
5
Exploring Full Body Embodiment
in Virtual Reality

If in chapter 4, the interaction was the focus of our research, in the following
chapter we delve into the analysis and the impact of a self-representation in
1PP of the user in VR.
Different technologies, such as cameras or IK to obtain FBT, were implemented
to fully understand unique insight and development strategies.
FBT and self-representation in VR have the potential to significantly impact
user perception, behaviour, and emotional response in a variety of contexts,
from object interaction and navigation to skill learning.
Experiments are divided as follows:

• Experiment 1 - Iron-man Task: This experiment explores how users in-
teract with objects in a VE, incorporating full body representation through
an RGBD camera. Participants engaged in the Iron-man task, using Oculus
Rift controllers, Leap Motion Controller, and Manus Prime haptic gloves.
The focus was on evaluating the impact of full body representation on
task performance and user experience.

• Experiment 2 - Walk and Sit Task: Here, we assess user behaviour in
basic navigational tasks, such as walking and sitting, in both RE, MR and
Mixed Reality with Avatar (A). The experiment compares user behavior
with and without full body representation, achieved through six-point
tracking and IK using Final IK plugin, with the real world counterpart.

• Experiment 3 - Tai Chi Task: This experiment investigates the effects
of synchronous (real-time) and asynchronous (delayed) embodiment on
learning a simple movement sequence, specifically Tai Chi. Utilizing
the QuickVR package for environment development and FBT, the study
examines the role of agency and the impact of illusory agency.

• Experiment 4 - Walking again Task: This experiment explores the
potential of VR to simulate walking for individuals confined to a wheel-
chair. By employing full body VR representation and joystick-controlled
navigation, the study aimed to provide a semblance of walking. However,
the experiment was halted due to instances of motion sickness, highlight-
ing the challenges and considerations in designing VR experiences for
physically impaired users.

Through these experiments, we aim to further refine the current knowledge
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(a) (b) (c)

figure 5.1 Reference frame alignment. (A) The body and the hands’
representations are in their own reference frames (different also with
respect to the first person view). (B) The head, body and hand
reference frames are aligned. (C) The head, body and hand reference
frames are aligned and residual errors are corrected. (Figure is taken
from [169])

about embodiment and how it affects user behaviour in different scenarios.

5 . 1 Iron-man Task

This experiment was conducted at the same time with respect to section 4.1,
but it is reported here to maintain a coherent structure of the thesis.

5 . 1 . 1 Materials and Methods

Visualization Devices

The same visualization device of section 4.1 was used in this experiment. An
RGBD camera was used togheter with the HMD to acquire information about
the joints of the user body to create a full body representation in VR in 1PP
that coherently move as the user.

Interaction Devices

The same interaction devices of section 4.1 were used in this experiment.
However, compatibility issues emerged while using the Manus gloves with the
RGBD camera. The gloves are not stable if used with an RGBD camera based
on infrared light. The problem is caused by the IR light of the RGBD camera
that interferes with the Vive trackers on the gloves. Therefore, the calibration
leads to a bad alignment of the avatar and it is hard to complete the task. Thus,
we decided not to take into consideration the Manus gloves with a self-avatar
condition.
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Implementation Details

The same tools and plugin of section 4.1 were used in this experiment to
implement interaction. Moreover, we explored the integration of a full body
representation in VR, leveraging sensor fusion and reference frame alignments
to create a cohesive self-representation of the user. Our focus was on ensuring
that the avatar’s movements were perceived from a 1PP, enhancing the sense
of presence and immersion in the VE.
To construct a cohesive self-representation, we employed a two-step process
involving rigid transformation and live correction. Before these two steps,
sensor data were localized to their respective reference frames, leading to a
lack of 1PP alignment as in Figure 5.1(A). We chose a simplified avatar model,
prioritizing the accurate alignment of reference frames over complex graphical
representation, ensuring that the effectiveness of VR interaction remained our
primary focus.
To align the data of all sensors, the alignment phase is divided into two steps:

• Rigid transformation: It is computed just one time at the beginning,
among common points from the sensors.

• Live correction: After the Rigid transformation, it tries to overcome the
residual offset present between the avatar body and the hands’ module.

The rigid transformation uses the least-square rigid motion with Singular
Values Decomposition (SVD) to align data from different sensors. This process
involved calculating the optimal rotation matrix and translation vector to
minimize the distance between two sets of points (Eq. 5.1).

(𝑅, 𝑡) = argmin
𝑅,𝑡

𝑛∑︁
𝑖=1

| (𝑅𝑝𝑖 + 𝑡) − 𝑞𝑖 |2 (5.1)

where:

• 𝑅 is the rotation matrix between the two sets of points, called 𝑃 and 𝑄 ,
and 𝑅 is the computed estimate.

• 𝑡 is the translation vector between the centers of mass of the two sets of
points, called 𝑃 and 𝑄 , and 𝑡 is the computed estimate.

• 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑛} are the VR system samples, acquired by the HMD
and the hand detection device.

• 𝑄 = {𝑞1, 𝑞2, . . . , 𝑞𝑛} are the RGBD camera samples.
• 𝑛 is the number of samples.

To properly align the different reference frames of the sensors (i.e. "to move"
𝑃 towards 𝑄), several correspondences between them are required. In our
case, we have some common joints tracked by both the RGBD camera and
the HMD with one of the technologies for the hands and fingers detection:
i.e. the head, the palms and the wrists. Nevertheless, the result of the rigid
transformation carried out for a single set of common points often leads to



78 exploring full body embodiment in virtual reality

a visually incorrect alignment. This means that the user does not perceive
the avatar as superimposed on their body. This can be due to multiple factors,
such as co-planar points among the common joints selected and noise on the
points detected by the sensors.
To address this, we increased robustness by considering multiple samples over
time and instructing users to move their arms in a specific pattern to ensure
comprehensive tracking. After this step, the result is a partial alignment of the
reference frames (i.e. the avatar with the real body of the user), as shown in
Figure 5.1(B).

The Live Correction step involves a real-time correction to refine the align-
ment between the avatar and the user’s real body. We focused on ensuring a
natural continuity between the hands (tracked by Controllers, Leap Motion
Controller or Manus glove) and the rest of the body (tracked by the RGBD
camera). In particular, The wrists’ positions, obtained from the hand detec-
tion technologies, were used for this purpose, offering precision in aligning
the forearm with the hand. The outcome of this step was a more accurate
alignment, as shown in Figure 5.1(C)

5 . 1 .2 Experiments

Participants

The same 6 participants from section 4.1 were involved. Indeed they were 4
males, 2 females ranging in age from 20 to 55 (average 38.5 ± 16.7), all with
normal or corrected-to-normal vision and no prior experience with VR. To
mitigate learning or habituation effects, each participant engaged with the five
experimental conditions in a randomized sequence.

Task

The experiment was performed at the same time of section 4.1. Thus the task
was explained and performed in the same way with the five conditions. A
snapshot of the experiments can be seen in Figure 5.2.

Data Acquisition

The same data as in section 4.1 were acquired in order to being able to compare
interactions with and without the self-avatar. Thus TTC and the number of
instances when a suit piece was dropped as an error rate durign the grasping.
Post to the completition of each condition, participants filled out the UEQ
and the IPQ. More details respectively in User Experience Questionnaire and
Igroup Presence Questionnaire.
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(a)

(b)

(c)

figure 5.2 Snapshots of 3 experimental conditions, ControllersAvatar (A),
LeapAvatar (B) and ManusNoAvatar (C). For each figure, on the left is
the first person view of the virtual reality scene, and on the right is
the external view of the user in the real environment. (Figure is taken
from [169])
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figure 5.3 Total time to completion TTC for the five experimental conditions.
(Figure is taken from [169])

5 . 1 .3 Results

In Figures 5.3 and 5.4 the bar graphs representing the mean values of the TTC
and the error rates (and the related standard deviations), for the 5 experimental
conditions, are shown. The results show that the Controllers are the easiest
interaction device (mean TTC with avatar 77.93±25.57 seconds and 0.33±0.82
errors), while the Leap Motion Controller (mean TTC without avatar 193.87 ±
70.24 seconds and 5.00±2.19 errors) is the hardest and the Manus Prime haptic
gloves are the middle ground (mean TTCwithout avatar 152.65±77.39 seconds
and 2.50 ± 1.76 errors).
Figure 5.5 shows the results of the UEQ. The average value of each scale (range
between -3 and 3) and the associated standard deviations are shown for the
5 experimental conditions. Unfortunately, no appreciable differences can be
drawn from it.
Figure 5.6 shows the results of the IPQ, the mean values of each category (range
between 1 and 7) and the associated standard deviations, for the 5 experimental
conditions, are reported. The answers of the subjects show that the Manus
Prime haptic gloves allow us to achieve a higher General sense of "being there"
(6.50 ± 0.55) and Spatial Presence (6.37 ± 0.57) with respect to, in particular,
the Leap Motion Controller cases, in which the worst type of interactions
with complex objects reduces these two aspects (6.17 ± 0.98 and 4.47 ± 1.43,
respectively, with the avatar). While the values for the Involvement and the
Realism are very close one from the other. For what concerns the comparison
between the avatar and no-avatar solution while using the same technology,
the results show that the use of avatar is slightly better in all the categories of
the IPQ.

5 . 1 .4 Discussion and Limitations

The main objective of this work was to understand the importance of an avatar
in representing the user for interaction proposes. The comparison between
interactions with and without the self-avatar provided insights into the utility
of full body representation. Notably, even with a limited number of subjects,
there was a trend towards improved interaction, presence, and user experience,
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figure 5.4 Error rate for the five experimental conditions. (Figure is taken from
[169])

figure 5.5 Results of the UEQ: mean values and standard deviations on a scale
from -3 to 3. (Figure is taken from [169])

figure 5.6 Results of the IPQ: mean values and standard deviations on a scale
from 1 to 7. (Figure is taken from [169])
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particularly with the Leap Motion Controller.
Even if some limitations are present such as a small sample size due to covid
restriction and the fact that the avatar is a simple sick figure, the presence of a
user body representation seems to positively affects the user during interaction
even if there are no significance differences in the acquired measurement
among the avatar and non-avatar conditions.
Future works could try to fix the interference issues between the gloves and
the RGBD camera and also use a real mesh body instead of a stick figure.
Moreover we should also increment the number of subjects.

5 .2 Walk and Sit Task

5 .2 . 1 Materials and Methods

Visualization Devices

The Walk and Sit task was conducted using the HTC Vive Pro eye described
in Visualization Devices. We used a machine with the following specifications
NVIDIA GeForce 3080 graphics card, AMD Ryzen 9 5900x processor, 32 GB
of RAM, and Windows 10 Home 64-bit, ensuring smooth handling of the VR
simulation and device integration.

Interaction Devices

To interact with the environment the participants use the Vive controllers
described in Controllers. The FBT is achieved using Final IK plugin 1 which
utilizes IK to deduce the positions of all bones from six key points (head, hands,
pelvis, feet). These points were tracked by the HMD, the HTC Vive Controllers
and 3 Vive trackers.

Implementation Details

This project delves into the dynamics of human behaviour in a MR setting,
with a particular focus on the actions of walking and sitting. Our objective
was to discern whether our actions in VR mimic those in the real world.
We hypothesize that if a sufficiently immersive and present VE is provided,
behaviour in VR should closely resemble that in reality.
In particular our questions were if we behave similarly in VR with and without
avatar with respect to the real worlds, and if having a avatar infuence in some
ways the behaviour of the user in VR.
Our hypothesis are:

We will behave similarly in RE, MR and A if we can provide a good enough
sense of presence and immersion in the VE.

1http://root-motion.com

http://root-motion.com
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figure 5.7 SwitchToVirtual’s pipeline, with offline steps in orange and online
steps in blue. User-adjustable parameters are listed under each step.
Notably, user intervention is mainly needed for "3D Mesh
Acquisition" and "Substitution" using the interface and controller to
select prefabs. The system features a prefab dictionary for immediate
use or expansion. Prefabs are categorized by six virtual environments,
including standard and chair variants. (Figure is taken from [117])

The presence of a self-representation will impact positively the behaviour of
the user resulting in a higher IPQ and SUSP values and a smilar biomech-
anical data with respect to the RE

Our methodology involves the use of SwitchToVirtual, a systemwe designed
to generate interactive VEs mapped onto real-world spaces. The system is
based on the prior work described in [164] and further developed to suit our
needs in [117].
The pipeline, illustrated in Figure 5.7, encompasses both offline and online
steps. Among the online procedures, a key focus lies on recovering real world
geometry information, which serves as a constraint for subsequent stages. We
use our laboratory as input of the pipeline described above, to recreate an
outdoor environment where the participants can walk around and sit on a
chair. The real and the correspondent VR environment where experiments
were performed are shown in Figure 5.8.

5 .2 .2 Experiments

Participants

Considering some preliminary results and the design of the experiment (within-
group), we determined the Cohen’s d to compute the effect size for our ex-
periment. Having a Cohen’s d around 0.800, looking at tables in [77], we
determined that the optimal sample size for our experiment was 24 subjects.
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figure 5.8 The first image represents the real environment where experiments
were performed, thus our laboratory. The second image shows the
corresponding MR environment that participants saw during the
experiment in the MR conditions. (Figure is taken from [117])

We had a total of 24 participants, but in the end, we reported results only for
22 subjects (11 females and 11 males, mean age 26.4 years, range 21-41) due to
corrupted data for two participants. Participants, both male and female, were
matched with gender-congruent avatars. Also we ensure that each participant
experienced the three conditions, RE, MR and A, in a randomized order to
minimize the carry over effect.

Task

In each of the three conditions, participants were asked to start from a resting
position in front of the closet (seen as a telephone cabin in MR and A), and
then the experiment followed this scheme:

1. Stand still for 10 seconds at the starting position;

2. Walk straight-line to the chair;

3. Sit on the chair for 10 seconds;

4. Return to the starting position.

This sequence has to be repeated five times in each condition (RE, MR and A).
The instructions for when to perform each step were provided by pre-recorded
audio through the HMD headphones in the MR and A cases and through a
speaker in the RE.
It is worth noting that, during the experiment, the chair’s virtual counterpart
had a similar visual appearance with respect to the real chair. The real chair
was always physically present. Moreover, before executing the experiment,
participants were instructed to perform this task.
We designed this task taking into strong consideration the Time Up and Go
(TUG) test 2, which is used to evaluate overall functional mobility in older
2https://www.sralab.org/rehabilitation-measures/timed-and-go

https://www.sralab.org/rehabilitation-measures/timed-and-go
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figure 5.9 Configuration of the trackers on the user.

adults or people with Parkinson’s disease. In the TUG test, subjects are asked
to stand up from a standard chair, walk a distance of 3 meters at a comfortable
pace, turn, walk back and sit down.

Data Acquisition

The main objective of this project was to investigate human behaviour in a
MR environment, specifically focusing on walking and sitting. The experiment
aimed to answer two key questions: whether individuals behave similarly in
VR compared to reality, and whether having a FBT system and a self-avatar
that mimics real movement would influence behaviour and performance.
Participants were asked to hold the controllers in their hands and to wear four
Vive trackers, on the chest, on the pelvis, and on the feet, as shown in Figure 5.9,
to collect biomechanics data during the experiments with a sampling frequency
of 100Hz. Also, these trackers were used in the A condition to synchronize
the avatar. Moreover TTC, IPQ and SUSP were acquired during and after the
experiment. More details for each questionnaires can be found respectively in
Igroup Presence Questionnaire and Slater-Usoh-Steed Questionnaire.

5 .2 .3 Results

The results of the study provided valuable insights into these research ques-
tions. Firstly, the analysis of the TTC, in Figure 5.10, indicated significant
differences between RE - MR and RE - A conditions, but there are no differ-
ences between MR and A. According to that, the analysis suggests that the
presence of an avatar had a similar effect on participants’ completion time as
not having an avatar at all.
To assess the similarity of sitting behaviours in the MR and A condition

compared to the standard behaviour in the RE, various metrics were analyzed.
The linear velocity of the user’s pelvis, angular velocity of the user’s trunk in
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figure 5.10 Total time to complete the task.

the sagittal plane, and trunk angle in the sagittal plane were considered. The
mean profiles of these quantities during the sitting phase are shown in Figure
5.11. The results showed a repeated pattern across all three conditions in all
the above considered variables, suggesting that a natural walking and sitting
behaviour was achieved in MR and A cases.
One notable difference from the graph shown is the peak of velocity during the
act of bending down to sit. Indeed, participants had a slightly slower velocity
in MR and A with respect to RE. The same can be said also for the angular
velocity of the trunk.
This finding supports the hypothesis that providing a good enough sense of
presence and immersion in VR can lead to behaviour similar to reality.
To evaluate the degree of similarity of the virtual biomechanical performances
with respect to the real one, we formulated a cost functional:

cost =
𝑁 tot bin∑︁

𝑗=1
(𝐿𝑉𝑃 𝑗,𝑎𝑚 − 𝐿𝑉𝑃 𝑗,𝑏𝑛 )2+

+
𝑁 tot bin∑︁

𝑗=1
1/𝜎 (𝐴𝑉𝑇𝑗,𝑎𝑚 −𝐴𝑉𝑇𝑗,𝑏𝑛 )2 ∀𝑚,𝑛

where:

• a, b: are two among the three conditions of the experiment which we are
considering, thus RE, A and MR.

• j: different temporal bins related to the sitting phase;
• m, n: different subjects that performed the experiment;
• Linear Velocity of Pelvis (LVP);
• Angular Velocity of Trunk (AVT);
• 1/𝜎 : weight for the angular velocity, this weight was introduced to ensure

that angular velocity and linear velocity had the same weight within the
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cost functional.

In comparing different time sequences, it’s crucial to ensure that each trial
is resampled to have an equal number of bins. While it’s true that the bins may
have varying lengths across trials, the essence lies in preserving the inherent
characteristics of the trajectories under consideration. This is achieved through
resampling taking care of aligning the phases of sitting and standing up. By
resampling with such arrangement, we effectively maintain the integrity of
the information. This attention in the alignment ensures that when averaging
across the various resampled trajectories, there’s no loss of information. This
loss of information would have otherwise occurred if resampling were per-
formed without taking into acount this arrangement.
The main objective of the analysis is to assess how similar the virtual biomech-
anical performances, represented by LVP and AVT, are to the real ones under
the three experimental conditions, during the sitting phase.
To measure the similarity between virtual and real performances, the differ-
ence between the corresponding LVP and AVT variables for each temporal bin,
denoted as ’j’ within the sitting phase, is calculated. The sum of the squared
differences for each temporal bin is employed as a measure of disparity, yield-
ing a numerical value: the higher this value, the greater the difference between
the conditions.
The cost function is utilized to compute confusion matrices. These matrices are
statistical tools that allow for evaluating the agreement between virtual and
real performances, both within the same subject and among subjects under
different experimental conditions. In this sense, confusion matrices can be
employed to analyze the interaction in the virtual world versus reality. Fur-
thermore, they enable us to assess differences among various subjects within
the same experimental condition, considering either RE, A or MR.
The cost functional is calculated for each combination of subjects (m and n)
and conditions (RE-RE, A-A, RE-A, MR-MR, MR-A, RE-MR). This implies that:

• In RE-RE, MR-MR, A-A, the biomechanical performances are compared
among different subjects.

• In RE-A, MR-A, RE-MR , the virtual and real biomechanical performances
are compared within the same subject under the two conditions (diagonal
of the matrix) and among different subjects.

Of course, this analysis allows us to thoroughly evaluate the differences and
similarities among subjects and conditions in the context of biomechanical
performance. The resulting confusion matrices are shown in Figure 5.14. From
the plot emerges that most of the subjects perform similarly to other subjects
in all conditions and also among different conditions.
Regarding the analysis of the questionnaires, unfortunately, even if there is a
visual difference in the evaluation of users’ sense of presence using the IPQ
5.12 and SUSP 5.13 there is not a significant difference between the A and MR
conditions according to ANOVA test.
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(a)

(b)

(c)

figure 5.11 (A) Comparison of mean pelvis velocity profile among the three
conditions during the sitting, thus from the moment the participant
begins to sit down to the moment they stand up again. (B)
Comparison of mean trunk angular velocity profile among the three
conditions during the sitting, thus from the moment the participant
begins to sit down to the moment they stand up again. (C)
Comparison of mean trunk angle profile among the three conditions
during the sitting, thus from the moment the participant begins to sit
down to the moment they stand up again.
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figure 5.12 IPQ questionnaire results.

figure 5.13 SUSP questionnaire results.
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figure 5.14 Matrices to compare between and within subjects and conditions
based on the cost function.

Overall, the results of the experiment support the hypothesis that individuals
can behave similarly in a VE if a good sense of presence and immersion
is provided. The presence of an avatar that tracks real movements slightly
influenced participants’ behaviour, but not in a meaningful way. Moreover,
the inclusion of an avatar did not have a significant impact on the similarity
of biomechanical performances compared to the VE without an avatar. These
findings contribute to our understanding of human behaviour and performance
in VE, emphasizing the importance of presence and immersion for a more
realistic and engaging user experience.

5 .2 .4 Discussion and Limitations

The main objective of this project was to investigate human behavior in a VE,
specifically focusing on walking and sitting. The experiment aimed to answer
two key questions: whether individuals behave similarly in VR compared to
reality, and whether having a full body tracking system and a self-avatar that
mimics real movement would influence behavior and performance.
The results showed a repeated pattern across all three conditions in the bio-
mechanical analysis, suggesting that a similar walking and sitting behavior
was achieved in the VE. This finding supports the hypothesis that providing
a good enough sense of presence and immersion in VR can lead to behave
similarly as in the real world.
Further analysis on the confusion matrices suggest that the inclusion of an
avatar did not significantly affect the similarity of biomechanical perform-
ances compared to the real condition for this specific task. Furthermore, the
evaluation of users’ sense of presence using IPQ and SUSP revealed that there
are not significant differences between MR and A conditions. Our explaination
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for this phenomenon is because, normally, during a walk o sit task, we do
not look at ourself, at our body. Same probably happens in VR, meaning that
people are not influenced by it. Moreover, there is not an embodiment phase
prior to the start of the task and no mirror is provided in the scene following
guidelines from [12] where the mirror did not influence the results.

5 .3 Tai Chi Task

This project further analyzes recent findings that the induction of body own-
ership through 1PP and visuomotor synchrony can result in illusory agency
over an act carried out solely by the virtual body. By agency, we refer to the
attribution of an act to the self [64, 50]. Body ownership and agency can be
independently manipulated [75], although the agency is a component of body
ownership as explained in the chapter 2.
Visuomotor synchrony, where the virtual body moves in real-time in syn-
chrony and correspondence with the real body, is a powerful way to induce
body ownership (assuming 1PP) and of course, also produces veridical agency
[8]. The question that was considered in [10] is whether such veridical agency
and body ownership can lead to illusory agency, specifically over an act of
talking.
In this work, our goal is to test whether we can use this approach to enhance
the acquisition of complex motor sequences, using Tai Chi as an example. We
will follow a paradigm similar to the illusory speaking one, where participants
are embodied in 1PP in a virtual body with visuomotor synchrony or asyn-
chrony (the two condition of the experiment) during the first embodiment
phase. The hypotheses are:

• Participants will have greater agency over the movements of the virtual
body if they experience the embodiment phase in the synchronous embod-
iment condition than those in the asynchronous embodiment condition.

• At the end participants who had agency over their virtual body move-
ments will have movements closer to the correct movements of the virtual
Tai Chi teacher.

Following previous results in the literature, we expect that those in the
embodiment who had the visuomotor synchrony will have agency over the
movements of the virtual body and that this will be reflected in their move-
ments and questionnaire answers. Those who had asynchronous movements
in the embodiment will have less agency over the Tai Chi movements of the
virtual body.
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figure 5.15 The tai chi teacher shows the movement to the participants.

5 .3 . 1 Materials and Methods

Visualization Devices

The Tai Chi task was conducted using the HTC Vive Pro described in Visualiz-
ation Devices. We used a machine with the following specifications NVIDIA
GeForce 3080 graphics card, AMD Ryzen 9 5900x processor, 32 GB of RAM,
and Windows 10 Home 64-bit, ensuring smooth handling of the VR simulation
and device integration.

Interaction Devices

To interact with the environment the partecipants used the Vive controllers
describe in Controllers. The FBT is achieved using QuickVR 3. This package
allows FBT based on IK and 6 key points on the user similarly as Final IK
plugin. The QuickVR also offers a tool to easily create and manipulate the
workflow of an application.

Implementation Details

The VR system was programmed to immerse the participants into a virtual
room as in Fig. 5.15 with a virtual body that mirrored their movements either
synchronously or asynchronously during the first stage. The participants could
select their virtual representation on a pool of six avatars, 3 male and 3 female,
of different races. For the entire time of the experiment, there will be a spatial
audio that will explain to the partecipants the next step to do. Canvas and
button are used to start, stop and continues the flow of the experiment. Anim-
ation clips and text are used to show what kind of movement the partecipants
have to perform during the simulation.

3https://gitlab.com/eventlabprojects/quickvr.packages/com.quickvr.quickbase

https://gitlab.com/eventlabprojects/quickvr.packages/com.quickvr.quickbase
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5 .3 .2 Experiment

Participants

The study involved a between-groups design with 24 participants (6 females
and 18males, mean age 25.5 years, range 18-34) half assigned to the synchronous
condition and the other half to the asynchronous condition in the embodiment
phase. Participants, both male and female, with normal or corrected-to-normal
vision, have all low to medium experience with VR.

Task

The experiment is performed in three phases. During the embodiment phase,
participants performed five simple movements in front of a virtual mirror
to establish a sense of body ownership and agency, based on the condition
experienced (synchronous or asynchronous). This phase lasts 3 minutes and
the following movements were asked to be performed: stretching out their
arms, crouching down, without moving their feet at all turning their body to
the right/left, raising their arms to the ceiling, and lifting one leg.
After that the learning phase starts. This phase si repeated three times and
each time two things happen: firstly, the virtual Tai Chi teacher shows the
correct movement to perform, and then the partecipants will see the same
movement performed by their avatar in 1PP. During this time they are free to
try to replicate the proposed movement or watch it on the mirror or in 1PP.
After that, they remove the HMD and compile the questionnaire. On completi-
tion, they go back in VR and attempt to replicate for five times the Tai Chi
movement shown by the teacher, with their actual movements displayed and
recorded. This last phase is called measurement phase.
At the end, the participants answer the following question "Write about your
experience in virtual reality, for example, how you felt while watching your
body move and while looking at it in the mirror during the three phases (em-
bodiment, learning and measurement). Please write approximately 100 words".

Data Acquisition

The participants’ movements were captured and recorded during the measure-
ment phase using motion capture technology. The participants also answer
to an open question at the end of the experiment to describe their feeling.
Both of these will not be shown there. Additionally, participants completed a
questionnaire detailing their experience and perception of body ownership
and agency in the VE. More information of this questionnaire can be found in
Virtual Reality Questionnaire.
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5 .3 .3 Results

The questionnaire results are shown in Fig. 5.16. The asynchronous condition
reported a Mean = 3.33 with Std = 1.40, while the synchronous condition a
Mean = 4.28 with Std = 1.12. The t-test indicates that there is a significant
difference between the two conditions (p = 1.26e-06).
Means and Stds of each question (with the inverted item already inverted) are
a also provided in the following:

• Question 1: Mean = 3.92, Std = 1.16 (asynchronous) - Mean = 4.92, Std =
0.67 (synchronous)

• Question 2: Mean = 3.00, Std = 1.41 (asynchronous) - Mean = 4.08, Std =
1.38 (synchronous)

• Question 3: Mean = 2.83, Std = 1.75 (asynchronous) - Mean = 4.08, Std =
1.08 (synchronous)

• Question 4: Mean = 3.75, Std = 1.66 (asynchronous) - Mean = 5.00, Std =
0.74 (synchronous)

• Question 5: Mean = 3.33, Std = 1.72 (asynchronous) - Mean = 3.92, Std =
1.78 (synchronous)

• Question 6: Mean = 1.25, Std = 0.97 (asynchronous) - Mean = 3.67, Std =
0.98 (synchronous)

• Question 7: Mean = 3.17, Std = 1.34 (asynchronous) - Mean = 3.33, Std =
1.15 (synchronous)

• Question 8: Mean = 3.92, Std = 1.62 (asynchronous) - Mean = 5.17, Std =
0.72 (synchronous)

• Question 9: Mean = 3.25, Std = 1.60 (asynchronous) - Mean = 3.92, Std =
1.24 (synchronous)

• Question 10: Mean = 5.67, Std = 0.65 (asynchronous) - Mean = 5.67, Std =
0.89 (synchronous)

• Question 11: Mean = 2.58, Std = 1.51 (asynchronous) - Mean = 3.33, Std =
1.67 (synchronous)

5 .3 .4 Discussion and Limitations

The analysis of the questionnaire suggest that, the synchronous condition
consistently shows higher mean scores across most questions compared to the
asynchronous condition. This suggests that participants in the synchronous
generally reported a better experience in VR, with higher scores indicating
stronger agreement with positive statements about the VR experience.
The overall analysis reinforces these findings. The mean score for synchron-
ous condition is higher (4.28) compared to asynchronous condition (3.33), and
the lower standard deviation suggests more consistent experiences among
participants.
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figure 5.16 Boxplot showing questionnaire scores grouped by conditions.

The t-test result confirms that these differences are statistically significant,
indicating a real difference in experiences between the two conditions rather
than random variation.
However, some limitations were noted, including a small number of parti-
cipants who struggled to remember the movements (subject number 17 that
performed the experiment in the synchronous condition). Additionally, while
participants did not report significant issues with the delay, several mentioned
noticing it in their open-ended responses, but noone of them reported the
issue during the experiment, as if they were thinking there was some bugs
in the application. Further research is needed to explore the movement data
coming from the partecipants and if embodiment and agancy could influence
the learning of a sequence.

5 .4 Walk again Task

5 .4 . 1 Materials and Methods

Visualization Devices

The intervention utilized Pico and Oculus Quest for the VR experience. These
HMDs were chosen for their compatibility with QuickVR for body tracking.
More information on these HMDs can be found in Visualization Devices.

Interaction Devices

The primary interaction device was a controller that allowed the participant
to initiate and halt the walking motion of their virtual avatar. The user was
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positioned in front of a virtual mirror within the VE, enabling them to see and
control their avatar by pressing the controller’s trigger.

Implementation Details

The virtual environment was designed to simulate walking through an outdoor
setting, based on the recreation of the outdoor setting used in the study by
Kokkinara et al. QuickVR was employed for body tracking to ensure accurate
replication of the user’s movements within the virtual avatar. The VR applic-
ation aimed to provide a familiar and tested backdrop for the intervention,
allowing for a controlled and user-driven experience. The walking was very
slow and the environment a bit dark to try to reduced sickness that often
happen when deling with such setup.

5 .4 .2 Experiment

Participants

The participant was a 14-year-old girl experiencing chronic leg pain and mo-
bility issues due to complex regional pain syndrome. Despite the absence
of physical abnormalities according to medical examinations, her condition
restricted her to a wheelchair and precluded any contact with her legs. At the
time of the intervention, she had been in this condition for five years. She
twisted her ankle and this was a bodily hyper-reaction to that. Her legs are
atrophied (very thin, wrong colour).

Task

The participant engaged with the VE by pressing the controller’s trigger to
initiate and halt the walkingmotion of her virtual avatar. The taskwas designed
to be simple yet effective, allowing the participant to experience the sensation
of walking in a controlled manner. The user-driven experience was intended
to harness the illusion of body ownership and agency.

5 .4 .3 Results

Upon wearing the HMD and witnessing her virtual self "standing up," the
participant expressed surprise and delight, suggesting a strong initial illusion
of body ownership and agency. This positive reaction aligns with previous
findings, indicating the potential of VR to elicit profound psychological and
perceptual responses. However, the participant also experienced symptoms of
dizziness and headaches, leading to the cessation of the VR sessions.

5 .4 .4 Discussion and Limitations

The initial positive reactions underscore the potential of VR interventions to
provide psychological benefits through the illusion of body ownership and
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figure 5.17 Participant looking at their self and the mirror in the created
environment

agency. However, the adverse physical effects experienced by the participant
highlight the need for a cautious and personalized approach to VR therapy.
The balance between the psychological benefits and the physical comfort of
the participant is delicate and must be carefully managed. Future interventions
should consider strategies to mitigate simulator sickness and enhance the
overall comfort of the VR experience.

5 .5 Conclusion

Summarizing the content of this chapter, I would like to firstly remind the
limitations of the presented works that must be considered.
In the Iron-man Task with avatar (section section 5.1), as for section 4.1, the
experiment soffer for a small sample size affecting the reliability and general-
izability of the results and as a consequence, they are tentative.
In the Tai Chi Task (section section 5.3) only the results of the questionnaire
are presented and analyzed.
In the Walk again Task (section 5.4), the application was designed for only
one person. Our research on VR body tracking and self-representation has
explored both technical and experimental aspects. Our analysis delves into
various methods of FBT and representation, shedding light on the balance
between technological capabilities, user comfort, and the psychological impact
of embodying a virtual avatar.
From a technical standpoint, our work has navigated through two technologies:
RGBD cameras and Vive trackers, each bringing its own set of advantages and
challenges such as occlusion issues and precision in the case of RGBD cameras,
and the physical encumbrance of wearing tracking devices for rehabilitation
purposes in case of Vive trackers.
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Software solutions like Rigid Transformation have been pivotal in aligning
reference frames when using RGBD camera, while tools like Final IK and
QuickVR have been used to solved IK based on six key points, ensuring that
the virtual embodiment closely mirrors the user’s actual movements.
Our diverse array of use cases, including object interaction, walk-and-sit tasks
and movement Learning has provided a rich landscape for understanding
user behaviour in VR and better insight into the impact of a self-avatar on
enhancing presence, immersion, and embodiment within the VE.
In particular, fromwhat emerges from the studies, the use of a self-representation
in VR is not always a game changer. For example, in the small sample size
study about object interaction, seems to give interesting results into this direc-
tion, even if more experiment with a bigger sample size should be carried out.
Moreover embodiment and agency seems higher in the Tai Chi experiment in
the synchronous condition.
On the contrary, it seems that in the walk and sit use case, the self-avatar seems
to not affect the movement of the subjects and the level of presence in the VE.
This could be coused by the fact that while walking or sitting we usually do
not look at our body, even in reality, thus its precence in VR is not necessary.
Future works should try to better characterize when a self-representation is
needed to really improve the users VR experiences.
The Walk Again experiment also remind us that even with the adnvaced
developed technologies, sickness is still a major problem when developing
specific application that have "different" requirements. Future works should
also work on solving this issue to increase VR audience. Moreover, future work
of this research area should pivot towards the social aspects of VR, where the
use of a self-representation is fundamental to provide the others all the means
to understand my behaviours.



6
Conclusion

This thesis has explored problems and limitations of interaction, full-body
tracking and self-representation in VR, emphasizing the importance of these
elements in enhancing user experience and presence. Considering the wide
range of hand interaction techniques available in consumer VR applications
(from controllers and vision-based techniques, to haptic gloves), we devised
the following research questions:

• RQ1: How do different interaction devices (controllers, sensor-based
gloves, vision-based systems) compare in terms of user performance and
experience in VR tasks?

• RQ2: How does audio, visual and haptic feedback impact hands/finger
positions and performance in VR?

Moreover, analyzing the problem of full-body representation, which is ex-
tensively considered in the literature and now available in most consumer
devices for immersive VR, we formulated an additional research question,
focusing on the role of body tracking in achieving a good sense of presence,
important in many applications:

• RQ3: To what extent can full-body representation in VR enhance the
sense of presence and immersion for users?

In this thesis, we addressed the research questions with specific use cases
and developed a framework to facilitate the creation of full body representation
in VR.

6.1 Technical Advances and Findings

The main technical advancement achieved through this research is the devel-
opment of the IMMERSE framework, which integrates interaction features
with body tracking technologies to facilitate the prototyping of VR systems.
This framework, specifically developed for Unity3D, is based upon the exist-
ing assets to integrate HMDs and tracking methods inside VR and has the
main aim of creating a uniform interface towards the different SDKs. Its main
features are: (1) to track the user’s body, combining the tracked points (e.g.,
using the Vive trackers) with an Inverse Kinematic solver to estimate the
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main body joints; (2) to provide the flexibility to choose between different
interaction mediums, such as hand tracking and controllers; (3) to incorporate
a recording system capable of creating animation clips and CSV files of the
user’s movements within the VE.
The primary findings of this research can be summarized as follows:

1. User Preferences and Performance: The studies reported in chapter 3
(Iron-man Task and Meccano Task), focusing on hand grasping, showed
that while advanced interaction technologies such as haptic gloves and
hand tracking offer new possibilities, users still show a preference for
traditional motion controllers due to their simplicity and familiarity. In-
deed, the use of controllers allowed the user to finish the grasping and
positioning task in less time and with fewer errors.

2. Feedback Analysis: The study on feedback (Wooden Brick Task) shows
that they do not influence the user in positioning the fingers, in particular,
the distance between the thumb and the index finger.

3. Behavioral Analysis: The investigation into walking and sitting (Walk
and Sit Task) behaviors in VR compared to reality indicated that providing
a good sense of presence and immersion in VR can lead to behaviors
similar to those in the real world. However, the use of an avatar did not
significantly affect the presence in VE and the similarity of biomechanical
performances compared to conditions without an avatar.

4. Impact on Agency and Embodiment: In tasks involving learning se-
quences of movements, such as the Tai Chi Task, the research found that
participants who experienced synchronous visuomotor synchrony during
the embodiment phase showed greater agency over their movements.

The results obtained from this thesis further confirm the importance of
interaction and user representation inside VEs. However, our results highlight
how many aspects still remain unsolved, especially when focusing on the use
of consumer off-the-shelf devices.
The developed framework provides a solid foundation for future VR applica-
tions, with the twofold aim of developing better use cases to analyze interaction
by considering different modalities and tasks and helping people to develop im-
mersive, engaging, and useful applications across various domains, including
gaming, simulation, therapeutic interventions, and professional training.

6.2 Critical Examination

Reflecting on the journey and outcomes of this research, several lessons emerge
that could shape future approaches:

1. Integration andCommunication: One of the initial realizationswas the
lack of communication between interaction techniques and body tracking
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technologies. The IMMERSE frameworks could be a valid starting point
to ensure a more integrated approach from the outset, developing systems
that seamlessly combine these functionalities to enhance user experience.

2. Sample Size and Diversity: The studies were often limited by small
sample sizes, affecting the results’ reliability and generalizability. This
is partially motivated by the consequences of the COVID19 pandemic
and by the fact that the development of trials to validate the developed
systems was not the main focus of this thesis, more devoted towards the
investigation of software techniques for VR. Future research should aim
for larger, more diverse participant pools to validate findings and ensure
broader applicability.

3. Task complexity: By integrating the knowledge and software advance-
ment reached at the end of the thesis, future works should focus on
rethinking tasks already addressed (e.g., the Meccano Task) and finding
more complex tasks to be performed in VR. This would also help in high-
lighting the effective contribution of user representation in performing
VR tasks (e.g., by considering more complex tasks than the Walking and
sitting ones).

6.3 Future Work
Looking ahead, several avenues for future research are apparent:

1. Grasp taxonomy in VR: Through the years, the complexity of grasping
actions was studied to comprehend, recognize, and understand com-
mon usage patterns during interaction [22, 45, 46]. Indeed, the interplay
between the visual appearance of objects, the planning of actions and
how we actually grasp them is extremely complicated (see Fig. 6.1).
Results shown by this thesis (Wooden bricks Task) and by previous re-
search [32] confirm that such variability is not still present when inter-
acting in VR. However, to obtain VE where embodiment and agency are
really achieved and where users can manipulate objects in sophisticated
manners would require the possibility of complex hand interaction in VR.

2. Immersive Feedback Systems: The development of haptic feedback
devices integrated into body suits could significantly enhance the sense
of embodiment by providing realistic tactile sensations, thereby enriching
the VR experience beyond visual and auditory stimuli. The preliminary
results with the use of haptic gloves in this thesis (Iron-man Task and
Wooden bricks Task) were not satisfying, though new technologies have
been developed, also including other feedbacks such as the temperature
(see for example, the TouchDIVER haptic glove, by WEART 1). Future
development should perform a comprehensive analysis of the available
solutions to integrate feedback systems in immersive VR.

1https://weart.it/haptic-vr-products/touchdiver-haptic-glove/

https://weart.it/haptic-vr-products/touchdiver-haptic-glove/


102 conclusion

figure 6.1 From Cutkosky, M. R. (1989). On grasp choice, grasp models, and the
design of hands for manufacturing tasks. IEEE Transactions on
robotics and automation, 5(3),269-279.

3. User Experience Optimization: Further research should explore ways
to optimize the balance between realistic representation and smooth VR
experiences. This includes studying the impact of different and newer
interaction devices on user performance and comfort over extended peri-
ods.

4. Broader Applications and Accessibility: As the technology becomes
more accessible and affordable, expanding its use in various fields such
as education, healthcare, and professional training will be crucial. Future
studies should also consider the potential of VR in social applications,
where accurate body representation could enhance virtual gatherings and
collaborations.

5. Self-representation in VR: An interesting approach to this would be to
better describe when the self-representation is actually useful, as accord-
ing to our consideration, it does not always improve all VR factors, nor
the user experience and behaviors. Moreover, it seems really important
that the VR community would work toward the definition of a standard
about avatar models and rigging. Having a standard avatar description
could help during the development of VR frameworks, like IMMERSE,
to support the vast majority of avatars, but also for the interconnection
among different visualization and tracking systems.

6. Learning in VR: Further research is needed in this area, beyond the
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specific use case of learning a sequence (like the one in te Tai-chi Task).
Both simple and complex movements should be analyzed, comparing
different setups such as self-avatar/no avatar, 1PP/3PP or realistic/non
realistic avatar.

In conclusion, while significant strides have been made in the field of VR
through this research, there remains much to explore and improve. By ad-
dressing the identified limitations and pursuing the proposed future work, the
potential for VR to revolutionize various aspects of our interaction with digital
content and with each other in virtual spaces is immense.
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