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Abstract

Machine Learning (ML) a subset of Artificial Intelligence (AI) is driving the industrial
and technological revolution of the present and future. We envision a world with smart
devices that are able to mimic human behaviour (sense, process, and act) and perform
tasks that at one time we thought could only be carried out by humans. The vision is
to achieve such level of intelligence with affordable, power-efficient, and fast hardware
platforms. However, embedding machine learning algorithms in many application domains
such as the internet of things (IoT), prostheses, robotics, and wearable devices is an ongoing
challenge. A challenge that is controlled by the computational complexity of ML algorithms,
the performance/availability of hardware platforms, and the application’s budget (power
constraint, real-time operation, etc.). In this dissertation, we focus on the design and
implementation of efficient ML algorithms to handle the aforementioned challenges. First, we
apply Approximate Computing Techniques (ACTs) to reduce the computational complexity of
ML algorithms. Then, we design custom Hardware Accelerators to improve the performance
of the implementation within a specified budget. Finally, a tactile data processing application
is adopted for the validation of the proposed exact and approximate embedded machine
learning accelerators.

The dissertation starts with the introduction of the various ML algorithms used for tactile
data processing. These algorithms are assessed in terms of their computational complexity
and the available hardware platforms which could be used for implementation. Afterward, a
survey on the existing approximate computing techniques and hardware accelerators design
methodologies is presented. Based on the findings of the survey, an approach for applying
algorithmic-level ACTs on machine learning algorithms is provided. Then three novel hard-
ware accelerators are proposed: (1) k-Nearest Neighbor (kNN) based on a selection-based
sorter, (2) Tensorial Support Vector Machine (TSVM) based on Shallow Neural Networks,
and (3) Hybrid Precision Binary Convolution Neural Network (BCNN). The three accelera-
tors offer a real-time classification with monumental reductions in the hardware resources
and power consumption compared to existing implementations targeting the same tactile data
processing application on FPGA. Moreover, the approximate accelerators maintain a high
classification accuracy with a loss of at most 5%.
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Chapter 1

Introduction

The skin is the largest organ in the human body which houses receptors that sense touch.
Humans sense of touch allows them to receive information about their environment, making
it important for sensory perception. Touch receptors in the skin inform the brain about
tactile or touch sensations. The receptors transform a response (e.g. chemical, thermal or
mechanical) into electrical signals. The signals travel along axons (the elongated portion of
the neuron), which form a path along which messages travel to different areas of the brain
that receive and interpret them. In the brain, sensations are interpreted using a complex
intelligent architecture fed on previous experiences and the properties of the receptors. With
the advancements of technology and engineering, humans have been trying to mimic such
capabilities through an artificial model referred to as Electronic Skin (e-skin).

An electronic skin is usually composed of distributed tactile sensors integrated with an
embedded electronic system for tactile data decoding. Meaningful information e.g. texture
classification and pattern recognition can be decoded from tactile data by employing Machine
Learning (ML) algorithms. Computations using embedded machine learning algorithms
may enable the electronic skin system to be used in various application domains such
as wearable, Internet of Things, prosthetic and robotics. However, embedding machine
learning algorithms is constrained by the high computational complexity of such algorithms.
Moreover, the amount of data processed by machine learning is increasing exponentially
[1]. On the contrary, the processing resources are limited especially with the chip shortage
in the last few years [2]. This poses challenges relevant to the requirements of real-time
execution and low power/energy consumption when targeting portable wearable systems
due to their limitation in terms of resources and energy budget. Nonetheless, machine
learning is one of many application domains that has intrinsic tolerance to inaccuracy.
These applications are mostly not about calculating a precise numerical answer; instead,
"correctness" is defined as providing an outcome that is good enough, or of sufficient quality



2 Introduction

to achieve an acceptable application performance [3]. In this perspective, this dissertation
aims at providing efficient implementations of embedded machine learning algorithms for
tactile data processing. The core strategy behind delivering efficient implementations is the
use of "Hardware Accelerators" and "Approximate Computing" to accelerate demanding
portions of ML algorithms and to adequately reduce the algorithms computational complexity
respectively.

1.1 Objectives and Contributions

The main objective of this dissertation is to design efficient implementations of machine
learning algorithms for tactile data processing. The implementations should offer real-time
processing with a time latency less than 400 ms [4] with as much reduced hardware area and
energy consumption as possible compared to existing solutions. To achieve our objective, two
approaches have been investigated: "Hardware Accelerators" and "Approximate Computing".

Towards achieving the objective of this dissertation, we contributed to the research
community with several ideas that can be summarized as:

• An exact and approximate k-Nearest Neighbor (kNN) classifiers are proposed with a
classification accuracy comparable with [5] for a touch modality recognition task. The
experimental results demonstrate the effectiveness of Data-oriented ACTs on reducing
the memory usage and execution time of the KNN classifier with an acceptable accuracy
loss.

• An approach for applying algorithmic level ACTs on machine learning algorithms is
proposed. Each ACT in the proposed approach can serve as a quality configurable
knob to trade-off quality for time latency.

• An overview about energy efficient implementation of machine learning algorithms on
hardware platforms highlighting the main challenges when embedding such algorithms
is provided. Moreover, we report the techniques that could be applied to improve the
energy efficiency. Furthermore, the main factors to be taken into consideration when
choosing the appropriate platform are highlighted. Lastly, the strategies to overcome
the challenges when building an energy efficient embedded machine learning systems
are discussed.

• A book chapter that presents a survey of the existing algorithms and tasks applied for
tactile data processing. The presented algorithms and tasks include machine learning,
deep learning, feature extraction, and dimensionality reduction. Moreover, this chapter
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provides guidelines for selecting appropriate hardware platforms for the algorithm’s
implementation. The algorithms are compared in terms of computational complexity
and hardware implementation requirements.

• A comprehensive assessment of applying algorithmic level approximate computing
techniques on the FPGA implementation of tensorial Support Vector Machine (SVM)
has been performed.

• An architecture for Singular Value Decomposition (SVD) computation based on ap-
proximate computing techniques is proposed. The architecture is based on a shallow
neural network for finding the SVD of an input matrix with two different dimensions.
We provide the structure, tuning, and training of the network. Also, the FPGA im-
plementation of the proposed neural network inference is presented. Implementation
results show that the proposed network achieves a significant speedup and reductions
in the required hardware resources and power consumption respectively compared to
the traditional one-sided Jacobi algorithm.

• The first hardware implementation of a neural network based SVM featuring multidi-
mensional tensorial inputs is proposed. The implementation is feasible for real-time
touch modality classification with low power consumption. Moreover, the imple-
mentation scalability shows that the neural network based SVM is adequate for the
acceleration of SVM on resource-limited hardware platforms.

• The design and implementation of a kNN accelerator using a selection based sorter
(Selector) is proposed. The proposed accelerator overcomes similar state of the art
solutions by reducing the occupied hardware area while providing noticeable speedups.

• A Hybrid fixed-point binary Convolution Neural Network (HCNN) model for touch
modality classification is presented. A hardware accelerator architecture and imple-
mentation on FPGA for HCNN is proposed. The proposed accelerator can classify
an input touch with a higher accuracy compared to SVM and Deep CNN. Moreover,
a faster classification time is noticed while providing a low energy per classification
value.



4 Introduction

1.2 Dissertation Outline

1.2.1 State of the art

This chapter explores the existing learning algorithms used for tactile data processing.
Starting from pre-processing to classification/regression algorithms. Then, the computational
complexity of such algorithms is studied. Moreover, a discussion is presented on the existing
hardware platforms that could be adequate for the acceleration of learning algorithms.
Although not all machine learning algorithms have been used for embedded tactile processing,
existing accelerators architecture can be studied and modified for most applications. Thus, in
this chapter a survey on efficient hardware accelerator design is provided. The survey focuses
in principle on kNN, SVM, and Binary CNNs. Similarly, existing approximate computing
techniques targeting these algorithms is tackled in this chapter. The techniques mainly belong
to the algorithmic and architectural levels.

1.2.2 Algorithmic Level Approximate Computing Techniques for Ma-
chine Learning

An approach for applying algorithmic level approximate computing techniques on machine
learning algorithms is proposed. The approach is validated on the software and hardware
implementations of kNN and Tensorial SVM (TSVM). The assessment of the software im-
plementation shows that tactile data classification can be accelerated with a reduced memory
usage while running kNN algorithm on an Intel CPU. As for hardware implementation, both
the approximate kNN and TSVM are able to process tactile data in real-time with a noticeable
power reductions compared to their exact counterpart when implemented on FPGA. The
obtained efficient approximate implementations are achieved with a classification accuracy
loss than 10%.

1.2.3 Efficient Selection-Based k-Nearest Neighbor Architecture on
Modern SoCs

In this chapter, we propose a novel selection-based sorter (Selector) to be embedded in the
the architecture and implementation of kNN algorithm. The selector idea is determine the
k-nearest neighbors without sorting the complete distance vector. The selection architecture
is configurable with a division factor to control the process based on the target application.
Compared to existing traditional sorters, the selector offers significant speedup with a
reduced hardware area at the best, and matches the Quick sorter performance in the worst
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case. An Exact and Approximate selection-based kNN implementations are proposed.
The approximate architecture utilizes the use of algorithmic level approximate computing
techniques. When validated on a touch modality classification problem, both the proposed
exact and approximate kNNs offer a real-time classification while consuming low energy
when implemented on Xilinx Zyqnberry platform. Such efficient kNN implementations are
achieved with an accuracy degradation of at most 2.6%.

1.2.4 Real-time Accelerated Tensorial Support Vector Machine Archi-
tecture

This chapter introduces an efficient architecture of the tensorial SVM algorithm based on
the use of a Shallow Neural Network (NN) for the Singular Value Decomposition (SVD). A
detailed process for the design, training and tuning of the proposed network is presented. Such
network architecture is capable of predicting the singular vectors with significant reductions
in the FPGA implementation footprint compared to the traditional one-sided Jacobi algorithm.
To validate the effectiveness of the proposed solution, a scalability assessment of the proposed
NN-TSVM architecture is performed. The assessment shows that replacing the one-sided
Jacobi with a neural network demands only 1% increase in the required hardware area
compared to 29% when the number of training tensors is doubled. Moreover, the efficient
NN-TSVM implementation is capable of real-time tactile data classification with a reduced
energy consumption that is suitable for the implementation on resource-limited platforms
such as the Zynqberry.

1.2.5 A Hybrid Precision Architecture for an Efficient Binary Convolu-
tional Neural Network Accelerator

In this chapter, a hybrid fixed-point/Binary convolution neural network accelerator is pro-
posed as a trade-off between the reliability of CNNs and the low complexity of Binary CNNs.
The architecture adopts a complete binarization of the hidden layers and 16-bit fixed-point for
the first and last layers activations with binary weights. A design methodology is provided
in terms of network topology, placement of binarization layers, and training process. The
proposed Hybrid Binary Weight Network (H-BWN) achieves an accuracy increase up to
35% for the classification of touch modalities compared to traditional BCNN topology. The
H-BWN accelerator offers real-time classification with an energy per classification that
represents a fraction of the energy consumed by existing similar solution targeting FPGA
implementations. Such results pave the way towards the deployment of the intelligent tactile
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data processing on small mainstream microcontrollers with a storage requirements of less
than 5 KB.
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Chapter 2

State of the art

The idea behind hardware accelerators is to determine complex and demanding blocks of an
algorithm, then assign a high performance module (namely referred to as Processing Element
(PE)) to execute such block in an efficient manner. Designing a hardware accelerator can be
performed using several methodologies. The use of "specific design" methodology suitable
for the hardware platform and application. For example, modern System-on-Chips (SoCs)
include an ARM CPU and a Zynq FPGA on the same board (e.g. ZedBoard, Zynqberry).
Such design allows the execution of complex and parallel portions of an algorithm on the
FPGA while offloading simple tasks to the CPU. Another designing methodology is the use
of high performance cores in multi-core CPUs/GPUs for demanding tasks and assign less
performing cores for simpler tasks. This can be found in Apple new designed M1 chips that
includes both "High Performance Cores" and "Efficient Low Power Cores" [6]. Recently, a
new hardware accelerator design methodology focuses on techniques such as In-Memory
Computing (IMC), Near-Memory Computing (NMC), and Processing-In-Memory (PIM),
have emerged to bring computing as close as possible to the memory array such as, allow to
reduce the cost of data movement between computing cores and memories [7].

In this dissertation, we are focused on the "specific design" methodology targeting
different machine learning algorithms and hardware devices/platforms. Mainly, the design
and implementation of hardware accelerators for kNN, SVM, and Binary CNNs. Then, a set
of approximate computing methods for enhancing the accelerators’ performance is discussed.
The performance of the exact and approximate accelerators is assessed on a tactile data
processing application, mainly touch modality classification.
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2.1 Tactile Data Processing

Tactile sensing involves the detection of motion, the measurement of contact parameters,
the processing of the signals to extract structured and meaningful information, and the
transmission of such information into a higher system levels for interpretation [8]. The
data acquired from tactile sensors corresponds to an electrical stimulus. The latter varies
according to the type of the sensing material, dimensionality, responsiveness, and structure
of the sensor. Processing algorithms should be able to decode and efficiently handle the
acquired data. Tactile data processing algorithms presented in the literature could be divided
into two categories: pre-processing and classification/regression. Pre-processing algorithms
involve feature extraction and dimensionality reduction, while classification and regression
algorithms are mainly machine learning algorithms.

2.1.1 Pre-Processing

Tactile data may be pre-processed to reduce noise and extract meaningful features. The
extracted features could be (1) the variables that best describe the raw data and (2) the weights
which should be given for each variable. For instance, sub-sampling can be applied to a
recorded touch reading to remove silent/noisy samples. Also, data obtained from certain
taxels in the sensor patch can be considered in a pattern recognition problem. These taxels
are the ones that provide reliable data (nonzero or unknown readings). Several algorithms
have been presented in the literature for dimensionality reduction and feature extraction
such as Principal Component Analysis (PCA), Independent Component Analysis (ICA), and
Linear Discriminant Analysis (LDA).

Principal component analysis is the base for multivariate data analysis (i.e. studying
the effect of multiple variables on the output state) [9]. PCA is used for approximating
data or reducing the dimensionality of the data e.g. representing data from Xn space in
Xn−k space, where n and k are two positive integers. As a concrete example, if we have
data with n features, then PCA helps to represent these data with n− k features with the
least possible losses. Figure 2.1 shows how PCA can be applied to reduce dimensionality
from three dimensions (3D) to 2D (the figure has been generated using the data and code
provided in [10]). In [11], a finger-like shape tactile sensor has been used to collect data
about fabric surfaces. Initially, Fast Fourier Transformation (FFT) has been used to construct
the original dataset, and then PCA has been applied to compress the attribute data and extract
feature information. In [12], kernel PCA [13] has been used for low-resolution tactile image
recognition for automated robotic assembly. Kernel PCA is a method to perform a nonlinear
form of the PCA. It computes higher-order statistics among random variables while reducing
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Fig. 2.1 PCA Example: 3D to 2D

the data dimensionality, thus being able to achieve the goal of both feature extraction and
dimensionality reduction. The authors in [14] have used local PCA [15] combined with a
neural network to classify 16 household and toy objects. Local PCA is a nonlinear extension
of the normal PCA. It has been used to obtain a less complex feature vector for the data
obtained from tactile sensors mounted into a robotic arm.

Fig. 2.2 Procedure of tactile data separation using ICA

Independent component analysis [16] can be seen as an extension of the PCA. It is a linear
dimensionality reduction technique, which searches for the linear transformation that reduces
or eliminates the linear dependency between elements of a random vector. An example of
using ICA is the Cocktail Party Problem [17]. Spatial ICA has been adopted as a separation
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method that allows a robot to understand and interact with tactile information from multiple
sources [18]. Figure 2.2 shows the procedure of tactile data separation from two objects
using ICA along with time series clustering.

Linear discrimination analysis shown in Figure 2.3 is yet another method for dimension-
ality reduction. It consists of finding the projection hyperplane that minimizes the variance
within the same class, and maximizes the distance within the projected means of the classes
[19]. Tactile images of deformable and non deformable surfaces have been used for a classi-
fication problem in [20]. LDA has been used as a separation algorithm between six different
surfaces with an accuracy rate of up to 95.5%. In [21], the authors have demonstrated the
feasibility of using LDA for surface texture discrimination. Another use of LDA appears in
[22] for terrain discrimination problems.

Fig. 2.3 Linear Discrimination Analysis: (1) Bad projection and (2) Good Projection

2.1.2 Classification and Regression

Machine learning algorithms are an efficient solution for processing tactile data in various
applications [5]. ML algorithms in general, can extract a complex, non linear input–output
relationship based on learning by example approach. An ML algorithm is trained using a
set of examples, where each example is described by a group of informative features. ML
algorithms can support intelligent and predictive systems that can make accurate decisions
on unseen data. In this perspective, classification/regression problems supported by ML
algorithms could be adopted in applications with tactile information including:

• Normal force sensing for e.g. grasp control, object manipulation, touch modalities,
and orientation determination;
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Table 2.1 Learning Algorithms for Tactile Data Processing Applications

Tactile Application Learning Algorithm Examples

Object Manipulation Decision Tree, Naive Bayes, Support Vector Machine, k-Nearest Neighbor,
Convolution Neural Networks, Long Short-Term Memory

[23], [24], [25],
[26]

Surface Texture
Identification

Least Square Support Vector Machine, Expectation-Maximization, Regularized
Least Square, Bayesian Exploration, Reinforcement Learning

[27], [28], [29],
[30]

Touch Modality
Classification

k-Nearest Neighbor, Decision Tree, Logitboost, Extreme Learning Machine,
Support Vector Machine, Regularized Least Square, Deep Convolution Neural

Networks, Long Short-Term Memory

[5], [31],
[32], [29]

Slip and Grasp
Detection

K-Means Clustering, k-Nearest Neighbor, Support Vector Machine, Random Forest,
Locally Weighted Projection Regression

[33], [34], [35],
[36]

Orientation
Determination Convolution Neural Network, Linear Regression, Spiking Neural Network [37], [38], [39]

• Shear force sensing for e.g. grasp control and friction determination;

• Vibration detection for e.g. slip detection and texture determination.

Table 2.1 reports the commonly used ML algorithms with respect to the type of extracted
tactile data. Object compliance classification problem involves the identification of objects’
structure (soft, hard, fuzzy, bumpy, etc.) and state (ideal, moving, etc.). For a vegetable
grading industry, differentiation between green, moderate, and ripe tomatoes has been
achieved with an accuracy of 90% and 85% using Decision Tree (DT) and Naïve Bayes (NB)
respectively [23]. A classification problem involving 18 objects of different size, compliance,
and state (fixed, moving) has been tackled in [25]. Using a k-Nearest Neighbor (kNN)
classifier with k = 2, an object’s structure classification accuracy up to 80% was attained.
While, for detecting the state of the object, an accuracy of 91.4% was obtained for the given
problem. In [26], a Convolutional Neural Network (CNN) has been trained on 5300 instances
collected from 53 objects with different compliance. A classification accuracy up to 85% has
been reached on identifying the compressibility and smoothness of unseen objects.

Recognition and categorization of object properties can be obtained by analyzing the
surface texture. Using Support Vector Machine (SVM) algorithm, an autonomous humanoid
robot recorded a recognition rate up to 100%, with 70% objects’ categorization ability in
a setup that involved ten different objects (glass, sponge, paper, etc.) [27]. In [28], Least
Square SVM was adopted to discriminate 20 daily used objects based on their texture. A
classification accuracy between 70% and 100% has been recorded when using 10 training
samples. Bayesian Exploration and Reinforcement Learning have been used to train and
validate a discrimination system in [30]. The system was able to differentiate between 10
objects (brick, copper, wood, etc.) with a 90% success rate.

Slip and grasp detection is an another task that can be supported by learning algorithms.
In [33], a Phantom Omni arm has been equipped with a tactile sensory array of 84 sensor cells
to study the translational and rotational movement of an object. The arm was able to hold
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and recognize a ball with an accuracy of 91.2% using K-Means clustering algorithm. The
humanoid robot ARMAR-IIIB was learned to grasp objects using SVM algorithm [34]. The
grasp was recorded as successful or not by the ability to lift up the object. 77% of the grasps
were considered as stable compared to 23% unstable tries. In [36], a Haptically-enabled
robot with Barret arm system which three fingers are equipped with BioTac sensors was used
to achieve a reliable grasping of fragile objects. The best performance was achieved using a
3-layer neural network regression by detecting a slip within 30 ms with 80% success rate.

Touch Modality classification allows the integration of gesture-based actions that can
be performed by robots or humans with prosthetic hands. For a medical purpose of caring
for patients with mild mental impairment; a humanoid equipped with artificial skin has
been trained to discriminate between nine touch modalities (scratch, tickle, rub, etc.) [31].
Recognition rates up to 96.7% has been achieved using four machine learning algorithms
including kNN, SVM, DT, and Logitboost. The authors in [29] have adopted a touch modality
classification problem that involves three patterns: brushing a paint brush, rolling a washer,
and sliding a finger on 4× 4 tactile sensory array. SVM and Extreme Learning Machine
(ELM), and Deep CNN based on transfer learning have been chosen as learning algorithms.
A classification accuracy of 90%, 89.6%, and 76.9% has been recorded respectively.

2.2 Embedded Machine Learning

Embedding machine learning in resource-limited and battery-powered applications for tactile
data processing must obey a set of requirements including: small hardware area, low time
latency, and low energy consumption. The main two factor that affects such requirements are
the computational complexity of these algorithms and the hardware device/platform.

2.2.1 Computational Complexity of Machine Learning Algorithms

Table 2.2 provides the Big-O complexity of the most used algorithms for tactile processing
[40], where n is the size of the training set, f is the number of features, ntrees is the number
of trees, and nSV is the number of support vectors. The complexity of CNN is based on the
information provided in [41]. Only convolutional layers are considered as it is assumed that
fully connected layers constitute only 5%-10% of the CNN complexity. Here l is the index
of a convolutional layer, d is the number of convolutional layers, nl is the number of filters in
the l− th layer, nl−1 is the number of input channels of the l− th layer, sl is the spatial size
of the filter, and ml is the spatial size of the output feature map.
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Table 2.2 Computational complexity of machine learning algorithms

Algorithm Application Training Testing
Naive Bayes Classification O(n f ) O( f )

Decision Tree Classification/Regression O(n2 f ) O( f )
SVM Classification/Regression O(n2 f )+n3 O(nSV f )
kNN Classification/Regression - O(n f )

Linear Regression Regression O( f 2n+ f 3) O( f )
Random Forest Classification/Regression O(n2 f ntress) O( f ntress)

CNN Classification/Regression O(∑d
l=1 nl−1.s2

l .nl.m2
l )

Fig. 2.4 Big-O Complexity

The complexity given in Table 2.2 has been analyzed based on the degree of complexity
provided by Figure 2.4. It is noticed that algorithms such as DT and SVM involve complex
training phase that increases quadratically for a large number of training points. For linear
regression (LR), the training phase complexity also increases quadratically with the number
of features, which is usually less than the number of training points. Meanwhile, the DT,
SVM, and LR classification phases are relatively less complex. For NB, the training phase
is less complex compared to the SVM and DT with a low complexity classification phase
too. This is due to the linear complexity compared to the quadratic one in the case of the
SVM and DT. Similarly, the complexity of the classification phase of the kNN increases
linearly with the increase in the number of training points and the number of features. Since
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Fig. 2.5 Top-1 one-crop accuracy versus amount of operations required for a single forward
pass. The size of the blobs is proportional to the number of network parameters

kNN does not have a separate training phase, hence to classify a new input the distance with
respect to all training points is to be calculated each time, its usage is efficient mostly for
small training set size. As for the complexity of CNNs, it depends on the configuration of
the network compared to other algorithms, which is affected more by the filter and output
feature maps size compared to the number of filters and input size. Figure 2.5 shows the the
complexity of the existing CNNs in terms of the number of operations and their classification
accuracy [42]. These networks differ in the number of layers, size of filters, number of filters,
etc. which verifies the the presented complexity in Table 2.2.

2.2.2 Hardware Platforms

The hardware platform must be able to handle the complexity of the algorithm while achiev-
ing the expected performance in terms of area, time latency and energy consumption. A
wide selection of hardware devices and platforms maybe used to implement the tactile
processing algorithms. Some sound and widely used devices include Field Programmable
Gate Array (FPGA), Graphics Processing Unit (GPU), Microcontroller Unit (MCU), Parallel
Ultra Low-power Platform (PULP), Tensor Processing Unit (TPU), Application-Specific In-
tegrated Circuit (ASIC), and platforms include Raspberry Pie, ZedBoard, Zynqberry, Python
Productivity for Zynq (PYNQ), etc. The available devices and platforms differ in size, target
programming language, area utilization (LUT, FF, DSP, BRAM, etc.), maximum operating
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Table 2.3 Comparison between different hardware devices/platforms

Device/Platform Target
Implementation

Framework/
Programming Language Strengths Weaknesses

FPGA Hardware
VHDL, Verilog,

C/C++ with OpenCL, SDAccel, HLS
High performance per watt,

parallelism

Not suited for floating-point operations,
long development time,
programming difficulty

GPU Software
OpenCL, NVIDIA CUDA,

C/C++, Java, Python
Massive processing power for image,

video and signal processing

High power consumption,
need for API frameworks to

take advantage of parallelism

ASIC Hardware
Application-specific, ex: TensorFlow
for TPUs, tools from manufactures

Optimum combination of performance
and power consumption

High cost, longest development time,
Unconfigurable

PULP Software C language only
Low power consumption,

tunable performance, Open source
Low size on-chip memory,

Development Difficulty

ZedBoard/Zynqberry Hardware/Software
Adopts characteristics of FPGA and ARM processors

Pluses: Ability to use FPGA as hardware accelerator, Linux Development

PYNQ Hardware/Software
Adopts characteristics of FPGA and ARM processors

Pluses: Python Programming, Arduino and Raspberry Pie shield connectors

frequency, etc. Table 2.3 presents the common characteristics of the most used devices and
platforms related to the variety of machine and deep learning applications. These devices
could be utilized for either hardware or software development applications. For instance,
FPGAs and ASICs are used for hardware implementations, while MCUs and GPUs are
intended for software implementation. As for hybrid boards such as Zynqberry/PYNQ, they
can be used for both hardware and software implementations as they include both an FPGA
and an ARM CPU.

In principle, the implementation of machine learning training and testing phases are not
correlated. Hence, different devices can be assigned. For example, a complex neural network
can be trained using a GPU due to the available high memory bandwidth and a large number
of processing cores. Then, the inference can be accelerated using an FPGA or an MCU
depending on the network size. From application perspective, a large sized GPU/FPGA
is not adequate for space limited scenarios (e.g a smart watch). The same can be said for
implementing neural network training on an MCU. Besides, the development time is a key
issue to consider, especially for complex machine learning algorithms such as tensorial SVM
using VHDL language. For a finalized implementation which is later to be commercialized,
an ASIC can be considered as the best available option as no updates are scheduled until a
new generation release. Another aspect for choosing a hardware platform is the cost. For
example, if the cost difference between a GPU and CPU is not proportional to the gain in
speedups, it is not worth paying the extra cost of the relatively expensive GPUs.

2.2.3 Machine Learning Accelerators

Knowing that not all machine learning algorithms have been adopted for embedded tactile
data processing, nonetheless accelerators are discussed in terms of design methodology,
architecture, and acceleration gain in terms of hardware implementation footprint. Then,
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through the following chapters, novel hardware accelerators for embedded tactile data
processing are proposed based on the techniques reviewed in this chapter.

2.2.3.1 k-Nearest Neighbor Accelerators

The complexity of the kNN algorithm lies in the large number of distance calculations towards
all the samples in the training set. Due to the fact that both the size and the dimensionality
of datasets have been rapidly growing. Thus, kNN can be mainly accelerated by reducing
the memory footprint due to the training set and the distance calculation operation itself.
For this purpose, several techniques have been proposed to accelerate kNN implementations
on FPGA with different end targets. Table 2.4 summarizes the key techniques used with
emphasis on their aim and the acceleration gain obtained as follows:

Reduce Memory Accesses: To reduce the impact of memory access constraint imposed by
the extensive distance calculation operations, several methods have been proposed. Starting
with reducing the data representation from floating-point to fixed-point with low precision.
This method decreases both the memory storage of the data and the corresponding arithmetic
operations. Such decrease can be also achieved with the use of PCA [43]. PCA aims at
reducing the dimensionality of the data, thus simplifying the distance calculation operation.
Another method is to dispatch data from external memory (e.g. DRAM) through a Direct
Memory Access (DMA) engine in bursts to reduce the memory access overhead [44].

Scalability and Re-configurable Architectures: Although the performance of kNN is
affected by the number of training samples (N) and number of neighbors (k), these parameters
have a direct impact on the scalability of a kNN implementation. One of the most used
techniques to design a scalable accelerator is the adoption of a systolic array of processing
elements [45]. Each processing element is responsible for a specific operation (e.g. distance
calculation, sorting, etc.). To obtain a scalable architecture, each systolic array is designed
with different value of (k), assigned for a different core (for multi-core architectures), and
can operate on different input size either in serial or parallel based on the scalability level
required by the application. The same methodology can be used to design a re-configurable
kNN architecture targeting multiple FPGAs connected through a set of memory controllers
on a co-processor (e.g. Convey HC-2 [46]).

Parallel Implementations: The distance calculation between two samples of M features
can be performed in parallel since the features are uncorrelated. Similarly, the distance
calculation between samples A and B is independent of the distance calculation between
samples A and C. Hence, distance calculation operations can be fully or partially implemented
in parallel. This can be easily designed with the use of OpenCL framework or HLS directives.
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Another aspect that can be designed in parallel is the sorting process. An even-odd sorter
has been proposed in [52] to make full use of the parallel pipeline structure of the FPGA.

Design of Soft Parameterized IP Cores: The need for real-time classification of data with
large size and high dimensionality requires a kNN implementation of very high performance.
This can be achieved through the design of parameterized kNN architectures that can be
synthesized effortlessly for any desirable combination of parameters (N, M, and k) [49].
Using a space-time mapping methodology, kNN computation nodes can be modeled so that
each node can perform one operation per cycle. Hence, each block of the kNN architecture
can be assigned to a different set of parallel nodes customized for specific parameters.

Hardware/Software Architecture: The implementation footprint of the distance calcula-
tion is relatively higher than that of the sorting process. Hence, several hardware/software
architectures have been proposed to benefit from such complexity difference. The idea is to
assign a high performance hardware such as the FPGA for distance calculation, and offload
the sorting process to a General Purpose Processor (CPU) [44]. This design methodology has
been made possible with hybrid platforms (e.g. Zynqberry, ZedBoard, etc.) that has a Zynq
FPGA and an ARM processor. Such design also paves the way towards running multiple
accelerators on the same platform achieving further acceleration.

Application and Platform Specific Architectures: A quite few kNN accelerator architec-
tures exists targeting a certain application, a certain hardware platform, or a certain set of
requirements (e.g. power, time latency). In [48], a design exploration process is presented in
order to identify the effect of the value of (k), and feature extraction on the implementation
resource targeting large datasets. Each design has been optimized with HLS directives so
that if fits completely on Zynq-700 FPGA. To support EMG recognition for gestures com-
munication with limited hardware resources, authors in [50] proposed a feature extraction
process to transform high dimensional data into a single dimension. Such process allowed
the complete pipelining of the distance calculation resulting in accelerated kNN classification
process. Targeting large datasets, a kNN accelerator based on Predetermined Range Search
(PRS) method is proposed in [51]. The proposed architecture is characterized by a simple
circuit structure achieving a significant decrease in the number of BRAMs.

2.2.3.2 Support Vector Machine Hardware Accelerators

In contrast to kNN, SVM has two separate training and classification phases. Hence, existing
research work aims to implement and accelerate an SVM model during both phases. In this
section we present a survey on SVM classification accelerators only. For reference, authors
in [53] have investigated the acceleration of SVM training on FPGA. Various techniques
have been developed for the hardware acceleration of the online classification process. The
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Table 2.5 SVM Hardware Accelerators Targeting Different Kernels

Implementation Technique Kernel Function Acceleration Gain Reference

Systolic Array Architecture
Polynomial 5% Power Reduction [57]

Linear
85× speed-up over equivalent GPP [58]

Dynamic Partially Reconfigurable
8x reduction in reconfiguration time over the single

non-DPR classifier implementation [59]

Block-based Partial Storage
A throughput rate of 216 and 70 f/s for XGA (1024×768)

and HD (1920×1080) video resolutions, respectively [60]

Multiplier Less Kernel

Hardware Friendly

1.6 µs for one kernel calculation [61]
5% Utilization on Xilinx Spartan 3E [62]

Pipelined Architecture

2 orders of magnitude in the average instance
classification time, in comparison with software implementations [63]

Processes up to 33.8 640×480 image fps [64]
8-bit implementation with equivalent performance to floating-point [65]

Design Specific
(SPW, System Generator)

Linear/Gaussian/RBF
11% Utilization on Virtex-4 [66]

2.53× faster classification than the software implementation [67]

Custom Arithmetic
Gaussian/Polynomial

/Sigmoid 3×-7× speedup compared to the CPU and other FPGA/GPU implementations [68]

Custom Processor RBF Real-time pixel classification in 0.1 ms [69]

Hybrid Processing Architecture Linear/Polynomial
Speed-up of 5× over the single parallel SVM classifier Utilization

of 43% fewer hardware resources and a 20% reduction in power [70]

Memory Management and
Multi-core Architecture

Tensorial

3.6× faster than an ARM Cortex M4F (STM32F40)
Achieves 15× better energy efficiency [56]

Data Organization
Reduces the number of operations per inference from 545 M-ops

to 18 M-ops and the memory storage from 52.2 KB to 1.7 KB [71]

Hardware specific Optimization
9× faster than an ARM Cortex M4 at 168MHz with

the same power consumption [72]

Cascaded and Parallel CORDIC Real-time touch classification with a peak of 302 G-ops [73]

SVM models have been trained offline on software, then the models’ parameters (e.g. support
vectors, kernel factor, etc.) have been extracted to be used for classification. Table 2.5
presents the different developed techniques targeting different kernel functions. Tactile data
is often represented in the form of a tensor as it preserves the structure of the raw data
acquired from tactile senors [5], [54], [55]. Hence, the techniques used for accelerating the
SVM algorithm targeting a tensorial kernel can be summarized as follows:

Memory Management and Multi-core Architecture: One of the essential operations
in SVM targeting tensor input data is the unfolding process. Such process outputs three
matrices that are required for further computations. Then, symmetrization and Singular Value
Decomposition (SVD) are applied on each matrix. Thus, the whole process requires a lot of
memory storage and data exchange, which is a challenging task on resource-limited devices.
Authors in [56] have presented a memory allocation sequence that can be applied to the
tensorial SVM on Parallel Ultra Low Power (PULP) Mr. Wolf microprocessor as shown in
Figure 2.6. The allocation idea is based on 2D data transfers with a set of multiple banks
where data allocation/de-allocation process can be serialized efficiently. Such technique has
been validated by implementing the tensorial SVM by exploiting the multi-core architecture
of Mr. Wolf. Results showed that a speedup up to 3× can be achieved compared to
ARM Cortex-M4 by adopting the memory allocation sequence and using 2-cores for SVD
calculation .
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Fig. 2.6 Memory Allocation Sequence

Data Organization: For online and real-time classification, acquiring tactile data directly
from sensors should be organized in local buffers to be processed. Authors in [74] have
presented a scheduling algorithm to maximize CPU utilization with different L1 to/from L2
data transfers in the PULP. This scheduling allows the data from sensors to be continuously
transferred to a circular buffer in L2 memory bank as shown in Figure 2.7. Each buffer
contains a sample of 1 second. The platform is capable of performing 1.3 iterations at 20
samples per second. Such results presents a 9× speedup compared to that of ARM Cortex
M4 with the same power consumption.

Fig. 2.7 Scheduling inside PULP

Cascaded and Parallel CORDIC: SVD is the most demanding and complex operation
within the tensorial SVM algorithm [75]. The majority of the research presented in the
literature adopts the One-sided Jacobi algorithm for SVD implementation whose main core
is the Coordinate Rotational Digital Computer (CORDIC) algorithm. The first hardware
acceleration of SVM featuring multidimensional tensorial inputs has been presented in [73].
The accelerator design offers two different architectures based on cascaded and parallel SVD
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computation using the CORDIC algorithm. The cascaded implementation offers low power
consumption but fails to offer real-time touch classification. The parallel implementation
solved this problem and achieved a peak performance of 302 G-ops while consuming 1.14W
for the Virtex-7 FGPA.

2.2.3.3 Binary Convolution Neural Network Hardware Accelerators

Binary convolution neural networks are characterized by fast computation, low power con-
sumption and low memory footprint, which facilitates their deployment on different hardware
such FPGA, ASIC, CPU, etc with limited computational resources and power budget. The
XNOR-Bitcount operations in BCNNs allow for customizing data paths and optimizing the
design making FPGAs as the most widely used platforms for BCNN deployment [76].

Quantization and network topology have been widely investigated for the design of
BCNN hardware accelerators on FPGA. Figure 2.8 summarizes a survey (based on the data
provided in [76] from more than 100 references and recent related work in [77], [78], [79],
[80]) about the bit-width(w/a) that has been adopted for a BCCN architecture targeting
commonly used datasets such as CIFAR-10 [81], ImageNet [82], etc.

Fig. 2.8 Distribution of the most used Quantization Level

It can be seen that a complete binarization of CNNs is widely used for hardware ac-
celeration (e.g XNOR-Net in [83] and DoReFa-Net in [84]). However, around 23% of the
existing BCNN accelerators have adopted a 1-bit and 32-bit quantization for the weights
and activations respectively (e.g BinaryConnect in [85] and ABC-Net in [86]). This leads
to a claim that the binarization of activations in a CNN produces an accuracy loss more
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than the binarization of weights. Other hardware accelerators have reported the use of
n-bits (n << 32) quantization (e.g RetinaNet with n = 8 in [87]) as a compensation for the
complexity increase imposed by keeping the activations in 32-bit representation.

In [88], authors have experimented with the effect of quantization/binarization on the
weights and activations on the first and last layer of a small CNN trained on CIFAR-10
dataset as shown in Figure 2.9. The results backup the claim regarding that the binarization
of network activations leads to a significant accuracy drop compared to the binarization of the
weights. Moreover, for the use-case presented in [88], binarization of the weights of a CNN
offers a similar classification accuracy compared to a 32-bit floating-point trained network.

Fig. 2.9 A small CNN that has been trained on CIFAR-10 dataset with different precision for
the first and last layers

Regarding the network topology considered when designing a BCNN accelerator, we
extracted the reported topology in the survey used for the quantization distribution in Figure
2.8. The topology distribution is presented in Figure 2.10. ResNet-18 is the most used
topology followed by AlexNet. The rationale behind such distribution is that ResNet-18
offers a high accuracy in widely used applications such as image recognition and object
detection [89]. As for AlexNet, it represents a small model (8 layers) that is capable of
achieving high accuracy compared to larger CNNs [90]. Another fair share of network
topology is the customized one. This is due to the fact that an existing CNN may not offer an
acceptable performance for an application other the one trained for [86].
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Fig. 2.10 Distribution of the most used Network Topology

2.3 Approximate Computing for Machine Learning Archi-
tectures

Approximate computing uses the statistical nature of data and algorithms to trade quality
for savings. The savings are achieved using techniques that exploit the intrinsic resilience
in machine learning applications to realize improvements in efficiency at all layers of the
computing stack (algorithm, architecture, and circuit). At algorithmic level, approximations
are applied on the data (e.g. sampling) and the functions that constitute the application
software. At architecture level, the aim of the approximate computing techniques is mainly to
replace a complex block with a relaxed version whose output is mathematically verified with
an acceptable degree of inexactness. At circuit level, hardware designers focus on designing
approximate versions of the most used arithmetic operations (e.g. adders and multipliers)
which has the biggest influence in reducing the overall complexity.

Several research works have been performed to identify, define, and categorize the
approximate computing techniques for better adoption and usage. Table 2.6 presents the
reported approximate computing techniques, their definition, and where they have been
mainly applied along the different parts of the computing stack. Next, we discuss the
techniques that have been applied or investigated to be used for machine learning applications.

Quantization: also referred to as precision scaling, is a technique that changes the
bit-width of input data or intermediate operands to reduce the computational and memory
requirements. A 2-bit and 4-bit quantization has been adopted for the weights and activations
of a CNN respectively in [91]. The quantized CNN achieved a higher performance of
about 15× compared to full precision CNN. Within the context of low-precision fixed-point
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computations, the research performed in [92] showed that deep neural networks can be
trained using only 16-bit fixed-point number representation with stochastic rounding, and
incur little to no degradation in the classification accuracy.

Loop Perforation: transforms loops to execute a subset of their iterations. The process
identifies critical and tunable loops. The former can’t be perforated due to unacceptable
performance drop. The latter are loops whose perforation produces more efficient and
generally acceptable accurate computations [93]. Loop perforation has been applied on
several essential operations that are widely used in machine learning applications such as
matrix multiplication, back propagation, kernel computation, etc [94].

The obtained results showed that performance can be enhanced up to 93%, while main-
taining the quality loss at a rate below 10%.

Load Value Approximation: leverages the intrinsic nature of machine learning applica-
tions to estimate a value after its loading from a cache has been missed [95]. Such technique
is adequate for machine learning implementations on both CPU and GPU. Yazdanbakhsh
et. al proposed an approach to organize memory accesses and control flow to identify the
loads that cause the largest fraction of misses, then approximating the ones leading to smaller
degradation than a set threshold [96]. The proposed technique showed a performance and
energy efficiency with bounded Quality of Result (QoR) loss in both the GPU and CPU.

Memoization: is a technique that stores the output of a function for later reuse under
identical input trigger. Thus, some values can be approximated by reusing the results for
similar functions. In machine learning applications, such technique can be applied by using
"Approximate" values to increase the amount of successful value reuses [97].

Task/Memory Skipping and Pruning: similar to loop perforation, this technique skips
a complete task within an algorithm or omit a memory access. For instance, an activation
of a neuron is not performed if the weight value is under a certain threshold thus reducing
both the memory storage requirements and the arithmetic computations of a CNN with a
negligible effect on the classification accuracy [98]. The same methodology can be applied
on the support vectors of an SVM kernel.

Data Sampling: this is one of the most used approximate computing technique in the
machine learning domain, as it is even applied in the pre-processing phase. The idea is to
reduce the the input size through Downsampling, Downscaling, dimensionality reduction, etc.
Hence, affecting both the memory requirements and the computational complexity. Authors
in [99] investigated the ability of data sampling to address the issue of class imbalance on two
common neural network learning algorithms to improve their performance. In [56], the input
tensor size is reduced from 4×4×30,000 to 4×4×20 without an accuracy loss leading to
the ability to deploy the tensorial SVM algorithm on resource-limited platform.
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Use of Neural Networks: this technique aims at replacing a complex portion of an
algorithm with a neural network. For example, authors in [127] have proposed a Multi-Layer
Perceptron (MLP) NN-based accelerator for the approximation of widely used mathematical
functions in a wide variety of machine learning algorithms such as exp, cos, etc. Compared to
the conventional glibc (GNU C library) implementation, the MLP implementation achieved
an energy-delay-product improvement of two orders of magnitude with negligible accuracy
loss.

Approximate Networks: this is an extended version of the task/memory skipping tech-
nique where a complete artificial neural network (ANN) is approximated. In [111], authors
proposed a novel approximate computing framework for ANNs. A 34.11% to 51.72% en-
ergy benefits with less than 5% quality loss have been recorded for various neural network
applications using the proposed framework.

2.4 Conclusion

This chapter provides a compact survey on the learning algorithms used for tactile processing,
the computational complexity and the hardware platforms that could be used for accelerating
such algorithms. Then, the key techniques used for the design of kNN, SVM, and BCNN
hardware accelerators are discussed. The techniques are presented in terms of their applica-
bility, acceleration gain, and an example showing their deployment on different hardware
devices targeting different applications. Then, a set of approximate computing methods is
investigated. A definition and how-to apply such methods on machine learning algorithms
are presented. Some existing solutions are highlighted to show the reductions offered by
approximate computing techniques with respect to the introduced accuracy loss.



Chapter 3

Algorithmic Level Approximate
Computing Techniques for Machine
Learning

3.1 Introduction

Applications in domains like computer vision, media processing, machine learning, etc. have
intrinsic tolerance to inaccuracy. Studies repeatedly show that such applications consist of
both critical and non-critical components [128], [129], [130]. Thus, it is not necessary for
every arithmetic operation to be precisely correct and every bit of memory to be preserved
at the same level of reliability. From the perspective of approximate computing, not every
operation in a program needs the same level of accuracy. Auto-tuning approaches can help
empirically identify error-resilient components [131]. However, since machine learning
algorithms don’t present the same level of accuracy for all applications, the identification
process varies from one application to another.

Approximate computing techniques (ACTs) on the algorithmic level have been firstly
investigated in [132]. Authors introduced the concept of incremental refinement. Such
concept aims at reducing the number of iterations of iterative processing. A factor of ten
reduction in power consumption has been recorded for a speech finite impulse response (FIR)
filter implementation. In [125], authors explored the different parameters of the Support
Vector Machines (SVM) algorithm using algorithm level scaling to reduce the complexity
of hardware implementations. A 1.2×−2.2× energy savings have been achieved without
any significant accuracy loss. Nogues et. al have presented an approach on how to apply
algorithmic level approximate computing techniques on HEVC decoding [133]. Authors
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offered a strategy on how to locate the error-resilient components of the decoder and which
approximate technique to be applied. Energy reductions of up to 40% are demonstrated for a
limited degradation of the application Quality of Service (QoS).

In this chapter, we propose an approach for applying algorithmic level approximate
computing techniques on machine learning algorithms. The approach is based on the work
presented in [133]. k-Nearest Neighbor (kNN) and Tensorial SVM (TSVM) algorithms
are adopted for the evaluation of the proposed approach. The evaluation is performed on
both software and hardware levels. For the software evaluation, we monitored the loss
in classification accuracy of a touch modality problem presented in [5] with respect to
the gain in execution time and memory requirements. The software evaluation has been
accomplished on an Intel Central Processing Unit (CPU). For the hardware evaluation, a
Field Programmable Gate Array (FPGA) implementation of both algorithms is presented.
Then, the gain in hardware area, time latency, and power consumption is recorded when each
technique is embedded in the hardware implementation. Results have shown that the kNN
execution time and memory usage can be reduced up to 38% and 55% respectively. Similarly,
a 29.6% power reduction and speedup up to 3.7× can be achieved with an approximate
kNN FPGA implementation. As for approximate TSVM, the implementation achieves a
reduction in power consumption by up to 49% with a speedup of 3.2×. All these reductions
are accompanied with a classification accuracy loss than 10%.

3.2 Algorithmic Level Approximate Computing Techniques

Algorithmic level ACTs are divided into two categories: data-oriented and process-oriented.
Figure 3.1 presents an approach on how to apply these techniques on machine learning
algorithms. The data-oriented category involves modifying the data properties (size and
bit-width) to minimize the work-load on the circuit level. This category includes:

• Dataset Reduction (DsR) decreases the amount of the processed data by eliminating
samples randomly or using a sub-sampling method as the one proposed in [5]. Further-
more, DsR can be applied through Downsampling (DS) and Downscaling (DSc). The
former adjusts the sampling frequency of the electronic interface used to collect raw
data samples from sensors in the time domain, while the latter reduces the dimension of
the collected data themselves (e.g., reducing the tensor size from 4×4×3 to 3×3×3),
as shown in Figure 3.1.

• Data Format Modification (DFM) reduces the bit-width of the data and its correspond-
ing arithmetic operations. This can be done by replacing floating-point representation
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Fig. 3.1 Algorithmic level Approximate Computing Techniques: (a) data-oriented; and (b)
processing-oriented.

with a fixed-point one. For instance, a 8-bit fixed-point representation data is adopted
in [134] instead of floating-point to represent tactile data with a negligible precision
loss.

The process oriented category targets the algorithm itself by reducing the number of
operations or replacing some of them with a less-complex counterpart. This category includes
[133]:

• Computation Skipping (CS) skips a certain number of operations in an algorithm. If
these operations are loop iterations, then it is referred to as Loop Perforation (LP). For
example, in some machine learning applications, a pre-processing operation such as
data normalization may be skipped without affecting the quality of service of the target
application.

• Computation Approximation (CA) proposes an equivalent version of a computationally
complex function. The two versions should be mathematically equivalent with an
acceptable output error margin. For example, a division function could be replaced by
a reciprocal multiplication [133].
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3.3 Experimental Setup

The ACTs presented in Figure 3.1 are evaluated on two machine learning algorithms, mainly
kNN and TSVM. This section provides the details about the used dataset (for classifica-
tion assessment), the software environment, and hardware environment used for the ACTs
evaluation.

3.3.1 Dataset

A tactile dataset describing three touch modalities have been collected in [5]. The tactile data
have been acquired by an electronic skin based on a piezoelectric sensor array. The dataset
has been collected with the help of 70 participants. Each participant was required to preform
one of the touch modalities on a 4× 4 piezoelectric sensor: sliding the finger, brushing a
paintbrush and rolling a washer as shown in Figure 4.5.

Fig. 3.2 Touch modalities. (a) Paintbrush brushing; (b) washer rolling (c) finger sliding;

Each participant performed a touch modality on both the horizontal and vertical directions
for a duration of 10 seconds. Thus, with a sample rate of 3000 samples per second, the
collected data can be expressed as a tensor φ(4× 4× 30,000). For complexity concerns,
a sub-samnpling algorithm has been proposed to reduce the tensor size to φ(4× 4×D),
where D is the sub-sampling ratio determined based on the required accuracy of the target
application. This dataset can be used to formulate three binary classification problems:

• A: brushing a paintbrush versus rolling a washer

• B: brushing a paintbrush versus sliding the finger

• C: rolling a washer versus sliding the finger
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These problems will be used to study the effect of applying the algorithmic level ACTs
on kNN and TSVM algorithms.

3.3.2 Software Environment

Two classifiers for kNN and TSVM algorithms have been coded in C++ based on the
architectures presented in [135] and [73], respectively. A performance profile is generated
using Linux and Windows 10 running on a PC with Intel ® Core ™ i7-4510U x64 CPU
clocked @ 2.6 GHz with a Random-Access Memory (RAM) of 12 GB. Each profile offers
the execution time and memory usage of kNN classifier under various algorithmic level
approximate computing techniques.

For our simulations, the execution time refers to the “user CPU time” which is the time
spent on the processor running the classifier’ code and libraries. Authors in [136] conducted
a study about the challenges in time execution analysis. execution time depends on the
cache, processor and the operating system management utilities. To reduce the effect of these
components and obtain a credible execution time, we considered the following:

• The code of the classifier is the only application running while generating a profile.

• Each classifier is profiled alone to avoid overlap and resource consumption.

The execution time is obtained by averaging the time during five different runs with the
use of two tools: gprof on Linux and Microsoft Visual Studio Debugger on Windows 10.

For a kNN classifier under different ACT, a memory usage profile has been generated by
calculating the total memory allocations. These allocations belong to the training set, testing
set, variables and functions’ parameters. To obtain an accurate memory usage, the Linux tool
Valgrind is used to ensure no memory leaks occurred and no unnecessary allocations were
made.

3.3.3 Hardware Environment

The FPGA implementation of the kNN and TSVM architectures presented in [135] and
[73] respectively is performed using High Level Synthesis (HLS). The architectures are
modeled in C++ using Xilinx Vivado suite. Then, each architecture has been optimized using
HLS directives and synthesized to ensure that it fits in the target FPGA device. Then, a
C/RTL simulation was performed to ensure a coherent output from the architecture coded in
C++ and the RTL design provided by Vivado HLS. Afterward, each architecture has been
exported as an RTL IP block targeting a Zynq-7010 and Virtex-7 XC7VX980T FPGA for
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Fig. 3.3 FPGA Implementation Process

kNN and TSVM implementations respectively operating at a clock frequency of 120 MHz.
The IP block has been imported into Vivado; then, a behavioral/combinational simulation is
performed to verify the integrity of the exported IP. Then, place and route was performed to
implement the architecture on the FPGA device. Finally, a detailed report about the utilized
hardware resources, the number of clock cycles and the power consumption are obtained
once the implementation is completed. The implementation details can be summarized as
shown in Figure 3.3.

3.4 Approximate k-Nearest Neighbor

3.4.1 kNN Overview

kNN is a classification algorithm that assigns a class to a query object by a majority of vote k.
The most complex operations involved in kNN classification are: Distance calculation and
Sorting Process. Since, kNN doesn’t create a model for training, every classification task
involves calculating the distance between the query object and all training objects. Hence,
our main focus is to reduce the data size, consequently reducing the number of distance
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calculations to be performed. For this purpose, the data-oriented approximate computing
techniques are adopted.

3.4.2 Software Simulation

For our knowledge, a kNN classifier hasn’t been used for the touch modality classification
problem presented in section 3.3.1. Thus, this section details the evaluation process of both
Exact and Approximate kNN.

Exact kNN: The main parameter to be tuned in kNN is the number of nearest neighbors k.
To find the value of k, the tactile dataset has been used in four scenarios:

• 80% training, 20% testing.

• 85% training, 15% testing.

• 90% training, 10% testing.

• 10-fold Cross Validation (CV): This process divides the dataset into ten equal subsets.
Each subset is considered as a testing test for a single run i. The classification accuracy
is calculated as:

Accuracy =
1
10

10

∑
i=1

Accuracyi (3.1)

The value of k has been varied between 1 and 10. Tables 3.1 and 3.2 presents the highest
classification accuracy that kNN can achieve under different scenarios. The obtained results
show that the touch modality classification is a challenging task especially for Problems A
and B. This is evident in the variation of the classification accuracy percentage which differs
from one scenario to another. According to the authors in [5], the data collection protocol
used might be a reason along with the presence of a level of overlap between stimuli that in
principle belonged to different touch modalities.

Table 3.1 Classification Accuracy under scenarios A, B, and C

Problem
Classification Accuracy (%)

Scenario A Scenario B Scenario C
k=3 k=5 k=7 k=3 k=5 k=7 k=3 k=5 k=7

A 51.78571 51.78571 48.21429 54.76191 66.66666 71.42857 64.28571 60.71429 64.28571
B 67.85714 76.78571 75 69.04762 76.19045 73.80952 67.85714 67.85714 64.28571
C 83.9285 80.35714 78.57143 85.71429 83.33334 80.95238 82.14286 82.14286 82.14286

The obtained results could be interpreted as follows:
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Table 3.2 Classification Accuracy under scenario D

Run
Classification Accuracy (%)

Problem A Problem B Problem C
k=3 k=5 k=7 k=3 k=5 k=7 k=3 k=5 k=7

1 64.28571 60.71429 64.28571 67.85714 67.85714 64.28571 82.14286 82.14286 82.14286
2 75 78.57143 78.57143 71.42857 96.42857 85.71429 89.28571 85.71429 82.14286
3 57.14286 50 57.14286 78.57143 78.57143 82.14286 75 75 75
4 78.57143 71.42857 71.42857 82.14286 78.57143 85.71429 92.85714 92.85714 92.85714
5 39.28571 53.57143 42.85714 89.28571 96.42857 96.42857 78.57143 78.57143 75
6 82.14286 82.14286 82.14286 50 50 50 92.85714 92.85714 92.85714
7 50 53.57143 60.71429 32.14286 25 32.14286 100 100 100
8 89.28571 82.14286 82.14286 60.71428 50 57.14286 96.42857 96.42857 100
9 71.42857 75 82.14286 50 50 46.42857 89.28574 89.28571 89.28571

10 75 71.42857 67.85714 57.14286 57.14286 53.57143 100 100 100
CV 68.21429 67.85714 68.92857 63.92857 65 65.35714 89.64286 89.28571 88.92857

• For Problem A: The classifier suffered from a relatively high classification error
percentage, which at its best reached 28% for 85% splitting ratio with k=7. The general
effect of changing the number of neighbors k can’t be generalized effectively. For
example, in Scenario B: as k increases the classification error decreases which is not the
case for Scenario A or C. The highest classification accuracy obtained is approximately
69% while using 10-fold cross validation and k=7.

• For Problem B: The classifier showed a better result than those of Problem A, which
at its best reached a classification error percentage of 23% for 80% splitting ratio and
k=5. The general effect of changing the number of neighbors k can’t be generalized
effectively. For example, in Scenario A: as k increases the classification error increases
which is not the case for Scenario B or C. The highest classification accuracy obtained
is slightly greater than 66% while using 10-fold cross validation with k=7.

• For Problem C: The classifier showed a better result than both of Problems A and B,
which at its best reached a classification error percentage of 14% for 85% splitting
ratio and k=3. As the number of nearest neighbors k increases the classification
error percentage increases for Scenarios A and B, while it didn’t affect the classifier
performance for Scenario C. The highest classification accuracy obtained is around
90% while using 10-fold cross validation with k=3.

Comparing the obtained results with those obtained in [5]: for Problems A and B, the
tensorial SVM classifier scored a lower classification error percentage than the KNN classifier
with a relative difference of 5%-10%. While for Problem C, the KNN classifier achieved a
classification accuracy increase of 15% with k = 3. Hence, the data oriented approximate
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computing techniques will be investigated on Exact kNN with k = 3 targeting the touch
modality classification problem C.

– Approximate kNN: The Exact kNN has been modified to include DsR, DFM, and "cross-
layer" (CL) approximate computing techniques. Cross-layer approximation involves the
combination of two or more techniques. Dataset reduction is applied through Downscaling
(10%, 20%, and 30%). Downscaling is applied by reducing each touch modality sample
from φ(4× 4× 30,000) to φ(4× 4×D′), where D’ is the number of readings remained
after 10% (or 20%, 30%) reduction using the sampling algorithm proposed in [5]. As for
data format modification, 24-bit and 16-bit fixed-point representations were applied for all
the kNN operations with <8,16> and <6,10> precision, respectively, using the C libraries
used in [137]. Downscaling and DFM are combined and denoted by CL1 and CL2 i.e the
combination of 24-bit fixed-point with Downscaling and 16-bit fixed-point with Downscaling
respectively.

Table 3.3 shows the effect of Downscaling on kNN classification accuracy for Problem C.
For Scenario A, DSc up to 20% shows no accuracy loss while a DSc of 30% only shows a
1.7% loss. The same behaviour is noticed for Scenario C, but with a loss of 7.14% at 30%
DSc. For Scenario B, Downscaling has no effect on the classification accuracy. For Scenario
D, as the the Downscaling percentage increases, the loss increases with a threshold less than
6%. The obtained results show that kNN achieves a high classification of touch modalities
even if the dataset is downscaled up to 20%.

Table 3.3 Effect of Downscaling on kNN classification accuracy

Approximate Computing Technique
Classification Accuracy (%)

for Problem C, k=3
Scenario A Scenario B Scenario C Scenario D

None (Exact kNN) 83.92 85.71 82.14 89.64
10% Downscaling 83.92 85.71 82.14 88.49
20% Downscaling 83.92 85.71 82.14 87.05
30% Downscaling 82.14 85.71 75 83.67

Loss (%) after 10% DSc 0 0 0 1.15
Loss (%) after 20% DSc 0 0 0 2.58
Loss (%) after 30% DSc 1.78 0 7.14 5.96

Table 3.4 shows the effect of the transition from floating-point to fixed-point representa-
tion on kNN classification accuracy. For all scenarios, 24-bit representation lead to a higher
classification accuracy than 16-bit representation. As the testing set size decreases (from
Scenario A to B to C), the accuracy loss decreases for both fixed-point representations with a
best case of less than 4% loss in for a 90% dataset split and 24-bit representation.
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Table 3.4 Effect of Data Format Modification on kNN classification accuracy

Approximate Computing Technique
Classification Accuracy (%)

for Problem C, k=3
Scenario A Scenario B Scenario C Scenario D

None (Exact kNN) 83.92 85.71 82.14 89.64
24-bit Data Format Modification 73.21 78.57 78.57 86.07
16-bit Data Format Modification 62.5 64.28 71.42 79.28

Loss (%) after 24-bit DFM 10.7 7.14 3.57 3.57
Loss (%) after 16-bit DFM 21.42 21.42 10.71 10.35

Table 3.5 shows the kNN classification accuracy when Downscaling and DFM are used at
the same time. At first glance, the effect of cross-layer approximation is not uniform. This is
expected since a query that is incorrectly classified due to Downscaling may or may not have
been incorrectly incorrectly classified due to DFM. As the testing set size decreases (from
Scenario A to B to C), the accuracy loss decreases for both CL1 and CL2. This can be justified
due to the fact that Scenario C lead to the lowest accuracy loss when DSc and DFM has been
adopted individually. Such loss is consistent regardless of the Downscaling percentage. A
kNN classification with 30% CL1 achieves the lowest accuracy loss of 3.57%. Such loss
increases dramatically to more than 10% for CL2 due to the effect of 16-bit fixed-point
representation as reported in Table 3.4.

Table 3.5 Effect of Cross Layer Approximate Computing on kNN classification accuracy

Approximate Computing Technique
Classification Accuracy (%)

for Problem C, k=3
Scenario A Scenario B Scenario C Scenario D

None (Exact kNN) 83.92 85.71 82.14 89.64
10% Cross Layer 1 75 78.57 78.57 84.52
20% Cross Layer 1 66.07 78.57 78.57 83.03
30% Cross Layer 1 66.07 73.8 78.57 79.59

Loss (%) after 10% CL1 8.92 7.14 3.57 5.12
Loss (%) after 20% CL1 17.85 7.14 3.57 6.61
Loss (%) after 30% CL1 17.85 11.91 3.57 10.05

10% Cross Layer 2 62.5 69.04 71.42 76.98
20% Cross Layer 2 62.5 64.2 71.42 76.78
30% Cross Layer 2 60.71 64.2 71.42 74.4

Loss (%) after 10% CL2 21.42 16.67 10.72 12.66
Loss (%) after 20% CL2 21.42 21.51 10.72 12.86
Loss (%) after 30% CL2 23.21 21.51 10.72 15.24

–Profiling of Approximate kNN: To assess the advantages of algorithmic level approximate
computing techniques, their use is profiled in terms of execution time and memory usage
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Fig. 3.4 Execution Time of a kNN Classifier under various ACTs

while running on an Intel CPU. Figure 3.4 presents the execution time recorded as an average
over 5 runs of Exact and approximate kNN under the discussed techniques. The lowest
execution time is achieved using 30% CL2, as it involves the highest Downscaling percentage
accompanied with the lowest fixed-point representation used i.e. 16-bit. As for Downscaling
versus DFM, the effect varies on their adoption. For example, a kNN classifier with 16-bit
DFM achieves a touch classification in 28.2 ms compared to 31 ms using 10% DSc. However,
for higher Downscaling percentages (e.g. 20%), a lower execution time is recorded. For
24-bit DFM, a kNN classifier with Downscaling always achieves a lower execution time.

Fig. 3.5 Memory Usage for a kNN Classifier under various ACTs
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Figure 3.5 reports the required memory usage in Kilo Bytes (KB) for the adoption of each
ACT. The results show that DFM requires less memory usage compared to Downscaling.
Thus, for the touch modality problem, reducing the data bit-width has a more evident effect
on reducing the memory usage than Downscaling the data size. As expected, the lowest
memory usage is recorded for a KNN classifier with 30% CL2, due to the lowest fixed-point
representation and highest Downscaling percentage.

The timing and memory requirements differ from one application to another based on the
available budget. Figure 3.6 plots the classification accuracy accompanied with the reduction
in execution time and memory usage for each ACT. This plot can be used as a reference to
determine the best adequate techniques for a certain set of requirements. A few observations
can be noted:

• For a classification accuracy of 71%, the 30% CL2 should be adopted instead of less
efficient techniques such as 16-bit DFM or 10% CL2.

• To obtain the highest classification possible, it is advised to use a Downscaling per-
centage less then 30%.

• For a moderate accuracy loss, the CL1 techniques is the best fit.

Fig. 3.6 kNN Performance Profile under various ACTs
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Fig. 3.7 Approximate kNN Architecture

3.4.3 Hardware Implementation

Figure 3.7 presents the kNN architecture adopted from [135] for the hardware implementation
targeting the Zynqberry platform. The architecture adopts a hybrid approach to accelerate
the kNN implementation. The distance calculation is performed on FPGA referred to as on
Device, while the sorting process and majority voting blocks are executed on CPU referred
to as on Host. The squared Euclidean distance and Bitonic have been chosen for distance
calculation and sorting blocks. The Majority vote block assigns a class for the input based on
the class with the highest number of occurrence in the sorted vector.

3.4.4 Implementation Results and Assessment

Table 3.6 details the implementation resources of the Exact and approximate kNN under
different ACTS. The recorded resources include the hardware area (BRAM, DSP, etc.), time
latency, and power consumption. The time latency (L) is recorded as:

L = N× 1
fmax

(3.2)

where N is the number of clock cycles and fmax is the maximum operating frequency. As
for the power consumption, a vector-based method was adopted as it provides the power
consumption related to the processing under a defined testbench. The method involves
generating a “saif” file via post-implementation functional and timing simulations.

The obtained results show that kNN is capable of real-time classification of touch [4]
modalities in 0.56 ms with a power consumption of 27 mW. The real-time processing is an
essential requirement for applications such as prosthesis, robotics, and industrial packaging,
etc. Such results are further enhanced with the use of data-oriented approx mate computing
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Table 3.6 kNN Implementation Report targeting Zynqberry operating at 120 MHz

Approximate Computing Technique Implementation Resources

BRAM DSP48E FF LUT Slice Time
Latency (ms)

Power Consumption
(mW)

None (Exact kNN) 4 5 709 841 293 0.56 27
24-bit DFM 4 4 272 425 150 0.15 19
16-bit DFM 2 1 205 244 93 0.12 11

10% DSc
4 5 709 841 293

0.51 25
20% DSc 0.45 24
30% DSc 0.39 23
10% CL1

4 4 272 425 150
0.14 17

20% CL1 0.12 16
30% CL1 0.11 15
10% CL2

2 1 205 244 93
0.11 9

20% CL2 0.09 8
30% CL2 0.08 7

techniques which is evident in the reduced time latency and power consumption. The reported
hardware resources are decreased with the use of DFM but not with Downscaling. The reason
is that DSc is applied offline on the input only. While DFM is applied on all the kNN blocks.
Hence, the hardware resources are not reduced with the use of cross-layer approximate
techniques. As expected, the fastest classification time and lowest power consumption are
recorded with the use of CL2.

To highlight the advantages of using algorithmic level approximate computing techniques
on the kNN implementation, a plot for the degradation of accuracy with respect to the
reduction in power consumption and classification speedup is presented in Figure 3.8.

Fig. 3.8 kNN FPGA Implementation Performance under various ACTs
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Using this plot, one could select the best ACTs for approximate kNN based on the
applications’ requirements. For example, an approximate kNN with CL2 offers speedup up
to 6.8× with 74% power reductions at the expense of 10% accuracy loss. For an acuracy
loss of 6%, an approximate kNN with CL1 offers speedup up to 5.5× and about 45%
power reductions. Hence, based on the error tolerance of an application, a corresponding
approximate computing techniques could be used to achieve huge gains i terms of time
latency and power consumption.

3.5 Approximate Tensorial Support Vector Machine

3.5.1 Tensorial SVM Overview

SVM classification of an input tensor has been introduced in a framework that extends kernel
methods to tensor data in 4 main steps [5]:

• Tensor Unfolding: A tensor φ(I1× I2× I3) is transformed into three matrices X1(I1×
I2I3), X2(I2× I1I3) and X3(I3× I1I2).

• Singular Value Decomposition (SVD) Computation: The unfolded matrices are sym-
metrized into square matrices that can be written in the form:

X =USV T (3.3)

where U and V T contain the left and right singular vectors respectively, and S is the
diagonal matrix storing the singular values σi of X .

• Kernel Computation: The tensorial kernel extended from the Gaussian kernel is
computed using the function:

K(x,y) =
z

∏
1

kz(x,y) (3.4)

where kz is the kernel factor defined as:

k(x,y) = exp
(
−1
2σ2 (In− trace(ZT Z))

)
(3.5)

where Z = V T
x Vy, Vx and Vy represent the singular vectors of the unfolded matrix

obtained during the inference and training phase respectively, and trace represents the
sum of diagonal elements.
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• Classification: Applying the SVM classification function expressed as:

ŷ = fSV M(x) =
n

∑
i

βiK(xi,x)+b (3.6)

where ŷ is the predicted label of input tensor x, n is the number of training tensors, βi

are the coefficients obtained during training, and b is the bias.

3.5.2 Software Simulation

The touch modality classification problems presented in section 3.3.1 are used for accuracy
evaluation. The tactile dataset has been split into 70% training and 30% testing sets. The
dataset reduction is applied by randomly removing samples from the original dataset. To
ensure credible assessment, if a sample is removed during the 10% reduction, it is automati-
cally removed for the 20% and 30% reductions. Loop perforation is applied on the loops
of SVD in (3.3) with a skipping factor s f (i.e., how many loops are perforated). As for
data format modification, 24-bit and 16-bit fixed-point representations are applied for all the
TSVM operations with < 8,16 > and < 6,10 > precision, respectively, using the C libraries
used in [137].

Table 3.7 presents the effect of each ACT on the classification accuracy of the TSVM.
Results show that 10% DsR doesn’t affect the accuracy of TSVM for the three classification
problems. Once the DsR percentage increases to 20%, the accuracy drops with a worst case
scenario of 10% drop for Problem A. When applying loop perforation, the accuracy drops
with the increase of the skipping factor for problems A and C. For problem B, skipping more
than two loops showed no effect on the classification accuracy. As for DFM, the TSVM
showed the highest accuracy loss compared to other methods for the three problems when
16-bit fixe-point representation is used. Such loss could be dropped to 5% by adopting the
24-bit representation.

3.5.3 Hardware Implementation

Figure 3.9 shows the architecture of the approximate TSVM that is adopted to evaluate
the use of algorithmic level ACTs for hardware implementation. The architecture of the
approximate TSVM can be described through: Offline Training, Online Inference, and
Performance Booster.

–Offline Training: The training process starts by activating the AU1 (Approximate Unit
1) (see Figure 3.9). AU1 applies dataset-reduction through DSc technique on the dataset by
performing the following steps:
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Table 3.7 Effect of approximate computing techniques on TSVM classification accuracy

Approximate Computing Technique Classification Accuracy (%)
Problem A Problem B Problem C

None (Exact TSVM) 90.47 80.95 78
10% Data Set Reduction 90.47 80.95 78
20% Data Set Reduction 80.95 75 70
30% Data Set Reduction 80.95 75 70

Loop perforation with sf = 2 90.47 80.95 78
Loop perforation with sf = 3 85.71 75 65
Loop perforation with sf = 4 80.95 75 62.5

DFM (24-bit) 85.71 75 73
DFM (16-bit) 75 65 62.5

• The dataset size is reduced by eliminating data that corresponds to five participants
with noisy readings. Figure 3.10(a) shows an example of such reading where the
voltage is almost constant along the measured time. Therefore, the machine learning
model will not learn new information from such sample. Hence, it is removed.

• During data collection of the tactile dataset, no precise instructions were given to the
participants regarding the amount of pressure to be applied on the sensor [5]. Thus,
some touch samples with silent readings where observed such as the one presented in
Figure 3.10(b). Such samples could be pre-processed to extract meaningful information
in certain time frame. Each sample is truncated from 10 to 3.3 s by omitting readings
outside the interval [3.7, 7] s. This results in a new tensor φ(4×4×10,500).

• To reduce the computational complexity of the tensor-based learning algorithms,
the tensor size could be reduced without the loss of information originality using
sub-sampling. The latter is applied by truncating each sample into a new tensor
φ(4×4×40) with 40 random time readings.

Then, the resulting tensor is unfolded into three matrices M(4×160), N(4×160) and
P(40×16) that have to be symmetrized before applying SVD. The resulting support vectors
along with the Gaussian parameter σ = 1 are fed to the kernel computation block (see Figure
3.9). The block outputs the kernel matrices for (+1 vs. −1), (+1 vs. +1), (−1 vs. +1)
and (−1 vs. −1) binary classification problems where each row being labeled with the
corresponding class label. This step is essential since LIBSVM [138] does not support
tensorial kernels by default but can receive precomputed kernels. The LIBSVM library is
used to obtain a classification model based on the precomputed kernel. The model contains
the coefficients βi and the bias b.
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Fig. 3.9 Approximate TSVM Architecture

–Online Inference: The inference starts by fetching a sample tensor from the testing set
(that was already approximated using AU1). The selected tensor undergoes the unfolding,
symmetrization and SVD processes. The obtained support vectors along with the support
vectors from the training phase are provided to the kernel computation block. During online
inference, Approximate Unit 2 is active. It operates by applying:

• Loop perforation technique to the SVD block. The support vectors are obtained using
the one side Jacobi Algorithm [139]. The latter is an iterative algorithm, thus it is
perforated with s f = 2. This technique accelerates the SVD computations but a large
s f could not be applied to ensure the algorithm’s convergence.

• Computation Approximation to the computation of Z in (3.5). The obtained singular
vector matrices from the SVD block are V 1(160 × 160),
V 2(160× 160) and V 3(16× 16). These matrices are truncated to V 1′(160× 4),
V 2′(160× 4) and V 3′(16× 2). Such truncation reduces the complexity of the ma-
trix multiplication in (3.5) with an acceptable error margin. This technique was
also applied in the offline training phase so that the equation Z = V T

x Vy has correct
dimensions.
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Fig. 3.10 Touch Modalities: (a) touch with noisy readings; and (b) touch with silent intervals.

• Data Format Modification to all the variables and arithmetic operations in different
TSVM blocks. HLS offers a library called “apfixed”, which allows the declaration of
variables with fixed-point precision. This declaration is limited by an upper bound
[140]. Specifically, the mathematical functions are Square Root (sqrt), which is used in
SVD calculations, and Exponential (exp), which is used in kernel computations. These
functions are supported only for bit-widths w ≤ 32 and w ≤ 16, respectively. This
limitation was resolved by a variable precision architecture. Hence, all the inference
blocks are implemented with 24- bit fixed-point representation with a < 12,12 >

precision except the kernel computation block.

Finally, the output of the kernel computation (i.e., a kernel) is used by the classification
block to predict a class for the tested tensor according to (3.6).

–Performance Booster: The performance of the proposed approximate TSVM architec-
ture has been enhanced to achieve the lowest possible time latency for applications with
timing constraints [141] while increasing the throughput. These requirements are usually ac-
companied by an increase in hardware resources, but the use of algorithmic level approximate
computing techniques, specifically DsR and DFM, would compensate such increase.

The time latency and throughput requirements are facilitated by the use of Vivado HLS
optimization directives [140]. The used directives are:
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• Array Partition: This directive partitions a large Block RAM (BRAM) occupied by
a multidimensional array into smaller separate memories. The array partitioning can
be complete, cyclic or block. The latter was applied on the tensor φ(4×4×40) with
block size = 16, as shown in Figure 3.11. This results in an RTL IP block with smaller
memories while improving the throughput of the Unfolding process.

Fig. 3.11 Array partitioning: (a) without partitioning; (b) block partitioning; and (c) block
with size=16.

• Dataflow: This directive allows functions to overlap in their operations, enhancing
the overall throughput and latency of the design. The functions unfold and sym-
metrization are executed in a task-level pipelining using this directive, as shown in
Figure 3.12.

• Pipelining: This directive allows the parallel execution of loop iterations, hence
reducing the time latency. The computation of Z in (3.5) is executed in parallel, as
shown in Figure 3.13.

3.5.4 Implementation Results and Assessment

Figure 3.14 shows the normalized speedup and reduction in power consumption while
assessing different approximate computing techniques. The latter are applied one-by-one
resulting in eight different FPGA implementations.

Using the obtained results in Figure 3.14, a cross-layer approximate TSVM implementa-
tion was performed where the adopted techniques are: 10% dataset reduction, loop perforation
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Fig. 3.12 Process: (a) without dataflow; and (b) with dataflow.

Fig. 3.13 Pipeline directive applied on vector multiplication.

with s f = 2 and 24-bit DFM. Moreover, the implementation details was recorded with the
performance booster ON and OFF to differentiate between the gain due to approximate
computing techniques with and without HLS optimization directives. Table 3.8 summarizes
the performance profile for the FPGA implementations based on the architecture in Figure
3.9. The Exact SVM is based on the architecture presented in [56]. The boosted approximate
TSVM corresponds to the approximate TSVM where the “Performance Booster” block is
activated (See Figure 3.9), i.e., with HLS optimization directives. The reduction is calculated
as:

Reduction(%) = 100− (
Iapprox

Iexact
∗100) (3.7)

where Iapprox and Iexact are the implementation element (FF, DSP, LUT, etc.) of the Ap-
proximate (or boosted approximate) and Exact TSVM, respectively. As for the energy per
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Fig. 3.14 Speedup and power consumption reduction under different ACTs

classification, it is calculated using the equation:

E = P×T (3.8)

where T is the time latency and P is the dynamic power consumption reported in Vivado.

Table 3.8 FPGA performance profile of Exact and Approximate TSVM

Architecture FF LUT DSP BRAM SRL Time
Latency (s)

Power
Consumption (W)

Energy per
Classification (J)

Classification
Accuracy (%)

Exact TSVM 37057 42261 475 297 1060 2.4 6.3 15.12 90
approximate TSVM 17,187 25,558 283 291 202 0.91 3.12 2.83 86

Boosted
approximate TSVM 17,197 25,588 284 292 203 0.75 3.2 2.4 86

Approximate to
Exact Reduction 53.62% 39.5% 40.4% 2.02% 80.94% 2.64× 50.4% 81.28% −4%

Boosted Approximate
to Exact Reduction 53.59% 39.45% 40.21% 1.68% 80.84% 3.2× 49.2% 84.12% −4%

The obtained results presented in Tables 3.7 and 3.8 and Figure 3.14 demonstrate the
effectiveness of using approximate computing techniques to reduce the hardware resources
utilization, time latency and power consumption of the FPGA implementation of the tensorial
SVM. Such reductions are accompanied by an accuracy loss that varies between 0% and
10%. Another set of remarks can be noticed:

• In general, loop perforation achieves lower latency and power consumption compared
to dataset reduction with a comparable accuracy loss. This can be justified since the
SVD computation block is among the most complex blocks of the tensorial SVM, as
reported in [73].
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• The transition to fixed-point representation results in the lowest latency and power con-
sumption compared to other methods. This is expected due to the reduced complexity
of the arithmetic operations based on fixed-point representation. This can be seen in the
reduced number of required DSPs between the exact and approximate implementations.
However, this comes at the expense of high accuracy loss; for example, the use of a
16-bit fixed-point led to a 15% accuracy loss for the target application.

• The number of used BRAMs is high since we are not using any external DRAM for
memory read/write operations. The range of the number of LUT and DSPs is expected
due to the level of parallelism introduced using HLS directives. For the target FPGA,
this is not a problem as long as we obtained a relatively reduced time latency and
power consumption in the case of Approximate TSVM.

• Using “cross-layer” approximate computing: with an accuracy degradation of 4%,
the approximate TSVM requires about 43% less hardware resources and classifies an
unseen sample 2.64× faster while consuming 50% less power compared to its exact
counterpart.

• The accuracy loss due to the use of “cross-layer” approximate computing is not the
sum of the losses obtained for each single approximate technique. This is evident in
the final results presented in Table 3.8.

• The use of ACTs shows a remarkable reduction in the energy per classification up to
82%, since such techniques affect both the time latency and power consumption of the
TSVM, as shown in Table 3.8.

• Applying the adopted HLS optimization directives offered an additional speedup gain
to the approximate TSVM in terms of speedup up to 3.2× accompanied with 84%
less energy per classification.. This added a negligible overhead less than 1% increase
in the hardware resources and power consumption. This is expected due to the fact
that pipelining offers a reduction in the number of clock cycles while increasing the
resources/power consumption. However, such increase is compensated by the dataflow
directive that allows resource sharing, providing an enhanced overall implementation.

3.6 Conclusion

An approach for applying algorithmic approximate computing techniques on machine learn-
ing algorithms has been introduced. The approach has been validation on k-Nearest Neigh-
bour and Support Vector Machine algorithms for tensor-based tactile data. A detailed study is
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performed on the effect of algorithmic level ACTs on the execution time and memory usage
of a kNN classifier. Results showed that an approximate kNN with cross-layer techniques
could achieve reductions up to 60% with an accuracy loss less than 10%. Based on such
results, the FPGA implementation of both approximate kNN and TSVM is presented. The
implementation results have validated the efficiency of using algorithmic level ACTs for
accelerating machine learning algorithms. Hence, the implementations could be presented
as a solution for embedding intelligence on resource-limited device (e.g. Zynqberry) and
power-constrained applications such as prosthetic [141].



Chapter 4

Efficient Selection-Based K-Nearest
Neighbor Architecture on Modern SoCs

4.1 Introduction

Modern System-on-Chips (SoCs) are designed with heterogeneous architectures to support a
variety of computationally intensive tasks in many application domains such as IoT systems,
industrial automation, robotics, etc. These systems could consist of multi-core processors
or Multi-Processor System On Chip (MPSoC), which could be implemented on Graphics
Processing Units (GPUs), Application Specific Integrated Circuits (ASIC), or Field Pro-
grammable Gate Arrays (FPGAs). The latter is used for accelerating complex operations and
performing tasks concurrently compared to traditional processors.

K-Nearest Neighbor (kNN) is a supervised classification algorithm used in a variety
of applications such as pattern recognition, computer vision and machine learning [142].
However, kNN imposes significant computational workload since the complexity increases
linearly with the size of the dataset and the number of classes [143]. Such workload
demands significant memory requirements with high latency and power consumption [144].
Accordingly, the implementation of kNN on embedded systems with limited available energy
and resources introduces a design challenge, which makes kNN hardware acceleration a
necessity.

kNN algorithm involves independent operations e.g. the distance computation between a
point A and point B is independent of that between points A and C. Thus, kNN doesn’t require
the sorting of the entire distance vector to find the K-Nearest Neighbors. Such characteristics
could be exploited to reduce the computational complexity of the algorithm using a pipelined
architecture and tweaking the sorting process.
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In this chapter, we propose the design and implementation of a kNN architecture that is
characterized by a novel selection-based sorter (Selector). The proposed selector overcomes
similar state of the art solutions by reducing the occupied hardware area by up to 48% while
providing a speedup up to 4.5×. The proposed kNN architecture is implemented using
both exact and approximate computations. The approximate architecture utilizes the use of
algorithmic level Approximate Computing Techniques (ACTs). When validated on a touch
modality classification problem, both the proposed exact and approximate kNNs offer a
real-time classification while consuming 6 µJ and 1.9 µJ respectively when implemented
on Xilinx Zyqnberry platform. Compared to similar kNN architectures, the proposed kNN
achieves a speedup between 1.4× and 875× with 41% to 94% less energy consumption
and 12% to 94% average hardware area reduction. Moreover, applying algorithmic level
ACTs on the proposed architecture improves its performance by achieving a 56.4% average
area reduction, a speedup by 2.3×, and an energy reduction of about 69%. An accuracy
degradation of 2.6% has been reported using the proposed approximate architecture. For
the rest of the chapter, the term "performance" is used to report the characteristics of a kNN
hardware implementation in terms of area, time latency, power consumption, and energy per
classification. While, the term "quality" reflects the highest classification accuracy that a
kNN architecture could achieve.

4.2 Proposed k-NN Hardware Architecture

4.2.1 k-Nearest Neighbor Algorithm Overview

The kNN algorithm classifies an input sample according to the class of the majority of
K-nearest samples. For an input sample, the kNN classifier:

1. Calculates the distance between the input sample and all the samples in the training set
Ti ∈ T .

2. Sorts the distances in ascending order.

3. Selects an output class based on the minimum distance towards K neighbors.

4.2.2 Selection-based kNN Architecture

The block diagram of the proposed hardware architecture is shown in Figure 4.1. The “kNN
Classifier” block has been designed in HLS (coded in C++), whereas the other blocks are
existing Intellectual Property (IP) blocks embedded in Vivado. The SDRAM memory is
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Fig. 4.1 Selection-Based kNN Hardware Architecture

used to store the training set, which is more suitable than the Block RAM (BRAM) of the
FPGA for platforms with limited number of BRAMs or applications with large datasets. The
Advanced eXtensible Interface (AXI) Interconnect IP handles the read and write operations
from and to the memory. It adopts an AXI smart connect IP to use one AXI port for 1)
writing to the data acquisition block and 2) reading the classification result from the class
determination block. The Zynq processing system IP is the main block of the design which
uses a processor system reset IP to drive all blocks with a common clock and reset signals.
The kNN HLS IP starts operating once the Data acquisition block receives the training
samples. To reduce the access overhead imposed by DRAM, we fetch the samples in bursts
to reduce the number of memory accesses. Such technique has shown its efficiency in [135]
and [44].

4.2.3 Nearest Neighbors Selector

A common characteristic of the most existing efficient kNN architectures is the use of
the conventional sorting algorithms without optimizations for the kNN algorithm. The
efficiency of these algorithms is affected by the: i) need to sort all the vector’s elements,
ii) large number of required comparators, and iii) increased complexity/latency for large
vector size. In this work, the proposed kNN architecture avoids such sorting algorithms and
adopts a selection-based one with a re-configurable division ratio for complexity and latency
trade-offs.

The main idea of the “Selector” is to find the K-minimum distances without sorting
the entire vector [145] as depicted in Algorithm 1. While coding the selector in HLS, the
minimum K-distance values are saved in the same vector to be sorted, thus decreasing the
memory footprint. The selector operations can be detailed in three steps:
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Algorithm 1: Nearest Neighbors Selector
Input: Vector V with size S, Division ratio a:b, Number of neighbors K
Output: V with the K-minimum elements at the first K indices
S1← a×S/100
for i←K to S1 do

if V [i]<=V [0] then
V [K−1]←V [K−2]
...
V [0]←V [i]

else if V [i]<=V [1] then
V [K−1]←V [K−2]
...
V [1]←V [i]

...
else if V [i]<=V [K−1] then

V [K−1]←V [i]
for j←S1 to S do

if V [ j]>=V [K−1] then
break

else
if V [ j]<V [K−2] then

...
if V [ j]<V [0] then

V [0]←V [ j]
else

V [1]←V [ j]
else

break

• Step 1: The distance vector V of size S is divided into two vectors V 1 and V 2. The
suitable division ratio (a%:b%) is determined via a software simulation. Begin by
decreasing the size of V until the classification accuracy drops to obtain the value of a.
Hence, b = S−a.

• Step 2: K-registers are initialized with a maximum value (e.g. 1000). Each distance
value V 1[i] is compared to the content of register 1. If it is smaller, V 1[i] occupies the
register, and the old content in register 1 is shifted to register 2. Then, the content
in register 2 is shifted to occupy register 3. Consequently, the content in register i is
shifted to occupy register i+1. Else, V 1[i] is compared to the next register, and so on.
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Fig. 4.2 Sorting Process Step 3 (K=3): Dashed Line (new value), Solid Line (old value),
Colored Lines (concurrent operations)

At the end of step 2, the K minimum distance values are saved in the K registers in the
order min1 < min2 < ..... < minK.

• Step 3: Each distance value V 2[i] is compared to the highest minimum i.e. minK as
shown in Figure. 4.2 (K=3). If it is larger, the minimums obtained from V 1[i] are
not updated and a new value of V 2 is fetched. Else, V 2[i] is compared to the other
minimums to reach a register to occupy. Once V 2[i] occupies a register, the old value
of that register is shifted to occupy the register of the next minimum.

The advantage of this architecture compared to the one presented in [146] is that step 3
will not be executed if V 2[i] is greater than minK. Thus, the K minimum distances are the
output of step 2. This will result in a reduced selection time for hardware implementations.
Moreover, the architecture in [146] selects the K minimum distances in a single step, which
imposes hardware complexity and increased time latency for large datasets. While in the
proposed architecture, the selection is performed in smaller steps with a high probability that
the final step will not be executed (V 2[i]> minK).
Although the proposed selector finds the K-nearest neighbors without sorting the entire
vector, a comparison with two sorters reported in the literature, i.e. QuickSort [47] and
Bitonic Sorter [147], has been carried out. In general:

• Bitonic sorting is a recursive algorithm that sorts a Bitonic sequence in a parallel
operating fashion. A Bitonic sequence is a sequence of M elements in which L
elements out of M are sorted in ascending form, and the other M−L elements are
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sorted in descending order [148]. If the sequence is not Bitonic, an additional task is
imposed before the ability to sort the vector. The proposed selector can operate on any
vector form.

• QuickSort selects one of the elements in the sequence to be the pivot and divides the
sequence into two sequences. One sequence contains all the elements less than the
pivot while the other contains all the elements greater than the pivot. The process is
recursively (add more burden on the hardware) applied to each of the sub sequences.
QuickSort has a worst-case complexity of O(n2) when the given sequence is sorted;
this resembles the best-case scenario for the proposed selector as it will select the K
minimums faster (the minimums occupy the first K registers). Then, all the comparisons
fail. Thus no shift operations are performed. Consequently, step 3 is not executed at
all.

• The number of comparators required by the selector depends on the number of neigh-
bors K, while it depends on the size of the vector N in the case of Bitonic and QuickSort.
In machine learning applications, usually, it is valid that K (the number of Nearest
Neighbors in kNN)≪ N (size of training vector). Given that the selector doesn’t sort
the complete vector, the number of comparisons is decreased.

Both the sorters presented in [47], [147], and the selector have been coded in C++
using Vivado HLS. The distance vector V has been used as a testing vector for the three
implementations. In this work, the best K value and division ratio were determined to be
3 and 6:4 (for the case study presented in section 4.3) i.e. there is a need to sort only 60%
of the vector and step 3 can be aborted without affecting the selection process accuracy.
The obtained synthesis results for finding the three minimum numbers in V are presented in
Table 4.1. The obtained results show that the selector occupies less hardware area than the
implementations of both sorters. Specifically, an average reduction of 21.4% and 48.7% is
reported compared to the sorters in [47] and [147] respectively. Concerning the time latency
of the sorting process, the selector is faster than the sorter in [147] by 4.5×. Compared to the
sorter in [47] that adopts one of the fastest sorting algorithm (QuickSort), the performance
depends on the selection of the division ratio in step 1 and the number of neighbors K. In fact,
if all the minimum numbers are located in V2, or if the required value of K is very large, the
selector is now sorting all the elements of V resulting in a slower sorting process. Hence, a
speedup of ±1.2× (for 6:4 and 5:5 ratios respectively) has been observed for the given task.
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Table 4.1 HLS Synthesis Results of Different Sorters

Sorter FF LUT Clock Cycles
Proposed Selector 84 176 15 (division ratio 6:4)

[47] 106 226 17
[147] 123 514 96

4.2.4 Approximate kNN Blocks

In chapter 3, we have presented a complete assessment of using algorithmic level ACTs on a
kNN classifier. The assessment included the degradation in accuracy to the gain in memory
and execution time on Intel i7 CPU. The studied techniques have been formulated into a
general approach that has been tested on two machine learning classifiers. The reported
approach has been adopted in the proposed kNN architecture where a trade-off between
the classifiers performance and quality has been considered. The trade-off resulted in our
selection for the ACTs presented in the proposed approximate kNN architecture. All the
adopted techniques belong to the data-oriented approximate computing category [149]. The
adopted ACTs are Dataset Reduction (Downsampling (DS) and Downscaling (DSc)), and
Data Format Modification (DFM). DS means varying the signal sampling frequency during
signal acquisition. Since tactile data used in this work are from an already available dataset,
the sampling frequency can’t be changed. As a consequence, DS is applied offline on the
dataset by reducing the number of samples. DSc is applied by adjusting the sample size as
shown in section 4.3.1. As for DFM, fixed-point representation is adopted, and the precision
is determined as a trade-off between resolution (32, 24, 16, and 8-bit) and classification
accuracy.” The approximate kNN classifier starts operating once the Data Acquisition block
receives the training samples (after DS/DSc has been applied offline) from the memory. Then,
the same steps performed by the kNN HLS IP are executed.

4.3 Case Study: Tactile Data Processing for Electronic Skin
Systems

4.3.1 Electronic Skin Overview

Electronic skin (E-skin) system is an artificial system developed to mimic human skin
behaviour or to implement intelligent tasks in applications such as robotics, prosthetic, etc.
The E-skin is composed of a set of components as shown in Figure 4.3. At the moment of
touch, the array of tactile sensors transforms the applied mechanical stimuli into electrical
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signals. The electronics interface is in charge of data acquisition, signal conditioning, and
analog to digital conversion. After that, the tactile data should be processed by the embedded
data processing unit. To achieve this goal, various processing levels may be applied. For
example, simple processing algorithms could be employed to retrieve information such as
direction and intensity of contact force, contact location, temperature, etc. On the other hand,
more sophisticated algorithms should be adopted when targeting complex/smart processing
tasks like textures, patterns, and objects recognition, or touch modalities, and roughness
classification [150], [151]. To this end, the smart embedded data processing unit implements
ML algorithms in order to enable the above-mentioned smart tasks. However, implementing
ML algorithms on hardware platforms is challenging due to the high complexity of such
algorithms. Consequently, affecting the complexity of the embedded electronic systems in
terms of time latency and power consumption.

Fig. 4.3 Electronic skin system and the corresponding function of each block

In this work, the kNN algorithm is adopted for the design of an embedded tactile data
processing architecture due to the: 1) high level of parallelization of the kNN algorithm,
which makes it adequate for hardware acceleration, 2) high classification accuracy with a
reduced computational complexity compared to state-of-the-art algorithms operating on the
same task [32], [152], and 3) ability of complexity reduction without affecting the application
quality using approximate computing techniques as reported in chapter 3.
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4.3.2 Experimental Setup

The dataset collected in [5] describing several touch modalities has been selected for the
validation of the proposed kNN architecture. The experimental setup is shown in Figure 4.4
and can be described as follows:

Fig. 4.4 Experimental Setup

• Dataset: The dataset contains records for the two touch modalities performed by 70
participants. Each modality was recorded from a 4×4 tactile sensor for 10 seconds at
3 kHz sampling frequency. Thus, each raw data sample can be modeled in the form
of a tensor of size 4×4×30,000. The touch modalities were performed on both the
horizontal and vertical directions for two trials, resulting in a dataset of 840 samples.

• Simulation Software: An open-source machine learning simulation tool called “Weka”
has been used [153]. Weka involves a collection of learning algorithms that can be
applied to a pre-defined dataset or invoked from a Java code. The tool has options for
classification, clustering, regression, etc.

• Classification Task: “Sliding a finger” vs “Washer Rolling” binary touch modality
classification problem introduced in [5]. For Weka simulation an Attribute-Relation
File Format (ARFF) file is required. Thus, a header describing the features and the
possible output class of each sample is added to the original tactile dataset.



62 Efficient Selection-Based K-Nearest Neighbor Architecture on Modern SoCs

• kNN Characteristics: A 10-fold cross-validation simulation using the Weka tool has
been carried to determine the best value of K. The adopted distance between two
tactile samples T 1 and T 2 is the squared euclidean distance written as:

d(T1,T2) =
16

∑
0
(T Xi j−T Xmn)

2 (4.1)

where T Xi j and T Xmn are the taxels inside a 4×4 tactile sample.

• Classification Metric: The kNN algorithm has been assessed by calculating the classi-
fication accuracy i.e. the ratio of correctly classified samples to the total number of
available samples.

The ARFF file was loaded into Weka and classification using kNN is performed. A kNN
classifier with 3-nearest neighbors resulted in the highest classification accuracy of 89.8%.
This result was achieved based on a model selection approach.

The best obtained kNN model with K=3 is referred to as Exact kNN. As for Approximate
kNN, it employs the following techniques to the Exact architecture: 1) Downsampling which
applies an approximate window on the touch modality, where only the data that corresponds
to the interval [a,b] seconds is considered. First, the interval [a, b] is selected such that
0.1 < a≪ 1 and 9.5 < b < 10. Then, the values of a and b are varied, while calculating
the classification accuracy. The interval [3.5, 7] provided the highest accuracy among
others. Thus, each modality tensor can be written as φ = 4×4×10,500 (touch readings that
belong to the interval [3.5, 7] seconds), and 2) downscaling which reduces the tensor size to
φ = 4×4×1, where the last dimension is the mean of the 10,500 readings according to the
equation:

mean =
∑T Xi j

10500
(4.2)

where T Xi j is the individual taxel inside the 4×4 tactile sample. Figure 4.5 shows the initial
and obtained touch modalities after applying DS and DSc.

It is worth mentioning that the tensor representation of data has been adopted by [5] since
it preserves the initial structure of the data, which is still valid after applying approximate
computing techniques. This is evident in Figure 4.5 (b), (c) where the two touch modalities
can still be differentiated. For both the Distance Calculation and Nearest Neighbor Selection
blocks, the operations are implemented in 24-bit fixed-point representation with a < 6,18 >

precision. The adopted precision is based on a trade-off between complexity and classification
accuracy.
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Fig. 4.5 Touch Modalities: (a) Rolling with DS, (b) Rolling after DSc, (c) Sliding after DSc,
* Window

4.4 Selection-based kNN Implementation

4.4.1 Hardware and Software Design Tools

The Zynqberry TE0726-03M [154] has been adopted for implementation. Zynqberry is a
small-sized platform in the form of a Raspberry Pi compatible System-on-Chip (SoC) module
integrating a Xilinx Zynq-7010 with a 512 MB Synchronous Dynamic Random Access
Memory (SDRAM) memory. The Zynq SoC has a hybrid structure of combining a dual-core
ARM Cortex-A9 processor as a Processing System (PS) and an FPGA as Programmable
Logic (PL) in a single SoC. Moreover, for comparison purposes, the architecture has been
also implemented on the Virtex-7 FPGA and the NVIDIA GTX 1650 GPU.

As for the software tools, Vivado HLS 2018.3 and Vivado 2018.3 were used. Vivado
HLS allows the design of an embedded system on FPGA using a high-level programming
language such as C and C++ compared to traditional hardware description languages (HDL).
The use of HLS decreases the FPGA development time and effort. Also, it offers a set of
optimization directives that can be used to enhance the design performance.

4.4.2 Implementation Methodology

Once the whole design code is completed in HLS and design optimizations are applied, a
co-simulation is performed. This simulation runs both the C++ and the RTL simulations
together to verify a matching output. Then, the design is exported as a Register Transfer
Level (RTL) IP block. The latter is imported into Vivado 2018 and connected to the Zynq
processor and other IP blocks as seen in Figure 4.1. First, a behavioral simulation is
performed to verify the functionality of the design. Then, synthesis and place and route occur
to finalize implementation. At this point, the generated report contains the occupied area
percentage (BRAM, DSPs, etc.) and the number of clock cycles passed to generate an output.
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Concerning power consumption estimation, Vivado offers two methods: Vector-based and
Vector less. This estimation can be performed at any stage between post-synthesis to post
routing. For a credible estimation, a post-implementation functional and timing simulation is
used to generate a Switching Activity Interchange File (SAIF) to be used for a vector-based
estimation post-routing.

4.4.3 Design Optimization

Targeting the real-time functionality on a small-sized platform such as Zynqberry, the
proposed architecture has been optimized to ensure an acceptable balance between time
latency and hardware requirements. This has been achieved with several design optimizations
as shown in Figure. 4.6. Such optimizations are facilitated with the use of Vivado HLS
directives [140] as depicted in Algorithm 2. These optimizations are summarized as follows:

Fig. 4.6 Design Optimization: (a) BRAM Resources Reductions, (b) Unrolled Class De-
termination, (c) One Unrolled Distance Calculation (UDC) Block, (d) Complete Unrolled
Distance Calculation

• BRAM Resources Reduction: As the BRAM size is 18KB in the FPGA, it is better to
combine many arrays into a single array if their sizes are less than 18KB. Since kNN is
a supervised algorithm, the class of each query must be known. Thus, we can benefit
from this directive to combine the “Distance” and “Modality” arrays into a single array
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as shown in Figure 4.6(a). Thus, when the selector block finds the three minimum
neighbors, the class of each selected neighbor is available at the same instant. This
process is referred to as "Array Map" where the horizontal option means that the two
arrays are combined into a single array with more elements (see Algorithm 2).

Algorithm 2: kNN Design Optimization
#pragma HLS ARRAYMAP
variable=Distance Instance=AllPatterns horizontal
variable=Modality Instance=AllPatterns horizontal
/* M: nb of features */
function UDC(T1,T2):
for i←0 to M do

#pragma HLS UNROLL factor=4
Execute (4.1)

/* Tactiles: trainingset, q: testing point */
/* N: nb of training points */
for i←0 to N do

#pragma HLS INLINE
#pragma HLS UNROLL factor=6
Distance[i]= UDC(p, Tactiles[i])
Modality[i]=Tactiles[i][16]

/* K: nb of Neighbors */
NearestNeighbors=Selector(K, Modality)
for i←0 to K do

#pragma HLS UNROLL
if NearestNeighbors[i] == 1 then

modality1count++
else

modalitycount2++

• Parallelization: To exploit the capabilities of the FPGA, the operations of the distance
calculation and the class determination blocks are executed in parallel with a small
unroll factor. In HLS terms this is known as "Unrolling". Unrolling a loop creates
multiple copies of its body in the RTL design, which allows some or all of its iterations
to occur in parallel. This optimization has been applied to (4.1) denoted as Unrolled
Distance Calculation (UDC) and the Class Determination blocks leading to accelerating
the calculation and output class decision. However, executing all the operations in
parallel leads to a high power consumption and increased resource requirements. To
avoid the negative impact of unrolling on the hardware cost and power consumption,
the loops are partially unrolled (unroll factors of 4 and 6) as it is shown in Algorithm 2,
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and the design is implemented at an operating frequency of 100 MHz which is lower
when compared to similar work [147]. Each touch modality sample has 16 features,
thus an UNROLL factor equals to 4 is used. This means that the distance between each
4 features is calculated in a single time interval as shown in Figure 4.6(c). Similarly,
Figure 4.6(d) shows how the UDC block is used to calculate the distance between the
testing sample and all training samples. An UNROLL factor equals to 6 is used, thus
112 timing intervals are required to finish all the distance calculations for a training
set size of 80%. The distance from a testing sample to (80×840/100) = 672 training
samples is calculated in batches of 6 calculations per timing interval i.e 672/6 = 112
intervals. As for Class Determination, since K = 3 and we have a binary classification,
the process could be fully unrolled as shown in 4.6(b).

• Function Inline: The inlined function is treated as a part of the calling function that
is calling it rather than a separate entity. This optimization is applied for the distance
calculation function. Thus, whenever the classification function is called, the distance
calculation is executed within it and it no longer appears as a separate level of hierarchy
in the RTL design. Thus improving the overall latency of the classification task.

4.4.4 Implementation Results

The performance and quality of the proposed exact and approximate implementations are
assessed on the touch modality classification problem mentioned in section 4.3. The assess-
ment involves two case studies: (1) Proposed Exact kNN versus approximate kNN and (2)
Exact kNN on FPGA versus GPU. For the FPGA implementation, the time latency T is
calculated according to the equation:

T = N×1/ fmax (4.3)

where N is the number of clock cycles obtained in post-implementation reports and fmax

is the maximum operating frequency the design can achieve. The Joule per classification
energy E is calculated as:

E = T ×P (4.4)

where T is the time latency and P is the dynamic power consumed by the programmable
logic (PL) of the Zynqberry reported by Vivado i.e the power consumed by the simulated
kNN architecture to compute a classification of an input sample (excluding the static power
of the processing system (PS) as it is device dependent).



4.4 Selection-based kNN Implementation 67

For GPU implementation, Exact kNN architecture has been coded using Python language
running inside the CUDA computing platform. The GPU power estimation was obtained
using NVIDIA System Managment Interface (NVSMI). The latter is a command utility that
can be issued on any Python development environment with the CUDA libraries imported
[155].

Case 1: Exact versus Approximate kNN
The implementation results on Zynqberry of the proposed Exact and Approximate kNN

are shown in Table 4.2. Exact kNN occupies 12% of the hardware resources, consumes
0.236 W, and classifies an input sample within 25.7 µs. The obtained time latency verifies
the real-time classification of a touch modality in less than 400 ms [4]. Applying down-
sampling and downscaling have decreased the input size from 4×4×30,00 (a 10s sample)
to 4×4×1 (a 3.5s sample) offering a 65% reduction in data size. Such reduction led to a
significant decrease in the hardware resources and time latency. Using the 24-bit fixed-point
representation instead of 32-bit floating-point one provides a 25% reduction in the word
length of data exchanged between the different blocks of the kNN architecture and the
complexity of the arithmetic computations. Consequently, the dynamic power consumption
has been reduced. Thus, the proposed approximate kNN offers an average hardware resource
reduction up to 56.4%, by accelerating the classification of a test sample by 2.3× with an
energy reduction of about 69% compared to the proposed Exact kNN. For the whole design,
an accuracy degradation of 2.6% is reported. The proposed approximate kNN provides
real-time classification of touch modalities with a reduced time latency of 11.2 µs. These
results motivate the use of approximate computing techniques.

Table 4.2 Implementation Results of the proposed Exact and Approximate Classifiers on
Zynqberry

Implementation Exact Approximate
Classification Accuracy 89.8% 87%

Frequency (MHz) 100
BRAM 4 4
DSP48E 10 4

FF 3493 1612
LUT 2825 1264

Time Latency (µs) 25.7 11.2
Dynamic

Power Consumption (W) 0.236 0.164

Case 2: Exact kNN on FPGA versus GPU
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Using the CUDA platform and NVSMI tool, the GPU implementation of Exact kNN
provided a classification time of 80 ms while consuming 14.12W for the touch modality
classification problem. Table 4.3 shows a comparison between the FPGA and GPU imple-
mentations in terms of execution time and energy consumption. The results are significantly
in favor of the FPGA, where the acceleration of the proposed kNN architecture on FPGA
could be achieved with a fraction of the energy consumed using the GTX 1650 GPU. This
can be justified due to two possible reasons:

Table 4.3 Exact kNN performance on FPGA and GPU

Exact kNN
Time (FPGA/GPU) 25.7µs/80ms

Energy (FPGA/GPU) 6µJ/1.13J
Time Ratio 0.00032

Energy Ratio 5.37×10−6

• GPUs use DRAM for the communication between the different blocks of the kNN
architecture (referred to as kernels) [156], which is slower than using a hybrid structure
as proposed in Figure 4.1 where BRAMs are used to communicate between different
blocks and DRAM is used only for dataset storage.

• The proposed kNN architecture exploits the parallelism capabilities of the FPGA. Thus,
the "if-then-else" conditions are executed in parallel. On the other hand, the "then"
and "else" parts are executed serially on GPUs resulting in a significant time latency
increase. Such issue is known as "thread divergence" [157].

4.5 Comparison with existing solutions

Comparing two kNN implementations is not a straight forward task due to the large number
of differences such as: the number of nearest neighbors (K), dataset size (N), number of
features per sample ( f ), development environment (HLS or HDL), hardware device used, etc.
To achieve a fair comparison with Exact kNN, three similar architectures have been selected.
These three architectures have been chosen such that they all have:

• Used HLS for development since the comparison with an HDL implementation is not
feasible.

• Achieved a high acceleration gain (i.e speedup) with respect to equivalent CPU-based
kNN implementation, so the architecture resembles an efficient accelerator.
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• Used similar (and different) values of K, N, and f to generalize the comparison.

Table 4.4 presents the existing implementation settings for the three architectures. De-
note by Si =[Ki,Ni, fi,Dataseti] the settings used in the first [146], second [158] and third
implementation [147] respectively. Exact kNN is implemented using the settings Si i.e the
proposed kNN architecture is implemented and validated using the testbench reported in
each architecture. The implementation results are shown in Table 4.5 with the original
implementation results of each architecture.

Table 4.4 Testbench Implementation settings for the Exact kNN and three similar architectures

Architecture S1 [146] S2 [158] S3 [147]
K 10 3 5
N 699 150 300×103

f 9 4 2
Dataset BCW_9 Iris Weather

Device
AVNET

ZedBoard Virtex-7 Virtex-7

Frequency (MHz) 100 100 240

Table 4.5 Proposed Exact kNN Implementation Results versus Similar Solutions

Architecture kNN-S1 [146] kNN-S2 [158] kNN-S3 [147]
Device Zynqberry Virtex-7

Frequency (MHz) 100 240
BRAM 4 - 4 293 500 512

DSP 7 9 5 47 12 12
FF 2002 9484 827 - 21677 23892

LUT 1607 8845 1407 - 11416 11838
Time Latency (ms) 22×10−3 0.27 12×10−3 10.5 0.88 1.24

Energy per
classification (mJ) 4.84×10−3 70×10−3 - - 1.86 3.17

Average Resources
Reduction (%)* 61% 94% 12.3%

Speedup 12.3× 875× 1.4×
Energy Reduction (%) 94% - 41.5%

Classification Accuracy (%) 96.2% 93.3% 86.5%

* Calculated for the available resources only e.g. reduction in BRAM and DSP for kNN-S2 compared to
[158], i.e. Reduction = (BRAM-Reduction + DSP-Reduction)/2, where BRAM-Reduction= 100(1-4/293)
and DSP-Reduction= 100(1-5/47).

kNN-S1 achieves a 12.3× classification speedup with 94% less energy consumption while
requiring a 61% less hardware resources compared to the kNN implementation presented
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in [146]. This is due to two main reasons: 1) the selector used in kNN-S1 is an enhanced
version of the one used in [146] where the division factor plays a key role in decreasing
the sorting time as presented in section 4.2.3, and 2) the aim of the kNN architecture in
[146] is to attain the highest speedup possible for real-time embedded applications. This has
been accomplished by combining the UNROLL, PIPELINE, and DATAFLOW directives.
Such directives are known for speedup gains due to the level of parallelism introduced at the
expense of a noticeable increase in the hardware resources. The latter was not an issue when
using the relatively large FPGA in the ZedBoard platform. Meanwhile, in kNN-S1 only the
UNROLL directive is used with an unrolling factor that balances the speedup and complexity
for the target application, while achieving more speedup with the use of the selector.

When compared to the kNN implementation in [158], kNN-S2 provides a huge accel-
eration gain of 875× with 94% less required hardware resources. Such gain is due to the
design choices adopted by the authors in [158] such as: 1) using the euclidean distance
metric, which compared to (4.1), has an added complexity due to the square root operation,
2) applying the normalization of the data on-chip, which presents a complexity overhead,
and 3) performing the sorting operation using a single comparator and multiple BRAMs to
compare each pair of data points, this process is very slow compared to the proposed selector.
Although no power/energy details were provided for the kNN in [158], kNN-S2 is expected
to be more efficient due to the 90% reduction in the number of DSPs.

The implementation requirements of kNN-S3 exceeds the capacity of the FPGA fabric in
Zynqberry and thus the design couldn’t be routed to achieve the 240MHz operating frequency.
Thus, for comparison reasons only, kNN-S3 is implemented on the target device used in
[147] i.e Vertix-7 knowing that implementing kNN on Zynqberry has achieved the real-time
and low power consumption demands for the target touch modality application as reported in
Table 4.2. kNN-S3 offers a speedup of 1.4× with 41.5% and 12.3% reduction in hardware
resources and energy per classification respectively. Such results are justified with the lower
number of FF and LUTs required by kNN-S3. This is expected since the kNN in [147]
uses the Bitonic sorter, which is outperformed by the proposed selector as shown in Table
4.1. Compared to kNN-S1 and kNN-S2, the gain achieved by kNN-S3 is relatively lower
since the kNN in [147] exploits the high optimization capabilities of OpenCL for extensive
computations and large datasets.

4.6 Conclusion

This chapter introduces an efficient novel architecture for the hardware acceleration of the
k-Nearest Neighbor algorithm using a selection-based sorter. The architecture has been coded
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in HLS, synthesized, and routed on the Zynqberry platform. Two efficient implementations
have been provided based on exact and approximate computing. The implementations exploit
the parallelism nature of the kNN algorithm along with the use of ACTs to achieve real-time
classification with relatively low power consumption. Compared to similar state-of-the-
art solutions, the proposed Exact kNN offers acceleration gain between 1.4× and 875×
with lower energy per classification between 41% and 94% depending on the used settings.
Compared to GPU-based implementations, the proposed kNN-FPGA implementation offers
efficient and faster classification for the target application. Such results pave the way towards
embedding intelligence using a small-sized platform such as the Zynqberry for applications
with low power and real-time requirements. The implementation on different hardware
platforms, under different settings, and operating on different dataset size, verifies the
efficiency of the proposed selection-based kNN architecture. Future work will involve the
investigation of the use of circuit-level approximate computing techniques that are reported to
permit noticeable gains in the performance of machine learning hardware implementations.





Chapter 5

Real-time Accelerated Tensorial Support
Vector Machine Architecture

5.1 Introduction

Tensor based learning techniques permit the effective exploitation of the structure of data
used in various fields such as vision (e.g. image recognition), neuroscience (e.g. MRI data),
chemistry (excitation-emission data), etc. At the beginning of the last decade, Machine
Learning (ML) communities started showing interest in tensors and their use for supervised
learning [159]. Authors in [54] proposed a tensorial kernel that could be used for supervised
tensor-based learning models while utilizing the structural information embodied in the data
and exploiting the algebraic properties of tensors of any order. Such kernel methods lead to
flexible nonlinear models that have been proven successful in many different contexts. When
used with Support Vector Machine (SVM) algorithm, the tensorial kernel achieved better
classification accuracy than the Gaussian-Radial Basis Function (RBF) and linear kernels in
an image recognition task.

Gastaldo et. al have extended the tensorial kernel approach for tactile data processing
in [29]. This approach has been adopted for a touch modality classification problem since
it preserves the inherent tensorial structure of the data collected by tactile sensors. As
an end result, the tensorial-based SVM has achieved higher accuracy in classifying touch
modalities compared to the Regularized Least Square (RLS) algorithm. In [73], the first
FPGA implementation of the SVM algorithm based on tensorial kernel has been presented.
Specifically, two implementations were provided: Cascaded and Parallel. The former failed
to ensure real-time classification of touch (i.e in less than 400ms [4]), and the latter reported
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a relatively large hardware area and high power consumption of 1.14W. Such results were
not acceptable for applications with limited power budget and area constraints [141].

In this chapter, we present a new architecture and hardware implementation of the ten-
sorial SVM (TSVM) aiming at reducing the hardware complexity and power consumption
while keeping real-time operation. The architecture is characterized by the introduction of a
Shallow Neural Network (NN) for the Singular Value Decomposition (SVD) computations.
The proposed neural network architecture achieves 324× speedup with 58% and 67% reduc-
tions in the required hardware resources and power consumption respectively compared to
the traditional one-sided Jacobi algorithm. Such reductions demonstrate the feasibility of
the implemented TSVM for real-time tactile data classification while consuming 6.28 mJ.
The proposed TSVM architecture achieves 131× classification speedup with a 39% and 50%
resources and power reductions respectively compared to similar stat-of-the-art solution [73].
Furthermore, a scalability assessment of the proposed TSVM architecture is provided. The
assessment shows that replacing the one-sided Jacobi with a neural network demands only
1% increase in the required FFs compared to 29% when the number of training tensors is
doubled.

5.2 SVM Classification based on Tensorial Kernel

5.2.1 TSVM Re-visited

SVM classification of an input tensor has been introduced in a framework that extends kernel
methods to tensor data in 4 main steps [5]: Tensor Unfolding, SVD Computation, Kernel
Computation, and Classification (for details refer to chapter 3, section 3.5.1).

5.2.2 Complexity Assessment of TSVM

Figure 5.1 illustrates the estimated number of operations required in each step of the tensorial
SVM algorithm, where m and n are the dimensions of the unfolded matrix, Nc, Nt , and Nsv

are the number of classes to be discriminated, the number of training tensors, and the number
of support vectors, respectively. As reported in [73] (m=8, n=20, Nc=2, Nt=100, etc.), the
SVD computation corresponds to about 96% of the overall algorithm. In [73], the one-sided
Jacobi algorithm has been adopted for finding the singular vectors. Such algorithm involves
a high number of arithmetic operations and requires several iterations to converge [160].
Hence, our goal is to find an efficient alternative for the SVD computation of an input tensor.
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Fig. 5.1 Computational Complexity of the Tensorial SVM algorithm

5.2.3 Touch Modalities Classification

The tensorial SVM has been initially presented as an effective algorithm for touch modality
classification in [5]. In this work, three binary and one multi-class classification problems are
used to for the validation of the proposed TSVM architecture. Specifically, the problems are:

• Problem A: "brushing a paintbrush" versus "rolling a washer"

• Problem B: "brushing a paintbrush" versus "sliding the finger"

• Problem C: "sliding the finger" versus "rolling a washer"

• Problem D: "one versus the others"

These modalities have been derived from a tactile dataset that has been collected by 70
participants. Each participant performed the modality on both the horizontal and vertical
axes of a 4×4 tactile sensor for a duration of 10 seconds and a sampling frequency of 3kHz.
Thus, each touch modality could be represented by a tensor φ(4×4×30,000).

5.3 SVD Algorithms and Implementations

5.3.1 Literature Review

Singular value decomposition can be computed numerically through several methods such as
the Jacobi method, the QR method, and the one-sided Hestenes method [161]. For parallel
implementations, computing the SVD using the Jacobi method is superior to other methods in
terms of complexity and execution time [161]. Brent et. al have shown that two-dimensional
systolic arrays could be used for implementing the Jacobi method [162]. In [163], the authors
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have presented various realization for the Jacobi SVD computation using Coordinate Rotation
Digital Computer (CORDIC) [164]. The latter is adopted in majority of the existing hardware
implementations of the Jacobi SVD method. For small matrix dimensions, an efficient
implementation of SVD for the use in Multiple Input Multiple Output (MIMO) precoding
and real-time signal processing has been presented in [165]. The implementation is based on
CORDIC processors. For an arbitrary m×n matrix, Ibrahim et. al have presented an FPGA
implementation with fixed-point arithmetic [166]. The implementation managed to compute
the SVD of an 32× 127 matrix in 13 ms while occupying 20% and 67% slice registers
and LUTs respectively on a Virtex-6 FPGA. Fast and efficient FPGA implementation for
computing the singular and eigen value decomposition based on a simplified CORDIC-
like algorithm is presented in [167]. The implementation used fixed-point arithmetic for
sequential and parallel operations leading about 3× faster computation in an image denoising
application compared to computations via an Intel CPU based PC. The authors in [168] used
High-Level Synthesis (HLS) to model the one-sided Jacobi SVD computation on a Zedboard
development board. For a 16× 16 matrix, SVD computation takes around 1.1 seconds
with a power consumption of 1.38W. Using CMOS 28-nm technology, Deng et.al proposed
a hardware architecture for tensor SVD [169]. Compared with real-world CPU-based
implementations, the architecture provides an average of 14× speed on various workloads.
These alternative implementations for SVD computation share several common challenges:
(1) they operate only on square matrices. Thus, if the input matrix is rectangular, an
additional complexity is added due to matrix symmetrization [169]. (2) if the implementation
uses floating-point representation, the complexity is relatively high even for small matrix
dimensions [170], and (3) depending on the required output precision, the algorithm might
require additional iterations to converge [160].

A neural network is one of the candidates for the SVD computation. The idea first
surfaced in 1991 when Samardzija et. al proposed an artificial continuous-time neural
network to estimate the eigenvectors and eigenvalues [171]. In [172], the convergence
and computational complexity through computer simulations of such network are assessed.
Another neural network has been presented in [173]. The network is characterized by an
order n-Ordinary Differential Equations (ODEs) leading to reduced dimensionality. Such
neural network has evolved to further applications such as Principle Component Analysis
(PCA) [174].

In this work, a new architecture for SVD computation based on shallow neural networks
is proposed. The architecture offers the ability to operate on rectangular matrices (thus
symmetrization is not needed (see Figure 5.2), and utilizes floating-point arithmetic. As
for convergence, the neural network training is usually performed offline on a high-end
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computing device. Thus, a network could be trained several times for any given amount of
time to achieve top notch performance.

Fig. 5.2 SVD Computation using: (a) one-sided Jacobi, (b) Neural Network

5.3.2 Computational Complexity

In this section, we compare the complexity of the one-sided Jacobi algorithm with that of a
shallow neural network in terms of the total number of operations. Consider a shallow neural
network of one hidden layer of size H and an output layer of size O. For an input Am×n, the
outputs of the hidden layer Yh and the output layer YO are expressed respectively as:

Yh = fh(Wh.A+bh) (5.1)

YO = fO(WO.Yh +bO) (5.2)

where W , b, and f represent the weight, bias, and activation function respectively. The output
of each layer consists of matrix multiplication, addition, and activation operations. The
number of operations for matrix multiplication and addition is expressed as:

Nh = H(2m×n−1)+H = 2H(m×n) (5.3)

Assuming that the activation function requires NAct operations, the total number of operations
in the hidden layer is expressed as:

Nh = 2H(m×n)+NActh (5.4)
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The same can be applied to the output layer, thus the number of required operations is:

NO = 2H×O+NActO (5.5)

Finally, the number of operations for the whole network could be expressed as:

N = Nh +NO = 2H(m×n+O)+NActh +NActO (5.6)

To estimate N, suppose there exists an upper bound T such that N ≤ T . T is an upper bound
when both NActh and NActO correspond to the most complex activation function i.e. the
tangent hyperbolic function (tanh). The latter is expressed as:

f (z) =
ez− e−z

ez + e−z (5.7)

To find the number of operations required for the term ez, we referred to the function
implementation in the IEEE-754 library in [175]. The implementation uses the Taylor
expansion with an order 3 for floating-points, leading to a total of 16 operations. Thus the
number of operations NActh = 35H (1 Add, 1 subtract, 1 divide, 16 for ez and 16 for e−z for
each neuron). Similarly, NActO = 35O. For the network to output the right singular vectors
Vn×n of an m×n matrix, the output layer size O is equal to n2. This simplifies (5.6) to:

N <= (2H×n)(m+n)+35H +35n2 (5.8)

Knowing that the number of operations for the one-sided Jacobi algorithm is (see Figure
5.1):

N j = 24m(n−1)[n2(2n−1)+n3 +6] (5.9)

through simulations, the values of m, n, and H are varied to compare (5.8) and (5.9). Figure
5.3 plots the number of operations N j and N required to compute the SVD of a matrix using
one-sided Jacobi and a shallow neural network respectively.

Generally, the comparison results are in favor of the neural network approach as shown
in Figure 5.3. The one-sided Jacobi is superior for very small dimensions such as 2× 2
for H > 21. As the dimension starts to increase, the neural network requires significantly
less number of operations for SVD computations. For instance, for (m,n) = (20,16) and
(m,n) = (4,80) (these dimensions are often used for tensorial SVD implementations based
on the one-sided Jacobi algorithm [73], [176]), computing the right singular vectors V using
a shallow neural network requires less number of operations than using the one-sided Jacobi
(N < N j) for all values of H ≤ 70,000 and H ≤ 800,000 respectively. Such values of H
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Fig. 5.3 Number of Operations required in one-sided Jacobi (Nj) and Shallow Neural Network
(N), (m,n) are the matirx dimension and H is the hidden layer size.

are very large even for the largest existing neural networks. The number of operations (N)
required for each activation function is presented in Table 5.1. The hidden layer activation
function could be ReLU (Standard, LeakyReLU or Parametric), Sigmoid, or hyperbolic
tangent (tanh), it is selected based on the trade-off between complexity and the required
performance. In the output layer, only the hyperbolic tangent function can be used, due to
the fact that the values of the singular vectors are bounded between -1 and 1.

Table 5.1 Complexity Assessment under different activation functions

Activation Function Number of
Operations (N)Hidden Layer Output Layer

ReLU

Tanh

(2H×n)(m+n)+H +35n2

Leaky/PReLU (2H×n)(m+n)+2H +35n2

Sigmoid (2H×n)(m+n)+18H +35n2

Tanh (2H×n)(m+n)+35H +35n2

5.4 SVD using Shallow Neural Networks

5.4.1 Network Structure

A regression model is targeted since the NN is needed to compute the singular vectors. For
that, there are two possible categories to work on: (1) Classification NN that should be
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modified to perform regression and re-trained [177] and (2) Regression NNs [178]. Although
the classification accuracy achieved by the one-sided Jacobi TSVM could be obtained by an
existing NN model from the two above mentioned categories, the main concern remains in
the computational complexity of such model. Concerning the first category, one could choose
Convolutional NN (CNNs), Multi-Layer Perceptron (MLP), Long-short Term Memory
(LSTM), etc. Even the smallest models such as MobileNet [179], Shuffle Net [180], and
EffNet [181] contains at least four layers. On the other hand, for the regression NNs, with
only one hidden layer, a shallow network is considered to be the smallest possible regression
NN model.

Figure 5.4 shows the proposed shallow neural network that is capable of computing the
right singular vectors V . The network is composed of three fully connected layers: an input
layer of size m×n, a hidden layer of size H, and an output layer of size O = n×n. fh and fO

are the hidden and output activation functions respectively. Based on Table 5.1, the tangent
hyperbolic function is used for fO, while several functions can be used for fh based on the
training performance.

Fig. 5.4 Proposed Shallow Neural Network: (a) Overall Structure, (b) Hidden Layer Neuron,
(c) Output Layer Neuron

5.4.2 Network Training

The touch modalities dataset from [5] is used for training. However, some modifications
have been applied based on the following:

• Some participants recordings are noisy (see Figure 5.5(a)), thus their corresponding
data has been removed from the training dataset.
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• Since no particular indications were given to the participants in [5] about the pressure
level, silent intervals (i.e. voltage readings from sensor taxels equals to zero, see Figure
5.5(b) ) are observed in the recordings. These silent intervals will not help the neural
network to learn new patterns and thus are removed. Specifically, all reading outside
the timing interval [3.5, 7] are omitted.

Fig. 5.5 Touch Modality with: (a) Noisy Readings, (b) Silent Intervals

Algorithm 3 summarizes the pre-processing technique applied to the dataset. The algo-
rithm truncates each modality from 10s to 3.5s resulting in a tensor T ′(4×4×10,500).

Afterwards, subsampling is applied to obtain 20 readings (P = 20) from the 10,500
resulting in a final tensor φ(4×4×20). The obtained tactile tensor φ(4×4×20) is unfolded
into three matrices M(4×80), N(4×80), and P(20×16). According to (3.3) each matrix
could be decomposed into:

M4×80 =U4×80×Σ80×80×V T
80×80 (5.10)

N4×80 =U4×80×Σ80×80×V T
80×80 (5.11)

P20×16 =U20×16×Σ16×16×V T
16×16 (5.12)
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Algorithm 3: Pre-Processing Algorithm
Input: Tensor T of size (:,:,S),
Time Interval [a, b]
Sampling parameter P
Output: Sampled Tensor φ of size (:,:,P)
Let v1← a×S/10
Let v2← b×S/10
Let S′← v2− v1
Let T ′ be a Tensor of size (:,:,S’)
Let j = 0
for i←v1 to v2 do

T ′(:, :, j)← T (:, :, i)
j++

Let k = 0
for i←0 to P do

φ(:, :, i)← (P/S′)∗∑
S′/P+k
i=k T ′(:, :, i)

k+= S′/P

Authors in [5] and [56] reported that for tensor SVD, only a small number of the columns
of V is required to obtain acceptable classification accuracy when embedded in SVM. Using
the three touch modality problems reported in section 5.2.3, the V matrices that resulted in
the highest classification accuracy are: V T

80×4, V T
80×4, and V T

16×2. A total of 2240 matrices
of dimensions 20×16 and 4×80 have been derived from the modified dataset. Then, the
corresponding V matrices are generated using MATLAB. These matrices are divided into
80% for training, 10% for validation, and 10% for testing. Afterwards, we trained four
networks whose input and output dimensions respectively are:

• NN1: 20×16 and 16×16.

• NN2: 4×80 and 80×80.

• NN3: 20×16 and 16×2.

• NN4: 4×80 and 80×4.

NN1 and NN2 are designed for the computation of a generic matrix SVD, while NN3 and
NN4 are designed for the computation of tensor SVD embedded in TSVM targeing tactile
data classification where only a selected number of columns t of V is required. Each network
model is trained using floating-point representation during both forward and backward
propagation. The network is trained to export the right singular vectors V with the least
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possible error margin compared to exact computations obtained via MATLAB. Since the
proposed network is a regression model that outputs singular vectors, the performance is
determined based on two metrics: (1) Mean Squared Error (MSE) and (2) Cosine Similarity
(CS). These metrics are defined as:

MSE =
1
n

n

∑
i=1

(Vi−V̂i)
2 (5.13)

CS =
1
n

n

∑
i=1

(
Vi.V̂i

||Vi||× ||V̂i||
) (5.14)

where V is the matrix generated from the neural network and V̂ is the one generated from
applying the SVD using MATLAB software. Thus, the training aims at finding a network
model that achieves the lowest MSE (i.e. the elements vi of the V and V̂ matrices have similar
values) and highest CS (i.e. the vectors Vi of the V and V̂ matrices have similar direction i.e
CS tends to 1).

The proposed neural network model is hand crafted and can be customized. The training
process is used to tune the network hyperparameters [182] i.e. parameters that determines
the network structure and training behavior (e.g. size of hidden layer H, learning rate)
and parameters (e.g. weights). During training, the weights and biases of the network
are randomly initialized, then updated using one of the below optimizers. As for the
hyperparameters, the following settings have been tested:

• H = [10, 20, ..... 200]

• Activation Function: Sigmoid, Tanh, ReLU, LeakyReLU, and PReLU with β : learned
parameter through Channel-wise or channel-shared modes [183]

• Learning rate = [0.1, 0.01, 0.001, ... 10−5]

• Optimizer : [SGD, Adam, Adadelta, RMSprop]

• Batch size = [50, 100, 150]

The four neural networks have been coded in Python using Tensorflow and Keras libraries.
Then, they are trained on an ASUS PC equipped with an NVIDIA GTX 1650 graphics card
with 4GB VRAM.

5.4.3 Network Performance

Figure 5.6 shows the training and validation MSE of the best network model for NN1 and
NN2. A training and validation MSE in the order of 10−3 and 10−4 is achieved via NN1
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and NN2, respectively. Such performance is obtained using a model with the characteristics
presented in Table 5.2. The two networks NN1 and NN2 and the exact one-sided Jacobi
algorithm (based on the architecture presented in [166]) are used to compute the V matrix of
200 matrices (100 for each input dimension). The results show that both neural networks:

• can compute the V matrix of an input with a testing mean squared error of 2×10−3

and 4.5×10−4 for 16×16 and 80×80 output dimensions, respectively. Such results
are comparable to the ones provided by exact one-sided Jacobi algorithm as shown in
Table 5.2.

• achieves a low Root Mean Squared Error (RMSE) of 3×10−2 and 1×10−2 for 16×16
and 80×80 output dimensions, respectively. This is evident in Figure 5.7, where the
exact V and the predicted V values are relatively close for both input dimensions.

Fig. 5.6 Best Model Training and Validation MSE for (a) NN1, (b) NN2

Table 5.2 Neural Networks NN1 and NN2 Structure and Testing Performance

Neural Network NN1 NN2
Input Layer Size 20×16 4×80

Hidden Layer Size 400
Output Layer Size 16×16 80×80

Activation Function fh LeakyReLU with β = 0.01
Learning Rate 0.001

Batch Size 100 50
Epochs 300 200

Testing MSE 2×10−3 4.5×10−4

Testing MSE based on [166] 1.05×10−3 2.9×10−4

Figure 5.8 shows the best achievable MSE and CS for the networks NN3 and NN4 under
the settings presented in Table 5.3. One noticeable observation is that the size of the hidden
layer differs for the two input dimensions. This is due to the fact that NN4 has to output 320
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Fig. 5.7 V matrix Generation for Networks: (a) NN1, (b) NN2

Fig. 5.8 Best Model Performance: (a) CS for NN3, (b) MSE for NN3, (c) CS for NN4, (d)
MSE for NN4)

elements (80×4) for the input dimension 4×80 compared to 32 elements (16×2) generated
by NN3 for the input dimension 20×16, which justifies the longer training time required
(higher number of epochs). However, the training can be shortened into 250 and 100 epochs
for output dimensions 80× 4 and 16× 2 respectively. The obtained performance of NN3
and NN4 is compared to that of computing the SVD using the one-sided Jacobi algorithm
based on the architecture presented in [166]. According to the comparison shown in Table
5.4, the proposed neural networks are capable of computing the right singular vectors V
while: (1) providing low MSE and high CS during training, validation, and testing, and (2)
achieving comparable performance in terms of MSE and CS to the exact computation using
the one-sided Jacobi. This is evident for both output dimensions 16×2 and 80×4.

Since NN3 and NN4 are designed to be embedded in the TSVM architecture, the networks’
complexity is a concern. Figure 5.9 shows the MSE and CS while testing NN3 under different
activation functions. Although using the hyperbolic tangent function leads to a model with
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Table 5.3 Neural Networks NN3 and NN4 Structure

Neural Network NN3 NN4
Input Layer Size 20×16 4×80

Hidden Layer Size H 40 140
Output Layer Size 16×2 80×4

Activation Function fh PReLU with Channel-shared β

Learning Rate 0.001
Batch Size 100 50

Epochs 400 1000

Table 5.4 NN3 and NN4 Performance Compared to one-sided Jacobi

Neural Network NN3 NN4
Training MSE 9.45×10−4 3.7×10−4

Training CS 0.998 0.989
Validation MSE 9.63×10−4 4.02×10−4

Validation CS 0.982 0.969
Testing MSE 9.7×10−4 4.18×10−4

Testing MSE based on [166] 9.21×10−4 3.88×10−4

Testing CS 0.971 0.957
Testing CS based on [166] ≈ 1 ≈ 1

the lowest MSE and highest CS, it imposes the highest computational complexity as reported
in Table 5.1.

Fig. 5.9 Network Performance Under Different Activation Functions

Targeting the hardware implementation of NN-based TSVM, PReLU activation function
has been adopted for the hidden layer as a trade-off between complexity and MSE/CS.
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5.4.4 Hardware Implementation

This section presents the architecture adopted for the hardware implementation of the four
shallow neural networks. The hardware architecture has been coded in C++, synthesized and
implemented using Vivado/Vivado HLS 2020.1 targeting Virtex-7 FPGA device operating
at 100 MHz. The input, weights, and biases are represented in 32-bit floating-point. To
test and validate the hardware implementation, a C++/RTL co-simulation is performed in
Vivado HLS to compare the results between the C++ simulation and the RTL implementation.
Afterwards, the RTL implementation has been exported as an Intellectual Property (IP) to
Vivado where the hardware resources and number of clock cycles are recorded. The time
latency is computed as:

T = cc×1/ fmax (5.15)

where cc is the number of clock cycles in post-implementation timing simulation and fmax

is the maximum operating frequency. As for power consumption, a post implementation
functional and timing behavioral simulation is performed to generate a Switching Activity
Interchange File (SAIF). This file is used to obtain a vector-based power estimation post-
routing.

Figure 5.10 shows the proposed architecture for the implementation of the shallow neural
networks (t = n for NN1 and NN2). For an input X of size L (one of the unfolded matrices),
it outputs the V matrix using sequential operations. The outputs Yh and YO corresponds to the
equations (5.1) and (5.2), where fh and fO are the PReLU and the hard tangent hyperbolic
activation functions respectively as shown in Figure 5.11. The input X and the weights are
stored on-chip using BRAMs and the multiplier is fed from the BRAM to perform element-
by-element multiplication of the input and weight values. Similarly, the multiplication result
is fed to the adder and the bias values are read from on-chip BRAMs.
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The right singular vectors matrix V is obtained by transforming the output vector YO

into a 2D array as shown in Figure 5.12 . The advantages of such architecture is that it: (1)
imposes reduced hardware complexity with the use of hard-tanh instead of tanh without an
accuracy loss, and (2) allows the use of network pruning without any loss in performance
(MSE/CS). The weight and bias matrices obtained from the offline training phase have been
analyzed to identify neurons with very low weight/bias values. These neurons could be
removed without affecting the network performance during inference. Thus, pruning is
applied on matrix multiplication/addition by skipping operations where W [i],b[i]≤ 10−4.

Fig. 5.12 Vector YO to Array V Transformation

Table 5.5 presents the implementation results of NN1, NN2, and state-of-the-art one-
sided Jacobi architecture. The results show that both NN1 and NN2 require a lower average
hardware resources up to 86%.

Table 5.5 NN1 and NN2 Implementation Details on Virtex-7 FPGA

NN1 Jacobi-SVD [166] NN2 Jacobi-SVD [166]
Input Dimension 20×16 4×80

BRAM 1 4 16 5
DSP 5 30 5 30
LUT 761 13086 816 13357
FF 716 8788 773 9205

fmax (MHz) 118.13 109.5 118.13 109.5
Time Latency 8 ms 40 ms 0.25 s 4.7 s

Speedup 5× 18.8×
Average Resources

Reduction(%) 86% 12.2%

To output the V matrix, speedups between 5× and 18.8× have been recorded. Further-
more, two observations could be highlighted: (1) both architectures use the same number
of DSPs regardless of the matrix dimension, which is compensated with the use of LUTs;
with a 6× reduction in favor of the NN1/NN2. (2) The network NN2 demands an increased
usage of BRAMs for the input matrix 4×80. This is due to the fact that the weight and bias
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matrices are stored on chip. In case of an input matrix of size 20×16, this is not an issue
since the dimensions of the weight, bias, and output V matrices are lower than that in the
case of 4×80 matrix (e.g. for 4×80 matrix, the W2 matrix is of size 6400×400 compared
to 256×400 for 20×16 input matrix).

Table 5.6 shows the implementation details for the SVD computation of a 4× 4× 20
input tensor using shallow neural networks (i.e. NN3 is utilized once to compute the SVD
of the matrix P, while NN4 is utilized twice to compute the SVD of the matrices M, N)
compared to the one-sided Jacobi based on the architecture presented in [73].

Table 5.6 Implementation Results for Tensor SVD Computations

Architecture Neural Network one-sided Jacobi
BRAM 102 88

DSP 32 105
FF 3714 29277

LUT 4905 43258
Time Latency 14.5 ms 4.7 s

Power Consumption 0.45W 1.35W

The obtained results show that using neural networks for SVD computations allows for a
324× speedup with an average resources and power reductions of 58% and 67% respectively.
Another observation is that the neural network architecture uses slightly more BRAMs. This
is due to the fact that the weights and biases matrices obtained from network training are
mapped into BRAMs and are not saved on an external memory. Knowing that the Virtex-7
FPGA is used for implementation to have a credible comparison with the state-of-the-art, the
obtained results show that the proposed neural network for SVD computations is adequate
to fit in a resource-limited platform such as the Zynqberry. This is not possible for the
implementation of the one-sided Jacobi targeting large matrix dimensions.

5.5 TSVM based on Shallow Neural Networks

5.5.1 Proposed Architecture

The neural networks NN3 and NN4 have been embedded into the cascade architecture of
the tensorial SVM presented in [73]. The new NN-based TSVM architecture is presented in
Figure 5.13. The "NN Memory" contains the weights and biases matrices of the designed
neural networks. The "SVM Memory" contains the singular vector training matrices. k1, k2,
and k3 are the three kernel factors obtained using (3.4).
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Fig. 5.13 Neural Network based TSVM Cascade Architecture

The architecture performs the SVD computation of the three unfolded matrices using the
proposed NN3 and NN4 neural networks. Table 5.7 shows the different operating modes in
the cascade architecture. For S0S1 = 00, the first unfolded matrix X1 is selected and NN4 is
activated, then for S0S1 = 01, the second unfolded matrix X2 is selected and NN4 is utilized.
As for S0S1 = 10, the third unfolded matrix X3 is selected and NN3 is activated. When active,
each network computes the right singular vector matrix V of each of the unfolded input
matrices. The obtained V matrices along with the ones exported from the training phase
are used to compute the kernel factors as depicted in (3.5), which are required to output a
classification decision as shown in (3.6).

Table 5.7 NN-based TSVM Operating Modes

Control MUX
Output

Active
NetworkS0 S1

0 0 X1 NN4
0 1 X2 NN4
1 0 X3 NN3
1 1 - -

5.5.2 Implementation Results

Table 5.8 presents the implementation details of both the NN-based TSVM and Jacobi-based
SVM for Nt = 200 and Nc = 2. The energy per classification is computed as E = P×T
where P is the dynamic power consumption and T is the time latency.

Results show that replacing the one-sided Jacobi algorithm with a shallow neural network
in the architecture of the TSVM leads to faster classification time up to 131×. The NN-based
TSVM and Jacobi-based TSVM recorded 0.9 W and 1.8 W respectively, thus a 50% reduced
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Table 5.8 Implementation Results for NN-based TSVM on Virtex-7

Architecture NN-based TSVM Jacobi-TSVM
BRAM 105 (7.14%) 91 (6.19%)

DSP 133 (3.7%) 206 (5.72%)
FF 11975 (1.38%) 39047 (4.51%)

LUT 20427 (4.7%) 60100 (13.87%)
Time Latency (ms) 36 4730

Energy per classification (mJ) 6.28 600

power consumption is achieved. This leads to 88% reductions in the energy per classification
factor. The NN-based TSVM also requires 39% less average hardware resources. Following
these results, three main observations could be noted: the proposed NN-based TSVM: (1) is
capable of real-time classification within 36 ms (time≤ 400ms [4]), (2) achieves real-time
classification using a cascaded architecture, which was not possible using the Jacobi-based
TSVM as reported in [73]. The latter has been the main reason for using the parallel
architecture which has lead to high power consumption, and (3) offers the reductions in
resources and energy per classification at the expense of increased memory requirements to
store the weights and biases matrices compared to Jacobi-based TSVM.

5.5.3 Performance Verification

The NN-based TSVM implementation is verified using the four classification problems
mentioned in section 5.2.3. Table 5.9 presents the classification accuracy achieved by the
proposed NN-based TSVM in comparison with existing methods targeting the same touch
modality classification. The classification accuracy of different methods is tested using a
dataset with 30 unseen samples.

Table 5.9 Touch Modality Classification Using NN-based TSVM in Comparison with existing
methods

Problem Classification Accuracy (%)
NN-based TSVM Jacobi TSVM [5] RLS [5] k-NN (k=3) [184] DCNN [32] LSTM [185] GRU [185] TSVM-IRCK [55]

A 90 90 90 68
NA NA NA NAB 83.3 86.3 89.5 64

C 80 83.3 75.5 89.6
D 71 71 73.3 NA 76.9 74.51 73.4 77

Using neural networks to compute the right singular vectors V provides approximate
values compared to the exact one-sided Jacobi. However, this resulted in acceptable clas-
sification accuracy with only 3% loss in the worst case. This is evident in the comparable
MSE/CS of both architectures as presented in Table 5.4. Compared to other methods, for
binary classification (A, B, and C), the proposed NN-based TSVM shows a worst case of 6%
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loss compared to RLS for Problem B and a 5% better accuracy for Problem C, and 9.6% loss
compared to kNN for Problem C while providing up to 20% accuracy increase in Problems
A and B. Problem C has been identified as very challenging for TSVM in [5], it has been
solved in [184] using k-Nearest Neighbor (kNN). For multi-class classification (Problem D),
NN-based TSVM achieves an accuracy comparable to Jacobi-TSVM and RLS, with a 7%
worst case loss compared to Deep Convolutional Neural Network (DCNN) and TSVM with
Ideal Regularized Composite kernel (TSVM-IRCK).

5.6 Scalability Assessment

In order to quantify the scalability of the NN-based TSVM hardware complexity (resources
and time latency), two cases are assessed: (1) scalability of the shallow neural network, and
(2) scalability of the NN-based TSVM. The former is studied by varying the hidden/output
layer size and tuning the network to achieve the same MSE/CS reported in Table 5.4. The
latter is performed by increasing the number of training tensors while maintaining the overall
classification accuracy of the NN-based TSVM as reported in Table 5.9.

5.6.1 Case 1: Scalability of the Shallow Neural Network

The scalability of the neural network depends on the size of each layer and the activation
function in use. Through Figure 5.3, an insight about the number of operations with respect
to the dimensions (i.e. m,n, and H) could be learned for a certain application. To assess the
scalability of the proposed NN architecture, the hidden and output layer sizes are varied. L is
chosen so that the network maintains the same MSE/CS reported in Table 5.4. O is derived
from the dimension of the V matrix of the unfolded matrices obtained from the input tensor
4×4×20. Figure 5.14 presents the hardware resources and the time latency with respect to
hidden and output layer sizes for a three-layer (input, hidden, output) shallow neural network
for the SVD computation of an input matrix. The obtained results are recorded when the
network achieved a comparable MSE/CS to those reported in Table 5.4. Analyzing the graphs
leads to several observations:

• The number of required FFs and LUTs is not uniform (see Figure 5.14(a),(b)). For
instance, a similar number of FFs/LUTs is required for networks with 140 and 400
neurons in the hidden layer with the same output layer size. This could be justified with
the pruned cascaded architecture where resources are shared for blocks with similar
functionality.
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Fig. 5.14 Scalability of Shallow Neural Network for varying the hidden/output layers size

• Memory requirements in terms of BRAMs starts to increase once reached an output
layer size of 80×80 with 400 neurons in the hidden layer (see Figure 5.14(c)). This
is justified since the size of the weight and the bias matrices increase in such cases,
which requires more memory storage.

• As shown in Figure 5.14(d), regardless of the input/hidden/output layer size of the
network, the number of DSPs is constant for the proposed architecture.

• The SVD computation time is relatively short until reaching a large output layer size
as shown in Figure 5.14(e). This is due to the longer operations required to perform
matrix multiplication/addition. However, according to the comparison in Section 5.3.2,
this is faster than using the one-sided Jacobi as long as H ≤ 70,000 (H ≤ 800,000)
for 20×16 (4×80) matrices.

The presented scalability assessment supports the use of these networks for SVD compu-
tations as an efficient solution especially for large matrix dimensions. Hence, the proposed
idea could be extended into other applications via a two-stage approach as shown in Figure
5.15:

• Stage 1: Unfold all the tensors φi in a dataset into 3 matrices. Then, find the V matrix
for each of the unfolded matrices using MATLAB or other software. For the majority
of the applications, a tensor has the same first two dimensions (e.g. image, touch
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Fig. 5.15 SVD Computation Approach via a Shallow Neural Network

modality) hence, two of the generated matrices will have the same dimension hence
can be grouped in a subset A. The remaining matrix and its corresponding V matrix
will be added to a subset B.

• Stage 2: For each of the subsets, a shallow neural network is to be designed. Start
with random hyperparameters for the initial model, then tune it using the generated
subset to reach the required MSE and CS. Once, the best model is found, the weights
and biases matrices could be exported and used by the architecture in Figure 5.10. For
complexity tuning, one could modify the pruning rule while preserving the required
performance metric imposed by the application.

5.6.2 Case 2: Scalability of NN-based TSVM

To study the scalability of the proposed NN-based TSVM, the number of training tensors
has been varied between 200 and 900 and the implementation requirements are recorded
once the NN-based TSVM achieves a comparable accuracy to the one presented in Table 5.9.
According to the results obtained in Figure 5.16:

• The required hardware resources (FFs, LUTs, BRAMs) are slightly increased with
the increase of the number of training tensors. In case of BRAMs, a steeper slope is
observed which is due to the adoption of NN that requires the storage of weights and
biases matrices.



96 Real-time Accelerated Tensorial Support Vector Machine Architecture

Fig. 5.16 Scalability of NN-based TSVM for binary classification (Nc = 2) and variable
number of training tensors

• The number of required DSPs is contsant for each size of training tensors.

• The proposed implementation is capable of real-time classification even after 4.5×
increase in the number of training tensors.

Compared to the scalability study of the Jacobi-based TSVM presented in [75]∗, Figure
5.17 shows that the proposed approach complexity versus the number of training tensors
presents a reduced slope. For instance, the Jacobi-based TSVM requires 29% increase in
the number of FFs when the number of training tensors is doubled. Using the NN-based
TSVM, an increase of less than 1% in FFs is noticed. This is mainly due to two reasons:
(1) the neural network requires significantly less resources than that of the one-sided Jacobi,
and (2) the NN-based TSVM is a cascaded implementation i.e. blocks are being re-used
for implementation while increasing the time latency. In [75], the architecture is based on
parallel computation due to their time constraint of real-time classification. The latter is
assured using the proposed cascaded architecture for all of training tensors sizes.

The importance of the presented work lies in the ability to scale such architecture for
processing larger number of samples while respecting the constraints of the application. When
scaled up, the designed NN-based TSVM could enable intelligence on smaller platforms (e.g.
Zynqberry) if two issues are tackled. The first issue is reducing the number of DSPs: this
could be achieved by using some approximate computing techniques [95] or using LUTs-only
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Fig. 5.17 Scalability Comparison with Existing Methods

custom core for matrix operations. The second issue is reducing the number of BRAMs: this
could be achieved by further pruning of the weight/bias matrices as long as the application
performance is not highly affected. Another method is to offload these matrices completely
to external DRAM. This imposes additional timing overhead. However, authors in [44] have
presented a strategy to overcome such design challenge.

5.7 Conclusion

A shallow neural network architecture for the SVD computation of tensorial inputs is
presented. The architecture achieves comparable performance to the state-of-art solutions
while imposing significant reductions in the implementation requirements. Once embedded
in the SVM architecture, the NN-based TSVM is capable of delivering faster touch modality
classification time up to 131× using a cascade architecture. The latter is characterized by a
39% and 88% decrease in the resources and energy per classification respectively compared
to the architecture presented in [73] targeting the same application. Moreover, the proposed
NN-based SVM obeys the constraints imposed by the tactile data processing application e.g.
small size, real-time response, and low power consumption. The encouraging scalability
results present the first effective trial for designing an efficient embedded processing unit for
an Electronic Skin (e-skin). A unit that is capable of delivering real-time performance with
relatively acceptable power consumption without the need for high performance platform or
multi-core devices.





Chapter 6

A Hybrid Precision Architecture for an
Efficient Binary Convolutional Neural
Network Accelerator

6.1 Introduction

Convolutional Neural Networks (CNN) are a promising solution in many application domains
such as Internet of Things (IoT), image processing, tactile processing, etc. However, the
computational complexity and memory requirements are the main challenge in the deploy-
ment of CNNs on resource-limited devices for energy-constrained applications [186]. For
instance, the VGG-16 network contains about 140 million 32-bit floating-point parameters
and implements 1.6×1010 arithmetic operations [76]. There have been numerous efforts on
the complexity reduction of CNNs such as network pruning [187], knowledge distillation
[188], and weight quantization [189].

Quantization of CNNs may cause an information loss especially if it is applied to the
extreme using 1-bit representation i.e. binarization. To address this issue, a variety of
methods have been proposed in recent years [76]. These methods aim to: 1) minimize the
quantization error, for instance by only quantizing the weights, 2) improve the network loss
function to adapt to the binary values propagating through the network, and 3) reduce the
gradient error by the adjustment of the Back Propagation (BP) training algorithm to adapt
with binarization functions. Among these methods, minimizing the quantization error is the
most used technique since it leads to relevant memory saving and complexity reductions [76],
[189], [77].
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In this chapter, a new architecture based on hybrid precision representation is proposed
as a trade-off between the reliability of CNNs and the low complexity of Binary Convolu-
tion Neural Networks (BCNN). The architecture adopts binarization of hidden layers and
32-bit floating-point for the first and last layer with binary weights. A design methodology
is provided on how to select the network topology, placement of binarization layers, and
training process. The network is designed and trained using Larq framework [88], which is an
extension of Tensor-Flow that offers a library to design, train, and deploy quantized/binarized
CNNs. The proposed Hybrid-precision Binary Weight Network (H-BWN) achieved more
than 35% accuracy increase in classifying touch modalities compared to traditional BCNN
topology. The H-BWN requires less than 5 KB of storage requirements achieving an effi-
cient architecture that fits in a wide range of microcontrollers (e.g. STM32F0x2). When
implemented on Zynq-7010 platform, the H-BWN accelerator provided a real-time clas-
sification within 0.8 ms with a 42.4 µJ energy per classification. Compared to exiting
solutions, H-BWN achieved higher classification accuracy with an energy reduction up to
99% accompanied with a speedup up to 6875×.

6.2 Binary Convolution Neural Networks Overview

The convolution operation in a convolution neural network can be expressed as:

Y = σ(w⊗a) (6.1)

where w and a represent the weight and activation tensors given to a network layer, respec-
tively. σ is a non-linear activation function, Y is the output tensor and ⊗ represents the
convolution operation. The latter is composed of matrix multiplication and addition that
consists of a large number of floating-point operations. A BCNN uses 1-bit representation
for the floating-point weights/activations. Hence, three configurations have been reported
in the literature: (1) Binary Neural Network (BNN) where both weights and activations are
binarized, (2) Binary Weight Network (BWN) where only weights are binarized [83], and (3)
Binary Activation Network (BAN) where only activations are binarized [76].

–Forward Propagation:
The weights and/or activations are binarized using a binarization function defined as:

q(w) = αbw (6.2)

q(a) = βba (6.3)
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where bw and ba are the binary weights and activations respectively, with their corresponding
scalars α and β . A widely used binarization function is the sign function defined as:

sign(x) =

+1 x≥ 0

−1 otherwise
(6.4)

Substituting 6.2 and 6.3 in 6.1, the convolution operation in the forward propagation of a
BCNN can be written as:

Y = σ(qw(w)⊗qa(a)) = σ(αβ (bw⊙ba)) (6.5)

where ⊙ is the inner vector product. Hence, the convolution operation in a BCNN can be
performed efficiently using a bitwise XNOR-Bitcount operation as shown in Figure 6.1.

Fig. 6.1 Convolution in Binary Convolution Neural Networks

–Backward Propagation:
Training a BCNN using the commonly used backward propagation algorithm based on

the gradient descent is not straight forward due to the fact that the binarization function is
not differentiable (e.g. sign function). Hinton et. al proposed a technique called Straight
Through Estimator (STE) to solve the gradient descent problem [190]. The STE function is
defined as:

clip(x,−1,1) = max(−1,max(1,x)) (6.6)

An approximation of the clip function is used in practice since the network can’t be updated
in back propagation if the absolute value of the activations is greater than one.
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6.3 Hybrid-Precision BWN Model

6.3.1 Design Methodology

Based on the findings illustrated in Chapter 2, the aim is to design a BWN with a hybrid
precision in each layer. The proposed H-BWN is targeting the touch modality classification
problem based on the dataset collected in [5], hence a customized topology is adopted
where existing ones are not specifically designed to provide acceptable accuracy with low
computational complexity for the given task [32]. The H-BWN should be able to classify
a tactile input as one of three modalities: "Rolling", "Sliding" and "Brushing". Before
designing the network, a set of modifications have been applied to the original dataset:

• Each touch sample has been truncated from 10 to 3.5 seconds by eliminating all the
readings outside the interval [3.5s, 7s] where no touch is present (See Figure 6.2
(a), (b)). Hence, the new touch sample size is reduced from φ(4× 4× 30,000) to
φ(4×4×10500) as shown in Figure 6.2 (c).

• Subsampling is applied on the truncated touch sample to obtain a new tensor of size
φ(4×4×8) (see Figure6.2 (d)) where each P = 1312 readings are averaged into one
reading according to the following equations:T (:, :, i) = (1/P)∗∑

P+k
i=k φ(:, :, i)

k+= P
(6.7)

starting with k = 0 and iterating i = 1,2...,8.

• Due to the accumulated precision loss between the layers of a BCNN, the network
is usually trained for a longer time (i.e larger number of epochs). To achieve this, a
larger dataset is required. The tactile dataset contains 780 samples after applying the
above modifications. Thus, data augmentation is applied on the dataset, specifically a
rotation by 90 degree as shown in Figure 6.2 (e). This resulted in a dataset with 2*780
= 1560 samples.

For an input φ(4×4×8), the H-BWN design methodology is derived as follows:

• The number of the convolution and fully connected layers is determined as the lowest
possible value to achieve a comparable classification accuracy to the existing similar
solutions targeting the same touch modality problem [32], [5]. Only the size of the last
fully connected layer is pre-defined to three neurons. Each neuron corresponds to one
of the three modalities.
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Fig. 6.2 Data Pre-processing: (a) Touch Modality, (b) Truncated Touch Modality, (c) Tensor
Representation, (d) Sampled Tensor, (e) Data Augmentation

• Starting from an input size 4× 4× 8, the maximum number of pooling layers that
could be used is two layers, then the output of the layer will be a single element. Thus,
to keep as much features as possible, a max pooling layer is used only once. The
adopted pooling size is 2×2.

• Due to binarization, the output of each layer is unbalanced, thus a batch normalization
layer is usually inserted to rectify the data [76]. After this normalization, the data
obeys a stable distribution. Thus, to keep the mean and variance within a reasonable
range, batch normalization is used in all layers resulting in a much smoother training
process.

• Since the input size is small (4×4) compared for example an image (32×32), convo-
lution is applied with padding in order to keep as much features as possible especially
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the ones at the edge. Hence, the output of each convolution layer has the same size as
the input of that layer.

• In a traditional convolutional neural network, the first layer should extract as much
features as possible from the input before max pooling is applied, and the last layer
should formulate a classification decision. Followed by the finding in section 6.2, these
two layers have been designed with hybrid precision where activations are quantized
and kernels are binarized. For the hidden layers, a complete binarization is performed.
Hence, the base model used for training is presented in Figure 6.3.

Fig. 6.3 Hybrid Precision Neural Network Model

6.3.2 Network Training

The modified tactile dataset is used to train six networks: BNN, BWN, BAN, and their hybrid
precision counterparts (i.e. H-BWN, HBWN, and H-BAN) based on the model shown in
Figure 6.3. The dataset has been divided into 5 folds where each time the network is trained
using 4 folds and tested using the remaining one. The classification accuracy is determined
as the average of the 5 folds. This process has been repeated 10 times to determine the best
batch-size and number of epochs required to achieve the highest possible accuracy. The
networks have been modeled in Python using the Larq framework [88].

Table 6.1 shows the quantizer type for the different network configurations. We investi-
gated the use of SteSign, SwishSign, SteTern, DoReFa, and Approx-Sign (these quantizers
are available online at https://docs.larq.dev/larq/api/quantizers/). The "Approx-Sign" quan-
tizer shown in Figure 6.4 has been adopted as it resulted in the highest classification accuracy
for the studied binarized neural networks. In forward propagation, the Approx-Sign is defined
as:
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Table 6.1 Quantizers for BNN Training

BNN BWN BAN
Input Quantizer Approx-Sign None Approx-Sign
Kernel Quantizer Approx-Sign Approx-Sign None
Kernel Constraint Weight clip Weight clip None

Fig. 6.4 Approx-Sign Quantizer in Forward and Backward Propagation

q(x) =

−1 x < 0

1 x≥ 0
(6.8)

As for the gradient it is estimated using the following equation:

∂q
∂x

=

2−2|x| |x| ≤ 1

0 |x|> 1
(6.9)

The "weight_clip" kernel constraint represents the clip function defined in 6.6. The net-
works has been trained on an Intel i-7 based PC equipped with NVIDIA GTX 1650 graphics
card. Adam [191] with a learning rate of 0.01 is used as an optimizer with “categorical-
crossentropy” loss function.

6.3.3 Network Assessment

Figure 6.5 shows the model that achieved the highest classification accuracy of touch modali-
ties. The model consists of two convolutional layers, two fully connected layers, and one
max pooling layer with batch normalization applied in all layers. Each convolution layer
consists of seven 3× 3 kernels. The first fully connected layer consists of fifteen kernels.
The input of the first and last layer is represented in 32-bit floating-point, while the input
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of the remaining layers is binary. The weights of all layers are binarized while the network
doesn’t use any bias values in all layers.

Fig. 6.5 H-BWN Best Model

Figure 6.6 reports the average classification accuracy among 10 runs for the binarized
networks under batch-size=100 and number of epochs = 500. The obtained results show
that BNN, BWN, and BAN were not able to achieve an accuracy above 50%. However, the
proposed hybrid-precision methodology has significantly increased the accuracy reaching
71% for H-BWN. Such results account for a compensation of the precision loss due to
the binarization of the network. The compensation is at the expense of increasing the
memory storage requirements from 2.3 KB to 4.8 KB; however, such storage is available in
mainstream microcontrollers (e.g. STM32F0x2 with 16 KB memory storage).

When compared to similar solutions for the same touch modality classification problem,
the proposed H-BWN is superior in the aspects of accuracy, number of operations, and the
trainable model parameters as shown in Table 6.2. H-BWN offers up to 99.9% reduction
in the number of operations compared to SVM and DCNN algorithms [32]. Similarly, the
H-BWN model size resembles a 97.8% and 99.9% compression rate compared to that of
SVM and DCNN respectively. The achieved computational reduction and compression are
accompanied with the highest classification accuracy of 77.88%.
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Fig. 6.6 Model Performance for Different Network Configurations

Table 6.2 Best H-BWN Performance in Comparison with the state of the art

H-BWN SVM [5] DCNN [32]
Highest Classification
Accuracy 77.88% 76.6% 76.9%

Number of Gops 3.2×10−5 0.545 109×10−3

Reduction in Gops NA 99.99% 99.97%
Model Parameters 1.42K 67.2K 540M
Reduction in Model Parameters NA 97.8% 99.9%

6.4 H-BWN Accelerator Design and Implementation

6.4.1 Accelerator Architecture

This section details the hardware architecture and implementation of the H-BWN presented
in Figure 6.5. The proposed H-BWN accelerator architecture is shown in Figure 6.7. The
architecture employs an array of processing elements (PEs) to offer configurable degree of
parallelism for the convolution and matrix multiplication computations throughout different
layers. Due to binarization of the kernels of all layers, these kernels can be stored efficiently
using on-chip memory. Such design choice mitigates the latency overhead imposed by using
external memory for kernel storage. The different units of the accelerator are:

CONV1 Unit: This unit computes the output of the first convolution layer. CONV1
consists of an array of Quantized Input, Binarized Kernel Convolution (QC) processing
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Fig. 6.7 Proposed H-CNN Hardware Accelerator Architecture

elements, a Quantized Batch Normalization (Q-BN) unit, and a Binarize process. Each QC
computes the convolution between 3×3 input and kernel. The output of each 8 (i.e. input
feature maps) QCs are accumulated to form one element of the 4×4×7 output. For each
output feature map, the computations of each 8 QCs are performed in parallel. As shown in
Figure 6.8, the convolution between a quantized input and binary kernel can be computed
using a set of bitwise-AND operations and an adder.

Fig. 6.8 Quantized Input, Binarized Kernel Convolution (QC) Processing Element

Then, batch normalization is to be applied on the 4×4×7 convolution output according
to the equation:

yi = γ(
xi−µ√
σ2 + ε

)+β (6.10)
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where xi and yi are the input and output of the batch-normalization respectively. µ , γ , σ ,
β , and ε are constants obtained from the training phase. To design a hardware friendly
architecture of the Q-BN unit, (6.10) can be written as:

yi =
γ√

σ2 + ε
(xi− (µ−

√
σ2 + ε

γ
β )) (6.11)

which in return can be simplified into the form:

yi = αi2(xi−αi1) (6.12)

where αi1 = µ−
√

σ2 + ε

γ
β and αi2 =

γ√
σ2 + ε

are constants to be computed offline. Thus

a Q-BN unit can be designed as shown in Figure 6.9 using a subtractor and a multiplier.
Finally, the output of the CONV1 layer is obtained by binarizing the output of the Q-BN unit
using the sign function.

Fig. 6.9 Quantized Batch Normalization (Q-BN) Unit

CONV2 Unit: This unit computes the output of the second convolution layer. CONV2
consists of an array of Binarized Input, Binarized Kernel Convolution (BC) processing
elements, a Binarized Batch Normalization (B-BN) unit, and a Binarize process followed by
a Maxpool operation. According to 6.5, the convolution is computed using a set of XNOR
gates followed by a popcount operation (i.e. number of 1’s bits) as shown in Figure 6.10.

To apply batch normalization on the BC binary output, we adopted the "Batch Normal-
ization Free Binarized Artificial Neuron (AN)" approach presented in [192]. The approach
states that an artificial neuron with batch normalization can be converted into a binarized AN
with an integer bias W ′, where W ′ is computed after training using the batch normalization
constants. The integer output of the B-BN unit is binarized using the sign function. To reduce
the hardware complexity of CONV2 unit, max pooling is applied at the end compared to the
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Fig. 6.10 Binarized Input, Binarized Kernel Convolution (BC) Processing Element

model shown in Figure 6.5. This is due to the fact the output of the sign function is binary
compared to the integer output of the B-BN unit. Hence, MaxPool block can be designed
using OR gates as shown in Figure 6.11.

Fig. 6.11 Maxpool Operation on Binary Inputs

FC1 Unit: This unit computes the vector-matrix multiplication of binary input of size
28 (i.e the 2×2×7 output of CONV2 is flattened to a vector fo size 28) and binary kernel
of size 28×15. FC1 unit consists of 15 Binary Fully Connected (BF) processing elements
that utilize the same design shown in Figure 6.10, which uses a set of AND gates and an
adder to compute the multiplication of binary data. Similarly, batch normalization on binary
values is performed using a B-BN unit. The output of the FC1 unit is represented as a vector
consisting of 15 (i.e 28× (28×15) = 1×15) quantizied elements where all the elements are
obtained at once by operating the PEs in parallel.

FC2 Unit: This unit computes the vector-matrix multiplication of quantized input of size
15 and binary kernel of size 15×3. FC2 unit consists of 15 Quantized Fully Connected (QF)
processing elements that utilize the same design shown in Figure 6.8, which uses a set of
XNOR gates and a popcount to compute the multiplication of quantized input and binary
kernel. Then, batch normalization is applied using a Q-BN unit. The output of the FC2 unit
is a vector that consists of 3 quantized elements (i.e 15× (15×3) = 1×3).
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Softmax Unit: This unit assigns a class to the tactile input based on the highest value of
f (xi) defined as:

f (xi) =
exi

∑
3
n=1 exi

(6.13)

The Softmax unit contains three main sub-units: (1) Exponent (Exp), which is used to
compute the term exi , (2) Division (DIV), which is used to compute f (xi), and (3) Class
Determinant which is used to assign a class for the input.

–Exponent sub-unit:
The exponent function can be written as:

ex = 2xlog(e) (6.14)

Let the constant log(e) defined as y, then (6.14) can be written as:

ex = 2x∗y (6.15)

Thus, to compute the exponent of x, a multiplication of x and y is performed, followed by
a base 2 exponentiation. Assume that x∗ y = z, then the term 2x∗y can be represented as 2z.
Since x and loge are quantized values, their multiplication z is composed of an integer part i
and a fractional part f . Hence, (6.15) can be simplified as:

ex = 2i+ f = 2i ∗2 f (6.16)

The term 2i can be computed using left shift operations only. As for the term 2 f , we
adopted the use of linear approximation to obtain an efficient hardware design. Suppose that
the term 2 f can be approximated as:

2 f = K ∗ f +b (6.17)

Through simulations, several values of k and b can be determined based on the desired
accuracy range of 2 f . Figure 6.12 shows the linear approximation function adopted for the
computation of the term 2 f where the values of k and b are set to 0.724 and 1.008 respectively.
Following the plot in Figure 6.12, it can be seen that for values of f > 4, the approximation
error starts to increase rapidly. However, the fractional part f is bounded between -0.99 and
0.99, thus for the presented architecture in Figure 6.13, the linear approximation leads to
an error in the order of 10−6. Such architecture is capable to compute the exponent using
multiplication, addition, and shift operations.

–Division sub-unit:
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Fig. 6.12 Plot of the functions 2 f and 0.724∗ f +1.008

Fig. 6.13 Exponent Sub-unit Design using Linear Approximation

The division operation can be computed using shift and subtract operations based on
the non-restoring division algorithm [193]. Figure 6.14 shows a flowchart that highlights
the basic operations of the non-restoring division method. To operate on fixed-point data,
the Q[0] = 0 and Q[0] = 1 steps for integers in the non-restoring division algorithm has
been changed to Q[8] = 0 and Q[8] = 1 respectively for the fixed-point representation with
< 8,8 > precision.

Figure 6.15 shows the proposed architecture for the division sub-unit where N = ∑
3
n=1 exi ,

M = exi , Rem is the remainder, and Qout is the quotient. he rational behind computing the
reciprocal of the Softmax function is the use of the non-restoring division algorithm such that
the dividend is greater than the divisor. The architecture involves addition, subtraction, and
shift operations. Also, multiplexers are used for conditional testing and registers are utilized
for intermediate results.

–Class Determinant sub-unit:
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Fig. 6.14 Non-Restoring Division Algorithm

Fig. 6.15 Division Sub-unit Design based on Non-Restoring Division Algorithm

After computing the value of f (xi) for the 3 classes, the class determinant sub-unit
assigns a modality to the input based on the minimum value of f (xi)

−1 as the reciprocal of
the Softmax is computed.
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6.4.2 Accelerator Implementation

The proposed accelerator architecture shown in Figure 6.7 has been designed with 16-bit fixed-
point representation and < 8,8 > (sign bit, 7-bits for integer part, and 8-bits for fractional
part) precision in C++ using Vivado HLS. Targeting the Zynqberry platform operating at 100
MHz, the accelerator has been exported as an Intellectual Property (IP) to Vivado. In Vivado,
behavioral, then post-implementation functional and timing simulations are performed to
obtain the required resources and time latency. As for power consumption, it is recorded
through vector-based approach using a saif file generated after implementation.

Table 6.3 shows the implementation report of the H-BWN accelerator. The reported
resources show that the H-BWN is adequate for embedded implementations on resource-
limited platforms with an average utilization percentage of 19%. The large number of
DSPs is due to the level of parallelization introduced in the architecture to insure real-time
functionality. This is evident in the time latency of 0.8 ms with a power consumption of 53
mW which verifies the real-time requirements of touch classification [4].

Table 6.3 H-BWN Implementation Results Targeting Zynqberry Platform

Resource Utilization (%)
LUT 3886 (22%)
FF 3365 (9.5%)
DSP 48 (60%)
BRAM 4 (3.3%)
Time Latency (ms) 0.8
PowerConsumption (mW) 53

Targeting the touch modality classification problem introduced in section 6.3.1, up to the
date of writing this dissertation, this is the only work that reports the hardware implementation
of a Quantized/Binary neural network. Thus, a comparison with existing solutions mainly
Support Vector Machine (SVM) is performed in terms of "energy per classification" computed
as E = P×T , where P is the dynamic power consumption and T is the time latency. For this
purpose, three implementations are considered:

• SVM implementation on Parallel Ultra-Low Platform (PULP) running on 1 core.

• SVM implementation on PULP running on 2 cores.

• SVM implementation on Xilinx Zedboard.

Table 6.4 shows the comparison with similar solutions. With a 77% accuracy, the
proposed H-BWN offers a 6875× and 4125× speedup compared to the SVM implementation
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Table 6.4 H-BWN Performance Comparison with Similar Solutions

Algorithm H-BWN SVM [1] SVM [1] SVM [2]
Classification Accuracy (%) 77 72.8 72.8 70.9
Device Zynqberry PULP: 1 Core PULP: 2 Cores ZedBoard
Power Consumption (mW) 53 21 28 NA
Time Latency (ms) 0.8 3.3×103 5.5×103 28
Energy per classification (mJ) 42.4×10−3 69.3 154 NA

on PULP [56] with 1 core and 2 cores respectively. Although the authors in [56] have reported
a lower power consumption of 21 mW and 28 mW for 1 core and 2 cores implementation
respectively, the significant speedup achieved by the proposed H-BWN leads to an energy
reduction up to 99.6%. Compared to the SVM implementation on ZedBoard in [71], a
35× speedup has been recorded. Althought no power consumption details are provided
in [71], it is expected that the proposed accelerator is more power efficient than the SVM
implementation on Zedboard due to the massive speedup and ultra low power consumption
of the proposed accelerator.

6.5 Conclusion

This chapter presents a Binary Convolution Neural Network architecture based on hybrid
precision approach. First, a design methodology is provided starting from selecting the
network topology, layers’ characteristics, quantization level and training strategy. The H-
BWN architecture consists of two convolution and two fully connected layers; the first and
last layers use 32-bit floating-point activations and binary weights while the hidden layers
are completely binarized. H-BWN achieves a classification accuracy boost more than 35%
against traditional BNNs when validated on a touch modalities problem. Compared to SVM
and DCNN algorithms targeting the same classification problem, the H-BWN provides higher
classification accuracy of 77% accompanied with a 99% reduction in the number of operations
and model size. When implemented on Zynqberry platform, the H-BWN accelerator provides
real-time classification within 0.8 ms while consuming 53 mW. Such performance offers
an energy reductions up to 99% compared to SVM accelerators implemented on PULP and
Zedboard platforms.





Chapter 7

Conclusion

The deployment of machine learning algorithms on embedded devices for applications with
a constrained requirements is an active challenge. In this dissertation, we investigated two of
the main methods that are widely used to reduce the obstacles faced while overcoming such
challenge. The first method is the use of approximate computing to reduce the computational
complexity of ML algorithms with an acceptable margin of error. The second method
is to design custom hardware accelerator architectures optimized for a certain algorithm
implemented on a specific hardware platform.

For a tactile data processing application, three novel hardware accelerators are designed
with both exact and approximate computations. A selection-based sorter that selects the
k smallest numbers out of a sequence without the need to sort the complete sequence is
proposed. When embedded in an exact kNN accelerator, a real-time classification of touch
modalities is achieved while consuming 6µJ on Zynqberry. Compared to similar kNN
architectures, the proposed kNN achieves a speedup between 1.4× and 875× with 41%
to 94% less energy consumption and 12% to 94% average hardware area reduction. As
for approximate kNN, a 56.4% average area reduction, a speedup by 2.3×, and an energy
reduction of about 69% are recorded compared to its exact counterpart. A shallow neural
network is designed to predict the singular vectors. The network is used to replace the
traditional one-sided Jacobi algorithm used as an SVD computation block of the tensorial
SVM. Such design methodology provides a classification speedup up to 131× with a 39%
and 50% resources and power reductions respectively compared to similar stat-of-the-art
solution. The noticeable performance improvements pave the way towards the deployment of
intelligence on resource-limited devices for power-constrained applications (e.g. prosthetic).
To combat the accuracy drop in binary neural networks, and benefit from the high performance
of CNNs, a hybrid precision binary weight neural network is designed. A 35% accuracy
increase in classifying touch modalities compared to traditional BCNN topology is recorded.
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A real-time classification within 0.8 ms with a 42.4µJ energy per classification could be
achieved for FPGA implementation. Compared to exiting solutions, an energy reduction up
to 99% accompanied with a speedup up to 6875× is provided.

With the continuous adoption of machine learning algorithms in different domains, our
future work involves tracking the advancements of such algorithms especially deep learning.
For instance, Transformers have been lately investigated for the use of image classification
[194], [195]. Which could be possibly adopted for tactile data processing due to the tensorial
nature of tactile signals. Consequently, monitoring the new methodologies for the design
and implementation of hardware accelerators. In addition, due to the error resilience nature
of ML algorithms, new approximate computing techniques are emerging such as adaptive
approximate computing [196] and approximate adders with Single LUT delay [115].
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Appendix A

Hardware Accelerator Design using
Vivado Suite

A.1 Hardware Design using Register-Transfer Level (RTL)

1. Create a new Vivado Project and choose your board (e.g. Zynqberry).

2. Create a new block design.

3. Add the Zynq processing system then:
a. Connect the FCLK_CLK0 to M_AXI__GP0_ACLK.
b. Run Connection Automation.

4. Right click on the design in the source pane and select “create HDL wrapper”.

5. Choose Tools » Create and Package New IP » Create AXI4 Interface.

6. A new Vivado IP project is open, inside it: Choose add source » create a new one:
VHDL code shown in Figure A.1. -
In the source pane, expand the item: my_multiplier_v1_0_S00_AXI_inst and add the
following changes:
- Find the line with the “begin” keyword and add the code shown in Figure A.2 just
above it to declare the multiplier and the output signal.
- Find the line that says “– Add user logic here” and add the code shown in Figure A.3
below it to instantiate the multiplier.
- Find this line of code “reg_data_out <= slv_reg1;” and replace it with “reg_data_out
<= multiplier_out;”.
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Fig. A.1 VHDL Code of a multiplier

Fig. A.2 Multiplier Setup

Fig. A.3 Port Mapping of the Multiplier Entity
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- In the process statement just a few lines above, replace “slv_reg1” with “multi-
plier_out”. You should notice that the “multiplier.vhd” file has been integrated into the
hierarchy.
- In the package pane:
Click on “IP File Group” and select “Merge changes from IP File. . . .”
Click on Review and Package. Repackage your IP, save and close.

7. In the main Vivado project, add the new created IP to your design and run Connection
Automation. The complete design is shown in Figure A.4.

Fig. A.4 Complete RTL Design Block Diagram

8. From “Program and Debug”, select Generate bits.

9. Select File » Export Hardware and check “Include bitstream”.

10. Select File » Launch SDK.

11. In the SDK Application:
a. Select File » New Application Project.
b.Keep everything as default (except C/C++ based on your reference), and Click Next.
c. Choose the hello World Template.
d. Paste the code shown in Figure A.5 inside Helloworld.c: This code saves two num-
bers into a 32-bit register (num1 in LSB, num2 in MSB) then perform the multiplication
using the VHDL IP.
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Fig. A.5 Multiplier Code in Vivado SDK using RTL

12. Program the FPGA

13. Select Run » Run As » Launch on Hardware GDB

14. Open serial connection using the SDK terminal on the PORT number. See the results.

A.2 Software Design using High Level Synthesis (HLS)

1. Create new project in Vivado HLS.

2. Create new C file in the source tab that includes a simple multiplication function.

3. Use: #pragma HLS INTERFACE s_axilite port=a bundle="CTRLS" directive to export
the block as AXI interface.

4. Create new C file in the testbench tab that includes the main() function.

5. Run C simulation, RTL/C simulation and finally Export RTL IP.

6. In Vivado:
a. Repeat steps 1 to 4 from section A.1
b. Select Tools » Setting » IP » Repository and add the path to the HLS exported block.
c. Run Connection Automation. The complete design is shown in Figure A.6.

7. Repeat steps 8-to-11(c) from section A.1.
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Fig. A.6 Complete HLS Design Block Diagram

8. In SDK, paste the code shown in Figure A.7 in the “helloworld.c”.

Fig. A.7 Multiplier Code in Vivado SDK using HLS

9. Repeat steps 12-to-14 from section A.1.
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A.3 Software/hardware Co-Design using HLS and RTL

1. Follow the same steps as previous sections to obtain the accelerator design shown in
Figure A.8.

Fig. A.8 Software/Hardware Multiplier Accelerator

2. In SDK, paste the code shown in Figures A.9, A.10, A.11, A.12, and A.13 in the
“helloworld.c”.

Fig. A.9 Multiplier Code in Vivado SDK using HLS and RTL (1)
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Fig. A.10 Multiplier Code in Vivado SDK using HLS and RTL (2)

Fig. A.11 Multiplier Code in Vivado SDK using HLS and RTL (3)

Fig. A.12 Multiplier Code in Vivado SDK using HLS and RTL (4)

3. Repeat steps 12-to-14 from section A.1.
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Fig. A.13 Multiplier Code in Vivado SDK using HLS and RTL (5)

This process can be performed with verilog and Vivado Vitis with the same procedure.
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