SM3. Illumination 

diagnosis on the panels of c) line SM2 and d) line SM3. In (c) and (d), the crosses 

highlight the dominant slowness. In blue, the panels dominated by BW, indicated 

by the red boxes in (a) and (b), and in magenta, the ones dominated by SW 
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Figure 7.18: Illumination diagnosis applied to the complete 13-day record along 

line a) SM2 and b) SM3. Blue corresponds to BW and magenta to SW. 

 

The results of the illumination diagnosis on all the correlated panels of the 13-

day dataset are given for SM2 and SM3 in Figures 7.18a and 7.18b, respectively. 

We highlight, in magenta, the maxima corresponding to SW and in blue, the ones 

corresponding to BW. Even though more than 97 % of the maxima corresponded 

to SW, we were able to identify 1366 noise panels with dominant BW along both 

lines. These were automatically extracted and used for reflection retrieval with 

seismic interferometry. 

In Figures 7.19a and 7.19b, we show, for line SM2 and SM3, the stacked 

correlated panels, which resulted after summing all the panels that were flagged as 

BW-dominated by the illumination diagnosis. Both panels show a consistent 

appearance of a reflective event at around 0.2 s (red arrow in Figures 7.19a and 

7.19b), which, considering that the PV  of the site is roughly 5000 m/s (Malehmir et 

al., 2017), approximates the two-way-time to the expected depth of the 

mineralization (around 1000 m). In Figure 7.19a, the magenta arrow indicates an 

additional event, probably related to a deeper reflector. In Figures 7.19b and 7.19d, 

we present the stacked sections retrieved from the analysis of the active-source data 

by McKevitt (2020) for lines SM2 and SM3. The sections confirm the presence of 
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reflective events at the times indicated by the passive interferometry, proving the 

validity of our preliminary result. Interferometry will be performed using all the 

receivers of the lines as virtual sources and the retrieved panels will be processed 

further to retrieve stacked sections.    

Figure 7.19: Stacked cross-correlation panel for a) SM2 (passive) and b) SM3 

(passive) and (reproduced from McKevitt, 2020), c) SM2 (active) and b) SM3 

(active). The arrows point to reflective events.  

 



 

250 
 

7.5 Conclusion 

We have presented a fully automatic pre-processing workflow for the 

estimation of the propagation direction of SW, which is necessary for the accurate 

estimation of the SW DCs from ambient-noise seismic data. The successful 

application of the workflow on the dataset from the Siilinjärvi mining site has 

proven that the use of passive-seismic data with SW tomography is a promising, 

cost-effective and environmentally friendly tool to characterize the subsurface, 

overcoming the need for active seismic sources. Since longer SW wavelengths are 

contained in the passive data, passive SW tomography can be used as a method to 

map, at least the shallowest portion, of the mineralization. Combination of active- 

and passive-source data, allows subsurface investigation in a wide depth range.  

In addition, passive-seismic interferometry is a good candidate for retrieving 

seismic reflections, even in the challenging environments of mineral exploration. 

Using time windows which contain dominant BW energy, it is possible to organize 

a customized pre-processing strategy and enhance the retrieval of BW from the 

entire noise record. Tests on noise panels and comparison with active-source 

stacked sections showed that the illumination diagnosis is a fast and reliable tool 

that can aid the retrieval of accurate BW reflections from ambient-noise data. 
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Chapter 8 
 

Conclusion 

8.1 Final remarks 

It has been shown that SW methods are valuable tools for mineral exploration. 

Contributing to the sparse scientific literature on SW analysis for complex hard-

rock settings, the thesis demonstrated that, not only hard-rock challenges can be 

tackled, but also that the results can be of great quality and significance if 

appropriate techniques are used. We showed that SW can be used to efficiently 

estimate shallow velocity models and static corrections, optimizing the imaging of 

the exploration targets and the planning of the mining activity. Moreover, the long 

wavelengths of SW, caused by the high seismic velocities of hard rock, allow to 

characterize portions of the mineralized bodies while, processing passive-source 

data, which usually contain longer wavelengths, permits even deeper investigation. 

Overall, the presented developments form a framework for an efficient, data-driven 

way of processing the recorded data, towards fast site investigations and convenient 

implementation of sophisticated analysis methods.  

The SW direct statics-estimation method, introduced in Chapter 4, overcomes 

the, common in hard rock, challenge of sharp lateral variations and retrieves the 

statics in a fast and computationally-efficient manner. The DCs are picked with a 

nearly-automatic tool and, thanks to the W/D method, they are directly transformed 

into SzV  and PzV  models, without the need of inversion. The method was validated 
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through comparison with a priori information for the 2016 2D dataset from the 

mining site of Ludvika and line SM1 from the Siilinjärvi mining site. In both cases 

the achieved investigation depth (100 m for Ludvika and 120 m for Siilinjarvi) was 

deeper than the known bedrock, and therefore adequate for the statics computation. 

The lateral resolution, defined by the minimum length of the spatial window used 

for the DC extraction (75 m for Ludvika and 100 m for Siilinjärvi), was also 

satisfactory since 92 % of the estimated statics for Ludvika were found in agreement 

to the standard BW statics and provided at least as good stacked sections. Therefore, 

the method can be considered as a valid, and possibly faster, alternative to estimate 

the statics, particularly useful when the retrieval of reliable BW traveltimes is not 

possible or is highly time-consuming. It can be used as a standalone tool or as an 

initial near-surface characterization method, whose outcomes help optimize further 

analyses. 

The SW tomostatics estimation method, presented in Chapter 6, integrating SW 

tomography with the W/D technique, is designed to estimate higher resolution SV  

and PV  models and statics. Applied to the Ludvika 2016 dataset, the method 

estimated the statics down to a depth of 90 m, achieving lateral resolution in the 

range between 60 m and 162 m (depending on the depth) while, for Siilinjärvi SM1, 

the maximum depth was 85 m and the lateral resolution was found between 40 m - 

280 m. In both cases, the resulting stacked sections were of similar quality with the 

ones obtained with standard BW statics, while the automatic two-station processing 

(Chapter 5) provided a convenient solution for picking the required DCs. Applied 

to the 2019 (3D) dataset from the Ludvika site, the automatic two-station processing 

estimated a set of more than 15000 DCs, densely covering the investigation area. 

Approximately 86 % of the curves were found similar by more than 90 % with DCs 

picked manually, which we considered as benchmark, while the automatic picking 

was faster by more than three times and did not require the operator.  

The SW pre-processing method to efficiently utilize passive-source data, 

presented in Chapter 7, is fully automatic and data-driven, and therefore, it can 

efficiently handle the large volumes of data recorded in passive-seismic 

acquisitions. The method, applied to the ambient noise dataset from Siilinjärvi, 

achieved a wide spatial and azimuth DC coverage with longer wavelengths (nearly 

double) than the DCs retrieved from the active data. Combined, the two sets of 
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curves, provided a tomographic SV  model, the lateral resolution of which was 195 

m down to 500 m depth. The model indicated the, so far unmapped, shallowest 

portion of the mineralization.  

Finally, we showed that using parts of the noise records for which the 

dominance of BW energy is known a priori, it is possible to optimize data pre-

processing and enhance BW retrieval from ambient-noise data. The pre-processing 

workflow allowed to apply seismic interferometry and retrieve reflections from the 

Siilinjärvi passive-source dataset, providing preliminary information on the 

mineralization depth-extension. 

The methodological tools presented in the thesis, although developed to address 

a specific problem, the optimization of the state-of-the-art seismic mineral 

exploration workflows, are all directly applicable to any kind of seismic 

measurements, from small-scale datasets recorded for engineering purposes, to data 

recorded for global seismology and to hydrocarbon-exploration seismic datasets. 

The automatic two-station processing and the automatic passive-source SW 

data pre-processing have been applied to extract DCs of the fundamental mode of 

Rayleigh waves, since no higher modes were found in our data. If higher modes 

exist, the picking code can prevent jumps among them since it automatically detects 

and rejectes discontinuities in the DC trends. Nonetheless, since there might be 

smooth energy transitions between the modes, their detection based on velocity 

jumps might not be sufficient. Therefore, pre-processing of the data (e.g., 

Dziewonski & Hales, 1972; Khosro Anjom et al., 2021) to isolate the modes prior 

to the two-station processing should be applied.  

 Two-station processing of other types of SW (e.g., Love waves, Scholte waves, 

Lamb waves, other guided waves) is also possible with the presented method while, 

with only minimal modifications, the automation tool can be applied to 

multichannel processing as well.  

The presented near- and far-field detection method and the outlier removal 

technique have been here used as parts of the presented automatic two-station SW 

processing scheme, but can be used also as standalone tools, to optimize any DC 

extraction method.  

To our knowledge, the thesis presents the first example of P-wave statics 

estimated fully from SW and the results were proven to be of high quality. This 

shows that, if no analog filters (including acquisition strategies) are applied during 
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reflection-seismic data acquisition, a great amount of information is contained in 

the recorded SW wavefield and, in the framework of an effective seismic 

exploration workflow, it should not be left unprocessed. Evidently, the acquisition 

can also be specifically carried out targeting SW and while in the first case the 

acquisition is designed to optimal reflected BW retrival and SW analysis must be 

adapted to acquisition layouts and parameters that may be non-optimal, in the 

second case the survey must be carefully designed to optimize spatial, azimuth and 

wavelength coverage. 

The results presented in this thesis have been included in the deliverables of 

Smart Exploration and have helped improve the existing knowledge on the ore-

deposit volumes at both presented sites, which are both of great significance within 

the EU. Our estimated statics and velocity models from the Ludvika mining site, 

which is one of the most important mineral-exploration sites in Sweden with great 

socio-economic relevance, have contributed to the delineation of the mineralization 

target and have indicated possible shallow weakness zones (shallow expressions of 

faults, fractured zones). This information is currently being used to assist the ore 

evaluation and planning of the new mining activity. 

The statics, velocity models and BW reflections estimated for the apatite 

mining site of Siilinjärvi in Finland, showed that the mineralization probably 

extends further than originally assumed, and will be used to decide future 

development strategies. Considering that this site is the only operating mine within 

the EU producing phosphorus, listed as one of the critical raw materials by the EU, 

also this result is promising towards the secure and sustainable future supply of 

significant mineral resources.  

8.2 Suggestions for future developments 

The proposed automatic two-station processing method is, in essence, an 

intelligent system to identify characteristic pattern of the DC from large volumes 

of data. A natural evolution of this method is the implementation of a Machine 

Learning (ML) approach, which can possibly further increase the fidelity of the DC 

pattern recognition. Our method could be used as a training and testing stepping 

stone for ML algorithms, as well as a benchmark to establish when/if such ML 

methods provide measurable improvement over our approach.  
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The SW direct statics method, proposed in Chapter 4, allows to obtain an 

estimate of the time-average velocities with minimal time requirements (less than 

two hours in the used 2D seismic datasets). Further developments could allow the 

implementation of the method into a real-time tool, to be used on-site, while 

acquiring the data. In the long term, such approaches could evolve into a new 

paradigm of data acquisition, where the measurement setup is optimized real-time, 

to improve the data quality. 

Finally, in our SW tomostatics approach (Chapter 6), the SV  model resulting 

from SW tomography was combined with the  from the W/D method, to obtain a 

PV  model. The same value of  was set constant in the initial model of the 

tomographic SV  inversion, to ensure that the SV  estimate is optimized, although  

has negligible influence. A further improvement of the SW tomostatics would be to 

simultaneously estimate SV  and , through a joint inversion of the two-station DCs 

and the W/D.  
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