Embedded Machine Learning
Emphasis on Hardware Accelerators and Approximate

Computing for Tactile Data Processing

Hamoud Y.Younes
Supervisor: Prof. Maurizio Valle

Co-supervisors: Dr. Ali Ibrahim and Dr. Mostafa Rizk

Department of Electrical, Electronics and Telecommunication Engineering
and Naval Architecture (DITEN)

University of Genoa

This dissertation is submitted for the degree of
Doctor of Philosophy

COSMIC LAB November 2021

I would like to dedicate this dissertation to everyone that crossed my path in this life...family,
friends, and strangers ...

Acknowledgements

I would like to express my deep appreciation to Prof. Maurizio Valle, Dr. Ali Ibrahim, and
Dr. Mostafa Rizk for their supervision, guidance, and support throughout the course of Ph.D.
During the pandemic, everyone kept offering their help and technical knowledge to complete
the novel research presented in this dissertation.

A special thanks to the university of Genoa that gave me the chance to pursue my doctoral
studies and participate in the top European conferences and summer schools.

Abstract

Machine Learning (ML) a subset of Artificial Intelligence (Al) is driving the industrial
and technological revolution of the present and future. We envision a world with smart
devices that are able to mimic human behaviour (sense, process, and act) and perform
tasks that at one time we thought could only be carried out by humans. The vision is
to achieve such level of intelligence with affordable, power-efficient, and fast hardware
platforms. However, embedding machine learning algorithms in many application domains
such as the internet of things (IoT), prostheses, robotics, and wearable devices is an ongoing
challenge. A challenge that is controlled by the computational complexity of ML algorithms,
the performance/availability of hardware platforms, and the application’s budget (power
constraint, real-time operation, etc.). In this dissertation, we focus on the design and
implementation of efficient ML algorithms to handle the aforementioned challenges. First, we
apply Approximate Computing Techniques (ACTs) to reduce the computational complexity of
ML algorithms. Then, we design custom Hardware Accelerators to improve the performance
of the implementation within a specified budget. Finally, a tactile data processing application
is adopted for the validation of the proposed exact and approximate embedded machine
learning accelerators.

The dissertation starts with the introduction of the various ML algorithms used for tactile
data processing. These algorithms are assessed in terms of their computational complexity
and the available hardware platforms which could be used for implementation. Afterward, a
survey on the existing approximate computing techniques and hardware accelerators design
methodologies is presented. Based on the findings of the survey, an approach for applying
algorithmic-level ACTs on machine learning algorithms is provided. Then three novel hard-
ware accelerators are proposed: (1) k-Nearest Neighbor (kNN) based on a selection-based
sorter, (2) Tensorial Support Vector Machine (TSVM) based on Shallow Neural Networks,
and (3) Hybrid Precision Binary Convolution Neural Network (BCNN). The three accelera-
tors offer a real-time classification with monumental reductions in the hardware resources
and power consumption compared to existing implementations targeting the same tactile data
processing application on FPGA. Moreover, the approximate accelerators maintain a high

classification accuracy with a loss of at most 5%.

Table of contents

List of figures xiii
List of tables Xvii
1 Introduction 1
1.1 Objectives and Contributions 2
1.2 Dissertation Outline 4
1.2.1 Stateoftheart 4

1.2.2 Algorithmic Level Approximate Computing Techniques for Machine
Learning 4

1.2.3

Efficient Selection-Based k-Nearest Neighbor Architecture on Mod-
ern SoCs e

1.2.4 Real-time Accelerated Tensorial Support Vector Machine Architecture 5

1.2.5 A Hybrid Precision Architecture for an Efficient Binary Convolu-
tional Neural Network Accelerator 5
1.3 Listof Publications 6
2 State of the art 9
2.1 Tactile Data Processing o 10
2.1.1 Pre-Processing 10
2.1.2 Classification and Regression 12
2.2 Embedded Machine Learning 14
2.2.1 Computational Complexity of Machine Learning Algorithms 14
2.2.2 Hardware Platforms, 16
2.2.3 Machine Learning Accelerators 17
2.2.3.1 k-Nearest Neighbor Accelerators 18
2.2.3.2 Support Vector Machine Hardware Accelerators 20

2.2.3.3 Binary Convolution Neural Network Hardware Accelerators 23

Table of contents

2.3
24

Approximate Computing for Machine Learning Architectures 25

Conclusion 28

Algorithmic Level Approximate Computing Techniques for Machine Learning 29

3.1
3.2
3.3

3.4

3.5

3.6

Introduction L 29
Algorithmic Level Approximate Computing Techniques 30
Experimental Setup 32
33.1 Dataset 32
3.3.2 Software Environment L. 33
3.3.3 Hardware Environment 33
Approximate k-Nearest Neighbor 34
341 KNNOverview e 34
34.2 Software Simulation Lo 35
3.4.3 Hardware Implementation 41
3.4.4 Implementation Results and Assessment 41
Approximate Tensorial Support Vector Machine 43
3.5.1 Tensorial SVM Overview 43
3.5.2 Software Simulation Lo 44
3.5.3 Hardware Implementation 44
3.5.4 Implementation Results and Assessment 48
Conclusion e 51

Efficient Selection-Based K-Nearest Neighbor Architecture on Modern SoCs 53

4.1
4.2

4.3

4.4

Introduction 53
Proposed k-NN Hardware Architecture 54
4.2.1 k-Nearest Neighbor Algorithm Overview 54
4.2.2 Selection-based kNN Architecture 54
4.2.3 Nearest Neighbors Selector 55
424 Approximate KNN Blocks 59
Case Study: Tactile Data Processing for Electronic Skin Systems 59
4.3.1 Electronic Skin Overview 59
432 Experimental Setup L Lo 61
Selection-based kNN Implementation 63
4.4.1 Hardware and Software Design Tools 63
4.4.2 Implementation Methodology 63
443 Design Optimization 64

4.44 Implementation Results 66

Table of contents xi

4.5 Comparison with existing solutions 68
4.6 Conclusion e e 70
5 Real-time Accelerated Tensorial Support Vector Machine Architecture 73
5.1 Introduction 73
5.2 SVM Classification based on Tensorial Kernel 74
52,1 TSVMRe-visited 74

5.2.2 Complexity Assessmentof TSVM 74

5.2.3 Touch Modalities Classification 75

5.3 SVD Algorithms and Implementations 75
5.3.1 Literature Review o 75

5.3.2 Computational Complexity 77

5.4 SVD using Shallow Neural Networks 79
5.4.1 Network Structure 79

542 Network Training 80

5.4.3 Network Performance 83

544 Hardware Implementation 87

5.5 TSVM based on Shallow Neural Networks 90
5.5.1 Proposed Architecture 90

5.5.2 Implementation Results 91

5.5.3 Performance Verification 92

5.6 Scalability Assessment 93
5.6.1 Case 1: Scalability of the Shallow Neural Network 93

5.6.2 Case 2: Scalability of NN-based TSVM 95

5.7 Conclusion e e 97

6 A Hybrid Precision Architecture for an Efficient Binary Convolutional Neural

Network Accelerator 99
6.1 Introduction 99
6.2 Binary Convolution Neural Networks Overview 100
6.3 Hybrid-Precision BWN Model 102
6.3.1 Design Methodology, 102
6.3.2 Network Training 104
6.3.3 Network Assessment 105
6.4 H-BWN Accelerator Design and Implementation 107
6.4.1 Accelerator Architecture oL 107

6.4.2 Accelerator Implementation 114

xii Table of contents

6.5 Conclusion e e 115
7 Conclusion 117
References 119
Appendix A Hardware Accelerator Design using Vivado Suite 135
A.1 Hardware Design using Register-Transfer Level (RTL) 135
A.2 Software Design using High Level Synthesis (HLS) 138

A.3 Software/hardware Co-Design using HLS and RTL 140

List of figures

2.1
2.2
23
24
2.5

2.6
2.7
2.8
2.9

2.10

3.1

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

3.11

PCA Example: 3Dto2D 11
Procedure of tactile data separationusing ICA 11
Linear Discrimination Analysis: (1) Bad projection and (2) Good Projection 12
Big-O Complexity e 15
Top-1 one-crop accuracy versus amount of operations required for a single

forward pass. The size of the blobs is proportional to the number of network

parameters 16
Memory Allocation Sequence 22
Scheduling inside PULP, 22
Distribution of the most used Quantization Level 23
A small CNN that has been trained on CIFAR-10 dataset with different

precision for the first and last layers oL 24
Distribution of the most used Network Topology 25

Algorithmic level Approximate Computing Techniques: (a) data-oriented;

and (b) processing-oriented. Lo 31
Touch modalities. (a) Paintbrush brushing; (b) washer rolling (c) finger sliding; 32
FPGA Implementation Process 34
Execution Time of a kNN Classifier under various ACTs 39
Memory Usage for a KNN Classifier under various ACTs 39
kNN Performance Profile under various ACTs 40
Approximate KNN Architecture 41
kNN FPGA Implementation Performance under various ACTs 42
Approximate TSVM Architecture 46

Touch Modalities: (a) touch with noisy readings; and (b) touch with silent
intervals. oL 47
Array partitioning: (a) without partitioning; (b) block partitioning; and (c)
block with size=16. 48

Xiv List of figures
3.12 Process: (a) without dataflow; and (b) with dataflow. 49
3.13 Pipeline directive applied on vector multiplication. 49
3.14 Speedup and power consumption reduction under different ACTs 50
4.1 Selection-Based kNN Hardware Architecture 55
4.2 Sorting Process Step 3 (K=3): Dashed Line (new value), Solid Line (old

value), Colored Lines (concurrent operations) 57
4.3 Electronic skin system and the corresponding function of each block 60
44 Experimental Setup L 61
4.5 Touch Modalities: (a) Rolling with DS, (b) Rolling after DSc, (c) Sliding

after DSc, * Window 63
4.6 Design Optimization: (a) BRAM Resources Reductions, (b) Unrolled Class

Determination, (¢) One Unrolled Distance Calculation (UDC) Block, (d)

Complete Unrolled Distance Calculation 64
5.1 Computational Complexity of the Tensorial SVM algorithm 75
5.2 SVD Computation using: (a) one-sided Jacobi, (b) Neural Network 77
5.3 Number of Operations required in one-sided Jacobi (Nj) and Shallow Neural

Network (N), (m,n) are the matirx dimension and H is the hidden layer size. 79
5.4 Proposed Shallow Neural Network: (a) Overall Structure, (b) Hidden Layer

Neuron, (c) Output Layer Neuron 80
5.5 Touch Modality with: (a) Noisy Readings, (b) Silent Intervals 81
5.6 Best Model Training and Validation MSE for (a) NNI, (b) NN2 84
5.7 V matrix Generation for Networks: (a) NNI,(b)NN2 85
5.8 Best Model Performance: (a) CS for NN3, (b) MSE for NN3, (c) CS for NN4,

(A MSE for NN4) e e 85
5.9 Network Performance Under Different Activation Functions 86
5.10 Shallow Neural Network Architecture 88
5.11 Activation Functions: (a) Parametric ReLU, (b) hard Tangent Hyperbolic 88
5.12 Vector Yp to Array V Transformation 89
5.13 Neural Network based TSVM Cascade Architecture 91
5.14 Scalability of Shallow Neural Network for varying the hidden/output layers

0 /< 94
5.15 SVD Computation Approach via a Shallow Neural Network 95
5.16 Scalability of NN-based TSVM for binary classification (Nc¢ = 2) and vari-

able number of training tensors Lo 96
5.17 Scalability Comparison with Existing Methods 97

List of figures XV

6.1 Convolution in Binary Convolution Neural Networks 101
6.2 Data Pre-processing: (a) Touch Modality, (b) Truncated Touch Modality, (c)
Tensor Representation, (d) Sampled Tensor, (e) Data Augmentation 103
6.3 Hybrid Precision Neural Network Model 104
6.4 Approx-Sign Quantizer in Forward and Backward Propagation 105
6.5 H-BWNBestModel 106
6.6 Model Performance for Different Network Configurations 107
6.7 Proposed H-CNN Hardware Accelerator Architecture 108
6.8 Quantized Input, Binarized Kernel Convolution (QC) Processing Element . 108
6.9 Quantized Batch Normalization (Q-BN) Unit 109
6.10 Binarized Input, Binarized Kernel Convolution (BC) Processing Element. . 110
6.11 Maxpool Operation on Binary Inputs 110
6.12 Plot of the functions 2/ and 0.724% f+1.008 112
6.13 Exponent Sub-unit Design using Linear Approximation 112
6.14 Non-Restoring Division Algorithm 113
6.15 Division Sub-unit Design based on Non-Restoring Division Algorithm . . . 113
A.l1 VHDL Codeof amultiplier. 136
A2 MultiplierSetup L 136
A.3 Port Mapping of the Multiplier Entity 136
A.4 Complete RTL Design Block Diagram 137
A.5 Multiplier Code in Vivado SDKusing RTL 138
A.6 Complete HLS Design Block Diagram 139
A.7 Multiplier Code in Vivado SDKusing HLS 139
A.8 Software/Hardware Multiplier Accelerator 140
A.9 Multiplier Code in Vivado SDK using HLS and RTL (1) 140
A.10 Multiplier Code in Vivado SDK using HLS and RTL (2) 141
A.11 Multiplier Code in Vivado SDK using HLS and RTL 3) 141
A.12 Multiplier Code in Vivado SDK using HLS and RTL 4) 141

A.13 Multiplier Code in Vivado SDK using HLS and RTL (5) 142

List of tables

2.1
2.2
23
24
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2

4.3
4.4

4.5

5.1
5.2
5.3
54

Learning Algorithms for Tactile Data Processing Applications 13
Computational complexity of machine learning algorithms 15
Comparison between different hardware devices/platforms 17

kNN Hardware Accelerators: Design Target, Techniques and Noticeable Gains 19

SVM Hardware Accelerators Targeting Different Kernels 21
Approximate Computing Techniques applied at different stages of the com-

puting stacko 27
Classification Accuracy under scenarios A, B,andC 35
Classification Accuracy under scenarioD 36
Effect of Downscaling on kNN classification accuracy 37
Effect of Data Format Modification on kNN classification accuracy 38
Effect of Cross Layer Approximate Computing on kNN classification accuracy 38
kNN Implementation Report targeting Zyngberry operating at 120 MHz . . 42
Effect of approximate computing techniques on TSVM classification accuracy 45
FPGA performance profile of Exact and Approximate TSVM 50
HLS Synthesis Results of Different Sorters 59
Implementation Results of the proposed Exact and Approximate Classifiers

ONZyngberry e e e e e 67
Exact KNN performance on FPGAand GPU 68
Testbench Implementation settings for the Exact kNN and three similar

architectures L. L 69
Proposed Exact kNN Implementation Results versus Similar Solutions . . . 69
Complexity Assessment under different activation functions 79
Neural Networks NNI and NN2 Structure and Testing Performance 84
Neural Networks NN3 and NN4 Structure 86

NN3 and NN4 Performance Compared to one-sided Jacobt 86

xviii List of tables
5.5 NNI and NN2 Implementation Details on Virtex-7 FPGA 89
5.6 Implementation Results for Tensor SVD Computations 90
5.7 NN-based TSVM Operating Modes 91
5.8 Implementation Results for NN-based TSVM on Virtex-7 92
5.9 Touch Modality Classification Using NN-based TSVM in Comparison with

existingmethods L L Lo 92
6.1 Quantizers for BNN Training 105
6.2 Best H-BWN Performance in Comparison with the state of the art 107
6.3 H-BWN Implementation Results Targeting Zyngberry Platform 114
6.4 H-BWN Performance Comparison with Similar Solutions 115

Chapter 1
Introduction

The skin is the largest organ in the human body which houses receptors that sense touch.
Humans sense of touch allows them to receive information about their environment, making
it important for sensory perception. Touch receptors in the skin inform the brain about
tactile or touch sensations. The receptors transform a response (e.g. chemical, thermal or
mechanical) into electrical signals. The signals travel along axons (the elongated portion of
the neuron), which form a path along which messages travel to different areas of the brain
that receive and interpret them. In the brain, sensations are interpreted using a complex
intelligent architecture fed on previous experiences and the properties of the receptors. With
the advancements of technology and engineering, humans have been trying to mimic such
capabilities through an artificial model referred to as Electronic Skin (e-skin).

An electronic skin is usually composed of distributed tactile sensors integrated with an
embedded electronic system for tactile data decoding. Meaningful information e.g. texture
classification and pattern recognition can be decoded from tactile data by employing Machine
Learning (ML) algorithms. Computations using embedded machine learning algorithms
may enable the electronic skin system to be used in various application domains such
as wearable, Internet of Things, prosthetic and robotics. However, embedding machine
learning algorithms is constrained by the high computational complexity of such algorithms.
Moreover, the amount of data processed by machine learning is increasing exponentially
[1]. On the contrary, the processing resources are limited especially with the chip shortage
in the last few years [2]. This poses challenges relevant to the requirements of real-time
execution and low power/energy consumption when targeting portable wearable systems
due to their limitation in terms of resources and energy budget. Nonetheless, machine
learning is one of many application domains that has intrinsic tolerance to inaccuracy.
These applications are mostly not about calculating a precise numerical answer; instead,

"correctness"” is defined as providing an outcome that is good enough, or of sufficient quality

2 Introduction

to achieve an acceptable application performance [3]. In this perspective, this dissertation
aims at providing efficient implementations of embedded machine learning algorithms for
tactile data processing. The core strategy behind delivering efficient implementations is the
use of "Hardware Accelerators" and "Approximate Computing" to accelerate demanding
portions of ML algorithms and to adequately reduce the algorithms computational complexity
respectively.

1.1 Objectives and Contributions

The main objective of this dissertation is to design efficient implementations of machine
learning algorithms for tactile data processing. The implementations should offer real-time
processing with a time latency less than 400 ms [4] with as much reduced hardware area and
energy consumption as possible compared to existing solutions. To achieve our objective, two
approaches have been investigated: "Hardware Accelerators” and "Approximate Computing".

Towards achieving the objective of this dissertation, we contributed to the research

community with several ideas that can be summarized as:

* An exact and approximate k-Nearest Neighbor (kNN) classifiers are proposed with a
classification accuracy comparable with [5] for a touch modality recognition task. The
experimental results demonstrate the effectiveness of Data-oriented ACTs on reducing
the memory usage and execution time of the KNN classifier with an acceptable accuracy
loss.

* An approach for applying algorithmic level ACTs on machine learning algorithms is
proposed. Each ACT in the proposed approach can serve as a quality configurable
knob to trade-off quality for time latency.

* An overview about energy efficient implementation of machine learning algorithms on
hardware platforms highlighting the main challenges when embedding such algorithms
is provided. Moreover, we report the techniques that could be applied to improve the
energy efficiency. Furthermore, the main factors to be taken into consideration when
choosing the appropriate platform are highlighted. Lastly, the strategies to overcome
the challenges when building an energy efficient embedded machine learning systems

are discussed.

* A book chapter that presents a survey of the existing algorithms and tasks applied for
tactile data processing. The presented algorithms and tasks include machine learning,

deep learning, feature extraction, and dimensionality reduction. Moreover, this chapter

1.1 Objectives and Contributions 3

provides guidelines for selecting appropriate hardware platforms for the algorithm’s
implementation. The algorithms are compared in terms of computational complexity

and hardware implementation requirements.

* A comprehensive assessment of applying algorithmic level approximate computing
techniques on the FPGA implementation of tensorial Support Vector Machine (SVM)
has been performed.

* An architecture for Singular Value Decomposition (SVD) computation based on ap-
proximate computing techniques is proposed. The architecture is based on a shallow
neural network for finding the SVD of an input matrix with two different dimensions.
We provide the structure, tuning, and training of the network. Also, the FPGA im-
plementation of the proposed neural network inference is presented. Implementation
results show that the proposed network achieves a significant speedup and reductions
in the required hardware resources and power consumption respectively compared to

the traditional one-sided Jacobi algorithm.

* The first hardware implementation of a neural network based SVM featuring multidi-
mensional tensorial inputs is proposed. The implementation is feasible for real-time
touch modality classification with low power consumption. Moreover, the imple-
mentation scalability shows that the neural network based SVM is adequate for the
acceleration of SVM on resource-limited hardware platforms.

* The design and implementation of a kNN accelerator using a selection based sorter
(Selector) is proposed. The proposed accelerator overcomes similar state of the art

solutions by reducing the occupied hardware area while providing noticeable speedups.

* A Hybrid fixed-point binary Convolution Neural Network (HCNN) model for touch
modality classification is presented. A hardware accelerator architecture and imple-
mentation on FPGA for HCNN is proposed. The proposed accelerator can classify
an input touch with a higher accuracy compared to SVM and Deep CNN. Moreover,
a faster classification time is noticed while providing a low energy per classification
value.

4 Introduction

1.2 Dissertation Outline

1.2.1 State of the art

This chapter explores the existing learning algorithms used for tactile data processing.
Starting from pre-processing to classification/regression algorithms. Then, the computational
complexity of such algorithms is studied. Moreover, a discussion is presented on the existing
hardware platforms that could be adequate for the acceleration of learning algorithms.
Although not all machine learning algorithms have been used for embedded tactile processing,
existing accelerators architecture can be studied and modified for most applications. Thus, in
this chapter a survey on efficient hardware accelerator design is provided. The survey focuses
in principle on kNN, SVM, and Binary CNNs. Similarly, existing approximate computing
techniques targeting these algorithms is tackled in this chapter. The techniques mainly belong

to the algorithmic and architectural levels.

1.2.2 Algorithmic Level Approximate Computing Techniques for Ma-

chine Learning

An approach for applying algorithmic level approximate computing techniques on machine
learning algorithms is proposed. The approach is validated on the software and hardware
implementations of kNN and Tensorial SVM (TSVM). The assessment of the software im-
plementation shows that tactile data classification can be accelerated with a reduced memory
usage while running kNN algorithm on an Intel CPU. As for hardware implementation, both
the approximate kNN and TSVM are able to process tactile data in real-time with a noticeable
power reductions compared to their exact counterpart when implemented on FPGA. The

obtained efficient approximate implementations are achieved with a classification accuracy
loss than 10%.

1.2.3 Efficient Selection-Based k-Nearest Neighbor Architecture on
Modern SoCs

In this chapter, we propose a novel selection-based sorter (Selector) to be embedded in the
the architecture and implementation of kNN algorithm. The selector idea is determine the
k-nearest neighbors without sorting the complete distance vector. The selection architecture
is configurable with a division factor to control the process based on the target application.
Compared to existing traditional sorters, the selector offers significant speedup with a

reduced hardware area at the best, and matches the Quick sorter performance in the worst

1.2 Dissertation Outline 5

case. An Exact and Approximate selection-based kNN implementations are proposed.
The approximate architecture utilizes the use of algorithmic level approximate computing
techniques. When validated on a touch modality classification problem, both the proposed
exact and approximate kNN offer a real-time classification while consuming low energy
when implemented on Xilinx Zygnberry platform. Such efficient KNN implementations are

achieved with an accuracy degradation of at most 2.6%.

1.2.4 Real-time Accelerated Tensorial Support Vector Machine Archi-

tecture

This chapter introduces an efficient architecture of the tensorial SVM algorithm based on
the use of a Shallow Neural Network (NN) for the Singular Value Decomposition (SVD). A
detailed process for the design, training and tuning of the proposed network is presented. Such
network architecture is capable of predicting the singular vectors with significant reductions
in the FPGA implementation footprint compared to the traditional one-sided Jacobi algorithm.
To validate the effectiveness of the proposed solution, a scalability assessment of the proposed
NN-TSVM architecture is performed. The assessment shows that replacing the one-sided
Jacobi with a neural network demands only 1% increase in the required hardware area
compared to 29% when the number of training tensors is doubled. Moreover, the efficient
NN-TSVM implementation is capable of real-time tactile data classification with a reduced
energy consumption that is suitable for the implementation on resource-limited platforms
such as the Zynqgberry.

1.2.5 A Hybrid Precision Architecture for an Efficient Binary Convolu-

tional Neural Network Accelerator

In this chapter, a hybrid fixed-point/Binary convolution neural network accelerator is pro-
posed as a trade-off between the reliability of CNNs and the low complexity of Binary CNNs.
The architecture adopts a complete binarization of the hidden layers and 16-bit fixed-point for
the first and last layers activations with binary weights. A design methodology is provided
in terms of network topology, placement of binarization layers, and training process. The
proposed Hybrid Binary Weight Network (H-BWN) achieves an accuracy increase up to
35% for the classification of touch modalities compared to traditional BCNN topology. The
H-BWN accelerator offers real-time classification with an energy per classification that
represents a fraction of the energy consumed by existing similar solution targeting FPGA

implementations. Such results pave the way towards the deployment of the intelligent tactile

6 Introduction

data processing on small mainstream microcontrollers with a storage requirements of less
than 5 KB.

1.3 List of Publications

This doctoral research has resulted in several publications, a list of which is provided here:
Journals:

1. H. Younes, A. Ibrahim, M. Rizk, and M. Valle, “A Shallow Neural Network for
Real-Time Embedded Machine Learning for Tensorial Tactile Data Processing,” IEEE

Transactions on Circuits and Systems I: Regular Paper, vol. 68, no. 10, pp. 4232-4244,
Oct. 2021.

2. H. Younes, A. Ibrahim, M. Rizk, and M. Valle, “An Efficient Selection-Based kNN
Architecture for Smart Embedded Hardware Accelerators,” IEEE Open Journal on
Circuits and Systems,vol. 2, pp. 534-545, Aug. 2021

3. H. Younes, A. Ibrahim, M. Rizk, and M. Valle, “Algorithmic-Level Approximate
Tensorial SVM Using High-Level Synthesis on FPGA,” Electronics, vol. 10, no. 2, p.
205, Jan. 2021.

4. A.Ibrahim, H. Younes, M. Alameh, and M. Valle, “Near Sensors Computation based

on Embedded Machine Learning for Electronic Skin,” Procedia Manufacturing., vol.
52, pp. 295-300, 2020.

Conference Papers:

1. H. Younes, A. Ibrahim, M. Rizk, and M. Valle, “Efficient FPGA Implementation of
Approximate Singular Value Decomposition based on Shallow Neural Networks,” in

2021 IEEE 3" International Conference on Artificial Intelligence Circuits and Systems
(AICAS), Washington DC, USA, Jun. 2021, pp. 1-4.

2. H. Younes, A. Ibrahim, M. Rizk, and M. Valle, “Algorithmic Level Approximate Com-
puting for Machine Learning Classifiers,” in 2019 26" IEEE International Conference
on Electronics, Circuits and Systems (ICECS), Genoa, Italy, Nov. 2019, pp. 113-114.

3. M. Osta, M. Alameh, H. Younes, A. Ibrahim, and M. Valle, “Energy Efficient Imple-
mentation of Machine Learning Algorithms on Hardware Platforms,” in 2019 26"

IEEE International Conference on Electronics, Circuits and Systems (ICECS), Genova,
Italy, Nov. 2019.

1.3 List of Publications 7

4. H. Younes, A. Ibrahim, M. Rizk, and M. Valle, “Data Oriented Approximate k-Nearest
Neighbor Classifier for Touch Modality Recognition,” in 2019 15" Conference on
Ph.D Research in Microelectronics and Electronics (PRIME), Lausanne, Switzerland,
Jul. 2019, pp. 241-244.

5. H. Younes, A. Ibrahim, M. Rizk, and M. Valle, “A Mixed Precision Binary Neural
Network Architecture for Touch Modality Classification” in 16! Conference on PhD
Research in Microelectronics and Electronics (PRIME), Germany, Jul. 2021.

6. H. Younes, A. Ibrahim, M. Rizk, and M. Valle, “Hybrid Fixed-point/Binary Convolu-
tional Neural Network Accelerator for Real-time Tactile Processing,” in the 28" IEEE

International Conference on Electronics Circuits and Systems (ICECS), Dubai, UAE,
2021.

Book Chapters:

1. H. Younes, A. Ibrahim, M. Alameh, and M. Valle, “Efficient Algorithms for Em-
bedded Tactile Data Processing,” in Electronic Skin: Sensors and Systems, River
Publishers Series in Electronic Materials and Devices, 2020. [Online]. Available:
https://www.riverpublishers.com/book_details.php?book_id=789.

Chapter 2

State of the art

The idea behind hardware accelerators is to determine complex and demanding blocks of an
algorithm, then assign a high performance module (namely referred to as Processing Element
(PE)) to execute such block in an efficient manner. Designing a hardware accelerator can be
performed using several methodologies. The use of "specific design" methodology suitable
for the hardware platform and application. For example, modern System-on-Chips (SoCs)
include an ARM CPU and a Zynq FPGA on the same board (e.g. ZedBoard, Zyngberry).
Such design allows the execution of complex and parallel portions of an algorithm on the
FPGA while offloading simple tasks to the CPU. Another designing methodology is the use
of high performance cores in multi-core CPUs/GPUs for demanding tasks and assign less
performing cores for simpler tasks. This can be found in Apple new designed M1 chips that
includes both "High Performance Cores" and "Efficient Low Power Cores" [6]. Recently, a
new hardware accelerator design methodology focuses on techniques such as In-Memory
Computing (IMC), Near-Memory Computing (NMC), and Processing-In-Memory (PIM),
have emerged to bring computing as close as possible to the memory array such as, allow to
reduce the cost of data movement between computing cores and memories [7].

In this dissertation, we are focused on the "specific design" methodology targeting
different machine learning algorithms and hardware devices/platforms. Mainly, the design
and implementation of hardware accelerators for KNN, SVM, and Binary CNNs. Then, a set
of approximate computing methods for enhancing the accelerators’ performance is discussed.
The performance of the exact and approximate accelerators is assessed on a tactile data

processing application, mainly touch modality classification.

10 State of the art

2.1 Tactile Data Processing

Tactile sensing involves the detection of motion, the measurement of contact parameters,
the processing of the signals to extract structured and meaningful information, and the
transmission of such information into a higher system levels for interpretation [8]. The
data acquired from tactile sensors corresponds to an electrical stimulus. The latter varies
according to the type of the sensing material, dimensionality, responsiveness, and structure
of the sensor. Processing algorithms should be able to decode and efficiently handle the
acquired data. Tactile data processing algorithms presented in the literature could be divided
into two categories: pre-processing and classification/regression. Pre-processing algorithms
involve feature extraction and dimensionality reduction, while classification and regression

algorithms are mainly machine learning algorithms.

2.1.1 Pre-Processing

Tactile data may be pre-processed to reduce noise and extract meaningful features. The
extracted features could be (1) the variables that best describe the raw data and (2) the weights
which should be given for each variable. For instance, sub-sampling can be applied to a
recorded touch reading to remove silent/noisy samples. Also, data obtained from certain
taxels in the sensor patch can be considered in a pattern recognition problem. These taxels
are the ones that provide reliable data (nonzero or unknown readings). Several algorithms
have been presented in the literature for dimensionality reduction and feature extraction
such as Principal Component Analysis (PCA), Independent Component Analysis (ICA), and
Linear Discriminant Analysis (LDA).

Principal component analysis is the base for multivariate data analysis (i.e. studying
the effect of multiple variables on the output state) [9]. PCA is used for approximating
data or reducing the dimensionality of the data e.g. representing data from X, space in
X,_k space, where n and k are two positive integers. As a concrete example, if we have
data with n features, then PCA helps to represent these data with n — k features with the
least possible losses. Figure 2.1 shows how PCA can be applied to reduce dimensionality
from three dimensions (3D) to 2D (the figure has been generated using the data and code
provided in [10]). In [11], a finger-like shape tactile sensor has been used to collect data
about fabric surfaces. Initially, Fast Fourier Transformation (FFT) has been used to construct
the original dataset, and then PCA has been applied to compress the attribute data and extract
feature information. In [12], kernel PCA [13] has been used for low-resolution tactile image
recognition for automated robotic assembly. Kernel PCA is a method to perform a nonlinear

form of the PCA. It computes higher-order statistics among random variables while reducing

2.1 Tactile Data Processing

11

5 8
0 s
3
5 J £
@50
10 Ll

5o
-15 _10 _S—T_S\ =
15

i
—— o
-10

Fig. 2.1 PCA Example: 3D to 2D

the data dimensionality, thus being able to achieve the goal of both feature extraction and

dimensionality reduction. The authors in [14] have used local PCA [15] combined with a

neural network to classify 16 household and toy objects. Local PCA is a nonlinear extension

of the normal PCA. It has been used to obtain a less complex feature vector for the data

obtained from tactile sensors mounted into a robotic arm.

. Contact area of object A

O Contact area of object B
. Overlapped Area

pE D
[| Sensor Surface

pi | D
N Sensor Surface

4

Time series
clustering

Observed Tactile Data

ED

O Sensor Surface
l ICA Separation
[]
=uh
] Sensor Surface

Fig. 2.2 Procedure of tactile data separation using [CA

Independent component analysis [16] can be seen as an extension of the PCA. It is a linear

dimensionality reduction technique, which searches for the linear transformation that reduces

or eliminates the linear dependency between elements of a random vector. An example of
using ICA is the Cocktail Party Problem [17]. Spatial ICA has been adopted as a separation

12 State of the art

method that allows a robot to understand and interact with tactile information from multiple
sources [18]. Figure 2.2 shows the procedure of tactile data separation from two objects
using ICA along with time series clustering.

Linear discrimination analysis shown in Figure 2.3 is yet another method for dimension-
ality reduction. It consists of finding the projection hyperplane that minimizes the variance
within the same class, and maximizes the distance within the projected means of the classes
[19]. Tactile images of deformable and non deformable surfaces have been used for a classi-
fication problem in [20]. LDA has been used as a separation algorithm between six different
surfaces with an accuracy rate of up to 95.5%. In [21], the authors have demonstrated the
feasibility of using LDA for surface texture discrimination. Another use of LDA appears in

[22] for terrain discrimination problems.

Class Bm

Class Bm

Fig. 2.3 Linear Discrimination Analysis: (1) Bad projection and (2) Good Projection

2.1.2 Classification and Regression

Machine learning algorithms are an efficient solution for processing tactile data in various
applications [5]. ML algorithms in general, can extract a complex, non linear input—output
relationship based on learning by example approach. An ML algorithm is trained using a
set of examples, where each example is described by a group of informative features. ML
algorithms can support intelligent and predictive systems that can make accurate decisions
on unseen data. In this perspective, classification/regression problems supported by ML

algorithms could be adopted in applications with tactile information including:

* Normal force sensing for e.g. grasp control, object manipulation, touch modalities,
and orientation determination;

2.1 Tactile Data Processing 13

Table 2.1 Learning Algorithms for Tactile Data Processing Applications

Tactile Application Learning Algorithm Examples
. . . Decision Tree, Naive Bayes, Support Vector Machine, k-Nearest Neighbor, [23], [24], [25],
Object Manipulation Convolution Neural Networks, Long Short-Term Memory [26]
Surface Texture Least Square Support Vector Machine, Expectation-Maximization, Regularized [271, [28], [29],
Identification Least Square, Bayesian Exploration, Reinforcement Learning [30]
Towh Moty | SN N Do T Lo Eine Lo tie g
Classification PP » B St >quare, 1Jeep [32], [29]

Networks, Long Short-Term Memory
Slip and Grasp K-Means Clustering, k-Nearest Neighbor, Support Vector Machine, Random Forest, | [33], [34], [35],

Detection Locally Weighted Projection Regression [36]
Orientation . . . o
D Convolution Neural Network, Linear Regression, Spiking Neural Network [371, [38], [39]
Determination

 Shear force sensing for e.g. grasp control and friction determination;

* Vibration detection for e.g. slip detection and texture determination.

Table 2.1 reports the commonly used ML algorithms with respect to the type of extracted
tactile data. Object compliance classification problem involves the identification of objects’
structure (soft, hard, fuzzy, bumpy, etc.) and state (ideal, moving, etc.). For a vegetable
grading industry, differentiation between green, moderate, and ripe tomatoes has been
achieved with an accuracy of 90% and 85% using Decision Tree (DT) and Naive Bayes (NB)
respectively [23]. A classification problem involving 18 objects of different size, compliance,
and state (fixed, moving) has been tackled in [25]. Using a k-Nearest Neighbor (kNN)
classifier with kK = 2, an object’s structure classification accuracy up to 80% was attained.
While, for detecting the state of the object, an accuracy of 91.4% was obtained for the given
problem. In [26], a Convolutional Neural Network (CNN) has been trained on 5300 instances
collected from 53 objects with different compliance. A classification accuracy up to 85% has
been reached on identifying the compressibility and smoothness of unseen objects.

Recognition and categorization of object properties can be obtained by analyzing the
surface texture. Using Support Vector Machine (SVM) algorithm, an autonomous humanoid
robot recorded a recognition rate up to 100%, with 70% objects’ categorization ability in
a setup that involved ten different objects (glass, sponge, paper, etc.) [27]. In [28], Least
Square SVM was adopted to discriminate 20 daily used objects based on their texture. A
classification accuracy between 70% and 100% has been recorded when using 10 training
samples. Bayesian Exploration and Reinforcement Learning have been used to train and
validate a discrimination system in [30]. The system was able to differentiate between 10
objects (brick, copper, wood, etc.) with a 90% success rate.

Slip and grasp detection is an another task that can be supported by learning algorithms.
In [33], a Phantom Omni arm has been equipped with a tactile sensory array of 84 sensor cells

to study the translational and rotational movement of an object. The arm was able to hold

14 State of the art

and recognize a ball with an accuracy of 91.2% using K-Means clustering algorithm. The
humanoid robot ARMAR-IIIB was learned to grasp objects using SVM algorithm [34]. The
grasp was recorded as successful or not by the ability to lift up the object. 77% of the grasps
were considered as stable compared to 23% unstable tries. In [36], a Haptically-enabled
robot with Barret arm system which three fingers are equipped with BioTac sensors was used
to achieve a reliable grasping of fragile objects. The best performance was achieved using a
3-layer neural network regression by detecting a slip within 30 ms with 80% success rate.

Touch Modality classification allows the integration of gesture-based actions that can
be performed by robots or humans with prosthetic hands. For a medical purpose of caring
for patients with mild mental impairment; a humanoid equipped with artificial skin has
been trained to discriminate between nine touch modalities (scratch, tickle, rub, etc.) [31].
Recognition rates up to 96.7% has been achieved using four machine learning algorithms
including kNN, SVM, DT, and Logitboost. The authors in [29] have adopted a touch modality
classification problem that involves three patterns: brushing a paint brush, rolling a washer,
and sliding a finger on 4 x 4 tactile sensory array. SVM and Extreme Learning Machine
(ELM), and Deep CNN based on transfer learning have been chosen as learning algorithms.
A classification accuracy of 90%, 89.6%, and 76.9% has been recorded respectively.

2.2 Embedded Machine Learning

Embedding machine learning in resource-limited and battery-powered applications for tactile
data processing must obey a set of requirements including: small hardware area, low time
latency, and low energy consumption. The main two factor that affects such requirements are

the computational complexity of these algorithms and the hardware device/platform.

2.2.1 Computational Complexity of Machine Learning Algorithms

Table 2.2 provides the Big-O complexity of the most used algorithms for tactile processing
[40], where n is the size of the training set, f is the number of features, 7.5 is the number
of trees, and ngy is the number of support vectors. The complexity of CNN is based on the
information provided in [41]. Only convolutional layers are considered as it is assumed that
fully connected layers constitute only 5%-10% of the CNN complexity. Here / is the index
of a convolutional layer, d is the number of convolutional layers, n; is the number of filters in
the [—th layer, n;_; is the number of input channels of the [—th layer, s; is the spatial size

of the filter, and my; is the spatial size of the output feature map.

2.2 Embedded Machine Learning 15

Table 2.2 Computational complexity of machine learning algorithms

Algorithm Application Training Testing
Naive Bayes Classification O(nf) o(f)
Decision Tree | Classification/Regression O(n*f) o(f)
SVM Classification/Regression | O(n*f) +n> | O(ngy f)
kNN Classification/Regression - O(nf)
Linear Regression Regression O(f*n+ f°) o(f)
Random Forest | Classification/Regression | O(n” fnyress) | O(fhsress)
CNN Classification/Regression O(Zf:1 n_q .sl2 Ny mlz)

(howbie) (B D (i) (NERGEEED

Operations

0(logn)

051‘

Input Size (n)

Fig. 2.4 Big-O Complexity

The complexity given in Table 2.2 has been analyzed based on the degree of complexity
provided by Figure 2.4. It is noticed that algorithms such as DT and SVM involve complex
training phase that increases quadratically for a large number of training points. For linear
regression (LR), the training phase complexity also increases quadratically with the number
of features, which is usually less than the number of training points. Meanwhile, the DT,
SVM, and LR classification phases are relatively less complex. For NB, the training phase
is less complex compared to the SVM and DT with a low complexity classification phase
too. This is due to the linear complexity compared to the quadratic one in the case of the
SVM and DT. Similarly, the complexity of the classification phase of the kNN increases
linearly with the increase in the number of training points and the number of features. Since

16 State of the art

Inception-v4
80 4
Inception-v3 o ResNet-152
ResNet-50 ° VGG-16 VGG-19
75 1 ResNet-101
’ ResNet-34
£ 70 ResNet-18
>
® °° GooglLeNet
S ENet
S 65 1
%‘ © BN-NIN
= 60 4 5M 35M 65M 95M 125M 155M
BN-AlexNet
554 AlexNet
50 v v - v v v v v
0 5 10 15 20 25 30 35 40

Operations [G-Ops]

Fig. 2.5 Top-1 one-crop accuracy versus amount of operations required for a single forward
pass. The size of the blobs is proportional to the number of network parameters

kNN does not have a separate training phase, hence to classify a new input the distance with
respect to all training points is to be calculated each time, its usage is efficient mostly for
small training set size. As for the complexity of CNNs, it depends on the configuration of
the network compared to other algorithms, which is affected more by the filter and output
feature maps size compared to the number of filters and input size. Figure 2.5 shows the the
complexity of the existing CNNs in terms of the number of operations and their classification
accuracy [42]. These networks differ in the number of layers, size of filters, number of filters,
etc. which verifies the the presented complexity in Table 2.2.

2.2.2 Hardware Platforms

The hardware platform must be able to handle the complexity of the algorithm while achiev-
ing the expected performance in terms of area, time latency and energy consumption. A
wide selection of hardware devices and platforms maybe used to implement the tactile
processing algorithms. Some sound and widely used devices include Field Programmable
Gate Array (FPGA), Graphics Processing Unit (GPU), Microcontroller Unit (MCU), Parallel
Ultra Low-power Platform (PULP), Tensor Processing Unit (TPU), Application-Specific In-
tegrated Circuit (ASIC), and platforms include Raspberry Pie, ZedBoard, Zyngberry, Python
Productivity for Zynq (PYNQ), etc. The available devices and platforms differ in size, target
programming language, area utilization (LUT, FF, DSP, BRAM, etc.), maximum operating

2.2 Embedded Machine Learning 17

Table 2.3 Comparison between different hardware devices/platforms

Device/Platform 'Target . o FranTework/ Strengths Weaknesses
i ion Progr L
. . Not suited for floating-point operations,
VHDL, Verilog, High performance per watt, .
FPGA Hardware C/C++ with OpenCL, SDAccel, HLS parallelism long development time,
programming difficulty
- s . High power consumption,
GPU Software OpenCL, NVIDIA CUDA, MdbblYC processing power foxj image, need for API frameworks to
C/C++, Java, Python video and signal processing .
take advantage of parallelism
Application-specific, ex: TensorFlow | Optimum combination of performance | High cost, longest development time,
ASIC Hardware .
for TPUs, tools from manufactures and power consumption Unconfigurable
- Low power consumption, Low size on-chip memory,
PULP Software C language only tunable performance, Open source Development Difficulty
- Adopts characteristics of FPGA and ARM processors
ZedBoard/Zyngberry | Hardware/Software Pluses: Ability to use FPGA as hardware accelerator, Linux Development
Adopts characteristics of FPGA and ARM processors
PYNQ Hardware/Software Pluses: Python Programming, Arduino and Raspberry Pie shield connectors

frequency, etc. Table 2.3 presents the common characteristics of the most used devices and
platforms related to the variety of machine and deep learning applications. These devices
could be utilized for either hardware or software development applications. For instance,
FPGAs and ASICs are used for hardware implementations, while MCUs and GPUs are
intended for software implementation. As for hybrid boards such as Zyngberry/PYNQ, they
can be used for both hardware and software implementations as they include both an FPGA
and an ARM CPU.

In principle, the implementation of machine learning training and testing phases are not
correlated. Hence, different devices can be assigned. For example, a complex neural network
can be trained using a GPU due to the available high memory bandwidth and a large number
of processing cores. Then, the inference can be accelerated using an FPGA or an MCU
depending on the network size. From application perspective, a large sized GPU/FPGA
is not adequate for space limited scenarios (e.g a smart watch). The same can be said for
implementing neural network training on an MCU. Besides, the development time is a key
issue to consider, especially for complex machine learning algorithms such as tensorial SVM
using VHDL language. For a finalized implementation which is later to be commercialized,
an ASIC can be considered as the best available option as no updates are scheduled until a
new generation release. Another aspect for choosing a hardware platform is the cost. For
example, if the cost difference between a GPU and CPU is not proportional to the gain in

speedups, it is not worth paying the extra cost of the relatively expensive GPUs.

2.2.3 Machine Learning Accelerators

Knowing that not all machine learning algorithms have been adopted for embedded tactile
data processing, nonetheless accelerators are discussed in terms of design methodology,

architecture, and acceleration gain in terms of hardware implementation footprint. Then,

18 State of the art

through the following chapters, novel hardware accelerators for embedded tactile data

processing are proposed based on the techniques reviewed in this chapter.

2.2.3.1 Kk-Nearest Neighbor Accelerators

The complexity of the kNN algorithm lies in the large number of distance calculations towards
all the samples in the training set. Due to the fact that both the size and the dimensionality
of datasets have been rapidly growing. Thus, kNN can be mainly accelerated by reducing
the memory footprint due to the training set and the distance calculation operation itself.
For this purpose, several techniques have been proposed to accelerate KNN implementations
on FPGA with different end targets. Table 2.4 summarizes the key techniques used with
emphasis on their aim and the acceleration gain obtained as follows:

Reduce Memory Accesses: To reduce the impact of memory access constraint imposed by
the extensive distance calculation operations, several methods have been proposed. Starting
with reducing the data representation from floating-point to fixed-point with low precision.
This method decreases both the memory storage of the data and the corresponding arithmetic
operations. Such decrease can be also achieved with the use of PCA [43]. PCA aims at
reducing the dimensionality of the data, thus simplifying the distance calculation operation.
Another method is to dispatch data from external memory (e.g. DRAM) through a Direct
Memory Access (DMA) engine in bursts to reduce the memory access overhead [44].

Scalability and Re-configurable Architectures: Although the performance of kNN is
affected by the number of training samples (N) and number of neighbors (k), these parameters
have a direct impact on the scalability of a kNN implementation. One of the most used
techniques to design a scalable accelerator is the adoption of a systolic array of processing
elements [45]. Each processing element is responsible for a specific operation (e.g. distance
calculation, sorting, etc.). To obtain a scalable architecture, each systolic array is designed
with different value of (k), assigned for a different core (for multi-core architectures), and
can operate on different input size either in serial or parallel based on the scalability level
required by the application. The same methodology can be used to design a re-configurable
kNN architecture targeting multiple FPGAs connected through a set of memory controllers
on a co-processor (e.g. Convey HC-2 [46]).

Parallel Implementations: The distance calculation between two samples of M features
can be performed in parallel since the features are uncorrelated. Similarly, the distance
calculation between samples A and B is independent of the distance calculation between
samples A and C. Hence, distance calculation operations can be fully or partially implemented

in parallel. This can be easily designed with the use of OpenCL framework or HLS directives.

19

2.2 Embedded Machine Learning

[16]

%EE JO UONRZINN NV YE PIONpay

QImoayory pauredig

sugrsap Je[rwirs 0) paredwos x4 1 03 dn sdnpaadg

(S¥d) yoIeas auey pouruIdlopaid

sjoseje(] 9[eoS 9516 Jo uoneOyISSe[)

uojje[d preogpez e uo
UnI ued sI0jeIo[adde NN ¢ 03 dn

uonejuowd[dwt yod 10J SINT
Jo Joquunu) sjoaye Auo y Jurkrep

19)10S uonJasuy payrdwig

QINJOAIYOIY
(] NdD 6V-XH0D NIV 03
paredwod x (¢ 01 dn suononpar £310u9 NdD pue YDJ] U99M19q peOPIom NN 9pIAIQ SIEMYOS/IEMPIEH SIqRIEoS Pt FLIMPON
pue xt°/9 se ysiy se sdnpoadg
Pu0d9s 1od SJUSUISLS JUSWINOOP
W9} UOI[Iq 7/ T SeSeIoAe YOI 8d Jo ewre ofoisks
[ov] NdD pearyl-zg e QIMONIYITY 9[qeINSHUOINY
01 poreduios x ¢+ o1 dn dnpood uonedrdnniy 1031097 XIeA 9steds
VODdA A QUOAD 2y} uornenoe)) douelsiq paurfadig .
[os] uo sjusuraIInbar Arowow 9,1 (SINY) 21enbg UBIIA 100Y UOTIORNIXH AINJL,] SIS PAUINT-90MOSIY U UORTIS[E0Y
(N)O i 2[eos A3ojopoyyewr Jurddewr swn-ooeds reaury
douewiojrad pue (95810400 1)) BAIY
SYDJ,] PIzIs-wnipaw uo
lov] SIMIL9J JO JqUINU pue Sursseooid oqered pue ururjadid yoorg $10D) dI PAZHIRIOWITIE] JOS JO USIS™Q
S1osBIEp 93IR] JO UONEBOYISSE[O SWIN-[BIY
(O1 DB *L°C *€) = {30 uonejuasardar yurod-paxi]
[st] ~ soAnoaIg uonezrundo VDd uo uawkorda(q a1e1dwo)
X88¢ puUe X /] usamiaq sdnpoadg (STH) S1S0qUAS [oA2T YSIH J0 3501
fw ¢g jo uoneoyissed 1ad AS1oug uy 191108 USAT-PPO
ad $/5102[q0 ()6 INOqge SAYISSE[D yromowrey Sunndwod [orrered HuadQ Jo 9sn) vonwuawRdw [SurzIundo
% 03 Teuonzodoxd uoneZINN SAOINOSIY Ad Jo Keire O1[0IsAS
154 . A01q NN Yoee 10§ Aniqereos
ddD 01 poreduwiod dnpaads x g/ 01 d) uoneziundo pue udisep gJ oeredas
IOAISS NdD PeIy-9¢
¥ J0 1841 01 JUSEAIMBO SOUBWLIONO VO (AVDd) Suudi paseq sisA[euy juouodwo)) ordiourig
[ey] uorstoaid eyep 319-4 Suisn wonEuasaidor erep uorstoord mor| $9SS900Y AIOWAIA 90NPAY
X$'1¢2 01 dn Aq poonpai ssa00e elep INVId : o
UAJY ures) uoneIPIIY sanbruyday, L3y j98ae],

suren) 9[qeadnoN pue senbruyoa], o31e], uSIS9(] :SI0IBIS[AIOY drempIe NN ¢ 2I98L

20 State of the art

Another aspect that can be designed in parallel is the sorting process. An even-odd sorter
has been proposed in [52] to make full use of the parallel pipeline structure of the FPGA.

Design of Soft Parameterized IP Cores: The need for real-time classification of data with
large size and high dimensionality requires a kNN implementation of very high performance.
This can be achieved through the design of parameterized kNN architectures that can be
synthesized effortlessly for any desirable combination of parameters (N, M, and k) [49].
Using a space-time mapping methodology, kNN computation nodes can be modeled so that
each node can perform one operation per cycle. Hence, each block of the kNN architecture
can be assigned to a different set of parallel nodes customized for specific parameters.

Hardware/Software Architecture: The implementation footprint of the distance calcula-
tion is relatively higher than that of the sorting process. Hence, several hardware/software
architectures have been proposed to benefit from such complexity difference. The idea is to
assign a high performance hardware such as the FPGA for distance calculation, and offload
the sorting process to a General Purpose Processor (CPU) [44]. This design methodology has
been made possible with hybrid platforms (e.g. Zyngberry, ZedBoard, etc.) that has a Zynq
FPGA and an ARM processor. Such design also paves the way towards running multiple
accelerators on the same platform achieving further acceleration.

Application and Platform Specific Architectures: A quite few kNN accelerator architec-
tures exists targeting a certain application, a certain hardware platform, or a certain set of
requirements (e.g. power, time latency). In [48], a design exploration process is presented in
order to identify the effect of the value of (k), and feature extraction on the implementation
resource targeting large datasets. Each design has been optimized with HLS directives so
that if fits completely on Zyng-700 FPGA. To support EMG recognition for gestures com-
munication with limited hardware resources, authors in [50] proposed a feature extraction
process to transform high dimensional data into a single dimension. Such process allowed
the complete pipelining of the distance calculation resulting in accelerated kNN classification
process. Targeting large datasets, a KNN accelerator based on Predetermined Range Search
(PRS) method is proposed in [51]. The proposed architecture is characterized by a simple
circuit structure achieving a significant decrease in the number of BRAMs.

2.2.3.2 Support Vector Machine Hardware Accelerators

In contrast to kNN, SVM has two separate training and classification phases. Hence, existing
research work aims to implement and accelerate an SVM model during both phases. In this
section we present a survey on SVM classification accelerators only. For reference, authors
in [53] have investigated the acceleration of SVM training on FPGA. Various techniques

have been developed for the hardware acceleration of the online classification process. The

2.2 Embedded Machine Learning 21

Table 2.5 SVM Hardware Accelerators Targeting Different Kernels

Implementation Technique Kernel Function Acceleration Gain Reference
. . Polynomial 5% Power Reduction [57]
Systolic Array Architecture 85x speed-up over equivalent GPP [58]
Dynamic Partially Reconfigurable Linear 8x reduction in reconfiguration time over the single (59]

non-DPR classifier implementation
A throughput rate of 216 and 70 f/s for XGA (1024 x768)

Block-based Partial Storage and HD (1920 % 1080) video resolutions, respectively (60]
- . 1.6 ps for one kernel calculation [61]
Multiplier Less Kernel 5% Utilization on Xilinx Spartan 3E [62]
Hardware Friendly 2 orders of magnitude in the average instance [63]
Pinelined Architecture classification time, in comparison with software implementations
P Processes up to 33.8 640x480 image fps [64]
8-bit implementation with equivalent performance to floating-point [65]
Design Specific . . 11% Utilization on Virtex-4 [66]
(SPW, System Generator) Linear/Gaussian/RBF 2.53 x faster classification than the software implementation [67]
Custom Arithmetic Gauss;a;?éfsi?f(lilomlal 3x-7x speedup compared to the CPU and other FPGA/GPU implementations [68]
Custom Processor RBF Real-time pixel classification in 0.1 ms [69]
. Speed-up of 5x over the single parallel SVM classifier Utilization
Hybrid Processing Architecture Linear/Polynomial of 43% fewer hardware resources and a 20% reduction in power (701
Memory Management and 3.6x faster than an ARM Cortex M4F (STM32F40) 56]
Multi-core Architecture Achieves 15x better energy efficiency
Data Oreanization Tensorial Reduces the number of operations per inference from 545 M-ops (71]
samzatt to 18 M-ops and the memory storage from 52.2 KB to 1.7 KB
Hardware specific Optimization 9x faster than an ARM Cortex M4 atA 168MHz with (72]
the same power consumption
Cascaded and Parallel CORDIC Real-time touch classification with a peak of 302 G-ops [73]

SVM models have been trained offline on software, then the models’ parameters (e.g. support
vectors, kernel factor, etc.) have been extracted to be used for classification. Table 2.5
presents the different developed techniques targeting different kernel functions. Tactile data
is often represented in the form of a tensor as it preserves the structure of the raw data
acquired from tactile senors [5], [54], [55]. Hence, the techniques used for accelerating the
SVM algorithm targeting a tensorial kernel can be summarized as follows:

Memory Management and Multi-core Architecture: One of the essential operations
in SVM targeting tensor input data is the unfolding process. Such process outputs three
matrices that are required for further computations. Then, symmetrization and Singular Value
Decomposition (SVD) are applied on each matrix. Thus, the whole process requires a lot of
memory storage and data exchange, which is a challenging task on resource-limited devices.
Authors in [56] have presented a memory allocation sequence that can be applied to the
tensorial SVM on Parallel Ultra Low Power (PULP) Mr. Wolf microprocessor as shown in
Figure 2.6. The allocation idea is based on 2D data transfers with a set of multiple banks
where data allocation/de-allocation process can be serialized efficiently. Such technique has
been validated by implementing the tensorial SVM by exploiting the multi-core architecture
of Mr. Wolf. Results showed that a speedup up to 3x can be achieved compared to
ARM Cortex-M4 by adopting the memory allocation sequence and using 2-cores for SVD

calculation .

22 State of the art

Unfolding Symmetrization

25.6 || 25.6 || 1.02 || 256 || 25.6 || 1.02
S1 (| Sz || Ss || Vi|| V2| Vs
L] store] Store [{ Store

Vie Va Vi
Kernel Function Classification

[12kB | [12kB | [01kB | [12KB | ; I 0.8 kB

Fig. 2.6 Memory Allocation Sequence

Data Organization: For online and real-time classification, acquiring tactile data directly
from sensors should be organized in local buffers to be processed. Authors in [74] have
presented a scheduling algorithm to maximize CPU utilization with different L1 to/from L2
data transfers in the PULP. This scheduling allows the data from sensors to be continuously
transferred to a circular buffer in L2 memory bank as shown in Figure 2.7. Each buffer
contains a sample of 1 second. The platform is capable of performing 1.3 iterations at 20
samples per second. Such results presents a 9x speedup compared to that of ARM Cortex

M4 with the same power consumption.

TRAINING DATA
from FLASH

SENSOR SAMPLES

CIRCULAR E\l FER

yo UDﬁhq__._lu u'_,__lu B 0 0 O

l-m;wn muu Matz toL2 Teindtoll Resdtel? Tren2iell Re3tel? Treeltell ReSwll Redoll
'fIIlll Process 'I'IlHl lneu- Process | Process Pumx Process

Cores Mat3 SvD2 | Kernel2 Inmd‘l Classify
U [|

i " Y — 1
P\e-afc:_-::_w ng Main loop Mat3 Main loop Mat2 Main loop Matl Classification

TIME

Fig. 2.7 Scheduling inside PULP

Cascaded and Parallel CORDIC: SVD is the most demanding and complex operation
within the tensorial SVM algorithm [75]. The majority of the research presented in the
literature adopts the One-sided Jacobi algorithm for SVD implementation whose main core
is the Coordinate Rotational Digital Computer (CORDIC) algorithm. The first hardware
acceleration of SVM featuring multidimensional tensorial inputs has been presented in [73].

The accelerator design offers two different architectures based on cascaded and parallel SVD

2.2 Embedded Machine Learning 23

computation using the CORDIC algorithm. The cascaded implementation offers low power
consumption but fails to offer real-time touch classification. The parallel implementation
solved this problem and achieved a peak performance of 302 G-ops while consuming 1.14W
for the Virtex-7 FGPA.

2.2.3.3 Binary Convolution Neural Network Hardware Accelerators

Binary convolution neural networks are characterized by fast computation, low power con-
sumption and low memory footprint, which facilitates their deployment on different hardware
such FPGA, ASIC, CPU, etc with limited computational resources and power budget. The
XNOR-Bitcount operations in BCNNs allow for customizing data paths and optimizing the
design making FPGAs as the most widely used platforms for BCNN deployment [76].

Quantization and network topology have been widely investigated for the design of
BCNN hardware accelerators on FPGA. Figure 2.8 summarizes a survey (based on the data
provided in [76] from more than 100 references and recent related work in [77], [78], [79],
[80]) about the bit-width(w/a) that has been adopted for a BCCN architecture targeting
commonly used datasets such as CIFAR-10 [81], ImageNet [82], etc.

W a
m 1-bit, 1-bit
m 1-bit, 2-bit
m 1-bit, 4-bit

1-bit, B-bit
B 1-bit, 32-bit
m 2-bit, 32-bit
m 2-bit, 1-bit
m 2-bit, 2-bit
W 3-bit, 2-bit
m 3-bit, 3-bit
m 4-bit, 4-bit
m B-bit, 8-bit

Fig. 2.8 Distribution of the most used Quantization Level

It can be seen that a complete binarization of CNNs is widely used for hardware ac-
celeration (e.g XNOR-Net in [83] and DoReFa-Net in [84]). However, around 23% of the
existing BCNN accelerators have adopted a 1-bit and 32-bit quantization for the weights
and activations respectively (e.g BinaryConnect in [85] and ABC-Net in [86]). This leads

to a claim that the binarization of activations in a CNN produces an accuracy loss more

24 State of the art

than the binarization of weights. Other hardware accelerators have reported the use of
n-bits (n << 32) quantization (e.g RetinaNet with n = 8 in [87]) as a compensation for the
complexity increase imposed by keeping the activations in 32-bit representation.

In [88], authors have experimented with the effect of quantization/binarization on the
weights and activations on the first and last layer of a small CNN trained on CIFAR-10
dataset as shown in Figure 2.9. The results backup the claim regarding that the binarization
of network activations leads to a significant accuracy drop compared to the binarization of the
weights. Moreover, for the use-case presented in [88], binarization of the weights of a CNN

offers a similar classification accuracy compared to a 32-bit floating-point trained network.

25—

20+

-
on
1

Validation Accuracy ()

First and last layer
@ Binary Weights

Binary Weights and Activations
@ Full Precision

T T T T T 1
8,000 12,000 16,000 20,000

Step

Fig. 2.9 A small CNN that has been trained on CIFAR-10 dataset with different precision for
the first and last layers

Regarding the network topology considered when designing a BCNN accelerator, we
extracted the reported topology in the survey used for the quantization distribution in Figure
2.8. The topology distribution is presented in Figure 2.10. ResNet-18 is the most used
topology followed by AlexNet. The rationale behind such distribution is that ResNet-18
offers a high accuracy in widely used applications such as image recognition and object
detection [89]. As for AlexNet, it represents a small model (8 layers) that is capable of
achieving high accuracy compared to larger CNNs [90]. Another fair share of network
topology is the customized one. This is due to the fact that an existing CNN may not offer an

acceptable performance for an application other the one trained for [86].

2.3 Approximate Computing for Machine Learning Architectures 25

W AlexNet
mResMet-18
ResMNet-34
ResMNet-50
BVGGE-Variant
mVGGE-5mall
HResNet-20
mResMet-32
W ResNet-44
mVGEG-11
W Other

m Customized

Fig. 2.10 Distribution of the most used Network Topology

2.3 Approximate Computing for Machine Learning Archi-

tectures

Approximate computing uses the statistical nature of data and algorithms to trade quality
for savings. The savings are achieved using techniques that exploit the intrinsic resilience
in machine learning applications to realize improvements in efficiency at all layers of the
computing stack (algorithm, architecture, and circuit). At algorithmic level, approximations
are applied on the data (e.g. sampling) and the functions that constitute the application
software. At architecture level, the aim of the approximate computing techniques is mainly to
replace a complex block with a relaxed version whose output is mathematically verified with
an acceptable degree of inexactness. At circuit level, hardware designers focus on designing
approximate versions of the most used arithmetic operations (e.g. adders and multipliers)
which has the biggest influence in reducing the overall complexity.

Several research works have been performed to identify, define, and categorize the
approximate computing techniques for better adoption and usage. Table 2.6 presents the
reported approximate computing techniques, their definition, and where they have been
mainly applied along the different parts of the computing stack. Next, we discuss the
techniques that have been applied or investigated to be used for machine learning applications.

Quantization: also referred to as precision scaling, is a technique that changes the
bit-width of input data or intermediate operands to reduce the computational and memory
requirements. A 2-bit and 4-bit quantization has been adopted for the weights and activations
of a CNN respectively in [91]. The quantized CNN achieved a higher performance of
about 15x compared to full precision CNN. Within the context of low-precision fixed-point

26 State of the art

computations, the research performed in [92] showed that deep neural networks can be
trained using only 16-bit fixed-point number representation with stochastic rounding, and
incur little to no degradation in the classification accuracy.

Loop Perforation: transforms loops to execute a subset of their iterations. The process
identifies critical and tunable loops. The former can’t be perforated due to unacceptable
performance drop. The latter are loops whose perforation produces more efficient and
generally acceptable accurate computations [93]. Loop perforation has been applied on
several essential operations that are widely used in machine learning applications such as
matrix multiplication, back propagation, kernel computation, etc [94].

The obtained results showed that performance can be enhanced up to 93%, while main-
taining the quality loss at a rate below 10%.

Load Value Approximation: leverages the intrinsic nature of machine learning applica-
tions to estimate a value after its loading from a cache has been missed [95]. Such technique
is adequate for machine learning implementations on both CPU and GPU. Yazdanbakhsh
et. al proposed an approach to organize memory accesses and control flow to identify the
loads that cause the largest fraction of misses, then approximating the ones leading to smaller
degradation than a set threshold [96]. The proposed technique showed a performance and
energy efficiency with bounded Quality of Result (QoR) loss in both the GPU and CPU.

Memoization: is a technique that stores the output of a function for later reuse under
identical input trigger. Thus, some values can be approximated by reusing the results for
similar functions. In machine learning applications, such technique can be applied by using
"Approximate" values to increase the amount of successful value reuses [97].

Task/Memory Skipping and Pruning: similar to loop perforation, this technique skips
a complete task within an algorithm or omit a memory access. For instance, an activation
of a neuron is not performed if the weight value is under a certain threshold thus reducing
both the memory storage requirements and the arithmetic computations of a CNN with a
negligible effect on the classification accuracy [98]. The same methodology can be applied
on the support vectors of an SVM kernel.

Data Sampling: this is one of the most used approximate computing technique in the
machine learning domain, as it is even applied in the pre-processing phase. The idea is to
reduce the the input size through Downsampling, Downscaling, dimensionality reduction, etc.
Hence, affecting both the memory requirements and the computational complexity. Authors
in [99] investigated the ability of data sampling to address the issue of class imbalance on two
common neural network learning algorithms to improve their performance. In [56], the input
tensor size is reduced from 4 x 4 x 30,000 to 4 x 4 x 20 without an accuracy loss leading to

the ability to deploy the tensorial SVM algorithm on resource-limited platform.

27

2.3 Approximate Computing for Machine Learning Architectures

loz1] “[szil ampayoIy qod viep Mmmﬁw%cwwwwmmﬁwm usisa(q 110y d[qrIES
(1 ‘el wypLosTY @Nwm_cwwww% mw MMMMMMMM%HM%MH sypompN Sunewrxorddy
[eTt] ‘[eel WyLos[y mEme»zMMMMHM” MQMMMMHMM Surunag ondeusg
l611] “[8TT] “[L1T] JINDILD) (NVYS 39) sured urelnad jo a3eyjoa A[ddns ay) Suronpay Surpedg agejjon

(Ortl“tsril ‘yrrl ‘el

JINDITD)/QINONIYOIY /WILIOS Y

SOINJOAIYOIE AIOWW pue
‘ot dnnu ‘xoppe arewrxoidde Suruiso(g

dIeMpJe A)nejoexauy

PBOYIOAO pUB AJBINOJE UdaM)Oq SJjo-open) a[dnnw yim

£deandde JUIIp Jo

lertl oot WHOBTY 9poo uoneordde ue jo suorsioa ofdnnw Surzimn suorsIaA wergoad ursn
. . Surreosumo(1o Surdwresumo(y3noIy)
[r°I8otl “fo11l WOV eiep Indur Jo 39sqns & AJUO SUISSAV0I] supdweg ejeq
[601] ‘[80T] QIMOANYIIY /W YIIOI [suoniod ndur 1o ‘syse) ‘sasseooe Arowow Jurddoyg SurddpyS L10wdASE],
. . ndur sures oY) YIm [[e0 UONIOUNJ [BITIUSPT YHIM
(Lot *Too1] "[soT] SHHOSHYOTY asn I9je] I0J SUOT)OUNJ JO SINSAI YY) SULI0IS UONBZIOUdIN
. 9UOBD B UI SSIW peo[® Io)je asuodsar e 10J Sul[els noyiim
lyor] Teot] HNOND/UHLOSTY ssa1301d 0} 10ss2001d B MO[[E 0} san[eA peo[Sunewnsy uopewxo1ddy snfeA peoy
[zo1] ‘[v6] ‘[g6] wyLoI[y dooj ® jo suonerar owos Surddoyg uoneioyd doog

[ro1] ‘[z6] ‘looT] “[T6]

JINDIID) /2NN IYOIY /WILIOT Y

spuerado 9jerpawrraiur Jo ndur
Jo (p1m-11q) uotstoaxd oy Surduey)

uoneznueng)

so[dwrexyq

[9A9T Yov)s Sunpnduwo)

uopuydQ

anbruyoqy,

yoels Sunndwod ayy Jo saFess Juarayyip 18 pardde sanbruyos], Sunndwo) ajewrxoiddy 9-z 91qe],

28 State of the art

Use of Neural Networks: this technique aims at replacing a complex portion of an
algorithm with a neural network. For example, authors in [127] have proposed a Multi-Layer
Perceptron (MLP) NN-based accelerator for the approximation of widely used mathematical
functions in a wide variety of machine learning algorithms such as exp, cos, etc. Compared to
the conventional glibc (GNU C library) implementation, the MLP implementation achieved
an energy-delay-product improvement of two orders of magnitude with negligible accuracy
loss.

Approximate Networks: this is an extended version of the task/memory skipping tech-
nique where a complete artificial neural network (ANN) is approximated. In [111], authors
proposed a novel approximate computing framework for ANNs. A 34.11% to 51.72% en-
ergy benefits with less than 5% quality loss have been recorded for various neural network

applications using the proposed framework.

2.4 Conclusion

This chapter provides a compact survey on the learning algorithms used for tactile processing,
the computational complexity and the hardware platforms that could be used for accelerating
such algorithms. Then, the key techniques used for the design of kNN, SVM, and BCNN
hardware accelerators are discussed. The techniques are presented in terms of their applica-
bility, acceleration gain, and an example showing their deployment on different hardware
devices targeting different applications. Then, a set of approximate computing methods is
investigated. A definition and how-to apply such methods on machine learning algorithms
are presented. Some existing solutions are highlighted to show the reductions offered by

approximate computing techniques with respect to the introduced accuracy loss.

Chapter 3

Algorithmic Level Approximate
Computing Techniques for Machine

Learning

3.1 Introduction

Applications in domains like computer vision, media processing, machine learning, etc. have
intrinsic tolerance to inaccuracy. Studies repeatedly show that such applications consist of
both critical and non-critical components [128], [129], [130]. Thus, it is not necessary for
every arithmetic operation to be precisely correct and every bit of memory to be preserved
at the same level of reliability. From the perspective of approximate computing, not every
operation in a program needs the same level of accuracy. Auto-tuning approaches can help
empirically identify error-resilient components [131]. However, since machine learning
algorithms don’t present the same level of accuracy for all applications, the identification
process varies from one application to another.

Approximate computing techniques (ACTs) on the algorithmic level have been firstly
investigated in [132]. Authors introduced the concept of incremental refinement. Such
concept aims at reducing the number of iterations of iterative processing. A factor of ten
reduction in power consumption has been recorded for a speech finite impulse response (FIR)
filter implementation. In [125], authors explored the different parameters of the Support
Vector Machines (SVM) algorithm using algorithm level scaling to reduce the complexity
of hardware implementations. A 1.2 x —2.2x energy savings have been achieved without
any significant accuracy loss. Nogues ef. al have presented an approach on how to apply
algorithmic level approximate computing techniques on HEVC decoding [133]. Authors

30 Algorithmic Level Approximate Computing Techniques for Machine Learning

offered a strategy on how to locate the error-resilient components of the decoder and which
approximate technique to be applied. Energy reductions of up to 40% are demonstrated for a
limited degradation of the application Quality of Service (QoS).

In this chapter, we propose an approach for applying algorithmic level approximate
computing techniques on machine learning algorithms. The approach is based on the work
presented in [133]. k-Nearest Neighbor (kNN) and Tensorial SVM (TSVM) algorithms
are adopted for the evaluation of the proposed approach. The evaluation is performed on
both software and hardware levels. For the software evaluation, we monitored the loss
in classification accuracy of a touch modality problem presented in [5] with respect to
the gain in execution time and memory requirements. The software evaluation has been
accomplished on an Intel Central Processing Unit (CPU). For the hardware evaluation, a
Field Programmable Gate Array (FPGA) implementation of both algorithms is presented.
Then, the gain in hardware area, time latency, and power consumption is recorded when each
technique is embedded in the hardware implementation. Results have shown that the KNN
execution time and memory usage can be reduced up to 38% and 55% respectively. Similarly,
a 29.6% power reduction and speedup up to 3.7x can be achieved with an approximate
kNN FPGA implementation. As for approximate TSVM, the implementation achieves a
reduction in power consumption by up to 49% with a speedup of 3.2x. All these reductions

are accompanied with a classification accuracy loss than 10%.

3.2 Algorithmic Level Approximate Computing Techniques

Algorithmic level ACTs are divided into two categories: data-oriented and process-oriented.
Figure 3.1 presents an approach on how to apply these techniques on machine learning
algorithms. The data-oriented category involves modifying the data properties (size and
bit-width) to minimize the work-load on the circuit level. This category includes:

* Dataset Reduction (DsR) decreases the amount of the processed data by eliminating
samples randomly or using a sub-sampling method as the one proposed in [5]. Further-
more, DsR can be applied through Downsampling (DS) and Downscaling (DSc). The
former adjusts the sampling frequency of the electronic interface used to collect raw
data samples from sensors in the time domain, while the latter reduces the dimension of
the collected data themselves (e.g., reducing the tensor size from 4 x4 x 3 to 3 x 3 x 3),

as shown in Figure 3.1.

* Data Format Modification (DFM) reduces the bit-width of the data and its correspond-

ing arithmetic operations. This can be done by replacing floating-point representation

3.2 Algorithmic Level Approximate Computing Techniques 31

START . | 3 . x .
v

———-_.\\ Sampling frequency____

g+ O

>[S
559001

Gurddr

Dataset-Reduction
=
= (®
Downsampling
hed

H i RIN— i
Signal Processing Interface

A= fla,b,c] A= gla,b,c]

Sl

4axs 3x3x3 2x2x3

oop
Perforation

Downscaling

Data[32]

'—/—‘ output[n]
Data[24] Data[16] Data[8] Data[n] r_/_' outputin)

(a) (b)

uonjeurrxoxrddy vonjenduroy

Data-Format
Modification

Fig. 3.1 Algorithmic level Approximate Computing Techniques: (a) data-oriented; and (b)
processing-oriented.

with a fixed-point one. For instance, a 8-bit fixed-point representation data is adopted
in [134] instead of floating-point to represent tactile data with a negligible precision
loss.

The process oriented category targets the algorithm itself by reducing the number of
operations or replacing some of them with a less-complex counterpart. This category includes
[133]:

* Computation Skipping (CS) skips a certain number of operations in an algorithm. If
these operations are loop iterations, then it is referred to as Loop Perforation (LP). For
example, in some machine learning applications, a pre-processing operation such as
data normalization may be skipped without affecting the quality of service of the target

application.

* Computation Approximation (CA) proposes an equivalent version of a computationally
complex function. The two versions should be mathematically equivalent with an
acceptable output error margin. For example, a division function could be replaced by
a reciprocal multiplication [133].

32 Algorithmic Level Approximate Computing Techniques for Machine Learning

3.3 Experimental Setup

The ACTs presented in Figure 3.1 are evaluated on two machine learning algorithms, mainly
kNN and TSVM. This section provides the details about the used dataset (for classifica-
tion assessment), the software environment, and hardware environment used for the ACTs

evaluation.

3.3.1 Dataset

A tactile dataset describing three touch modalities have been collected in [5]. The tactile data
have been acquired by an electronic skin based on a piezoelectric sensor array. The dataset
has been collected with the help of 70 participants. Each participant was required to preform
one of the touch modalities on a 4 x 4 piezoelectric sensor: sliding the finger, brushing a
paintbrush and rolling a washer as shown in Figure 4.5.

R

S= - -\ W =
(a) (b) (c)
Fig. 3.2 Touch modalities. (a) Paintbrush brushing; (b) washer rolling (c) finger sliding;
Each participant performed a touch modality on both the horizontal and vertical directions
for a duration of 10 seconds. Thus, with a sample rate of 3000 samples per second, the
collected data can be expressed as a tensor ¢ (4 x 4 x 30,000). For complexity concerns,
a sub-samnpling algorithm has been proposed to reduce the tensor size to ¢ (4 x 4 x D),

where D is the sub-sampling ratio determined based on the required accuracy of the target
application. This dataset can be used to formulate three binary classification problems:

* A: brushing a paintbrush versus rolling a washer
 B: brushing a paintbrush versus sliding the finger

* C: rolling a washer versus sliding the finger

3.3 Experimental Setup 33

These problems will be used to study the effect of applying the algorithmic level ACTs
on kNN and TSVM algorithms.

3.3.2 Software Environment

Two classifiers for KNN and TSVM algorithms have been coded in C++ based on the
architectures presented in [135] and [73], respectively. A performance profile is generated
using Linux and Windows 10 running on a PC with Intel ® Core ™ 17-4510U x64 CPU
clocked @ 2.6 GHz with a Random-Access Memory (RAM) of 12 GB. Each profile offers
the execution time and memory usage of kNN classifier under various algorithmic level
approximate computing techniques.

For our simulations, the execution time refers to the “user CPU time” which is the time
spent on the processor running the classifier’ code and libraries. Authors in [136] conducted
a study about the challenges in time execution analysis. execution time depends on the
cache, processor and the operating system management utilities. To reduce the effect of these

components and obtain a credible execution time, we considered the following:

* The code of the classifier is the only application running while generating a profile.

* Each classifier is profiled alone to avoid overlap and resource consumption.

The execution time is obtained by averaging the time during five different runs with the
use of two tools: gprof on Linux and Microsoft Visual Studio Debugger on Windows 10.

For a kNN classifier under different ACT, a memory usage profile has been generated by
calculating the total memory allocations. These allocations belong to the training set, testing
set, variables and functions’ parameters. To obtain an accurate memory usage, the Linux tool
Valgrind 1s used to ensure no memory leaks occurred and no unnecessary allocations were

made.

3.3.3 Hardware Environment

The FPGA implementation of the kNN and TSVM architectures presented in [135] and
[73] respectively is performed using High Level Synthesis (HLS). The architectures are
modeled in C++ using Xilinx Vivado suite. Then, each architecture has been optimized using
HLS directives and synthesized to ensure that it fits in the target FPGA device. Then, a
C/RTL simulation was performed to ensure a coherent output from the architecture coded in
C++ and the RTL design provided by Vivado HLS. Afterward, each architecture has been
exported as an RTL IP block targeting a Zynq-7010 and Virtex-7 XC7VX980T FPGA for

34 Algorithmic Level Approximate Computing Techniques for Machine Learning

|

Design Optimization = «——— HLS Directives

|

1
1
|
1
Design Synthesis !
1
1
1
1
1

1
C++ Coding - Insert ACT
1
1
1

Vivado HLS

'

Co-simulation o — RTL IP

Behavioral Simulation

|

1

1

1

1

:

1

o

1

LS Placem_ent& —_— .saif File
s Routing

S ' |
1

1

1

1

1

1

¥

Implementation Report
Resources
:IIIIIZIZZIIIIiIIZIIIIIZ:I Time Latency

Power
Consumption

Fig. 3.3 FPGA Implementation Process

kNN and TSVM implementations respectively operating at a clock frequency of 120 MHz.
The IP block has been imported into Vivado; then, a behavioral/combinational simulation is
performed to verify the integrity of the exported IP. Then, place and route was performed to
implement the architecture on the FPGA device. Finally, a detailed report about the utilized
hardware resources, the number of clock cycles and the power consumption are obtained
once the implementation is completed. The implementation details can be summarized as
shown in Figure 3.3.

3.4 Approximate k-Nearest Neighbor

3.4.1 kNN Overview

kNN is a classification algorithm that assigns a class to a query object by a majority of vote k.
The most complex operations involved in kNN classification are: Distance calculation and
Sorting Process. Since, KNN doesn’t create a model for training, every classification task
involves calculating the distance between the query object and all training objects. Hence,

our main focus is to reduce the data size, consequently reducing the number of distance

3.4 Approximate k-Nearest Neighbor 35

calculations to be performed. For this purpose, the data-oriented approximate computing

techniques are adopted.

3.4.2 Software Simulation

For our knowledge, a kNN classifier hasn’t been used for the touch modality classification
problem presented in section 3.3.1. Thus, this section details the evaluation process of both
Exact and Approximate kNN.

Exact kNN: The main parameter to be tuned in kNN is the number of nearest neighbors k.

To find the value of k, the tactile dataset has been used in four scenarios:
* 80% training, 20% testing.
* 85% training, 15% testing.

* 90% training, 10% testing.

10-fold Cross Validation (CV): This process divides the dataset into ten equal subsets.
Each subset is considered as a testing test for a single run i. The classification accuracy

is calculated as: o
1

ZAccuracyi (3.1

Accuracy = T
i=1

The value of k has been varied between 1 and 10. Tables 3.1 and 3.2 presents the highest
classification accuracy that KNN can achieve under different scenarios. The obtained results
show that the touch modality classification is a challenging task especially for Problems A
and B. This is evident in the variation of the classification accuracy percentage which differs
from one scenario to another. According to the authors in [5], the data collection protocol
used might be a reason along with the presence of a level of overlap between stimuli that in

principle belonged to different touch modalities.

Table 3.1 Classification Accuracy under scenarios A, B, and C

Classification Accuracy (%)

Problem Scenario A Scenario B Scenario C

k=3 k=5 k=7 k=3 k=5 k=7 k=3 k=5 k=7

A 51.78571 | 51.78571 | 48.21429 | 54.76191 | 66.66666 | 71.42857 | 64.28571 | 60.71429 | 64.28571
B 67.85714 | 76.78571 75 69.04762 | 76.19045 | 73.80952 | 67.85714 | 67.85714 | 64.28571
C 83.9285 | 80.35714 | 78.57143 | 85.71429 | 83.33334 | 80.95238 | 82.14286 | 82.14286 | 82.14286

The obtained results could be interpreted as follows:

36

Algorithmic Level Approximate Computing Techniques for Machine Learning

Table 3.2 Classification Accuracy under scenario D

Run

Classification Accuracy (%)
Problem A Problem B Problem C
k=3 k=5 k=7 k=3 k=5 k=7 k=3 k=5 k=7

64.28571 | 60.71429 | 64.28571 | 67.85714 | 67.85714 | 64.28571 | 82.14286 | 82.14286 | 82.14286

75 78.57143 | 78.57143 | 71.42857 | 96.42857 | 85.71429 | 89.28571 | 85.71429 | 82.14286

57.14286 50 57.14286 | 78.57143 | 78.57143 | 82.14286 75 75 75

78.57143 | 71.42857 | 71.42857 | 82.14286 | 78.57143 | 85.71429 | 92.85714 | 92.85714 | 92.85714

39.28571 | 53.57143 | 42.85714 | 89.28571 | 96.42857 | 96.42857 | 78.57143 | 78.57143 75

82.14286 | 82.14286 | 82.14286 50 50 50 92.85714 | 92.85714 | 92.85714

50 53.57143 | 60.71429 | 32.14286 25 32.14286 100 100 100

89.28571 | 82.14286 | 82.14286 | 60.71428 50 57.14286 | 96.42857 | 96.42857 100

O 0| AN | W —

71.42857 75 82.14286 50 50 46.42857 | 89.28574 | 89.28571 | 89.28571

—_
(=)

75 71.42857 | 67.85714 | 57.14286 | 57.14286 | 53.57143 100 100 100

(!
<

68.21429 | 67.85714 | 68.92857 | 63.92857 65 65.35714 | 89.64286 | 89.28571 | 88.92857

For Problem A: The classifier suffered from a relatively high classification error
percentage, which at its best reached 28% for 85% splitting ratio with k=7. The general
effect of changing the number of neighbors k can’t be generalized effectively. For
example, in Scenario B: as k increases the classification error decreases which is not the
case for Scenario A or C. The highest classification accuracy obtained is approximately

69% while using 10-fold cross validation and k=7.

For Problem B: The classifier showed a better result than those of Problem A, which
at its best reached a classification error percentage of 23% for 80% splitting ratio and
k=5. The general effect of changing the number of neighbors k can’t be generalized
effectively. For example, in Scenario A: as k increases the classification error increases
which is not the case for Scenario B or C. The highest classification accuracy obtained

is slightly greater than 66% while using 10-fold cross validation with k=7.

For Problem C: The classifier showed a better result than both of Problems A and B,
which at its best reached a classification error percentage of 14% for 85% splitting
ratio and k=3. As the number of nearest neighbors k increases the classification
error percentage increases for Scenarios A and B, while it didn’t affect the classifier
performance for Scenario C. The highest classification accuracy obtained is around
90% while using 10-fold cross validation with k=3.

Comparing the obtained results with those obtained in [5]: for Problems A and B, the

tensor

ial SVM classifier scored a lower classification error percentage than the KNN classifier

with a relative difference of 5%-10%. While for Problem C, the KNN classifier achieved a

classification accuracy increase of 15% with k = 3. Hence, the data oriented approximate

3.4 Approximate k-Nearest Neighbor 37

computing techniques will be investigated on Exact kNN with k& = 3 targeting the touch
modality classification problem C.

— Approximate kNN: The Exact kNN has been modified to include DsR, DFM, and "cross-
layer"” (CL) approximate computing techniques. Cross-layer approximation involves the
combination of two or more techniques. Dataset reduction is applied through Downscaling
(10%, 20%, and 30%). Downscaling is applied by reducing each touch modality sample
from ¢(4 x 4 x 30,000) to ¢(4 x 4 x D'), where D’ is the number of readings remained
after 10% (or 20%, 30%) reduction using the sampling algorithm proposed in [5]. As for
data format modification, 24-bit and 16-bit fixed-point representations were applied for all
the kNN operations with <8,16> and <6,10> precision, respectively, using the C libraries
used in [137]. Downscaling and DFM are combined and denoted by CLI and CL2 i.e the
combination of 24-bit fixed-point with Downscaling and 16-bit fixed-point with Downscaling
respectively.

Table 3.3 shows the effect of Downscaling on kNN classification accuracy for Problem C.
For Scenario A, DSc up to 20% shows no accuracy loss while a DSc of 30% only shows a
1.7% loss. The same behaviour is noticed for Scenario C, but with a loss of 7.14% at 30%
DSc. For Scenario B, Downscaling has no effect on the classification accuracy. For Scenario
D, as the the Downscaling percentage increases, the loss increases with a threshold less than
6%. The obtained results show that kNN achieves a high classification of touch modalities
even if the dataset is downscaled up to 20%.

Table 3.3 Effect of Downscaling on kNN classification accuracy

Classification Accuracy (%)
Approximate Computing Technique for Problem C, k=3
Scenario A | Scenario B | Scenario C | Scenario D
None (Exact kKNN) 83.92 85.71 82.14 89.64
10% Downscaling 83.92 85.71 82.14 88.49
20% Downscaling 83.92 85.71 82.14 87.05
30% Downscaling 82.14 85.71 75 83.67
Loss (%) after 10% DSc 0 0 0 1.15
Loss (%) after 20% DSc 0 0 0 2.58
Loss (%) after 30% DSc 1.78 0 7.14 5.96

Table 3.4 shows the effect of the transition from floating-point to fixed-point representa-
tion on kNN classification accuracy. For all scenarios, 24-bit representation lead to a higher
classification accuracy than 16-bit representation. As the testing set size decreases (from
Scenario A to B to C), the accuracy loss decreases for both fixed-point representations with a
best case of less than 4% loss in for a 90% dataset split and 24-bit representation.

38

Algorithmic Level Approximate Computing Techniques for Machine Learning

Table 3.4 Effect of Data Format Modification on kNN classification accuracy

Classification Accuracy (%)
Approximate Computing Technique for Problem C, k=3
Scenario A | Scenario B | Scenario C | Scenario D

None (Exact kKNN) 83.92 85.71 82.14 89.64

24-bit Data Format Modification 73.21 78.57 78.57 86.07
16-bit Data Format Modification 62.5 64.28 71.42 79.28
Loss (%) after 24-bit DFM 10.7 7.14 3.57 3.57
Loss (%) after 16-bit DFM 21.42 21.42 10.71 10.35

Table 3.5 shows the kNN classification accuracy when Downscaling and DFM are used at
the same time. At first glance, the effect of cross-layer approximation is not uniform. This is
expected since a query that is incorrectly classified due to Downscaling may or may not have
been incorrectly incorrectly classified due to DFM. As the testing set size decreases (from
Scenario A to B to C), the accuracy loss decreases for both CL/ and CL2. This can be justified
due to the fact that Scenario C lead to the lowest accuracy loss when DSc and DFM has been
adopted individually. Such loss is consistent regardless of the Downscaling percentage. A
kNN classification with 30% CLI achieves the lowest accuracy loss of 3.57%. Such loss
increases dramatically to more than 10% for CL2 due to the effect of 16-bit fixed-point
representation as reported in Table 3.4.

Table 3.5 Effect of Cross Layer Approximate Computing on kNN classification accuracy

Classification Accuracy (%)
Approximate Computing Technique for Problem C, k=3
Scenario A | Scenario B | Scenario C | Scenario D
None (Exact kNN) 83.92 85.71 82.14 89.64
10% Cross Layer 1 75 78.57 78.57 84.52
20% Cross Layer 1 66.07 78.57 78.57 83.03
30% Cross Layer 1 66.07 73.8 78.57 79.59
Loss (%) after 10% CL1 8.92 7.14 3.57 5.12
Loss (%) after 20% CL1 17.85 7.14 3.57 6.61
Loss (%) after 30% CL1 17.85 11.91 3.57 10.05
10% Cross Layer 2 62.5 69.04 71.42 76.98
20% Cross Layer 2 62.5 64.2 71.42 76.78
30% Cross Layer 2 60.71 64.2 71.42 74.4
Loss (%) after 10% CL2 21.42 16.67 10.72 12.66
Loss (%) after 20% CL2 21.42 21.51 10.72 12.86
Loss (%) after 30% CL2 23.21 21.51 10.72 15.24

—Profiling of Approximate kNN: To assess the advantages of algorithmic level approximate

computing techniques, their use is profiled in terms of execution time and memory usage

3.4 Approximate k-Nearest Neighbor 39

30% CLZ
20% CL2 158

10% CL2 s [7

158

30%CLL esssssssss——— 7

0% CL e 7] R

10% CLT o 5

30% DS e 7

20% D50 I 3

10% DSC e, |
16-bit OFMV e B 7
24-bit DFM e 31 5

Sclagey i

0 5 10 15 20 25 30 35 40
Execution time (ms)

Fig. 3.4 Execution Time of a kNN Classifier under various ACTs

while running on an Intel CPU. Figure 3.4 presents the execution time recorded as an average
over 5 runs of Exact and approximate kNN under the discussed techniques. The lowest
execution time is achieved using 30% CL2, as it involves the highest Downscaling percentage
accompanied with the lowest fixed-point representation used i.e. 16-bit. As for Downscaling
versus DFM, the effect varies on their adoption. For example, a kNN classifier with 16-bit
DEM achieves a touch classification in 28.2 ms compared to 31 ms using 10% DSc. However,
for higher Downscaling percentages (e.g. 20%), a lower execution time is recorded. For

24-bit DFM, a kNN classifier with Downscaling always achieves a lower execution time.

Memory Usage (KB)

7.718 = Exact

24-bit DFM
= 16-bit DFM
= 10% DSc

= 20% D5c
15.832
m 30% D5c
w10% CL1
12

=82 < 20% CL1
= 30% CL1
= 10% CL2
= 20% CL2

B.668

9618

m 30% CL2

Fig. 3.5 Memory Usage for a kNN Classifier under various ACTs

40 Algorithmic Level Approximate Computing Techniques for Machine Learning

Figure 3.5 reports the required memory usage in Kilo Bytes (KB) for the adoption of each
ACT. The results show that DFM requires less memory usage compared to Downscaling.
Thus, for the touch modality problem, reducing the data bit-width has a more evident effect
on reducing the memory usage than Downscaling the data size. As expected, the lowest
memory usage is recorded for a KNN classifier with 30% CL2, due to the lowest fixed-point
representation and highest Downscaling percentage.

The timing and memory requirements differ from one application to another based on the
available budget. Figure 3.6 plots the classification accuracy accompanied with the reduction
in execution time and memory usage for each ACT. This plot can be used as a reference to
determine the best adequate techniques for a certain set of requirements. A few observations
can be noted:

* For a classification accuracy of 71%, the 30% CL2 should be adopted instead of less
efficient techniques such as 16-bit DFM or 10% CL2.

* To obtain the highest classification possible, it is advised to use a Downscaling per-
centage less then 30%.

» For a moderate accuracy loss, the CLI techniques is the best fit.

s £ COUT BCY Time Reduction Memory Reduction

Exact

858 38E8%

30
20
10

20% 10% 10% 20% 30% Z4-bit 30% 10% 20% 30% 16-bit
D5c DsSc Cl1 C1 Cl1 DFM D&c Cl2 Cl2 2 DFEM

Approximate Computing Technique

Fig. 3.6 kNN Performance Profile under various ACTs

3.4 Approximate k-Nearest Neighbor 41

On Device On Host

Training
Query =

Bitonic Sorting
Input 1

Fig. 3.7 Approximate kNN Architecture

3.4.3 Hardware Implementation

Figure 3.7 presents the KNN architecture adopted from [135] for the hardware implementation
targeting the Zyngberry platform. The architecture adopts a hybrid approach to accelerate
the kNN implementation. The distance calculation is performed on FPGA referred to as on
Device, while the sorting process and majority voting blocks are executed on CPU referred
to as on Host. The squared Euclidean distance and Bitonic have been chosen for distance
calculation and sorting blocks. The Majority vote block assigns a class for the input based on
the class with the highest number of occurrence in the sorted vector.

3.4.4 Implementation Results and Assessment

Table 3.6 details the implementation resources of the Exact and approximate kNN under
different ACTS. The recorded resources include the hardware area (BRAM, DSP, etc.), time
latency, and power consumption. The time latency (L) is recorded as:

L=Nx 1 (3.2)
max

where N is the number of clock cycles and f;,, is the maximum operating frequency. As
for the power consumption, a vector-based method was adopted as it provides the power
consumption related to the processing under a defined testbench. The method involves

generating a “saif” file via post-implementation functional and timing simulations.
The obtained results show that kNN is capable of real-time classification of touch [4]
modalities in 0.56 ms with a power consumption of 27 mW. The real-time processing is an
essential requirement for applications such as prosthesis, robotics, and industrial packaging,

etc. Such results are further enhanced with the use of data-oriented approx mate computing

42 Algorithmic Level Approximate Computing Techniques for Machine Learning

Table 3.6 kNN Implementation Report targeting Zyngberry operating at 120 MHz

. . . Implementation Resources
Approximate Computing Technique Time Power Consumption
BRAM | DSP48E | FF | LUT | Slice
Latency (ms) (mW)

None (Exact kNN) 4 5 709 | 841 | 293 0.56 27
24-bit DFM 4 4 272 | 425 | 150 0.15 19
16-bit DEFM 2 1 205 | 244 93 0.12 11

10% DSc 0.51 25

20% DSc 4 5 709 | 841 | 293 0.45 24

30% DSc 0.39 23

10% CL1 0.14 17

20% CL1 4 4 272 | 425 | 150 0.12 16

30% CL1 0.11 15

10% CL2 0.11 9

20% CL2 2 1 205 | 244 93 0.09 8

30% CL2 0.08 7

techniques which is evident in the reduced time latency and power consumption. The reported
hardware resources are decreased with the use of DFM but not with Downscaling. The reason
is that DSc is applied offline on the input only. While DFM is applied on all the kNN blocks.
Hence, the hardware resources are not reduced with the use of cross-layer approximate
techniques. As expected, the fastest classification time and lowest power consumption are
recorded with the use of CL2.

To highlight the advantages of using algorithmic level approximate computing techniques
on the kNN implementation, a plot for the degradation of accuracy with respect to the

reduction in power consumption and classification speedup is presented in Figure 3.8.

90 g
80 O\O\j/o_o\y"o_o_o\o_n_o ’
70 6

&0
5

50
4

40
3

30
20 2
10 1
0 0

Mone 24-bit 16-bit 10% 20% 30% 10% 20% 30% 10% 2000 30%
DFM DFM O5c D5c DSc CL1 €1 ci1 o ci2 Cl2 CL2

FPower Reduction (%) == Accuracy (%) Speedup (x)

Fig. 3.8 kNN FPGA Implementation Performance under various ACTs

3.5 Approximate Tensorial Support Vector Machine 43

Using this plot, one could select the best ACTs for approximate kNN based on the
applications’ requirements. For example, an approximate kNN with CL2 offers speedup up
to 6.8 with 74% power reductions at the expense of 10% accuracy loss. For an acuracy
loss of 6%, an approximate kNN with CL/ offers speedup up to 5.5x and about 45%
power reductions. Hence, based on the error tolerance of an application, a corresponding
approximate computing techniques could be used to achieve huge gains i terms of time

latency and power consumption.

3.5 Approximate Tensorial Support Vector Machine

3.5.1 Tensorial SVM Overview

SVM classification of an input tensor has been introduced in a framework that extends kernel

methods to tensor data in 4 main steps [5]:

* Tensor Unfolding: A tensor ¢ (I} x I x I3) is transformed into three matrices X (1; x
1213), X2(12 X 1113) and X3 (13 X 1112).

* Singular Value Decomposition (SVD) Computation: The unfolded matrices are sym-

metrized into square matrices that can be written in the form:
X=Usv’ (3.3)

where U and V7 contain the left and right singular vectors respectively, and S is the
diagonal matrix storing the singular values o; of X.

* Kernel Computation: The tensorial kernel extended from the Gaussian kernel is

computed using the function:

Z

K(x,y) =[]+ (xy) (3.4)

1

where k? is the kernel factor defined as:

—1
k(x,y) =exp (272(1” — trace(ZTZ))) (3.5)
where Z = VXTVy, Vi and V), represent the singular vectors of the unfolded matrix
obtained during the inference and training phase respectively, and trace represents the

sum of diagonal elements.

44 Algorithmic Level Approximate Computing Techniques for Machine Learning

* Classification: Applying the SVM classification function expressed as:

n
$=fsvm(x) =Y BiK(xi,x) +b (3.6)
i
where § is the predicted label of input tensor x, 7 is the number of training tensors, f3;
are the coefficients obtained during training, and b is the bias.

3.5.2 Software Simulation

The touch modality classification problems presented in section 3.3.1 are used for accuracy
evaluation. The tactile dataset has been split into 70% training and 30% testing sets. The
dataset reduction is applied by randomly removing samples from the original dataset. To
ensure credible assessment, if a sample is removed during the 10% reduction, it is automati-
cally removed for the 20% and 30% reductions. Loop perforation is applied on the loops
of SVD in (3.3) with a skipping factor sf (i.e., how many loops are perforated). As for
data format modification, 24-bit and 16-bit fixed-point representations are applied for all the
TSVM operations with < 8,16 > and < 6, 10 > precision, respectively, using the C libraries
used in [137].

Table 3.7 presents the effect of each ACT on the classification accuracy of the TSVM.
Results show that 10% DsR doesn’t affect the accuracy of TSVM for the three classification
problems. Once the DsR percentage increases to 20%, the accuracy drops with a worst case
scenario of 10% drop for Problem A. When applying loop perforation, the accuracy drops
with the increase of the skipping factor for problems A and C. For problem B, skipping more
than two loops showed no effect on the classification accuracy. As for DFM, the TSVM
showed the highest accuracy loss compared to other methods for the three problems when
16-bit fixe-point representation is used. Such loss could be dropped to 5% by adopting the

24-bit representation.

3.5.3 Hardware Implementation

Figure 3.9 shows the architecture of the approximate TSVM that is adopted to evaluate
the use of algorithmic level ACTs for hardware implementation. The architecture of the
approximate TSVM can be described through: Offline Training, Online Inference, and
Performance Booster.

—Offline Training: The training process starts by activating the AU1 (Approximate Unit
1) (see Figure 3.9). AU1 applies dataset-reduction through DSc technique on the dataset by
performing the following steps:

3.5 Approximate Tensorial Support Vector Machine

45

Table 3.7 Effect of approximate computing techniques on TSVM classification accuracy

. . . Classification Accuracy (%)
Approximate Computing Technique Problem A | Problem B | Problem C

None (Exact TSVM) 90.47 80.95 78
10% Data Set Reduction 90.47 80.95 78
20% Data Set Reduction 80.95 75 70
30% Data Set Reduction 80.95 75 70
Loop perforation with sf =2 90.47 80.95 78
Loop perforation with sf =3 85.71 75 65

Loop perforation with sf =4 80.95 75 62.5
DFM (24-bit) 85.71 75 73

DFM (16-bit) 75 65 62.5

* The dataset size is reduced by eliminating data that corresponds to five participants

with noisy readings. Figure 3.10(a) shows an example of such reading where the
voltage is almost constant along the measured time. Therefore, the machine learning

model will not learn new information from such sample. Hence, it is removed.

During data collection of the tactile dataset, no precise instructions were given to the
participants regarding the amount of pressure to be applied on the sensor [5]. Thus,
some touch samples with silent readings where observed such as the one presented in
Figure 3.10(b). Such samples could be pre-processed to extract meaningful information
in certain time frame. Each sample is truncated from 10 to 3.3 s by omitting readings
outside the interval [3.7, 7] s. This results in a new tensor ¢ (4 x 4 x 10,500).

To reduce the computational complexity of the tensor-based learning algorithms,
the tensor size could be reduced without the loss of information originality using
sub-sampling. The latter is applied by truncating each sample into a new tensor
¢ (4 x 4 x 40) with 40 random time readings.

Then, the resulting tensor is unfolded into three matrices M(4 x 160), N(4 x 160) and

P(40 x 16) that have to be symmetrized before applying SVD. The resulting support vectors

along with the Gaussian parameter ¢ = 1 are fed to the kernel computation block (see Figure
3.9). The block outputs the kernel matrices for (+1 vs. —1), (41 vs. +1), (—1 vs. +1)

and (—1 vs. —1) binary classification problems where each row being labeled with the

corresponding class label. This step is essential since LIBSVM [138] does not support

tensorial kernels by default but can receive precomputed kernels. The LIBSVM library is

used to obtain a classification model based on the precomputed kernel. The model contains

the coefficients f; and the bias b.

46 Algorithmic Level Approximate Computing Techniques for Machine Learning
T T T T Compute SV
i ¥ Training set -_ f -\\ Classification Support Vectors Coefficients i
= [Model ;
N - 11 |
15 — :
1 1 =
- i
i E Symmetrization Libsvm |
! § Testing set i
- @ t Kernel !
- !
! { < H | ? Kernel Support Vectors 5V i
i 5 _ DAL _//‘ ‘ Computation i
| g .
i = i
i On Host = i
: o !
: - o :
L S
! / 0 = |
! 3 i
| == \ 2 5 = " 2 E W !
| t 4y 4 :Cm (| = |
| / < 2R B 3 m i
| e 3 o !
! s B =] H
1 \/) \ | & e
! LY)) o .
= \ Approximate Unit2 = ° |
1 On Device i

Fig. 3.9 Approximate TSVM Architecture

—Online Inference: The inference starts by fetching a sample tensor from the testing set

(that was already approximated using AU1). The selected tensor undergoes the unfolding,

symmetrization and SVD processes. The obtained support vectors along with the support

vectors from the training phase are provided to the kernel computation block. During online

inference, Approximate Unit 2 is active. It operates by applying:

* Loop perforation technique to the SVD block. The support vectors are obtained using

the one side Jacobi Algorithm [139]. The latter is an iterative algorithm, thus it is
perforated with s f = 2. This technique accelerates the SVD computations but a large

sf could not be applied to ensure the algorithm’s convergence.

Computation Approximation to the computation of Z in (3.5). The obtained singular
vector matrices from the SVD block are VI(160 x 160),
V2(160 x 160) and V3(16 x 16). These matrices are truncated to V1'(160 x 4),
V2/(160 x 4) and V3'(16 x 2). Such truncation reduces the complexity of the ma-
trix multiplication in (3.5) with an acceptable error margin. This technique was
also applied in the offline training phase so that the equation Z = VXTVy has correct

dimensions.

3.5 Approximate Tensorial Support Vector Machine 47

1.7 T
feh]
[=7]
& 165
o
>
a
. . (@)
0 1 2 3 4 5 6 7 8 9 10
Time (s)
2.5 T T
|NI
[=7] ¥
= '
_O -2
> 15+ ff,:/f i
N I S ()
0 1 2 3 4 5 6 7 8 9 10

Time (s)

Fig. 3.10 Touch Modalities: (a) touch with noisy readings; and (b) touch with silent intervals.

» Data Format Modification to all the variables and arithmetic operations in different
TSVM blocks. HLS offers a library called “apfixed”, which allows the declaration of
variables with fixed-point precision. This declaration is limited by an upper bound
[140]. Specifically, the mathematical functions are Square Root (sgrt), which is used in
SVD calculations, and Exponential (exp), which is used in kernel computations. These
functions are supported only for bit-widths w < 32 and w < 16, respectively. This
limitation was resolved by a variable precision architecture. Hence, all the inference
blocks are implemented with 24- bit fixed-point representation with a < 12,12 >

precision except the kernel computation block.

Finally, the output of the kernel computation (i.e., a kernel) is used by the classification
block to predict a class for the tested tensor according to (3.6).

—Performance Booster: The performance of the proposed approximate TSVM architec-
ture has been enhanced to achieve the lowest possible time latency for applications with
timing constraints [141] while increasing the throughput. These requirements are usually ac-
companied by an increase in hardware resources, but the use of algorithmic level approximate
computing techniques, specifically DsR and DFM, would compensate such increase.

The time latency and throughput requirements are facilitated by the use of Vivado HLS

optimization directives [140]. The used directives are:

48 Algorithmic Level Approximate Computing Techniques for Machine Learning

* Array Partition: This directive partitions a large Block RAM (BRAM) occupied by
a multidimensional array into smaller separate memories. The array partitioning can
be complete, cyclic or block. The latter was applied on the tensor @ (4 x 4 x 40) with
block size = 16, as shown in Figure 3.11. This results in an RTL IP block with smaller

memories while improving the throughput of the Unfolding process.

(a) (b) (c)

Fig. 3.11 Array partitioning: (a) without partitioning; (b) block partitioning; and (c) block
with size=16.

» Dataflow: This directive allows functions to overlap in their operations, enhancing
the overall throughput and latency of the design. The functions unfold and sym-
metrization are executed in a task-level pipelining using this directive, as shown in
Figure 3.12.

 Pipelining: This directive allows the parallel execution of loop iterations, hence
reducing the time latency. The computation of Z in (3.5) is executed in parallel, as
shown in Figure 3.13.

3.5.4 Implementation Results and Assessment

Figure 3.14 shows the normalized speedup and reduction in power consumption while
assessing different approximate computing techniques. The latter are applied one-by-one
resulting in eight different FPGA implementations.

Using the obtained results in Figure 3.14, a cross-layer approximate TSVM implementa-

tion was performed where the adopted techniques are: 10% dataset reduction, loop perforation

3.5 Approximate Tensorial Support Vector Machine 49

N cycles
U1l u2 u3 S1 S2 S3
(2)
N’ cycles
ul U2 U3 Unfolding
51 Symmetrization
N’<N
S2
S3
(b)

Fig. 3.12 Process: (a) without dataflow; and (b) with dataflow.

sum = @;

) i

for(i=0;i<size;i++){ read i muttiply E add
I g

read(Vx[i]); I el

read(vy[1]); L "

K = multiply(vx[i]*vy[1i]); : e multiply

sum = add(K,sum); I L

ey

Fig. 3.13 Pipeline directive applied on vector multiplication.

with s f = 2 and 24-bit DFM. Moreover, the implementation details was recorded with the
performance booster ON and OFF to differentiate between the gain due to approximate
computing techniques with and without HLS optimization directives. Table 3.8 summarizes
the performance profile for the FPGA implementations based on the architecture in Figure
3.9. The Exact SVM is based on the architecture presented in [56]. The boosted approximate
TSVM corresponds to the approximate TSVM where the “Performance Booster” block is
activated (See Figure 3.9), i.e., with HLS optimization directives. The reduction is calculated

as:
Loppn
Reduction(%) = 100 — (222X 4 100) (3.7)

exact
where I;pprox and Loye are the implementation element (FF, DSP, LUT, etc.) of the Ap-
proximate (or boosted approximate) and Exact TSVM, respectively. As for the energy per

50 Algorithmic Level Approximate Computing Techniques for Machine Learning

4.5
4

4

3.5

3

2.5

2

1.5

1
=9 0.44

0.5
., 1N HE ER -
Exact 10% DsR 20% DsR 30% DsR LP (2) LP (3) DFM 24 DFM 16

m Speedup mPower Reduction

Fig. 3.14 Speedup and power consumption reduction under different ACTs

classification, it is calculated using the equation:
E=PxT (3.8)

where T is the time latency and P is the dynamic power consumption reported in Vivado.

Table 3.8 FPGA performance profile of Exact and Approximate TSVM

. Time Power Energy per Classification
Architecture FF LuT DSP | BRAM SRL Latency (s) | Consumption (W) | Classification (J) | Accuracy (%)
Exact TSVM 37057 | 42261 | 4715 297 1060 24 6.3 15.12 90

approximate TSVM | 17,187 | 25,558 | 283 291 202 0.91 312 283 86
Boosted
approximate TSVM | 17197 | 25:588 | 284 292 203 0.75 32 24 86
Approximate 0| 53 ©,0 | 39 50, | 404% | 2.02% | 80.94% | 2.64x 50.4% 81.28% —4%
Exact Reduction
Boosted Approximate | 55 500 | 39 450, | 40219% | 1.68% | 80.84% | 32 49.2% 84.12% —4%

to Exact Reduction

The obtained results presented in Tables 3.7 and 3.8 and Figure 3.14 demonstrate the
effectiveness of using approximate computing techniques to reduce the hardware resources
utilization, time latency and power consumption of the FPGA implementation of the tensorial
SVM. Such reductions are accompanied by an accuracy loss that varies between 0% and
10%. Another set of remarks can be noticed:

* In general, loop perforation achieves lower latency and power consumption compared
to dataset reduction with a comparable accuracy loss. This can be justified since the
SVD computation block is among the most complex blocks of the tensorial SVM, as
reported in [73].

3.6 Conclusion 51

* The transition to fixed-point representation results in the lowest latency and power con-
sumption compared to other methods. This is expected due to the reduced complexity
of the arithmetic operations based on fixed-point representation. This can be seen in the
reduced number of required DSPs between the exact and approximate implementations.
However, this comes at the expense of high accuracy loss; for example, the use of a

16-bit fixed-point led to a 15% accuracy loss for the target application.

* The number of used BRAMs is high since we are not using any external DRAM for
memory read/write operations. The range of the number of LUT and DSPs is expected
due to the level of parallelism introduced using HLS directives. For the target FPGA,
this is not a problem as long as we obtained a relatively reduced time latency and

power consumption in the case of Approximate TSVM.

» Using “cross-layer” approximate computing: with an accuracy degradation of 4%,
the approximate TSVM requires about 43% less hardware resources and classifies an
unseen sample 2.64 x faster while consuming 50% less power compared to its exact

counterpart.

* The accuracy loss due to the use of “cross-layer” approximate computing is not the
sum of the losses obtained for each single approximate technique. This is evident in
the final results presented in Table 3.8.

* The use of ACTs shows a remarkable reduction in the energy per classification up to
82%, since such techniques affect both the time latency and power consumption of the
TSVM, as shown in Table 3.8.

* Applying the adopted HLS optimization directives offered an additional speedup gain
to the approximate TSVM in terms of speedup up to 3.2x accompanied with 84%
less energy per classification.. This added a negligible overhead less than 1% increase
in the hardware resources and power consumption. This is expected due to the fact
that pipelining offers a reduction in the number of clock cycles while increasing the
resources/power consumption. However, such increase is compensated by the dataflow

directive that allows resource sharing, providing an enhanced overall implementation.

3.6 Conclusion

An approach for applying algorithmic approximate computing techniques on machine learn-
ing algorithms has been introduced. The approach has been validation on k-Nearest Neigh-

bour and Support Vector Machine algorithms for tensor-based tactile data. A detailed study is

52 Algorithmic Level Approximate Computing Techniques for Machine Learning

performed on the effect of algorithmic level ACTs on the execution time and memory usage
of a kNN classifier. Results showed that an approximate kNN with cross-layer techniques
could achieve reductions up to 60% with an accuracy loss less than 10%. Based on such
results, the FPGA implementation of both approximate kNN and TSVM is presented. The
implementation results have validated the efficiency of using algorithmic level ACTs for
accelerating machine learning algorithms. Hence, the implementations could be presented
as a solution for embedding intelligence on resource-limited device (e.g. Zyngberry) and
power-constrained applications such as prosthetic [141].

Chapter 4

Efficient Selection-Based K-Nearest
Neighbor Architecture on Modern SoCs

4.1 Introduction

Modern System-on-Chips (SoCs) are designed with heterogeneous architectures to support a
variety of computationally intensive tasks in many application domains such as IoT systems,
industrial automation, robotics, etc. These systems could consist of multi-core processors
or Multi-Processor System On Chip (MPSoC), which could be implemented on Graphics
Processing Units (GPUs), Application Specific Integrated Circuits (ASIC), or Field Pro-
grammable Gate Arrays (FPGAs). The latter is used for accelerating complex operations and
performing tasks concurrently compared to traditional processors.

K-Nearest Neighbor (kNN) is a supervised classification algorithm used in a variety
of applications such as pattern recognition, computer vision and machine learning [142].
However, kNN imposes significant computational workload since the complexity increases
linearly with the size of the dataset and the number of classes [143]. Such workload
demands significant memory requirements with high latency and power consumption [144].
Accordingly, the implementation of kNN on embedded systems with limited available energy
and resources introduces a design challenge, which makes kNN hardware acceleration a
necessity.

kNN algorithm involves independent operations e.g. the distance computation between a
point A and point B is independent of that between points A and C. Thus, kNN doesn’t require
the sorting of the entire distance vector to find the K-Nearest Neighbors. Such characteristics
could be exploited to reduce the computational complexity of the algorithm using a pipelined
architecture and tweaking the sorting process.

54 Efficient Selection-Based K-Nearest Neighbor Architecture on Modern SoCs

In this chapter, we propose the design and implementation of a kNN architecture that is
characterized by a novel selection-based sorter (Selector). The proposed selector overcomes
similar state of the art solutions by reducing the occupied hardware area by up to 48% while
providing a speedup up to 4.5x. The proposed kNN architecture is implemented using
both exact and approximate computations. The approximate architecture utilizes the use of
algorithmic level Approximate Computing Techniques (ACTs). When validated on a touch
modality classification problem, both the proposed exact and approximate kNNs offer a
real-time classification while consuming 6 pJ and 1.9 uJ respectively when implemented
on Xilinx Zyqnberry platform. Compared to similar KNN architectures, the proposed KNN
achieves a speedup between 1.4x and 875x with 41% to 94% less energy consumption
and 12% to 94% average hardware area reduction. Moreover, applying algorithmic level
ACTs on the proposed architecture improves its performance by achieving a 56.4% average
area reduction, a speedup by 2.3, and an energy reduction of about 69%. An accuracy
degradation of 2.6% has been reported using the proposed approximate architecture. For
the rest of the chapter, the term "performance" is used to report the characteristics of a kNN
hardware implementation in terms of area, time latency, power consumption, and energy per
classification. While, the term "quality" reflects the highest classification accuracy that a
kNN architecture could achieve.

4.2 Proposed k-NN Hardware Architecture

4.2.1 Kk-Nearest Neighbor Algorithm Overview

The kNN algorithm classifies an input sample according to the class of the majority of

K-nearest samples. For an input sample, the kNN classifier:

1. Calculates the distance between the input sample and all the samples in the training set
T;eT.

2. Sorts the distances in ascending order.

3. Selects an output class based on the minimum distance towards K neighbors.

4.2.2 Selection-based KNN Architecture

The block diagram of the proposed hardware architecture is shown in Figure 4.1. The “kNN
Classifier” block has been designed in HLS (coded in C++), whereas the other blocks are
existing Intellectual Property (IP) blocks embedded in Vivado. The SDRAM memory is

4.2 Proposed k-NN Hardware Architecture 55

— Data

L Reset | Exact

> Clock Approximate

— Task

Vivado IP

. Design Blocks (C++)

*‘ ‘fivﬂdo ms [P
} KNN Classifier

Fig. 4.1 Selection-Based kNN Hardware Architecture

used to store the training set, which is more suitable than the Block RAM (BRAM) of the
FPGA for platforms with limited number of BRAMs or applications with large datasets. The
Advanced eXtensible Interface (AXI) Interconnect IP handles the read and write operations
from and to the memory. It adopts an AXI smart connect IP to use one AXI port for 1)
writing to the data acquisition block and 2) reading the classification result from the class
determination block. The Zynq processing system IP is the main block of the design which
uses a processor system reset IP to drive all blocks with a common clock and reset signals.
The kNN HLS IP starts operating once the Data acquisition block receives the training
samples. To reduce the access overhead imposed by DRAM, we fetch the samples in bursts
to reduce the number of memory accesses. Such technique has shown its efficiency in [135]
and [44].

4.2.3 Nearest Neighbors Selector

A common characteristic of the most existing efficient kNN architectures is the use of
the conventional sorting algorithms without optimizations for the kNN algorithm. The
efficiency of these algorithms is affected by the: 1) need to sort all the vector’s elements,
ii) large number of required comparators, and iii) increased complexity/latency for large
vector size. In this work, the proposed kNN architecture avoids such sorting algorithms and
adopts a selection-based one with a re-configurable division ratio for complexity and latency
trade-offs.

The main idea of the “Selector” is to find the K-minimum distances without sorting
the entire vector [145] as depicted in Algorithm 1. While coding the selector in HLS, the
minimum K-distance values are saved in the same vector to be sorted, thus decreasing the

memory footprint. The selector operations can be detailed in three steps:

56 Efficient Selection-Based K-Nearest Neighbor Architecture on Modern SoCs

Algorithm 1: Nearest Neighbors Selector
Input: Vector V with size S, Division ratio a:b, Number of neighbors K
Output: V with the K-minimum elements at the first K indices
S1+axS/100
for i <K to S1do

if V[i] <=V|0] then

VIK—1]+ V[K —2]

V[O] — VI[i]
Ise if V[i] <= V/[1] then
VIK—1]+ V[K—-2]

[¢2)

:vm VI[i

else if V[i] <= V[K — 1] then
| VIK—1] <+ V][]

or j<SItoSdo

if V[j] >=V[K — 1] then
| break

else

0
\

if V[j] < V[K — 2] then

;fV[j] < V[0] then
| VO]« V[]]
else

| V1]« V[j]

else
| break

» Step 1: The distance vector V of size § is divided into two vectors V1 and V2. The
suitable division ratio (a%:b%) is determined via a software simulation. Begin by
decreasing the size of V' until the classification accuracy drops to obtain the value of a.
Hence, b =S —a.

» Step 2: K-registers are initialized with a maximum value (e.g. 1000). Each distance
value V 1[i] is compared to the content of register 1. If it is smaller, V' 1[i] occupies the
register, and the old content in register 1 is shifted to register 2. Then, the content
in register 2 is shifted to occupy register 3. Consequently, the content in register i is

shifted to occupy register i + 1. Else, V'1][i] is compared to the next register, and so on.

4.2 Proposed k-NN Hardware Architecture 57

=]

Abort < \e

V2Ji] j
Fig. 4.2 Sorting Process Step 3 (K=3): Dashed Line (new value), Solid Line (old value),
Colored Lines (concurrent operations)

At the end of step 2, the K minimum distance values are saved in the K registers in the

order minl < min2 < < mink.

* Step 3: Each distance value V2[i] is compared to the highest minimum i.e. minK as
shown in Figure. 4.2 (K=3). If it is larger, the minimums obtained from V'1[i] are
not updated and a new value of V2 is fetched. Else, V2[i] is compared to the other
minimums to reach a register to occupy. Once V2[i] occupies a register, the old value

of that register is shifted to occupy the register of the next minimum.

The advantage of this architecture compared to the one presented in [146] is that step 3
will not be executed if V2[i] is greater than minK. Thus, the K minimum distances are the
output of step 2. This will result in a reduced selection time for hardware implementations.
Moreover, the architecture in [146] selects the K minimum distances in a single step, which
imposes hardware complexity and increased time latency for large datasets. While in the
proposed architecture, the selection is performed in smaller steps with a high probability that
the final step will not be executed (V2[i] > minK).

Although the proposed selector finds the K-nearest neighbors without sorting the entire
vector, a comparison with two sorters reported in the literature, i.e. QuickSort [47] and

Bitonic Sorter [147], has been carried out. In general:

* Bitonic sorting is a recursive algorithm that sorts a Bitonic sequence in a parallel
operating fashion. A Bitonic sequence is a sequence of M elements in which L

elements out of M are sorted in ascending form, and the other M — L elements are

58 Efficient Selection-Based K-Nearest Neighbor Architecture on Modern SoCs

sorted in descending order [148]. If the sequence is not Bitonic, an additional task is
imposed before the ability to sort the vector. The proposed selector can operate on any

vector form.

* QuickSort selects one of the elements in the sequence to be the pivot and divides the
sequence into two sequences. One sequence contains all the elements less than the
pivot while the other contains all the elements greater than the pivot. The process is
recursively (add more burden on the hardware) applied to each of the sub sequences.
QuickSort has a worst-case complexity of O(n?) when the given sequence is sorted;
this resembles the best-case scenario for the proposed selector as it will select the K
minimums faster (the minimums occupy the first K registers). Then, all the comparisons
fail. Thus no shift operations are performed. Consequently, step 3 is not executed at
all.

* The number of comparators required by the selector depends on the number of neigh-
bors K, while it depends on the size of the vector N in the case of Bitonic and QuickSort.
In machine learning applications, usually, it is valid that K (the number of Nearest
Neighbors in kNN) < N (size of training vector). Given that the selector doesn’t sort
the complete vector, the number of comparisons is decreased.

Both the sorters presented in [47], [147], and the selector have been coded in C++
using Vivado HLS. The distance vector V has been used as a testing vector for the three
implementations. In this work, the best K value and division ratio were determined to be
3 and 6:4 (for the case study presented in section 4.3) i.e. there is a need to sort only 60%
of the vector and step 3 can be aborted without affecting the selection process accuracy.
The obtained synthesis results for finding the three minimum numbers in V are presented in
Table 4.1. The obtained results show that the selector occupies less hardware area than the
implementations of both sorters. Specifically, an average reduction of 21.4% and 48.7% is
reported compared to the sorters in [47] and [147] respectively. Concerning the time latency
of the sorting process, the selector is faster than the sorter in [147] by 4.5x. Compared to the
sorter in [47] that adopts one of the fastest sorting algorithm (QuickSort), the performance
depends on the selection of the division ratio in step 1 and the number of neighbors K. In fact,
if all the minimum numbers are located in V2, or if the required value of K is very large, the
selector is now sorting all the elements of V resulting in a slower sorting process. Hence, a

speedup of £1.2x (for 6:4 and 5:5 ratios respectively) has been observed for the given task.

4.3 Case Study: Tactile Data Processing for Electronic Skin Systems 59

Table 4.1 HLS Synthesis Results of Different Sorters

Sorter FF | LUT Clock Cycles
Proposed Selector | 84 | 176 | 15 (division ratio 6:4)
[47] 106 | 226 17
[147] 123 | 514 96

4.2.4 Approximate kNN Blocks

In chapter 3, we have presented a complete assessment of using algorithmic level ACTs on a
kNN classifier. The assessment included the degradation in accuracy to the gain in memory
and execution time on Intel 17 CPU. The studied techniques have been formulated into a
general approach that has been tested on two machine learning classifiers. The reported
approach has been adopted in the proposed kNN architecture where a trade-off between
the classifiers performance and quality has been considered. The trade-off resulted in our
selection for the ACTs presented in the proposed approximate kNN architecture. All the
adopted techniques belong to the data-oriented approximate computing category [149]. The
adopted ACTs are Dataset Reduction (Downsampling (DS) and Downscaling (DSc)), and
Data Format Modification (DFM). DS means varying the signal sampling frequency during
signal acquisition. Since tactile data used in this work are from an already available dataset,
the sampling frequency can’t be changed. As a consequence, DS is applied offline on the
dataset by reducing the number of samples. DSc is applied by adjusting the sample size as
shown in section 4.3.1. As for DFM, fixed-point representation is adopted, and the precision
is determined as a trade-off between resolution (32, 24, 16, and 8-bit) and classification
accuracy.” The approximate kNN classifier starts operating once the Data Acquisition block
receives the training samples (after DS/DSc has been applied offline) from the memory. Then,
the same steps performed by the KNN HLS IP are executed.

4.3 Case Study: Tactile Data Processing for Electronic Skin

Systems

4.3.1 Electronic Skin Overview

Electronic skin (E-skin) system is an artificial system developed to mimic human skin
behaviour or to implement intelligent tasks in applications such as robotics, prosthetic, etc.
The E-skin is composed of a set of components as shown in Figure 4.3. At the moment of

touch, the array of tactile sensors transforms the applied mechanical stimuli into electrical

60 Efficient Selection-Based K-Nearest Neighbor Architecture on Modern SoCs

signals. The electronics interface is in charge of data acquisition, signal conditioning, and
analog to digital conversion. After that, the tactile data should be processed by the embedded
data processing unit. To achieve this goal, various processing levels may be applied. For
example, simple processing algorithms could be employed to retrieve information such as
direction and intensity of contact force, contact location, temperature, etc. On the other hand,
more sophisticated algorithms should be adopted when targeting complex/smart processing
tasks like textures, patterns, and objects recognition, or touch modalities, and roughness
classification [150], [151]. To this end, the smart embedded data processing unit implements
ML algorithms in order to enable the above-mentioned smart tasks. However, implementing
ML algorithms on hardware platforms is challenging due to the high complexity of such
algorithms. Consequently, affecting the complexity of the embedded electronic systems in

terms of time latency and power consumption.

Array of Tactile Detect and convert mechanical
Sensors stimuli into electrical signals

Electronics Apply signal conditioning and
Interface analog to digital conversion

Embedded Data Implement Machine Learning
Processing algorithms enabling smart taks

Fig. 4.3 Electronic skin system and the corresponding function of each block

In this work, the kNN algorithm is adopted for the design of an embedded tactile data
processing architecture due to the: 1) high level of parallelization of the kNN algorithm,
which makes it adequate for hardware acceleration, 2) high classification accuracy with a
reduced computational complexity compared to state-of-the-art algorithms operating on the
same task [32], [152], and 3) ability of complexity reduction without affecting the application

quality using approximate computing techniques as reported in chapter 3.

4.3 Case Study: Tactile Data Processing for Electronic Skin Systems 61

4.3.2 Experimental Setup

The dataset collected in [5] describing several touch modalities has been selected for the
validation of the proposed kNN architecture. The experimental setup is shown in Figure 4.4

and can be described as follows:

| Test Train :
! |
] | |
—] | (000000000000 |
e e | mm—) | | 000000000000 |
Dataset ARFF File : - Weka |
H |
' : s
— oftware |
TN 7 ! .
e . TR T : |
61313 ¢13061 eattribute Tx11 NMERIC Eald 10 B @0 e |
L L) e T e | Fold 101 lFold 1 !
452228 | !
@attribute TX44 NUMERIC I |
. @attribute class {rolling, sliding} | :
16435038 1.643419 1.6439121 @data | K_Nearest End |
I a K++ > . |
l Neighbor Simulation |
|
I |
Number of : |
NEEHES ! [— Yes :
Distance Euclidean I |
Metric | A A Target :
Classification Accuracy | 10 1 NO Accuracy |
Metric | ‘_Y_' |
' [
|
| 10 :
I |
! |
' |
! |
|

Fig. 4.4 Experimental Setup

* Dataset: The dataset contains records for the two touch modalities performed by 70
participants. Each modality was recorded from a 4 x 4 tactile sensor for 10 seconds at
3 kHz sampling frequency. Thus, each raw data sample can be modeled in the form
of a tensor of size 4x4x30,000. The touch modalities were performed on both the

horizontal and vertical directions for two trials, resulting in a dataset of 840 samples.

» Simulation Software: An open-source machine learning simulation tool called “Weka”
has been used [153]. Weka involves a collection of learning algorithms that can be
applied to a pre-defined dataset or invoked from a Java code. The tool has options for

classification, clustering, regression, etc.

* Classification Task: “Sliding a finger” vs “Washer Rolling” binary touch modality
classification problem introduced in [5]. For Weka simulation an Attribute-Relation
File Format (ARFF) file is required. Thus, a header describing the features and the

possible output class of each sample is added to the original tactile dataset.

62 Efficient Selection-Based K-Nearest Neighbor Architecture on Modern SoCs

* kNN Characteristics: A 10-fold cross-validation simulation using the Weka tool has
been carried to determine the best value of K. The adopted distance between two

tactile samples 7'1 and T2 is the squared euclidean distance written as:

16
d(T\, 1) =Y (TXij — TXomn) (4.1)
0

where TX;; and TX,,, are the taxels inside a 4 x 4 tactile sample.

* Classification Metric: The kNN algorithm has been assessed by calculating the classi-
fication accuracy i.e. the ratio of correctly classified samples to the total number of

available samples.

The ARFF file was loaded into Weka and classification using kNN is performed. A kNN
classifier with 3-nearest neighbors resulted in the highest classification accuracy of 89.8%.
This result was achieved based on a model selection approach.

The best obtained kNN model with K=3 is referred to as Exact kKNN. As for Approximate
kNN, it employs the following techniques to the Exact architecture: 1) Downsampling which
applies an approximate window on the touch modality, where only the data that corresponds
to the interval [a,b] seconds is considered. First, the interval [a, b] is selected such that
0.1 <a<1and 9.5 < b < 10. Then, the values of a and b are varied, while calculating
the classification accuracy. The interval [3.5, 7] provided the highest accuracy among
others. Thus, each modality tensor can be written as ¢ =4 x 4 x 10,500 (touch readings that
belong to the interval [3.5, 7] seconds), and 2) downscaling which reduces the tensor size to
¢ =4 x4 x 1, where the last dimension is the mean of the 10,500 readings according to the

equation:

Y. TX;j
10500
where TX;; is the individual taxel inside the 4 x 4 tactile sample. Figure 4.5 shows the initial

4.2)

nean —

and obtained touch modalities after applying DS and DSc.

It is worth mentioning that the tensor representation of data has been adopted by [5] since
it preserves the initial structure of the data, which is still valid after applying approximate
computing techniques. This is evident in Figure 4.5 (b), (c¢) where the two touch modalities
can still be differentiated. For both the Distance Calculation and Nearest Neighbor Selection
blocks, the operations are implemented in 24-bit fixed-point representation with a < 6,18 >
precision. The adopted precision is based on a trade-off between complexity and classification

accuracy.

4.4 Selection-based kNN Implementation 63

1.654 1.647

1.652
1.646

185 I\ [\
A
eis / \ fr’\ \ 1645 / . //
1648 / / I/
A

N A
H A VAVANR I
2 PN \\/ W ‘\ RS /"\K \/ N
1644 / v ! - AN / l\«
e \ 1643 v Y
1642} \
\
R T R L WS 6 8 0 12 1
Time (s) Taxel Taxel
(a) (b) (c)

Fig. 4.5 Touch Modalities: (a) Rolling with DS, (b) Rolling after DSc, (c) Sliding after DSc,
* Window

4.4 Selection-based KNN Implementation

4.4.1 Hardware and Software Design Tools

The Zyngberry TE0726-03M [154] has been adopted for implementation. Zyngberry is a
small-sized platform in the form of a Raspberry Pi compatible System-on-Chip (SoC) module
integrating a Xilinx Zyng-7010 with a 512 MB Synchronous Dynamic Random Access
Memory (SDRAM) memory. The Zynq SoC has a hybrid structure of combining a dual-core
ARM Cortex-A9 processor as a Processing System (PS) and an FPGA as Programmable
Logic (PL) in a single SoC. Moreover, for comparison purposes, the architecture has been
also implemented on the Virtex-7 FPGA and the NVIDIA GTX 1650 GPU.

As for the software tools, Vivado HLS 2018.3 and Vivado 2018.3 were used. Vivado
HLS allows the design of an embedded system on FPGA using a high-level programming
language such as C and C++ compared to traditional hardware description languages (HDL).
The use of HLS decreases the FPGA development time and effort. Also, it offers a set of

optimization directives that can be used to enhance the design performance.

4.4.2 Implementation Methodology

Once the whole design code is completed in HLS and design optimizations are applied, a
co-simulation is performed. This simulation runs both the C++ and the RTL simulations
together to verify a matching output. Then, the design is exported as a Register Transfer
Level (RTL) IP block. The latter is imported into Vivado 2018 and connected to the Zynq
processor and other IP blocks as seen in Figure 4.1. First, a behavioral simulation is
performed to verify the functionality of the design. Then, synthesis and place and route occur
to finalize implementation. At this point, the generated report contains the occupied area
percentage (BRAM, DSPs, etc.) and the number of clock cycles passed to generate an output.

64 Efficient Selection-Based K-Nearest Neighbor Architecture on Modern SoCs

Concerning power consumption estimation, Vivado offers two methods: Vector-based and
Vector less. This estimation can be performed at any stage between post-synthesis to post
routing. For a credible estimation, a post-implementation functional and timing simulation is
used to generate a Switching Activity Interchange File (SAIF) to be used for a vector-based

estimation post-routing.

4.4.3 Design Optimization

Targeting the real-time functionality on a small-sized platform such as Zyngberry, the
proposed architecture has been optimized to ensure an acceptable balance between time
latency and hardware requirements. This has been achieved with several design optimizations
as shown in Figure. 4.6. Such optimizations are facilitated with the use of Vivado HLS

directives [140] as depicted in Algorithm 2. These optimizations are summarized as follows:

Distance Classify

U i 1/-1
[] j ~ = AllPatterns Modality g A Modalitvl
s ¢) } 11 odalityl count
< —= I [" Modality2 count
| == g 0/ 3
Modality E £ .) e
I O
(a) (b)
TX;
TXlPiﬂ
_____________________________ [, .|
5 9 3 | 1 Uoe = dnr, 1 U0E > drirey
s o upc —» fupc —» d
rl [Bteg! T,T3 I_U_DE_' T1Teos
: oo 4 oo
_ _ [t TiTy [Bl T1T699
q q llllllllllllllllll I_ - -I
I_U_DE i dTl Ts70

|

I

|

I

|

I

| i
| [1
| | UDC — dr,r,
| (Bnintll
|

I

|

I

|

I

|

5 [.
|_U_D_C_'|_" drirﬁ | U DCJ'_b dTﬂ'sn
71 o1
[uoc i do, [u0C — drr

(S F _________________ 1 rrriririrr
—>
dr,r, Torec
(c) (d)

Fig. 4.6 Design Optimization: (a) BRAM Resources Reductions, (b) Unrolled Class De-
termination, (c¢) One Unrolled Distance Calculation (UDC) Block, (d) Complete Unrolled
Distance Calculation

¢ BRAM Resources Reduction: As the BRAM size is 18KB in the FPGA, it is better to
combine many arrays into a single array if their sizes are less than 18KB. Since kNN is
a supervised algorithm, the class of each query must be known. Thus, we can benefit
from this directive to combine the “Distance” and “Modality” arrays into a single array

4.4 Selection-based kNN Implementation 65

as shown in Figure 4.6(a). Thus, when the selector block finds the three minimum
neighbors, the class of each selected neighbor is available at the same instant. This
process is referred to as "Array Map" where the horizontal option means that the two
arrays are combined into a single array with more elements (see Algorithm 2).

Algorithm 2: kNN Design Optimization
#pragma HLS ARRAYMAP
variable=Distance Instance=AllPatterns horizontal
variable=Modality Instance=AllPatterns horizontal
/* M: nb of features x/
function UDC(T1, T>):

for i <0to M do
L #pragma HLS UNROLL factor=4

Execute (4.1)

/* Tactiles: trainingset, q: testing point */
/* N: nb of training points */
fori<—Oto N do

#pragma HLS INLINE

#pragma HL.S UNROLL factor=6
Distancel[i]= UDC(p, Tactiles[i])
Modality[i]=Tactiles[1][16]
/* K: nb of Neighbors */
NearestNeighbors=Selector(K, Modality)
for i <0to K do
#pragma HLS UNROLL
if NearestNeighbors[i] == 1 then
| modality lcount++
else
| modalitycount2++

* Parallelization: To exploit the capabilities of the FPGA, the operations of the distance
calculation and the class determination blocks are executed in parallel with a small
unroll factor. In HLS terms this is known as "Unrolling". Unrolling a loop creates
multiple copies of its body in the RTL design, which allows some or all of its iterations
to occur in parallel. This optimization has been applied to (4.1) denoted as Unrolled
Distance Calculation (UDC) and the Class Determination blocks leading to accelerating
the calculation and output class decision. However, executing all the operations in
parallel leads to a high power consumption and increased resource requirements. To
avoid the negative impact of unrolling on the hardware cost and power consumption,

the loops are partially unrolled (unroll factors of 4 and 6) as it is shown in Algorithm 2,

66 Efficient Selection-Based K-Nearest Neighbor Architecture on Modern SoCs

and the design is implemented at an operating frequency of 100 MHz which is lower
when compared to similar work [147]. Each touch modality sample has 16 features,
thus an UNROLL factor equals to 4 is used. This means that the distance between each
4 features is calculated in a single time interval as shown in Figure 4.6(c). Similarly,
Figure 4.6(d) shows how the UDC block is used to calculate the distance between the
testing sample and all training samples. An UNROLL factor equals to 6 is used, thus
112 timing intervals are required to finish all the distance calculations for a training
set size of 80%. The distance from a testing sample to (80 x 840/100) = 672 training
samples is calculated in batches of 6 calculations per timing interval i.e 672/6 = 112
intervals. As for Class Determination, since K = 3 and we have a binary classification,

the process could be fully unrolled as shown in 4.6(b).

* Function Inline: The inlined function is treated as a part of the calling function that
is calling it rather than a separate entity. This optimization is applied for the distance
calculation function. Thus, whenever the classification function is called, the distance
calculation is executed within it and it no longer appears as a separate level of hierarchy

in the RTL design. Thus improving the overall latency of the classification task.

4.4.4 Implementation Results

The performance and quality of the proposed exact and approximate implementations are
assessed on the touch modality classification problem mentioned in section 4.3. The assess-
ment involves two case studies: (1) Proposed Exact kNN versus approximate kNN and (2)
Exact kNN on FPGA versus GPU. For the FPGA implementation, the time latency T is

calculated according to the equation:
T =N X1/ fax (4.3)

where N is the number of clock cycles obtained in post-implementation reports and f.
is the maximum operating frequency the design can achieve. The Joule per classification
energy E is calculated as:

E=TxP 4.4)

where T is the time latency and P is the dynamic power consumed by the programmable
logic (PL) of the Zyngberry reported by Vivado i.e the power consumed by the simulated
kNN architecture to compute a classification of an input sample (excluding the static power

of the processing system (PS) as it is device dependent).

4.4 Selection-based kNN Implementation 67

For GPU implementation, Exact kNN architecture has been coded using Python language
running inside the CUDA computing platform. The GPU power estimation was obtained
using NVIDIA System Managment Interface (NVSMI). The latter is a command utility that
can be issued on any Python development environment with the CUDA libraries imported
[155].

Case 1: Exact versus Approximate kNN

The implementation results on Zyngberry of the proposed Exact and Approximate kNN
are shown in Table 4.2. Exact kNN occupies 12% of the hardware resources, consumes
0.236 W, and classifies an input sample within 25.7 us. The obtained time latency verifies
the real-time classification of a touch modality in less than 400 ms [4]. Applying down-
sampling and downscaling have decreased the input size from 4 x 4 x 30,00 (a 10s sample)
to 4 x4 x 1 (a 3.5s sample) offering a 65% reduction in data size. Such reduction led to a
significant decrease in the hardware resources and time latency. Using the 24-bit fixed-point
representation instead of 32-bit floating-point one provides a 25% reduction in the word
length of data exchanged between the different blocks of the kNN architecture and the
complexity of the arithmetic computations. Consequently, the dynamic power consumption
has been reduced. Thus, the proposed approximate kNN offers an average hardware resource
reduction up to 56.4%, by accelerating the classification of a test sample by 2.3 with an
energy reduction of about 69% compared to the proposed Exact KNN. For the whole design,
an accuracy degradation of 2.6% is reported. The proposed approximate kNN provides
real-time classification of touch modalities with a reduced time latency of 11.2 us. These

results motivate the use of approximate computing techniques.

Table 4.2 Implementation Results of the proposed Exact and Approximate Classifiers on
Zyngberry

Implementation Exact | Approximate
Classification Accuracy | 89.8% 87%
Frequency (MHz) 100
BRAM 4 4
DSP48E 10 4
FF 3493 1612
LUT 2825 1264
Time Latency (us) 25.7 11.2
Dynamic
Power Consumption (W) 0.236 0.164

Case 2: Exact kNN on FPGA versus GPU

68 Efficient Selection-Based K-Nearest Neighbor Architecture on Modern SoCs

Using the CUDA platform and NVSMI tool, the GPU implementation of Exact kNN
provided a classification time of 80 ms while consuming 14.12W for the touch modality
classification problem. Table 4.3 shows a comparison between the FPGA and GPU imple-
mentations in terms of execution time and energy consumption. The results are significantly
in favor of the FPGA, where the acceleration of the proposed kNN architecture on FPGA
could be achieved with a fraction of the energy consumed using the GTX 1650 GPU. This
can be justified due to two possible reasons:

Table 4.3 Exact kNN performance on FPGA and GPU

Exact kKNN
Time (FPGA/GPU) | 25.7us/80ms
Energy (FPGA/GPU) | 6ul/1.13]
Time Ratio 0.00032
Energy Ratio 5.37x107°

* GPUs use DRAM for the communication between the different blocks of the kNN
architecture (referred to as kernels) [156], which is slower than using a hybrid structure
as proposed in Figure 4.1 where BRAMs are used to communicate between different
blocks and DRAM is used only for dataset storage.

* The proposed kNN architecture exploits the parallelism capabilities of the FPGA. Thus,
the "if-then-else" conditions are executed in parallel. On the other hand, the "then"
and "else" parts are executed serially on GPUs resulting in a significant time latency
increase. Such issue is known as "thread divergence" [157].

4.5 Comparison with existing solutions

Comparing two kNN implementations is not a straight forward task due to the large number
of differences such as: the number of nearest neighbors (K), dataset size (N), number of
features per sample (f), development environment (HLS or HDL), hardware device used, etc.
To achieve a fair comparison with Exact kNN, three similar architectures have been selected.

These three architectures have been chosen such that they all have:

* Used HLS for development since the comparison with an HDL implementation is not
feasible.

» Achieved a high acceleration gain (i.e speedup) with respect to equivalent CPU-based

kNN implementation, so the architecture resembles an efficient accelerator.

4.5 Comparison with existing solutions 69

* Used similar (and different) values of K, N, and f to generalize the comparison.

Table 4.4 presents the existing implementation settings for the three architectures. De-
note by S; =[K;, N;, fi, Dataset;] the settings used in the first [146], second [158] and third
implementation [147] respectively. Exact kNN is implemented using the settings S; i.e the
proposed kNN architecture is implemented and validated using the testbench reported in
each architecture. The implementation results are shown in Table 4.5 with the original

implementation results of each architecture.

Table 4.4 Testbench Implementation settings for the Exact kNN and three similar architectures

Architecture S;[146] | S, [158] | S3[147]
K 10 3 5
N 699 150 | 300x10°
f 9 4 2
Dataset BCW_9 Iris Weather
Device ZtZBN (])Ea’f J Virtex-7 | Virtex-7
Frequency (MHz) 100 100 240

Table 4.5 Proposed Exact kNN Implementation Results versus Similar Solutions

Architecture kNN-S; | [146] | KNN-S, | [158] [KNN-S;3 [[147]
Device Zyngberry Virtex-7
Frequency (MHz) 100 240
BRAM 4 - 4 293 500 512
DSP 7 9 5 47 12 12
FF 2002 9484 827 - 21677 | 23892
LUT 1607 8845 1407 - 11416 | 11838
Time Latency (ms) 22x1073 027 |[12x107° | 10.5 | 0.88 1.24
Energy per 484x1073 | 70x1073 - - 1.86 | 3.17
classification (mlJ)
Average Resources
Rodui %y 61% 94% 12.3%
Speedup 12.3x 875 x 1.4x
Energy Reduction (%) 94% - 41.5%
Classification Accuracy (%) 96.2% 93.3% 86.5%

* Calculated for the available resources only e.g. reduction in BRAM and DSP for kNN-S, compared to
[158], i.e. Reduction = (BRAM-Reduction + DSP-Reduction)/2, where BRAM-Reduction= 100(1-4/293)
and DSP-Reduction= 100(1-5/47).

kNN-S achieves a 12.3x classification speedup with 94% less energy consumption while

requiring a 61% less hardware resources compared to the KNN implementation presented

70 Efficient Selection-Based K-Nearest Neighbor Architecture on Modern SoCs

in [146]. This is due to two main reasons: 1) the selector used in KNN-S; is an enhanced
version of the one used in [146] where the division factor plays a key role in decreasing
the sorting time as presented in section 4.2.3, and 2) the aim of the kNN architecture in
[146] is to attain the highest speedup possible for real-time embedded applications. This has
been accomplished by combining the UNROLL, PIPELINE, and DATAFLOW directives.
Such directives are known for speedup gains due to the level of parallelism introduced at the
expense of a noticeable increase in the hardware resources. The latter was not an issue when
using the relatively large FPGA in the ZedBoard platform. Meanwhile, in kKNN-S; only the
UNROLL directive is used with an unrolling factor that balances the speedup and complexity
for the target application, while achieving more speedup with the use of the selector.

When compared to the kNN implementation in [158], kNN-S; provides a huge accel-
eration gain of 875x with 94% less required hardware resources. Such gain is due to the
design choices adopted by the authors in [158] such as: 1) using the euclidean distance
metric, which compared to (4.1), has an added complexity due to the square root operation,
2) applying the normalization of the data on-chip, which presents a complexity overhead,
and 3) performing the sorting operation using a single comparator and multiple BRAMs to
compare each pair of data points, this process is very slow compared to the proposed selector.
Although no power/energy details were provided for the kNN in [158], KNN-S; is expected
to be more efficient due to the 90% reduction in the number of DSPs.

The implementation requirements of KNN-S3 exceeds the capacity of the FPGA fabric in
Zyngberry and thus the design couldn’t be routed to achieve the 240MHz operating frequency.
Thus, for comparison reasons only, KNN-S3 is implemented on the target device used in
[147] i.e Vertix-7 knowing that implementing kNN on Zyngberry has achieved the real-time
and low power consumption demands for the target touch modality application as reported in
Table 4.2. kNN-S3 offers a speedup of 1.4x with 41.5% and 12.3% reduction in hardware
resources and energy per classification respectively. Such results are justified with the lower
number of FF and LUTs required by kNN-S3. This is expected since the kNN in [147]
uses the Bitonic sorter, which is outperformed by the proposed selector as shown in Table
4.1. Compared to kNN-S; and kNN-S,, the gain achieved by kNN-S3 is relatively lower
since the kNN in [147] exploits the high optimization capabilities of OpenCL for extensive

computations and large datasets.

4.6 Conclusion

This chapter introduces an efficient novel architecture for the hardware acceleration of the

k-Nearest Neighbor algorithm using a selection-based sorter. The architecture has been coded

4.6 Conclusion 71

in HLS, synthesized, and routed on the Zyngberry platform. Two efficient implementations
have been provided based on exact and approximate computing. The implementations exploit
the parallelism nature of the kNN algorithm along with the use of ACTs to achieve real-time
classification with relatively low power consumption. Compared to similar state-of-the-
art solutions, the proposed Exact kNN offers acceleration gain between 1.4x and 875 x
with lower energy per classification between 41% and 94% depending on the used settings.
Compared to GPU-based implementations, the proposed kNN-FPGA implementation offers
efficient and faster classification for the target application. Such results pave the way towards
embedding intelligence using a small-sized platform such as the Zyngberry for applications
with low power and real-time requirements. The implementation on different hardware
platforms, under different settings, and operating on different dataset size, verifies the
efficiency of the proposed selection-based kNN architecture. Future work will involve the
investigation of the use of circuit-level approximate computing techniques that are reported to

permit noticeable gains in the performance of machine learning hardware implementations.

Chapter 5

Real-time Accelerated Tensorial Support
Vector Machine Architecture

5.1 Introduction

Tensor based learning techniques permit the effective exploitation of the structure of data
used in various fields such as vision (e.g. image recognition), neuroscience (e.g. MRI data),
chemistry (excitation-emission data), etc. At the beginning of the last decade, Machine
Learning (ML) communities started showing interest in tensors and their use for supervised
learning [159]. Authors in [54] proposed a tensorial kernel that could be used for supervised
tensor-based learning models while utilizing the structural information embodied in the data
and exploiting the algebraic properties of tensors of any order. Such kernel methods lead to
flexible nonlinear models that have been proven successful in many different contexts. When
used with Support Vector Machine (SVM) algorithm, the tensorial kernel achieved better
classification accuracy than the Gaussian-Radial Basis Function (RBF) and linear kernels in
an image recognition task.

Gastaldo et. al have extended the tensorial kernel approach for tactile data processing
in [29]. This approach has been adopted for a touch modality classification problem since
it preserves the inherent tensorial structure of the data collected by tactile sensors. As
an end result, the tensorial-based SVM has achieved higher accuracy in classifying touch
modalities compared to the Regularized Least Square (RLS) algorithm. In [73], the first
FPGA implementation of the SVM algorithm based on tensorial kernel has been presented.
Specifically, two implementations were provided: Cascaded and Parallel. The former failed

to ensure real-time classification of touch (i.e in less than 400ms [4]), and the latter reported

74 Real-time Accelerated Tensorial Support Vector Machine Architecture

a relatively large hardware area and high power consumption of 1.14W. Such results were
not acceptable for applications with limited power budget and area constraints [141].

In this chapter, we present a new architecture and hardware implementation of the ten-
sorial SVM (TSVM) aiming at reducing the hardware complexity and power consumption
while keeping real-time operation. The architecture is characterized by the introduction of a
Shallow Neural Network (NN) for the Singular Value Decomposition (SVD) computations.
The proposed neural network architecture achieves 324 x speedup with 58% and 67% reduc-
tions in the required hardware resources and power consumption respectively compared to
the traditional one-sided Jacobi algorithm. Such reductions demonstrate the feasibility of
the implemented TSVM for real-time tactile data classification while consuming 6.28 mJ.
The proposed TSVM architecture achieves 131 x classification speedup with a 39% and 50%
resources and power reductions respectively compared to similar stat-of-the-art solution [73].
Furthermore, a scalability assessment of the proposed TSVM architecture is provided. The
assessment shows that replacing the one-sided Jacobi with a neural network demands only
1% increase in the required FFs compared to 29% when the number of training tensors is
doubled.

5.2 SVM C(lassification based on Tensorial Kernel

5.2.1 TSVM Re-visited

SVM classification of an input tensor has been introduced in a framework that extends kernel
methods to tensor data in 4 main steps [5]: Tensor Unfolding, SVD Computation, Kernel

Computation, and Classification (for details refer to chapter 3, section 3.5.1).

5.2.2 Complexity Assessment of TSVM

Figure 5.1 illustrates the estimated number of operations required in each step of the tensorial
SVM algorithm, where m and n are the dimensions of the unfolded matrix, N, N;, and Ny,
are the number of classes to be discriminated, the number of training tensors, and the number
of support vectors, respectively. As reported in [73] (m=8, n=20, N.=2, N;=100, etc.), the
SVD computation corresponds to about 96% of the overall algorithm. In [73], the one-sided
Jacobi algorithm has been adopted for finding the singular vectors. Such algorithm involves
a high number of arithmetic operations and requires several iterations to converge [160].

Hence, our goal is to find an efficient alternative for the SVD computation of an input tensor.

5.3 SVD Algorithms and Implementations 75

B 24m(n—1D@*@2n—-1)+n?+6)
B 2n?2(2n—1)+ (n+3) + 2)N.N;
. (1 + 3Nt)Nsv

Number of Operations

A

B SVD using One Sided Jacobi Kernel Computation SVM Classification

Fig. 5.1 Computational Complexity of the Tensorial SVM algorithm

5.2.3 Touch Modalities Classification

The tensorial SVM has been initially presented as an effective algorithm for touch modality
classification in [5]. In this work, three binary and one multi-class classification problems are
used to for the validation of the proposed TSVM architecture. Specifically, the problems are:

* Problem A: "brushing a paintbrush" versus "rolling a washer"
* Problem B: "brushing a paintbrush" versus "sliding the finger"
* Problem C: "sliding the finger" versus "rolling a washer"

* Problem D: "one versus the others"

These modalities have been derived from a tactile dataset that has been collected by 70
participants. Each participant performed the modality on both the horizontal and vertical
axes of a 4 x 4 tactile sensor for a duration of 10 seconds and a sampling frequency of 3kHz.
Thus, each touch modality could be represented by a tensor ¢ (4 x 4 x 30,000).

5.3 SVD Algorithms and Implementations

5.3.1 Literature Review

Singular value decomposition can be computed numerically through several methods such as
the Jacobi method, the QR method, and the one-sided Hestenes method [161]. For parallel
implementations, computing the SVD using the Jacobi method is superior to other methods in
terms of complexity and execution time [161]. Brent et. al have shown that two-dimensional
systolic arrays could be used for implementing the Jacobi method [162]. In [163], the authors

76 Real-time Accelerated Tensorial Support Vector Machine Architecture

have presented various realization for the Jacobi SVD computation using Coordinate Rotation
Digital Computer (CORDIC) [164]. The latter is adopted in majority of the existing hardware
implementations of the Jacobi SVD method. For small matrix dimensions, an efficient
implementation of SVD for the use in Multiple Input Multiple Output (MIMO) precoding
and real-time signal processing has been presented in [165]. The implementation is based on
CORDIC processors. For an arbitrary m x n matrix, Ibrahim et. al have presented an FPGA
implementation with fixed-point arithmetic [166]. The implementation managed to compute
the SVD of an 32 x 127 matrix in 13 ms while occupying 20% and 67% slice registers
and LUTs respectively on a Virtex-6 FPGA. Fast and efficient FPGA implementation for
computing the singular and eigen value decomposition based on a simplified CORDIC-
like algorithm is presented in [167]. The implementation used fixed-point arithmetic for
sequential and parallel operations leading about 3 x faster computation in an image denoising
application compared to computations via an Intel CPU based PC. The authors in [168] used
High-Level Synthesis (HLS) to model the one-sided Jacobi SVD computation on a Zedboard
development board. For a 16 x 16 matrix, SVD computation takes around 1.1 seconds
with a power consumption of 1.38W. Using CMOS 28-nm technology, Deng et.al proposed
a hardware architecture for tensor SVD [169]. Compared with real-world CPU-based
implementations, the architecture provides an average of 14x speed on various workloads.
These alternative implementations for SVD computation share several common challenges:
(1) they operate only on square matrices. Thus, if the input matrix is rectangular, an
additional complexity is added due to matrix symmetrization [169]. (2) if the implementation
uses floating-point representation, the complexity is relatively high even for small matrix
dimensions [170], and (3) depending on the required output precision, the algorithm might
require additional iterations to converge [160].

A neural network is one of the candidates for the SVD computation. The idea first
surfaced in 1991 when Samardzija et. al proposed an artificial continuous-time neural
network to estimate the eigenvectors and eigenvalues [171]. In [172], the convergence
and computational complexity through computer simulations of such network are assessed.
Another neural network has been presented in [173]. The network is characterized by an
order n-Ordinary Differential Equations (ODEs) leading to reduced dimensionality. Such
neural network has evolved to further applications such as Principle Component Analysis
(PCA) [174].

In this work, a new architecture for SVD computation based on shallow neural networks
is proposed. The architecture offers the ability to operate on rectangular matrices (thus
symmetrization is not needed (see Figure 5.2), and utilizes floating-point arithmetic. As

for convergence, the neural network training is usually performed offline on a high-end

5.3 SVD Algorithms and Implementations 77

computing device. Thus, a network could be trained several times for any given amount of

time to achieve top notch performance.

ey

X(m x n) l Xinxmn)

One-Sided | Hn xt)
—!—h Symmetrization ———p Jacobi —i—lv Truncate ——
]
(a)
e .'_ S |
i - Hnxmn)
. BT ke -
o l
| PN | Wnxe)
: B | Y >
| -
i S (Rl |
Lh@utlayerﬁze
(b)

Fig. 5.2 SVD Computation using: (a) one-sided Jacobi, (b) Neural Network

5.3.2 Computational Complexity

In this section, we compare the complexity of the one-sided Jacobi algorithm with that of a
shallow neural network in terms of the total number of operations. Consider a shallow neural
network of one hidden layer of size H and an output layer of size O. For an input A,,,, the

outputs of the hidden layer Y}, and the output layer Y, are expressed respectively as:

Y, :fh(Wh.A—th) (5.1)

Yo = foWo.Yy+bo) (5.2)

where W, b, and f represent the weight, bias, and activation function respectively. The output
of each layer consists of matrix multiplication, addition, and activation operations. The

number of operations for matrix multiplication and addition is expressed as:
Ny=H(2mxn—1)+H =2H(m X n) (5.3)

Assuming that the activation function requires N4, operations, the total number of operations

in the hidden layer is expressed as:

N, = 2H(m X I’l) + Nacen (5.4)

78 Real-time Accelerated Tensorial Support Vector Machine Architecture

The same can be applied to the output layer, thus the number of required operations is:
No =2H X O+ N4cro (5.5)
Finally, the number of operations for the whole network could be expressed as:
N =N, +Nop =2H(m x n+ O) 4+ Nacti, + Nacro (5.6)

To estimate N, suppose there exists an upper bound 7" such that N < T'. T is an upper bound
when both Ny, and Ny correspond to the most complex activation function i.e. the
tangent hyperbolic function (tanh). The latter is expressed as:

eZ _ e—Z

f(z) = (5.7)

et +e?

To find the number of operations required for the term e°, we referred to the function
implementation in the IEEE-754 library in [175]. The implementation uses the Taylor
expansion with an order 3 for floating-points, leading to a total of 16 operations. Thus the
number of operations Ny, = 35H (1 Add, 1 subtract, 1 divide, 16 for e* and 16 for e * for
each neuron). Similarly, Na.;0 = 350. For the network to output the right singular vectors

Viixn of an m x n matrix, the output layer size O is equal to n2. This simplifies (5.6) to:
N <= (2H x n)(m+n) + 35H + 351 (5.8)

Knowing that the number of operations for the one-sided Jacobi algorithm is (see Figure
5.1):
Nj=24m(n—1)[n*2n—1) +n’> 4 6] (5.9)

through simulations, the values of m, n, and H are varied to compare (5.8) and (5.9). Figure
5.3 plots the number of operations N; and N required to compute the SVD of a matrix using
one-sided Jacobi and a shallow neural network respectively.

Generally, the comparison results are in favor of the neural network approach as shown
in Figure 5.3. The one-sided Jacobi is superior for very small dimensions such as 2 x 2
for H > 21. As the dimension starts to increase, the neural network requires significantly
less number of operations for SVD computations. For instance, for (m,n) = (20,16) and
(m,n) = (4,80) (these dimensions are often used for tensorial SVD implementations based
on the one-sided Jacobi algorithm [73], [176]), computing the right singular vectors V using
a shallow neural network requires less number of operations than using the one-sided Jacobi
(N < Nj) for all values of H < 70,000 and H < 800,000 respectively. Such values of H

5.4 SVD using Shallow Neural Networks

79

H=100

><1u”

Nb of Operations

) 100
50 50
0 o

H=70000

Nb of Operations

100

H=10000

100
50
0 o

H=800000

Nb of Operations %
So v & o ®

_ 100
50

Fig. 5.3 Number of Operations required in one-sided Jacobi (Nj) and Shallow Neural Network
(N), (m,n) are the matirx dimension and H is the hidden layer size.

are very large even for the largest existing neural networks. The number of operations (N)
required for each activation function is presented in Table 5.1. The hidden layer activation
function could be ReLU (Standard, LeakyReLU or Parametric), Sigmoid, or hyperbolic
tangent (tanh), it is selected based on the trade-off between complexity and the required
performance. In the output layer, only the hyperbolic tangent function can be used, due to

the fact that the values of the singular vectors are bounded between -1 and 1.

Table 5.1 Complexity Assessment under different activation functions

Activation Function Number of
Hidden Layer | Output Layer Operations (N)
ReLU (2H x n)(m+n) + H + 35n?
Leaky/PReLU Tanh (2H x n)(m+n) +2H + 35n°
Sigmoid (2H x n)(m+n) + 18H + 35n°
Tanh (2H x n)(m+n) +35H + 35n°

5.4 SVD using Shallow Neural Networks

5.4.1 Network Structure

A regression model is targeted since the NN is needed to compute the singular vectors. For

that, there are two possible categories to work on: (1) Classification NN that should be

80 Real-time Accelerated Tensorial Support Vector Machine Architecture

modified to perform regression and re-trained [177] and (2) Regression NNs [178]. Although
the classification accuracy achieved by the one-sided Jacobi TSVM could be obtained by an
existing NN model from the two above mentioned categories, the main concern remains in
the computational complexity of such model. Concerning the first category, one could choose
Convolutional NN (CNNs), Multi-Layer Perceptron (MLP), Long-short Term Memory
(LSTM), etc. Even the smallest models such as MobileNet [179], Shuffle Net [180], and
EffNet [181] contains at least four layers. On the other hand, for the regression NNs, with
only one hidden layer, a shallow network is considered to be the smallest possible regression
NN model.

Figure 5.4 shows the proposed shallow neural network that is capable of computing the
right singular vectors V. The network is composed of three fully connected layers: an input
layer of size m X n, a hidden layer of size H, and an output layer of size O =n x n. f;, and fop
are the hidden and output activation functions respectively. Based on Table 5.1, the tangent
hyperbolic function is used for fp, while several functions can be used for f; based on the

training performance.

i O O i \ outh

: Q- S | i — 3 fp—"
0 — O o, :

| P | O in; (b)

m ——;—PO £ o —a— n

i O v O O i outh,

o B iy

ewiger wdentayer Oupuctayr /': ©

(@)

Fig. 5.4 Proposed Shallow Neural Network: (a) Overall Structure, (b) Hidden Layer Neuron,
(c) Output Layer Neuron

5.4.2 Network Training

The touch modalities dataset from [5] is used for training. However, some modifications

have been applied based on the following:

* Some participants recordings are noisy (see Figure 5.5(a)), thus their corresponding

data has been removed from the training dataset.

5.4 SVD using Shallow Neural Networks 81

* Since no particular indications were given to the participants in [5] about the pressure
level, silent intervals (i.e. voltage readings from sensor taxels equals to zero, see Figure
5.5(b)) are observed in the recordings. These silent intervals will not help the neural
network to learn new patterns and thus are removed. Specifically, all reading outside

the timing interval [3.5, 7] are omitted.

2.5 T T T T T T T T T
® 2r
o
8
©
> 15t
1 1 1 1 1 1 1 1 1 1 (b)
0 1 2 3 4 5 6 7 8 9 10

Time (s)
Fig. 5.5 Touch Modality with: (a) Noisy Readings, (b) Silent Intervals
Algorithm 3 summarizes the pre-processing technique applied to the dataset. The algo-
rithm truncates each modality from 10s to 3.5s resulting in a tensor 7’ (4 x 4 x 10, 500).
Afterwards, subsampling is applied to obtain 20 readings (P = 20) from the 10,500
resulting in a final tensor ¢ (4 x 4 x 20). The obtained tactile tensor ¢ (4 x 4 x 20) is unfolded
into three matrices M (4 x 80), N(4 x 80), and P(20 x 16). According to (3.3) each matrix

could be decomposed into:
Mi30 = Usxs0 % £80x80 X Vg0 80 (5.10)

Nix80 = Usxgo X Z80x80 X Vaoxs0 (5.11)

Paox16 = Uzox16 X Z16x16 X Visx16 (5.12)

82 Real-time Accelerated Tensorial Support Vector Machine Architecture

Algorithm 3: Pre-Processing Algorithm
Input: Tensor T of size (:,:,S),
Time Interval [a, b]
Sampling parameter P
Output: Sampled Tensor ¢ of size (:,:,P)
Letvl < axS/10
Let v2 < bxS/10
Let S’ < v2—vl
Let 77 be a Tensor of size (:,:,S”)
Let j=0
fori<vitov2do

L T'(:,5J) = T (1)

j++

Letk=0

fori <0Oto P do
0(:50) — (P/S)« TP TI(:,0)
kt+=S/P -

Authors in [5] and [56] reported that for tensor SVD, only a small number of the columns
of V is required to obtain acceptable classification accuracy when embedded in SVM. Using
the three touch modality problems reported in section 5.2.3, the V matrices that resulted in
the highest classification accuracy are: ng(;x 4 ngx 4» and Vl%xZ' A total of 2240 matrices
of dimensions 20 x 16 and 4 x 80 have been derived from the modified dataset. Then, the
corresponding V matrices are generated using MATLAB. These matrices are divided into
80% for training, 10% for validation, and 10% for testing. Afterwards, we trained four

networks whose input and output dimensions respectively are:

NNI: 20 x 16 and 16 x 16.

NN2: 4 x 80 and 80 x 0.

NN3: 20 x 16 and 16 x 2.

NN4: 4 x 80 and 80 x 4.

NNI and NN?2 are designed for the computation of a generic matrix SVD, while NN3 and
NN4 are designed for the computation of tensor SVD embedded in TSVM targeing tactile
data classification where only a selected number of columns # of V' is required. Each network
model is trained using floating-point representation during both forward and backward
propagation. The network is trained to export the right singular vectors V with the least

5.4 SVD using Shallow Neural Networks 83

possible error margin compared to exact computations obtained via MATLAB. Since the
proposed network is a regression model that outputs singular vectors, the performance is
determined based on two metrics: (1) Mean Squared Error (MSE) and (2) Cosine Similarity
(CS). These metrics are defined as:

MSE ==Y (V; = V;)? (5.13)

1y -
cs L Vi (5.14)
w =T)

where V is the matrix generated from the neural network and V is the one generated from
applying the SVD using MATLAB software. Thus, the training aims at finding a network
model that achieves the lowest MSE (i.e. the elements v; of the V and V matrices have similar
values) and highest CS (i.e. the vectors V; of the V and V matrices have similar direction i.e
CS tends to 1).

The proposed neural network model is hand crafted and can be customized. The training
process is used to tune the network hyperparameters [182] i.e. parameters that determines
the network structure and training behavior (e.g. size of hidden layer H, learning rate)
and parameters (e.g. weights). During training, the weights and biases of the network
are randomly initialized, then updated using one of the below optimizers. As for the

hyperparameters, the following settings have been tested:

 H =10, 20, 200]

* Activation Function: Sigmoid, Tanh, ReLU, LeakyReLU, and PReLU with f3: learned
parameter through Channel-wise or channel-shared modes [183]

e Learning rate = [0.1, 0.01, 0.001, ... 10_5]
* Optimizer : [SGD, Adam, Adadelta, RMSprop]

e Batch size =[50, 100, 150]

The four neural networks have been coded in Python using Tensorflow and Keras libraries.
Then, they are trained on an ASUS PC equipped with an NVIDIA GTX 1650 graphics card
with 4GB VRAM.

5.4.3 Network Performance

Figure 5.6 shows the training and validation MSE of the best network model for NN/ and
NN2. A training and validation MSE in the order of 1073 and 10~ is achieved via NN/

84 Real-time Accelerated Tensorial Support Vector Machine Architecture

and NN2, respectively. Such performance is obtained using a model with the characteristics
presented in Table 5.2. The two networks NN/ and NN2 and the exact one-sided Jacobi
algorithm (based on the architecture presented in [166]) are used to compute the V matrix of
200 matrices (100 for each input dimension). The results show that both neural networks:

« can compute the V matrix of an input with a testing mean squared error of 2 x 1073
and 4.5 x 10~ for 16 x 16 and 80 x 80 output dimensions, respectively. Such results
are comparable to the ones provided by exact one-sided Jacobi algorithm as shown in
Table 5.2.

« achieves a low Root Mean Squared Error (RMSE) of 3 x 1072 and 1 x 1072 for 16 x 16
and 80 x 80 output dimensions, respectively. This is evident in Figure 5.7, where the

exact V and the predicted V values are relatively close for both input dimensions.

0209 — rain — Train

0.015 1
015 Val Val

m
2010

0.05 k (@) 0.005 1 -)

000 T T T T T T T T 0 000 L T T T T T T T T
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Epochs Epochs

W 0,010 1
s

Fig. 5.6 Best Model Training and Validation MSE for (a) NN1, (b) NN2

Table 5.2 Neural Networks NNI and NN2 Structure and Testing Performance

Neural Network NNI NN2
Input Layer Size 20x 16 4 x 80
Hidden Layer Size 400
Output Layer Size 16x16 | 80x80
Activation Function f}, LeakyReLU with f = 0.01
Learning Rate 0.001
Batch Size 100 50
Epochs 300 200
Testing MSE 2x1073 | 45%x107%
Testing MSE based on [166] | 1.05x 1073 | 2.9 x 10~*

Figure 5.8 shows the best achievable MSE and CS for the networks NN3 and NN4 under
the settings presented in Table 5.3. One noticeable observation is that the size of the hidden
layer differs for the two input dimensions. This is due to the fact that NN4 has to output 320

5.4 SVD using Shallow Neural Networks 85

e ® ExactV 0T s .' i ;. @ ExactV
075 4 @ Predicted vV 0.75 ° [] ® Predicted vV
. : . <8 3 .
L]
0.50 '- ° '. .‘.. ..® .. 0.50 H ° ‘ .
. t:] O ¥ ¢ e’ p
025 "'.' 3 ol ‘k‘ . % "‘. " 0251 @ H .S H ‘ (3K}
e - ° '. ° 0
% 0.00 , ‘ ‘. ‘ #' ‘.' % 0.00
~0.25 "f& {}{‘]'* ,p "'% —0.25 o
o oo 00.
-0.50 . *° : :: " ° : ® g‘ . 050 :' [] [] L]
o o []
-0.75 . —0.75
(a) b
-1.00

-1.00 T T T T T T . T T T T T T T
250 0 1000 2000 3000 4000 5000 6000

0 50 100 150 200
Singular Value Number singular Value Number

Fig. 5.7 V matrix Generation for Networks: (a) NN1, (b) NN2

1.0 . 1.0 1
z 7 208
58 E
E E 06
n 0.6 n
] | 2 047
3 0.4 a
o o
y @| 9oy ()
0.2 1 T T T T T T T T 4 T T
Epochs Epochs
0.20
§ 044 — Train 5 —— Train
& Val @ 015 val
%% | 3
s S 0.10
g% g
c £ 0.05-
3% | (b) 3 (d)
[o
H =
0 50 100 150 200 250 300 350 400 0 200 400 600 800 1000

Epochs Epochs

Fig. 5.8 Best Model Performance: (a) CS for NN3, (b) MSE for NN3, (c) CS for NN4, (d)
MSE for NN4)

elements (80 x 4) for the input dimension 4 x 80 compared to 32 elements (16 x 2) generated
by NN3 for the input dimension 20 x 16, which justifies the longer training time required
(higher number of epochs). However, the training can be shortened into 250 and 100 epochs
for output dimensions 80 x 4 and 16 x 2 respectively. The obtained performance of NN3
and NN4 is compared to that of computing the SVD using the one-sided Jacobi algorithm
based on the architecture presented in [166]. According to the comparison shown in Table
5.4, the proposed neural networks are capable of computing the right singular vectors V
while: (1) providing low MSE and high CS during training, validation, and testing, and (2)
achieving comparable performance in terms of MSE and CS to the exact computation using
the one-sided Jacobi. This is evident for both output dimensions 16 x 2 and 80 x 4.

Since NN3 and NN4 are designed to be embedded in the TSVM architecture, the networks’
complexity is a concern. Figure 5.9 shows the MSE and CS while testing NN3 under different
activation functions. Although using the hyperbolic tangent function leads to a model with

86

Real-time Accelerated Tensorial Support Vector Machine Architecture

Table 5.3 Neural Networks NN3 and NN4 Structure

Neural Network NN3 NN4
Input Layer Size 20 x 16 4 x 80

Hidden Layer Size H 40 140
Output Layer Size 16 x2 80 x 4

Activation Function f;, | PReLU with Channel-shared 8
Learning Rate 0.001
Batch Size 100 50

Epochs 400 1000

Table 5.4 NN3 and NN4 Performance Compared to one-sided Jacobi

Neural Network NN3 NN4
Training MSE 945x107~* | 3.7x107%

Training CS 0.998 0.989
Validation MSE 9.63x107% | 4.02x 10~*

Validation CS 0.982 0.969
Testing MSE 9.7x107* | 4.18 x 10~*
Testing MSE based on [166] | 9.21 x 10~* | 3.88 x 10~*

Testing CS 0.971 0.957

Testing CS based on [166] ~1 ~1

the lowest MSE and highest CS, it imposes the highest computational complexity as reported
in Table 5.1.

. MSE Cs
7.00E-03 6.56E-03 12
6.00E-03 0.971 0.975 0.989 1
5.00E-03
0.2
w 4.00E-03 0.67 e
6 O
= 3.00E-03
04
2.00E-03
5.70E-04 5.54E-04 9.30E-04
HE B ®m
0.00E+00 0
RelLU PRelLU Sigmoid Tanh

HIDDEN LAYER ACTIVATION FUNCTION

Fig. 5.9 Network Performance Under Different Activation Functions

Targeting the hardware implementation of NN-based TSVM, PReLLU activation function
has been adopted for the hidden layer as a trade-off between complexity and MSE/CS.

5.4 SVD using Shallow Neural Networks 87

5.4.4 Hardware Implementation

This section presents the architecture adopted for the hardware implementation of the four
shallow neural networks. The hardware architecture has been coded in C++, synthesized and
implemented using Vivado/Vivado HLS 2020.1 targeting Virtex-7 FPGA device operating
at 100 MHz. The input, weights, and biases are represented in 32-bit floating-point. To
test and validate the hardware implementation, a C++/RTL co-simulation is performed in
Vivado HLS to compare the results between the C++ simulation and the RTL implementation.
Afterwards, the RTL implementation has been exported as an Intellectual Property (IP) to
Vivado where the hardware resources and number of clock cycles are recorded. The time
latency is computed as:

T =cc X 1/ fimax (5.15)

where cc is the number of clock cycles in post-implementation timing simulation and f;,,4x
is the maximum operating frequency. As for power consumption, a post implementation
functional and timing behavioral simulation is performed to generate a Switching Activity
Interchange File (SAIF). This file is used to obtain a vector-based power estimation post-
routing.

Figure 5.10 shows the proposed architecture for the implementation of the shallow neural
networks (t = n for NN1 and NN2). For an input X of size L (one of the unfolded matrices),
it outputs the V matrix using sequential operations. The outputs ¥}, and Yy corresponds to the
equations (5.1) and (5.2), where f;, and fo are the PReLU and the hard tangent hyperbolic
activation functions respectively as shown in Figure 5.11. The input X and the weights are
stored on-chip using BRAMs and the multiplier is fed from the BRAM to perform element-
by-element multiplication of the input and weight values. Similarly, the multiplication result

is fed to the adder and the bias values are read from on-chip BRAMs.

Real-time Accelerated Tensorial Support Vector Machine Architecture

88

(axuwA

T lefermdmo T 2 = e >
== T T i e
AR
5 ! b XVIA
2 ! | ISIMUB WY
S
g ' e coad)y T (uxurIm
= ' '
= Lo-p--
= N
]
|| |
§

o110q1adAY jua3ue], prey (q) ‘() TOY dMoweIed (B) :suonoun UoneAndy [1°G "S1

0's §'T 00 S§T- 0'S- 0's 4 00 S'T- 0S-
—————————————— -Hl |.H|
(q) (v)
(1] 0
I -T

QINJOANIYDIY JI0MION [BINAN MO[[RYS OT°S ST

UONIPPY XLIEW @ uoneddnn X1ep ® Burunag @

(1o)oq (H0)m

5.4 SVD using Shallow Neural Networks 89

The right singular vectors matrix V' is obtained by transforming the output vector Yo
into a 2D array as shown in Figure 5.12 . The advantages of such architecture is that it: (1)
imposes reduced hardware complexity with the use of hard-tanh instead of tanh without an
accuracy loss, and (2) allows the use of network pruning without any loss in performance
(MSE/CS). The weight and bias matrices obtained from the offline training phase have been
analyzed to identify neurons with very low weight/bias values. These neurons could be
removed without affecting the network performance during inference. Thus, pruning is

applied on matrix multiplication/addition by skipping operations where W[i],b[i] < 1074,
t
o| - = - n

Fig. 5.12 Vector Yy to Array V Transformation

Table 5.5 presents the implementation results of NNI, NN2, and state-of-the-art one-
sided Jacobi architecture. The results show that both NN/ and NN2 require a lower average

hardware resources up to 86%.

Table 5.5 NNI and NN2 Implementation Details on Virtex-7 FPGA

NNI \ Jacobi-SVD [166] | NN2 \ Jacobi-SVD [166]
Input Dimension 20 x 16 4 x 80
BRAM 1 4 16 5
DSP 5 30 5 30
LUT 761 13086 816 13357
FF 716 8788 773 9205
Sfmax (MHz) 118.13 109.5 118.13 109.5
Time Latency 8 ms 40 ms 0.25s 4.7 s
Speedup 5% 18.8 %
Average Resources
Redguction(%) 86% 12.2%

To output the V matrix, speedups between 5x and 18.8x have been recorded. Further-
more, two observations could be highlighted: (1) both architectures use the same number
of DSPs regardless of the matrix dimension, which is compensated with the use of LUTs;
with a 6 x reduction in favor of the NNI/NN2. (2) The network NN2 demands an increased
usage of BRAMs for the input matrix 4 x 80. This is due to the fact that the weight and bias

90 Real-time Accelerated Tensorial Support Vector Machine Architecture

matrices are stored on chip. In case of an input matrix of size 20 x 16, this is not an issue
since the dimensions of the weight, bias, and output V matrices are lower than that in the
case of 4 x 80 matrix (e.g. for 4 x 80 matrix, the W, matrix is of size 6400 x 400 compared
to 256 x 400 for 20 x 16 input matrix).

Table 5.6 shows the implementation details for the SVD computation of a 4 x 4 x 20
input tensor using shallow neural networks (i.e. NN3 is utilized once to compute the SVD
of the matrix P, while NN4 is utilized twice to compute the SVD of the matrices M, N)
compared to the one-sided Jacobi based on the architecture presented in [73].

Table 5.6 Implementation Results for Tensor SVD Computations

Architecture Neural Network | one-sided Jacobi
BRAM 102 88
DSP 32 105
FF 3714 29277
LUT 4905 43258
Time Latency 14.5 ms 4.7 s
Power Consumption 0.45W 1.35W

The obtained results show that using neural networks for SVD computations allows for a
324 x speedup with an average resources and power reductions of 58% and 67% respectively.
Another observation is that the neural network architecture uses slightly more BRAMs. This
is due to the fact that the weights and biases matrices obtained from network training are
mapped into BRAMs and are not saved on an external memory. Knowing that the Virtex-7
FPGA is used for implementation to have a credible comparison with the state-of-the-art, the
obtained results show that the proposed neural network for SVD computations is adequate
to fit in a resource-limited platform such as the Zyngberry. This is not possible for the

implementation of the one-sided Jacobi targeting large matrix dimensions.

5.5 TSVM based on Shallow Neural Networks

5.5.1 Proposed Architecture

The neural networks NN3 and NN4 have been embedded into the cascade architecture of
the tensorial SVM presented in [73]. The new NN-based TSVM architecture is presented in
Figure 5.13. The "NN Memory" contains the weights and biases matrices of the designed
neural networks. The "SVM Memory" contains the singular vector training matrices. kp, kp,

and k3 are the three kernel factors obtained using (3.4).

5.5 TSVM based on Shallow Neural Networks 91

Matrix
X, (4 x 80)

Kernel
NN4 Kernel ~ —— Me”‘e ® Classification
emory

Matrix
X, (4 x 80)

MUX
DeMUX

@(4 x4 x20)

I Singular Vector
S1 So Training

Z Matrices

Matrix
X3(20 X 16) FSM

Fig. 5.13 Neural Network based TSVM Cascade Architecture

The architecture performs the SVD computation of the three unfolded matrices using the
proposed NN3 and NN4 neural networks. Table 5.7 shows the different operating modes in
the cascade architecture. For $3S; = 00, the first unfolded matrix X; is selected and NN4 is
activated, then for SpS; = 01, the second unfolded matrix X; is selected and NN4 is utilized.
As for SpS; = 10, the third unfolded matrix X3 is selected and NN3 is activated. When active,
each network computes the right singular vector matrix V of each of the unfolded input
matrices. The obtained V matrices along with the ones exported from the training phase
are used to compute the kernel factors as depicted in (3.5), which are required to output a

classification decision as shown in (3.6).

Table 5.7 NN-based TSVM Operating Modes

Control | MUX Active

So | S1 | Output | Network
00 X1 NN4
01 X5 NN4
110 X3 NN3
1|1 - -

5.5.2 Implementation Results

Table 5.8 presents the implementation details of both the NN-based TSVM and Jacobi-based
SVM for N; = 200 and N, = 2. The energy per classification is computed as E = P X T
where P is the dynamic power consumption and 7 is the time latency.

Results show that replacing the one-sided Jacobi algorithm with a shallow neural network
in the architecture of the TSVM leads to faster classification time up to 131x. The NN-based
TSVM and Jacobi-based TSVM recorded 0.9 W and 1.8 W respectively, thus a 50% reduced

92 Real-time Accelerated Tensorial Support Vector Machine Architecture

Table 5.8 Implementation Results for NN-based TSVM on Virtex-7

Architecture NN-based TSVM | Jacobi-TSVM
BRAM 105 (7.14%) 91 (6.19%)
DSP 133 (3.7%) 206 (5.72%)
FF 11975 (1.38%) 39047 (4.51%)
LUT 20427 (4.7%) 60100 (13.87%)
Time Latency (ms) 36 4730
Energy per classification (mJ) 6.28 600

power consumption is achieved. This leads to 88% reductions in the energy per classification
factor. The NN-based TSVM also requires 39% less average hardware resources. Following
these results, three main observations could be noted: the proposed NN-based TSVM: (1) is
capable of real-time classification within 36 ms (time < 400ms [4]), (2) achieves real-time
classification using a cascaded architecture, which was not possible using the Jacobi-based
TSVM as reported in [73]. The latter has been the main reason for using the parallel
architecture which has lead to high power consumption, and (3) offers the reductions in
resources and energy per classification at the expense of increased memory requirements to

store the weights and biases matrices compared to Jacobi-based TSVM.

5.5.3 Performance Verification

The NN-based TSVM implementation is verified using the four classification problems
mentioned in section 5.2.3. Table 5.9 presents the classification accuracy achieved by the
proposed NN-based TSVM in comparison with existing methods targeting the same touch
modality classification. The classification accuracy of different methods is tested using a

dataset with 30 unseen samples.

Table 5.9 Touch Modality Classification Using NN-based TSVM in Comparison with existing
methods

Classification Accuracy (%)

Problem

NN-based TSVM

Jacobi TSVM [5]

RLS [5]

k-NN (k=3) [184]

DCNN [32]

LSTM [185]

GRU [185]

TSVM-IRCK [55]

90

90

68

83.3

86.3

89.5

64

NA

NA

NA

NA

=lloli=clie

80 83.3
71 71

755
73.3

89.6
NA

74.51 73.4 71

76.9

Using neural networks to compute the right singular vectors V provides approximate
values compared to the exact one-sided Jacobi. However, this resulted in acceptable clas-
sification accuracy with only 3% loss in the worst case. This is evident in the comparable
MSE/CS of both architectures as presented in Table 5.4. Compared to other methods, for
binary classification (A, B, and C), the proposed NN-based TSVM shows a worst case of 6%

5.6 Scalability Assessment 93

loss compared to RLS for Problem B and a 5% better accuracy for Problem C, and 9.6% loss
compared to KNN for Problem C while providing up to 20% accuracy increase in Problems
A and B. Problem C has been identified as very challenging for TSVM in [5], it has been
solved in [184] using k-Nearest Neighbor (kNN). For multi-class classification (Problem D),
NN-based TSVM achieves an accuracy comparable to Jacobi-TSVM and RLS, with a 7%
worst case loss compared to Deep Convolutional Neural Network (DCNN) and TSVM with
Ideal Regularized Composite kernel (TSVM-IRCK).

5.6 Scalability Assessment

In order to quantify the scalability of the NN-based TSVM hardware complexity (resources
and time latency), two cases are assessed: (1) scalability of the shallow neural network, and
(2) scalability of the NN-based TSVM. The former is studied by varying the hidden/output
layer size and tuning the network to achieve the same MSE/CS reported in Table 5.4. The
latter is performed by increasing the number of training tensors while maintaining the overall
classification accuracy of the NN-based TSVM as reported in Table 5.9.

5.6.1 Case 1: Scalability of the Shallow Neural Network

The scalability of the neural network depends on the size of each layer and the activation
function in use. Through Figure 5.3, an insight about the number of operations with respect
to the dimensions (i.e. m,n, and H) could be learned for a certain application. To assess the
scalability of the proposed NN architecture, the hidden and output layer sizes are varied. L is
chosen so that the network maintains the same MSE/CS reported in Table 5.4. O is derived
from the dimension of the V matrix of the unfolded matrices obtained from the input tensor
4 x4 x 20. Figure 5.14 presents the hardware resources and the time latency with respect to
hidden and output layer sizes for a three-layer (input, hidden, output) shallow neural network
for the SVD computation of an input matrix. The obtained results are recorded when the
network achieved a comparable MSE/CS to those reported in Table 5.4. Analyzing the graphs
leads to several observations:

* The number of required FFs and LUTs is not uniform (see Figure 5.14(a),(b)). For
instance, a similar number of FFs/LUTs is required for networks with 140 and 400
neurons in the hidden layer with the same output layer size. This could be justified with
the pruned cascaded architecture where resources are shared for blocks with similar

functionality.

94

Real-time Accelerated Tensorial Support Vector Machine Architecture

1040

1020

1000

980

1260

1240

1220

" o b=
t 2 é
e o — = 1200 a
5 e 3 &
5 960 # s - 5 10
£ 4 BT S — * 5
S g40 - E i €8
Z % 2 -~ >
920 4 1160 - =N
ol o
900" 1140 & 4
a () «©
880 (© 1120 2
40/32 140/320 400/256 400/6400 4032 140/320 400/256 400/6400 40/32 140/320 400/256 400/6400
Hidden/Output Layer Size Hidden/Output Layer Size Hidden/Output Layer Size
6 3
25 x
5.5 . 7
g g 2 ;
2 :
g J
5 g15 /
@ @ 4
3 8 .
5 e J/
1 /
=4 IS /
45 /
0.5 4
s
i
(@ 7.2 18.47 @

4 0
40/32 140/320 400/256 400/6400 40/32

Hidden/Output Layer Size

140/320 400/256
Hidden/Output Layer Size

400/6400

Fig. 5.14 Scalability of Shallow Neural Network for varying the hidden/output layers size

* Memory requirements in terms of BRAMs starts to increase once reached an output
layer size of 80 x 80 with 400 neurons in the hidden layer (see Figure 5.14(c)). This
is justified since the size of the weight and the bias matrices increase in such cases,

which requires more memory storage.

* As shown in Figure 5.14(d), regardless of the input/hidden/output layer size of the

network, the number of DSPs is constant for the proposed architecture.

* The SVD computation time is relatively short until reaching a large output layer size
as shown in Figure 5.14(e). This is due to the longer operations required to perform
matrix multiplication/addition. However, according to the comparison in Section 5.3.2,
this is faster than using the one-sided Jacobi as long as H < 70,000 (H < 800,000)
for 20 x 16 (4 x 80) matrices.

The presented scalability assessment supports the use of these networks for SVD compu-
tations as an efficient solution especially for large matrix dimensions. Hence, the proposed
idea could be extended into other applications via a two-stage approach as shown in Figure
5.15:

* Stage 1: Unfold all the tensors ¢; in a dataset into 3 matrices. Then, find the V matrix
for each of the unfolded matrices using MATLAB or other software. For the majority
of the applications, a tensor has the same first two dimensions (e.g. image, touch

5.6 Scalability Assessment 95

Sallow Neural Network

1
1
1
1
I
i
I
! o o
! i °) o N
i X B Wik xpr)) Subset TR g o o 1™

' © | w,
| oo o e ™

B . 1

X0, X LT Vi X LL) 0 1 W
I

@;(Iy X I X I3) : Hyper:

X5l x il Vithl, x L) !
l
! NO
]
]
| Yes
|
]

Stage 1 ' Stage 2

Fig. 5.15 SVD Computation Approach via a Shallow Neural Network

modality) hence, two of the generated matrices will have the same dimension hence
can be grouped in a subset A. The remaining matrix and its corresponding V matrix
will be added to a subset B.

» Stage 2: For each of the subsets, a shallow neural network is to be designed. Start
with random hyperparameters for the initial model, then tune it using the generated
subset to reach the required MSE and CS. Once, the best model is found, the weights
and biases matrices could be exported and used by the architecture in Figure 5.10. For
complexity tuning, one could modify the pruning rule while preserving the required

performance metric imposed by the application.

5.6.2 Case 2: Scalability of NN-based TSVM

To study the scalability of the proposed NN-based TSVM, the number of training tensors
has been varied between 200 and 900 and the implementation requirements are recorded
once the NN-based TSVM achieves a comparable accuracy to the one presented in Table 5.9.
According to the results obtained in Figure 5.16:

* The required hardware resources (FFs, LUTs, BRAMs) are slightly increased with
the increase of the number of training tensors. In case of BRAMs, a steeper slope is
observed which is due to the adoption of NN that requires the storage of weights and

biases matrices.

96 Real-time Accelerated Tensorial Support Vector Machine Architecture

121 10 2086 <10 108

1.208 ’ 2.054 A 1075
1.206 < 2.052 o

@ / @ 2 107
5 1204 % 2.05 %

é 1.202 i é 2.048 4 E o

2 T 2 L S 106
12 - 2,046 - 2

1.198

1.198

(@)

200

300 400 500 600 700
Number of Training Tensors with Nc=2

800

134

2.044

)

*
2.042
200 300 400 500 600 700

Number of Training Tensors with Nc=2

800

©

300 400 500 600 700
Number of Training Tensors with Nc=2

1335

0.12

o

0.08

-

o
o
@

e
PRe

800

Number of DSPs
Py

132.5

Time Latency (ms)

0.04,

(@)

-
e
e
7
-

(e

132

0.02
200 300 400 500 600 700 200

Number of Training Tensors with Nc=2

800 300 400 500 600 700

Number of Training Tensors with Nc=2

800

Fig. 5.16 Scalability of NN-based TSVM for binary classification (Nc = 2) and variable
number of training tensors

* The number of required DSPs is contsant for each size of training tensors.

* The proposed implementation is capable of real-time classification even after 4.5 x

increase in the number of training tensors.

Compared to the scalability study of the Jacobi-based TSVM presented in [75]*, Figure
5.17 shows that the proposed approach complexity versus the number of training tensors
presents a reduced slope. For instance, the Jacobi-based TSVM requires 29% increase in
the number of FFs when the number of training tensors is doubled. Using the NN-based
TSVM, an increase of less than 1% in FFs is noticed. This is mainly due to two reasons:
(1) the neural network requires significantly less resources than that of the one-sided Jacobi,
and (2) the NN-based TSVM is a cascaded implementation i.e. blocks are being re-used
for implementation while increasing the time latency. In [75], the architecture is based on
parallel computation due to their time constraint of real-time classification. The latter is
assured using the proposed cascaded architecture for all of training tensors sizes.

The importance of the presented work lies in the ability to scale such architecture for
processing larger number of samples while respecting the constraints of the application. When
scaled up, the designed NN-based TSVM could enable intelligence on smaller platforms (e.g.
Zyngberry) if two issues are tackled. The first issue is reducing the number of DSPs: this

could be achieved by using some approximate computing techniques [95] or using LUTs-only

5.7 Conclusion 97

25

s
[}
T

AY
AY
\

Hardware Resources
AY

0.5}

o, mllE wBE mB

200 400 600
Number of Training Tensors

Fig. 5.17 Scalability Comparison with Existing Methods

custom core for matrix operations. The second issue is reducing the number of BRAMs: this
could be achieved by further pruning of the weight/bias matrices as long as the application
performance is not highly affected. Another method is to offload these matrices completely
to external DRAM. This imposes additional timing overhead. However, authors in [44] have

presented a strategy to overcome such design challenge.

5.7 Conclusion

A shallow neural network architecture for the SVD computation of tensorial inputs is
presented. The architecture achieves comparable performance to the state-of-art solutions
while imposing significant reductions in the implementation requirements. Once embedded
in the SVM architecture, the NN-based TSVM is capable of delivering faster touch modality
classification time up to 131 using a cascade architecture. The latter is characterized by a
39% and 88% decrease in the resources and energy per classification respectively compared
to the architecture presented in [73] targeting the same application. Moreover, the proposed
NN-based SVM obeys the constraints imposed by the tactile data processing application e.g.
small size, real-time response, and low power consumption. The encouraging scalability
results present the first effective trial for designing an efficient embedded processing unit for
an Electronic Skin (e-skin). A unit that is capable of delivering real-time performance with
relatively acceptable power consumption without the need for high performance platform or
multi-core devices.

Chapter 6

A Hybrid Precision Architecture for an
Efficient Binary Convolutional Neural
Network Accelerator

6.1 Introduction

Convolutional Neural Networks (CNN) are a promising solution in many application domains
such as Internet of Things (IoT), image processing, tactile processing, etc. However, the
computational complexity and memory requirements are the main challenge in the deploy-
ment of CNNs on resource-limited devices for energy-constrained applications [186]. For
instance, the VGG-16 network contains about 140 million 32-bit floating-point parameters
and implements 1.6 x 10'° arithmetic operations [76]. There have been numerous efforts on
the complexity reduction of CNNs such as network pruning [187], knowledge distillation
[188], and weight quantization [189].

Quantization of CNNs may cause an information loss especially if it is applied to the
extreme using 1-bit representation i.e. binarization. To address this issue, a variety of
methods have been proposed in recent years [76]. These methods aim to: 1) minimize the
quantization error, for instance by only quantizing the weights, 2) improve the network loss
function to adapt to the binary values propagating through the network, and 3) reduce the
gradient error by the adjustment of the Back Propagation (BP) training algorithm to adapt
with binarization functions. Among these methods, minimizing the quantization error is the
most used technique since it leads to relevant memory saving and complexity reductions [76],
[189], [77].

A Hybrid Precision Architecture for an Efficient Binary Convolutional Neural Network
100 Accelerator

In this chapter, a new architecture based on hybrid precision representation is proposed
as a trade-off between the reliability of CNNs and the low complexity of Binary Convolu-
tion Neural Networks (BCNN). The architecture adopts binarization of hidden layers and
32-bit floating-point for the first and last layer with binary weights. A design methodology
is provided on how to select the network topology, placement of binarization layers, and
training process. The network is designed and trained using Larq framework [88], which is an
extension of Tensor-Flow that offers a library to design, train, and deploy quantized/binarized
CNNs. The proposed Hybrid-precision Binary Weight Network (H-BWN) achieved more
than 35% accuracy increase in classifying touch modalities compared to traditional BCNN
topology. The H-BWN requires less than 5 KB of storage requirements achieving an effi-
cient architecture that fits in a wide range of microcontrollers (e.g. STM32F0x2). When
implemented on Zyng-7010 platform, the H-BWN accelerator provided a real-time clas-
sification within 0.8 ms with a 42.4 uJ energy per classification. Compared to exiting
solutions, H-BWN achieved higher classification accuracy with an energy reduction up to

99% accompanied with a speedup up to 6875x.

6.2 Binary Convolution Neural Networks Overview

The convolution operation in a convolution neural network can be expressed as:

Y =oc(w®a) (6.1)

where w and a represent the weight and activation tensors given to a network layer, respec-
tively. o is a non-linear activation function, Y is the output tensor and ® represents the
convolution operation. The latter is composed of matrix multiplication and addition that
consists of a large number of floating-point operations. A BCNN uses 1-bit representation
for the floating-point weights/activations. Hence, three configurations have been reported
in the literature: (1) Binary Neural Network (BNN) where both weights and activations are
binarized, (2) Binary Weight Network (BWN) where only weights are binarized [83], and (3)
Binary Activation Network (BAN) where only activations are binarized [76].
—Forward Propagation:

The weights and/or activations are binarized using a binarization function defined as:

q(W) = otby, (6.2)

q(a) = Bb, (6.3)

6.2 Binary Convolution Neural Networks Overview 101

where by, and b, are the binary weights and activations respectively, with their corresponding

scalars @ and 3. A widely used binarization function is the sign function defined as:

+1 >0
sign(x) = re= (6.4)

—1 otherwise

Substituting 6.2 and 6.3 in 6.1, the convolution operation in the forward propagation of a
BCNN can be written as:

Y = 0(qw(W) ©qa(a)) = o(af (bw © ba)) (6.5)

where © is the inner vector product. Hence, the convolution operation in a BCNN can be
performed efficiently using a bitwise XNOR-Bitcount operation as shown in Figure 6.1.

41 a1 1f1]1 1 ,
1 1 1 1 1 1 1 1 3 1 3 3 5| :I bitcount 1 101 111 -1 -1 -1
(s =) 111 2111 4 7|51 3 |33]
1_11®111-11-111=13.1-:1'51 T a2l ala a2 T2l
1|11 41 111 1|1 1 14 3 1 1 5|1
— 1 afalafz|alaf 513|111 XtioR ‘
Hhltwelght 1014 a1 1|11 1 5 1 1 1 3|3 N
-1 1 1 1 1 -1/ 1 -1 output
1-bit activation
Fig. 6.1 Convolution in Binary Convolution Neural Networks
—Backward Propagation:

Training a BCNN using the commonly used backward propagation algorithm based on
the gradient descent is not straight forward due to the fact that the binarization function is
not differentiable (e.g. sign function). Hinton et. al proposed a technique called Straight
Through Estimator (STE) to solve the gradient descent problem [190]. The STE function is
defined as:

clip(x,—1,1) = max(—1,max(1,x)) (6.6)

An approximation of the c/ip function is used in practice since the network can’t be updated

in back propagation if the absolute value of the activations is greater than one.

A Hybrid Precision Architecture for an Efficient Binary Convolutional Neural Network
102 Accelerator

6.3 Hybrid-Precision BWN Model

6.3.1 Design Methodology

Based on the findings illustrated in Chapter 2, the aim is to design a BWN with a hybrid
precision in each layer. The proposed H-BWN is targeting the touch modality classification
problem based on the dataset collected in [5], hence a customized topology is adopted
where existing ones are not specifically designed to provide acceptable accuracy with low
computational complexity for the given task [32]. The H-BWN should be able to classify

a tactile input as one of three modalities: "Rolling", "Sliding" and "Brushing". Before

designing the network, a set of modifications have been applied to the original dataset:

* Each touch sample has been truncated from 10 to 3.5 seconds by eliminating all the
readings outside the interval [3.5s, 7s] where no touch is present (See Figure 6.2
(a), (b)). Hence, the new touch sample size is reduced from ¢ (4 x 4 x 30,000) to
¢ (4 x 4 x 10500) as shown in Figure 6.2 (c).

» Subsampling is applied on the truncated touch sample to obtain a new tensor of size
¢ (4 x 4 x 8) (see Figure6.2 (d)) where each P = 1312 readings are averaged into one

reading according to the following equations:

T(:,0i) = (1/P) x X050 (:,0,0)
k+=P

(6.7)

starting with k = 0 and iterating i = 1,2...,8.

* Due to the accumulated precision loss between the layers of a BCNN, the network
is usually trained for a longer time (i.e larger number of epochs). To achieve this, a
larger dataset is required. The tactile dataset contains 780 samples after applying the
above modifications. Thus, data augmentation is applied on the dataset, specifically a
rotation by 90 degree as shown in Figure 6.2 (e). This resulted in a dataset with 2*780
= 1560 samples.

For an input ¢ (4 x 4 x 8), the H-BWN design methodology is derived as follows:

* The number of the convolution and fully connected layers is determined as the lowest
possible value to achieve a comparable classification accuracy to the existing similar
solutions targeting the same touch modality problem [32], [5]. Only the size of the last
fully connected layer is pre-defined to three neurons. Each neuron corresponds to one

of the three modalities.

6.3 Hybrid-Precision BWN Model 103

25 g 25

A

gz 4Timse[s}6 Toe e 35 4 45 5 55 6 6.5 7 7.5
Time (s)

(@) (b)

"

Voltage

Voltage
[
Al —

8

(d)

(e)

Fig. 6.2 Data Pre-processing: (a) Touch Modality, (b) Truncated Touch Modality, (c) Tensor
Representation, (d) Sampled Tensor, (e) Data Augmentation

 Starting from an input size 4 x 4 x 8, the maximum number of pooling layers that
could be used is two layers, then the output of the layer will be a single element. Thus,
to keep as much features as possible, a max pooling layer is used only once. The

adopted pooling size is 2 x 2.

* Due to binarization, the output of each layer is unbalanced, thus a batch normalization
layer is usually inserted to rectify the data [76]. After this normalization, the data
obeys a stable distribution. Thus, to keep the mean and variance within a reasonable

range, batch normalization is used in all layers resulting in a much smoother training

process.

* Since the input size is small (4 x 4) compared for example an image (32 x 32), convo-

lution is applied with padding in order to keep as much features as possible especially

A Hybrid Precision Architecture for an Efficient Binary Convolutional Neural Network
104 Accelerator

the ones at the edge. Hence, the output of each convolution layer has the same size as

the input of that layer.

* In a traditional convolutional neural network, the first layer should extract as much
features as possible from the input before max pooling is applied, and the last layer
should formulate a classification decision. Followed by the finding in section 6.2, these
two layers have been designed with hybrid precision where activations are quantized
and kernels are binarized. For the hidden layers, a complete binarization is performed.

Hence, the base model used for training is presented in Figure 6.3.

— =
B =~
<5} [<8]
L

Input ——» = " Class
28] 5]
o= o=
=] =
= a=

. - | .
. Hybrid Precision | | Binary

Fig. 6.3 Hybrid Precision Neural Network Model

6.3.2 Network Training

The modified tactile dataset is used to train six networks: BNN, BWN, BAN, and their hybrid
precision counterparts (i.e. H-BWN, HBWN, and H-BAN) based on the model shown in
Figure 6.3. The dataset has been divided into 5 folds where each time the network is trained
using 4 folds and tested using the remaining one. The classification accuracy is determined
as the average of the 5 folds. This process has been repeated 10 times to determine the best
batch-size and number of epochs required to achieve the highest possible accuracy. The
networks have been modeled in Python using the Larq framework [88].

Table 6.1 shows the quantizer type for the different network configurations. We investi-
gated the use of SteSign, SwishSign, SteTern, DoReFa, and Approx-Sign (these quantizers
are available online at https://docs.larq.dev/larg/api/quantizers/). The "Approx-Sign" quan-
tizer shown in Figure 6.4 has been adopted as it resulted in the highest classification accuracy
for the studied binarized neural networks. In forward propagation, the Approx-Sign is defined

as:

6.3 Hybrid-Precision BWN Model 105

Table 6.1 Quantizers for BNN Training

BNN BWN BAN
Input Quantizer Approx-Sign None Approx-Sign
Kernel Quantizer | Approx-Sign | Approx-Sign None
Kernel Constraint | Weight clip | Weight clip None

Forward pass Backward pass

Fig. 6.4 Approx-Sign Quantizer in Forward and Backward Propagation

-1 x<0
q(x) = (6.8)
1 x>0

As for the gradient it is estimated using the following equation:

99 J2-21 <1

22 = (6.9)
dx |o x| > 1

The "weight_clip" kernel constraint represents the clip function defined in 6.6. The net-
works has been trained on an Intel i-7 based PC equipped with NVIDIA GTX 1650 graphics
card. Adam [191] with a learning rate of 0.01 is used as an optimizer with “categorical-

crossentropy’ loss function.

6.3.3 Network Assessment

Figure 6.5 shows the model that achieved the highest classification accuracy of touch modali-
ties. The model consists of two convolutional layers, two fully connected layers, and one
max pooling layer with batch normalization applied in all layers. Each convolution layer
consists of seven 3 x 3 kernels. The first fully connected layer consists of fifteen kernels.

The input of the first and last layer is represented in 32-bit floating-point, while the input

A Hybrid Precision Architecture for an Efficient Binary Convolutional Neural Network
106 Accelerator

of the remaining layers is binary. The weights of all layers are binarized while the network

doesn’t use any bias values in all layers.

Hybrid Operations Binary Operations Hybrid Operations
== o = = |- ll- ______ I Sliding
I 11 |
| |
' X = |8 l
=0 - N L = - - gl (2= I
sl 3| &|lnn]e|5|s]|8 sls | 228
= “ N =i —_ o . - .
mput—+ = [= | Sl s | = | = | & "Els T8N Brushing
| 2| 815 I = =1 2| & ol B I L S I =)
s | & I s | = | & 22|28 I
1| © 11 < 5 1 =
= 1 [|
| 1 | || 1
I 1l I .
P e e L - - - ___—_cC N e I L—— Rolling
- 3x3 = - _
| Stride=1 | : 2%x2 I : 15 kernels :_ 3 kernels
— — Padding="same’ - - -
7 kernels

Fig. 6.5 H-BWN Best Model

Figure 6.6 reports the average classification accuracy among 10 runs for the binarized
networks under batch-size=100 and number of epochs = 500. The obtained results show
that BNN, BWN, and BAN were not able to achieve an accuracy above 50%. However, the
proposed hybrid-precision methodology has significantly increased the accuracy reaching
71% for H-BWN. Such results account for a compensation of the precision loss due to
the binarization of the network. The compensation is at the expense of increasing the
memory storage requirements from 2.3 KB to 4.8 KB; however, such storage is available in
mainstream microcontrollers (e.g. STM32F0x2 with 16 KB memory storage).

When compared to similar solutions for the same touch modality classification problem,
the proposed H-BWN is superior in the aspects of accuracy, number of operations, and the
trainable model parameters as shown in Table 6.2. H-BWN offers up to 99.9% reduction
in the number of operations compared to SVM and DCNN algorithms [32]. Similarly, the
H-BWN model size resembles a 97.8% and 99.9% compression rate compared to that of
SVM and DCNN respectively. The achieved computational reduction and compression are
accompanied with the highest classification accuracy of 77.88%.

6.4 H-BWN Accelerator Design and Implementation

107

100
Binary

& Hybrid-Precision

- 71.03
g 80 67.75
s 63.26 =
H ==
< 60 =
S 47.30
bt
S 1
4=
W 404 33.33 34.03
1]
8 I I
[1F]
[
S 20
g
=4

0 T T T

NE & >

Fig. 6.6 Model Performance for Different Network Configurations

Table 6.2 Best H-BWN Performance in Comparison with the state of the art

H-BWN | SVM [5] | DCNN [32]
Highest Classification 77 88% 76.6% 76.9%
Accuracy
Number of Gops 32x107° | 0.545 | 109x 1073
Reduction in Gops NA 99.99% 99.97%
Model Parameters 1.42K 67.2K 540M
Reduction in Model Parameters NA 97.8% 99.9%

6.4 H-BWN Accelerator Design and Implementation

6.4.1 Accelerator Architecture

This section details the hardware architecture and implementation of the H-BWN presented
in Figure 6.5. The proposed H-BWN accelerator architecture is shown in Figure 6.7. The

architecture employs an array of processing elements (PEs) to offer configurable degree of

parallelism for the convolution and matrix multiplication computations throughout different

layers. Due to binarization of the kernels of all layers, these kernels can be stored efficiently

using on-chip memory. Such design choice mitigates the latency overhead imposed by using

external memory for kernel storage. The different units of the accelerator are:
CONV1 Unit: This unit computes the output of the first convolution layer. CONV1

consists of an array of Quantized Input, Binarized Kernel Convolution (QC) processing

A Hybrid Precision Architecture for an Efficient Binary Convolutional Neural Network
108 Accelerator

CONV2 Kernels FC1 Kernels

_—
_—)

Binarize

__

QC: Quantized Convolution

BC: Binary Convolution

BF: Binary Fully Connected

QF: Quantized Fully Connected

FC2 Kernels

Q — BN: Quantized Batch Normalization

B — BN: Binary Batch Normalization

Fig. 6.7 Proposed H-CNN Hardware Accelerator Architecture

elements, a Quantized Batch Normalization (Q-BN) unit, and a Binarize process. Each QC
computes the convolution between 3 x 3 input and kernel. The output of each 8 (i.e. input
feature maps) QCs are accumulated to form one element of the 4 x 4 x 7 output. For each
output feature map, the computations of each 8 QCs are performed in parallel. As shown in
Figure 6.8, the convolution between a quantized input and binary kernel can be computed
using a set of bitwise-AND operations and an adder.

Ioo) —— '

Weoo— D

Qcout

T2y —— '
Wer—s| |)

Fig. 6.8 Quantized Input, Binarized Kernel Convolution (QC) Processing Element

Then, batch normalization is to be applied on the 4 x 4 X 7 convolution output according
to the equation:

Xi— U
=y (2 6.10
yi=1(e 8) B (6.10)

6.4 H-BWN Accelerator Design and Implementation 109

where x; and y; are the input and output of the batch-normalization respectively. u, ¥, o,
B, and € are constants obtained from the training phase. To design a hardware friendly
architecture of the Q-BN unit, (6.10) can be written as:

Y Volte

_ — (xi—(u—Y— "= (6.11)
which in return can be simplified into the form:
yi = i (x; — 041) (6.12)

vol4e

where @;; = 4 — ——fB and o = are constants to be computed offline. Thus

o2+¢€
a Q-BN unit can be designed as shown in Figure 6.9 using a subtractor and a multiplier.
Finally, the output of the CONV1 layer is obtained by binarizing the output of the Q-BN unit

using the sign function.

@it

2 47) —> Vi

Fig. 6.9 Quantized Batch Normalization (Q-BN) Unit

CONV2 Unit: This unit computes the output of the second convolution layer. CONV2
consists of an array of Binarized Input, Binarized Kernel Convolution (BC) processing
elements, a Binarized Batch Normalization (B-BN) unit, and a Binarize process followed by
a Maxpool operation. According to 6.5, the convolution is computed using a set of XNOR
gates followed by a popcount operation (i.e. number of 1’s bits) as shown in Figure 6.10.

To apply batch normalization on the BC binary output, we adopted the "Batch Normal-
ization Free Binarized Artificial Neuron (AN)" approach presented in [192]. The approach
states that an artificial neuron with batch normalization can be converted into a binarized AN
with an integer bias W/, where W’ is computed after training using the batch normalization
constants. The integer output of the B-BN unit is binarized using the sign function. To reduce

the hardware complexity of CONV2 unit, max pooling is applied at the end compared to the

A Hybrid Precision Architecture for an Efficient Binary Convolutional Neural Network
110 Accelerator

1(0_0) ———p] | ‘—\

Weoo—— ") >
— BCoy:

- -
. .
- .

I22) ——»

Wooy— ") -

1
Fig. 6.10 Binarized Input, Binarized Kernel Convolution (BC) Processing Element
model shown in Figure 6.5. This is due to the fact the output of the sign function is binary

compared to the integer output of the B-BN unit. Hence, MaxPool block can be designed
using OR gates as shown in Figure 6.11.

I00) —

I({],l) — Out(o'o)
S

I1,0) —

I —]

Fig. 6.11 Maxpool Operation on Binary Inputs

FC1 Unit: This unit computes the vector-matrix multiplication of binary input of size
28 (i.e the 2 x 2 x 7 output of CONV?2 is flattened to a vector fo size 28) and binary kernel
of size 28 x 15. FC1 unit consists of 15 Binary Fully Connected (BF) processing elements
that utilize the same design shown in Figure 6.10, which uses a set of AND gates and an
adder to compute the multiplication of binary data. Similarly, batch normalization on binary
values is performed using a B-BN unit. The output of the FC1 unit is represented as a vector
consisting of 15 (i.e 28 x (28 x 15) = 1 x 15) quantizied elements where all the elements are
obtained at once by operating the PEs in parallel.

FC2 Unit: This unit computes the vector-matrix multiplication of quantized input of size
15 and binary kernel of size 15 x 3. FC2 unit consists of 15 Quantized Fully Connected (QF)
processing elements that utilize the same design shown in Figure 6.8, which uses a set of
XNOR gates and a popcount to compute the multiplication of quantized input and binary
kernel. Then, batch normalization is applied using a Q-BN unit. The output of the FC2 unit
is a vector that consists of 3 quantized elements (i.e 15 x (15 x3) =1 x 3).

6.4 H-BWN Accelerator Design and Implementation 111

Softmax Unit: This unit assigns a class to the tactile input based on the highest value of
f(x;) defined as:

e

flw) = 5o (6.13)

The Softmax unit contains three main sub-units: (1) Exponent (Exp), which is used to
compute the term ¢, (2) Division (DIV), which is used to compute f(x;), and (3) Class
Determinant which is used to assign a class for the input.

—Exponent sub-unit:

The exponent function can be written as:
¢f = 2¥log(e) (6.14)
Let the constant log(e) defined as y, then (6.14) can be written as:

et =22 (6.15)

Thus, to compute the exponent of x, a multiplication of x and y is performed, followed by
a base 2 exponentiation. Assume that x * y = z, then the term 2**¥ can be represented as 2°.
Since x and loge are quantized values, their multiplication z is composed of an integer part i

and a fractional part f. Hence, (6.15) can be simplified as:

& =2 =iy of (6.16)

The term 2/ can be computed using left shift operations only. As for the term 2/, we
adopted the use of linear approximation to obtain an efficient hardware design. Suppose that

the term 2/ can be approximated as:

2 =Kxf+b (6.17)

Through simulations, several values of k and b can be determined based on the desired
accuracy range of 2/. Figure 6.12 shows the linear approximation function adopted for the
computation of the term 2/ where the values of k and b are set to 0.724 and 1.008 respectively.
Following the plot in Figure 6.12, it can be seen that for values of f > 4, the approximation
error starts to increase rapidly. However, the fractional part f is bounded between -0.99 and
0.99, thus for the presented architecture in Figure 6.13, the linear approximation leads to
an error in the order of 107, Such architecture is capable to compute the exponent using
multiplication, addition, and shift operations.

—Division sub-unit:

A Hybrid Precision Architecture for an Efficient Binary Convolutional Neural Network
112 Accelerator

120

— 0.724% f+1.008
— af 100
a0
60

40

20

12 10 -8

[=2]
'

I

ra

10 12

an

Fig. 6.12 Plot of the functions 2/ and 0.724 % f + 1.008

Fig. 6.13 Exponent Sub-unit Design using Linear Approximation

The division operation can be computed using shift and subtract operations based on
the non-restoring division algorithm [193]. Figure 6.14 shows a flowchart that highlights
the basic operations of the non-restoring division method. To operate on fixed-point data,
the Q[0] = 0 and Q[0] = 1 steps for integers in the non-restoring division algorithm has
been changed to Q[8] = 0 and Q[8] = 1 respectively for the fixed-point representation with
< 8,8 > precision.

Figure 6.15 shows the proposed architecture for the division sub-unit where N = 2,31:1 e,
M = ", Rem is the remainder, and Qout is the quotient. he rational behind computing the
reciprocal of the Softmax function is the use of the non-restoring division algorithm such that
the dividend is greater than the divisor. The architecture involves addition, subtraction, and
shift operations. Also, multiplexers are used for conditional testing and registers are utilized
for intermediate results.

—Class Determinant sub-unit:

6.4 H-BWN Accelerator Design and Implementation

113

Start
'
N: Number of bits in the dividend
A=0
M = Divisor
Q = Dividend
1
0 Sign bit of 1
| A ‘
Shift left AQ Shift left AQ
A=AM A=A+M
| |
0 Sign bit of 1
| A ’
Q[o] =1 Q[o]=0
N =N-1

Stop

Quotient is in register Q
Remainder is in register A

A

]

A=A+M
0
— 1
Sign bit of
A
T Yes
No
IfN=0
modl6 dec
counter
0 Qout =Q
Rem=A

A Q
o o [7]
| I b
. IE.; <
M ——o@—b\
if E— sign MUX
/ 0

Fig. 6.15 Division Sub-unit Design based on Non-Restoring Division Algorithm

After computing the value of f(x;) for the 3 classes, the class determinant sub-unit

assigns a modality to the input based on the minimum value of f(x;)~! as the reciprocal of

the Softmax is computed.

A Hybrid Precision Architecture for an Efficient Binary Convolutional Neural Network
114 Accelerator

6.4.2 Accelerator Implementation

The proposed accelerator architecture shown in Figure 6.7 has been designed with 16-bit fixed-
point representation and < 8,8 > (sign bit, 7-bits for integer part, and 8-bits for fractional
part) precision in C++ using Vivado HLS. Targeting the Zyngberry platform operating at 100
MHz, the accelerator has been exported as an Intellectual Property (IP) to Vivado. In Vivado,
behavioral, then post-implementation functional and timing simulations are performed to
obtain the required resources and time latency. As for power consumption, it is recorded
through vector-based approach using a saif file generated after implementation.

Table 6.3 shows the implementation report of the H-BWN accelerator. The reported
resources show that the H-BWN is adequate for embedded implementations on resource-
limited platforms with an average utilization percentage of 19%. The large number of
DSPs is due to the level of parallelization introduced in the architecture to insure real-time
functionality. This is evident in the time latency of 0.8 ms with a power consumption of 53
mW which verifies the real-time requirements of touch classification [4].

Table 6.3 H-BWN Implementation Results Targeting Zyngberry Platform

Resource Utilization (%)
LUT 3886 (22%)
FF 3365 (9.5%)
DSP 48 (60%)
BRAM 4 (3.3%)
Time Latency (ms) 0.8
PowerConsumption (mW) 53

Targeting the touch modality classification problem introduced in section 6.3.1, up to the
date of writing this dissertation, this is the only work that reports the hardware implementation
of a Quantized/Binary neural network. Thus, a comparison with existing solutions mainly
Support Vector Machine (SVM) is performed in terms of "energy per classification" computed
as E = P x T, where P is the dynamic power consumption and 7 is the time latency. For this

purpose, three implementations are considered:
* SVM implementation on Parallel Ultra-Low Platform (PULP) running on 1 core.
* SVM implementation on PULP running on 2 cores.
* SVM implementation on Xilinx Zedboard.

Table 6.4 shows the comparison with similar solutions. With a 77% accuracy, the
proposed H-BWN offers a 6875x and 4125 x speedup compared to the SVM implementation

6.5 Conclusion 115
Table 6.4 H-BWN Performance Comparison with Similar Solutions

Algorithm H-BWN SVM [1] SVM [1] SVM [2]
Classification Accuracy (%) 77 72.8 72.8 70.9
Device Zyngberry | PULP: 1 Core | PULP: 2 Cores | ZedBoard
Power Consumption (mW) 53 21 28 NA
Time Latency (ms) 0.8 3.3x10° 5.5%x 10 28
Energy per classification (mJ) | 42.4 x 107> 69.3 154 NA

on PULP [56] with 1 core and 2 cores respectively. Although the authors in [56] have reported
a lower power consumption of 21 mW and 28 mW for 1 core and 2 cores implementation
respectively, the significant speedup achieved by the proposed H-BWN leads to an energy
reduction up to 99.6%. Compared to the SVM implementation on ZedBoard in [71], a
35x speedup has been recorded. Althought no power consumption details are provided
in [71], it is expected that the proposed accelerator is more power efficient than the SVM
implementation on Zedboard due to the massive speedup and ultra low power consumption

of the proposed accelerator.

6.5 Conclusion

This chapter presents a Binary Convolution Neural Network architecture based on hybrid
precision approach. First, a design methodology is provided starting from selecting the
network topology, layers’ characteristics, quantization level and training strategy. The H-
BWN architecture consists of two convolution and two fully connected layers; the first and
last layers use 32-bit floating-point activations and binary weights while the hidden layers
are completely binarized. H-BWN achieves a classification accuracy boost more than 35%
against traditional BNNs when validated on a touch modalities problem. Compared to SVM
and DCNN algorithms targeting the same classification problem, the H-BWN provides higher
classification accuracy of 77% accompanied with a 99% reduction in the number of operations
and model size. When implemented on Zyngberry platform, the H-BWN accelerator provides
real-time classification within 0.8 ms while consuming 53 mW. Such performance offers
an energy reductions up to 99% compared to SVM accelerators implemented on PULP and

Zedboard platforms.

Chapter 7
Conclusion

The deployment of machine learning algorithms on embedded devices for applications with
a constrained requirements is an active challenge. In this dissertation, we investigated two of
the main methods that are widely used to reduce the obstacles faced while overcoming such
challenge. The first method is the use of approximate computing to reduce the computational
complexity of ML algorithms with an acceptable margin of error. The second method
is to design custom hardware accelerator architectures optimized for a certain algorithm
implemented on a specific hardware platform.

For a tactile data processing application, three novel hardware accelerators are designed
with both exact and approximate computations. A selection-based sorter that selects the
k smallest numbers out of a sequence without the need to sort the complete sequence is
proposed. When embedded in an exact kNN accelerator, a real-time classification of touch
modalities is achieved while consuming 6uJ on Zyngberry. Compared to similar kKNN
architectures, the proposed kNN achieves a speedup between 1.4x and 875x with 41%
to 94% less energy consumption and 12% to 94% average hardware area reduction. As
for approximate kNN, a 56.4% average area reduction, a speedup by 2.3, and an energy
reduction of about 69% are recorded compared to its exact counterpart. A shallow neural
network is designed to predict the singular vectors. The network is used to replace the
traditional one-sided Jacobi algorithm used as an SVD computation block of the tensorial
SVM. Such design methodology provides a classification speedup up to 131 x with a 39%
and 50% resources and power reductions respectively compared to similar stat-of-the-art
solution. The noticeable performance improvements pave the way towards the deployment of
intelligence on resource-limited devices for power-constrained applications (e.g. prosthetic).
To combat the accuracy drop in binary neural networks, and benefit from the high performance
of CNNs, a hybrid precision binary weight neural network is designed. A 35% accuracy

increase in classifying touch modalities compared to traditional BCNN topology is recorded.

118 Conclusion

A real-time classification within 0.8 ms with a 42.4uJ energy per classification could be
achieved for FPGA implementation. Compared to exiting solutions, an energy reduction up
to 99% accompanied with a speedup up to 6875 x is provided.

With the continuous adoption of machine learning algorithms in different domains, our
future work involves tracking the advancements of such algorithms especially deep learning.
For instance, Transformers have been lately investigated for the use of image classification
[194], [195]. Which could be possibly adopted for tactile data processing due to the tensorial
nature of tactile signals. Consequently, monitoring the new methodologies for the design
and implementation of hardware accelerators. In addition, due to the error resilience nature
of ML algorithms, new approximate computing techniques are emerging such as adaptive

approximate computing [196] and approximate adders with Single LUT delay [115].

References

[1]

(2]

[3]

[8]

[9]

[10]

[11]

[12]

M. S. Mahmud, J. Z. Huang, S. Salloum, T. Z. Emara, and K. Sadatdiynov, “A survey
of data partitioning and sampling methods to support big data analysis,” Big Data Min.
Anal., vol. 3, pp. 85-101, June 2020.

D. Tribe, “Flexibility can help car makers cope with chip supply challenge,” Engineer-
ing & Technology, vol. 16, pp. 19-19, Mar. 2021.

S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Approximate
computing and the quest for computing efficiency,” in Proceedings of the 52nd Annual
Design Automation Conference on - DAC ’15, (San Francisco, California), pp. 1-6,
ACM Press, 2015.

P. P. Lele, D. C. Sinclair, and G. Weddell, “The reaction time to touch,” The Journal
of Physiology, vol. 123, pp. 187-203, Jan. 1954.

P. Gastaldo, L. Pinna, L. Seminara, M. Valle, and R. Zunino, “Computational Intelli-
gence Techniques for Tactile Sensing Systems,” Sensors, vol. 14, pp. 10952—-10976,
June 2014.

“Apple unleashes M1.”

D. Fujiki, X. Wang, A. Subramaniyan, and R. Das, “In-/Near-Memory Computing,”
Synthesis Lectures on Computer Architecture, vol. 16, pp. 1-140, Aug. 2021.

R. Dahiya, G. Metta, M. Valle, and G. Sandini, “Tactile Sensing—From Humans to
Humanoids,” IEEE Trans. Robot., vol. 26, pp. 1-20, Feb. 2010.

S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” Chemometrics
and intelligent laboratory systems, vol. 2, no. 1-3, pp. 37-52, 1987.

L. Derksen, Visualising high-dimensional datasets using PCA and t-SNE in Python.
Apr. 2019.

H. Hu, Y. Han, A. Song, S. Chen, C. Wang, and Z. Wang, “A Finger-Shaped Tac-
tile Sensor for Fabric Surfaces Evaluation by 2-Dimensional Active Sliding Touch,”
Sensors, vol. 14, pp. 4899—-4913, Mar. 2014.

Y.-H. Liu, Y.-T. Hsiao, W.-T. Cheng, Y.-C. Liu, and J.-Y. Su, “Low-Resolution Tac-
tile Image Recognition for Automated Robotic Assembly Using Kernel PCA-Based
Feature Fusion and Multiple Kernel Learning-Based Support Vector Machine,” Math-
ematical Problems in Engineering, vol. 2014, pp. 1-11, 2014.

120

References

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[22]

[23]

[24]

[25]

B. Scholkopf, A. Smola, and K.-R. Miiller, “Kernel principal component analysis,” in
International conference on artificial neural networks, pp. 583-588, Springer, 1997.

M. Schopfer, H. Ritter, and G. Heidemann, “Acquisition and Application of a Tactile
Database,” in Proceedings 2007 IEEE International Conference on Robotics and

Automation, pp. 1517-1522, Apr. 2007.

A. Weingessel and K. Hornik, “Local PCA algorithms,” IEEE Transactions on Neural
Networks, vol. 11, pp. 1242—-1250, Nov. 2000.

P. Comon, “Independent component analysis, A new concept?,” Signal Processing,
vol. 36, pp. 287-314, Apr. 1994.

S. Haykin and Z. Chen, “The cocktail party problem,” Neural computation, vol. 17,
no. 9, pp. 1875-1902, 2005.

K. Lee, T. Ikeda, T. Miyashita, H. Ishiguro, and N. Hagita, “Separation of tactile
information from multiple sources based on spatial ICA and time series clustering,”
in 2011 IEEE/SICE International Symposium on System Integration (SII), (Kyoto,
Japan), pp. 791-796, IEEE, Dec. 2011.

P. Xanthopoulos, P. M. Pardalos, and T. B. Trafalis, “Linear Discriminant Analysis,”
in Robust Data Mining (P. Xanthopoulos, P. M. Pardalos, and T. B. Trafalis, eds.),
SpringerBriefs in Optimization, pp. 27-33, New York, NY: Springer, 2013.

M. Pal, A. Khasnobish, A. Konar, D. N. Tibarewala, and R. Janarthanan, “Classi-
fication of deformable and non-deformable surfaces by tactile image analysis,” in

Proceedings of The 2014 International Conference on Control, Instrumentation, En-
ergy and Communication (CIEC), (Calcutta, India), pp. 626—630, IEEE, Jan. 2014.

H. Nguyen, L. Osborn, M. Iskarous, C. Shallal, C. Hunt, J. Betthauser, and N. Thakor,
“Dynamic Texture Decoding Using a Neuromorphic Multilayer Tactile Sensor,” in
2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), (Cleveland, OH),
pp. 1-4, IEEE, Oct. 2018.

W. K, “Tactile sensing for ground classification,” Journal of Automation Mobile
Robotics and Intelligent Systems, vol. 7, no. 2, pp. 18-23, 2013.

I. Bandyopadhyaya, D. Babu, A. Kumar, and J. Roychowdhury, “Tactile sensing based
softness classification using machine learning,” in 2014 IEEE International Advance
Computing Conference (IACC), (Gurgaon, India), pp. 1231-1236, IEEE, Feb. 2014.

Z. Y1, Y. Zhang, and J. Peters, “Bioinspired tactile sensor for surface roughness
discrimination,” Sensors and Actuators A: Physical, vol. 255, pp. 46-53, Mar. 2017.

T. Bhattacharjee, J. M. Rehg, and C. C. Kemp, “Haptic classification and recognition
of objects using a tactile sensing forearm,” in 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems, (Vilamoura-Algarve, Portugal), pp. 4090-4097,
IEEE, Oct. 2012.

References 121

[26]

[27]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Y. Gao, L. A. Hendricks, K. J. Kuchenbecker, and T. Darrell, “Deep learning for tactile
understanding from visual and haptic data,” in 2016 IEEE International Conference
on Robotics and Automation (ICRA), (Stockholm, Sweden), pp. 536-543, IEEE, May
2016.

M. Kaboli, P. Mittendorfer, V. Hugel, and G. Cheng, “Humanoids learn object prop-
erties from robust tactile feature descriptors via multi-modal artificial skin,” in 2014
IEEE-RAS International Conference on Humanoid Robots, (Madrid, Spain), pp. 187—
192, IEEE, Nov. 2014.

M. Kaboli, R. Walker, and G. Cheng, “Re-using prior tactile experience by robotic
hands to discriminate in-hand objects via texture properties,” in 2016 IEEE Inter-
national Conference on Robotics and Automation (ICRA), (Stockholm, Sweden),
pp. 2242-2247, IEEE, May 2016.

P. Gastaldo, L. Pinna, L. Seminara, M. Valle, and R. Zunino, “A Tensor-Based Pattern-
Recognition Framework for the Interpretation of Touch Modality in Artificial Skin
Systems,” IEEE Sensors Journal, vol. 14, pp. 2216-2225, July 2014.

D. Xu, G. E. Loeb, and J. A. Fishel, “Tactile identification of objects using Bayesian
exploration,” in 2013 IEEE International Conference on Robotics and Automation,
(Karlsruhe, Germany), pp. 3056-3061, IEEE, May 2013.

M. Kaboli, A. Long, and G. Cheng, “Humanoids learn touch modalities identification
via multi-modal robotic skin and robust tactile descriptors,” Advanced Robotics,
vol. 29, pp. 1411-1425, Nov. 2015.

M. Alameh, A. Ibrahim, M. Valle, and G. Moser, “DCNN for Tactile Sensory Data
Classification based on Transfer Learning,” in 2019 15th Conference on Ph.D Research
in Microelectronics and Electronics (PRIME), (Lausanne, Switzerland), pp. 237-240,
IEEE, July 2019.

Shan Luo, Wenxuan Mou, Min Li, K. Althoefer, and Hongbin Liu, “Rotation and
translation invariant object recognition with a tactile sensor,” in IEEE SENSORS 2014
Proceedings, (Valencia), pp. 1030-1033, IEEE, Nov. 2014.

J. Schill, J. Laaksonen, M. Przybylski, V. Kyrki, T. Asfour, and R. Dillmann, “Learning
continuous grasp stability for a humanoid robot hand based on tactile sensing,” in
2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and
Biomechatronics (BioRob), (Rome, Italy), pp. 1901-1906, IEEE, June 2012.

F. Veiga, H. van Hoof, J. Peters, and T. Hermans, “Stabilizing novel objects by learning
to predict tactile slip,” in 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), (Hamburg, Germany), pp. 5065-5072, IEEE, Sept. 2015.

Z. Su, K. Hausman, Y. Chebotar, A. Molchanov, G. E. Loeb, G. S. Sukhatme, and
S. Schaal, “Force estimation and slip detection/classification for grip control using
a biomimetic tactile sensor,” in 2015 IEEE-RAS 15th International Conference on
Humanoid Robots (Humanoids), (Seoul, South Korea), pp. 297-303, IEEE, Nov. 2015.

122

References

[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

A. Dabbous, M. Mastella, A. Natarajan, E. Chicca, M. Valle, and C. Bartolozzi.,
“Artificial Bio-Inspired Tactile Receptive Fields for Edge Orientation Classification,”
in 2021 IEEE International Symposium on Circuits and Systems (ISCAS), (Daegu,
Korea), pp. 1-5, IEEE, May 2021.

J. A. Pruszynski and R. S. Johansson, “Edge-orientation processing in first-order
tactile neurons,” Nat Neurosci, vol. 17, pp. 1404—-1409, Oct. 2014.

M. Malviya and K. Desai, “Build Orientation Optimization for Strength Enhancement
of FDM Parts Using Machine Learning based Algorithm,” CADandA, vol. 17, pp. 783—
796, Nov. 2019.

Big-0 Algorithm Complexity Cheat Sheet (Know Thy Complexities!) @ericdrowell.

K. He and J. Sun, “Convolutional Neural Networks at Constrained Time Cost,”
arXiv:1412.1710 [cs], Dec. 2014. arXiv: 1412.1710.

A. Canziani, A. Paszke, and E. Culurciello, “An Analysis of Deep Neural Net-
work Models for Practical Applications,” arXiv:1605.07678 [cs], Apr. 2017. arXiv:
1605.07678.

X. Song, T. Xie, and S. Fischer, “A Memory-Access-Efficient Adaptive Implementa-
tion of KNN on FPGA through HLS,” in 2019 IEEE 37th International Conference on
Computer Design (ICCD), (Abu Dhabi, United Arab Emirates), pp. 177-180, IEEE,
Nov. 2019.

J. Vieira, R. P. Duarte, and H. C. Neto, “kNN-STUFF: kNN STreaming Unit for Fpgas,”
IEEE Access, vol. 7, pp. 170864—-170877, 2019.

H. Hussain, K. Benkrid, C. Hong, and H. Seker, “An adaptive FPGA implemen-
tation of multi-core K-nearest neighbour ensemble classifier using dynamic partial
reconfiguration,” in 22nd International Conference on Field Programmable Logic and
Applications (FPL), (Oslo, Norway), pp. 627-630, IEEE, Aug. 2012.

K. R. Townsend, S. Sun, T. Johnson, O. G. Attia, P. H. Jones, and J. Zambreno, “k-NN
text classification using an FPGA-based sparse matrix vector multiplication accelera-
tor,” in 2015 IEEFE International Conference on Electro/Information Technology (EIT),
(Dekalb, IL, USA), pp. 257-263, IEEE, May 2015.

Y. Pu, J. Peng, L. Huang, and J. Chen, “An Efficient KNN Algorithm Implemented
on FPGA Based Heterogeneous Computing System Using OpenCL,” in 2015 IEEE

23rd Annual International Symposium on Field-Programmable Custom Computing
Machines, (Vancouver, BC, Canada), pp. 167-170, IEEE, May 2015.

A. Al-Zoubi, K. Tatas, and C. Kyriacou, “Design space exploration of the KNN
imputation on FPGA,” in 2018 7th International Conference on Modern Circuits and
Systems Technologies (MOCAST), (Thessaloniki), pp. 1-4, IEEE, May 2018.

E. S. Manolakos and 1. Stamoulias, “IP-cores design for the kNN classifier,” in
Proceedings of 2010 IEEE International Symposium on Circuits and Systems, (Paris,
France), pp. 4133-4136, IEEE, May 2010.

References 123

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

C. Cedeno Z., J. Cordova-Garcia, V. Asanza A., R. Ponguillo, and L. Munoz M.,
“k-NN-Based EMG Recognition for Gestures Communication with Limited Hard-
ware Resources,” in 2019 IEEE SmartWorld, Ubiquitous Intelligence & Comput-
ing, Advanced & Trusted Computing, Scalable Computing & Communications,
Cloud & Big Data Computing, Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), (Leicester, United Kingdom),
pp. 812-817, IEEE, Aug. 2019.

Miren Tian, Xin’an Wang, Xing Zhang, Zhiqiang Yang, Jipan Huang, and Hao Chen,
“The implementation of a KNN classifier on FPGA with a parallel and pipelined
architecture based on Predetermined Range Search,” in 2016 13th IEEE International
Conference on Solid-State and Integrated Circuit Technology (ICSICT), (Hangzhou,
China), pp. 1491-1493, IEEE, Oct. 2016.

H. Peng, L. Huang, and J. Chen, “An efficient FPGA implementation for odd-even sort
based KNN algorithm using OpenCL,” in 2016 International SoC Design Conference
(ISOCC), (Jeju, South Korea), pp. 207-208, IEEE, Oct. 2016.

Shereen Moataz Afifi, Hamid GholamHosseini and Roopak Sinha, “Hardware Imple-
mentations of SVM on FPGA: AState-of-the-Art Review ofCurrent Practice,” vol. 2,
pp- 2348-7968, Nov. 2015.

M. Signoretto, L. De Lathauwer, and J. A. Suykens, “A kernel-based framework to
tensorial data analysis,” Neural Networks, vol. 24, pp. 861-874, Oct. 2011.

Z.Yi, T. Xu, W. Shang, and X. Wu, “Touch Modality Identification With Tensorial
Tactile Signals: A Kernel-Based Approach,” IEEE Trans. Automat. Sci. Eng., pp. 1-10,
2021.

M. Osta, A. Ibrahim, M. Magno, M. Eggimann, A. Pullini, P. Gastaldo, and M. Valle,
“An Energy Efficient System for Touch Modality Classification in Electronic Skin Ap-
plications,” in 2019 IEEE International Symposium on Circuits and Systems (ISCAS),
(Sapporo, Japan), pp. 1-4, IEEE, May 2019.

R. A. Patil, G. Gupta, V. Sahula, and A. Mandal, “Power Aware Hardware Prototyping
of Multiclass SVM Classifier Through Reconfiguration,” in 2012 25th International
Conference on VLSI Design, (Hyderabad, India), pp. 62-67, IEEE, Jan. 2012.

H. M. Hussain, K. Benkrid, and H. Seker, “Reconfiguration-based implementation
of SVM classifier on FPGA for Classifying Microarray data,” in 2013 35th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), (Osaka), pp. 3058-3061, IEEE, July 2013.

H. M. Hussain, K. Benkrid, and H. Seker, “Dynamic partial reconfiguration imple-
mentation of the SVM/KNN multi-classifier on FPGA for bioinformatics application,”
in 2015 37th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), (Milan), pp. 7667-7670, IEEE, Aug. 2015.

A. Luo, F. An, X. Zhang, and H. J. Mattausch, “A Hardware-Efficient Recognition
Accelerator Using Haar-Like Feature and SVM Classifier,” IEEE Access, vol. 7,
pp- 14472-14487, 2019.

124

References

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[71]

[72]

Jesus Gimeno Sarciada, Horacio Lamel Rivera, and Matias Jiménez, “CORDIC
algorithms for SVM FPGA implementation,” vol. 7703, Apr. 2010.

A.-H. M. Jallad and L. B. Mohammed, “Hardware Support Vector Machine (SVM) for
satellite on-board applications,” in 2014 NASA/ESA Conference on Adaptive Hardware
and Systems (AHS), (Leicester, United Kingdom), pp. 256-261, IEEE, July 2014.

V. S. Vranjkovi¢, R. J. R. Struharik, and L. A. Novak, “Reconfigurable Hardware for
Machine Learning Applications,” Journal of Circuits, Systems and Computers, vol. 24,
p. 1550064, June 2015.

S.-J. Kim, S.-Y. Lee, and K.-S. Cho, “Design of High-Performance Unified Circuit
for Linear and Non-Linear SVM Classifications,” JSTS:Journal of Semiconductor
Technology and Science, vol. 12, pp. 162—167, June 2012.

V. Vranjkovic and R. Struharik, “New architecture for SVM classifier and its ap-
plication to telecommunication problems,” in 2011 19thTelecommunications Forum
(TELFOR) Proceedings of Papers, (Belgrade, Serbia), pp. 1543-1545, IEEE, Nov.
2011.

D. Mahmoodi, A. Soleimani, H. Khosravi, and M. Taghizadeh, “FPGA Simulation of
Linear and Nonlinear Support Vector Machine,” JSEA, vol. 04, no. 05, pp. 320-328,
2011.

M. Cutajar, E. Gatt, I. Grech, O. Casha, and J. Micallef, “Hardware-based support
vector machine for phoneme classification,” in Eurocon 2013, (Zagreb, Croatia),
pp. 1701-1708, IEEE, July 2013.

M. Papadonikolakis and C.-S. Bouganis, “A novel FPGA-based SVM classifier,” in
2010 International Conference on Field-Programmable Technology, (Beijing, China),
pp- 283-286, IEEE, Dec. 2010.

L. A. Martins, G. A. M. Sborz, F. Viel, and C. A. Zeferino, “An SVM-based hardware
accelerator for onboard classification of hyperspectral images,” in Proceedings of the
32nd Symposium on Integrated Circuits and Systems Design - SBCCI ’19, (Sao Paulo,
Brazil), pp. 1-6, ACM Press, 2019.

C. Kyrkou, T. Theocharides, and C.-S. Bouganis, “An embedded hardware-efficient
architecture for real-time cascade Support Vector Machine classification,” in 2013
International Conference on Embedded Computer Systems: Architectures, Modeling,
and Simulation (SAMOS), (Agios konstantinos, Samos Island, Greece), pp. 129-136,
IEEE, July 2013.

M. Saleh, A. Ibrahim, F. Menichelli, Y. Mohanna, and M. Valle, “Efficient Machine
Learning Algorithm for Embedded Tactile Data Processing,” in 2021 IEEFE Interna-
tional Symposium on Circuits and Systems (ISCAS), (Daegu, Korea), pp. 1-5, IEEE,
May 2021.

M. Magno, A. Ibrahim, A. Pullini, M. Valle, and L. Benini, “An Energy Efficient
E-Skin Embedded System for Real-Time Tactile Data Decoding,” Journal of Low
Power Electronics, vol. 14, pp. 101-109, Mar. 2018.

References 125

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]
[82]

[83]

A. Ibrahim and M. Valle, “Real-Time Embedded Machine Learning for Tensorial
Tactile Data Processing,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 65, pp. 3897-3906, Nov. 2018.

M. Magno, A. Ibrahim, A. Pullini, M. Valle, and L. Benini, “Energy Efficient System
for Tactile Data Decoding Using an Ultra-Low Power Parallel Platform,” in 2017 New
Generation of CAS (NGCAS), (Genova, Italy), pp. 17-20, IEEE, Sept. 2017.

A. Ibrahim, P. Gastaldo, H. Chible, and M. Valle, “Real-Time Digital Signal Processing
Based on FPGAs for Electronic Skin Implementation §,” Sensors, vol. 17, p. 558, Mar.
2017.

H. Qin, R. Gong, X. Liu, X. Bai, J. Song, and N. Sebe, “Binary neural networks: A
survey,” Pattern Recognition, vol. 105, p. 107281, Sept. 2020.

M. Fischer and J. Wassner, “BinArray: A Scalable Hardware Accelerator for Binary
Approximated CNNSs,” in 2021 IEEE 11th Annual Computing and Communication
Workshop and Conference (CCWC), (NV, USA), pp. 0197-0205, 1EEE, Jan. 2021.

H. Peng, S. Zhou, S. Weitze, J. Li, S. Islam, T. Geng, A. Li, W. Zhang, M. Song,
M. Xie, H. Liu, and C. Ding, “Binary Complex Neural Network Acceleration on
FPGA : (Invited Paper),” in 2021 IEEE 32nd International Conference on Application-
specific Systems, Architectures and Processors (ASAP), (NJ, USA), pp. 85-92, IEEE,
July 2021.

B. S. Ajay and M. Rao, “Binary neural network based real time emotion detection on
an edge computing device to detect passenger anomaly,” in 2021 34th International
Conference on VLSI Design and 2021 20th International Conference on Embedded
Systems (VLSID), (Guwahati, India), pp. 175-180, IEEE, Feb. 2021.

N. Fasfous, M.-R. Vemparala, A. Frickenstein, L. Frickenstein, and W. Stechele, “Bi-
naryCoP: Binary Neural Network-based COVID-19 Face-Mask Wear and Positioning
Predictor on Edge Devices,” arXiv:2102.03456 [cs], June 2021.

A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images,” 2009.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in 2009 IEEE conference on computer vision and pattern
recognition, pp. 248-255, leee, 2009.

M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net: ImageNet
Classification Using Binary Convolutional Neural Networks,” in Computer Vision —
ECCV 2016 (B. Leibe, J. Matas, N. Sebe, and M. Welling, eds.), vol. 9908, pp. 525—
542, Cham: Springer International Publishing, 2016.

S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “DoReFa-Net: Train-
ing Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients,”
arXiv:1606.06160 [cs], Feb. 2018.

126

References

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[95]

[96]

M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training Deep Neural
Networks with Binary Weights during Propagations,” in Proceedings of the 28th
International Conference on Neural Information Processing Systems - Volume 2,
NIPS’15, (Cambridge, MA, USA), pp. 3123-3131, MIT Press, 2015.

X. Lin, C. Zhao, and W. Pan, “Towards Accurate Binary Convolutional Neural Net-
work,” arXiv:1711.11294 [cs, stat], Nov. 2017.

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal Loss for Dense Object
Detection,” in 2017 IEEE International Conference on Computer Vision (ICCV),
(Venice), pp. 2999-3007, IEEE, Oct. 2017.

L. Geiger and P. Team, “Larq: An Open-Source Library for Training Binarized Neural
Networks,” JOSS, vol. 5, p. 1746, Jan. 2020.

J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srinivasan, and K. Gopalakr-
ishnan, “PACT: Parameterized Clipping Activation for Quantized Neural Networks,”
arXiv:1805.06085 [cs], July 2018.

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized
Neural Networks,” in Advances in Neural Information Processing Systems (D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, eds.), vol. 29, Curran Associates,
Inc., 2016.

S. Isobe and Y. Tomioka, “Low-bit Quantized CNN Acceleration based on Bit-serial
Dot Product Unit with Zero-bit Skip,” in 2020 Eighth International Symposium on
Computing and Networking (CANDAR), (Naha, Japan), pp. 141-145, IEEE, Nov.
2020.

S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep Learning
with Limited Numerical Precision,” arXiv:1502.02551 [cs, stat], Feb. 2015. arXiv:
1502.02551.

S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard, ‘“Managing
performance vs. accuracy trade-offs with loop perforation,” in Proceedings of the
19th ACM SIGSOFT symposium and the 13th European conference on Foundations of
software engineering - SIGSOFT/FSE ’11, (Szeged, Hungary), p. 124, ACM Press,
2011.

A. Lashgar, E. Atoofian, and A. Baniasadi, “Loop Perforation in OpenACC,”
in 2018 IEEE Intl Conf on Parallel & Distributed Processing with Applica-
tions, Ubiquitous Computing & Communications, Big Data & Cloud Comput-
ing, Social Computing & Networking, Sustainable Computing & Communications
(ISPA/IUCC/BDCloud/SocialCom/SustainCom), (Melbourne, Australia), pp. 163—170,
IEEE, Dec. 2018.

S. Mittal, “A Survey of Techniques for Approximate Computing,” ACM Computing
Surveys, vol. 48, pp. 1-33, Mar. 2016.

A. Yazdanbakhsh, G. Pekhimenko, B. Thwaites, H. Esmaeilzadeh, O. Mutlu, and T. C.
Mowry, “RFVP: Rollback-Free Value Prediction with Safe-to-Approximate Loads,”
ACM Trans. Archit. Code Optim., vol. 12, pp. 1-26, Jan. 2016.

References 127

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

K. Georgios, C. Kokkala, and I. Stamoulis, “Clumsy Value Cache: An Approximate
Memoization Technique for Mobile GPU Fragment Shaders,” 2015.

M. Franceschi, A. Nannarelli, and M. Valle, “Tunable Floating-Point for Artificial Neu-
ral Networks,” in 2018 25th IEEE International Conference on Electronics, Circuits
and Systems (ICECS), (Bordeaux), pp. 289-292, IEEE, Dec. 2018.

T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano, “Supervised Neural Network
Modeling: An Empirical Investigation Into Learning From Imbalanced Data With
Labeling Errors,” IEEE Trans. Neural Netw., vol. 21, pp. 813-830, May 2010.

G. Venkatesh, E. Nurvitadhi, and D. Marr, “Accelerating Deep Convolutional Net-
works using low-precision and sparsity,” arXiv:1610.00324 [cs], Oct. 2016. arXiv:
1610.00324.

P. Judd, J. Albericio, T. Hetherington, T. Aamodt, N. E. Jerger, R. Urtasun, and
A. Moshovos, “Reduced-Precision Strategies for Bounded Memory in Deep Neural
Nets,” arXiv:1511.05236 [cs], Jan. 2016. arXiv: 1511.05236.

H. Omar, M. Ahmad, and O. Khan, “GraphTuner: An Input Dependence Aware Loop
Perforation Scheme for Efficient Execution of Approximated Graph Algorithms,” in
2017 IEEE International Conference on Computer Design (ICCD), (Boston, MA),
pp- 201-208, IEEE, Nov. 2017.

J. S. Miguel, M. Badr, and N. E. Jerger, “Load Value Approximation,” in 2014
47th Annual IEEE/ACM International Symposium on Microarchitecture, (Cambridge,
United Kingdom), pp. 127-139, IEEE, Dec. 2014.

R. S. Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H. Esmaeilzadeh, A. Hassibi,
L. Ceze, and D. Burger, “General-purpose code acceleration with limited-precision
analog computation,” in 2014 ACM/IEEE 41st International Symposium on Computer
Architecture (ISCA), (Minneapolis, MN, USA), pp. 505-516, IEEE, June 2014.

C. Alvarez, J. Corbal, and M. Valero, “Fuzzy Memoization for Floating-Point Multi-
media Applications,” IEEE Trans. Comput., vol. 54, pp. 922-927, July 2005.

Z. Xie, W. Dong, J. Liu, L. Peng, Y. Ma, and D. Li, “MD-HM: memoization-based
molecular dynamics simulations on big memory system,” in Proceedings of the ACM

International Conference on Supercomputing, (Virtual Event USA), pp. 215-226,
ACM, June 2021.

A. Rahimi, L. Benini, and R. K. Gupta, “Spatial Memoization: Concurrent Instruction
Reuse to Correct Timing Errors in SIMD Architectures,” IEEE Trans. Circuits Syst. 11,
vol. 60, pp. 847-851, Dec. 2013.

M. Samadi and S. Mahlke, “CPU-GPU collaboration for output quality monitoring,”

in In Proceedings of the 1st Workshop on Approximate Computing across the System
Stack. 1-3,2014.

I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen, “ApproxHadoop: Bringing
Approximations to MapReduce Frameworks,” SIGPLAN Not., vol. 50, pp. 383-397,
May 2015.

128

References

[110] F. Sampaio, M. Shafique, B. Zatt, S. Bampi, and J. Henkel, “Approximation-aware

Multi-Level Cells STT-RAM cache architecture,” in 2015 International Conference on
Compilers, Architecture and Synthesis for Embedded Systems (CASES), (Amsterdam,
Netherlands), pp. 79-88, IEEE, Oct. 2015.

[111] Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu, “ApproxANN: An Approximate

Computing Framework for Artificial Neural Network,” in Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2015, (Grenoble, France), pp. 701-706,
IEEE Conference Publications, 2015.

[112] W. Baek and T. M. Chilimbi, “Green: a framework for supporting energy-conscious

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

programming using controlled approximation,” in Proceedings of the 2010 ACM
SIGPLAN conference on Programming language design and implementation - PLDI
’10, (Toronto, Ontario, Canada), p. 198, ACM Press, 2010.

Zidong Du, A. Lingamneni, Yunji Chen, K. Palem, O. Temam, and Chengyong Wu,
“Leveraging the error resilience of machine-learning applications for designing highly
energy efficient accelerators,” in 2014 19th Asia and South Pacific Design Automation
Conference (ASP-DAC), (Singapore), pp. 201-206, IEEE, Jan. 2014.

Y. Cho and M. Lu, “A Reconfigurable Approximate Floating-Point Multiplier with
kNN,” in 2020 International SoC Design Conference (ISOCC), (Yeosu, Korea (South)),
pp- 117-118, IEEE, Oct. 2020.

T. Nomani, M. Mohsin, Z. Pervaiz, and M. Shafique, “xUAVs: Towards Efficient
Approximate Computing for UAVs—Low Power Approximate Adders With Single
LUT Delay for FPGA-Based Aerial Imaging Optimization,” IEEE Access, vol. 8,
pp- 102982-102996, 2020.

D. Hernandez-Araya, J. Castro-Godinez, M. Shafique, and J. Henkel, “AUGER: A
Tool for Generating Approximate Arithmetic Circuits,” in 2020 IEEE 11th Latin

American Symposium on Circuits & Systems (LASCAS), (San Jose, Costa Rica), pp. 1-
4, IEEE, Feb. 2020.

S.-H. Yang, C.-C. Chiu, C.-W. Chang, C.-M. Chen, C.-H. Meng, and K.-H. Chen,
“87% Overall High Efficiency and 11 uA Ultra-Low Standby Current Derived by
Overall Power Management in Laptops With Flexible Voltage Scaling and Dynamic
Voltage Scaling Techniques,” IEEE Trans. Power Electron., vol. 31, pp. 3118-3127,
Apr. 2016.

A. Andrei, P. Eles, O. Jovanovic, M. Schmitz, J. Ogniewski, and Z. Peng, “Quasi-Static
Voltage Scaling for Energy Minimization With Time Constraints,” IEEE Trans. VLSI
Syst., vol. 19, pp. 10-23, Jan. 2011.

L. Yao, D. I. Made, and Y. Gao, “A 83% peak efficiency 1.65 V to 11.4V dynamic
voltage scaling supply for electrical stimulation applications in standard 0.18um
CMOS process,” in 2016 IEEE Asian Solid-State Circuits Conference (A-SSCC),
(Toyama, Japan), pp. 205-208, IEEE, Nov. 2016.

M. Ringenburg, A. Sampson, I. Ackerman, L. Ceze, and D. Grossman, ‘“Monitoring
and Debugging the Quality of Results in Approximate Programs,” SIGPLAN Not.,
vol. 50, pp. 399-411, May 2015.

References 129

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

T. Moreau, M. Wyse, J. Nelson, A. Sampson, H. Esmaeilzadeh, L. Ceze, and M. Oskin,
“SNNAP: Approximate computing on programmable SoCs via neural acceleration,” in

2015 IEEE 21st International Symposium on High Performance Computer Architecture
(HPCA), (Burlingame, CA, USA), pp. 603—614, IEEE, Feb. 2015.

S. S. Sarwar, G. Srinivasan, B. Han, P. Wijesinghe, A. Jaiswal, P. Panda, A. Raghu-
nathan, and K. Roy, “Energy Efficient Neural Computing: A Study of Cross-Layer
Approximations,” IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 8, pp. 796-809, Dec. 2018.

J. Kung, D. Kim, and S. Mukhopadhyay, “A power-aware digital feedforward neu-
ral network platform with backpropagation driven approximate synapses,” in 2015
IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED),
(Rome, Italy), pp. 85-90, IEEE, July 2015.

S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan, “AxNN: energy-efficient
neuromorphic systems using approximate computing,” in Proceedings of the 2014
international symposium on Low power electronics and design, (La Jolla California

USA), pp. 27-32, ACM, Aug. 2014.

V. K. Chippa, D. Mohapatra, A. Raghunathan, K. Roy, and S. T. Chakradhar, “Scalable
effort hardware design: exploiting algorithmic resilience for energy efficiency,” in
Proceedings of the 47th Design Automation Conference on - DAC ’10, (Anaheim,
California), p. 555, ACM Press, 2010.

F. Yazici, A. S. YildiZ, A. Yazar, and E. G. Schmidt, “A Novel Scalable On-chip
Switch Architecture with Quality of Service Support for Hardware Accelerated Cloud
Data Centers,” in 2020 IEEE 9th International Conference on Cloud Networking
(CloudNet), (Piscataway, NJ, USA), pp. 1-4, IEEE, Nov. 2020.

S. Eldridge, F. Raudies, D. Zou, and A. Joshi, “Neural network-based accelerators
for transcendental function approximation,” in Proceedings of the 24th edition of the
great lakes symposium on VLSI - GLSVLSI " 14, (Houston, Texas, USA), pp. 169-174,
ACM Press, 2014.

V. Wong and M. Horowitz, “Soft Error Resilience of Probabilistic Inference Appli-
cations,” in IN PROCEEDINGS OF THE WORKSHOP ON SYSTEM EFFECTS OF
LOGIC SOFT ERRORS, 2006.

L. Leem, Hyungmin Cho, J. Bau, Q. A. Jacobson, and S. Mitra, “ERSA: Error Resilient
System Architecture for probabilistic applications,” in 2010 Design, Automation &
Test in Europe Conference & Exhibition (DATE 2010), (Dresden), pp. 1560-1565,
IEEE, Mar. 2010.

S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard, “Quality of service profil-
ing,” in Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - ICSE ’10, vol. 1, (Cape Town, South Africa), p. 25, ACM Press, 2010.

P. Roy, R. Ray, C. Wang, and W. F. Wong, “ASAC: automatic sensitivity analysis for
approximate computing,” ACM SIGPLAN Notices, vol. 49, pp. 95-104, May 2014.

130 References

[132] J. Ludwig, S. Nawab, and A. Chandrakasan, “Low-power digital filtering using
approximate processing,” IEEE Journal of Solid-State Circuits, vol. 31, pp. 395-400,
Mar. 1996.

[133] E. Nogues, D. Menard, and M. Pelcat, “Algorithmic-Level Approximate Computing
Applied to Energy Efficient Heve Decoding,” IEEE Transactions on Emerging Topics
in Computing, pp. 1-1, 2016.

[134] M. Osta, A. Ibrahim, H. Chible, and M. Valle, “Approximate Multipliers Based on
Inexact Adders for Energy Efficient Data Processing,” in 2017 New Generation of
CAS (NGCAS), (Genova, Italy), pp. 125-128, IEEE, Sept. 2017.

[135] F. Muslim, A. Demian, L. Ma, L. Lavagno, and A. Qamar, “Energy-efficient FPGA
Implementation of the k-Nearest Neighbors Algorithm Using OpenCL,” pp. 141-145,
Oct. 2016.

[136] S. Hahn, J. Reineke, and R. Wilhelm, “Towards compositionality in execution time
analysis: definition and challenges,” ACM SIGBED Review, vol. 12, pp. 28-36, Mar.
2015.

[137] M. Rizk, A. Baghdadi, M. Jézéquel, Y. Mohanna, and Y. Atat, “Efficient quantiza-
tion and fixed-point representation for MIMO turbo-detection and turbo-demapping,”
EURASIP Journal on Embedded Systems, vol. 2017, Dec. 2017.

[138] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM
Transactions on Intelligent Systems and Technology, vol. 2, pp. 1-27, Apr. 2011.

[139] Z. Liu, B. Wu, W. Luo, X. Yang, W. Liu, and K.-T. Cheng, “Bi-Real Net: Enhancing
the Performance of 1-bit CNNs With Improved Representational Capability and
Advanced Training Algorithm,” arXiv:1808.00278 [cs], Sept. 2018.

[140] X. Xilinx, Vivado Design Suite User guide, High-Level Synthesis.

[141] H. Fares, L. Seminara, A. Ibrahim, M. Franceschi, L. Pinna, M. Valle, S. Dosen,
and D. Farina, “Distributed Sensing and Stimulation Systems for Sense of Touch
Restoration in Prosthetics,” in 2017 New Generation of CAS (NGCAS), (Genova,
Italy), pp. 177-180, IEEE, Sept. 2017.

[142] J. Sun, W. Du, and N. Shi, “A Survey of kNN Algorithm,” Inf Eng Appl Comput,
vol. 1, May 2018.

[143] Zhe-Hao Li, Ji-Fang Jin, Xue-Gong Zhou, and Zhi-Hua Feng, “K-nearest neighbor
algorithm implementation on FPGA using high level synthesis,” in 2016 13th IEEE
International Conference on Solid-State and Integrated Circuit Technology (ICSICT),
(Hangzhou, China), pp. 600-602, IEEE, Oct. 2016.

[144] J. Saikia, S. Yin, Z. Jiang, M. Seok, and J.-s. Seo, “K-Nearest Neighbor Hardware
Accelerator Using In-Memory Computing SRAM,” in 2019 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED), (Lausanne, Switzerland),
pp- 1-6, IEEE, July 2019.

References 131

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]
[154]
[155]
[156]

[157]

[158]

D. Jamma, O. Ahmed, S. Areibi, G. Grewal, and N. Molloy, “Design exploration of
ASIP architectures for the K-Nearest Neighbor machine-learning algorithm,” in 2016
28th International Conference on Microelectronics (ICM), (Giza, Egypt), pp. 57-60,
IEEE, Dec. 2016.

D. Jamma, O. Ahmed, S. Areibi, and G. Grewal, “Hardware accelerators for the
K-nearest neighbor algorithm using high level synthesis,” in 2017 29th International
Conference on Microelectronics (ICM), (Beirut, Lebanon), pp. 1-4, IEEE, Dec. 2017.

F. B. Muslim, L. Ma, M. Roozmeh, and L. Lavagno, “Efficient FPGA Implementation
of OpenCL High-Performance Computing Applications via High-Level Synthesis,”
IEEE Access, vol. 5, pp. 2747-2762, 2017.

Q. Mu, L. Cui, and Y. Song, “The implementation and optimization of Bitonic sort
algorithm based on CUDA,” arXiv:1506.01446 [cs], June 2015.

H. Younes, A. Ibrahim, M. Rizk, and M. Valle, “Algorithmic Level Approximate
Computing for Machine Learning Classifiers,” in 2019 26th IEEE International
Conference on Electronics, Circuits and Systems (ICECS), (Genoa, Italy), pp. 113-114,
IEEE, Nov. 2019.

N. Jamali and C. Sammut, “Majority Voting: Material Classification by Tactile Sensing
Using Surface Texture,” IEEE Transactions on Robotics, vol. 27, pp. 508-521, June
2011.

J. Kwiatkowski, D. Cockburn, and V. Duchaine, “Grasp stability assessment through
the fusion of proprioception and tactile signals using convolutional neural networks,”
in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
(Vancouver, BC), pp. 286292, IEEE, Sept. 2017.

H. Younes, A. Ibrahim, M. Rizk, and M. Valle, “Algorithmic-Level Approximate
Tensorial SVM Using High-Level Synthesis on FPGA,” Electronics, vol. 10, p. 205,
Jan. 2021.

Weka 3 - Data Mining with Open Source Machine Learning Software in Java.
TE0726 Resources - Public Docs - Trenz Electronic Wiki.
NVIDIA, NVIDIA System Management Interface. June 2012.

L. Sanchez, J. Ranilla, and A. Cocafia-Ferndndez, “Eecluster: An energyefficient tool
for managing hpc clusters,” Annals of Multicore and GPU Programming, vol. 2, no. 1,
pp- 15-24, 2015.

S. Cook, “Memory Handling with CUDA,” in CUDA Programming, pp. 107-202,
Elsevier, 2013.

M. A. Mohsin and D. G. Perera, “An FPGA-Based Hardware Accelerator for K-Nearest
Neighbor Classification for Machine Learning on Mobile Devices,” in Proceedings of
the 9th International Symposium on Highly-Efficient Accelerators and Reconfigurable
Technologies, (Toronto ON Canada), pp. 1-7, ACM, June 2018.

132

References

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

D. Tao, X. Li, X. Wu, W. Hu, and S. J. Maybank, “Supervised tensor learning,”
Knowledge and Information Systems, vol. 13, pp. 1-42, Sept. 2007.

B. Zhou, R. Brent, and M. Kahn, “Efficient one-sided Jacobi algorithms for singular
value decomposition and the symmetric eigenproblem,” in Proceedings 1st Interna-

tional Conference on Algorithms and Architectures for Parallel Processing, vol. 1,
(Brisbane, QId., Australia), pp. 256262, IEEE, 1995.

B. Yang and J. F. Bohme, “Reducing the Computations of the Singular Value De-
composition Array Given by Brent and Luk,” SIAM J. Matrix Anal. & Appl., vol. 12,
pp. 713725, Oct. 1991.

R. P. Brent and F. T. Luk, “The Solution of Singular-Value and Symmetric Eigenvalue
Problems on Multiprocessor Arrays,” SIAM J. Sci. and Stat. Comput., vol. 6, pp. 69-84,
Jan. 1985.

J. R. Cavallaro and F. T. Luk, “Architectures For A Cordic SVD Processor,” (San
Diego), p. 45, Mar. 1986.

J.-M. Delosme, “CORDIC Algorithms: Theory And Extensions,” (San Diego), p. 131,
Nov. 1989.

D. Milford and M. Sandell, “Singular value decomposition using an array of CORDIC
processors,” Signal Processing, vol. 102, pp. 163—-170, Sept. 2014.

A. Ibrahim, M. Valle, L. Noli, and H. Chible, “Singular value decomposition FPGA
implementation for tactile data processing,” in 2015 IEEE 13th International New
Circuits and Systems Conference (NEWCAS), (Grenoble, France), pp. 1-4, IEEE, June
2015.

S. Zhang, X. Tian, C. Xiong, J. Tian, and D. Ming, “Fast Implementation for the
Singular Value and Eigenvalue Decomposition Based on FPGA,” Chinese Journal of
Electronics, vol. 26, pp. 132-136, Jan. 2017.

T. Jiang, F. Xie, S. Yuan, S. Yao, K. Wu, and X. Wang, “Implementation of Matrix
SVD Decomposition Module for Subspace Channel Estimation,” in 2019 IEEE 3rd

Information Technology, Networking, Electronic and Automation Control Conference
(ITNEC), (Chengdu, China), pp. 10961102, IEEE, Mar. 2019.

C. Deng, M. Yin, X.-Y. Liu, X. Wang, and B. Yuan, “High-performance Hardware
Architecture for Tensor Singular Value Decomposition: Invited Paper,” in 2079
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), (West-
minster, CO, USA), pp. 1-6, IEEE, Nov. 2019.

A. Ibrahim, M. Valle, L. Noli, and H. Chible, “FPGA implementation of fixed point
CORDIC-SVD for E-skin systems,” in 2015 11th Conference on Ph.D. Research in
Microelectronics and Electronics (PRIME), (Glasgow, United Kingdom), pp. 318-321,
IEEE, June 2015.

N. Samardzija and R. L. Waterland, “A neural network for computing eigenvectors
and eigenvalues,” Biol. Cybern., vol. 65, pp. 211-214, Aug. 1991.

References 133

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

Z.Y1, Y. Fu, and H. J. Tang, “Neural networks based approach for computing eigen-
vectors and eigenvalues of symmetric matrix,” Computers & Mathematics with Appli-
cations, vol. 47, pp. 1155-1164, Apr. 2004.

Y. Tang and J. Li, “Another neural network based approach for computing eigenvalues
and eigenvectors of real skew-symmetric matrices,” Computers & Mathematics with
Applications, vol. 60, pp. 1385-1392, Sept. 2010.

J. Qiu, H. Wang, J. Lu, B. Zhang, and K.-L. Du, “Neural Network Implementations
for PCA and ItsExtensions,” ISRN Artificial Intelligence, vol. 2012, pp. 1-19, 2012.

H. Bui and S. Tahar, “Design and synthesis of an IEEE-754 exponential function,” in
Engineering Solutions for the Next Millennium. 1999 IEEE Canadian Conference on
Electrical and Computer Engineering (Cat. No.99TH8411), vol. 1, (Edmonton, Alta.,
Canada), pp. 450455, IEEE, 1999.

M. Osta, M. Alameh, H. Younes, A. Ibrahim, and M. Valle, “Energy Efficient Imple-
mentation of Machine Learning Algorithms on Hardware Platforms,” (Genova, Italy),
Nov. 2019.

I. L. Jernelv, D. R. Hjelme, Y. Matsuura, and A. Aksnes, “Convolutional neural
networks for classification and regression analysis of one-dimensional spectral data,”
arXiv:2005.07530 [physics, stat], May 2020.

M. Fernandez-Delgado, M. Sirsat, E. Cernadas, S. Alawadi, S. Barro, and M. Febrero-
Bande, “An extensive experimental survey of regression methods,” Neural Networks,
vol. 111, pp. 11-34, Mar. 2019.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto,
and H. Adam, “MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications,” arXiv:1704.04861 [cs], Apr. 2017.

X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An Extremely Efficient Convolu-
tional Neural Network for Mobile Devices,” arXiv:1707.01083 [cs], Dec. 2017.

I. Freeman, L. Roese-Koerner, and A. Kummert, “EffNet: An Efficient Structure for
Convolutional Neural Networks,” arXiv:1801.06434 [cs], June 2018.

L. Yang and A. Shami, “On hyperparameter optimization of machine learning algo-
rithms: Theory and practice,” Neurocomputing, vol. 415, pp. 295-316, Nov. 2020.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification,” arXiv:1502.01852 [cs], Feb.
2015.

H. Younes, A. Ibrahim, M. Rizk, and M. Valle, “Data Oriented Approximate K-Nearest
Neighbor Classifier for Touch Modality Recognition,” in 2019 15th Conference on
Ph.D Research in Microelectronics and Electronics (PRIME), (Lausanne, Switzerland),
pp- 241-244, 1IEEE, July 2019.

134 References

[185] M. Alameh, Y. Abbass, A. Ibrahim, G. Moser, and M. Valle, “Touch Modality Classi-
fication Using Recurrent Neural Networks,” IEEE Sensors J., vol. 21, pp. 9983-9993,
Apr. 2021.

[186] C. Alippi, S. Disabato, and M. Roveri, “Moving Convolutional Neural Networks
to Embedded Systems: The AlexNet and VGG-16 Case,” in 2018 17th ACM/IEEE
International Conference on Information Processing in Sensor Networks (IPSN),
(Porto), pp. 212-223, IEEE, Apr. 2018.

[187] Y. He, X. Zhang, and J. Sun, “Channel Pruning for Accelerating Very Deep Neural
Networks,” in 2017 IEEE International Conference on Computer Vision (ICCV),
(Venice), pp. 1398-1406, IEEE, Oct. 2017.

[188] J. Yim, D. Joo, J. Bae, and J. Kim, “A Gift from Knowledge Distillation: Fast Opti-
mization, Network Minimization and Transfer Learning,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), (Honolulu, HI), pp. 7130-7138,
IEEE, July 2017.

[189] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing Deep Convolutional
Networks using Vector Quantization,” arXiv:1412.6115 [cs], Dec. 2014.

[190] Y. Bengio, N. Léonard, and A. Courville, “Estimating or Propagating Gradients
Through Stochastic Neurons for Conditional Computation,” arXiv:1308.3432 [cs],
Aug. 2013.

[191] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
arXiv:1412.6980 [cs], Jan. 2017.

[192] H. Yonekawa and H. Nakahara, “On-Chip Memory Based Binarized Convolutional
Deep Neural Network Applying Batch Normalization Free Technique on an FPGA,” in
2017 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), (Orlando / Buena Vista, FL, USA), pp. 98-105, IEEE, May 2017.

[193] U. S. Patankar, M. E. Flores, and A. Koel, “Division algorithms - From Past to Present
Chance to Improve Area Time and Complexity for Digital Applications,” in 2020
IEEE Latin America Electron Devices Conference (LAEDC), (San Jose, Costa Rica),
pp. 1-4, IEEE, Feb. 2020.

[194] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention Is All You Need,” arXiv:1706.03762 [cs], Dec. 2017.
arXiv: 1706.03762.

[195] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby,

“An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,”
arXiv:2010.11929 [cs], June 2021. arXiv: 2010.11929.

[196] P. Huang, C. Wang, W. Liu, F. Qiao, and F. Lombardi, “A Hardware/Software Co-
Design Methodology for Adaptive Approximate Computing in clustering and ANN
Learning,” IEEE Open J. Comput. Soc., vol. 2, pp. 38-52, 2021.

Appendix A

Hardware Accelerator Design using
Vivado Suite

A.1 Hardware Design using Register-Transfer Level (RTL)

1.

2.

Create a new Vivado Project and choose your board (e.g. Zyngberry).

Create a new block design.

. Add the Zynq processing system then:

a. Connect the FCLK_CLKO to M_AXI _GP0O_ACLK.

b. Run Connection Automation.

. Right click on the design in the source pane and select “create HDL wrapper”.
. Choose Tools » Create and Package New IP » Create AXI4 Interface.

. A new Vivado IP project is open, inside it: Choose add source » create a new one:

VHDL code shown in Figure A.1. -

In the source pane, expand the item: my_multiplier_v1_0_S00_AXI_inst and add the
following changes:

- Find the line with the “begin” keyword and add the code shown in Figure A.2 just
above it to declare the multiplier and the output signal.

- Find the line that says “— Add user logic here” and add the code shown in Figure A.3
below it to instantiate the multiplier.

- Find this line of code “reg_data_out <= slv_regl;” and replace it with “reg_data_out

<= multiplier_out;”.

136 Hardware Accelerator Design using Vivado Suite

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity multiplier is

port(
clk : in std_logic;
a : in std_logic_vector(15 downto 0);
b : in std logic_vector(15 downto @);
p : out std _logic vector(31 downto 8)
)s

end multiplier;
architecture IMP of multiplier is

begin
process (clk)
begin
if clk'event and clk = '1' then
p <= a * b;
end if;
end process;
end IMP;

Fig. A.1 VHDL Code of a multiplier

signal multiplier out : std logic vector(31 downto 8);
component multiplier
port (
clk: in std logic;
a: in std logic VECTOR(15 downto 8);
b: in std logic VECTOR(15 downto @);
p: out std logic VECTOR(31 downto @));
end component;

Fig. A.2 Multiplier Setup

multiplier @: multiplier

port map (
clk => S _AXI ACLK,
a => slv reg@(31 downto 16),
b => slv reg@(15 downto 0),
p => multiplier out);

Fig. A.3 Port Mapping of the Multiplier Entity

A.1 Hardware Design using Register-Transfer Level (RTL) 137

- In the process statement just a few lines above, replace “slv_regl” with “multi-
plier_out”. You should notice that the “multiplier.vhd” file has been integrated into the
hierarchy.

- In the package pane:

Click on “IP File Group” and select “Merge changes from IP File....”

Click on Review and Package. Repackage your IP, save and close.

7. In the main Vivado project, add the new created IP to your design and run Connection

Automation. The complete design is shown in Figure A .4.

ps7_0_awi_periph
rst_ps7_0_49M n
il 4 S00_AXI
showest_syne ¢k il feset - = ALK vhdl_multiplier_0
L@ ext_reset in bus_struct_resetj00] ARESETH E—-u
@ aux reset in perigheral_reset{00] = 00 ACLK = Moo A 4 =+ 500_AK
= mib_debug_sys_mt interconnect_aresetn| 0] @ SOOARESETN o 500 aoci_aclic
= dem_locked periphe ral_arese tn{0:0] e == WADD_ACLE sD0_so_aresstn
MOO_ARESETH
ELEOT Syitem Redet rwl ¥
processing_system? _0
ook -+ ||| > ooR
FiED 0+ [|} [FIxED IO
USBIND.O |]|
M_AXI GPO + i
TTCO WAVED OUT =
TTCO WAVET OUT =

- BA_AXIGPO_ACLE Z\(NO‘ TTCO WAVEZ OUT =

TICI WAVED OUT ==
TTCI_WAVELOUT =
TTC1 WAVEZ QUT =
WODT_RST_OUT =
FCLE_CLED
FOLE_RESETO N Qe

Fig. A.4 Complete RTL Design Block Diagram

8. From “Program and Debug”, select Generate bits.
9. Select File » Export Hardware and check “Include bitstream”.
10. Select File » Launch SDK.

11. In the SDK Application:
a. Select File » New Application Project.
b.Keep everything as default (except C/C++ based on your reference), and Click Next.
c. Choose the hello World Template.
d. Paste the code shown in Figure A.5 inside Helloworld.c: This code saves two num-
bers into a 32-bit register (num1 in LSB, num?2 in MSB) then perform the multiplication
using the VHDL IP.

138

Hardware Accelerator Design using Vivado Suite

12.

13.

14.

#include "platform.h"

#include "xbasic_types.h”

#include "xparameters.h"

Xuint32 *baseaddr_p = (Xuint32 *) XPAR_VHDL_MULTIPLIER_@_S@@_AXI_BASEADDR;
int main()

init_platform();

xil_printf("Multiplier Test\n\r");

// Write multiplier inputs to register @

*(baseaddr_p+8) = 2xB000208003;

xil_printf("Wrote: @x%08x \n\r", *(baseaddr_p+0));

// Read multiplier output from register 1
xil printf("Read : @x%B8x ‘\n\r", *(baseaddr_p+1));

xil _printf("End of testin\n\r"};

return @;

}
Fig. A.5 Multiplier Code in Vivado SDK using RTL
Program the FPGA
Select Run » Run As » Launch on Hardware GDB

Open serial connection using the SDK terminal on the PORT number. See the results.

A.2 Software Design using High Level Synthesis (HLS)

1.

2.

Create new project in Vivado HLS.

Create new C file in the source tab that includes a simple multiplication function.

. Use: #pragma HLS INTERFACE s_axilite port=a bundle="CTRLS" directive to export

the block as AXI interface.

. Create new C file in the testbench tab that includes the main() function.
. Run C simulation, RTL/C simulation and finally Export RTL IP.

. In Vivado:

a. Repeat steps 1 to 4 from section A.1
b. Select Tools » Setting » IP » Repository and add the path to the HLS exported block.

¢. Run Connection Automation. The complete design is shown in Figure A.6.

. Repeat steps 8-to-11(c) from section A.1.

A.2 Software Design using High Level Synthesis (HLS)

139

Processor ﬁy\ll':" Reset

psT_0_axi_periph
rst_ps7_0_49M [+]
+ 500 A1
shewest_sync_clk mil_reset = ACLK vhdl_multiplier_0
ext_reset_in bus_struct_reset|00] ARESETH -E'
& aie_reses_in peripheral_reset}00] 1= 500 ACLK W= Moo ad 4
= mib_debug_sys_rst interconnect_aresetn|(0) SO0ARESETH gty
= dem_locked periphe ral_arese tn[0:0] 4 WAOD_ACLE
ADD_ARESETN

. J
vil_multiplier_v1.0 (Pre-Production)

processing_system?_0

AX] Interconmnect

TTCO WAVED OUT =
TTCOWAVET OUT b=
TTCO WAVEZ QUT
TTC1_WAVED OUT
TTC1_WAVET_OUT
TTC1_WAVEZ QUT
WOT_RST_OUT
FELK_CLKD
FOLK_RESETON Do

-

Manorax ZYNQ

=
-
-
-

A -
ZYMQT Processing System

- Y
oo + ||k ¥ D oor
FIXED 0+ [[b [FIXED_IO
usanD_o + |||
M_AXI_GPO 4 i

Fig. A.6 Complete HLS Design Block Diagram

8. In SDK, paste the code shown in Figure A.7 in the “helloworld.c”.

#include "platform.h”

#include "xbasic_types.h”

#include "xparameters.h” // Contains definitions for all peripherals
#include "xhls_multiplier.h" // Contains hls_multiplier

// This is how to call any HLS block
XHls_multiplier do_hls_multiplier;
¥Hls_multiplier Config *do_hls_multiplier_cfg;

/[this function initializes the HLS block

void init_HLS_multiplier(){
int status;
[/ Create hls_multiplier pointer
do_hls_multiplier_cfg = XHls_multiplier_LookupConfig(
APAR_HLS_MULTIPLIER_6_DEVICE_ID);

if (!do_hls_multiplier_cfg) {
xil_printf(
"trror loading configuration for do_hls_multiplier_cfg \n\r");

}
status = ¥Hls_multiplier (fgInitialize(&do_hls_multiplier,
do_hls_multiplier_cfg);
if (status 1= XST_SUCCESS) {
xil_printf("Error initializing for do_hls_multiplier \n\r");

1
¥Hls multiplier Initialize(&do hls multiplier,
XPAR_HLS_MULTIPLIER_@_DEVICE_ID); // this is optional in this case

int main()

{
init_platform();
init_HLS multiplier();

unsigned int p;
p=8;
while(1){

int a = 2, b=3;
// Write multiplier inputs to register @
¥Hls_multiplier_Set_a(&do_hls_multiplier, a);
X¥Hls_multiplier_Set_b(&do_hls_multiplier, b);
xil _printf("Write a: @x%08x \n\r", a);
xil_printf("Write b: @x%e8x \n\r", b);

// Start hls_multiplier
¥Hls multiplier Start(&do hls multiplier);
xil_printf("Started hls_multiplier \n\r");

// Wait until it's done (optional here)
while (!XHls_multiplier_IsDone(&do_hls_multiplier)});

// Get hls_multiplier returned value
p = XHls_multiplier Get_return(&do_hls_multiplier);

xil_printf("Read p: Ox%08x \n\r", p);
xil_printf("End of test HLS_MULTIPLIER \n\n\r");
}

cleanup_platform();
return 9;

Fig. A.7 Multiplier Code in Vivado SDK using HLS

Repeat steps 12-to-14 from section A.1.

140

Hardware Accelerator Design using Vivado Suite

A.3 Software/hardware Co-Design using HLS and RTL

1. Follow the same steps as previous sections to obtain the accelerator design shown in

Figure A.8.

Al_ltplier 0

-4 500 a1
. = 0, sk

T 0a_peviph

r—
0 e esein

= mb, debug

e

L W Goo_ACIK

2. In SDK, paste the code shown in Figures A.9, A.10, A.11, A.12, and A.13 in the

@ s peet in

::?mm T

rsi_ps? 0 4584] e - -
i ARISETH e e
o ot mb et -] S Fismultiplier 0
bevs_Stnect_reetfi] 3 3 w0 a0 ik
w0 st B=0 i
periphanal reuejoo] = B 01K 4 e 4 st RIS [s
PP " WAL gisg I ' [2 = —
e A . - [rreesy
> e b 00 WA ARESETH . - ‘
e v A1 ACLE q ap
Processcr Systen Resel } WO ARESETH eker (Fro.Prod

10|
processing system?_0

ook 4 || — oox
oo o+ [} > FoED 0
usamo_o + |||

A 6RO 4 | mnteted
TIED WAVED OUT =
TIC0 Wy _ouUT
TTC0 WAVER OUT =
I WAVED OUT
T WA _ouT
TN WAV ER OUT
WIT_BST_QUT
FOUK CIKD
o

ZYNO:

PELE RESITE M

Fig. A.8 Software/Hardware Multiplier Accelerator

« k)
helloworld.c”.
#include "platform.h"
#include "xbasic_types.h"
#include "xparameters. // Contains definitions for a peripherals
" h" // i jefiniti f 11 iph 1
#include “xhls_multiplier.h™ // Contains hls_multiplier macros and functions

// we will use the Base Address of the RTL_MULTIPLIER
Xuint32 *baseaddr_rtl_multiplier
(Xuint32 *) XPAR_RTL_MULTIPLIER_O_S0@_AXI_BASEADDR;

// global for HLS MULTIPLIER
XHls multiplier do_hls multiplier;
XHls_multiplier_Config *do_hls_multiplier_cfg;

// function that prompts user for 2 numbers (ints)
void get_inputs(int *c, int*d) {
int a, b;
// get first operand
xil_printf("Enter operand A:
scanf("%d", &a);
xil_printf(“%d\n\r", a);
// get second operand
xil_printf(“Enter operand B: ");
scanf("¥d", &b);
xil_printf("%d\n\r", b);
J/ return the two numbers
*c = a;
*d = b;
return;

")

}

Fig. A.9 Multiplier Code in Vivado SDK using HLS and RTL (1)

A.3 Software/hardware Co-Design using HLS and RTL 141

void multiply_rtl{int a, int b) {
/{ concatenate the two integers to a 32-bit value to be passed to RTL multiplier
int passing_int = (a << 16) + b;
// Write multiplier inputs to register @

*(baseaddr_rtl_multiplier + @) = passing_int;
xil_printf("Wrote to register @: @x¥@8x \n\r",
*(baseaddr_rtl_multiplier + @));

// Read multiplier output from register 1
xil_printf("Read from register 1: 8x%@8x \n\r",
*(baseaddr_rtl_multiplier + 1));

xil_printf("End of test RTL_MULTIPLIER ‘\n\n\r");

Fig. A.10 Multiplier Code in Vivado SDK using HLS and RTL (2)

void init_HLS_multiplier(){
/{ Vivado HLS generates
int status;
// Create hls_multiplier pointer
do_hls_multiplier_cfg = XHls_multiplier_LookupConfig(
XPAR_HLS_MULTIPLIER_©_DEVICE_ID);

if (ldo_hls_multiplier_cfg) {
xil printf(
"Error loading configuration for do_hls_multiplier_cfg \n\r");

b

status = XHls_multiplier_CfgInitialize(&do_hls_multiplier,
do_hls_multiplier_cfg);
if (status != XST_SUCCESS) {
xil_printf("Error initializing for do_hls_multiplier \n\r");

¥Hls_multiplier_Initialize(&do_hls_multiplier,
XPAR_HLS_MULTIPLIER_@_DEVICE_ID); // this is optional in this case

Fig. A.11 Multiplier Code in Vivado SDK using HLS and RTL (3)

// function that multiplies with HLS multiplier
void multiply_ hls(int a, int b) {

unsigned int p;

p =9;

// Write multiplier inputs to register ©
XHls multiplier_Set_a(&do_hls multiplier, a);
XHls_multiplier_Set_b(&do_hls_multiplier, b);
xil_printf("Write a: 0x%08x \n\r", a);
xil_printf("Write b: @x%@8x \n\r", b);

// Start hls_multiplier
XHls_multiplier_Start(&do_hls_multiplier);
xil_printf("Started hls_multiplier \n\r");

// Wait until it's done (optional here)
while (!XHls_multiplier_IsDone(&do_hls_multiplier))

El

// Get hls_multiplier returned value
p = XHls_multiplier_Get_return(&do_hls_multiplier);

xil_printf("Read p: @x%@8x ‘n\r", p):

xil printf("End of test HLS MULTIPLIER \n\n\r");

Fig. A.12 Multiplier Code in Vivado SDK using HLS and RTL (4)

3. Repeat steps 12-to-14 from section A.1.

142

Hardware Accelerator Design using Vivado Suite

int main() {
// setup
init_platform();
init HLS multiplier();
int *c, *d;
// Infinite loop steps: (1) test RTL multiplier with user inputs and (2) test HLS multiplier with user inputs
while (1) {

}

THTTTTIEE T EE T LA ETEE LTI iiiiriry
// RTL MULTIPLIER TEST

xil_printf("Performing a test of the RTL_MULTIPLIER... \n\r");

// prompt user for 2 numbers (to be used for RTL multiplication)

get_inputs(c, d);

// perform RTL multiplication

multiply rtl(*c, *d);

THITEEEHE T TR LTI AT ET L ET AL LTI T TE AT i
// HLS MULTIPLIER TEST

xil printf("Performing a test of the HLS MULTIPLIER... \n\r");

// prompt user for 2 numbers (to be used for HLS multiplication)

get_inputs(c, d);

// perform HLS multiplication

multiply_hls(*c, *d);

cleanup_platform();
return 9;

Fig. A.13 Multiplier Code in Vivado SDK using HLS and RTL (5)

This process can be performed with verilog and Vivado Vitis with the same procedure.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Objectives and Contributions
	1.2 Dissertation Outline
	1.2.1 State of the art
	1.2.2 Algorithmic Level Approximate Computing Techniques for Machine Learning
	1.2.3 Efficient Selection-Based k-Nearest Neighbor Architecture on Modern SoCs
	1.2.4 Real-time Accelerated Tensorial Support Vector Machine Architecture
	1.2.5 A Hybrid Precision Architecture for an Efficient Binary Convolutional Neural Network Accelerator

	1.3 List of Publications

	2 State of the art
	2.1 Tactile Data Processing
	2.1.1 Pre-Processing
	2.1.2 Classification and Regression

	2.2 Embedded Machine Learning
	2.2.1 Computational Complexity of Machine Learning Algorithms
	2.2.2 Hardware Platforms
	2.2.3 Machine Learning Accelerators
	2.2.3.1 k-Nearest Neighbor Accelerators
	2.2.3.2 Support Vector Machine Hardware Accelerators
	2.2.3.3 Binary Convolution Neural Network Hardware Accelerators

	2.3 Approximate Computing for Machine Learning Architectures
	2.4 Conclusion

	3 Algorithmic Level Approximate Computing Techniques for Machine Learning
	3.1 Introduction
	3.2 Algorithmic Level Approximate Computing Techniques
	3.3 Experimental Setup
	3.3.1 Dataset
	3.3.2 Software Environment
	3.3.3 Hardware Environment

	3.4 Approximate k-Nearest Neighbor
	3.4.1 kNN Overview
	3.4.2 Software Simulation
	3.4.3 Hardware Implementation
	3.4.4 Implementation Results and Assessment

	3.5 Approximate Tensorial Support Vector Machine
	3.5.1 Tensorial SVM Overview
	3.5.2 Software Simulation
	3.5.3 Hardware Implementation
	3.5.4 Implementation Results and Assessment

	3.6 Conclusion

	4 Efficient Selection-Based K-Nearest Neighbor Architecture on Modern SoCs
	4.1 Introduction
	4.2 Proposed k-NN Hardware Architecture
	4.2.1 k-Nearest Neighbor Algorithm Overview
	4.2.2 Selection-based kNN Architecture
	4.2.3 Nearest Neighbors Selector
	4.2.4 Approximate kNN Blocks

	4.3 Case Study: Tactile Data Processing for Electronic Skin Systems
	4.3.1 Electronic Skin Overview
	4.3.2 Experimental Setup

	4.4 Selection-based kNN Implementation
	4.4.1 Hardware and Software Design Tools
	4.4.2 Implementation Methodology
	4.4.3 Design Optimization
	4.4.4 Implementation Results

	4.5 Comparison with existing solutions
	4.6 Conclusion

	5 Real-time Accelerated Tensorial Support Vector Machine Architecture
	5.1 Introduction
	5.2 SVM Classification based on Tensorial Kernel
	5.2.1 TSVM Re-visited
	5.2.2 Complexity Assessment of TSVM
	5.2.3 Touch Modalities Classification

	5.3 SVD Algorithms and Implementations
	5.3.1 Literature Review
	5.3.2 Computational Complexity

	5.4 SVD using Shallow Neural Networks
	5.4.1 Network Structure
	5.4.2 Network Training
	5.4.3 Network Performance
	5.4.4 Hardware Implementation

	5.5 TSVM based on Shallow Neural Networks
	5.5.1 Proposed Architecture
	5.5.2 Implementation Results
	5.5.3 Performance Verification

	5.6 Scalability Assessment
	5.6.1 Case 1: Scalability of the Shallow Neural Network
	5.6.2 Case 2: Scalability of NN-based TSVM

	5.7 Conclusion

	6 A Hybrid Precision Architecture for an Efficient Binary Convolutional Neural Network Accelerator
	6.1 Introduction
	6.2 Binary Convolution Neural Networks Overview
	6.3 Hybrid-Precision BWN Model
	6.3.1 Design Methodology
	6.3.2 Network Training
	6.3.3 Network Assessment

	6.4 H-BWN Accelerator Design and Implementation
	6.4.1 Accelerator Architecture
	6.4.2 Accelerator Implementation

	6.5 Conclusion

	7 Conclusion
	References
	Appendix A Hardware Accelerator Design using Vivado Suite
	A.1 Hardware Design using Register-Transfer Level (RTL)
	A.2 Software Design using High Level Synthesis (HLS)
	A.3 Software/hardware Co-Design using HLS and RTL

