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ABSTRACT

The thesis is divided in two parts showing applications of active and passive models, in which
the Lagrangian tracking of rigid fibers and slender swimmers can be employed to access to
flow properties, and to study a turbulent puff in order to access information on spreading of
virus-containing droplets.

The first part of the thesis addresses the measure of flow properties by means of slender
objects, i.e. rigid fibers. Two different strategies have been employed to model the fiber: first an
active model, a fully-coupled fiber described in terms of an immersed-boundary method, and,
second, a passive model, a one-way coupling where the fiber is described by the slender body
theory. After the characterization of the fiber inertia in terms of rotational Stokes Number, the
motion of the fiber is investigated for different classes of closed streamline flows, steady or time
dependent, two-dimensional or three dimensional. For sufficiently small Stokes, the fiber turns
out to be a proxy of the underlying flow by considering the velocity difference between the fiber
end points and the same difference relative to the underlying fluid velocity, both projected along
the direction normal to the fiber. Moreover, by composing an assembly of rigid fiber, the whole
flow gradient tensor can be accurately reconstructed by simply tracking the fiber assembly and
measuring suitable fiber velocity differences evaluated at the fiber ends.

Furthermore, it has been investigated the possibility to measure two points flow properties by
means of slender swimmers. A swimmer model, describing both pusher and puller swimmers,
has been proposed and validated in the Stokes limit finding excellent agreement. The slender
swimmer model has been exploited in a chaotic flow field up to a flow Reynolds number of
10, a swimming number ranging between zero and one and different swimmer inertia measured
in terms of a suitable definition of the swimmer Stokes number. The following results have
been obtained: (i) pusher and puller reach different swimming velocities for the same, given,
propulsive force, due to a different distribution of the vorticity within the wake. (i1) for a wide
range of flow/swimmer Reynolds numbers, both pusher and puller swimmers are able to sense
hydrodynamic signals with good accuracy.

The second part of the thesis is devoted to understand the role of the turbulence on the fate
of virus-containing droplets expelled during a human cough, modeled as a turbulent puff, under
realistic conditions. To this aim, high resolution DNS have been performed for the fluid flow
and humidity field, complemented by a passive Lagrangian solver for the droplet dynamics
including a dynamical equation for the evolution of the droplet radii modeling the evaporation-
condensation process. After having validated the turbulent puff against theoretical predictions,
the results show how a full account of turbulence is crucial to determine the fate of virus-
containing droplets. Then, the dependence of the results on the droplets initial size distribution
and different ambient humidity is investigated. As a further step, it is analyzed the dependence
of results on the airborne virus spreading on gender. Finally, the effectiveness of the barriers as
protection devices within indoor environment is investigated.

This study is clearly motivated by the recent pandemic situation due to COVID-19 infection,
although it is valid for all the infections where the main route of transmission is via airborne
virus-containing droplets, by contributing to select optimal strategies of protection and mitiga-
tion of the airborne infection transmission, within indoor and outdoor environments.
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Chapter 1
Introduction

The study of the physical flow properties is an interesting and widely addressed research topic.
The importance range from small-scale problems, such as suspensions dynamics [1] or flow
in porous media [2] to large-scale problem in meteorology and oceanography[3l]. In recent
years, efforts have been made to introduce novel techniques able to access flow properties in a
more detailed and convenient way based on Lagrangian tracking of fibers, both numerically and
experimentally [4, 5, 6]. Moreover, experimental analyses have outlined the potential of using
dispersed rigid rods as a new paradigm to measure flow properties in turbulence [7], since their
tumbling rate is found to be approximately equal to the characteristic time of turbulent structures
of comparable size (provided inertia does not affect the fiber dynamics [8, 9]). Also the case of
flexible fibers has been recently addressed both experimentally [10] and numerically [S]. One
of the main findings is the identification of a flapping regime where the fiber deformation is
slaved to turbulent fluctuations, enabling to quantify their statistical properties by measuring
only the distance and velocity difference between the fiber free ends. Further attempts of such a
Lagrangian description have seen the employment of other kinds of particles for evaluating both
two-point (limited to distances between particles smaller than the Kolmogorov viscous scale)
and single-point quantities [[11, [12]], paving the way for new strategies to investigate turbulent
flows.

On the other hand, the analysis of flow properties is an useful strategy to obtain information
on particles motions. Nowadays, the study of particle spreading is another hot topic, covering
aspects ranging from pollution dispersion in urban environment, erosion and sediment transport
to the spreading of airborne diseases. Flows of this kind are characterized by particles, droplets
or bubbles dispersed within a carrier phase. The ability to predict the behaviour of this kind of
flow is therefore of considerable interest. However, due to the complexity of these flows, avail-
able models are usually crude simplifications and cannot predict fluid and particle behaviour
for the whole range of process conditions of interest [13]]. Pope [14] and Yeung [[15] developed
stochastic models of turbulent transport with promising results. For the development of stochas-
tic models, the experimental determination of statistical properties of particles in a Lagrangian
frame is essential. However, the study of the particle motion in a numerical framework is clearly
simpler with respect to an experimental analysis. The most popular numerical approach is the
Eulerian-Lagrangian approach, which can be applied under various assumptions. In some prob-
lems, such as the dispersion of atmospheric pollutants, it may be assumed that the particles do
not perturb the flow field. Then, the solution involves the tracing of particle trajectories in a
known velocity field [16]].

By focusing on numerical approaches, this thesis will show applications of active and pas-
sive models, in which the Lagrangian tracking of rigid fibers and slender swimmers can be
employed to access to flow properties, and to study a turbulent puff in order to access informa-
tion on spreading of virus-containing droplets.

Active and passive models can be used to model slender objects or particles in various en-
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CHAPTER 1. INTRODUCTION

vironmental fluid-flow applications. In other words, we are speaking about the fluid-structure
interaction (FSI), which is a multiphysics coupling between the laws that describe fluid dynam-
ics and structural mechanics. This phenomenon is characterized by interactions, which can be
stable or oscillatory, between a deformable or moving structure and a surrounding or internal
fluid flow. With active models we mean that the immersed object is fully coupled to the fluid
flow, i.e. a two-way coupling interaction. The body acts on the surrounding fluid, forcing it
to move with its boundaries, by enforcing the no-slip condition. On the other hand, the fluid
exerts forces on the body through pressure differences and viscous shear stress. In contrast, in
a passive model, i.e. one-way coupling, the object dynamics is affected by the underlying flow
but it does not react back to the flow.

The one-way coupling approach provides a formally clean framework to examine in detail
the influence of turbulence on particles at low particle concentration, but gives no information
regarding the influence of particles on turbulence and particle-particle interactions. In the case
of rigid particles with ellipsoidal shape and which are sufficiently small to evolve in a Stokes
flow with negligible fluid inertia, an analytical expression for the fluid torque acting on the
particle was originally derived by Jeffery [17]. Such a result has been later generalized to other
shapes and widely exploited in a variety of problems. These include studies on the rheology of
suspensions in low-Reynolds-number flow conditions (Butler and Snook [[18]]), as well as on the
dynamics of dispersed fibres in turbulent flows. The main findings of these works are related
to orientation and rotation statistics, which show a tendency of fibers to align in the direction
of the mean flow close to the wall, and to the preferential concentration of particles. The same
observables have also been evaluated in Direct numerical simulations of isotropic turbulence
(e.g. see Refs.[19, 120, 21]] and references therein) in which fiber alignment induced by the fluid
velocity gradients resulted in rotation rates much lower than those predicted by rotationally
averaged models.

The main assumptions characterizing the one-way coupling approach for fibers are that they
are approximated as non-interacting ellipsoids with uniformly distributed mass immersed in a
dilute flow. Additionally, the fiber size is assumed to be smaller than the Kolmogorov length
scale, and lubrication forces arising when particles are in close proximity are ignored. Also
ignored are aggregation and breakup phenomena [1]]. Other examples are studies which applied
Lagrangian tracking of particles in large-eddy simulation (LES)-resolved turbulence fields [22].
Njobuenwu and Fairweather [23]] studied the effect of particle shape on their dynamics in an
LES-resolved turbulent channel flow. They used shape-and orientation-dependent drag and lift
coefficients to solve for translational and rotational motions of oblate and prolate ellipsoids.
Lecrivain et al. [24] studied the sedimentation of fibers in flat and roughened channels using
quasi-DNS resolution. On the other hand, Bianco et al. [25] observed that the filtered subgrid-
scale fluid motions in LES flow fields have significant effects on the rotational statistics of
ellipsoidal particles. In fact, filtering the fluid velocity field yields approximate computation
of the forces acting on particles and, in turn, trajectories that are inaccurate when compared to
those of Direct numerical simulations.

Another interesting application of passive model, which highlights the importance of taking
into account all scales of turbulence, can be found in Celani et al. [26] in the field of cloud mi-
crophysics. They addressed the problem of droplet growth by condensation in a turbulent flow
of nearly saturated vapour, both theoretically and numerically. By means of direct numerical
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simulations of the turbulent flow velocity, which advects a vapour field, and of the evolution of
droplet trajectories and radii, they showed the presence of a correlation between droplet trajec-
tories and supersaturation field, leading both to the enhancement of the droplet growth rate and
to a fast spreading of the droplet size distribution. In that study, the use of a passive model was
justified because the droplets volume fraction is sufficiently small so that to neglect the back
reaction of the droplets to the flow.

In the case of high volume fraction, even small particles will influence the fluid momentum.
Owing to preferential concentration and clustering, this can occur locally as well as globally. A
more complete view of multiphase flows can be gained calling into play two-way, i.e. by ac-
counting for the inter-phase momentum exchange [27]. In dense flows, interparticle collisions
may also become important, leading to aggregation or fragmentation with direct and indirect
effects on the collective dynamics of the particles [[1]]. Eulerian-Lagrangian fully coupled sim-
ulations for fibers on the order of the Kolmogorov scale in turbulent channel flow have been
performed to examine the collision mechanisms of fibers with the walls (see Ref. [28]]), as well
as the physics of fiber-induced turbulence modulation and its dependence on fiber length [29].
These aspects are investigated for semidilute concentrations considering statistical observables
based either on fluid and fiber velocities (e.g., turbulent kinetic energy, fluid-fiber correlations)
or on fiber orientation (e.g., direction cosines). The cases of flexible fibers with finite size, in
homogeneous isotropic turbulence, is very far from the realm of application of Jeffery’s model
for at least three main reasons. The fibers are elastic, inertial and they do not evolve locally in
a linear flow (i.e. their size is well within the inertial range of scales). Nowadays, systems in-
volving flexible bodies interacting with a surrounding fluid flow are commonplace, for example
flapping flags and swimming fishes, are becoming increasingly prevalent in biological engineer-
ing applications. Moreover, as already said before, recent works have highlighted the possibility
to use flexible and rigid fibers to quantify turbulence two-point statistics, both numerically and
experimentally [3} 6, 4]. Many numerical experiments, as the ones mentioned before, involv-
ing fibers immersed in turbulent and laminar flows, are conducted by means of the immersed
boundary (IB) method, in order to simulate interactions between fluids and structures. Due to
its greatly simplified grid generation requirement, the IB method has received much attention.
In literature many versions of the IB method can be found. For example, Huang et al. [30]
developed a version of the IB method for simulating anchored flexible filaments in a uniform
flow.

The IB method was originally developed by Peskin [31] to simulate cardiac mechanism and
associated blood flow. While the fluid is represented on an Eulerian grid, the structure is repre-
sented on a Lagrangian coordinate. The Eulerian fluid motion and the Lagrangian IB motion are
solved independently and their interaction force is calculated explicitly using a feedback law.
Then, the core of the IB method is based on two simply concepts: interpolation and spreading.
The forcing, acting on the structure, is first evaluated at each Lagrangian point, in order to en-
force the no-slip, by interpolating the fluid velocity at the Lagrangian points. Then a spreading
operation is performed over the surrounding Eulerian points, yielding the forcing acting on the
flow equations. Both interpolation and spreading feature a Dirac operator. Spring forces, bend-
ing resistance or any other type of behavior can be built into this term. Immersed boundary
solvers have been employed successfully for simulating biological flows, physiological flows,
flow-induced vibration and complex turbulent flows.
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The IB method has been used for a wide range of problems, from strictly engineering to bio-
fluid dynamics applications. For example, Olivieri et al. [32] used a computational framework
based on the immersed boundary method to investigate the flag-in-the-wind problem exploring
the effect of the turbulence intensity on self-sustained flapping. Moreover, the IB method show
great capabilities for a number of biological problems. Mittal et al. [33] used the IB method
to simulate the flows associated with biological locomotion, both flying and swimming. Also
hydrodynamic interaction between swimming organisms has long been a topic of interest in
fluid-structure interaction. Especially, collective motion of swimming organisms such as bac-
teria, spermatozoa, and worms has recently received a great deal of attention from researchers.
Mirazimi [34] examined individual, pairwise, and collective interactions of worms observing
phenomena such as synchronization, attraction as well as aggregation, in dilute suspensions
of swimmers. Another important application of the IB method is given by Dillon et al. [335].
They described how biofilm processes, which are of interest to researchers in a variety of fields
including bioremediation, oil recovery, waste-water treatment, medicine, and dentistry, can be
modelled successfully using the IB method.

In this thesis active and passive models have been used for two different environmental flow
applications. Chapter [2] will show how rigid fibers and slender swimmers, i.e. self-propelled
slender objects, can measure two-point flow properties (velocity differences between two points
or flow gradient components). Here, the main focus is on active models. To this aim, direct nu-
merical simulations exploiting a state-of-the-art immersed boundary technique, to model the
slender object fully coupled to the fluid flow, have been carried out in laminar cellular flows,
both in two and three dimensions, time dependent and time independent. The choice of these
flow configurations allows a direct and reliable comparison between the unperturbed flow veloc-
ity, which is known analytically, and the fiber velocity. After having characterized the inertia of
the slender object via the rotational Stokes number, it will be presented the technique to access
to the velocity differences and gradient components of the fluid flow, by means of immersed
slender objects. Chapter [3]investigates the role of the turbulence on the fate of virus-containing
droplets expelled during a human cough under realistic conditions. Direct numerical simula-
tions have been performed for the fluid flow and humidity field, complemented by a passive
Lagrangian solver for the droplet dynamics including a dynamical equation for the evolution
of the droplet radii modeling the evaporation-condensation process. Specifically, the combined
role of turbulence and droplet inertia on the virus-containing droplet evaporation will be in-
vestigated. Then, the influence of different ambient humidity conditions and different initial
size distributions of the droplet, taken from literature, have been considered. As a further step,
it will be investigated the influence of the gender of the emitting subject in the dynamics of
violent expiratory events in order to better characterize the transport and evaporation process
undergone by the exhaled saliva droplets. Finally, the spread of the virus-containing droplets
in indoor environments will be studied, where a barrier used as protection device from disease
infection is present, considering two different ambient humidities.




Chapter 2
Fibers and slender swimmers measure flow
properties

The aim of this chapter is to show the possibility to measure two-point flow properties (i.e.
flow velocity differences between two points or, more generally flow gradient components) by
means of rigid fibers fully coupled to the flow field, with or without internal propulsion. In
both case our fibers are slender and rigid. All numerical experiments have been performed
by Direct numerical simulations exploiting a state-of-the-art immersed boundary technique to
model the fluid-structure interactions. Hence, the main focus is on active models where the
immersed objects are fully coupled to the fluid-flow. Our numerical experiments are carried
out in cellular flows both in two and three dimensions, time dependent and time independent.
The relative simple structure of these flow configurations allows us to perform the numerical
experiments under controlled conditions. For the selected flow field, the unperturbed velocity
is indeed known analytically, a fact that allows us accurate comparison of the unperturbed flow
properties against those reconstructed in terms of our fibers. The chapter is structured as follow:
Sec. [2.1] presents the state-of-the-art and research motivations, Sec. [2.2] presents the employed
numerical approach to model rigid fibers and slender swimmers, Sec. characterizes the
inertia of the slender objects via the rotational Stokes number, Sec. |2.4.| shows the measure of
flow properties by means of slender objects and finally Sec. draws the conclusions related
to this chapter.

2.1. Background and research area

Fiber-like objects interacting with fluid flows are typically encountered in many environmental
and industrial processes, such as pollutant and pollen dispersion, microfluidic devices and pa-
per production. Compared with point-like particles, the dynamics of fiber-like objects is more
complex due to the additional degrees of freedom related to the object orientation and struc-
tural elasticity. Active research is thus being devoted to improve the understanding of such
fluid-structure interactions, both in laminar and turbulent flow conditions [36), [1]].

In the laminar case, flapping instabilities of flexible filaments immersed in two-dimensional,
low-Reynolds flows were identified [37] and similar mechanisms were investigated to be ex-
ploited for passive locomotion and flow control purposes [38, 39, 40]].

In the case of turbulence, dilute suspensions of both rigid and deformable fibers were inves-
tigated in different flow configurations, including the case of wall-bounded channel flow [41,
42, 143]], as well as that of homogeneous isotropic turbulence [20} 44, 45,9, 46, 47]].

More specifically, some recent contributions have considered this kind of objects as the key
ingredient for a novel way of flow measurement. In particular, the possibility of using flexible
fibers to quantify two-point statistics has been highlighted in the case of homogeneous isotropic

5
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turbulence by means of fully-resolved direct numerical simulation [, 6]. In this situation, the
existence of different fiber’s flapping states was identified, in some of which the fiber behaves as
a proxy of turbulent eddies with size comparable to the fiber length. Two-point statistical quanti-
ties, such as the velocity structure functions, were thus acquired simply by tracking the fiber end
points in time. Along a similar line of reasoning, recent experimental studies focused on how
to measure fluid velocity gradients using particles made by connections of slender deformable
arms, both in the case of two-dimensional shear flow and three-dimensional turbulence [11]].
Furthermore, Brizzolara et al. [4] proposed and validated a novel experimental technique to
measure two-point statistics of turbulent flows. It consists in spreading rigid fibers in the flow
and tracking their position and orientation in time and therefore it has been named “Fiber Track-
ing Velocimetry” (FTV). The idea is to replace single particles, typically used in particle image
or tracking velocimetry (PIV/PTV) to measure single-point fluid properties [48, 49, |50], by sin-
gle fibers (or assemblies of them) in order to access two-point (or multi-point) properties. A
well-known issue of tracer-based techniques, such as PIV or PTV, is the evaluation of two-point
statistical quantities, which are of special interest in turbulence. A significant problem, when us-
ing particles/tracers to evaluate turbulence statistics, is that two particles tend to separate from
each other (following the Richardson diffusion law, where the relative distance between two
particles initially close enough grows in time as ¢*/2), thus making it practically impossible to
obtain converged statistics for a fixed separation distance. Moreover, technological limits make
it difficult to measure small-scale quantities, such as gradient tensor or shear rate. This in view
of the extremely high number of particles needed to access these small-scale quantities [4]. The
reason for considering fibers instead of particles is rather simple and relates to the fact that the
distance between the two ends of the fiber is constant. The main result in the literature is that
finite-length fibers (i.e., fibers whose length falls within the inertial range) rotate (rigid fibers)
[S1] or deform (flexible fibers) [5] at the same frequency as the turbulent eddies of comparable
size.

Motivated by these evidences, the goal of the first part of this chapter is to investigate similar
possibilities for the case of rigid fibers which are fully coupled to the underlying laminar flow
field. Rigid fibers are indeed easier to fabric than elastic ones and are good candidates for
novel experimental, non-invasive techniques able to access small-scale, multi-point, properties
of fluid flows.

Direct numerical simulations have been performed to solve the incompressible Navier-
Stokes equations, with spatially periodic boundary conditions i.e. the so-called ABC and BC
flows [52, 53]]. The choice of this setting will allow us to perform a direct and reliable compar-
ison between the measured fiber’s velocity and the underlying, unperturbed fluid flow velocity.
In this framework, a new way for measuring the fluid velocity gradient tensor will be proposed,
and tested exploiting the assembly of different fibers (three fibers for the two-dimensional in-
compressible case and eight fibers for the corresponding three-dimensional case). Accessing
the velocity gradients is of particular importance when dealing with turbulent flows, since from
their knowledge one can construct the vorticity and the strain-rate tensors, as well as obtain the
energy dissipation rate and other key quantities.

The second part of the chapter addresses the issue on whether self-propelled slender object
like swimming animals can detect flow signals. Motility of swimming animals and microor-
ganisms is an issue attracting a great deal of attention in different fields of research, covering

6



CHAPTER 2. FIBERS AND SLENDER SWIMMERS MEASURE FLOW PROPERTIES

aspects that range from feeding, reproduction and prey-predator interactions [54]], to biological-
inspired intelligent navigation [35, 56, 57].

The individual swimming strategies have been the subject of several investigations carried
out by means of experimental [38, 59, 60, 61, 62], theoretical, and numerical strategies [63,
64, 165, 166]. A series of contributions analyzed the dynamics of a population of swimming
organisms, e.g. in relation to encounter rates and other collective behaviors [67, 168, 169, [70].
Some of them focus on the mutual interactions of microorganisms with the fluid flow environ-
ment [71} [72, [73], others on active matter clustering induced by non-homogeneous flows or
turbulence [74, 75, 54]. Moreover, scientific evidence clearly show that swimming organisms
are able to react to hydrodynamic cues both in laminar and turbulent conditions in order to take
different actions [76, 77,78, [79]].

The perception of hydrodynamic signals is an important issue for researchers oriented to
the development of bio-inspired mechanosensitive receptors, to promote the advancement of
multifunctional sensors in the fields of bio-medical engineering, robotics, and artificial intel-
ligence [80]. Moreover, the combination of the navigation system and biologically-inspired
approaches has attracted considerable attention, thus becoming an important research area in
the field of intelligent robotic system [81]. Since the emerged trend of bio-metric underwater
robots, as an alternative to traditional propeller-driven underwater vehicles, the capability of
recognizing and characterizing flow properties through hydrodynamic sensing, makes it possi-
ble to take advantage of the flow [82], e.g., by increasing the propulsion efficiency and stability
of an underwater robot [83]]. In the recent years, efforts have been made for the development of
behavioral schemes and bio-inspired sensor for hydrodynamic detection [80, |84, 85, 86], which
turn out to be useful in many everyday applications, environmental monitoring, and industrial
affairs.

From the point of view of fluid dynamics, self-propelled objects can be classified based
on how they set the surrounding fluid during motion. If the induced flow field describes a
fluid pushed away along the propulsion axis and dragged in from the sides, the swimmer is
named “pusher”. In contrast, when the fluid is pulled inwards towards the swimmer along the
propulsion axis and ejected to the sides, it is classified as a “puller”’[60].

The main concern of the second part of this chapter is on whether the self-propelled object
(i.e. a solid object which may possess inertia and internal elastic degree of freedom) may detect
some features of the unperturbed flow field despite its perturbing presence. Such an issue is
highly not trivial: even a rigid rod in a fluid flow modifies the unperturbed flow because of
the no-slip condition. Pre-existing flow velocity gradients along the rod axis are flattened out
owing to the rigidity condition of the rod structure. The perturbation will be even stronger if
the rod is self-propelled. Are there features of the flow field very close to the swimmer which
remain unperturbed (e.g. as they would be in absence of the swimming object)? Answering this
question is one the main concern of the present thesis, with potential interesting applications
also in the field of flow measuring techniques via non intrusive Lagrangian techniques (see, e.g.,
Ref. [4] for the recently proposed ‘fiber tracking velocimetry’).

To answer this question, following the idea of Lushi and Peskin [87]], a model for a slender
self-propelled object able to accurately reproduce the flow disturbance generated by a pusher
or puller swimmer has been built, with the goal of identifying flow properties which remain
essentially unchanged despite the invasive presence of the swimmer.
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Also for the self-propelled slender object, fully-periodic DNSs have been performed in a
time-dependent version of the three-dimensional ABC (Arnold-Beltrami-Childress) flow [88]]
with high chaoticity uniformly distributed in space for Reynolds numbers up to 10, showing the
capability of slender swimmers of sensing hydrodynamic signals net of self-motion.
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2.2. Fiber modeling

In this section we will discuss the numerical approach used to model rigid fibers and motile
slender objects (slender swimmers) by means of an immersed boundary technique with the aim
of measuring flow properties. As far as rigid fibers are concerned, two different approaches will
be presented: i) an active model where the fiber is fully coupled to the fluid flow (i.e. a two-
way coupling interaction); ii) a passive model (one-way coupling) where the fiber dynamics
is affected by the underlying flow but not it does not react back to the flow which can be thus
assumed as assigned once and for all. The second part of the section is dedicated to the modeling
of swimming fibers, able to reproduce the features of swimming micro-organism. Two different
swimmer models are discussed, the 'di-Stokeslet” model and the slender swimmer model, which
can behave as pusher or puller. Next, the validation of the swimmer models will be presented.

2.2.1. Rigid fibers

Let us start from the general situation where the considered fiber is a one-dimensional, inertial,
elastic and inextensible slender object having length ¢ and diameter d (d < c¢). It is charac-
terized by a linear density p; and bending stiffness . Huang et al. [30] is the reference paper
for the numerical description of the fiber. In particular, p; denotes the density difference be-
tween the filament and the surrounding fluid. The equation of the fiber motion is expressed in
Lagrangian form. Given the position of a material point belonging to the fiber X = X(s, 1),
as a function of the curvilinear coordinate s and time ¢, the fiber dynamics is governed by the
Euler-Bernoulli’s beam equation

pX = 9,(T0,(X)) — 495(X) — F. 2.1)

Since Eq.( is one-dimensional in space, the actual filament density is p; + pgA, where
A denotes the sectional area of the filament and p, the fluid density. In Eq. (2.1I), F denotes
the Lagrangian forcing exerted on the filament by the surrounding fluid, while 7" is the tension
necessary to enforce the inextensibility condition

9,(X) - 0,(X) = 1. (2.2)

The fiber is freely moving in the flow, hence the corresponding boundary conditions at its ends
are:
ass}<|s:0,c = asss)(|s:0,c = 0, (23)

T|s—g. = 0. (2.4)

Eq.( @) can be rewritten in dimensionless form, where for convenience the dimensionless
quantities are written in the same form as their dimensional counterpart

0*°X 0X 0? 0*°X
oz = O (Ta_) ~ o (Va—> -F @3)
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The characteristic scales are: the reference fiber length ¢ for length, the far-field velocity U, for
velocity, ¢/Uy for time, p, U2 /c for the Lagrangian forcing F, p; UZ for the tension force 7', and
p1UZc* for the bending rigidity .

Figure 2.1: Sketch of a generic fiber configuration (the characteristic quantities here indicated are intro-
duced in the text).

The focus in this work is on rigid fibers, sketched in Fig. To this end, throughout the
work has been choose and retain sufficiently large values of + for which the fiber has an essen-
tially rigid behavior with negligible deformations. This latter has been checked a posteriori in
order to be always smaller than O(1078). The fiber is discretized along s into segments with
spatial resolution As = ¢/(Ny, — 1), Ny, being the number of Lagrangian points.

2.2.2. The fully-coupled model

In order to model the fluid-structure interaction in terms of a two-way coupling, the fiber is
fully-coupled to the fluid flow and its dynamics is resolved using an immersed boundary (IB)
technique, inspired by the method proposed by Huang et al. [30], for anchored filaments in
laminar flows. The method was also exploited for dispersed fibers in turbulent flows [3! 16} [89]].

The incompressible Navier—Stokes equations for a Newtonian fluid, which in dimensionless
form (see Ref. [30]) are

1
8tu—|—u~8u:—8p—l—ﬁc‘92u+fv+f, (2.6)

0-u=0 2.7)

where u is the fluid velocity, p is the pressure and Re is the Reynolds number. The volume
forcing £V is used to generate the desired flow field, whose characteristic velocity/length scales
are used to define the Reynolds number, Re. f represents the effect of the immersed boundary,

10
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mimicking the presence of the slender body by means of the no-slip enforcement at the La-
grangian points. Accordingly, in the IB method, the Lagrangian forcing F in Eq. (2.5) is first
evaluated on the Lagrangian grid in order to enforce the no-slip condition X = U(X(s,t),t).
Namely,

F(s,t) = 3(X - U), (2.8)

where [ is a problem-dependent large negative constant, and
U(X(s,t),t) = /u(x, t)6(x — X(s, 1)) dx (2.9)

is the interpolated fluid velocity on the Lagrangian points. A spreading operation is finally
performed around the surrounding Eulerian points, yielding the volume forcing acting on the
flow

f(x,t) = p/F(s, t)o(x — X(s,t))ds. (2.10)

where p = p1/(poA) comes from non-dimensionalization. Both the interpolation and spreading
are performed in terms of a suitable regularized Dirac . The one proposed by Roma et al. [90]
has been used in the present thesis.

The Direct Numerical Simulations (DNS) has been performed in a cubic domain of size L
which is discretized in terms of a uniformly spaced Cartesian grid cells per side. The number
of Lagrangian points describing the fiber is chosen in such a way that the Lagrangian spacing
As is very close to that of the Eularian grid Az (As ~ Ax).

When using this approach, a cubic domain of side L = 27 with periodic boundary condi-
tions in all directions has been considered, which is discretized into a uniformly spaced Carte-
sian grid using N = 64 cells per side. The fiber has length ¢ = 1 with /N;, = 11 Lagrangian
points. Doubling both resolutions, the variation of results was found to be negligible. The
timestep used is At = 5 x 1075, after assessing the convergence for this parameter as well.

The flow governing equations are solved numerically using an in-house code. The equa-
tions and are discretized via finite difference, fractional step method on a stag-
gered grid with fully explicit second-order central-differencing scheme in space and third-order
Runge-Kutta scheme in time. A fast and efficient FFT-based approach is used to solve the re-
sulting Poisson equation for pressure. The fiber dynamic equations (2.5)) is advanced in time
with the marching scheme proposed by Huang et al. [30]. Moreover, the code is parallelized
via MPI interface. The strategy described above and the code have been implemented and ex-
tensively validated to study fiber dynamics in both laminar and turbulent flows in a variety of
problems [} 16, 189, 91} 192, 93]].

2.2.3. Passive model

In the second approach, a one-way coupling is assumed, i.e. the fiber is forced by the flow but
not vice versa. The problem thus essentially consists in solving only Eq. (2.5)), within which the

forcing term is expressed as

F = l()’(—u(X(s,t),zf)), (2.11)

Ts

11
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Ts being the relaxation time of a fiber immersed in viscous flow, i.e. it can be identified with a
Stokes time. Overall, it represents a measure of the fiber inertia compared to the flow, and also
quantifies the strength of the coupling. In this approach, u is assigned and does not get modified
by the presence of the fiber. Note that this model is similar (apart from the contribution of inertia
considered in this model) to that of Young and Shelley [94]; Quennoz et al. [95], relying on
local slender body theory, and further simplified assuming an isotropic form for F'.

Using this model, the convergence of the solutions have been assessed only with the La-
grangian resolution (since there is not the need of an Eulerian grid in this case) and the com-
putational time step. Given the substantially lower computational demand of this approach
compared with the fully-coupled (see Sec. [2.2.2)), for a fiber with length ¢ = 1, N;, = 31 and
At = 107% have been used, although a numerically stable and resolution-independent solution
was already found with coarser resolution, accordingly with the findings for two-way coupling
case.

2.2.4. Swimming fibers

IB realization of the “di-Stokeslet’ model

The numerical framework described above in Secs. and has been used to build a
swimming fiber in order to reproduce an idealized swimmer model with the main features of
aquatic swimmer micro-organisms. Here, Eq. (2.5)) becomes

9*X 0X 0? 0*°X
(15 ) - (05 ) P om 212

where Fr is a unit-length forcing, mimicking the propulsion mechanism causing a net motion
along the swimmer axis. In plain words,

Fr = kp (2.13)

where k is kept constant and controls the propulsion magnitude and p is the unit vector in-
dicating the swimmer orientation. On the self-propelled slender object a constant tangential
propulsive force has been imposed.

The simplest swimmer model presented is the “di-Srokeslet”, which based on the IB strat-
egy, mimics swimming micro-organisms generating dipolar flow fields [38, 59,196, 97] charac-
terized by the well-know r~2 decay in space of the flow disturbance triggered by the swimmer
motion. Depending on the characteristics of the propulsion mechanism, one can have rear-
actuated swimmers, i.e., pushers (such as bacteria E. coli or Spermatozoa), or front-actuated
swimmers, i.e., pullers (such as rotifer Brachionus plicatilis). For pusher/puller swimmers, the
description of the locomotion is made in terms of two oppositely directed point forces of equal
magnitude, but acting in different points on the Lagrangian grid, a configuration used to mimic
the so-called stresslet (or di-Stokeslet) [96]. Fig. reports for the sake of example a pusher
swimmer. By looking at Fig.[2.2 one force (blue arrow) acts on the last point of the Lagrangian
grid, where both the no-slip condition and the propulsion are imposed, and it is associated with
the swimmer body. The second force (red arrow) acts on the fluid (by spreading a point force

12
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applied to the first Lagrangian point of the grid). The no-slip condition is not applied on this
point and the same is for all remaining points of the Lagrangian grid (grey points). While the
first point force mimics the propulsion caused by, e.g., the flagella, the second mimics its push-
ing effect on the fluid. Although Fig.[2.2]refers to a pusher, the description for a puller proceeds
in a very similar way and will be described in the next section.

Figure 2.2: Sketch of the realization based on the IB method of a di-Stokelest, modeling a pusher swim-
mer, such as Spermatozoa. The blue arrow indicates the propulsive force on the swimmer (acting along
its axis) F7 used in Eq. [2.12] coinciding with the direction of the motion. The red arrow represents the
force exerted by the swimmer flagella to the fluid. The dashed line indicates the separation distance,
I = nAs, with n being the number of intervals As between the two point forces. The grey dots represent
the Lagrangian grid points. The no-slip condition and the propulsion force is imposed only on the blue
grid point. The inextensibility constraint makes the propulsion force to propagates on the rest of the rigid
slender body, causing this latter to swim. By using Eq. (2.1I0), the spreading of —F7 is imposed on
the red dot. Finally F denotes the force acting on the fluid due to the friction between the fluid and the
immersed body. Note that in the Stokes regime forces acting on the swimmer and on the fluid are both
balanced.

A slender swimmer model

The limitation of the di-Stokeslet model is that it condensates all details of a swimming object
only in a point (blu dot in Fig. [2.2). The slender swimmer is a generalization that allows to
overcome such a limitation. This latter is a less idealized swimmer model able to describe a
more elongated organism, which at level of minimal model can be thought as a slender swimmer
[S5]. By tacking inspiration from Lushi and Peskin [87], the slender swimmer has been build
by imposing the no-slip condition and the propulsion force on the same half length, ¢ = ¢/2, of
the slender motile object, the spreading of the pushing/pulling forcing acting on the fluid being
imposed on the other half. One obtains a pusher by imposing the pushing force on the first half
edge of the Lagrangian grid, starting from the trailing edge. The second half part of the slender
body corresponds to the region where the propulsion is acting on the fluid, as shown in Fig.
top. A puller is obtained in a similar way but the pulling force is applied on the second half of
the Lagrangian grid, as depicted in Fig. [2.3] bottom.

2.2.5. Validation of the swimmer models

The di-Stokeslet model

Let us now start by validating the flow field generated by the IB method sketched in Fig. [2.2]
The DNS are performed in a cubic domain of side L = 47 and 87, which is discretized using
N = 128 and 256 cells per side, respectively. Doubling the resolution, of both the Eulerian and
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Figure 2.3: Top: sketch of a slender pusher swimmer. The spreading of the pushing force on the fluid is
applied to the lower half; the no-slip condition is applied to the upper half. Bottom: sketch of a slender
puller swimmer. The spreading of the pulling force is applied to the upper half; the no-slip condition is
applied to the lower half. The red dots identify the end-to-end swimmer distance.

Lagrangian grid (in such a way that As ~ Ax), gave no substantial variation of the results we
are going to show. The same sensitivity analysis has been carried out also for the time step.
The numerical solutions have been obtained after a convergence study, ensuring that halving
the time step causes relative variations of the resulting flow field smaller than a few percent.

In still fluid, the swimmer is free to evolve from rest until it reaches its terminal velocity,
us, with a resulting swimmer Reynolds number, Re; < 1. After a transient time, also the flow
field reaches a steady-state regime characterized by a constant kinetic energy. In what follow,
the comparison between the results from the numerical simulations and theory are presented
for time instants corresponding to the steady state. Different snapshots taken at different times
are identical provided that a translation of the reference system (moving with the swimming
velocity u;) is considered. Here, Re; = u,l/v is based on the separation distance, [, between
the two point forces of Fig. 2.2] To check the resulting flow field, it has been used the well-
known solution of the Stokes flow past a sphere for Re < 1. Written in polar coordinates, its
expression reads:

cos (2.14a)

sin ¢ (2.14b)

where wu, and uy are the radial and the transverse velocity components, respectively. R ~
dx is the radius associated to the sphere, according to the regularized Dirac d-function. To
mimic the di-Stokeslet, Eq. (2.14) has been combined with a similar solution for another sphere,
separated from the former by a distance [ (here [ = 0.6). The two spheres are associated to
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Figure 2.4: Spatial decay of the fluid disturbance caused by a di-Stokeslet swimmer (pusher). The
flow velocity magnitude, u, normalized by the swimming velocity, us, is plotted against the distance 7,
normalized by the separation distance [ (Res; = 0.001). Red circles represent the solution for a domain
of length L = 4m; blue stars for a domain of length L = 8. (a) along the motion direction, the dashed
line indicating the swimming velocity us. (b) along a direction perpendicular to the motion. Black lines
denote the analytical solution from the di-Stokeslet built from Eq. (2.14). The agreement between the
numerical results and the theoretical prediction is excellent, also in relation to the r~2 decay typical of
dipolar flows (continuous straight lines).

two unperturbed flows having opposite directions but possessing the same magnitude us. The
resulting flow configuration is considered in a periodic domain to match the periodic boundary
conditions of the simulations based on the IB strategy.

The comparison between the analytical flow solution and the one obtained from the 1B
strategy shows an excellent agreement (see Fig. [2.4)), while capturing both the near field and
the far field fluid flow. Fig. [2.4] shows the decay of the flow field velocity magnitude, u, both
along the swimming direction (Fig.[2.4p) and along its normal (Fig.[2.4b). A pusher swimmer is
considered in figure, but the same results have been obtained for a puller swimmer (not shown
here).

It is possible to see a clear r—2 scaling, the fingerprint of a dipolar flow; it is very well

reproduced by the numerical simulations, despite the use of the periodic boundary conditions.
The latter cause a degradation of the power law behavior which is however limited to the region
close to the side of the periodicity box. As shown in Fig. the effect of the periodicity can be
moved away from the swimmer by simply increasing the size of the periodicity box. Its effect
on the near-field behavior turns out to be negligible with a box size of 4, where a clear 72
decay (see Fig.[2.4) can be detected. Accordingly, 47 has been fixed as size of the periodicity
box for the analysis reported in the following.
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The slender swimmer model

Also in this case the swimmer is free to reach its terminal velocity u starting from rest. In this
case, Res = ugl /v is based on the length of the slender swimmer, ¢ (here ¢ = 0.4). The resulting
flow field is compared with the solution for an extended stresslet [96], where the velocity field
in a point r is reconstructed by superimposing several (here 5) di-Stokeslet solutions. Namely,

|Fr| 1As iAs | .
87; Z { ( p) —S <r+ Tp)] p+.. (2.15)

where dots stay for contrlbutlons coming from all other boxes when the effect of periodicity is
explicitly accounted for. In Eq (2.15)), y is the dynamic viscosity, F7 is the propulsive force
(per unit length) used in the IB method and

1
Sr)=-(I+r®r) (2.16)
T
is the bulk Stokeslet, with I the identity matrix, r = |r|, & = r/r, and ® the tensorial product.
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Figure 2.5: Spatial decay of the fluid disturbance due to the presence of a slender pusher swimmer,
circles (a), and a slender puller swimmer, stars (b), in a domain with size . = 4x. The numerical data
are complemented by a superposition of the di-Stokeslet (black lines, Eq. (2.15))). The flow velocity, u,
normalized by the swimming velocity us, is plotted against the distance r normalized by the swimmer
length, ¢. Red markers: along the motion direction; blue markers: along a direction perpendicular to the
motion. The dashed line indicates the terminal velocity, us, reached by the swimmer (Re; = 0.0002).
Also in the present case, an excellent agreement between numerical results and theory can be detected.

In Fig. [2.5] the flow behavior due to slender pusher/puller swimmer are reported, along
the motion direction, and along the direction perpendicular to it. Both pushers and pullers
accurately capture the decay of the flow velocity with respect to . Moreover, it has been also
verified that the model captures the fluid flow generated by a swimmer from a more qualitative
point of view. In Fig. [2.6) a pusher and a puller swimmer, together with the flow field they
generate due to their locomotion, are shown. The model accurately captures the flow field that
a swimmer generates by its locomotion, as also observed in experiments [59]].

16



CHAPTER 2. FIBERS AND SLENDER SWIMMERS MEASURE FLOW PROPERTIES

Figure 2.6: IB-method-based simulations of the flow field generated by a pusher swimmer (a) and by a
puller swimmer (b). In both panels, the blue arrow indicates the propulsive force acting on the swimmer
and the motion direction; the red arrow indicates the action of the pushing (top panel) and pulling (bottom
panel) forces.
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2.3. The rotational Stokes Number

The first step of our analysis is to characterized the slender body inertia via a rotational Stokes
number St, which is the most suitable quantity when dealing with flow observables related to
transverse velocity differences as those considered in this work. To this end, the steady two-
dimensional Beltrami-Childress (BC) cellular flow [53] 52, has been considered, which is
described by:

U = Cosy
U = COST

(2.17)

Figure 2.7: The so-called BC cellular flow (the colormap showing the stream function given by ¥ (z,y) =
sin(y) — sin(x) along with the corresponding velocity vectors).

To obtain the BC flow (see Fig. [2.7) as a stable solution of the Navier-Stokes equations a
volume force f¥ = (1/Re)u has been applied to the right hand side of Eq. for Re up
to 10 (see Ref. [52]). To evaluate the Stokes time, the slender object, without propulsion (i.e.
Fr = 0), and initially at rest, is placed at the center of one cell in the BC flow (see Fig.[2.7).
Under the action of the flow, the slender object starts to rotate (fully coupled to the flow) around
its center of mass. We measure the time it takes for the slender object peripheral velocity, V (),
to adapt to the corresponding flow velocity Vj,. Measurements have done in terms of exponential
fits:

V(t)=Vy (1—e ™) (2.18)

18



CHAPTER 2. FIBERS AND SLENDER SWIMMERS MEASURE FLOW PROPERTIES

0.2 ' ' ' |
1r A4
> 0.1 ot
0.8 Q /'E( I
0 a
0 2 4
& 0.6 Lt -
4
D’/
04r s .
7
/!2
02 H -
;]/
OD/ 1 1 1 ]

0 0.2 0.4 0.6 0.8 |
P

Figure 2.8: Rotational Stokes time as a function of the dimensionless swimmer linear density. Here
Re = 1. Red squares: measured value; black dashed line: linear fit. Inset: time history of the velocity
magnitude of one swimmer end (red circles) fitted using Eq. (2.18) (black line), for a swimmer with
p = 0.5.

from which the Stokes time, 75, has been extracted. This operation has been made both for fibers
and slender swimmers. Fig. [2.8] report the results for slender swimmers. The same evidence
is obtained for fibers. In the inset of Fig.[2.8] an example of this procedure is provided. The
resulting behavior of 7, as a function of p, is reported in Fig. showing that it can be well
described by a linear law. Since 7, depends also on the length of the slender object, as well as on
its mass, the linear fit 7, = ap gives different results: for fibers having a length ¢ = 1, a =~ 0.04,
while for swimmers having a length ¢/ = 0.4, a ~ 1 for Re = 1. Because of our interest in
investigating the swimming behavior for larger Re, the same analysis has been performed in a
fluid with Re = 10. Also in this case it has been found that a linear relationship between 7, and
p holds, with @ ~ 10 (not shown). The increase in a by a factor 10 is reasonable because of
the expected inverse proportionality between the Stokes time and the viscosity, which has been
reduced to obtain the desired Reynolds number. The Stokes number is defined as St = 7,/7y,
where for fibers 7y = ¢/Uj is the characteristic hydrodynamic timescale. The definition of St
for the slender swimmers will be introduced in Sec. 2.4.4]

This has been done for the sole fibers modeled with the active model, since the Stokes
number is an assigned parameter in the one-way coupling case, as shown by Eq. (2.T1).
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2.4. Measuring flow properties

The capability of a rigid fiber, or slender swimmer, to act as a proxy of a laminar, cellular flow
in terms of a few fiber properties, such as its position and the velocity of the fiber/swimmer end
points will be discussed. The measures have been performed in 2-D and 3-D laminar flows such
as the BC flow, already introduced in Sec. the ABC flow [52], a time-dependent and two-
dimensional flow and a time-dependent version of the three dimensional ABC (Arnold-Beltrami
Childress) flow [88]].

The choice of this setting allows us to perform a direct and reliable comparison between the
measured fiber/swimmer velocity and the underlying unperturbed fluid flow velocity.

2.4.1. Normal derivative of longitudinal velocity component

Let us start by investigating the possibility to measure flow properties by means of rigid fibers
fully-coupled to the flow. Here, the 2-D BC flow with Re = 1 has been employed. Fig.[2.9]
reports the velocity magnitude of one fiber end as a function of time, compared to the velocity
magnitude of the unperturbed flow (i.e., in the absence of the fiber) evaluated at the same point.
It is evident that the two quantities differ appreciably. This result indicates that a fiber cannot
be used to measure single-point flow quantities as done, e.g., in PIV techniques using tracer
particles [48].

Vi

Time

Figure 2.9: Velocity time series at one fiber end for the fiber (red solid line) and for the underlying
unperturbed flow (black dashed line), for a fiber with St ~ 0.01 released into the BC flow, computed
with the active model.

Now, let us consider the velocity difference between the fiber end points (Fig. 2.1), i.e.
0V = Vp — V4, and denote by du = u|p — ul|4 the corresponding unperturbed flow velocity
difference. Comparing directly these two quantities, however, would still yield the same mis-
match previously found for the velocity of one end. Such a mismatch is due not only to the
fiber inertia, but also to the fiber inextensibility constraint. Indeed, if we consider the projec-
tion of the velocity difference introduced above along the direction parallel to the end-to-end
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distance, p, for a rigid and inextensible object, such quantity is always zero, although the same
quantity for the underlying unperturbed flow is clearly not. The idea is then to project 6V on
a plane normal to p by simply arguing that along that direction the effect of the inextensibility
constraint should be washed out. In terms of the normal unit vector p, (shown in figure ,
we define the projections:

SV, =8V -py, (2.19)
6'U/J_ =du- f)L~ (220)

The projected quantities (2.19) and (2.20) are compared in Fig. where we report the
results of the analysis in the BC flow configuration while varying St, for both two-way and

one-way approaches. For relatively low St (i.e., the first two rows of the figure), it is possible
to notice a remarkable agreement, i.e. the fiber is able to accurately measure the (unperturbed)
flow transverse velocity increments in terms of its transverse velocity increments. For increasing
St, i.e. the fiber inertia, the agreement gets worse, as expected. Overall, we observe a close
resemblance between results for fibers starting from the same position, using the active (left
panels) and passive (right panels) model, especially for the smallest St. This suggests that here
the effective coupling between the flow and the fiber could be actually neglected, in relation to
the measurement of transverse velocity differences. Accordingly, when extending the analysis
to three-dimensional and unsteady flows (Sec. 2.4.2)) it will exclusively employ the passive
model on the basis of such evidence. Note however that from Fig. it is evident that the
role of feedback cannot be entirely neglected. For sufficiently large Stokes numbers (St ~ 0.1),
the curves on the left panels and those on the right ones are different, revealing that the motion
of the fiber center of mass is affected by the feedback of the fiber to the flow. The effect of
the latter is indeed crucial when the fiber center of mass moves close to the flow separatrix,
potentially causing totally different trajectories compared to the one-way approach.

Some further comments are worth considering. First, the projection along the normal di-
rection to the fiber is crucial for the fiber to be a proxy of the flow velocity differences: if we
project the velocity differences along a generic direction, the agreement shown before is no
longer present (not shown here). In the two-dimensional case, the normal direction is uniquely
defined by p, = £(p2, —p1, 0). In the three-dimensional case there are instead an infinite num-
ber of directions belonging to the normal plane to the fiber orientation. It has been retained
pL = (P2, —p1,0), also for 3-D cases (see Sec. even if the results did not change for
different choices of p, we have considered.

The situation considered in Fig. refers to a fiber whose length is about 32% the size
of the single cell. This is a case where the fiber length is sufficiently small compared to the
variation scale of the flow. Under such condition the velocity difference between the free ends
can be compared with the flow gradient evaluated at the fiber center of mass. For the latter, the
same projection along p has to be applied as before. However, due to the tensorial structure
of the gradient d;u;, this translates to considering a double projection, first along the tangential
and then along the normal direction:

D = 0;u;p;py-. (2.21)

In Fig. 2.10, where ¢/L = (27)~!, the curve representing D is not reported but would be
essentially superimposed to that of the fluid velocity difference. Doubling the fiber length, i.e.
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¢/L = 71, the accuracy gets worse as expected. This simply means that, despite the fact that
the fiber accurately measures the transverse velocity differences across the fiber ends, the fiber
is too long to allow the derivative to be well approximated by the ratio of the increments.

Finally, another aspect to be considered is the tendency of inertial particles to sample pref-
erential zones of the flow, giving rise to peculiar features such as small-scale clustering of dilute
suspensions. This phenomenon is well-known and has been thoroughly investigated for spher-
ical particles in turbulent flows (see, e.g., Refs. [99, (100, 101]) and has also been observed for
anisotropic particles (see Ref. [1] and references therein). While this mechanism could impact
on the potential of using fibers as a proxy of the flow (i.e., measuring only certain regions of
space), by decreasing the Stokes number, along with improving the measure in itself, assures at
the same time that preferential sampling is reduced. In steady cellular flows, it is possible to ob-
serve the role of inertia in this regard by looking at the fiber trajectories and, in particular, their
deviation from the flow streamlines. A visualization from the data is given in Fig. 2.11| where
two cases at different St are compered: the less inertial fiber with St = 0.1 initially follows the
cell streamlines but, due to the centrifugal effect, eventually reaches the flow separation lines
(Fig. 2.1Th), while the heavier fiber with St = 2 shows a stronger deviation of its trajectory
from the streamlines, resulting in a more diffusive behavior (Fig. 2.11p).
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Figure 2.10: Transverse velocity differences of fiber 6V (solid line) and unperturbed BC flow du
(dashed line) for different Stokes number, both for the two-way (left panels) and one-way (right panels)
coupling. The normalized root-mean-square deviation between dV; and du  , for both active and passive
model, is less than 1% for St < 0.1, of the order of 10% for St ~ 0.5 and larger than 15% for St > 1.
The fiber length is unity and it is thus about 32% of the size of the single cell in the considered flow.
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Figure 2.11: Superposition of fiber positions at different instants within the periodic two-dimensional
BC flow (the colormap denoting the stream function), computed with the active model. (a) St = 0.1 and
(b) St = 2. The dashed line represents the trajectory of fiber center of mass and the black circle indicates
its starting position.
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2.4.2. Extension to three-dimensional and unsteady flows

As further step of our analysis, let us test the capability of the fiber to measure the trans-
verse velocity differences in three-dimensional steady or unsteady cellular flows. In light of the
findings for the steady BC flow (Sec.[2.4.1)), only results obtained with the passive model will
be presented, although checks using the active model have been performed and yield the same
overall scenario as in the steady, two-dimensional case.

First, let us consider the so-called Arnold-Beltrami-Childress (ABC) flow, which is known
to be a time-independent, three-dimensional solution of Euler’s equations [52]:

u  =sinz+ cosy
v =sinx + cosz (2.22)
w =siny + cosT

Also in this case the same kind of volume force introduced in Sec. 2.3] has been used to
obtain a stable solution of the Navier-Stokes equation, for Re = 1. In Fig. [2.12] (left panels) the
results of the analysis for this 3-D case are presented. As for the BC flow, it has been found
that for sufficiently low Stokes numbers, i.e. St < 0.1, the agreement is evident between the
fluid and fiber transverse velocity differences. Like the 2-D case the agreement deteriorates for
increasing St as expected.

Next, the results are presented for the unsteady, time-periodic, and two-dimensional flow
(Eq. (2:23)).

u = sin[z + € sin(wit)] cosly + € sin(wot)]
v = —cos[x + €1 sin(wt)] sinfy + easin(wat)]

(2.23)

where €; = €5 = 0.2 are the amplitudes while w; = 27 and wy = 1 are the frequencies of
the oscillation along = and y, respectively. This choice corresponds to a situation where the
Lagrangian trajectories of fluid particles are chaotic [102, [103]. The projected velocity dif-
ferences are shown in Fig. (right panels), where the same conclusions drawn for steady
configurations are confirmed: the agreement between the fiber-based measurement and the di-
rect evaluation using the flow expression ( Eq. (2.23)) increases by decreasing the rotational
Stokes number.
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Figure 2.12: Transverse velocity differences of fiber 6V (solid line) and unperturbed flow du (dashed
line) for different Stokes numbers, computed using the passive model. Left panels: ABC flow (Eq.[2.22));
right panels: 2-D oscillating cellular flow (Eq.[2.23] The normalized root-mean-square deviation between
0V, and du |, for both ABC flow and 2-D oscillating flow, is less than 1% for St < 0.1, of the order of

15% for St = 1 and larger than 20% for St = 10.
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2.4.3. Evaluation of the velocity gradient tensor

Having characterized the behavior of single fibers, it is possible to move further, focusing on
how to access the full velocity gradient tensor J;u; and not only its normal projection. This will
be achieved by assembling several fibers in a proper way and exploiting the following idea: for
each fiber, Eq. holds, where the velocity gradient becomes the unknown variable if )V is
used (that is measured by tracking the fiber trajectory) in place of D. Considering an assembly
made by /V; fibers, it corresponds to having a system of Ny equations, from which the gradient
can be obtained.
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Figure 2.13: (a) Sketch of fiber assembly; (b) transverse velocity differences of each fiber V| (solid line)

and underlying unperturbed flow du, (dashed line) in the case of BC flow with ¢ = 1 and St ~ 0.01,
computed using the active model.

Let us therefore estimate the number of fibers that are needed in the two-dimensional case:
here 0;u; is made by 2 x 2 elements; however, the number of independent quantities is reduced
of one by exploiting incompressibility. Hence, the assembly has to be made by N; = 3 fibers,
yielding the following system to solve:

SV = gupVpD)

J7y
5V = BupPp® (2.24)

(3) AL
5V¢(3) = 8juip§3)pi ®)

In this system the final number of unknowns are three (i.e. three components of d;u; out of
four because of the incompressibility condition). In a 3-D case the assembly should be made by
N = 8 fibers, since J;u; is made by 3 x 3 elements. Both the left-hand side of the equations and
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the coefficients of the velocity derivative tensor are easily measurable at each time step along
the fiber trajectories and thus known from the numerical experiments. The system can be thus
easily solved at each time step while following the fiber along its trajectory.

The three fibers will be connected at their centroids (numerically, it is convenient to realize
these connections using springs with sufficiently high stiffness so that the distance between
centroids results negligible). However, each fiber is left to behave as in the single case, its
dynamics not being substantially altered by the link with the others. To this end, it is crucial
to avoid any rotational constraint, so that fibers are able to rotate freely with respect to each
other. For the assembly the rotational Stokes number has been measured following the same
procedure described in Sec. for the single fiber. The resulting relaxation times of each fiber
composing the assembly turned out to be the same as the rotational Stokes time of the single
isolated fiber. One can thus conclude that the Stokes time of the assembly is the same of a single
fiber.

The outlined concept is tested in the steady BC flow already used in Sec. As a
first step, we looked at the resulting time histories of the projected velocity difference for each
fiber composing the assembly (Fig. [2.13b), recovering the same evidences found in the case of
single fibers. This provides a clue that also in this configuration it is possible to capture the
features of the fluid flow. Indeed, by proceeding to combine the information from all fibers,
i.e. by solving the equations system (2.24)), finally the velocity gradient tensor is obtained,
as shown in Fig. where the time series of each element d;u; is reported, both for the
Lagrangian fiber tracking and for the corresponding analytical value of the unperturbed flow.
The comparison between the two quantities yields good agreement, with differences that are
ascribed to numerical resolution and the finite inertia of fibers.
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Gradient Tensor

Time

Figure 2.14: Velocity gradient tensor components in the BC flow (Eq. ) reconstructed by tracking
the fiber assembly with St = 0.01, using the two-way coupling. Red circles: dyu obtained by the fiber
Lagrangian tracking; red solid line: dyu for the unperturbed flow; blue squares: 0,v obtained by the
fiber Lagrangian tracking; blue dashed line 0,v for the unperturbed flow; black crosses: d,u = —0yv
obtained by the fiber Lagrangian tracking; black line: d,u = —dyv = 0 for the unperturbed flow. The
normalized root-mean-square error between the components of the gradient tensor reconstructed by the
Lagrangian tracking and those of the unperturbed flow is of the order of 1%.
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The reported results are obtained using the two-way approach but closely similar results are
obtained using the passive model. In Fig. [2.15] the results for the assembly of fibers are shown
in the static BC flow using the one-way approach, highlighting essentially the same behavior
obtained in the active case (note that the same initial condition for the assembly of fibers was
used in both cases). Finally, the analysis has been complemented by employing an assembly
of fibers, using the one-way coupling, in the oscillating two dimensional flow introduced in
Sec.[2.4.2] (Eq. (2.23)). Results are shown in Fig. [2.16] from which the same conclusions as
before are confirmed.

1

Gradient Tensor
o
2
3

—1 1 1 1
0 5 10 15 20 25

Time

Figure 2.15: As in Fig. but for assembly of fibers modeled with one way coupling. The normalized
root-mean-square error between the components of the gradient tensor reconstructed by the Lagrangian
tracking and those of the unperturbed flow is of the order of 1%.

It is worth noting that the linear system ( Eq. [2.24) that has been numerically solved to obtain
all components of the flow gradient can become overdetermined because of the alignment of
two of more fibers. To avoid this problem a simple recipe has been found; by imposing a small
displacement (of As, the size of the Lagrangian mesh) between the centroids of the fibers of
the assembly (instead of imposing them to be zero) is enough to prevent perfect alignment of
the fibers, thus preventing the breakdown of the solution. The results reported in Fig. [2.14] 2.13|
and [2.16) have been obtained exploiting this simple, but effective, strategy. Fig. reports
the time history of the angle of the three fibers composing the assembly, in the oscillating two
dimensional flow. As shown in figure, in the considered time frame the alignment between the
fibers does not occur and the minimum value of the standard deviation between the three angles
is 0.18 rad. Extending the time frame (not shown), up to 25, the minimum value of the standard
deviation we measured was 0.0085 rad which was however large enough to allow an accurate
solution of the system.
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Figure 2.16: As in Fig. but for the oscillating two dimensional flow (Eq. (the figure is split
into three panels for a better readability of the gradient tensor components). The normalized root-mean-
square error between the components of the gradient tensor reconstructed by the Lagrangian tracking
and those of the unperturbed flow is of the order of 1%.

31



CHAPTER 2. FIBERS AND SLENDER SWIMMERS MEASURE FLOW PROPERTIES

< 0.57

Time
Figure 2.17: Time history of the angles (rad) of the three fibers composing the assembly in the two
dimensional oscillating flow. Red circles: fiber 1; blue squares: fiber 2; black crosses: fiber 3. Angles

are measured with respect to the horizontal direction. The minimum value of the standard deviation is
0.18.

2.4.4. Sensing velocity differences while swimming

Let us now pass to show the capability of a slender swimmer to measure flow properties in
terms of swimmer position and velocity of the swimmer end points (red dots in Fig.[2.3) despite
its pertubing presence. Before to pass to discuss how slender motile objects perceive hydrody-
namic signals net of self-motion, it is necessary to asses its own swimming velocity given the

propulsion Fr in Eq. (2.12)).
Swimming velocity of pushers and pullers

Depending on swimmer type, i.e. pusher or puller, the swimming terminal velocity could be
different because different flow disturbance are generated while swimming. When Re, < 1,
the swimming terminal velocity is given by the balance between the propulsive force and the
Stokes drag exerted by the surrounding flow, as it has been shown in section Here the
resulting swimming velocities for the pusher and puller swimmers for different values of Re,
and F; are presented.

The behavior of F versus the swimming velocity, us, and the corresponding Reynolds
number, Reg, for pushers and pullers, are shown in Fig. u 1s normalized with the max-
imum swimming velocity investigated, while F; with the expression from the slender body
theory, Fy, = us4dmphn, where h = £/2 is the half length of the slender object, and n = 1/In a,
with a = h/ R being the aspect ratio [104].

Velocities reached by pusher and puller swimmers in a fluid initially at rest with Re = 1,
for 0.04 < Re, < 0.4, are reported in Fig. 2.18p. Fig. reports the same quantities for
Re = 10 (and 0.4 < Rey < 4). Considering fluids with different Re, allows us to investigate
differences in locomotion of pushers and pullers when inertia becomes important.
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Figure 2.18: (a) swimming velocity reached by pusher (circles) and puller (stars) in a fluid initially at rest

with Re = 1; (b) in a fluid with Re = 10. (c) squares: ratio between the maximum vorticity generated
by pushers (wP*shy and pullers (wP""). The dashed line indicates wP*s" / wP =1 (here Re = 10).
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When Re, < 1, for a given Fr, pushers and pullers reach exactly the same u,. As Re, <
O(1), it is found that for a given F, pusher and puller swimmers reach different swimming
velocities. Pushers show a constant ratio F/F, as u, increases, indicating a linear relationship
between us and Fr, up to Rey, = 4. With a pre-factor of the order of the unity, the external
force acting on a pusher swimmer can be reasonably described by a slender body theory (see
Fig.[2.18p). This is not the case for pullers: a non-linear relationship between u, and Fr, indeed
holds in the range 0.04 < Re, < 4. Moreover, pullers are less efficient since they need a greater
propulsive force to reach the same swimming velocity of pushers. The origin of this finding can
be detected in Fig. where it is shown the ratio between the maximum vorticity generated
by pushers and pullers, wP**" /wP*! in the range 0.4 < Re, < 4. The ratio passes from being
O(1) at small Re, to about 0.5 at Re; = 2, almost monotonically.

This findings are consistent with the results in Ref. [105]] where the self-propulsion of pusher
and puller squirmers has been investigated for Reynolds numbers between (.01 and 1000. Au-
thors found that pushers have efficient convection of vorticity past their surface leading to a
steady axisymmetric flow that remains stable up to large Reynolds numbers. In contrast, pullers
trap vorticity within their wake, which leads to flow instabilities causing a decrease in the swim-
ming velocity at large Reynolds numbers. A deeper investigation of the flow field generated by
slender swimmers is required for a full explanation of the differences in locomotion between
slender pushers and pullers, especially for large IRe,, which is not the focus of this thesis.

Measuring flow signals net of self-motion

Once the swimming velocity has been assessed, it is possible to proceed to investigate the
capability of a slender swimmer to measure flow properties in terms of swimmer position and
velocity of the swimmer end points (red dots in Fig. [2.3)). To do that, a time-dependent version
of the three-dimensional ABC (Arnold-Beltrami-Childress) flow [88]] it is considered:

u  =sin(z + esin(Qt)) + cos(y + esin(Qt))
v =sin(x + esin(2t)) + cos(z + esin(§2t)) (2.25)
w = sin(y + esin(Qt)) + cos(x + esin(§2t))

where ¢ = 1 is the cell oscillation amplitude, and 2 = 1.5 the cell oscillation frequency.
This choice ensures high chaoticity uniformly distributed in space with a maximum Lyapunov
exponent A = 0.8 (see Ref. [88]]). In order to obtain the ABC flow as a solution of the Navier-
Stokes equations, the volume force, f¥ = d;u — (1/Re)d*u, has been applied to the right hand
side of Eq. (2.6). For the Reynolds numbers analyzed here, the resulting flow field turns out to
be a stable (time-dependent) fixed point of the Navier-Stokes equations which agrees with the
analytical expression.

Simulations with Re = 1 and 10, have been performed always checking that the flow re-
mained stable for values of Re at least up to 100. Also in this case, the use of this setting allows
us to perform a direct and reliable comparison between the swimmer velocity differences eval-
uated at its ends and the corresponding velocity difference of the underlying (unperturbed) fluid
flow. With unperturbed flow velocity, we mean the velocity field in the absence of the swimmer
(i.e. excluding the swimmer self-motion). Here, the swimmer inertia has been quantified via
the Stokes number expressed in terms of the flow Lyapunov exponent, \: St = 7,A. Moreover,
another parameter needs to be introduced; the swimming number, ¢, expressed in terms of the
ratio between the measured swimming velocity and the fluid root mean square velocity, namely,
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® = wug/upms. The parameter @ together with St, Re and Re, are the control parameters
entering in the numerical experiments.

Also in this case, the velocity difference between the swimmer end points (red dots in
Fig 2.3)), 6V, and the corresponding unperturbed flow velocity difference Ju has been con-
sidered and projected along a plane normal to the swimmer axis in a way to minimize the effect
of inextensibility constraint, as already done in Sec. [2.4.1] The normal plane used is the same
employed in Sec. 2.4.T] for rigid fibers passively advected by flow, although the results seem to
be independent on this particular choice.

The normalized root-mean-square error (N RM SFE), between oV and du, , with the cor-
responding error bars are reported in Fig. for the time-dependent ABC flow. Examples
of time series of 01/, and du, are presented in the insets. The measured N RM SFE for both
pushers and pullers with St = 0.04 and 0.1, for Re = 1 are reported in Fig [2.1%, and for
Re = 10 in Fig [2.19b, while @ is ranging between 0 and 1. For the sake of comparison, it is
also shown the NRM SE for @ = 0, i.e. the slender body without propulsion. The NRMSE
is defined as:

1
(7 S v = ous 2 ar)”

NRMSE =
G

where G = 4/(3?) being the flow strain rate, with (%) = (e;e;), e;j = 3(du; + Oju;) is
the strain tensor, and 7 is half of the periodicity box size. t¢,,,, has been chosen in a way to
obtain a statistical convergence of the selected statistical indicator. Error bars represent the
residual variability of the mean values at convergence. Apart from short time intervals where
0V, and éu, are quite different, due to rapid changes of the underlying strain-rate/vorticity,
both pusher and puller swimmers are able to ‘measure’ the unperturbed flow transverse velocity
difference with satisfactory agreement across the different values of ¢ (see Fig. [2.19). In
particular, when Re = 1 and St = 0.04 the N RM S E of pushers and pullers is almost the same,
with a slight growth by increasing ®. If St = 0.1, larger differences arise between pushers
and pullers. NRMSE of puller remains almost constant across the swimming numbers, ®,
while for pushers the N RM SE presents a general increase by increasing ®, with a maximum
NRMSE just over 2% (Fig. [2.19k). When considering Re = 10 and St = 0.04, the NRM SE
of puller increases more than the N RM SE of pushers. Moving to St = 0.1, pullers maintain
almost constant the NRMSFE up to & = 1. For pushers, the NRMSFE behaves as that of
pullers up to & = 0.7; for larger swimming numbers the N RM SE of pusher starts to increase
up to a value around 3% (Fig.[2.19b).

In light of the results discussed above, two different patterns can be identified: first, pushers
are more efficient to measure flow properties when their inertia is low; second, when swimmer
inertia is relatively high, the conclusion is opposite: pullers are now more efficient than pushers
to ‘measure’ flow properties. The conclusions drawn above hold for both value of Re we have
considered, thus suggesting the robustness of this findings, at least in the range of Reynolds
number investigated.

(2.26)
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Figure 2.19: Normal root-mean-square error, with the respective error bars, between the transverse
velocity difference 6V of swimmer, and the unperturbed ABC time-dependent flow du | , with (a) Re =
1 and (b) Re = 10, against Swimming number ®. Blue circles and red stars are pusher and puller
swimmers, respectively, with St = 0.04. Yellow circles and purple stars are pusher and puller swimmers,
respectively, with St = 0.1. The markers in ® = 0, report the NRMSE for a slender object without
propulsion. Insets: transverse velocity difference of a puller swimmer §V; (dashed line) and unperturbed
time-dependent ABC flow du (solid line), for St = 0.1 and & = 0.1.
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2.5. Summary and outlook

The first part of this chapter is focused on the capability of measuring the whole structure of the
velocity gradient in steady, unsteady regular and chaotic cellular flows by means of Lagrangian
tracking of assembly of rigid fibers. Two different kinds of fiber models have been considered:
first an active model, a fully-coupled fiber described in terms of an immersed-boundary method,
and, second, a passive model, a one-way coupling where the fiber is described by the slender
body theory. We have characterized the role of fiber inertia by defining a rotational Stokes num-
ber, which it is evaluated as a function of other parameters such as the fiber linear density. The
rotational Stokes number has been evaluated for the sole active fiber, since for the fiber modeled
with the passive approach it is an assigned parameter. By considering the velocity difference
between the fiber end-points and the same difference relative to the underlying fluid velocity,
both projected along the direction normal to the fiber, the fiber turns out to be a proxy of such
two-point quantity. For sufficiently short fibers, two-point velocity difference reduces to the
transverse component of the flow velocity derivative along the fiber direction. Furthermore, the
comparison between results obtained for the active model (two-way coupling) and the passive
model (one-way coupling) suggests that the coupling between the flow and the fiber could be
neglected, at least for small St.

The observed capability of rigid fibers to measure two-point flow observables has potential
application in experimental measurement techniques allowing to access small-scale, multi-point
properties of fluid flows, offering an alternative to other methods that have been proposed which
rely on complex elaborations using PIV/PTV (Refs. [49,1106,(107]). Attention will thus be paid
to the practical implementation of the outlined concept in a laboratory environment. Preliminary
results in this direction appear very encouraging [4] confirming the validity of the idea of using
rigid fibers as a way of measuring flow properties, an idea that seems successful well beyond
the laminar/chaotic examples analyzed here. The idea can be extended to measurements of
three-dimensional and/or turbulent flows, along with considering assembly of fibers that would
be able to describe the full structure of the velocity gradient.

The second part of the chapter investigates the perception of hydrodynamic signals by slen-
der swimmers commonly classified as pusher or puller type. Two different swimmer models
have been proposed. In the simplest model, the locomotion of a self-propelled organism is
described in terms of two oppositely directed point forces of equal magnitude, but acting on
different points of the Lagrangian grid associated to the swimmer. The resulting numerical so-
lution of the flow field generated by the swimmer motion has been compared with the analytical
solution corresponding to the so-called di-Stokeslet, obtaining excellent agreement.

As aless idealized model of swimmer, a model for a slender swimmer has been proposed by
imposing the no-slip condition and the propulsion force on the same half length of the slender
motile object, the spreading of the pushing/pulling forcing acting on the fluid being imposed
on the other half (the so-slip condition was not applied in that portion of the Lagrangian grid).
The resulting flow motion has been successfully compared with the solution for an extended
stresslet, where the velocity field in a point of the flow domain is reconstructed by superimpos-
ing several (5 in the present study) di-Stokeslet solutions.

Once the models have been validated in the limit of Stokes flows in a fluid initially at rest, the
more realistic model has been exploited in a chaotic flow field up to a flow Reynolds number
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of 10 (i.e. far from the Stokes regime), a swimming number ranging between zero and one,
and different swimmer inertia. The main results can be summarized as follow. i) Pushers and
pullers differently react to an imposed propulsive force. The net result of this observation is that
they reach different swimming velocities for the same, given, propulsive force. Interestingly, if
one exploit the slender-body theory to relate the imposed propulsion to the resulting swimming
velocity, one finds that it reasonably works for pushers while this is not for pullers. The invoked
reason to understand this finding is the different vorticity generated by the motion of the two
swimmer type. ii) For a wide range of flow/swimmer Reynolds numbers, both pusher and puller
swimmers are able to sense hydrodynamic signals with good accuracy, net of swimmer self-
motion. This means that, despite the perturbation caused by the swimmer motion, there exist
hydrodynamics observable practically unaffected by the swimmer motion, i.e. the swimmer
velocity differences evaluated at the swimmer ends, projected along a direction on a plane
normal to the swimmer orientation.

This finding opens to unconventional non-intrusive techniques to measure two-point flow
properties (e.g. gradients) by following artificial self-propelled slender objects, thus generaliz-
ing the founding idea at the origin of the recently proposed ‘fiber tracking velocimetry’ [4]].
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Chapter 3
The fluid dynamics of airborne infection

This chapter is devoted to understand the role of the turbulence on the fate of virus-containing
droplets expelled during a human cough under realistic conditions. To this aim, high resolution
DNS have been performed for the fluid flow and humidity field, complemented by a passive
Lagrangian solver for the droplet dynamics including a dynamical equation for the evolution of
the droplet radii modeling the evaporation-condensation process. Such an accurate description
is nowadays possible thanks to the deep understanding achieved in the microphysics of small
liquid droplets under different ambient conditions. The fine structure of turbulence is expected
to be crucial to correctly account for its effect on droplet evaporation. The chapter is structured
as follow: Sec. introduces the background and research motivations, Sec. presents
the employed numerical methods, Sec. [3.3] shows how a full account of turbulence affects the
results on the fate of virus-containing droplets, Sec. [3.4] shows the dependence of the results
on the droplets initial size distribution and different ambient humidity, Sec. [3.5] studies the
dependence of results on the the airborne virus spreading on gender. Sec. investigates
the effectiveness of the the barriers as protection devices within indoor environment and finally
Sec. 3.7 draws some conclusions.

3.1. Background and motivations

Turbulent transport of droplets in a jet or puff is a problem of paramount importance in science
and engineering that nowadays has become even more important given the global emergency
caused by the COVID-19 infection. The implementation of predictive models for the dynamics
of the exhaled air emitted through respiratory events is important for a deep comprehension
of the long-range transport mechanisms responsible for the infection spread far from the emis-
sion source. Some attempts in this direction appeared in the literature. In way of example,
Bourouiba et al. [108]] provided a simple interpretation of their experimental results obtained in
the laboratory by generating a two-phase flow consisting of fresh water with heavier particles
dispersed in it, which was abruptly introduced, through a piston, into a tank containing salty
(and, therefore, denser) water. The experiments mimics a cloud of warmer (with respect to the
ambient) air hosting droplets as it happens during a respiratory emission. Three different steps
can be identified during a respiratory emission: the initial jet behavior of the emitted fresh fluid,
its transformation into a puff-thermal in the far field, and, finally, the evolution of the two-phase
mixture induced both by the entrainment process and by the sedimentation of the transported
particles. The proposed theoretical model accurately predicts the observed time dependence of
the longitudinal coordinate of the cloud center of mass by estimating the entrainment coeffi-
cients from the corresponding dependence of the characteristic 'radius’ of the cloud from the
longitudinal coordinate of the cloud center of mass.

The theoretical model proposed by Bourouiba et al. [108]] has clear limitations. It basically
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ignores two important aspects of the phenomenon: the turbulent character of the fluid motion
and its two-phase nature. The flow associated with respiratory emissions is indeed characterized
by high values (~ 10%) of the Reynolds number [[109]]. Because of turbulence, the flow out of the
mouth is extremely irregular, fluctuating, both in space and in time. Moreover, the mechanism
of entrainment not only affects the buoyancy of the air cloud but also induces a reduction of its
water vapor content. The ambient humidity is indeed smaller than the humidity of the exhaled
air. The hypothesis that the environment is not saturated, in cases where the temperature of
the cloud (about 30-35°C during expulsion) is comparable with that of the environment (for
example about 25°C), is equivalent to saying that the absolute humidity of the environment is
sufficiently lower than that of the exhaled air. As time runs, due to the mixing of the two air
masses, the temperature of the exhaled air is lowered and its absolute humidity is reduced. The
first effect, by lowering the saturated vapor pressure, favors condensation, but it is immediately
counteracted by the second, and most important, which favors the evaporation of the droplets.

The turbulence characterizes also the mixing process which determines how the exhaled
air, initially saturated of water vapor, dilutes with ambient air. This mechanism is intimately
chaotic characterized by persistent fluctuations in the relative humidity field. The turbulent
nature of the relative humidity field can have a dramatic effect on the fate of the evolution of
saliva droplets. Cloud formation in the high atmosphere provides a large-scale example of the
condensation/evaporation processes taking place in the air cloud exhaled from the mouth during
coughing/sneezing/talking. The crucial role of turbulent fluctuations in the relative humidity
field was isolated in relation to its role in the cloud droplet growth by condensation [26]. As
a result of this study, turbulence turned out to be the key ingredient to explain the observed
spectrum broadening of cloud droplets resulting at the end of the condensation stage. Due to
this process of size broadening, the droplets can reach different terminal velocities, a fact that
allows them to start the second phase of their growth dominated by collision and coalescence.

For the saliva droplets, the growth by condensation is certainly not the key phenomenon
at play, at least on average. On the contrary, the expelled droplets, in general, move in an
under-saturated medium. In this framework, the interesting questions, still largely unanswered,
concern the way and the rate at which these droplets evaporate. To date, the evaluation of these
characteristics is done via mean-field arguments, which either ignore the effects of turbulent
fluctuations or describe them in an extremely simplified way. For the problem of respiratory
droplet spreading, typical approaches found in the current literature are based on large-eddy
simulations (LESs) and Reynolds-averaged Navier-Stokes (RANS) equations [110, (111} [112].
By definition, LESs and RANS equations only describe turbulent fluctuations at the largest
scales involved. By reversing the way of reasoning followed to understand what happens in a
cloud in the upper atmosphere, one can easily imagine that the role of turbulence is very im-
portant to determine the fate of expiratory droplets during their evaporation stage. Droplets that
remain longer in less under-saturated zones will evaporate slower than other droplets remaining
in regions where the relative humidity is lower.

Numerical approaches able to fully describe all the spatial and temporal scales, such as DNS,
are thus crucial to assess quantitatively how turbulence dictates the fate of virus-containing
droplets, and consequently provide useful insights on the spread of SARS-CoV-2 and other
airborne transmitted infections.
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3.2. Methods

This section will discuss state-of-the-art direct numerical simulations (DNS) in order to simulate
the turbulent air flow exhaled from the mouth during a violent expiatory event, such as human
cough. Moreover, a Lagrangian model for the droplet dynamics and their radii evolution due to
evaporation will be described.

3.2.1. DNS of cough-generated airflow

The airflow exhaled from the mouth is ruled by the incompressible Navier-Stokes equations

1
Jdu+u-0u=——0p+ vdu, (3.1

a

0-u=0 (3.2)

with v being the air kinematic viscosity and p, the air density. The list of all relevant parameters
used in this study is reported in Table [3.1] Instead of simulating the evolution of the absolute
humidity field (the exhaled air is saturated, or close to saturation [113]]), it is more convenient
to model directly the supersaturation field (i.e., s = RH — 1, RH being the relative humidity).
Indeed, the supersaturation dictates the evaporation-condensation process, as it appears in the
evolution equation for droplet radius [[114]. The supersaturation field is ruled by the advection-
diffusion equation [26]:

Os+u-8s = D,0%s (3.3)

D, being the water vapor diffusivity. Equation (3.3) assumes that the saturated vapor pressure is
constant, an assumption that holds as long as the ambient is not much colder than the exhaled air,
which is at about 30 °C according to Morawska et al. [113]]. To simulate the airflow generated
by a human cough, it has been adopted the inlet air velocity profile proposed by Gupta et al.
[109], as shown in Fig. The air is assumed to be saturated (i.e., s = 0) as it exits from the
mouth opening of area 4.5cm?. The duration of the expulsion is approximately 0.4s and the
peak velocity is 13m/s. The resulting Reynolds number (based on the peak velocity and on the
mouth average radius) is about 9000. The flow field is thus fully turbulent as one can easily
realize by looking at Fig

Before discussing how the liquid part of the two-phase mixture is modeled, let us first val-
idate the puff dynamics of the exhaled air. By means of a simple phenomenological approach,
we show how one can derive the temporal scaling for the standard deviation of a cloud of trac-
ers in a turbulent puff. The starting point is the result obtained by Kovasznay et al. [116] for
the temporal scaling of the puff radius, o* ~ t!/* obtained by the authors in terms of a sim-
ple eddy-viscosity approach. A recent paper by Mazzino and Rosti [117] extend the temporal
predictions for the puff bulk properties to the initial range two-point fluctuations. In order to
determine the standard deviation, o, for a cloud of tracers carried by the turbulent puff, one has
to resort to the concept of relative dispersion. The latter can be described in terms of arguments
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Figure 3.1: Top: Time-varying inlet air velocity representative of cough according to Ref. [109]]. Bottom:
Droplet initial size distribution according to Ref. [115]].
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Figure 3.2: Snapshot of the expiratory event 7.6s after start coughing obtained from our numerical simu-
lations. Different colors represent different values of the humidity field ranging between the 99% of the
ambient humidity RH, (red areas) and RH, (white areas). Green bullets (shown not in scale) identify
the position of the airborne droplets, initialized with the sizes taken from Ref. [115]. The streamwise
extension of the puff at this time is 2.6m.

a la Richardson [118]. Accordingly, o(t) ~ €(t)/?t3/2 where €(t) is the turbulence dissipation
rate. This latter can be easily estimated from the well-known Kolmogorov 4/5-law evaluated at
the integral scale o“. Namely,

SU3 oU

e(t) ~ — with 0" = ) (3.4)
from which one immediately gets e(t) ~ t~%/2. The scaling law for ¢ immediately leads to the
temporal scaling for the standard deviation of the tracer cloud: o (t) ~ ¢'/%. Finally, because (s)
is proportional to the puff volume, and this latter goes as o ~ t3/4, the decay law for the mean

supersaturation is (s(t)) ~ ¢t=3/4,

1074 L
1072 109 102
t[s]

Figure 3.3: Mean velocity v of the exhaled air (solid blue circles) and of the supersaturation s — s, (open
red circles) as a function of time. The blue line shows the scaling predicted for the velocity field in Ref.
[116] which also holds for the supersaturation field (red line).

The same law holds for the mean stream-wise puff velocity [116]. The reliability of our puff
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dynamics is demonstrated in Fig. [3.3], which clearly shows the expected scaling laws for more
than two decades with high accuracy.

We are now ready to introduce the model for the liquid part of the two-phase mixture. It is
described as an ensemble of /V inertial particles ruled by the well-known set of equations [119]

X = Uy(t) + /2D,n:(t), with i=1,..,N (3.5)

U, = ' 4y (3.6)

__ 2ppi/palti(D)
’ 9v

where N is the number of exhaled droplets (here N ~ 5000 according to Duguid [113]]), X is
the position of the ith droplet and U; its velocity, and, finally, g is the gravitational acceleration.
Each droplet is affected by a Brownian contribution via the white-noise process 7;. The reason
for considering a nonvanishing Brownian force acting on the position process is twofold and
detailed in Ref. [120]. Here, pp; is the density of the ith droplet. Finally, 7; is the Stokes
relaxation time of the ¢th droplet and R; is its radius.

Since the flow is neither statistically homogeneous nor stationary, we consider the charac-
teristic flow time scale 7., = +/v0,/v3, where v is the puff mean velocity measured by the
Lagrangian tracers (as later described in Sec. [3.3.1.). Using the latter, we can define the Stokes
number for the ith droplet as St = 7; /710, Which allows us to clearly distinguish droplets
whose trajectory is (or is not) dominated by inertia, i.e., St > 1 (or St < 1).

Droplets are assumed to be made of salt water (water and NaCl) and a solid insoluble part
(mucus) [121]. The droplet radius evolves according to the ruling equation [[114]

(3.7

d %7373#\“3
S RH(t) =20k (14 5(X(t), 1) — ™0 THOTR ) (3.8)

Ri(t) =rn; for s < s, (crystallization). (3.9)

Hydrodynamic interactions between particles and flow can affect transport in specific conditions
(e.g. [122]]). Here, no feedback of this equation to Eq. (3.3) is considered because of the very
small values of the liquid volume fraction, typically smaller than 10~° [123,[108]] or even smaller
according to Johnson et al. [124] and Morawska et al. [[113], and thus droplet back-reaction
on the flow is largely negligible. In Eq. (3.8), Cr is the droplet condensational growth rate,
Sern = —0.55 (CRH = 0.45, the so-called crystallization RH or efflorescence RH) for NaCl
[125]]. Figure 3 of Ref. [126] show the weak dependence of C RH on temperature. 7y; is
the radius of the (dry) solid part of the ith droplet when the salt is entirely crystallized (i.e.,
below C'RH). The dependence of ry; on physical, chemical, and geometrical properties of the
exhaled droplets is reported in the next section together with the expressions of parameters A
and B. On the basis of the parameters assumed here, the ratio ry;/R;(0) is 0.16, which agrees
with the estimations discussed in Ref. [[127]].
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Physical and chemical properties of cough

The complete list of physical and chemical parameters appearing in our model, along with their
baseline values adopted in this investigation, is presented in Table 3.1} Some of these quantities
are deduced by other parameters. Specifically, the saturation vapor pressure above a flat water
surface at temperature 7' (where 7" is in degrees Celsius) is obtained using the Magnus-Tetens

approximation [128]]
st = 6.1078 x 102e(1727Ta/(Ta+273.15) py (3.10)

and the droplet condensational growth rate is given by

-1

[P R, (27315 +T,) pw L2, Pw Lo

C’ —
i €sat Dy ko Ry (27315 + T,)2  ka(273.15 + T,,)

(3.11)

The expressions of the coefficients A and B appearing in Eq. (3.8) follow from Ref. [12] (p.
176):
A— 20w and B — nsq)sevaps

Ro(T, + 273.15)pu, M,py

where n, = 2 is the total number of ions into which a salt molecule dissociates, ®, = 1.2 is
the practical osmotic coefficient of the salt in solution [129], €, = €,,(pn/ps) is the volume
fraction of the dry nucleus with respect to the total droplet is the volume fraction of dry nucleus
with respect to the total droplet. To complete the description, some useful relations can be
easily derived from the quantities specified in Table First, assuming that the dry nucleus
of droplets is composed by a soluble phase (NaCl) and an insoluble phase (mucus) and that the
typical value of the mass fraction of the former is known, the overall density of the dry nucleus
can be expressed as

(3.12)

_ Pu
1- Em[l - (pU//Os)]

Similarly, the density of the entire ith droplet turns out to be

=1.97 x 10° kg/m®. (3.13)

PN

3
ppi = pw + (PN — Pu) (%) ; (3.14)

where the radius of the (dry) solid part of the droplet when NaCl is totally crystallized (i.e.,
below C'RH) is given by

= Ry(0) € pu - (3.15)
N = 11 pr+pN(1_C) ) .

being C the mass fraction of dry nucleus with respect to the total droplet.
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Table 3.1: Physical and chemical properties assumed in the present study.

Mean ambient temperature

Crystallization (or efflorescence) RH
Deliquescence RH

Quiescent ambient RH

Density of liquid water

Density of soluble aerosol part (NaCl)

Density of insoluble aerosol part (mucus)

Mass fraction of soluble material (NaCl) w.r.t. the total dry nucleus
Mass fraction of dry nucleus w.r.t. the total droplet
Specific gas constant of water vapor

Diffusivity of water vapor

Density of air

Kinematic viscosity of air

Heat conductivity of dry air

Latent heat for evaporation of liquid water
Saturation vapor pressure

Droplet condensational growth rate

Surface tension between moist air and salty water
Molar mass of NaCl

Molar mass of water

T,

CRH
DRH
RH,

Pu
Ps
Pu

a
3

SRS

D
a Ry Fres

BN

25°C

45%

5%

60%
9.97 x 10*kg/m?
2.2 x 10 kg /m?
1.5 x 10° kg/m?

0.75

1%

4.6 x 1023 /(kg K)
2.5 x 107°m?/s
1.18kg/m?

1.8 x 107" m?/s
2.6 x 10~2W/Km
2.3 x 10°J/kg
0.616 kPa
1.5 x 1071%m? /s
7.6 x 1072 J /m?
5.9 x 1072 kg/mol
1.8 x 1072 kg/mol
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3.2.2. Numerical and geometrical setup

The employed in-house flow solver is named FUJIN [[130] and is based on the (second-order)
central finite-difference method for the spatial discretization and the (second-order) Adams-
Bashfort scheme for the temporal discretization. The Poisson equation for the pressure is solved
using the 2DECOMP library coupled with a fast and efficient fast Fourier transform (FFT)-
based approach. The solver is parallelized using the massage passing interface protocol and has
been extensively validated in a variety of problems [5}16,/92]. The droplet dynamics is computed
via Lagrangian particle tracking complemented by an established droplet condensation model
that has been successfully employed in the past for the analysis of rain formation processes [26]].
The governing equations for the droplet dynamics Eqgs. (3.513.8)) are advanced in time using the
explicit Euler scheme. The numerical domain is discretized with a uniform grid of size 3.5mm
and we verified that the following results are independent of the grid size, statistical sample,
and droplet initial condition. The fluid flow equations (3.1I), (3.2) and (3.3) are solved within a
domain box of length L, = 4m, height L, = 2.5m, and width L, = 1.25m, as depicted in Fig.
B4

4m

2.5m
1.6m

Figure 3.4: Side-view sketch of the domain used in our DNS (note that the figure is not to scale).

The fluid is initially assumed at rest, i.e., u(z,0) = 0. Air is thus injected through a circular
pipe, placed at z = 1.6m above the floor, of length [ = Gcm and internal diameter d = 2.4cm
as an essential model of a human mouth. We use the time-varying velocity profile proposed by
Gupta et al. [109] (shown in Fig. [3.1)) to reproduce the cough-associated airflow. The no-slip
condition applies at the bottom, i.e., y = 0, and left wall, i.e., z = 0 (solid lines in Fig. |3Zf[) At
the top (y = L,, dot-dashed), we prescribe the free-slip condition. For the supersaturation field
s, att = 0 we have s(x,0) = s, = RH, — 1 everywhere in the domain. The inlet flow exiting
from the mouth is assumed to be saturated air; i.e., s = 0. The Dirichlet condition s = s, is
thus used at the bottom, left, and top boundaries. For both the velocity and supersaturation field,
we impose a convective outlet boundary condition at the right boundary, z = L, (dashed line).
Finally, periodic boundary conditions apply at the side walls, i.e., z =0 and z = L,.

In our simulations, the domain is discretized with uniform spacing Ax = 3.5mm in all
directions, resulting in a total number of N ~ 0.3 billion grid points. Results are validated
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against the theoretical prediction for a turbulent puff (see Fig. [3.3). Moreover, we assessed
the convergence with respect to the grid resolution, as it is shown in Fig. [3.5] (top) where we
compare the probability density function of the particle evaporation time using the adopted grid
setting with that obtained by doubling the spatial resolution. From the figure we can clearly
observe that only minor differences occur, thus confirming the reliability of the chosen grid
resolution.

The results discussed in the text are statistically significant. We varied this by halving the
numerical sample (Fig. middle) and by varying the release time of the droplets (Fig.
bottom), thus resulting in different dynamics due to the chaotic nature of the flow; for both tests
the figure shows no appreciable differences.
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Figure 3.5: Top: Grid convergence analysis: probability density function of the particle evaporation time
computed in the baseline case with spacing Az = 3.5mm (blue curve) and Az = 1.75mm (orange
symbols). Middle: Convergence of the statistics: probability density function of the particle evaporation
time computed in the baseline case with N =~ 5000 (blue line) and with half of them (magenta symbols).
Bottom: Independency of the results from the initial condition: probability density function of the parti-
cle evaporation time computed in the baseline case (blue line) and when droplets are emitted with a time
delay of 0.07s (brown), 0.14m (black), and 0.21s (gray).
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3.3. Turbulence role in the fate of virus-containing droplets

This section is devoted to understand the combined role of turbulence and droplet inertia on the
virus-containing droplet evaporation under realistic conditions mimicking a human cough. To
do that, we perform accurate DNSs for the fluid flow and humidity field, complemented by a
Lagrangian solver for the droplet dynamics including a dynamical equation for the evolution of
the droplet radii modeling the evaporation-condensation process (see Fig. [3.2).

For the problem of respiratory droplet spreading, typical approaches found in the current
literature are based on large-eddy simulations (LESs) and Reynolds-averaged Navier-Stokes
(RANS) equations (see, e.g., Refs. [110} [112]]). By definition, LESs and RANS equations
only describe turbulent fluctuations at the largest scales involved. On the other hand, the fine
structure of turbulence is expected to be crucial to correctly account for its effect on droplet
evaporation. This is expected from results in atmospheric cloud microphysics where turbulence
is crucial to explain the broadening of the cloud-droplet size spectrum (see, e.g., Ref. [26]).
Numerical approaches based on DNS are thus crucial to assess quantitatively how turbulence
dictates the fate of virus-containing droplets, and consequently provide useful insights on the
spread of SARS-CoV-2 and other airborne transmitted infections.

3.3.1. Coarse-graining approaches

In order to highlight the crucial role of turbulence in the dynamics of expiratory droplets, two
additional types of coarse-grained simulations have been performed as detailed in the following
of this section.

Filtered DNS

In the so-called filtered DNS, we let the governing equations, i.e., the Navier-Stokes equations
for the fluid flow and the advection-diffusion equation for the supersaturation field, evolve ex-
actly as in the fully resolved DNS. However, both in the Lagrangian particle tracking and in
the droplet radii evolution equation, Eqs. (3.5)-(3.8), instead of using the actual fluid velocity
and/or supersaturation, we make use of their averaged values over a stencil of 72 Eulerian grid
points surrounding the droplet. As a result, the fine structure of both the velocity and supersat-
uration fields is washed out.

Mean-field simulation

In this last approach, we first seed the fluid flow with 2 x 10? Lagrangian tracers from which
we reconstruct a mean, time-dependent streamwise velocity field (whereas both the spanwise
and the vertical components are set to zero because of the symmetry of the problem) and a
mean, time-dependent supersaturation field of the turbulent puff. Such mean velocity is thus
supplied to the Lagrangian particle tracking while the mean supersaturation field is supplied to
the droplet radii evolution equation, Egs. (3.5)-(3.8)). Moreover, from the tracer trajectories we
also measure the time evolution of the puff size. The latter is used to specify at each iteration
whether the droplet resides inside or outside the puff. In the first case, we apply the described
mean fields; conversely, outside the puff we impose s = s, and u = 0.
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3.3.2. The role of turbulence in the airborne transmission

As a first step in our analysis, we provide an overview of the observed dynamics by quantifying
the number of airborne transmitted droplets and of those settling on the ground. Such infor-
mation is reported in Fig. [3.6] from which we clearly observe that the number of sedimenting
droplets represents only a tiny fraction (around 5%) of the total number of exhaled droplets.
Sedimenting droplets have larger size and are characterized by a ballistic like trajectory, due
to the fact that the effect of gravity largely dominates the action exerted by the flow. Because
the dynamics of these droplets is ballistic, the focus will be only on the behavior of airborne
transmitted droplets, with particular attention to the role of turbulent fluctuations both in their
dispersion and evaporation process.

100 .

N%
on
S

T

0
0.01

Figure 3.6: Time history of the percentage number of droplets settling on the ground (dashed line) vs
those remaining airborne and reaching 1m from the mouth (solid line).

Because the supersaturation field evolves as a passive scalar in a turbulent field, it exhibits
the well-known “plateau-and-cliff” structures [131]]. Namely, the scalar field displays dramatic
fluctuations occurring in small regions (called cliffs or fronts) separating larger areas where
the scalar is well mixed (called plateau). Because airborne droplets and supersaturation are
transported by the same velocity field, correlations occur between droplet trajectories and su-
persaturation values [26]. This phenomenon causes droplets of sufficiently small size to remain
long in the large well-mixed regions where they can equilibrate with the (local) value of the su-
persaturation. The droplet evaporation process is thus expected to behave in time by alternating
phases of equilibrium with phases of rapid evaporation, i.e., a sort of stop-and-go process. The
same type of structure is also expected for the decay of droplet radii. This phenomenon can be
clearly detected in Fig. where the temporal behavior of the supersaturation field along the
Lagrangian trajectory of a small airborne droplet is reported (group of lines denoted by St < 1)
together with the time evolution of the corresponding droplet radius (see the inset of Fig. [3.7).
The time history with the fully resolved DNS (solid blue line) clearly shows the effect of the
plateau-and-cliff structures on the evaporation process, which is, however, absent for the larger
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Figure 3.7: s — s, as a function of time experienced by two representative droplets in the DNS (solid
blue line), filtered DNS (long-dashed red line), and mean-field simulation (dashed green line). The group
of three curves close to the bottom left corner of the figure corresponds to a “small droplet” having an
initial radius of 0.6 x 10~%m and a Stokes number always smaller than 0.004 during the whole droplet
evolution (referred to as St < 1 in the figure). The group of three curves in the upper part of the main
figure corresponds to a “large droplet” having an initial radius of 0.8 x 10~2m and a Stokes number
always larger than 3 during the whole droplet evolution (referred to as St > 1 in the figure). The inset
shows the radius time evolution of the “small droplet.”

sedimenting droplet (group of lines denoted by St > 1). The fact that the radius closely fol-
lows the temporal behavior of the supersaturation field (inset of Fig. is the signature of a
quasiadiabatic picture for the evaporation process (i.e., the process of radius adjustment due to
evaporation is much faster than the corresponding variation of the supersaturation field). It is
worth noting that if one considers the smaller droplet evolving in coarse-grained fields (long-
dashed line in red, where both velocity and supersaturation have been coarse grained in space as
discussed in Sec. [3.3.1)), the effect of the plateaus-and-cliffs structures on the evaporation pro-
cess reduces, and eventually vanishes when the turbulent fields are replaced by their mean-field
components (dashed green line).

Having shown that sufficiently small droplets correlate with the supersaturation field, let
pass now to discuss the consequences on droplet motion. For smaller droplets remaining for a
sufficiently long time in regions where the supersaturation field is locally constant, with a value
larger (smaller) than the mean, the evaporation takes place more slowly (rapidly) than what it
would be for the same droplet experiencing smoother fluctuations as in the filtered DNS or in
the mean field approach. The two effects, i.e., reduction vs increase in evaporation time, are,
however, not symmetric as a consequence of a positive skewness observed in the probability
density function of &', the turbulent fluctuation of the supersaturation field. As shown in Fig.
a positive skewness is accompanied by a zero-mean value of s’. The net result caused by
turbulent fluctuations of the supersaturation field on the fate of small droplets is thus to increase
their evaporation time. Evidence of positive skewness has been reported for scalar concentration
emitted by point sources within atmospheric turbulent flows [[132].
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Figure 3.8: Skewness (p = 3, solid line) and mean value (p = 1, dot dashed line) of the supersaturation
turbulent fluctuation s’. Inset: The probability density function of s’ at the time £ = 0.05s. Note the
change of sign from negative to positive skewness passing from the jet to the puff phase.

Let us now quantify the delay caused by turbulence in the evaporation process by comparing,
for an observation time of 60s, the time it takes for each airborne droplet to shrink to its final
equilibrium radius. Let us denote those typical evaporation times as T.,q,. All droplets which
sedimented within the observation time of 60s were not included in this analysis. The sole
airborne droplets were selected here, thus automatically satisfying the requirement of having a
sufficiently small radius.

The results are presented in Fig. [3.9] where the probability density functions of 7,4, are
reported both for the fully resolved case and for the evolution with the sole mean fields (of both
the carrying flow and the supersaturation field) and with the filtered DNS. The corresponding
mean evaporation times are reported in Table The role of turbulence clearly emerges,
both causing delay of the evaporation process and broader probability density functions, the
fingerprint of fluctuations.

Table 3.2: Droplet mean evaporation times calculated from the probability density functions of Fig.

Simulation type DNS Filtered DNS Mean field
(Tevap) (8) 0.4 0.3 0.2

Importantly, the observed delay in the evaporation significantly affects droplet motion. This
is depicted in Fig. where it is reported the streamwise coordinate of the center of mass
of the cloud of airborne droplets, x(¢), as a function of time. Shown in this figure are the
fully resolved DNS, the filtered DNS, and the mean-field approach. In the two cases where
turbulent fluctuations are either coarse grained or entirely neglected, droplets travel further than
in the fully resolved DNS. This is the fingerprint of the reduced inertia of the droplets evolving
in the filtered fields. In the initial stage of their evolution, these droplets are indeed spuriously
lighter than the droplets evolving in the fully resolved DNS. Being lighter, they are carried more
efficiently by the underlying rapidly accelerating flow thus reaching longer distances before
touching the floor. Note also that all the curves show a pronounced S-shaped kink which reflects
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Figure 3.9: Probability density function of the time for each airborne droplet to shrink to its final equilib-
rium radius for the DNS (solid blue line), filtered DNS (long-dashed red line), and mean-field simulation
(dashed green line). Only airborne particles in the observation time of 60s are considered.

the rapid evaporation of relatively large droplets exiting from the puff, resulting in a sudden
reduction of the total mass of the droplet cloud.

60

Figure 3.10: The streamwise coordinate, x(t), of the center of mass of the cloud of airborne droplets.
Solid blue line, DNS; long-dashed red line, filtered DNS; dashed green line, mean-field simulation.

In order to ascertain whether the observed delay of trajectories of small droplets is a genuine
effect caused by the interplay between turbulence and inertia, a subset of idealized simulations
have been performed where monodisperse droplets of R;(0) = 5um are considered, with and
without inertia, i.e. simply switching on or off the inertia in the ruling equations (3.5)) and (3.6).
This size is close to the peak of the droplet size distribution we have used in the previous analysis
[115]], and corresponds to droplets that are neither too large to be insensitive to turbulence, nor
too small to make the mass loss due to evaporation negligible.

The results are shown in Fig. 3.11] Both in the presence and in the absence of droplet
inertia we found the turbulence induced broadening of the probability density functions of the
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Figure 3.11: The streamwise coordinate, x(¢), of the center of mass of the cloud of airborne droplets.
Results refer to the simulations for the monodisperse droplets of initial radius R;(0) = 5um with and
without inertia in the droplet ruling equations. Main frame: Inertia causes differences in droplet trajec-
tories. DNSs with (without) inertia are represented by the solid blue (gray) curve, filtered DNSs with
(without) inertia by the long-dashed red (black) curve. Inset: Turbulence causes the observed broadening
of evaporation times. The probability density function of the evaporation time 7,4, Without inertia for
the DNS (solid gray curve) and for the filtered DNS (long-dashed black curve).

evaporation time. This is shown in the inset of Fig. [3.T1|for the simulations without inertia. Fil-
tering the turbulence fluctuations (long-dashed black curve in the inset) reduces the broadening
as observed for the polydisperse case with inertia. It is now worth remarking that the observed
difference between the mean evaporation time measured from the DNS and the one measured
from the filtered DNS does not produce any relevant effect on the droplet motion when inertia
is switched off in the droplet ruling equations. The similarity in the main frame between the
solid gray curve and the long-dashed black curve confirms this fact. Switching on inertia, the
effect of the delayed evaporation in the DNS case becomes apparent (see in the main frame the
differences between the solid blue curve and the long-dashed red curve). Figure [3.11] confirms
that turbulence is the root cause of the broadening of evaporation times, whereas inertia causes
differences in the trajectories.
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3.4. Urgent data for a scientific design of social distancing

Having understood the main physical mechanisms at play determining determining the fate of
virus-containing droplets, let us now to discuss issues related to the impact of virus spreading
on the society. More specifically, in this section we show how a single rule for social distancing
may not be adequate to protect individuals in different environments. It is well known that
SARS-CoV-2 infection relies on the spreading of small virus-containing respiratory droplets
that the infected person exhales when coughing or sneezing or even simply talking or breathing
[133]. However, at least two unresolved key issues (I1 and I2 in the following) remain open
and need urgent attention. First (I1): we need to better characterize the sizes of the exhaled
droplets for all the expulsion processes, coughing, speaking, breathing and sneezing. Fliigge
[134] and Wells [[135] have highlighted the importance of this issue. Wells [135]] and Duguid
[115]] were the first to propose systematic measurements of droplet sizes. A careful analysis of
the state of the art on the subject reported in Seminara et al. [[136] shows broad differences in the
experimental results of the different investigators. For example, Zayas et al. [[137] state that the
droplets in the sub-micron range represent 97% of the exhaled droplets for each single cough
event; for the same type of expulsion, Yang et al. [138]] report a much smaller percentage of less
than 4% while not even a single droplet within this subrange was measured by Duguid [115]].
Moreover, experiments exploit different techniques under different ambient conditions. Finally,
a rigorous presentation of data is not always provided. This lack of a systematic analysis, in
addition to the natural variability across individuals, may explain the striking inconsistency of
available information on the size distribution of exhaled droplets.

Second (I2): we need to establish whether viruses lingering on dry nuclei upon droplet
evaporation retain their full potential of infection. There is evidence supporting that viruses
coated by a lipid membrane tend to retain their infectivity longer at low relative humidity [139].

Current guidelines released by WHO for the protection from airborne virus transmission
introduce the notion of a safe distance of 1 — 2m to ensure protection from an infected individ-
ual. In the present section it is discussed the scientific foundation of these “social distancing”
measures, which touches several billion individuals globally. It will be shown that diametrically
opposed predictions are drawn depending on the size distribution of the respiratory droplets and
ambient humidity.

3.4.1. Droplets sizes and ambient humidity effect

Let us now discuss how predictions vary across different scenarios for I1 and I2. To do that we
quantify the viral load carried on dry nuclei versus liquid droplets upon cough. We leverage
concepts developed in the context of atmospheric cloud formation to track the evaporation of
respiratory droplets as they move away from the mouth (Fig. [3.12). To simultaneously monitor
droplet position and evaporation it has been employed massive state-of-the-art direct numerical
simulations (DNS) of the airflow and humidity (as done in Sec. [3.3)).

To quantify these observations we define the (relative) viral load of the ¢th droplet as the
ratio between its initial volume and the cumulative initial volume of all exhaled droplets. In
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other words, we assume that the viral load of a given droplet is proportional to its initial volume
and when the droplet undergoes evaporation the viral load is conserved (i.e. any degradation of
the virus is neglected). This assumption is sensible in view of the recent findings by Fears et
al. [140] showing that the SARS-CoV-2 virus retains infectivity and integrity up to 16 hours in
laboratory-created respirable-sized aerosols.

Here a systematic comparative analysis across eight scenarios selected from the literature
(115 124} 138, [141]] is presented. We conduct eight numerical experiments considering two
different levels of ambient relative humidity (RH = 60% prefix "Wet” and RH = 40% prefix
”Dry”’) combined with four different initial size distributions of the exhaled droplets. The "Wet”
condition lays above the efflorescence RH, namely droplets never evaporate completely but
remain in the liquid state in equilibrium with the surrounding ambient humidity. Conversely,
our "Dry” condition is below the efflorescence RH hence all droplets eventually evaporate
completely and shrink to their dry nuclei. We simulate the ”Dry” and ”Wet” conditions for
four different droplet size distributions (Fig. [3.12j) proposed by Duguid [115] (suffix "Du”),
by Johnson et al. [124] (suffix ‘Jo’), by Xie et al. [141] (suffix ‘Xi’), and by Yang et al. [138]]
(suffix ”Ya”). Te eight experiments are labeled: WetDu, WetJo, WetXi, WetYa, and similarly
for the "Dry” condition.

A snapshot of droplet positions demonstrates the undeniable role of droplet size at emission
(Fig. 3.12b). The distribution of droplet sizes from Duguid [115] (Fig. top) yields a
scenario largely consistent with the literature [142], where droplets belong to either of two
classes. Large droplets sediment owing to their weight with negligible action of the airflow
(phase I in Fig. [3.12pb top); small droplets remain airborne and travel within the turbulent puff
(phase II in Fig. [3.12b top); after few seconds they reach their minimum size and they are
carried as tracers by the airflow (phase III in Fig. top). But a different distribution of
droplet sizes, Yang et al. [138], yields an entirely different picture (Fig. bottom): there
are no large droplets, and the entire viral load is carried on small airborne droplets that never
settle in our simulation.
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Figure 3.12: (a) Droplet initial size distributions considered in the present study: Duguid (blue),
Johnson et al. [124] (yellow), Xie et al. [141] (red), Yang et al. [138]] (gray). (b) Relative humidity (color
coded) and exhaled droplets (blue and gray spheres, not in scale) after 7.6s considering two different
initial droplet size distributions: (top) Duguid [113]]; (bottom) Yang et al. [138] showcases the dramatic
differences in predictions depending on the initial distribution of droplet sizes. The distribution of droplet
sizes from Duguid [115] contains large droplets that rapidly settle carrying most viral load on the ground,
as well as many small droplets which remain airborne. In contrast, in the size distribution from Yang et
al. [138]] all droplets are small enough to remain airborne for the entire simulation. The ambient RH, is

60% in all figures. Scale bar: 50cm.
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Loss of viral load via sedimentation to the ground (ballistic)

In the first few seconds after exhalation, the puff rapidly loses viral load carried by larger
droplets that reach the ground owing to their own weight. The amount of viral load lost
through sedimentation depends dramatically on the ambient humidity and the initial distribution
of droplet sizes (issue I1). For three initial conditions, nearly the entire viral load is carried to the
ground after 1 to 3s (99% for the Du and Jo distributions and 45% for Xi); whereas for the last
condition (Ya), exactly zero viral load reaches ground for the entire simulation (Fig. [3.13p,b).
The inconsistency among predictions for the four size distributions is even more pronounced in
the dry cases reported in Fig. (Du: 94%; Jo: 61%; Xi: 12%; Ya: 0%). A summary of the
cumulative viral load sedimenting to the ground after the entire simulation (60s) is reported in
Table 3.3/ (VL - sed).

The table additionally shows a different observable, often discussed in the literature: the
number of sedimenting droplets normalized to the total number of droplets (ND — sed). Using
this variable can be extremely misleading in the presence of very large droplets as these may be
a negligible fraction of the total number of droplets but nonetheless carry nearly the entire viral
load owing to their large volume. This is the case for the Du and Jo distributions, for which
most viral load settles to the ground carried by few large droplets, yet more than 90% of the
droplets are small and still remain aloft.

WetDu DryDu Wetlo DryJo WetXi DryXi WetYa DryYa
ND - sed (%) 6 3 ) 3 71 45 0 0
ND - Im (%) 85 90 87 91 24 86 93 93
ND - 2m (%) 45 A7 48 50 8 32 51 50
ND —4m (%) 8 9 9 10 1 5 10 11
ND — 1m, small (%) 85 89 86 89 19 46 93 93
ND - 2m, small (%) 45 46 48 49 8 21 51 50
ND - 4m, small (%) 8 9 9 10 1 4 10 11
VL —sed (%) 99 99 99 95 99 88 0 0
VL — 1m (%) ) 3 26 15 26 60 92 92
VL - 2m (%) 0.1 0.6 0.01 2 0.2 13 51 49
VL —4m (%) 0.02 0.07 0.0001 0.08 0.03 1 10 10
VL — 1m, small (%) | 0.3 1 0.08 3 0.6 7 92 92
VL —2m, small (%) | 0.1 0.4 0.01 1 0.2 3 51 49
VL —4m, small (%) | 0.02 0.06 0.0001 0.08 0.03 0.6 10 10

Table 3.3: The cumulative number of droplets (ND) and viral load (VL) measured in the numerical
experiments. Note that all the values are given in percentage. Quantities denoted with ”sed” correspond
to droplets that settle on the ground within the simulation; Quantities denoted with ”1m”, ”2m” and ”4m”
correspond to airborne droplets traveling up to distances of 1, 2 and 4 metres respectively; Quantities
denoted with ”small” correspond to to droplets with diameter smaller than 10 pym.

To complement this analysis, Fig. shows the normalized histogram (probability den-
sity function or pdf) of the distance traveled by these large droplets when they reach ground,
comparing the two ambient conditions for one size distribution (Du). The effect of the ambient
humidity is clearly noticeable, with large droplets settling within 1m in the Wet condition ver-
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sus almost 3m in the Dry condition. Similar results hold for the other size distributions except
for Ya for which all droplets remain airborne.
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Figure 3.13: Sedimentation of large droplets. (a) Cumulative viral load sedimenting to the ground, ob-
tained with the four different initial droplet size distributions proposed by Duguid [115] (blue), Johnson
et al. [124] (yellow), Xie et al. [141] (red) and Yang et al. (gray). Here, the ambient relative hu-
midity is RH = 60%. (b) Same as (a), for a dry environment, RH = 40%. Most of the viral load settles
within 60s for three initial distributions, whereas for one, Yang et al. [138]], no droplets settle within
the simulation time. (c) Probability density function of the distance from the mouth when droplets reach
the ground; ambient relative humidity RH = 60% (solid blue) and RH = 40% (patterned blue). Drier
environments cause further spreading: Droplets that reach the ground remain within 1m from the mouth
in wet conditions, whereas they can reach nearly 3m in dry conditions.

59



CHAPTER 3. THE FLUID DYNAMICS OF AIRBORNE INFECTION

Transport of airborne droplets (inertial)

Te fate of smaller droplets is dictated by the interplay between their inertia and the airflow, and
thus it depends critically on droplet initial size and subsequent evaporation. Once again we find
radically different predictions for the viral load carried by airborne droplets depending on the
ambient relative humidity and initial droplet size distribution. The discrepancy in the predic-
tions can be appreciated qualitatively in Fig. [3.14p,d where we map the cumulative viral load
per unit area that travel across a vertical plane at 2m from the mouth in the entire simulation.
In the DryYa condition, considerable viral load reaches beyond 2m from the mouth in 60s (see
Fig. and Table total 49%), whereas nearly no viral load travels the same distance
in the DryDu condition (total 0.6%). Fig. showcases the dramatic effect of the ambient
humidity for one initial droplet size distribution (Du).

Synthetic data are summarized in Table where we report the cumulative viral load car-
ried by airborne droplets reaching a distance of 1m (indicated as ”VL — 1 m”), 2m ("VL -2 m”)
and 4m ("VL — 4 m”) from the mouth within the total observation time of 60s. Predictions vary
dramatically depending on the relative humidity and the initial droplet size distribution. E.g. as
much as 10% (DryYa) or as little as 107*% (WetJo) of the viral load travels 4m or more from
the mouth in 60s. Importantly, similar uncertainties persist also when considering only droplets
that are smaller than 10pum (see results labeled "VL — 1 m, small”, ”"VL — 2 m, small” and ”VL
—4 m, small” in Table [3.3). These droplets are candidate to reach pulmonary alveoli causing
the most severe complications of COVID-19 [127] and their initial volume affects predictions
of airborne infection risk models (see e.g. the model proposed by Nicas et al. [127] and its
Eq. 1). Hence the uncertainty in the initial droplet size distribution (I1) affects dramatically the
reliability of airborne infection risk models.
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Figure 3.14: Airborne-transmitted droplets. (a, d) Cumulative viral load per unit area (% viral load/m?)
reaching a distance of 2m from the mouth after 60s. Results obtained with RH = 40% using the dis-
tribution by Duguid [115] and Yang et al. [[138] (a left and right respectively) and using the distribution
by Duguid [115]] with RH = 60% and 40% (d left and right respectively). (b, ¢) Probability density
function of droplet evaporation time (i.e. time for the droplet to shrink to its final radius; only airborne
droplets in the observation time of 60s are considered). (b) Results with ambient RH = 60% for the four
different initial droplet size distributions, i.e. Duguid [115] (blue), Johnson et al. [[124] (yellow), Xie et
al. [[141]] (red) and Yang et al. [[138] (gray). (c) Results for the distribution by Duguid [[115]] with ambient
RH = 60% (solid) and RH = 40% (dashed). The initial size distribution and the ambient humidity
cause dramatic differences in the reach of airborne droplets, with variations of the order of 80% for the
mean value. (e) Trajectory of the viral load center of mass (computed considering only the airborne
droplets and not those that already settled on the ground) for the simulation labeled WetDu; horizontal
position x¢ s (green) and vertical position z¢ s (magenta). The solid lines indicate the results from the
simulation while the dashed ones are extrapolations over longer time using Eq. (3.16). (f) Extrapolated
horizontal distance traveled by the viral load center of mass for the eight numerical experiments per-
formed.
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Long-range transmission (tracers)

Let us continue analyzing the journey of the airborne droplets proceed after the end of our
simulations. After few seconds, all droplets are either liquid at their final equilibrium size
(RH = 60%) or shrinked to their dry nucleus (RH = 40%); either way, they behave as fluid
tracers. Their final destination depends on the external airflow hence on the specific indoor or
outdoor environment and its aeration. In order to provide a simple estimate for the ultimate
reach of the viral load, we ignore the presence of external airflow and we track the center of
mass of the airborne viral load in time excluding the sedimenting droplets (see Fig. [3.14 for a
typical trace). We extrapolate the trajectory to the location where the center of mass eventually
reaches the ground (see Fig. and Eq. (3.16)). This simple estimate shows that even in
the absence of external airflow, small droplets travel several meters. Once again we observe a
remarkable variability: while for WetJo the spreading is contained in less than 2.5m, for DryYa
droplets travel beyond 7.5m. Airborne droplets reach the foor in about 20 min which is well
within the 16 hours of virus survival recently measured by Fears et al. [143]. Note that in the
Dry condition, the viral load reaches the floor on dry nuclei because droplets fully evaporate,
whereas in the Wet condition viruses travel on droplets that retain their liquid content. Once
again, the two issues I1 and 12 are crucial to establish the reach and infectious potential of
droplets expelled in a cough.
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Figure 3.15: Time evolution of the viral load standard deviation for the eight numerical experiments per-
formed. The dashed line represents the expected power-law growth predicted by means of phenomeno-
logical arguments (see Sec. [3.2.1)) The variability observed for the standard deviations associated to
different initial droplet size distributions reaches values of about 30%.

Another important observable is the concentration of infectious material, which is inversely
proportional to the volume of the cloud of droplets. The cloud expands at a rate that is inter-
twined with the turbulent nature of the cough. When droplets are shrunk to their final size and
closely follow the airflow, the size of the cloud grows as t'/* (see Sec. ). This scaling
holds for all our simulations at long times, as it is a fundamental property of the turbulent air-
flow generated by the cough. However, prior to this regime, most droplets are inertial and they
follow the flow with delays that depend on their size. Hence the cloud of droplets expands at a
rate that depends on droplet size distribution and evaporation. This regime is extremely complex
and requires an in depth description of turbulent fluctuations. Indeed, the interaction between
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inertial effects and turbulence causes nontrivial correlations and ultimately slows down evap-
oration (see Sec. [3.3). The distribution of evaporation times resulting from these non-trivial
effects varies considerably across different conditions (Fig. ,c). In our simulations, the
droplet cloud expands at different rates depending on the initial condition (see Fig[3.15)). Al-
though variations are sizeable (about 30%), they are overshadowed by the much more dramatic
variations in the position of the center of mass (100%).

Estimation of the viral load landing distance. We estimate the distance from the mouth
reached by the airborne droplets in the absence of external flows (depicted in Fig. as
follows. First, we evaluate the settling velocity from Fig. [3.14¢ which clearly shows (when
observed in linear scale) a linearly decreasing height of the viral load center of mass. From the
same figure, we also obtain the time needed for the center of mass to reach the ground, 7 50,
We now split the airborne droplets in two groups, those that are inside the puf and those outside.
For the former, we estimate the streamwise coordinate of their center of mass, Z fjo0r, S

tmin mwn

tfloo'r thOOT
T floor — Lmin = / vdt = / et =t = [4clt1/4] Hftoor _ 4cl(t}{jw — ¢l ), (3.16)

tmin tmin

where t,,;, 1s equal to 45s and corresponds to the maximum simulated time unaffected by
boundary condition effects, x,,;, is the streamwise coordinate of the viral load center of mass
at time ¢,,,;,, for the considered droplets, v is the mean streamwise velocity and c¢1 = 1/2.2 is
a prefactor found by fitting the decay of v with ¢t=3/%. For the droplets outside the puff, we
suppose they settle without changing their streamwise coordinate, such that & o0 = Tpin. Fi-
nally, the center of mass of the viral load of the entire cloud of droplets has been obtained as
the (initial volume) weighted average of the centers of mass of the two groups of droplets.
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3.5. Virus-containing droplets exhaled by men and women

This section presents a numerical study on the dispersion of droplets released when coughing
with emphasis on the characteristics associated with the gender of the exhaling subject. Pre-
viously it has been considered such kind of expiratory event in light of its importance for the
effective transmission of virus-laden droplets, focusing on the accurate description of the phys-
ical process governing the transport and evaporation of droplets (see Sec. [3.3) as well as the
influence of the droplet size distribution and environmental conditions on the prediction of the
final reach by direct (or short-range) transmission (see Sec. [3.4)). The same numerical setup
used in Sec. [3.3] has been used to investigate the variability with respect to the human subject
during a cough.

The injected airflow is prescribed according to the experimental measurements reported by
Ref. [109] and shown in the left panel of Fig. The duration of the exhalation is around 0.5s
with a peak velocity of 13m/s for the male and of 7m/s for the female subject. The resulting
Reynolds numbers (based on the peak velocity and on the mouth average radius) are about
9 x 10% and 5 x 103, respectively. Concerning the initial droplet size distribution, we assume
here the one from Ref. [115], still considered as a reference on the subject. Accordingly, we
consider initial droplet radii approximately ranging from 1 to 1000um with the 95% falling
between 1 and 50um. Droplets are set initially at rest and randomly distributed within a sphere
of radius 1cm located inside the circular pipe from which the exhaled airflow is released. The
size distribution is the same for the male and female case, this choice being justified since for
the droplet size distribution no significant differences between male and female subjects are
reported in the current literature [[124} (138, [141]]. Here, RH, = 60% is considered.

Fig. shows a typical side view of our results obtained after 7m from the respiratory
event. The figure clearly shows that the resulting droplet dynamics can be macroscopically
classified in two distinct behaviors: i1)some droplets leave the humid and turbulent air puff
released from the mouth and travel vertically within the still ambient fluid, eventually settling
on the ground at a relatively short distance from their emission point, showing a predominantly
ballistic motion; ii) other droplets travel for long distance within the humid air forming a cloud
of so-called airborne droplets. Although the same general classification can be done for the
male and female case, in the latter the distance traveled by both sets of droplets is substantially
reduced. To assess the risk of virus transmission, we define the viral load as the ratio between
the initial volume of a subset of droplets (e.g., settling or remaining airborne) and the total
initial volume of all exhaled droplets. The right panel in Fig. [3.16| shows the mean velocity
resulting from our simulations along with the predicted scaling. Differences can be clearly
noticed between the male and female case in the initial jet stage (for which we have different
inlet velocity profiles), while both cases agree very well with the theoretical decay law from
around half second. The different initial jet phase results in a different coefficient for the scaling
law, with the male profile following the law 0.45¢~%/% and the female one 0.19¢ /%,

Having characterised the main features of the emitted airflow, we now move to the analysis
of the droplet transmission mechanisms, focusing at first on the settling droplets. The left panel
in Fig. [3.18] shows as a function of time the viral load of settling droplets. We can observe
that in the first few seconds after exhalation, the puff rapidly loses viral load carried by large
droplets to the ground. For both the male and female subjects, after around 5s approximately
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Figure 3.16: (Left) Time-varying inlet airflow velocity of cough according to Ref. [I15]. The blue
and orange lines are used to distinguish the velocity profiles of a male and female subject, respectively.
(Right) Time history of the mean streamwise velocity component v. The lines show the expected scaling
while the symbols are the results of our simulations.
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Figure 3.17: Side view of the instantaneous relative humidity field (color coded) and exhaled droplet
positions (blue and orange spheres, not in scale) after 7.6s from the starting of cough, for both the male
(top) and female (bottom) subject case.
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Figure 3.18: Top: Cumulative viral load (left) and normalized droplet number (right) settling to the
ground as a function of time (both quantities are expressed as percentage). Bottom: Probability density
function of the distance from the mouth when droplets reach the ground. In the figures, the blue and
orange colors distinguish the results for male and female, respectively

99% of the viral load has reached the ground; this large percentage is however due to a very
small number of droplets, around 5%, as shown in the right panel of Fig. thus indicating
that 95% of droplets remain airborne after 60s (note that, at this time, all droplets are still within
the computational domain). The distance reached by the settling droplets is reported in the
bottom of Fig. [3.18| where it is shown the probability density function of the distance traveled
by the large droplets when they reach ground. For men, the maximum distance at the ground
reached by the large droplets is 1.5m, reducing to 1m for women. It is worth noticing that in
both cases this distance is within the social-distancing limits suggested by the World Health
Organization.

Let us now focus on the smaller droplets that experience airborne transmission. Droplets
travel into a non-saturated field and thus evaporate; in Fig. [3.19}eft it is reported the temporal
evolution of the supersaturation field s sampled along the Lagrangian trajectory of a typical
small and large droplets. For the large droplet (dashed lines), we observe that the supersatura-
tion field remains similar to the one inside the mouth for long time, indicating an initial slow
dynamics due to the droplet inertia, followed by a rapid decay towards the ambient value as
soon as the droplet leaves the turbulent puff. On the contrary, the supersaturation field felt by
the small droplet (solid lines) shows the so-called “plateaux-and-cliffs” behaviour, where the
scalar field displays dramatic fluctuations occurring in small regions (cliffs) separating larger
areas where the scalar is well mixed (plateaux). Because of this, small droplets tend to remain
long in the large well-mixed regions where they can equilibrate with the local value of supersat-
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Figure 3.19: (Left) s — s, as a function of time experienced by two representative droplets. The solid and
dashed lines are used to distinguish a small and large droplet. (Right) Probability density function of the
droplet evaporation time Teyqp, 1.€. the time for the droplet to shrink to its final radius. The observation
time is 60s.

uration. The resulting dynamical process is thus made, as discussed in Sec. [3.3] of equilibrium
phases alternating with phases of rapid evaporation. Focusing on the influence of the subject
gender, the same behavior can be observed for both men (blue) and women (orange), with
the latter showing an overall delay in the dynamics due to the reduced velocity of the exhaled
airflow.

The delay in the dynamics for the female subject in turns affects the evaporation process. We
thus quantify this feature by measuring the time 7.,,, needed to reach the final equilibrium size
for each airborne droplet, as shown in the right panel of Fig. in particular, it is reported
the probability density function of 7., for both the male and female case. In general we find
broad probability density functions, which is the fingerprint of turbulent fluctuations. However,
while for men the mean evaporation time is around 0.4s, with values ranging between 0.1s and
1s, for women it increases to 0.6s, with the tail of the distributions even reaching 1.5s.

As a further consequence, the observed delay in the evaporation significantly affects the
droplet motion. Indeed, we find different predictions for the viral load carried by airborne
droplets for the two subjects. In particular, the left panel of Fig. shows the cumulative viral
load per unit area reaching the distance of 2m from the mouth. In the male-subject simulation,
considerable viral load reaches the distance covering an area of around 1m in size, while in
the female-subject case much less viral load reaches the same distance. To fully quantify the
distance traveled by airborne droplets, we track the position of the center of mass of the cloud
made exclusively of such subset. For the first 60s we can directly compute this quantity from
our numerical results while for longer times we extrapolate the trajectory up to the location
where the center of mass eventually reaches the ground (see Eq. (3.16)). It clearly appears that,
in the absence of external airflow, small airborne droplets can travel several meters: for both
men and women, the cloud reaches the ground in about 20 min; due to the different horizontal
speed, however, in the female case the center of mass stops at about 1.5m while in the male
case it approaches 3m.
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Figure 3.20: (Left) Cumulative viral load per unit area reaching a distance of 2m from the mouth af-
ter 60s. (Right) Trajectory of the viral load center of mass (computed considering only the airborne
droplets): horizontal position ¢ (solid line) and vertical position z¢ ;s (dash-dotted line). The colored
lines indicate the results from the simulation while the black dotted ones are extrapolations over longer
times.
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3.6. Role of barriers in the spread of virus-containing droplets

This section is dedicated to investigate the effectiveness of the the barriers, one of the many
tools for preventing infections, such as COVID-19. Barriers are often used to protect individuals
within indoor environments. Numerous devices have been developed and deployed in an effort
to protect healthcare workers during high-risk procedures, and in indoor workplaces to protect
employees and customers. However, only a few studies have thoroughly and quantitatively
examined their impact on the dispersion of droplets and aerosols [144, [145]. The available
results show that the placement of large transparent plastic sheets over patients’ faces can limit
the contamination area [[146]], showing that such protective tools are helpful in decreasing the
contamination from droplet dispersion [[147]].

To make a step forward in characterizing the efficacy of barriers in the mitigation of air-
borne transmission, an improvement has been applied to the DNSs employed in Secs. [3.3]
B.4]and[3.5] i.e. the set of the incompressible Navier-Stokes equations are now coupled to the
advection-diffusion equation for the temperature field [148]. We are in this way accounting the
temperature dependence in the saturated vapor pressure.

3.6.1. Accounting for temperature variations

The fluid flow is now governed by the well-known Oberbeck-Boussinesq equations (i.e., the set
of the incompressible Navier—Stokes equations coupled to the advection-diffusion equation for
the temperature field) [148]]:

ou+u-0u = —lap—i—uazu—ﬁg(T—Ta), (3.17)
p

0-u=0, (3.18)

OT +u- 0T = k0T, (3.19)

where u(x,t) and p(x,t) are the fluid (here air) velocity and pressure fields; v, p and 3 are
the (constant) kinematic viscosity, density and thermal expansion coefficient of the air; g =
(0,0,—g) is the gravitational acceleration, 7'(x, ) is the puff temperature field and 7, is the
(constant) quiescent ambient temperature; finally, x is the air thermal diffusion coefficient. Air
exhaled by human expulsion is rich of water vapor, thus the specific humidity ¢ is modeled by
the advection-diffusion equation [149]

0+ u - 8q = D,0%q, (3.20)

where D, is the water vapor diffusivity. In human exhalations ¢ < 1, and we obtain ¢ ~ r ~
e€/p, where r is the mixing ratio, e is the water vapor pressure, p, is the ambient pressure and e
is the ratio between molar mass of water vapor and molar mass of dry air [149]. From the above
relationships, it then follows that the supersaturation field is s = e¢/esqs — 1 ~ 7/750 — 1, Where
the subscript *sat’ denotes the value at saturation. Exploiting the Magnus-Tetens relationship
between ez, and T' (in which the temperature 7' is in degrees Celsius, see Ref. [128]] and Sec.
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[3.2.1) one immediately gets the supersaturation field s from the integration of the advection-

diffusion equation, Eq. (3.20)), for g.

The respiratory droplets are modeled using the same set of equations already described in
Sec. The list of the relevant parameters used in these numerical experiments is reported

in Table

Table 3.4: List of physical and chemical parameters assumed in the present work.

Mean ambient temperature T,
Crystallization (or efflorescence) RH CRH
Deliquescence RH DRH
Quiescent ambient RH (" Wet’) RH,
Quiescent ambient RH ("Dry’) RH,
Density of liquid water Puw

Density of soluble aerosol part (NaCl)

Density of insoluble aerosol part (mucus)

Mass fraction of soluble material (NaCl) w.r.t. the total dry nucleus
Mass fraction of dry nucleus w.r.t. the total droplet
Specific gas constant of water vapor

Diffusivity of water vapor

Density of air

Kinematic viscosity of air

Heat conductivity of dry air

Latent heat for evaporation of liquid water

Saturation vapor pressure

Droplet condensational growth rate

Surface tension between moist air and salty water

Molar mass of NaCl

Molar mass of water

Molar mass of water vapor and molar mass of dry air ratio

D
m§§9§§ SFEFcOIalE

3.6.2. Numerical set-up

25°C

45%

5%

60%

35%
9.97 x 102 kg/m?
2.2 x 103kg/m?
1.5 x 103kg/m3

0.75

1%

4.6 x 10 J/(kg K)
2.5 x 1075 m?/s
1.18kg/m?

1.8 x 10 m?/s
2.6 x 1072 W /K m
2.3 % 106 J /kg
0.616 kPa
1.5 x 1071%m? /s
7.6 x 1072 J /m?
5.9 x 1072 kg/mol
1.8 x 1072 kg/mol
0.61

The initial droplet size distribution is the well known distribution from Ref. [115]], with droplet
radii approximately ranging from 1 to 1000 um and the 95% falling between 1 and 50 pm.
Droplets are set initially at rest and randomly distributed within a sphere of radius 1 cm located
inside the circular pipe from which the exhaled airflow is released; in our simulations, we
assume the initial temperature of the exhaled air to be equal to 30 °C), as in Ref. [113]]. Finally,
the exhaled droplets enter the ambient initially at rest with a relative humidity RH,. Fig.
shows a sketch of the geometrical setup employed in our simulations. We consider a domain
box of length L, = 3m, width L, = 2m and height L, = 3m. The center of the barrier is
placed at 1.6 m from the ground, having a height of 0.5 m. The distance d of the barrier from
the mouth is varied together with the ambient relative humidity. The fluid is initially at rest, i.e.
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Figure 3.21: Sketch of the geometrical setup employed in our study.

u(x,0) = 0, and at the ambient supersaturation s(x,0) = s, = RH, — 1. The exhaled air is
assumed to be fully saturated [113] (i.e. spouth = 0) and is injected through a round opening of
area Apoun = 4.5 cm? mimicking the mouth, at a distance from the ground of 2o, = 1.6 m.
The injected airflow is prescribed according to the experimental measurements reported by
Gupta et al. [109]], already discussed in previous sections. Also in this case, the corresponding
to a Reynolds numbers (based on the peak velocity and on the mouth average radius) of about
9 x 103. For the other domain boundaries, we prescribe the no-slip condition to simulate the
presence of the body and the flow inside a room at the bottom (z = 0), top (z = L.) and left
(z = 0) boundaries. For both the velocity and supersaturation field, we impose a convective
outlet boundary condition at the right boundary (x = L,). Finally, periodic boundary conditions
are enforced in the spanwise direction (i.e., y = 0 and y = L,)).

To model the presence of the barrier, here we use the immersed boundary method (IBM)
originally proposed by Kajishima et. al. [150]. For the present simulations, the numerical
domain is discretised with uniform grid spacing Ax = 1.75mm in all directions, resulting in
a total number of approximately 1.2 billion grid points. The convergence of the results was
verified by comparing the results with those obtained by doubling the grid resolution.

Exploiting such DNS approach, ten numerical experiments were performed for five possible
barrier configurations at two different environmental conditions. Specifically, we consider a
barrier with a height of 0.5 m which extends indefinitely along the spanwise direction, and vary
the distance from the mouth at which the barrier is placed. Five geometrical configurations are
considered: barrier placed at 0.25 m, 0.5 m, 0.75 m, 1 m from the mouth, and the configuration
without any barrier for the sake of comparison. For each barrier, we consider two different
values of ambient relative humidity, ‘Dry’ and ‘Wet’, corresponding to RH, = 30 and RH, =
60, respectively. In the ‘Wet’ condition, droplets do not evaporate completely but remain in
equilibrium with the surrounding environment. In contrast, in the ‘Dry’ condition all droplets
evaporate completely and shrink to their dry nuclei.
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3.6.3. The role of barriers

To assess the associated risk of transmission, also in this case, the viral load V' L, carried by
the exhaled droplets has been quantified, by tracking the position of each droplet for a time of
15s. The focus is on the role of the barrier in removing the V' L from air, and how the presence
of the barrier can modify the sedimentation pattern of the V' L to the ground. In Fig. are
shown three representative cases of the virus-containing droplets exhaled during a cough, with
and without barrier in front of the mouth. The trajectories of the droplets are strongly modified
by the presence of the barrier, as well as the amount of the viral load settling and remaining in
the air.

In order to quantify the spread of the virus-containing droplets in indoor environments where
a barrier is present (Fig.[3.21]), we study the evolution of the viral load that settles to the ground,
that deposits on the barrier and that remains airborne. Table reports a summary of the cu-
mulative V' L after the overall simulation time (15s), separating the contribution collected on the
barrier, that settling to the ground and that remaining in the air, together with the corresponding
number of droplets normalized to the total number of droplets (ND). Note however that the
latter quantity can be misleading because of the presence of a few biggest droplets carrying the
largest part of the viral load. For example, in the case of the barrier at a distance of 0.25m
from the mouth: in the 'Dry’ condition, almost 47% of the droplets impact on the barrier car-
rying a V' L of 98.9%:; in the "Wet’ case instead, 67% of the droplets impact on the barrier, yet
representing only 29% of the V' L. From Table it is possible to observe small differences
between the *Dry’ and *Wet’ cases in terms of the number of droplets reaching the ground (1%
and 1.57%, respectively), while large differences are evident for the carried viral load, 0.32%
and 70%, respectively.

Table 3.5: Cumulative viral load (V' L) and number of droplets (/N D) on the barrier, to the ground and
remaining in the air, for the two ambient humidities considered.

Barrier distance V'L on barrier (%) V'L to ground (%) VL in air (%) ‘ ND on barrier (%) ND to ground (%) ND in air (%)

‘Dry’ 0.25 m 98.91 0.32 0.77 47 1.57 51.43
‘Dry’ 0.5 m 95.15 3.24 1.61 32.38 0.66 66.96
‘Dry’ 0.75 m 19.22 78.15 2.63 17.81 0.97 81.22
‘Dry’ I m 3.78 92.54 3.68 5.35 1.13 93.52
‘Dry’ No barrier 0 95.81 4.19 0 1.11 98.89
‘Wet” 0.25 m 29.3 70.64 0.06 67.3 1 31.7
‘Wet’ 0.5 m 14.46 85.26 0.27 45.13 1.42 53.45
‘Wet’ 0.75 m 6 93.57 0.43 22.6 3.08 74.32
‘Wet’ 1 m 1.38 98.1 0.52 8.39 4.64 86.97
‘Wet’ No barrier 0 99.43 0.57 0 5.05 94.95

Differences between the "Dry’ and *Wet’ conditions can be found when evaluating the dis-
tance from the mouth traveled by the droplets. Fig.[3.23|shows the probability density function
(pdf) of the horizontal distance traveled by the droplets when they reach the ground. For the
two ambient conditions, we count the number of the settled droplets at the time of 15s, com-
paring the results for different distances of the barrier from the mouth. The effect of the barrier
is particularly evident in the cases where it is closer to the mouth, where the largest amount of
droplets settles within 0.1m and 0.5m, respectively, for both the ‘Dry’ and ‘Wet’ conditions.
When the barrier is present, it is also possible to note the effect of the ambient humidity that
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Barrier at distance 0.25 [m]

(®)

No Barrier

Viarl load [%]

Figure 3.22: Side (left panels) and 3-D (right panels) views of virus-containing droplet trajectories
computed by means of high-resolution DNS for three representative configurations, i.e., with barrier
placed at a distance of (a) 0.25m and (b) 0.75m from the mouth and (c) without barrier. Results are
shown for the *Dry’ condition. Droplets are colored by their Viral Load (%, see its definition in the main
text).
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Figure 3.23: Probability density function of the distance from the mouth when droplets reach the ground.
(a) ’Dry condition’, (b) *Wet’ condition.

allows the droplets to travel for a larger distance in the ‘Wet’ condition with respect to the ‘Dry’
condition. This is in contrast with the cases without barrier, where the droplets are found to
travel for larger distances in the ‘Dry’ condition. This is a clear inertial effect of the larger
droplets: in the ‘“Wet’ condition droplets are typically heavier than in the ‘Dry’ condition and
follow ballistic trajectories, thus being able to overcome the barrier from below. On the other
hand, the light droplets of the ’Dry’ condition behave essentially as fluid tracers, thus remaining
trapped in the vortical structures generated by the presence of the barrier (see Fig. [3.22).

To complement this analysis, in Fig. and b we show the cumulative V' L settling to the
ground as a function of the distance from the mouth. We compare the settled V' L with different
distances of the barrier from the mouth, superimposing the case without barrier for the sake of
comparison, for the ‘Dry’ and “Wet’ conditions. It is possible to notice the effect of the barrier
in determining the amount of V' L that reaches the ground: by increasing the distance of the
barrier, the settling V'L grows, for both the ‘Dry’ and ‘Wet’ ambient conditions. As expected,
a higher amount of V'L reaches the ground for the ‘Wet’ condition, especially when the barrier
is close to the mouth (barrier distance of 0.25m and 0.5m). By looking at the ‘Wet’ condition
in Fig. [3.24p, we observe that the presence of the barrier has a negligible influence on the
amount of settled V'L when the barrier is far from the mouth, e.g. 0.75m and 1m. Moreover, a
greater distance is traveled by the V' L in the “Wet’ condition with respect to the ‘Dry’ condition
when the barrier is present. In Fig. [3.24f, we quantify the maximum distance reached by the
V'L settled to the ground; except for the case of the barrier at a distance of 0.75m, where the
maximum distance is almost the same between the two ambient humidities, the “Wet’ condition
shows always the higher maximum distance.

The study of the distance traveled by droplets and viral load is important to define protocols
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Figure 3.24: Cumulative Viral Load settling to the ground (%) as a function of the distance from the
mouth: (a) ‘Dry’ and (b) ‘Wet’ conditions. The grey line represent the case with the barrier at 0.25 [m],
the red line that at 0.5 [m], the yellow line at 0.75 [m], the blue line at 1 [m] and the green line the case
without barrier. The dots at the end of the lines indicate the maximum distance reached by the cumulative
viral load. (c) Maximum distance reached by the cumulative settling Viral Load in the (triangles) ‘Dry’
and (circles’) “Wet’ conditions. The green point lines indicate the cases without barrier.
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Figure 3.25: Time history of the cumulative Viral Load settling to the ground (green), captured by the
barrier (blue) and remaining airborne (yellow). For the sake of comparison, we include the results for
the case without barrier (dashed lines of the same colors).
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and rules to protect people living in indoor environment. Studying the time history of the
exhaled viral load during a cough is another important issue in order to quantify how long the
viral load takes to settle and to impact on the barrier. In Fig. it is shown the cumulative
V'L settling to the ground, that was captured by the barrier and that remaining airborne, in the
observation time of 15s, for the ‘Dry’ and ‘Wet’ ambient conditions. Especially for the ‘Dry’
condition, the role of the barrier is crucial when it is close to the mouth, where almost 99% of
the V'L is captured in less than 1s (Fig. [3.25p and Fig.[3.25b). This is not the case for the “Wet’
condition, where with a barrier at a distance of 0.25m and 0.5m from the mouth, only 29% and
15% of the V'L is captured by the barrier, respectively, in less than 1s (Fig. and Fig.[3.25).
As far as the airborne viral load is concerned, we found a lower residence time in the air for the
"Dry’ condition (less than 1s), in comparison with the ‘Wet’ condition where instead it is almost
1s (Fig.[3.25p and Fig.[3.25f). By placing the barrier at increasing distances from the mouth, the
captured V' L reduces progressively. The amount of V' L remaining in the air increases more for
the "Dry’ cases, with longer residence time with respect to the "Wet’ ones, where the majority
of V'L is loss by sedimentation (Fig. [3.25b, Fig. [3.25k, Fig. [3.25(d, Fig. 3.25f, Fig. [3.25g and
Fig.[3.25h). Considering a barrier at a distance of 0.75m from the mouth, we find 6% of the
airborne V' L after 6s for the ‘Dry’ condition, while it is 0.57% for the ‘Wet’ one. Also, it can
be observed the negligible effect of the barrier when it is at 1m from the mouth (Fig.[3.25d and
Fig. [3.25h). This is more evident for the “Wet’ condition, where the curves are substantially
superimposed to those for the cases without barrier (Fig. [3.25h).

Once the viral load is removed from the air by sedimentation or by impacting on the barrier,
the remaining viral load is still airborne and can have a crucial role in disease transmission, such
as COVID-19 infection [151]]. Thus, in the last step of our analysis we focus on the distance
traveled by the airborne viral load. In Fig. and b we report the cumulative airborne V'L
as a function of the distance from the mouth, for the two ambient conditions considered. Note
that here 100% of the V' L represents the total amount of the airborne viral load only. For both
the ‘Dry’ and ‘Wet’ conditions, the barrier has an important role in determining the distance
traveled by the airborne V' L, also when the barrier is far form the mouth; this distance is always
lower with respect to the case when the barrier is not present, where the V' L can travel more than
2m from the mouth. Indeed, the traveled distance is approximately 1.3m and 1m for the ‘Dry’
and ‘Wet’ conditions with the barrier at 1m from the mouth. Of particular interest is the role
of the distance of the barrier in determining the distance traveled by the airborne viral load: By
displacing the barrier away from the mouth, the traveled distance increases; however, when the
barrier is very close to the mouth (0.25m), the distance traveled is higher than in the other cases
(0.5m, 0.75m and 1m) for both the ‘Dry’ and ‘Wet’ conditions. This can be appreciated from
Fig.[3.22h, where the presence of the barrier determines an upward flow velocity, which carries
the lightest droplets above the barrier and then let them travel beyond for larger distances. We
quantify the maximum distance reached by the airborne viral load in the observation time in
Fig. @}: Also here, we can note the nontrivial effect of the barrier when it is at a distance
of 0.25m, where the airborne viral load travels for large distance beyond the barrier, more than
in the other cases. Finally, due to the lighter weight of the droplets in the ‘Dry’ conditions, the
maximum distance is always greater than what we observe in the ‘Wet’ conditions, except for
the case with a barrier at 0.75m where the maximum distance is approximately the same for the
two conditions considered.
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Figure 3.26: Cumulative airborne Viral Load (%) in function of the distance from the mouth (a) for the
‘Dry’ and (b) ‘Wet’ conditions. The grey line represent the case with the barrier at a distance from the
mouth of 0.25 [m], the red line that at 0.5 [m], the yellow line at 0.75 [m], the blue line at 1 [m] and the
green line for the case without barrier. The dots at the end of the lines indicate the maximum distance
reached by the cumulative viral load. Note that here the 100% of the Viral load represent the total amount
of the airborne Viral Load. (c) Maximum distance reached by the cumulative airborne Viral Load in the
(triangles) ‘Dry’ and (’circles’) ‘Wet’ conditions. The green point lines indicate the cases without barrier.
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3.7. Summary and conclusions

By means of high-resolutions DNS experiments, this chapter investigated the physical mecha-
nisms involved in violent expiratory events such as coughing or sneezing, focusing on different
aspects related to the spread of virus-containing droplets. The droplet dynamics are evolved by
means of a Lagrangian model including the evolution of droplet radius to properly describe the
droplet evaporation process.

In particular the role of turbulence has been investigated, with a focus on the evaporation and
consequent airborne spread of small exhaled droplets. By assuming an initial size distribution
of the droplet [115], each single droplet has been tracked in time, by distinguishing between
larger droplets which settle on the ground ballistically and the smaller droplets which remain
trapped in the turbulent puff. For such airborne droplets, we found that turbulence plays a crucial
role in determining their evaporation time. The comparison with two different coarse-graining
techniques, i.e., filtered DNS and mean-field simulation, demonstrate this result. Compared to
the DNS results, we find that coarse graining leads to underestimating droplet evaporation time
up to 100%. Correspondingly, we find that DNSs are crucial to accurately describe the inertial
effects in droplet trajectory and ultimately predict their flight time and final reach. Importantly,
the heated debate on social distancing rules depends crucially on these observables.

As a second stage, the influence of different ambient humidity conditions and different ini-
tial size distributions of the droplet, taken from literature, have been considered. Here, the
central observable is the relative viral load, i.e. the amount of virus carried by an individual
droplet normalized to the total amount of virus in the ensemble of droplets. Note that to con-
nect the relative viral load to the probability of infection, further information is needed. With
these simulations we demonstrate that currently available information is inadequate to design
social distancing recommendations on a solid scientific basis. Indeed, diametrically opposed
predictions are drawn depending on the size distribution of the respiratory droplets and ambient
humidity: (i) most versus none of the viral load settles in the first 1 — 2m in few seconds; (ii) all
viral load is carried on dry nuclei versus liquid droplets and (iii) small airborne particles travel
less than 2.5m versus more than 7.5m. Those results show that a single rule for social distanc-
ing may not be adequate to protect individuals in different environments. Te relative humidity
of the environment has a particularly dramatic effect, with all droplets evaporating to their dry
nuclei under sufficiently dry conditions, and all droplets remaining liquid under sufficiently wet
environmental conditions.

The third step investigates the influence of the gender of the emitting subject in the dy-
namics of violent expiratory events in order to better characterize the transport and evaporation
process undergone by the exhaled saliva droplets. Although the physical process is found to
be essentially the same from a qualitative viewpoint, substantial quantitative differences occur
between men and women in terms of the droplet final reach and evaporation time. The hori-
zontal distance traveled by droplets is found to be generally larger for men, and so is for the
cumulative viral load reaching a 2-meter distance. For women the droplet evaporation time is
larger due to a slower dynamics while residing within the turbulent puff. Overall, the results can
be associated to the different characteristic airflow, with a typically stronger expulsion for men.
It should be pointed out that the influence of gender is typically correlated with other physical
parameters, such as the weight of the subject. It cannot therefore be excluded the latter to have
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a dominant role in the dynamics of expiratory events.

Finally, it has been studied the spread of the virus-containing droplets in indoor environ-
ments where a barrier is present. To investigate the role of barriers as protection devices from
the viral load exhaled during a cough, we considered two ambient relative humidity ("Dry” and
”Wet” condition) and four distances of the barrier from the mouth comparing the obtained re-
sults with the case without barrier. Because of the larger inertia of droplets in the *Wet’ case,
which determine ballistic events during the transport process, we find that in the “Wet” condi-
tion, the settling viral load travels for larger distances with respect to the ”Dry” condition, for
all the barrier distances investigated. This fact is in contrast with the observation in the case
without barrier, where, as expected and in agreement on what shown in Sec. itis the "Dry”
case that allows the V'L to settle further away from the mouth. Since the lightest droplets be-
have as fluid tracers, they remain trapped in the vortices created by the exhaled flow impacting
on the barrier, thus making it difficult to travel for larger distances. This is the main mechanism
caused by the barrier as a protection device. Indeed, it has been observed a greater amount of
viral load captured by the barrier in the ”Dry” case, especially when it is close to the mouth. As
for the airborne viral load, results show a larger amount of airborne viral load for cases in the
”Dry” condition, which increases with the distance of the barrier from the mouth. The barrier
has therefore an important role to limit the distance traveled by the airborne V'L, since it is al-
ways smaller than that in the case without barrier. Furthermore, the "Dry” cases show a greater
distance traveled from the mouth with respect to the "Wet” cases.

The quantitative and qualitative results obtained in this study, can actively contribute to
select optimal strategies of protection and mitigation of the airborne infection transmission,
within indoor and outdoor environments. The results are not restricted to COVID-19, being
valid for all the infections where the main route of transmission is via airborne virus-containing
droplets.
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Chapter 4
Conclusions

The thesis is divided in two parts. The first part is focused on the measure of flow properties
by means of slender objects, i.e. rigid fibers and slender swimmers. Two different strategies
have been employed to model the fiber: first an active model, a fully-coupled fiber described
in terms of an immersed-boundary method, and, second, a passive model, a one-way coupling
where the fiber is described by the slender body theory. The motion of the fiber is investigated
for different classes of closed streamline flows, steady or time dependent, two-dimensional or
three dimensional. The preliminary stage is the characterization of the fiber inertia. This has
been done in terms of rotational Stokes number, which is evaluated as a function of the fiber
linear density. The rotational Stokes number has been evaluated only for the fiber fully coupled
to the fluid flow, since for the fiber modeled with the passive model it is an assigned parameter.
The main result is that the fiber turns out to be a proxy of the underlying flow by considering
the velocity difference between the fiber end points and the same difference relative to the
underlying fluid velocity, both projected along the direction normal to the fiber. If the fiber
length is sufficiently small, compared to the characteristic length-scale of the flow, the two-
point velocity difference reduces to the transverse component of the flow velocity derivative
along the fiber direction. Then, by composing an assembly of rigid fibers, three for a two
dimensional flow and eight for a three dimensional flow, it is possible to reconstruct the whole
gradient tensor of the flow, by simply solving a liner system of equations during the Lagrangian
tracking of the assembly. Moreover, results suggest that the coupling between the flow and the
fiber could be neglected, for sufficiently small Stokes number.

As a step forward, it has been investigated the perception of hydrodynamics signal by slen-
der swimmers, which from a fluid dynamics point of view can be classified as pusher or puller
swimmers. A model for a slender swimmer has been proposed by imposing the no-slip condi-
tion and the propulsion force on the same half length of the slender motile object, the spreading
of the pushing/pulling forcing acting on the fluid being imposed on the other half (the so-slip
condition was not applied in that portion of the Lagrangian grid). In the limit of Stokes flow
and in a fluid initially at rest, the flow motion determined by the swimmer model has been
validated with the di-Stokeslet solution with excellent agreement. Once the swimmer model
has been validated, the reached swimming velocity given a propulsion force has been assessed.
The results show that pusher and puller swimmers reach different swimming velocity given the
same propulsion force. An interesting result is that the slender-body theory can be related to the
resulting swimming velocity for pushers but not for pullers. The reason to understand this find-
ing is the different vorticity generated by the motion of the two swimmer type. By exploiting a
chaotic flow field with flow Reynolds number up to 10, a swimming number ranging between
zero and one, and different swimmer inertia, the capability of slender swimmers to sense hy-
drodynamics signals has been tested. Results show that despite the perturbation caused by the
swimmer motion, there exist hydrodynamics observables practically unaffected by the swimmer
motion, i.e. the swimmer velocity differences evaluated at the swimmer ends, projected along
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a direction on a plane normal to the swimmer orientation. This capability has been tested for
a wide range of flow/swimmer Reynolds number, both pusher and puller, thus suggesting the
robustness of our findings, at least in the range of Reynolds number investigated.

The capability of rigid fibers and slender swimmer to measure two-point flow observables
has potential application in non-intrusive experimental measurement techniques allowing to
access small-scale, multi-point properties of fluid flows, offering an alternative to other methods
(i.e. PIV and PTV), by following artificial self-propelled slender objects or by Lagrangian
tracking of rigid fibers or assembly of them.

The second part of this thesis investigates the spreading of virus-containing droplets during
a human cough under realistic conditions. More specifically, a turbulent puff, used to model a
human cough, has been studied in order to track the spreading of the exhaled droplets. To this
aim, high resolutions DNS have been performed for the fluid flow and humidity field, comple-
mented by a passive Lagrangian solver for the droplet dynamics including a dynamical equation
for the evolution of the droplet radii modeling the evaporation-condensation process. After the
phenomenological validation of the turbulent puff, the role of turbulence has been investigated,
by focusing on the evaporation and consequent airborne spread of small exhaled droplets. Each
single droplet has been tracked in time, by distinguishing between larger droplets which settle
on the ground ballistically and the smaller droplets which remain trapped in the turbulent puff.
The comparison of results obtained with fully resolved DNS and two different coarse-graining
techniques, i.e., filtered DNS and mean-field simulation, demonstrate that turbulence plays a
crucial role in determining their evaporation time, since coarse graining techniques leads to
underestimating droplet evaporation time up to 100%, compared with DNS results.

Once the main physical mechanisms ruling the the fate of virus-containing droplets has been
understood, the impact of virus spreading on the society has been discussed. The main observ-
able is the relative viral load, i.e. the amount of virus carried by an individual droplet normalized
to the total amount of virus in the ensemble of droplets. By considering the influence of differ-
ent ambient humidity conditions and different initial size distributions of the droplet, taken from
literature, it has been demonstrated that currently available information is inadequate to design
social distancing recommendations on a solid scientific basis. In fact, opposed predictions can
be drawn depending on the size distribution of the respiratory droplets and ambient humidity,
showing that a single rule for social distancing may not be adequate to protect individuals in
different environments. The results can be summarized as follow: (i) most versus none of the
viral load settles in the first 1 — 2m in few seconds; (ii) all viral load is carried on dry nuclei
versus liquid droplets and (iii) small airborne particles travel less than 2.5m versus more than
7.5m.

As an additional step, the influence of the gender of the emitting subject in the dynamics of
violent expiratory events has been investigated, in order to better characterize the transport and
evaporation process undergone by the exhaled saliva droplets. The physical process is found
to be essentially the same from a qualitative viewpoint, but substantial quantitative differences
occur between men and women in terms of the droplet final reach and evaporation time. Due to
the different characteristic airflow, with a typically stronger expulsion for men, the horizontal
distance traveled by droplets is found to be larger for men, and so it is for the cumulative viral
load reaching a 2-meter distance. Moreover, for women the droplet evaporation time is larger
due to a slower dynamics while residing within the turbulent puff.
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As last step, the role of barriers, as protection device from disease infection, within indoor
environment has been investigated. Two relative ambient humidities has been considered, de-
noted by 'Dry’ and "Wet’ condition, and four distances of the barrier from the mouth has been
taken into account. The obtained results has been compared with the 'Dry’ and *Wet’ condi-
tion without barrier. The results show that in "Wet’ condition the settling viral load travels for
larger distances with respect to the 'Dry’ condition, for all the barrier distances investigated,
because of the larger inertia which determine ballistic events during the transport process. The
lightest droplets behave as fluid tracers, and then, they remain trapped in the vortices created by
the exhaled flow impacting on the barrier, thus making it difficult to travel for larger distances.
Indeed, the Dry’ case shows a greater amount of viral load captured by the barrier, especially
when it is close to the mouth. As concern the airborne viral load, it results to be larger in ’Dry’
conditions, and it increases with the distance of the barrier from the mouth, although it is always
smaller than that in the case without barrier.

The study described above is clearly motivated by the recent pandemic situation due to
COVID-19 infection, although it is valid for all the infections where the main route of trans-
mission is via airborne virus-containing droplets, by contributing to select optimal strategies
of protection and mitigation of the airborne infection transmission, within indoor and outdoor
environments.

In conclusion, this thesis reports results of numerical experiments exploiting active and
passive models for fibers and particles modeling in different environmental flow applications,
showing how rigid fibers and slender swimmers can be used to access to flow properties, and
how the study of the flow can be used to access information on spreading of droplets.
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Further research interests

The research interests born during the PhD period went beyond what is reported in the main
structure of this thesis. In particular, the focus shifted to the study of suspensions of slender
swimmers in the regime of finite Reynolds number.

The motion of swimming organisms in the Stokes regime has been widely explored, both
theoretically and numerically, as reported in the review paper by Pak and Lauga [152]. In
contrast, swimming at moderate Reynolds numbers, where inertia plays a significant role, has
received far less attention to date. The hydrodynamic interactions of swimming organisms in
this regime are significantly different from the Stokes regime for microorganisms, as well as for
fish and birds, which involve flow separation and detached vortex structures [153].

Since the collective behavior of swimmer suspensions in inertial regimes has been poorly
studied and little is known on the generated flow field, the focus has been to investigate the
resulting flow motions due to a swarm of slender swimmers, in the regime of finite Reynolds
number, based on the swimmer length scale and swimming velocity. To this aim, by using an
inertial slender swimmer model, which is able to behave as pusher or puller, and validated in
the Stokes regime, as shown in Sec. [2.2.4] the suspensions of pushers and pullers have been
investigated in dilute volume fractions, and swimming Reynolds numbers, Re,, ranging from
1 to 50. By using direct numerical simulations, the objective has been to identify the existence
of correlated flow motions and to investigate hydrodynamic interactions in the regime of finite
Reynolds number, by exploiting a state-of-the-art fully resolved immersed boundary method.

In order to characterize the emergence of flow patterns due to the swarm of slender swim-
mers, simulations have been performed with the swimmers starting from an isotropic orien-
tation, in a tri-periodic domain. The fluid, initially at rest, has been left to evolve under the
disturbance generated by the collective swimming of mono-disperse suspensions of pushers
and pullers.

Results reveal a flow field characterized by velocity fluctuations significantly larger than
the isolated swimming speed. These velocities decrease as the Re, increases, leading to com-
plex flow motions which are correlated on length scales smaller and smaller as the swimming
Reynolds number increases. While pullers generate higher velocity fluctuations, the correlation
lengths are always larger for pushers, for all investigated Re,; and volume fraction. The cor-
relation lengths range from sizes comparable to the swimmer length, for low Re,, to less than
the half swimmer length, for high Re,. The spectral analysis of the flow field, resulting by the
swimmers motion, reveals that the kinetic energy of the velocity field is picked at smaller and
smaller scales by increasing Res;. Moreover, the pullers energy peak is found at smaller scales
with respect to pushers. These results confirm the observation of decreasing correlated motion
as Re, grows, which are always smaller for suspensions of pullers. Finally, the analysis on
hydrodynamic interactions between swimmers shows that pullers are locally more disordered
with respect to pushers, although pullers result to be more hydrodynamically linked. For low
Reg, pushers present a tendency to parallel swimming, which decreases as Re; increases, while
pullers at low Re, show a slight departure from the initial isotropic state. For high Re,, pullers
show the tendency to anti-parallel swimming. As Re, increases, the anti-parallel swimming is
progressively reduced, while the tendency to parallel swimming increases.
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In the same framework as the one considered here, it will be also interesting to investigate
the late-time evolution of swimmer dynamics, a regime that may be described in terms of eddy
diffusivities. Are the resulting eddy diffusivities, provided that a diffusive motion sets in, the
same for pusher and puller swimmers? Are there regimes of anomalous diffusion and are these
regimes different for pullers and pushers? Answering all these questions will shed further light
on how finite Reynolds number swimmers interact each other and with the surrounding fluid.
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