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Abstract

In this thesis we investigate two distinct regularizing approaches for solving inverse
problems. The first approach involves assuming that the unknown belongs to a manifold
represented by a deep generative model. In particular, we use multiresolution analysis
tools to design a generative neural network in the continuous setting, where the model’s
output belongs to an infinite-dimensional function space and we study the injectivity
of this generator, as it is a necessary condition for its range to represent a manifold.
Furthermore, we derive Lipschitz stability estimates for (possibly nonlinear) infinite-
dimensional inverse problems with unknowns that belong to the manifold generated by
our generative model. However, this generative model can represent only manifolds that
admit a global parameterization. To address this limitation and represent manifolds of
arbitrary topology, we propose to learn a mixture model of variational autoencoders,
where each encoder-decoder pair represents one chart of a manifold. Moreover, we
develop a Riemannian gradient descent algorithm on the learned manifold to solve inverse
problems, with the constraint that the unknowns belong to the manifold.

The second approach introduces a probabilistic sparsity prior formulated as a mixture
of degenerate Gaussians, capable of modeling sparsity with respect to a generic basis.
Within this context, we develop a neural network, serving as the Bayesian estimator for
linear inverse problems and we propose both a supervised and an unsupervised training
strategies to estimate the parameters of this network.

We demonstrate the performance of both approaches for denoising and deblurring
problem with 1D or 2D datasets. We also consider the electrical impedance tomography
problem for the mixture model of variational autoencoders technique.

IV



Chapter 1

Introduction

In Section 1.1 we provide a brief overview of inverse problems (IPs) and deep learning,
and the use of classical and deep learning techniques for solving IPs. In Section 1.2 we
present the thesis’s contributions, emphasizing its innovative aspects.

1.1 Inverse Problems and Deep Learning preliminaries
In Section 1.1.1, we initially introduce IPs and discuss the key issues associated with
them. Subsequently, we analyze several classical methods for their resolution, including
Tikhonov regularization, LASSO and regularization by projection.

Moving on to Section 1.1.2, we provide an introduction to the fundamental concepts
of deep learning (DL). Here, we outline the principal neural network (NN) architectures,
with a specific focus on generative NNs, and we explain the general strategy for training
NNs, highlighting the variational autoencoder (VAE) training method.

Finally, in Section 1.1.3, we conduct a review of the primary DL methods employed
for solving IPs. These encompass fully learned techniques that exclusively rely on NNs
to derive solutions for IPs, as well as methods that combine DL with classical techniques.
Within the latter category, we distinguish four subcategories based on the manner in
which NNs are employed: post-processing the solution, learning an iterative scheme,
learning a regularization operator, or encoding a priori information about the unknowns.

1.1.1 Inverse Problems

Inverse problems [136] are extensively studied in mathematics due to their prevalence
in real-world scenarios, arising when information about a system needs to be extracted
from noisy observations. In these problems, we have access to noisy data generated by
the system, denoted as y, and possess knowledge of the system’s behavior through the
forward operator, F : X → Y , which represents how the system functions. The main
objective is to determine the unknown quantity of interest, denoted as x. Mathematically,
this relationship can be expressed as:

y = F(x) + ε, (1.1)

1
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where ε denotes the noise, often assumed to follow a Gaussian distribution.
Several examples of inverse problems can be found within the imaging domain [41],

including denoising [48], deblurring [112], superresolution [86], and inpainting [40] and
the medical domain, including computed tomography (CT) [49], magnetic resonance
imaging (MRI) [157], positron emission tomography (PET) [28], and electrical impedance
tomography (EIT) [62]. In simpler scenarios like denoising and deblurring, the forward
operator takes a straightforward form. Specifically, for denoising, the forward operator
is represented by the identity function, while for deblurring, it is a convolution with
a blur filter. However, in the context of medical applications, the forward operator
becomes notably more intricate as it incorporates the fundamental physical laws inherent
to the specific problem. For instance, in CT the forward operator needs to incorporate
integration over lines, while for EIT it necessitates a representation based on a partial
differential equation (PDE) [84]. In the latter case, the nonlinearity of the forward map
further adds to the complexity of the problem.

In any case, while solving the forward problem, namely finding y given x, is relatively
straightforward, the inverse problem presents significant challenges. Indeed, in nearly all
inverse problems, directly inverting the forward operator to reconstruct the unknown x
amplifies the effect of the noise ε present in the initial measurement y. Consequently, the
reconstruction obtained using this method may substantially deviate from the ground
truth, namely the true unknown from which y is measured, and may exhibit artifacts.
Even when assuming perfect measurements without any noise, the inverse problems often
result “ill posed”, term introduced by the mathematician Jacques Hadamard in the 20th
century. According to his definition [103], a problem is well-posed if the solution exists,
it is unique and it exhibits continuous dependence on the data, namely the solution is
stable.

In order to ensure the existence of the solution, one can consider a relaxed version of
equation (1.1) by seeking all possible values x for which F(x) closely approximates y in
a suitable metric. This leads to the following minimization problem

min
x∈X
L(F(x), y), (1.2)

where L(F(x), y) represents the data discrepancy term which quantifies the distance
between y and F(x). When Y is a Hilbert space, a common choice for L(F(x), y) is
∥F(x)− y∥2Y . In this case, a solution of (1.2) is referred to as the Least Squares solution
[90]. For the purposes of our analysis, we assume that both X and Y are Hilbert spaces.

1.1.1.1 Classical techniques for Inverse Problems

In order to address the issues of uniqueness and stability in inverse problems, various
techniques have been developed over the years. These techniques aim to regularize the
problems, namely to stabilize the solution, and encompass generalized inverse methods,
iterative methods with early stopping, and variational methods. In this section, we provide
a brief overview of the three most widely used variational methods: L2 regularization
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(Tikhonov regularization), L1 regularization (total variation and least absolute shrinkage
and selection operator, known as LASSO) and regularization by projection.

Variational methods introduce a penalty/regularization term, which we denote by
J(x), into the minimization problem (1.2). This results in the following formulation

min
x∈X
L(F(x), y) + λJ(x), (1.3)

where λ > 0 represents a regularization parameter. The penalty term J(x) promotes
uniqueness and stability of the solution and it can encode a-priori information about x.
For instance, one can choose J(x) = ∥x∥22 to obtain the smallest norm solution (Tikhonov
[220]), or J(x) = ∥x∥1 to encourage sparsity (LASSO [219]), or J(x) = 1X (x) to obtain
a solution in X ⊂ X (regularization by projection [228]), or J(x) = ∥∇x∥1 to obtain
piecewise constant solutions (total variation [195]). For a detailed review of these methods
we refer to the literature [79, 202].

Tikhonov regularization. Consider the minimization problem

min
x∈X

1
2∥F(x)− y∥22 + λ

2 ∥x∥
2
2, (1.4)

where F : X → Y represents a forward differentiable operator with X and Y Hilbert
spaces, and λ > 0 is a regularization parameter. As the functional in (1.4) is differentiable,
a gradient-type algorithm can be applied to find the solution to the minimization problem
(as discussed in [79, Chapter 11.1]). The iterative algorithm proceeds as follows

xk+1 = xk − t((F ′(xk))∗(F(xk)− y) + λxk),

where t > 0 represents a stepsize and (·)∗ denotes the adjoint operator.
If the forward operator F(x) = Ax is linear and compact, then the solution to (1.4)

(as discussed in [79, Chapter 5.1]) is given by

x̄ = (A∗A + λI)−1A∗y,

where A is the linear forward operator.

LASSO regularization. Consider the minimization problem

min
x∈X

1
2∥F(x)− y∥22 + λ∥x∥1, (1.5)

where F : X → Y is a forward differentiable operator with X = Rn and Y = Rm, and
λ > 0 is a regularization parameter. The functional in (1.5) consists of a differentiable
term g(x) = 1

2∥F(x) − y∥22 and a non-differentiable term f(x) = ∥x∥1. Therefore a
proximal gradient descent method can be employed (as discussed in [181]). The solution
to (1.5) is iteratively obtained using the following update rule

xk+1 = proxtλf (xk − t∇g(xk)),
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where t > 0 represents a stepsize and proxtλf (·) := arg minx(f(x) + 1
2tλ∥x−·∥

2
2) indicates

the proximal operator of tλf . In the specific case of f(x) = ∥x∥1, the proximal operator
of tλf corresponds to the shrinkage/soft thresholding operator Stλ : Rn → Rn defined
componentwise as

Stλ(x)i = max{|xi| − tλ, 0} sign(xi),

where i indicates the component. From this, the proximal gradient method is named
the iterative soft thresholding algorithm (ISTA) [70, 107]. In this case the penalty term
f(x) = ∥x∥1 promotes the sparsity of the solution w.r.t. the canonical basis. However, it
is useful to consider a penalty term that promotes sparsity w.r.t. a generic basis by taking
f(x) = ∥Mx∥1 where M is a matrix representing the change of basis from the canonical
basis to the basis on which the unknown is sparse. This approach enables us to represent
more general classes of data, particularly those that can be accurately characterized
using only a limited number of components or features within a specific domain. This is
motivated by the desire to reduce the dimensionality, and, consequently, the complexity
of problems. In real-world scenarios, sparsity prior are frequently employed because
signals and images are naturally sparse in certain representations.

If the forward operator F(x) = Ax is linear and compact, then the solution to (1.5)
is obtained using the update rule

xk+1 = Stλ(xk − tA∗(Axk − y)),

where A is the linear forward operator. Considering instead the penalty term f(x) =
∥Mx∥1 discussed above, the update rule becomes

xk+1 = MT Stλ(M(xk − tA∗(Axk − y))).

Regularization by projection. Consider the minimization problem

min
x∈X

1
2∥y −F(x)∥22 + 1X (x) (1.6)

where F : X → Y is a forward differentiable operator with X and Y Hilbert spaces,
and X represents a subspace to which the solution is supposed to belong [79, Section
3.3]. The functional in (1.6) consists of a differentiable term g(x) = 1

2∥F(x)− y∥22 and a
non-differentiable term f(x) = 1X (x). Therefore, similar to LASSO, the solution to (1.6)
is obtained iteratively using

xk+1 = proxtf (xk − t∇g(xk)),

where t > 0 represents a stepsize. Here, the penalty term f(x) is the indicator function
of the subset X ⊂ X, defined as

1X (x) =
{

0 x ∈ X
+∞ otherwise
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and forces the unknown to belong to X . Assuming that X is a closed linear subspace of
X, the proximal operator of the indicator function is the orthogonal projection onto X ,
namely

prox1X (x) = PX (x),

from which the term regularization by projection is derived.
If the forward operator is linear and compact, then the solution to (1.6) is obtained

using the updating rule

xk+1 = PX (xk − tA∗(Axk − y)),

where A is the linear forward operator.
This technique effectively regularizes inverse problems only when the subspace X is

significantly smaller then the entire space X, because dimensionality reduction enhances
stability. Moreover, X should be appropriately chosen based on the prior knowledge on
the data. For these reasons, X is often selected as a low-dimensional manifold of X that
is inferred from the data [34, 56, 77].

1.1.2 Deep Learning

Deep learning [92, 147] is a highly influential subfield of machine learning that focuses
on the development and application of artificial neural networks with multiple layers. Its
primary objective is to tackle complex tasks across various domains, such as computer
vision, natural language processing, robotics, healthcare, finance, and more. These neural
networks are designed to approximate intricate functions, including the inverse map of
an IP [83]. Deep learning has made significant strides in addressing challenges such as
image classification [154], object detection [236], speech recognition [74], recommendation
systems [235], and autonomous driving [99].

Deep neural networks possess remarkable versatility, enabling them to handle extensive
datasets with high dimensionality and extract information from them. They exhibit a
remarkable expressive power, allowing them to represent complex relationships within
the data. Moreover, deep neural networks are not only applied as discriminative models
[119, 126, 145] but also serve as generative models [133, 180, 197]. They have the ability
to generate synthetic data that closely resembles the training data, thereby enabling
tasks such as data augmentation and simulation [207].

1.1.2.1 Neural Network Architectures

Deep Neural networks are composed by basic building blocks, called layers. A layer
typically consists of an affine map containing learned weights, which parametrize both
the linear term and the bias, and a fixed pointwise nonlinearity, called activation function.
More precisely, the output of the l-th layer is

xl = σl(Wlxl−1 + bl),
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where xl−1 ∈ Xl−1 is the output of the l − 1-th layer, Xl−1 is the output space of the
l − 1-th layer, σl : R→ R is the activation function of the l-th layer, Wl : Xl−1 → Xl is
the linear map of the l-th layer and bl ∈ Xl is the bias of the l-th layer. Therefore a
neural network N : X → Y composed by L layers can be written as

N (x0) = σL(WLσL−1(WL−1 · · ·σ1(W1x0 + b1) · · ·+ bL−1) + bL), (1.7)

where X = X0, Y = XL and x0 ∈ X0 is the input signal. In the discrete setting, Xl = Rdl ,
where dl is the output size of the l-th layer. If there are no restrictions on the linear map,
the layer is called dense layer or fully connected layer.

However, many of the most successful architectures for image processing are based
on convolutional layers, which restrict the linear map in each layer to be a convolution
[148, 146]. Convolutional layers respect the spatial structure of the image while having
considerably fewer free parameters than the corresponding dense layers. Convolutional
networks typically add an additional dimension to the horizontal and vertical image
dimensions, called channel dimension, representing the number of images in each layer.
Many classical architectures increase the number of channels in deeper layers, while
at the same time reducing the spatial dimension or vice versa. The spatial dimension
can be reduced by inserting pooling layers, that combine groups of adjacent pixels into
a single one by taking the maximum or mean value of the pixels, or using a strided
convolutional layer, in which the convolutional filter is moved by a specific step along
the input image and the stepsize determines the size of the output image. This latter
technique also allows to increase the spatial dimension by applying the adjoint operator
of the strided convolution. While dimensional reduction is used for classification and
features extraction, increasing the dimension is specific for image generation problems.
We will explore some generative models in the following paragraph.

Concerning the activation functions, the most common are the rectified linear unit
(ReLU), defined as σ(x) = max(x, 0), and various generalisations, including the exponen-
tial linear unit (ELU), the Gaussian error linear unit (GELU) and the leaky ReLU. Other
common activation functions are the sigmoid functions, including the logistic function
σ(x) = ex

1+ex , the hyperbolic tangent and the arctangent.

Generative Neural Networks. Generative neural networks [133, 180, 197] are a
class of models capable to generate new samples that closely resemble a given dataset.
These networks learn the complex underlying distribution of the data by estimating their
parameters, effectively mapping a simpler probability distribution (such as a Gaussian
distribution) to the underlying data distribution. Then synthetic data samples can be
generated by applying the generator to samples from the simple distribution. Generative
neural networks have diverse applications, including data augmentation [207], image
inpainting [230], anomaly detection [199], and text generation [156]. In the context of
inverse problems, these networks can be employed to impose prior knowledge on the
unknowns, constraining them to lie within the range of the generator.

In many cases the elements within the dataset of interest belong to the same “category”
(e.g. a dataset of lungs for the EIT problem [204]), therefore one can assume that they
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live approximately on a low-dimensional manifold [34]. This manifold can be learned
using one or more generative models [125, 164].

The most famous generative model architectures are

• Variational autoencoders (VAEs) [134]: VAEs consist of two neural networks,
namely an encoder and a decoder. The encoder maps the input data distribution
to a simpler probability distribution (often Gaussian) in a low-dimensional latent
space. The decoder, which assumes the role of the generator in our research, takes
samples from this distribution to reconstruct the input data. Unlike traditional
autoencoders, VAEs incorporate a probabilistic approach, modeling data as a
distribution rather than a single point in the latent space.

• Generative adversarial networks (GANs) [93]: GANs consist of two neural networks,
namely a generator and a discriminator. The generator takes random noise as
input and aims to produce synthetic samples that resemble the real data, while
the discriminator’s goal is to differentiate between real and fake samples. These
networks are trained in an adversarial manner, competing against each other to
enhance their respective performances.

• Normalizing flows (NFs) [192]: NFs employ sequences of invertible and differen-
tiable transformations to map simple probability distributions to the target data
distributions. Each transformation in the flow is designed to be easily invertible,
enabling efficient sampling and log-likelihood computation. The simple distribution
has the same dimension as the data distribution.

• Diffusion models (DMs) [227]: DMs model the diffusion process by gradually
introducing noise, allowing them to learn the systematic decay of information
caused by the noise. They can subsequently reverse the process and recover the
original information from the noisy data.

1.1.2.2 Training a Neural Network

Training a neural network involves determining the parameters θ of a neural network Nθ

in order to achieve the best possible approximation of the function F : X → Y that is of
interest to us. In the fully connected neural network designed in (1.7), the parameters to
learn are the weight matrices Wl and the biases bl. In the supervised learning setting, we
are provided with a labeled training set {(xi, yi)}Ni=1, where xi are elements of X and
yi approximate F(xi). In this scenario, the parameters θ are learned by minimizing the
empirical risk, namely

θ̄ = arg min
θ

N∑
i=1
L(Nθ(xi), yi), (1.8)

where L : Y ×Y → R denotes a loss function that typically depends on the specific problem.
For the binary classification problem, the most common losses are hinge loss L(ŷ, y) =
max{0, 1−ŷy} and binary cross-entropy/logistic loss L(ŷ, y) = −y log(ŷ)−(1−y) log(1−ŷ),
while, for classification, categorical cross-entropy L(ŷ, y) = −y log(ŷ) is the most used.
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For regression problem, the most common losses are the mean squared error/L2 Loss
L(ŷ, y) = ∥ŷ − y∥22 and the mean absolute error/L1 Loss L(ŷ, y) = ∥ŷ − y∥1.

The existence and uniqueness of the solution of (1.8) are not guaranteed, as the
problem is in general non-convex. Anyway, in practice, the minimization process is
performed using stochastic gradient descent. This approach involves randomly initializing
the parameters θ and iteratively updating them by applying the following rule

θn+1 = θn − λ∇θ

(1
k

∑
i∈In

L(Nθ(xi), yi)
)

where λ is the stepsize and In ⊂ {1, ..., N} with |In| = k represents randomly selected
mini-batches derived from the training set. During each iteration, a mini-batch is
randomly chosen. In practical implementations, optimization algorithms commonly
incorporate momentum, such as the ADAM algorithm [131]. In any case, it is necessary
to compute the gradient ∇θNθ. This can be achieved using automatic differentiation.

VAEs training. For generative models the training set comprises only {xi}Ni=1, where
the data samples xi are taken from the data distribution. In this unsupervised setting,
where no labels are available, the minimization strategy outlined in (1.8) is no longer
applicable. Since in our work we choose to use decoders of VAE models as generators,
we review the training strategy employed for these models.

As mentioned earlier, the VAE model consists of an encoder Eϕ with parameters ϕ,
which maps from the data space to the latent space, and a decoder Dθ with parameters θ,
which performs the reverse mapping. The encoder approximates the posterior distribution
qϕ(z|x), where z belongs to the latent space and x belongs to the data space, while the
decoder represents the likelihood pθ(x|z). In standard VAEs the prior distribution is
p(z) ∼ N (0, I) and the new samples are obtained by applying the decoder to a latent
vector sampled from N (0, I). Therefore the training process for finding the parameters
ϕ and θ consists of minimizing both the reconstruction error between the original data
samples xi and their reconstructions Dθ(Eϕ(xi)) and the distance loss between qϕ(z|x) and
pθ(z|x). Mean squared error and cross-entropy are commonly employed as reconstruction
loss, while the reverse Kullback–Leibler divergence is widely used as distance loss between
two distributions. We refer the reader to [135] for more information.

1.1.3 Deep Learning for Inverse Problems

Deep learning techniques for solving inverse problems often yield better results compared
to standard approaches, particularly when large training sets are available [233]. Indeed,
they represent the state-of-the-art in many inverse problems, e.g. image denoising [218],
deblurring [234], MRI [60] and so on. Thanks to the flexibility and the adaptability of
deep neural networks, they can be used in many ways for solving IPs both independently
and by combining them with standard techniques. The first approach involves fully
learned methods, where the goal is to directly approximate the inverse operator using a
neural network. In the second case the neural networks can be used to
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1. post process the solution,

2. learn an iterative scheme,

3. learn a regularization operator,

4. encode a-priori information on the unknown.

In our research, our focus lies on the last two topics, but for completeness we provide a brief
overview of all the techniques mentioned earlier. For a detailed review on deep learning
methods for solving inverse problems we refer the reader to [23, 27, 88, 176, 198, 206].

Fully Learned methods. Fully learned methods aim to approximate the inverse
operator that maps from a measurement y to an unknown variable x using a single neural
network. The network’s parameters are trained using a supervised approach, as described
in equation (1.8), without requiring knowledge of the forward operator. Consequently,
these methods prove particularly valuable when the forward map is either unknown or
only partially known. The effectiveness of these techniques can be influenced by the
architecture of the neural network. A widely adopted architecture, introduced in [237],
represents the network as a composition of three mappings: ϕx◦g◦ϕ−1

y . In this formulation,
ϕx and ϕy are maps from the manifolds where the unknowns and the measurements
belong, respectively, to Euclidean space, while g is a diffeomorphism between the two
manifolds. These maps are parameterized using sequences of fully connected layers (ϕy) or
sequences of convolutional layers (ϕx and g). Fully learned techniques for solving inverse
problems are also employed in other works such as [225, 83, 200]. The performances
obtained using fully learned methods instead of classical ones for solving inverse problems
depend on the specific problem and on the architecture of the network and cannot be
generalized.

Post-processing methods. Post-processing methods involve a two-step approach.
Firstly, an initial solution to the inverse problem is computed using a standard technique,
such as employing the pseudo-inverse for linear IPs. Then, the solution is refined
by mitigating artifacts through post-processing, which is accomplished using a neural
network trained as a denoiser or deblurring operator. These networks often adopt a
convolutional structure, with U-net and similar encoder-decoder architectures being
commonly employed [128, 130, 111]. Post-processing techniques find applications in
various medical inverse problems, including CT [55], MRI [224], PET [67], EIT [108],
among others. In a similar way it is also possible to preprocess the measurements using
neural network [16, 120, 150].

Learning an iterative scheme Learning an iterative scheme involves using a neural
network with layers designed to mimic the iterations of a traditional iterative scheme.
These techniques are often referred to as “unrolling techniques” because the iterative
schemes are “unrolled” and replaced with neural networks. In cases where both terms of
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the functional in (1.3) are differentiable, these networks can be employed to approximate
the gradient of that functional, resulting in a learned gradient descent scheme [3].
Furthermore, neural networks can be employed to learn proximal primal-dual methods
[4] or proximal gradient descent algorithms [171]. Another approach involves integrating
neural networks into iterative schemes by applying them after each iteration. For instance,
in the plug-and-play method [129, 193], each iteration consists of a gradient descent step
followed by the application of a neural network denoiser.

Learning a Regularizer. In Section 1.1.1.1 we discussed some possible choices of
the regularization term J in (1.3). However, since the appropriate choice of J should
align with the specific characteristics of the data, it is possible to learn it from the data
through a neural network. More precisely, the penalty term is represented by a neural
network Jθ, where θ are the network’s parameters. The parameters of the network and
the solution of the inverse problem can be found by minimizing L(F(x), y) + Jθ(x) in
both variables, θ and x. This can be done, e.g., using bilevel optimization (refer to [23,
Section 4.3]).

The methods that involve learning a regularizer differ in terms of architecture and
training strategy of the regularizer. Among these techniques, we mention the neural
network Tikhonov (NETT) approach [153] and the adversarial regularizer method [162].
The NETT regularizer is composed by an auto-encoding structured network and a
regularization functional. The training process for this network closely resembles that of
autoencoders. Subsequently, the solution to the inverse problem is obtained by minimizing
the variational problem with respect to the only remaining variable, which is x. This
is achievable because the network’s parameters remain fixed after training. Also for
the adversarial regularization method, the training of the regularizer occurs before the
minimization of the variational functional. However, as the name suggests, the training
process takes an adversarial approach, involving the discrimination between the prior
distribution and the distribution of imperfect solutions to the inverse problem.

To ensure convergence guarantees for the variational reconstruction problem, the
inclusion of convex regularizers has been explored [175]. In this context, the regularizer
is an input convex neural network [19].

Encode a-priori information on the unknown. Generative neural networks are
often used for modeling a-priori information on the unknown of inverse problems, namely
the unknown is assumed to belong to the image of a generator [24, 44, 104, 204]. This
assumption imposes a structure on the unknown, indeed the unknown x is supposed to
be Gθ(z) where Gθ : Z → X represents a generator depending on the parameters θ and z
is sampled from the latent space Z. Therefore, the regularized solution is

Rθ(y) = Gθ(z′) where z′ ∈ arg min
z∈Z

L(F(Gθ(z)), y).

In this approach there is no need for a penalty term, as the regularization is implicitly
provided by the generator. There exist other approaches in which generative models
without training data are used for modeling prior information [221].
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1.2 Thesis overview and contribution
In this section, we provide an overview of the contributions presented in this thesis,
which are divided into three chapters. The results from these chapters are discussed,
respectively, in the papers

I. G. S. Alberti, M. Santacesaria, and S. Sciutto, Continuous generative neural
networks, 2022, [12]. Revision submitted to Inverse Problems.

II. G. S. Alberti, J. Hertrich, M. Santacesaria, and S. Sciutto, Manifold learning by
mixture models of VAEs for inverse problems, 2023, [8]. Revision submitted to
Journal of Machine Learning Research.

III. G. S. Alberti, L. Ratti, M. Santacesaria, and S. Sciutto, Learning a Gaussian
mixture for sparsity regularization in inverse problems, 2024, [9]. Submitted to IMA
Journal of Numerical Analysis.

1.2.1 Continuous Generative Neural Networks for Inverse Problems

In Chapter 2, we design a generative neural network in an infinite-dimensional setting
and we use it for modeling the unknown variables in inverse problems. The primary
contributions in this direction are as follows.

• Designing a generative neural network G : RS → L2 that takes low-dimensional
vectors as input and generates functions in L2 as output, namely, a generator in
an infinite-dimensional setting that we call continuous generative neural network
(CGNN). This is useful because many physical quantities of interest are better
modeled as functions than vectors, e.g. solutions of partial differential equations.

• Defining the concept of strided convolution in the L2 setting, where the dimensions
of the spaces of each layer are replaced by the scales of a multiresolution analysis of
a compactly supported wavelet. This adaptation is necessary to accommodate the
architecture of CGNN, which draws inspiration from DCGAN. It includes a fully
connected layer, multiple strided convolutional layers, and nonlinear activation
functions.

• Finding a set of sufficient conditions under which a CGNN is injective. These
assumptions seem very natural as they entail the linear independence of the scaling
coefficients of the convolutional filters and the injectivity of the nonlinearities.
Injectivity is fundamental when using CGNN to solve IPs, and it is not trivial in
our setup due to the projections needed for our definition of continuous strided
convolution and the reduction of the channels in each layer of the network.

• Proving that, if G is injective, M := G(RS) is an S-dimensional differentiable
manifold embedded in L2 whose only chart is G−1.
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• Guaranteeing Lipschitz stability for (possibly nonlinear) infinite-dimensional inverse
problems where the unknowns belong to the manifold generated by an injective
CGNN, under the assumption that the forward map and its derivative are injective.

• Providing numerical comparisons between discrete generative neural networks
and our CGNNs, obtained using different Daubechies scaling functions, in signal
generation and in a signal deblurring problem. The signal class consists of truncated
Fourier series. The CGNN is trained as a decoder of a VAE.

1.2.2 Manifold Learning by Mixture Models of Variational Autoen-
coders for Inverse Problems

In Chapter 3, our investigation focuses on learning manifolds through mixture models of
variational autoencoders. This approach enables the representation of manifolds with
arbitrary topologies, as it incorporates multiple charts represented by encoder-decoder
pairs of VAEs. This capability is crucial when dealing with real datasets, as they may
lack a global parameterization, making it impossible to represent them as a single-chart
manifold. The transition from learning one-chart manifolds to learning multiple-charts
manifolds can be viewed as an extension of the previous chapter, however, in this
context, we present a theoretical framework within the finite-dimensional setting. The
contributions of this research are here summerized.

• Representing manifolds of arbitrary dimension and topology by learning a mixture
model of VAEs. The manifolds charts are represented by the inverse functions of
the injective decoders. In this sense, we extend the theory developed in the previous
chapter. However, in this chapter, we consider VAEs in the finite-dimensional
setting with a very different architecture from CGNN. Specifically, each decoder is
the composition of a normalizing flow, which learns the latent space’s structure,
and a series of invertible neural networks and fixed linear operators, that increase
the dimensionality and map the learned latent space to the data distribution.

• Proposing a novel training strategy for learning the data manifold by deriving
a loss function for maximum likelihood estimation of the model weights. The
loss considers the probability, estimated using the evidence lower bound (ELBO),
of each training data to belong to each chart of the manifold. Furthermore, in
accordance with the manifold’s definition, we make slight adjustments to the ELBO
definition to allow for overlapping charts.

• Proposing a Riemannian gradient descent scheme for minimizing a functional defined
on a multiple-charts manifold. The necessity of employing the Riemannian gradient
becomes apparent when dealing with multiple-charts manifolds. This is because
gradient descent steps taken with respect to different charts may lead in completely
different directions, rendering it impractical to establish a coherent gradient descent
algorithm. In contrast, the Riemannian gradient remains consistent regardless of
the manifold’s parameterization, providing a more reliable approach.
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• Providing numerical comparisons between a single generator (leading to a manifold
with a single chart) and multiple generators (leading to a manifold with multiple
charts) in manifold generation (two circles, ring, sphere, swiss roll, torus) and
minimization of functionals defined on these manifolds, and for solving the image
deblurring problem and the EIT problem.

1.2.3 Learning a Gaussian Mixture for Sparse Optimization in Inverse
Problems

In Chapter 4, our focus lies on designing a neural network that represents the Bayesian
estimator for a discrete linear inverse problem with Gaussian mixture prior, i.e. using
the prior knowledge that the unknown is sampled from a Gaussian mixture model.
Additionally, we observe that this choice of prior also aligns with a reasonable sparsity
assumption by using degenerate Gaussian components within the mixture. The key
contributions of this research are the following.

• Representing the Bayesian estimator for a finite-dimensional linear inverse problem
with Gaussian mixture prior as a two-layers feed-forward neural network. The
hidden layer involves non-standard operations on the input variables and exhibits
similarities with the attention mechanism of the transformer architecture.

• Justifying the usage of a Gaussian Mixture prior as a “group” sparsity prior for
inverse problems. Sparsity is obtained by considering degenerate Gaussian into
the mixture and the groups are marked by the different Gaussians of the mixture.
It’s worth noting that we introduced a probabilistic prior that encourages sparsity,
even though standard probabilistic priors are not typically well suited for their
sparsity-promoting properties.

• Proposing both a supervised and an unsupervised methods for learning the neural
network weights, which correspond to the parameters of the Gaussian mixture.
The first technique entails minimizing the empirical risk, while the second involves
endowing the network with the empirically estimated parameters of the mixture
derived from the training set.

• Comparing numerically our proposed methods with other sparsity algorithms,
including LASSO, Group LASSO, iterative hard thresholding (IHT) and dictionary
learning for 1D denoising and deblurring problem using various types of datasets.
These are designed for representing group sparsity: the first dataset is directly
generated from a degenerate Gaussian mixture, while the others consist of smooth
functions with one or two jumps (discontinuities) with “Gaussian” amplitude. In
the latter case, the functions can be partitioned into groups based on the positions
of these discontinuities, and the sparsity becomes evident in the wavelets domain. In
particular, thanks to the smoothness of the signals, the wavelet coefficients relative
to high scales appear sparse. For the numerical experiments, our algorithms, that do
not necessitate prior knowledge of the basis on which the dataset exhibits sparsity,
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offer superior reconstruction performances compared to classical sparsity-promoting
methods that require estimating the basis beforehand.



Chapter 2

Continuous Generative Neural
Networks for Inverse Problems

Deep generative models are a large class of deep learning architectures whose goal is to
approximate high-dimensional probability distributions [196]. A trained model is then
able to easily generate new realistic samples. They have received huge interest in the last
decade both for very promising applications in physics [73, 179], medicine [110, 170, 210],
computational chemistry [223, 226] and more recently also for their worrying ability in
producing realistic fake videos, a.k.a. deepfakes [100]. Several architectures and training
protocols have proven to be very effective, including variational autoencoders [134],
generative adversarial networks [93], normalising flows [192, 75] and diffusion models
[227].

In this chapter we consider a generalization of some of these architectures to a
continuous setting, where the samples to be generated belong to an infinite-dimensional
function space. One reason is that many physical quantities of interest are better modeled
as functions than vectors, e.g. solutions of partial differential equations. In this respect,
this work fits in the growing research area of neural networks in infinite-dimensional
spaces, often motivated by the study of PDEs, which includes neural operators [142],
Deep-O-Nets [161], PINNS [190] and many others. The general goal of these works
is to approximate an operator between infinite-dimensional function spaces (e.g. the
parameter-to-solution map of a PDE) with a neural network that does not depend on
the discretization of the domain.

A second reason concerns the promising applications of generative models in solving
inverse problems. A typical inverse problem consists in the recovery of a quantity from
noisy observations that are described by a ill-posed operator between function spaces [79].
Virtually, every imaging modality can be modeled in such a way, including computed
tomography, magnetic resonance imaging and ultrasonography. In recent years, machine
learning based reconstruction algorithms have become the state of the art in most imaging
applications [23, 176]. Among these algorithms, the ones combining generative models
with classical iterative methods – such as the Landweber scheme – are very promising
since they retain most of the explanaibility provided by inverse problems theory. However,

15
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despite the impressive numerical results [44, 221, 22, 123, 204, 24, 122], many theoretical
questions have not been studied yet, for instance concerning stability properties of the
reconstruction. In the context of inverse problems, there are several super-resolution
method able to produce a continuous representation of an image [59, 78, 211, 212, 217,
102, 101]. In particular, in [102] the authors consider generative convolutional neural
networks in function spaces, but without incorporating the concepts of strided convolution
including upscaling and downscaling, typical of discrete convolutional networks. Further,
none of these approaches is based on the wavelet decomposition, the tool used in the
present work, which naturally deals with continuous signals.

In this work (Section 2.1), we introduce a family of continuous generative neural
networks (CGNNs), mapping a finite-dimensional space into an infinite-dimensional
function space. Inspired by the architecture of deep convolutional GANs (DCGANs) [189],
CGNNs are obtained by composing an affine map with several (continuous) convolutional
layers with nonlinear activation functions. The convolutional layers are constructed as
maps between the subspaces of a multi-resolution analysis (MRA) at different scales,
and naturally generalize discrete convolutions. In our continuous setting, the scale
parameter plays the role of the resolution of the signal/image. We note that wavelet
analysis has been used in the design of deep learning architectures in the last decade
[167, 47, 20, 64, 21].

The main result of this chapter (Section 2.2) is a set of sufficient conditions that
the parameters of a CGNN must satisfy in order to guarantee global injectivity of the
network. This result is far from trivial because in each convolutional layer the number
of channels is reduced, and this has to be compensated by the higher scale in the
MRA. Generative models that are not injective are of no use in solving inverse problems
or inference problems, or at least it is difficult to study their performance from the
theoretical point of view. In the discrete settings, some families of injective networks
have been already thoroughly characterized [33, 151, 187, 80, 141, 188, 105, 104]. Note
that normalizing flows are injective by construction, yet they are maps between spaces of
the same (generally large) dimension, a feature that does not necessarily help with our
desired applications.

Indeed, another useful property of CGNNs is dimensionality reduction. For ill-posed
inverse problems, it is well known that imposing finite-dimensional priors improves the
stability and the quality of the reconstruction [15, 37, 35, 14, 38], also working with
finitely-many measurements [10, 113, 6, 11, 5]. In practice, these priors are unknown or
cannot be analytically described: yet, they can be approximated by a (trained) CGNN.
The second main result of this work (Section 2.3) is that an injective CGNN allows us
to transform a possibly nonlinear ill-posed inverse problem into a Lipschitz stable one.
Our stability estimate in Theorem 8 is tightly connected to the works on compressed
sensing for generative models (e.g. [44]), because they both deal with stability for inverse
problems under the assumption that the unknown lies in the image of a generative model.
However, in our setup the model is infinite-dimensional, the forward map is possibly
nonlinear, and its inverse may not be continuous even with full measurements.

As a proof-of-concept (Section 2.4), we show numerically the validity of CGNNs in
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performing signal deblurring on a class of one-dimensional smooth signals. The numerical
model is obtained by training a VAE whose decoder is designed with an injective
CGNN architecture. The classical Landweber iteration method is used as a baseline
to compare CGNNs deriving from different orthogonal wavelets and the correspondent
discrete generative neural network. We also provide some qualitative experiments on the
expressivity of CGNNs. However, we would like to emphasize that the main contributions
of this work are theoretical, and that the main goal of our experiments is not to obtain
state of the art results, but only to compare continuous and discrete generative neural
networks for a toy class of smooth signals. The application to real-world data and the
combination with other methods in order to achieve competitive results are not within
the scope of this work and are left to future research.

2.1 Architecture of CGNNs
We first review the architecture of a DCGAN [189], and then present our continuous
generalization. For simplicity, the analysis is done for 1D signals, but it can be extended
to the 2D case (see Section 2.2.2).

2.1.1 1D discrete generator architecture

A deep generative model can be defined as a map Gθ : RS → X, where X is a finite-
dimensional space with S ≤ dim(X), constructed as the forward pass of a neural network
with parameters θ. Our main motivation being the use of generators in solving ill-posed
inverse problems, we consider generators that allow for a dimensionality reduction, i.e.
S ≪ dim(X), which will yield better stability in the reconstructions.

As a starting point for our continuous architecture, we then consider the one introduced
in [189]. It is a map G : RS → X (we drop the dependence on the parameters θ) obtained
by composing an affine fully connected (f.c.) layer and L convolutional layers with
nonlinear activation functions. More precisely:

G : RS Ψ1−−→
f.c.

(Rα1)c1 σ1−−−−→
nonlin.

(Rα1)c1 Ψ2−−−→
conv.

(Rα2)c2 σ2−−−−→
nonlin.

(Rα2)c2 Ψ3−−−→
conv.

· · ·

· · · ΨL−−−→
conv.

RαL
σL−−−−→

nonlin.
RαL = X,

which can be summarized as

G =
( 2
⃝
l=L

σl ◦Ψl

)
◦ (σ1 ◦Ψ1) .

The natural numbers α1, . . . , αL are the vector sizes and represent the resolution of
the signals at each layer, while c1, . . . , cL are the number of channels at each layer. The
output resolution is αL. Generally, one has α1 < α2 < · · · < αL, since the resolution
increases at each level. Moreover, we impose that αl is divisible by αl−1 for every
l = 2, . . . , L. We now describe the components of G.
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z = = G(z)
σ1 ◦ Ψ1 σ2 ◦ Ψ2 σ3 ◦ Ψ3

1

Figure 2.1: Example of discrete generator’s architecture. The first fully connected layer
maps the latent space R4 into a 4 channel space of vectors of length 6. Then there are
two convolutional layers with stride 1

2 which halve the number of channels and double
the length of the vectors, until obtaining one vector of length 24. In this example, the
increase in dimensionality occurs only in the first layer, while in the convolutional layers
the dimension of the spaces remains constant.

The nonlinearities. Each layer includes a pointwise nonlinearity σl : (Rαl)cl → (Rαl)cl ,
i.e. a map defined as

σl(x1, . . . , xαl·cl
) = (σ(x1), . . . , σ(xαl·cl

)),

with σ : R→ R nonlinear.

The fully connected layer. The first layer is Ψ1 := F ·+b, where F : RS → (Rα1)c1

is a linear map and b ∈ (Rα1)c1 is a bias term.

The convolutional layers. The convolutional layer Ψl : (Rαl−1)cl−1 → (Rαl)cl repre-
sents a fractional-strided convolution with stride s = αl−1

αl
such that s−1 ∈ N∗, where cl−1

is the number of input channels and cl the number of output channels, with cl < cl−1.
This convolution with stride s corresponds to the transpose of the discrete convolution
with stride s−1, and is often called deconvolution. It is defined by

(Ψlx)k :=
cl−1∑
i=1

xi ∗s tl
i,k + bl

k, k = 1, ..., cl,

where tl
i,k ∈ Rαl are the convolutional filters and bl

k ∈ Rαl are the bias terms, for
i = 1, ..., cl−1 and k = 1, ..., cl. The operator ∗s is defined as

(x ∗s t)(n) :=
∑
m∈Z

x(m) t(n− s−1m), (2.1)

where we extend the signals x and t to finitely supported sequences by defining them
zero outside their supports, i.e. x, t ∈ c00(Z), where c00(Z) is the space of sequences with
finitely many nonzero elements.
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Note that the most significant dimensional increase occurs in the first layer, the fully
connected one. Indeed, after the first layer, in the fractional-strided convolutional layers
the increase of the vectors’ size is compensated by the decrease of the number of channels;
see Figure 2.1 for an illustration. At each layer, the resolution of a signal increases
thanks to a deconvolution with higher-resolution filters. The final output is then a single
high-resolution signal.

We motivate (2.1) by taking the adjoint of the strided convolutional operator As−1,t

with stride s−1 ∈ N∗ and filter t, which is defined as As−1,t x = x ∗s−1 t, where

(x ∗s−1 t)(n) := (x ∗ t)(s−1n) =
∑
m∈Z

x(m) t(s−1n−m). (2.2)

As before, the signals x and t are seen as elements of c00(Z) by extending them to zero
outside their supports and the symbol ∗ denotes the discrete convolution

x ∗ t :=
∑
m∈Z

x(m) t(· −m), x, t ∈ c00(Z). (2.3)

The adjoint of As−1,t, A∗
s−1,t, satisfies

⟨A∗
s−1,t y, x⟩2 = ⟨y, As−1,t x⟩2, (2.4)

where ⟨·, ·⟩2 is the scalar product on ℓ2. Using (2.4), we find that

(A∗
s−1,t y)(n) =

∑
m∈Z

y(m) t(s−1m− n). (2.5)

However, in order to be consistent with the definition in (2.2) when s = 1, we do not
define the fractionally-strided convolution as the adjoint given by (2.5), but as in (2.1).

Remark 1. The fractionally-strided convolution defined in (2.1) can be equivalently
rewritten as:

(x ∗s t)(n) = (x ∗ tr)(k), (2.6)
where n = s−1k + r with r ∈ {0, ..., s−1 − 1}, k ∈ Z and tr = t(s−1 · +r) for every
r = 0, ..., s−1 − 1 and the symbol ∗ denotes the discrete convolution defined in (2.3).

Equation (2.6) is useful to interpret Hypothesis 2 on the convolutional filters (Sec-
tion 2.2). We observe that in our case the convolution is well defined since the signals we
consider have a finite number of non-zero entries. However, in general, it is enough to
require that x ∈ ℓp and t ∈ ℓq with 1

p + 1
q = 1 to obtain a well-defined discrete convolution.

We now present a graphical illustration of three examples of strided convolutions with
different strides: s = 1 in Figure 2.2a, s = 2 in Figure 2.2b, and s = 1

2 in Figure 2.2c.
The input vector x and the filter t have a finite number of non-zero entries indicated
with yellow and orange squares/rectangles, respectively, and the output x ∗s t has a finite
number of non-zero entries indicated with red squares/rectangles. For simplicity, we
identify the infinite vectors in RZ with vectors in RN where N is the number of their
non-zero entries. Given the illustrative purpose of these examples, for simplicity we
ignore boundary effects. The signals’ sizes are:
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x x ∗1 t

t

1

(a) Discrete convolution with stride s =
1 between an input vector x ∈ R8 (in
yellow) and a filter t ∈ R3 (in orange),
which gives as output a vector x ∗1 t ∈
R8 (in red). The input and output sizes
are the same.

x x ∗2 t

t

1

(b) Discrete convolution with stride s =
2 between an input vector x ∈ R8 (in
yellow) and a filter t ∈ R3 (in orange),
which gives as output a vector x ∗2 t ∈
R4 (in red). The output size is half the
input size.

x x ∗ 1
2
t

t

1

(c) Intuition of the convolution with stride s = 1
2

between an input vector x ∈ R8 (in yellow) and
a filter t ∈ R3 (in orange), which gives as output
a vector x ∗ 1

2
t ∈ R16 (in red). The output size

is twice the input size.

Figure 2.2: Discrete convolutions with strides s = 1 and s = 2 and intuitive interpretation
of convolution with stride s = 1

2 .

(a) s = 1, input vector x ∈ R8, output vector x ∗1 t ∈ R8;

(b) s = 2, input vector x ∈ R8, output vector x ∗2 t ∈ R4;

(c) s = 1
2 , input vector x ∈ R8, output vector x ∗ 1

2
t ∈ R16.

When the stride is an integer, equation (2.2) describes what is represented in Fig-
ures 2.2a and 2.2b. When the stride is s = 1

2 , as depicted in Figure 2.2c, it is intuitive to
consider a filter whose entries are half the size of the input ones. This is equivalent to
choosing the filter in a space of higher resolution with respect to the space of the input
signal. As a result, the output belongs to the same higher resolution space. For instance,
the filter belongs to a space that is twice the resolution of the input space when the
stride is 1

2 . This notion of resolution is coherent with the scale parameter used in the
continuous setting.

In fact, Figure 2.2c does not represent equation (2.1) exactly when s = 1
2 . However

the illustration is useful to model the fractional-strided convolution in the continuous
setting. A more precise illustration of the 1

2 -strided convolution of equation (2.2) is
presented in Figure 2.3.
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x x ∗1 t0

t0

xx ∗1 t1

t1

t

t0 t1

x ∗ 1
2
t

1

Figure 2.3: Discrete convolution with stride s = 1
2 between an input vector x ∈ R8 (in

yellow) and a filter t ∈ R3 (in orange), which gives as output a vector x ∗ 1
2

t ∈ R16 (in
red). The filter t is first divided into two sub-filters, t0 and t1, containing the odd and
even entries, respectively. Then, a convolution with stride 1 between the input vector
and each sub-filter is performed. Finally, the two output vectors are reassembled to form
the final output vector.

2.1.2 1D CGNN architecture

We now describe how to reformulate this discrete architecture in the continuous setting,
namely, by considering signals in

L2(R) := {f : R→ R Lebesgue measurable s.t.
∫
R

f2(x)dx < +∞} /∼

where f ∼ g if and only if f − g = 0 a.e. The resolution of these continuous signals is
modelled through wavelet analysis. Indeed, the higher the resolution of a signal, the
finer the scale of the space to which the signal belongs. The idea to link multi-resolution
analysis to neural networks is partially motivated by scattering networks [47].

Basic notions of wavelet theory. We give a brief review of concepts from wavelet
analysis: in particular the definitions and the meaning of scaling function spaces and
Multi-Resolution analysis in the 1D case. See [69, 114, 166] for more details.

Given a function ϕ ∈ L2(R), we define

ϕj,n(x) = 2
j
2 ϕ(2jx− n), x ∈ R, (2.7)

for every j, n ∈ Z. The integers j and n are the scale and the translation parameters,
respectively, where the scale is proportional to the speed of the oscillations of ϕ (the
larger j, the finer the scale, the faster the oscillations).
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Definition 1. A Multi-Resolution Analysis (MRA) is an increasing sequence of subspaces
{Vj} ⊂ L2(R) defined for j ∈ Z

... ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ ...

together with a function ϕ ∈ L2(R) such that

1.
⋃
j∈Z

Vj is dense in L2(R) and
⋂
j∈Z

Vj = {0};

2. f ∈ Vj if and only if f(2−j ·) ∈ V0;

3. and {ϕ0,n}n∈Z = {ϕ(· − n)}n∈Z is an orthonormal basis of V0.

The function ϕ is called scaling function of the MRA.

Intuitively, the space Vj contains functions for which the finest scale is j.

The spaces. In the discrete formulation, the intermediate spaces Rα1 , . . . ,RαL , with
α1 < · · · < αL, describe vectors of increasing resolution. In the continuous setting, it is
natural to replace these spaces by using a MRA of L2(R), namely, by using the spaces

Vj1 ⊂ Vj2 ⊂ · · · ⊂ VjL ,

with j1 < · · · < jL, representing an increasing (finite) sequence of scales. We have that
f ∈ Vj if and only if f(2 ·) ∈ Vj+1, so that Vj+1 contains signals at a resolution that is
twice that of the signals in Vj . Thus, the relation between the indexes αl and jl is

αl = 2ναl−1 ⇐⇒ jl = ν + jl−1,

where ν ∈ N is a free parameter, or, equivalently,

jl − jl−1 = log2
αl

αl−1
= log2(s−1). (2.8)

Similarly to the discrete case, the intermediate spaces are (Vjl
)cl for l = 1, ..., L, with

c1 > · · · > cL. The norm in these spaces is

∥f∥22 =
cl∑

i=1
∥fi∥2L2(R) =

cl∑
i=1

∫
R
|fi(x)|2dx, f ∈ (Vjl

)cl .

The nonlinearities. The nonlinearities σl act on functions in (L2(R))cl by pointwise
evaluation:

σl(f)(x) = σl(f(x)), a.e. x ∈ R.

Note that this map is well defined if there exists Ll such that |σl(x)| ≤ Ll|x| for every
x ∈ R. Indeed, in this case, σl(f) ∈ L2(R) for f ∈ L2(R). Moreover, if f = g a.e.,
then σl(f) = σl(g) a.e. It is worth observing that, in general, this nonlinearity does not
preserve the spaces (Vjl

)cl , namely, σl((Vjl
)cl) ̸⊂ (Vjl

)cl . However, in the case when the
MRA is associated to the Haar wavelet, the spaces (Vjl

)cl consist of dyadic step functions,
and so they are preserved by the action of σl.
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The fully connected layer. The map in the first layer is given by

Ψ1 = F ·+b, (2.9)

where F : RS → (Vj1)c1 is a linear map and b ∈ (Vj1)c1 .

The convolutional layers. We first need to model the convolution in the continuous
setting. A convolution with stride s = 2ν that maps functions from the scale j + ν to the
scale j with filter g ∈ Vj+ν ∩ L1(R) can be seen as the map

· ∗j+ν→j g : L2(R)→ L2(R), f ∗j+ν→j g = PVj (PVj+ν f ∗ g),

where ∗ : L2(R)× L1(R)→ L2(R) denotes the continuous convolution and PV : L2(R)→
L2(R) denotes the orthogonal projection onto the closed subspace V ⊂ L2(R). In other
words,

· ∗j+ν→j g = PVj ◦ ( · ∗ g) ◦ PVj+ν . (2.10)

The orthogonal projections allow us to fix the desired input and output spaces for the
continuous strided convolution, analogously to the discrete case (see Figures 2.2 and 2.3).
As a consequence, the corresponding deconvolution (i.e. a convolution with stride 2−ν)
is given by its adjoint, which can be easily computed since projections are self-adjoint
and the adjoint of a convolution with filter g is a convolution with filter g̃(x) := g(−x).
Therefore, by renaming g̃ with g, we obtain:

· ∗j→j+ν g = PVj+ν ◦ ( · ∗ g) ◦ PVj : L2(R)→ L2(R). (2.11)

We are now able to model a convolutional layer. The l-th layer of a CGNN, for l ≥ 2, is

σl ◦ Ψ̄l : (L2(R))cl−1 → (L2(R))cl ,

where σl is the nonlinearity defined above and Ψ̄l are the convolutions with stride 2−ν . In
view of the above discussion, and of the discrete counterpart explained in Section 2.1.1,
we define

Ψ̄l = P(Vjl
)cl ◦Ψl ◦ P(Vjl−1 )cl−1 ,

where the convolution Ψl : (L2(R))cl−1 → (L2(R))cl is given by

(Ψl(x))k :=
cl−1∑
i=1

xi ∗ tl
i,k + bl

k, k = 1, ..., cl, (2.12)

with filters tl
i,k ∈ Vjl

∩ L1(R) and biases bl
k ∈ Vjl

.
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Summing up. Altogether, the full architecture in the continuous setting may be
written as

G : RS Ψ1−−→
f.c.

(Vj1)c1 σ1−−−−→
nonlin.

(L2(R))c1
P(Vj1 )c1
−−−−−→

proj.
(Vj1)c1 Ψ2−−−→

conv.
(L2(R))c2

P(Vj2 )c2
−−−−−→

proj.
(Vj2)c2 σ2−−−−→

nonlin.
(L2(R))c2

P(Vj2 )c2
−−−−−→

proj.
(Vj2)c2 Ψ3−−−→

conv.
· · ·

· · · ΨL−−−→
conv.

L2(R)
PVjL−−−→
proj.

VjL

σL−−−−→
nonlin.

L2(R)
PVjL−−−→
proj.

VjL ,

which can be summarized as

G =
( 2
⃝
l=L

σ̃l ◦ Ψ̃l

)
◦ (σ̃1 ◦Ψ1) , (2.13)

where
Ψ̃l := P(Vjl

)cl ◦Ψl : (Vjl−1)cl−1 → (Vjl
)cl , l = 2, ..., L, (2.14)

and
σ̃l := P(Vjl

)cl ◦ σl : (Vjl
)cl → (Vjl

)cl , l = 1, ..., L. (2.15)

Remark 2 (On the finite-dimensionality of the network G). Even though the scale
j is fixed, the spaces Vj in (2.14) and (2.15) are infinite-dimensional because of the
infinite translations in (2.7). However, when restricting to functions with a fixed compact
support (as is done in practice, and as we will do below), every layer contains maps
between finite-dimensional spaces. On the one hand, this will allow for a relatively simple
implementation of the network, similarly to a discrete neural network (see §2.1.3 below).
On the other hand, this architecture avoids any further arbitrary (e.g. pixel-based)
discretization, yielding better results for continuous signals. This aspect is related to the
discretization issue in operator learning, see [30].

Remark 3 (Idea behind the continuous strided convolution). Let us focus on the case
with stride s = 2 for simplicity. The cases with s = 2ν with ν ≥ 2 are analogous, while
the corresponding deconvolutions (s = 2ν with ν ≤ −1) are simply obtained by taking
the adjoint operator, as the discrete deconvolution is obtained by taking the transpose
of the convolution. The discrete convolution with stride s = 2 (see equation (2.2)) is
obtained by

1. doing a standard discrete convolution (see equation (2.2));

2. and keeping only the even entries of the resulting vector.

As a consequence, the resolution of the output vector is half that of the input vector
(ignoring boundary effects).

Our definition of the continuous strided convolution (2.10) generalizes these operations.
If we start with an input signal f ∈ Vj+1 and a filter g ∈ Vj+1, the resulting convolution
is PVj (f ∗ g), namely we
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(i) take a continuous convolution f ∗ g;

(ii) and project the resulting signal onto Vj .

Here, (i) is the natural continuous version of 1. In (ii), the projection onto Vj consists of
local averages, which correspond to step 2., where, instead of taking averages, only every
second entry of the output vector was kept. Further, the input vector belongs to Vj+1
and the output vector to Vj , and so the resolution of the latter is half that of the former,
as in the discrete case. Finally, in order to define the convolution on the whole space
L2(R), the input vector is first projected onto Vj+1.

Remark 4 (Relation between discrete and continuous strided convolutions). If we apply
the continuous strided convolution (2.11) to a function f = ∑

n∈Z cnϕj,n ∈ Vj , we obtain

f ∗j→j+ν g =
∑
m∈Z
⟨f ∗ g, ϕj+ν,m⟩2ϕj+ν,m,

where g = ∑
p∈Z dpϕj+ν,p ∈ Vj+ν ∩ L1(R) represents a filter. It can be shown that

⟨f ∗ g, ϕj+ν,m⟩2 = 2− j
2
∑
n∈Z

cndη(m− 2νn) = 2− j
2
(
c ∗ 1

2ν
dη
)
(m), (2.16)

where ∗s is the discrete strided convolution with stride s defined in (2.1), dη := d ∗1 ην

and ην is the sequence defined as

ην(r) :=
∫
R2

ϕ(t)ϕ(z)ϕ(z − 2νt + r)dzdt, r ∈ Z. (2.17)

Therefore, the coefficients of the output signal (with respect to {ϕj+ν,m}) are obtained
by taking a discrete strided convolution of the coefficients c of the input signal (with
respect to {ϕj,m}) with the (discrete) filter dη, which is obtained by taking a discrete
convolution of the coefficients of the filter g with ην . In other words, a continuous strided
convolution between two signals can be seen as a discrete strided convolution between
the corresponding coefficients in the natural basis.

For proving (2.16), we first prove that ⟨ϕj,n ∗ ϕj+ν,p, ϕj+ν,m⟩2 depends only on the
scaling function ϕ, the scale j and the coefficient m− p− 2νn. Indeed, we have

⟨ϕj,n ∗ ϕj+ν,p, ϕj+ν,m⟩2 =
∫
R2

ϕj,n(y)ϕj+ν,p(x− y)ϕj+ν,m(x)dxdy

=
∫
R2

2
j
2 ϕ
(
2jy − n

)
2

j+ν
2 ϕ(2j+ν(x− y)− p)2

j+ν
2 ϕ(2j+νx−m)dxdy

= 2− j
2

∫
R2

ϕ(t)ϕ(z)ϕ(z − 2νt + m− 2νn− p)dzdt

= 2− j
2 ην(m− p− 2νn), (2.18)
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where ϕj,n = 2
j
2 ϕ(2j · −n) and ην(r) =

∫
R2 ϕ(t)ϕ(z)ϕ(z − 2νt + r)dzdt, as defined in (2.7)

and (2.17), respectively. Then we obtain

⟨f ∗ g, ϕj+ν,m⟩2 =
∑
n∈Z

∑
p∈Z

cndp⟨ϕj,n ∗ ϕj+ν,p, ϕj+ν,m⟩2

= 2− j
2
∑
n∈Z

cn

∑
p∈Z

dpη(m− p− 2νn)

= 2− j
2
∑
n∈Z

cndη(m− 2νn)

= 2− j
2
(
c ∗ 1

2ν
dη
)
(m),

where ∗s is the discrete strided convolution with stride s defined in (2.1), dη := d ∗1 ην

and ην(r) is the sequence defined in (2.17).

A simple example: the Haar case. Let Vj be the spaces of the MRA associated to
the Haar scaling function ϕ = 1[0,1]. This simple setting naturally extends the discrete
case to the continuous one. Indeed, given a signal f ∈ Vj , namely a piecewise constant
function on dyadic intervals, its coefficients with respect to the family {ϕj,m} are the values
of f itself (up to a normalization factor), and so discrete and continuous convolutions
almost coincide (see (2.16)). The only difference being in the filter, since in this case
η1 = [..., 0, 0.25, 0.5, 0.25, 0, ...] ∈ RZ, and so d ̸= dη. We would have exact correspondence
if η were the Dirac delta, i.e. η = [..., 0, 0, 1, 0, 0, ...] ∈ RZ (but this cannot be obtained
with any choice of wavelet), so that dη = d. Moreover, the Haar scaling function makes
it possible to simplify the structure of a CGNN. Indeed σl(Vjl

) ⊂ Vjl
, thanks to the form

of ϕ and the fact that ϕjl,k1 and ϕjl,k2 have disjoint support for every k1 ̸= k2. Therefore,
in this setting, the projections after the nonlinearities can be removed.

2.1.3 Details on the implementation of the network

In order to implement our generator (2.13), which is written as a composition of maps
between infinite-dimensional spaces, Ψ̃l and σ̃l, we need to find a proper discretization of
the network, ideally avoiding fine discretizations of the space.

Implementation of Ψ̃l. The continuous strided convolution Ψ̃l, namely a continuous
convolution followed by the projection, may be efficiently computed by using (2.16), if
we set the bias term to be zero for each output channel. Indeed, we require only one
computation of a continuous integral (i.e. the integral that defines ην in (2.17), which
depends only on the choice of the wavelet) and a series of discrete convolutions. In the
case when the bias term is not trivial, this can be dealt with directly at the level of the
wavelet coefficients.

Implementation of σ̃l. The computation of σ̃l, i.e. the nonlinearity followed by the
projection, is more subtle (apart in the case of the Haar wavelet, where it is enough to apply
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the nonlinearity to the scaling coefficients). The most straightforward implementation
would be to consider a fine discretization of the space, which would allow for the
computation of the pointwise nonlinearity and of the integrals involved in the scalar
products related to the projection. However, this would be computationally heavy.
Instead, we propose to approximate the pointwise values of a signal belonging to a certain
Vj by using its scaling coefficients in Vj+M with M sufficiently large. We apply the
nonlinearity directly to these coefficients, and then we project back to Vj . Note that
going from Vj to Vj+M and back can be performed very efficiently by using the fast
wavelet transform, and the operations of upsampling and downsampling (see [69, Section
5.6]).

We now clarify how the scaling coefficients in Vj+M for large M provide a (pointwise)
discretization of the original signal in Vj . We have

lim
j→+∞

2
j
2 ⟨f, ϕj,2jb⟩2∫

R ϕ dx
= f(b), a.e. b ∈ R, (2.19)

whenever f ∈ L2(R) and ϕ is compactly supported, bounded and
∫
R ϕ dx ̸= 0. If f is

continuous, equation (2.19) holds for every b ∈ R. In other words, the scaling coefficients
at fine scales approximate the pointwise values of the function, up to a constant. In
the Haar case, equation (2.19) is a simple consequence of the Lebesgue differentiation
theorem, while in the general case, it follows from an extension (see [96, Corollary 2.1.19]).

2.2 Injectivity of CGNNs
We are interested in studying the injectivity of the continuous generator (2.13) to
guarantee uniqueness in the representation of the signals. The injectivity will also allow
us, as a by-product, to obtain stability results for inverse problems using generative
models, as in Section 2.3.

We consider here the 1D case with stride s = 1
2 (ν = 1); then, applying (2.8) iteratively,

we obtain jl = j1 + l − 1 for l = 1, . . . , L. We also consider non-expansive convolutional
layers, i.e. cl = cl−1

2 = scl−1 = c1
2l−1 . We note that the same result holds also with

expansive convolutional layers, arbitrary stride (possibly dependent on l) and in the 2D
case (see Section 2.2.2).

We make the following assumptions.

Assumptions on the scaling spaces Vjl
.

Hypothesis 1. The spaces Vjl
⊂ L2(R), with jl ∈ N, belong to an MRA (see Definition 1),

whose scaling function ϕ is compactly supported and bounded. Furthermore, there exists
r ∈ Z such that

η1(r) ̸= 0, (2.20)

where η1(r) is defined in (2.17).
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We observe that Hypothesis 1 implies that the sequence ην defined in (2.17) has a
finite number of non-zero elements. As a consequence, when g is compactly supported, the
filters dη can be represented by finite-dimensional vectors, as for discrete neural networks.
However, as highlighted in Remark 4, the continuous strided convolution involves a
double convolution (2.16), which is not present in the discrete strided convolution.
Remark 5 (Haar and Daubechies scaling functions). For positive functions, such as
the Haar scaling function, i.e. ϕ = 1[0,1], condition (2.20) is easily satisfied. For the
Daubechies scaling functions with N vanishing moments for N = 1, 2, ..., 45 (N = 1
corresponds to the Haar scaling function), we verified condition (2.20) numerically. We
believe that this condition is satisfied for every scaling function ϕ, but have not been
able to prove this rigorously.

We note, however, that Hypothesis 1 is clearly needed for the injectivity of the
convolutional layers. Indeed if we had η1(r) = 0 for every r ∈ Z, then

⟨ϕj,n ∗ ϕj+1,p , ϕj+1,m⟩2 = 0, j, n, p, m ∈ Z.

Therefore, Hypothesis 1 guarantees that the continuous deconvolution · ∗j→j+1 g is not
identically 0 (at least for some filter g ∈ Vj+1).

Assumptions on the convolutional filters. The following hypothesis asks that, at
each convolutional layer, the filters are compactly supported, where p̄ + 1 represents the
filters’ size. Generally, the convolutional filters act locally, so it is natural to assume that
they have compact support. Furthermore, we ask the filters to be linearly independent,
in a suitable sense: this is needed for the injectivity of the convolutional layers.
Hypothesis 2. Let p̄ ∈ N. For every l = 2, ..., L, the convolutional filters tl

i,k ∈ Vjl
of

the l-th convolutional layer (2.12) satisfy

tl
i,k =

p̄∑
p=0

dl
p,i,kϕjl,p, i = 1, ..., cl−1, k = 1, ..., cl,

where dl
p,i,k ∈ R, and det(Dl) ̸= 0, where Dl is the c1

2l−1 × c1
2l−1 matrix defined by

(Dl)i,k :=

dl
0,i,k k = 1, ..., c1

2l ,

dl
1,i,k− c1

2l
k = c1

2l + 1, ..., c1
2l−1 .

(2.21)

Remark 6. The condition det(Dl) ̸= 0 is sufficient for the injectivity of the convolutional
layers, but not necessary. The necessary condition is given in 2.2.1, and consists in
requiring the rank of a certain block matrix to be maximum, in which Dl is simply the
first block. We note that this condition is independent of the scaling function ϕ, but
depends only on the filters’ coefficients dl

p,i,k.
Remark 7 (Analogy between continuous and discrete case). The splitting operation of
the filters’ scaling coefficients in odd and even entries, as in Hypothesis 2, reminds the
expression of the discrete convolution with stride s = 1

2 . Indeed, a discrete filter t is split
into t0, containing the even entries of t, and t1, containing the odd ones (2.6).
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Assumptions on the nonlinearity. For simplicity, we consider the same nonlinearity
σ : R→ R in each layer (the generalization to the general case is straightforward). The
following conditions guarantee that σ̃l is injective.

Hypothesis 3. We assume that

1. σ ∈ C1(R) is injective and M1 ≤ σ′(x) ≤M2 for every x ∈ R, for some M1, M2 > 0;

2. σ(0) = 0 and σ preserves the sign, i.e. x · σ(x) ≥ 0 for every x ∈ R;

Note that these conditions ensure that |σ(x)| ≤ L|x| for every x ∈ R, for some L > 0,
and so σl(f) ∈ (L2(R))cl for every f ∈ (L2(R))cl . It is also straightforward to check that
the injectivity of σ : R→ R ensures the injectivity of

σl : (Vjl
)cl → (L2(R))cl , f 7→ σl(f).

Remark 8. In the Haar case, the projection after the nonlinearity can be removed, as
explained at the end of Section 2.1.2, and we need to verify only the injectivity of σl

instead of that of σ̃l = P(Vjl
)cl ◦ σl. As noted above, a sufficient condition to guarantee

the injectivity of σl is the injectivity of σ. So, in the Haar case, Hypothesis 3 can be
relaxed and replaced by:

1. σ is injective;

2. There exists L > 0 such that |σ(x)| ≤ L|x| for every x ∈ R.

Hypothesis 3 is satisfied for example by the function σhp(x) = |x| arctan(x). Its
relaxed version, in the Haar case, is satisfied by some commonly used nonlinearities, such
the Sigmoid, the Hyperbolic tangent, the Softplus, the Exponential linear unit (ELU)
and the Leaky rectified linear unit (Leaky ReLU). Our approach does not allow us to
consider non-injective σ’s, such as the ReLU [187].

For simplicity, in Hypothesis 3, we require that σ ∈ C1(R) and that σ′ is strictly
positive everywhere. This allows us to use Hadamard’s global inverse function theorem
[94] to obtain the injectivity of the generator. However, thanks to a generalized version
of Hadamard’s theorem [186], we expect to be able to relax the conditions by requiring
only that σ is Lipschitz and its generalized derivative is strictly positive everywhere. In
this way, the Leaky ReLU would satisfy the assumptions.

Assumptions on the fully connected layer. We impose the following natural
hypothesis on the fully connected layer.

Hypothesis 4. We assume that

1. The linear function F : RS → (Vj1)c1 is injective;

2. There exists N ∈ N such that b ∈ (span{ϕj1,n}Nn=−N )c1 and Im(F ) ⊂ (span{ϕj1,n}Nn=−N )c1 .
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The inclusion F (RS)+b ⊂ (Vj1)c1 is natural, since we start with low-resolution signals.
The second condition in Hypothesis 4 means that the image of the first layer, F (RS) + b,
contains only compactly supported functions. This is natural since we deal with signals
of finite size.

Even the injectivity of F is non-restrictive, since we choose the dimension S of the
latent space to be much smaller than the dimension of Im(F ) = (span{ϕj1,n}Nn=−N )c1 ,
which is c1(2N + 1). So, F maps a low-dimensional space into a higher dimensional one.

The injectivity theorem. The main result of this section reads as follows.

Theorem 1. Let L ∈ N∗ and j1 ∈ Z. Let c1 = 2L−1, cl = c1
2l−1 and jl = j1 + l − 1

for every l = 1, ..., L. Let Vjl
be the scaling function space arising from an MRA, and

tl
i,k ∈ Vjl

for every l = 2, ..., L, i = 1, ..., cl−1 and k = 1, ..., cl. Let Ψ̃l and σ̃l be defined
as in (2.14) and (2.15), respectively. Let Ψ1 be defined as in (2.9). If Hypotheses 1, 2, 3
and 4 are satisfied, then the generator G defined in (2.13) is injective.

Sketch of the proof. Consider (2.13), (2.14) and (2.15). Note that Ψ1 is injective by
Hypothesis 4. If we also show that Ψ̃l is injective for every l = 2, . . . , L and that σ̃l is
injective for every l = 1, . . . , L, then the injectivity of G will immediately follow.

The injectivity of Ψ̃l is a consequence of Hypothesis 2 (together with Hypothesis 1).
The injectivity of σ̃l follows from Hypothesis 3 (together with Hypotheses 1 and 4)
and from Hadamard’s global inverse function theorem applied to σ̃l. The full proof is
presented in 2.2.1.

Remark 9 (Simplified CGNN architecture). It is possible to consider a simplified CGNN
architecture in which the nonlinearities σ are applied on the signal scaling coefficients,
i.e. σ(f) = ∑

n∈Z σ(cn)ϕj,n with f = ∑
n∈Z cnϕj,n ∈ Vj . In this case, the projections

onto the scaling spaces following the nonlinearities are not needed because σ(f) ∈ Vj .
Therefore, the injectivity of σ̃ℓ is guaranteed by assuming only the injectivity of σ. Then,
the injectivity of the simplified CGNN follows from Theorem 1 by replacing Hypothesis 3
with the injectivity of σ.

2.2.1 Proof of Theorem 1

Due to the intricate nature of the proof of Theorem 1, we have allocated a dedicated
section to present it. Readers who are not interested in the technical details of the proof
may choose to skip this section.

We begin with some preliminary technical lemmas.

Lemma 2. Let Hypothesis 1 holds. Then

η̂1(ξ) ̸= 0 for a.e. ξ ∈ [0, 1],

where η̂1(ξ) is the Fourier series of (η1(r))r∈Z, defined as

η̂1(ξ) :=
∑
r∈Z

η1(r)e−2πiξr, ξ ∈ [0, 1]. (2.22)
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Proof. By Hypothesis 1, ϕ is compactly supported, thus the series (η1(r))r∈Z has a finite
number of non-zero entries. Then, η̂1 is an analytic function, with η̂1 ̸≡ 0, since by
Hypothesis 1, there exists r ∈ Z such that η1(r) ̸= 0. Therefore η̂1(ξ) ̸= 0 for a.e. ξ ∈
[0, 1].

Lemma 3. If Hypotheses 1, 2 and 4 are satisfied, then the image of each layer of the
generator G defined in (2.13) contains only compactly supported functions. More precisely:(

2
⃝
l̃=l

σ̃l̃ ◦ Ψ̃l̃

)
◦ (σ̃1 ◦Ψ1) (RS) ⊂Wl, l = 2, ..., L, (σ̃1 ◦Ψ1) (RS) ⊂W1,

Ψ̃l+1◦
(

2
⃝
l̃=l

σ̃l̃ ◦ Ψ̃l̃

)
◦(σ̃1 ◦Ψ1) (RS) ⊂Wl+1, l = 2, ..., L−1, Ψ̃2◦(σ̃1 ◦Ψ1) (RS) ⊂W2,

where, for every l = 1, ..., L, Wl := (span{ϕjl,n}N
l

n=−N l)cl for some N l ∈ N.

Proof. By Hypothesis 2, the filters of each layer are compactly supported and, by
Hypothesis 4, the same happens to the functions in the image of the first (fully connected)
layer, F (RS) + b. Moreover, the nonlinearities do not change the support of the functions
since they act pointwisely, and each Vj is spanned by the translates of a fixed compactly
supported function. Therefore, the image of each layer contains only compactly supported
functions.

In the rest of this section, with an abuse of notation, we indicate with σ both the
scalar function σ : R→ R and the operator σ : V c

j → (L2(R))c.

Lemma 4. Let σ : R→ R satisfy Hypothesis 3. Let W be a finite-dimensional subspace
of (L2(R))c of the form W1 × ... ×Wc, where Wi are finite-dimensional subspaces of
L2(R) ∩ L∞(R) for every i = 1, ..., c. Then σ : W ⊂ L2(R)c → L2(R)c is Fréchet
differentiable and its Fréchet derivative in g ∈W is

σ′(g) : W → (L2(R))c

f 7→ σ′(g)[f ]

where
(σ′(g)[f ])i : R→ R

x 7→ σ′(gi(x))fi(x),

for every i = 1, ..., c. Moreover, σ ∈ C1(W ).

Proof. Without loss of generality, set c = 1. Let g ∈ W . First, we observe that σ′(g),
as defined above, is linear. It is also bounded i.e. there exists C ∈ R+ such that
∥σ′(g)[f ]∥22 ≤ C∥f∥22. Indeed, by Hypothesis 3 we have

∥σ′(g)[f ]∥22 :=
∫
R

(σ′(g(x))f(x))2dx ≤M2
2

∫
R

f(x)2dx = M2
2 ∥f∥22.
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Next, we show that σ′(g) is the Fréchet derivative of σ, namely

lim
t→0

sup
∥f∥2=1,f∈W

∥σ(g + tf)− σ(g)− t σ′(g)[f ]∥2
t

= 0,

which is equivalent to

lim
t→0

sup
∥f∥2=1,f∈W

∥σ(g + tf)− σ(g)− t σ′(g)[f ]∥22
t2 = 0. (2.23)

Indeed, fixing x ∈ R, since σ ∈ C1(R), the mean value theorem yields

σ(g(x) + tf(x))− σ(g(x)) = tf(x)σ′(g(x) + τf(x)),

where 0 ≤ τ ≤ t ≤ 1. Then, (2.23) becomes

lim
t→0

sup
∥f∥2=1,f∈W

∫
R

f(x)2(σ′(g(x))− σ′(g(x) + τf(x)))2dx.

We observe that the space where σ′ is evaluated is

{g(x) + τf(x) : x ∈ R, 0 ≤ τ ≤ 1, f ∈W s.t. ∥f∥2 = 1},

which is contained in K = [−(∥g∥∞ + C̃), ∥g∥∞ + C̃] where ∥g∥∞ is finite since g ∈W ⊂
L∞(R), and C̃ = supf∈W,∥f∥2=1 ∥f∥∞, which is finite since W is a finite-dimensional
subspace of L2(R) ∩ L∞(R), therefore ∥ · ∥2 is equivalent to ∥ · ∥∞ in W .

Moreover, σ′ is uniformly continuous in K, because σ ∈ C1(R) by Hypothesis 3.
Therefore, there exists a modulus of continuity ω : R+ → R such that

|σ′(x)− σ′(y)| ≤ ω(|x− y|), x, y ∈ K,

and
lim

t→0+
ω(t) = ω(0) = 0. (2.24)

We notice also that we can choose ω as an increasing function. Therefore, we obtain

lim
t→0

sup
∥f∥2=1,f∈W

∫
R

f(x)2(σ′(g(x))− σ′(g(x) + τf(x)))2dx

≤ lim
t→0

sup
∥f∥2=1,f∈W

∫
R

f(x)2ω(|τf(x)|)2dx

≤ lim
t→0

sup
∥f∥2=1,f∈W

∫
R

f(x)2ω(t∥f∥∞)2dx

≤ lim
t→0

ω(tC̃)2

= 0.
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Finally, we show that σ ∈ C1(W ). The continuity of σ′ in g is verified if
lim

∥f∥2→0,f∈W
∥σ′(g + f)− σ′(g)∥2L(W,L2(R)) = 0.

We have
∥σ′(g + f)− σ′(g)∥2L(W,L2(R))

:= sup
∥h∥2=1,h∈W

∥σ′(g + f)[h]− σ′(g)[h]∥22

= sup
∥h∥2=1,h∈W

∫
R

h(x)2(σ′(g(x) + f(x))− σ′(f(x)))2dx.

We consider ∥f∥2 ≤ 1, since ∥f∥2 → 0. Using an argument similar to the one above,
we observe that the space where σ′ is evaluated is compact in R. Thus, there exists an
increasing modulus of continuity, as explained before. Therefore, we obtain

sup
∥h∥2=1,h∈W

∫
R

h(x)2(σ′(g(x) + f(x))− σ′(f(x)))2dx

≤ sup
∥h∥2=1,h∈W

∫
R

h(x)2ω(|f(x)|)2dx

≤ ω(∥f∥∞)2,

and ω(∥f∥∞)2 → 0 as ∥f∥2 → 0 by (2.24), since ∥ · ∥2 and ∥ · ∥∞ are equivalent norms in
W .

We recall a classical result that will be used in the proof: Hadamard’s global inverse
function theorem.
Theorem 5 ([94]). A C1 map f : RN → RN is a diffeomorphism if and only if the
Jacobian never vanishes, i.e. det(Jf (x)) ̸= 0 for every x ∈ RN , and |f(x)| → +∞ as
|x| → +∞.

We are now able to prove the main theorem of this chapter.

Proof of Theorem 1. Let us recall the network G in (2.13):

G =
( 2
⃝
l=L

σ̃l ◦ Ψ̃l

)
◦ (σ̃1 ◦Ψ1) ,

where
Ψ̃l := P(Vjl

)cl ◦Ψl : (Vjl−1)cl−1 → (Vjl
)cl , l = 2, ..., L,

σ̃l := P(Vjl
)cl ◦ σl : (Vjl

)cl → (Vjl
)cl , l = 1, ..., L.

Note that Ψ1 = F ·+b is injective by Hypothesis 4. We will show that the restriction
of Ψ̃l to the image of the previous layer is injective for every l = 2, . . . , L and that the
restriction of σ̃l to the image of the previous layer is injective for every l = 1, . . . , L. The
injectivity of G will immediately follow.

Let us fix a layer l. The proof holds for every l = 2, ..., L for Ψ̃l and for every
l = 1, ..., L for σ̃l. To simplify the notation, we omit the dependence of the quantities on
l and we denote the number of input channels by c and the input scale by j.
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Step 1: Injectivity of Ψ̃
∣∣
W

. Let W = Wl−1, where Wl−1 is defined in Lemma 3.
Therefore, there exists N ∈ N such that W = (span{ϕj,n}Nn=−N )c. There are c

2 output
channels and the output scale is j + 1. Take h, g ∈W such that Ψ̃(h) = Ψ̃(g), i.e.

PVj+1

( c∑
i=1

ti,k ∗ hi + bk

)
= PVj+1

( c∑
i=1

ti,k ∗ gi + bk

)
, k = 1, ...,

c

2 .

We need to show that h = g. By the linearity of the projections and of the convolutions,
we obtain

PVj+1

( c∑
i=1

ti,k ∗ fi

)
= 0, k = 1, ...,

c

2 , (2.25)

where f = h− g. We need to show that fi = 0 for every i = 1, ..., c.
Recall that {ti,k}i,k satisfy Hypothesis 2, and f ∈W , i.e.

ti,k =
p̄∑

p=0
dp,i,kϕj+1,p, dp,i,k = ⟨ti,k, ϕj+1,p⟩2,

and

fi =
N∑

n=−N

vn,iϕj,n, vn,i = ⟨fi, ϕj,n⟩2.

Since {ϕj+1,m}m∈Z is an orthonormal basis of Vj+1, we reformulate (2.25) in the following
way

c∑
i=1

N∑
n=−N

( p̄∑
p=0

dp,i,k⟨Fn,p, ϕj+1,m⟩2
)
vn,i = 0, k = 1, ...,

c

2 , m ∈ Z, (2.26)

where Fn,p := ϕj,n ∗ ϕj+1,p. We need to show that vn,i = 0 for every i = 1, ..., c and every
n = −N, ..., N . Setting

A(m,k),(n,i) :=
p̄∑

p=0
dp,i,k⟨Fn,p, ϕj+1,m⟩2, (2.27)

equation (2.26) becomes
c∑

i=1

N∑
n=−N

A(m,k),(n,i)vn,i = 0, k = 1, ...,
c

2 , m ∈ Z. (2.28)

We observe that ⟨Fn,p, ϕj+1,m⟩2 depends only on the scaling function ϕ, the scale j and
the coefficient m−p−2n as show in (2.18), i.e. ⟨Fn,p, ϕj+1,m⟩2 = 2− j

2 η1(m−p−2n) with
η1 defined in (2.17). Since ϕ is compactly supported, η1 has a finite number of non-zero
entries, namely η1 ∈ c00(Z), and, by Hypothesis 2, the same holds for d·,i,k (suitably
extended by 0 outside its support). This allows us to rewrite (2.27) as

A(m,k),(n,i) = 2− j
2
∑
p∈Z

dp,i,kη1(m− p− 2n) = 2− j
2 (d·,i,k ∗ η)(m− 2n) = 2− j

2 dη
i,k(m− 2n),
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where dη
i,k := (d·,i,k ∗ η1) ∈ c00(Z) and ∗ represents the discrete convolution defined in

(2.3).
Then (2.28) is equivalent to

c∑
i=1

∑
n∈Z

dη
i,k(m− 2n)vn,i = 0, m ∈ Z, k = 1, ...,

c

2 ,

where v·,i ∈ c00(Z). Therefore
c∑

i=1

∑
n,m∈Z

dη
i,k(m− 2n)vn,ie

−2πiξm = 0, a.e. ξ ∈ [0, 1]. (2.29)

Rewriting (2.29) as
c∑

i=1

∑
n∈Z

( ∑
m∈Z

dη
i,k(m− 2n)e−2πiξ(m−2n)

)
vn,ie

−2πiξ2n = 0

and defining the Fourier series of (g(r))r∈Z ∈ ℓ2(Z) as in (2.22), we obtain
c∑

i=1
d̂η

i,k(ξ)v̂i(2ξ) = 0, a.e. ξ ∈ [0, 1],

where vi(n) := vn,i. Applying the Convolution Theorem, we obtain
c∑

i=1
η̂1(ξ)d̂i,k(ξ)v̂i(2ξ) = 0, a.e. ξ ∈ [0, 1], (2.30)

where di,k(p) := dp,i,k.
Thanks to Lemma 2, equation (2.30) is equivalent to

c∑
i=1

d̂i,k(ξ)v̂i(2ξ) = 0, a.e. ξ ∈ [0, 1], k = 1, ...,
c

2 .

We can rewrite this condition on the coefficients, by writing the definition of the Fourier
series and using the orthonormality of {e2πiξr}r∈Z, which gives

c∑
i=1

∑
n∈Z

dm−2n,i,kvn,i = 0, m ∈ Z, k = 1, ...,
c

2 . (2.31)

Considering the odd and the even entries of d·,i,k separately, we can split (2.31) in this
way

c∑
i=1

∑
n∈Z

d̃m−n,i,kvn,i = 0, m ∈ Z, k = 1, ..., c, (2.32)

where

d̃p,i,k :=
{

d2p,i,k k = 1, ..., c
2 ,

d2p+1,i,k− c
2

k = c
2 + 1, ..., c.
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We notice that in (2.32) we have k = 1, ..., c, while previously k = 1, ..., c
2 . This is due to

the splitting operation that doubles the equations (2.31). Now the indices i and k take
values in the same range.

Without loss of generality, let us assume p̄ odd. Using again Hypothesis 2, we have
that d̃p,i,k = 0 if p /∈ {0, ..., p̄−1

2 } and vn,i = 0 if n /∈ {−N, ..., N}. So, we can rewrite
(2.32) in a compact form as D̃v = 0, where D̃ is a matrix of size c(2N + p̄+1

2 )× c(2N + 1)
of the form

D̃ =



D̃0 · · · 0 · · · 0 · · · 0
... . . . ...

...
...

D̃ p̄−1
2
· · · D̃0 · · · 0 · · · 0

... . . . ... . . . ...
...

0 · · · D̃ p̄−1
2
· · · D̃0 · · · 0

...
... . . . ... . . . ...

0 · · · 0 · · · D̃ p̄−1
2
· · · D̃0

...
...

... . . . ...
0 · · · 0 · · · 0 · · · D̃ p̄−1

2



, (2.33)

where D̃p is the c×c matrix defined by (D̃p)i,k := d̃p,i,k, and v is a vector of size c(2N +1)
such that

v =

v−N
...

vN

 ,

where vn is a vector of size c such that (vn)i := vn,i. To clarify the block structure of D̃,
the (m, n) block of size c×c is D̃m−n, defined as (D̃m−n)i,k := d̃m−n,i,k, if 0 ≤ m−n ≤ p̄−1

2
and the zero matrix otherwise, where n = −N, ..., N and m = −N, ..., N + p̄−1

2 . We
observe that the matrix Dl defined in (2.21) corresponds to D̃0 defined above and by
Hypothesis 2 det(Dl) = det(D̃0) ̸= 0. Therefore, the rank of D̃ is maximum, since the
determinant of the c(2N + 1)× c(2N + 1) block-triangular matrix

D̃0 · · · 0 · · · 0 · · · 0
... . . . ...

...
...

D̃ p̄−1
2
· · · D̃0 · · · 0 · · · 0

... . . . ... . . . ...
...

0 · · · D̃ p̄−1
2
· · · D̃0 · · · 0

...
... . . . ... . . . ...

0 · · · 0 · · · D̃ p̄−1
2
· · · D̃0


is not zero. Hence, vn,i = 0 for every n ∈ Z and i = 1, ..., c.
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Step 2: Injectivity of σ̃
∣∣
W

. Let W = Wl, where Wl is defined in Lemma 3. Therefore,
there exists N ∈ N such that W = (span{ϕj,n}Nn=−N )c. We prove that σW := PW ◦
σ
∣∣
W

: W →W is injective. This implies that σ̃
∣∣
W

= P(Vj)c ◦ σ
∣∣
W

: W → (Vj)c is injective.
Without loss of generality, set c = 1.

To do this, we use Theorem 5. By Hypothesis 1, we have W ⊂ L2(R) ∩ L∞(R).
Thanks to Lemma 3, we can identify any function f ∈W with a vector y ∈ R2N+1 whose
entries are ⟨f, ϕj,n⟩2 for n = −N, ..., N . Therefore, σW can be seen as a map

σW : R2N+1 → R2N+1.

To prove the injectivity of σW , we verify the conditions of Theorem 5.

1. The function σW ∈ C1(W ), because it is the composition of a linear function, the
projection PW , and the nonlinearity, σ, which is of class C1 thanks to Lemma 4.

2. We now show that det(JσW (y)) ̸= 0. Using g ∈ W instead of the corresponding
vector y ∈ R2N+1, we observe that

JσW (g) = (PW ◦ σ′)(g),

thanks to the linearity of the projection. In order to show that

det(JσW (g)) ̸= 0

for every g ∈W , by Lemma 4 we need to prove that PW (σ′(g(·))f) = 0 a.e. implies
f = 0 a.e. Thanks to the fact that f ∈W , we have

⟨σ′(g(·))f, f⟩2 = 0.

But σ′(x) > 0 for every x ∈ R, and so the last equation implies f = 0 a.e.

3. We now verify that |σW (y)|R2N+1 → +∞ as |y|R2N+1 → +∞. We observe that
|y|R2N+1 → +∞ implies that ∥f∥2 → +∞, where f ∈W has been identified with y.
Moreover,

∥σW (f)∥2 = ∥(PW ◦ σ)(f)∥2 ≥ ⟨σ(f), f

∥f∥2
⟩2,

because f
∥f∥2

∈ W with unitary norm. Using the fact that x · σ(x) ≥ 0 for every
x ∈ R (see Condition 2 of Hypothesis 3), we have

⟨σ(f), f

∥f∥2
⟩2 = 1

∥f∥2

∫
R

σ(f(x))f(x)dx = 1
∥f∥2

∫
R
|σ(f(x))||f(x)|dx.

Consider x ≥ 0. Applying the mean value theorem to σ in the interval [0, x] we
have that σ(x) = σ′(ξ)x with ξ ∈ [0, x]. Thanks to the fact that σ′(x) ≥ M1 for
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every x ∈ R (see Condition 1 of Hypothesis 3), we obtain that |σ(x)| ≥M1|x| for
every x ≥ 0. The same holds for x < 0. Therefore,

1
∥f∥2

∫
R
|σ(f(x))||f(x)|dx ≥ M1

∥f∥2

∫
R

(f(x))2dx = M1∥f∥2.

Summing up, we have

∥σW (f)∥2 ≥M1∥f∥2 → +∞, ∥f∥2 → +∞,

and then we obtain the thesis.

Remark 10. As we can see in the first step of the proof, the second condition in
Hypothesis 2 is sufficient but not necessary. It is indeed enough to ask that the rank of
D̃, defined in (2.33), is maximum.

Moreover, we observe that the maximum rank condition may not hold if we have
det(D̃0) = 0, but det(D̃p) ̸= 0 for some p ∈ {1, ..., p̄ − 1}. Indeed, if we consider the
matrix 

A 0 0
I A 0
A I A
0 A I
0 0 A


where 0 ∈M2×2 is the zero matrix, I ∈M2×2 is the identity matrix and A ∈M2×2 is
such that (

1/
√

2 0
0 0

)
,

it is easy to verify that the rank is not maximum.

2.2.2 Extensions

The formulation of Theorem 1 is presented within the context of a simplified framework,
which is as follows:

1. non-expansive convolutional layers;

2. stride s = 1
2 for each convolutional layer;

3. one-dimensional signals.

In the following subsections we extend our theory by weakening these assumptions.
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2.2.2.1 Expansive convolutional layers and arbitrary stride

In Section 2.2, we considered the case where the stride is s = 1
2 for each layer and

where the number of channels scaled exactly by the factor s at each layer, i.e. cl = scl−1.
Here, we generalize Theorem 1 to the case of stride sl = 1

2νl , with νl ∈ N, for the l-th
convolutional layer and by considering expansive layers, i.e. cl ≥ scl−1. In this case, Dl

are not necessarily square matrices, so we need to impose a condition on their rank.

Hypothesis 5. Let p̄ ∈ N. For every l = 2, ..., L, the convolutional filters tl
i,k ∈ Vjl

of
the l-th convolutional layer (2.12) satisfy

tl
i,k =

p̄∑
p=0

dl
p,i,kϕjl,p, i = 1, ..., cl−1, k = 1, ..., cl,

where dl
p,i,k ∈ R, and the rank of Dl is maximum, where Dl is a 2νlcl × cl−1 matrix

defined by

(Dl)i,k :=



dl
0,i,k k = 1, ..., cl,

dl
1,i,k−cl

k = cl + 1, ..., 2cl,

dl
2,i,k−2cl

k = 2cl + 1, ..., 3cl,
...
dl

2νl −1,i,k−(2νl −1)cl
k = (2νl − 1)cl + 1, ..., 2νlcl.

Theorem 6. Let L ∈ N∗ and j1 ∈ Z. Let c1, . . . , cL ∈ N∗ and ν2, . . . , νL ∈ N such that
cL = 1, cl−1 is divisible by 2νl and cl ≥ cl−1

2νl . Set jl = jl−1 + νl for every l = 2, ..., L.
Let Vjl

be the spaces of an MRA and tl
i,k ∈ Vjl

for every l = 2, ..., L, i = 1, ..., cl−1 and
k = 1, ..., cl. Let Ψ̃l and σ̃l be defined as in (2.14) and (2.15), respectively. Let Ψ1 be
defined as in (2.9). If Hypotheses 1, 3, 4 and 5 are satisfied, then the generator G defined
in (2.13) is injective.

Sketch of the proof. The proof of the injectivity of σ̃ is the same as in Theorem 1.
Moreover, the injectivity of Ψ̃ is guaranteed by Hypothesis 5 by following the same
argument used in the proof of Theorem 1.

We observe that, thanks to equation (2.8), choosing jl = jl−1 + νl is equivalent to
imposing that the stride of the l-th convolutional layer is sl = 1

2νl with νl ∈ N.

2.2.2.2 2D CGNNs

We recall the principal concepts of 2D wavelet analysis (see [166, Section 7.7] for more
details). In 2D, the scaling function spaces become Vj ⊗ Vj with j ∈ Z, with orthonormal
basis given by {ϕj,(n1,n2)}(n1,n2)∈Z2 , where

ϕj,(n1,n2)(x1, x2) = ϕj,n1(x1)ϕj,n2(x2),
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and {ϕj,n}n∈Z is an orthonormal basis of Vj . We recall that

V ⊗W = span{f ⊗ g : f ∈ V, g ∈W},

where (f ⊗ g)(x) = f(x1)g(x2). As in 1D, the MRA properties of Definition 1 hold:

1.
⋃
j∈Z

(Vj ⊗ Vj) is dense in L2(R2) ∼= L2(R)⊗ L2(R) and
⋂
j∈Z

(Vj ⊗ Vj) = {0};

2. f ∈ Vj ⊗ Vj if and only if f(2−j ·, 2−j ·) ∈ V0 ⊗ V0;

3. and {ϕ0,(n1,n2)}n1,n2∈Z is an orthonormal basis of V0 ⊗ V0.

Moreover, Vj ⊗ Vj ⊂ Vj+1 ⊗ Vj+1 for every j ∈ Z, as in 1D.
Now, we can specify the structure of the nonlinearities, the fully connected layer and

the convolutional ones in the 2D setting.
The nonlinearities σl act on functions in L2(R2)cl by pointwise evaluation:

σl(f)(x) = σl(f(x)), a.e. x ∈ R2.

The fully connected layer is defined as Ψ1 := F ·+b, where F : RS → (Vj1 ⊗ Vj1)c1 is
a linear map and b ∈ (Vj1 ⊗ Vj1)c1 .

The convolutional layers are

Ψ̄l = P(Vjl
⊗Vjl

)cl ◦Ψl ◦ P(Vjl−1 ⊗Vjl−1 )cl−1 ,

where the convolution Ψl : L2(R2)cl−1 → L2(R2)cl is given by

(Ψl(x))k :=
cl−1∑
i=1

xi ∗ tl
i,k + bl

k, k = 1, ..., cl, (2.34)

with filters tl
i,k ∈ (Vjl

⊗ Vjl
) ∩ L1(R2) and biases bl

k ∈ Vjl
⊗ Vjl

. In (2.34), the symbol ∗
denotes the usual convolution L2(R2)× L1(R2)→ L2(R2). Note that, in analogy to the
1D case, the convolution of a filter in Vj+ν ⊗ Vj+ν with a function in Vj ⊗ Vj produces a
function that does not necessarily belong to Vj+ν ⊗ Vj+ν . In view of identity (2.8), this
corresponds to a stride s = ( 1

2ν , 1
2ν ).

We can finally define the CGNN architecture in 2D:

G : RS Ψ1−−→
f.c.

(Vj1 ⊗ Vj1)c1 σ1−−−−→
nonlin.

L2(R2)c1
P(Vj1 ⊗Vj1 )c1
−−−−−−−−→

proj.
(Vj1 ⊗ Vj1)c1 Ψ2−−−→

conv.
L2(R2)c2

P(Vj2 ⊗Vj2 )c2
−−−−−−−−→

proj.
(Vj2 ⊗ Vj2)c2 σ2−−−−→

nonlin.
L2(R2)c2

P(Vj2 ⊗Vj2 )c2
−−−−−−−−→

proj.
(Vj2 ⊗ Vj2)c2 Ψ3−−−→

conv.
...

...
ΨL−−−→

conv.
L2(R2)

PVjL
⊗VjL−−−−−−→

proj.
VjL ⊗ VjL

σL−−−−→
nonlin.

L2(R2)
PVjL

⊗VjL−−−−−−→
proj.

VjL ⊗ VjL ,
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which can be summarized as

G =
( 2
⃝
l=L

σ̃l ◦ Ψ̃l

)
◦ (σ̃1 ◦Ψ1) , (2.35)

where

Ψ̃l := P(Vjl
⊗Vjl

)cl ◦Ψl : (Vjl−1 ⊗ Vjl−1)cl−1 → (Vjl
⊗ Vjl

)cl , l = 2, ..., L, (2.36)

and

σ̃l := P(Vjl
⊗Vjl

)cl ◦ σl : (Vjl
⊗ Vjl

)cl → (Vjl
⊗ Vjl

)cl , l = 1, ..., L. (2.37)

For simplicity, we state our injectivity result using non-expansive convolutional layers
and stride (1

2 , 1
2) for each convolutional layer. The result can be extended to arbitrary

strides and expansive layers by adapting the arguments in 2.2.2.1.

Hypothesis 6. Let p̄ ∈ N. For every l = 2, ..., L, the convolutional filters tl
i,k ∈ Vjl

⊗ Vjl

of the l-th convolutional layer satisfy

tl
i,k =

p̄∑
p1=0

p̄∑
p2=0

dl
p,i,kϕjl,p,

where dl
p,i,k ∈ R and p = (p1, p2), and det(Dl) ̸= 0, where Dl is a c1

22l−2 × c1
22l−2 matrix

defined by

(Dl)i,k :=



dl
(0,0),i,k, k = 1, ..., c1

222l−1 ,

dl
(1,0),i,k− c1

222l−1
, k = c1

222l−1 + 1, ..., c1
22l−1 ,

dl
(0,1),i,k− 2c1

222l−1
, k = c1

22l−1 + 1, ..., 3c1
222l−1 ,

dl
(1,1),i,k− 3c1

222l−1
, k = 3c1

222l−1 + 1, ..., c1
2l−1 .

Hypothesis 7. We assume that

• The linear function F : RS → (Vj1)c1 ⊗ (Vj1)c1 is injective;

• There exists N ∈ N such that b ∈ (span{ϕj1,n}Nn1,n2=−N )c1 and
Im(F ) ⊂ (span{ϕj1,n}Nn1,n2=−N )c1 with n = (n1, n2).

Theorem 7. Let L ∈ N∗ and j1 ∈ Z. Let c1 = 22L−2, cl = c1
22l−2 and jl = j1 + l − 1

for every l = 1, ..., L. Let Vjl
be scaling function spaces arising from an MRA and

tl
i,k ∈ Vjl

⊗ Vjl
for every l = 2, ..., L, i = 1, ..., cl−1 and k = 1, ..., cl. Let Ψ̃l and σ̃l be

defined as in (2.36) and (2.37), respectively. Let F : RS → (Vj1)c1 ⊗ (Vj1)c1 be a linear
map and b ∈ (Vj1)c1⊗ (Vj1)c1 . If Hypotheses 1, 3, 6 and 7 are satisfied, then the generator
G defined in (2.35) is injective.

Sketch of the proof. The proof follows from the same arguments of the proof of Theorem 1,
by considering n = (n1, n2), m = (m1, m2), p = (p1, p2) ∈ Z2 and ξ = (ξ1, ξ2) ∈ [0, 1]2.
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2.3 Stability of inverse problems with generative models
We now show how an injective CGNN can be used to solve ill-posed inverse problems.
The purpose of a CGNN is to reduce the dimensionality of the unknown to be determined,
and the injectivity is the main ingredient to obtain a rigorous stability estimate.

We consider an inverse problem of the form

y = F(x), (2.38)

where F is a possibly nonlinear map between Banach spaces, X and Y , modeling a
measurement (forward) operator, x ∈ X is a quantity to be recovered and y ∈ Y is the
noisy data. Typical inverse problems are ill-posed (e.g. CT, accelerated MRI, or electrical
impedance tomography), meaning that the noise in the measurements is amplified in the
reconstruction. For instance, in the linear case, this instability corresponds to having an
unbounded (namely, not Lipschitz) inverse F−1. The ill-posedness is classically tackled
by using regularization, which often leads to an iterative method, as the gradient-type
Landweber algorithm [79]. This can be very expensive if X has a large dimension.

However, in most of the inverse problems of interest, the unknown x can be modeled as
an element of a low-dimensional manifold in X. We choose to use a generator G : RS → X
to perform this dimensionality reduction and therefore our problem reduces to finding
z ∈ RS such that

y = F(G(z)). (2.39)

In practice, the map G is found via an unsupervised training procedure, starting from a
training dataset. From the computational point of view, solving (2.39) with an iterative
method is clearly more advantageous than solving (2.38), because z belongs to a lower
dimensional space. We note that the idea of solving inverse problems using deep generative
models has been considered in [44, 204, 22, 123, 122, 176, 221, 24].

The dimensionality reduction given by the composition of the forward operator with
a generator as in (2.39), has a regularizing/stabilizing effect that we aim to quantify.
More precisely, we show that an injective CGNN yields a Lipschitz stability result for the
inverse problem (2.39); in other words, the inverse map is Lipschitz continuous, and noise
in the data is not amplified in the reconstruction. For simplicity, we consider the 1D case
with stride 1

2 and non-expansive convolutional layers, but the result can be extended to
the 2D case and arbitrary stride as done in 2.2.2 for Theorem 1.

Theorem 8. Let X = L2(R) and G be a CGNN satisfying Hypotheses 1, 2, 3 and 4.
Let M := G(RS), K ⊂M be a compact set, Y be a Banach space and F : X → Y be a
C1 map (possibly nonlinear). Assume that F is injective and F ′(x)|TxM is injective for
every x ∈M. Then there exists a constant C > 0 such that

∥x− y∥X ≤ C∥F(x)−F(y)∥Y , x, y ∈ K.

The same result can be obtained also in the case of non-expansive convolutional layers
and arbitrary stride, under the hypotheses of Theorem 6. Moreover, it can be extended
to the 2D case under the hypotheses of Theorem 7.
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For proving Theorem 8, we first prove that the Fréchet derivative of an injective
CGNN is injective as well.

Proposition 9. Let X = L2(R) and G be a CGNN satisfying the hypotheses of Theorem 1.
Then the generator G is injective, of class C1 and G′(z) is injective for every z ∈ RS.

Proof. The injectivity of G is proved in Theorem 1, and the continuous differentiability
of G follows from the fact that it is a composition of continuously differentiable functions.
We only need to prove the injectivity of G′. Let Wl be defined as in Lemma 3, for
l = 1, . . . , L. The derivative of G can be written as

G′ =
( 2
⃝
l=L

(P(Vjl
)cl ◦ σl)′(P(Vjl

)cl ◦Ψl)′
)

(P(Vj1 )c1 ◦ σ1)′F ′, (2.40)

where, for simplicity, we omitted the arguments of each term. The injectivity of G′(z)
for every z ∈ RS follows from the injectivity of each component of (2.40). Indeed,
F ′ = F is injective for every z ∈ RS by Hypothesis 4. Moreover, for every l = 2, ..., L,
(P(Vjl

)cl ◦Ψl)′∣∣
Wl−1

= P(Vjl
)cl ◦Ψl

∣∣
Wl−1

is injective, as we prove in Step 1 of the proof of
Theorem 1.

Finally, we prove that σ̃′
l

∣∣
Wl

(g) = (P(Vj)c ◦ σl

∣∣
Wl

)′(g) is injective for every l = 1, ..., L.
To do this, we observe that a stronger condition holds i.e. σ′

Wl
(g) := (PWl

◦ σl

∣∣
Wl

)′(g)
is injective for every l = 1, ..., L. Indeed, the deteminant of its Jacobian is not zero for
every g ∈Wl, as shown in Step 2 of the proof of Theorem 1.

Now we are able to prove Theorem 8.

Proof of Theorem 8. Thanks to Proposition 9, G is injective, of class C1 and G′(z) is
injective for every z ∈ RS . Therefore, M = G(RS) is a S-dimensional differentiable
manifold embedded in X = L2(R), considering as atlas the one formed by only one
chart {M, G−1}. Moreover, M is a Lipschitz manifold, since G is a composition of
Lipschitz maps. Indeed, it is composed by affine maps and Lipschitz nonlinearities (see
Hypothesis 3). Then the result immediately follows from [5, Theorem 2.2].

The Lipschitz stability estimate provided in Theorem 8 can also be obtained in
the case when only finite measurements are available, i.e. a suitable finite-dimensional
approximation of F(x), thanks to [5, Theorem 2.5]. A similar estimate can be derived for
∥G−1(x)−G−1(y)∥RS [5, Proof of Theorem 2.2], even though this bound in the latent
space is less relevant for inverse problems.

Moreover, this Lipschitz stability estimate ensures the convergence of the Landweber
algorithm (see [72]), which can be used as a reconstruction method. In our setting, this
algorithm is applied to the functional F ◦G and, given an initial guess z0, it produces a
sequence of iterations zk

zk = zk−1 − h∇(F ◦G)(zk−1), k ≥ 1, (2.41)

where h > 0 is the stepsize.
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Although the injectivity of the generator is not a necessary condition for solving
inverse problems of the type (2.39), in order to prove theoretical results about inverse
problems, it is still a mandatory assumption, because of the proof techniques. It is
possible nevertheless that global injectivity of the generator is not needed, and a weaker
local one might suffice. This could be justified by using a differential geometric approach,
as in [5]. In Remark 11 below, we provide a toy example in which a non-injective generator
makes the Landweber iteration not convergent. However, it is still not clear, from the
theoretical point of view, whether non-injective models can be successfully used to solve
inverse problems.

Remark 11. We demonstrate how a non-injective generative model can lead to difficulties
in solving inverse problems. For simplicity, we consider a simple one-dimensional toy
example, with a ReLU activation function σ, which is not injective. Let

G : R→ R, G(z) = σ(−σ(z) + 1) = (−z+ + 1)+,

where z+ = max(z, 0). This is a simple 2-layer neural network, where the affine map
in the first layer is z 7→ z, and the affine map of the second layer is x 7→ −x + 1. It
is immediate to see that this network generates the set [0, 1] ⊂ R. However, it is not
injective:

G(z) =
{

1 if z ≤ 0,
0 if z ≥ 1.

(2.42)

Suppose now we wish to solve the inverse problem F(x) = y, as in (2.38) with any
map F , for x ∈ [0, 1]. Writing x = G(z), we are reduced to solving (2.39), namely
F(G(z)) = y. If we solve this by using any iterative method, as (2.41), with an initial
guess z0 ∈ R \ [0, 1], we have zk = z0 for every k, since G is constant in a neighborhood
of z0 by (2.42). Therefore, in general, it will not be possible to solve the inverse problem
with a non-injective generative model.

2.4 Numerical results
We present here numerical results validating our theoretical findings. In Section 2.4.1 we
describe how we train a CGNN, in Section 2.4.2 we compare a CGNN-based reconstruction
algorithm with a standard discrete generator one for a signal deblurring problem, and in
Section 2.4.3 we show qualitative results on the generation and reconstruction capabilities
of CGNNs. The treatment of more complicated inverse problems such as nonlinear ones
(e.g. EIT problem) has not been treated for computational reasons.

2.4.1 Training

The conditions for injectivity given in Theorem 1 are not very restrictive and we can use
an unsupervised training protocol to choose the parameters of a CGNN. Even though
our theoretical results concern only the injectivity of CGNNs, we numerically verified
that training a generator to also well-approximate a probability distribution gives better



CHAPTER 2. CONTINUOUS GENERATIVE NEURAL NETWORKS 45

reconstructions for inverse problems. For this reason, we choose to train CGNNs as parts
of variational autoencoders [134, 135], a popular architecture for generative modeling.
In particular, our VAEs are designed so that the corresponding decoder has a CGNN
architecture. Note that there is growing numerical evidence showing that an untrained
convolutional network is competitive with trained ones for solving inverse problems with
generative priors [221, 24].

In our experiment, the training is done on smooth signals. We create a dataset
of smooth signals constructed by randomly sampling the first 5 low-frequency Fourier
coefficients. Each of these is taken from a Gaussian distribution with zero mean and
variance that decreases as the frequency increases. Mathematically, the dataset contains
signals of the form

x(t) = a0
2 +

2∑
n=1

an cos (2πnt) + bn sin(2πnt),

where an, bn ∼ N
(
0, 1

(n+1)6

)
. In order to show the validity of our method in a high

resolution setting, the support of the signals [0, 1] is finely discretized with 4096 equidistant
points. We divide the dataset in 10000 signals to train the network and 2000 to test it.

Our VAE consists of a decoder with 3 non-expansive transposed convolutional layers
without bias terms and an encoder with a similar, yet mirrored, structure. For the decoder,
we consider the simplified CGNN architecture described in Remark 9. Differently from
the implementation described in Section 2.1.3, we do not pass from the scaling coefficients
in Vj to the ones in Vj+M and vice-versa at every layer. Here, both the nonlinearity and
the convolution are applied to the scaling coefficients in Vj . Therefore, our VAE takes
as input the scaling coefficients of our signals obtained by doing 6 downscalings, which
already constitute a significant dimensionality reduction with respect to the original finely
discretized signals (the scaling coefficients are approximately 4096

26 = 64). We numerically
verified that the simplified CGNN architecture provides very similar results to the original
architecture. In addition, we also verified that it is less computationally expensive, since
the whole network acts only on the scaling coefficients. For our experiments, we choose
the stride s = 1

2 , the latent space dimension S = 15 and the leaky-ReLU as nonlinear
activation function. Moreover we consider Daubechies scaling function spaces with
vanishing moments N = 1, 2, 6, 10.

The training is done with the Adam optimizer using a learning rate of 0.01 and
the loss function, commonly used for VAEs, given by the weighted sum of two terms:
the Mean Square Error (MSE) between the original and the generated signals and the
Kullback-Leibler Divergence (KLD) between the standard Gaussian distribution and the
one generated by the encoder in the latent space1.

The injectivity of the decoder, i.e. of the generator, is guaranteed if Hypotheses 1, 2
and 4 are satisfied and if σ is injective (see Remark 9). We test Hypothesis 2 a posteriori,

1All computations were implemented with Python3, running on a workstation with 256GB of RAM
and 2.2 GHz AMD EPYC 7301 CPU and Quadro RTX 6000 GPU with 22GB of memory. All the codes
are available at https://github.com/ContGenMod/Continuous-Generative-Neural-Network

https://github.com/ContGenMod/Continuous-Generative-Neural-Network
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i.e. after the training, and, in our cases, it is always satisfied. The other assumptions
are verified using the leaky-ReLU as nonlinearity and the Daubechies scaling functions
for the spaces Vj . We mention that leaky-ReLU was chosen not only because it satisfied
the assumptions but also because it obtained better performance compared to other
activation functions such as ReLU and ELU.

2.4.2 Deblurring with generative models

Deblurring problem. We consider the following deblurring problem

y = f ∗ x + e,

where

• x is a smooth signal from the test set.

• f is the Gaussian blurring filter obtained by evaluating a N(0, 4) in 1501 equidistant
point in [−4, 4].

• e is a weighted 4096 random Gaussian noise, i.e. e = τε, where τ ≥ 0 is a weight
and ε ∼ N (0, I4096). We consider two different levels of noise corresponding to
τ = 0 (no noise, only blurring filter) and τ = 0.3.

• The symbol ∗ represents the discrete convolution defined in equation (2.3).

In order to solve this deblurring problem, we compare the two following approaches.

Deep Landweber for discrete generators. We consider the Landweber algorithm
applied to y = f ∗G(z) + e, where G is a discrete injective generative NN (as described
in Section 2.1.1) giving as output discretized signals in R4096. In this case, the forward
operator is z 7→ f ∗ G(z) and the space in which the iterations are performed is the
low-dimensional latent space R15, to which z belongs. In order to choose an appropriate
initial value, one option is to generate vectors zi ∈ R15 with random Gaussian entries
and compute the MSE between the data y and f ∗G(zi) for every i. Then, we choose the
zi that minimizes the MSE. Otherwise, if G is the decoder of a discrete VAE, another
option is to choose the initial guess as E(y), where E is the encoder of the discrete VAE.
However, we notice that in practice, for our deblurring problem, the algorithm converges
to a good solution with almost every initial guess z ∈ R15 with random Gaussian entries.
Therefore, our results are shown in this setting. The iterative step becomes

zk = zk−1 − h(G′(zk−1))tf ∗ (f ∗G(zk−1)− y), k ≥ 1, h = 0.0005 fixed.

We run the algorithm until ∥zk+1−zk∥
∥zk∥ < δ, with δ = 10−12.
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Deep Landweber for continuous generators. Next, we consider the Landweber
algorithm applied to y = f ∗ G(z) + e, where G is a simplified injective CGNN, as
described in Remark 9. The generator may be decomposed as G = W ◦ G̃, where G̃
gives as outputs the scaling coefficients of the signals in VjL and W is an operator that
synthesizes the scaling coefficients at level jL, mapping them to a function in L2(R).
As for the discrete case above, in practice the algorithm converges to the solution with
almost every initial guess z ∈ R15 with random Gaussian entries and we show the results
in this case. The iterative steps are

zk = zk−1 − h(G̃′(zk−1))tWt ◦ f ∗ (f ∗G(zk−1)− y), k ≥ 1, h = 0.0005 fixed.

The stopping criterion is the same as that of deep Landweber for discrete generators.
Theoretically, W maps a sequence of scaling coefficients (cn)n∈Z ∈ RZ at level j = jL

into ∑n∈Z cnϕj,n ∈ Vj ⊂ L2(R) and the corresponding Wt maps a function f ∈ L2(R)
into the sequence of scaling coefficients (⟨f, ϕj,n⟩L2(R))n∈Z. In practice, as explained in
Section 2.1.3, we use the scaling coefficients in Vj+M for large M to approximate the
function ∑n∈Z cnϕj,n. Therefore, W consists of an upsampling transformation repeated
M times, assuming all the detail coefficients are equal to zero, while Wt is an M -times
downsampling. For our examples in Section 2.4.2, we consider M = 6.

Comparisons between continuous and discrete generator reconstruction al-
gorithms. In Figure 2.4 we provide a comparison between the continuous generator
approach using CGNNs living on Daubechies scaling spaces with vanishing moments
N = 1, 2, 6, 10 in the reconstruction of blurry signals, with or without noise. We also
compare them with the discrete generator approach where the generator is the decoder
of a discrete VAE taking as input directly the finely discretized function, instead of the
scaling coefficients. Although having the same basic structure, this discrete VAE will
contain significantly more parameters (50 times more than the ones of the continuous
VAEs whose decoders are the CGNNs living on Daubechies scaling spaces). In both cases,
the inverse problem was solved by applying the iterative scheme (2.41) with a random
initial guess as explained in the previous two paragraphs.

The original signal x is taken from our test set and the data y is obtained by blurring
it with a Gaussian blurring operator, and by possibly adding Gaussian noise. We compare
the original signal, the corrupted one and the reconstruction, by measuring the relative
MSE.

We notice that the discrete VAE yields more irregular reconstructions. This may be
due to the significantly higher number of parameters in this network, which is therefore
more prone to overfitting. On the contrary, the networks acting on the scaling coefficients
at low scales, thanks to the smoothness of Db6 and Db10, show smoother reconstructions,
coherently with the signals’ class. As one would expect, the shape of the wavelet affects
the final reconstructions.

In Figure 2.5 we show two examples of reconstruction obtained with the iterative
algorithm (2.41) starting from different initial guesses, with the Db6 scaling function
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Data

Haar

Db2

Db6

Db10

Discrete

0.0831 0.3046

0.0078 0.0092

0.0029 0.0026

0.0008 0.0017

0.0019 0.0026

0.0046 0.0033

1

Figure 2.4: Image deblurring. First column: noiseless case. Second column: noisy case.
In the first row: original signal x (orange) and blurry one y (blue). In the other rows:
original signal x (orange) and reconstructed one (blue) using algorithm (2.41) where the
generators are either CGNNs with different scaling functions or the discrete injective
generative NN (last row). At the top of each picture: relative MSE between the two
signals.
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k = 0 k = 10 k = 20 k = 50 k = 2000

1

Figure 2.5: In each row: original signal x (orange) and reconstruction (blue) after k
iterations of algorithm (2.41) where the generators are CGNNs with the Db6 scaling
function. In this case the data is not corrupted by noise, but the same results are obtained
also with Gaussian noise.

and blurry data y with no noise. We notice that the algorithm converges to the solution
starting from an arbitrary initial guess.

2.4.3 Generation and reconstruction power of CGNNs

To assess the quality of the generation, in Figure 2.6 we show random samples of signals
from trained injective CGNNs with different Daubechies scaling spaces and from the
discrete injective generative NN.

In order to evaluate the reconstruction power of our trained VAEs (Figure 2.7), we
compute the mean and the variance, over the 200 signals of the test set, of the MSE
between the true signal and the reconstructed one, obtained by applying the full VAE to
the true signal. We observe that although the discrete VAE has 50 times the parameters
of the VAEs acting on the scale coefficients, the values of the MSE are comparable
(especially in the case of smooth Daubechies wavelets such as db6 and db10). We also
show qualitatively some examples of reconstructed signals in Figure 2.8. Even in these
cases, the comparison takes into account the VAEs with different Daubechies scaling
spaces and the discrete VAE described in the previous section.
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Figure 2.6: Random samples from trained injective CGNNs with different scaling functions
and discrete injective generative NN.
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Figure 2.7: Boxplots of the MSE between the original image and the reconstructed
one over 200 images of the test set using VAEs with different scaling functions and the
discrete VAE.
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1

Figure 2.8: Original signal (blue) and reconstructed one (orange) using VAEs with
different scaling functions and the discrete VAE.



Chapter 3

Manifold Learning by Mixture
Models of Variational
Autoencoders for Inverse
Problems

The treatment of high-dimensional data is often computationally costly and numerically
unstable. Therefore, in many applications, it is important to find a low-dimensional rep-
resentation of high-dimensional datasets. Classical methods, like the principal component
analysis (PCA) [182], assume that the data is contained in a low-dimensional subspace.
However, for complex datasets this assumption appears to be too restrictive, particularly
when working with image datasets. Therefore, recent methods rely on the so-called
manifold hypothesis [34], stating that even complex and high-dimensional datasets are
contained in a low-dimensional manifold. Based on this hypothesis, in recent years,
many successful approaches have been based on generative models, able to represent high
dimensional data in Rn by a generator D : Rd → Rn with d≪ n: these include generative
adversarial networks [93], variational autoencoders [134], injective flows [141] and score-
based diffusion models [214, 117]. Indeed under the assumption that D is injective, the
set of generated points {D(z) : z ∈ Rd} forms a manifold that approximates the training
set. However, this requires that the data manifold admits a global parameterization. In
particular, it must not be disconnected or contain holes. In order to model disconnected
manifolds, [81, 127, 138, 184] propose to model the latent space of a VAE by a Gaussian
mixture model. This enables the authors to capture multimodal probability distributions.
However, this approach struggles with modelling manifolds with holes since either the
injectivity of the generator is violated or it is impossible to model overlapping charts.
Similarly, the authors of [71, 173, 191] propose latent distributions defined on Riemannian
manifolds for representing general topologies. In [172], the manifold is embedded into a
higher-dimensional space, in the spirit of Whitney embedding theorem. However, these
approaches have the drawback that the topology of the manifold has to be known a-priori,

51
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which is usually not the case in practice.
Here, we focus on the representation of the data manifold by several charts. A

chart provides a parameterization of an open subset from the manifold by defining a
mapping from the manifold into a Euclidean space. Then, the manifold is represented by
the collection of all of these charts, which is called atlas. For finding these charts, the
authors of [65, 85, 185, 208] propose the use of clustering algorithms. By default, these
methods do not provide an explicit formulation of the resulting charts. As a remedy,
[45, 185] use linear or kernelized embeddings. The authors of [208] propose to learn
for each chart again a generative model. However, these approaches often require a
large number of charts and are limited to relatively low data dimensions. The idea of
representing the charts by generative models is further elaborated in [139, 140, 201]. Here,
the authors proposes to train at the same time several (non-variational) autoencoders
and a classification network that decides for each point to which chart it belongs. In
contrast to the clustering-based algorithms, the computational effort scales well for large
data dimensions. On the other hand, the numerical examples in the corresponding papers
show that the approach already has difficulties to approximate small toy examples like a
torus.

In this chapter, we propose to approximate the data manifold by a mixture model of
VAEs. Using Bayes theorem and the evidence lower bound (ELBO) approximation of the
likelihood term we derive a loss function for maximum likelihood estimation of the model
weights. Mixture models of generative models for modeling disconnected datasets were
already considered in [29, 118, 158, 215, 229]. However, they are trained in a different
way and to the best of our knowledge none of those is used for manifold learning.

As in the previous chapter, the learned manifold is used to encode a-priori information
on the unknowns of inverse problems. We consider an observation y which is generated
by the inverse problem

y = G(x) + η,

where G : Rn → Rm is an ill-posed or ill-conditioned, possibly nonlinear, forward operator
and η represents additive noise. Reconstructing the input x directly from the observation y
is usually not possible due to the ill-posed operator and the high dimension of the problem.
As a remedy, the incorporation of prior knowledge is required. This is usually achieved
by using regularization theory, namely, by minimizing the sum of a data fidelity term
F (x) and a regularizer R(x), where F describes the fit of G(x) to y and R incorporates
the prior knowledge. With the success of deep learning, data-driven regularizers became
popular [17, 23, 95, 116, 162].

In this chapter, we consider a regularizer which constraints the reconstruction x to a
learned data manifold M. More precisely, we consider the optimization problem

x̂ = arg min
x

F (x) subject to x ∈M,

where F (x) = 1
2∥G(x)− y∥2 is a data-fidelity term. This corresponds to the regularizer

R(x) which is zero for x ∈M and infinity otherwise. When the manifold admits a global
parameterization given by one single generator D, the authors of [12, 56, 77, 91] propose
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to reformulate the problem as x̂ = D(ẑ), where ẑ ∈ arg minz F (D(z)). Since this is an
unconstrained problem, it can be solved by gradient based methods. However, since we
consider manifolds represented by several charts, this reformulation cannot be applied.
As a remedy, we propose to use a Riemannian gradient descent scheme. In particular, we
derive the Riemannian gradient using the decoders and encoders of our manifold and
propose two suitable retractions for applying a descent step into the gradient direction.

To emphasize the advantage of using multiple generators, we demonstrate the per-
formance of our method on numerical examples. We first consider some two- and
three-dimensional toy examples. Finally, we apply our method to deblurring and to
electrical impedance tomography, a nonlinear inverse problem consisting in the recon-
struction of the leading coefficient of a second order elliptic PDE from the knowledge of
the boundary values of its solutions [62]. The code of the numerical examples is available
online1.

The chapter is organized as follows. In Section 3.1, we revisit VAEs and fix the
corresponding notations. Afterwards, in Section 3.2, we introduce mixture models of
VAEs for learning embedded manifolds of arbitrary dimensions and topologies. Here, we
focus particularly on the derivation of the loss function and of the architecture, which
allows us to access the charts and their inverses. For minimizing functions defined on the
learned manifold, we propose a Riemannian gradient descent scheme in Section 3.3. We
provide numerical toy examples for one and two dimensional manifolds in Section 3.4.
In Section 3.5, we discuss the applications to deblurring and to electrical impedance
tomography.

3.1 Background on Variational Autoencoders and Mani-
folds

In this section, we revisit the technical backgrounds of the chapter. First, we recall the
concept of VAEs and their training procedure. Afterwards, we present our model for
the latent distribution based on a nomalizing flow, a short literature review on manifold
learning with VAEs and some basic definition from differential geometry.

3.1.1 Variational Autoencoders for Manifold Learning

In this chapter, we assume that we are given data points x1, . . . , xN ∈ Rn for a large
dimension n. In order to reduce the computational effort and to regularize inverse
problems, we assume that these data-points are located in a lower-dimensional manifold.
We aim to learn the underlying manifold from the data points x1, . . . , xN with a VAE
([134, 135]).

A VAE aims to approximate the underlying high-dimensional probability distribution
PX of the random variable X with a lower-dimensional latent random variable Z ∼ PZ

on Rd with d < n, by using the data points x1, . . . , xN . To this end, we define a decoder
1https://github.com/johertrich/Manifold_Mixture_VAEs

https://github.com/johertrich/Manifold_Mixture_VAEs
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D : Rd → Rn and an encoder E : Rn → Rd. The decoder approximates PX by the
distribution PX̃ of a random variable X̃ := D(Z) + η, where η ∼ N (0, σ2

xIn). Vice versa,
the encoder approximates PZ from PX by the distribution PZ̃ of the random variable
Z̃ := E(X) + ξ with ξ ∼ N (0, σ2

zId). Now, decoder and encoder are trained such that we
have PX ≈ PX̃ and PZ ≈ PZ̃ . To this end, we aim to maximize the log-likelihood function
ℓ(θ) = ∑N

i=1 log(pX̃(xi)), where θ denotes the parameters D and E depend upon.
The log-density log(pX̃(x)) induced by the model is called the evidence. However,

for VAEs the computation of the evidence is intractable. Therefore, [134] suggest to
approximate it by the evidence lower bound given by

ELBO(x|θ) := Eξ∼N (0,Id)[log(pZ(E(x) + σzξ))− 1
2σ2

x
∥D(E(x) + σzξ)− x∥2]. (3.1)

Indeed, by Jensen’s inequality the evidence can be lower-bounded by

log(pX̃(x)) = log
( ∫

Rd
pZ,X̃(z, x) dz

)
= log

( ∫
Rd

pZ,X̃(z, x)
pZ̃|X=x(z)pZ̃|X=x(z) dz

)
≥
∫
Rd

log
(pZ,X̃(z, x)

pZ̃|X=x(z)
)
pZ̃|X=x(z) dz

)
= Ez∼PZ̃|X=x

[
log

(pZ(z)pX̃|Z=z(x)
pZ̃|X=x(z)

)]
= Ez∼PZ̃|X=x

[log(pZ(z)) + log(pX̃|Z=z(x))− log(pZ̃|X=x(z))].

Accordingly to the definition of Z̃ and X̃, we have that pX̃|Z=z(x) = N (x; D(z), σ2
xIn)

and pZ̃|X=x(z) = N (z; E(x), σ2
zId). Thus, the above formula is, up to a constant, equal

to

Ez∼PZ̃|X=x
[log(pZ(z))− 1

2σ2
x
∥x−D(z)∥2 − log(N (z; E(x), σ2

zId))].

Considering the substitution ξ = (z − E(x))/σz, we obtain

Eξ∼N (0,Id)[log(pZ(E(x) + σzξ))− 1
2σ2

x
∥D(E(x) + σzξ)− x∥2 − log(N (ξ; 0, Id))].

Note that also the last summand does not depend on D and E. Thus, we obtain, up to
a constant, the ELBO (3.1).

Finally, a VAE is trained by minimizing the loss function which sums up the negative
ELBO values of all data points, i.e.,

LVAE(θ) = −
N∑

i=1
ELBO(xi|θ).
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Learned Latent Space. It is a known issue of VAEs that the inferred probability
distribution is often more blurry than the ground truth distribution of the data. A
detailed discussion of this issue can be found in [135, Section 2.8.2]. As a remedy, the
authors suggest to choose a more flexible model. One possibility is to combine VAEs
with normalizing flows, as proposed in [192] or [68]. Following these approaches, we
increase the flexibility of the model by using a latent space learned by a normalizing
flow. The idea is based on the observation that transforming probability distributions in
low-dimensional spaces is much cheaper than in high-dimensional spaces. Consequently,
modelling the low-dimensional latent space can be more effective than learning probability
transformations in the high-dimensional data space. Here, we employ the specific loss
function from [104, 106] for training the arising model. More precisely, we choose the
latent distribution

PZ = T#PΞ,

where T : Rd → Rd is an invertible neural network, called normalizing flow. In this way,
PZ is the push-forward of a fixed (known) distribution PΞ. Then, the density pZ is given
by

pZ(z) = pΞ(T −1(z))|det(∇T −1(z))|.

The parameters of T are considered as trainable parameters. Then, the ELBO reads as

ELBO(x|θ) := Eξ∼N (0,Id)[log(pΞ(T −1(E(x) + σzξ)))
+ log(|det(∇T −1(E(x) + σzξ))|)− 1

2σ2
x
∥D(E(x) + σzξ)− x∥2],

(3.2)

where θ are the parameters of the decoder, the encoder and of the normalizing flow T .
In the literature, there exist several invertible neural network architectures based

on coupling blocks ([75, 132]), residual networks ([33, 57, 115]), ODE representations
([58, 97, 177]) and autoregressive flows ([121]). In our numerics, we use the coupling-based
architecture from [22].

Manifold Learning with VAEs. In order to obtain a lower-dimensional representation
of the data points, some papers propose to approximate the data-manifold by M :=
{D(z) : z ∈ Rd}, see e.g. [12, 56, 77, 91]. However, this is only possible if the data-
manifold admits a global parameterization, i.e., it can be approximated by one generating
function. This assumption is often violated in practice. As a toy example, consider the
one-dimensional manifold embedded in R2 that consists of two circles, see Figure 3.1a.
This manifold is disconnected and contains “holes”. Consequently, the topologies of the
manifold and of the latent space R do not coincide, so that the manifold cannot be
approximated by a VAE. Indeed, this can be verified numerically. When we learn a
VAE for approximating samples from this manifold, we observe that the two (generated)
circles are not closed and that both components are connected, see Figure 3.1b. As a
remedy, in the next section, we propose the use of multiple generators to resolve this
problem, see Figure 3.1c. For this purpose, we need the notion of charts and atlases.
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Figure 3.1: Example of a one-dimensional manifold that admits no global parameteriza-
tion.

3.1.2 Embedded Manifolds

A subset M ⊆ Rn is called a d-dimensional embedded differentiable manifold if there
exist a set of indices I and a family (Uk, φk)k∈I of relatively open sets Uk ⊆ M with⋃

k∈I Uk =M and mappings φk : Uk → Rd such that it holds for every k, l ∈ I that

- φk is a homeomorphism between Uk and φk(Uk);

- the inverse φ−1
k : φk(Uk)→ Uk is continuously differentiable;

- the transition maps φk ◦ φ−1
l : φl(Uk ∩ Ul)→ φk(Uk ∩ Ul) are continously differen-

tiable;

- and the Jacobian ∇φ−1
k (x) of φ−1

k at x has full column-rank for any x ∈ φk(Uk).

We call the mappings φk charts and the family (Uk, φk)k∈I an atlas. With an abuse
of notation, we sometimes also call the set Uk or the pair (Uk, φk) a chart. Every
compact manifold admits an atlas with finitely many charts (Uk, φk)K

k=1, by definition of
compactness.

3.2 Chart Learning by Mixtures of VAEs
In order to approximate (embedded) manifolds with arbitrary (unknown) topology, we
propose to learn several local parameterizations of the manifold instead of a global one.
To this end, we propose to use mixture models of VAEs.

An Atlas as Mixture of VAEs. We propose to learn the atlas of an embedded
manifold M by representing it as a mixture model of variational autoencoders with
decoders Dk : Rd → Rn, encoders Ek : Rn → Rd and normalizing flows Tk in the latent
space, for k = 1, . . . , K. Then, the inverse of each chart φk will be represented by
φ−1

k = Dk := Dk ◦ Tk. Similarly, the chart φk itself is represented by the mapping
Ek := T −1

k ◦ Ek restricted to the manifold. Throughout this chapter, we denote the
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parameters of (Dk, Ek, Tk) by θk. Now, let X̃k, k = 1, . . . , K, be the random variable
generated by the decoder Dk as in the previous section. Then, we approximate the
distribution PX of the noisy samples from the manifold by the random variable X̃ := X̃J ,
where J is a discrete random variable on {1, . . . , K} with P (J = k) = αk with mixing
weights αk > 0 fulfilling ∑K

k=1 αk = 1.

3.2.1 Training of Mixtures of VAEs

Loss function. Let x1, . . . , xN be the noisy training samples. In order to train mix-
tures of VAEs, we minimize an upper bound of the negative log likelihood function
−
∑N

i=1 log(pX̃(xi)). To this end, we employ the law of total probability and the Jensen
inequality and we obtain

log(pX̃(xi)) ≥
K∑

k=1
βik log(pX̃k

(xi)),

where βik := P (J = k|X̃ = xi) is the probability that the sample xi was generated by the
k-th random variable X̃k. Using the definition of conditional probabilities, we observe
that

βik = P (J = k|X̃ = xi) =
P (J = k)pX̃k

(xi)∑K
j=1 P (J = j)pX̃j

(xi)
=

αkpX̃k
(xi)∑K

j=1 αjpX̃j
(xi)

. (3.3)

As the computation of pX̃k
is intractable, we replace it by the ELBO (3.2), i.e., we

approximate βik by
β̃ik = αk exp(ELBO(xi|θk))∑K

j=1 αj exp(ELBO(xi|θj))
. (3.4)

Then, we obtain

ℓ(xi|Θ) =
K∑

k=1

αk exp(ELBO(xi|θk))∑K

j=1 αj exp(ELBO(xi|θj))
ELBO(xi|θk),

that is an lower bound for log(pX̃(xi)). By summing up over all i, we obtain an upper
bound of the negative log likelihood function by the loss function

L(Θ) = −
N∑

i=1
ℓ(xi|Θ),

in order to train the parameters Θ = (θk)K
k=1 of the mixture of VAEs. Finally, this loss

function is then optimized with a stochastic gradient based optimizer like Adam [131].

Remark 12 (Lipschitz Regularization). In order to represent the local structure of the
manifold and to stabilize the training, we would like to avoid that two points that are close
in the latent distribution have too large a distance in the data space. This corresponds
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Figure 3.2: Plot of the unnormalized latent density q.

to regularizing the Lipschitz constant of the decoders Dk and of the normalizing flows Tk.
More precisely, for some small σ > 0, we add the regularization term

R(Θ) := 1
σ2

K∑
k=1

Ez∼PΞ,η∼N (0,σ2)
[
Dk(Tk(z))−Dk(Tk(z + η))

]
for the first few epochs of the training. Once the charts roughly capture the local
structures of the manifold, we avoid the Lipschitz regularization in order to have the
interpretation of the loss function as an approximation of the negative log likelihood of
the training points.

Latent Distribution. In order to identify the sets Uk defining the domain of the
k-th learned chart, we choose a latent distribution that is mostly concentrated in the
rectangle (−1, 1)d. Then, we can define the domain Uk of the k-th learned chart as the
set Uk := Dk((−1, 1)d). Since the charts are supposed to overlap, the density should
become small close to the boundary. To this end, we choose the distribution PΞ by using
the density pΞ(z) := ∏d

i=1 q(zi), where the density q is up to a multiplicative constant
given by

q(z) ∝


1, |z| < 0.8,

4.8− 4.75|z|, |z| ∈ [0.8, 1],
0.05 exp(−100(|z| − 1)), |z| > 1,

see Figure 3.2 for a plot.
Due to approximation errors and noise, we will have to deal with points x ∈ Rn that

are not exactly located in one of the sets Uk. In this case, we cannot be certain to which
charts the point x actually belongs. Therefore, we interpret the conditional probability
(3.3) as the probability that xi belongs to the k-th chart. Since we cannot compute the
βik explicitly, we use the approximations β̃ik from (3.4) instead.

Overlapping Charts. Since the sets Uk of an atlas (Uk, φk)k∈I are an open covering
of the manifold, they have to overlap near their boundaries. To this end, we propose the
following post-processing heuristic.

By the definition of the loss function L, we have that the k-th generator Dk is trained
such that Uk contains all points xi from the training set where β̃ik is non-zero. The
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following procedure modifies the β̃ik in such a way that the samples x that are close to
the boundary of the k-th chart will also be assigned to a second chart.

Since the measure PΞ is mostly concentrated in (−1, 1)d, the region close to the
boundary of the k-th chart can be identified by Dk(Tk(z)) for all z close to the boundary
of (−1, 1)d. For c > 1, we define the modified ELBO function

ELBOc(x|θk) := Eξ∼N (0,Id)[log(pΞ(cT −1
k (Ek(x) + σzξ)))

+ log(|det(∇T −1
k (Ek(x) + σzξ))|)− 1

2σ2
x
∥Dk(Ek(x) + σzξ)− x∥2]

which differs from (3.2) by the additional scaling factor c within the first summand.
By construction and by the definiton of pΞ, it holds that ELBOc(x, θk) ≈ ELBO(x|θk)
whenever c∥T −1

k (Ek(x))∥∞ < 0.8 and 0 < σz ≪ 0.1 is small. Otherwise, we have
ELBOc(x|θk) < ELBO(x|θk). In particular, ELBOc(x|θk) is close to ELBO(x|θk) if x
belongs to the interior of the k-th chart and is significantly smaller if it is close to the
boundary of the k-th chart.

As a variation of β̃ik, now we define

γ̂
(l)
il = αl exp(ELBOc(xi|θl))

αl exp(ELBOc(xi|θl)) +∑
j∈{1,...,K}\{l} αj exp(ELBO(xi|θj))

and
γ̂

(l)
ik = αk exp(ELBO(xi|θk))

αl exp(ELBOc(xi|θl)) +∑
j∈{1,...,K}\{l} αj exp(ELBO(xi|θj))

for k, l ∈ {1, . . . , K}. Similarly as the β̃ik, γ̂
(l)
ik can be viewed as a classification parameter,

which assigns each xi either to a chart k ≠ l or to the interior part of the l-th chart.
Consequently, points located near the boundary of the l-th chart will also be assigned to
another chart. Finally, we combine and normalize the γ̂

(l)
ik by

γik = γ̂ik∑K
k=1 γ̂ik

, where γ̂ik = max
l=1,...,K

γ̂
(l)
ik . (3.5)

Once, the γik are computed, we update the mixing weights α by αk = ∑N
i=1 γik and

minimize the loss function

Loverlap(Θ) = −
N∑

i=1

K∑
k=1

γikELBO(xi|θk) (3.6)

using a certain number of epochs of the Adam optimizer [131].

The whole training procedure for a mixture of VAEs representing the charts of an
embedded manifold is summarized in Algorithm 1. The hyperparameters M1, M2 and M3
are chosen large enough such that we have approximately approached a local minimum
of the corresponding objective function. In our numerical examples, we choose M1 = 50,
M2 = 150 and M3 = 50.
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Remark 13 (Number of Charts K). The choice of the number of charts K is a trade-off
between computational efficiency and flexibility of the model. While each manifold has
a minimal number of required charts, it could be easily represented by more charts.
Therefore, from a topological viewpoint, there is no upper limit on K. However, since
each chart comes with its own pair of decoder and encoder, the number of parameters
within the mixture of VAEs, and consequently the training effort, grow with K.

Algorithm 1 Training procedure for mixtures of VAEs.
1. Run the Adam optimizer on L(Θ) + λR(Θ) for M1 epochs.
2. Run the Adam optimizer on L(Θ) for M2 epochs.
3. Compute the values γik, i = 1, . . . , N , k = 1, . . . , K from (3.5).
4. Compute the mixing weights αk = ∑N

i=1 γik.
5. Run the Adam optimizer on Loverlap(Θ) from (3.6) for M3 epochs.

3.2.2 Architectures

In this subsection, we focus on the architecture of the VAEs used in the mixture model
representing the manifold M. Since Dk = Dk ◦ Tk represent the inverse of our charts φk,
the decoders have to be injective. Moreover, since Ek = T −1

k ◦ Ek represents the chart
itself, the condition Ek ◦ Dk = Id must be verified. Therefore, we choose the encoder Ek

as a left-inverse of the corresponding decoder Dk. More precisely, we use the decoders of
the form

Dk = TL ◦AL ◦ · · · ◦ T1 ◦A1,

where the Tl : Rdl → Rdl are invertible neural networks and Al : Rdl−1 → Rdl are fixed
injective linear operators for l = 1, . . . , L, d = d0 < d1 < · · · < dL = n. As it is
a concatenation of injective mappings, we obtain that Dk is injective. Finally, the
corresponding encoder is given by

Ek = A†
1 ◦ T −1

1 ◦ · · · ◦A†
L ◦ T −1

L , A† = (ATA)−1AT. (3.7)

Then, it holds by construction that Ek ◦ Dk = Id.
Here, we build the invertible neural networks Tl and the normalizing flows Tk out of

coupling blocks as proposed in [22] based on the real NVP architecture [75]. To this end,
we split the input z ∈ Rdl into two parts z = (z1, z2) ∈ Rd1

l × Rd2
l with dl = d1

l + d2
l and

define Tl(z) = (x1, x2) with

x1 = z1 es2(z2) + t2(z2) and x2 = z2 es1(x1) + t1(x1),

where s1, t1 : Rd1
l → Rd2

l and s2, t2 : Rd2
l → Rd1

l are arbitrary subnetworks (depending on
l). Then, the inverse T −1

l (x1, x2) can analytically be derived as z = (z1, z2) with

z2 =
(
x2 − t1(x1)

)
e−s1(x1) and z1 =

(
x1 − t2(z2)

)
e−s2(z2).
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Remark 14 (Projection onto learned charts). Consider a decoder Dk and an encoder Ek

as defined above. By construction, the mapping πk = Dk ◦Ek is a (nonlinear) projection
onto range(Dk) = range(πk), in the sense that πk ◦ πk = πk and that πk|range(Dk) is the
identity on range(Dk). Consequently, the mapping πk is a projection on the range of
Dk which represents the k-th chart of M. In particular, there is an open neighborhood
V := π−1

k (Uk) ⊆ Rn such that πk|V is a projection onto Uk.

3.3 Optimization on Learned Manifolds
As motivated in the introduction, we are interested in optimization problems of the form

min
x∈Rn

F (x) subject to x ∈M, (3.8)

where F : Rn → R is a differentiable function andM is available only through some data
points. In the previous section, we proposed a way to represent the manifold M by a
mixture model (Dk, Ek, Tk) of VAEs. This section outlines a gradient descent algorithm
for the solution of (3.8) once the manifold is learned.

As outlined in the previous section, the inverse charts φ−1
k of the manifold M are

modeled by Dk := Dk ◦ Tk. The chart φk itself is given by the mapping Ek := T −1
k ◦ Ek

restricted to the manifold. For the special case of a VAE with a single generator D, the
authors of [12, 56, 77] propose to solve (3.8) in the latent space. More precisely, starting
with a latent initialization z0 ∈ Rd they propose to solve

min
z∈Rd

F (D(z))

using a gradient descent scheme. However, when using multiple charts, such a gradient
descent scheme heavily depends on the current chart. Indeed, the following example
shows that the gradient direction can change significantly, if we use a different chart.

Example 10. Consider the two-dimensional manifold R2 and the two learned charts
given by the generators

D1(z1, z2) = (10z1, z2), and D2(z1, z2) = (z1, 10z2).

Moreover let F : R2 → R be given by (x, y) 7→ x + y. Now, the point x(0) = (0, 0)
corresponds for both charts to z(0) = (0, 0). A gradient descent step with respect to
F ◦ Dk, k = 1, 2, using step size τ yields the latent values

(z(1)
1 , z

(1)
2 ) = z(0) − τ∇(F ◦ D1)(z(0)) = −(10τ, τ),

(z̃(1)
1 , z̃

(1)
2 ) = z(0) − τ∇(F ◦ D2)(z(0)) = −(τ, 10τ).

Thus, one gradient steps with respect to F ◦ Dk yields the values

x(1) = D1(z(1)) = −(100τ, τ), x̃(1) = D2(z̃(1)) = −(τ, 100τ).

Consequently, the gradient descent steps with respect to two different charts can point
into completely different directions, independently of the step size τ .
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Therefore, we aim to use a gradient formulation which is independent of the pa-
rameterization of the manifold. Here, we use the concept of the Riemannian gradient
with respect to the Riemannian metric, which is inherited from the Euclidean space
in which the manifold M is embedded. To this end, we first revisit some basic facts
about Riemannian gradients on embedded manifolds which can be found, e.g., in [1].
Afterwards, we consider suitable retractions in order to perform a descent step in the
direction of the negative Riemannian gradient. Finally, we use these notions in order to
derive a gradient descent procedure on a manifold given by mixtures of VAEs.

3.3.1 Background on Riemannian Optimization

Riemannian Gradients on Embedded Manifolds. Let x ∈M ⊆ Rn be a point on
the manifold, let φ : U → Rd be a chart with x ∈ U and φ−1 : φ(U)→ U be its inverse.
Then, the tangent space is given by the set of all directions γ̇(0) of differentiable curves
γ : (−ε, ε)→M with γ(0) = x. More precisely, it is given by the linear subspace of Rn

defined as
TxM = {Jy : y ∈ Rd}, where J := ∇φ−1(φ(x)) ∈ Rn×d. (3.9)

The tangent space inherits the Riemannian metric from Rn, i.e., we equip the tangent
space with the inner product

⟨u, v⟩x = uTv, u, v ∈ TxM.

A function f : M → Rm is called differentiable if for any differentiable curve
γ : (−ε, ε) → M we have that f ◦ γ : (−ε, ε) → Rm is differentiable. In this case
the differential of f is defined by

Df(x) : TxM→ Rm, Df(x)[h] = d
dt

f(γh(t))
∣∣∣
t=0

,

where γh : (−ε, ε)→M is a curve with γh(0) = x and γ̇h(0) = h. Finally, the Riemannian
gradient of a differentiable function f : M→ R is given by the unique element ∇Mf ∈
TxM which fulfills

Df(x)[h] = ⟨∇Mf, h⟩x for all h ∈ TxM.

Remark 15. In the case that f can be extended to a differentiable function on a
neighborhood of M, these formulas can be simplified. More precisely, we have that the
differential is given by Df(x)[h] = hT∇f(x), where ∇f is the Euclidean gradient of f .
In other words, Df(x) is the Fréchet derivative of f at x restricted to TxM. Moreover,
the Riemannian gradient coincides with the orthogonal projection of ∇f on the tangent
space, i.e.,

∇Mf(x) = PTxM(∇f(x)), PTxM(y) = arg min
z∈TxM

∥y − z∥2.

Here the orthogonal projection can be rewritten as PTxM = J(JTJ)−1JT, J = ∇φ−1(φ(x))
such that the Riemannian gradient is given by ∇Mf(x) = J(JTJ)−1JT∇f(x).
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Retractions. Once the Riemannian gradient is computed, we aim to perform a descent
step in the direction of −∇Mf(x) on M. To this end, we need the concept of retraction.
Roughly speaking, a retraction in x maps a tangent vector ξ to the point that is reached
by moving from x in the direction ξ. Formally, it is defined as follows.

Definition 2. A differentiable mapping Rx : Vx →M for some neighborhood Vx ⊆ TxM
of 0 is called a retraction in x, if Rx(0) = x and

DRx(0)[h] = h for all h ∈ T0(Vx) = TxM,

where we identified T0(Vx) with TxM. Moreover, a differentiable mapping R = (Rx)x∈M : V →
M on a subset of the tangent bundle V = (Vx)x∈M ⊆ TM = (TxM)x∈M is a retraction
on M, if for all x ∈M we have that Rx is a retraction in x.

Now, let R : V →M be a retraction on M. Then, the Riemannian gradient descent
scheme starting at x0 ∈M with step size τ > 0 is defined by

xt+1 = Rxt(−τ∇Mf(xt)).

3.3.2 Retractions for Learned Charts

In order to apply this gradient scheme for a learned manifold given by the learned
mappings (Dk, Ek)K

k=1, we consider two types of retractions. We introduce them and show
that they are indeed retractions in the following lemmas. The first one generalizes the
idea from [2, Lemma 4, Proposition 5] of moving along the tangent vector in Rn and
reprojecting onto the manifold. However, the results from [2] are based on the orthogonal
projection, which is hard or even impossible to compute. Thus, we replace it by some
more general projection π. In our applications, π will be chosen as in Remark 14, i.e., we
set π(x) = Dk(Ek(x)).

Lemma 11. Let x ∈M, Ux ⊆ Rn be a neighborhood of x in Rn, π : Ux →M∩ Ux be a
differentiable map such that π ◦ π = π. Set Vx = {h ∈ TxM⊆ Rn : x + h ∈ Ux}. Then

Rx(h) = π(x + h), h ∈ Vx,

defines a retraction in x.

Proof. The property Rx(0) = x is directly clear from the definition of Rx. Now let
h ∈ TxM ⊆ Rn and γh : (−ε, ε) → M be a differentiable curve with γh(0) = x and
γ̇h(0) = h. As π|U is the identity on M, we have by the chain rule that

h = γ̇h(t) = d
dt

π(γh(t))
∣∣∣
t=0

= ∇π(x)γ̇h(0) = ∇π(x)h,

where ∇π(x) is the Euclidean Jacobian matrix of π at x. Similarly,

DRx(0)[h] = d
dt

Rx(th)
∣∣∣
t=0

= d
dt

π(x + th)
∣∣∣
t=0

= ∇π(x)h = h.
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The second retraction uses the idea of changing to local coordinates, moving into the
gradient direction by using the local coordinates and then going back to the manifold
representation. Note that similar constructions are considered in [1, Section 4.1.3].
However, as we did not find an explicit proof for the lemma, we give it below for the
sake of completeness.

Lemma 12. Let x ∈M and denote by φ : U → Rd a chart with x ∈ U ⊆M. Then,

Rx(h) = φ−1(φ(x) + (JTJ)−1JTh), J = ∇φ−1(φ(x))

defines a retraction in x.

Proof. The property Rx(0) = x is directly clear from the definition of Rx. Now let
h ∈ T0(TxM) = TxM⊆ Rn. By (3.9), we have that there exists some y ∈ Rd such that
h = Jy. Then, we have by the chain rule that

DRx(0)[h] = d
dt

Rx(th)
∣∣∣
t=0

= (∇φ−1(φ(x)))(JTJ)−1JTh = J(JTJ)−1JTJy = Jy = h.

3.3.3 Gradient Descent on Learned Manifolds

By Lemma 11 and 12, we obtain that the mappings

Rk,x(h) = Dk(Ek(x + h)) and R̃k,x(h) = Dk(Ek(x) + (JTJ)−1JTh) (3.10)

with J = ∇Dk(Ek(x)) are retractions in all x ∈ Uk. If we define R such that Rx is given
by Rk for some k such that x ∈ Uk, then the differentiability of R = (Rx)x∈M in x
might be violated. Moreover, the charts learned by a mixture of VAEs only overlap
approximately and not exactly. Therefore, these retractions cannot be extended to a
retraction on the whole manifold M in general. As a remedy, we propose the following
gradient descent step on a learned manifold.

Starting from a point xn, we first compute for k = 1, . . . , K the probability, that xn

belongs to the k-th chart. By (3.3), this probability can be approximated by

βk := αk exp(ELBO(xn|θk))∑K

j=1 αj exp(ELBO(xn|θj))
. (3.11)

Afterwards, we project xn onto the k-th chart by applying x̃n,k = Dk(Ek(xn)) (see
Remark 14) and compute the Riemannian gradient gn,k = ∇MF (x̃nk

). Then, we
apply the retraction Rk,x̃n,k

(or R̃k,x̃n,k
) to perform a gradient descent step xn+1,k =

Rk,x̃n,k
(−τngn,k). Finally, we average the results by xn+1 = ∑K

k=1 βkxn+1,k.
The whole gradient descent step is summarized in Algorithm 2. Finally, we compute

the sequence (xn)n by applying Algorithm 2 iteratively.
For some applications the evaluation of the derivative of F is computationally costly.

Therefore, we aim to take as large step sizes τn as possible in Algorithm 2. On the other
hand, large step sizes can lead to numerical instabilities and divergence. To this end, we
use an adaptive step size selection as outlined in Algorithm 3.
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Algorithm 2 One gradient descent step on a learned manifold.
Inputs: Function F : M→ R, point xn, step size τn > 0.
for k = 1, . . . , K do

- Approximate the probability that xn belongs to chart k by computing the βk

from (3.11).
- Project to the k-th chart by x̃n,k = Dk(Ek(xn)).
- Compute the Riemannian gradient gn,k = ∇MF (x̃n,k), e.g., by Remark 15.
- Perform a gradient descent with the retraction Rk,x̃n,k

, i.e., define
xn+1,k = Rk,x̃n,k

(−τngn,k).
end for
- Average results by computing xn+1 = ∑K

k=1 βkxn+1,k.

Algorithm 3 Adaptive step size scheme for gradient descent on learned manifolds
Input: Function F , initial point x0, initial step size τ0.
for n=0,1,. . . do

Compute xn+1 by Algorithm 2 with step size τn.
while F (xn+1) > F (xn) do

Update step size by τn ← τn
2 .

Update xn+1 by Algorithm 2 with the new step size τn.
end while
Set step size for the next step τn+1 = 3τn

2 .
end for

Remark 16 (Descent Algorithm). By construction Algorithm 3 is a descent algorithm.
That is, for a sequence (xn)n generated by the algorithm it holds that F (xn+1) ≤ F (xn).
With the additional assumption that F is bounded from below, we have that (F (xn))n is
a bounded descending and hence convergent sequence. However, this does neither imply
convergence of the iterates (xn)n themselves nor optimality of the limit of (F (xn))n. For
more details on the convergence of line-search algorithms on manifolds we refer to [1,
Section 4].

3.4 Numerical Examples
Next, we test the numerical performance of the proposed method. In this section, we start
with some one- and two-dimensional manifolds embedded in the two- or three-dimensional
Euclidean space. We use the architecture from Section 3.2.2 with L = 1. That is, for all
the manifolds, the decoder is given by T ◦A where A : Rd → Rn is given by x 7→ (x, 0) if
d = n− 1 and by A = Id if d = n and T is an invertible neural network with 5 invertible
coupling blocks where the subnetworks have two hidden layers and 64 neurons in each
layer. The normalizing flow modeling the latent space consists of 3 invertible coupling
blocks with the same architecture. We train the mixture of VAEs for 200 epochs with
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Figure 3.3: Datasets used for the different manifolds.

the Adam optimizer. Afterwards we apply the overlapping procedure for 50 epochs, as in
Algorithm 1.

We consider the manifolds “two circles”, “ring”, “sphere”, “swiss roll” and “torus”.
The (noisy) training data are visualized in Figure 3.3. The number of charts K is given
in the following table.

Two circles Ring Sphere Swiss roll Torus
Number of charts 4 2 2 4 6

We visualize the learned charts in Figure 3.4. Moreover, additional samples generated by
the learned mixture of VAEs are shown in Figure 3.5. We observe that our model covers
all considered manifolds and provides a reasonable approximation of different charts.
Finally, we test the gradient descent method from Algorithm 2 with some linear and
quadratic functions, which often appear as data fidelity terms in inverse problems:

• F (x) = x2 on the manifold “two circles” with initial points x0
∥x0∥ ± (1.5, 0) for

x0 = (±0.2, 1);

• F (x) = ∥x− (−1, 0)∥2 on the manifold “ring” with initial points (1,±0.4);

• F (x) = ∥x− (0, 0,−2)∥2 on the manifold “sphere” with inital points x0/∥x0∥ for
x0 ∈ {(0.3 cos(πk

5 ), 0.3 sin(πk
5 ), 1) : k = 0, . . . , 9)};

• F (x) = ∥x− (−5, 0, 0)∥2 on the manifold “torus”, where the inital points are drawn
randomly from the training set.

We use the retraction from Lemma 11 with a step size of 0.01. The resulting trajectories
are visualized in Figure 3.6. We observe that all the trajectories behave as expected and
approach the closest minimum of the objective function, even if this is not in the same
chart of the initial point.

Remark 17 (Dimension of the Manifold). For all our numerical experiments, we assume
that the dimension d of the data manifold is known. This assumption might be violated
for practical applications. However, there exist several methods in the literature to
estimate the dimension of a manifold from data, see e.g., [31, 52, 82, 152]. We are aware
that dimension estimation of high dimensional datasets is a hard problem which cannot



CHAPTER 3. MANIFOLD LEARNING BY MIXTURE MODELS OF VAES 67

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Two circles
2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ring

1.0
0.5

0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75

1.0
0.5

0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0

0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

Sphere

10
5

0
5

10 0
5

10
15

20

10
8
6
4
2

0

10123456
0

5

10
15

20

4
2

0
2
4
6
8

10.07.55.02.50.02.55.0
0

5
10

15
20

7.5
5.0
2.5

0.0
2.5
5.0
7.5

0 2 4 6 8 1012
0

5
10

15
20

10

5

0

5

10

Swiss roll

1 0 1 2 3 4 4
3

2
1

0
1

2
3

1.0
0.5

0.0
0.5
1.0

4.03.53.02.52.01.51.00.5
3

2
1

0
1

2
3

4

0.5
0.0
0.5
1.0

2 1 0 1 2 3
4

2
1

0
1

2
3

1.000.750.500.250.000.250.500.75

3 2 1
0

1
2

3 4.03.53.02.52.01.51.0
1.0
0.5

0.0
0.5
1.0

3 2 1
0

1
2

3 0.51.01.52.02.53.03.54.0
1.0
0.5

0.0
0.5
1.0

3
2

1
0

1
3

2
1

0
1

2

1.0
0.5

0.0
0.5
1.0

Torus

Figure 3.4: Learned charts for the different manifolds. For the manifolds “two circles”
and “ring”, each color represents one chart. For the manifolds “sphere”, “swiss roll” and
“torus” we plot each chart in a separate figure.
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Figure 3.5: Generated samples by the learned mixture of VAEs. The color of a point
indicates from which generator the point was sampled.
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Figure 3.6: Trajectories of the gradient descent on the learned manifolds.

be considered as completely solved so far. In particular, most of these algorithms make
assumptions on the distribution of the given data points. Even though it is an active area
of research, it is not the scope of this work to test, benchmark or develop such algorithms.
Similarly, combining them with our mixture of VAEs is left for future research.

3.5 Mixture of VAEs for Inverse Problems
In this section we describe how to use mixture of VAEs to solve inverse problems. We
consider an inverse problem of the form

y = G(x) + η, (3.12)

where G is a possibly nonlinear map between Rn and Rm, modeling a measurement
(forward) operator, x ∈ Rn is a quantity to be recovered, y ∈ Rm is the noisy data and η
represents some noise. In particular, we analyze a linear and a nonlinear inverse problem:
a deblurring problem and a parameter identification problem for an elliptic PDE arising
in electrical impedance tomography (EIT), respectively.

In many inverse problems, the unknown x can be modeled as an element of a low-
dimensional manifold M in Rn [12, 24, 44, 122, 176, 204, 172, 5], and this manifold can
be represented by the mixture of VAEs as explained in Section 3.2. Thus, the solution of
(3.12) can be found by optimizing the function

F (x) = 1
2∥G(x)− y∥2Rm subject to x ∈M, (3.13)

by using the iterative scheme proposed in Section 3.3.
We would like to emphasize that the main goal of our experiments is not to obtain

state-of-the-art results. Instead, we want to highlight the advantages of using multiple
generators via a mixture of VAEs. All our experiments are designed in such a way that
the manifold property of the data is directly clear. The application to real-world data
and the combination with other methods in order to achieve competitive results are not
within the scope of this work and are left to future research.
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Architecture and Training. Throughout these experiments we consider images
of size 128 × 128 and use the architecture from Section 3.2.2 with L = 3. Starting
with the latent dimension d, the mapping A1 : Rd → R322 fills up the input vector
x with zeros up to the size 322, i.e., we set A1(x) = (x, 0). The invertible neural
network T1 : R322 → R322 consists of 3 invertible blocks, where the subnetworks si and
ti, i = 1, 2 are dense feed-forward networks with two hidden layers and 64 neurons.
Afterwards, we reorder the dimensions to obtain an image of size 32× 32. The mappings
A2 : R32×32 → R32×32×4 and A3 : R64×64 → R64×64×4 copy each channel 4 times. Then,
the generalized inverses A†

2 : R32×32×4 → R32×32 and A†
3 : R64×64×4 → R64×64 from (3.7)

are given by taking the mean of the four channels of the input. The invertible neural
networks T2 : R32×32×4 → R64×64 and T3 : R64×64×4 → R128×128 consist of 3 invertible
blocks, where the subnetworks si and ti, i = 1, 2 are convolutional neural networks
with one hidden layer and 64 channels. After these three coupling blocks we use an
invertible upsampling [80] to obtain the correct output dimension. For the normalizing
flow in the latent space, we use an invertible neural network with three blocks, where the
subnetworks si and ti, i = 1, 2 are dense feed-forward networks with two hidden layers
and 64 neurons.

We train all the models for 200 epochs with the Adam optimizer. Afterwards we
apply the overlapping procedure for 50 epochs. See Algorithm 1 for the details of the
training algorithm.

3.5.1 Deblurring

First, we consider the inverse problem of noisy image deblurring. Here, the forward
operator G in (3.12) is linear and given by the convolution with a 30× 30 Gaussian blur
kernel with standard deviation 15. In order to obtain outputs y of the same size as the
input x, we use constant padding with intensity 1/2 within the convolution. Moreover,
the image is corrupted by white Gaussian noise η with standard deviation 0.1. Given an
observation y generated by this degradation process, we aim to reconstruct the unknown
ground truth image x.

Dataset and Manifold Approximation. Here, we consider the dataset of 128× 128
images showing a bright bar with a gray background which is centered and rotated. The
intensity of fore- and background as well as the size of the bar are fixed. Some example
images from the dataset are given in Figure 3.7a. The dataset forms a one-dimensional
manifold parameterized by the rotation of the bar. Therefore, it is homeomorphic to S1

and does not admit a global parameterization since it contains a hole.
We approximate the data manifold by a mixture model of two VAEs and compare

the result with the approximation with a single VAE, where the latent dimension is set
to d = 1. The learned charts are visualized in Figure 3.7b and 3.7c. We observe that
the charts learned with a mixture of two VAEs can generate all possible relations and
overlap at their boundaries. On the other hand the chart learned with a single VAE does
not cover all rotations but has a gap due to the injectivity of the decoder. This gap is
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(a) Samples from the considered dataset for the deblurring example.

(b) Learned chart with one generator. The figure shows the images D(x) for 20 values of x
equispaced in [−1, 1].

(c) Learned charts with two generators. The figure shows the images Dk(x) for 20 values of x
equispaced in [−1, 1] for k = 1 (top) and k = 2 (bottom).

(d) Reconstructions for the deblurring example. From top to bottom: ground truth image,
observation, reconstruction with one generator and reconstruction with two generators.

Figure 3.7: Dataset, learned charts and reconstructions for the deblurring example.

also represented in the final test loss of the model, which approximates the negative log
likelihood of the test data. It is given by 52.04 for one generator and by 39.84 for two
generators. Consequently, the model with two generators fits the data manifold much
better.

Reconstruction. In order to reconstruct the ground truth image, we use our gradient
descent scheme for the function (3.13) as outlined in Algorithm 2 for 500 iterations.
Since the function F is defined on the whole R128×128, we compute the Riemannian
gradient ∇MF (x) accordingly to Remark 15. More precisely, for x ∈ Uk, we have
∇MF (x) = J(JTJ)−1JT∇F (x), where ∇F (x) is the Euclidean gradient of F and
J = ∇Dk(Ek(x)) is the Jacobian of the k-th decoder evaluated at Ek(x). Here, the
Euclidean gradient ∇F (x) and the Jacobian matrix J are computed by algorithmic
differentiation. Moreover, we use the retractions R̃k,x from (3.10). As initialization x0
of our gradient descent scheme, we use a random sample from the mixture of VAEs.
The results are visualized in Figure 3.7d. We observe that the reconstructions with
two generators always recover the ground truth images very well. On the other hand,
the reconstructions with one generator often are unrealistic and do not match with the
ground truth. These unrealistic images may appear when the gradient descent scheme,
starting from a random initialization, has to pass through points that are not covered by
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(a) Ground truth (left) and observation (right).

(b) Visualization of the trajectories (xn)n for different initializations x0 with one generator. Left
column: initialization, right column: reconstruction x250, columns in between: images xn for n
approximately equispaced between 0 and 250.

(c) Visualization of the trajectories (xn)n for different initializations x0 with two generators. Left
column: initialization, right column: reconstruction x250, columns in between: images xn for n
approximately equispaced between 0 and 250.

Figure 3.8: Gradient descent for the deblurring example.
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(a) Samples from the considered dataset for the EIT example.

(b) Samples from the VAE with one generator.

(c) Samples from the mixture of two VAEs. Top: first chart, bottom: second chart.

(d) Reconstructions. From top to bottom: ground truth image, reconstruction with one generator,
reconstruction with two generators.

Figure 3.9: Dataset, synthesized samples and reconstructions for the EIT example.

the single chart parameterizing the manifold.
In order to better understand why the reconstructions with one generator often fail,

we consider the trajectories (xn)n generated by Algorithm 2 more in detail. We consider
a fixed ground truth image showing a horizontal bar and a corresponding observation
as given in Figure 3.8a. Then, we run Algorithm 2 for different initializations. The
results are given in Figure 3.8b for one generator and in Figure 3.8c for two generators.
The left column shows the initialization x0, and in the right column, there are the
values x250 after 250 gradient descent steps. The columns in between show the values
xn for (approximately) equispaced n between 0 and 250. With two generators, the
trajectory (xn)n are a smooth transition from the initialization to the ground truth. Only
when the initialization is a vertical bar (middle row), the images xn remain similar to
the initialization x0 for all n, since this is a critical point of the F |M and hence the
Riemannian gradient is zero. With one generator, we observe that some of the trajectories
get stuck exactly at the gap, where the manifold is not covered by the chart. At this
point the latent representation of the corresponding image would have to jump, which is
not possible. Therefore, a second generator is required at this point.

3.5.2 Electrical Impedance Tomography

Finally, we consider the highly nonlinear and ill-posed inverse problem of electrical
impedance tomography [62], which is also known in the mathematical literature as
the Calderón problem [26, 84, 174]. EIT is a non-invasive, radiation-free method to
measure the conductivity of a tissue through electrodes placed on the surface of the
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body. More precisely, electrical currents patterns are imposed on some of these electrodes
and the resulting voltage differences are measured on the remaining ones. Although
harmless, the use of this modality in practice is very limited because the standard
reconstruction methods provide images with very low spatial resolution. This is an
immediate consequence of the severe ill-posedness of the inverse problem [13, 168].

Classical methods for solving this inverse problem include variational-type methods
[63], the Lagrangian method [61], the factorization method [46, 137], the D-bar method
[209], the enclosure method [124], and the monotonicity method [216]. Similarly as
many other inverse problems, deep learning methods have had a big impact on EIT.
For example, the authors of [83] propose an end-to-end neural network that learns the
forward map G and its inverse. Moreover, deep learning approaches can be combined with
classical methods, e.g, by post processing methods [109, 108] or by variational learning
algorithms [204].

Dataset and Manifold Approximation. We consider the manifold consisting of
128 × 128 images showing two bright non-overlapping balls with a gray background,
representing conductivities with special inclusions. The radius and the position of the
balls vary, while the fore- and background intensities are fixed. Some exemplary samples
of the dataset are given in Figure 3.9a.

Remark 18 (Dimension Topology of the Data Manifold). Since the balls are indistinguish-
able and not allowed to overlap, an image can be uniquely described by the angle between
the two balls, the midpoint between the both balls, their distance and the two radii.
Hence, the data manifold is homeomorphic to S1 × (0, 1)2 × (0, 1)× (0, 1)2 = S1 × (0, 1)5.
In particular, it contains a hole and does not admit a global parameterization.

A slightly more general version of this manifold was considered in [5], where Lipschitz
stability is proven for a related inverse boundary value problem restricted to the manifold.
Other types of inclusions (with unknown locations), notably polygonal and polyhedral
inclusions, have been considered in the literature ([38, 36, 25]). The case of small
inclusions is discussed in [18].

We approximate the data manifold by a mixture of two VAEs and compare the results
with the approximation with a single VAE. The latent dimension is set to the manifold
dimension, i.e., d = 6. Some samples of the learned charts are given in Figure 3.9b and
3.9c. As in the previous example, both models produce mostly realistic samples. The
test loss is given by 365.21 for one generator and by 229.99 for two generators. Since the
test loss approximates the negative log likelihood value of the test data, this indicates
that the two generators are needed in order to cover the whole data manifold.

The Forward Operator and its Derivative. From a mathematical viewpoint, EIT
considers the following PDE with Neumann boundary conditions{

−∇ · (γ ∇ug) = 0 in Ω,
γ ∂νug = g on ∂Ω,

(3.14)
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where Ω ⊆ R2 is a bounded domain, γ ∈ L∞(Ω) is such that γ(x) ≥ λ > 0 and ug ∈ H1(Ω)
is the unique weak solution with zero boundary mean of (3.14) with Neumann boundary
data g ∈ H

− 1
2⋄ (∂Ω), with Hs

⋄(∂Ω) = {f ∈ Hs(∂Ω) :
∫

∂Ω fds = 0}. From the physical
point of view, g represents the electric current applied on ∂Ω (through electrodes placed
on the boundary of the body), ug is the electric potential and γ is the conductivity of the
body in the whole domain Ω. The inverse problem consists in the reconstruction of γ from
the knowledge of all pairs of boundary measurements (g, ug|∂Ω), namely, of all injected
currents together with the corresponding electric voltages generated at the boundary. In
a compact form, the measurements may be modelled by the Neumann-to-Dirichlet map

G(γ) : H
− 1

2⋄ (∂Ω)→ H
1
2⋄ (∂Ω)

g 7→ ug

∣∣
∂Ω.

Since the PDE (3.14) is linear, the map G(γ) is linear. However, the forward map γ 7→ G(γ)
is nonlinear in γ, and so is the corresponding inverse problem. The map G is continuously
differentiable, and its Fréchet derivative (see [113]) is given by [∇G(γ)](σ)(g) = wg

∣∣
∂Ω,

where wg ∈ H1(Ω) is the unique weak solution with zero boundary mean of{
−∇ · (γ ∇wg) = ∇ · (σ ∇ug) in Ω,

−γ ∂νwg = σ ∂νug on ∂Ω,

where ug ∈ H1(Ω) is the unique weak solution with zero boundary mean that solves (3.14).
We included the expression of this derivative in the continuous setting for completeness,
but, as a matter of fact, we will need only its semi-discrete counterpart given below.

Discretization and Objective Function. In our implementations, we discretize the
linear mappings G(γ) by restricting them to a finite dimensional subspace spanned by
a-priori fixed boundary functions g1, . . . , gN ∈ H

− 1
2⋄ (∂Ω). Then, following [39, eqt. (2.2)],

we reconstruct the conductivity by minimizing the semi-discrete functional

F (γ) = 1
2

N∑
n=1

∫
∂Ω
|ugn(s)− (utrue)gn(s)|2ds, (3.15)

where (utrue)gn is the observed data. In our discrete setting, we represent the conductivity
γ by a piecewise constant function γ = ∑M

m=1 γm1Tm on a triangulation (Tm)m=1,...,M .
Then, following [39, eqt. (2.20)], the derivative of (3.15) with respect to γ is given by

dF

dγm
(γ) =

N∑
n=1

∫
Tm

∇ugn(x) · ∇zgn(x)dx, (3.16)

where zgn solves {
−∇ · (γ ∇zgn) = 0 in Ω,

γ ∂νzgn = (utrue)gn − ugn on ∂Ω,
(3.17)

with the normalization
∫

∂Ω zgn(s)ds =
∫

∂Ω(utrue)gn(s)ds.
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Implementation Details. In our experiments the domain Ω is given by the unit
square [0, 1]2. For solving the PDEs (3.14) and (3.17), we use a finite element solver
from the DOLFIN library [159]. We employ meshes that are coarser in the middle of Ω
and finer close to the boundary. To simulate the approximation error of the meshes, and
to avoid inverse crimes, we use a fine mesh to generate the observation and a coarser
one for the reconstructions. We use N = 15 boundary functions, which are chosen as
follows. We divide each of the four edges of the unit square [0, 1]2 into 4 segments and
denote by b1, . . . , b16 the functions that are equal to 1 on one of these segments and 0
otherwise. Then, we define the boundary functions as gn = ∑16

i=1 an,ibi, where the matrix
A = (an,i)n=1,...,15,i=1,...,16 is the 16×16 Haar matrix without the first row. More precisely,
the rows of A are given by the rows of the matrices 2−k/2(Id24−k ⊗ (1,−1)⊗ eT

2k−1) for
k = 1, . . . , 4, where ⊗ is the Kronecker product and ej ∈ Rj is the vector where all entries
are 1.

Results. We reconstruct the ground truth images from the observations by minimizing
the functional F from (3.15) subject to γ ∈ M. To this end, we apply the gradient
descent scheme from Algorithm 2 for 100 steps. Since the evaluation of the forward
operator and its derivative include the numerical solution of a PDE, it is computationally
very costly. Hence, we aim to use as few iterations of Algorithm 2 as possible. To this
end, we apply the adaptive step size scheme from Algorithm 3. As retractions we use R̃k,x

from (3.10). The initialization γ0 of the gradient descent scheme is given by a random
sample from the mixture of VAEs.

Since F is defined on the whole R128×128
+ , we use again Remark 15 for the evaluation

of the Riemannian gradient. More precisely, for γ ∈ Uk, we have that ∇MF (γ) =
J(JTJ)−1JT∇F (γ), where ∇F (γ) is the Euclidean gradient of F and J = ∇Dk(Ek(γ)).
Here, we compute ∇F (γ) by (3.16) and J by algorithmic differentiation.

The reconstructions for 20 different ground truths are visualized in Figure 3.9d. We
observe that both models capture the ground truth structure in most cases, but also
fail sometimes. Nevertheless, the reconstructions with the mixture of two VAEs recover
the correct structure more often and more accurately than the single VAE which can be
explained by the better coverage of the data manifold. To quantify the difference more
in detail, we rerun the experiment with 200 different ground truth images and compare
the results with one and two generators using the PSNR and SSIM. As an additional
evaluation metric, we run the segmentation algorithm proposed by [178] on the ground
truth and reconstruction image and compare the resulting segmentation masks using the
SSIM. The resulting values are given in the following table.

One generator Two generators
PSNR 23.64± 3.91 24.76± 3.79
SSIM 0.8951± 0.0377 0.9111± 0.0368

segment+SSIM 0.8498± 0.0626 0.8667± 0.0614

Consequently, the reconstructions with two generators are significantly better than those
with one generator for all evaluation metrics.



Chapter 4

Learning a Gaussian Mixture for
Sparsity Regularization in Inverse
Problems

A signal is said to be sparse if it can be represented as a linear combination of a small
number of vectors in a known family (e.g., a basis or a frame). Sparsity has played a
major role in the last decades in signal processing and statistics as a way to identify key
quantities and find low dimensional representations of many families of signals, including
natural images [54, 76, 166]. In inverse problems, sparse optimization has had a significant
impact in many applications, notably in accelerated magnetic resonance imaging via
compressed sensing [163].

The key ingredient needed in sparse optimization is the knowledge of a suitable
dictionary that can well represent the unknown quantities with as few elements as
possible. If these quantities cannot be described analytically and are measured from
experiments, given a sufficient number of samples, machine learning techniques can
be used to infer the dictionary [149]. Dictionary learning in the context of sparse
optimization, i.e. sparse coding, can be seen as the problem of finding the best change of
basis that makes the data as sparse as possible. Thus, it is a special case of the problem
of learning a regularization functional [162, 203, 7] and the more general framework of
learning operators between function spaces (see [142] and references therein).

In this chapter, we propose a new approach for dictionary learning for sparse opti-
mization motivated by the problem of learning a regularization functional for solving
inverse problems. We consider a linear inverse problem in a finite-dimensional setting:

y = Ax + ε, (4.1)

where x ∈ Rn, ε ∈ Rm, A ∈ Rm×n. We assume a statistical perspective: namely, x and ε
are realizations of the random variables X and E on Rn and Rm, respectively. Let ρX

and ρE denote their probability distributions.
Given some partial knowledge about the probability distributions of X and E, we

aim to recover an estimator R : Rm → Rn that has statistical guarantees and encodes

76
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information on the sparsity of X. While sparsity is well established in a deterministic
setting, there is no clear consensus on how to define a probability distribution of sparse
vectors. One option comes from the Bayesian interpretation of ℓ1 minimization: it can
be seen as a maximum a posteriori (MAP) estimator under a Laplacian prior in the
presence of additive white Gaussian noise. However, this is unsatisfactory if the aim is
to generate truly sparse signals. Recently, it has been shown that specific hierarchical
Bayesian models can be used as priors for sparse signals [51, 50].

Here, instead, we consider a mixture of degenerate Gaussians as a statistical model
for a distribution of sparse vectors X. The dimensions of the degenerate support of each
Gaussian naturally represent the sparsity levels of the signals. We also assume that the
noise is Gaussian.

To find the estimator R, we consider a statistical learning framework. We employ the
mean squared error (MSE, also referred to as expected risk), namely:

L(R) = EX∼ρX ,E∼ρE
∥R(AX + E)−X∥2Rm = E(X,Y )∼ρ∥R(Y )−X∥2Rm , (4.2)

where ρ is the joint probability distribution of (X, Y ) on Rn × Rm. By minimizing L
among all possible measurable functions R, we get the so-called Minimum MSE (MMSE)
estimator, or Bayes estimator.

The Bayes estimator cannot be directly employed as a solution to the statistical
inverse problem because it requires the knowledge of the full probability distribution ρ.
Supervised learning techniques can be used to find a good approximation when a finite
amount of data is available. However, a suitable class of functions (hypothesis space)
must be chosen to obtain a good approximation.

Our main contribution is the development of supervised and unsupervised learning
schemes to approximate the Bayes estimator. This is done thanks to an explicit expression
for the MMSE, which is usually not available for general probability distributions
underlying the data and the noise. The proposed training schemes are based on the
observation that the explicit expression of the MMSE can be seen as a two-layer neural
network, which can be easily trained using stochastic optimization and back-propagation.
In particular, we find a strong similarity of our network with a single self-attention layer,
a building block of the well-known transformer architecture [222]: our results provide a
novel statistical interpretation of the attention mechanism.

After the training, our network/algorithm can be used as an alternative to classical
sparse optimization approaches. We perform extensive numerical comparisons of our
approach with well-known sparsity promoting algorithms: LASSO, group LASSO, itera-
tive hard thresholding (IHT), and sparse coding/dictionary learning. The tests are done
by performing denoising and deblurring on several 1D datasets. In all experiments, our
method outperforms the others, in the MSE. Our method can be seen as a new paradigm
for both sparse optimization and dictionary learning for sparse data.

The main limitation of our strategy is represented by the number of parameters that
need to be estimated to identify the optimal regularizer. It is easy to show that this
number grows as Ln2, being L the number of components of the Gaussian mixture model.
If the unknown X is simply assumed to be s-sparse, namely, that its support is contained
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in any possible s−dimensional coordinate subspace in Rn, we should consider L =
(n

s

)
,

which is prohibitive in most applications. This is why our method is best suited for
cases of structured sparsity, in which the support of X consists of a restricted number of
subspaces, which is the case of group sparsity [231], for instance.

The chapter is organized as follows. In Section 4.1, we provide an overview of the
concept of Bayes estimator and recall an explicit formula in the case of linear inverse
problems with Gaussian mixture prior. Afterwards, Section 4.2 is dedicated to the
interpretation of this estimator as a neural network, highlighting its potential utility for
sparse recovery. We introduce a supervised and an unsupervised algorithm for learning
the neural network representation of the Bayes estimator in Section 4.3. In Section 4.4,
we describe some baseline sparsity-promoting algorithms, against which our methods
are evaluated. This is done in Section 4.5, where we conduct numerical comparisons on
denoising and deblurring problems across various 1D datasets.

4.1 Statistical learning and Bayes estimator for inverse
problems

In this section, we introduce our approach and motivation, collecting some results that are
already known about inverse problems, statistical estimation, and mixtures of Gaussian
random variables. The main elements of novelty are reported in the next section.

We recall the inverse problem introduced in (4.1), which we can also interpret as a
realization of the following equation involving the random variables X on Rn and E, Y
on Rm:

Y = AX + E. (4.3)

Throughout the chapter, we make the following assumptions on the random variables X
and E.

Assumption 13. We assume that:

• The distribution of the noise, ρE , is known and zero-mean, i.e. E[E] = 0. The
covariance ΣE is invertible.

• The random variables X and E are independent.

Our goal is to identify a function R : Rm → Rn (which we will refer to as a regularizer
or an estimator) such that the reconstructions R(Ax + ε) are close to the corresponding
x, when x, ε are sampled from X, E and the squared error ∥R(Ax + ε)−R(x)∥2 is used
as a metric.

This problem is in general different from the deterministic formulation of inverse
problems: the recovery of a single x from y = Ax + ε. The task we are considering also
differs from the one of Bayesian inverse problems. In that scenario, indeed, the goal is
not to retrieve a function R (or a regularized solution R(Y )), but rather to determine a
probability distribution, in particular the conditional distribution of X|Y , and to ensure
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that, as the noise E converges to 0 in some suitable sense, this (posterior) distribution
converges to the distribution of X.

Our perspective on the inverse problem is instead rather related to the statistical
theory of estimation, or statistical inference. Indeed, based on some partial knowledge
about the probability distributions of X and E, we aim to recover an estimate R(Y ) of
X close to X w.r.t. the MSE. In particular, we set our discussion at the intersection of
two areas of statistical inference, namely the Minimum Mean Square Error estimation
and parametric estimation.

The first field is determined by the choice of (4.2) as the metric according to which the
random variables R(Y ) and X are considered close to each other or not. The minimizer
of L among all possible measurable functions R is defined as the MMSE estimator, or
Bayes estimator:

R⋆ ∈ arg min{L(R) : R : Rm → Rn, R measurable}.

As it is easy to show (see [66]), the solution to such a problem is the conditional mean of
X given Y , so that

R⋆(y) = E[X|Y = y] =
∫
Rn

xp(x|y)dx.

The Bayes estimator R⋆ is not always the most straightforward choice. Indeed, its
exact computation requires the knowledge of the joint probability distribution ρ, which
depends on the distributions of the noise E and of X. Notice that the distribution of
X is not a user-crafted prior but should encode the full statistical model of the ground
truth X, which may not be fully accessible when solving the inverse problem.

To overcome this issue, one usually assumes to have access to a rather large set of
training data, namely of pairs (xj , yj) sampled from the joint distribution ρ. It is then
possible to substitute the integrals appearing in the definition of L and of R⋆ by means
of Monte-Carlo quadrature rules. This approach is usually referred to as supervised
statistical learning. In order to avoid overfitting and preserve stability, one typically
restricts the choice of the possible estimators R to a specific class of functions H, which
introduces an implicit bias on the estimator and possibly a regularizing effect. This leads
us to the framework of parametric estimation.

In [7], for example, the hypothesis class H consists of a family of affine functions
in y, solutions of suitably parametrized quadratic minimization problems. Minimizing
over such a class (which corresponds to the task of learning the optimal generalized
Tikhonov regularizer) is motivated by theoretical reasons: if the distributions of X and
E are Gaussian, then R⋆ belongs to H. However, in general the minimizer of L within
H would deviate from R⋆, and such a bias could be in some cases undesired. On top
of that, a significant outcome of the analysis in [7] is a closed-form expression of the
optimal regularizer (also in infinite dimension), which in particular can be computed if
the mean and the covariance of X are known. This paves the way to an unsupervised
statistical learning approach: namely, to approximate such an estimator one would not
need a training set (xj , yj)j sampled from the probability distribution ρ, but only a set
{xj} sampled from ρX .
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This raises the question if there exist other possible prior distributions X that may lead
to a simple choice of a hypothesis class H containing the corresponding Bayes estimators,
possibly endowed with an unsupervised technique to approximate them. If we consider
a variational approach, in which H is a set of solution maps of suitable minimization
problems, [98] showed that the conditional mean R⋆, i.e. the MMSE estimator, can
always be represented as the minimizer of a functional ΦMMSE, related to the probability
distribution pX . Nevertheless, in most cases, such a functional is not convex, which
makes it critical to define H and to solve a minimization problem in it.

In this chapter, without considering a variational point of view, we propose a strategy
through which it is possible to associate a hypothesis class to (rather general) prior
distributions of X. The most prominent outcome of this approach is the thorough
treatment of the case in which X is a mixture of Gaussian random variables, which may
be employed as a model of sparsity.

Our approach is based on the idea of parametric estimation in statistical inference:
the distribution of the exact solution X is unknown, but belongs to a known class of
distributions, parametrized by a suitable set of parameters:

{ρX(θ) : θ ∈ Θ},

for some Θ ⊆ Rp. For example, we can assume that X is a Gaussian random variable of
unknown mean µ and covariance Σ, the pair (µ, Σ) being the parameter θ. Analogously,
we can describe more complicated probability distributions, possibly employing a larger
set of parameters.

In this context, it is easy to construct a hypothesis class H that contains the Bayes
estimators R⋆ of every possible prior in the parametric class, namely,

H = {Rθ = Eρ(θ)[X|Y = ·] : θ ∈ Θ},

where ρ(θ) is the joint probability distribution for (X, Y ) when X ∼ ρX(θ), Y = AX + E
and E ∼ ρE . Recall that, by Assumption 13, the distribution of the noise E is known,
and so it is considered fixed.

Notice that this same strategy can also be employed for nonlinear inverse problems:
we formulated it in this narrower context for the ease of notation, since the content of
the next sections is only related to linear problems.

Despite this approach being rather general, it is useful only if it is possible to provide a
closed-form expression of Rθ, which might entail a learning approach for its approximation.
This can be easily done when X belongs to fairly simple classes, such as Gaussian random
variables or, as we show in this section, mixtures of Gaussians.

4.1.1 Bayes estimator for linear inverse problems with a Gaussian
Mixture prior

We first recall some basic definitions on mixtures of random variables. Then, in Theo-
rem 14 we show the formula of the Bayes estimator for linear inverse problems with a
Gaussian mixture prior.
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Definition 3. A random variable X in Rn is a mixture of random variables if it can be
written as

X =
L∑

i=1
Xi1{i}(I),

where Xi are random variables in Rn, I is a random variable on {1, ..., L} independent of
Xi and L ∈ N+ is the number of elements in the mixture. The indicator function 1{i}(I)
is equal to 1 when I = i and 0 otherwise: as a consequence, the role of the discrete
random variable I is selecting the random variable Xi, therefore wi := P(I = i) are
informally called the weights of the mixture.

Definition 4. A random variable X in Rn is a Gaussian mixture if it is a mixture, as
defined in Definition 3, and Xi ∼ N (µi, Σi) are Gaussian random variables in Rn.

Theorem 14. Let X be a Gaussian mixture in Rn, as in Definition 4, and E ∼ N (0, ΣE)
be independent of Xi for every i, and of I. Let A ∈ Rm×n be such that AΣiA

T + ΣE is
invertible for every i = 1, . . . , L. Set Y = AX + E, as in (4.3). The corresponding Bayes
estimator is

R⋆(y) = E[X|Y = y] =
L∑

i=1

ci∑L
j=1 cj

(µi + ΣiA
T (AΣiA

T + ΣE)−1(y −Aµi)), (4.4)

where

ci = wi√
(2π)n|AΣiAT + ΣE |

exp
(
− 1

2∥(AΣiA
T + ΣE)− 1

2 (y −Aµi)∥22
)
, (4.5)

with the notation |B| = det B.

A proof of Theorem 14 can be found in [143]. For completeness, we provide a similar
proof below.The proof follows easily using the next two lemmas. The first lemma provides
the formula of the Bayes estimator for the denoising problem with a random variable
that comes from a general mixture distribution. The second one establishes an explicit
formula in the case of Gaussian mixture distributions.

Lemma 15. Suppose that Assumption 13 holds true. Consider the statistical linear
inverse problem (4.3), where x is sampled from a mixture of random variables, as in
Definition 3, and A ∈ Rm×n. Let Yi = AXi + E, for i = 1, . . . , L. Then

1. the density of Y is pY (y) =
L∑

i=1
wipYi(y), where wi = P(I = i);

2. E[X|Y = y] =
L∑

i=1

wipYi(y)
pY (y) E[Xi|Yi = y].
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Proof. We prove the two parts separately.
Proof of 1. The random variable Y can be written as

Y = A

( L∑
i=1

Xi1{i}(I)
)

+ E =
( L∑

i=1
AXi1{i}(I)

)
+
( L∑

i=1
E1{i}(I)

)
=

L∑
i=1

Yi1{i}(I).

Since Yi = AXi + E and Xi, E ⊥ I for every i = 1, ..., L, then Yi ⊥ I for every i = 1, ..., L.
Therefore, the density of Y becomes

pY (y) =
L∑

i=1
wipYi(y),

recalling that wi = P(I = i).
Proof of 2. Since Xi and E are independent, their joint density is pXi,E(x, ε) =
pXi(x)pE(ε). Then, using the change of variable Φ(Xi, E) = (Xi, AXi + E) = (Xi, Yi),
we have

pXi,Yi(x, y) = pΦ(Xi,E)(Φ(x, ε))
= pXi,E(x, ε)|JΦ−1 |
= pXi,E(x, ε)
= pXi(x)pE(y −Ax),

since Φ−1(Xi, Yi) = (Xi, Yi −AXi) and

JΦ−1 =
[

I 0
−A I

]
.

The same argument holds using X instead of Xi, then

pX,Y (x, y) = pX(x)pE(y −Ax).

Moreover, since Xi ⊥ I for every i = 1, ..., L, pX(x) = ∑L
i=1 wipXi(x) with wi = P(I = i).

Then

pX|Y (x|y) = pX,Y (x, y)
pY (y)

=
L∑

i=1

wipXi(x)pE(y −Ax)
pY (y)

=
L∑

i=1

wipYi(y)
pY (y)

pXi(x)pE(y −Ax)
pYi(y)

=
L∑

i=1

wipYi(y)
pY (y)

pXi,Yi(x, y)
pYi(y)

=
L∑

i=1

wipYi(y)
pY (y) pXi|Yi

(x|y).

Integrating in x, we obtain the result.
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Lemma 16. Suppose that Assumption 13 holds true. Consider the statistical linear
inverse problem (4.3), where x is sampled from a Gaussian mixture, the noise ε is sampled
from E ∼ N (0, ΣE), independent of Xi and I, and A ∈ Rm×n. Let Y = AX + E. Then

1. the density of Yi is

pYi(y) = 1√
(2π)n|AΣiAT + ΣE |

exp
(
− 1

2∥(AΣiA
T + ΣE)− 1

2 (y −Aµi)∥22
)
;

2. and E[Xi|Yi = y] = µi + ΣiA
T (AΣiA

T + ΣE)−1(y −Aµi).

Proof. We prove the two parts separately.
Proof of 1: Since Xi ⊥ E, Xi ∼ N (µi, Σi) and E ∼ N (0, ΣE), we have

Yi = AXi + E ∼ N (Aµi, AΣiA
T + ΣE).

The expression for the density of Yi immediately follows.
Proof of 2: Since Yi = AXi + E and Xi ⊥ E, we have

(Xi, Yi) ∼ N
([

E[Xi]
E[Yi]

]
,

[
Var[Xi] Cov[Xi, Yi]

Cov[Yi, Xi] Var[Yi]

])

= N
([

µi

Aµi

]
,

[
Σi ΣiA

T

AΣi AΣiA
T + ΣE

])
.

Then, using [205, Theorem 2, Section 13], the conditional distribution (Xi|Yi = y) is
Gaussian and its expectation is given by

E[Xi|Yi = y] = µi + ΣiA
T (AΣiA

T + ΣE)−1(y −Aµi).

4.2 A neural network for sparse recovery
In this section, we provide a novel interpretation both of the resulting formula (4.4) and
of the Gaussian mixture model itself, in view of an application to sparsity-promoting
learned regularization. We start by showing that the expression derived in (4.4) can
be understood as a neural network, whose architecture has strong connections with the
well-known attention mechanism used in transformers [222]. Then, we describe how the
Gaussian mixture model assumption can be used to encode a (group) sparsity prior on
the unknown random variable X.

4.2.1 Bayes estimator as a neural network

We wish to interpret the expression of the Bayes estimator (4.4) for Gaussian mixture
models as a neural network from Rm to Rn.
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We start by identifying the parameters: in particular, we define

θ =
(
{wi}Li=1, {µi}Li=1, {Σi}Li=1

)
, (4.6)

collecting all the weights, means, and covariances of the mixture. We can now denote the
function defined in (4.4) as Rθ, parametrized according to (4.6). Note that the forward
map A and the covariance of the noise ΣE are considered known and fixed, and we
assume that ΣE is invertible, so that AΣiA

T + ΣE is invertible for every i. The resulting
hypothesis class is

H = {Rθ : θ ∈ Θ}; Θ ⊆ [0, 1]L × (Rn)L × (Rn×n)L. (4.7)

In order for Rθ to be well defined and for the parameters to have a precise statistical
interpretation, we impose that

Θ = {θ defined in (4.6) :
L∑

i=1
wi = 1 and Σi ≽ 0 symmetric for i = 1, ..., L},

where Σi ≽ 0 denotes that Σi is positive semidefinite. Notice that the setH is the collection
of the Bayes estimators of all possible Gaussian mixture models of L components in Rn.

We now focus on describing formula (4.4) in terms of a neural network’s architecture
(see Figure 4.1):

Rθ(y) =
L∑

i=1
Witi, (4.8)

where
Wi = softmax(z)i := ezi

L∑
j=1

ezj

,

with

zi = fi(y) := log
(

wi√
(2π)n|AΣiAT + ΣE |

)
− 1

2∥(AΣiA
T + ΣE)− 1

2 (y −Aµi)∥22, (4.9)

and
ti = gi(y) := µi + ΣiA

T (AΣiA
T + ΣE)−1(y −Aµi). (4.10)

Note that ci in (4.5) is efi(y) and that gi : Rm → Rn is an affine map in y, whereas
fi : Rm → R is a generalized quadratic function [169], namely

fi(y) = γi + bT
i y + yT Aiy

for some γi ∈ R, bi ∈ Rm, Ai ∈ Rm×m. Second-order functions have already been used
as neural network layers [89].

Adopting the vocabulary of machine learning practitioners, Rθ is a two-layer feed-
forward neural network, with a single hidden layer that involves non-standard operations
on the input variables. Such a layer has some connections with an attention mechanism
with L channels, as discussed in the next paragraph.
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Figure 4.1: Architecture of the neural network representing the Bayes estimator for
denoising with L = 3.

Connections with the attention mechanism.

The transformer architecture, based on the attention mechanism [222], has revolutionized
the field of machine learning, especially natural language processing (NLP), offering a
powerful solution for capturing and utilizing relevant information within complex data.
Inspired by human attention, this mechanism enables models to selectively focus on the
most important elements of the input, significantly enhancing their performance across a
wide range of tasks, from NLP to computer vision.

Traditionally, machine learning models treat all input elements equally, neglecting the
varying importance of different parts of the data. Attention addresses this limitation by
introducing a mechanism that assigns weights or attention scores to different elements. By
doing so, models can dynamically allocate their resources to the most relevant components,
so their interpretability and performance increase.

More precisely, we consider the self-attention mechanism, which consists of three
main components: queries, keys, and values. The queries represent the elements that
require attention, while the keys are compared to the queries to determine their relevance.
The values correspond to the associated information or representations of the input
elements. Attention scores are computed by measuring compatibility or similarity
between the queries and the keys, often employing techniques like dot product, additive,
or multiplicative attention. Softmax normalization is then used to obtain attention
weights. Mathematically, an input η ∈ RL×m is linearly transformed into Q = ηUQ,
K = ηUK and V = ηUV , where UQ, UK , UV ∈ Rm×m are linear maps. The elements
Q, K, V ∈ RL×m represent the L queries, keys, and values of dimension m, respectively.
The attention mechanism is then

Att(η) = Att(Q, K, V ) := softmax
(

QKT

√
L

)
V ∈ RL×m,
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where the softmax acts column-wise, namely

softmax(M)i,j = eMi,j∑Nc
l=1 eMi,l

, M ∈ RNr×Nc .

Considering as input η ∈ RL×m with rows ηi := y − Aµi ∈ Rm, i = 1, ..., L, we are
able to define three affine maps (not linear as in the classical attention mechanism)
modeling the queries, the keys and the values. More precisely, the rows of Q and K are,
respectively,

Qi = l
1
2
i√
m

1m + 1√
2

Miηi ∈ Rm

and

Ki = l
1
2
i√
m

1m −
1√
2

Miηi ∈ Rm,

where li = log
(

wi√
(2π)n|AΣiAT +ΣE |

)
, Mi = (AΣiA

T + ΣE)− 1
2 and 1m = (1, . . . , 1) ∈ Rm.

Then zi ∈ R, i = 1, ..., L, defined in (4.9) can be rewritten as

z = (Q⊙K)1T
m ∈ RL×1,

where ⊙ represents the Hadamard product (or element-wise product).
Next, by defining the rows of V ∈ RL×n where n is the dimension of the linear inverse

problem unknowns (4.1) using the affine transformation of η given in (4.10), namely

Vi = µi + ΣiA
T M2

i ηi ∈ Rn,

we obtain

R⋆(y) = Att(η) = Att(Q, K, V ) := softmax
(

(Q⊙K)1T
m

)T

V ∈ Rn.

Therefore, we have found the queries, the keys and the values to view our network as
an alternative version of the attention mechanism. The difference from the classical
attention mechanism is the fact that the three transformations for finding Q, K, V are
affine, and not linear, and that we use the element-wise product of matrices, instead of
the matrix product, which leads to a different size of the network output.

4.2.2 (Degenerate) Gaussian mixture as sparsity prior

The Gaussian mixture prior can be viewed as a sparsity prior by taking Xi in Definition 4
as a degenerate Gaussian. This means that Xi is a Gaussian variable whose support is
contained in an s-dimensional subspace of Rn, with s≪ n denoting the sparsity level. In
other words, the covariance matrix Σi is degenerate, with dim(ker Σi)⊥ ≤ s. Note that
this setting, in which the covariances are not full rank, is compatible with the model
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considered so far, and with the corresponding estimator written as a neural network,
because ΣE is invertible.

Let us briefly discuss why this setting corresponds to a sparsity prior. Take µi = 0.
Write Σi with respect to its eigenvectors {φi

k}k and eigenvalues {σi
k}k:

Σi =
s∑

k=1
σi

k φi
k ⊗ φi

k.

This allows us to expand Xi as

Xi =
s∑

k=1
ai

kφi
k,

where ai
k ∼ N (0, (σi

k)2). Therefore, with probability wi, we have X = Xi, and Xi is a
random linear combination of φi

1, . . . , φi
s, and so is an s-sparse vector.

In the case when the number of elements in the mixture, L, is equal to the number
of all possible subsets of cardinality s of {1, . . . , n},

(n
s

)
, and the eigenvectors φi

k are all
chosen from a fixed orthonormal basis B of Rn, the mixture generates all vectors that are
s-sparse with respect to B. However,

(n
s

)
grows very fast in s and n, and so this becomes

unfeasible even with relatively small values of s and n. Therefore, we are led to take
L≪

(n
s

)
, which corresponds to selecting a priori a subset of all possible s-dimensional

subspaces of Rn, a setting that is commonly referred to as group sparsity [231]. On the
other hand, we have additional flexibility in the choice of the eigenvectors φi

k, which need
not be chosen from a fixed basis.

While Gaussian distributions work well to represent smoothness priors, they are not
well-adapted to model sparsity. Here, we propose to use (degenerate) Gaussian mixture
models to represent (group) sparsity prior. An alternative approach using hierarchical
Bayesian models is considered in [51, 50]. We also note that our unsupervised approach
(introduced below) shares a similar clustering step with the dictionary learning strategy
presented in [43] within a hierarchical model framework.

4.3 Proposed algorithms: Supervised and Unsupervised
approaches

In this section, we propose two different algorithms to learn the neural network represen-
tation (4.8) of the Bayes estimator (4.4) to solve the statistical linear inverse problem
of retrieving X from Y in (4.3). We assume that the random variables X and E satisfy
Assumption 13, and write X as a mixture of L random variables

X =
L∑

i=1
Xi1{i}(I),

where the weights wXi = P(I = i), the means µXi = E[Xi] and the covariances ΣXi =
Cov[Xi] are in general unknown.
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We propose two possible regularizers of the form Rθ (cfr. (4.6) and (4.7)), for two
ideal choices of parameters θ. The first one, which we will call supervised, is

θ∗ ∈ argmin
{
L(Rθ) : θ ∈ Θ, ∥θ∥∞ ≤ ϱ

}
, (4.11)

for some ϱ > 0, being L(Rθ) defined as in (4.2) and ∥θ∥∞ the ℓ∞ norm of the vectorized
θ. Notice that, since the minimization problem (4.11) is restricted to a closed subset of a
compact ball and L(Rθ) is continuous in θ, the minimum θ∗ exists.

The second parameter choice, which corresponds to an unsupervised approach, is
instead simply

θX = ({wXi}Li=1, {µXi}Li=1, {ΣXi}Li=1),

where the involved quantities are defined above.
We immediately remark that both θ∗ and θX depend on the probability distribution

of X, which is in general unknown. In Section 4.3.1, we show how to approximate θ∗ by
taking advantage of a training set of the form {(xj , yj)}Nj=1 sampled from (X, Y ). This
qualifies the strategy as a supervised learning algorithm. Instead, in Section 4.3.2, we
show how to approximate θX by means of a training set of the form {xj}Nj=1, i.e., in an
unsupervised way.

We also observe that, if we further assume that E is a Gaussian random variable
and that X is a mixture of Gaussian random variables, then the outcomes of the two
strategies coincide, provided that ∥θX∥∞ ≤ ϱ. Indeed, by Theorem 14, we know that
RθX

is the Bayes estimator R∗, and so

R∗ = RθX
= Rθ∗ .

Nevertheless, the trained networks Rθ∗ and RθX
could also be good estimators even

in contexts that slightly deviate from the setting of Gaussian random variables. In
particular, we are interested in testing them in cases in which X is group-sparse, but
we are unsure if it is distributed as a Gaussian mixture model. If this is the case, the
two parameters are in general distinct - and also different from R∗, thus they are not
theoretically guaranteed to be good estimators - and the two approximation strategies
might achieve different levels of performance.

Notice also that, despite we suppose to deal with the sparsity prior provided by the
degenerate Gaussian mixture model, the proposed strategies hold for a general mixture.

4.3.1 Supervised approach

Let {(xj , yj)}Nj=1 be a training set, where xj ∼ X are i.i.d., εj ∼ E are i.i.d. and
yj = Axj + εj . The parameter θ = (wi, µi, Σi)L

i=1 of the neural network defined in
Section 4.2.1 can be learned by minimizing the empirical risk

L(θ) = 1
N

N∑
j=1
∥xj −Rθ(yj)∥22,
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which is the squared MSE between the original signals, xj , and the reconstructions
provided by the neural network, Rθ(yj). In order to enforce sparsity, it is possible to add
a second term to the empirical risk, namely to consider

Ls(θ) = L(θ) + λJ (θ),

where λ is a regularization parameter, J (θ) = ∑L
i=1 ∥Σi∥∗, and ∥ · ∥∗ is the nuclear norm.

Such a regularization term can be equivalently defined as the ℓ1 norm of the singular
values of Σi, hence it promotes low-rank covariances without requiring the knowledge of
their eigenvectors.

The evaluation of the nuclear norm is computationally expensive and should be done
L times for each step of the minimization process. Another option is taking J (θ) =∑L

i=1 ∥Σi∥2F, where ∥ · ∥F represents the Frobenius norm. This choice is computationally
convenient, but does not promote any kind of sparsity on the covariances. However,
in the numerical simulations, we do not observe significant differences when using the
nuclear norm, the Frobenius norm or no regularization term. Therefore, in the numerical
results of Section 4.5 we did not make use of any regularization term.

4.3.2 Unsupervised approach

Suppose to be in an unsupervised setting, i.e. to have a training set {xj}Nj=1, where
xj are sampled i.i.d. from the mixture X = ∑L

i=1 Xi1{i}(I). We now wish to find an
approximation for the means µXi , the covariances ΣXi and the weights wXi of the mixture.
We propose the following two-step procedure.

1. Subspace clustering. The elements of the training set {xj}Nj=1 sampled from
different degenerate distributions Xi belong to different subspaces of Rn. We
propose to cluster these points by using subspace clustering and, in particular,
the technique provided in [160]. As a result, the training set is partitioned into L̂
subsets. Ideally, we should have L̂ = L, and each subset should correspond to one
Gaussian of the mixture.

2. The parameters. We compute the empirical means {µ̂i}L̂i=1 and the empirical
covariances {Σ̂i}L̂i=1 of each cluster, and we estimate the weights {ŵi}L̂i=1 of the
mixture by using the number of elements in the clusters.

Once this is done, we can use the neural network defined in Section 4.2.1 with these
parameters. More precisely, this is the neural network R

θ̂X
, where

θ̂X =
(
{ŵi}L̂i=1, {µ̂i}L̂i=1, {Σ̂i}L̂i=1

)
.

4.4 Baseline algorithms
In this section we describe some of the most popular regularization techniques used
to solve linear inverse problems with a sparsity prior. These include Least Absolute
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Shrinkage and Selection Operator (LASSO), Group LASSO, Iterative Hard Thresholding
(IHT) and Dictionary Learning. In the numerical experiments of Section 4.5, we will
compare our two proposed approaches against the methods presented in this section.

4.4.1 LASSO

Least Absolute Shrinkage and Selection Operator, LASSO [219], is one of the most
acknowledged techniques for sparsity promotion, also in the context of inverse problems.
It involves the minimization of a functional composed by the sum of a data fidelity
term and a regularization term that promotes sparsity with respect to a given basis. In
particular, the regularization term is the ℓ1 norm of the components of the unknown in
the sparsifying basis.

More precisely, we suppose that the unknown x in (4.1) is sparse with respect to an
orthonormal basis B, and we denote by M ∈ Rn×n the (orthogonal) matrix representing
the change of basis from B to the canonical one, also known as the synthesis operator.
Then, the functional to be minimized is

F(β) = 1
2∥y −AMβ∥22 + λ∥β∥1, (4.12)

where λ > 0 is a regularization parameter. The minimization of F(β) over Rn, also
known as synthesis formulation of LASSO, can be performed employing the Iterative Soft
Thresholding Algorithm (ISTA) [70, 107], which is a proximal-gradient descent method
involving the computation of the proximal operator for the convex and non-smooth term
of the functional (the ℓ1-norm), and the gradient descent step for the smooth term (the
data fidelity). The proximal operator of the ℓ1-norm is the soft thresholding operator,
from which ISTA takes its name. Mathematically, the (k + 1)-th iteration is

βk+1 = Stλ(βk − tMT AT (AMβk − y)), (4.13)

where t > 0 is a stepsize and Sλ : Rn → Rn is the soft thresholding operator defined
componentwise as

Sλ(β)i = max{|βi| − λ, 0} sign(βi),

where i indicates the component.
For the denoising problem (A = I), setting t = 1, algorithm (4.13) achieves conver-

gence in a single step. Therefore, the solution β̄ is

β̄ = Sλ(MT AT y).

The main drawbacks of this method are the choice of the regularization parameter
λ, and the required prior knowledge of the synthesis operator M (i.e., of the basis
B with respect to which the unknown is sparse). In Section 4.4.4, we show how to
combine dictionary learning techniques to fill this gap. Other alternatives, explored in
the numerical experiments in Section 4.5, are to leverage prior knowledge on M , or to
infer it via the singular value decomposition (SVD).
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4.4.2 Group LASSO

An extension of LASSO is Group LASSO [87], which encodes the idea that the features
of the possible unknowns can be organized into groups. This is achieved by introducing
L different coordinate systems, each represented by an orthogonal synthesis matrix
Mi ∈ Rn×n, and by minimizing the following functional:

F(β) = 1
2

∥∥∥∥y −A
L∑

i=1
Miβi

∥∥∥∥2

2
+ λ

L∑
i=1
∥βi∥Ki (4.14)

where βi is the coefficient vector corresponding to the i-th group, β ∈ RnL is the
concatenation of the vectors β1, . . . , βL, and λ > 0 is a regularization parameter. The
second term of (4.14) is a regularization functional encouraging entire groups of features
to be either included or excluded from the model. The weighted norm ∥βi∥2 with
∥βi∥Ki := (βT

i Kiβi)
1
2 is employed to promote prior information regarding the sparse

representation of each group. The minimization of (4.14) can be performed via the
iterative algorithm proposed in [231, Proposition 1], showing strong connections with the
proximal gradient descent method, which reads

βk+1 = proxtλf (βk − tM̃T AT (AM̃βk − y)),

where f(β) = ∑L
i=1 ∥βi∥Ki , M̃ = [M1|M2|...|ML], and t > 0 is a stepsize. The map

proxtλf satisfies (see [32, Theorem 6.6, Chapter 6])

proxtλf (β) = (proxtλfi
(βi))L

i=1,

being fi(βi) = ∥βi∥Ki , and the proximal operator of the ℓ2 weighted norm is (see [32,
Lemma 6.68, Chapter 6])

proxtλfi
(βi) =

{
βi −KT

i (KiK
T
i )−1Kiβi ∥(KiK

T
i )−1Kiβi∥2 ≤ tλ

βi −KT
i (KiK

T
i + α∗I)−1Kiβi ∥(KiK

T
i )−1Kiβi∥2 > tλ

,

where α∗ is the unique positive root of the non decreasing function g(α) := ∥(KiK
T
i +

αI)−1Kiβi∥22 − (tλ)2. Since the computation of the proximal operator involves the root-
finding problem, the whole process is computationally very expensive. As for LASSO,
also for Group LASSO one has to choose the regularization parameter λ, the stepsize t,
and to know a priori the group bases Bi for i = 1, ..., L.

4.4.3 IHT

The Iterative Hard Thresholding algorithm, as presented in [42], can be employed as a
reconstruction method for inverse problems in which the unknown belongs to the union
of L subspaces. This can be seen as a model of sparsity. Once an orthogonal synthesis
matrix M ∈ Rn×n is introduced, the coefficients β such that x = Mβ are supposed to
satisfy β ∈ S = ∪L

i=1Si, where each Si is a coordinate subspace in Rn of dimension s or
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smaller, i.e., the span of a subset of cardinality at most s of the canonical basis. IHT
then involves the minimization of

F(β) = 1
2∥y −AMβ∥22 + χS(β), (4.15)

where

χS(β) =
{

0 β ∈ S
+∞ otherwise

forces the unknown to belong to S.
The iterative algorithm to minimize (4.15) consists in the alternation of a gradient

descent step in the direction given by the MSE and a projection onto S, namely the
(k + 1)-th iteration is

βk+1 = PS(βk − tMT AT (AMβk − y)), (4.16)

where PS(β) = PSī
(β), ī = arg mini{∥PSi(β) − x∥2}, PSi is the orthogonal projection

onto Si and t > 0 is a stepsize. The projection onto coordinate hyperplanes is performed
by simply setting to 0 all the non-active coordinates. The overall projection PS(β) is
also very efficient, since it consists only of computing L projections onto the different
subspaces Si and selecting the optimal one. Moreover, if S is the union of all coordinate
hyperplanes of dimension s, PS(β) simply reduces to selecting the s largest components
of β.

For the denoising problem (A = I) the IHT algorithm (4.16) with t = 1 converges to
the solution in a single step. Therefore, using the same definitions as before, the solution
is

β̄ = PSī
(MT y).

As for LASSO and Group LASSO, the subspaces Si, and especially the basis given by
M , should be known a priori or should be inferred. In this setting, the sparsity level s
can play the role of a regularization parameter (such as λ of LASSO and Group LASSO)
and is tuned by suitable heuristic methods.

4.4.4 Dictionary Learning

The baseline algorithms proposed in the previous sections need the a priori knowledge of
the basis with respect to which the unknown is sparse. A possible approach to infer it is
sparse dictionary learning (also known as sparse coding), where a dictionary with respect
to which the unknown is sparse is learned from the data [165]. Note that this dictionary
does not necessarily have to be a basis. More precisely, given a training set {xj}Nj=1 with
xj ∈ Rn, a sparsifying dictionary D ∈ Rn×d, where d is the number of elements of the
dictionary (the columns of the matrix D), can be found as

min
D∈Rn×d, β∈Rd×N

1
N

N∑
j=1

(1
2∥xj −Dβj∥22 + λ∥βj∥1

)
, (4.17)



CHAPTER 4. GAUSSIAN MIXTURE FOR SPARSE REGULARIZATION 93

where λ > 0 is a regularization parameter and βj ∈ Rd is the sparse representation of
xj with respect to the dictionary D. If the dictionary is fixed, the functional in (4.17)
resembles the LASSO functional (4.12), except for the fact that the dictionary may not
be a basis and that we are summing over the elements of the training set. However, in
this case, the goal is mainly to learn D. In order to solve the minimization problem in
(4.17), we rely on the online method used in [165], which iteratively minimizes over one
variable keeping the others fixed. We update the sparse representation β by using the
least angle regression (LARS) algorithm and the dictionary D by using block coordinate
descent.

We assume that D ∈ Rn×d is a full-rank matrix. In general, the number of atoms d is
allowed to be larger than the original dimension of the signal n. Such a redundancy may
arise with frames or with the union of multiple bases. Nevertheless, here we consider the
non-redundant setting, with d ≤ n. This is the case for all the numerical experiments
reported in this work.

Once the dictionary is learned, the solution to the linear inverse problem (4.3) can
be computed by combining the baseline algorithms of the previous sections. Under the
assumptions previously introduced, the matrix D is injective, and the pseudo-inverse
D+ = (DT D)−1DT is its left inverse. We thus tackle the minimization of the following
functional:

F(x) = 1
2∥y −Ax∥2 + λG(x), G(x) = χIm(D)(x) + ∥D+x∥1, (4.18)

where χIm(D)(x) is the characteristic function of the range Im(D). We minimize the
functional F by means of a proximal-gradient scheme, whose iterations read as

xk+1 = proxλtG(xk − tAT (Axk − y)), (4.19)

where t > 0 is a stepsize and

proxG(z) = arg min
x∈Im(D)

{1
2∥x− z∥2 + ∥D+x∥1

}
= D arg min

β∈Rd

{1
2∥Dβ − z∥2 + ∥β∥1

}
.

Notice that, under the injectivity assumption on the matrix D, the minimization of
F in (4.18) is equivalent to a LASSO problem in synthesis formulation, using D as a
synthesis operator. Despite the minimizers of those two problems are the same, the
iterates approximating them by proximal-gradient schemes do not coincide. For numerical
reasons, we prefer the formulation (4.18), leading to the iterations (4.19). Indeed, as it
will be discussed in Section 4.5, the implementation of proxG can be done efficiently by
means of the same routines employed for dictionary learning. For the denoising problem
(A = I) the algorithm (4.19) with t = 1 converges to the solution x̄ in a single step,
namely

x̄ = D proxλG(y). (4.20)
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Since the degenerate Gaussian mixture prior represents a group sparsity prior, it is
useful to compare our algorithms with a “group” version of sparse dictionary learning.
This has been explored with the name “Block-sparse” or “Group-sparse” dictionary
learning [232, 155].

Those techniques, however, do not share the same perspective on group sparsity as
the one inspiring our proposed algorithms. The common feature behind all of them is
the assumption that, when the signals are represented in a suitable basis or dictionary,
there exists groups, or blocks, of coordinates that are simultaneously activated. In our
degenerate Gaussian mixture approach, though, the signals can be clustered according
to which group of coordinates they activate: each signal is thus associated with a single
group. In block-sparse dictionary learning (and, similarly, in the Group LASSO approach
previously exposed), the active components of each signal can also belong to (a small
number of) different groups.

For this reason, we propose an alternative dictionary learning technique that is closer
to our setup and can be employed for more direct comparisons. We simply call it “Group
Dictionary Learning”: after doing a subspace clustering of the training set as explained
in Section 4.3.2, it is possible to learn a dictionary Di for each group obtained with the
clustering. Assuming that each Di ∈ Rn×di is injective for i = 1, ..., L, and adopting the
same approach as in (4.18), we tackle the minimization of the following functional:

F(x) = 1
2∥y −Ax∥2 + λĜ(x),

Ĝ(x) = min
i=1,...,L

Gi(x), Gi(x) = χIm(Di)(x) + ∥D+
i x∥1.

(4.21)

Again, we minimize F by means of a proximal-gradient scheme as in (4.19), replacing
proxG by proxĜ, which can be easily computed as

proxĜ(z) = proxGI
(z), I = arg min

i=1,...,L

{1
2∥z − proxGi

(z)∥2 + Gi
(
proxGi

(z)
)}

.

Remark 19. Differently from dictionary learning, the approaches proposed in Section 4.3
do not focus on the reconstruction of a dictionary D. However, such dictionary might be
obtained as a by-product, e.g. by computing the singular vectors of each covariance Σi

and by collecting them in a single matrix, but the theoretical properties of such an object
are out of the scope of the present work. Nevertheless, we wish to underline that, as in the
problem of dictionary learning, our algorithms do not require as an input the knowledge
of the dictionary D . It is worth noting that the parameters θ = (wi, µi, Σi)L

i=1 of our
network are O(n2×L) while the dictionary has only n× d parameters, where d is usually
chosen as O(n). Therefore, one of the reasons our methods seem more effective may
be that they employ more parameters, a well-know (but possibly not fully understood)
phenomenon related to overparametrization in deep learning.
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4.5 Numerical results
In this section, we compare the algorithms proposed in Section 4.3 with the baseline
methods discussed in Section 4.4 for 1D denoising and deblurring problems with three
datasets. Our experiments primarily aim to compare our algorithms with classical
sparsity-promoting methods on simplified signal classes, rather than striving for state-of-
the-art results. The exploration of more complex inverse problems and the incorporation
of real-world data fall outside the scope of this chapter and are designated for future
research.

4.5.1 Datasets

We consider three datasets with increasing complexity.
1. Gaussian Mixture Model: This dataset contains samples from a degenerate Gaussian

mixture variable (4) where I is a uniform variable (all the Gaussians of the mixture
have the weight wi = 1

L). Each Xi is a Gaussian random variable in Rn, having
mean µi = 0 and whose covariance matrix Σi has zero entries everywhere, except
from s elements on the diagonal which are set to 1. This indicates that we are
considering a mixture of degenerate variables, each of which has support on an
s-dimensional coordinate hyperplane of Rn and whose components are independent
standard Gaussian random variables. In our experiments we consider n = 1000,
s = rank Σi = 20 and L = 10. Therefore, this dataset consists of very sparse
random variables in a rather large ambient space. The sparsity is nevertheless very
structured, since only L = 10 combinations of s active coefficients are considered.

2. Sinusoidal functions with one discontinuity: This dataset contains functions with
support in [0, 4π] of the type

x(τ) =
{

A sin(ωτ) + B 0 ≤ τ ≤ τi

A sin(ωτ) + B + C τi < τ ≤ 4π

where the amplitude A ∼ U(0.05, 0.1), the angular frequency ω ∼ U(1, 2) and the
vertical translations B ∼ U(1

2 , 3), C ∼ N (0, 0.22). The discontinuity points τi

with i = 1, ..., L and L = 10 correspond to different subspaces and are equispaced
points in [0, 4π]. Each signal x is discretized on 1000 equispaced points in [0, 4π].
These functions can be approximately seen as samples from a degenerate Gaussian
mixture in a wavelet basis. While the coarse scale coefficients are expected to be
nonzero for all the signals, the wavelet coefficients at the finer scales will be relevant
only in the locations of the discontinuity, and negligible in the smooth regions.
Therefore, each discontinuity determines a coordinate subspace with respect to the
wavelet basis. Considering that the amplitude of the jump C follows a Gaussian
distribution, we posit that the fine scale coefficients can be effectively modeled as
degenerate Gaussian random vectors. We can also infer an estimate of the sparsity
level in terms of the size of the support of the mother wavelet, and of the considered
resolution scales.
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3. Truncated Fourier series with two discontinuities: This dataset contains functions
with support in [0, 4π] of the form

x(τ) =


∑4

d=1 ad cos (2πdτ) + bd sin(2πdτ) 0 ≤ τ ≤ τi(1)∑4
d=1 ad cos (2πdτ) + bd sin(2πdτ) + C1 τi(1) < τ ≤ τi(2)∑4
d=1 ad cos (2πdτ) + bd sin(2πdτ) + C2 τi(2) < τ ≤ 4π

where the Fourier coefficients ad, bd ∼ N (0.1, 0.12) for d = 1, ..., 4 and the vertical
translations C1, C2 ∼ N (0, 0.22). As for dataset 2, the discontinuity points are
10 equispaced points in [0, 4π] and τ is discretized with 1000 equispaced points
in [0, 4π]. However, each function has either one or two discontinuities. More
precisely, if τi(1) = τi(2) the function has one discontinuity, otherwise it has two
discontinuities. Therefore the subspaces are the ones representing functions with 2
discontinuities (all the possible combinations of 10 elements in groups of 2) and
the ones representing functions with 1 discontinuity (10 subspaces), so the total
number of subspaces is L =

(10
2
)

+ 10 = 55. For the same reasons discussed above
for dataset 2, these functions can be seen as approximate samples from a degenerate
Gaussian mixture distribution in the wavelet domain. The level of sparsity can be
estimated as in the case of the previous dataset, updating it to the presence of two
distinct singularities.

4.5.2 Methods

In the following experiments, we test our supervised and unsupervised algorithms de-
scribed in Sections 4.3.1 and 4.3.2 and compare them with the baseline algorithms
described in Section 4.4. More precisely, we consider the following methods.

(A) Supervised (§4.3.1).

(B) Unsupervised(§4.3.2).

(C) Dictionary learning (§4.4.4). We learn a sparsifying dictionary D for the training
set, using the Lasso LARS algorithm to solve (4.17); then, we employ the learned
D to denoise the test signal by minimising (4.18). In particular, we rely on the
dictionary learning algorithm provided in the scikit-learn library [183]. The routines
provided there also allow to implement (4.20): in particular, the computation of
proxG can be done through the transform method of the learned dictionary. We
choose the number of elements of the dictionary as d = n

2 , where n is the signal
length, in order to balance expressivity and numerical efficiency.

(D) Group dictionary learning (§4.4.4). After dividing the training set into L clusters
and learning a sparsifying dictionary Di for each group, we minimise (4.21). In this
case, we choose d = n

2L .

(E) IHT with SVD basis (§4.4.3). We infer the basis with respect to which the unknown
is sparse by computing the SVD of the empirical covariance matrix of the training
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set and considering the orthonormal basis composed by the eigenvectors. Then, we
choose S as the union of all the s-dimensional coordinate subspaces in Rn w.r.t. the
inferred sparsity basis. Here we choose the degree of sparsity s by minimizing the
relative MSE (computed w.r.t. the norm of the original signals) over the training
set.

(F) IHT with SVD bases of groups (§4.4.3). We divide the training set into L clusters
as explained in Section 4.3.2. Then, for each group provided by the clustering, we
infer the basis with respect to which that group is sparse by computing the SVD
of its empirical covariance matrix and considering the eigenvectors corresponding
to the s largest eigenvalues, where the degree of sparsity s is chosen as for (E).
Finally, we choose S as the union of the s-dimensional subspaces spanned by the
bases inferred.

(G) IHT with known basis (§4.4.3). We suppose to know the basis with respect to
which the unknown is sparse. In particular, for Dataset 1 we consider the canonical
basis, while Datasets 2 and 3 require a more complicated treatment. Indeed, as
discussed in Section 4.5.1, their representation in a suitable wavelet basis is sparse
at fine scales. For this reason, we preprocess the datasets by applying the wavelet
transform, we keep the low-scale coefficients fixed, and apply IHT only to the fine
scales. We choose the wavelet basis generated by the Daubechies wavelet with 6
vanishing moments.

(H) LASSO with SVD basis (§4.4.1). We infer the basis with respect to which the
unknown is sparse as in (E). Then, we minimize (4.12).

(I) Group LASSO with SVD bases (§4.4.2). We divide the training set into L clusters
as explained in Section 4.3.2. Then, for each group provided by the clustering we
infer the basis with respect to which that group is sparse as explained in (F). Here,
however, we consider the complete bases provided by the SVDs of the empirical
covariance matrices of the groups. In order to minimize the functional (4.14), we
could in principle take advantage of the algorithm proposed in Section 4.4.2, which is
nevertheless computationally expensive because it must be applied on each vector yj

separately. The resulting algorithm is computationally rather expensive: indeed, the
iterative computation of the proximal operator, involving the root-finding problem,
must be applied on each vector yj separately. To ease the computational burden,
in our experiments we instead minimize (4.14) through the ADAM optimization
scheme implemented in the pytorch library, which can process multiple signals in
parallel. We choose the power −1

2 of the empirical covariances matrices of each
group as penalty matrices Ki.

(J) LASSO with known basis (§4.4.1). We incorporate in LASSO the knowledge of the
basis with respect to which the unknown is sparse, as already explained for (G).
This implies that, for Dataset 1, we solve LASSO with the canonical basis, whereas
for Datasets 2 and 3 we first compute the wavelet transform and then solve LASSO
only on the high-scale coefficients.
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Whenever needed (methods (C), (D), (H), (I), and (J)), we always choose the optimal
regularization parameter λ, namely, the one minimizing the relative MSE over the training
set. Further, whenever needed (methods (A), (B), (D), (E), and (I)), we always suppose
to know the number of Gaussians L in the mixture.

Methods (B), (D), (E), and (I) rely on clustering. The subspace clustering procedure
described in Section 4.3.2 is applied to the signals for Dataset 1 and to their derivatives
computed as finite difference approximations for Datasets 2 and 3. Indeed, for the latest
datasets, the derivative of the signals highlights the discontinuity points and allows for a
more efficient clustering.

It is worth noting that methods (G) and (J) take advantage of the knowledge of the
basis with respect to which the unknown is sparse. For this reason, they do not constitute
a fair comparison for all the other algorithms, which do not use this piece of information.
However, we are interested to see if they can outperform our methods.

4.5.3 Denoising

In this section we focus on the denoising problem with 10% of noise, namely y = x + ε,
where ε is sampled from N (0, σ2I) where σ is the 10% of the maximum of the amplitudes
of the training set signals, i.e. maxf (max f −min f) where f is a training sample and
the maximum is taken for each dataset. We compare the performances of the methods
reported in Section 4.5.2.

In Table 4.1 we show the mean over 2000 signals of the test set of the relative
MSE between the original signals and the different reconstructions. We observe that our
unsupervised algorithm (B) provides the best reconstructions for Datasets 1 and 3, and for
Dataset 2 it is only outperformed by group dictionary learning (D). However, dictionary
learning is computationally much more expensive than our unsupervised method, and the
gain in terms of reconstruction is minimal (as can be visually seen in Figure 4.2). From
Table 4.1 it seems clear that the best baseline algorithms to which we can compare our
approaches are dictionary learning (C), among the methods that do not use clustering,
and group dictionary learning (D), among the methods using the groups obtained by
the clustering of the training set. For this reason, in Figure 4.2 we show a qualitative
comparison between the reconstructions provided by the methods described in 4.5.2. We
notice that for Datasets 2 and 3 the algorithms learn all the discontinuities and try to
remove those not present in the signal.

Considering that accurately clustering the training set is challenging (see e.g. Dataset 3),
we question whether precise clustering is truly necessary for employing the unsupervised
algorithm proposed in Section 4.3.2. For this purpose, in Table 4.2 we show the mean
over 2000 signals of the test set of the relative MSE between the original signals and
the reconstructions provided by the unsupervised approach with exact clustering and
with random clustering for the denoising problem with 10% of noise. We observe that
correct clustering is important for Dataset 1, but not so important for Datasets 2 and
3. We believe that this is due to the fact that in Datasets 2 and 3 the energy of the
signals is shared between the smooth part, which is independent of the clustering, and
the discontinuities. In Dataset 1, the absence of the (non-zero) smooth part makes the
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Figure 4.2: Qualitative comparisons for the denoising problem with 10% noise. In each
column we show a signal of the test set from Datasets 1, 2 and 3, respectively. In
each row we report the original data in orange and the noisy data, the reconstructions
obtained with the methods supervised (A), unsupervised (B), dictionary learning (C),
group dictionary learning (D), IHT with SVD basis (E), IHT with SVD bases of groups
(F), IHT with known basis (G), LASSO with SVD basis (H), Group LASSO with SVD
bases (I), and LASSO with known basis (J), respectively, in blue.
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Table 4.1: Relative MSE values for the denoising problem with 10% noise.

Dataset 1 Dataset 2 Dataset 3
Supervised (A) 1.97% 1.70 10−2% 2.71 10−2%
Unsupervised (B) 0.98% 1.80 10−3% 6.32 10−3%
Dictionary learning (C) 4.18% 3.43 10−3% 7.13 10−3%
Group dictionary learning (D) 0.99% 1.70 10−3% 2.42 10−2%
IHT with SVD basis (E) 9.93% 1.25 10−2% 3.97 10−1%
IHT with SVD bases of groups (F) 0.99% 2.04 10−3% 3.97 10−1%
IHT with known basis (G) 2.78% 1.22 10−2% 2.46 10−2%
LASSO with SVD basis (H) 9.24% 1.55 10−2% 3.07 10−1%
Group LASSO with SVD bases (I) 3.01% 3.71 10−3% 8.31 10−1%
LASSO with known basis (J) 4.69% 1.00 10−2% 2.15 10−2%

Table 4.2: Relative MSE values for the denoising problem with 10% noise with the
unsupervised approach (B) when using exact vs. random clustering.

Dataset 1 Dataset 2 Dataset 3
Exact 0.97% 1.66 10−3% 3.37 10−3%
Learned 0.98% 1.80 10−3% 6.32 10−3%
Random 8.25± 0.04% (3.46± 0.25) 10−3% (5.70± 0.55) 10−3%

dependence on the clustering stronger.

4.5.4 Deblurring

In this section we focus on a deblurring problem with 10% of noise, namely we consider
the problem y = q ∗ x + ε, where ∗ represents the discrete convolution, the noise ε is
sampled from N (0, σ2I) and σ is the 10% of the maximum of the amplitudes of the
training set signals. We choose the filter q to be Gaussian, i.e. the entries of q are a finite
discretization of the density of N (0, σ2

b ) in a neighborhood of 0. For Dataset 1 we choose
σb = 1, while for Datasets 2 and 3 we set σb = 30 and σb = 20, respectively. The latter
values of σb are larger because the effect of the convolution on piecewise smooth signals
(Datasets 2 and 3) is less visible than on Dirac deltas (Dataset 1). Since for the denoising
problem our unsupervised method provides better results than the supervised one, we
only show the results for the deblurring problem using the unsupervised technique and
we compare it with the most significant baseline algorithms. In particular, we consider
the following methods: Unsupervised (B), Dictionary learning (C), Group dictionary
learning (D), IHT with SVD bases of groups (F) and Group LASSO with SVD bases (I).
We exclude from the comparisons the methods that do not employ clustering, except for
dictionary learning, as they performed significantly worse in the denoising experiments.

In Table 4.3 we show the mean over 2000 signals of the test set of the relative MSE
between the original signals and the different reconstructions. As for the denoising
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Table 4.3: Relative MSE values for the deblurring problem with 10% noise.

Dataset 1 Dataset 2 Dataset 3
Unsupervised (B) 3.68% 2.65 10−3% 1.01 10−2%
Dictionary learning (C) 14.32% 6.61 10−3% 1.28 10−2%
Group dictionary learning (D) 13.51% 4.62 10−3% 3.41 10−2%
IHT with SVD bases of groups (F) 3.80% 5.54 10−3% 9.48 10−1%
Group LASSO with SVD bases (I) 11.48% 1.34 10−2% 9.11 10−1%

problem, our unsupervised method outperforms the others.
In Figure 4.3 we show a qualitative comparison between the reconstructions provided

by some the methods described in 4.5.2.
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Figure 4.3: Qualitative comparisons for the deblurring problem with 10% noise. In
each column we show a signal of the test set from Datasets 1, 2 and 3, respectively. In
each row we report the original data in orange and the noisy data, the reconstructions
obtained with the methods unsupervised (B), dictionary learning (C), group dictionary
learning (D), IHT with SVD bases of groups (F), and Group LASSO with SVD bases (I),
respectively, in blue.



Conclusions

In Chapter 2 of this thesis, we have introduced CGNNs, a family of generative models
in the continuous, infinite-dimensional, setting, generalizing popular architectures such
as DCGANs [189]. We have shown that, under natural conditions on the weights of
the networks and on the nonlinearity, a CGNN is globally injective. This allowed us to
obtain a Lipschitz stability result for (possibly nonlinear) ill-posed inverse problems, with
unknowns belonging to the manifold generated by a CGNN.

The main mathematical tool used is wavelet analysis and, in particular, a multi-
resolution analysis of L2(R). While wavelets yield the simplest multi-scale analysis,
they are suboptimal when dealing with images. So, it would be interesting to consider
CGNNs with other systems, such as curvelets [53] or shearlets [144], more suited to higher-
dimensional signals, or, more generally, CGNNs made of an injective discrete neural
network composed with a synthesis operator not necessarily associated to a multi-scale
structure.

For simplicity, we considered only the case of a smooth nonlinearity σ: we leave
the investigation of Lipschitz σ’s to future work. This would allow for including many
commonly used activation functions. Some simple illustrative numerical examples are
included in this work, which was mainly focused on the theoretical properties of CGNNs.
It would be interesting to perform more extensive numerical simulations in order to
better evaluate the performance of CGNNs, also with nonlinear inverse problems, such
as electrical impedance tomography.

The stability estimate obtained in Theorem 8 is based on a more general result that
holds also with manifolds that are not described by one single generator [5]. Therefore in
Chapter 3 we extend our work combining multiple generators to learn several charts of a
manifold for the finite-dimensional case.

The output of a CGNN is always in a certain space Vj of a MRA and, as such, is
as smooth as the scaling function. It would be very interesting to design and study
architectures that can generate more irregular, e.g. discontinuous, signals in functions
spaces. This would probably require exploiting the full depth of the wavelet MRA, in
order to capture arbitrarily fine scales, and keeping at the same time a low-dimensional
latent space.

In Chapter 3 of this thesis, we have introduced mixture models of VAEs for learning
manifolds of arbitrary topology. The corresponding decoders and encoders of the VAEs
provide analytic access to the resulting charts and are learned by a loss function that
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approximates the negative log-likelihood function. For minimizing functions F defined on
the learned manifold we have proposed a Riemannian gradient descent scheme. In the case
of inverse problems, F is chosen as a data-fidelity term. Finally, we have demonstrated
the advantages of using several generators on numerical examples.

This work can be extended in several directions. First, gradient descent methods
converge only locally and are not necessarily fast. Therefore, it would be interesting
to extend the minimization of the functional F in Section 3.8 to higher-order methods
or incorporate momentum parameters. Moreover, a careful choice of the initialization
could improve the convergence behavior. Further, our reconstruction method could
be extended to Bayesian inverse problems. Since the mixture model of VAEs provides
us with a probability distribution and an (approximate) density, stochastic sampling
methods like the Langevin dynamics could be used for quantifying uncertainties within
our reconstructions. Indeed, Langevin dynamics on Riemannian manifolds are still an
active area of research. Further, for large numbers K of charts the mixture of VAEs
might have a considerable number of parameters. As a remedy, we could incorporate the
selection of the chart as conditioning parameter in one conditional decoder-encoder pair,
see [213] as a reference for conditional VAEs. Finally, recent papers show that diffusion
models provide an implicit representation of the data manifold [31, 194]. It would be
interesting to investigate optimization models on such manifolds in order to apply them
to inverse problems.

In Chapter 4 of this thesis, we introduced an innovative approach to sparse opti-
mization for inverse problems, leveraging an explicit formula for the MMSE estimator in
the context of a mixture of degenerate Gaussian random variables. This methodology,
rooted in statistical learning theory, follows a different approach to sparsity promotion
compared to the deterministic optimization paradigm (e.g., Lasso) and the Bayesian
inverse problem framework. Our reconstruction formula exhibits a notable connection to
the self-attention mechanism underlying the transformer architecture, offering an efficient
training process: this is useful whenever the mixture model, corresponding to the sparsity
properties of the signals of interest, is unknown. This training can be conducted in both
supervised and unsupervised modes.

To validate our approach, we conducted numerical implementations (both supervised
and unsupervised) and compared them against established baseline algorithms for sparse
optimization, such as Lasso, IHT, and their group variants. Additionally, we incorporated
a dictionary learning strategy for fair comparisons. The experiments focused on three
1D datasets featuring sparse or compressible signals, addressing denoising and deblurring
tasks.

Our findings indicate that the unsupervised method consistently outperforms baseline
algorithms in nearly all experiments, demonstrating superior performance with lower
computational costs. However, a notable limitation of our work lies in its numerical
scalability, particularly concerning larger and higher-dimensional datasets. Addressing
this limitation will be a key focus in future research endeavors.
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