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Abstract

Planning for real-world applications requires algorithms and tools with the abil-

ity to handle the complexity such scenarios entail. However, meeting the needs

of such applications poses substantial challenges, both representational and al-

gorithmic. On the one hand, expressive languages are needed to build faithful

models. On the other hand, efficient solving techniques that can support these

languages need to be devised. A response to this challenge is underway, and the

past few years witnessed a community effort towards more expressive languages,

including decidable fragments of first-order theories.

In this work we focus on planning with arithmetic theories and propose Op-

timal Planning Modulo Theories, a framework that attempts to provide efficient

means of dealing with such problems. Leveraging generic Optimization Modulo

Theories (OMT) solvers, we first present domain-specific encodings for optimal

planning in complex logistic domains. We then present a more general, domain-

independent formulation that allows to extend OMT planning to a broader class

of well-studied numeric problems in planning. To the best of our knowledge, this

is the first time OMT procedures are employed in domain-independent planning.
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Chapter 1

Introduction

1.1 Research area, motivations and goals

Citing Geffner and Bonet [GB13], planning can be defined as the model-based

approach to intelligent behavior, where a model of the world and of possible

actions to be performed is used to decide on a sequence of actions that brings

the world to a desired state.

Different computational models of planning have been proposed and studied

during the years [RN10]. The simplest model that has been extensively studied

in Artificial Intelligence is the so-called classical planning model, in which a

single agent is acting in a fully observable world where actions have deterministic

effects and the objective is to achieve a certain goal performing said actions. A

solution to a classical planning problem is a sequence of actions that maps the

initial situation into some situation that satisfies the goal description; such a

sequence is called a plan. A fundamental distinction in planning is between

finding any plan that solves a problem and finding a plan with minimum cost.

We refer to the former as satisficing planning, and to the latter as optimal

planning. The focus of this thesis is on optimal planning.

Although simplistic, the classical planning model is broad enough to describe

many real-world combinatorial problems. Despite being PSPACE-complete in

the worst case [Byl94, BN95], great advances have been obtained by the planning

community. This was made possible by two factors: (i) the development of a

2
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standard modeling language, PDDL [McD00], used to model planning problems

and (ii) the parallel development of efficient algorithmic solutions based, e.g.,

on heuristic search, symbolic search or propositional satisfiability [BG01, RW10,

ER99, KS92].

Of particular interest for the development of this work are the latter ap-

proaches. Indeed, this thesis builds upon, and extends, the so-called Planning

as Satisfiability framework, first proposed by Kautz and Selman in their sem-

inal 1992 paper [KS92]. There, the authors showed for the first time that the

classical planning problem could be solved by translating it into a propositional

formula and checking its satisfiability. This idea was later improved in [KS96]

where efficient techniques for propositional satisfiability, combined with efficient

translations, were shown to be a competitive approach to classical planning.

Further improvements were proposed in the subsequent years, most notably by

Jussi Rintanen [RHN06, Rin09, Rin12], making Planning as SAT one of the

most efficient approaches to classical planning.

Already in the early 2000’s however, fully automated planning systems for

classical planning such as FF [Hof01] were showing impressive results on the

benchmark suite of the first International Planning Competitions. Many saw

these results as an indication that it was time to move on to richer modeling

languages than the propositional fragment of PDDL used to describe classical

planning problems. As a result of this, PDDL2.1 [FL03] introduced several new,

interesting features, among which, support for numeric variables and specifica-

tion of more complex metrics for plan quality than mere plan length. Planning

problems with numeric features and optimization metrics are indeed the focus

of this thesis.

Despite early results showing undecidability of unrestricted numeric plan-

ning [Hel02], new approaches that could handle fragments of this added ex-

pressiveness started appearing. Examples include solutions based on heuris-

tic search [HG01, DK01] and, notably, satisfiability-based approaches [WW99],

[SD05]. Extremely relevant for this work is the latter approach, which extends

the Planning as SAT framework to deal with real-valued quantities, among oth-

ers. When describing the workings of their approach, the authors of [SD05] refer

to a SAT-based arithmetic constraint solver that could handle Boolean combi-
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nations of propositional and arithmetic constraints. These were the early days

of Satisfiability Modulo Theories [BSST09] – when, in fact, this name was not

yet popular.

Satisfiability Modulo Theories is concerned with checking the satisfiability

of logical formulas over one or more theories. SMT draws on some the most fun-

damental problems of symbolic logic: the decision problem, completeness and

incompleteness of logical theories, and finally complexity theory. The compu-

tational complexity of most SMT problems is typically very high, nevertheless

efficient decision procedures have been developed and related tools have been

implemented. One prominent example is the theory of quantifier-free linear

arithmetic, for which efficient solvers exist nowadays [dMB08, CGSS13] and are

routinely used in the area of Computer-Aided Verification.

This very theory has seen several applications in planning as well. Indeed,

encouraged by the impressive progress in the field of SMT, several reductions

from expressive planning models to SMT have been proposed in the last decade.

To cite a few examples, Rintanen uses SMT to solve temporal planning prob-

lems [Rin15, Rin17], while Cashmore et al. [CFLM16] leverage SMT to plan in

hybrid domains, i.e., domains featuring both discrete and continuous dynamics.

Is it the end of the story? Not really! Earlier in this introduction we said

that this thesis is concerned with optimal planning in numeric domains featuring

non-trivial optimization metrics. The reader may legitimately be wondering

how such problems could be encoded as SMT formulas. Indeed, while SMT

formulas can encode arbitrary arithmetic expressions – as long as the related

theory remains decidable – it is not clear how to perform optimal reasoning.

Luckily for the author of this thesis, the SMT community has recognized the

importance of finding optimal solutions to SMT formulas in recent years. As a

result, standard procedures for SMT have been extended with optimization ca-

pabilities, leading to the development of a new, powerful framework: Optimiza-

tion Modulo Theories (OMT) [ST15a]. OMT solvers such as [BPF15, ST15b]

extend SMT solving with optimization procedures to find a variable assignment

that defines an optimal value for a desired objective function under all models

of a given SMT formula.

Having spoken about numeric planning with optimization metrics and OMT
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solving, the objective of this thesis should now be clear – hopefully. The rest

of this document will guide the reader through our attempts to use general

OMT solvers to implement optimal numeric planners. Starting from a domain-

dependent solution, we will later present what, to the best of our knowledge, is

the first reduction from optimal numeric planning to OMT.

1.2 Thesis outline

The remainder of this document is organized as follows. Chapter 2 introduces

most of the necessary background on the topics we touch in this thesis. Chap-

ter 3 discusses and evaluates our efforts towards applying OMT to domain-

specific planning for logistic domains. Chapter 4 presents the general Optimal

Planning Modulo Theories framework for domain-independent planning. We

discuss new encodings for planning problems that are more amenable to opti-

mal planning as OMT, along with an experimental study with benchmarks for

numeric planning taken from the literature. Chapter 5 presents the OMTPlan

planner where all the ideas presented in Chapter 4 have been implemented. We

conclude this thesis in Chapter 6 by summarizing our findings and outlining

some possible directions for future research.

1.3 Relevant publications

In this section we list the articles that contain contributions presented in this

thesis. Entries listed below, with the exception of the last one, represent the

core on which Chapter 3 is based.

1.3.1 Peer-reviewed publications

• [NLLÁ17] Tim Niemueller, Gerhard Lakemeyer, Francesco Leofante, and

Erika Ábrahám. Towards CLIPS-based task execution and monitoring

with SMT-based decision optimization. In Proc. of PlanRob@ICAPS,

pages 60–67, 2017

• [LÁN+17] Francesco Leofante, Erika Ábrahám, Tim Niemueller, Gerhard

Lakemeyer, and Armando Tacchella. On the synthesis of guaranteed-
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quality plans for robot fleets in logistics scenarios via optimization modulo

theories. In Proc. of IRI, pages 403–410, 2017

• [LÁT18] Francesco Leofante, Erika Ábrahám, and Armando Tacchella.

Task planning with OMT: an application to production logistics. In Proc.

of IFM, pages 316–325, 2018

• [Leo18a] Francesco Leofante. Guaranteed plans for multi-robot systems

via Optimization Modulo Theories. In Proc. of AAAI, pages 8020–8021,

2018

• [Leo18b] Francesco Leofante. Optimal multi-robot task planning: from

synthesis to execution (and back). In Proc. of IJCAI, pages 5771–5772,

2018

• [LÁN+19] Francesco Leofante, Erika Ábrahám, Tim Niemueller, Gerhard

Lakemeyer, and Armando Tacchella. Integrated synthesis and execution

of optimal plans for multi-robot systems in logistics. Information Systems

Frontiers, 21(1):87–107, 2019

• [BLPT19] Arthur Bit-Monnot, Francesco Leofante, Luca Pulina, and Ar-

mando Tacchella. SMT-based planning for robots in smart factories. In

Proc. of IEA/AIE, pages 674–686, 2019

1.3.2 In preparation

The following publications, which represent the core on which Chapter 4 and

Chapter 5 are based, are currently under submission.

• [LGÁTon] Francesco Leofante, Enrico Giunchiglia, Erika Ábrahám, and

Armando Tacchella. Optimal planning modulo theories. Under submission

• [Leoon] Francesco Leofante. OMTPlan: a tool for optimal planning modulo

theories. Under submission

1.3.3 A note on contributions by the author

All publications listed above where the result of fruitful collaborations with

several colleagues, both in Aachen and in Genoa. However, for this thesis it is
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necessary to somehow measure my contributions. In the following I will detail

what I explicitly contributed to each publication, proceeding in chronological

order. In general, I co-wrote all of the publications above, I will therefore only

talk about the development of scientific results.

To start with, the encodings presented in [LÁN+17] and [LÁN+19] were

developed by me together with Erika Ábrahám. Implementation and evaluation

of the encodings was carried out by me, while the integration of these encodings

in the online executive presented in [NLLÁ17] and [LÁN+19] was managed by

Tim Niemueller from the Knowledge Based Systems group in Aachen.

The ideas discussed in [LÁT18, Leo18a, Leo18b] were the results of several

discussions with my advisors, Erika Ábrah’am and Armando Tacchella.

The OMT-based implementation used in [BLPT19] was developed by myself,

together with Igor Bongartz, a student working under my supervision. The

paper was mostly written by Arthur Bit-Monnot.

Finally, most of the ideas presented in [LGÁTon] where the result of joint

work with Enrico Giunchiglia, with useful suggestions given by my advisors.

The implementation of the system used in [LGÁTon] and formally presented

in [Leoon] was done entirely by me.

1.4 Additional publications

During the course of my Ph.D. studies I was also engaged in a parallel research

stream, focusing on the problem of providing safety guarantees for learning-

enabled systems – i.e., systems that employ machine learning algorithms in

some of their components or that base their decisions on models derived using

such algorithms. The following publications are the result of my research efforts

in this direction.

• Francesco Leofante, Simone Vuotto, Erika Ábrahám, Armando Tacchella,

and Nils Jansen. Combining static and runtime methods to achieve safe

standing-up for humanoid robots. In Proc. of ISoLA, pages 496–514, 2016

• Francesco Leofante and Armando Tacchella. Learning in physical domains:

mating safety requirements and costly sampling. In Proc. of AI*IA, pages

539–552, 2016
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• Dario Guidotti, Francesco Leofante, Claudio Castellini, and Armando Tac-

chella. Repairing learned controllers with convex optimization: a case

study. In Proc. of CPAIOR, pages 364–373, 2019

• Dario Guidotti, Francesco Leofante, Armando Tacchella, and Claudio Castellini.

Improving reliability of myocontrol using formal verification. IEEE Trans-

actions on Neural Systems and Rehabilitation Engineering, 27(4):564–571,

2019





Chapter 2

Background

The purpose of this chapter is to set the basic terminology and concepts that

later chapters will explore in more detail. What is presented here is intended

mainly for reference and it is not meant to be complete. Extensive references

will be provided for all the results herewith presented. The chapter consists of

four sections. The first section introduces basic concepts related to propositional

logic and its satisfiability problem (SAT). The second section presents extensions

of SAT to quantifier-free first-order logic formulas, with a focus on techniques

for satisfiability and optimization in this setting. The third section instead

provides background concepts on the core problem we deal with in this thesis,

that is, numeric planning. In the last section, we formally define the planning

as satisfiability paradigm and examine a number of encodings from planning to

satisfiability checking.

2.1 The propositional satisfiability problem

A propositional formula is a Boolean combination of propositions (or Boolean

variables) from a set VB = {p1. . . . pn}. A propositional formula is in conjunc-

tive normal form (CNF) if it is a finite conjunction of clauses, each of which

corresponds to a finite disjunction of literals. A literal is either a proposition p

or its complement (denoted by ¬p); in the first case, we say that l is a positive

literal, and in the second, we say that l is a negative literal.

For example, the following formula

10
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ϕ := (p1 ∨ p2) ∧ (p2 ∨ p3) ∧ (¬p1 ∨ ¬p2 ∨ p3) ∧ (¬p1 ∨ ¬p3)

is a CNF defined over the propositional variables {p1, p2, p3}.

Note that any propositional formula can be converted to an equi-satisfiable

CNF propositional formula in by allowing the introduction of auxiliary variables

(see, for example, [PG86]).

A valuation ν is a partial function from the set of propositions to either true

or false. We say that ν satisfies a formula ϕ if ν(ϕ) is true, and ν falsifies ϕ if

ν(ϕ) is false. In the former case, we call ν a model of ϕ.

For example, the formula from the previous example is satisfied by the val-

uation

{p1 ← false, p2 ← true}

The propositional satisfiability problem (SAT) requires determining if there

exist a valuation of the variables of a Boolean formula, usually in CNF, such that

the formula evaluates to true. A formula for which such a valuation exists is said

to be satisfiable, otherwise it is unsatisfiable. Several algorithms and techniques

have been devised to try and solve the propositional satisfiability problem ef-

ficiently. Since an in-depth discussion of the state of the art in SAT solving is

outside the scope of this thesis, we refer the interested reader to [BHvMW09]

for more details.

2.2 Satisfiability beyond propositional logic

Although applications in artificial intelligence, formal verification, and other

areas have greatly benefited from advances in SAT, it is often the case that

real-world applications require determining the satisfiability of formulas in more

expressive logics than propositional logic. Also, these applications typically re-

quire not general first-order satisfiability, but rather satisfiability with respect to

some background theory, which fixes the interpretations of certain predicate and

function symbols. The research field concerned with determining the satisfia-

bility of formulas with respect to some background theory is called Satisfiability

Modulo Theories (SMT).
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Boolean abstraction

SAT solver

Input CNF
formula

Theory solver

SAT
or

UNSAT

theory constraints

SAT + model
or

UNSAT + explanation

Figure 2.1: The SMT solving framework.

SMT solving aims at deciding the satisfiability of (usually quantifier-free)

first-order logic formulas over some theories like, e.g., the theories of lists, arrays,

bit vectors, uninterpreted functions and real or (mixed-)integer arithmetic. For

the purpose of this thesis, we will deal only with quantifier-free linear integer-

real arithmetic (QF LIRA).

To decide the satisfiability of an input formula ϕ in CNF, SMT solvers

proceed as depicted in Figure 2.1. Typically, a Boolean abstraction abs(ϕ) of ϕ

is built first by replacing each theory constraint with a fresh Boolean variable.

For example, the following SMT formula over x, y ∈ R

ϕ := x ≥ y ∧ ( y > 0 ∨ x > 0 ) ∧ y ≤ 0

is abstracted to

abs(ϕ) = p1 ∧ ( p2 ∨ p3 ) ∧ ¬p2

where p1, p2, p3 ∈ B.

After this first step, a SAT solver is called to search for a satisfying valuation

for abs(ϕ), e.g., {p1 ← true, p2 ← false, p3 ← true} for the above example. If

no such assignment exists then the input formula ϕ is unsatisfiable. Otherwise,

the consistency of the assignment in the underlying theory is checked by a theory
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solver. In our example, we check whether the set {x ≥ y, y ≤ 0, x > 0} of

linear inequalities is feasible, which is the case. If the constraints are theory-

consistent then a satisfying solution is found for ϕ. Otherwise, the theory solver

returns a theory lemma ϕE giving an explanation for the conflict, e.g., the

negated conjunction of some inconsistent input constraints. The explanation is

used to refine the Boolean abstraction abs(ϕ) to abs(ϕ) ∧ abs(ϕE). These steps

are iteratively executed until either a theory-consistent Boolean assignment is

found, or no more Boolean satisfying assignments exist.

2.3 Optimization Modulo Theories

In the last decade SMT solvers have enjoyed considerable success in many fields

of application, and recently standard decision procedures for SMT have been

extended to optimization, leading to the development of Optimization Modulo

Theories (OMT ) – see for example [NO06, CFG+10] and [BPF15, CKJ+15,

ST15b, ST15c] for related solvers.

OMT extends SMT solving with optimization procedures to find a variable

assignment that defines an optimal value for an objective function f (or a com-

bination of multiple objective functions) under all models of a formula ϕ. This

thesis is concerned with objectives expressed in QF LIRA, however state-of-

the-art solvers support optimization under other theories, such as, the theory

of bit-vectors [NR16].

As described in [ST15a], most OMT solvers implement a linear-search scheme,

which can be summarized as follows. Let ϕS be the conjunction of all theory

constraints that are true under a satisfying valuation ν and the negation of those

that are false under ν. A local optimum µ for f is computed under the side

condition ϕν using specialized algorithms – e.g., the simplex [Dan02] and the

branch-and-bound method [LD60] when problems are expressed in QF LIRA.

The original formula ϕ is then updated as

ϕ := ϕ ∧ (f ./ µ) ∧ ¬ϕS , ./∈ {<,>}

This forces the solver to find a new assignment under which the value of the

objective function improves, while discarding all previously found assignments.
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eB ::= vB | ¬vB

eQ ::= constQ | vQ | (eQ + eQ) | (eQ − eQ) |

(eQ ∗ eQ) | (eQ/eQ)

ϕ ::= eB | eQ ∼ eQ
ϕ+ ::= ϕ |ϕ+, ϕ

Φ ::= {} | {ϕ+}

ψ ::= vB := eB | vQ := eQ

ψ+ ::= ψ |ψ+, ψ

Ψ ::= {} | {ψ+}

Figure 2.2: Abstract syntax of propositional and numeric conditions and effects.

Notation: B is the set of the Boolean values; Q is the set of all rational numbers;

constQ is a constant ot type Q; vD is a variable with domain D ∈ {B,Q};

∼∈ {<,≤,=,≥, >}.

Repeating this procedure until the formula becomes unsatisfiable will lead to

an assignment optimizing f under all models of ϕ.

2.4 Planning with numeric features

As mentioned in the introduction to this document, our work is concerned

with planning problems that make use of arithmetic theories. More precisely,

we consider the quantifier-free fragment of numeric planning expressible in

PDDL2.1 [FL03]. Although our approach could handle general quantifier-free

arithmetic formulas, in the following we restrict ourselves to the expressivity of

PDDL. For the sake of clarity we use a modified syntax shown in Figure 2.2 and

formalize the corresponding semantics is Figure 2.3.

A numeric planning problem is a tuple Π = 〈VB,VQ, A, I,G〉 whose compo-

nents are described in the following.

Variables and states VB and VQ are finite disjoint sets of propositional re-

spectively numeric variables of Π. In the following variables will also be referred

to as fluents. For a variable v ∈ V = VB ∪ VQ let dom(v) denote the domain of

v; we use Boolean B for propositional variables and for numeric variables the
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JvBKs = s(vB)

J¬vBKs = if s(vB) = false then true else false

JconstQKs = constQ

JvQKs = s(vQ)

JeQ,1 + eQ,2Ks = if JeQ,1Ks and JeQ,2Ks are defined then

JeQ,1Ks +Q JeQ,2Ks else undefined

JeQ,1 − eQ,2Ks = if JeQ,1Ks and JeQ,2Ks are defined then

JeQ,1Ks −Q JeQ,2Ks else undefined

JeQ,1 ∗ eQ,2Ks = if JeQ,1Ks and JeQ,2Ks are defined then

JeQ,1Ks ∗Q JeQ,2Ks else undefined

JeQ,1/eQ,2Ks = if JeQ,1Ks and JeQ,2Ks are defined and

JeQ,2Ks 6= 0 then

JeQ,1Ks/QJeQ,2Ks else undefined

s |= eB iff JeBKs = true

s |= eQ,1 ∼ eQ,2 iff JeQ,1Ks and JeQ,2Ks are defined and

JeQ,1Ks ∼Q JeQ,2Ks

s |= {ϕ1, . . . , ϕn} iff s |= ϕi for i = 1, . . . , n

s, s′ |= vB := eB iff s′(vB) = JeBKs

s, s′ |= vQ := eQ iff JeQKs is defined and s′(vQ) = JeQKs

s, s′ |= {v1 := e1, . . . , vn := en} iff s, s′ |= vi := ei for all

i = 1, . . . , n and s(v) = s′(v) for

all v ∈ (VB ∪ VQ) \ {v1, . . . , vn}

Figure 2.3: Semantics of propositional and numeric conditions and effects. No-

tation: s, s′ ∈ S are states; constQ is the value of constQ; +Q, −Q, ∗Q , /Q and ∼Q

are addition, subtraction, multiplication, division and comparison in the domain

Q; the rest is as in Fig. 2.2.

rationals Q equipped with the usual order and arithmetic operations. A state

of Π is a function s : (VB ∪VQ)→ (B∪Q) assigning to each variable v ∈ VB ∪VQ

a value s(v) ∈ dom(v) from its corresponding domain. Let S denote the set of

all states of Π.
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Constraints and conditions A propositional constraint is either a proposi-

tional variable v ∈ VB or its negation ¬v. Arithmetic expressions e are composed

from numeric variables and constants using arithmetic operators. An arithmetic

expression is linear iff for each multiplication operator in it, at least one of the

operands contains no variables. A numeric constraint e1 ∼ e2 compares two

arithmetic expressions using a comparison operator ∼∈ {<,≤,=,≥, >}. A con-

straint ϕ is either a propositional or a numeric constraint. A condition Φ is a

(possibly empty) set of constraints (see Figure 2.2).

The evaluation function J·Ks and the satisfaction relation |= for expressions,

constraints and conditions are as usual (see Figure 2.3).

Assignments and effects A propositional assignment has the form v := e,

where v ∈ VB is a propositional variable and e ∈ {v,¬v}. A numeric assignment

has the form v := e, where v ∈ VQ is a numeric variable and e is an arithmetic

expression (see Figure 2.2); we say that v := e is an assignment to v. For any

v ∈ VQ, d ∈ dom(v), and e a linear arithmetic expression, we call v := v + d

a constant increment, v := v − d a constant decrement, v := v + e a linear

increment, and v := v − e a linear decrement.

An assignment is either a propositional or a numeric assignment. An effect

Ψ is a set of assignments that contains at most one assignment v := e for each

variable v ∈ VB ∪ VQ; we say that v is assigned in Ψ iff there is an assignment

v := e in Ψ.

Given a state s ∈ S and an effect Ψ, the successor of s and Ψ is the (unique)

state s′ ∈ S such that s′(v) = JeKs for each v := e in Ψ, and s′(v) = s(v) for

each v ∈ VB ∪ VQ that is not assigned in Ψ; we write s, s′ |= Ψ (see Figure 2.3).

Actions A is a set of actions a = (prea, eff a, ca), where prea is a condition,

eff a is an effect and ca : S → Q≥1 is a state-dependent positive cost function,

specified by a numeric expression. An action a = (prea, eff a, ca) is applicable in

state s iff (i) s |= ϕ for each ϕ ∈ prea and (ii) JeKs is defined for each assignment

v := e in eff a.

A numeric constraint e ∼ 0 is simple iff e is linear and for each assignment

in ∪a∈Aeff a, either the assigned variable does not appear in e or the assignment

is a constant increment or a constant decrement.
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A numeric constraint e ∼ 0 is linear iff e is linear and for each assignment in

∪a∈Aeff a, either the assigned variable does not appear in e or the assignment

is a linear increment or a linear decrement.

A set A′ ⊆ A of actions is independent if any variable assigned in the ef-

fect of an action in the set appears in no other action in the set (neither in

conditions nor in effects nor in cost functions). Being independent implies

that for a fixed starting state, sequentially executing all actions leads to the

same final state independently of the order in which the actions are executed.

Moreover, if technically possible, independent actions could be executed con-

currently, resulting in the same final state as any serial execution. We write

⊕A′ = (∪a∈A′prea,∪a∈A′eff a,
∑
a∈A′ ca) to describe the condition, effect and

cost of executing all actions in the independent set A′.

Initial condition I is a condition called the initial condition that is satisfied

by exactly one state that is called the initial state; we assure unique satisfaction

by requiring that I contains exactly one constraint for each variable, which is

either v or ¬v for propositional variables v ∈ VB, and for numeric variables

v ∈ VQ it has the form v = d for some d ∈ dom(v).

Goal condition and plan G is a condition called the goal condition; states

satisfying G are called goal states.

A serial plan π = 〈a0, . . . , an−1〉 is a sequence of actions a0, . . . , an−1 ∈ A

such that there exist (unique) states s0, . . . , sn ∈ S such that s0 |= I, si−1 |=

preai−1
and si−1, si |= eff ai−1

for each i = 1, . . . , n, and sn |= G; we call n the

(serial) length of the plan and s0, . . . , sn the plan’s (serial) execution. The cost

of πn is C(πn) =
∑n−1
i=0 cai(si). A plan π is optimal for Π iff C(π) ≤ C(π′) for

all (serial) plans π′ of Π.

A parallel plan π = 〈A0, . . . , An−1〉 for Π is a sequence of independent ac-

tion sets Ai = {ai,1, . . . , ai,ki} ⊆ A, Ai 6= ∅ for i = 0, . . . , n − 1, such that

〈a1,1, . . . , a1,i0 , . . . , an−1,1, . . . , an−1,in−1
〉 is a plan for Π; we call n the parallel

length and
∑n−1
i=0 ki the serial length of π. Note that 〈⊕A0, . . . ,⊕An−1〉 is a plan

for 〈VB,VQ, {⊕A0, . . . ,⊕An−1}, I, G〉; we call its execution the parallel execution

of π.
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Example 1. Let us consider a 4×4 grid and a robot that starts at the north-west

position (1, 1) and should move to the south-east position (4, 4) by movements

to south, west, north or east to a neighboring cell, without leaving the grid. The

robot is initially faced towards south. Movements that require turning cost twice

as much energy as without. For convenience, let S = 1, W = 2, N = 3 and

E = 4 encode the four possible directions of movements. The following numeric

planning problem formalizes this task: Π = 〈VB,VQ, A, I,G〉 with

VB = ∅

VQ = {x, y, f}

A = {aS = ({y < 4}, {y := y + 1, f := S}, caS),

aW = ({x > 1}, {x := x− 1, f := W}, caW),

aN = ({y > 1}, {y := y − 1, f := N}, caN),

aE = ({x < 4}, {x := x+ 1, f := E}, caE)}

I = {x = 1, y = 1, f = S}

G = {x = 4, y = 4}

where cai(s) = 1 if s(f) = i and cai(s) = 2 otherwise, for any i ∈ {S, W, E, N}

and s ∈ S.

There is a single optimal plan π = (aS, aS, aS, aE, aE, aE) for Π with plan cost

C(π) = 7.

In this example, all independent action sets have a single action, because all

actions assign f .

2.5 Planning as satisfiability

In this last section we briefly review the basic ideas behind satisfiability-based

approaches to planning. We will examine classical state-based encodings and

briefly discuss other encodings. Although the encodings presented were orig-

inally thought for classical propositional planning, it is easy to see that the

approach can be extended to SMT trivially. Hence, we will directly present the

SMT version and refer the reader to [Rin09] for an in-depth study of proposi-

tional encodings. Further, non-trivial, extensions are required for OMT plan-

ning and these will be discussed in subsequent chapters.

The satisfiability approach to planning solves a planning problem Π by con-
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structing sequences of logical formulas that encode bounded versions of it. For

a given horizon n, a formula Πn is defined whose solutions, if any, correspond to

plans of length n. In most existing domain-independent approaches to planning

as satisfiability, the variables over which Πn is defined represent for each step

from 0 to n the value of each fluent in Π, and for each step from 0 to n− 1 the

actions that are executed. However, other encodings exist and will be briefly

discussed later in this section.

Of crucial importance in the planning as satisfiability framework is the strat-

egy according to which a horizon is selected. In the satisficing planning case, a

strategy must select horizons until one is found at which there exists a plan. For

instance, one could use a ramp-up strategy in which formulas are instantiated

for increasing horizon lengths, i.e., n = 0, 1, 2, . . . until a plan is found. In the

optimal case instead, a strategy must find a horizon at which a plan exists, and

prove that no better plan exists for any other horizon.

2.5.1 State-based encodings

The first encoding of planning problems to propositional formulas was proposed

by Kautz and Selman in [KS92] in 1992. In their work, the authors presented a

series of hand-crafted axioms to encode serial plans to propositional logic. This

work was later extended in [KS96, KMS96] where a compilation of planning

problems described in the STRIPS [FN71] formalism to propositional satisfia-

bility is presented. These works present a number of crucial improvements to

the 1992 paper, namely, parallel encodings as well as the use of explanatory

frame axioms instead of classical frame axioms. In the following we will focus

on classical encodings with explanatory frame axioms, under serial and parallel

execution semantics.

The encoding of a planning problem Π for a given horizon n is given in terms

of axiom schemata. The schemata make use of n variable sets A0, . . . , An−1,

where each Ai consists of a unique variable ai for each action a ∈ A, and also

n+ 1 copies V0, . . . ,Vn of state variable sets, i.e., Vi = {vi|v ∈ V = VB ∪ VQ}.

Using these variables, the following formulas are defined:

• let I(Vi) (resp. G(Vi)) be the formula obtained from I (resp. G) by

replacing each v ∈ V with the corresponding variable vi ∈ Vi;
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• let T (Vi,Vi+1), be a formula describing how actions affect states, i.e., T

enforces that each action implies its preconditions over Vi and its effects

over Vi+1. With T we also encode explanatory frame axioms specifying

that variables retain their values unless they are explicitly modified by an

action’s effect and mutex that specify the execution semantics. In serial

encodings, at most one action can be executed at a time. In parallel

encodings this condition is relaxed and multiple actions can be performed

simultaneously provided that they are independent.

For a given planning task Π, we encode bounded plans for horizon n by the

formula

Πn := I(V0) ∧
n−1∧
i=0

T (Vi,Vi+1) ∧G(Vn)

By construction Πn is satisfiable iff there exists a plan πn within horizon n,

which can be extracted from the model of the planning formula.

2.5.2 Other encodings

A number of other reductions from planning to satisfiability checking have been

proposed that fall outside the scope of the previous section.

These include encodings such as those of [KMS96, KS96] and later [RGPS09]

which use a split action representation to reduce the number of variables needed

to describe actions and mitigate this size blow-up of direct encodings of planning

problems.

Another line of work which is not covered here is that of [RHN06], which use

a relaxed action execution semantics to allow greater action parallelism. The ap-

proach presented by Rintanen et al. leverages the concept of post-serialisability

of [DNK97] allowing a set of conflicting actions to be selected for execution at

the same step, provided there exist a scheme, computed a priori, that allows the

generation of a valid serial execution. In practice, this is achieved by replacing

the standard conflict exclusion axioms with axioms that ensure that conflicting

parallel actions respect the serialization scheme.

Finally, we draw attention to the work that has been done in causal encod-

ing. These are based on the idea of proving the correctness of a plan using causal
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reasoning about the establishment and preservation of goals and of the precon-

ditions of individual actions. Causal encodings were first presented in [KMS96]

while a theoretical and empirical study of their properties is discussed in [MK99].



Chapter 3

Planning for logistics

With the advent of Industry 4.0, factories are moving from static process chains

towards the introduction of autonomous robots in their production lines. As the

abilities and the complexity of such systems increase, the problem of managing

and optimizing the in-factory supply chain carried out by (fleets of) autonomous

robots becomes crucial. This paradigm shift also opens up a number of new

research challenges for the planning community.

The RoboCup Logistics League (RCLL) [NLF15] has been proposed as a re-

alistic testbed to study the above mentioned problems at a manageable scale.

There, groups of robots need to maintain and optimize the material flow ac-

cording to dynamic orders in a simplified factory environment.

Though there exist successful heuristic methods to solve the planning and

scheduling problem underlying the RCLL, e.g., [HNCL16, NLF13], a major dis-

advantage of these methods is that they provide no guarantees about the quality

of the solutions they produce. In this chapter we present our efforts towards

solving this problem leveraging OMT. In particular, we propose domain-specific

OMT encodings for task planning with optimality guarantees and integrate them

into an on-line execution and monitoring system based on CLIPS [Wyg89], a

rule-based production system using forward chaining inference.

Before delving into the details of our encodings, we describe the salient fea-

tures of the RoboCup Logistics League. We then provide a high-level description

of the architecture of a system we developed for integrated planning and exe-

22
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Figure 3.1: Simulated RCLL factory environment [ZNL14].

cution. Our OMT encodings for the different phases of the RCLL, together

with their experimental validation, are presented; we conclude with preliminary

experiments concerning plan explainability in the RCLL setup.

3.1 The RoboCup Logistics League

The example domain chosen for evaluating our planning and execution approach

is based on the Planning and Execution Competition for Logistics Robots in

Simulation 1 [NKVT16], which provides a simulated version of the real RCLL

setup (Figure 3.1). During a game in the competition, autonomous robots

compete to handle the logistics of materials through several dynamic stages to

produce final goods according to a dynamic order schedule known only at run-

time. Each game sees two teams of three robots each competing against each

other during two phases, the exploration and the production phase.

In the exploration phase, robots must roam the environment and determine

where the team’s own machines are positioned. For this, the playing field is

divided into 24 virtual zones, of which 12 belong to each of the two teams

(operating at the same time in the environment increasing execution duration

uncertainty considerably). However, only 6 of these zones will contain machines.

Therefore, the task is to efficiently assign the three robots to the 12 zones and

1http://www.robocup-logistics.org/sim-comp
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BS RS 1 RS 2 RS 2 CS 2

Figure 3.2: Example of order configuration for the competition [NLF15, RCL17].

identify the zones which contain a machine.

In the production phase instead, robots have to handle the logistics of ma-

terials through several (dynamic) stages to produce final goods to fulfill orders.

Products to be assembled have different complexities and usually require a base,

0 to 4 rings to be mounted on top of it, and a cap as a finishing touch. To increase

complexity, orders not only fix the components to be used, but also specify col-

ors to be used, and in what order. Bases are available in three different colors,

four colors are admissible for rings and two for caps.

Several machines are scattered around the factory shop floor, each of them

completing a different processing step such as providing bases, mounting colored

rings or caps. Based on such differences, it is possible to distinguish four types

of machines:

• Base Station (BS): acts as dispenser of base elements. There is one single

BS per team.

• Cap Station (CS): mounts a cap as the final step in production on an

intermediate product. CS have a slide to store at most one cap piece at

a time. At the beginning of the game this slide is empty and has to be

filled as follows. A base element with a cap must be taken from a shelf

in the game arena and fed to the machine; the cap is then unmounted

and buffered in the slide. The cap can then be mounted on the next

intermediate product taken to the machine. There are two CS per team.

• Ring Station (RS): mounts one colored ring (of a specific color) onto an

intermediate product. Some ring colors require additional tokens to be

“unlocked”: robots will have to feed a RS with a specified number of

bases before the required color can be mounted. There are two RS per

team.
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CLIPSOMT

RefBox Simulator

TranslationRepresentation

BE ... ...

Fawkes

Figure 3.3: High-level representation of how individual components of the sys-

tem interact.

• Delivery Station (DS): accepts finished products. A DS contains three

conveyor belts, robots have to prepare the proper one as per specific order.

There is one DS per team.

The challenge for autonomous robots is then to transport intermediate prod-

ucts between processing machines and optimize a multistage production cycle of

different product variants until delivery of final products. A sample production

trace is shown in Figure 3.2.

Orders that denote the products which must be assembled with these opera-

tions are posted at run-time by an automated referee box (RefBox) broadcasting

information via Wi-Fi and therefore require quick planning and scheduling. Or-

ders come with a delivery time window introducing a temporal component into

the problem.

3.2 System overview

The system described in this section unites the power of Optimization Modulo

Theories with the flexibility of an on-line executive, providing optimal solutions

for high-level task planning, and runtime feedback on their feasibility. The

proposed architecture is depicted in Figure 3.3. The CLIPS agent controls the

overall process, from the generation of a plan, to its execution and monitoring.

When a new plan is needed, the agent triggers the OMT module to synthesize

a plan. To start planning, the world model, with all relevant information, must

be encoded in a way accessible to the OMT solver. We have opted for Google

Protocol Buffers (protobuf) to handle communications to and from the OMT
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solving module. Once a plan is computed, CLIPS retrieves it and distributes

it to the robots for execution. Robots then execute their respective partial

plans by invoking the appropriate basic behaviors through the behavioral and

functional components of the Fawkes2 software framework (for instance, BE in

Figure 3.3 represents the Lua-based Behavior Engine [NFL09] that provides the

basic skills to execute plans). Only through this framework does the reasoning

system interact with the simulation.

Several challenges can arise during execution, as original modeling assump-

tions might not hold in the real system due to, e.g., action failure, plan failure

due to ignorance or change in a dynamic environment. If this happens, plans

might become inconsistent and lead to undesired behaviors. In our framework,

we rely on the interplay between the planning module and the on-line executive

to tackle this problem. Once plans have been generated, CLIPS automatically

starts the appropriate tasks. Updates on execution (e.g., if a certain task is

currently in progress, task failures) are always distributed in the world model,

therefore the executive is constantly informed about execution progress. When

inconsistencies with the model are detected, the executive can ask for a new

plan, and our encoding allows to compute this starting from any arbitrary ini-

tial world state.

In the following, we describe the main components of our system and show

how they operate together in our pipeline.

3.2.1 CLIPS rules engine

The ”C” Language Production System (CLIPS) [Wyg89] is a rule-based pro-

duction system developed at NASA which uses forward chaining inference based

on the Rete algorithm [For82]. CLIPS consists of three building blocks [Gia07]:

a fact base, a knowledge base and an inference engine.

The fact base can be seen as a global memory where data is stored in the

form of facts, high-level statements that encode pieces of information about the

world state. The knowledge base instead, is used to represent knowledge. More

specifically, CLIPS provides heuristic and procedural paradigms for representing

2Fawkes is a component-based software framework for robotic real-time applications. URL:

www.fawkesrobotics.org
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knowledge in the form of rules and functions respectively.

Rules specify heuristics to decide which actions to perform in what situa-

tions. An example of a CLIPS rule is shown in Listing 3.1. Formally, rules are

composed of an antecedent and a consequent. The antecedent is defined as a set

of conditions expressed over facts (lines 2–6), while the consequent consists of a

set of actions to be performed (lines 8–16) when the rule is applicable. Actions

in CLIPS are represented by functions (lines 8–14, omt-create-* calls are func-

tions), pieces of executable code which can return values or perform side-effects

(e.g., interact with the low-level control layer for robots).

The inference engine is the mechanism that CLIPS provides to control the

overall execution of rules. At system initialization, the inference engine is in-

structed to begin execution of applicable rules. To determine whether a rule

is applicable, the inference engine checks for each rule in the knowledge base

whether their antecedent is met by the facts initially asserted in the fact base.

If all conditions specified in the antecedent of a rule are satisfied then the

rule is activated and added to the execution agenda. If more than one rule

is applicable, the inference engine uses a conflict resolution strategy to select

which rule should have its actions executed. The actions of the selected rule are

executed (which may affect the list of applicable rules) and then the inference

engine selects another rule and executes its actions. This process continues until

no applicable rules remain.

3.2.2 Communication infrastructure

For plan synthesis, the world model, with all relevant information, must be en-

coded in a way accessible to the solver. In this work, we have used Google Proto-

col Buffers3 (protobuf) to encode the world state when synthesis is triggered,

as well as the resulting plan. Protocol buffers define a language-independent

mechanism for serializing structured data. To use them, one needs to specify

the structure of the data to be serialized (i.e., specify the data type). Once this

is done, the protocol buffer compiler needs to be run to automatically generate

data access classes in the language of interests – C++ in our case. Protobuf

buffers provide a convenient transport, exchange, and storage representation

3https://developers.google.com/protocol-buffers/
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1 (defrule production-call-clips-omt

2 (phase EXPLORATION)

3 (team-color ?team-color&CYAN|MAGENTA)

4 (state IDLE)

5 (not (plan-requested))

6 (test (eq ?*ROBOT-NAME* "R-1"))

7 =>

8 (bind ?p

9 (omt-create-data

10 (omt-create-robots ?team-color)

11 (omt-create-machines ?team-color)

12 (omt-create-orders ?team-color)

13 )

14 )

15 (omt-request "explore-zones" ?p)

16 (assert (plan-requested))

17 )

Listing 3.1: CLIPS rule to trigger synthesis.

that is easy to create and read. They also have powerful introspection capa-

bilities which are particularly useful for generic access from reasoning systems.

For example, the CLIPS-based access requires only the message definition files

and not any pre-generated code. We use the exploration problem as a working

example to show the interaction between the solving module and the CLIPS

agent. The rule to trigger the synthesis process is shown in Listing 3.1. Once

the game is started (lines 2–4), the first robot (line 6) will create a data struc-

ture initialized with all relevant information needed to compute a plan (lines

8-14), and pass it over to the OMT solver to request a plan (line 15).

The OMT side uses this data to build planning encodings (more details

on these are given in the following sections). If solving completes successfully,

the OMT plug-in notifies the executive that a solution is ready for retrieval.

An excerpt of the message specifications for plan representation is shown in

Listing 3.2. First, a list of actor (robot) specific plans is defined in lines 1–3,

where the keyword repeated specifies that the field may be repeated multiple

times. Each plan (lines 4–11) requires the actor for the plan to be defined

(required keyword) and either is a serial or a temporal plan (oneof keyword). In

this example, we show how a message for serial plans is defined (lines 12–14).
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1 message ActorGroupPlan {

2 repeated ActorSpecificPlan plans = 1;

3 }

4 message ActorSpecificPlan {

5 required string actor_name = 1;

6

7 oneof plan {

8 SequentialPlan sequential_plan = 2;

9 TemporalPlan temporal_plan = 3;

10 }

11 }

12 message SequentialPlan {

13 repeated PlanAction actions = 1;

14 }

15 message PlanAction {

16 required string name = 1;

17 repeated PlanActionParameter params = 2;

18 }

19 message PlanActionParameter {

20 required string key = 1;

21 required string value = 2;

22 }

Listing 3.2: Plan data type specfication in protobuf. Each field requires a

numerical tag, that identifies the field in the binary encoding.

A serial plan simply consists of a series of actions (lines 15–18), each of which is

defined by a name and parameterized by a number of key-value pairs (lines 19–

22). Listing 3.3 shows a concrete example of a plan for two robots – "R-1" and

"R-2" – with two "move" action commands.

3.2.3 Execution and monitoring

Once a plan has been retrieved, it must be translated into a native CLIPS

representation. Each action specified by the OMT module (see Listing 3.3) is

added to the fact base by means of facts which identify tasks and steps to be

executed on the CLIPS side. Rules are defined to process such tasks and steps,

defining the actions to be executed. Listing 3.4 shows an example of such a

translation for Listing 3.3, lines 1–19. First, a task fact is added (lines 1–2) to
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1 plans [0] :ActorSpecificPlan {

2 actor_name: "R-1"

3 sequential_plan :SequentialPlan {

4 actions [0] :PlanAction {

5 name: "move"

6 params [0] :PlanActionParameter {

7 key: "to"

8 value: "C-BS-I"

9 }

10 }

11 actions [1] :PlanAction {

12 name: "move"

13 params [0] :PlanActionParameter {

14 key: "to"

15 value: "C-DS-I"

16 }

17 }

18 }

19 }

20 plans [1] :ActorSpecificPlan {

21 actor_name: "R-2"

22 sequential_plan :SequentialPlan {

23 actions [0] :PlanAction {

24 name: "move"

25 params [0] :PlanActionParameter {

26 key: "to"

27 value: "C-CS1-I"

28 }

29 }

30 actions [1] :PlanAction {

31 name: "move"

32 params [0] :PlanActionParameter {

33 key: "to"

34 value: "C-RS2-I"

35 }

36 }

37 }

38 }

Listing 3.3: Plan represented through the messages from Listing 3.2 (shown

in augmented JavaScript Object Notation).
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1 (task (task-id 1910) (robot "R-1") (name explore)

2 (state proposed) (steps 1911 1912))

3 (step (id 1911) (name drive-to) (state inactive)

4 (machine C-BS) (side INPUT)

5 (sync-id (next-sync-id)))

6 (step (id 1912) (name drive-to) (state inactive)

7 (machine C-DS) (side INPUT)

8 (sync-id (next-sync-id)))

Listing 3.4: Task representation in CLIPS.

specify robot actor and steps to be executed. Step facts are specified in lines 2–8,

where more details about the low-level robot actions are added.

After a plan is added to the fact base, it must be distributed to all robots

for execution. To do so, our system relies on the communication infrastructure

used to share world model updates among the robots. This encapsulates fact

base updates in protobuf messages and broadcasts them to the other robots. A

(dynamically elected) master generates a consistent view and distributes it to

the robots. On each robot, the CLIPS executive has rules that automatically

start tasks when applicable. Basic behaviors in our framework are provided by a

Lua-based Behavior Engine, but could in principle be provided by other sources.

A step in a task is executed by triggering the execution of an asynchronous

durative procedure. Then, information about the execution of the state is read

and asserted in the fact base. Updates on task execution (e.g., whether a task

is currently in progress) are distributed in the world model, making sure that

the on-line executive is informed about the status of execution.

During execution, the modeling assumptions may be challenged and, in gen-

eral, actions may fail or produce an unexpected result. For instance, an object

might be misplaced, or slack during execution could make a plan invalid, for

example if a specified deadline cannot be met. As explained above, steps of a

task are triggered non-blocking, i.e., rule evaluation continues normally. This

can be used to implement execution monitoring, where rules can be defined to

identify situations where a step should be skipped or a task be aborted.
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3.3 Exploration phase

In this section we show how to construct plans for the exploration phase of a

game in the RCLL. Although exploration does not play a major role in determin-

ing the outcome of a competition, we decided to start with this phase because

of the easy formulation of the underlying problem. As explained in Section 3.1,

in the exploration phase the robots must roam the environment and determine

where the team’s own machines are positioned. Each team is assigned 12 virtual

zones to explore, out of which only 6 contain machines. However, even though

the problem formulation looks simple, computing an optimal solution (in terms

of fastest execution) proved to be challenging: optimal exploration is a variant

of the multiple traveling salesman problem, which is known to be NP-hard. As

we learned, the combinatorial nature of this problem poses a great challenge

to the OMT solver: naive encodings fail to cope with the complexity of the

domain.

The experimental analysis presented here has been carried out using the νZ

solver4 [BPF15]. Though most of the encodings we present in the following gen-

erate linear arithmetic problems, due to the Boolean structure of these formulas

we could not use any linear programming tools. We considered also the OMT

solvers SMT-RAT [CKJ+15] and OptiMathsat [ST15b]. The latter specializes

in optimization for real arithmetic problems, whereas SMT-RAT is tuned for the

satisfiability check of non-linear real arithmetic formulas. However, the nature

of our problems rather requires combinatorial optimization at the Boolean level

and therefore the strengths of these two solvers could not be exploited to their

fullest. νZ was the tool which could solve all the instances proposed, therefore

it was chosen as best candidate for our empirical analysis.

3.3.1 Developing and testing different encodings

We will now proceed with a presentation of the different encodings we proposed

to solve the exploration phase. These encodings, being domain-specific, deviate

substantially from the standard state-based representations of Chapter 2 and

are strongly optimized toward the specific problem considered.

4Running on a machine running Ubuntu Mate 16.4, Intel Core i7 CPU at 2.10GHz and

8GB of RAM
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ϕdepot :=


pos1,−1 = −1 ∧ pos1,0 = 0 ∧ pos2,−2 = −2∧

pos2,−1 = −1 ∧ pos2,0 = 0 ∧ pos3,−3 = −3∧

pos3,−2 = −2 ∧ pos3,−1 = −1 ∧ pos3,0 = 0

(3.1)

ϕmove :=



3∧
i=1

di,0 = 0 ∧

Z∧
j=1

( Z∨
k=0

Z∨
l=1
l 6=k

posi,j−1=k ∧ posi,j=l ∧ di,j=di,j−1+D(k, l)

)

∨
(
posi,j=− 4 ∧ di,Z=di,j−1

)
(3.2)

ϕeach :=


Z∧
k=1

 3∨
i=1

Z∨
j=1

(
posi,j = k ∧

3∧
u=1

Z∧
v=1

(u,v) 6=(i,j)

posu,v 6= k

) (3.3)

ϕmax :=


3∧
i=1

mi ⇔
( 3∧
l=1
l<i

dl,Z < di,Z ∧
3∧
l=1
i<l

dl,Z = di,Z

) (3.4)

Figure 3.4: SMT encoding (A) for the exploration phase.

First encoding (A). We encode the high-level task to explore Z zones by

3 robots as shown in Figure 3.4. Robots start from a depot, modeled by some

fictitious zones −3,−2,−1. Each robot i ∈ {1, 2, 3} starts at zone −i, moves

over to the zones −i+1, . . . , 0, and explores, from the start zone 0, at most Z

of the zones 1, . . . , Z. The distance between two zones i and j is denoted by

D(i, j). Here we assume the distance that a robot needs to travel to reach the

start zone to be 0, but it could be also set to any positive value (see Figure 3.5).

The movements of robot i are encoded by a sequence posi,−i, . . . , posi,Z of

zones it should visit, with posi,j ∈ Z. The variables posi,−i, . . . , posi,0 in ϕdepot

in formula (3.1) represent the movements from the depot to the start zone.
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0

−1 −2 −3

1 M. . .

D
(−
3,
−2
) =

0

D
(−
2,
−1
) =

0

D(−1, 0) = 0

D(0,M) 6= 0D(0, 1) 6= 0

Figure 3.5: Initial robot configuration.

For j > 0, if the value of posi,j is between 1 and Z then it encodes the jth

zone visited by robot i. Otherwise, posi,j = −4 encodes that the robot stopped

moving and stays at its last position for the rest of the exploration (i.e., the plan

does not require robot i to explore any more zones). The total distance traveled

by robot i to visit zones until step j is stored in di,j ∈ R. These facts are encoded

by ϕmove in formula (3.2): for each robot i ∈ {1, 2, 3} we set di,0 = 0 and for

each j ∈ {1, . . . , Z}, we make sure that, at each step j, either the robot moves

and its travel distance is incremented accordingly, or the robot stops moving.

Notice that in this second case, we can immediately determine the total travel

distance for the robot at the last step in the plan and, furthermore, the above

constraints imply that once robot i stops moving (posi,j=− 4) it will not move

in the future (posi,j′=− 4 and di,j′ = di,j′−1 for all j ≤ j′ ≤ Z).

For each zone k ∈ {1, . . . , Z} we enforce that it is visited exactly once by

requiring ϕeach in formula (3.3).

Finally ϕmax in formula (3.4) uses for each robot i ∈ {1, 2, 3} a Boolean

variable mi to encode whether the robot has the smallest index under all robots

with maximal total travel distances at the end of their plans (note that there is

exactly one robot with this property).

Our optimization objective is to minimize the largest total travel distance:

minimize
∑3
i=1mi · di,Z (3.5)

subject to ϕdepot ∧ ϕmove ∧ ϕeach ∧ ϕmax
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Results. Encoding A allowed us to compute optimal plans, but it did not

scale well with the number of zones to be visited. The solving time 286.7 seconds

listed in Table 3.1 for the optimal objective 12.6 for a benchmark with Z = 12

zones claims a large part of the overall duration of the exploration phase.

Tackling loosely connected constraints (B). By analyzing solver statis-

tics we noticed that the number of theory conflicts was quite large, and theory

conflicts typically appeared at relatively high decision levels, i.e., at late stages

of the Boolean search in the SAT solver. One reason for this is that during

optimization, violations of upper bounds on the total travel distances can be

recognized by the theory solver only if all the zones that a robot should visit

are already decided. In other words, the constraints defining the total travel

distance of a robot build a loosely connected chain in their variable-dependency

graph. Furthermore, explanations of the theory conflicts blamed the whole plan

of a robot, instead of restricting it to prefixes that already lead to violation. As

a result, the propositional search tree could not be efficiently pruned. To alle-

viate this problem, we added to the encoding (A) the following formula, which

is implied by the monotone increment of the partial travel distances by further

zone visits:

3∧
i=1

Z∧
j=1

di,j ≤ di,Z (3.6)

Results. As Table 3.1 shows, adding the above constraints led to a slight

improvement, but the solving time of 255.55 seconds for 12 zones is not accept-

able for the application considered.

Symmetry breaking (C). Although the robots start from different zones,

all move to the start location 0 at cost 0 before exploration. Thus, given a sched-

ule for the three robots, a renaming of the robots gives another schedule with

the same maximal travel distance. These symmetries result in the solver cover-

ing unnecessarily redundant search space, significantly increasing solving time.

However, breaking these symmetries by modifying the encoding and without
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modifying the solver-internal algorithms is hard. A tiny part of these symme-

tries, however, can be broken by imposing on top of encoding (B) that a single,

heuristically determined zone k (e.g., the closest or furthest to zone 0) should

be visited by a fixed robot i:

Z∨
j=1

posi,j = k (3.7)

Results. This at first sight rather weak symmetry-breaking formula proved

to be beneficial, resulting in a greatly reduced number of conflicts as well as

solving time (81.64 seconds for Z = 12 zones, see Table 3.1). However, this

encoding just fixes the robot that should visit a given single zone, thus the

computational effort for Z zones reduces only to a value comparable to the

previous effort (using encoding (B)) for Z − 1.

Explicit scheduler choice (D). In order to make the domain over which

the variables posi,j range more explicit, we added to encoding (C) the following

requirement:

3∧
i=1

Z∧
j=1

(posi,j = −4 ∨
Z∨
k=1

posi,j = k) (3.8)

Results. This addition led to some performance gain. With a solving time

of 54.17 seconds for 12 zones, our approach could be successfully integrated in

the RCLL planning framework.

Partial bit-blasting (E). To reduce the number and size of theory checks,

we also experimented with partial bit-blasting: the theory constraints posi,j=k

in encoding (C) were replaced by Boolean propositions posi,j,k∈B, which are

true iff robot i visits zone k at step j. For each i∈{1, 2, 3} and j∈{−3, . . ., Z}

we ensure that there is exactly one k∈{−4, . . ., Z} for which posi,j,k is true by

bit-blasting for the Z+5 possible values (using fresh propositions pi,j,k ∈ B):
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posi,j,0 ⇐⇒ (¬pi,j,dlog (Z+5)e ∧ . . . ∧ ¬pi,j,0)

posi,j,1 ⇐⇒ (¬pi,j,dlog (Z+5)e ∧ . . . ∧ pi,j,0) . . . (3.9)

Results. As shown in Table 3.1, partial bit-blasting did not introduce any

improvement. On the contrary, an optimal solution for 12 zones could not be

computed within 5 minutes. We made several other attempts to improve the

running times by modifying encoding (D), but they did not bring any major

improvement.

Explicit decisions (F). Even though encoding (D) could be integrated in

the RCLL framework, we investigated ways to further reduce the solving times.

To this purpose, we developed a new encoding shown in Figure 3.6, in which

we made some decisions explicit by means of additional variables.

In particular, for each k ∈ {1, . . . , Z} we introduced an integer variable

mk to encode which robot visits zone k, and an integer variable ni,k for each

i ∈ {1, 2, 3} to count how many of the zones 1, . . . , k robot i has to visit. The

meaning of these variables are encoded in ϕvisits in formula (3.10).

We keep the position variables posi,j to store which zone is visited in step j

of robot i, but their domain is slightly modified: knowing the number ni,Z of

visits for each robot, the fictitious location posi,j = −4 is not needed anymore.

Instead, we will simply disregard all posi,j assigned for j > ni,Z .

We also keep the variables di,j , but with a different meaning: di,j stores the

distance traveled by robot i from its (j−1)th position posi,j−1 to its jth position

posi,j . We add the constraints formula (3.11) for defining the positions up to

the start zone and additionally the constraints in formula (3.12). Note that we

replaced di,j = D(k, l) with a weak inequality constraint. As we discuss later

in this section, this was possible as the minimization of travel distances will

anyways enforce the equality, but solving inequalities seems to be easier for νZ.
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ϕvisits :=


3∧
i=1

[
ni,0 = 0 ∧

Z∧
k=1

(mk = i ∧ ni,k = ni,k−1 + 1)∨

(mk 6= i ∧ ni,k = ni,k−1)

] (3.10)

ϕdepot :=


pos1,−1 = −1 ∧ pos1,0 = 0 ∧ pos2,−2 = −2∧

pos2,−1 = −1 ∧ pos2,0 = 0 ∧ pos3,−3 = −3∧

pos3,−2 = −2 ∧ pos3,−1 = −1 ∧ pos3,0 = 0

(3.11)

ϕdist :=


3∧
i=1

Z∧
j=1

 Z∨
k=0

Z∨
l=1
l 6=k

(
posi,j−1=k ∧ posi,j=l ∧ di,j ≥ D(k, l)

)
(3.12)

ϕtot :=


3∧
i=1

(ni,Z = 0 ∧ di ≥ 0) ∨
Z∨
k=1

(ni,Z = k ∧ di ≥
k∑
j=1

di,l)


(3.13)

ϕall :=


3∧
i=1

Z∧
k=1

mk = i =⇒
Z∨
j=1

(
ni,Z ≥ j ∧ posi,j = k

) (3.14)

ϕbounds :=

{
3∧
i=1

Z∧
k=1

Z∧
j=1

1 ≤ mk ≤ 3 ∧ 0 ≤ ni,k ≤ Z ∧ 1 ≤ posi,j ≤ Z

(3.15)

ϕsymm :=

{
d1 ≥ d2 ∧ d2 ≥ d3 (3.16)

Figure 3.6: SMT encoding (F) for the exploration phase.



CHAPTER 3. PLANNING FOR LOGISTICS 39

Z
(A) (B) (C) (D) (E) (F)

Time Conf Time Conf Time Conf Time Conf Time Conf Time Conf

6 0.40 4841 0.25 3206 0.18 2525 0.17 2069 0.29 3416 0.16 1103

8 2.07 14400 1.91 15248 1.16 9237 1.62 14355 5.32 30302 1.23 3876

10 80.06 225518 59.71 184685 26.71 91648 21.72 89785 TO 8.97 27811

12 286.70 486988 255.55 449485 81.64 198249 54.17 161134 TO 36.21 101308

Table 3.1: Running times (sec) and conflicts for encodings (A)-(F) evaluated

over 100 benchmarks (Z: number of zones to be visited, TO: 5min).

A new variable di for i ∈ {1, 2, 3} is used to store the total travel distance

for each robot in ϕtot in formula (3.13), which ensures that, if robot i has to

visit k zones (ni,Z=k) then its total travel distance di is (at least equal to) the

sum of the distances traveled from posi,0 to posi,k. If robot i does not move at

all (i.e., ni,Z = 0) then di will be (at least) zero.

The formula ϕall in formula (3.14) makes sure that each robot visits all zones

it has been assigned to by means of variables mk: if robot i is assigned to zone

k then this zone will be visited at some step j (within the upper bound on the

number of zones to be visited ni,Z).

Furthermore, in ϕbounds in formula (3.15) we introduce bounds on integer

variables so that the solver can represent integers as bit-vectors and internally

perform bit-blasting.

Finally, we replace the nonlinear objective function specified in formula (3.5)

by a linear one: since all robots start from the start zone, we exploit symmetry

and require an order on the total travel distances in formula (3.16). We can

now minimize the total distance for the first robot d1 under the side condition

that the conjunction of all formulas in Figure 3.6 holds.

Results. Table 3.1 shows a considerable improvement by encoding (F) over

previous solutions for the selected benchmarks.

In order to obtain statistically significant results, we also tested encoding

(F) on 100 most recurring instances of the RCLL problem with 12 zones (see

Table 3.2). Especially the replacement of a non-linear objective function with a

linear one allowed us to reduce the complexity of the optimization problem at

hand.
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Z
(F) (F1) (F2)

Time #solved Time #solved Time #solved

12 54.78 66/100 57.02 66/100 66.84 46/100

Table 3.2: Average solving time (sec) and #instances solved for encodings (F),

(F1) and (F2) on 100 benchmarks (TO: 2min).

To analyze the potential sources of improvement, we made additional ex-

periments with two variants of encoding (F): in encoding (F1) we removed the

bounds for integer variables as specified in formula (3.15), and in encoding (F2)

we replaced the inequalities in formula (3.12) and (3.13) with equalities (while

the constraints from formula (3.15) are kept in (F2)). Table 3.2 and Figure 3.7

show results for the previously used 100 benchmarks.

While working with unbounded integers in encoding (F1) does not seem to

significantly affect the solving times, the solving time for the encoding (F2) with

equalities is almost always higher, and less instances could be solved within the

timeout.
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Figure 3.7: Comparison of solving times (msec): encodings (F) versus (F1) (left)

and (F) versus (F2) (right) (Z = 12, TO: 2min).
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3.4 Production phase

Building on the results obtained for the exploration phase, we moved on to con-

sider the production phase of the RCLL. This part of the game poses challenges

to the OMT solver that are different in nature with respect to the ones met

before. One the one hand, production tasks are more constrained and therefore

present less symmetries than exploration. On the other hand, they require more

sophisticate robot-robot and robot-environment interactions, which affect both

plan synthesis and execution.

The methodology presented here has been fully integrated in the system

presented in Section 3.2 and won the first place in the Planning and Execu-

tion Competition for Logistics Robots in Simulation held at the International

Conference on Automated Planning and Scheduling 2018.5

3.4.1 Building a formal model for production processes

Given an RCLL configuration, our goal is to find a bounded sequence of robot

actions that maximizes the total reward achieved for delivering ordered prod-

ucts. Due to the complexity of the RCLL domain, several challenges arise when

building a logical encoding of this optimization problem. The formal model

needs to account for concurrent robot motions, production processes and ma-

chine states, order schedules, deadlines and rewards.

As for the previous section, our encodings are non-standard. Here, however,

we do follow the structure of state-based encodings to some extent. The novelty

of our encoding lies in the state representation adopted. Instead of creating full

copies of state variables for each planning step, we use an abstract representa-

tion that encodes salient information about the world. For instance, instead of

creating variables to represent the state of all three robots, we create one single

set of variables that describe the state of a generic robot. The specification of

the concrete state of a given robot is then achieved using the domains of such

state variables.

Such representation also requires a different encoding of the transition func-

tion: classical encodings would yield inconsistent information here. As we will

5http://icaps18.icaps-conference.org/
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show, we alleviate this problem by encoding long-distance dependencies between

variables. Each time a concrete resource – be it a machine or a robot – needs

to be used, our encoding goes back to the last planning step where the corre-

sponding variables were used and propagates their values to the current decision

step. We now proceed with a formal characterization of how this whole process

is encoded in SMT formulas.

Our reduced-size representation assumes that decisions on actions are made

sequentially for one robot at a time; the transitions in T will model those de-

cisions and their effects by updating the states of all components of the model

accordingly. Continuous variables are used to keep track of time – e.g., when a

robot starts an action or a machine completes a production step – and are used

to ensure that decisions made locally during each step are time-consistent at a

global level.

Let M represent the total number of machines in the arena, R the number

of robots used and n the planning horizon considered. The first step towards

defining a formal model for robot motions and machine processes is to identify a

set of variables that encode all the relevant properties of the system’s state. To

be able to refer to the jth action and its effects, we attach an index from the do-

main {1, . . . , n} to the variables. Furthermore, since actions have preconditions

and effects, for each step we encode explicitly the state of the system before and

after an action is performed; we do so by appending A and B respectively to

the variable names. Thus, if x is a variable describing the state of a component

then xAj and xBj encode the component state before and after the jth action.

Actions. Each action has a unique integer identifier. For j ∈ {1, . . . , n} we use

• Aj to store the identifier of the action performed in step j,

• tj is the time when the execution of the action of step j starts and

• rdj is the time needed to complete the action of step j.

Robots. The identity and state of the robot executing the action of step j ∈

{1, . . . , n} will be described using the following variables:

• Rj stores the integer identifier of the robot executing step j,

• holdAj and holdBj tell whether the robot is holding something before

respectively after the action at step j and
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• posj specifies the position where the robot needs to be to execute the

action assigned at step j.

Machines. The identity and state of the machine used in step j ∈ {1, . . . , n}

is encoded by the following integer-valued variables:

• Mj tells what machine is involved in the action performed at step j,

• mdj specifies the action duration,

• state1Aj and state1Bj encode whether the machine used in step j is

prepared before resp. after the step,

• state2Aj and state2Bj encode whether a CS used at step j is loaded

with a cap or not and

• state3Aj and state3Bj encode whether the slide of a CS used in step

j is full or not.

Initial state. We introduce dedicated variables to describe the initial state.

Though the game always starts in a fixed initial state, such variables give

us the flexibility to synthesize plans on-the-fly during the game. We define

for all i ∈ {1, ..., R} and k ∈ {1, . . . ,M}:

• initPosi and initHoldi to encode initial conditions for robot i and

• initState1k, initState2k and initState3k to store the initial state for

machine k.

Rewards. To define the objective function to be optimized, we use for each

step j ∈ {1, . . . , p}

• a real-valued variable rewj to store the reward achieved for executing

step j.

Using the above variables, we define the encoding of plans as shown in Fig-

ure 3.8. In the following, products are encoded by integer values – e.g., “no

product” is represented by 0, black base by 1, etc. We start with defining sub-

formulas to encode the initial system state, the preconditions and effects of the

possible actions and the rewards that can be achieved.
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Initialization. For the initial state of the game we define the ϕinit in for-

mula (3.17), meaning that robots start from the depot and do not hold objects,

while machines are not prepared nor loaded for production.

Making initial states consistent. ϕstart in formula (3.18) ensures that the

above initial values are propagated to the initial states for robots and machines.

If robot i is active at step j and it has never been active before, then j is its first

step and it must start in the robot’s initial state. Moreover, for each step, the

robot timer is incremented by at least the travel time, which is encoded using

constants Dist(u, q) for the travel time between the machines u and q. Similar

requirements are imposed on the machines.

Making successor states inductively consistent. The formula ϕid in for-

mula (3.19) ensures that when a robot or machine is not involved in an action

then the action does not change the robot’s (resp. machine’s) state. The for-

mula states that if robot i is active at step j′ and it has not been active since

step j < j′, then we ensure that its hold state is propagated to j′ (we say that

effects of previous step j are equal to the preconditions at j′). The robot moves

to the location required by the action assigned at j′. The robot timer will be in-

cremented by at least travel time plus action duration. A similar interpretation

holds for the machines.

Action rules. formula (3.20) defines ϕa that specifies the preconditions and

effects of action a. The formula means that when an action a – encoded by its

integer identifier – is selected, the appropriate preconditions are checked and

effects are propagated. For instance, the rule for the delivery action will have

the following definition:

Aj = 11 =⇒ (Mj = 2 ∧ state1Aj = 8 ∧ state1Bj = 0∧

state2Bj = state2Aj ∧ state3Bj = state3Aj ∧mdj=15∧

posj = 2 ∧ holdAj = 3 ∧ holdBj = 0 ∧ rdj = 10)

Reward scheme. Finally, we need to specify a reward scheme for actions.

As already mentioned, by means of rewards we can drive the synthesis towards

optimal plans. We chose to assign positive rewards to the delivery action only,
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while all other actions bring no rewards. The reward is defined in formula (3.21)

by ϕrew where dl is the deadline for delivering a specific product and tj +

mdj indicates the instant when the appropriate station completes the delivery

process. Such reward strategy yields plans that minimize the makespan of the

plan executed by robots.

Plans. Optimal plans can now be encoded by the problem to maximize rewp

under the side condition ϕinit ∧ ϕstart ∧ ϕid ∧ (
∧
a∈A ϕa) ∧ ϕrew, where A is the

set of all actions needed to produce the requested product.



CHAPTER 3. PLANNING FOR LOGISTICS 46

ϕinit :=


R∧

i=1

initHoldi = 0 ∧ initPosi = 0∧

M∧
k=1

initState1k = 0 ∧ initState2k = 0 ∧ initState3k = 0

(3.17)

ϕstart :=



R∧
i=1

n∧
j=1

(Rj = i ∧
j−1∧
j′=1

¬(Rj′ = i) =⇒ (holdAj = initHoldi)∧

M∨
u=0

M∨
q=1

initPosi = u ∧ posj = q ∧ tj ≥ Dist(u, q))∧

M∧
k=1

n∧
j=1

(Mj = k ∧
j−1∧
j′=1

¬(Mj′ = k) =⇒ (state1Aj = initState1k

∧ state2Aj = initState2k ∧ state3Aj = initState3k))

(3.18)

ϕid :=



n∧
j=1

n∧
j′=j+1

(Rj′ = Rj ∧
j′−1∧

j′′=j+1

¬(Rj′′ = Rj) =⇒ (holdAj′ = holdBj)

∧
M∨

u=0

M∨
q=1

posj = u ∧ posj′ = q ∧ tj′ ≥ tj + rdj + Dist(u, q))∧

n∧
j=1

n∧
j′=j+1

(Mj′ = Mj ∧
j′−1∧

j′′=j+1

¬(Mj′′ = Mj) =⇒

(state1Aj′ = state1Bj ∧ state2Aj′ = state2Bj

∧ state3Aj′ = state3Bj ∧ tj′ ≥ tj + mdj))

(3.19)

ϕa :=

{
Aj = id =⇒ (preconditions ∧ effects) (3.20)

ϕrew :=

{
rewj = dl− tj −mdj

(3.21)

Figure 3.8: SMT encoding for the transition system underlying the RCLL do-

main.
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3.4.2 Experimental evaluation

To evaluate plans computed by our system, we consider the production process

shown in Figure 3.9. Assembling a C0 product requires the following actions:

ID Action

1 Retrieve base with cap from shelf at CS

2 Prepare CS to retrieve cap

3 Feed base into CS

8 Discard cap-less base

7 Prepare BS to provide black base

6 Retrieve base from BS

4 Prepare CS to mount cap

5 Feed black base to CS

9 Retrieve black base with cap from CS

10 Prepare DS for slide specified in order

11 Deliver to DS

We generated 100 problems, determined by a unique machine placement

and order set each. This allows for qualitatively validating plan generation

and determining costs of plans generated. We vary the complexity through

the number of robots participating in the task. In the following, we report an

experimental analysis that focuses on encodings for producing a single product

of the lowest complexity C0 (Figure 3.9).

We compare our solutions with domains encoded in PDDL2.1 [FL03]. We

consider both, temporal domains with durative actions6 (T) and the same do-

mains without (NT).

6PDDL2.1 allows for more expressive temporal reasoning than the one we support in our

encoding, e.g., timed initial literals, effects happening at the beginning or at the end of an

action. Here we limit ourselves to the case where effects are can only happen at start and last

for the whole duration of an action.
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CS

BS

D
S

Figure 3.9: Production of a C0 product (top). The first step for the robot is to

move to feed a cap in to the Cap station (bottom). [NLF15, RCL17].

We run planners and solvers on a machine running Debian 9, Intel Core 2

Quad CPU Q9450 at 2.66 GHz and use the benchmark files generated using the

simulation. We also validate results generated by our approach using the simu-

lator developed for the Planning Competition for Logistics Robots in Simulation

shown in Figure 3.1.

Evaluation of OMT solvers

We started with a comparison of performances of three OMT solvers, namely,

νZ, SMT-RAT and OptiMathsat on this benchmark. A timeout for solving

is set to 60 seconds, which is the time teams can afford spending in planning

during an RCLL game without compromising their chances to win. Solving

for the domain considered proved to be challenging, however plans could be

successfully synthesized with our approach. νZ was the only tool which could

solve all the instances proposed, therefore it was chosen for our analysis.



CHAPTER 3. PLANNING FOR LOGISTICS 49

1 2 3
0

10

20

30

40

50

60

Number of robots

S
ol

v
in

g
ti

m
e

(s
)

Figure 3.10: Boxplots for solving times using νZ for 1, 2, 3-robot teams. Red

lines represent median values of 0.78s, 6.76s and 18.67s respectively.

We investigated how the solving time varies with the number of robots used.

As Figure 3.10 shows, the solving time increases with the size of the team of

robots used, moving from an average solving time of 0.79s with only one robot,

to 19.45s for three robots. A natural explanation for this could be that having

more robots increases the size of the search space and therefore the number of

solutions, which are equivalent up to renaming but do not improve the quality

of the plan. Still, the solver will perform an exhaustive check when computing

an optimal plan and this results in a harder solving process. In any case, the

times obtained are well within the suggested desirable limits for the RCLL

competition.

Off-line comparison with other approaches

In the off-line comparison, we consider the POPF [CCCG11] planner and SMT-

Plan [CFLM16], a tool that compiles PDDL domains into SMT encodings and

solves them by calling νZ internally. We choose the former as it comes readily

integrated with ROSPlan [CFL+15], a framework for task planning and execu-
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One robot Two robots Three robots

OMT POPF/NT POPF/T OMT POPF/NT POPF/T OMT POPF/NT POPF/T

o a o a o o a o a o o a o a o

# of instances

solved
100 100 100 100 100 100 0 0 19 19 100 0 0 9 9

solving time

average (s)
0.79 5.09 0.87 20.73 11.02 7.06 – – 25.66 17.68 19.45 – – 34.25 31.30

plan makespan

average (s)
64.1 186.99 99.22 67.49 76.06 51.98 – – 60.09 62.10 51.85 – – 54.65 57.56

Table 3.3: Comparison of OMT and POPF for temporal (T) and non-temporal

(NT) domains using anytime (a) and one-shot (o) planning.

tion we used in the validation presented in the following. SMTPlan, instead,

was selected because it represents an interesting solution building a bridge be-

tween AI planning and SMT solving. Both tools are evaluated on non-temporal

(NT) and temporal (T) domains.

Table 3.3 shows the results of this comparison, carried out using a timeout of

60 seconds, a typical time still acceptable in the RCLL. A total of 100 different

domain instances were run for each approach for 1, 2 and 3 robots respectively,

resulting in a total of 900 runs. For POPFanytime we report the time needed

for the planner to compute an improved solution, although the tool still ran

for the whole 60 seconds allocated. SMTPlan is not listed, as it timed out

for all the instances considered. We conjecture that this may be due to the

way PDDL domains are compiled to SMT, resulting in unnecessarily redundant

encodings that are difficult to solve. We can observe in Table 3.3 that only

OMT could solve all benchmarks within the given timeout. While POPF could

always compute solutions for domains where only one robot was used, it failed

to do so when the number of robots increased. Furthermore, our approach is

able to solve the synthesis problem in less time, when the comparison is possible,

and produces solutions with average makespans that are always smaller than

other approaches.7 Furthermore, giving POPF additional time to optimize on

7Makespan for non-temporal POPF with single robot is computed as follows. We read the

sequence of actions contained in the plan and assign to each the same duration specified in

the temporal models used by other approaches.
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the first feasible solution (anytime) did not seem to lead to major improvements

compared to the one-shot evaluation. We should mention that all models (OMT

and PDDL-based) use approximate values to represent action durations. In

particular we assume for the navigation actions that the robot moves at 1 m/sec,

i.e., using distance as time. While this is unrealistic for actual execution, the

values remain comparable among the approaches.

Validation of results

Plans generated with our approach were validated in the Planning Competition

for Logistics Robots in Simulation using the framework described in Section 3.2.

We tested the robustness of our solutions under realistic competition set-

tings by having two teams of robots competing against each other, one being

controlled with our approach. Had we tested using one team of robots only

(that is, our team), we would have reduced the uncertainty present in the game

due to the strategies adopted by the opponent. To control the other team, we

considered two approaches: (i) a PDDL-based approach that embeds POPF into

ROSPlan and, (ii) a purely rule-based approach based on CLIPS [NLF13], cur-

rently used by the RCLL world champions. It must be noted that the execution

engine currently used in our framework supports concurrent execution of actions

on multiple robots, ROSPlan does not.

We therefore decided start our experimental campaign with plans synthe-

sized for single robots, and have them compete with ROSPlan using a single

robot. Figure 3.11 shows statistics for 100 simulations, where our approach

competed with ROSPlan combined with non-temporal (a) and temporal (b)

reasoning. We plot delivery times for both approaches and for each game.

Confirming our off-line results, our plans were able to control the robot to

deliver the order requested. However, for some simulations, plans computed by

OMT or ROSPlan failed to be executed – we set the corresponding delivery

time to 900 seconds. For what concerns our approach, we suggest this may

be due to the fact that we assume all machines in the shop-floor are correctly

working, however sometimes machines are out of order for a limited time to

simulate real world failures. Since we do not capture this uncertainty in our

logical encoding, it may happen that the assumptions about the world state
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Figure 3.11: Game statistics for a single robot, OMT playing against ROSPlan

combined with POPF using non-temporal (a) and temporal (b) reasoning (20

seconds timeout).
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Figure 3.12: Game statistics for OMT plans (multi-robot) versus ROSPlan

combined with POPF using non-temporal reasoning (single robot) (timeout 20

seconds).

made during synthesis become inconsistent during execution. During the first

batch of games (Figure 3.11, a) we can observe that our plans failed 5 times,

while the opponent failed 12 times. In all other cases we could deliver products

successfully within the deadline of the game (15 minutes). Comparing delivery

times between the two approaches would not be fair in this case, as ROSPlan

did not perform any temporal reasoning during these games. We therefore

proceeded with a comparison with ROSPlan combined with temporal reasoning

(Figure 3.11, b). There, our approach failed 11 times, while ROSPlan failed 7.

However, we can observe that when successful, our team had a median delivery

time of ∼ 332 s, against ∼ 490 s of the other team. Such simulations reflect the

results we obtained during our off-line evaluation, where our approach could

compute plans with the smallest makespans.

We then proceeded with the evaluation of plans synthesized for multiple

robots. Synthesizing global plans for multi-robot teams could, in principle,

increase the chances of failure due to,e.g., synchronization issues. To test the

robustness of our plans, we ran 100 games where ROSPlan (again, single robot)



CHAPTER 3. PLANNING FOR LOGISTICS 54

20 40 60 80
0

200

400

600

800

1000
CLIPS agent

OMT

Games

D
el

iv
er

y
ti

m
e

(s
)

Figure 3.13: Game statistics for OMT (multi-robot, timeout 20 seconds) playing

against the rule-based approach presented in [NLF13] (multi-robot).

competed against our approach, where multiple robots were used.

Figure 3.12 shows results obtained after 100 games. Interestingly our plans

proved to be as robust as serial plans computed for a single robot. Indeed,

our approach failed 9 times while ROSPlan failed 12. Given that our approach

employed multiple robots, median delivery times for our team are always lower

than the opponent’s.

Finally, we compared the performances of our plans with the rule-based ap-

proach used by the RCLL world champions. This approach employs the full

team of robot, allowing a fair comparison between solutions for multi-robot sys-

tems. Figure 3.13 shows the results obtained after 100 games. Results obtained

show that, when successful in delivering, our approach guarantees a shorter

delivery time, with a median delivery time of ∼ 235 s against ∼ 302 s of the

rule-based approach. On the other hand, the rule-based agent proved to be

more robust, failing only 4 times against 9 times of our approach.
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3.5 Explaining plans

The problem of generating explanations for decisions taken by autonomous

robotic systems is a very pressing one. The effectiveness of these systems is

limited by their current inability to explain their decisions and actions in a

human-readable way. Several initiatives have been launched recently to tackle

this problem. For instance, DARPA started the Explainable AI program 8 with

the aim to develop new machine-learning techniques that will produce more

explainable models that could be translated into understandable and useful ex-

planation dialogues for the end user. In the same spirit, Explainable Planning

is proposed in [FLM17], where the authors consider the opportunities that arise

in AI planning to form a familiar and common basis for communication with

the users.

In this section we discuss how OMT-based synthesis implemented in our sys-

tem could be leveraged to generate explanations for the plan synthesis process.

While we acknowledge the existence of a gap between the way OMT solving

proceeds and human problem-solving, here we wish to show that OMT solvers

exploit techniques that have the potential to ease explaining and facilitate un-

derstanding of the underlying decision process.

In particular, we discuss explanations that can be used to understand (i.)

why a certain plan should be preferred, or (ii.) why no plans could be produced

for a given scenario. The discussion that follows is intended to provide initial

ideas for achieving the objective of providing effective explanations in OMT

synthesis. Examples discussed are specific to the RCLL domain, however we

expect that our results can provide a basis for general synthesis of explanations

supporting OMT-based decision making.

Explaining why a plan should be chosen. The first question we wish to

consider is explaining why a solution computed by the solver should be preferred

over different ones. To the best of our knowledge, there exists no planner able

to optimize for a metric different than minimizing plan makespan. Therefore,

while answering such a question could prove challenging, if not impossible, in

other AI-based solutions, OMT could provide useful answers.

8https://www.darpa.mil/attachments/DARPA-BAA-16-53.pdf
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j
Planning horizon

R1

A3=1 A4=2 A5=3 A6=8 A9=9 A10=10A11=11

R2

A2=6 A7=4 A8=5

R3

A1=7

A2=7 A3=6 A8=5

A1=2 A4=1 A5=3 A6=8 A7=4 A9=9 A10=10A11=11

Figure 3.14: Example of plans with minimum makespan for the production of

a C0 piece, using two (red) and three (black) robots. The makespan of both

plans is 58.52s . Action are encoded by integer ids as in Figure 3.9.

As introduced in Section 2, OMT differs from SMT solving in that it pro-

duces solutions that are not only feasible, but also optimal. The key point here

is that OMT allows to specify different metrics to measure the quality of a plan.

Modern OMT solvers support combinations (lexicographic, pareto, box) of ob-

jective functions that can be specified by the user. In this framework, a valid

explanation could be to point out the differences in the metrics and show the

different effects they have, e.g., in terms of the obtained final reward.

Example. Let us consider a simple example based on the production process

of Figure 3.9. Let us assume a plan has been requested by the user and the

reward scheme of formula (3.21) – which yields plans with minimum makespan

– has been used. A sample plan as produced by one of our plans might have

the structure depicted in black in Figure 3.14, where three robots are used.

Now suppose we want to know whether a better makespan could be achieved

using less robots. One simple way to check this could be to extend our opti-

mization problem by including an additional objective, e.g.,

maximize

p∑
j=1

Rj

which implicitly forces the solver to select robots whose integer ids have higher

value – e.g., robot 3 will be preferred over robot 1. The result is shown in red in

Figure 3.14. As we can see, it is sufficient to ask the same robot – robot 2 in this

case – to perform actions 7 and 6 to obtain a plan that has the same makespan

as the original one, but uses only two robots. So in this case, by pointing out
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the differences in the metrics used to drive the synthesis procedure, one could

produce a reason as to explain to the end-user why the second solution should

be preferred over the first one.

Explaining why a plan can not be synthesized. This question arises

when the solver fails to synthesize a plan for the problem at hand. Search-based

planners are typically not very effective at proving unsolvability of a plan. In

contrast, OMT-based approaches are well positioned to address this challenge.

Our system frames plan synthesis as a bounded model-checking problem, there-

fore if the solver states that the desired objective can not be met within a given

deadline (and/or within a planning horizon) then this is a proof that no plan

can be produced to accomplish the task.

Besides proving the non-existence of a plan, modern OMT solvers also allow

to extract unsatisfiable cores that additionally provide a reason for unsatisfiabil-

ity. Formally, given an unsatisfiable input formula ϕ = ∧ni=1ϕi, an unsatisfiable

core of ϕ is an unsatisfiable formula ψ = ∧i∈Iϕi for some I ⊆ {1, . . . , n}. In

other words, an unsatisfiable core of ϕ is an unsatisfiable formula ψ which is

either ϕ itself or ϕ = ψ ∧ ψ′ for some ψ′.

Though smaller unsat cores typically provide more compact information,

minimal unsat cores (i.e., unsat cores ∧i∈Iϕi for which ∧i∈I′ϕi is satisfiable for

all I ′ ⊂ I) are computationally hard to compute. Therefore, most solvers aim

at generating small explanations but they seldomly guarantee minimality. Since

for practical problems unsat cores might be too large to be analyzed by humans,

SMT/OMT solvers that follow the SMT-LIB standard9 require that the user

specifies a label for each of the conjunctive subformulas (also called assertions)

of interest, and only the labeled formulas in the unsat core are listed as output

(i.e., the provided explanation together with the unlabeled assertions form an

unsat core).

Example. To illustrate how unsat cores can be used to explain unsolvability,

consider the following example. The RCLL rules impose that machines can be

out of service for a given time at any point in the game. To capture this informa-

tion, we extend the encoding of machine states of Section 3.4 by introducing the

9https://smtlib.github.io/jSMTLIB/SMTLIBTutorial.pdf
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integer-valued variables state0Aj and state0Bj . Such variables encode whether

the machine used in step j is fully functional before and after action Aj respec-

tively. If a machine goes down, then all the actions involving that machine can

not be performed any more, making it impossible to complete the production of

pieces requiring the broken machine. To model this, we extend each action rule

(formula (3.20), Section 3.4) with the additional precondition that the machine

required at step j must be working. For instance, the rule for the delivery action

will become:

Aj = 11 =⇒

(Mj = 2 ∧ state0Aj = 1 ∧ state0Bj = 1∧

state1Aj = 8 ∧ state1Bj = 0 ∧ state2Bj = state2Aj∧

state3Bj = state3Aj ∧mdj = 15∧

posj = 2 ∧ holdAj = 3 ∧ holdBj = 0 ∧ rdj = 10)

Furthermore, we label each constraint in order to enable unsat core generation.

Let us now assume our synthesis procedure is triggered under the condition

that the delivery station DS is broken. This means that the actions involving

DS won’t be realizable, as a precondition for them to be performed is that the

machine has to be operational, i.e., state0Aj = 1.

1 Start solving ...

2 No solution found

3 Time: 0.209315061569

4 Unsat core:

5 prepare_DS_for_slide_specified_order_10

Listing 3.5: Unsat core generated when DS is down.

Listing 3.5 shows the unsat core produced by νZ when we impose that the

delivery station breaks at step 10, i.e., state0A10 = 0. The unsat core produced

here shows that the delivery station could not be prepared for delivery, therefore

making delivery impossible.





Chapter 4

Planning with OMT: a

general approach

Chapter 3 presented our first, domain-specific, attempt to solve planning prob-

lems using OMT technology. Although promising, the results obtained did not

allow for a more general assessment of the applicability of OMT to broader

classes of numeric problems studied by the planning community. To make up

for this, we initially focused our efforts on generalizing the concept of long-

distance dependencies to domain-independent planning. Unfortunately, this

generalization did not produce the hoped-for results and did not lead to signif-

icant advancements to the state of the art in numeric planning. We therefore

decided to explore a different direction from our previous work and developed a

new, general OMT-based approach to cost-optimal numeric planning based on

abstraction refinement. With this new encoding we could show that OMT-based

approaches have an edge on other solutions when dealing with some interest-

ing classes of numeric problems. This chapter is meant to provide a formal

characterization of our construction.

4.1 Expressiveness versus tractability

Planning for realistic problems requires expressive languages to model the world.

These languages, however, must achieve two conflicting goals: on the one hand,

60
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they need to be expressive enough so that faithful problem representations are

possible; on the other hand, they need to be simple enough so that general,

efficient algorithms can be developed to solve the problems represented.

The existence of this trade-off between expressiveness and tractability, how-

ever, does not mean that progress is not possible. Indeed, methods that can deal

effectively with (some) interesting problems represented in decidable fragments

of first-order theories have been proposed. In this chapter we focus on one such

extension of classical planning that relies on arithmetic theories, that is, nu-

meric planning. We consider the challenge of solving to optimality problems in

this class, and advance the state of the art with a new planning approach that

can handle a fragment of numeric problems for which (integrated) algorithmic

solutions have not been proposed yet.

As introduced in Chapter 2, numeric planning [FL03] is an extension of

classical planning where state variables can be numeric and actions’ precon-

ditions and effects may involve arithmetic reasoning over such variables. De-

spite being undecidable in the general case [Hel02], notable advances have been

achieved for restricted fragments of numeric planning. Admissible heuristics

have been extended to handle simple numeric planning problems [SHT16] in

which actions have linear conditions and may only increase or decrease nu-

meric variables by a constant – see, e.g, [SHT16, SHMT17, PCCB18b]. Several

heuristics have been proposed for numeric planning problems where both con-

ditions and effects are expressed as linear expressions over numeric state vari-

ables [Hof03, IM17, LSHB18]. However these are non-admissible and therefore

cannot be used in the cost-optimal setting. Cost-optimal planning with both

simple and linear effects can be handled by [PCCB18a] via a compilation to

MILP that proved to be competitive with heuristic search approaches.

In this chapter we take a step further and extend cost-optimal numeric plan-

ning to problems where conditions may be simple or linear and actions are

equipped with state-dependent costs, i.e., costs are encoded by linear expres-

sions over numeric state variables. Previous works have studied state-dependent

action costs (SDAC) [IHT+14] in the classical setting [GKM15, GKM16] and

in the presence of global numerical state constraints [IHT+14, IGH19], but did

not explore extensions towards numeric planning.
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Support and scalability are challenging in the setting we target. Complex

numeric structures require a formalism that is expressive enough to capture

them; at the same time, the added expressiveness comes at the price of poorer

scalability. We believe that recent advances in satisfiability checking could be

leveraged to address these challenges. First we present a novel SMT encod-

ing of numeric planning that enables a relaxed reachability analysis that does

not require building long, intractable formulas. In a nutshell, standard plan-

ning formulas are extended with a fixed-length suffix that performs a boolean

abstraction of the transition relation. Reasoning on this abstraction, we can

conclude whether a goal is reachable only with a modest increase in the size of

the formula and without resorting to expensive decision procedures for theory-

reasoning. We then discuss how this construction can be extended to enable

optimal planning using Optimization Modulo Theories (OMT) [ST15a], an ex-

tension of SMT that combines efficient propositional reasoning with dedicated

procedures for theory-optimization. In order to implement the above, we extend

well-known techniques for compiling planning into SAT [KS96, RHN06, Rin12]

and SMT [SD05, CFLM16]. We leverage these results to build what, to the

best of our knowledge, is the first domain-independent theory-planner based on

OMT and use it to test our scheme. We measure its performance over several

domains previously reported in the literature [SHMT17, LSHB18], and on a new

numeric domain featuring SDAC which we introduce below. This domain, al-

though not modeling a real application, represents a good example of a problem

which state-of-the-art tools struggle to solve.

4.1.1 Running example

To illustrate the workings of our approach, we introduce a new planning domain

called Security Clearance. In this domain, an intelligence agency has to

manage clearance authorizations for several documents across different security

levels. The agency can authorize a level to read a document, however doing

so changes the clearance of the document: authorizations at lower levels are

revoked, while those at higher levels remain unchanged. Authorizing a level has

a cost which directly corresponds to the level involved, e.g., authorizing level

2 costs 2. Since some documents may be more important than others, each
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(define (problem security-clearance-1-2)

(:domain security-clearance)

(:init

(not (clear_d1_l1) )

(not (clear_d1_l2) )

(= (cost_d1) 0)

(= (priority_d1) 1)

(= (high) 3)

(= (low) 1)

)

(:goal (and

(clear_d1_l1 )

(clear_d1_l2 ))

)

(:metric minimize (cost_d1))

)

Listing 4.1: PDDL representation of the initial state, goal state and plan

quality metric for the Security Clearance domain with one document d1

and two levels l1, l2.

document is initially assigned a priority. When needed, the agency can increase

it incurring in a cost proportional to the current priority of the document. If

a document has high priority, the agency can decide to authorize all levels at

once by paying the appropriate price. Starting from an initial situation where

no level is authorized, the goal for the agency is to authorize all levels to read

all documents while minimizing expenses. Listings 4.1 and 4.2 show a PDDL

model for the Security Clearance domain with one document d1 and two

levels l1, l2.

4.2 Optimal planning modulo theories

In the following we describe a new encoding for numeric planning with OMT,

which we build in two steps. For a given horizon n, we first extend standard

state-based encodings with one additional step TR (from n to n + 1, see Fig-

ure 4.1). This step performs a boolean abstraction of the effects of each action:
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(define (domain security-clearance)

(:predicates

(clear_d1_l1)

(clear_d1_l2)

)

(:functions

(cost_d1)

(priority_d1)

(high)

(low)

)

(:action increase_priority_d1

:parameters ( )

:precondition (and (< (priority_d1) (high)) )

:effect (and (increase (priority_d1) 1)

(increase (cost_d1) (priority_d1)))

)

(:action authorize_all_d1

:parameters ( )

:precondition (and (>= (priority_d1) (high))

(not (clear_d1_l1))

(not (clear_d1_l2)) )

:effect (and (clear_d1_l1) (clear_d1_l2)

(increase (cost_d1) 2))

)

(:action authorize_d1_l1

:parameters ( )

:precondition (and (not (clear_d1_l1)))

:effect (and (clear_d1_l1) (increase (cost_d1) 1))

)

(:action authorize_d1_l2

:parameters ( )

:precondition (and (not (clear_d1_l2)))

:effect (and (clear_d1_l2) (not (clear_d1_l1))

(increase (cost_d1) 2))

)

)

Listing 4.2: PDDL domain for the Security Clearance domain with one

document d1 and two levels l1, l2.
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I T GRTR

TC

0 n n+1

Figure 4.1: High-level representation of the new construction for planning for-

mulas.

actions executed in n still enforce their preconditions on concrete variables (i.e.,

variables at n), however their effects are replaced with fresh boolean variables

indicating that the corresponding concrete variables may have changed their

value. Informally, this abstraction stores information about portions of the

state space that can still be modified by actions executed after n. Since ab-

stract effects may in turn trigger the (abstract) execution of other actions, the

second step of our construction computes the transitive closure of all facts that

are true in n + 1 under an abstract transition relation enforcing both precon-

ditions and effects on variables in the abstract space (TC in Figure 4.1). In

so doing, we obtain all variables whose value could still be changed if a longer

horizon was given. The intuition behind this abstraction is as follows. If the

goal formula is not yet satisfied in n and its variables cannot be modified any

further, the corresponding planning formula is unsatisfiable and the problem

does not admit any solution. Notably, this abstraction can also be leveraged to

perform optimal reasoning, as we will describe in the second part of this section.

Since the new encoding is somewhat involved, we use the Security Clear-

ance domain to exemplify each the building block of our construction. For the

sake of readability, however, we present the construction considering a single ac-

tion, authorize d1 l1 , which we simply rename to authorize – a similar renaming

is applied to state fluents.

Building the boolean abstraction. For a given horizon n, we enforce ini-

tial condition and transitions until n as per formula (2.5.1) without any change.

When step n is reached, we append one additional step. As previously intro-

duced, this step performs a boolean abstraction of the transition relation and
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transfers the computation to an abstract space where original state variables do

not appear anymore. To exemplify this step, consider the aforementioned action

authorize. The abstraction-enabling execution of this action is modeled by a new

action t-authorize where: (i) the new action has the same precondition of the

original action and, (ii) the new action enforces a boolean abstraction through

its effects. Using this construction, we specify the semantics of an execution of

t-authorize from step n to n+1 as

t-authorizen ⇒ ¬clearn

t-authorizen ⇒ t-clearn+1

t-authorizen ⇒ t-costn+1

(4.1)

where the first axiom ensures that t-authorize is executed in n only if en-

abled, and the remaining enforce the booleanization of the effects of t-authorize

via auxiliary variables t-clear , t-cost ∈ B. Notice that mutex axioms are not in-

cluded as these abstract transitions only keep track of changes that may happen,

disregarding the actual concrete effect.

While axioms (4.1) are sufficient to model the execution of t-authorize, some

important information is still missing from the abstract space. Indeed, we must

make sure that knowledge about facts that are already satisfied at step n is

transfered to the abstract space at n+1. This means we must compute the

boolean abstraction of those facts that hold in n and are not abstracted by the

effects of actions executed in n. We therefore introduce fictitious actions that

achieve this goal. In our example,1 we would introduce an action t-sat¬clear

with the following semantics:

t-sat¬clearn ⇒ ¬clearn

t-sat¬clearn ⇒ t-con¬clearn+1

t-con¬clearn+1 ⇒ t-sat¬clearn

(4.2)

where t-sat¬clearn can be executed only if ¬clearn holds, and knowledge

about this fact is transfered at step n+1 via an auxiliary variable t-con¬clearn+1 ∈ B
1Notice that in this simplified version of SecurityClearance no additional actions would

be needed as the abstraction already contains all the relevant information. Clearly, this may

not always be the case.
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which can only be set by t-sat¬clearn . This construction requires the introduction

of one t-sat action for each atomic precondition appearing in ground actions.

In the following, we use TA to denote the set of abstract action variables (i.e.,

the set of t-actions) and TV to denote the set of abstract state variables (i.e.,

the set of t-variables and t-con ’s). Furthermore, let TR(V,TA,TV ) represent

the conjunction of all abstraction-enabling actions (including fictitious actions).

Computing the minimum reachable set. When step n+1 is reached, the

booleanization is complete. However, as a result of this abstraction, the execu-

tion of new actions may be enabled in the abstract space. In order to understand

whether executing these actions would positively contribute towards reaching

the goal, we need to compute all facts that are reachable in the abstract space.

To enable this computation, we further abstract TR(V,TA,TV ) by assert-

ing preconditions on abstract variables only. In our example, we abstract

t-authorize to tt-authorize with the following execution semantics

tt-authorizen+1 ⇒ t-con¬clearn+1 ∨ t-clearn+1

tt-authorizen+1 ⇒ t-clearn+1 (4.3)

tt-authorizen+1 ⇒ t-costn+1

t-clearn+1 ⇒ t-authorizen ∨ tt-authorizen+1

t-costn+1 ⇒ t-authorizen ∨ tt-authorizen+1

where the first axiom asserts the new preconditions, the second and third

enforce boolean effects as done previously and the last specifies frame conditions

on auxiliary variables.

Intuitively, the new preconditions assert that abstract actions can be ex-

ecuted if either the concrete precondition was already true at step n or, its

abstract counterpart can be modified at step n + 1. Since this computation is

flattened in one layer, we need to make sure the corresponding assignments are

valid. In other words, given all facts that are true in n+1 we must compute

their smallest closure under the abstract transition relation to obtain all valid

reachable abstract states. Drawing from the field of Logic Programming, we

notice that this corresponds exactly to computing the answer set [GL88] of the
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rules corresponding to actions executed at step n+1.2 In our example we have:

tt-authorizen+1, t-con¬clearn+1

t-clearn+1, t-costn+1

tt-authorizen+1, t-clearn+1

t-clearn+1, t-costn+1

(4.4)

Previous works on compilation from Answer Set Programming [GL88] to

SAT [LZ02] or SMT [Nie08] can be leveraged to encode this computation in our

construction. We use loop formulas as introduced in [LZ02] and adapt them to

the planning setting.

We start by constructing a dependency graph for actions at step n+1 as a

directed graph D such that: (i.) D has a node for each variable appearing

in action rules and (ii.) for each rule there is an edge connecting variables

appearing in the conclusion to variables in the premises. For instance, the

dependency graph for rules (4.4) is

t-clearn+1tt-authorizen+1 t-con¬clearn+1

t-costn+1

From [LZ02] we know that strongly connected components of D represent

loops in the formula, i.e., circular dependencies that hinder the computation of

the smallest set closed under action rules. To remove loop L at step n+1, we

add the formula

∨
L⇒

∨
R(L) (4.5)

where L is the set of variables representing the loop,
∨
L denotes a disjunc-

tion over all elements of L and the set R(L) is built by adding, for each rule

whose conclusions intersect L, those premises that do not intersect L. In our

running example we have one loop L = {t-clearn+1} and the corresponding

loop formula writes

2This idea bears some similarities to the relaxed reachability analysis of [Hel09], although

applied in a different setting and with a different construction.
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t-clearn+1 ⇒ t-con¬clearn+1 ∧ tt-authorizen+1 (4.6)

In the following we use TTA to denote the set of all tt-action variables

and write TC(TTA,TV ) to denote the conjunction of all abstract actions and

related loop formulas.

A new planning formula. We are now left to check whether goal states are

reachable in the abstract space. To model this, we abstract goal axioms using

the same notion of abstraction seen for preconditions in axioms (4.1), e.g., goal

condition clearn becomes t-conclear
n+1 ∨ t-clearn+1. We use GR to denote the

formula obtained after abstracting G. For an horizon n, a new planning formula

Πn+1 is constructed as

I(V0) ∧
n−1∧
i=0

T (Vi, Ai,Vi+1) ∧ TR(Vn,TAn,TV n+1)

∧ TC(TTAn+1,TV n+1) ∧GR(TV n+1)

(4.7)

With the construction we just introduced, we can formulate the following

results.

Theorem 1. (unsolvability) For any n ≥ 0, if Πn+1 is unsatisfiable, the plan-

ning problem Π does not admit solution.

Proof sketch. Assume Πn+1 is unsatisfiable while Π admits a plan. Let πm =

〈A0, . . . , Am−1〉 be the solution of Π at horizon m. If m ≤ n then Πn+1 is

satisfiable by construction therefore assume m > n. Again, by construction the

sequence 〈A0, . . . , An−1〉 satisfies Πn+1. Abstraction-enabling axioms ensure

that An is still applicable in Πn+1 and its effects enable the abstract execution

of subsequent sets 〈An+1, ..., Am−1〉. Since Am−1 reaches the goal in Π, the

abstract goal can be reached in Πn+1 as well, leading to a contradiction.

4.2.1 Extension to OMT

We now show how to extend the SMT encoding to enable optimal planning.

Formulating problems with costs – be they constant or state-dependent – in

numeric PDDL is straightforward: objective functions can be expressed by any
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arithmetic expression and actions can have arbitrarily complex effects on nu-

meric variables.

OMT can handle this added expressiveness, hence the OMT encoding has

the same structure of formula (4.7), with the following notable changes.

First, a metric for plan quality is added to the encoding. This extension

requires no effort as OMT solvers accept the specification of optimization metrics

via dedicated facilities offered by SMT-LIB [BFT16], the standard language of

SMT/OMT.

Consequently, booleanization of effects on cost variables is removed from TR

and TC . In our abstraction, actions enforce costs defined as follows. Actions in

TR are assigned the same cost of their concrete counterparts at step n ; actions

in TC are assigned their minimum cost over all states. Actions introduced with

axioms (4.2) instead have zero cost, as performing any of them should not affect

plan quality. Mutex axioms on cost variables are not added as costs are directly

enforced by pseudo-boolean terms added to the optimization metric. In our

example, we would assert cost 1 for both t-authorizen and tt-authorizen+1 (no

state-dependency) and 0 for t-sat¬clearn . The objective function to be minimized

would write

costn + 1 ∗ t-authorizen + 1 ∗ tt-authorizen+1

Next, we turn our attention to the construction of loop formulas. These

formulas play a fundamental role in ensuring the soundness of Theorem 1.

However they are not suited for optimal reasoning, at least in their current

form. To see this, consider the following scenario. Assume action t-authorize

is executed at step n. From axioms (4.1), t-clearn+1 is set to true, which, in

turn, enables axiom (4.6). While t-con¬clearn+1 is taken care of by axioms (4.2),

the loop formula forces the execution of tt-authorizen+1, although not needed.

While this does not affect reachability results, it clearly affects reasoning about

costs (tt-authorizen+1 has non-zero cost). To alleviate this problem we remove

tt-action variables from the construction of the dependency graph. This is al-

lowed only because these variables never appear in conclusions of action rules,

hence can safely be disregarded. As a result of this, loop formulas change, and

for instance formula (4.6) becomes
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t-clearn+1 ⇒ ¬clearn (4.8)

With the extensions above, we need to make sure the solver does not push

the execution of all actions to the suffix, where they would have minimum cost.

Not only this would affect optimal reasoning, but would also affect termination

of bounded planning procedures. Indeed we would need to increase the planning

horizon indefinitely hoping to find a valid plan (i.e., containing only concrete

actions), but this would never happen. Hence to ensure termination, we aug-

ment the OMT encoding with the following axioms. For each action a ∈ A let

Ma ⊆ A be the set of actions that are not independent from a. For each action

a ∈ A and for each step 0 < i < n we add

ai ⇒

ai−1 ∨
 ∨
ϕ∈prea

¬ϕi−1

 ∨( ∨
a′∈MA

a′i−1

) (4.9)

With axioms (4.9) an action a is taken at step i only if: (i.) a was already

performed at step i−1 or, (ii.) a was not applicable at step i−1 or, (iii.) another

action a′, mutex with a, was performed at i−1. These same axioms are also

enforced on abstract actions at steps n and n + 1, although on actions in TA

and TTA.

Let Π+
n+1 denote the planning formula extended with the axioms above, the

following result holds.

Proposition 1. For any n ≥ 0, Πn+1 and Π+
n+1 are equisatisfiable.

With the addition above we can formulate the following theorem.

Theorem 2. (optimality) For any n ≥ 0, let µ be the optimal solution of Π+
n+1.

If µ |= Gn then µ is a valid optimal plan.

Proof sketch. The proof is based on the fact that the goal state could be reached

without resorting to abstract actions. Since the cost of these actions is always

less than or equal to the cost of all other actions in Π, we see that adding any

more actions to µ would inevitably lead to solutions with higher cost.
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Algorithm 1 Optimal Planning Modulo Theories

1: procedure OMTPlan(Π, ub)

2: set initial horizon n := 0

3: while n ≤ ub do

4: build formula Π+
n+1

5: if Π+
n+1 is UNSAT then

6: return Π does not admit solution;

7: else

8: extract model µ of Π+
n+1 ;

9: if µ satisfies Gn then

10: return µ

11: else

12: increase horizon n;

13: return no plan found within bound ub

Planning algorithm We embed the construction presented in the previous

sections into a new planning procedure, which we call OMTPlan – see Algo-

rithm 1. Given a planning problem Π and an upper bound ub, our procedure

builds bounded encodings for increasing horizons (lines 2−4). At each iteration,

we check if formula Π+
n+1 is not satisfiable. If that is the case, the procedure

terminates according to Theorem 1 and signals that the planning problem does

not admit a solution (lines 5 − 6). If formula Π+
n+1 is satisfiable instead, we

extract a model µ for it in line 8. Notice that µ has minimum cost among all

possible models of Π+
n+1, being the result of an OMT check. We then check

the condition expressed in Theorem 2 and, depending on the result, we either

return the optimal plan represented by µ or increment the horizon for the next

iteration (lines 9 − 12). Finally, if no solution can be found within the given

upper bound, the procedure terminates signaling failure in line 13.

4.3 Empirical evaluation

To evaluate our planning procedure OMTPlan, we developed a prototypical

implementation in Python 2. Our implementation leverages the modules devel-
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oped in [EMR09] for parsing, and uses the Python API3 of νZ [BPF15] to build

and solve OMT formulas.

Implementation of the encoding We implemented an optimized version of

the encoding presented above. Indeed, upon inspection of axioms (4.1,4.2,4.3)

we can observe that variables t-con ’s and t-sat ’s can be removed by variable

elimination. Applying this step results in the following, more compact, formu-

lation4

t-authorizen ⇒ ¬clearn

t-authorizen ⇒ t-clearn+1

tt-authorizen+1 ⇒ ¬clearn ∨ t-clearn+1 (4.10)

tt-authorizen+1 ⇒ t-clearn+1

t-clearn+1 ⇒ t-authorizen ∨ tt-authorizen+1

where preconditions once enforced on t-con ’s are now directly enforced on state

variables at step n. After eliminating t-con ’s and t-sat ’s, loop formulas change

accordingly, i.e., each variable t-con appearing in a loop formula is replaced

with the corresponding precondition at step n.

Analysis and discussion Our experimental analysis compares with search

based approaches implemented in the ENHSP planner [SHTR16] and with the

MILP compilation (CSC) of [PCCB18a]. Experiments are carried out using a

30 minute timeout and 4 GB memory limits on a machine running Debian 3.16

with processor Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz.

Our analysis considers numeric problems with simple and linear conditions,

and also numeric domains with state-dependent action costs. Simple numeric

domains are taken from [SHMT17]; linear domains are from [LSHB18], with

two additions, Rover-Metric and FO-Zenotravel, developed starting from

their simple counterpart. Finally, we generate planning problems with SDACs

using the Security Clearance domain we introduced in previous sections.

3https://github.com/Z3Prover/z3/wiki/Documentation
4Booleanization of cost variables is omitted and relaxed actions enforce costs as explained

in the previous section.
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Domain # ĥrmax CSC OMTPlan Best

C T C T C T

Counters 15 6 28.22 15 1.36 7 524.59 15

Depots 20 3 1050.02 1 4.9 1 78.48 3

Farmland 30 30 193.68 28 32.86 1 211.57 30

Gardening 63 63 599.85 63 887.33 18 3031.23 63

Sailing 20 16 2101.13 17 2813.55 5 345.23 17

Satellite 20 2 293.1 4 459.8 1 17.85 4

Rover 20 4 25.91 4 10.93 4 61.5 4

Zenotravel 20 6 579.3 7 699.65 4 107.74 7

Total 213 130 4871.21 139 4910.38 31 4378.19 143

Table 4.1: Coverage (C) and total solving time (T) in seconds for domains with

simple conditions.

For domains with simple effects we compare against the ĥrmax heuristic of

[SHMT17] and the MILP compilation (CSC) of [PCCB18a]. Table 4.1 shows

coverage and the total solving time. Results confirm the efficiency of CSC

on simple numeric problems, outperforming other approaches on almost all in-

stances. On the other hand, our approach suffers from two main drawbacks.

The first one is that domains like Farmland, Gardening and Sailing feature

optimal plans with relatively many steps and little parallelism. Such “long and

narrow” plans force us to produce large encodings that exceed the capabilities

of µZ before finding optimal solutions. The second drawback has to do with our

choice of axioms (4.9) in the encoding, and can affect our performance adversely

even in domains, e.g., Counters, where optimal plans are “short and wide”,

i.e., featuring relatively few steps and lots of parallelism. Indeed, while (4.9)

tries to make sure that actions are taken before entering the suffix, it may still

happen that the optimal solution for a fixed horizon is a relaxed solution which

also satisfies (4.9). In such cases, we are still forced to increment the horizon

until we exceed the capability of the underlying solver. Note that the interaction

between relaxation and axioms (4.9) is not always harmful as the adverse effect

depends on the structure of the domain and the associated costs.

In domains with linear effects we compare our encodings with CSC and with
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Domain # hblind CSC OMTPlan Best

C T C T C T

FO-Count 20 4 339.84 3 223.83 9 2104.71 9

FO-Count-Inv 20 3 77.29 2 48.82 6 937.41 6

FO-Count-Rnd 60 14 1411.79 10 520.29 23 2835.46 23

FO-Farmland 50 13 1035.09 2 47.07 1 6.21 13

FO-Sailing 20 2 610.85 0 - 1 71.56 2

Rover-Metric (1-10) 10 4 151.69 4 14.02 5 303.39 5

TPP-Metric (1-10) 10 5 20.51 n.a. n.a. 3 524.12 5

Zenotravel-Linear 20 4 145.5 2 1.55 4 888.24 4

Total 220 49 3792,29 23 855.58 52 7671.10 67

Table 4.2: Coverage (C) and total solving time (T) in seconds for domains with

linear conditions. Entries reporting n.a. indicate that the planner could not be

run on the corresponding domain.

a weighted A∗ search using a simple goal sensitive heuristic (hblind) that returns

0 if the state is a goal state and 1 otherwise. Table 4.2 reports results obtained

in linear domains. Solving 52 problems, OMT outperforms other approaches,

still leaving room for improvement. On some domains, OMTPlan manages to

outperform the competitors. We believe that this is due to the increased com-

plexity in the numerical part which OMTPlan handles comparatively better

than the other approaches. However, OMTPlan is still challenged by domains

like Tpp-Metric, a variant of the Traveling Salesman Problem with no paral-

lelism.

We finally turn our attention to Security Clearance. We generated 36

instances of the domain, varying the number of documents (from 2 to 10) and

the number of levels (from 2 to 5). Exploring this domain both in depth and

breadth, we can investigate weaknesses of constraint and search-based methods

respectively. Here, CSC cannot be considered for our analysis as it does not

provide support for state-dependent cost structures. Hence, we compare only

with hblind. Figure 4.2 shows a cactus plot of the result obtained. As one can

observe the domain proved to be challenging for both approaches, with OMT

being able to solve 26 instances and hblind solving 16. The performance of hblind

degrades when the number of documents is increased, incurring in what could be
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Figure 4.2: Cactus plot for the Security Clearance domain. Instances are

ordered by increasing CPU time, reported in seconds.

explained as a worst-case behavior of A∗. Indeed, the planner produces timeouts

for almost all instances having strictly more than 5 documents, while already

failing to solve some problem with less documents. OMTPlan’s performance

is comparable to hblind for instances with up to 4 documents (all levels), while

a considerable difference can be noticed for instances with higher number of

documents. In particular, OMTPlan always manages to solve instances with

2 or 3 levels, even in domains with 10 documents. Still, domains having 4

or 5 levels proved challenging and could not be solved for instances having 6

documents or more.

4.4 Conclusion

We considered the problem of generating optimal plans for numeric domains

with costs that can be either unitary, constant or state-dependent. Since solving

these problems require an efficient interplay between propositional and arith-

metic reasoners, we proposed Optimization Modulo Theories as the framework

of choice. We presented a novel encoding of planning problems that enables effi-

cient reasoning about optimality by abstraction. We provided a characterization

of this abstraction, as well as a practical planning algorithm that uses it. We

further provided empirical evidence of the usefulness of our approach, demon-
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strating state-of-the-art results on some expressive classes of numeric problems.



Chapter 5

The OMTPlan planner

From a practical perspective, one of the most important outcomes of the work

carried out during the elaboration of this thesis is the OMTPlan planner, where

the ideas discussed in Chapter 4 have been implemented and tested. In this short

chapter we discuss the architecture of the planner and related implementation

details, while some future development lines are discussed in Chapter 6.

The planner is open-sourced under a GNU General Public License, version

3 (GPL-3.0), and available for download at the following link:

https://github.com/fraleo/OMTPlan

Different parts of the planner make use or are built on top of the following

third-party software components:

• Parsing of PDDL files and grounding are done using a modified version

of the Python parsing component of the Temporal Fast-Downward plan-

ner [EMR09], available at http://gki.informatik.uni-freiburg.de/

tools/tfd;

• SMT and OMT formulas are built and solved using the Python API of

the νZ solver [BPF15], now part of the Z3 suite available at https://

github.com/Z3Prover/z3;

• Plans produced by OMTPlan are validated using the plan validator VAL,

available at https://github.com/KCL-Planning/VAL.

78
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Figure 5.1: Schematic representation of the architecture of OMTPlan.

5.1 System description

The OMTPlan planner realizes its functionalities through the interaction of

several components that are represented in Figure 5.1. Each component takes

care of different phases of the planning process as detailed in the following.

Parsing and grounding: PDDL files containing the description of the plan-

ning problem at hand are fed to the planner and are parsed by this module.

To this end we leverage Python parsing module developed for the Temporal

Fast-Downward planner. This module required some minor modifications to

be adapted to our architecture, with one notable exception. Indeed, he orig-

inal implementation of the parsing module does not provide support for the

specification of arbitrary metric for plan quality. Hence, we had to apply some

changes to make sure the parser would behave appropriately when confronted

with metrics supported by our approach.

Besides parsing operations, this module is also responsible for grounding the

first-order representation used in PDDL. The grounding algorithm used makes

use of a compilation to a logic program in order to perform reachability analysis

and grounding all in one [Hel09]. This compilation is particular to both the set

of action schemas and the initial state of the search. The reachability analysis

is able to infer if certain ground actions will never be applicable when starting

from the given initial state, and that some fluents will never actually change
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their value, i.e., they are seen as static facts. As a result, ground actions that

are not applicable are pruned (and not encoded in the SMT formula) and static

fluents are compiled away and do not need to be represented with SMT variables

in the planning formula.

Encoder: Once parsing and grounding operations have been performed, an

instance of this module is created. Upon creation, the encoder is fed the parse

tree as returned by the previous module. The main task of this module is to

traverse the parse tree and build the corresponding planning formulas. In the

current implementation the user can choose between three different types of

encodings:

• SMT encodings for satisficing planning;

• SMT encodings for optimal planning (unit costs1);

• OMT encodings for optimal planning (constant costs and SDAC).

The first two encodings are classical, meaning that they use the standard

state-based representation seen in the Planning as SAT literature, here extended

to numeric variables. The main difference between the two lies in the encoding

of the execution semantics: the first allows for parallel actions, while the second

only allows for serial plans. The reason for this is simple: optimal plans for

problems with unit costs are plans with the minimum number of actions. A

fairly naive strategy to compute such plans is to allow only one action per step

and build formulas increasing the planning horizon one by one until the first

solution is found. This solution also corresponds to the global optimum for

the planning problem at hand. This restriction is lifted in the third encoding.

OMT encodings are built as described in Chapter 4 and can handle both serial

and parallel executions as will always return the optimal solution for the given

metric.

Finally, this module is also responsible for exporting SMT-LIB encodings

[BFT16] of planning formulas built at different horizons. This functionality

serves two different purposes:

1This is the simple case where all actions have the same cost, and this equals one.
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• debugging : human-readable SMT-LIB encodings can be used to detect

bugs in the logic of the encoder;

• benchmarking : the SMT community can leverage the extensive bench-

mark suite developed by the planning community to test strengths and

weaknesses of solvers on numeric planning formulas. Benchmarks can be

generated for both SMT and OMT.

Search: This module is responsible for implementing horizon allocation strate-

gies to be adopted during plan search. The current implementation supports

a standard ramp-up strategy adapted to the encoding chosen by the user. In

the case of satisficing SMT planning and optimal OMT planning, we use an ex-

ponential progression of horizons until a user-provided upper bound is reached.

The optimal SMT encoding leverages the strategy described above.

Once a search strategy has been selected, this module schedules calls to

the encoder to produce planning formulas for different horizons. Horizons are

tested sequentially, although other strategies, such as [Rin12], could easily be

implemented. The search module is also responsible for feeding the planning

formula to the underlying solver, fetching the result of the satisfiability check

and act according to such result. The current implementation relies, for this

step, on νZ [BPF15], however other OMT solvers such a OptiMathSAT [ST15b]

could be used.

Validation: When a plan is found by the underlying solver, the validation

module is called to decide whether the plan is indeed correct. Besides receiving

the plan as input, this module also requires the PDDL files containing the

description of the planning problem (domain and problem files). The validation

task is the performed by the plan validator VAL, which checks whether the

plan computed complies with the PDDL definition of the problem. If a plan

is deemed valid, it is passed on to the main routine for subsequent operations,

otherwise OMTPlan reports failure.



Chapter 6

Conclusion

6.1 Summary of contributions

Let us conclude this thesis with a summary of our contributions and a discussion

of potential lines of research that might follow this work.

The first of these contributions (Chapter 3) is a domain-specific approach

to solve planning problems arising from the RoboCup Logistics League. We

presented several OMT encodings for both phases of the RCLL and evaluated

their applicability within an integrated system for planning, execution and mon-

itoring. To the best of our knowledge, this system represents the first use of

Optimization Modulo Theories in planning. Notably, this very system partici-

pated, and won, the Planning and Execution Competition for Logistics Robots

in Simulation held at the International Conference on Automated Planning and

Scheduling (ICAPS) in 2018.

The second contribution (Chapter 4) is the development of a new algorithm

for domain-independent (optimal) planning as OMT that allows to handle nu-

meric domains with state-dependent action costs. The algorithm relies on a new

construction of planning formulas, which leverages abstraction to answer reach-

ability and optimality questions without incurring in the blow-up that would

typically occur with standard constructions. We presented a formal characteri-

zation of this new encoding and evaluated it empirically on well-known, as well

as, new benchmarks for numeric planning. This algorithm represents the first
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attempt to use Optimization Modulo Theories technology to solve expressive

numeric planning problems.

The third and last contribution (Chapter 5) is the implementation of OMT-

Plan, the first OMT-based planner ever proposed. The planner implements the

ideas discussed in Chapter 4 and leverages know-how gained while working on

the encodings presented in Chapter 3. The current implementation of OMT-

Plan supports both satisficing planning with SMT and optimal planning with

OMT.

6.2 Open challenges and future work

As a result of the efforts put into solving the problem presented in this work, we

gained interesting insights on the problem of planning as OMT. We detail in the

following some observations and ideas that could be useful for other researchers

considering venturing in this field.

Problem-specific knowledge. Incorporating problem-specific knowledge in

the solving process can lead to considerable speed-ups. Solvers specifically tuned

to handle planning problems have been already proposed in the context of Plan-

ning as SAT [GMS98, Rin11], but this direction has never been explored in the

SMT and OMT framework.

Solvers and optimization. There exist efficient solvers for different types of

optimization problems like combinatorial optimization or integer programming.

However, there seems to be room for improvements on problems where the

objective function is an arithmetic function but the search is over a finite set of

objects, i.e., where the problem seems to involve optimization in the arithmetic

domain but at its core it is a purely combinatorial optimization problem. For

instance, in the RoboCup Logistics League, the plan generation problem could

be specified as a Boolean combination of equalities between arithmetic terms,

i.e., only combinatorial optimization plays a role. However, the solvers do not

recognize this fact and invoke also arithmetic optimization. For the latter,

equalities seem to be more problematic, therefore we partially replaced them by

inequalities and forced equalities by the objective function. This is an example



CHAPTER 6. CONCLUSION 84

where knowledge about the internal solving mechanisms is needed to achieve

better encodings.

Parallelization. Practical efficiency is probably one of the main limitations

of current OMT algorithms and tools. Beyond theoretical worst-case complex-

ity results, research on SAT and SMT has shown that problem instances arising

from application domains can be tackled successfully in many cases of inter-

est. The research on OMT is currently less mature than its SMT counterpart,

therefore improving on this aspect is still an open challenge. We believe that

parallelization may offer an interesting path towards attaining practical effi-

ciency in OMT. While parallel SAT solving has been the subject of research

in the past [HW13], the development of parallel SMT solvers is still in its in-

fancy [HW18], and, to the best of our knowledge, paradigms for parallel OMT

have not been considered yet. Carrying over the results obtained in SAT to

SMT/OMT is nontrivial, because the role of SAT solver inside SMT/OMT pro-

cedure is to enumerate assignments and not just to search a satisfying one.

However, once enumeration of assignments can be successfully parallelized, at

least to some extent, also checking their theory consistency and, possibly, find-

ing optimal solutions, can be distributed on several processors. Besides mod-

ern multi-core architectures, parallelization could also take advantage of hybrid

CPU-GPU architectures, where the GPU part can substantially speed up nu-

merical computations as it happens in other AI fields like training of deep neural

networks — see, e.g., [KSH17].

Develop new encodings. Our experiments with different encodings of plan-

ning problems into OMT indicate that considerable progress can be made by

considering novel kinds of encodings and relaxations. Beyond computational

concerns, new relaxations can be of great interest from a representational stand-

point. One key challenge relates to finding encodings which generalize well to

several problem domains. The work presented in Chapter 4 represents a first

step in this direction, although other forms of planning relaxations, such as

the interval-based relaxation of [SHTR16], could be tested in conjunction with

OMT.
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Planning with datatypes. The satisfiability checking techniques that we

used in our work can be applied more or less off-the-shelf not only to arithmetic

theories, but also to structured data types such as intervals, bit-vectors or ar-

rays. Satisfiability Modulo Theories solvers do indeed support reasoning over

such types, and extending our approach to support them too should not be a

challenge. Indeed, our algorithm should be able to support planning over any

background theory with little additional effort, as long as the basic semantics of

the theory is supported by solvers. This could be seen both as a straight-forward

implementation of the Planning Modulo Theories framework of [GLFB12] and

its extension to optimal planning.
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Task planning with OMT: an application to production logistics.

In Proc. of IFM, pages 316–325, 2018.

[LaV06] Steven M. LaValle. Planning Algorithms. Cambridge University

Press, 2006.

[LD60] A. H. Land and A. G. Doig. An automatic method of solving dis-

crete programming problems. Econometrica, 28(3):497–520, 1960.

[Leo18a] Francesco Leofante. Guaranteed plans for multi-robot systems via

Optimization Modulo Theories. In Proc. of AAAI, pages 8020–

8021, 2018.

[Leo18b] Francesco Leofante. Optimal multi-robot task planning: from syn-

thesis to execution (and back). In Proc. of IJCAI, pages 5771–

5772, 2018.

[Leoon] Francesco Leofante. OMTPlan: a tool for optimal planning mod-

ulo theories. Under submission.
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