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Abstract

In these days the world is wondering about the potentialities and risks of artificial

intelligence models trained on a huge amount of data and computational resources.

While this debate is certainly important, it is also relevant to put the spotlight on

a hallmark of human intelligence which is still far-fetched for machines: visual

generalization and adaptability. Several studies in neuroscience have discussed how

these skills develop in children from a combination of supervised and self-supervised

learning, with the first guided by adults and the second spontaneously rising from

playing and freely interacting with the world. Games like jigsaw puzzles and coloring

help to learn the invariances and regularities of objects and scenes, and contribute to

building robust semantic knowledge that generalizes to novel contexts.

With this thesis, we show how these learning strategies can be exploited to

improve artificial model robustness and reliability. Specifically, we show how

auxiliary self-supervised tasks can be paired with supervised ones with significant

beneficial effects.

The manuscript is divided into three main parts. In the first part, we show how

transformation-based self-supervised objectives (jigsaw puzzle, rotation recognition,

inter-modal RGB-D translation) promote visual domain adaptation. In the second

part, we discuss how the same strategies help when dealing not only with domain

shift but also semantic shift due to new object categories. Finally, in the third part, we

discuss relation-based self-supervised approaches (contrastive learning and relational

reasoning) and how they can easily integrate supervision obtaining a powerful model

that can efficiently cope with the open world.

Keywords: deep learning, domain adaptation, domain generalization, open world,

transfer learning, self-supervised learning, multi-modal learning
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Chapter 1

Introduction

One of the biggest challenges in the current technological revolution is building

reliable autonomous machines able to deal with the huge complexity and variability

that characterizes our world and that requires an effort for continual adaptation

[20]. This effort has been largely internalized by living beings throughout the

whole evolutionary process. Indeed, neuroscientists and psychologists agree that

one of the key traits of intelligence is the ability to adapt in response to different

situations while autonomously learning knowledge patterns [21, 22]. However,

current Artificial Intelligence (AI) models still struggle in dealing with discrepancies

between training and deployment conditions.

We know from daily experience that when exploring the world it is natural to

encounter unknown object categories. Still, for a vision-based object recognition

model this category shift would lead to dramatic failures. Similarly, a change in

visual appearance simply caused by a difference in illumination condition, point of

view, or style (e.g. photograph vs sketch) defines a domain shift (examples in Figure

1.1) that largely reduces the original abilities of the recognition model. Even powerful

Deep Neural Networks (DNNs) show performance reduction in these scenarios and

it is possible to identify two main causes. On one side their prediction tends to be

overconfident, thus new samples are assigned to one of the known object categories

with low uncertainty [23]. On the other, the models lack generalization and incur in

negative transfer by focusing too much on local and texture appearance, rather than

on global and shape-related semantic information which is shared across domains

[24].
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Fig. 1.1 Examples of domain shift taken from DomainNet [1], SUN RGB-D [2], Cityscapes

[3] and OfficeHome [4] datasets.

With the aim of getting inspiration from the intelligence of living beings and

improving the current limitations of artificial learning systems, it is helpful to resort

to developmental science. Different studies highlight how children gain an under-

standing of the world from both Supervised and Self-Supervised learning: while

parents or teachers may provide guidance on a few important concepts, children

are able to fill the gaps on their own by discovering patterns that may not have

been covered through traditional education. Kids mainly play to experience how

the world reacts to certain stimuli, inventing new activities with apparently random

rules. Moreover, many children’s games are fully self-supervised tasks based on

discovering object regularities as jigsaw, shape, and matching puzzles (see Figure

1.2).

Self-supervised learning has been used in Computer Vision (CV) for the first

time in [25±27]: it was proposed as an alternative to supervision with the advantage

of avoiding costly data annotation and leveraging large amounts of freely available

unlabeled data. Several other works followed the first seminal ones, showing how

self-supervised pre-trained models were able to capture general-purpose feature

embeddings that could be inherited for a variety of downstream tasks [5, 28±32, 27].

However, none of them put the spotlight on how self-supervision could complement

supervised learning in improving domain generalization or reducing model over-
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Fig. 1.2 The greatest part of the baby’s toys is designed to give children the ability to

autonomously find patterns that don’t require any supervision.

confidence. This thesis summarizes the work done by the author toward these

goals.

Specifically, the first part of the manuscript presents multi-task solutions op-

timized for object and scene-supervised recognition together with different self-

supervised objectives. Here the goal is cross-domain learning both in single and

multi-modal scenarios, but in a simplified closed-set setting so without novel cat-

egories at test time. In the second part of this thesis, we investigate the more

challenging partial and open-set frameworks where category shift appears together

with domain shift. We discuss how self-supervision is able to provide insights on

the novelty of a test sample and significantly reduce prediction over-confidence.

Finally, in the third part, we argue how the analogical reasoning, which is at the core

of several self-supervised tasks, can be directly formalized in supervised learning

models to get improved performance. Specifically, we consider contrastive and

relation-based learning approaches presenting their effect on the open-set task and

semantic novelty detection in multi-domain challenging conditions.

Before providing more details on the thesis contributions we present a brief

problem statement to be considered as a glossary of the main terms that will be used

throughout the whole manuscript.
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1.1 Problem Statement

The goal of cross-domain learning algorithms is to transfer knowledge from a labeled

dataset (source domain) to an unlabeled one (target domain) generally characterized

by differences in the appearance (domain shift) and/or non-overlapping label sets

(category shift).

If the target domain is available during training but fully unsupervised, the setting

is called Unsupervised Domain Adaptation (UDA). Formally, in UDA, the source

domain S = {xs
j,y

s
j}

Ns

j=1 ∼ ps (with Ns source samples) and the unlabeled target

domain T = {xt
j}

Nt

j=1 ∼ pt (with Nt target samples) are drawn from different data

distributions ps ̸= pt . If the possibility to access target samples, even unlabeled, is

denied, the setting is called Domain Generalization (DG). In both cases, the objective

is to build a source model with high recognition performances on the target domain.

Motivated by the unrealistic assumption that all the available labeled samples come

from the same distribution, both UDA and DG can be extended to the Multi-Source

scenario where more labeled source domains S = {S1,S2, . . . ,SL}, all drawn from

different data distributions pi=1,...,L, can be used during training.

The way in which the source(s) label set Ys and the target label set Yt overlap

defines the specific scenario we are dealing with. The simplest situation is the

Closed-Set Domain Adaptation (CSDA) scenario with perfect overlap between the

source and target label sets (Ys = Yt). The Partial Domain Adaptation (PDA) setting

is characterized by a target domain with a number of categories lower than the source

domain (Yt ⊂ Ys). Finally, when Ys ⊂ Yt , the target covers additional classes which

are considered unknown. In that case, there can be two different settings: Semantic

Novelty Detection (SeND) if we are only interested in discriminating between known

and unknown samples and Open-Set Domain Adaptation (OSDA) when instead

we also want to classify the target samples belonging to the known categories. In

PDA, SeND and OSDA it’s important to address not only the domain shift, as in

CSDA but also the category shift, which makes the problem even more challenging.

Indeed, ignoring this aspect and trying to force the source and target data to match,

inevitably produces negative transfer causing worse performance for any adaptive

method compared to its non-adaptive version.
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1.2 Contributions

In this thesis, we deal with the problem of generalization over domain shifts and/or

category shifts between the training and test sets in the context of visual recognition.

The leitmotif of all the proposed solutions is the joint use of supervised and self-

supervised learning. In particular, the contributions of this thesis are the following:

• the first end-to-end multi-task architecture that learns simultaneously to

recognize categories and to solve self-supervised tasks [33±35] enhancing its

generalization ability. We focused on the task of recovering an original image

from its shuffled parts [5], predicting the object orientation [6] and inter-modal

RGB-D translation [36]. We show how these tasks can be re-purposed as side

objectives to be optimized jointly with object classification helping the model to

focus on object regularities shared across domains. We proved the effectiveness of

the proposed solution in the CSDA and DG settings. In [35] we also proposed a

benchmark testbed for scene recognition to analyze the problem of domain shift

across devices: although often overlooked, the decrease in performance due to data

acquired with a different instrument is proved to be a critical issue in real-world

applications.

• self-supervised-based solutions to tackle open-world scenarios where also

category shift holds [34, 19]. Motivated by the remarkable performance gain

obtained in CSDA and DG, we employ self-supervision for both PDA and OSDA

confirming its great effectiveness across domains. In particular, for OSDA we

propose the first approach that exploits self-supervision to tackle both unknown de-

tection and domain alignment. A rotation predictor helps in distribution alignment

and guides the model to focus on domain-agnostic properties of the known objects

useful to identify unknown samples in the target. Together with a benchmark and

reproducibility study of existing OSDA approaches, in [19] we also propose a

new metric that evaluates, at the same time, the ability to recognize the known

classes and to reject the unknown ones [19]. Indeed, all the existing OSDA metrics

only consider, separately, the closed set and open set performance not allowing to

properly assess the overall model.

• supervised solutions based on self-supervised logic [37, 38]. Despite self-

supervision could be decisive in dealing with open-world scenarios preventing

the use of category labels, its learning paradigm can be extremely helpful and
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sometimes preferred, also in the supervised version [39]. Specifically, we consider

contrastive learning [40, 41] and relational reasoning tasks [42]. In [37] we propose

to tackle all the challenges of the Multi-Source OSDA setting through a single

supervised contrastive loss function, also overcoming the main limitations of the

existing approaches. In [38] we propose a representation learning approach based

on relational reasoning to obtain a semantic similarity score that indicates the

probability that two samples belong to the same class or to different ones (SeND

task).

1.3 Outline

Chapter 2 presents an overview of the current literature and introduces the datasets

used for the experimental evaluation. In particular, Section 2.1 presents the relevant

works related to the problem of domain shift and category shift between the training

and test set. Section 2.2 focuses on self-supervised learning considering the oldest

and the most recently developed techniques. Finally Section 2.3 introduces the

datasets used.

Chapter 3 shows in detail the two approaches proposed as solutions to the domain

shift problem under the closed set assumption. Section 3.1 introduces JiGen, the first

multi-task approach that exploits self-supervision to deal with the problem of domain

shift. In particular, the section presents an extensive analysis of the effectiveness of

jigsaw puzzle and rotation recognition as auxiliary self-supervised tasks for visual

recognition. Section 3.2 describes TranAdapt that builds over the same intuition

of JiGen but proposes the inter-modal RGB-D translation as self-supervised task to

promote adaptation.

Chapter 4 presents the techniques proposed to tackle the problem of category

shift in combination with domain shift. Section 4.1 describes how to extend JiGen to

deal also with the PDA setting. Both jigsaw and rotation recognition are tested as

self-supervised tasks showing their effectiveness in dealing with the problem of the

partial overlap between the source and target label sets. Section 4.2 introduces ROS

where rotation recognition is exploited for both domain shift and target unknown

detection in the OSDA setting.
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Chapter 5 moves from multi-task solutions to representation-based approaches

to cope with the problem of category shift and domain shift, leveraging two popular

self-supervised learning tasks in their supervised variants. Section 5.1 presents

HyMOS where a supervised contrastive learning loss is optimized to solve all the

challenges of the MOSDA setting at once. In Section 5.2, is presented ReSeND, a

relational reasoning-based approach to deal with the SeND task.

Finally, the thesis ends with a summary of the main conclusions, followed by a

discussion on open issues and future perspectives.
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1.4 Publications and Reports
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Fairness meets Cross-Domain Learning: a new perspective on Models and

Metrics.



Chapter 2

Related Works

The first Section of this Chapter reviews the current literature on Learning Across

Domains. The second Section is dedicated to Self-Supervised Learning which is

the main solution used in this thesis to address the domain shift and category shift

problems. The Chapter concludes with the introduction of all the datasets used in

this thesis.
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2.1 Learning across Domains

Usupervised Domain Adaptation [20] accounts for the difference between training

and test data by considering them as drawn from two different marginal distributions.

In the UDA literature, we can identify a few main research directions. Discrepancy-

based methods define and minimize a metric that measures the distance between

source and target data in the feature space: many approaches minimize the Maximum

Mean Discrepancy (MMD) [43±47], the Wasserstein distance [48, 49], or other

statistical moment matching constraints [50±52]. To minimize the domain shift

other strategies also exploit feature normalization [53] or even dedicated batch

normalization layers [54, 55]. A considerable number of UDA approaches are based

instead on Adversarial learning techniques [56±60, 57]. In that case, the objective is

to adversarially train a domain discriminator and a backbone so that it converges to a

solution that causes the domain discriminator to be unable to distinguish between

the source and target data. Those strategies exploit the idea at the basis of the

Generative Adversarial Network (GAN) [61] that can be also directly applied to

match domains at pixel level transferring the style of the source to the target and

vice-versa [58, 62±65]. Given that simply encouraging domain invariance does not

guarantee the extraction of discriminative features from the target domain [66], recent

approaches have proposed class-aware adversarially-based adaptation techniques to

better align the class-conditional distributions between the source and target domains

[67±71]. Feature disentanglement based approaches aim at separating the deep

features into domain-specific and category-specific to extract only relevant factors of

data variation [72±74]. Alternatively, other effective and popular strategies consist

in measuring the uncertainty of the source classifier on the target data through the

entropy loss which is minimized during training [75±78], or pseudo labeling (also

known as self-training) using the output of the source model as coarse annotation

on the target [79, 80]. Self-supervised learning based techniques [33, 34, 81, 82]

tackle UDA by adding auxiliary self-supervised tasks to improve the generalization

ability of the network. Given the unsupervised nature of self-supervised learning, the

unlabeled target data can be directly used to solve this task helping the network to

produce a robust representation for the main supervised task. Our work pioneered this

research direction. We published the first work proposing the multi-task supervised

and self-supervised approach that will be described in detail in Section 3.1.
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Out of the variety of UDA solutions developed in the last years, the vast majority deal

with a single visual modality. However, in many practical scenarios, more signals

can be jointly collected and may support each other to improve model generalization

as they are not all equally affected by domain shift. Few works have considered

RGB and Depth modalities together in different settings. In [83, 84] RGB and

Depth are respectively source and target, while [85] deals with a multi-modal source

(RGBD) and a single modal target (RGB). In [86, 62] the depth information is

used as an additional input channel for source and target, extending standard RGB

domain adaptation methods to the RGB-D case. The importance of exploring the

inter-modal relation for adaptive learning has been highlighted in [18]. With our

work we showed how self-supervision is able to enhance domain robustness also in

multi-modal settings through cross-modality reconstruction as discussed in Section

3.2.

In realistic conditions, source data may also originate from multiple distributions

(Multi-Source DA) [87, 88]. One of the main challenges when working with multiple

sources is to create a feature space that is both highly discriminative and capable

of aligning all the domains. Based on the assumption that the target distribution

can be approximated as a mixture of the source distributions [89, 90], many MDA

approaches combine the predictions of source classifiers via re-weighting [91, 49,

92±94]. In particular, in [91] the combination of the distributions is treated as a

Difference of Convex (DC) programming deriving a domain generalization bound.

Other Discrepancy-based approaches aim to reduce the domain gap among the

sources by adding minimization constraints on some measures of discrepancy as

MMD [95], L2 distance [96], and moment distance [1] or focusing on prototype-

based alignment strategies [97, 98].

In Domain Generalization, as opposed to UDA, it’s not allowed to use the

target data during training. When only one source domain is available, regularization

strategies are usually applied. They include label smoothing [99], strategic dropout

based on the gradient observation [100], tailored model selection [101, 102] or

data-augmentation solutions to increase the variability of the training set [103, 104].

In the Multi-Source setting the main objective is to distill the most useful and

transferrable general knowledge across multiple sources in the hypothesis that it

would be transferable also at deployment time with any unseen target domain. Many

previous studies have focused on model-based approaches to neglect domain-specific

features. They include both shallow and deep models learned through multi-task
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learning [105], low-rank network parameter decomposition [12, 106, 107], domain-

specific aggregation layers [108] or with source model weighting [109]. Some

alternative approaches focus on finding a feature-level representation that can capture

shared information across multiple domains. Proposed strategies include the use of

autoencoders [110, 111], learning objectives to project images of the same classes

nearby regardless of the source domain [112, 113]. Methods that operate at the data-

level aim to increase the variability of the source samples, with the goal of expanding

the range of data represented and potentially improving the model’s performance

on the target domain. One of the earliest examples of data-augmentation-based

approaches for DG is Domain Randomization [114] where random rendering is

added to the samples generated by several simulated environments. In [115] the

authors propose a method for augmenting the source domain by applying domain-

specific perturbations to the existing data points. Style-transfer techniques are also

highly effective in producing strong data augmentation for DG as discussed in [116].

Meta-Learning solutions [117±120] follow the learning paradigm proposed in [121]

where the sources are split into meta-train and meta-test: the model is learned on the

meta-train but the parameter update is also guided by the loss with respect to the meta-

test that simulated the deployment of the model in a novel target scenario. Analogous

to UDA, Self-Supervised Learning can also be applied in DG. The source/s can be

used to train the auxiliary self-supervised task to obtain a robust model that focuses

only on the class-specific features disregarding the domains. As in UDA, the use

of Self-Supervised learning in DG is one of the novel contributions of this thesis

presented in Section 3.1.

The basic UDA and DG frameworks assume that all the domains share exactly the

same label set. However, this Closed-Set setting is too optimistic: given that the

target is unlabeled (or completely unseen). We cannot be sure that its semantic

content perfectly matches that of the source.

Partial Domain Adaptation relaxes this assumption and allows the target to

cover only a subset of the source categories: it becomes important to drive the

learning by considering only the source samples with shared labels during the

adaptation process. A popular technique for PDA consists in source samples re-

weighting based on the probability that each sample belongs to one of the categories

shared with the target domain [122±125]. SAN [122] and PADA [123] exploit a

standard domain-adversarial UDA technique [56] while the contribution of each

source sample is estimated through the evaluation of the target domain on the



14 Related Works

source classifier producing statistics on the classes distributions. Differently, in

IWAN [124], where each domain has its own feature extractor, the source sample

weights are obtained from the domain recognition model rather than from the source

classifier. Lastly, TWIN [125] exploits two different classifiers to reduce the domain

shift enforcing a minimal disagreement between their predictions on the target. It

computes the source weights following PADA [123] but averaging over the output of

both the source classifiers. Besides the approaches based on weighting schemes, an

effective solution in PDA, as in UDA, consists in aligning the feature norm of source

and target [53]: without any heuristic weighting mechanism, the model has been

proven to be robust to negative transfer. Moreover a reinforcement learning-based

solution is proposed in [126], while Liang et al. [127] propose to augment the

small target domain to match the large source domain through an uncertainty-aware

approach. In [128] the distributional difference between outlier and shared classes is

maximized with the goal of improving alignment between the shared classes across

domains. The strategy proposed in [129] involves finding implicit semantic concepts

that are shared between source and target and adjusting their respective distributions

so that they more closely match each other. Finally, using a self-supervised auxiliary

task on the target domain may help the model to focus only on the categories shared

with the source as discussed in [130]: in Section 4.1 we present this contribution.

Open Set Domain Adaptation refers to the scenario where the target domain

contains all the source categories but also an additional set of classes that should

be considered unknown. Here the challenges are two: correctly classify the target

samples that belong to the known categories and detect the unknown ones. The earlier

approaches proposed in OSDA were all based on Adversarial Training [131, 24, 132].

In OSBP [131] a classifier is trained to obtain a large boundary between source and

target samples, while the feature generator is trained to move the target samples

away from this boundary. Liu et al. [24] adopt a weighting mechanism for known-

unknown target separation still considering a standard adversarial approach for the

adaptation [56]. Besides adversarial techniques, recently [133] introduced a self-

ensembling based method to reduce the disagreement between the class prediction

made with the source classifier and the underlying target cluster distribution. Other

strategies consist in emulating the unknown samples by suppressing class-specific

activation feature maps [134] or are based on Graph-based solutions [135, 136].

Another direction explored in OSDA is the use of Self-Supervised Learning [19, 137].

For instance, we showed in [19] that, by learning to recognize object orientations a
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model gets relevant knowledge to evaluate sample similarity. Thus it can be useful to

draw conclusions on whether a certain instance belongs to a known or unknown class

regardless of its visual domain. The dual use of Self-Supervision for both unknown

detection and DA is a contribution of this thesis that we introduced in Section 4.2.

In Multi-Source OSDA (MOSDA), besides having several source domains,

the target domain contains also unknown categories as in OSDA. There are only a

few works proposed to deal with this setting [138, 139, 82]. MOSDANET [138]

incorporates a clustering objective into a standard supervised classification model

to maximize the similarity among samples of the same class but different domains.

The adaptation is then performed through adversarial learning [56] with a margin

loss to penalize cases with a small difference in known and unknown prediction

output. NENO [139] proposes a contrastive learning approach considering a decay

multiplier for the loss function when potential known target samples are included in

the training. Finally, there are just a few works that explore the problem of category

shift in DG like [140] that propose a meta-learning-based solution for the Open Set

Domain Generalization (OSDG) setting where the label sets of the sources may

not overlap and the target could have unknown classes. In Section 5.1 we present

a contrastive learning-based solution for the MOSDA problem [37] where a style

transfer technique for source-target adaptation is adopted.

Semantic Novelty Detection (SeND) [141] together with Anomaly Detection

[142±144] fall under the Out-Of-Distribution (OOD) literature whose goal is to

identify whether a given test sample belongs to the same distribution of the training

data or not. In this thesis, we consider the SeND task that focuses on conditional

distributions, meaning on differences in the label sets: a sample is defined anomalous

if it doesn’t belong to any of the categories of the training set ignoring the possible

presence of train-test domain-shift. A very basic approach adopted is the Maximum-

Softmax Probability (MSP) [145, 146] which consists in applying a threshold on the

highest score produced by a trained known-class classifier. Several enhancements

to this naïve strategy have been proposed, such as those presented in [147±149]

or in [150] where the gradients produced by the network are used to estimate

prediction uncertainty. Generative-based approaches consist in training a model to

reconstruct samples from the reference known classes: at test time, the reconstruction

error defines the novelty score [151±156]. Other techniques emulate OOD data by

synthesizing them [157±159] or by using external datasets as a source of anomalies

during training [160±162]. The degree of normality of test samples is computed
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by measuring their distance from the training data by using specific embeddings or

metrics [163, 164]. Self-Supervised-based approaches remove the focus from the

labels and can be effective also in this context since they capture data patterns and

relationships [6, 5, 165±167, 137, 168±171]. In Section 5.2 we propose a relational

reasoning-based solution whose model outputs a measure of semantic similarity for

unknown detection.
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2.2 Self-Supervised Learning

Despite unsupervised data do not come with human annotation they still contain

a large amount of structural information that can be captured by a self-supervised

model that solves what is known as pretext task. Depending on the number of

instances to define it, self-supervised learning can be divided into two main groups:

relation- and transformation-based. Relational-based approaches aim at increasing

similarity between a sample and its augmented version (positive pair) while mini-

mizing the similarity between that sample and the other training samples (negative

pairs) [40, 172, 173]. In transform-based self-supervised tasks instead, a part of the

data information is discarded to let then the model recover it. Examples are image

completion [174], colorization [31, 175], the relative position of patches [26, 5],

rotation recognition [6] and many more [165±167, 176, 177]. It has been shown that

the self-supervised learned embedding captures general data knowledge and can be

used to improve performance in a wide range of downstream tasks through transfer

learning (i.e. fine-tuning) on a limited amount of annotated samples [178±180]. Gen-

erally, the quality of a self-supervised learned embedding is evaluated in function of

the final performance of the downstream task.

Jigsaw Puzzle is a basic pattern recognition problem that consists in recovering

an original image from its shuffled parts. Freeman et al. [181] first introduced it in

computer science followed by [182] which proposes to solve it not only based on

the shape of the objects but also looking at the appearance information. Over the

years many variations of the standard Jigsaw Puzzle game have been proposed like

predicting, together with the correct permutation, if all the patches of the image are

present (completeness) and/or if there were parts from other images. Algorithms

designed to solve Jigsaw Puzzles have wide applications in many areas like computer

graphics [183, 184], archaeology [185, 186], biology [187] and visual representations

(see Figure 2.1) [28, 26, 5].

The strategies that have been proposed to solve the task can be roughly divided

into greedy methods, based on sequential pairwise matches, and global methods

that aim to find a solution minimizing a global compatibility measure over all the

patches. Examples of approaches that fall in the first group are [188] that proposes

a minimum spanning tree algorithm or [186] that considers the shortest path on a

graph that models the puzzle structure. Among the global methods that consider all

the patches together, [189] use Markov Random Field formulations, and [184] builds
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Fig. 2.1 A schematic illustration of the Context Free Network (CFN) proposed in [5] trained

to predict the index of the permutation applied to the original image.

on genetic algorithms. More recently [28] solved a bi-level optimization problem to

recompose the original image and [190] relies on a transformer-based architecture.

Rotation Recognition [6] consists in changing the orientation of an image and

asking a model to predict the rotation angle that would bring it back (see Figure 2.2).

Originally developed as a representation learning approach, it has been used in many

applications including anomaly detection [137], closed-set domain adaptation [191],

action recognition [192] and medical images analysis [193, 194].

Fig. 2.2 Illustration of the rotation recognition task proposed in [6] where the network is

trained to predict the rotation angle applied to the original image.
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Contrastive Learning is an instance discrimination technique [195] that con-

siders every instance as an independent class. Its aim is to maximize the agreement

between many augmentations of the same sample while separating different instances

as much as possible. SimCLR [40] and MoCo [172] represent two of the most cited

contrastive learning-based approaches. The former needs to be trained with a large

batch size while the latter maintains a momentum encoder and a limited queue of

previous samples. Current research is trying to improve the contrastive learning

formulation with optimized negative sampling [173] or choosing the best augmenta-

tion views [196, 197]. Although originally designed as a self-supervised task, more

and more methods incorporate supervision [41, 198] getting the best of both worlds

for several tasks like novelty detection [169], cross-domain generalization [199] or

few-shot classification [200].

Relational Reasoning is a highly developed ability of the human being’s brain. It

has been defined in the ML community as learning a function whose output estimates

the relationships between a set of objects. Largely employed for the combination

of language and vision [201±203], it has found applications in many area like

reinforcement learning [204±206], object detection [207], graph networks [208], and

few-shot learning [209, 210]. Recently, it has been shown how effective this task

can be when applied as a self-supervised task for representation learning [42], with

surprisingly better results than contrastive learning-based strategies [40, 211].
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2.3 Datasets

Several datasets have been created with the aim of covering a wide variety of visual

domains. We present below the ones used in the rest of the thesis.

Office-31 [7] has been the standard benchmark for testing DA methods for

several years. It consists of three domains (Amazon (A), Webcam (W), Dslr (D))

and 31 categories. Specifically, the images are photos of daily office objects, the

domain Amazon is made by images collected from amazon.com website, Webcam

and DSLR are two different types of devices used to record the same objects in an

office. As can be seen in Figure 2.3 both the resolution/properties of the devices

used for recording and the format of the images on the web cause the domain shift.

Fig. 2.3 Samples from the Office-31 [7] dataset. Each row contains images from a different

domain: starting from the first row, examples from Amazon, Webcam and DSLR domains

are shown.

In this thesis, we considered Office-31 for the Partial and Open-Set scenarios. In

particular, in PDA the target contains only 10 categories which are those shared by

Office-31 and Caltech-256 [212] as in [123]. For OSDA we followed the protocol

in [131], where the first 10 classes in alphabetic order are considered known and

the last 11 classes are considered unknown. Lastly, in MOSDA, we followed [138]

where the first 20 classes in alphabetic order are considered as known, while the

remaining 11 are unknown.

VLCS [213] is a benchmark made by the aggregation of images of 5 object

categories shared by the PASCAL VOC 2007 [8], LabelMe [9], Caltech-101 [10]

and SUN09 [11] datasets which are considered as 4 separated domains (see Figure
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2.4). Originally proposed to study the problem of dataset bias, it has been widely

used over the years to demonstrate the robustness of DG and DA approaches. In

this thesis, we employed VLCS for DG following the standard protocol proposed

in [110] that divides each domain into a training set (70%) and a test set (30%) by

random selection from the whole dataset.

Fig. 2.4 Samples from the VLCS [7] benchmark. Each row contains images from a different

domain: starting from the first row, examples from PASCAL VOC 2007 [8], LabelMe [9],

Caltech-101 [10] and SUN09 [11] are shown.

Office-Home [4] has been proposed to overcome the limitations of previous

benchmarks: both the number of categories and the large domain gaps (see Figure

2.5) make this dataset much more challenging than previous ones. It contains 65

categories of everyday objects from 4 domains: Art (Ar), Clipart (Cl), Product (Pr),

and Real-World (Rw). Specifically, the Product domain is made by images collected

from vendor websites and characterized by a white background, while Real-World

images are captured with a regular camera. In this thesis, Office-Home has been

considered for DG and Open-Set settings. In DG we followed the standard protocol

proposed in [108].

In Open-Set: for Single-Source, we considered the first 25 classes in alphabetic

order as known, and the remaining 40 classes as unknown following [24]; for Multi-

Source we considered the first 45 categories in alphabetic order as known, and the

remaining 20 unknown as in [138]. Finally, we adopted the same protocol of [140]

for the OSDG experiments.
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Fig. 2.5 Sample images from the Office-Home [4] dataset. The dataset consists of images

of everyday objects organized into 4 domains. Each row contains images from a different

domain: starting from the first row, examples from Art, Clipart, Product, and Real-World

domains are shown.

PACS dataset has been proposed in [12] and it has been largely adopted to study

the DG problem given the extremely different domains involved as shown in Figure

2.6. It contains 4 domains (Photo (P), Art Painting (A), Cartoon (C), and Sketch (S))

and it covers 7 object categories. For the DG setting, we followed the experimental

protocol proposed in [12], and for the Multi-Source DA setting, we followed [87]

where also the unlabeled target domain is used during training. Lastly, for OSDG we

followed [140] using 6 categories as known and 1 as unknown with also a partial

overlap between the sources’ label sets.

VisDA2017 was originally created for the 2017 Visual Domain Adaptation chal-

lenge (classification track) [13]. It has two domains, synthetic 2D object renderings

(Syn.) and real images (Real) (see Figure 2.7) with a total of 208k images organized

into 12 categories. With respect to the other datasets, it allows the investigation of

the proposed solutions on a very large-scale sample size scenario. We considered

this benchmark only for the PDA problem by following [123] that focuses on the

synthetic-to-real shift keeping only the first 6 categories of the target in alphabetic

order.

DomainNet [1], with about 0.6 million images, currently represents the largest

DA benchmark. As can be seen in Figure 2.8 the domain gap is pretty large: it is
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Fig. 2.6 Samples from the PACS [12] dataset. Each column contains images from a different

domain: starting from the left, examples from Art Painting, Cartoon, Photo, and Sketch

domains are shown.

Fig. 2.7 Samples from the VisDA2017 [13] dataset which is made by two domains: Synthetic

(on the top) and Real images (on the bottom).

made by six domains (Infograph (I), Painting (P), Sketch (S), Real (R), Quickdraw

(Q), Clipart (C)) and 345 categories. We used it in this thesis for the MOSDA

and SeND tasks. In the first case by following [138], we focused on Infograph,

Painting, Sketch, and Clipart selecting randomly 50 samples per class or using all

the images in case of lower cardinality. We used as known the first 100 classes in

alphabetic order, while the remaining 245 are unknowns. In the SeND task, we

selected 50 categories that do not overlap with ImageNet1k [214] classes using the
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Natural Language Toolkit [215], we then randomly split them into 25 known and 25

unknown.

Fig. 2.8 Samples from the DomainNet [1] dataset. Each row contains images from a different

domain: starting from the first row, examples from Clipart, Infograph, Painting, Quickdraw,

Real, and Sketch domains are shown.

Multi-Datasets has been proposed in [140] with the aim of considering a realistic

situation where the multi-source condition is naturally determined by the use of

several datasets as source domains: Office-31 [7], STL-10 [216], Visda2017 [13].

One among Clipart, Real, Painting, and Sketch from DomainNet [1] serves as target

domain. Following [140], we considered this dataset for the OSDG setting with 20

unknown selected categories.

SUN RGB-D [2] is the largest multi-modal benchmark for scene recognition

across domains. Every scene is represented by both RGB and Depth data and,

the properties of the device used for recording (Microsoft Kinect v2, Asus Xtion,

Microsoft Kinect v1, and Intel RealSense) define the domain. Section 3.2 presents

our experimental testbed based on this dataset, created to study the problem of

domain shift cross-devices. As shown in Figure 2.9, there is a significant variation in

the appearance of the images captured by different cameras. This means that users

who want to test existing scene recognition models need to be careful in selecting

a model that has been trained on images captured by the same type of deployment

camera to avoid poor performance. In order to study this domain shift more in

detail, we selected a subset of scene classes that are shared among the four SUN

RGB-D cameras and that contain the largest number of samples per class (to increase
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Fig. 2.9 Samples from the SUN RGB-D [2] dataset. Each column contains images from a

different domain: starting from the left, images recorded with Intel RealSense, Asus Xtion,

Microsoft Kinect v1, and Microsoft Kinect v2 are shown.

the number of samples, we combined the office_kitchen and kitchen categories).

The final subset is summarized in Table 2.1. Overall, there are 10 classes, with

dining_area and bedroom missing for, respectively, Kinect v1 and Realsense.

Table 2.1 Number of images in the considered classes.

Class name Kinect v1 Kinect v2 Realsense Xtion

0. bathroom 147 150 67 260

1. bedroom 442 121 0 521

2. classroom 49 535 73 366

3. computer_room 6 65 40 68

4. conference_room 5 69 53 163

5. dining_area 0 192 125 80

6. discussion_area 6 62 30 103

7. kitchen 291 86 20 183

8. office 295 418 46 287

9. rest_space 6 407 285 226

Total 1247 2105 739 2257

Some of the scene classes are made up of images taken in the same physical location

but recorded with multiple cameras. We show this overlap in Figure 2.10. For exam-

ple, the same group of office rooms has been recorded with Kinect v2, Realsense, and

Xtion cameras, and all these images belong to the office class. Similarly, the kitchen

class contains images taken in the same locations with Kinect v2 and Realsense,

while others are from rooms shared between Xtion and Kinect v2. In the case of the

discussion_area class, each camera recorded images in different physical locations.

Lastly, none of the images captured with Kinect v1 share any location with the other

cameras.
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Fig. 2.10 Physical place overlapping. Some of the scene categories contain images taken in

the exact same physical place with different devices, while others are recorded from different

locations. We adopted the following color legend: black for a class that contains images

recorded in the exact same location by multiple cameras, while blue/green/red/violet indicate

classes with specific room images captured only with Kinect v2/Realsense/Xtion/Kinect v1.

We decided to focus on the Kinect v2 (K) and Xtion (X) cameras to define a 10-

class domain adaptation problem, using them, in turn, as both source and target.

Additionally, due to its limited number of samples, we only considered the Realsense

(R) images as the target and used K, X, and their combination KX as the source.

Furthermore, due to its class imbalance, we did not include Kinect v1 (Kv1) in

our current classification setting but we plan to use it as a testbed for modality

hallucination (see Section 3.2.2). In all the cases, we employed HHA [16] to encode

depth images which have been shown to help in capturing the geometrical properties

of depth data. The qualitative t-SNE [14] in Figure 2.11 reveals that the samples from

each camera belong to different distributions and tend to occupy different regions

of the space, with this being more pronounced for the depth modality, where the

samples from Realsense are well separated from the other domains.

Textures [15] is made by 5,640 photo of textures captured from the web (see

Figure 2.12). They are labeled with one or more adjectives selected from 47 at-

tributes that capture a wide variety of visual properties of textures, e.g. banded,

cobwebbed, freckled, knitted, zigzagged. This dataset has been originally developed

to support real-world applications where the recognition of texture properties is a key

component. We considered it for the SeND Intra-Domain experiments by randomly

choosing 23 categories as known and 24 as unknown.
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RGB

bathroom bedroom classroom computer_room conference_room

dining_area discussion_area kitchen office rest_space

Depth

bathroom bedroom classroom computer_room conference_room

dining_area discussion_area kitchen office rest_space

Fig. 2.11 Visualization through t-SNE [14] of the three domains of our multi-modal cross-

domain scene classification testbed. Each domain is composed by images of a different

camera: Kinect v2 (blue), Realsense (green), Xtion (red).

Fig. 2.12 Image samples from Textures [15] dataset.



Chapter 3

Auxiliary Self-Supervision for

Closed-Set Cross-Domain Learning

This Chapter introduces the first contribution of this thesis which consists in using

Self-Supervised Learning as an auxiliary task for robust classification models across

domains. In particular, it presents strategies to deal with Domain Generalization

and Unsupervised Domain Adaptation problems under the Closed-Set assumption

where the Source/s and Target label sets perfectly overlap. Specifically, two methods

are introduced: JiGen and Tran-Adapt. In the first one, Jigsaw puzzle and Rotation

recognition are used as auxiliary objectives to improve the network’s generalization

ability in object recognition. With the same aim, the second approach relies on an

inter-modal Self-Supervised task whose goal is reconstructing RGB data from Depth

and vice versa to improve scene recognition across domains.
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3.1 JiGen: Self-Supervised Learning Across Domains

© 2021 IEEE Reprinted, with permission, from Bucci, S., D’Innocente, A., Liao, Y.,

Carlucci, F. M., Caputo, B., & Tommasi, T., Self-supervised learning across domains.,

IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9), 5516-5528

(TPAMI 2021)

In this Section we present the first multi-task approach that is simultaneously trained

to recognize objects with a supervised objective and to generalize to new domains

using self-supervision. We consider in our analysis jigsaw puzzle and rotation recog-

nition as self-supervised tasks (see Figure 3.1) and we compare their effect when

exploited as pretext tasks and in combination with supervised learning, exploring

their potential through extensive ablation analysis and visualizations of both suc-

cessful and failure cases. For the jigsaw puzzle task, we propose to reassembly the

patches at the image level treating it as a classification problem (see Figure 3.2)

as opposed to previous approaches that extracted features from individual image

patches [5, 29]. By using the same network backbone for both object recognition

and patch reordering/orientation prediction, it is possible to leverage the strengths

of any convolutional learning structure and several pre-trained models without the

need for architectural changes. We considered domain generalization, single-source,

and multi-source domain adaptation settings comparing our performance with the

contemporary state-of-the-art approaches.

The section is organized as follows. The proposed multi-task approach is described in

subsection 3.1.1. The experimental results and analysis are provided in subsections

3.1.2, and we conclude in subsection 3.1.4.

3.1.1 Method

Let us assume that data from one or more source distributions are observed {(xs
i ,y

s
i )}

ns

i=1

where xs
i refers to the i-th image while ys

i is the one-hot label vector of dimension |Y s|.

Starting from these images it is possible to apply various transformations to generate

self-supervised variants. One simple option is to apply rotation to each sample

producing four copies with orientations of 0, 90, 180, and 270 degrees considering

as self-supervised task the prediction of the rotation angle to get back the original

image. A more structured alternative is to decompose the original images into a
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And this
one?

Can you recompose
these images?

And these ones?...

...What is 
this object?

horse!

Can you recognize the
image orientation?

And for these ones?...

Fig. 3.1 Recognizing objects across different visual domains is a difficult task that requires

strong generalization abilities. Self-supervised learning can help to capture natural invari-

ances and regularities, which can then assist in bridging large style gaps. Our multi-task

approach learns to jointly classify objects and solve jigsaw puzzles or recognize image

orientation, demonstrating its effectiveness in knowledge generalization.

Object Classifier
(object label)

Ordered
Images

Jigsaw Classifier
(permutation index)

index p = P
permutation:

1,9,5,6,3,2,8,4,7

index p = 2
permutation:

9,2,3,4,5,6,7,8,1

index: p = 1
permutation:

1,2,3,4,5,6,7,8,9

... ...

Convnet

Shuffled
Images

Feature Extractor

Gf

Gc

Gp

Fig. 3.2 The illustration of the proposed multi-task approach when using the jigsaw puzzle as

self-supervised task. It starts from images from multiple domains and breaks them down into

a 3×3 grid of patches which are then randomly shuffled and recomposed back into images

of the same dimensions as the original ones. By using the maximal Hamming distance

algorithm in [5], we establish a set of P patch permutations and assign an index to each of

them. Both the original and the shuffled images are fed into a convolutional network that

is trained to meet two objectives: object classification on the ordered images and jigsaw

classification (i.e. permutation index recognition) on the shuffled images. An analogous

approach is used when using rotation recognition as self-supervised task. Note that the

notation used to name the different network parts refers to Section 3.1.1.

3× 3 grid, creating 9 squared patches from each sample. These patches are then

rearranged to create a set of 9! shuffled images. This task is reminiscent of the jigsaw

puzzle game, in which the goal is to rearrange the tiles to reconstruct the original
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image. In both of the cases described, (zs
k,p

s
k)

Ks

k=1
indicates the newly obtained im-

ages where zs
k is the transformed sample (rotated or shuffled). The dimension of the

one-hot label vector p is 4 when applying rotation, while for patch shuffling, a subset

P of the 9! possible permutations is selected using the Hamming distance-based

algorithm [5]. Depending on the self-supervised task, the total number of images

changes: Ks = 4×ns for rotation and Ks = P×ns for patch shuffling. Regardless of

the self-supervised task considered, a multi-task model with a multi-branch ending

network is used. A shared backbone is used to combine the chosen self-supervised

objective with supervised learning [217]. One final branch will be used to elaborate

the source data and solve the supervised task. A second branch is dedicated to the

self-supervised task: permutation or rotation recognition (see Figure 3.2). The self-

supervised auxiliary objective helps to extract meaningful, semantically important

features from the data, which ultimately improves the performance of the object

recognition task. The self-supervised objective does not require labels, so it can

be used on both supervised and unsupervised data, supporting generalization and

adaptation.

Domain Generalization. We denote the convolutional feature extractor of our

network as G f , which is parametrized by θ f while the object classifier Gc and the

classifier for the self-supervised task Gp are parametrized, respectively, with θc and

θp. The overall objective function is:

arg min
θ f ,θc,θp

1

ns

ns

∑
i=1

Lc(Gc(G f (x
s
i )),y

s
i )+

αs 1

Ks

Ks

∑
k=1

Lp(Gp(G f (z
s
k)),p

s
k) (3.1)

where Lc and Lp indicate the cross entropy losses, respectively, for the object and

self-supervised classifiers. Note that the self-supervised loss can be computed not

just on transformed versions of the images, but also on the original images: the 0◦

orientation, indeed, as well as the original patch ordering corresponds also to one

of the possible transformations of the self-supervised task. Conversely, shuffled

or rotated images will influence negatively the supervised classification objective

making the object recognition task tougher. At test time, only the object classifier Gc

is used to predict the object categories of the target samples.



32 Auxiliary Self-Supervision for Closed-Set Cross-Domain Learning

Domain Adaptation. Self-supervised learning does not require manual labeling

and can take advantage of the available unlabeled target data {xt
j}

nt

j=1 in the domain

adaptation setting. The target samples are transformed (rotated or shuffled) to create

new instances {zt
k}

Kt

k=1 associated with self-supervised labels pt
k. Another common

strategy used to include target data into the learning process consists in applying

the supervised knowledge learned from the source data to generate pseudo-labels

ŷt = Gc(G f (x
t)) for the target data, and minimize the prediction uncertainty, which

is measured by the entropy H = −∑
|Y s|
l=1 ŷt

l log ŷt
l [87, 53]. This semi-supervised

method guides the class decision boundary to go through low-density target areas.

However, its effectiveness when working across domains depends on the source-

target domain gap: it needs to be moderate to prevent the generation of incorrect

pseudo-labels. Since the entropy term, the supervised loss, and the self-supervised

loss may be orthogonal and potentially complementary, we combine them in our

domain adaptation analysis. The overall learning objective is formalized as:

arg min
θ f ,θc,θp

1

ns

ns

∑
i=1

Lc(Gc(G f (x
s
i )),y

s
i )+

αs 1

Ks

Ks

∑
k=1

Lp(Gp(G f (z
s
k)),p

s
k)+

η
1

nt

nt

∑
j=1

H(Gc(G f (x
t
j)))+α t 1

Kt

Kt

∑
k=1

Lp(Gp(G f (z
t
k)),p

t
k). (3.2)

Implementation details. We designed1 our multi-task network with a convolu-

tional deep architecture G f that can be any standard network like AlexNet [218] or

ResNet [219] while the object and self-supervised classifiers Gc and Gp are made

by two different fully connected layers. When both Jigsaw and Rotation tasks are

included in the model, for each task a Gp head is assigned: the Jigsaw final head

GJ
p is used for the shuffled images, the Rotation recognition head GR

p for the rotated

images. The network is trained end-to-end for all the experiments, starting from

the pre-trained model on ImageNet [214] for G f , while Gc and Gp are learned from

scratch. In the DG setting, the main hyper-parameters of the proposed multi-task

approach are α that weights the self-supervised loss and β that controls the input data.

Since the original images and the self-supervised variants are fed into the network

together, β is the hyper-parameter that controls their relative ratio in the image batch.

1Code available at: https://github.com/fmcarlucci/JigenDG
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For example, setting β = 0.6 causes an image batch made by 60% of original images

and 40% or transformed images for the self-supervised task. In our experiments,

we tune α and β by using a portion (10%) of our training data as validation and

using it to perform the model selection by following [220]. When using both Jigsaw

and Rotation methods, we have distinct parameters αJ and αR, and β controls the

proportion of images that are either rotated or shuffled, with equal probability. In

the DA setting, the parameter α is decoupled into two separate parameters, αs and

α t , which are used, respectively, for the source and target data. When presenting our

experimental results, we examine the impact of using cross-validation to determine

the value of α on the source data and then setting α = αs = α t , as well as the effect

of fixing αs = 0 and manually adjusting α t . Another parameter in DA is η which

weighs the contribution of the entropy loss that we safely fixed to a small value,

0.1. When designing the jigsaw puzzle task, the grid of image patches (n×n), and

the number of permuted patches (P) have to be set. We show that our multi-task

approach is not sensitive to these values and for all the experiments we maintained

a consistent choice (3×3 grid, P = 30). We employed a basic data augmentation

technique consisting of randomly cropping the images to retain between 80−100%

of the original size and randomly flipping them horizontally. Additionally, following

[29], we randomly converted 10% of the images to grayscale. Our DG and DA

models have been trained using the SGD optimization algorithm, over 30 training

epochs, with a batch size of 128. We set the initial learning rate to 0.001 and reduced

it to 0.0001 after reaching 80% of the total training epochs.

3.1.2 Experiments

In this subsection, we conduct a thorough evaluation of the effectiveness of self-

supervised learning across different visual domains. We start by analyzing the

rotation and jigsaw puzzle, separately, as pretexts tasks, then we focus on DG and

lastly, we extend our analysis to the DA scenario.

Self-Supervised Pretraining. With this first analysis, we investigate the generaliza-

tion ability acquired by a model by using, separately, rotation prediction and jigsaw

puzzle as pretext tasks. We trained three models with different implementations of

jigsaw puzzle and one model with rotation recognition, in both cases using Ima-

geNet [214] as training dataset. For the jigsaw puzzle, we employed two different

Context-Free-Network (CFN) models, as described in [5, 29]. The CFN architecture
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Table 3.1 We evaluated the performance of our model on different tasks and architectures

using domain generalization (DG) classification accuracy. The column titles indicate the

target domain. The best results are highlighted in bold. The top part of the table shows the

results of self-supervised pretraining on Imagenet, followed by fine-tuning on the source.

Methods that use patch-based networks are indicated by (p) while those that use whole-image

networks are indicated by (w). The bottom part of the table shows the results of supervised

pretraining on ImageNet followed by the multi-task combination of self-supervised objectives

and supervised fine-tuning. The numbers reported correspond to the accuracy (%) averaged

over three runs.

PACS art_paint. cartoon sketches photo Avg.

Self-Supervised Pretraining

J-CFN (p) 47.23 62.18 58.03 70.18 59.41

J-CFN+ (p) 51.14 58.83 54.85 73.44 59.57

J-AlexNet (w) 38.93 53.75 49.00 64.23 51.48

R-AlexNet (w) 52.08 59.24 56.54 72.91 60.19

Supervised Pretraining and Multitask

C-CFN-DeepAll (p) 59.69 59.88 45.66 85.42 62.66

C-CFN-Jigsaw (p) 60.68 60.55 55.66 82.68 64.89

AlexNet-DeepAll (w) 66.50 69.65 61.42 89.68 71.81

AlexNet-Jigsaw (w) 67.79 70.79 64.01 89.64 73.05

AlexNet-Rotation (w) 69.43 69.40 65.20 89.17 73.30

is composed of 9 AlexNet-based siamese branches that extract features indepen-

dently from each image patch, which are then recombined before being fed into the

final classification layer. We refer to these models as J-CFN [5] and J-CFN+ [29]

respectively. In addition to these two models, we trained a third jigsaw puzzle-based

model, J-AlexNet, which is an AlexNet model trained on whole images recomposed

from disordered patches. For the rotation recognition task (R-AlexNet), we followed

the approach in [6] training an AlexNet model to solve the task. The results of

these experiments are summarized in the top part of Table 3.1, and demonstrate

that using a patch-based (p) jigsaw method generally produces a more dependable

pretext model compared to using the whole (w) recomposed image. Furthermore, the

results indicate that using rotation recognition as pretext task is the best choice for

generalization purposes. To sum up, we observed that moving the jigsaw puzzle task

from feature level to image level when training a pretext model is not the optimal

solution and that the rotation task is the simplest and most effective approach among

the evaluated pretext methods.
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Supervised Pretraining and Multi-task Learning. In designing our multi-task

approach, we have multiple options available in terms of architecture and in selecting

the most appropriate auxiliary task. We evaluate the performance of the multi-branch

Context-Free-Network (CFN) architecture against a plain AlexNet backbone. To

distinguish the CFN model used for classification from the self-supervised pretraining

described in the previous paragraph, we refer to it as C-CFN. Regardless of the

specific architecture used, with DeepAll, we refer to the single-task supervised model

trained without self-supervision (i.e. α = 0), while we use Jigsaw or Rotation to

indicate the multi-task cases where self-supervised tasks were trained jointly with

object classification. From the results in the bottom part of Table 3.1 we can draw

three key conclusions. First, combining supervised and self-supervised learning

leads to better performance regardless of the architecture used. Second, a single-

branch architecture is better suited for the multi-task problem at hand. Lastly, the

whole-image Rotation auxiliary task supports generalization slightly better than the

Jigsaw task.

Domain Generalization. Here we provide an extensive evaluation of our multi-task

approach against state-of-the-art multi-source DG methods. We evaluate different

types of DG methods based on: low-rank constraints on the network parameters

(TF [12], SLRC [221]), domain-specific component aggregation (Epi-FCR [120], D-

SAM [108]), meta-learning strategies (MLDG [121], MetaReg [119] and adversarial

techniques (DDAIG [222], PAR [223], MMLD [224]). We provide detailed results

for each method, including the DeepAll reference, to observe the relative advantage

of each approach2.

Table 3.2 shows the results of our multi-task approach on the PACS dataset consid-

ering Jigsaw puzzle, Rotation recognition, and their combination. On average, our

approach produces equal or better results than those of the competitors, with the

only exception of DDAIG which achieved the best results on Resnet-18. It’s worth

noting that DDAIG, unlike our multi-task method, relies on domain annotation for

each source sample, which may not always be available in practical conditions [87].

Furthermore, DDAIG benefits from tailored per-domain model parameter selection,

as opposed to our approach where the parameters are fixed and shared by all the

2The variations between the DeepAll results are probably due to small, undocumented incon-

sistencies and/or variations in library implementations of these baseline methods. Reporting all of

them is the only fair way to demonstrate the relative improvement provided by each approach and to

highlight any potential inconsistencies.
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Table 3.2 We compare our approach with state-of-the-art DG methods on the PACS dataset.

The column titles indicate the target domain. The table shows the hyperparameters used for

each experiment, obtained through source cross-validation. The best results are highlighted

in bold. The numbers reported correspond to the accuracy (%) averaged over three runs.

PACS art_paint. cartoon sketches photo Avg.

Alexnet

[12]
DeepAll 63.30 63.13 54.07 87.70 67.05

TF 62.86 66.97 57.51 89.50 69.21

[108]
DeepAll 64.44 72.07 58.07 87.50 70.52

D-SAM 63.87 70.70 64.66 85.55 71.20

[120]
DeepAll 63.40 66.10 56.60 88.50 68.70

Epi-FCR 64.70 72.30 65.00 86.10 72.00

[121]
DeepAll 64.91 64.28 53.08 86.67 67.24

MLDG 66.23 66.88 58.96 88.00 70.01

[119]
DeepAll 67.21 66.12 55.32 88.47 69.28

MetaReg 69.82 70.35 59.26 91.07 72.62

[223]
DeepAll 63.30 63.10 54.00 87.70 67.03

PAR 68.70 70.50 64.60 90.40 73.54

[224]
DeepAll 68.09 70.23 61.80 88.86 72.25

MMLD 66.99 70.64 67.78 89.35 73.69

DeepAll 66.50 69.65 61.42 89.68 71.81±0.26

Jigsawα=0.9,β=0.6 67.76 70.79 64.01 89.64 73.05±0.20

Rotationα=0.4,β=0.4 69.43 69.40 65.20 89.17 73.30±0.47

Jigsaw+RotationαJ=0.9,αR=0.9,β=0.4 69.70 71.00 66.00 89.60 74.08±0.32

Resnet-18

[108]
DeepAll 77.87 75.89 69.27 95.19 79.55

D-SAM 77.33 72.43 77.83 95.30 80.72

[120]
DeepAll 77.60 73.90 70.30 94.40 79.10

Epi-FCR 82.10 77.00 73.00 93.90 81.50

[119]
DeepAll 79.90 75.10 69.50 95.20 79.90

MetaReg 83.70 77.20 70.30 95.50 81.70

[222]
DeepAll 77.00 75.90 69.20 96.00 79.50

DDAIG 84.20 78.10 74.70 95.30 83.10

[224]
DeepAll 78.34 75.02 65.24 96.21 78.70

MMLD 81.28 77.16 72.29 96.09 81.83

DeepAll 77.83 74.26 65.81 95.71 78.40±0.28

Jigsawα=0.7,β=0.9 79.28 75.74 68.31 95.71 79.80±0.55

Rotationα=0.8,β=0.4 81.07 74.13 76.17 96.10 81.87±0.49

Jigsaw+RotationαJ=0.7,αR=0.7,β=0.8 81.07 73.97 74.67 95.93 81.41±0.50
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Table 3.3 We compare our approach to state-of-the-art DG methods on the VLCS dataset.

For more information on the notation used, please refer to Table 3.2. The numbers reported

correspond to the accuracy (%) averaged over three runs.

VLCS Caltech Labelme Pascal Sun Avg.

Alexnet

[12]
DeepAll 93.40 62.11 68.41 64.16 72.02

TF 93.63 63.49 69.99 61.32 72.11

[221]
DeepAll 86.67 58.20 59.10 57.86 65.46

SLRC 92.76 62.34 65.25 63.54 70.97

[108]
DeepAll 94.95 57.45 66.06 65.87 71.08

D-SAM 91.75 56.95 58.59 60.84 67.03

[120]
DeepAll 93.10 60.60 65.40 65.80 71.20

Epi-FCR 94.10 64.30 67.10 65.90 72.90

[224]
DeepAll 95.89 57.88 72.01 67.76 73.39

MMLD 96.66 58.77 71.96 68.13 73.88

DeepAll 96.15 59.05 70.84 63.92 72.49±0.21

Jigsawα=0.5,β=0.8 96.46 59.51 72.95 64.40 73.33±0.16

Rotationα=0.9,β=0.6 97.30 60.30 71.93 65.97 73.88±0.62

Jigsaw+RotationαJ=0.9,αR=0.5,β=0.7 96.30 59.20 70.73 66.37 73.15±0.36

domain pairs in each dataset. Similar observations hold for the VLCS results in Table

3.3 and for Office-Home in Table 3.4. In the Office-Home dataset, the Rotation task

performed better than Jigsaw, improving more than three percentage points over the

DeepAll baseline with an even larger advantage for the Jigsaw+Rotation case. In the

same table, it can be observed that DDAIG produced the highest average results but

the improvement over its DeepAll reference is slightly over one percentage point.

Ablation and hyper-parameter tuning. In our multi-task approach, there are

two key parameters, α , and β , that play different roles in regulating the training

process. Specifically, α controls the importance of the self-supervised auxiliary loss,

Table 3.4 We compare our approach to state-of-the-art DG methods on the Office-Home

dataset. For more information on the notation used, please refer to Table 3.2. The numbers

reported correspond to the accuracy (%) averaged over three runs.

Office-Home Art Clipart Product Real-World Avg.

Resnet-18

[108]
DeepAll 55.59 42.42 70.34 70.86 59.81

D-SAM 58.03 44.37 69.22 71.45 60.77

[222]
DeepAll 58.90 49.40 74.30 76.20 64.70

DDAIG 59.20 52.30 74.60 76.00 65.50

DeepAll 52.15 45.86 70.86 73.15 60.51±0.12

Jigsawα=0.9,β=0.8 53.04 47.51 71.47 72.79 61.20±0.11

Rotationα=0.8,β=0.4 57.80 48.73 72.70 74.87 63.53±0.25

Jigsaw+RotationαJ=0.4,αR=0.5,β=0.9 58.33 49.67 72.97 75.27 64.06±0.31
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Fig. 3.3 We perform an ablation study and analyze the effects of different hyperparameters

on our approach when using Jigsaw on the Alexnet-PACS domain generalization setting. The

reported accuracy is the global average over all target domains, and each run was repeated

three times. The red line in the figures represents the average accuracy of our DeepAll model

from Table 3.2.

while β regulates the proportion of samples that are directed to the self-supervised

branch. To understand the impact of the two key parameters we conduct an ablation

study by considering a wide range of values. For these experiments, we focused

on Alexnet using PACS in DG setting with Jigsaw puzzle as self-supervised task.

We changed one parameter at a time while keeping the remaining ones fixed: 3×3

the grid size and P = 30 permutations. Note that by selecting α = 0,β = 1, we are

deactivating the self-supervised task and the data batches are made up only of ordered

images (DeepAll). The data bias value β directs the training process, it shifts the

emphasis from the self-supervised task with low values (β < 0.5) to primarily object

classification when using higher values (β ≥ 0.5). We specifically set it to 0.6, which

indicates that we fed more ordered than shuffled images to the network, keeping the

primary focus on object classification. With this setting, changing the loss weight

α in 0.1,1, we consistently observe results that are statistically equal or better than

the DeepAll baseline as indicated in the first plot on the top left of Figure 3.3. The
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plot on the top right in Figure 3.3 reveals that when α is high, adjusting β has a

significant impact on the overall performance. When α ∼ 1,β = 1, this means that

Jigsaw is active and highly influences the learning process, but only ordered images

are used for training. This can make the puzzle task too easy and lead the network to

always recognize the same permutation class, which can result in overfitting rather

than regularizing the learning process. Setting β = 0 denotes feeding the network

with only shuffled images. Each image generates P variations, with only one variant

having the patches in the correct order and being able to enter the object classifier.

This results in a substantial decrease in the real batch size. Under this condition, the

object classifier is unable to converge, regardless of whether Jigsaw is active or not.

In such scenarios, the accuracy is quite low (< 20%), and as a result, it is not shown

in the plots to improve the readability.

Additionally, we test the robustness of our method by varying the number of

Jigsaw classes (patch permutations) P, as well as the dimensions of the patch grid

n×n. The first plot in the bottom part of Figure 3.3 shows the change in performance

when the number of Jigsaw classes P varies between 5 and 1000. As can be seen,

the overall variation in accuracy is about 1.5 percentage points and it still generally

remains higher than the DeepAll baseline. As a final step, we conducted an evaluation

to understand the effect of changing the grid size (i.e. the number of patches). Even

in this case, the change in performance is minimal when comparing results obtained

with a 2×2 grid to a 4×4 grid, confirming the conclusions of robustness already

obtained for this parameter in [5, 28].

Compared to patch decomposition and puzzle reordering, rotating an image has

a relatively minor impact on its overall appearance. Still, it has a number of self-

supervised classes significantly lower than the jigsaw puzzle (P = 4 vs P∼ 10−50).

With Rotation, even using a low value for β = 0.4 does not divert the focus of the

network from the primary task of object classification, and, when combined with

α = 0.4, produces the results reported in Table 3.2. For the ablation analysis in

Figure 3.4, we kept one parameter fixed while changing the other one. The results

are consistently above the DeepAll baseline, with a limited change in performance

indicating a low sensitivity to the specific parameter settings.

We have seen how the self-supervised tasks support the main supervised classifier

for domain generalization, but it is also interesting to check their own internal

functioning and whether those tasks get meaningful results. The first plot in Figure
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Fig. 3.4 Ablation analysis on the Alexnet-PACS DG setting when using Rotation. The

reported accuracy is the global average over all the target domains, and each run was repeated

three times. The red line in the figures represents the average accuracy of our DeepAll model

from Table 3.2.
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Fig. 3.5 Analysis of the Jigsaw classifier on Alexnet-PACS DG setting. In the plot on the

left, each axis refers to the color matching curve in the graph.

3.5 shows the accuracy during training on the target domain for the Object, Rotation,

and Jigsaw classifiers, showing that they all increase simultaneously but at different

rates. The second plot shows the Jigsaw task accuracy when varying the number

of permutation classes P. It can be observed that performance decreases as the task

become more challenging, but, overall, the results indicate that the Jigsaw model is

always effective in reordering the shuffled patches.

Visual Explanation and Failure Cases. As noted in [165], models trained through

supervised learning tend to rely heavily on local image statistics, resulting in a

limited generalization and robustness of the learned representations. The jigsaw

puzzle and the rotation recognition task, by forcing the network to use the whole

image, allow to capture global information and to identify domain-agnostic object

shapes. By integrating both supervised and self-supervised objectives, we aim at

learning a representation that more effectively captures discriminative cues, leading
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Fig. 3.6 In CAM activation maps, yellow represents high values and dark blue represents

low values. The jigsaw puzzle task is effective in identifying the most informative parts

of an image for object class prediction across different visual domains. Similarly, rotation

recognition can also be useful, but it tends to be less accurate in terms of localization,

particularly for sketches, cartoons, and paintings.

to improved object recognition across domains. To confirm this observation, in

Figure 3.6 we show the Class Activation Maps (CAM) of a ResNet-18 trained for

DG on the PACS dataset. The first two rows show that the models produced with

our multi-task approach using Jigsaw or Rotation as auxiliary tasks are better at

identifying the object class in comparison to the DeepAll model. The Rotation

task appears to be slightly less precise in capturing object shapes, particularly when

dealing with sketches (as seen in the dog on the second and sixth rows), cartoons,

and paintings (fourth and fifth rows), but still performs reasonably well with photos.

The last two rows show that for both Jigsaw and Rotation the recognition errors

are related to some flaw in the data interpretation, while the localization remains

meaningful.

Domain Adaptation. If unsupervised target data is available during training, we

can use both source and target to solve the self-supervised tasks, making the model

more robust to domain shift. To analyze the performance of our approach, we

evaluated it against a number of different DA approaches. These methods can be

broadly grouped into four categories: 1) those that aim to reduce domain shift by

measuring and minimizing the Maximum Mean Discrepancy [225], such as DAN

[44] and JAN [45], 2) adversarial-based approaches, like DANN [56], 3) those

that use batch normalization to match source and target distributions as Dial [226]

and DDiscovery [87], and 4) those that focus on increasing feature norms, such

as HAFN [53] and its step-wise variant SAFN. We run our experiments using the

Office-Home and PACS datasets for the single-source and multi-source settings

respectively. Several DA approaches minimize the entropy loss as an extra domain

alignment condition (e.g. SAFN+ENT). For a fair comparison, we also turned on
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Table 3.5 Accuracy on Office-Home under single-source DA setting. The top result is

highlighted in bold. The numbers reported correspond to the accuracy (%) averaged over

three runs.

Office-Home-DA Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

Resnet-50

ResNet-50 34.90 50.00 58.00 37.40 41.90 46.20 38.50 31.20 60.40 53.90 41.20 59.90 46.10

DAN [44] 43.60 57.00 67.90 45.80 56.50 60.40 44.00 43.60 67.70 63.10 51.50 74.30 56.30

DANN [56] 45.60 59.30 70.10 47.00 58.50 60.90 46.10 43.70 68.50 63.20 51.80 76.80 57.60

JAN [45] 45.90 61.20 68.90 50.40 59.70 61.00 45.80 43.40 70.30 63.90 52.40 76.80 58.30

ResNet-50 49.36 68.86 76.25 58.71 66.18 69.33 56.59 44.80 75.80 67.66 51.21 79.52 63.69

HAFN [53] 50.20 70.10 76.60 61.10 68.00 70.70 59.50 48.40 77.30 69.40 53.00 80.20 65.40

SAFN [53] 52.00 71.70 76.30 64.20 69.90 71.90 63.70 51.40 77.10 70.90 57.10 81.50 67.30

SAFN+ENT [53] 52.26 73.04 77.06 66.12 72.30 72.27 64.96 52.67 78.81 72.96 58.05 82.12 68.55

ResNet-50 48.30 59.80 68.40 54.70 62.40 65.10 53.70 46.70 73.70 66.80 54.10 77.30 60.91±0.15

Jigsawαs=αt=0.7,β=0.8 47.70 58.80 67.90 57.20 64.30 66.10 56.20 50.80 75.10 67.90 55.60 78.40 62.17±0.10

Jigsawαs=0,αt=0.7,β=0.8 47.33 58.07 67.70 57.77 63.47 65.70 56.43 50.13 74.70 68.40 55.77 79.23 62.06±0.23

Rotationαs=αt=0.8,β=0.6 49.00 59.20 67.40 56.90 64.10 65.60 56.60 52.90 74.70 68.70 57.90 78.60 62.64±0.13

Rotationαs=0,αt=0.8,β=0.6 48.83 56.67 67.50 57.47 63.90 65.47 56.33 52.23 74.33 68.97 57.53 78.20 62.29±0.14

the entropy loss for our approach. Additionally, we solve the self-supervised task

either involving both source and target or considering only the latter balancing the

self-supervised losses through cross-validation. The results presented in Table 3.5

demonstrate the performance of our single source approach on the Office-Home

dataset. Our multi-task approach improves over its baseline and over DAN, JAN,

and DANN but has worse performance than HAFN, SAFN, and SAFN+ENT. In

order to more thoroughly assess the relative gain of HAFN/SAFN methods, we show

their baseline results (ResNet-50) which are not typically shown. It can be observed

that the inclusion of an additional fully connected layer in the basic architecture of

HAFN [53] is particularly beneficial in cross-domain settings.

We also performed an ablation analysis by disabling the self-supervised task

on the source by setting αs = 0: the slight variation in the results suggests that

most of the adaptation effect is derived from the self-supervised task on the target.

The multi-source experiments presented in Table 3.6 provide additional insight

into the adaptability of the auxiliary self-supervised objective in our multi-task

approach. When the source domain contains information on a wide range of styles,

our method surpasses not only Dial and DDiscovery, but also the more advanced

DA techniques HAFN and SAFN. After evaluating both Jigsaw and Rotation, it

seems that Rotation is better suited for domain adaptation as it produces higher and

more stable performances. The bottom part of Table 3.6 also reveals the impact of

varying the α value which appears more relevant for Jigsaw than for Rotation. On

average, when Jigsaw and Rotation are combined, it results in a slight improvement

with respect to DeepAll. We also include the DG results for the Jigsaw+Rotation

model, which is the case where α t = 0 and η = 0, while all other chosen parameters
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are kept the same. We also examined the separate effects of turning off only the

self-supervised tasks on the target (α t = 0) or the entropy loss (η = 0), from this

analysis it can be observed that the major adaptation effect is derived from the

self-supervised tasks running on the target rather than from the entropy loss.

Table 3.6 Multi-source Domain Adaptation results on PACS. The numbers reported corre-

spond to the accuracy (%) averaged over three runs.

PACS-DA art_paint. cartoon sketches photo Avg.

Resnet-18

[87]

DeepAll 74.70 72.40 60.10 92.90 75.03

Dial 87.30 85.50 66.80 97.00 84.15

DDiscovery 87.70 86.90 69.60 97.00 85.30

[53]

DeepAll 76.17 73.58 55.65 96.07 75.37±0.42

HAFN 84.95 79.64 64.24 97.70 81.63±0.50

SAFN 86.78 82.72 60.26 98.26 82.01±0.32

SAFN+ENT 89.22 87.39 60.02 98.14 83.69±0.17

DeepAll 77.83 74.26 65.81 95.71 78.40±0.28

Jigsawαs=α t=0.7,β=0.8 84.49 82.07 79.86 97.98 86.10±0.26

Rotationαs=α t=0.8,β=0.4 89.97 82.60 82.00 98.07 88.16±0.51

Jigsaw+Rotation αs
J
=αt

J
=0.2,

αs
R
=αt

R
=0.8,β=0.8

89.67 82.87 83.93 98.17 88.66±0.36

Jigsawαs=0.7,α t=0.1,β=0.8 85.40 81.49 76.93 98.35 85.54±1.63

Jigsawαs=0.7,α t=0.3,β=0.8 85.92 81.61 79.74 98.04 86.33±0.58

Jigsawαs=0.7,α t=0.5,β=0.8 87.01 81.25 78.87 98.00 86.28±0.67

Jigsawαs=0.7,α t=0.9,β=0.8 84.21 80.38 76.64 97.86 84.77±0.76

Rotationαs=0.8,α t=0.1,β=0.4 89.27 81.30 82.23 89.73 87.71±0.13

Rotationαs=0.8,α t=0.3,β=0.4 88.73 82.20 81.47 98.27 87.67±0.07

Rotationαs=0.8,α t=0.5,β=0.4 89.83 80.10 81.13 98.00 87.27±0.94

Rotationαs=0.8,α t=0.9,β=0.4 89.17 81.47 82.73 97.87 87.81±0.21

Jigsaw+Rotation α t=0,η=0 81.07 73.97 74.67 95.93 81.41±0.50

Jigsaw+Rotation α t=0 82.80 77.23 77.70 97.17 83.73±0.39

Jigsaw+Rotation η=0 84.67 78.63 80.37 97.27 85.23±0.51

3.1.3 Computational Cost

Before concluding the section we find it relevant to discuss the computational cost of

the proposed multi-task supervised and self-supervised based solution. Indeed often

models that produce good results come with a significant computational effort which

makes their use practically unaffordable. In Table 3.7 we compare Jigsaw+Rotation

with its best competitor MMLD [224] according to the results in Table 3.2. We show

the total number of FLOPs (Floating Point Operations) required for a single forward

pass of the network, the training, and the inference time (in milliseconds). As can be

noticed the higher performance of our proposed approach is not correlated with the
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size of the model, nor with the time required for the model to converge. Overall the

cost analysis reveals that Jigsaw+Rotation is slightly more convenient than MMLD.

Table 3.7 Cost analysis on PACS with AlexNet in DG setting. Hardware - CPU: Intel(R)

Core(TM) i7-9800X CPU @ 3.80GHz, GPU (x1): Nvidia TITAN Xp.

Cost analysis

FLOPs Training Time (ms) Inference Time (ms) Accuracy (Avg.)

Jigsaw+Rotation 7.16×108 1.13×106 2.28 74.08±0.32

MMLD [224] 7.22×108 2.42×106 2.48 73.69

3.1.4 Conclusions

This Section presented an extensive study of the application of self-supervised

learning across domains. Specifically, we focused on solving jigsaw puzzles and

recognizing image orientation, demonstrating how they can be effectively incorpo-

rated into a multi-task approach that also includes supervised learning. The results

indicate that this learning strategy improves cross-domain robustness and generaliza-

tion performance, and is on par with more complex domain adaptation and domain

generalization methods. Our work paves the way for many other adaptive methods

exploiting the invariances captured by the most recent self-supervised solutions

[227, 165] , not just in object classification, but also in other difficult tasks such

as semantic segmentation [228], detection [229] or 3D visual learning [230] where

the domain shift effect has a significant impact on the effectiveness of methods in

real-world scenarios.
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3.2 TranAdapt: Multi-Modal RGB-D Scene Recogni-

tion Across Domains

© 2021 IEEE Reprinted, with permission, from Ferreri, A., Bucci, S., & Tommasi, T.,

Multi-Modal RGB-D Scene Recognition Across Domains., IEEE/CVF International

Conference on Computer Vision Workshops (pp. 2199-2208) (ICCVW 2021)

Scene recognition consists in assigning a label as kitchen, office, bakery, or beach

to an image, and it is a crucial vision problem for robot localization and decision

making [231, 232]. To successfully recognize a scene, an agent should be able to

identify objects, understand their relationships, and be resilient to large intra-scene

variations and inter-scene overlaps. In this context, RGB images offer important

information about the way objects look, while depth information is necessary to

understand the 3D environment. However, obtaining a large dataset of RGB-D

images can be challenging, particularly compared to gathering RGB scene images

alone (e.g. by crawling the web). This has led to focus only on RGB data in

scene recognition research, as demonstrated by the use of CNN models on Places

dataset [233]. Only in recent years, with the increased availability of low-cost

depth sensors, a larger number of RGB-D images has become accessible. Multi-

modal scene recognition research has evolved over the years, moving from models

based on handcrafted features [234, 235] to complex deep networks that can learn

representations from large amounts of data [236±238]. One of the earliest solutions

was to fuse the RGB and depth data at the input level, treating the depth as an

additional channel of the image [239] or fusing the output scores [240]. The majority

of the recent methods focus on combining the features in the middle layers of the

network [2, 238, 241] proposing techniques to better capture the relationship between

RGB and depth data [242±244, 36]. Still, the existing literature leaves behind some

important analysis on the nature of the data used, considered as drawn from a single

domain distribution. The term RGB-D includes a wide range of 3D cameras that

can vary significantly in terms of depth sensing technology, image range, and field

of view. This, combined with the fact that images labeled with the same class

can be taken in different physical locations by heterogeneous cameras, leads to a

significant domain shift among the data (see Fig 3.7). This variability raises questions

about the robustness of the developed approaches and highlights the need to further

investigate the nature of the data used. Domain adaptation addresses the problem
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of learning models on some source labeled data distribution that generalizes to a

different unlabeled target distribution [20]. Most of the existing techniques have

focused on single-modal data, meaning that they only consider RGB information

or include the multi-modality only for one domain, such as RGB-D in the source

domain and RGB in the target domain. Additionally, these methods typically focus

on cross-domain object classification [53, 56, 59] or scene segmentation [245±247],

but less attention has been given to the problem of scene recognition. In this section,

we explore for the first time the intersection of three important research areas: scene

recognition, multi-modal learning, and domain adaptation. The main contributions

of this section can be summarized as follows:

• We propose a benchmark testbed3 for unsupervised domain adaptation in the

field of scene recognition. We use a subset of scene classes from the SUN

RGB-D [2] dataset captured with four different 3D cameras. Each camera is

considered as an RGB-D domain, resulting in an experimental framework with

five multi-modal domain pairs (see Section 2.1 for more details).

• We conduct a comprehensive evaluation of various state-of-the-art techniques

that were developed to address one or two of the three research areas we

focus on. Specifically, we evaluate: (a) the performance of multi-modal scene

recognition models in a cross-domain setting [36, 244]; (b) the effectiveness

of single-modal domain adaptation approaches when applied to multi-modal

scene recognition [53, 56, 59]; (c) the performance of a recent multi-modal

domain adaptation approach that was originally developed for object classifi-

cation in the context of scene recognition [18].

• We propose a method called Translate-to-Adapt that is inspired by a previous

work on inter-modal translation [36]. Our method uses the task of generating

depth images from their RGB counterparts, and vice-versa, as a self-supervised

task that can be applied to labeled source data and unlabeled target data. We

use both modality translation directions as part of an end-to-end classification

model and obtain promising results across different domains.

3Dataset and code available at https://github.com/silvia1993/Multi-Modal_RGB-D_Scene_

Recognition_Across_Domains
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Fig. 3.7 Examples of RGB and Depth HHA [16] images from all the cameras within the

SUN RGB-D dataset [2]. The category classroom contains images taken in the exact

same place with Kinect v2, Realsense, and Xtion cameras, while the physical location

captured with Kinect v1 is different although annotated with the same label. For the category

discussion_area there is no room overlap: despite the shared label, each camera captured

images in a different physical location. As can be noticed, the specific camera characteristics

contribute to producing significant appearance differences. Best seen in color.

3.2.1 Method

Intuition. In Section 3.1 we showed that self-supervised learning can improve

the ability of a model to generalize across different visual domains [34, 81]. One

common self-supervised task for handling multi-modal source and target domains

is the conversion of one modality into the other. In this particular case, this would

involve predicting depth information from an RGB image and generating an RGB

image from depth. By training a model to perform both tasks, it learns to identify

the underlying relationship between the two modalities. By applying this process to

both source and target domains, the model becomes able at identifying the invariant

characteristics of the relationship between RGB and depth. This is expected to result

in improved performance for cross-domain scene classification.
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Fig. 3.8 Our Translate-to-Adapt method for RGB-D scene recognition across domains

consists of several key components: encoders (E), inter-modality decoders (D), a semantic

feature extractor (F), classification and similarity evaluation heads. The encoders process both

the RGB and depth images separately and then combine their features for the classification

task. The decoders are responsible for converting one modality into the other, and both have

the same structure but focus on different translation directions. The generated images are

compared to their original versions using the semantic feature extractor and the similarity

head. It’s worth noting that while only the supervised source data is used in the classification

task, both source and target data are used in the inter-modality generation self-supervised

task. We use the notation presented in Section 3.2.1.

In more Technical Terms. Our goal is to use source labeled and target unlabeled

multi-modal images to predict the scene class of the target data. The source data is

represented by S= {(xsc
i ,x

sd
i ),ys

i}
Ns

i=1, which includes pairs of RGB and depth images,

along with their one-hot encoded scene class labels. The target data, represented

by T = {(xtc
i ,x

td
i )}Nt

i=1, consist of unlabeled images that are drawn from a different

distribution but share the same class set as the source data. To exploit the relationship

between the two modalities, we use an auxiliary objective for inter-modal translation,

converting both RGB to depth x∗c→ x∗d and depth to RGB x∗d → x∗c, which can

be applied to both source and target data effectively bridging the two domains and

adapting the learned representation.

Network architecture and Optimization. The Translate-to-Adapt method con-

sists of a six-part architecture, as shown in Figure 3.8. It includes two modality-

specific encoders (E), two decoders (D), a feature extractor (F), and a final classifier.

The source and target data are processed by the encoders, which map the original

images into feature embeddings of equal dimensionality for the two modalities:

e∗ci = Ergb(x
∗c
i ), e∗di = Edepth(x

∗d
i ). The concatenated features of the source data,

{(esc
i ,e

sd
i )}Ns

i=1, are used for the main classification task. The feature embeddings

for both source and target data are then provided as input to their corresponding

decoders, which translate them into the other modality: x̃∗di = Drgb−depth(Ergb(x
∗c
i ))
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and x̃∗ci = Ddepth−rgb(Edepth(x
∗d
i )). The generated images are paired with their origi-

nal version and the difference among the features extracted by F is minimized for

each case: {x̃sc
i ,x

sc
i }

Ns

i=1, {x̃sd
i ,xsd

i }
Ns

i=1, {x̃tc
i ,x

tc
i }

Nt

i=1, {x̃td
i ,xtd

i }
Nt

i=1.

The final model jointly optimizes the classification and instance similarity objec-

tives via a cross-entropy loss function Lcls and the content similarity loss Lsim among

the generated-original sample pairs. The latter is an L1 loss

L

∑
l=1

||F l(x̃∗ci )−F l(x∗ci )||1 + ||F
l(x̃∗di )−F l(x∗di )||1 (3.3)

measured over multiple internal layers of the F module (l= layer1-layer4 in ResNet-

18). Finally, the total loss is

Lcls +αsLs
sim +α tLt

sim . (3.4)

Implementation Details. The defined optimization problem guides the training of

encoders and decoders, while for F we used a frozen model. All the components use a

ResNet-18 structure that is pre-trained on ImageNet[214]. The loss hyperparameters

αs and α t are set at 10 and 3 respectively (see the ablation analysis in Section 3.2.2).

We designed the network modules by following [36], but the learning procedure

differs. Besides including the target data, in our Translate-to-Adapt the multi-modal

fusion strategy for classification is learned end-to-end with all the other network

components, rather than with a two-step process. The model is trained using ADAM

optimization with a batch size of 40 and a total of 70 epochs. The learning rate

starts at 2×10−4 and decreases linearly over the last 50 epochs. Depth images are

processed offline to HHA [16] representation and along with the RGB images they

are resized and randomly cropped. The central crop is used during testing.

3.2.2 Experiments

Reference Methods. To understand the challenges of learning a multi-modal cross-

domain scene recognition model, we perform a benchmark analysis with existing

approaches originally developed either for multi-modal scene recognition or single-

modal cross-domain object classification. From the first category, we consider

Translate-to-Recognize (Tran-Rec) [36], and Centroid Based Concept Learning
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(CBCL) [244] which employs a linear combination of multi-modal sample distances

to determine class assignments. Both those methods were developed to work on

training and test data drawn from a single domain. We also consider as baseline

the basic ResNet-18. In general, those methods are Source Only, meaning that

during training the target test data is not available. We also consider a simple multi-

modal strategy called "Fusion" in which networks for each modality are trained

independently and then the feature extractors are frozen while the representations

are concatenated and input into a fully connected layer for scene classification. Our

approach Fusion++ instead deals with both modalities simultaneously by training

the feature representation and multi-modal classifier jointly. For the second category

of methods, the unlabeled target data is used together with the labeled training

data. These include: Gradient Reversal Layer (GRL) [56] which uses an adversarial

domain classifier to reduce the feature distribution difference between source and

target, Adversarial Feature Normalization (AFN) [53] that starts from the observation

that target samples are often characterized by feature norm values much lower than

those of the source data and propose to progressively increase them, and CycleGAN

[59] which is an unsupervised generative approach that modifies the style of source

data to resemble the target. This method is used to create target-like RGB and

depth images from the annotated source samples and the models trained on them

are combined with the Fusion strategy. To the best of our knowledge, there is only

one previous work that has specifically focused on multi-modal cross-domain object

classification, which we refer to as the Relative Rotation (Rel. Rot) method [18].

This approach leverages a self-supervised task to understand the correlation between

RGB and depth images in order to create robust, domain-invariant features for the

main recognition task. We compare our Translate-to-Adapt (Tran-Adapt) method

against these existing approaches.

Preliminary Analysis. We conducted a quantitative experiment focusing on the K

and X cameras, organizing their images into three 70%/30% train/test splits. We

trained a simple ResNet-18 classification model and evaluated it both within each

camera and across cameras: the average results over the splits are reported in the first

and second row of Table 3.8 for each of the two modalities. The drop in performance

(summarized in the last row) clearly demonstrates the existence of a significant

domain shift. The confusion matrices of the K→X case show how the domain shift

affects the per-class recognition accuracy.
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Table 3.8 Accuracy (%) across domains for single modality. The performance drop shows

the effect of the domain shift. The confusion matrices for the K→X case also reveal that the

behavior across domains varies for the two modalities: classes 2 (classroom) and 7 (kitchen)

are the ones most affected by the domain shift for RGB and depth modalities, respectively.

RGB Depth RGB Depth

K→ K 77.09 72.09 X→ X 79.98 72.79

K→ X 51.90 42.07 X→ K 57.50 54.43

drop 25.19 30.02 drop 22.48 18.36

Results and Ablation. Table 3.9 shows the classification accuracy values obtained

by the considered reference approaches and by our Tran-Adapt method. Specifically,

the top part contains the Source Only baselines whose results indicate that combining

the two modalities of the source data improves the recognition performance across

domains. For completeness, we also developed the Fusion++ version of the Tran-Rec

method, although the end-to-end training procedure was not included in the original

paper [36]. The CBCL Fusion approach outperforms the others.

The central part of the table presents the results of the domain adaptive methods.

Even in this case, the multi-modal versions improve over the corresponding single-

modal ones. The style-transfer-based CycleGAN method demonstrates the most

significant improvement. Rel. Rot., the only existing approach that utilizes the inter-

modality relation for cross-domain learning, falls slightly behind the performance of
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Table 3.9 Accuracy (%) of several methods for RGB-D domain adaptation. Top results in

bold. The confusion matrices show the K→X per-class results for the ResNet-18 baseline

and Tran-Adapt (Fusion++).

Method K→ X X→ K K→ R X→ R KX→ R AVG

ResNet-18

RGB 47.56 57.55 38.34 44.88 41.82 46.03

Depth 38.76 54.42 26.56 26.87 30.98 35.52

Fusion 50.66 62.91 44.54 46.54 42.56 49.44

Fusion++ 47.54 60.27 39.56 36.32 43.71 45.48

Tran-Rec [36]

RGB-D 52.54 61.68 38.63 46.24 44.59 48.74

D-RGB 37.13 53.49 29.77 29.06 32.25 36.34

Fusion 53.92 63.40 39.35 43.40 48.29 49.67

Fusion++ 51.17 62.62 39.53 41.38 50.87 49.11

CBCL [244] Fusion 55.35 60.57 50.51 42.45 49.94 51.76

GRL [56]

RGB 50.11 59.88 53.30 51.18 46.82 52.26

Depth 45.25 54.29 37.30 32.41 37.80 41.41

Fusion 48.28 64.73 53.53 51.91 47.51 53.19

Fusion++ 50.94 61.91 53.45 48.90 48.85 52.81

AFN [53]

RGB 51.59 56.73 52.11 47.63 46.86 50.98

Depth 40.22 51.88 34.20 32.33 35.20 38.77

Fusion 51.29 61.88 47.84 50.25 50.07 52.27

Fusion++ 56.74 57.89 52.13 49.05 45.66 52.30

CycleGAN [59] Fusion 54.25 63.19 53.02 48.02 54.65 54.63

Rel. Rot. [18] Fusion++ 50.98 65.99 48.33 52.24 53.53 54.21

Tran-Adapt

RGB-D 52.11 61.91 46.93 51.27 54.88 53.42

D-RGB 48.09 55.69 38.95 38.78 40.79 44.46

Fusion 55.61 65.23 41.90 43.59 48.03 50.87

Fusion++ 56.79 64.41 48.13 51.02 55.31 55.13

Tran-Adapt Aug Fusion++ 55.65 65.92 53.01 52.56 55.59 56.55

CycleGAN. The bottom part of the table shows the results of our Tran-Adapt with the

Fusion++ version that outperforms all the considered competitors. Analysis of the

confusion matrices in the K→X experiment reveal a clear performance enhancement
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with Tran-Adapt, as seen by a reduction in misassignments between classes such

as kitchen and bedroom, and between classroom and computer room. We can also

take advantage of the generative nature of Tran-Adapt by exploiting the produced

images as data augmentation. Inspired by [36], we used the images generated by

the RGB-D and D-RGB models as additional input for the Fusion++ network. By

including a random subset of these generated images, equivalent to 30% of the batch

size, we were able to achieve an accuracy of 56.55% (Tran-Adapt Aug).

As specified in the previous section, for Tran-Adapt we set αs = 10 and α t = 3.

We kept the first value fixed using the same value as Tran-Rec [36]. The second one

weights the importance of the self-supervised task applied to the target data: to get

discriminative features the main focus should remain on the annotated source, with

α t <αs. By conducting a preliminary validation analysis on the separate RGB-D and

D-RGB directions, we selected α t = 3, maintained also for the Fusion and Fusion++

versions. To evaluate the impact of the source and target self-supervised translation

tasks, we performed an ablation analysis by disabling the target contribution and

observing a decrease in performance in comparison to Tran-Rec (αs = 10, α t = 0,

Fusion++ 49.11% ). Instead, by turning off the source contribution and keeping

the target one (αs = 0, α t = 3, Fusion++ 54.22%), we observe an adaptation effect.

This effect further improves when utilizing both source and target components

with (αs = 10 and α t = 3, Tran-Adapt, Fusion++ 55.13%). Additionally, minimal

variations occur in the average results of Fusion++ when keeping αs = 10 and

changing α t = 1,2,3,4 obtaining 54.71, 54.44, 55.13, 54.81 (%)

Self-supervision for Cross-Domain Scene Recognition. Both Rel. Rot. and Tran-

Adapt exploits self-supervised tasks (rotation recognition and RGB-depth image

mapping) to learn inter-modality cues that support cross-domain adaptation. Still,

considering the observed performance difference, we decided to investigate their

behavior more in-depth. Specifically, we searched for possible shortcuts followed

by the rotation auxiliary task that might have misled the scene recognition process.

Indeed, Rel. Rot. was originally designed for object recognition on datasets where

the objects are typically well-centered in the images and the background information

is marginal. When dealing with scenes, the risk of focusing on low semantically

meaningful cues to predict the image orientation increases, affecting also the final

scene class assignment.
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Original Rel. Rot. Tran-Adapt

Fig. 3.9 Visualizations obtained by guided backpropagation [17] that show the most important

pixels used by Rel. Rot. [18] and our Tran-Adapt.

In Figure 3.9, we present the outputs of the guided backpropagation[17] tech-

nique, which allows us to see the regions of the image that are most important in the

model’s prediction. By comparing the visualizations of Rel. Rot. and Tran-Adapt,

we can observe that both methods pay attention to object boundaries, but Rel. Rot.

tends to also include non-meaningful information from uniform regions and rely on

neat lines (see the third image row and the columns in the image) in the background.

Missing Modality prediction on Novel Target Scenes. The primary goal of the

proposed approach is scene recognition, however, it also includes a generative

component that can be used for additional tasks. One potential use is producing

images for a missing modality, in case of problems with the sensing devices. When

the image generation involves scene categories never seen during training the task

becomes particularly challenging. To evaluate this capability, we selected three

classes not included in our original dataset from SUN RGB-D creating a new small

dataset which considers all four available cameras (see Table 3.10).

We tested the performance of both the Tran-Rec and Tran-Adapt models on this

new dataset, by measuring the pixel-to-pixel L2 difference between the generated

and original images. The results in Table 3.11 show that Tran-Adapt performed
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Original
Generated

Tran-Rec [36] Tran-Adapt Tran-Adapt Aug

Fig. 3.10 Qualitative comparison of real and generated images on the unseen class corridor.

It’s particularly evident the effectiveness of Tran-Adapt and its Aug version on the RGB

images considering the uniform regions like walls and floors that appear smoother than in

Tran-Rec.

Table 3.10 Number of samples in extra classes considered for the missing modality prediction.

Class name Kinect v1 Kinect v2 Realsense Xtion

corridor 15 153 23 182

printer_room 4 43 9 21

study_space 7 121 26 38

Total 26 317 58 241

better than Tran-Rec, further demonstrating its ability to generalize. Some examples

of the generated images can be seen in Figure 3.10.

3.2.3 Computational Cost

In Table 3.12 we show the computational cost of our multi-task approach and its

best competitor CycleGAN [59] for the experiments in Table 3.9. We show the

total number of FLOPs (Floating Point Operations) required for a single forward

pass of the network, the training, and the inference time (in milliseconds). As can

be noticed, the number of FLOPs and the time required for training is much lower

for our proposed solution. Indeed, CycleGAN is a two-stage approach: first, an
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Table 3.11 Pixel-to-pixel L2 distance between real and generated images from unseen classes

of the target domain. Top results in bold (the lower the better).

Tran-Rec [36] Tran-Adapt Tran-Adapt Aug

RGB Depth RGB Depth RGB Depth

K→ X 0.33 0.13 0.37 0.14 0.28 0.12

X→ K 0.25 0.12 0.19 0.12 0.21 0.12

K→ R 0.26 0.22 0.22 0.17 0.25 0.18

X→ R 0.26 0.20 0.24 0.22 0.23 0.17

KX→ R 0.24 0.22 0.26 0.18 0.22 0.19

AVG 0.27 0.18 0.26 0.17 0.24 0.15

Table 3.12 Cost analysis on SUN RGB-D with ResNet-18 in DA setting. Hardware - CPU:

Intel(R) Core(TM) i7-9800X CPU @ 3.80GHz, GPU (x1): Nvidia TITAN Xp.

Cost analysis

FLOPs Training Time (ms) Inference Time (ms) Accuracy (Avg.)

Tran-Adapt Fusion++ 3.09×1010 6.85×107 3.41 55.13

CycleGAN [59] 9.48×1010 1.39×108 3.69 54.63

encoder-decoder structure is trained to learn a mapping of the source domain in the

target style, then the produced target-style images are used as training set for the

standard network. The high number of FLOPs and time for training is due to the

double training required to obtain good results. Our solution instead is an end-to-end

approach able to reach higher performance than CycleGAN using fewer resources

and a significantly lower amount of time.

3.2.4 Conclusions

In this section, we focused on cross-domain learning for multi-modal scene recog-

nition. We started by observing the large variability introduced by the plethora of

3D cameras used to collect images in existing scene databases and highlighted that

this can cause a significant domain shift that needs a tailored solution. We defined a

testbed for studying this problem and performed an evaluation benchmark on several

existing methods to evaluate how approaches originally developed for single-domain

multi-modal scene recognition and multi-modal cross-domain object classification

work on the considered task. Moreover, we presented a classification model that

exploits self-supervised inter-modality translation as an auxiliary task to reduce

domain shift. Our Translate-to-Adapt successfully outperforms the competitors,

showing the effectiveness of its self-supervised task in scene recognition.
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We believe that the novel setting can be of interest to the computer vision and

robotics community: the testbed and the experimental analysis are proposed as

baselines to pave the way for future research.



Chapter 4

Auxiliary Self-Supervision for Partial

and Open-Set Cross-Domain

Learning

In this Chapter we face problem settings that combine category and domain shift.

We show how self-supervision remains an effective auxiliary task also in these more

challenging cases. Specifically, we present two solutions for Unsupervised Domain

Adaptation, respectively under PDA and Open-Set assumptions. The first one is an

extended version of JiGen (Section 3.1) where self-supervision is exploited to focus

on the shared categories. The second one (ROS) uses rotation recognition to detect

unknown samples in the target domain.
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4.1 Tackling Partial Domain Adaptation with Self-

Supervision

Reproduced with permission from Springer Nature: Bucci, S., D’Innocente, A., &

Tommasi, T. Tackling partial domain adaptation with self-supervision. International

Conference on Image Analysis and Processing (pp. 70-81) Springer, Cham (ICIAP

2019)

Closed-set DA and DG models are not suitable when a part of the source classes

is missing at test time. Those models show a drop in performance which indicates the

effect of negative transfer in the PDA setting. Indeed, the model has to simultaneously

handle two complex tasks: one that exploits all the available labeled source data to

train a reliable classification model in the source domain and another that estimates

and minimizes the marginal distribution difference between source and target, but

disregards the potential presence of a conditional distribution shift. Recent research

has shown that this second task can be substituted with self-supervised objectives

that are not affected by the domain identity of each sample. In this section, we

explore the use of jigsaw puzzles and rotation recognition as self-supervised tasks

for DA when some source classes are missing at test time. We investigate how these

tasks perform in the PDA setting and how they can be modified to reduce the number

of required parameters. We show results on three different datasets that demonstrate

the superiority of our approach against several competitors that use specific strategies

to down-weight samples from classes that are not present in the target. We also

discuss how combining this re-scaling process with self-supervision leads to further

improvements in performance.

4.1.1 Method

Problem Setting. Let us introduce the technical terminology for the PDA sce-

nario. We have a source domain Ds = {(x
s
i ,y

s
i )}

ns

i=1, drawn from a distribution S

with ns samples and a target domain Dt = {x
t
j}

nt

j=1, drawn from the distribution T

with nt samples. The label space of the target domain is contained in that of the

source domain Yt ⊆ Ys. This makes the problem more difficult than standard UDA,

where the goal is simply to learn domain-invariant feature models dealing with the

marginal shift S ̸= T . In PDA, it is also necessary to learn class-discriminative



60 Auxiliary Self-Supervision for Partial and Open-Set Cross-Domain Learning

Object Classifier

Feature Extractor

Source

Target

Jigsaw Classifier

GRL Domain Classifier

�

Entropy Loss

Fig. 4.1 Schematic representation of our approach. All the parts in gray illustrate the main

blocks of the network with the solid line arrows indicating the contribution of each group

of training samples to the corresponding final tasks and related optimization objectives

according to the assigned blue/green/black colors. The blocks in red describe the domain

adversarial classifier with the gradient reversal layer (GRL) and a weighting procedure for

source samples (weight γ), which can be incorporated into our method.

models while taking into account the difference in label spaces. This task can be

formulated as a multi-task learning problem [217], where the goal is to learn both

class-discriminative and domain-invariant feature models while avoiding negative

transfer. Instead of just focusing on reducing the discrepancy between the feature

domains, one could consider some inherent characteristics that are present in any vi-

sual domain, regardless of the assigned labels. By incorporating these characteristics

as an additional task, it can regularize the overall model and improve generalization,

thus reducing domain bias. This reasoning is at the basis of the approach proposed

in Section 3.1 which is also the starting point for the proposed approach in PDA.

We point the reader to Section 3.1 where the approach and the notation used in the

following paragraphs are described.

Self-Supervision for Partial Domain Adaptation. We consider the loss function

3.2 where the two Lp terms are used to reduce the domain shift in the learned feature

representation. However, it appears that their co-presence is redundant: the features

are already chosen to minimize the source classification loss and the self-supervised

jigsaw puzzle task on the target back-propagates its effect directly on the learned

features inducing a cross-domain adjustment. With the idea of streamlining the

learning process and eliminating unnecessary components, we decided to remove

the source jigsaw puzzle term from our approach, by setting αs = 0. This not only

simplifies the learning process by reducing the number of hyper-parameters, but it
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also allows the self-supervised module to focus solely on the target domain samples,

without involving any additional classes from the source domain. The structure of

our approach is shown in Figure 4.1.

Combining Self-Supervision with other PDA Strategies. To further optimize

the performance of our approach and focus on the shared classes, an additional

weighting mechanism can be applied, similar to the one presented in [123]. This

mechanism consists in accumulating the source classification output on the target

data γ = 1
nt ∑

nt

j=1 ŷt
j, normalizing the resulting vector γ ← γ/max(γ), and obtaining

a |Yt |-dimensional vector to use as a weighting factor to emphasize the classes that

have a higher contribution. This modified version of our approach is intended to

improve the overall performance and focus on the shared classes. Additionally, we

can incorporate a domain classifier Gd with a gradient reversal layer, similar to the

approach used in [56], and adversarially increase the binary cross-entropy to enhance

domain confusion, taking into account the class weighting method for the source

samples. In more formal terms, the final objective of our multi-task problem is

arg min
θ f ,θc,θp

max
θd

1

ns

ns

∑
i=1

γy

(

Lc(Gc(G f (x
s
i ),y

s
i ))+λ log(Gd(G f (x

s
i )))

)

+

1

nt

nt

∑
j=1

γy

(

ηH(Gc(G f (x
t
j)))+λ log(1−Gd(G f (x

t
j)))
)

+

αt
1

Kt

Kt

∑
k=1

Lp(Gp(G f (z
t
k), pt

k)) , (4.1)

where λ is a hyper-parameter that adjusts the importance of the introduced domain

discriminator. We considered the same scheduling of [56] to change the value of λ

increasing the importance of the domain discriminator with the training epochs to

avoid noisy signals of the early stages of the training.

4.1.2 Experiments

Implementation Details. The main backbone of our network, G f , is a ResNet-50

pre-trained on ImageNet, while the specific object and self-supervised task classifiers

Gc,Gp are implemented with an ending fully connected layer. The domain classifier

Gd is built by adding three fully connected layers after the final pooling layer of the
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main backbone, using a sigmoid activation function as in previous works [56]. By

training the network end-to-end we fine-tune all the feature layers, while Gc,Gp and

Gd are learned from scratch. The network for DG has two main hyperparameters:

α , which weights the self-supervised loss, and the data bias parameter β , which

regulates the data input process. The self-supervised variants of the images are

input into the network alongside the original images, with β specifying the ratio

between them. For example, β = 0.6 means that 60% of the images in each batch

are original while the remaining 40% are rotated or composed of shuffled patches.

In DA, there are additional parameters: α is separated into αs and αt for the source

and target data respectively, and η is the weight assigned to the entropy loss. Lastly,

λ is used to balance the importance of the gradient reversal layer when included in

PDA. In the case of jigsaw puzzle task, two additional parameters are needed: the

grid size used to divide the images into patches, and the number of permutations

considered for the puzzle. Following [33], the size of the grid is fixed to 3×3 and

the number of permutations is set at P = 30. We used a standard data augmentation

protocol for our experiments, which involved randomly cropping the images to retain

between 80-100% of the original image, applying random horizontal flipping, and

converting a random 10% of the image tiles to grayscale, as proposed in [29]. In

terms of training, we used the Stochastic Gradient Descent (SGD) optimizer with

a momentum of 0.9, a weight decay of 0.0005, a batch size of 64 and 24 training

epochs. The initial learning rate was set to 0.0005 and the hyper-parameters of our

model were fine-tuned by setting αs to 0, αt to 1, and η to 0.2.

Model Selection. As standard practice, we set aside 10% of the source training

data as a validation set used to evaluate the model after each epoch. We combine

the accuracy obtained during the current epoch, denoted as Ae with the previous

ones through a weighted average Ae← wAe−1 +(1−w)Ae. The final model used

on the target data is chosen as the one with the highest accuracy over all the epochs

e = 1, . . . ,E. This method allows for a more reliable selection of the best-trained

model, preventing the choice of a model that may have overfitted to the validation

set. For all our experiments, we kept at w = 0.6. We highlight that the smoothing

procedure proposed has been applied to all our experiments and we adopted the same

hyper-parameters values for all the domain pairs within and across all the datasets.

So, as opposed to previous works [123, 122], we did not select tailored values for

the parameters for each sub-task that would lead to more performance gains.
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Baselines. We compare our approach with several PDA methods: SAN [122],

PADA [123], DRCN [248], IWAN [124], ETN [249] and AFN [53]. Specifically,

SAN, PADA, and DRCN make use of the predictions from the source model to

determine the distribution of target classes. IWAN employs a separate feature

extractor for each domain and derives the weight of the source samples from a

domain recognition model rather than from the source classifier. The most recent

method ETN employs only relevant source examples to train both the label classifier

and domain discriminator: the transferability of each source sample is determined

through an auxiliary domain discriminator, which is not used in the adaptation

process. AFN aligns sample feature norms demonstrating to be resistant to negative

transfer without needing any weighting mechanism. Lastly, we also include standard

DA approaches, DAN and DANN, to demonstrate the impact of methods that were

not specifically designed to handle PDA.

Results. Tables 4.1 and 4.2 show the results for Office-31 and VisDA2017 datasets.

Both tables are divided into four sections. The first section shows the results obtained

without using any adaptation techniques or using standards DA approaches. The

second section shows the results obtained using algorithms specifically designed

for PDA. The third section presents the performance of the norm-based adaptation

techniques HAFN and SAFN together with its ResNet-50 baseline. Lastly, the fourth

section of the tables shows the results of our proposed approach.

The tables demonstrate that the Jigsaw and Rotation methods outperform the

adaptive techniques of the first group. When comparing our method to the PDA

techniques in the second group, our method outperforms on VisDA2017 dataset,

despite the fact that some of the competitors use a ten-crop image evaluation method,

denoted by a star (∗) in the table. On Office-31 dataset, the best result is obtained

by ETN, however, it has a dedicated parameter selection method for each domain

pair, while our method uses fixed and shared parameters across all domain pairs.

Finally, the results for HAFN and SAFN, in the third group show the effectiveness

of norm-based methods for PDA, but their results are not better than our method.

Although not specifically designed for partial domain adaptation, the results obtained

demonstrate that our auxiliary self-supervised task can effectively support adaptation

in this scenario. Given that our solution is orthogonal to the sample selection

strategies, we further tried to combine them together to evaluate if they complement

each other. Specifically, we focused on Office-31 and the Jigsaw: we estimated the

target class statistics through the weight γ and included also a domain discriminator
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Table 4.1 Accuracy (%) in the PDA setting on Office-31 dataset (source: 31 classes, target:

10 classes). The results are obtained by averaging over three repetitions of each run. With ∗

we indicate ten-crop testing.

Office-31-PDA A→W D→W W→D A→D D→A W→A Avg.

Resnet-50

Resnet-50 75.37 94.13 98.84 79.19 81.28 85.49 85.73

DAN[44] 59.32 73.90 90.45 61.78 74.95 67.64 71.34

DANN[56] 75.56 96.27 98.73 81.53 82.78 86.12 86.50

IWAN [124] 89.15 99.32 99.36 90.45 95.62 94.26 94.69

SAN*[122] 93.90 99.32 99.36 94.27 94.15 88.73 94.96

PADA*[123] 86.54 99.32 100 82.17 92.69 95.41 92.69

DRCN*[248] 86.00 88.05 95.60 100.0 95.80 100.0 94.30

ETN [249] 94.52 100.0 100.0 95.03 96.21 94.64 96.73

Resnet-50 76.05 97.52 99.36 83.23 83.89 86.18 87.71

HAFN [53] 79.89 97.63 99.57 84.93 89.59 90.08 90.28

SAFN [53] 84.52 97.40 98.94 84.50 92.07 92.90 91.72

SAFN+ENT [53] 87.57 98.08 99.36 88.11 93.95 93.77 93.47

Resnet-50 74.35 93.90 96.81 78.13 78.46 86.81 84.74±0.71

Jigsaw 91.75 94.12 98.93 90.87 89.95 93.42 93.18±0.46

Rotation 87.91 95.14 99.57 86.84 88.73 93.98 92.03±1.29

Jigsaw*-γ 99.32 94.69 99.36 96.39 86.36 94.22 95.06±1.86

Jigsaw*-γ,λ 99.66 94.46 99.57 97.67 87.33 94.26 95.49±1.19

weighted by the parameter λ , following [123]. The last two rows of Table 4.1 show

that incorporating target statistics improves the network’s focus on shared categories,

resulting in an average improvement of 2% in accuracy compared to Jigsaw method,

achieving results comparable to ETN (considering standard deviation). Additionally,

by comparing the γ values for the A→W domain shift, we observe that Jigsaw-γ is

more precise in identifying the missing classes of the target (see Figure 4.2). We

indicate with Jigsaw-γ,λ the case that includes the domain classifier: since the

produced features are already well aligned across domains, we fixed λ -max to 0.1

and observed a further small average improvement. From the last bar plot on the

right of Figure 4.2 we also observe a better identification of the target classes.

4.1.3 Computational Cost

In Table 4.3 we show the computational cost of the best performing configuration

of our multi-task approach (excluding the results obtained with ten-crop test) and

its best competitor IWAN [124] for the experiments in Table 4.1. We exclude ETN
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Table 4.2 Accuracy (%) in the PDA setting on VisDA2017 dataset (source: 12 classes, target:

6 classes). The results are obtained by averaging over three repetitions of each run.

VisDA2017-PDA Synthetic→Real

Resnet-50

Resnet-50 45.26

DAN[44] 47.60

DANN[56] 51.01

PADA*[123] 53.53

DRCN*[248] 58.20

Resnet-50 49.89

HAFN[53] 65.06

SAFN[53] 67.65

SAFN+ENT*[53] 70.40

Resnet-50 58.65±0.66

Jigsaw 68.18±1.36

Rotation 71.95±0.39
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Fig. 4.2 Histogram showing the values of γ vector which correspond to the class weight

learned by PADA, SSPDA-γ and SSPDA-PADA for the A→W domain shift.

[249] from this analysis as the need of running a dedicated parameter selection for

each domain pair makes it significantly inefficient. We present the total number of

FLOPs (Floating Point Operations) required for a single forward pass of the network,

the training, and the inference time (in milliseconds). Even if IWAN shows better

performance (+∼ 1.5), it has a significant higher number of FLOPs with also higher

convergence time with respect to Jigsaw. Indeed, in IWAN each domain has its

own feature extractor and the source sample weight is obtained from the domain

recognition model.
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Table 4.3 Cost analysis on Office-31 with ResNet-50 in PDA setting. Hardware - CPU:

Intel(R) Core(TM) i7-9800X CPU @ 3.80GHz, GPU (x1): Nvidia TITAN Xp.

Cost analysis

FLOPs Training Time (ms) Inference Time (ms) Accuracy (Avg.)

Jigsaw 4.14×109 3.13×106 3.59 93.18±0.46

IWAN [124] 8.29×109 2.52×107 3.61 94.69

4.1.4 Conclusions

In this section, we have presented how the self-supervised jigsaw puzzle and rotation

recognition tasks can be used for domain adaptation in the challenging partial

setting where some of the source classes are missing in the target. The high-level

knowledge captured by the spatial co-location of patches and rotation prediction,

being unsupervised with respect to the object content, can be applied to unlabeled

target samples, helping to bridge the domain gap without negative transfer. We

also demonstrated that the proposed solution can be combined with other existing

partial domain adaptation methods, resulting in improved recognition performance,

especially in identifying categories absent in the target.



4.2 ROS: On the Effectiveness of Image Rotation for Open-Set DA 67

4.2 ROS: On the Effectiveness of Image Rotation for

Open-Set DA

Reproduced with permission from Springer Nature: Bucci, S., Borlino, F. C., Caputo,

B., & Tommasi, T., On the effectiveness of image rotation for open set domain

adaptation. European Conference on Computer Vision, Springer, Cham (ECCV

2020)

In open-set DA it’s important to recognize and isolate samples from unknown

classes before reducing the domain shift to prevent negative transfer. Recent research

has shown that self-supervision can be used for anomaly detection, to distinguish

between normal and anomalous data [137, 168]. However, these works only address

the binary problem and only consider a single domain. In this section, we propose

to use the properties of self-supervision to address both cross-domain robustness

and novelty detection in the task of Open-Set Domain Adaptation (OSDA). To

accomplish this, we propose a two-stage method, named Rotation-based Open Set

(ROS), which is shown in Figure 4.3.
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Fig. 4.3 Schematic illustration of our Rotation-based Open Set (ROS). In Stage 1, we use

the source dataset Ds to train an encoder E, a semantic classifier C1, and a multi-rotation

classifier R1, for known/unknown separation. C1 is trained using the features of the original

images, and R1 is trained using the concatenated features of the original and rotated images.

After training, we use the prediction of R1 on the target dataset Dt to generate a normality

score that separates the target samples into a known target dataset Dknw
t and an unknown

target dataset Dunk
t . In Stage 2, we train E, the semantic+unknown classifier C2, and the

rotation classifier R2 to align the source and target distributions and to recognize the known

classes while rejecting unknowns. C2 is trained using original images from Ds and Dunk
t ,

and R2 is trained using the concatenated features of the original and rotated known target

samples.
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In the first stage, it separates known and unknown samples in the target domain

by training the model on a modified version of the rotation task whose goal is to

predict the relative rotation between a reference image and its rotated counterpart.

In the second stage, the method reduces the domain shift between the source and

known target domains by using again the rotation recognition task. The result is a

classifier that can predict each target sample as one of the known classes or reject it

as an unknown sample.

When evaluating ROS on the popular benchmark datasets Office-31 [7] and

Office-Home [4], we expose the reproducibility problem of existing OSDA ap-

proaches and assess them with a new evaluation metric that better represents the

performance of open-set methods.

In summary, the main contributions of this section are:

• a novel OSDA method that uses rotation recognition for both known/unknown

target separation and domain alignment;

• a new OSDA evaluation metric that properly considers both known class

recognition and unknown samples rejection;

• an extensive experimental benchmark against existing OSDA methods with

two conclusions: (a) we put under the spotlight the urgent need of a rigorous

experimental validation to guarantee result reproducibility; (b) our ROS defines

the new state-of-the-art on two benchmark datasets.

The implementation of our method in Pytorch, along with instructions to replicate our

experiments, can be found at the following link: https://github.com/silvia1993/ROS

4.2.1 Method

Problem formulation. We denote the labeled source domain as Ds =(xs
j,y

s
j) j = 1Ns ∼

ps drawn from distribution ps, and the unlabeled target domain as Dt = xt
j j = 1Nt ∼

pt drawn from distribution pt . In Open-Set Domain Adaptation, the source domain

is associated with a set of known classes ys ∈ 1, . . . , |Cs| that is shared with the

target domain Cs ⊂Ct , but the target also has a set of additional classes Ct\s which

are considered unknown. Similarly to Closed-Set Domain Adaptation, we assume

ps ̸= pt and we further have that ps ̸= p
Cs
t , where p

Cs
t denotes the distribution of
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the target domain belonging to the shared label space Cs. In OSDA, we face both a

domain gap (ps ̸= p
Cs
t ) and a category gap (Cs ̸=Ct). The goal of OSDA approaches

is to assign the target samples to one of the |Cs| shared classes or reject them as

unknown, using only annotated source samples and the unlabeled target samples

available. A crucial metric in characterizing OSDA problems is their openness level

which expresses the proportion of known classes in the target domain. For a given

dataset pair (Ds,Dt), following the definition of [250], the openness O is calculated

as O= 1− |Cs|
|Ct |

. In closed-set domain adaptation O= 0 while in OSDA O> 0.

Overview. When developing a method for OSDA, we face two main challenges:

negative transfer and known/unknown separation. Negative transfer happens when

the entire source and target distributions are aligned, and this includes unknown

target samples which are mistakenly aligned with source data. To prevent this, cross-

domain adaptation should focus only on the shared Cs classes, which reduce the

gap between p
Cs
t and ps. This leads to the challenge of known/unknown separation:

identifying each target sample as belonging to one of the shared classes Cs (known)

or one of the target-specific classes Ct\s (unknown). With this in mind, we divide our

method into two stages: (i) we separate the target samples into known and unknown,

and (ii) we align the target samples identified as known with the source samples (see

Figure 4.3). The first stage is treated as an anomaly detection problem, where the

unknown samples are considered anomalies. The second stage is treated as a Closed-

Set Domain Adaptation problem between source and known target distribution. We

draw inspiration from recent advancements in anomaly detection and Closed-Set

Domain Adaptation [191, 137] to address both stages by utilizing self-supervised

techniques. Specifically, we use two variations of the rotation classification task to

calculate a normality score for the known/unknown separation of the target samples,

and to reduce the domain gap.

Rotation recognition for open set domain adaptation. Let’s denote with rot90(x, i)

the function that rotates clockwise a 2D image x by i×90◦. Rotation recognition is

a self-supervised task that involves rotating an image x by a random i in [1,4] and

using a CNN to predict i from the rotated image x̃ = rot90(x, i). We represent with

|r|= 4 the cardinality of the label space for this classification task. To apply rotation

recognition effectively to Open-Set Domain Adaptation, we propose the following

variations.
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Fig. 4.5 The objects on the left may be confused.

The relative rotation guides the network to focus

on discriminative shape information

Relative rotation. Inferring the rotation angle of an image without comparing it to

its original (non-rotated) version is a challenging problem as object classes could not

have a consistent orientation across the dataset (see Figure 4.4). However, comparing

the original and rotated image and determining the relative rotation between them

is a well-defined task. In light of this, we make a change to the standard rotation

classification task [6] by including the original image as a reference point. The

rotation classifier is trained to predict the rotation angle, given the combined features

of both the original (reference) and rotated image. As seen in Figure 4.5, this new

form of relative rotation increases the discriminatory power of the learned features.

It guides the network to focus more on specific shape details rather than on confusing

texture information across different object classes.

Multi-rotation classification. In standard anomaly detection, samples from one

particular semantic category are classified as normal, and samples from all other

categories as anomalies. Rotation recognition has been effectively applied in this sce-

nario, but its performance deteriorates when there is more than one semantic category

included in the normal class [137]. This is the case when tackling known/unknown

separation in OSDA, where we have |Cs| semantic categories as known data. To

address this issue, we introduce a modified approach to rotation recognition. Instead

of treating it as a 4-class problem, we expand it to (4×|Cs|) classes, where the set of

classes represents the combination of semantic and rotation labels. This allows for a

more accurate classification by taking into account both the semantic category and

the rotation angle of the image. For example, if we rotate an image of category ys = 2

by i = 3, its label for the multi-rotation classification task is zs = (ys×4)+ i = 11.

We provide further evidence of the effectiveness of this multi-rotation classification
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task in the appendix. In the following, we indicate with y,z the one-hot vectors

respectively for the class and multi-rotation labels.

Stage I: known/unknown separation. To differentiate between known and un-

known samples of Dt , we train a CNN to perform multi-rotation classification using

the dataset D̃s = (xs
j, x̃

s
j,z

s
j)

4×Ns

j=1
. The network includes an encoder E and two output

branches, a multi-rotation classifier R1, and a semantic label classifier C1. The

prediction of the rotation task is obtained on the original and rotated image produced

by the encoder ẑs = softmax
(

R1([E(x
s),E(x̃s)])

)

, the object prediction is obtained

only from the features of the original image as ŷs = softmax
(

C1(E(x
s)
)

. The objec-

tive function used to train the network is made by the cross-entropy loss for object

recognition LC1
and LR1

that combines the cross-entropy and the center loss [251]

for the multi-rotation classifier. So the total loss function is L1 = LC1
+LR1

. More

precisely,

LC1
=− ∑

j∈Ds

ys
j · log(ŷs

j), (4.2)

LR1
= ∑

j∈D̃s

−λ1,1zs
j · log(ẑs

j)+λ1,2||v
s
j− γ(zs

j)||
2
2, (4.3)

where ||.||2 is the l2-norm operator, v j represents the output of the penultimate

layer of R1 and γ(z j) indicates the corresponding centroid of the class associated

with v j. By using the center loss, we encourage the network to learn more compact

and discriminative feature representations for each class. This makes the rotation

classifier output more reliable as a metric for detecting samples from unknown

categories.

Once the training is complete, we use the encoder E and the rotation classifier

R1 to compute the normality score N ∈ [0,1] for each target sample. This score is

a measure of how well the sample aligns with the known classes, with high scores

indicating that the sample is likely to be a known class, and low scores indicating

that the sample is likely to be an unknown class. To compute this score, we evaluate

the network’s prediction on all the relative rotation variants of a target sample

ẑi
t = softmax

(

R1([E(x
t),E(x̃t

i)])
)

i
and calculate their related entropy H(ẑt

i) =
(

ẑt
i ·

log(ẑt
i)/ log |Cs|

)

i
with i = 1, . . . , |r|. We indicate with [ẑt ]m the m-th component of

the ẑt vector. Then, we use this information to assign a score to each sample, which

can be used to separate known samples from unknown samples.
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The full expression of the normality score is:

N(xt) = max

{

max
k=1,...,|Cs|

( |r|

∑
i=1

[ẑt
i]k×|r|+i

)

,

(

1−
1

|r|

|r|

∑
i=1

H(ẑt
i)

)

}

. (4.4)

In words, our method uses a rotation recognition task to calculate a score for each

target sample, which indicates how likely it is to belong to one of the known classes.

This score is based on the network’s ability to correctly predict the class and ori-

entation of the sample (first term in Equation 4.4, Rotation Score), as well as the

confidence of the prediction (second term, Entropy Score). We use this score to

separate known and unknown samples in the target dataset.

Finally, through the normality score obtained, we separate the target dataset into

known Dknw
t and unknown Dunk

t . It is made directly through the data statistics using

the average of the normality score over the whole target ÅN = 1
Nt

∑
Nt

j=1 N j, without

the need to introduce any further parameters:







xt ∈ Dknw
t if N(xt)> ÅN

xt ∈ Dunk
t if N(xt)< ÅN .

(4.5)

It is important to note that only R1 plays a role in calculating the normality score,

while C1 is used for regularization and as a preparation for the next stage. For a

detailed pseudo-code on how to compute N and create Dknw
t and Dunk

t , refer to the

appendix.

Stage II: domain alignment. After identifying the target unknown samples, the

situation is similar to the standard CSDA problem. Using Dknw
t allows for closing the

domain gap without the risk of negative transfer, while using Dunk
t allows for expand-

ing the original semantic classifier to recognize the unknown category. The network

in Stage II, similar to that of Stage I, is made up of an encoder E and two heads: a

rotation classifier R2 and a semantic label classifier C2. The encoder is inherited from

the previous stage. The heads also leverage the previous training phase but have two

key differences with respect to Stage I: (1) The dimension of the output of C1 is |Cs|,

while C2 has an output dimension of |Cs|+1 due to the inclusion of the unknown

class; (2) R1 is designed to classify multiple rotations, with a (4×|Cs|)-dimensional

output, while R2 is used for classifying rotations with a 4-dimensional output. The

prediction of the rotation is computed as q̂ = softmax
(

R2([E(x),E(x̃)])
)

and the
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semantic prediction is computed as ĝ = softmax
(

C2(E(x)
)

. The objective function

L2 = LC2
+ LR2

is made by LC2
for the classification composed by a supervised

cross-entropy loss and an unsupervised entropy loss, and LR2
is the cross-entropy

loss for the rotation prediction. The unsupervised entropy loss is employed in the

semantic classification process to incorporate the unlabeled target samples that are

recognized as known. This loss encourages the decision boundary to pass through

regions with low density. More precisely,

LC2
=− ∑

j∈{Ds∪Dunk
t }

g j · log(ĝ j)−λ2,1 ∑
j∈Dknw

t

ĝ j · log(ĝ j), (4.6)

LR2
=−λ2,2 ∑

j∈Dknw
t

q j · log(q̂ j) . (4.7)

After the training is finished, R2 is no longer needed and the target labels are predicted

using ct
j =C2(E(x

t
j)) for all j = 1, . . . ,Nt .

4.2.2 On reproducibility and Open-Set metrics

OSDA is a relatively new area of research that was first introduced in 2017. With

increasing interest in this field, it is essential to ensure the reproducibility of the

proposed methods and have an appropriate metric to evaluate them effectively.

Reproducibility. In recent years, the machine learning community has become

increasingly aware of the reproducibility crisis [252±254]. Reproducing the results

of state-of-the-art deep learning models is often difficult due to a combination of non-

deterministic factors in standard benchmark environments and poor documentation

from authors. Although the problem is yet to be fully resolved, various efforts have

been made to promote reproducibility, such as checklists [255], challenges [256], and

encouraging authors to submit their code. We contribute to this effort by re-running

the state-of-the-art methods for OSDA and comparing them with the results reported

in the papers (see Section 4.2.3). Our results are produced using the original public

implementation along with the parameters reported in the paper and, in some cases,

by communicating with the authors. We believe that this approach, as opposed to

simply reproducing the results reported in the papers, can provide significant value

to the community.
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Open set metrics. The commonly used metrics for evaluating OSDA are the

average class accuracy over the known classes OS∗, and the accuracy of the unknown

class UNK. They are typically combined in OS= |Cs|
|Cs|+1

×OS∗+ 1
|Cs|+1

×UNK as a

measure of overall performance. However, we argue that treating the unknown as an

additional class does not provide an appropriate metric (as previously demonstrated

in [257]). For example, let’s consider an approach that is not designed to handle

unknown categories (UNK=0.0%) but has optimal accuracy over 10 known classes

(OS∗=100.0%). Even though this algorithm is not suitable for open set scenarios

as it totally ignores false positives, it still presents a high score of OS=90.9%. This

effect on OS becomes more pronounced as the number of known classes increases,

making the value of UNK meaningless. Considering that, we propose a new metric

defined as the harmonic mean of OS∗ and UNK, HOS = 2OS∗×UNK
OS∗+UNK

. Unlike OS, HOS

only provides a high score if the model is able to perform well on both known and

unknown samples, regardless of |Cs|. Using the harmonic mean instead of a standard

average penalizes large gaps between OS∗ and UNK.

4.2.3 Experiments

Setup. We evaluate ROS against state-of-the-art approaches previously described in

Section 2.1: STA [24], OSBP [131], UAN [258], and AoD [132]. For each method,

we conduct experiments using the official code provided by the authors, with the

exact hyper-parameters specified in the corresponding papers. The only exception is

AoD, as the authors have not released the code at the time of writing, so we report

the values presented in their original paper. We would also like to note that STA

presents a practical issue related to the similarity score used to separate known and

unknown categories. The formulation is based on the max operator according to

the Equation (2) in [24], but it appears to be based on sum in the implementation

code. In our analysis, we considered both variants (STAsum, STAmax) for the sake of

completeness. All the results in this section, for both ROS and the baseline methods,

are an average of three separate runs.

Implementation details. By following standard practice, we evaluate the perfor-

mance of ROS on Office-31 using two different backbones ResNet-50 [219] and

VGGNet [259], both pre-trained on ImageNet [214], focusing only on ResNet-50 for

Office-Home. We used the same values for the hyper-parameters regardless of the

backbone and the dataset used. Specifically, the batch size is 32 in both Stage I and
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Stage II while the learning rate is 0.0003 which decreases following an inverse decay

scheduling during training. We set the learning rate 10 times higher for the layers

trained from scratch with respect to the pre-trained ones using SGD as optimizer

with weight decay 0.0005 and momentum 0.9. The weight of the self-supervised

task, in both stages, is set three times the weight of the semantic classification task,

i.e. λ1,1 = λ2,2 = 3. The weight of the center loss in Stage I is λ1,2 = 0.1 while, in

Stage II, the weight of the entropy loss is λ2,1 = 0.1. The model obtained in Stage I

is used as starting point for the training in Stage II. Lastly, in Stage II the learning

rate for the new unknown class is set to twice that of the known classes since these

have already been learned in Stage I. More implementation details and sensitivity

analysis of the hyper-parameters are provided in the Appendix.

Results.

How does our method compare to the state-of-the-art? The results of our experiment

are presented in Table 4.4 and Table 4.5 and they show the average performance of

ROS, across three runs for each domain shift, respectively of Office-31 and Office-

Home. To discuss the results, we focus on the HOS metric, as it is a combination of

the performance on known and unknown classes (see Section 4.2.2). Our approach

outperforms the state-of-the-art in 13 out of 18 domain shifts and has the highest

average performance on both Office-31 and Office-Home. The improvement in

HOS gets to 2.2% compared to the second-best method, OSBP. Specifically, ROS

has a significant advantage over STA, regardless of its max or sum implementation,

and UAN is not a strong competitor due to its poor performance on the unknown

class. Comparison against AoD is only possible when using VGG for Office-31

(we report the original results in gray in Table 4.5) showing a clear advantage of

ROS. An examination of the results reveals that the strength of ROS primarily lies in

its ability to distinguish between known and unknown samples. Specifically, while

the performance of ROS on known samples is similar to that of other methods, its

performance on unknown samples is remarkably superior. This can be observed

in the t-SNE visualizations shown in Figure 4.6, where the features of known and

unknown data are less separated in the second-best method OSBP compared to ROS.

Is it possible to reproduce the reported results of the state-of-the-art? An analysis

of the published papers on OSDA revealed inconsistencies in the reported results.

For example, we noticed that some papers like OSBP presented different results

for the same method and hyper-parameters in their pre-print [260] and published
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Table 4.4 Accuracy (%) averaged over three runs of each method on Office-31 dataset using

ResNet-50 and VGGNet as backbones

Office-31

ResNet-50

A→W A→ D D→W W→ D D→ A W→ A Avg.

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

STAsum
[24]

92.1 58.0 71.0 95.4 45.5 61.6 97.1 49.7 65.5 96.6 48.5 64.4 94.1 55.0 69.4 92.1 46.2 60.9 94.6 50.5 65.5±0.3

STAmax 86.7 67.6 75.9 91.0 63.9 75.0 94.1 55.5 69.8 84.9 67.8 75.2 83.1 65.9 73.2 66.2 68.0 66.1 84.3 64.8 72.5±0.8

OSBP [131] 86.8 79.2 82.7 90.5 75.5 82.4 97.7 96.7 97.2 99.1 84.2 91.1 76.1 72.3 75.1 73.0 74.4 73.7 87.2 80.4 83.7±0.4

UAN [258] 95.5 31.0 46.8 95.6 24.4 38.9 99.8 52.5 68.8 81.5 41.4 53.0 93.5 53.4 68.0 94.1 38.8 54.9 93.4 40.3 55.1±1.4

ROS 88.4 76.7 82.1 87.5 77.8 82.4 99.3 93.0 96.0 100.0 99.4 99.7 74.8 81.2 77.9 69.7 86.6 77.2 86.6 85.8 85.9±0.2

VGGNet

A→W A→ D D→W W→ D D→ A W→ A Avg.

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

OSBP [131] 79.4 75.8 77.5 87.9 75.2 81.0 96.8 93.4 95.0 98.9 84.2 91.0 74.4 82.4 78.2 69.7 76.4 72.9 84.5 81.2 82.6±0.8

ROS 80.3 81.7 81.0 81.8 76.5 79.0 99.5 89.9 94.4 99.3 100.0 99.7 76.7 79.6 78.1 62.2 91.6 74.1 83.3 86.5 84.4±0.2

AoD [132] 87.7 73.4 79.9 92.0 71.1 79.3 99.8 78.9 88.1 99.3 87.2 92.9 88.4 13.6 23.6 82.6 57.3 67.7 91.6 63.6 71.9

Table 4.5 Accuracy (%) averaged over three runs of each method on Office-Home dataset

using ResNet-50 as backbone.

Office-Home

Pr→ Rw Pr→ Cl Pr→ Ar Ar→ Pr Ar→ Rw Ar→ Cl

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

STAsum
[24]

78.1 63.3 69.7 44.7 71.5 55.0 55.4 73.7 63.1 68.7 59.7 63.7 81.1 50.5 62.1 50.8 63.4 56.3

STAmax 76.2 64.3 69.5 44.2 67.1 53.2 54.2 72.4 61.9 68.0 48.4 54.0 78.6 60.4 68.3 46.0 72.3 55.8

OSBP [131] 76.2 71.7 73.9 44.5 66.3 53.2 59.1 68.1 63.2 71.8 59.8 65.2 79.3 67.5 72.9 50.2 61.1 55.1

UAN [258] 84.0 0.1 0.2 59.1 0.0 0.0 73.7 0.0 0.0 81.1 0.0 0.0 88.2 0.1 0.2 62.4 0.0 0.0

ROS 70.8 78.4 74.4 46.5 71.2 56.3 57.3 64.3 60.6 68.4 70.3 69.3 75.8 77.2 76.5 50.6 74.1 60.1

Rw→ Ar Rw→ Pr Rw→ Cl Cl→ Rw Cl→ Ar Cl→ Pr Avg.

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

STAsum 67.9 62.3 65.0 77.9 58.0 66.4 51.4 57.9 54.2 69.8 63.2 66.3 53.0 63.9 57.9 61.4 63.5 62.5 63.4 62.6 61.9±2.1

STAmax 67.5 66.7 67.1 77.1 55.4 64.5 49.9 61.1 54.5 67.0 66.7 66.8 51.4 65.0 57.4 61.8 59.1 60.4 61.8 63.3 61.1±0.3

OSBP 66.1 67.3 66.7 76.3 68.6 72.3 48.0 63.0 54.5 72.0 69.2 70.6 59.4 70.3 64.3 67.0 62.7 64.7 64.1 66.3 64.7±0.2

UAN 77.5 0.1 0.2 85.0 0.1 0.1 66.2 0.0 0.0 80.6 0.1 0.2 70.5 0.0 0.0 74.0 0.1 0.2 75.2 0.0 0.1±0.0

ROS 67.0 70.8 68.8 72.0 80.0 75.7 51.5 73.0 60.4 65.3 72.2 68.6 53.6 65.5 58.9 59.8 71.6 65.2 61.6 72.4 66.2± 0.3

versions [131]. Additionally, in some papers, important comparisons are missing like

in AoD [132] that compares against the pre-print results of OSBP, while omitting the

results of STA. To dispel these ambiguities and gain a better understanding of the

current state-of-the-art methods, we conducted a reproducibility study by re-running

the experiments and comparing the results with those reported in previous works.

This analysis, presented in Table 4.6, focuses on Office-31 dataset and the OS metric

is shown, as it is the only metric reported for some of the approaches. We used the

original implementations provided by the authors, but despite this, the OS results

obtained from re-running the experiments were between 1.3% and 4.9% lower than

the originally published results. This gap in the results highlights the importance of

providing detailed information for reproducing experimental results and calls for a

more thorough reproducibility study, which is provided in the Appendix.

Why is it important to use the HOS metric? One major flaw of using OS as a metric

for OSDA is demonstrated by the results of the UAN method. As seen in Table 4.4

and Table 4.5, UAN has an OS of 72.5% for Office-Home and 91.4% for Office-31.

This mainly reflects UAN’s ability to recognize known classes (OS*) but ignores its

performance in identifying unknown samples (UNK). For example, for most domain
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(a) ResNet-50 (c) ROS(b) OSBP

Fig. 4.6 t-SNE visualization of the target features for the W→A domain shift from Office-31.

Red and blue points are respectively features of known and unknown classes.

Table 4.6 Reported vs reproduced OS accuracy (%) averaged over three runs

Reproducibility Study

Office-31 (ResNet-50) Office-31 (VGGNet)

STAsum UAN OSBP

OSreported OSours gap OSreported OSours gap OSreported OSours gap

92.9 90.6±1.8 2.3 89.2 87.9±0.03 1.3 89.1 84.2 ±0.4 4.9

shifts in Office-Home, UAN does not assign (almost) any samples to the unknown

class, resulting in UNK=0.0%. In contrast, HOS is a better indicator of the open set

scenario as it only assumes a high value when both OS* and UNK are high.

Is rotation recognition effective for known/unknown separation in OSDA? To evaluate

the effectiveness of rotation recognition for known/unknown separation, we compare

the performance of our Stage I with that of Stage I of STA. Both methods have

a two-stage structure, but while ROS uses a multi-rotation classifier, STA uses a

multi-binary classifier. We measure performance using the area under the receiver

operating characteristic curve (AUC-ROC) on the normality scores N calculated

on Office-31. The results in Table 4.7 show that the AUC-ROC of ROS (91.5) is

significantly higher than that of the multi-binary classifier used by STA (79.9). The

table also shows the results when removing the center loss from Equation (4.3)

(λ1,2 = 0) (No Center Loss) and the anchor image is not considered (No Anchor)

when training R1. In both cases, the performance drops significantly compared to

the full method but still outperforms the multi-binary classifier of STA.

Why is the normality score defined the way it is? Our normality score, as defined

by Equation (4.4), is a combination of the rotation score and the entropy score.

The rotation score measures the accuracy of R1 in predicting the rotation of the

target samples, while the entropy score represents the level of confidence of these
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Table 4.7 Ablation Analysis on Stage I and Stage II

Ablation Study

STAGE I (AUC-ROC) A→W A→ D D→W W→ D D→ A W→ A Avg.

ROS 90.1 88.1 99.4 99.9 87.5 83.8 91.5

Multi-Binary (from STA [24]) 83.2 84.1 86.8 72.0 75.7 78.3 79.9

ROS - No Center loss 88.8 83.2 98.8 99.8 84.7 84.5 89.9

ROS - No Anchor 84.5 84.9 99.1 99.9 87.6 86.2 90.4

ROS - No Rot. Score 86.3 82.7 99.5 99.9 86.3 82.9 89.6

ROS - No Ent. Score 80.7 78.7 99.7 99.9 86.6 84.4 88.3

ROS - No Center loss, No Anchor 76.5 79.1 98.3 99.7 85.2 83.5 87.1

ROS - No Rot. Score, No Anchor 83.9 84.6 99.4 99.9 84.7 84.9 89.6

ROS - No Ent. Score, No Anchor 80.1 81.0 99.5 99.7 84.3 83.3 87.9

ROS - No Rot. Score, No Center loss 80.9 81.6 98.9 99.8 85.6 83.3 88.3

ROS - No Ent. Score, No Center loss 76.4 79.8 99.0 98.3 84.4 84.3 87.0

ROS - No Ent. Score, No Center loss, No Anchor 78.6 80.4 99.0 98.9 86.2 83.2 87.7

ROS - No Rot. Score, No Center loss, No Anchor 78.7 82.2 98.3 99.8 85.0 82.6 87.8

STAGE II (HOS) A→W A→ D D→W W→ D D→ A W→ A Avg.

ROS 82.1 82.4 96.0 99.7 77.9 77.2 85.9

ROS Stage I - GRL [56] Stage II 83.5 80.9 97.1 99.4 77.3 72.6 85.1

ROS Stage I - No Anchor in Stage II 80.0 82.3 94.5 99.2 76.9 76.6 84.9

ROS Stage I - No Anchor, No Entropy in Stage II 80.1 84.4 97.0 99.2 76.5 72.9 85.0

predictions. In order to evaluate the importance of both scores in our methodology,

we ran the experiment without either rotation score (No Rot. Score) or entropy score

(No Ent. Score) observing the change in performance. The results in Table 4.7

in both cases the AUC-ROC significantly decreases compared to the full version,

justifying our choice.

Is rotation recognition effective for domain alignment in OSDA? The use of rotation

classification in the context of CSDA has been previously studied [191], however,

its application in OSDA, where the shared target distribution may contain unknown

samples, has not yet been explored. On the other hand, GRL [56] is a commonly used

technique in OSDA methods. To compare the effectiveness of rotation recognition

and GRL in this context, we evaluated the performance of our Stage II when replacing

R2 with a domain discriminator. Table 4.7 shows that rotation recognition performs

similarly to, if not slightly better than, GRL. Additionally, we evaluated the role of

relative rotation in Stage II and found that it improves performance over standard

absolute rotation (No Anchor in Stage II), as seen in the last row of Table 4.7.

Furthermore, the cosine distance between the source and the target domains without

adaptation in Stage II is 0.188, and with our full method is 0.109, which confirms

that rotation recognition is effective in reducing the domain gap.

Is our method effective on problems with a high degree of openness? Traditional

approaches in OSDA usually involve scenarios where the number of shared and

private target classes is balanced, with openness near 0.5. For instance, in the Office-
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Fig. 4.7 Accuracy (%) averaged over the three openness configurations.

31 dataset, openness is O = 1− 10
21

= 0.52, and in the Office-Home dataset, it is

O = 1− 25
65

= 0.62. However, in real-world cases, the number of unknown target

classes may greatly surpass the known classes, with openness approaching 1. To

explore this scenario, we consider Office-Home and, starting from the classes sorted

with ID from 0 to 64 in alphabetic order, we define the following settings with

increasing openness:: 25 known classes O= 0.62, ID:0-24, 25-49, 40-64, 10 known

classes O= 0.85, ID:0-9, 10-19, 20-29, 5 known classes O= 0.92, ID:0-4, 5-9, 10-

14. Our findings, shown in Figure 4.7, indicate that, as the openness level increases,

our major competitors like STA and OSBP, fail to identify unknown samples leading

to a decrease in their performance, while our method ROS maintains consistent

performance in all the openness levels.

4.2.4 Computational Cost

In Table 4.8 we show the computational cost of our multi-task approach and its best

competitor OSBP [131] for the experiments in Table 4.4. Our analysis shows the

total number of FLOPs (Floating Point Operations) required for a single forward

pass of the network, the training, and the inference time (in milliseconds). ROS is

a two-stage approach and, even if the architecture of the first and second steps is

mostly preserved allowing a comparable number of FLOPs, it requires a significantly

higher training time than the end-to-end OSBP. This could be a bottleneck in specific

situations where it’s needed to trade off accuracy for faster training.

4.2.5 Conclusions

In this section, we propose a new approach called ROS for addressing the problem of

OSDA. This method relies on the self-supervised task of predicting image rotation
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Table 4.8 Cost analysis on Office-31 with ResNet-50 in OSDA setting. Hardware - CPU:

Intel(R) Core(TM) i7-9800X CPU @ 3.80GHz, GPU (x1): Nvidia TITAN Xp.

Cost analysis

FLOPs Training Time (ms) Inference Time (ms) HOS (Avg.)

ROS 4.16×109 2.78×107 3.23 85.90±0.2
OSBP [131] 4.14×109 6.73×106 3.27 83.70±0.4

and demonstrates that by making small changes to this task, we can effectively

distinguish between known and unknown target samples also aligning the target

samples predicted as known with the source samples. Moreover, we introduce HOS: a

new metric for evaluating OSDA that takes into account the accuracy of recognizing

known classes and the ability to identify unknown samples. HOS addresses the

limitations of the current metric, OS, which becomes less effective as the number

of known classes increases. In this section, we test the performance of ROS, on

two commonly used benchmarks Office-31 and Office-Home demonstrating that

ROS outperforms existing approaches. Furthermore, when evaluated in settings

with increasing openness, ROS is the only method that demonstrates consistent

performance. HOS reveals to be crucial in this evaluation to correctly assess the

performance of the methods on both known and unknown samples. Finally, the

failure in reproducing the reported results of existing methods exposes an important

issue in OSDA that echoes the current reproducibility crisis in machine learning. We

hope that our contributions can help lay a more solid foundation for the field.



Chapter 5

Improved Supervised Models for

Cross-Domain Learning

In this Chapter, we explored the relation-based self-supervised approaches whose

formulation allows for an easy extension to supervised learning. Indeed, differently

from transformation-based self-supervised strategies for which resorting to multi-

task was essential, in relation-based approaches it is possible to include supervision

by simply exploiting data annotation while defining instance relations. Two patches

are similar if they come from images belonging to the same class and different

otherwise. In particular, with HyMOS, in Section 5.1 we propose a contrastive

learning-based approach for Open-Set across domains. In Section 5.2 ReSeND, a

relational reasoning-based approach for semantic novelty detection.
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5.1 HyMOS: Distance-based Hyperspherical Classifi-

cation for Multi-source Open-Set Domain Adap-

tation

© 2022 IEEE Reprinted, with permission, from Bucci, S., Borlino, F. C., Caputo,

B., & Tommasi, T., Distance-based Hyperspherical Classification for Multi-source

Open-Set Domain Adaptation, IEEE/CVF Winter Conference on Applications of

Computer Vision (pp. 1119-1128) (WACV 2022)

Standard CSDA [20] focuses on minimizing the difference between the labeled

source data used for training and the unlabeled target data used for testing when the

target data covers the same class set as the source data. OSDA [261], on the other

hand, not only aims to bridge the domain gap but also to identify and reject samples

of unknown classes. Naïvely applying adaptive solutions with category shift can

lead to negative transfer and irreversible misalignment of the categories [24]. While

dealing with multiple sources is a common occurrence in real-world conditions, only

one recent work has begun to explore the task of multi-source OSDA [138]. This

faces the challenge of learning a feature space that is common across domains while

also maximizing the distinction between known and unknown categories within the

unlabeled target. All current open-world adaptive learning models try to address the

issue of the limited generalization ability of deep learning models. This problem can

be attributed to two known limitations of CNNs: (1) deep models tend to generate

features that primarily describe local statistics, which leads to a bias towards the style

of the training data [165]; (2) the commonly used cross-entropy loss for supervised

learning tends to produce overconfident predictions, which biases the model towards

the labeled class set [41, 159].

Existing solutions use multi-stage learning procedures, incorporate multiple

losses to compensate for the cross-entropy overreliance, and use adversarial tech-

niques to close the domain gap. These approaches often require numerous hyper-

parameters to be tuned with manually defined thresholds, or including elaborated

models to generate samples of a synthetic unknown source class (see Table 5.1).

In this section, we propose a supervised model that overcomes the limitations of

the cross-entropy loss and learns a style-invariant embedding space that naturally

separates unknown categories. We build upon the recent trend of contrastive learn-

ing [40, 172, 41], where the encoder learns the invariance between two augmented
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Fig. 5.1 HyMOS uses supervised contrastive learning to address all the challenges of multi-

source open-set domain adaptation. We integrate style transfer into the double path con-

trastive logic to achieve domain-invariant representation. By balancing the class and source

domains in each training batch, we achieve class-wise domain alignment. The embedding

space learned by HyMOS inherently separates unknown target samples in low-density re-

gions, while the known samples are located close to their corresponding class cluster and can

be easily used in self-training for further adaptation.

versions of the same image (positive pair) while maximizing the distance between

augmented versions of different instances (negative pair). We demonstrate that

a single supervised contrastive learning objective can effectively address all the

challenges of multi-source OSDA (see Figure 5.1):

• class-wise alignment between source domains is achieved by balancing data

batches across classes and domains;

Method
No. of No. of

Threshold
Losses HPs

Inheritable [134] 4 2 not used - synthesize unknown target

ROS [19] 6 4 reject a fixed portion of Target

CMU [262] 2+ |Cs| 3 validated

DANCE [263] 3 3 fixed value depending on |Cs|
PGL [135] 3 4 reject a fixed portion of Target

MOSDANET [138] 4+ |S| 2 validated

HyMOS 1 1 self-paced, updates online while training

Table 5.1 Comparison with existing open-set and universal domain adaptation approaches.

HPs indicate the hyperparameters, |Cs| the number of source categories, |S| is the number of

source domains. Note that synthesizing new samples is a time-consuming operation and any

validation procedure requires at least a dedicated per-dataset tuning.
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• adaptation to the target domain is obtained by creating domain-invariant fea-

tures through the use of style transfer among the augmentations of contrastive

learning. This is followed by a progressive and self-regulated self-training

procedure that improves alignment between target and source class clusters;

• the separation between known and unknown target data is achieved through

a self-paced threshold based on the distribution of data in the learned hyper-

spherical feature embedding. The contrastive objective results in compact and

well-separated known class clusters [264], leaving unknown samples isolated

in low-density regions

To highlight the important role of the Hyperspherical feature space for our

Multi-source Open-Set approach, we named it HyMOS. Our experiments on three

multi-source open-set datasets demonstrate the superiority of HyMOS compared to

current state-of-the-art methods. Furthermore, we also show promising results when

applying HyMOS to related challenging scenarios such as multi-source closed-set

and multi-source universal DA settings. The obtained results show that HyMOS

outperforms several competitors, defining the new state-of-the-art. Our code is

available at https://github.com/silvia1993/HyMOS

5.1.1 Method

Our approach to addressing multi-source Open Set domain adaptation involves

building a robust and highly structured feature space with class clusters compact,

and well-separated class clusters, keeping unknown target samples away from the

centers. We obtain this effect by minimizing the supervised contrastive loss and

paying attention to how data are fed to the model. In particular: (a) we develop a

strategy for creating mini-batches that balance the domains and classes, resulting

in perfect class alignment among the sources; (b) we incorporate style transfer into

the contrastive learning method to create sample pairs, leading to a domain-invariant

feature embedding; (c) we gradually include the target domain into the learning

objective through self-training improving source-target alignment; (d) we use a

self-paced threshold, based on data distribution, to distinguish between known and

unknown samples in the target domain. We apply this threshold during both the

inference and the selection of known target samples for self-training. In the next

section, we will delve into each of the points listed above more in-depth. A summary
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Fig. 5.2 Schematic illustration of HyMOS (best viewed in color). We use the same notation

adopted in Algorithm 1, please refer to it to follow the flow of the method.

of our approach, HyMOS, is illustrated in Figure 5.2 and summarized in Algorithm

1 (see the Appendix for the evaluation procedure).

Problem Framework. In multi-source Open-Set domain adaptation we are given L

labeled source domains S = {S1,S2, . . . ,SL}, where Si = {x
si

j ,y
si

j }
Nsi

j=1 ∼ pi, and one

unlabeled target domain T = {xt
j}

Nt

j=1 ∼ q, all drawn from different data distributions

pi=1,...,L,q. The source domains have the same set of labels ys ∈ Cs, and Cs is a

subset of the labels in Ct . This means that the target includes additional classes

Ct\s, referred to as unknown. Our objective is to train a model using the source data

that can accurately classify each target sample by either assigning it to one of the

known Cs classes or identifying it as unknown. Given the different relatedness levels

of the target with each of the available sources, reducing the domain shift while

avoiding the risk of negative transfer may be difficult, especially when the openness

O= 1− |Cs|
|Ct |

increases.

Contrastive Learning Formulation. In self-supervised contrastive learning [40,

172], two transformed views of every input image are propagated through a CNN

network. These two versions of the image are created by applying standard aug-

mentation techniques such as grayscale conversion, random cropping, and color

jittering. For each sample {xs
k,y

s
k} in the double batch B = {k = 1, . . . ,2K}, the

encoder network is applied to extract the features Enc(xs
k). These features are then

passed through a final contrastive head, which maps them to a normalized embedding

space zs
k = Pro j(Enc(xs

k)). In this space, the similarity between two augmented

versions of the same instance is maximized, while the similarity between different

instances is minimized. When the labels of the images are available, the compari-

son of samples can be done both on an individual basis, as in the self-supervised
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case, and by category, [41]. Samples of the same class ys
k are considered positive,

while samples from different classes are considered as negative pairs. The set of

positive pairs for sample of index k is defined as π(k) = {k′ ∈ ν(k) : ys
k′
= ys

k} where

ν(k) = B\ k is the double batch without the anchor sample of index k.

Thus, the supervised contrastive loss is [41]:

LSupClr =
2K

∑
k=1

−1

|π(k)| ∑
k′∈π(k)

log
exp(σ(zs

k,z
s
k′
)/τ)

∑
n∈ν(k)

exp(σ(zs
k,z

s
n)/τ)

, (5.1)

where τ ∈ R
+ is the temperature, and σ(·, ·) is the cosine similarity.

HyMOS Source-Source Class-Wise Domain Alignment. The supervised con-

trastive loss aims at learning compact class clusters with large margins. This ability

can be exploited to perform source-source class-wise domain alignment by compos-

ing each training mini-batch with samples coming from different visual domains.

We divide each batch evenly among all |Cs| classes, and for each class, we choose

the same number of samples from all L source domains. The loss function in Eq.

(5.1) ensures that samples of the same class are located in the same area regardless

of their domain, while samples from different classes are separated from each other.

HyMOS Source-Target Style Invariance. Contrastive learning uses image transfor-

mations to help the model learn the core semantic information while being insensitive

to irrelevant cues. When working with data from different domains, it is essential to

have a representation that can disregard significant differences in visual appearance,

beyond simple grayscale or color jittering. This requires the use of specific image

transformations that preserve the semantics of the image. We propose here to use

image augmentation based on style transfer changing the global texture of the image

while preserving its content. Specifically, we use the AdaIN model [265] that is

trained on both source and target data to transfer the style of the target domain

to source images. Since this augmentation is applied randomly, the loss function

compares the original source images with target-like images, and the model learns

to disregard the style difference. It’s worth noting that by doing that we obtain

a style-invariant features space avoiding the risk of negative transfer which is a

significant challenge in open-set domain adaptation. Previous methods such as

[19, 262, 263, 258, 24] attempt to address this problem by either excluding un-

known samples or reducing their impact during the adaptation process. This requires

implementing complex strategies to identify unknown samples before learning the
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domain-invariant model. By using style transfer, we instead create a domain-agnostic

representation by disregarding the semantic content of the target. This allows us to

extract the style from samples belonging to unknown categories without incurring in

negative transfer.

HyMOS Adaptation Refinement via Self-Training. Achieving perfect alignment

between the source and target domains would be possible if we could include target

data as an additional source domain during the training of the supervised contrastive

model. Of course, this is not possible as the class labels for target samples are not

available. However, once the model trained on source data including target style

invariance is robust enough, it can be used to produce pseudo-labels for target data by

simply using its predictions. Indeed, after the initial training on the source data, we

gradually include target samples in the learning objective by going through evaluation

stages that we refer to as self-training breakpoints. This enables us to select target

samples that we are confident are known. Through this iterative process, we transfer

label knowledge from the source to the target data, enhancing the compactness of the

class clusters, and leaving unknown target data in sparse regions of the hyperspherical

feature space.

HyMOS Known-Unknown Separation and Classification on the Hypersphere.

The resulting embedding, with well-clustered known categories separated by large

margins and unknown samples in isolated areas, is ideal for distance-based classifi-

cation. Unlike previous approaches [41, 169] which use the contrastive models as

a pre-training step and discards the projection head in favor of a traditional cross-

entropy loss, we continue to use the hypersphere for making predictions. We compute

the prototype of each source class ys by finding the average feature hys = 1
Nys

∑k∈ys zs
k

which is then re-projected into the unit hypersphere. For any target sample zt , we

compute the cosine similarity with each source class prototype and scale it to be in

the range [0,1] defining the distance dhys (z
t) = {1−σ[0,1](z

t ,hys)} for ys ∈ 1, . . . , |Cs|

which is used as a measure of confidence for label assignment. To determine if a

sample belongs to a known category, we need to set a threshold for the distance

from the known class prototypes. The issue of how to define this threshold is a

widely debated topic in Open Set literature, with many methods choosing values a

priori and keeping them fixed while training [262, 263]. We propose to derive the

threshold directly from the observed data distribution, resulting in a value that is

updated during the learning process. Specifically we introduce two metrics the class

sparsity:
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Fig. 5.3 Illustration of the distances used to set the class prediction and the self-training

procedure.

θ =
1

|Cs|
∑

ys∈Cs

dh∗(hys) , (5.2)

where h∗ is the closest prototype to each hys , and the class compactness:

φ =
1

|Cs|
∑

ys∈Cs

{

1

Nys
∑

k∈ys

dhys (z
s
k)

}

. (5.3)

The first calculates the minimum distance between each class prototype and

provides a measure of how distinct the classes are from each other. The second checks

if the samples within each class are closely grouped around their corresponding

prototype (see Figure 5.3). When there are many classes with little variation within

each class, it results in a feature scenario with high compactness but low sparsity,

for which a low threshold is needed. In contrast, when there are few classes with a

lot of variation within each class, it results in a low compactness and high sparsity

condition for which we can allow a higher threshold. We compute our threshold by:

α = φ ·

[

log

(

θ

2φ

)

+1

]

, (5.4)

where θ/2φ estimates the average ratio between the distance of two adjacent

prototypes and the radii of the respective clusters. The use of the threshold during

inference is straightforward:

ŷt =







argminys(dhys (z
t)) if min ys(dhys (z

t))< α

unknown if min ys(dhys (z
t))≥ α .

(5.5)
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We use the same threshold for the self-training break-points mentioned earlier,

however, we are more conservative in this stage. So, we have an additional factor αm

that enables us to maintain a more cautious threshold: αc = αm ·α . The multiplier is

fixed at 0.5 and it’s the only adjustable parameter in HyMOS.

5.1.2 Experiments

We implemented HyMOS with a ResNet-50 [219] backbone and two fully connected

layers for the contrastive head. All the technical details can be found in the Appendix.

Results. We compare HyMOS with several state-of-the-art baselines proposed for

single-source Open-Set (Inheritable [134], ROS [19], PGL [135]), multi-source

Open-Set (MOSDANET [138]) and universal domain adaptation (CMU [262],

DANCE [263]). For all the approaches not designed to handle multiple sources,

we employ the Source Combine strategy [1], which involves combining all source

data into a single domain. We considered the HOS metric, defined in [19, 262]

to fairly evaluate the Open-Set approaches: it is the harmonic mean between the

average class accuracy over the known classes OS∗ and the accuracy over the un-

known class UNK: HOS = 2OS∗×UNK
OS∗+UNK

. Table 5.2 presents the results of our study,

which demonstrate that HyMOS outperforms all the competitors. The margin of

improvement of HyMOS over its closest competitor, ROS, ranges from 1.9% on

OfficeHome to 10.8% on DomainNet. Besides being simpler than the other methods,

HyMOS also demonstrates robustness across the various scenarios represented by

the three datasets, including the number of shared and private classes and the nature

and extent of domain gaps. These unique qualities make HyMOS the most suitable

approach for a wide range of real-world applications. We also analyze HyMOS con-

sidering the AUROC (Area under the Receiver Operating Characteristic curve) which

is not affected by a threshold. In HyMOS, the normality score used to determine

if a sample is known or unknown is based on its distance from the nearest source

class prototype, while ROS, its best competitor, uses a combination of entropy and

probability output from an auxiliary rotation recognition classifier. Even in this case,

HyMOS outperforms ROS, which is consistent with the results obtained with HOS.

This confirms that the known and unknown samples are well separated in the learned

hyperspherical embedding space.
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Method
DomainNet

→ S → C Avg.

H
O

S Source Combine

Inheritable [134] 34.8 44.0 39.4

ROS [19] 44.5 52.4 48.5

CMU [262] 38.1 35.5 36.8

DANCE [263] 30.0 37.6 33.8

PGL [135] 18.5 19.4 19.0

Multi-Source
MOSDANET [138] 40.0 39.3 39.6

HyMOS 57.5 61.0 59.3

A
U

R
O

C Source Combine ROS [19] 63.9 68.0 66.0

Multi-Source HyMOS 71.9 75.8 73.9

Office31

→W → D → A Avg.

76.6 79.5 70.0 75.4

81.8 80.1 64.7 75.5

61.4 64.0 56.4 60.6

38.5 59.7 58.0 52.0

43.3 37.7 35.6 38.9

60.5 71.5 73.9 68.6

90.2 89.9 60.8 80.3

93.9 95.2 73.5 87.5

96.9 96.1 71.0 88.0

Office-Home

→ Rw → Cl → Ar → Pr Avg.

63.2 52.6 48.7 60.7 56.3

73.0 57.3 61.6 69.1 65.3

70.8 50.0 58.1 69.3 62.1

12.4 16.1 18.6 22.9 17.5

40.0 31.5 31.8 42.2 36.4

65.0 51.1 54.3 65.9 59.1

71.0 64.6 62.2 71.1 67.2

80.8 69.6 73.7 79.4 75.9

81.1 76.4 75.3 79.6 78.1

Table 5.2 Results averaged over three runs for each method on the DomainNet, Office31, and

Office-Home datasets.

Fig. 5.4 Left: analysis on the dynamic threshold α at different training iterations. Right:

performance of HyMOS and ROS [19] at different openness (O) levels.

Analysis on the Threshold. HyMOS is designed with a self-paced procedure that

adapts the dynamic threshold α to the data distribution. Figure 5.4 (left) shows the

change in α during training. For Office31 and Office-Home datasets, the threshold

gradually decreases over time, while for DomainNet it increases. The changes in α

demonstrate how the data clusters change over time. As the training progresses, the

clusters become more compact, and the distance between them increases, resulting

in a more sparse distribution of classes on the hypersphere. For DomainNet, the

different trend is associated with the class cardinality, which is higher compared

to the other datasets. In all cases, the threshold ultimately reaches a stable value.

HyMOS has only one adjustable parameter, the αm multiplier, which is used to

compute a more conservative threshold during training. By varying this parameter,

one can choose to prioritize recognition of known classes over unknown classes. The

results in Table 5.3 indicate that a value of 0.5 for αm is a safe choice for all datasets.

Additionally, by adjusting this multiplier, the HOS performance of HyMOS remains

competitive with ROS, and in some cases, such as DomainNet with αm=1, it can

even improve.
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Method DomainNet Office31 Office-Home

HyMOS

αm = 0.3 55.1 79.2 65.8

αm = 0.5 59.3 80.3 67.2

αm = 0.7 60.8 78.2 66.8

αm = 1.0 61.4 74.1 65.8

ROS [19] 48.5 75.7 65.3

Table 5.3 Average performance (HOS) when changing the train-time multiplier αm to the

self-paced threshold α .

Method
Office-Home

→ Rw → Cl → Ar → Pr Avg.

HyMOS 71.0 64.6 62.2 71.1 67.2

w/o Source Balance 69.2 58.4 60.6 70.2 64.6

Style Tr. Target Known (Oracle) 70.7 63.7 62.5 71.2 67.0

w/o Style Transfer 69.5 56.4 60.0 68.3 63.6

w/o Self-Training 72.2 55.0 58.6 71.5 64.3

Improved Cross-Entropy 61.5 61.2 58.1 57.1 59.5

ROS [19] 73.0 57.3 61.6 69.1 65.3

+ Source Balance 75.2 55.5 62.6 66.9 65.0

+ Style Transfer 62.6 46.3 52.0 60.1 55.2

+ Self-Training 69.6 59.1 61.5 60.5 62.7

+ S. Balance, Style Tr., Self-Train. 62.0 40.4 52.2 62.4 54.3

Table 5.4 Ablation Study, HOS results.

Increasing the Openness Level. In realistic situations, it is challenging to have

direct control over the number of unknown classes in the unlabeled target data, and

it is common to have more unknown categories than known ones. To evaluate how

HyMOS performs with a different level of openness we consider the DomainNet

dataset, which has a large number of classes. The plot in Figure 5.4 (right) shows

that HyMOS surpasses its closest competitor ROS for the openness levels in range

O ∈ 0.5,1.

5.1.3 Ablation Analysis

We designed HyMOS to be simple while taking into account all the challenges

of multi-source Open-Set domain adaptation. In the following, we will provide a

thorough analysis of each challenge, by providing a detailed ablation that sheds light

on the inner functioning of our method. All the results are reported in Table 5.4.
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Multi-Source Closed-Set

Method → clp → inf → pnt → qdr → rel → skt Avg.

Source Only [266] 52.1 23.4 47.7 13.0 60.7 46.5 40.6

LtC-MSDA [267] 63.1 28.7 56.1 16.3 66.1 53.8 47.4

DRT [266] 71.0 31.6 61.0 12.3 71.4 60.7 51.3

HyMOS 71.5 41.8 60.8 34.5 74.2 66.6 58.2

Multi-Source Universal

Method → S → C Avg.

CMU [262] 38.9 31.2 35.1

DANCE [263] 44.5 49.9 47.2

ROS [19] 39.7 46.0 42.9

HyMOS 54.6 57.1 55.9

Table 5.5 Multi-Source Closed-Set (Accuracy) and Universal Domain Adaptation (HOS)

performance on DomainNet.

Source-Source Alignment. Aligning the source domains improves the model’s

ability to generalize. This idea is widely discussed in the literature on multi-source

Closed-Set domain adaptation [94, 98]. The only existing multi-source Open-Set

method, MOSDANET, also includes a specific component for aligning the sources.

HyMOS achieves cross-source adaptation by combining a supervised contrastive

learning loss with a carefully crafted batch sampling strategy: each training mini-

batch includes one sample per class and per domain. The supervised contrastive

loss creates a robust alignment between classes by bringing together samples of the

same class and separating samples of different classes, regardless of the domain. Our

results show that this balancing strategy increases the performance of HyMOS by

2.6% compared to the version without source balancing (as shown in the row w/o

Source Balance).

Source-Target Adaptation. HyMOS uses both style transfer augmentation and an

adaptive self-training process to bring the source and target domains closer without

the risk of negative transfer. By adding target style transfer as one of the source

augmentations, the model is trained to identify visual characteristics that are not

specific to the target domain. We compare the performance of HyMOS extracting

the target style only from the known categories (Style Tr. Target Known (Oracle)).

Our results indicate that HyMOS is not negatively affected by using the entire

target for this adaptation step. Additionally, we also evaluate the performance of

HyMOS without style transfer (w/o Style Transfer), which results in a 3.6% drop

in performance, demonstrating its crucial role of style in HyMOS. Finally, the self-

training process is responsible for creating a robust alignment between source and

target features, by selecting samples from the target that are confidently identified as

known (those closest to the source class prototypes) and incorporating them into the

learning objective. The performance of HyMOS improves by 2.9% when compared

to its version without this strategy (w/o Self-Training).

Comparison with an Improved Cross-Entropy Baseline. Source balance, style

transfer, and self-training are relatively straightforward techniques that can be used
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with any supervised learning model to enhance its performance in multi-source

Open-Set scenarios. However, we believe that the use of supervised contrastive

learning and its associated hyperspherical embedding is essential for this task. To

demonstrate this point, we replaced the contrastive loss in HyMOS with the standard

cross-entropy loss. The results of this experiment (Improved cross-entropy) show

that this simple baseline approach performs significantly worse than HyMOS.

Comparison with an improved version of ROS [19]. We also enhanced our closest

competitor, ROS, by incorporating the same techniques used in HyMOS: source

balancing, style transfer, and self-training. The results in the lower portion of Table

5.4 show that organizing the training data to include equal amounts of categories and

source domains from different datasets in each mini-batch (+ Source Balance) does

not lead to an improvement in the performance of the standard version of ROS. This

is because, unlike contrastive learning, the cross-entropy loss does not inherently

promote clustering and adaptation between sources. When ROS is augmented with

style transfer (+ Style Transfer) it performs poorly: we observed a slight improvement

in the recognition accuracy of known classes, but a significant decline in the accuracy

of unknown class, resulting in a decrease in the overall performance. We also tried

to extend ROS with self-training (+ Self-Training), following the approach used in

[138] but this also leads to a drop in performance: the self-training process tends to

propagate recognition errors caused by the overconfidence due to the use of cross-

entropy loss. While self-training can introduce dangerous model drift, recent research

has shown that it can be effective and safe when sample selection is performed using

a self-paced strategy based on the distribution of unlabeled samples, similar to the

approach used in HyMOS [268]. Finally, when all the strategies are used together,

the results are comparable to those obtained when using style transfer alone. This

last technique clearly steered the whole method towards a low performance.

5.1.4 Extension to Closed-Set and Universal

HyMOS is versatile and can be applied to various domain adaptation settings in-

cluding the simpler multi-source Closed-Set scenario where there is a complete

overlap between the source and target classes and the more complex multi-source

Universal case where both the sources and target can have their own unique classes.

To evaluate these settings, we use the DomainNet dataset following the experimental

protocols outlined in previous literature, such as [266] for Closed-Set and [262] for
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Universal. In the latter case, we used the first 150 classes in alphabetical order as

shared classes between sources and target, the next 50 categories as unique classes

of the sources, and the remaining classes as the unknown categories in the target. For

the Closed-Set scenario, we compare with LtC-MSDA [267] and DRT [266] which

leverage respectively on a graph connecting domain prototypes, and on a dynamic

transfer that updates the model parameters on a per-sample basis. The results of

these methods are summarized in Table 5.5 and show that HyMOS performs very

well compared to several state-of-the-art methods also in these two scenarios.

5.1.5 Computational Cost

In Table 5.6 we show the computational cost of our proposed approach and its best

competitor ROS [19] for the experiments in Table 5.2. Our analysis shows the total

number of FLOPs (Floating Point Operations) required for a single forward pass of

the network, the training, and the inference time (in milliseconds). HyMOS shows a

significantly higher number of FLOPs and training time than ROS since it uses two

different networks: one for the main contrastive learning task and one to produce

target-like source images. However, HyMOS has the best performance with the same

inference time as ROS so it could be a preferable choice when priority is given to

high accuracy even at the cost of longer training.

Table 5.6 Cost analysis on Office-31 with ResNet-50 in MOSDA setting. Hardware - CPU:

Intel(R) Core(TM) i7-9800X CPU @ 3.80GHz, GPU (x1): Nvidia TITAN Xp.

Cost analysis

FLOPs Training Time (ms) Inference Time (ms) HOS (Avg.)

HyMOS 7.68×1010 8.89×107 3.31 80.30

ROS [19] 4.19×109 4.53×107 3.51 75.50

5.1.6 Conclusions

In this section, we presented HyMOS, a novel approach for multi-source Open-Set

domain adaptation. By utilizing supervised contrastive learning and the inherent

properties of the hyperspherical feature space, it overcomes the limitations of current

approaches. HyMOS includes a tailored data balancing to enforce cross-source

alignment and introduces style transfer among the instance transformations for
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source-target adaptation, keeping away from the risk of negative transfer. Finally, a

self-training strategy refines the model without the need for manually set thresholds

Through extensive experimentation, we demonstrate that HyMOS outperforms cur-

rent state-of-the-art methods on three benchmarks providing a detailed analysis of its

inner workings. Additionally, by testing the approach in the multi-source closed-set

and universal scenarios, we confirmed its effectiveness proposing a valuable tool for

lifelong learning in real-world applications.
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5.2 ReSeND: Semantic Novelty Detection via Rela-

tional Reasoning

Reproduced with permission from Springer Nature: Borlino, F. C., Bucci, S., & Tom-

masi, T. Semantic Novelty Detection via Relational Reasoning. European Conference

on Computer Vision (pp. 183-200). Springer, Cham (ECCV 2022)

In safety-critical fields like autonomous driving and healthcare, the ability to

detect previously unseen categories as unknown is crucial for reliable performance.

Researchers have proposed various approaches to improve deep learning models’

ability to handle novel categories: by calibrating the softmax output of the classifier

[145, 144, 149], by using generative approaches to synthesize outlier examples or

by incorporating energy-based models to the learning process [157, 158, 154±156].

Despite the effectiveness of these techniques, they have a notable limitation: they all

require a reasonably large set of reference data to learn what is known. When data

access is limited due to privacy concerns or when dealing with computational and

memory constraints (e.g. edge computing), these strategies may not be feasible. In

this section, we focus on the pre-training stage: instead of using traditional cross-

entropy-based approaches [219] or self-supervised contrastive learning strategies

[40, 172], we can use ImageNet [214] to optimize a relational reasoning objective

to obtain a more reliable embedding for novelty detection (see Fig. 5.5). Our goal

is to achieve a semantic similarity measure that can accurately determine whether

two samples belong to the same class or different ones. As a result, we focus

on building a representation that is specifically designed for semantic comparison,

which doesn’t require additional fine-tuning steps on the task-specific annotated data.

This representation will be able to differentiate known and unknown categories by

comparing each test sample to the reference class prototypes. Not only is our method

efficient, but it also provides a simple solution for converting closed-set models to

open-set ones by adding a plug-and-play rejection option for unknown classes. This

allows for easy integration and implementation in various applications.

In summary, our focus is on Semantic Novelty Detection (SeND) and we propose

ReSeND, a representation learning approach, based on Relational Reasoning, that

can be directly applied to real-world applications without the need for fine-tuning.

In particular, our contributions are:
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Fig. 5.5 Comparison between standard supervised learning and relational reasoning represen-

tation learning. Standard supervised learning focuses on recognizing known object classes,

while relational reasoning representation learning aims to learn a measure of semantic simi-

larity among image pairs. We show that relational reasoning is particularly well-suited for

semantic novelty detection tasks. Our pre-trained large-scale relational model can be applied

to these tasks without the need for a fine-tuning phase on the known classes specific to the

task.

• we conduct a comprehensive experimental analysis on the capability of various

representation learning approaches to handle the task of SeND, examining

their potential and limitations;

• we propose ReSeND and evaluate it in multiple scenarios, including both

intra- and cross-domain settings varying ratios of unknown classes in the test

data. Our results, obtained through a comprehensive benchmark with various

competitors, demonstrate the effectiveness and efficiency of our approach;

• we demonstrate how ReSeND can be used as a plug-and-play module in

closed-set domain generalization approaches, effectively converting them into

open-set domain generalization strategies and setting a new state-of-the-art.

5.2.1 Method

Notation and background. In Semantic Novelty Detection, we have two datasets:

a Support Set containing labeled samples S = {xs,ys}K
k=1 drawn from the distribu-

tion pS, and a Test Set containing unlabeled samples T = {xt}H
h=1 drawn from the

distribution pT . The main difference between pS and pT is a semantic shift, with

ys ∈ Ys, yt ∈ Yt and Ys ̸= Yt . The two sets of classes can be completely disjoint

Ys∩Yt = /0, or partially overlapping Ys ⊂ Yt . In the following, we will refer to Ys as

the known classes, and use the term unknown to refer to the test classes Yt\s that are

not present in the support set. The distribution difference between support and test
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sets can be also due to variations in the appearance of the samples, but the class

content remains unchanged. A robust semantic novelty detector should be able to

distinguish between known and unknown samples in the test set, despite the domain

shift. Given a test sample xt , the detector D should be able to output a score in the

range of [0,1] that indicates whether the sample is known (high score) or unknown

(low score). Following the traditional approach, the detector can be formulated as

D : {Ctrain(I),Ntrain(S),Neval(x
t)}. In this process, at first, a robust representation

is obtained by training a classification model C on a large-scale dataset such as

ImageNet1k [214] using the samples (xi,yi)
I
i=1. This representation is then used by

the model N, which is further fine-tuned with the support set to gather the definition

of normality from the data. The training objective is typically a simple classifica-

tion task, and the final evaluation of N on the test set is done using a Maximum

Softmax Probability (MSP) approach, where score = maxc∈Ys
p(y = c|xt). We want

to highlight that the fine-tuning process requires a computational cost that may not

be feasible on edge devices. Moreover, in the long term, its catastrophic forgetting

effect reduces the original large-scale knowledge, as well as the ability to anticipate

potential semantic anomalies [269]. Thus, carefully designing the representation

learning approach and choosing how the pre-trained model should be applied for

the downstream task is crucial. We propose to change the learning paradigm for the

semantic novelty detector so that it can be written as D : {Rtrain(I),Neval(S,x
t)}. The

first component, R, is a representation learning model that uses relational reasoning

and is trained on the ImageNet1k dataset. The embedding obtained from this model

is then directly used by the evaluation system to compare each test sample with the

support set, determining its normality score.

Representation Learning via Relational Reasoning. In our proposed approach

R is made of a feature extractor fθ and a relational module rγ . When a pair of

samples (xi,x j) from the dataset I is fed through the model, it first goes through the

feature extractor, obtaining the features (zi = fθ (xi),z j = fθ (x j)) then passed to the

relational module rγ . The output of this module serves as the input for the semantic

similarity head cδ , which is a fully connected layer. It returns σi j = cδ (rγ(zi,z j)) ∈

[0,1], representing a semantic similarity measure and can be interpreted as the

likelihood of the two input samples belonging to the same category. The entire

representation learning model is trained with a regression objective. Specifically, for

each data pair, we assign the label li j = 0 if yi ̸= y j and li j = 1 otherwise, and the
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Fig. 5.6 Schematic illustration of the training phase of ReSeND. The features extracted from

a pair of images are provided as input to our relational module. It consists of a transformer

encoder that elaborates over a tuple composed of the sample pair and of a learnable label

token. The output corresponding to this last token is finally provided as input to a semantic

similarity head that predicts the sample resemblance.

mean squared error (MSE) loss is minimized:

argmin
θ ,γ,δ

M

∑
m=1

(σm− lm)
2 , (5.6)

where the index m specifies the pairs (xi,x j) with i ̸= j and xi,x j ∈ I.

Despite the ground truth supervision being only at the extremes of the prediction

interval, our goal is to learn a semantic similarity measure in the continuous range of

[0,1]. Given that, the regression loss is well-suited for the task, but the problem could

also be cast as binary classification. In the experimental section, we compare these

two approaches and provide empirical evidence of the benefits of using regression.

Evaluation Process. Starting from the learned embedding, the component Neval has

a straightforward role of comparing each test sample with the reference support set,

without any additional training phase. Neval uses the relational module and inputs data

pairs made by the features of each test sample zt = fθ (x
t), and the set of per-class

prototypes zs
ys ∀ ys ∈Ys which are obtained as the average of the samples of each class

in the support set. We compute a vector of similarities between the test sample and

each known class prototype by passing the pair (zt ,zs
ys) through the relational module

and the semantic similarity head. The resulting vector u has |Ys| elements, each

representing the similarity of the test sample to a known class. This vector is then

passed through a softmax function to normalize the similarities and the maximum

value (MSP) is selected as the final normality score: score = max(so f tmax(u)).

Relational module. With respect to other standard components of deep neural

networks that process single samples, the peculiarity of the relational module is that
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it receives pairs of inputs and gives information about their similarity. Additionally,

the relational module should be symmetric: the order of the input samples should

not affect the output of the network. Given its inherent permutation-invariance and

its ability to compare multiple inputs, we choose to implement our relational module

using a simple transformer encoder. It comprises B identical blocks, each consisting

of Multi-Head Self-Attention (MSA) and Multi-Layer Perceptron (MLP), both

preceded by Layer-Norm (LN) modules and connected by residual skip connections,

as illustrated in the right part of Fig. 5.6. In the architecture of the relational module,

the input feature vectors pair is combined with a learnable label token to make the

tuple [zl,zi,z j], which is then fed into the transformer encoder. It processes this

input and produces the output sequence [vl,vi,v j]. It’s important to note that in this

architecture, each image is considered as a single input token to the transformer,

similar to the approach used in previous works like [270]. To maintain permutation

invariance, we do not include positional embeddings in our transformer encoder. In

our implementation, we use a ResNet18-based backbone for the feature extractor fθ

selecting vl as the output of the relational module, then passed through the similarity

head cδ producing a semantic similarity score σi j. Alternative architectures for the

relational module are also evaluated in the experimental section.

5.2.2 Experimental Setup

ReSeND is a new approach for OOD fully based on representation learning. We

claim that the embedding space learned through relational reasoning is particularly

suitable for detecting novel classes by comparing test samples with the support

set, which represents the reference normal condition. Since this logic substantially

differs from that of previous works in OOD, there are several questions that we need

to answer with experimental validations

Are existing representation learning approaches effective for the SeND task? (see Sec.

5.2.3) Our research focuses on the data representation obtained through a model pre-

trained on ImageNet1k. We consider several advanced learning methods applying the

same prototype-based evaluation approach used in ReSeND. The method involves

identifying each class prototype of the support set by computing the average of its

sample’s feature representation. Additionally, we determine the normality score for

each test instance by measuring its similarity to the closest known class centroid.
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Our study analyzes two families of approaches. Within the cross-entropy-based

classifiers, we consider this loss applied to ResNet [219] and ViT [146] architectures,

as well as the data augmentation-based approach CutMix [166]. The second group

of approaches is made by contrastive learning-based techniques, specifically, we

consider the self-supervised approaches SimCLR [40] and CSI [169], as well as

their supervised counterparts SupCLR [41] and SupCSI [169]. To determine the

relationship between each test sample and the class prototypes, we use two different

similarity measures: the Euclidean similarity (which is the inverse of the Euclidean

distance [271]) and the cosine similarity. These measures are applied, respectively,

to the cross-entropy and contrastive learning-based approaches. It is worth noting

that these methods have been previously applied for anomaly and novelty detection

[167, 272, 273]. However, in these previous works, a training phase on the support

set was always necessary. In contrast, our approach only uses ImageNet1k to obtain

the learned representation. It’s important to note that the various approaches used

in our study have different learning objectives but all of them use ResNet101 [219]

architecture as their backbone. The ResNet101 has 44 million learnable parameters,

which is comparable to ReSeND’s 40 million (11 million for fθ , 29 million for

rγ + cδ ). The only exception is made by ViT, which is an example of a Vision

Transformer suggested for OOD in [272]. In that case, we use the Vit-Base (86

million parameters) implementation from [274].

Is the learned embedding robust to domain variations? (See Sec. 5.2.3) ImageNet1k

is made by images of real-world objects and it’s crucial to examine if the relationships

encoded in the learned embedding are still applicable when the ultimate goal is to

recognize new classes in vastly different contexts, such as texture images or sketches.

We evaluate the performance of our method under two levels of difficulty. The

first level is made by a domain shift between pre-training and the downstream task,

which means that the support and test sets come from a different domain than that

of ImageNet1k. The second level of difficulty is characterized by a domain shift

between the support and test sets. The support set can be made up of data from one

or multiple source domains, while the test set is from an even different target domain.

We use multiple datasets to conduct an extensive analysis of the performance of our

method.

How does ReSeND compare with state-of-the-art OOD methods? (See Sec. 5.2.3)

Given that ReSeND does not require access to the support set during training, but
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instead relies on it during evaluation, we can measure the amount of time and com-

putational resources it uses in the evaluation stage and apply the same resources

to the training phase of existing state-of-the-art OOD approaches. We evaluate

ReSeND against the following baselines: MSP [145] which uses the standard maxi-

mum softmax probability, ODIN [144] a straightforward approach that uses input

perturbation and temperature scaling, Energy [149] which uses an energy score for

OOD uncertainty estimation, GradNorm [150] which is based on test-time extracted

gradients to detect out-of-distribution samples, the ViT-based approach OODFormer

[272] and two approaches that use tailored metric estimation: Mahalanobis [163]

and Gram [164].

Can ReSeND provide unknown detection abilities to closed-set approaches? (See

Sec. 5.2.3) ReSeND is a plug-and-play module that can be used to enhance existing

close-set approaches, allowing them to work in open-set conditions without the

need to train on the support set. We investigate the open-set domain generalization

(Open-DG) scenario presented in [140] and demonstrate how ReSeND can improve

the performance of existing methods. In addition to DAML, which was introduced

in [140], we evaluate the state-of-the-art multi-source closed-set DG method SWAD

[101], which aims to find flat minima in the learning objective function, as well as

two single-source closed-set methods: SagNet [275], which separates shape and

style in image features to decrease style bias, and Diversify [104], which generates

images with unseen styles.

5.2.3 Experiments

In this section, we present and discuss the results of our experimental analysis. We

evaluate the performance of ReSeND using two metrics: AUROC (Area Under

the Receiver Operating Characteristic curve) obtained by varying the normality

decision threshold, and FPR95 false positive rate of out-of-distribution examples

when the true positive rate of in-distribution examples is at 95%. In addition, for the

open-set DG experiments, following [140], we also consider the overall accuracy

on known samples (Acc) and the harmonic mean between accuracy on known

classes and unknown detection accuracy (H-score). Implementation1 details and

1The code is available at https://github.com/FrancescoCappio/ReSeND
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Table 5.7 Intra-Domain analysis. Best result in bold and second best underlined.

Rep. Learning Network
Texture Real Sketch Painting

AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

Cross Entropy ResNet [219] 0.678 0.892 0.710 0.860 0.553 0.936 0.651 0.926

Cross Entropy ViT [146] 0.562 0.919 0.696 0.833 0.554 0.952 0.681 0.850

CutMix [166] ResNet 0.619 0.922 0.721 0.877 0.542 0.943 0.629 0.927

SimCLR [40] ResNet 0.529 0.942 0.481 0.944 0.502 0.956 0.510 0.956

SupCLR [41] ResNet 0.534 0.947 0.561 0.899 0.532 0.946 0.532 0.933

CSI [169] ResNet 0.651 0.906 0.663 0.887 0.514 0.955 0.621 0.910

SupCSI [169] ResNet 0.652 0.903 0.695 0.875 0.535 0.953 0.652 0.909

ReSeND 0.691 0.859 0.780 0.805 0.623 0.917 0.735 0.829

additional experimental analyses can be found in Appendices B.2.1 and B.2.2. All

the experimental results are averaged over three runs.

Intra-Domain analysis. For the intra-domain analysis, we examine the scenario

where the support and test sets come from the same visual distribution but have

significant differences from ImageNet1k. Specifically, the testbeds were designed to

not have any semantic overlaps with ImageNet1k, meaning that neither the known

nor unknown classes appear in its label set. The texture benchmark, which was

introduced in [15], and has already been used in [276], covers a completely different

data type compared to ImageNet1k (objects vs textures). The Real, Sketch, and

Painting domains are taken from the DomainNet dataset [1], and unlike Texture,

they share the same data type (objects) as ImageNet1k but covering different visual

domains. As shown in Table 5.7, ReSeND achieves the best results, demonstrating its

ability to effectively transfer knowledge. On the Texture benchmark, the second and

third best performing methods are Cross Entropy on ResNet and SupCSI respectively,

however, this ranking is not consistent across all settings and the performance gap in

comparison to ReSeND remains significant, particularly in the case of Sketch and

Painting.

Cross-Domain analysis. In many real-world scenarios, it’s not possible to avoid

a visual domain shift between the training and test data, making the task more

challenging. An efficient semantic novelty detection approach should be able to

handle the domain shift between the support and test sets focusing only on the

semantic content of the data. We evaluate ReSeND against the same baselines as the

previous section considering two different benchmarks built from the PACS dataset

[12]. In this experiment, the images used in the support set come from a single

visual domain, while the test set is composed of images from a different domain.
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Table 5.8 Cross-domain analysis. Top: single-source results, Bottom: multi-source results.

We consider the PACS dataset with all the possible combinations of source/target as sup-

port/test sets. Best result in bold and second best underlined.

Rep. Learning Network

PACS Single-Source

ArtPainting Sketch Cartoon Avg

AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

Cross Entropy ResNet [219] 0.655 0.940 0.519 0.969 0.546 0.958 0.573 0.956

Cross Entropy ViT [146] 0.593 0.895 0.595 0.881 0.500 0.953 0.562 0.910

CutMix [166] ResNet 0.663 0.949 0.372 0.981 0.419 0.980 0.485 0.970

SimCLR [40] ResNet 0.444 0.984 0.945 0.400 0.401 0.988 0.597 0.791

SupCLR [41] ResNet 0.500 0.909 0.176 1.000 0.469 0.919 0.381 0.942

CSI [169] ResNet 0.495 0.987 0.591 0.881 0.433 0.978 0.506 0.949

SupCSI [169] ResNet 0.546 0.976 0.655 0.819 0.567 0.909 0.589 0.901

ReSeND 0.828 0.668 0.576 0.981 0.651 0.891 0.685 0.847

Rep. Learning Network

PACS Multi-Source

ArtPainting Sketch Cartoon Photo Avg

AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

Cross Entropy ResNet [219] 0.575 0.947 0.451 1.000 0.547 0.943 0.361 0.991 0.484 0.970

Cross Entropy ViT [146] 0.611 0.837 0.566 0.944 0.539 0.904 0.932 0.403 0.662 0.772

CutMix [166] ResNet 0.604 0.895 0.411 1.000 0.407 0.975 0.655 0.942 0.519 0.953

SimCLR [40] ResNet 0.461 0.953 0.933 0.663 0.368 0.995 0.739 0.854 0.625 0.866

SupCLR [41] ResNet 0.581 0.898 0.100 1.000 0.499 0.909 0.467 0.995 0.412 0.951

CSI [169] ResNet 0.474 0.984 0.702 0.800 0.560 0.977 0.524 0.946 0.565 0.927

SupCSI [169] ResNet 0.417 0.984 0.660 0.869 0.323 1.000 0.601 0.946 0.500 0.950

ReSeND 0.750 0.820 0.685 0.894 0.660 0.854 0.963 0.181 0.765 0.687

In the single-source case (Table 5.8 top), the support set is always drawn from the

Photo domain, while the test set is taken from the remaining three domains. The

multi-source benchmark (Table 5.8 bottom) is inherited from [140]: each of the four

domains is used as the test set in turn, with the added complexity that the support

set is composed of images from multiple domains that have partial class overlap (as

shown in Fig. 5.7). From our results, we observe that SimCLR performs particularly

well when the test domain is Sketch, but it is outperformed by other approaches

in the other settings. On the other hand, ReSeND consistently achieves top results

across all benchmarks, indicating its robustness to domain shift without any specific

strategy to address it.

OOD with budget-limited finetuning. As previously mentioned, ReSeND does

not require fine-tuning on the support set to perform semantic novelty detection.

Therefore, it is not straightforward to make a fair comparison with existing OOD

approaches which instead require a learning phase on the support set. However,

we believe that it’s important to contextualize ReSeND in the current literature

to provide a clearer overview of its performance. To accomplish this, we focus

on the challenging PACS multi-source setting and compare ReSeND to several
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Table 5.9 Comparison with finetuning-based state-of-the-art OOD methods. Best result in

bold and second best underlined.

OOD Methods

PACS Multi-Source

Fine-Tun. Eval.
ArtPainting Sketch Cartoon Photo Avg

AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

MSP [145] ✓ ✓ 0.617 0.973 0.412 0.998 0.781 0.767 0.752 0.905 0.640 0.911

ODIN [147] ✓ ✓ 0.602 0.977 0.425 0.998 0.785 0.774 0.782 0.912 0.649 0.915

Energy [149] ✓ ✓ 0.583 0.987 0.543 0.996 0.687 0.802 0.845 0.924 0.665 0.927

GradNorm [150] ✓ ✓ 0.637 0.954 0.514 1.000 0.762 0.767 0.851 0.861 0.691 0.896

OODformer [272] ✓ ✓ 0.703 0.929 0.610 0.973 0.776 0.802 0.732 0.773 0.705 0.869

Mahalanobis [163] ✓ ✓ 0.596 0.976 0.559 0.933 0.682 0.909 0.861 0.849 0.665 0.916

Gram [164] ✓ ✓ 0.448 0.962 0.885 0.713 0.536 0.946 0.838 0.579 0.677 0.800

Mahalanobis [163] ✕ ✓ 0.596 0.976 0.466 0.981 0.593 0.926 0.808 0.935 0.616 0.954

Gram [164] ✕ ✓ 0.494 0.960 0.840 0.844 0.494 0.954 0.797 0.981 0.656 0.935

ReSeND ✕ ✓ 0.750 0.820 0.685 0.894 0.660 0.854 0.963 0.181 0.765 0.687

standards and state-of-the-art OOD methods. To ensure a fair comparison, we allow

these methods to fine-tune (refine the original ImageNet1k pre-trained model) on

the support set for the same duration and using the same computational resources

as ReSeND during its prediction phase (∼ 30s on 1 GPU). Mahalanobis [163]

and Gram [164] are both metric-based approaches and their distance between test

samples and the support set can be computed using a non-fine-tuned model (although

this was not the strategy proposed by the authors). For them, we evaluated both

the fine-tuned and non-fine-tuned versions. The results in Table 5.9 demonstrate

that ReSeND outperforms all the other methods, which would need more time

or resources to achieve similar performance. This highlights the effectiveness of

ReSeND as a powerful tool for semantic novelty detection in situations with limited

budget constraints.

Open-set Domain Generalization. The good results obtained by ReSeND in the

evaluated settings suggest that it can be applied to a variety of real-world tasks.

We focus on the challenging open-set domain generalization problem which was

introduced in [140] (Fig. 5.7). In this setting, Multiple source domains are combined

together and their different label sets cause some classes to exist in many more

domains than other classes. The target domain is drawn from a different distribution

with a significant shift in terms of style and semantic content, and it contains more

classes than the source, which should be identified as unknown during test time.

Existing closed-set DG methods are able to learn classification models that generalize

to the unseen target domain containing the same categories of the source. One

common approach to identifying new classes is using a threshold on the Maximum

Softmax Probability (MSP) and classifying samples with uncertain predictions as

unknown, as is done in DAML. This same technique can also be applied to SagNet,
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Source 1 Source 2 Unseen  
Target

Book

Dog

Cup 

Unknown 

Fig. 5.7 Open-Set DG setting

Table 5.10 Open-Set DG experiments.

Single-Source

PACS Office-Home

AUROC Acc H-Score AUROC Acc H-Score

ReSeND 0.685 - - 0.685 - -

SagNet [275] + MSP 0.643 55.85 48.64 0.699 67.58 59.92

SagNet+ ReSeND 0.700 55.85 52.17 0.714 67.58 61.01

Diversify [104] + MSP 0.643 52.06 48.12 0.696 70.49 60.03

Diversify+ ReSeND 0.691 52.06 51.19 0.707 70.49 60.77

Multi-Source

PACS Office-Home Multi-Datasets

AUROC Acc H-Score AUROC Acc H-Score AUROC Acc H-Score

ReSeND 0.765 - - 0.674 - - 0.686 - -

DAML [140] + MSP 0.657 62.85 52.99 0.651 55.28 52.37 0.695 45.90 47.88

DAML+ReSeND 0.722 62.85 57.93 0.683 55.28 54.13 0.720 45.90 49.96

Swad [101] + MSP 0.570 60.52 42.85 0.661 53.49 51.06 0.661 47.90 49.10

Swad+ReSeND 0.700 60.52 57.05 0.682 53.49 52.92 0.682 47.90 50.73

Diversify, and SWAD. However, the results can be further improved by using a

method that is better suited for identifying semantic novelties across domains, such

as ReSeND. We use the source domains as the support set and the target as the

test set. The ReSeND evaluation procedure is applied to the target samples to

obtain a normality score for each of them. These scores are then combined with

the Maximum Softmax Probability (MSP) of reference methods through a simple

ensemble strategy. The ensemble strategy is used because the normality scores

and the MSP results are based on different input features, and combining them

can maximize the final accuracy for unknown class rejection. The obtained results

are presented in Table 5.10. Combining ReSeND with other methods consistently

improves both the AUROC and the H-score, with the accuracy on known classes

remaining unchanged, as ReSeND does not affect predictions on known classes.

5.2.4 Further analysis and discussions

Learnable Relational Module. To evaluate the impact of the design choices for

the relational module in ReSeND, we examine alternative methods for combining

the features of sample pairs. We investigate the effect of replacing our transformer-

based relational module in ReSeND with hand-designed aggregation functions

(Max/Sum/Concat). This approach uses an MLP, with a similar number of learnable

parameters as the transformer-based module, whose output is fed to the final semantic

similarity head. For the Concat case, we use feature concatenation as done in [42]:

it’s important to note that the permutation invariance property of our transformer is

lost when using feature concatenation as the order of the images in the pair impacts
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Table 5.11 Results obtained with different configurations of the relational module. We

compare ReSeND with handcrafted feature aggregation strategies for sample pairs.

PACS - Multi-Source

ArtPainting Sketch Cartoon Photo Avg.

AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

ReSeND 0.750 0.820 0.685 0.894 0.660 0.854 0.963 0.181 0.765 0.687

Aggreg.

Max 0.676 0.899 0.785 0.742 0.616 0.940 0.827 0.786 0.726 0.842

Sum 0.583 0.976 0.446 0.988 0.514 0.996 0.575 1.000 0.530 0.990

Concat 0.676 0.842 0.710 0.790 0.635 0.902 0.921 0.438 0.736 0.743

the final predictions. Table 5.11 shows the results of this analysis on the PACS

multi-source setting. We argue that the superior performance of ReSeND originates

from having learned the feature aggregation function rather than relying on a fixed

approach imposed a priori. However, the Max and Concat methods still achieve good

results, better than the second-best method in Table 5.9, OODFormer (AvgAUROC:

0.705, AvgFPR95: 0.869). This further supports the effectiveness of the relational

reasoning approach for semantic novelty detection. We want to point out that one

of the key features of ReSeND is its capability to simultaneously learn the feature

embedding and the semantic similarity metric through an end-to-end training process.

As noted by Sung et al. [209], this approach has an advantage over other methods that

only learn the feature embedding using a fixed similarity measure (e.g. Euclidean)

[277] or methods that learn a similarity measure using a fixed feature representation

[278, 279].

Regression vs Classification. Sec. 5.2.1 discusses how the relational reasoning

learning paradigm can be approached in two ways: as a binary classification or a

regression problem. We argue that using regression, which results in a continuous

value for semantic similarity, is more appropriate. The main difference between

these two approaches is the behavior of the loss function. Fig. 5.8 shows the trend

of the loss for the two different approaches: classification cross entropy (CE) and

regression mean squared error (MSE). Both methods assign a high loss to a low

probability (p≈ 0) and vice versa. However, when the probability values are very

small, CE is higher than MSE. While the MSE gives more importance through higher

loss values to hard samples belonging to the intermediate probability region, the

CE focuses more on easy samples (p > 0.75) pushing their already high probability

values to the same even higher output. The final result of using CE is that the

difference among samples is minimized, which is not desirable when trying to use

confidence as a semantic similarity metric. In Fig. 5.9, we evaluate the performance

of ReSeND using two different loss functions. We use the same dataset benchmarks
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Fig. 5.9 AUROC comparison with ReSeND trained for clas-

sification through Cross Entropy Loss or for Regression via

MSE. OH stands for Office-Home. SS and MS indicate re-

spectively the Single- and Multi-Source settings.

that were previously used for open-set DG analysis, and we observe that while both

loss functions produce good results, the regression loss consistently outperforms the

classification loss across all benchmarks.

5.2.5 Computational Cost

In Table 5.12 we show the computational cost of our proposed approach and its best

competitor SimCLR [40] for the experiments in Table 5.8. Our analysis shows the

total number of FLOPs (Floating Point Operations) required for a single forward

pass of the network, the training, and the inference time (in milliseconds). The

results show that ReSeND, despite a significantly lower number of FLOPs and faster

training time than SimCLR, has better performance (in terms of AUROC) and faster

inference time. This confirms that ReSeNd represents a great solution in real-world

applications where fine-tuning on the in-distribution is unfeasible.

Table 5.12 Cost analysis on PACS Single-Source experiment. Hardware: i) Inference: CPU:

Intel(R) Core(TM) i7-9800X CPU @ 3.80GHz, GPU (x1): Nvidia TITAN Xp ii) Training 16

units: CPU: Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz, GPU (x1): Tesla V100 SXM2

16GB

Cost analysis

FLOPs Training Time (ms) Inference Time (ms) AUROC (Avg.) FPR95 (Avg.)

ReSeND 3.74×109 7.20×107 3376.67 0.685 0.847

SimCLR [40] 7.84×109 1.98×108 4060.46 0.597 0.791
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5.2.6 Conclusions

In this section, we explored the problem of semantic novelty detection by studying

how conventional representation learning methods can be applied to it. Addition-

ally, we presented ReSeND, a representation learning method that uses relational

reasoning to model semantic similarity between pairs of samples. ReSeND is based

on a basic transformer architecture, and after being trained on ImageNet1k, it can

determine if a test sample belongs to a known or an unknown category by comparing

it to a reference support set without requiring any fine-tuning. Our comprehensive

experimental evaluation demonstrates the efficiency of ReSeND in both intra- and

cross-domain scenarios and its ability to serve as a plug-and-play module, converting

traditional closed-set domain generalization methods into robust open-set approaches

with outstanding results. The ability to accurately identify unknown categories with-

out any training time latency, and thus preventing incorrect annotations, is crucial

for many real-world applications. We believe that our research can open up opportu-

nities for future studies in this area, specifically focusing on new paradigms or more

sophisticated architectures for relational reasoning.
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Algorithm 1 HyMOS training procedure

Input: {xs,ys} ∈S , xt ∈T , αm, AdaIN model

Output: Enc and Pro j

procedure TRANSFORM(x)

styleAugment = random(True,False)
x′ = randomCrop(x)
if styleAugment then

return styleTrans f (x′) ▷ target style

else

return grayScale( jitter((x′)))

procedure CREATEBATCH(D) ▷ D: set of domains

batch = [ ] ▷ balance domains and categories

for each ys in {1, ..., |Cs|} do

for each Di with i in {1, ..., |D|} do

x′(ys,Di)
= trans f orm(x(ys,Di))

batch.append(x(ys,Di),x
′
(ys,Di)

)

return batch ▷ len(batch) = |Cs|× |D|×2

procedure MAIN()

T̂ = [ ]
for it in range(0,end) do

if it in break-points then

T̂ = [ ]
α ← (Eq. 5.4) ; αc = αm ·α
for xt in T do

zt = Pro j(Enc(xt))
hys ← closest prototype to zt

if dhys (z
t)< αc then ▷ self-training

ŷt = ys ; T̂.append(xt , ŷt)

B = createBatch(S .concat(T̂ ))
z = Pro j(Enc(B))
loss = SupClr(z) (Eq. 5.1)

Update Enc,Pro j← ∇loss



Chapter 6

Conclusions

This Chapter summarizes the main contributions and results of this thesis discussing

open issues and future research directions.
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6.1 Summary

Despite the impressive performance that the newest cutting-edge deep architectures

have in visual recognition, they still need a huge amount of data to reach a sufficiently

high level of knowledge generalization. As opposed to humans who with small effort

and a few examples are able to learn general and robust knowledge, these models

struggle to maintain equally good performances on real-world applications where,

typically, there is no guarantee in terms of data distribution.

In this thesis, we tackled this major problem by proposing a new perspective.

Taking inspiration from how humans learn, we proposed to include a self-supervised

objective in the supervised training process. We demonstrated how the joint use

of supervised and self-supervised learning boosts the generalization ability of the

models that learn domain-agnostic regularities of the objects (e.g. shape) moving the

focus from the domain-specific parts (e.g. texture). More specifically the first part of

this thesis (Chapter 3) considered the scenario where only the covariate distribution

shift between the training and test set holds. We show how by using as auxiliary

objectives the jigsaw puzzle/rotation recognition tasks (JiGen, Section 3.1) or RGB-

D reconstruction in multi-modal learning (Tran-Adapt, Section 3.2), it is possible to

considerably boost the recognition performance of the model on the unseen test set.

In the second part of the thesis (Chapter 4), with the extra challenge of having both

data distribution and category shifts, we still exploit the properties of self-supervision

to mitigate the domain gap between train and test data (Section 4.1), while identifying

samples belonging to unknown classes in the test set (ROS, Section 4.2). Finally,

in Chapter 5 we show how relation-based self-supervised approaches allow for

straightforward integration of supervision resulting in robust models for open-set

recognition (HyMOS, Chapter 5.1) and semantic novelty detection (ReSeND Section

5.2).

In conclusion, this thesis demonstrates that exploiting self-supervision jointly

with supervision during the learning process leads the model to focus on the most

relevant information reaching a robust and general knowledge easily applicable

to the open world. Considering the current advancements in edge computing, we

further include a discussion about the computational cost for each proposed approach.

Despite being often overlooked, especially in the current technological revolution, it

represents an essential indicator to assess the limits and potentials of deep models.
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6.2 Open issues and Future Works

While the focus of this thesis is primarily on object recognition, the proposed

supervised and self-supervised learning integration can yield benefits in various

other computer vision tasks as detection or segmentation which are essential for

robotics applications. This would bridge the gap between static AI algorithms used

in virtual environments and real AI agents that can interact with the physical world,

paving the way for more dynamic and adaptive AI systems. In addition, this thesis

explores relation-based self-supervised tasks in an open-world setting, primarily

for unknown detection. However, there is potential for extending the proposed

approaches to lifelong learning, for the continual discovery of novel categories and

progressive knowledge growth. To pursue these new research directions, it may

be necessary to supplement vision-based approaches with natural language also

facilitating human-machine interaction.

Indeed, besides being popular in computer vision, self-supervised objectives are

also largely employed to build large language models (e.g. GPT-4 [280]) which are

pioneering the current AI revolution. As extensively discussed in this thesis, the

major limitation of vision models is their inability to manage changes in domain

and image semantic content. In this respect, natural language could represent the

extra modality needed to close this knowledge gap. Generative multi-modal models

like DALL·E 2 [281] could be used to synthesize new images with the right style

or semantic content from a simple text prompt. The use of natural language across

domains has some examples in the recent literature [282, 283], however, future works

may investigate a broader perspective, considering the design of a totally autonomous

system able to merge vision and language without any priors about the challenges that

it is going to meet [258]. The embedding space resulting from the combination of

vision and language has the potential to capture common sense knowledge producing

image features agnostic to the specific visual domain [284, 285]. Moreover, the

learned representations are highly effective in capturing the notion of similarity thus

mitigating the out-of-distribution (OOD) problem [286]. Considering the complexity

and expressive potential of language, it is expected that this type of research will

have significant impacts also on more challenging tasks like those involving videos

[287, 288], 3D learning [289] or robotic control [290, 291].

Furthermore, language could allow easier interactions with humans promoting

explainability and model transparency [292±294]: if the decision of an AI agent is
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explained in words, a human could provide auxiliary information to correct the cause

of possible errors improving the trustworthiness and fairness [295] of AI systems.

Overall, adaptability, generalization, and being ready to adapt to novelty are key

aspects of developing reliable AI systems, so we believe that the topics and methods

discussed in this thesis will remain relevant references for future research.
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Appendix A

Open-Set Cross-Domain Learning

A.1 ROS

A.1.1 Further implementation Details

This section contains extensive implementation details of our method ROS, including

the parameters used for running all experiments. Our experiments were conducted

on Office-31 [7] and Office-Home [4] datasets using ResNet-50 [219] and VGGNet

[259] as backbones. For a visual representation of our architecture, please refer to

Figure 4.3 in Section 4.2.

Encoder E, ResNet-50: it consists of all the layers of a standard ResNet-50 up

to the average pooling layer. We update only the last convolutional block with a

learning rate of 0.0003 starting with the pre-trained model on ImageNet [214].

Classifiers C1, C2, ResNet-50: both models consist of two Fully Connected (FC)

layers. The first one has output 256 followed by a Batch Normalization layer [296]

and a Leaky-ReLU activation function with a negative slope angle of 0.2. The second

one has a different output size in function of the classifier: for C1, it has |Cs| outputs,

while for C2, it has |Cs|+1 outputs (including the unknown category). All layers are

trained from scratch using a learning rate of 0.003.
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Rotation classifiers R1, R2, ResNet-50: their structure is the same as the classifiers

described above. In particular, R1 has the output size of 4×|Cs| and R2 4. All the

layers are trained from scratch with learning rate 0.003.

Stage I and Stage II, ResNet-50: in Stage II, we used the network trained in

Stage I as a starting point. We know that, for the semantic classifier, the category set

increases by one. To account for this, we set the learning rate of the new unknown

class to twice that of the known classes (which were already learned in Stage I).

Encoder E, VGGNet : it is composed by all the layers of a standard VGG-19 up

to the second fully connected layer. We start from the encoder model pre-trained

on ImageNet [214] and we update only the last two FC layers, finetuning it with

learning rate 0.0003.

Classifiers C1, C2, R1, R2, VGGNet : they have exactly the same structure used

for the ResNet-50 case described above.

Stage I and Stage II, VGGNet : The network trained in Stage I is not used as

starting point for Stage II. Still we consider the learning rate of the extra unknown

class in Stage II higher with respect to the other classes (1.5), but lower than the

value used in case of ResNet-50 (2), where Stage II was inheriting the model of

Stage I. We also tried to inherit the Stage I model for Stage II as done in the ResNet

case, but for VGG that setting produced lower results.

Office-31, ResNet-50 : we trained our model using a batch size of 32 and a learning

rate defined as specified above, which decreases during training with inverse decay

scheduling. We used Stochastic Gradient Descent (SGD) with a weight decay of

0.0005 and momentum of 0.9. The loss weights were set as follows: λ1,1 = λ2,2 = 3

and λ1,2 = λ2,1 = 0.1. We trained for 80 epochs the Stage I and for 80 epochs the

Stage II. Each experiment was repeated three times, and the result on the target was

taken at the last epoch.

Office-31, VGGNet : we trained our model using a batch size of 32 and a learning

rate defined as specified above, which decreases during training with inverse decay
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scheduling. We used Stochastic Gradient Descent (SGD) with a weight decay of

0.0005 and momentum of 0.9. The loss weights were set as follows: λ1,1 = λ2,2 = 3

and λ1,2 = λ2,1 = 0.1. We trained for 100 epochs the Stage I and for 200 epochs the

Stage II. Each experiment was repeated three times, and the result on the target was

taken at the last epoch.

Office-Home, ResNet-50 : we trained our model using a batch size of 32 and

a learning rate defined as specified above, which decreases during training with

inverse decay scheduling. We used Stochastic Gradient Descent (SGD) with a

weight decay of 0.0005 and momentum of 0.9. The loss weights were set as follows:

λ1,1 = λ2,2 = 3 and λ2,1 = 0.1. Compared to the previous datasets, adding the center

loss to the rotation classifier R1 seemed less relevant for this dataset. However, we

kept it in the optimization process with a low weight of λ1,2 = 0.001. We trained for

150 epochs the Stage I and for 45 epochs the Stage II. Each experiment was repeated

three times, and the result on the target was taken at the last epoch.

It is worth mentioning that we used essentially the same set of parameters for all

experimental settings. This demonstrates that our method can generalize well across

different datasets and network architectures without requiring specific finetuning of

hyperparameters.

A.1.2 Reproducibility Study

In this section, we expand the reproducibility study presented in Section 4.2 by

including additional results obtained on the Office-Home dataset. In Table A.1, we

provide a comparison of results reported in the official papers of STA [24], OSBP

[260], and UAN [258] on the Office-Home dataset. We focus on the OS accuracy

metric since it is the only one that is reported by all three works. We replicated the

specific settings described in the original publication for UAN. Specifically, for the

Office-Home dataset, the first ten classes in alphabetic order are shared between

the source and target domains, the next five are private source classes, and all the

remaining ones are private target classes. In the case of Office-31, the first 10 classes

are shared between the source and target, the next 10 are private source classes, and

the remaining ones are private target classes. It is worth noting that despite using the
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Table A.1 The OS accuracy (%) reported in the papers compared to the one obtained in

our reproducibility study. The results show the average over three runs and across all sub-

domains of Office-31 and Office-Home with the indicated backbones.

Reproducibility Study

Office-31 (ResNet-50) Office-31 (VGGNet) Office-Home (ResNet-50)

STAsum UAN OSBP STAsum UAN

OSreported OSours gap OSreported OSours gap OSreported OSours gap OSreported OSours gap OSreported OSours gap

92.9 90.6±1.8 2.3 89.2 87.9±0.03 1.3 89.1 84.2 ±0.4 4.9 69.5 63.3±2.1 6.2 77.0 75.1 ±0.2 1.9

code provided by the authors and following the instructions of the official papers, our

results are lower than those reported, with gaps ranging between 1.9% and 6.2%.

To ensure complete transparency, we provide here a summary of all the im-

plementation details, code, and hyper-parameters used for running the competitor

methods.

STA [24] https://github.com/thuml/Separate_to_Adapt

The code provides instructions on how to run STA for the A→D domain shift of

Office-31 using ResNet-50 as the backbone. In Stage I, we trained for 900 iterations

(400 for the multi-binary classifier and 500 for the known/unknown classifier),

followed by 1900 iterations in Stage II. We used a batch size of 32, SGD with

momentum of 0.9, and weight decay set to 0.0005. We used the inverse scheduling

for the learning rate that is set as 0.001 in Stage I and 0.0005 in Stage II (10 times

smaller for finetuned layers). It’s worth noting that since the paper doesn’t distinguish

between Office-31 and Office-Home regarding hyper-parameters, we used the exact

same values for the experiments on Office-Home. It should be noted that there

is some ambiguity regarding the specific value of the learning rate for STA. The

paper suggests that the learning rate can be fine-tuned within the range of 0.001,1

using cross-validation. However, the code does not include any validation procedure,

making it unclear how this parameter should be optimized. Furthermore, the learning

rate value used for Stage II in the code falls outside the range specified in the paper.

In our experiments, we consistently used the learning rate value provided in the code,

without further adjustments. We also noticed other inconsistencies between the paper

and the code. For example, the paper indicates that in Stage I, the feature extractor is

fine-tuned on the source samples, while in the code, the feature extractor is frozen

with the pre-trained weights from ImageNet. Furthermore, as we have mentioned

in Section 4.2, the paper describes a similarity score based on the max operator,

while the code uses the sum operator. Lastly, although the paper reports results using
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VGGNet, the code for this variant is not available, and the paper does not provide

specific information about it, making difficult to reproduce the experiments.

OSBP [260] https://github.com/ksaito-ut/OPDA_BP

This repository contains the implementation of OSBP using both VGGNet and

ResNet-50 backbones. Specifically, the instructions report how to run OSBP on the

VisDA-2017 dataset [13] with VGGNet. Regarding the experiments on Office-31

with VGGNet, we used the provided implementation and followed the OSDA paper’s

instructions using a batch size of 32, SGD with momentum 0.9, learning rate 0.001,

and weight decay 0.0005. We trained only the new layers for 500 epochs, while the

pre-existing ones were frozen with ImageNet weights. Regarding the experiments

done using ResNet-50, we used batch size 32, learning rate 0.001, 300 epochs for

Office-Home, and 500 epochs for Office-31. Since the authors highlighted that the

library version could significantly affect the results, we used exactly their declared

version (Pytorch 0.3), for all the experiments.

UAN [258] https://github.com/thuml/Universal-Domain-Adaptation

This repository includes the UAN implementation with ResNet-50 as backbone. The

repository contains specific files that provide instructions to run experiments on both

Office-31 and Office-Home. Specifically, for Office-31, the model was trained for

20000 iterations with a batch size of 36, SGD with momentum 0.9, learning rate

0.001 for new layers and 0.0001 for finetuned layers using inverse scheduling and

weight decay 0.0005. For the Office-Home experiments, the model was trained for

40000 iterations with a batch size of 36, SGD with momentum 0.9, learning rate

0.01 for new layers and 0.001 for finetuned layers using inverse scheduling and

weight decay 0.0005. It is important to note that the original evaluation process

implemented in the official code saved the UAN performance on the test data at each

epoch and presented the best accuracy (OS) at the end of the training. This is not a

standard procedure, and to avoid its potentially unfair positive effect, we provide the

results obtained after the last epoch, as done for all other benchmark methods in our

experiments.
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Office-Home (Avg.)

40 known classes 25 known classes

OS OS* UNK HOS OS OS* UNK HOS

STAsum[24] 53.9±1.7 53.5±1.7 71.1±3.0 60.1±1.7 63.5±2.6 63.3±3.3 65.1±2.2 61.4±1.5

OSBP[260] 56.3±1.6 55.9±1.6 71.8±3.6 62.3±1.8 61.4±2.5 61.0±2.8 64.2±2.8 62.0±2.8

ROS 56.2±1.2 55.9±1.2 71.1±2.8 62.1±1.8 59.9±1.9 59.5±1.9 70.4±4.0 63.9±2.7

10 known classes 5 known classes

OS OS* UNK HOS OS OS* UNK HOS

STAsum[24] 72.5±5.8 73.8±6.6 61.4±14.5 62.5±8.6 74.4±2.8 78.9±6.3 52.1±17.7 57.5±12.3

OSBP[260] 73.6±5.7 76.2±5.7 47.9±4.8 58.0±5.1 72.3±4.9 82.5±5.6 21.5±1.6 33.3±2.6

ROS 69.9±5.2 68.9±5.5 78.9±2.9 73.0±4.4 73.4±6.7 71.1±7.6 86.3±2.7 77.2±5.9

Fig. A.1 Accuracy (%) averaged over the three configurations designed for each degree of

openness considered: with 40, 25, 10 and 5 known classes. The table reports in details the

values used to prepare the plots

A.1.3 Extended Openness Analysis

Following the openness analysis in Figure 4.7 (Section 4.2), we further evaluate

a scenario with lower openness, involving 40 known classes (corresponding to an

openness score of O = 1− 40
65

= 0.38), using ID:0-39, 15-54, 25-64. Figure A.1

shows the results, which confirm the trend observed in Section 4.2. Given the low

UNK and HOS results of UAN, we did not include this method in the ablation

analysis and focused only on the two best competitors of ROS, OSBP and STA.

A.1.4 Sensitivity analysis of the hyper-parameters

To evaluate how changes in hyper-parameter values affect the performance of ROS,

we did a sensitivity analysis on Office-31 using ResNet-50 as backbone. The results

are shown in Figure A.2. Our analysis demonstrates that ROS is not highly sensitive

to variations in hyper-parameter values, with only λ2,1 resulting in HOS variation

of more than 1.0. It is worth noting that the entropy weight can be safely set to

0.1 without the need for hyper-parameter tuning, as previously done in [33, 24, 53].

Regardless of the specific hyper-parameters used, ROS consistently outperforms

its closest competitor, OSBP (with HOS = 83.7), thus confirming that the superior

performance is mainly due to algorithmic innovation rather than hyper-parameter
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Fig. A.2 Hyper-parameter analysis

Table A.2 Analysis on the use of self-supervised tasks for the two stages of the method and

further ablation.

Other Self-Supervised Tasks & Ablation Study

STAGE I (AUC-ROC) A→W A→ D D→W W→ D D→ A W→ A Avg.

ROS 90.1 88.1 99.4 99.9 87.5 83.8 91.5

ROS - Translation 80.8 74.9 82.2 98.8 72.0 79.1 81.3

ROS - Rotation+Translation 82.4 79.3 99.0 99.4 82.6 82.8 87.6

ROS - 4-Class Rotation 58.7 57.2 70.0 78.4 55.8 56.9 62.9

STAGE II (HOS) A→W A→ D D→W W→ D D→ A W→ A Avg.

ROS 82.1 82.4 96.0 99.7 77.9 77.2 85.9

ROS - Jigsaw 83.1 79.3 93.5 100.0 75.5 76.1 84.6

ROS - Rotation+Jigsaw 85.7 80.5 95.0 100.0 76.0 76.7 85.7

ROS Stage I - λ2,1 = 0 Stage II 79.4 82.0 95.3 99.6 75.1 72.5 84.0

ROS Stage I - ROS Stage II+Center Loss 79.6 82.8 95.1 99.5 77.8 76.3 85.2

tuning. Additionally, we underline that we used the same hyper-parameter values

for all 18 domain pairs, demonstrating that the choice of hyper-parameter values is

robust across datasets. Lastly, we note that ROS has a similar number of parameters

compared to other competing approaches. While λ1,1 and λ2,2 are defined separately,

they are actually constrained to the same value. Therefore, ROS has a total of three

parameters, plus two for the training iterations, which is the same as the most recent

AoD method (as shown in Equation (3) of [132]).
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Algorithm 2 Compute normality score and Generate Dknw
t & Dunk

t

Input:

Trained networks E and R1

Target dataset Dt = {x
t
j}

Nt

j=1

Output:

Known target dataset Dknw
t = {xt,knw

j }
Nt,knw

j=1

Unknown target dataset Dunk
t = {xt,unk

j }
Nt,unk

j=1

procedure GETROTATIONSCORE(z,i)

o = zeros(|Cs|) # vector of |Cs| zeros

for each k in {1, ..., |Cs|} do

[o]k = [z]k×4+i # [a]b indicated the b-th element of vector a

return o

procedure GETENTROPYSCORE(z)

return z · log(z)/ log(|Cs|)

procedure GETNORMALITYSCORE(E,R1,Dt)

for each xt
j in Dt do

Initialize: h = {}, o = zeros(|Cs|)
for each i in {1, ...,4} do

x̃ j = rot90(x j, i)
z j = softmax

(

R1(E(x j)||E(x̃ j))
)

h← getEntropyScore(z j)
o += getRotationScore(z j, i) # element-wise sum of vectors

h = mean(h)
o = max(o)
N ← η j = max(o,1−h)

return N

procedure MAIN( )

Initialize: Dknw
t = {}, Dunk

t = {}
A = getNormalityScore(E,R1,Dt)
for each (x j,η j) in (Dt ,N ) do

if η j ≥ mean(N ) then

Dknw
t ← x j

else

Dunk
t ← x j
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A.1.5 Other Self-Supervised Tasks and Further Ablation

Our goal is to demonstrate that it is possible to address both sub-tasks of OSDA

(known/unknown separation and domain alignment), using a single self-supervised

task. Based on previous research on CSDA [191, 33] and anomaly detection [137,

168, 297], rotation classification clearly emerges as the most reliable candidate for

our purpose.

To support our claim, we did additional experiments on Office-31 (ResNet-50)

using different self-supervised tasks. We used translation classification for anomaly

detection (Stage I) based on [137] and jigsaw puzzle for domain alignment (Stage II)

based on [33]. Table A.2 shows the results of these experiments: rotation recognition

outperforms both the alternative tasks and the combination of them.

We also confirm the crucial contribution of the multi-rotation task instead of

the standard 4-Class task in Stage I. The results are shown in Table A.2, which

shows that the AUC-ROC decreases by a remarkable 28.6% when using the standard

rotation task. For consistency, we kept the anchor (relative rotation) in the 4-Class

experiment as well.

Since using the entropy loss in the object classification process across domains is

standard practice, we did not include an ablation for Stage II of ROS on this term

in Section 4.2. For completeness we present it here. We set λ2,1 = 0 including the

results in Table A.2: as expected, without the entropy loss the performance drop on

average of 1.9 percentage points, confirming that the entropy helps to adapt with a

more evident effect in case of large domain gaps (e.g. A→W, W→A). Moreover, the

center loss is not as crucial for Stage II as it is for Stage I and would introduce an

additional hyper-parameter. The results in Table A.2 suggest that adding the center

loss to Stage II may even result in a slight decrease in performance.

A.1.6 Normality Score Pseudo-code

We summarized in Algorithm 2 the procedure used to calculate the normality score

at the end of Stage I of ROS.



Appendix B

Improved Supervised models for

Cross-Domain Learning

B.1 HyMOS

B.1.1 Qualitative Analysis

The t-sne plots in Figure B.1 show the distribution of source and target data in the

feature space (i.e., the output of the contrastive head). We specifically examine the

Ar, Pr, Rw→ Cl case of the Office-Home dataset: the red dots indicate the source

domain, the blue dots the known samples of the target domain, and the green dots

the unknown samples. We take three snapshots of the data on the hyperspherical

embedding: initially when the backbone network is inherited from SupClr [41]

pre-trained on ImageNet, right before the first break-point (i.e. before self-training),

and at the end of the training process. By observing the intermediate plot, it’s clear

that source balancing and style transfer contribute to a good alignment of most of

the known target clusters (blue) with their respective source known clusters (red).

The last plot shows that the self-training process further enhances the alignment,

while the unknown samples (represented by green dots) remain located in the regions

between the clusters.

We randomly zoomed on a known sample (the bike) and an unknown sample

(the speaker) to observe how their positions changed during training. The bike

sample moved from an isolated region with high-class confusion among its top five
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SupClr ImageNet 
pretrained backbone

HyMOS 20K HyMOS 40K

Known 
Sample

Unknown 
Sample

Fig. B.1 Qualitative analysis of the Ar, Pr, Rw→ Cl case in the Office-Home dataset. The

red dots represent the source domain, the blue dots represent the known samples of the target

domain, and green dots represent the unknown samples of the target domain. HyMOS 20k:

source balancing and style transfer already favor a good alignment of most known target

classes with their respective source known clusters. HyMOS 40k: self-training further move

the target known samples towards the respective source clusters, while the unknown samples

remain in the regions among the clusters. The zooms demonstrate how the neighborhood

of a known target sample (bike) and an unknown target sample (speaker) changes during

training.

Fig. B.2 Sensitivity analysis for the temperature value τ on Office-Home.

neighbors towards the correct bike class. The speaker starts from a neighborhood

populated by several samples of classes webcam and fan and finally appears in a

different region shared mostly by other instances of the class speaker.

B.1.2 Further experiments

Robustness to temperature variation The contrastive loss (Section 5.1 Eq. 5.1)

uses a fixed temperature τ value of 0.07, as suggested in [169]. Figure B.2 show that

even when varying τ , the results remain stable and consistently higher than ROS

(65.3).
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Algorithm 3 HyMOS evaluation procedure

Input: T ; trained Enc and Pro j

Output: Predictions on T

procedure FINALEVAL()

α ← (Section 4.2 Eq. (4))

for each xt in T do

zt = Pro j(Enc(xt))
hys ← nearest prototype to zt

if dhys (z
t)< α then

ŷt = ys

else

ŷt = unknown

procedure MAIN()

f inalEval()

B.1.3 Implementation Details

For our implementation of HyMOS, we used a ResNet-50 [219] backbone for the

encoder, along with two fully connected layers of dimension 2048 and 128 for the

contrastive head. The network was trained using the contrastive loss (refer to Eq. 5.1

in Section 5.1), with a fixed τ value of 0.07 as suggested in [169]. Our distance-based

classifier lives in the hyperspherical space generated by the model, whose dimension

is not constrained by the number of classes. Therefore, the architecture of the model

is the same across all of our experiments.

To initialize the backbone network, we used the SupClr model pre-trained on

ImageNet [41]. HyMOS was trained for 40k iterations using a balanced data mini-

batch containing one sample from each class of every source domain.

We used a linear warm-up schedule that gradually increased the learning rate

from 0 to 0.05, reaching the maximum value at iteration 2500. Subsequently, we

applied a cosine annealing schedule that gradually decreased the learning rate back to

0 by the end of the training (iteration 40k). We used the LARS optimizer [298] with

a momentum of 0.9 and weight decay of 10−6. For the first 20k iterations, we trained

only on the source data, using the target data exclusively for style transfer-based

data augmentation in the supervised contrastive learning objective. After this, we

then perform an evaluation step, referred to as the self-training break-point, to begin

including confident known target samples in the learning objective. We repeated the

break-point eval step every 5K iterations until the end of the training.
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To perform style transfer data augmentation, we used the standard VGG19-based

AdaIN model with default hyperparameters [265]. This model was trained using

content data from the available source domains, with target samples as style data.

Regarding instance transformations, we utilized the same data augmentations

originally proposed for SimClr [40] and extended them with style transfer. Specif-

ically, we used random resized crop with scale in the range 0.08,1 and random

horizontal flip. For the source images, style transfer was applied with probability

p = 0.5, while non-stylized images were transformed using color jittering with

probability p = 0.8 and grayscale with probability p = 0.2.

In Algorithm 3 is summarized the final evaluation procedure of HyMOS.
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B.2 ReSeND

B.2.1 Implementation details

We used ResNet-18 [219] pretrained on ImageNet1k [214] as feature extractor fθ ,

removing the original final classification layer. The relational module rγ has the

same structure of the transformer in ViT [146]: we use 4 multi-head self-attention

encoder blocks, which balances performance and time complexity given that the

number of blocks affects the total number of learnable parameters in the network.

Before entering the transformer, the features extracted by the backbone go

through an FC projection layer. The input sequence for the transformer is obtained

by concatenating the representations of a pair of samples with the learnable label

token [zl,zi,z j]. The resulting output token vl is then passed through the final FC

layer, which represents the regression head cδ .

The transformer procedure is summarized in the following equations:

z0 = [zl; zi; z j] (B.1)

z̃b = MSA(LN(zb−1))+ zb−1, b = 1 . . .B (B.2)

zb = MLP(LN(z̃b))+ z̃b, b = 1 . . .B (B.3)

vl = LN(zB
l ) . (B.4)

Our network is trained end-to-end on ImageNet1k using the MSE loss (as defined

in Eq. 5.6 in Section 5.2) applied to the output of the regression head. The training

procedure consists of 13k iterations with a batch size of 4096, where each element

of the batch is an image pair. The learning rate starts with a linear warm-up for 500

iterations and is then fixed at 0.008. We use LARS optimizer [298] with the momen-

tum 0.9 and weight decay 5 ·10−5. We build image pairs for training by selecting an

image from the dataset as anchor and pairing it with another sample that has the same

label (positive pair), or a different label (negative pair). Our experimental results are

averaged over three runs. The training and evaluation procedures for ReSeND are

summarized in Algorithm 4 and 5.
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Fig. B.3 Performance trend increasing the number of image pairs

B.2.2 Further Analysis

Number of image pairs. Our training objective relies on the use of image pairs

that are randomly built by combining samples from the training dataset. Although

the number of image pairs that can be created from the ImageNet1k dataset is quite

large (approximately 820×109), we demonstrate in Fig. B.3 that ReSeND reaches

convergence after processing only a relatively small fraction of them.

Algorithm 4 ReSeND train procedure

Input: S , T , fθ : RH×W×C→ R
d , rγ , cδ

procedure CREATE_PAIRS(S )

pairs = []
for each (xs,ys) in {S } do

pairs.append((rand_same_class(ys),xs,1))
pairs.append((rand_diff _class(ys),xs,0))

return pairs

procedure MAIN()

for epoch in range(n_epochs) do

pairs = create_pairs(S )
shuffle(pairs)
for iter in range(iters_epoch) do

pairs_batch = next_batch(pairs)
x1,x2, labels = pairs_batch

z1 = fθ (x1)
z2 = fθ (x2)
f eats_pairs = (z1,z2)
predictions = cδ (rγ( f eats_pairs))
MSE_loss = L (predictions, labels) ▷ Eq. 5.6

Update θ ,γ,δ ← ∇MSE_loss
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Algorithm 5 ReSeND eval procedure

Input: S , T , fθ : RH×W×C→ R
d , rγ , cδ

procedure COMPUTE_PROTOTYPES(S )

prototypes = zeros((|Ys|,))
counters = zeros(|Ys|)
for each (xs,ys) in {S } do

zs = fθ (x
s)

prototypes[ys]+ = zs

counters[ys]+ = 1

for i in range(|Ys|) do

prototypes[i]/= counters[i]

return prototypes

procedure MAIN()

normality_scores = []
prototypes = compute_prototypes(S )
for each xt in {T } do

zt = fθ (x
t)

pairs = (prototypes,zt .repeat())
predictions = cδ (rγ(pairs))
score = max(so f tmax(predictions))
normality_scores.append(score)
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