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Abstract 

This PhD thesis pioneers an innovative approach, merging physics-based models 

with data science techniques to efficiently define and predict the mechanical properties 

of advanced materials. Focusing on composite materials and additive manufactured 

metals with intricate microstructures, we aim to bridge the gap between microstructural 

features and material properties, vital for enhancing the design of advanced materials. 

Traditional Machine Learning (ML) approaches often prioritize accuracy over 

physics compliance. In response, this thesis introduces the concept of Mechanistic Data 

Science (MDS), which combines the predictive power of ML with the grounding in 

physics laws. At its core, MDS integrates physics knowledge with advanced machine 

learning methods, offering a solution to a longstanding challenge: efficiently predicting 

the mechanical properties of complex materials with intricate microstructures. While 

the objective is clear—to establish a link between microstructural features and material 

properties—the true achievement lies in the methodology itself. The thesis unfolds in 

a series of interconnected chapters, each contributing to the overarching goal. 

A Physics-Informed Neural Network (PINN) with a customized architecture is 

developed to learn the constitutive behaviour of orthotropic materials from the 

distributed strain measurements acquired with the Digital Image Correlation (DIC). 

Being the Neural Network (NN) a universal approximator, the proposed 

architecture can learn arbitrary constitutive models avoiding the definition of 

parametric models and defining the constitutive properties of the materials from the 

experimental data. With the proposed approach the full elastic constitutive model 



of an orthotropic material can be defined with a single test, and different damaging 

laws can be inferred using the same architecture. The model is validated on artificial 

data - i.e., generated with a Finite Element Model (FEM) - and later applied to 

experimental data. This PINN approach eliminates the need for defining parametric 

models, allowing for rapid characterization of material properties. 

Moving forward, the thesis combines DIC data with microstructural 

reconstructions from Fiber Reinforced Polymer (FRP) samples to characterize 

composite material stiffness, accounting for manufacturing-induced defects and fiber 

misalignment. This information contributes to the development of a Stochastic Volume 

Element (SVE), a mesoscale representation of the FRP, which have a microstructure 

sampled from the experimental reconstructions and variable material properties 

statistically calibrated from the experiments. When the SVE is integrated into a 

multiscale Finite Element Model (FEM), offers a unique capability to provide 

probabilistic predictions of structural responses. 

The thesis further extends the application of MDS to predict the crushing behavior 

of origami-shaped carbon FRP structures at the part scale, optimizing design processes 

with a significant reduction in computational cost. The model evaluates the crushing 

force and the absorbed energy of the thin-walled structure by preserving the physics 

relationship between the two quantities, which is governed by the energy 

conservation law. The good accuracy of the method and the reduced computational 

cost, permit to perform an optimization study of the origami tube with a full 

exploration of the design space reducing the optimization time by 30 times. The 

results of the PINN are compared with the FEM, showing a remarkable accuracy of 

the surrogate model. 

The final chapter focuses on the fatigue response of aluminium alloys produced 

through Additive Manufacturing (AM). By combining experimental observations 

of manufacturing parameters with a damage-tolerant model developed by 

Murakami, a customized Neural Network (NN) architecture is employed. This 



chapter demonstrates remarkable accuracy in predicting the fatigue response, 

offering designers a potent tool to assess the influence of manufacturing processes 

on material properties and avoid impractical experimental investigations. 

The MDS methods presented in this thesis puts its roots in the governing laws 

of the mechanics, leveraging on the increasing data that are nowadays available 

thanks to innovative experimental techniques (e.g., micro-CT, DIC) and shared 

database, or can be reliably generated through experimentally calibrated models 

(e.g., FEM).  

In summary, this thesis showcases the novel MDS framework, effectively 

combining empirical and theoretical knowledge with abundant data to advance 

materials science and design. While the abstracted methodology connects various 

chapters, it is the transformative potential of MDS that unites these diverse 

investigations, paving the way for future research to refine and expand upon this 

innovative approach. 
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1 Introduction 

 

1.1  The new data driven scientific paradigm 

The practice of science has undergone significant changes throughout its 
history, as new technologies and methodologies have been developed to enhance 
our understanding of the world around us. These changes can be characterized by 
four key paradigms defined in [1]: Empirical, Model-Based, Computational, and 
Data-Driven Science. 

• Empirical Science: Empirical Science is the earliest form of scientific 
inquiry and is characterized by observation and experimentation. In this 
paradigm, experience is the only source of knowledge. Scientists would 
observe natural phenomena, perform experiments, and use these 
observations to build simple models or explanations of the world. This 
paradigm is best exemplified by early natural philosophers such as 
Aristotle, who used observation and logical reasoning to understand the 
world around him. 

• Model-Based Science: After the scientific revolution in early 1600, the 
development of Model-Based Science marked a new phase in the 
evolution of science, characterized by the use of mathematical models 
to better understand complex systems. Scientists in this paradigm use 
mathematical models to describe natural processes and simulate their 
behaviour under different conditions. The models allow for the 
extrapolations of the system response beyond the observed domain, 
giving a wider understanding of the phenomena, later confirmed by 
experiments. The pillars of science have been built in this era, such as 
the law of kinematics, mechanics, and thermodynamics. 

• Computational Science: The rise of Computational Science marked 
another important shift, characterized by the increasing use of high-
performance computing and simulation to tackle problems in fields such 
as physics, chemistry, and biology. The invention of the computer 
allowed scientists to solve complex systems described by a large 
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number of equations, whose solution would have otherwise required an 
unsustainable amount of human work. Scientists in this paradigm use 
computers to perform complex simulations and analyse large data sets. 
For example, molecular dynamics simulations are used to study the 
behaviour of biological molecules, such as proteins, at the atomic level. 
Computational science gave birth to numerical models such as Density 
Functional Theory or Finite Element Analysis. 

• Data-Driven Science: The most recent paradigm in the evolution of 
science, Data-Driven Science, is characterized by the central role of 
large, complex data sets in scientific discovery. With the increasing 
availability of big data and the development of new computational tools 
for processing and analysing these datasets, Data-Driven Science is 
poised to play an important role in shaping our understanding of the 
world. In this paradigm, scientists use Machine Learning (ML) 
algorithms and statistical models to identify patterns in data and make 
predictions about future trends. For example, scientists are using data-
driven methods to predict the spread of diseases, understand the 
behaviour of financial markets, and even discover new species. Data-
driven science leverages a huge amount of real and artificial 
information to develop methods with improved predictive capacity.  

Each of these paradigms has been driven by advances in technology and the 
changing nature of scientific knowledge. Scientists today are faced with the 
challenge of balancing the accumulated scientific knowledge with the vast amounts 
of data generated from high-fidelity models, experiments, and real-world 
observations. To ensure the preservation of the underlying physics, while also 
utilizing ML algorithms to model scientific phenomena, there has been a growing 
interest in a new field of data science known as Mechanistic Data Science [2] 
(MDS). This field combines established mechanical principles and data collection 
to enhance the knowledge extraction process and improve predictive capabilities.  

The following section discusses the fundamentals of MDS, giving an overview 
of essential concepts and approaches that can be used to develop the MDS method 
in the field of predictive physics. 
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1.2  Mechanistic Data Science 

The paradigm shift in science has begun to take place in areas such as social 
sciences[3–5], medicine[6–8], and biology[9–13], but there are still fields where 
the spreading of data-driven science is limited. An example is the disciplines where 
the modelling tool can rely on an established mathematical understanding of 
physics, like solid mechanics, computational physics, or fluid dynamics.  

The available data gathered in these fields are the results of centuries of 
scientific knowledge and a black-box algorithm without any information about it 
could lead to wrong prediction. Moreover, scientific problems suffer from a paucity 
of data while involving many variables that interact in complex and non-stationary 
ways.  Therefore, it is expected that purely data-driven methods can give wrong 
predictions outside the observed domain. Another main concern about the 
application of this methodology is the lack of interpretability of the models. 
Physically based models are not only useful for making predictions, but their 
interpretable formulations help in gaining knowledge through the interpretation of 
their structure, parameters, and mathematical properties.  

One way to gain explainability in ML methods is to incorporate scientific 
knowledge about the observed phenomena into the ML algorithm, following the 
MDS approach. Combining the predictive capabilities of ML algorithms with the 
scientific consistency and interpretability of physically-based models is a solution 
to the shortcomings of purely data-driven methods. 

Three different types of MDS problems can be defined based on the nature of 
the knowledge, scientific or data-based, and how it is combined to get an 
understanding of the phenomena. When referring to scientific knowledge, it is of 
utmost importance to differentiate between two types of knowledge, namely, 
physical general principles such as conservation and thermodynamic laws that are 
widely acknowledged as capable of describing the fundamental structure of the 
universe, and phenomenological models such as macroscopic material constitutive 
relationships, which are simplification and homogenization of molecular-level 
interactions derived from available experimental data. While, in theory, it might be 
possible to derive real mechanistic constitutive relationships from first physical 
principles, the massive number of degrees of freedom involved in the relevant 
temporal and spatial scales required for real-world applications makes this a 
practically unattainable goal[14]. Therefore, the combination of physical principles 
and phenomenological models, under well-defined hypotheses, has proven to be 
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highly effective in accurately solving complex real problems while maintaining 
mathematical tractability. 

Defining how the scientific knowledge and the data are fused to solve the 
physic-based problems, we can distinguish three different types of problems (Figure 
1.1) that MDS can tackle[2,15]: 

1. Purely data-driven: problems with abundant data and undeveloped or 
unavailable scientific fundamental principles. In this scenario, a purely 
data-driven algorithm can model the effect of different features and 
their interplay on the state of the system. There is not an explicit theory 
associated with the problem, making unavailable any interpretation of 
the governing laws. 

2. Limited data and scientific knowledge: problems where neither the data 
nor the scientific principles provide a complete solution. Problems 
where general models that govern the phenomena are known, like 
universal laws, but a precise formulation modelling the evolution of the 
system is missing, fall in this category. In this scenario, a specific ML 
algorithm can be developed to leverage a modest quantity of data that 
combined with scientific knowledge can lead to the development of an 
efficient and physically consistent predictive algorithm. 

3. Known mathematical science principles with uncertain parameters: 
problems where a parametric description of the problem is known, and 
a limited amount of data is used to estimate the parameters.  
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Figure 1.1 Scientific and data knowledge balance for the three types of mechanistic 
data science problems 

MDS can be broken down into six fundamental steps: multimodal data 
generation and collection, feature engineering, dimension reduction, reduced order 
modelling, regression, and classification. The first step comprises the collection of 
significant data from different sources (e.g., experiments with different 
measurements, and high-fidelity models). The data are then processed to extract 
relevant information from an engineering perspective, using time-frequency-space 
transformations. Data are then reduced with either data-science technique or 
knowledge-based reductions (reduced order models) to reduce the dimensionality 
of the problem. Finally, deep learning models can be used to perform classification 
or regression tasks on the processed data and model the mechanistic phenomena. 

Having laid down the fundamentals of MDS, the next section focuses on 
problems in the field of solid mechanics, evidencing the main challenges and how 
they can be tackled with MDS. 
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1.3  Data-driven methods in solid mechanics  

Mechanical engineering is defined as the discipline of studying the design of a 
mechanism from the material definition to manufacturing. Over the centuries, 
scientific and technological progress has led to fast development and enrichment of 
knowledge, requiring the subdivision of mechanical engineering into more specific 
fields. Cauchy first introduced continuum mechanics, defined as the study of the 
mechanical behaviour of materials modelled as a continuum, approximating the 
atomistic scale to a continuum field described with partial differential equations. 
Solid mechanics, specifically studies the response of solid materials, especially 
their motion and deformation under the action of forces, temperature changes, phase 
changes, and other external or internal agents. The continuum description of 
material behaviour is a simplification of the real world, where the lower scale 
mechanisms originating from the atomistic scale are progressively homogenized to 
get a handful of models.  

Three fundamental domains between which the information is propagated, have 
been identified: 

• Process: involves the manufacturing stage where the matter is modified 
through temperature, force or electromagnetic fields that shape the 
constituents into a new material or part. 

• Structure: the results of the manufacturing process in terms of size, 
shape, and arrangement of its constituents, such as grains, pores, and 
defects. It is commonly referred to as microstructure in material 
mechanics. 

• Property: is the functional characteristic of the manufacturing product 
and is descriptive of the ability to fulfil a requirement. At the micro-
level, properties can be stiffness, strength, fracture toughness and other 
material properties of the homogeneous matter. At a higher scale, the 
properties can be bearing load, energy absorption, buckling load, or 
other properties of the manufactured structure. These are sometimes 
referred to as “performance” in the Process-Structure-Property-
Performance (PSPP) framework. 

The relationship between process, structure, and property (or performance) can 
be understood as a hierarchical one, where the properties at each scale are 
determined by the properties at the smaller scales. This hierarchical relationship 
helps to explain the behaviour of materials and structures under different loading 

https://en.wikipedia.org/wiki/Deformation_(mechanics)
https://en.wikipedia.org/wiki/Force
https://en.wikipedia.org/wiki/Temperature
https://en.wikipedia.org/wiki/Phase_(chemistry)
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conditions and enables the design of advanced materials and structures with desired 
properties for specific applications. The purpose of this thesis is to implement MDS 
models to discover and/or predict this relationship over the different scales of 
advanced materials and structures.  

Section 1.4 describes how ML models work and how they can be combined 
with physical knowledge to solve problems in the field of solid mechanics of 
advanced materials.   
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1.4  Machine learning methods 

ML is a rapidly growing field of computational science that focuses on the 
development of algorithms that can learn from and make predictions about data. In 
recent years, ML has been increasingly applied in various scientific domains, 
including physics, biology, chemistry, and engineering, to name a few. In scientific 
contexts, ML models have proven to be effective tools for exploring complex 
phenomena, making predictions, and generating new insights. 

ML models can be broadly classified into two categories: supervised and 
unsupervised. Supervised ML models are trained on labelled data, where the target 
variables are known, and the goal is to predict these variables based on the input 
data. In contrast, unsupervised ML models are trained on unlabelled data and aim 
to find patterns and relationships in the data without the need for predefined target 
variables. 

In scientific applications, ML models can be trained on data generated from 
simulations, experiments, or real-world observations. The models can then be used 
to make predictions about the behaviour of the system, to identify patterns and 
relationships in the data, or to perform data analysis tasks such as clustering, 
dimensionality reduction, or anomaly detection. 

1.4.1 Standard ML methods 

1.4.1.1 Neural networks 

The methodologies presented in this thesis mostly leverage a specific type of 
supervised ML model: neural networks (NN). An NN is a type of ML model that is 
inspired by the structure and function of the human brain. It consists of 
interconnected processing nodes, or "neurons," which process and transmit 
information through weighted connections. 

Each neuron receives inputs from other neurons and applies a mathematical 
operation, such as a dot product or activation function, to produce an output signal. 
The output signal of one neuron can serve as input to multiple other neurons in the 
network, allowing for complex, multi-layer representations of the data (Figure 1.2).  
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Figure 1.2 A layered structure of a neural network with one input layer, two hidden 
layers and an output layer. In the dashed box, the representation of the weighted inputs of 
the last layer. 

The fundamental operation in each neuron is described by Equation 1.1: 

𝑦 = 𝒜(𝒘 𝒙 + 𝑏), (1.1) 

where 𝑤 is the weights vector that multiplies the inputs 𝑥  and 𝑏 is the bias, a 
scalar added to the dot product. The weighted sum is passed to an activation 
function 𝒜, which should satisfy the following requirements: 

• Non-linearity: An activation function should introduce non-linearity 
into the neural network, allowing it to learn and model complex 
relationships in the data. 

• Differentiability: The activation function should be differentiable, 
meaning its derivative can be calculated, which is necessary for 
backpropagation, the process used to adjust the weights of the network 
during training. 

• Bounded Output: The activation function should have a bounded 
output, typically between 0 and 1 or -1 and 1, to ensure that the output 
of each neuron remains within a specific range and does not become 
unbounded during training. 

• Monotonic Behaviour: The activation function should have a 
monotonic behaviour, meaning its output should either increase or 
decrease as its input increases, to ensure that the network can converge 
to a solution during training. 

• Computational Efficiency: The activation function should be 
computationally efficient to compute, as it will be applied to each 
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neuron in the network during forward propagation and 
backpropagation. 

In conclusion, an activation function in a neural network should be non-linear, 
differentiable, bounded, monotonic, and computationally efficient. These 
requirements are necessary for the neural network to learn complex relationships in 
the data and to converge to a solution during training. The most common activation 
functions are reported in Figure 1.3, with the corresponding formulation reported 
in Table 1.1. 

Name Expression Parameters 

Linear 𝒜(𝑥) = 𝑥 - 

Rectified Linear Unit 
(ReLU)[16] 𝒜(𝑥) = {

0 𝑖𝑓 𝑥 < 0
𝑥 𝑖𝑓 𝑥 ≥ 0

 - 

Leaky ReLU 
𝒜(𝑥) = {

𝛼𝑥 𝑖𝑓 𝑥 < 0
𝑥 𝑖𝑓 𝑥 ≥ 0

 𝛼 

Scaled Exponential 
Linear Unit (SELU)[17] 𝒜(𝑥) = 𝜆 {

𝛼(𝑒𝑥 − 1) 𝑖𝑓 𝑥 < 0
𝑥 𝑖𝑓 𝑥 ≥ 0

 𝛼, 𝜆 

Hyperbolic Tangent 𝒜(𝑥) = tanh (𝑥) - 

Sigmoid 𝒜(𝑥) =
𝑥

1 + 𝑒−𝑥
 - 

Table 1.1 Neural network activation functions and their expression. 
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Figure 1.3. Linear or modified linear (a) and non-linear (b) activation functions. 

The activation functions on the output layers of the NN constrain the output 
values. For example, a ReLU operating on the output layers will force the network 
to exclusively output positive values. The linear function is usually preferred on the 
output layers of a regression NN, while its usage in the hidden layers vanished the 
approximation capabilities of the method, transforming the network into a linear 
regressor. 

The weights w of the connections between neurons and the bias are adjusted 
during the training process to minimize a predefined loss function ℒ, which 
measures the discrepancy between the model predictions and the actual target 
values. The set of inputs x which corresponds to the known output y is named 
dataset, typically arranged in an N-by-m matrix, being N the number of 
observations and m the number of variables of the observed system. The dataset is 
decomposed into two sub-sets, namely the training and testing data: the first is used 
in the training process to calibrate the parameters of the model, while the latter is 
used to evaluate the interpolation and extrapolation performance of the model 
outside the training dataset and adjust the hyperparameters of the ML model to 
avoid over-fitting and under-fitting problems. The common ratio between training 
and testing data is 0.8, an explanation of this has been given by [18]. The goal for 
the training phase is to find the optimal set of weights that allow the network to 
make accurate predictions on the training data. The training of an NN can then be 
formulated as the optimization problem described in Equation 1.2: 

min
𝒘,𝒃

ℒ (𝑦𝑡𝑎𝑟𝑔𝑒𝑡,   𝑁𝑁(𝑥;𝑤, 𝑏)) (1.2) 
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The weights in a neural network are updated during the training process using 

an optimization algorithm, such as gradient descent.  

The gradient of the loss function with respect to the weights in the network is 
computed at each iteration using the back-propagation algorithm[19]. The gradient 
gives a hint about the direction in which the weights should be adjusted in order to 
minimize the loss. 

Once the gradient is computed, the weights are updated by subtracting the 
gradient multiplied by a learning rate, which determines the step size of the update. 
The learning rate controls the speed at which the weights are updated and must be 
set carefully to avoid overshooting or oscillating around the optimal solution. The 
process of computing the gradient and updating the weights is repeated multiple 
times, with each iteration referred to as an epoch. The training continues until the 
loss function reaches a minimum or until a maximum number of epochs is reached. 

Adam[20], Adagrad[21], and SGD (Stochastic Gradient Descent)[22] are 
optimization algorithms commonly used to train neural networks using 
backpropagation. Adam and Adagrad are both variants of gradient descent, which 
is the main algorithm used to train neural networks. They differ from standard 
gradient descent in that they adjust the learning rate during the training process to 
ensure faster convergence and improved performance. SGD is a more general 
optimization algorithm that can be used for various types of models, including 
neural networks. SGD is particularly well-suited for large-scale and highly complex 
datasets and is widely used due to its simplicity and efficiency. 

1.4.2 Physically informed data science methods 

The MDS methods can be classified based on how the known physics is 
incorporated into the ML algorithm. Three main strategies to combine scientific 
knowledge with the data driven method are presented in this section: 1 - physics 
included in the dataset, 2 - physics included in the ML model, and 3 - physics 
included in the training process.  

1.4.2.1 Physics included in the dataset 

The least intrusive way to integrate physics knowledge into an ML model is via 
the dataset, making use of standard ML techniques applied to data generated by 
physically based models. In the case of supervised learning, the dataset is generated 
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through a known model 𝑌𝑃ℎ𝑦, giving as output the target data according to Equation 
1.3: 

𝑦 = 𝑌𝑝ℎ𝑦(𝑥) (1.3) 

In this case, the mapping 𝑥 → 𝑦 is deputed to an ML method that can learn the 
inherent relationship between the input and output of the system regardless of the 
governing physical equations. This application goes under the name of metamodel 
(i.e., “surrogate models”), whose goal is to replace standard simulation techniques 
with a much more computationally convenient model that allows for real-time 
estimations. Numerous applications of metamodels can be found in material 
modelling, where an Artificial Neural Network (ANN) is trained to learn the stress-
strain relations of advanced materials [23–29] from detailed and computationally 
expensive micromechanical simulations. Applications of ML methods as surrogate 
models can be found in the field of material mechanical characterization where 
ANN are demanded to infer the fatigue models [30–33], damage parameters of 
composites [34,35] or nonlinear constitutive laws [36]. 

ML-guided reduced order method (ROM) falls in this category as well. A ROM 
is a model that reduces the computational cost of simulations, reducing the number 
of degrees of freedom while keeping its accuracy above an accepted value. 
Mathematically, considering the model ℳ(𝑥) mapping the solution 𝜇 from the 
domain 𝑆 of the variable x with dimension D, the ROM ℛ(𝑥) is a mapping of 
reduced dimension d<<D such that: 

‖ℛ(𝑥) −ℳ(𝑥)‖ < 𝜖     ∀𝑥 ∈ 𝑆, (1.4) 

being 𝜖 a small parameter and || ∙ || a suitable norm. 

ML methods can be used to define the reduced space where the input is 
projected before being processed by the ROM. The most common techniques in 
this area are Autoencoders, a neural network trained with the same input and output 
data, with a symmetric structure and a middle layer with the number of neurons 
reduced with respect to the number of features. The values at the middle layers, 
namely the latent variables, encode the data information that is subsequently 
decoded by the right hand of the structure. Alternatively, a clustering algorithm can 
be used to discover the space of latent variables, which is a simplified representation 
of the physical structure. In [37,38] k-means clustering is used to define sub-clusters 
of the heterogeneous domain from the elastic response by successive 
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homogenisation and accelerate the solution using the Lippman-Schwinger equation 
by reducing the degrees of freedom. 

1.4.2.2 Physics included in the ML model 

One way to combine physical knowledge with ML methods is to shape the 
architecture of the algorithm in a way that follows the cause-effect relationship of 
the variables as described by the physical model in hand. This allows for the partial 
opening of the “black box” of ANNs by mimicking the known governing equations 
and producing latent variables that resemble the physical parameters of the known 
model. In the same way, the structure of the model can be shaped to preserve the 
mathematical features of the output that must be complied with to fulfil the physical 
constraints. Modified ANN architectures have been developed to predict positive 
definite constitutive relations[39], the homogenized response of heterogeneous 
materials[40,41], embed the geometrical description of the microstructure to predict 
plasticity laws [42,43] or homogenised response[44], translate a finite element 
mesh into an ANN structure to predict the optimal mesh refinement[15,45]. 

1.4.2.3 Physics included in the training process 

When the physics knowledge can be quantified by a known equation that 
governs the observed phenomena and is expressed in terms of the variables of the 
dataset, the physics compliance can be induced by modifying the loss function. This 
approach leads to two advantages: 

• Reducing the amount of data needed to build an accurate ML model. 
• Obtaining more robust and stable solution schemes complying with the 

physics of the problem. 
• Allow for the control of the balance between data-driven and scientific 

knowledge by weighting the loss terms. 

This technique can be generally described by Equation 1.5: 

ℒ′ = 𝛼ℒ + 𝛽ℒ𝑝ℎ𝑦, (1.5) 

where the loss function of the ML method, ℒ, is combined with the 
regularization loss terms that incorporate the physics of the problem, ℒ𝑝ℎ𝑦, to 
get the modified loss function ℒ′. If 𝛼=0, the model is trained only on the 
physics of the system, whereas if 𝛽=0 it recovers pure Data Science ML 
methods. From an MDS perspective, the weighting parameters  and  control 
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the type of problem shifting from type 1 to 2. The weighting scalars serve two 
main scopes: 

• Balancing the data-driven and physically based knowledge in the 
training process. 

• Homogenizing the order of magnitude of the two terms could be 
drastically different, since the first depends on the magnitude of the 
data, while the seconds are an expression of the physical relationship 
and can yield quantities with different orders of magnitude. 

This approach is commonly referred to as Theory Guided ML, a family of 
methods that contains the most popular MDS algorithm: Physic-Informed 
Neural Networks (PINNs)[46]. PINNs work as standard NNs with a 
regularization term enforcing the known physic, as described by Equation 5. 
The most popular application of the PINNs is solving Partial Differential 
Equations (PDE), where the input of the network is the spatial or temporal 
coordinates and the excitation quantity, while the output is the solution of the 
PDE. The loss term is then constructed by deriving the NNs, leveraging on the 
derivability required by the backpropagation, to compute the residual of the 
PDE. 

PINNs have been adopted in the field of solid mechanics to predict the 
hyperelasticity models preserving the strain energy convexity[43], to predict 
the fatigue response of Additively Manufactured parts preserving the 
characteristic trend of the fatigue strength with the number of cycles at failure 
[47], to solve solid mechanic problems with arbitrary boundary 
conditions[48,49]. 

Physically based data science methods described in this dissertation span the 
fields of characterization, material modelling, surrogate modelling and fatigue 
prediction leveraging on the concepts introduced in this introduction. More 
specifically, each methodology presented in this thesis can be framed within 
the PIDS categories defined below and the resulting models can be used to 
define domain relations in the process-structure-properties framework 
previously introduced, as reported in Table 1.2. 
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Chapter Title From To Type MDS 
approach 

2 Data-driven 
material 
characterization 

Property Structure 2 Modified 
architecture 
+ modified 
loss 

3 Data-driven 
statistical 
multiscale 
characterization 
and modelling 

Structure Property 3 Modified 
loss 

4 Prediction of an 
origami tube 
crashing  

Structure Property 2 Modified 
architecture 
+ modified 
loss 

5 Prediction of the 
effect of process 
parameter on the 
fatigue response of 
AM metals 

Process Property 2 Modified 
architecture 

Table 1.2 Methodologies described in the dissertation with respective MSD problem 
types, MDS treatment strategy and modelled P-S-P domain relation.  

Chapter 2 describes a PINN with a modified architecture that learns the 
constitutive equation of linear and non-linear orthotropic materials from the full-
field displacements and applied loads measured during a tensile test. It is a type 2 
problem, where the governing equations are known and there is enough data to use 
ML models for inferring the internal state equations.  

Chapter 3 shows a data-driven statistical method that combines the full field 
displacements and applied loads with a 3D reconstruction of the material 
microstructure measured with Computer Tomography to calibrate the statistical 
multiscale parameters of a glass fibre composite. It is a type 3 problem where the 
data are used to define the model parameters and their uncertainty. 
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Chapter 4 discusses the development of an MDS model that harnesses the 

predictive capability of ML to get a surrogate model of an origami-shaped tube 
axial crushing predicting the force and energy response for different geometrical 
configurations.  

Chapter 5 presents a PINN with an intrusively modified architecture mimicking 
the empirical formulations describing the relation between the defect size, material 
microstructure and fatigue response of metal. The model predicts the effect of 
process parameters on the fatigue strength of additively manufactured metals. 
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2 Data driven material 
characterization with Physics 
Informed Neural Networks 

2.1  Introduction 

In the last two decades, huge progress in the field of experimental mechanics 
has been made, leading to the development of new instruments capable of providing 
precise and distributed measurements of mechanical properties. Among others, the 
DIC technique, introduced in the early 1990s by a group of researchers led by Dr 
Donald K. Chang at the National Institute of Standards and Technology (NIST) in 
the United States, opened the door to full-field measurements of the superficial 
displacement and strains, moving away from localized strain information coming 
from the extensometer or strain gauge. The enormous advantage introduced by this 
technique has pushed its development and spreading among the scientific 
community, and it is nowadays considered a common technique in the mechanical 
engineering community. In the field of material characterization, the availability of 
full-field strain measurements can overcome the sparse nature of the common 
experimental exploration where high dimensional strain-stress space is explored 
along a few trajectories and elaborated models are used to extrapolate the 
constitutive equation outside the observed domain. DIC offers the opportunity to 
track the evolution of the strain in numerous points of the observed structure, 
bringing several advantages: 

• Observable local phenomena: the full-field measurements enable the 
measurements of localised strains due to cracks, Luder’s bands, and 

other localized phenomena. 
• Observable heterogeneity: the heterogeneous strain field in welded 

joints, composite materials or polycrystals can be observed and 
leveraged to understand the lower-scale mechanism of heterogeneous 
structures. 
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• Accelerated characterization: heterogeneous strain fields are influenced 

by a greater number of constitutive parameters than homogeneous ones. 
This opens a new route for material characterization since a greater 
number of constitutive parameters can be potentially identified at the 
same time [50] 

Even if complex strain configurations are measurable, the material stress is an 
abstraction that cannot be experimentally measured, therefore the calibration of the 
material model based on full-field displacements (and strains) is not trivial and 
different evolving approaches can be found in the literature. 

2.1.1 DIC for material model calibration 

To leverage the DIC data for characterizing the constitutive relation of 
materials, researchers have developed different techniques minimizing a cost 
function defined over the measured displacements or strains. Algorithms such as 
constitutive equation gaps, reciprocity gaps or equilibrium gaps directly use the 
measure of full-field quantities to discover the constitutive parameters minimizing 
the cost function (for a review refer to [51]). Different approaches couple the full 
field measurements with numerical simulation, continuously updating the material 
parameters of the numerical model until the predicted strains match the DIC 
measurements (Finite Element Model Updating, FEMU)[52].  

The model-based methods imply the choice of a material model beforehand, 
assuming that there is previous knowledge about the material behaviour and a 
parametric model to be fitted. On the other hand, the data-driven identification 
method gets rid of any assumption on the stress-strain relationship but limits the 
knowledge to the observed region of the space field. The method is indeed limited 
by the experiments, which should explore all the material states that will be 
simulated with a data-driven mechanic method. Here, an NN constitutive model is 
proposed, trained on the full field displacement measured with the DIC technique. 
NNs have been demonstrated to be global approximators if trained with enough 
data [53], therefore its flexible architecture can mimic any constitutive model and 
extrapolate results beyond the observed states. Recent applications of NN to model 
the material response are discussed in the following. 
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2.1.2 MDS method for material modelling 

The application of NNs for modelling the mechanical response of materials has 
been intensively investigated in the last decade. Ghaboussi et al. [54–56] first 
explored the application of ANNs to material modelling, showing their promising 
capabilities. Since then, the interest towards these methods has been continuously 
increasing due to the computational efficiency and approximation capability that 
they can offer compared with phenomenological models.  

The calibration of material models can generally follow two procedures:  

1. Inferring the material response from explicit data, such as pairs of stress-
strain, stress-strain energy, or stress-strain increments. This data is usually 
consisting of homogenized results from high-fidelity sub-scale models, or 
experimental measurements properly post-processed. NNs have been 
trained on stress-strain data to model the response of hyper-elastic materials 
[57], non-linear elastic composites [58], crystal elastic materials [59], 
viscoelastic materials [60], multiscale porous materials [26,61], composite 
with progressive damage [28,35], and plastic materials [25]. This strategy 
allows surrogating the material models but has the drawbacks of directly 
learning from the stress quantities, which are not directly measurable 
experimentally.  

2. Deducting the material response from indirect measurable quantities, such 
as reaction forces of structures or full field displacements. Application of 
NN to the calibration of material models through indirect measurements are 
few due to the novelty of the research field.  NNs have been trained on 
indirect data generated with sub-scale models to calibrate the elastic 
response of composite [39,62] and the nonlinear response and damage of 
composites [63,64]. These methods have the advantage of being directly 
trainable with measurable quantities, without requiring a data generation 
procedure (as for the cases where the stress is computed with 
micromechanical analysis) or post-processing. However, there is generally 
no closed-form solution to these problems that requires an optimal design 
of the optimization strategy. 

Most of the NN proposed in the mentioned studies present common architecture 
and training strategies, without using any physical knowledge of the material 
response. Some applications of MDS have been recently proposed to get 
constitutive models complying with the strain energy convexity [39,65], to calibrate 
inclusion shape and material properties from homogenised response [66], to get the 
homogenized response of composite from the constituent properties [40,41]. 
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In this work, an MDS model is developed to discover constitutive equations of 

the material from global force and DIC displacement observations, while 
complying with the governing equations. The idea is to learn the material response 
from the full-field strains and global force calibrating the parameters of a neural 
network with a custom architecture. The NN architecture: 

1) preserves the strain convexity of the material model by predicting a positive 
definite and symmetric stiffness matrix; 

2) conserves the decoupling of the axial and shear mechanisms.  
The loss function is computed as the weighted sum of three terms: 

1) the difference between the external energy and the external energy; 
2) the difference between the boundary force, computed from the stress at the 

boundary, and the applied force; 
3) the divergence of the stress field. 
Following the taxonomy introduced in Chapter 1, the method falls within the 

second category of problems where the MDS model is built with modified loss 
functions and custom architecture. The applicability and the accuracy of the method 
are first analysed based on virtual tests of composite laminates with a linear 
orthotropic model. Then, the capability of learning nonlinear response is tested on 
additional virtual tests where shear damage is introduced with a linear and cubic 
formulation. Finally, the procedure is applied to experimental data of carbon fibre 
woven samples to learn the material response. The remainder of the Chapter is 
organized as follows. First, the finite element model used for the virtual tests and 
the experimental procedure used to test the CFRP is described in Section 2.2, 
including the material description. Then in Section 2.3 the general framework for 
learning the constitutive equations is presented, specifically the NN architecture 
and the training process are described. After that, the accuracy of the method and 
the results are discussed for the different cases in Section 2.4. In Section 2.5 the 
influence of the model parameters on the accuracy, computational time and 
extrapolation capabilities are analysed. Finally, the conclusions about the 
capabilities of the proposed methodology are drawn in Section 2.6.  

 



2—22 Data driven material characterization with Physics Informed 
Neural Networks 

 
2.2  Models and experiments 

2.2.1 Virtual tensile test of orthotropic materials 

2.2.1.1 Orthotropic elasticity 

A Finite Element Model of a tensile test coupon of dimensions 25mm by 150 
mm with a 2.5mm thickness has been created in the LsDyna environment. Given 
the thin shape of the structure, shell elements with 4 nodes and 8 integration points 
on the plane have been used, with an average mesh size of 1 mm. The displacements 
along the x, y and z axis of the fixed nodes have been constrained, while a 
displacement of 5mm in the y-direction has been applied to the loading edge, being 
the remaining degrees of freedom fixed.  The specimen has been modelled with 4 
layers of 0.66 mm thickness each with 3 integration points in the thickness per layer, 
yielding a total laminate thickness of 2.5 mm, with the PART_COMPOSITE 
keyword available in the LsDyna environment. The layer orientation with respect 
to the specimen main direction 𝜃 is kept constant through the layers. 

The material model *MAT_058 LAMINATED_COMPOSITE_FABRIC has 
been used with the material parameter reported in Table 

Table 2.1. Material parameters of the orthotropic elastic model. 

E1 [GPa] E2 [GPa] G12 [GPa] ν12 ( = ν12 ) 

48 48 2.5 0.14 

The tests have been simulated at 6 different values of 𝜃, ranging from 0 to 45°, 
given the symmetry of the material response.  

2.2.1.2 Non-linear orthotropic elasticity 

The same model has been used to simulate the response of a non-linear 
orthotropic elastic material with the shear stress following the nonlinear damage 
law[67] described in Equation 2.1: 

𝐺12 = {

𝐺12
0                                         𝑖𝑓 𝛾12 < 𝛾12

0

𝐺12
0 (1 − (

𝛾12 − 𝛾12
0

𝛾12
𝑓
− 𝛾12

0
)

𝛽

)     𝑖𝑓 𝛾12 ≥ 𝛾12
0 , (2.1) 
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where 𝛾120  and 𝛾12

𝑓  are the damage initiation and failure shear strain, 
respectively, and 𝛽 is the damage exponential. The formulation yields a maximum 
shear stress 𝜏𝑚𝑎𝑥 given by Equation 2.2: 

𝜏𝑚𝑎𝑥 = 𝐺12
0 (

1 + 𝛽

𝛽
)
𝛽

(𝛾12
𝑓
− (

1 + 𝛽

𝛽
)𝛾12

𝑓 (
1+𝛽
𝛽

)
) (2.2) 

A representative curve of the shear model with 𝛽 equal to 0.33 is given in Figure 
2.1. 

The model has been implemented in LsDyna through a defined curve in the 
material model MAT_58. 

 

Figure 2.1. The shear damage law with a cubic trend of the damage variable with the 
applied engineering shear strain 

2.2.2 Experimental test of CFRP 

The specimen used for the experimental validation of the PINN are different in 
shape and stacking sequence from the one modelled with the FEM in the previous 
section. The composite materials studied are carbon fibre-reinforced epoxy prepreg 
from Microtex Composite (GG630 T125 12K, 37% resin). The matrix is an E3-150 
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resin, reinforced with a 2 × 2 twill carbon fiber fabric. A laminate with a [0/90/0] 
stacking sequence was manufactured by hand layup and autoclave curing, with an 
average thickness of 2 mm. Rectangular specimens measuring 250 (l) by 24 (w) 
mm were cut from the manufactured plate using a CNC machine. Tensile tests were 
conducted with an Instron 8001 hydraulic universal testing machine with a 
procedure adapted from the ASTM D3039 standard [68], at a quasi-static 
displacement rate of 2 mm/min. At least three specimens for each configuration 
were tested and mean values were considered. The free span of the specimen 
between the grips measured 145 mm. All tests were recorded with an 8.9 MP stereo 
camera system, imaging the entire specimen. To perform DIC, the specimens were 
airbrushed with a black-on-white speckle pattern (Figure 2.2b). The speckle images 
were processed using Correlated Solution’s VIC 3D 9.1.6 DIC software, selecting 

an optimal subset size of 31 px and a step between the subsets of 6 px, which is less 
than 1/3 of the subset size following the indications in the literature [68]. The load 
was measured with a 100 kN load cell, while DIC was used to monitor displacement 
and strains on the specimen surface. Three samples were tested for each 
configuration. 

a) 

 

b) 

 

Figure 2.2. An example of a specimen on the test fixture, captured with one of the 
cameras used for DIC: (a) reference image used to build the model, (b) speckle image 
taken during testing. The DIC area of interest is overlayed on both images. 
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2.3  Data-driven models 

The objective of the proposed method is to extract as much knowledge as 
possible from the experimental observation while complying with the physical 
constraints defined in solid mechanics. The balancing of these two sources of 
information translates into a progressive restriction of the solution space: in a purely 
data-driven method, any assumption is made on the stress-strain relation, that could 
lead to the violation of the physics laws; on the other hand, pre-defining a 
parametric constitutive model ensure the compliance of the trained model to the 
mechanical laws but cannot fully exploit the large dataset, translating into a 
parameter calibration procedure.  

The identification of the constitutive relationship is an optimization problem, 
whose cost function is drawn from the energy balance and equilibrium equation, as 
will be described in the following. In this section, the data driven framework is first 
described and the governing equations are laid down. Following, the integration of 
the neural network in the framework is discussed and the integration of the 
continuum mechanic knowledge with the data-driven method is formulated 
introducing the PINN.  

2.3.1 Data driven framework 

The proposed framework for learning the constitutive relationship between stresses 
and strains from the full-field displacement measured with DIC is represented in 
Figure 2.3. 

 

Figure 2.3. The proposed workflow to learn the constitutive model from the full field 
displacement measured with Digital Image Correlation 
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The testing configuration can be formulated as a constrained displacement at 

the fixed end of the specimen and an applied displacement (or load) on the moving 
head. Using the DIC method, the displacement field of the specimen surface is 
computed in the Lagrangian frame, being the reference system fixed with the testing 
machine. Using a stereo camera system, the 3D DIC can be applied, and the 
displacement U(x) is defined by its components (𝑢𝑥, 𝑢𝑦, 𝑢𝑧) in the discrete points 
of the grid. Introducing an interpolation of the displacement on the mesh, the strains 
can be computed as explained in Section 2.1.2, recalling the compatibility formula 
expressed with Equation 2.3: 

𝜺 =
1

2
(∇𝒖 ∙ ∇𝑇𝒖) . (2.3) 

Introducing the constitutive relationship between the strains and the stresses, 
we can define the constitutive model 𝒞 as a mapping from the strain to the stress 
space with Equation 2.4: 

𝝈(𝒙) = 𝒞(𝜺(𝒙), 𝜆) ∶  ℝ3 → ℝ3 (2.4) 

In the case of history-dependent materials (e.g., damage, plasticity) the 
constitutive relations depend on the state variables λ, accounting for the irreversible 

material transformation at the microstructural level. From the computed stress, the 
material strain energy can be formulated with Equation 2.5: 

𝑊𝑖𝑛𝑡 =
1

2
∫𝜺(𝒙) ∶  𝒞(𝜺(𝒙), 𝜆)𝑑𝒙
Ω

. (2.5) 

According to the first principle of thermodynamics, the change in the internal 
energy must be equal to the sum of the work done on the system, 𝑊𝑒𝑥𝑡, and the heat 
exchanged with the environment, 𝑄, which, in the case of quasi-static loads, can be 
neglected. The work done on the system is computed from the applied load with 
Equation 2.6: 

𝑊𝑒𝑥𝑡 = ∫ 𝐹(𝑡)𝑑(𝑡)𝑑𝑡
𝑇

𝑡0

, (2.6) 

where 𝐹(𝑡) and 𝑑(𝑡) are the imposed force and displacement at the boundary, 
respectively. The external work can be decomposed into surface and volume terms 
with Equation 2.7: 
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𝑊𝑒𝑥𝑡 = ∫ 𝑡̅(𝑥) ∙ 𝑢(𝑥)𝑑𝜕Ω
𝜕Ω

+∫𝑏(𝑥) ∙ 𝑢(𝑥)𝑑Ω
Ω

, (2.7) 

being 𝑡̅ and 𝑏 the traction and body force terms, respectively, and 𝜕Ω the 
boundary surface where the traction is applied. 

Combining Equations 2.5 and 2.6, Equation 2.8 relating the measurable 
quantities F, u, 𝜀 with the constitutive model 𝒞 is obtained: 

∫ 𝐹(𝑡)𝑑(𝑡)𝑑𝑡
𝑇

𝑡0

=
1

2
∫𝜺(𝒙): 𝒞(𝜺(𝒙), 𝜆)𝑑𝒙
Ω

. (2.8) 

The calibration procedure based on the full-field displacement can be 
interpreted as an optimization scheme defining the mapping function 𝒞 that 
minimizes the difference between the internal and external energy.  

Alongside the energetic balance, the equilibrium of the internal and external 
forces must be valid. Introducing the balance of linear momentum under a static 
and stationary condition, the continuum equilibrium can be formulated with 
Equation 2.9: 

∇ ∙ 𝜎(𝑥) + 𝜌(𝑥)𝑏(𝑥) = 0, 𝑥 ∈ Ω

𝜎(𝑥) ∙ 𝑛 = 𝑡̅ 𝑥 ∈ Γ𝑁 ,
 (2.9) 

 being 𝜌 the local density of the continuum. 

To comply with the equilibrium of angular momentum, the stress should be 
symmetric (Equation 2.10): 

𝜎 = 𝜎𝑇 . (2.10) 

 The strain energy convexity requires the strain energy to be positive, implying 
that the constitutive mapping 𝒞 is positive definite, either it is in the matrix or 
functional forms. 

Material models are required to be frame indifferent, meaning that the 
constitutive relationship between the applied strain and resultant stresses must be 
independent of the observer frame. While this is always confirmed for isotropic 
materials, being its response independent of the directions, in the case of non-
isotropic materials it should be guaranteed by properly projecting the strain states 
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into the material reference. Isotropic constitutive models can be represented by 
isotropic manifold, it can be easily understood by recalling the isotropic elasticity 
theory with Equation 2.11: 

𝜎 = 𝜆𝑇𝑟(𝜺) + 𝜇𝜺 , (2.11) 

where 𝑇𝑟(∙) denotes the trace operator, and λ and μ are the Lame coefficients 
directly related to the Young modulus E and the Poisson coefficient ν. Being the 

stress related to strain invariants, it is independent of any rotation of the strain to a 
new reference system, making it frame indifferent. 

In the case of anisotropic materials, this is not true because the material 
response is different along the different material directions and a rotation of the 
strain tensor would lead to a different material response. Therefore, it is needed to 
map the strain into the principal material direction before computing the stress 
response, otherwise, the material would exhibit a different constitutive law by 
varying the observer frame. Generally, the response of anisotropic materials can be 
expressed with Equation 2.12: 

𝜎 = 𝑇𝜎
−1𝐶𝑇𝜀𝜀 (2.12) 

Where 𝑇𝜎 and 𝑇𝜀 are the rotation matrix mapping the stress and the strain, 
respectively, from the observer frame to the principal material reference system. C 
is the constitutive matrix that is frame indifferent, while 𝑇𝜎−1𝐶𝑇𝜀 is the stiffness 
matrix in the observer frame and changes its direction with respect to the material 
ones. 

2.3.2 Neural Network 

In the proposed network, the loss function ℒ is defined with Equation 2.13: 

𝓛(𝜺𝑻; 𝜽) = ∫ 𝐹(𝑡)𝑑(𝑡)𝑑𝑡
𝑇

𝑡0

−
1

2
∫𝜺𝑻(𝒙): 𝒩(𝜺𝑻(𝒙); 𝜽)𝑑𝒙
Ω

(2.13) 

The integral formulation of ℒ does not allow for the computation of the error at 
each material point, since the full-field strain values are integrated over the domain 
Ω and compared with the external energy. To allow for the computation of ℒ, the 
material states have been grouped into batches, each containing the material states 
of the entire structure at time T. A cumulative batch loss is defined to perform the 



Data-driven models 2—29 

 
integral of Equation 2.13 to get the loss value. The training of the neural network is 
an optimization problem in the form of Equation 2.14: 

𝜽̅ = min
𝜃
𝓛(𝜺𝑻, 𝜽) , (2.14) 

being 𝜃̅ the trained parameters and θ the hyperparameters. 

The training algorithm of the NN is described with Algorithm 2.1, where at 
each iteration of the training process the loss is computed at each load step and back 
propagated to the NN neurons to update the weights and biases. 

Algorithm 2.1 

Neural Network Pseudo code 
Initialize random 𝜃 = {𝒘, 𝒃} 
while i<n_epochs 
    for each load step N 
        Compute 𝝈𝑁 = 𝓝(𝜺𝑁; 𝜽) 
        Compute the internal energy 
        Compute 𝓛(𝜺𝑁, 𝜽𝑖) 
        Back propagate the error and compute the gradient 
        Update 𝜽 with gradient descent 
    end for 
end while 

2.3.3 Physic-Informed Neural Network (PINN) 

The neural network presented in Subsection 2.3.2 is trained on the full-field 
strain values to comply with the energy balance but does not account for the local 
equilibrium of the continuum. At each load step of the test, only one scalar equation 
can be written from the energy balance. If the load steps are less than the material 
parameters, the problem has no solution, while if the load steps exceed the number 
of variables the system will be overdetermined. Overdetermined systems are almost 
always inconsistent; therefore, the approximate solution is found through an 
optimization strategy.  

To get a better approximation of the constitutive relation through a neural 
network, the optimization problem can be reformulated to penalise the solutions 
violating the physics, i.e., the equilibrium equations. The proposed method uses a 
PINN trained with a modified loss function that penalises the physics violation; 
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furthermore, a modified architecture which constrains a positive definite 
constitutive model is proposed. 

The PINN receives as input the strain vector projected on the material direction, 
whose components feed three different sub-networks respectively predicting the 
stiffness along the principal directions, C11 and C22, the deviator stiffness 
component, C12, and the shear term of the constitutive matrix, C66. The predicted 
stiffness constants at the given strain are rearranged internally to the PINN and used 
to compute the stress state by multiplying the stiffness matrix with the strain vector. 
The shear-axial coupling terms are set to zero, complying with the mechanical 
decoupling of the axial and shear mechanism. 

A schematic representation of the model is shown in Figure 2.4, where the 
number of layers and neurons represented are indicative. 

 

Figure 2.4 Scheme of the core network predicting the stress in the material direction. 

 

The core network is then composed of three sub-networks that can be described 
with Equations 2.15-17: 

[
𝐶11
𝐶22

] = 𝒩1(𝜺) , (2.15) 

𝐶12 = 𝒩2(𝜺) , (2.16) 
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𝐶66 = 𝒩3(𝜺) . (2.17) 

The PINN sub-networks have hyperbolic tangent (tanh) activation functions on 
the internal neurons and ReLU activation functions on the output neurons to 
constrain a positive value of the stiffness constants. The reconstruction of the 3-by-
3 stiffness matrix and the tensors product within each batch are computed using the 
Keras Backend library’s functions for the tensorial product.  

The PINN, operating on all the elements of the DIC mesh, predicts the full field 
stress state of the component. The predicted stress is used to compute the loss 
functions defined with Equation 2.13, modified with two additional terms 
entangling the physics of the problem. Following the notation introduced in 
Equation 2.15-17, the internal energy at the element i is described in Equation 2.18: 

2𝑈𝑖
𝑘 = 𝐴𝑖  𝑡𝑖 𝜺𝒊

𝒌: 𝝈𝑖
𝒌, (2.18) 

where the apex k indicates the load step, while Ai and ti are the element area and 
thickness, respectively. 

The internal energy at the load step k is then computed as the sum of the 
element's internal energy, 𝑊𝑖𝑛𝑡

𝑘 = ∑ 𝑊𝑖𝑛𝑡,𝑖
𝑘

𝑖∈𝐼𝑘 , from which the loss term on the 
energy balance is computed with Equation 2.19: 

ℒ𝑒𝑛 = |𝑊𝑖𝑛𝑡
𝑘 −𝑊𝑒𝑥𝑡

𝑘 | . (2.19) 

Recalling Equation 2.9, the predicted stress must comply with the equilibrium 
equation. The divergence of the stress field is then computed over the defined 
domain to estimate the equilibrium error associated with the network prediction. 
The computation of the stress gradient is computationally expensive, therefor ni co-
location points and nk co-location load steps are defined, at which the divergence 
error is computed at each iteration with Equation 2.20: 

ℒ𝑑𝑖𝑣 = ∑ ∑ |∇ ∙ 𝝈𝑖
𝑘|

𝑖∈𝐼𝑐𝑜𝑙𝑘∈𝐾𝑐𝑜𝑙

, (2.20) 

with the co-location points and frames defined in 𝐼𝑐𝑜𝑙 and 𝐾𝑐𝑜𝑙, respectively. 
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Figure 2.5 Scheme of the full field stress prediction and computation of the loss in 
the co-location points. 

Recalling Equation 2.9, the boundary error is computed at the co-location 
frames with Equation 2.21: 

ℒ𝑏𝑐 = ∑ ∑ |𝝈𝑖
𝑘 ∙ 𝒏 − 𝐹𝑘|

𝑘∈𝐾𝑐𝑜𝑙𝑖∈𝐼𝑏𝑐

. (2.21) 

The total loss function is computed as the scaled summation of the three 
different terms with Equation 2.22: 

ℒ𝑡𝑜𝑡 = 𝛼ℒ𝑒𝑛 + 𝛽ℒ𝑏𝑐 + 𝛿ℒ𝑑𝑖𝑣, (2.22) 

Where the loss terms ℒ𝑒𝑛,   ℒ𝑏𝑐, and ℒ𝑑𝑖𝑣 refer to the energy, boundary 
conditions and divergence error, respectively. 

The hyperparameters of the proposed method are resumed in Table 2.2. 

𝒏 Number of neurons per layer 

𝒏𝒍 Number of layers per network 

𝒏𝒊 Number of co-location points 
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𝒏𝒌 Number of co-location frames 

𝜶 Energy loss scaling factor 

𝜷 Boundary loss scaling factor 

𝜹 Divergence loss scaling factor 

Table 2.2 Hyperparameters of the model 

The effect of the hyperparameters on the model accuracy and computational 
time is discussed in Section 2.5. 

 

2.4  Results 

The results are presented in two subsections where the network performance trained 
on artificial and experimental data is discussed, respectively. Since the material 
laws used in the virtual test simulated with the FEM are known, these are used as a 
reference to directly compare them with the material response identified with the 
MDS method. In the following, the material model calibrated from tensile tests on 
un-notched and notched CFRP specimens are discussed and data-processing 
techniques are introduced to properly filter the experimental results from noise. 

2.4.1 Virtual test of orthotropic materials 

2.4.1.1 Orthotropic elasticity 

The force-displacement curves resulting from the virtual experiments with a 
linearly elastic orthotropic material law are presented in Figure 2.6a. 
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a)

 

b)

 

Figure 2.6 Results of the virtual test of linearly orthotropic materials at different 
orientations with respect to the loading direction: a) force-displacement curves; b) strain 

states of the material points. 

Varying the orientation of the material main direction with respect to the 
loading axis, the strain states of the material points vary accordingly. In particular, 
the axial-to-shear strain ratio changes from a purely tensile test at 0° to a pure shear 
test at 45°, as can be observed in Figure 2.6b, where the strain states of all the 
elements are reported for all the loading frames. The points obtained from the 
tensile test at 0° have a principal value on the principal material direction (𝜀2), while 
the states of the off-axis tests progressively shift their main component toward the 
shear strain (𝛾12) 

The material angle affects the strain energy and its shear and axial components. 
Indeed, by separating the shear and axial terms of the strain energy and analyzing 
their variation with respect to the angle θ, it can be observed that the two terms are 
equivalent at an angle θ approximatively equal to 30° (Figure 2.7). 
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Figure 2.7 Variation of the strain energy content with the material angle 

This trend is governed by the material properties, more specifically by the ratio 
between the axial and shear moduli. Considering a pure tensile test with an applied 
strain along the y-direction 𝜀𝑦̅, the transverse deformation is controlled by the in-
plane 𝜈𝑥𝑦 Poisson’s ratio computed with Equation 2.23: 

𝜀𝑥 = −𝜈𝑥𝑦𝜀𝑦 = −
𝐶12
′

𝐶11
′ 𝜀𝑦 , (2.23) 

 being 𝐶′ the stiffness matrix in the laminate direction, computed from the 
stiffness matrix in the principal direction 𝐶0 defined with Equation 2.24:  

𝐶0 =
1

1 − 𝜈12
2 [

𝐸1 𝜈12𝐸1 0
𝜈12𝐸1 𝐸2 0

0 0 (1 − 𝜈12
2 )𝐺12

] , (2.24) 

with the rotation matrices 𝑅𝜎 and 𝑅𝜀: 

𝐶′ = 𝑅𝜎
−1𝐶0𝑅𝜀 (2.25) 
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 Using Equation 2.25, the axial and shear components of the strain energy are 

computed to define the material angle yielding an equivalence of two terms (Figure 
2.8). 

 

Figure 2.8. The variation of the axial and shear components of the strain energy with 
material angle θ. The red dots indicate the equivalence point for different 𝐸1/𝐺12  ratios. 

The angle at which the axial and shear strain energies are equivalent is 
determined by 𝐸1/𝐺12: the higher it is larger the angle needed to meet the state of 
equivalent energies. 

Table 2.3. The hyperparameters of the model 

𝒏 𝒏𝒍 𝒏𝒊 𝒏𝒌 𝜶 𝜷 𝜹 

15 3 10 10 0.3 0.7 1000 

 

The model has been separately trained three times for each angle, with the main 
hyperparameters reported in Table 2.3. The scale factors α and β have been selected 
to sum up to one, while a divergence factor of 1000 has been selected to get a similar 
order of magnitude of the three terms in order to comply with all the governing 
equations described with each loss term. The activation function is a SELU for the 



Results 2—37 

 
hidden layers and a linear function for the output layers. The learning rate has been 
set to 10-5 to avoid exploding gradients phenomena and the models have been 
trained for 500 epochs with an early stopping algorithm that interrupts the process 
when a decrease of the loss function lower than 10-2 is observed for more than 10 
consecutive epochs. The final weights are restored from the epoch where the lowest 
value of the loss function has been observed. 

a)

 

b)

 

c)

 

d)
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Figure 2.9. The loss function during the training process: a) Energy, b) Boundary, c) 

Divergence, d) Total. The curves refer to all 24 models trained on artificial data (3 
repetitions for each angle). 

The value of the total loss function during the training epochs for all the 
different material angles is reported in Figure 2.9d, with the different terms reported 
in Figure 2.9a-c. 

The three terms of the loss function (i.e., energy, boundary, and divergence) 
and its total value monotonously decrease with the training iterations. The boundary 
and energy terms eventually converge to small values, while the divergence loss 
reaches a higher minimum that could be affected by the vanishing of the equilibrium 
in the last frames due to specimen failure. Results show sporadic cases where an 
exploding gradient phenomenon can be observed, yielding a divergence of the loss 
function. To overcome this potential issue, it is recommended to train the network 
multiple times (at least three) and inspect the training loss to discard the invalid 
results. Alternatively, the learning rate could be further reduced below 10-5, 
stopping the gradient-based algorithm from diverging far from the domain of the 
function minimum. It should be noted that lower values of the learning rates reflect 
longer training times. Nevertheless, the accuracy of the model is also affected by 
the weights initialization that is randomly defined at the beginning of each training 
using the Glorot [69] initializer with a random distribution. To discern the results 
from the influence of the initial parameters, each model is trained three times and 
the best learning curve is presented in the following. 

The loss values for the different virtual tests with varying 𝜃 are reported in 
Figure 2.10, where it can be observed that the model performs better when trained 
on off-axis laminates with an angle greater than 20°. The boundary and energy 
terms of the loss (Figure 2.10a) follow a similar trend that is governed by the strain 
energy composition: at a lower angle, the strain energy component associated with 
the shear is significantly lower than the axial components, making it challenging 
for the network to converge towards an exact solution of the elastic constants. 
Comparing the predicted constants 𝐺12 and 𝐸1 with the exact values used in the 
FEM model, it can be observed that the predicted shear modulus is incorrect at 
lower angles, while values closer to the reference solution are predicted when the 
shear strain energy approaches the axial strain energy (Figure 2.10b). 

a) b) 
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Figure 2.10. a) The values of the loss function terms related to the boundary 
and energy terms; b) The predicted moduli normalized over the exact values used 
in the FEM model. 

In other words, testing a material along its principal direction will induce a 
strain energy that is almost completely dependent on the material properties in that 
direction, making it consequently impracticable to determine the properties along 
the second direction. However, the right testing configuration which equally 
balances the strain energy contributions would allow for the simultaneous 
determination of the material properties along different directions [70].  

Finally, the stiffness matrix computed with the PINN on a 30° specimen is 
compared with the reference values and the stress-strain curves are reported in 
Figure 2.11. Obtained results look very accurate. 

𝐶̅ = [
64.98 9.07 0
9.07 64.98 0
0 0 2.5

] , 𝐶𝑝𝑟𝑒𝑑 = [
63.8 9.4 0
9.4 62.8 0
0 0 2.45

], 

 

a) b) 
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Figure 2.11 The shear (a) and axial (b) elastic response characterized by the PINN is 
compared with the reference elastic response. 

2.4.1.2 Orthotropic elasticity with shear damage 

The main advantage introduced by the implementation of the NN is its ability 
to replicate any function without predefining any parametric model. Therefore, the 
PINN performance is investigated for two different nonlinear constitutive relations 
in the following. 

A linear elastic material with shear damage has been virtually tested using the 
material models described in section 2.2.1. The elastic properties are described in 
Table 2.1, while the damage parameters are reported in Table 2.4. 

Table 2.4. Parameters of the damage model for the Linear Damage (LD) and Cubic 
Damage (CD) cases. 

Parameters 𝜸𝟎 𝜸𝒇 𝜷 

LD 0.1 0.7 1 

CD 0.0 0.4 1/3 

To validate the accuracy of the method and its generality, two different 
materials have been tested with linear damage (LD) and cubic damage (CD) 
behaviour. The predicted model is compared with the LD one in Figure 2.12a, 
where it can be observed that the response characterized by the PINN accurately 
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replicates the material model defined in the FEM. It can be observed that the 
damage initiation mechanics (that produce the deviation of the curve from the 
linearity) are accurately captured by the neural network, as the damage propagation 
and its linear trend. As previously observed in the elastic response case, the linear 
response is also captured by the PINN with a maximum error of 5%.  

a) 

 

b) 

 

Figure 2.12. a) The stress vs strain curve of the LD model characterized with the 
MDS method compared with the FEM material model; b) the accuracy plot comparing 
the prediction with the values of the material model. 

a) 

 

b) 
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Figure 2.13. a) The stress vs strain curve of the CD model characterized by the MDS 

method compared with the FEM material model; b) the accuracy plot comparing the 
prediction with the values of the material model. 

The predicted stress is in good agreement with the values computed with the 
FEM, showing a coefficient of determination of 0.996 (see Figure 2.12b). The 
accuracy of the PINN results for a cubic damage law is shown in Figure 2.13, where 
the good accuracy of the model is confirmed by the coefficient of determination 
equal to 0.998 between the predicted stress and the one computed with the FEM. 
The CD law gives slightly better results than the LD law. 

The predicted strain energy and boundary forces are reported in Figure 2.14 
and compared with the target value used for the computation of the loss function. 
In Figure 2.14b, the boundary force values are compared with the values of the load 
applied to the specimen and the co-location frames are indicated with red markers.  

a) 

 

b) 

 

Figure 2.14. a) The internal energy computed with the predicted stress compared 
with the external energy used to train the PINN; b) the boundary force compared with the 
stress normal at the traction boundary. 

The predicted internal energy is in good agreement with the external energy at 
every frame of the test. The boundary force computed from the normal stresses does 
not perfectly match the external load, with an average error of 8% and a maximum 
error of 12.5% in the last frame that is considered acceptable given the fact that the 
boundary terms is only one of the three loss terms governing the training of the 
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model. Given that the predicted boundary force follows a continuous trend in 
between the co-location, it can be concluded that there is no need to increase the 
number of points, which would reflect in higher computational cost.  

2.4.2 Experimental tensile test of CFRP 

2.4.2.1 Data filtering and reduction 

The strain data are stored in three third-order tensors Ex, Ey, Exy, where Eα,ijk is 
the component α of the strain in the element with position (Xij, Yij) at the kth load 
step. The dimension of each tensor is defined by the number of subsets along the x 
and y directions (nx and ny) and the number of load steps N. 

Since neural network performance can be negatively affected by noisy data, it 
is fundamental to pre-process the experimental measurements to cut out the noise 
both in space and time dimensions. The experiments presented here have been 
conducted under a quasi-static regime, therefore a gradual and smooth variation of 
the strain over time is expected. To cut out the noisy oscillations, a moving average 
filter is used along the third dimension of the E tensor, as described in Eq.2.26: 

𝐸̅𝑖𝑗𝑘 =
1

𝑁
∑ 𝐸𝑖𝑗𝑘

𝑘+
𝑁
2

𝑘−
𝑁
2

(2.26) 

 

Similarly, the force and displacement vectors, F and d, containing the values 
of applied displacement dk and measured force Fk at load step k, are filtered with 
the same window size.  

Each snapshot Eij representing the element strain at a given load step can be 
decomposed into signal and noise: 

𝐸𝑖𝑗 = 𝐸̅𝑖𝑗 + 𝑁𝑖𝑗 (2.27) 

Moreover, given the heterogeneous nature of the composite material, the strain 
can be further decomposed as an average strain µij and a fluctuation term σij: 

𝐸̅𝑖𝑗 = 𝜇̅𝑖𝑗 + 𝜎𝑖𝑗 (2.28) 
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The data-driven method presented in this work wants to establish a 

homogenized constitutive relationship in the stress-strain space and requires 
filtering out the oscillations in the space domain. Combining Eq.2.27 and Eq.2.28, 
the strain tensors can be decomposed 

𝐸𝑖𝑗 = 𝐸̅𝑖𝑗 + 𝜎𝑖𝑗 + 𝑁𝑖𝑗 = 𝐸̅𝑖𝑗 + Σ𝑖𝑗 (2.29) 

A convolution filter is applied in the space domain to cut off the noise and the 
strain perturbation induced by the material heterogeneity.  

𝐸̅𝑖𝑗 = 𝐸𝑖𝑗 ∗ 𝒜 (2.30) 

Being 𝒜 the filter matrix with shape m by m, containing all 1/m values. The 
filter is applied with symmetric padding, meaning that the (𝑚 − 1)/2  rows and 
columns are added with values symmetrically equal in the filter window.  

a) 

 

b) 
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Figure 2.15 a) The convolution filter applied to the experimental strain measured 
with the DIC on the left and the resultant homogenized field on the right; b) The 
histograms of the strain values of the filtered fields with different window sizes. 

Under the assumption of a zero-mean normally distributed noise, it is assumed 
that, if a filter window is selected large enough to cover an area of the strain that is 
representative of the homogenised material, the result of the convolution is the 
homogenised strain.  

The filtered strain tensors have a size 𝑛𝑥 × 𝑛𝑦 × 𝑁 (same as the original 
tensors), which may result in excessively dense data that could compromise the 
efficiency of the method. To reduce the number of states in the stress-strain space, 
the data are clustered with a k-means clustering algorithm (Appendix) into nc 
clusters.  

The clustering operates in a three-dimensional space (𝜀𝑥, 𝜀𝑦, 𝛾𝑥𝑦), assigning the 
𝑛𝑥 ∙ 𝑛𝑦 ∙ 𝑁 strain states to nc clusters each with a centroid (𝜀𝑥,𝐶 , 𝜀𝑦,𝐶 , 𝛾𝑥𝑦,𝐶)𝑖. 
Successively, the strain states belonging to the ith cluster are substituted with their 
centroid value. Figure 2.16 depicts the initial strain states in the 𝜀𝑦 − 𝛾𝑥𝑦 domain, 
where each point represents a state before the clustering and its colour refers to the 
cluster it has been assigned to.  
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Figure 2.16. Strain states clustered into 100 clusters with a k-means algorithm. 

 
The clustered data Ε̅′ contains nc unique strain states, that will be used to train the 
network to learn the constitutive relation. The effect of the clustering on the strain 
maps is shown in Figure 2.17, where it can be observed that the clustering smooths 
the strain maps preserving a good resolution in the high-load frames where the 
strain gradient is higher while reducing the accuracy in the low-load frames where 
the strains appear to be more homogeneous over the domain. In the last frame, 
corresponding to the specimen failure, it can be observed that the clustering does 
not affect the concentration of the damage because the transformation is done in the 
strain domain and not in the space domain. The clustering procedure took about 70 
seconds to cluster 6528000 points into 200 clusters, and 60, 40, 25 and 13 seconds 
for the clustering with 150, 100, 50 and 25 clusters, respectively. For the case under 
study, the clustering does not affect the accuracy of the results. 
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Figure 2.17. The effect of the clustering on the DIC strain maps of a 45° off-axis 
carbon fibre reinforced specimen.  

After having filtered the strain data in the space and strain domains, the support 
grid of the strain data has been coarsened to reduce the dimensionality of the 
dataset. To reduce the grid of a factor λ, each sub-domain of dimensionality [λ, λ] 

is averaged and assigned to a point of the new grid with a dimension reduced of λ 

(as shown in Figure 2.18. The clustering technique is applied to the measured strains 
in the laminate direction and successively rotated in the material coordinate system. 
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Figure 2.18. An example of a data reduction with a reduction factor λ equal to 3. 

2.4.2.2 Results: material models and damage law 

The method has been applied to the unnotched specimen with an off-axis angle 
of 45°. The strain data have been filtered with the procedure described above, using 
a size of the convolutional filter of 100x100 pixels and 100 clusters. The adopted 
PINN has 3 hidden layers with 15 neurons each, with a SELU activation function 
for all the hidden neurons. The weights have been initialized with the Glorot 
procedure and the model has been trained for a maximum of 200 epochs with a 
learning rate of 5e-5, with the loss weight 𝛽, 𝛿 and 𝛼 equal to 0.5, 0.5 and 100, 
respectively. The values of α and β have a limited influence on the results, as 

discussed in the following. The data have been sampled at 54 load steps, of which 
49 have been used as training data and 5 have been left as validation, while only 10 
evenly spaced co-location frames have been used for the evaluation of the boundary 
and divergence loss during the training. The displacement fields are described over 
a support grid of dimension 68-by-10, yielding an element area of 3.86mm2. The 
training and validation losses are reported in Figure 2.19, showing a monotonous 
decrease of the error with a solution converging towards a total loss of 10.6 and 9.3 
for the training and the validation data, respectively. 
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Figure 2.19. The total loss during the training epochs was computed over the validation 
and training frames. 

A physical interpretation of the loss is given in Figure 2.20a, where the internal 
energy computed from the predicted stress is compared with the external energy. 
The mean relative error on the balance energy is 5%, with a maximum error at low 
displacements where the clustering algorithm tended to cluster the low-strain 
material points together and smoothed the variation in the initial elastic steps. 

  

Figure 2.20. a) The energetic balance of the internal energy related to the predicted 
stress with the external energy; b) the traction force compared to the normal stress at the 
boundary. 
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The extracted stress-strain curve is presented in Figure 2.21a where the band of 

curves represents the results interval containing all the material curves obtained by 
three runs of the PINN.  

a) 

 

b) 

 

Figure 2.21. a) The stress-strain curve obtained with the PINN and b) the 
corresponding damage law. 

In Figure 2.21a the stress states predicted by PINN on the training frames are 
represented with blue dots, while the grey line shows the material model computed 
in the range between 0 and 0.08 mm/mm of shear strain. Figure 2.21b shows the 
shear stiffness computed at each stage of the training frames. The damage index of 
Equation 2.1 can be computed from the predicted stiffness with the equation 𝑑 =
1 − 𝐺/𝐺0, being the initial stiffness 𝐺0 equal to the stiffness in the elastic region. 
The damage can be thus calculated at each material point from the strain state using 
the PINN, and the damage propagation and localization can be observed in Figure 
2.22b. It is worth stressing the concept that the damage in the specimen corresponds 
to a decrease in the material properties, whose variation has been learned from the 
full field strains by complying with the governing equations of solid mechanics. In 
the nominally uniform material, the model can learn the material model at different 
strain levels from the non-uniform strain maps acquired with the DIC. 
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Figure 2.22. Damage propagation in the specimen computed with the PINN at different 
stages of the test, at 7 equally spaced frames from the beginning of the test until the failure. 

The influence of the loss weights over the predicted curve has been investigated 
by varying the 𝛼 from 0.25 to 0.75 while keeping 𝛽 = 1 − 𝛼. The results reported 
in Figure 2.23 show that the model computed with the PINN is not sensitive to the 
weights of the loss function in the explored range. 

 

Figure 2.23. Predicted material response with different values of the energy loss 
weight (𝛼). 
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2.5 Discussion 

The accuracy and efficiency of the proposed methodology are affected by the 
hyperparameters of the model described in Table 2.2.  

2.5.1.1 Accuracy 

A sensitivity analysis of the hyperparameters of the architecture on a test case 
revealed that an increasing number of neurons has a stronger influence on the 
accuracy than the depth of the network. A number of neurons per layer equal to 15 
appears to be the optimum choice to maximize the accuracy of the network. 
Architectures with more than 3 hidden layers perform better for almost any width 
of the layers, as shown in Figure 2.24. 

 

Figure 2.24. Accuracy of the PINN on a test case with varying width and depth of the 
architecture. 
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Therefore, a minimum of 3 hidden layers has always been used in this work, 

with a width of 15 neurons. 

2.5.1.2 Computational cost 

The material identification algorithm here proposed is meant to be executed 
only at the characterization stage and it can output the material model in the form 
of a trained neural network with a single execution. For this reason, the 
computational cost of the model training is not a critical aspect, but it is discussed 
for the sake of completeness.  

The computational cost of the model training can be divided into the following 
terms: forward prediction, loss computation, and back-propagation. The forward 
and back-propagation are affected by the network complexity, thus relatable to the 
number of trainable parameters defined with Equation 2.31: 

𝑛𝑝 = 13𝑛𝑛 + 3(𝑛𝑙 − 1) ∗ 𝑛𝑛
2 + 3𝑛𝑛𝑛𝑙 (2.31) 

 

Figure 2.25. The variation of the number of trainable parameters with the number of 
neurons per layer. 

The back-propagation algorithm complexity linearly scales with the number of 
connections, following the trend represented in Figure 2.25. 
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The loss computation is instead affected by the computation of the three distinct 
terms accounting for the energy, divergence, and boundary force error. These 
are independent of the network complexity, and they are only relatable to the 
number of material points in each frame (i.e., batch dimension), the number of 
co-location frames, and the number of co-location points. 

Following the above analysis, an architecture with 3 hidden layers with 15 
neurons each has been identified as an acceptable trade-off between the 
computational time and the model accuracy. 

2.5.1.3 Extrapolation 

The proposed methodology efficiently learns a stress-strain relation from the 
full-field displacements measured on the surface of the specimen. The trained 
PINN acts as a material model that maps the strain state into the stress space 
for any given input. However, the model is only trained with the strain states 
observed in the experiments and its accuracy outside the training domain could 
be critically compromised. Figure 2.26 shows that the prediction of the material 
response in the compression domain deviates from the prescribed model due to 
the paucity of data.  

 

Figure 2.26. Prediction of the compressive response of the PINN trained on the CD 
tensile test (blue) compared with the material model (black). 
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This suggests that the PINN should be trained with data that explores the 
domain that is intended to be analysed. 

2.6  Conclusions 

In this Chapter, an MDS method that learns the constitutive equations of 
materials from the displacement field and the boundary force has been introduced. 
The method combines the fundamental concepts of PINN with MDS architectures 
to characterize the mechanical response of materials leveraging on the local data 
about the surface displacement obtained with the DIC and preserving the governing 
equation of continuum mechanics, such as the forces equilibrium and the energy 
balance. First, the formulations of the method have been introduced to provide a 
theoretical background and a mathematical description of the algorithm, and then 
the algorithm itself and its implementation have been presented. The proposed 
method, implemented in a Python environment, using Google’s TensorFlow 

libraries, has been tested against virtual experiments simulated with the FEA 
software LsDyna, replicating a tensile test of a fibre-reinforced specimen with a 
varying off-axis angle. The linear elastic orthotropic model used in the FEM has 
been compared with the constitutive equation learned with the proposed method 
from the different virtual tests at varying angles. The results showed that an 
orthotropic constitutive equation could be accurately characterized with a single 
test if the axial and shear components of the strain energy are sufficiently similar, 
yielding the convergence of the model toward a solution with an average error 
below 10% under the most favourable conditions. It has been observed that such a 
balance of the energy terms can be achieved with a 30° off-axis specimen, where 
the elastic terms are equivalent. Damage models with a linear and cubic trend of the 
shear damage variable have been modelled in the FE environment to assess the 
performance of the method against nonlinear material response and the results 
showed an overall good accuracy of the PINN with a 5% maximum error and a 
correlation coefficient above 0.99 between the predicted and the prescribed stress. 

The methodology offers a powerful tool to automate the calibration of material 
models that usually follows an iterative process where two main steps are repeated 
until convergence: the selection of the parametric expression of the material model 
and the following calibration of the model parameters. This procedure, usually 
conducted with a FEM model replicating the experimental set-up, is extremely 
time-consuming, due to the tremendous number of models available to the users 
and the computational burden of the FE models. The presented PINN can directly 
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learn the stress-strain relation from the experimental test, satisfying the equilibrium 
and conservation equations commonly imposed in FEM, overcoming the 
shortcoming of the model identification, and directly establishing a stress-strain 
relation that can be used in a FE Solver. In this regard, future developments will be 
done to implement the NN in the FE solver to fully exploit the potentiality of the 
method. Behind that, the method makes the best out of the full-field experimental 
techniques by inferring the material response of the tested specimen from all the 
available data, enabling the concurrent identification of the orthotropic material 
response under different directions with a reduced number of tests, as demonstrated 
on the virtual test in section 2.4.1. 

However, the material models learned with the PINN are intrinsically limited 
by the observed strain states. The extrapolation of the material response outside the 
training domain could lead to inaccurate results compromising the usage of such 
models. The presented method can indeed learn from the observed states and 
establish a stress-strain relationship that holds in the proximity of the training 
dataset, which is defined by the available experiments. The extrapolation capability 
of the model could be enhanced by properly designing the experiments to cover a 
wide range of the strain domains, or at least the region where the material is 
expected to work in the final application. The reliability of the method could be 
intrinsically modelled by adopting the Bayesian formulation of the NN that uses 
stochastic weights described by probability distributions. These models could learn 
the epistemic and aleatoric uncertainty of the material model calibrating the 
probabilistic formulation of the weights. Future developments will focus on the 
implementation of such methods in the PINN to estimate the reliability of the model 
and guide the user toward an uncertainty-driven increase of the available data. 
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3 Data driven statistical method for 
multiscale characterization and 
modelling of as-built fibre-
reinforced composites 

3.1  Introduction 

In Chapter 2, an MDS characterization methodology has been introduced to 
learn the constitutive equations from the full field displacements and the applied 
boundary conditions of standard experiments. It has been shown that by using 
PINNs combined with the governing laws of solid mechanics, the material response 
can be accurately characterized without introducing any parametric formulation. 
Although the method has shown remarkable precision, it is intrinsically limited by 
the available experimental data; the extrapolation outside the observed strain 
domain may indeed result in inaccurate predictions due to the absence of any 
phenomenological knowledge used to extrapolate the material response outside that 
domain. In principle, specifically designed experiments can be performed to learn 
the material response over a larger domain. However, certain strain configurations 
are typically left unexplored by experiments due to the high complexity of the 
experimental setup needed to induce them. For example, the bi-axial strain state 
requires a testing machine with two independent actuators, which is rarely available 
in the material testing labs. When modelling orthotropic materials, especially fibre-
reinforced composite, this paucity of data can lead to inaccurate prediction since 
combined strain states can activate different damage and failure modes that can be 
hardly predicted if not experimentally observed and properly characterized.  

In recent years multiscale models have opened the door to virtual experiments: 
modelling the material microstructure at its lower scale, at which the damage 
mechanism initiates and propagates (e.g., individually modelling the matrix and 
fibres of the fibre-reinforced polymer (FRP) composite) the material response can 
be predicted for any given strain configuration [71–77]. Following, an overview of 
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the multiscale models developed in the last decades is given and the proposed data-
driven approach is introduced. 

3.1.1 Multiscale modelling 

Multiscale models compute the local response of composite introducing a 
Representative Volume Element (RVE)[78], a lower scale inhomogeneous 
representation of the composite material, whose response is homogenized and 
transferred to the higher scale model. RVEs are defined as the smallest volume over 
which a measurement can be made that yields a value representative of the whole.  

Besides virtual experiments, multiscale models allow modelling of the FRP 
microstructure at its lower scale where the presence of defects may occur and their 
effect on the material response can be predicted. For this reason, multiscale 
modelling coupled with microstructure reconstructions of as-built material can 
enhance the predictive capability in the presence of defects such as voids, fibre 
misalignment, or undesired inclusions. 

Multiscale modelling techniques have been developed in recent years 
implementing different approaches, among them two mains can be identified: 

• Hierarchical: the RVE analysis and the subsequent homogenization are 
carried out at specific sampled strain states at which the homogenized 
stress response is computed. Then, a material law is extrapolated using 
parametric formulations. Once the material response has been 
identified, it is passed to a part-scale model in the form of constitutive 
equations. 

• Concurrent: the RVE analysis is computed concurrently with the part 
scale analysis. The strain state at any material point of the part scale 
model is applied to the RVE (i.e., localization) and the homogenised 
response is computed and propagated back to the higher scale (i.e., 
homogenisation).   

The first approach has the advantage of being compatible with any FE solver 
being the solution scheme is not altered since the RVE is only used beforehand to 
calibrate a material model. On the other hand, this approach requires a material 
model to be selected, whose parameters are calibrated with the RVE results, while 
the concurrent strategy gets rid of any assumption on the homogenized response 
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and directly relies on the lower-scale representation of the material. The latter 
implies a tremendous increase in computational time that is, at present, 
unsustainable for most industrial applications.  

The most common methods to compute the mechanical response of the RVE 
are the Finite Element Method and the Fast Fourier Transform method. While the 
first is well established in the engineering community, the latter has been mainly 
introduced to deal with signal frequency analysis and decomposition, but in the 
presently studied application is used to solve the RVE problem where periodic 
boundary conditions are applied. A summary of the FFT theory and its application 
to the computation of the homogenized response of RVEs is given in Annex A. 

Conventional multiscale approaches usually assume a deterministic description 
of the micromechanical properties (e.g., microstructure, matrix properties, fibre 
properties), but there is an inevitable need to establish multiscale statistical 
microstructure-constitutive property relations in materials design. Researchers have 
proposed effective methods to account for the stochastic nature of the composite 
microstructure, by defining statistical descriptors of random microstructures [79–

81] that could be experimentally characterized with microstructural images or CT 
reconstructions [82–86]. In [86] the concept of Stochastic Volume Element (SVE) 
is introduced, a statistically equivalent volume element that accounts for the 
randomness of material microstructure on the composite constitutive properties. 
Published papers [87–89] proposed a statistical multiscale method to propagate the 
microstructural uncertainty to the structural level by introducing a statistical 
representation of the RVE. Recently, [90] proposed a probabilistic 
micromechanical-based approach to account for the effect of scattering sources in 
composite materials, focusing on voids, material inhomogeneity, fibre morphology, 
and other manufacturing-induced defects. The above-mentioned works confirm an 
increasing interest of the scientific community toward a probabilistic prediction of 
the material response that can account for manufacturing-induced variation and 
intrinsic material randomness.  

The mentioned studies assume that the scatter in the mechanical response of 
composite materials is only imputable to the microstructure variation. However,  
[91–93] provided evidence that the in-situ elastic modulus of the epoxy matrix 
within the composite spatially varies within the material, contributing to the scatter 
of the homogenized response. The microscale mechanism governing the variation 
of the elastic response of thermoset polymers has been experimentally investigated 
with atomic force microscopy (AFM) analysis [94] which revealed a 30% variation 



3—60 Data driven statistical method for multiscale characterization and 
modelling of as-built fibre-reinforced composites 

 
of the modulus with the curing state of the polymer. Furthermore, to the author’s 

best knowledge, only a few studies in the literature describe an experimental 
procedure to determine the optimal size of the RVE [95,96] and its statistical 
description from mechanical tests. 

The scope of this chapter is: 

• To extend the current methodologies by introducing a statistical 
representation of the in-situ matrix properties in the representative volume 
at the mesoscale level.  

• To introduce a novel approach to calibrate the SVE size (extending the 
study in [95]) from Digital Image Correlation data of tensile tests. 

• To present a novel procedure to calibrate stochastic properties of the 
extended SVE with experimental results from the tensile test and micro-
CT reconstruction.  

The developed work introduces a general probabilistic framework for the 
multiscale modelling of composite structures, calibrated on experimental data 
(Figure 3.1). 

 

Figure 3.1. Multiscale framework calibrated on experimental data to model the 
uncertainty in composite structures. 

The novelty of the proposed methodology relies on the combination of 
multiscale modelling and experimental characterization methods to capture the 
variation in the elastic response of the composite at the mesoscale[97]. 
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3.2  Material characterization 

3.2.1 Materials 

The material under study is a glass fibre-reinforced epoxy matrix manufactured 
by hand lay-up. The matrix is the low viscosity (70 mPas) epoxy resin AXSON 
EPOLAM 2015 with a glass temperature of 90°, mixed with the EPOLAM hardener 
at 32% of weight fraction. The unidirectional E-glass fabric UNIE600 (ResinTex) 
has a surface weight of 661 g/m2 and a total tex of 2400. The fibre diameter spans 
from 14 to 17 µm with a density of 2.60±0.2 g/cm3 and a nominal elastic modulus 
of 73 GPa. Laminates are produced in the shape of 300x300 mm plates and 
successively shaped to get rectangular specimens with a Wazer waterjet cutting 
machine. The laminates have a [±45]6 stacking sequence, with 12 layers in total, 
each with a nominal thickness of 0.7 mm, yielding a total laminate thickness of 
8.55 ± 0.10 mm. Rectangular specimens are cut with a 25mm width and a length 
of 250 mm each and visually inspected to ensure that the cutting process has not 
induced any damage or delamination to the specimen. 

 

3.2.2 Tensile tests 

Tensile specimens where fixed with a total length between the grips of 150mm, 
as suggested by the ASTM standards D3039. The tests have been performed with 
the servo-hydraulic testing machine 8801 by Instron, equipped with a load cell with 
a 100 kN capacity and a displacement transducer. Specimens have been clamped 
with a hydraulic system, setting a closure pressure low enough to minimize the 
stress concentration at the interface. The test has been performed at a fixed 
displacement rate of the lower crosshead of 2mm/min, with an acquisition 
frequency of 20Hz for both load and displacement signals. The tensile tests were 
recorded with a high-resolution stereo camera system by Isi Systems, with a 4096 
by 2160 pixels resolution and a frame acquisition frequency of 5 Hz. The 
experimental setup is shown in Figure 3.2. The cameras are controlled and 
calibrated with the VIC-3D software by Correlated Solutions, later used to compute 
surface displacements and strains on the specimen using the Digital Image 
Correlation (DIC) method. 
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Figure 3.2. Experimental setup of the tensile test recorded with a stereo camera 
system for 3D Digital Image Correlation 

 

3.2.3 Tomography scan 

Specimens have been scanned with the Fraunhofer IKTS Computer 
Tomography scan available in Politecnico Labs with an open microfocus x-ray tube 
operating at a maximum voltage of 300 kV. The X-Ray detector has a size of 400 
x 400 mm with 2048x2048 pixels (200 µm resolution). The X-ray image resolution 
was 5 µm under the most favourable conditions (i.e., sample size, scanning speed, 
sample shape). The object-to-detector distance and source-to-detector distance 
were set to 50 mm and 545 mm, respectively, yielding a voxel-edge resolution of 
16 µm. The specimen has been placed with its main direction aligned to the rotation 
axis and scanned four times in each of the 1600 projection positions. The tube 
voltage and filament current have been set to 100 kV and 60 µA, respectively. To 
increase the accuracy of the X-ray images, an aluminium filter of thickness 0.2 mm 
has been used to cut out low-intensity rays. 
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3.3  Microstructure reconstruction 

An inverse statistical methodology is proposed to calibrate an SVE for 
multiscale analysis from a macroscale tensile test and micro-CT scan. From the 
micro-CT data, the mesoscale structure of the laminate has been subdivided through 
a segmentation of the volume voxels into matrix, void, and tows (as described in 
the following). From the segmented voxel volume, the extracted laminate sub-
regions (i.e., candidate RVEs) are converted to voxel mesh and transferred to a Fast 
Fourier Transform (Appendix A) solver developed in MATLAB. Similarly, as for 
the voxel mesh, surface sub-regions of the Digital Image Correlation maps with the 
same size have been extracted and an average stiffness has been computed from 
synchronous strain and load data (as will be described in Section 3.4). It is assumed 
that DIC measurements are descriptive of all the uncertain variables defining the 
material mechanical response, while the reconstructed CT-scan mesh is a 
deterministic description of the mesoscale geometry. On the base of these 
assumptions, the statistical distributions of the microscale material parameters have 
been optimized to best match the empirical distributions of the elastic modulus 
measured through DIC. To achieve these results, the cumulative distribution 
function (CDF) of the FFT results obtained by varying the material random variable 
will be compared with the experimental CDF extracted from the DIC. The loss 
function of the optimization scheme is defined as the p-value of the Kolmogorov-
Smirnov[98] test, weighted on the test results (as it will be described in Section 
3.5). 

The X-ray image of the 1600 projections around the scanning axis has been 
imported into VGMax software to reconstruct a 3D volume of the specimen. The 
volume voxel-edge resolution is 16𝜇𝑚, each voxel has a grey scale value between 
0 and 255 that represents the absorbed power of the material in each position. Using 
a threshold algorithm on the greyscale distribution curve, materials have been 
differentiated from voids, assigning each voxel to one of these classes. Voids have 
been then processed with the VGDefX algorithm that clusters the void voxels and 
estimates the probability (𝑝𝑝) that a cluster is a porosity (i.e., a defect), rather than 
an artefact. The probability has been weighted on the geometrical features of the 
clusters. 
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Figure 3.3. a) VGDefX results of a porosity analysis on a composite specimen b) an 
example of a pore identified in the composite material 

 

Voxels labelled as “composite” are processed with the Fibre Composite tool by 

VGMax, which interpolates the grey values of the voxels and converts them to a 
volume fraction (𝑣𝑓). The volume fraction of each voxel can be used to differentiate 
between matrix (𝑣𝑓 = 0) and fibre tows (𝑣𝑓 ≅ 1). Since the resolution of the scan 
was twice the fibre diameter, the algorithm could not distinguish fibre and matrix 
within the tows, therefore the volume fraction computed with VGMax must be 
carefully treated, being limited by the CT resolution. To overcome this issue, a 
microscopic image of the tow has been taken to properly assess the fibre volume 
fraction within it. 

The voxel discretized volume is exported into a MATLAB environment in the 
form of vectors containing voxel class labels, porosity probability, volume fraction, 
and spatial coordinates.  

The continuous variables 𝑣𝑓 and 𝑝𝑝 have been converted into discrete values 
by defining the threshold values: 
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• 𝑡𝑝: probability threshold, voxel with a porosity probability above 𝑡𝑝 have 

been labelled as pores, and the remaining voxels have been labelled as 
matrix. 

• 𝑡𝑣: volume fraction threshold, voxels with a computed volume fraction 
above 𝑡𝑣 have been labelled as tows, and the remaining voxels have been 
labelled as matrix. 

The resultant mesh has been later divided into different layers by manually 
defining the layer interface positions along the thickness.  

The reconstructed mesh is used as the seed to generate Volume Elements (VEs) 
by extracting a sub-volume of the mesh with a random position in the plane and a 
fixed number of layers. The size of the in-plane square and the number of layers 
then define the size and aspect ratio of the extracted VE. 

3.3.1 Results 

The parameters of the VGDefX algorithm [99] used to detect porosity in the 
scanned region are reported in Table 3.1. 

Parameter Value 

Min. Volume [vox.] 1000 

Max. Diameter [vox] 3000 

Voxel count 0.3 

Compactness 0.5 

Scaled deviation 0.5 

Ignore small defect 0.7 

Sphericity 0.3 

Table 3.1. VGDefX algorithm parameters for void segmentation 

The result is a pore probability map with voxel values ranging from 0 to 100 as 
shown in Figure 3.4. Each map is characterized by the threshold 𝑡𝑝 used to binarize 
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the map itself and identify the void inside the specimen that affects the porosity 
volume fraction. The diagram at the bottom of the figure reports the variation of the 
resulting porosity with the threshold value. 

 

Figure 3.4. On the top the binarized porosity maps with a threshold of a) 10%, b) 
50%, c) 90%, d) 99%. On the bottom, the variation of the porosity with the threshold 
value is expressed as a volume fraction. 

After having analysed the morphology of the voids at different tp, a threshold 
value of 10% (see the vertical red line in Figure 3.4), yielding a 4.6% porosity 
volume fraction, has been selected since the resultant shape and orientation 
correspond to what was observed with optical analysis. The voxels labelled as pores 
have been clustered with a density-based algorithm with a scanning distance of 190 
µm and a minimum of 10 voxels per cluster, yielding approximately 370 clusters 
representing the material defects. For each defect, a sphericity index Φ has been 
computed, being Φ the ratio between the surface area of an equal-volume sphere 
and the defect surface area (𝐴) in Equation 3.1: 
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Φ = 𝜋
1
3
(6𝑉)

2
3

𝐴
(3.1) 

Figure 3.5 reports the sphericity index value and the main diameter of the 
segmented defects, revealing the presence of three distinguishable categories: 

• Small spherical voids, characterized by the highest value of the sphericity 
index Φ, whose typical shapes are sketched at the top left of Fig. 3.5: most 
probably due to trapped air in the manufacturing stage. These are 
corresponding to what are typically named pores dispersed into the matrix. 

• Fibre-oriented defects with elliptical shapes, characterized by the 
intermediate value of the sphericity index Φ, whose typical shapes are 
sketched at the top centre of Figure 3.5: defects are aligned to the fibre 
direction and contiguous to the tows, probably originating from a pure 
fibre to matrix adhesion. 

• Interacting defects, characterized by the lowest value of the sphericity 
index Φ, whose typical shapes are sketched at the top right of Fig. 3.5: 
defects made of two distinguishable defects that merged into a larger one 
with a distorted shape. 
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Figure 3.5. Sphericity computer for all the clustered defects against its main 
diameter. Representative defects of each interval are reported. 

The categorized defects are reported in Figure 3.6 and their position inside the 
specimen is highlighted to show the alignment of the defects to the fiber direction. 
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Figure 3.6. Reconstructed mesh with main defects grouped by sphericity and 
dimensions 

The irregular shape of the tows has been analysed following the same approach 
used for the void segmentation, applying the density-based spatial clustering 
technique on the voxels labelled as fibre bundles. The reconstructed fibre bundles 
present geometrical irregularities both in terms of alignment and size.  Figure 3.7a 
shows a slice of the reconstructed volume where the waviness of the fibre bundles 
can be observed. The variation of the fibre tows main diameter is reported for two 
different tows, 1.8 mm, and 2.2 mm respectively.  
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Figure 3.7. A slice of the reconstructed mesoscale structure of the composite where 
the waviness of the bundles is indicated with a dot-dashed line. In the bottom, two 
segmented sections of the two tows with different diameters and waviness. In yellow, the 
fibre tows, in blue the matrix/defects. Measurements are expressed in mm. 

In the proposed approach, the variation of the fibre bundle geometry is 
accounted for by directly extracting the mesh of the RVE from the reconstructed 
structure of the composite at the mesoscale level. The effect of the bundle waviness 
and its size on the composite stiffness is thus obtained from the experimental 
reconstruction, following a data-driven fashion rather than modelling its variability 
into an artificially generated RVE. 
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3.4  Multiscale parameters estimation 

3.4.1 RVE size estimation from FFT on CT reconstruction 

RVE is the smallest volume over which a measurement can be made that yields 
a value representative of the whole. The RVE size is commonly identified by 
computing the homogenized mechanical response (e.g., tensile stiffness) of the VEs 
with increasing size until the quantity of interest remains unchanged and its 
standard deviation is below a defined threshold [100]. Therefore, multiple VE with 
increasing size have been extracted and the homogenized in-plane shear modulus 
𝐺12 has been computed with FFT simulations, until it converged to a stationary 
value.  

3.4.2 RVE size estimation from DIC measurements 

The DIC strain map resolution of 0.3 mm is approximately one-sixth the fibre 
tow width, yielding an inhomogeneous distribution of the surface strain. It is then 
possible to compute a homogenized strain value over a surface sub-region with 
Equation 3.2: 

𝜀̅ =
1

A
∫ 𝜀(𝑥, 𝑦)𝑑𝑆
Ω

(3.2) 

 

where Ω is the surface sub-region with area 𝐴, and 𝜀(𝑥, 𝑦) is the strain field 
computed with the DIC. Let’s assume that the stress 𝜎𝑦 in every point is equal to 
the applied stress that can be measured by dividing the measured force over the 
cross-sectional area. On the specimen surface, the out-of-plane stress is assumed to 
be negligible, thus a plane stress condition is defined, which yields Equation 3.3: 

𝐸𝑦 =
(1 − 𝜈12)𝜎̅𝑦

𝜀𝑥̅ + 𝜈𝜀𝑦̅
(3.3) 

 

The homogenized longitudinal modulus has been computed for sub-regions 
with increasing size, i.e., Surface Representative Volume Element (S-RVE). 
Similarly, the in-plane shear modulus G12 can be computed from Equation 3.4 
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𝐺12 =
𝜎𝑦

2(𝜀𝑦̅ − 𝜀𝑥̅ )
(3.4) 

The RVE size has been defined by analysing the convergence of the 
homogenized moduli with the increasing area. 

The proposed methodology underlies the fundamental assumption that the in-
plane strain measured on the specimen surface is representative of the average strain 
through the thickness. Previous works [101,102] have investigated the stress 
concentration on the surface of the textile composites induced by the material 
microstructure. It has been assessed that an increase of the stress (or strain) in the 
woven composite is induced by the local unbalancing of the laminate determined 
by the woven architecture. The induced momentum can be computed as 

Δ𝐹

𝐹
= (

1

2
−
𝑡

ℎ
) (

𝑁

𝑁 − 1
) (3.5) 

where h is the ply thickness, and t is the distance from the unit cell surface and 
the yarn midline. In the case of the bundled unidirectional composite under study, t 
is half of the cell thickness, yielding a null induced momentum on the outer surface. 
It can be then concluded that in the case of the unidirectional composite under study, 
the surface stress is not altered by the material structure. 

 

3.4.3 Results 

3.4.3.1 RVE size estimation from FFT analysis on CT reconstructed mesh 

 
The RVE size estimation with FFT analysis of the reconstructed mesh has been 

conducted by investigating the variation of the laminate elastic modulus along the 
y direction. The glass fibre has been modelled as isotropic with Young’s modulus 

of 72 GPa and a Poisson’s ratio of 0.2, while the initial guesses for the epoxy matrix 

Young’s Modulus were 2 GPa with a Poisson’s ratio of 0.35, as reported in the 

literature [103]. 

The initial RVE size has been set to 3.6 mm, and successively increased 
approximately by 0.5 mm up to 11.0 mm (see Figure 3.8). Selection for the 
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representative value is done when the standard deviation of the homogenized 
modulus converges to an asymptote (a little bit larger than 4% in Figure 3.9), whose 
value depends on the randomness of the microstructure extracted from the CT data. 
To get a statistic of the homogenized moduli, five FFT simulations have been 
performed for each candidate RVE, by sampling a sub-volume of the reconstructed 
mesh (Figure 3.8).   

 

Figure 3.8. a) Six examples of the microstructure of heterogeneous volume elements 
reconstructed from the CT images. b) Longitudinal stress on the volume element when a 
uniaxial strain of 0.01 mm/mm is applied along the y direction. The RVE size is 4.5, 5.5, 
7.5, 8.5, 10, and 11 mm, from left to right. 

Figure 3.9 shows the results of the RVE size analysis, where it is visible the 
convergence of the 𝐸22 at a mean value of 7.2 GPa for 7 mm RVE size, where the 
standard deviation is approximately 5% of the mean value. 
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Figure 3.9. Convergence study of the RVE size estimated from FFT analysis on CT 
reconstructed mesh 

 

The effect of defects on the RVE response has been studied by computing the 
response of reconstructed microstructures where voids have not been considered, 
and matrix material has replaced them. The results reported in Figure 3.10 show 
that defects induce a larger scatter in the material response since the randomness of 
the material microstructure not only depends on the fibre arrangement (bundles 
shape, bundles alignment, matrix-rich zones) but also on the presence of defects 
that significantly affect the mechanical response. More specifically, results in 
Figure 3.10 show that the homogenized modulus of the defect-free material 
converges to a 10% higher mean value, as expected. 
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Figure 3.10. On top, the homogenized modulus computed with FFT simulations of 
reconstructed microstructures, on the bottom, the standard deviation normalized to the 
mean. 

Since the proposed analysis investigates the elastic response of the composite 
at different scales, the absence of any plasticity at the mesoscale (i.e., micro-
plasticity) has been verified by analysing the equivalent Von Mises stress values 
computed at the matrix voxels with the FFT calculations. Figure 3.6 shows the 
equivalent stress of the matrix voxel values of each FFT simulation computed over 
different RVEs. The histograms contain all the computed values, whose distribution 
has been fitted with a logarithmic normal probability density function (pdf), with a 
mean value of 1.03 ln(MPa) and a deviation value of 0.47 log(MPa). 
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Figure 3.11. The equivalent Von Mises stress computed at each matrix voxels of the 
FFT calculations computed over different RVEs. The histogram reports all the voxels’ 
values, while the orange line represents the logarithmic normal distribution fitted on the 
data. The dashed black lines and filled blue dots indicate the maximum Von Mises stress 
at each simulation, while the blue line shows the extreme values distribution fitted on the 
maximum stresses. 

The distribution of the equivalent stress in the matrix has been compared with 
the yield stress values of the epoxy matrix, which is between 30 MPa and 50MPa 
as reported in the literature [103]. It can be concluded that the average matrix 
response in the analysed model is within the elastic regime. The maximum values 
of the equivalent stress of the matrix within each RVE are reported in Figure 3.11. 
The probability of having micro-plasticity in the extracted RVE can be described 
with the extreme value (EV) distribution with a mean value of 15 MPa and deviation 
value of 2.5 MPa, confirming that it is very unlikely to have plastic deformation in 
the analysed RVE at the defined strain level. 
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3.4.3.2 RVE size estimation from DIC measurements 

The adopted procedure for the estimation of the RVE size from the 
synchronized strain map and the load-displacement curve is presented in this 
Section. At each candidate size, 10 subdomains of the specimen surface have been 
extracted by randomly selecting the centre. Figure 3.12b shows the stress-strain 
curve of all the extracted subdomains with distinct sizes, while the colourmap of 
Figure 3.12a shows the strain along the y direction measured with DIC. The red 
dots on the specimen represent the centroids of candidate S-RVEs. One can note 
the higher density of these dots near the centreline due to the progressive reduction 
of the sampling subdomain with the RVE increasing size. The red curves are related 
to different S-RVEs. 

a) 

 

b) 

 

Figure 3.12. a) Centroid of the RVE displayed on the strain maps at a nominal stress 
of 20MPa. b) The homogenized stress-strain response of different RVE with different 
sizes extracted from the DIC map. 

 

Applying Equations 3.2 and 3.3 to the extracted sub-volumes, the mean and 
standard deviation of the transverse Young’s modulus E2 at each size have been 
computed (see Figure 3.13). 
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Figure 3.13. Analysis of the results for the transverse Young’s modulus from the DIC 
measurements during the tensile test as a function of the RVE size. 

Results show a fast convergence of the transverse Young’s modulus E22 to the 
mean value of 7.2 GPa. The standard deviation for the 10 samples extracted from 
the strain maps converges to a value of 9% of the mean value, for an RVE size of 7 
mm approximately. As it can be noticed in the upper diagram of Figure 3.13, even 
with a larger area, the computed transverse Young’s modulus has a quite large 

scatter arising from the DIC measures, suggesting the presence of spatially 
inhomogeneous properties of the material. 

3.4.3.3 Comparison 

In the diagram of Figure 3.14, the results from the two presented methods are 
reported for values of size ranging from 1.5 mm up to 11 mm. It is relevant to 
observe that the mean value of the transverse Young’s modulus E22 computed with 
FFT on the reconstructed mesh converges to the homogenized value computed from 
the DIC maps equal to 7.2 GPa (Figure 3.14a), while the in-plane shear modulus 
G12 converges to an average value of 2.5 GPa (Figure 3.14b). The RVE size 
extracted from the DIC analysis is between 7 and 8 mm, accordingly to what was 
computed with the FFT simulations. The standard deviation of the homogenized 
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elastic modulus computed with FFT approached the asymptotic deviations of 4%, 
while the results from the DIC maps show a larger scatter with an STD that 
oscillates around 9%.  

a) 

 

b) 
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Figure 3.14. Comparison of the mean value and standard deviation of the transverse 
Young’s modulus E22 (a) and in-plane shear modulus G12 computed from FFT 
on CT reconstruction and DIC. 

The results show that the FFT model predicts a distribution of Ey with a 
standard deviation of 0.5 GPa, i.e., a smaller value compared to the 0.75 GPa 
obtained from the analysis of the experimental DIC measurements (Figure 3.15). 
This 0.25 GPa difference in the standard deviation suggests that the model does not 
account for all the stochastic phenomena that govern the elastic response of the 
material and raises the need for further investigation into the sources of uncertainty. 
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b) 
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Figure 3.15. a) The homogenised composite modulus extracted from the DIC data is 

compared with the one computed with the FFT model on the experimental 
microstructures. The fitted distributions of the modulus computed on volumes with size 
equal or higher to 7mm (i.e., the RVE size) are indicatively reported on the right side of 
the graph, while b) shows a magnification of the two normal distributions where the ±3σ 

interval is reported. 

The FFT model combined with the experimental microstructure reconstruction 
only accounts for the defects-induced spatial variability. Indeed, the material 
properties have been considered spatially invariant, while recent findings 
demonstrated[76] the variability of the matrix properties within composites.  

Therefore, both the adopted approaches are not completely satisfactory. To 
overcome the evidenced limitation a novel procedure has been devised. First, it is 
needed to assess this properties variability in the composite material, to this scope, 
an inverse calibration method has been applied to quantify the uncertainty 
imputable to the properties variability and efficiently capture it in an SVE.  

 

3.5  Stochastic Volume Element (SVE) calibration 

The mechanical response measured with tensile test and DIC is representative 
of the glass fibre material and intrinsically contains all the variance associated with 
porosities, variable local volume fraction, and variable matrix properties over the 
specimen volume. While the geometrical irregularities can be measured with the 
CT scans, the statistical distribution of the constituent properties is unknown and a 
punctual measurement, e.g., with a nano-indenter, would require an extensive 
characterization campaign with additional characterization experiments. The 
objective of the proposed method is therefore to estimate the variation of the elastic 
response at the mesoscale, that is an average response of the nanoscale variations 
related to the crosslinking of the polymers governed by the curing kinematics[94]. 
The proposed is an inverse method to calibrate the statistical distribution of the 
constituent properties by minimizing the difference between the CDFs of the 
homogenized properties drawn from the FFT simulations with variable matrix 
modulus and from the DIC measurements. The empirical CDF is inferred from the 
tensile test fitting the homogenized stiffness distribution obtained by repeating the 
procedure described in Section 2.3.4 with the computed RVE size. The CDF of the 
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FFT model, 𝐹𝐸𝐹𝐹𝑇, can be estimated from the conditioned probability 𝐹𝐸|𝐸𝑚using 
Equation 3.6: 

𝐹𝐸
𝐹𝐹𝑇 = ∫ 𝐹𝐸|𝐸𝑚𝑓𝐸𝑚𝑑𝐸𝑚 (3.6) 

where 𝐹𝐸|𝐸𝑚  is the conditional CDF of the homogenized modulus at a fixed 
Young’s modulus of the matrix, 𝐸𝑚, and 𝑓𝐸𝑚  is the probability function of 𝐸𝑚. 
𝐹𝐸|𝐸𝑚  is computed from the homogenized modulus of 10 RVE simulations, with 
different randomly selected locations in the scanned volume,  with a fixed 𝐸𝑚. The 
conditional CDF has been computed at different 𝐸𝑚, sampled within the range from 
1 GPa to 4 GPa. 

The distribution of the matrix modulus has been assumed to be Normal, with 
mean 𝜇 and standard deviation 𝜎 obtained with an optimization procedure. The 
adopted optimizer finds the 𝜇 and 𝜎 values that minimize the loss function in Eq. 
3.7: 

ℒ = 1 − 𝑝𝑝(1 − ℎℎ) (3.7) 

where 𝑝𝑝 and ℎℎ are the p-values of the Kolmogorov-Smirnov test, and the test 
results at a significance level of 10%, respectively. 

The test statistic is the maximum absolute value between the empirical cdf 
calculated from the DIC data and the hypothesized conditional CDF:  

𝐷∗ = max(|𝐹𝐸
𝐷𝐼𝐶 − ∫ 𝐹𝐸|𝐸𝑚𝑓𝐸𝑚(𝜇𝐸𝑚, 𝜎𝐸𝑚)𝑑𝐸𝑚|) (3.8) 

The critical value for text acceptance is computed with the empirical formula 
described in [104]. 

The gradient-based optimization algorithm used for the calibration of the 
distribution of the matrix modulus is based on the interior-point approach to 
constrained minimization, able to solve optimization problems with inequality 
constraints. More details on the algorithm are given in [105]. 

3.5.1 Results 

The inverse calibration method introduced in Section 3.4, requires the CDF of 
the homogeneous modulus probability conditioned on the matrix Young’s modulus 

(Eq. 3.6). To get this statistic, twenty values of 𝐸𝑚 have been sampled around the 
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expected value of 1.9 𝐺𝑃𝑎, and the conditional homogenized modulus has been 
computed at each value with an FFT analysis. Using Eq. 3.8, the best Normal 
distribution parameters have been found for 𝐸𝑚 that can capture the variability of 
the homogeneous modulus observed in the DIC data. It is worthy of note that the 
distribution of the local composite modulus, as it is well visible in the diagram of 
Figure 3.16b, is well described by a normal distribution. 

 

Figure 3.16. a) Calibrated probability density function distribution of the matrix 
Young's modulus. b) Cdf of empirical composite modulus measurements from DIC and 
of  SVE compared 

The optimization process converged to a mean value of matrix Young’s 

modulus equal to 1800 MPa with a standard deviation of 105 MPa (Figure 3.16a) 
after 15 iterations. The loss function is defined with Eq. 3.7 and had a value of 0.29, 
yielding a p-value of 0.7. Figure 3.16b compares the cumulative distribution 
function of the SVE with the one computed from the DIC, revealing a good 
agreement between the experimental and numerical curves.  

Finally, the composite response has been calibrated using the calibrated SVE 
and the results have been compared with the curve extracted from the tensile test 
(Figure 3.17).  
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Figure 3.17. Comparison between experimental curves computed from DIC maps 
(only upper and lower bounds are shown) and SVE results with calibrated parameters. 

 

3.6  Probabilistic multiscale model 

The proposed methodology wants to establish a multilength scale statistical 
microstructure–constitutive property relation for the design of composite parts. To 
demonstrate the relevance of the method, a hierarchical statistical multiscale finite 
element model based on the generated SVE has been developed to predict the 
buckling critical load of a GFRP structure. The proposed test has been virtually 
simulated to give a demonstration of the method's capabilities and underline the 
main features of the proposed work. The analysis has been performed on a structure 
with 2 mm thickness, whose shape is described in Figure 3.18 
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Figure 3.18. a) The geometry of the virtually tested structure. B) The elastic modulus 
map assigned to the part with the SV-MS approach. 

In the following, the results of three different models are presented: 

1. Deterministic multiscale (D-MS): the homogenized properties of the 
material are extracted from an RVE with average properties. 

2. Spatially invariant statistical multiscale (SI-MS): the homogenized 
properties are extracted from the SVE and applied uniformly over the 
domain. 

3. Spatially variable statistical multiscale (SV-MS): the homogenized 
properties of each material point in the model are extracted from the SVE 
and differ over the domain. 

To estimate the uncertainty of the statistical models, SI-MS and SV-MS 
have been run twenty times each. The SI-MS adopts the same SVE for every 
material point in the structure, with the matrix Young’s Modulus drawn from 

the calibrated distribution and the microstructure randomly extracted from the 
scanned volume. The SV-MS model is built by sampling twenty SVE, with Em 
randomly extracted from the estimated Normal distribution and the 
microstructure randomly sampled from the scanned volume.  
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The SV-MS procedure is reported in the following. 

SV-MS algorithm 

Build the FE mesh of the part 

Divide the elements into N groups 

for each group i 

    Sample a value of Em 

    Sample an SVE from the reconstructed volume 

    Run the FFT homogenization 

    Generate the ith material card 

    Assign the material card to the ith group elements 

end for 

 

Algorithm 3.1. SV-MS algorithm 

The homogenization step consists of three simulations, needed to assess the 
homogenized elastic constants of the orthotropic stiffness matrix of the shell 
elements. Young’s moduli along the x and y direction, together with the shear 

modulus and Poisson’s coefficient in the xy plane are estimated. Figure 3.18b shows 
the map of the assigned moduli to the elements of the structure. 

The diagrams in Figure 3.19 report the force-displacement curves from the 
stochastic simulations. It can be observed that the stiffness of the structure is more 
variable in the SI-MS simulations, where the random value of the matrix modulus 
is globally assigned to every material point in the structure, leading to a larger 
scatter in the global response. The SV model predicts a variable global stiffness 
with a smaller deviation from the global stiffness computed with the D-MS. Indeed, 
the spatially variable method preserves the statistical distribution of the material 
properties over the structure domain, yielding an average result close to the mean 
predicted with the deterministic model.  
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Figure 3.19. Results of SV-MS and SI-MS models of skin buckling 

In Figure 3.20, the critical load and global stiffness of each simulation are 
reported in a box plot. The critical load predicted with the SV-MS is always lower 
than the one predicted with the D-MS. In effect, it can be observed that asymmetric 
modes are triggered in the spatially variable model. The buckling response is indeed 
governed by local phenomena and more compliant SVEs concentrated in the 
slender regions of the structure lead to local buckling instabilities (as reported in 
Figure 3.19).  The lower critical loads are attributable to asymmetric buckling 
modes, that, in the case of this symmetric structure, neither the D-MS nor the SI-
MS can predict. 
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Figure 3.20. Critical buckling load and structure global stiffness computed with SI-
MS and SV-MS statistical models 

It can be concluded that the SV-MS model, by streaming the uncertainty from 
the microstructural to the macroscopic scale, allows for the prediction of structural 
behaviour triggered by the intrinsic variability of the composite material. 

3.7  Conclusions 

In this Chapter, a novel methodology has been introduced to complement the 
experimental observation about the mechanical response of the heterogeneous 
materials, as the full-field strain data measured with DIC, with the microscopic 
description of the material, obtained with CT scans. Leveraging the multiscale 
modelling theory, the microstructural response and the lower scale representation 
of the material structure are bridged to fully harness the experimental data and 
assess the mechanical performance of the parts in a data-driven and probabilistic 
fashion. 

With the presented method, the link between the microstructural variability and 
its intrinsic defectiveness with the uncertainty of the mechanical response is 
modelled and calibrated with an inverse procedure, avoiding the shortcomings of 
micromechanical testing. The estimated uncertainty is then propagated from the 
lower to the higher scale by introducing a probabilistic multiscale model based on 
the SVE.  
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Summarising, the proposed method: 

• Defines the RVE (or SVE) size from the experimentally measured strain 
maps of DIC, showing consistency with the numerical procedure based on 
full field homogenization (e.g., FFT), 

• Estimates the uncertainty of the material model parameters used in the 
microscale representation of the heterogeneous material from the CT 
reconstructions of the microstructure and strain map from DIC, 

• Defines an SVE used in a statistical multiscale model propagating the 
uncertainty from the microscale to the structural level. 

To assess the method potentials, the multiscale model has been used to predict 
the buckling response of a GFRP structure, showing that it can predict mechanical 
responses originating from the statistical variability of the material properties over 
the spatial domain. Results confirm the importance of propagating the measured 
microstructural uncertainties, to the structure level and predicting its effect on the 
mechanical response. The presented method is, at this stage, limited to the elastic 
analysis of heterogeneous materials, while future developments will extend the 
applicability to the plastic and damage models to assess the multiscale uncertainty 
relation beyond the elastic regime. 
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4 Physics-informed machine 
learning for the design of the axial 
crashworthiness of crash tubes  

4.1 Introduction 

The previous Chapters introduced data-driven techniques to model the 
mechanical response of materials from the experimental observation, bridging the 
data available at different material scales with a multiscale approach driven by the 
MDS method. Although the challenge of defining the material response is of crucial 
importance in the design process, most of the effort is spent on the design of the 
structure (or part) that follows an iterative optimization process based on numerical 
simulations (e.g., the FEM). In the last decade, continuous improvements in data 
science have opened the door for the development of fast and yet accurate models 
that can surrogate structural simulations, accelerating the overall design of the parts.  

The application of such methods could enhance the productivity of any design 
process, especially where the computational models are extremely expensive and 
the optimization procedure could go through numerous iterations, as in the case of 
automotive passive safety components. 

The safety requirements for vehicle crashes are escalating due to several 
factors. Firstly, there is a growing emphasis on reducing the risk of occupant injury 
and fatalities in accidents. Additionally, stricter regulations are being implemented 
to ensure vehicles meet higher safety standards. The latest regulations from the 
NCAP have set higher safety requirements for the vehicles, increasing the speed in 
most of the critical tests and introducing additional crash tests for the assessment of 
overall vehicle safety. From the engineering perspective, the effective enhancement 
of the body's structural performance in crash scenarios necessitates the integration 
of multiple factors, and conventional optimization methods reach their limitations 
when tackling this issue. Furthermore, due to the profoundly non-linear nature of 
crashes, discovering a crash structure configuration that achieves optimal behaviour 
(efficiently absorbing substantial energy, minimizing weight, and adhering to 



4—92 Physics-informed machine learning for the design of the axial 
crashworthiness of crash tubes 

 
manufacturing limitations) is exceptionally intricate. Consequently, the design 
procedure remains predominantly manually driven, relying heavily on the expertise 
and accumulated knowledge of engineers developed over time. Novel 
methodologies that can leverage the engineering knowledge of the crash 
mechanism, while reducing the design time, are then necessary to foster the design 
of these structures and efficiently target the safety requirements. 

Crash boxes play a crucial role in energy absorption during vehicle impact. 
Crash boxes are sacrificial components which aim at absorbing the kinetic energy 
during low-velocity impact events through mechanical deformation, thus limiting 
injuries to the occupants, and preserving the structural integrity of the rest of the 
front car body, of the components in the engine compartment and the vehicle 
suspension system. To reach the goal of low-weight yet safe structures, composite 
materials are increasingly adopted in the design of crash absorbers, given their 
superior specific mechanical performances compared to metals. Several studies and 
applications of composite materials in crash tubes are reported in the literature, 
showing the good mechanical performances in crash absorbers [106–108]. 

Among the different design solutions, pre-folded origami tubes have shown a 
consistent reduction of the peak force and comparable energy absorption 
capabilities [109] if compared with conventional geometries, which results in 
reduced acceleration to vehicle passengers and improved safety. Zhao et al. [110] 
proposed a geometrical optimization of cylindrical origami tubes to enhance the 
energy absorption capability. Similar works [111–114] on different origami pattern 
tubes have demonstrated the benefits and the wide domain of solutions achievable 
with these structures. More recently, Wu et al. [115] have proposed a design 
strategy to avoid unstable global bending in the axial crash. They showed that the 
crush response of specifically designed origami tubes followed the deformation of 
the crease, thus avoiding global bending. Ye et al. [116] have shown that the brittle 
failure of hybrid tubes made of carbon fibre and Kevlar fibre-reinforced plastics, 
which is difficult to predict and can lead to inefficient use of the material, can be 
prevented through origami patterns. For a comprehensive and recent review of the 
topic, the reader can refer to the work published by Ma et al. [117]. 

The main advantage of origami patterns is that different from the standard 
square, tapered or cylindrical geometries, a change in the geometrical parameters 
of such structure does not affect the mass of the component. Thus, the geometrical 
parameters can be tuned to maximize the crushing performance of the structure 
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while keeping a target mass. Further, pre-folded tubes can be designed to achieve 
stable and progressive crushing mode.  

Structural optimization indeed assists in designing crash-worthy and 
lightweight structures. However, given the high influence of the shape on the 
collapsing mode and the absorbed energy, especially in the case of composite 
materials, the identification of the optimal configuration is challenging in 
crashworthiness design problems, which are generally ill-posed [118,119]. A large 
amount of data, both experimental and numerical, is required to assess the influence 
of the tube shape on its crushing response. To reduce the computational time, while 
gaining information on the whole design domain, previous research has 
increasingly adopted surrogate modelling techniques, especially in crashworthiness 
problems [120–123]. Modified approaches have been also proposed, which aim at 
reducing the design domain at each iteration of the optimization problem or at 
increasing the accuracy by sampling in the proximity of an optimal configuration 
[120,124]. Even though the design domain can be widely investigated through 
surrogate models, limitations are still present, as the accuracy of the interpolation 
strongly depends on the amount of available data. 

Recent works have proposed machine learning-based techniques to model the 
effect of the geometry of crash structures on their response: Sakaridis at al. [125] 
developed a machine learning passed model to predict the crash response of tubular 
structures using a standard NN, while Zhang et al. [126] used a clustering algorithm 
to identify three characteristic collapsing mode of the origami structures to correlate 
these with the tube geometry.  

In this chapter, a PINN developed to optimize the crushing performance of an 
origami tube is proposed.  

The origami structure here retained consists of two axially stacked basic 
structures, called modules, each presenting a lower and upper square section and an 
octagonal section in the middle and is made of two carbon fibre woven fabric plies. 
The PINN aims to correlate the crushing response of the single modules to that of 
the whole origami tube. A shape parameter of the octagonal cross section and the 
height of the module are varied through a morphing strategy and following a Latin 
Hypercube (LH) DoE scheme. Finite Element (FE) analyses of the single modules 
and the corresponding whole tubes are performed in the LS-Dyna environment to 
train the network. The FE model was at first validated by comparing numerical 
simulation results with the experimental results of the crushing tests on a single 
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module structure. The proposed scheme allows for the investigation of a large 
design domain with consistently reduced computational effort. The PINN is then 
used to optimize the crashing performance of the structure. Two optimal 
configurations are identified by the PINN with similar performance. The predicted 
absorbed energy and its trend with the proceeding of the collapse displacement are 
compared with FE analyses. Results show a  good agreement, thus proving the 
effectiveness of the devised methodology. Finally, the comparison of the results 
obtained with a standard FFNN shows that the PINN scheme leads to more accurate 
results. 
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4.2 Materials and Finite Element Model 

Firstly, the carbon fibre woven fabric used in the crash tubes is presented. Then 
the considered origami geometry and the adopted FE model are described. The FE 
model was previously validated by comparison with the experimental 
characterization of the crash response of the single module. Then, the shape 
morphing methodology adopted to generate the numerical Design of Experiments 
(DoE) according to a Latin Hypercube sampling scheme is presented. FE analyses 
are performed to train both the PINN and the FFNN. The loss functions of the two 
networks are finally detailed at the end of the section. 

4.2.1 Materials 

Carbon fibre woven fabric pre-impregnated with epoxy resin, named XPREG 
XC130, is considered for the origami tube. Tensile, compressive and shear 
properties have been assessed in a previously published work [127] through a servo-
hydraulic material testing machine Instron 8801 and in accordance with the 
specifications of the Standards ASTM D3039, ASTM D3410 and ASTM D5379 
[128–130]. Table 1 reports the mean values and the standard deviations at the 
lamina level resulting from three repetitions of each test. 

Table 4.1. Material properties of the XPREG XC110 measured with experimental 
tests. 

Property Mean Value STD 

Density [kg/m3] 1450  

In-plane Poisson’s ratio 0.12  

Longitudinal modulus [MPa] 58000 340 

Transverse modulus [MPa] 58000 340 

Longitudinal tensile strength [MPa] 440 16 

Longitudinal tensile ultimate strain mm/mm] 0.0072  

Longitudinal compressive strength [MPa] 453 36 
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Longitudinal compressive ultimate strain 0.096  

Transverse tensile strength [MPa] 440 16 

Transverse compressive strength [MPa] 453 36 

In-plane shear modulus [MPa] 3900  

In-plane shear strength [MPa] 72  

Table 4.1 also reports the ultimate stresses and ultimate strains, necessary for 
the complete characterization of the material card. The lamina thickness is equal to 
0.45 mm. 

4.2.2 Geometry Description 

The basic principle of an origami structure is to fold a flat rectangular sheet and 
transform it into a three-dimensional shape. Figure 4.1 shows the origami geometry 
considered in this study in its unfolded and folded configurations. The image reports 
a single module of the full crash box, i.e., the basic structure that is then axially 
stacked to create the full crash tube. In the unfolded configuration, the sheet 
presents a rectangular shape with a major edge of 8e in length and a height equal to 
l. In its folded configuration, the origami tube presents an upper and lower square 
perimeter with a length equal to 8e, and an octagonal central perimeter with a total 
length of 8b+4c. The unfolded configuration must have a rectangular shape; 
therefore, it holds that: 

8𝑏 + 4𝑐 = 8𝑒 (4.1) 

 The c value is the width of the rhomboidal lobe. The normal distance between 
the upper and the bottom rectangular perimeter (or the normal distance between the 
two vertexes of the rhomboidal lobe) is the height of the single module (h distance). 
Note that h is different from l, as in the folded configuration the origami faces are 
bent at an angle ϑ with respect to the plane orthogonal to the tube axis. 
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a)

 

b) 

 

Figure 4.1. Description of the origami single module geometry: a) unfolded sheet; b) 
folded single module origami structure. 

4.2.3 Finite Element model and experimental validation 

The crushing response of the origami structure is assessed through transient 
nonlinear FE analyses in the LS-Dyna environment. The origami tube is modelled 
through Belytschko-Tsay 4-node shell elements with six degrees of freedom per 
node. After the convergence study [23], a mesh size of 5 mm is considered. The 
structure is composed of two layers of the carbon fibre woven fabric described in 
Section 4.2.1 and has a uniform thickness of 0.9 mm. The stacking sequence is 
specified through the *PART_COMPOSITE keyword, which assumes one 
integration point for each layer though the thickness of the laminate. The anchorage 
of the crash-box structure to the vehicle frame is simulated by fully constraining the 
bottom nodes, while a rigid wall impacts the structure with an initial kinetic energy 
of 1.2 kJ with an impact speed of 2.5 m/s. This energy level guarantees the complete 
crush of the tube. The same conditions apply to the single module and full origami 
structure. The material under study presents a low sensitivity to the strain rate, thus 
its effect has not been modelled in the FEM. 

The material is modelled with the material card 
*MAT_ENHANCED_COMPOSITE_DAMAGE (*MAT54/55), according to the 
properties reported in Table 4.1. The adopted material model includes some non-
physical parameters, properly conceived to improve its crash simulation capability. 
The non-physical SOFT parameter was identified in the previous work [127] by 
comparison with the compressive test of a single module. This parameter reduces 
the stiffness of the crush-front elements, thus simulating damage propagation and 
reducing the load oscillations. Figure 4.2a and b show the tested module and the 
corresponding FE model. 
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(a) 

 

(b) 

 

Figure 4.2. Crushing test of a single module: a) experimental setup; b) numerical 
model. 

For further details, the reader is referred to [127]. 

4.3  Machine learning methods 

The machine learning framework presented in this chapter aims to correlate the 
axial crushing response of the individual modules with the global response of the 
origami crash tube, obtained by vertically stacking the individual modules. This 
method assumes that the response of the single submodules is related to the 
response of the crash tube and finds a relation between those using a neural network. 
The framework is visually described in Figure 4.3. 
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Figure 4.3. Machine learning framework for the prediction of the crash tube response 
from the individual crash of the sub-modules 

The dataset generation, feature extraction, data preparation and the neural 
network used in this work are described in the following subsections. 

4.3.1 Design of experiments (DoE) 

A set of numerical simulations of axial crashing of a single module structure 
with different lobe widths and heights (respectively named c and h, Figure 4.1) is 
performed. The absorbed energy and force response are stored in a database and 
used to train the machine learning algorithms. The design space of the single 
modulus geometry is described by the two variables, i.e., 𝑐 and ℎ, sampled within 
a range from 35 to 55 𝑚𝑚 and 78 to 98 𝑚𝑚, respectively. A Latin Hypercube (LH) 
algorithm is used to sample 40 points in the defined design space, yielding 40 
different single-module geometries.  

The DoE exploration is carried out by interfacing the geometric pre-processor 
Hypermorph with the software LS-Opt. The parameterization of the shape variables 
c and h is carried out through the Hypermorph software.  

The parameters are passed to a morphing script that modifies the single 
modulus mesh by preserving: 

• Planarity of the crash tube edges, 
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• The total area of the mid-surface, complying with the definition of an 

origami-inspired thin-walled structure, 

• The total number of mesh elements. 

As the origami crash tube presents two cross-sectional symmetry planes, only 
a quarter of the module is modelled (Figure 4.4a). 

The different geometry shapes are generated without a remeshing algorithm: 
the morphing of the structure deforms and stretches the mesh elements to an 
acceptable extent and without worsening the mesh quality indices. The generation 
of the morphed shapes is divided into two steps: morphing of the module height h 
and morphing of the lobe width c. 

The x, y, and z degrees of freedom (DOF) of the nodes belonging to the edge e 
are constrained to node 1 (Figure 4.4).  

 

a) 
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b) 

Figure 4.4. Module geometry and morphing procedure description: a) a quarter of 
the origami module with symmetry planes evidenced (x-y view); b) baseline module 
and morphed configurations (iso view), after both c and h value modification.  

Accordingly, when node 1 is moved along the z direction, the module is 
morphed in its height. A plane passing through the b edge and parallel to the xy 
plane is created to guarantee a symmetric morphing relation and equally stretches 
the two-half portions of the module. As the morphing of the structure requires 
preserving the planarity of the crash box edges (i.e., equation 4.1 must hold), the 
variation of the c parameter requires particular attention. The translational DOFs 
along the x and y directions of the nodes belonging respectively to the right and left 
vertical free edges (edges l in Figure 4.4b) are constrained. Consequently, the b 
edges can only rigidly translate orthogonally to their direction, i.e., along the v 
arrow in Figure 4.4b. The nodes of edge b are constrained to move only along the 
k direction. Accordingly, when the c value is increased, the c edge nodes move in 
the u direction, and the b edge elements shorten along k. Also, the b edges move 
along v, and the angle between the module faces decreases. Figure 4.4b shows two 
examples of geometrical morphing applied to the origami module. As can be 
noticed from the configuration C-10/h+10, as the c value decreases, the angle 
between the faces increases. Ideally, if c is reduced to 0, the origami module morphs 
into a square-section parallelepiped.  

Once the input database is defined, the 1560 possible double module 
geometries given by the combination of the single modules combinations are 
computed and a subset of 100 configurations is sampled (shown in Figure 4.5). 
These 100 double module configurations have been sampled through a discrete LH 
algorithm, constrained to sample discrete points in the design space (i.e., the 
possible combinations), later simulated with LS-Dyna.    



4—102 Physics-informed machine learning for the design of the axial 
crashworthiness of crash tubes 

 

 

Figure 4.5. Discrete LH sampling of double module geometric feature 

As described for the single modules, a double module Finite Element mesh is 
morphed following the same procedure. The double module configuration presents 
4 geometrical variables: two for the bottom module (cb and hb) and two for the top 
module (ct and ht). The energy and force results of the crushing simulations are 
stored in an output database and later used to train the machine learning algorithms. 

4.3.2 Mechanistic feature extraction 

To enhance the performance of the machine learning algorithm for the 
prediction of the mechanical response of structures, it is crucial to properly pre-
process the data and extract the most relevant features influencing the final 
response.  

Specifically, two critical aspects should be accounted for: 

• most machine learning algorithms take as input fixed shape variables, 

while the crushing response of the origami structures varies with the total 

height of the crushed tube, 

• the arrangement of single-module responses into a single input vector 

should reflect the observed interaction of modules during the multi-

module structure crush. 
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To get a coherent amount of data in each curve, the displacement vectors are 

normalized to their maximum value and N linearly spaced points are sampled. 
Following this procedure, every input simulation is described by two vectors (i.e., 
force and energy) with shape Nx1. Accordingly, the curves of the two single 
modules composing the bi-module crash tube have been concatenated into 2Nx1 
vectors, following the bi-normalization transformation in Equation 4.2. 

𝑑𝑛𝑜𝑟𝑚 =  

{
 
 

 
 𝑑

ℎ𝑡𝑜𝑝
              𝑖𝑓 𝑑 < ℎ𝑡𝑜𝑝

1 +
𝑑 − ℎ𝑡𝑜𝑝

ℎ𝑏𝑜𝑡
      𝑖𝑓 𝑑 > ℎ𝑡𝑜𝑝

(4.2) 

  

Being the pre-processing steps defined, the neural network should map the 
single module responses, with dimension Nx1 each, into a double-module response 
of dimension 2Nx1. To build the input vector, the single module responses are 
concatenated to: 

• fix the transition point from the top to the bottom module, 

• reflect the mechanical behaviour of assembled structures, where the 

crushing takes place gradually, starting from the failure of the top module 

followed by the crush of the bottom sub-structure. 

The resultant curve obtained with the described method is shown in Figure 
4.6. 
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Figure 4.6. In green, the output curve is computed from the crashing response of the 
assembled structures. In red and blue, the curves obtained from the crashing of the single 
modules elaborated to feed the NN. 

4.3.3 Feed-Forward Neural Network (FFNN) 

A standard FFNN is trained on the generated data using a stochastic gradient 
descent method [20] and the trainable parameters are upgraded with a back-
propagation procedure, to minimize the defined loss function. The backpropagation 
is perpetuated iteratively in each epoch over a subset of data defined as a batch; the 
number of training epochs is automatically defined by a stopping rule (i.e., early 
stopping). The loss function for the regression task is defined as the mean square 
error (MSE) in Equation 4.4. 

𝑀𝑆𝐸 =
∑ (𝑦̅𝑖 − 𝑦𝑖)

2𝑁𝑏
𝑖

𝑁𝑏
 (4.4) 

where 𝑁𝑏 is the batch size, 𝑦̅ the true output and 𝑦 the prediction. Further details 
on FFNN are given in Chapter 1. 

4.3.4 Physic-informed Neural Network 

The method that was originally proposed uses a PINN architecture tailored for 
the prediction of the axial crash response of assembled structures by embedding the 
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equilibrium equation and energy conservation principles in the training stage. The 
proposed architecture, shown in Figure 4.3, is composed by: 

1. a pre-processing block performing a bi-normalization of the substructure 

crash response, 

2. a force prediction branch entitled to predict the force response of the 

assembled structure from the force response of substructures, 

3. a physics layer assessing the energy balance error by computing the 

energy, i.e., the integral of the predicted force over displacement (Eq. 

4.5): 

𝐸𝑐𝑜𝑚𝑝 = ∫ 𝐹(𝑥)𝑑𝑥
ℎ𝑖

0

 (4.5). 

 

The model is trained with a regularised loss function ℒ penalizing a non-
monotone energy prediction, ensuring the energy conservation criteria are satisfied, 
as described by Eq. 4.6. 

ℒ =
1

𝑁
∑(𝑭𝑖

𝑝𝑟𝑒𝑑 − 𝑭𝒊
𝒕𝒓𝒖𝒆)

2
+ 

𝛼 ∙ ∑(∫ 𝑭𝑑𝑥
ℎ𝑖

0

− 𝑬𝒊) − 𝜷 ∙
∑ ≪ 𝑬𝒊+𝟏 − 𝑬𝒊 ≫𝒊

𝑵
 , 

(4.6) 

where Fi
true and Fi

pred are the FEM computed and PINN predicted values of the 
crashing force at the ith frame, being N the total number of frames; hi is the crashing 
displacement at the ith frame and Ei the computed energy. 

The first term of Eq. 4.6 penalises the prediction errors on the force, while the 
other terms penalise the physical inconsistency of the predictions. The parameters 
α and β are non-negative scalars that weigh the influence of the physics-related 
terms on the total loss, scaling it to the same order of magnitude as the other 
contributions. In the last term of Eq. 4.6, the operator <<∙>> gives one if the 
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argument is positive and zero otherwise, penalizing the predictions with a 
decreasing trend of the absorbed energy. 

4.4  Results 

In this section, the results of the surrogate modelling approach for the design of 
the origami crash tube are presented. First, the FFNN and PINN are trained on the 
available results of FEA, then the crash response predicted with the NN models is 
compared with the reference curves from the FEM to assess the accuracy of the 
method and compare the FFNN with the PINN. Finally, the PINN is used to 
optimize the geometry of the origami tube and the prediction of the response of the 
optimized geometries is validated with the FE model. 

4.4.1 Double module crash prediction: comparing FFNN and 
PINN 

The architecture of the FFNN has been optimized based on the sensitivity 
analysis carried out on the model accuracy: the number of layers and the number of 
neurons per layer have been varied to identify the best architecture to be used. 
Figure 4.7 reports the value of the loss function after 500 epochs for different 
architectures: Figure 4.7b indicates that deep networks lead to low accuracy due to 
the increase of the network hyperparameters that compromise the convergence of 
the training; Figure 4.7a shows a small increase in the loss with the increasing width 
of the network. As a conclusion of this analysis, short and narrow architecture is 
suggested. 
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a) 

 

b) 

 

Figure 4.7. The value of the loss function at the end of the training of the FFNN with 
different numbers of neurons per layer (a) and number of layers (b). 

On the base of the results of the sensitivity analysis, the FFNN architecture is 
made of 5 stacked layers with 15 neurons each. Further performed analysis 
suggested that the network accuracy is independent of the activation function used 
in the hidden layers for the case of ReLU, SELU and tanh, leading to the adoption 
of the ReLU due to its higher computational efficiency. The same architecture has 
been used for the PINN. 
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The activation function of the input and output layers is linear so that the output 

of the last layer is not biased by the activation function. The layered architecture of 
the FFNN is summarized in Table 4.2. 

Table 4.2. Summary of FFNN optimized structures with activation function and 
number of neurons of each layer 

Layer Neurons Activation 
function 

Output 
shape 

Input 2N Linear (2N, 1) 

Dense 1 15 ReLU (20, 1) 

Dense 2 15 ReLU (20, 1) 

Dense 3 15 ReLU (20, 1) 

Dense 4 15 ReLU (20, 1) 

Dense 5 15 ReLU (20, 1) 

Output 2N Linear (2N, 1) 

The FFNN was trained with 80% of the available data, while the remaining 
20% was used as a validation dataset to check the eventual overfitting of training 
data. The neural network weights and bias were updated through a back-
propagation algorithm by minimizing the Mean Square Error loss function of Eq. 
4.4. The adaptive moment estimation optimizer algorithm Adam[20] has been 
adopted.  

As previously described, the PINN takes as input the force response, the energy 
response, and the original displacement vector before normalization, which is used 
to compute absorbed energy from the predicted force. The displacement is not 
computed by a trainable layer and thus does not increase the number of 
hyperparameters of the neural network.  

The values of the loss terms for the FFNN and PINN are compared in Figure 
4.8. The FFNN archives smaller overall errors in the prediction of the force 
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response while struggling to converge to an accurate prediction of the energy. As a 
result, the FFNN shows a 10% lower RMSE for the force, while the PINN performs 
better in the prediction of the absorbed energy with an approximately 70% lower 
RMSE.  

a)

 

b)

 

Figure 4.8. The loss values for the predicted force (a) and absorbed energy (b) during 
the training of the FFNN and PINN. 

The training curve of the PINN is reported in Figure 4.9, to highlight the 
simultaneous convergence of the prediction towards accurate and yet physically 
compliant curves. Indeed, the values of the loss term associated with the PINN 
accuracy in predicting the force response are correlated with the loss curve of the 
energy balance term confirming that the interplay of such terms improves the 
training of the network. 
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Figure 4.9. The values of the force and balance terms in the loss function of the 
PINN during the training. 

The coupling of the force and energy prediction in the PINN limits the solution 
space of the Networks that reflects in higher RMSE for the force prediction but 
yields physic-compliant energy response. However, even if the values of the loss 
functions give an overall indication of the accuracy of the method, in the case of 
complex datasets with high variability, lower RMSE could be consequent to an 
input-insensitive network that outputs an average value regardless of the input data. 
Indeed, in the FFNN, the predicted force response is insensitive to the input 
configurations, while this is prevented in PINN by coupling the energy and force 
response with the physic layer, as shown in Figure 4.10. 
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Figure 4.10. The force response predicted with the FFNN and the PINN for all the 
crash box configurations in the training dataset. 

The curves precited with the FFNN and PINN for all the crashbox 
configurations in the training dataset are compared in Figure 4.10. The high 
variability of the force curves predicted by the PINN is in line with what was 
observed from the FEM in [127], while the FFNN predicts the same curve for every 
configuration (scaled back to the original displacement in the figure), being 
insensitive to the crashbox geometry and ultimately losing any predictive 
capability.  

This confirms that the analysis of the results of ML methods applied to 
engineering problems should not be limited to the prediction errors described by 
the common data science metrics (e.g., MSE, RMSE, ...), but an extended analysis 
is needed to assess the usability of such methods for engineering problems.  

Figure 4.10 highlights that the response of the assembled crashbox in the initial 
stage of the crashing has a defined trend, with a first peak and a following valley, 
whose values are mostly influenced by the top module geometry. While the force 
curve in the second stage of the crash, after the first module is completely crashed 
and the load is transferred to the lower part of the origami tube, has a variable trend 
governed by self-contact and complex failure phenomena leading to different 
average force and absorbed energies. 
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Figure 4.11. The force (a) and absorbed energy (b) predictions of the PINN and 
FFNN on a validation combination excluded from the training dataset (shaded curves) 
compared with FEM simulation (solid curve). The origami crash box has ℎ𝑏𝑜𝑡 = 78.5, 
ℎ𝑡𝑜𝑝 = 84.5, 𝑐𝑏𝑜𝑡 = 47, 𝑐𝑡𝑜𝑝 = 38.5. 

Figure 4.11 reports the crushing response of an origami crash tube with lobe 
widths equal to 47 mm and 38 mm and a height of 78.5 mm and 84.5 mm, for the 
bottom and top modules, respectively. The result of the FEM model is compared 
with the prediction of the PINN and FFNN, both in terms of force and absorbed 
energy. The diagram of Figure 4.11a shows that in this specific case, the PINN 
model can predict the crush response with a 15% error on the peak load and an 8% 
error on the average force, while the FFNN shows a 34% error on the peak force 
and 7% error on the average. However, the FFNN is constant throughout the 
dataset, making its predictions ineffective for the design of the crashbox. 

The diagram of Figure 4.11b provides evidence that the values of the absorbed 
energy during the crash stroke predicted by the PINN model are very close to those 
resulting from the FE simulation, while those predicted by the FFNN model are 
largely below those resulting from the FE simulation. Therefore, it can be 
concluded that the proposed PINN method is preferable to the FFNN, at least for 
this type of analysis. 
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a) 

 

b) 

 

Figure 4.12. The mean and maximum Absolute Error (AE) of the PINN 
predictions for the absorbed energy (a) and force (b) predictions at different levels 
of crashing. Each point is the average of all the training errors, while the dashed 
lines represent an interpolation of the points. 
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Figure 4.12 analyses the results of the PINN at different crushing stages 

compared with the reference values from the FEM. It can be observed that the 
predicted energy has a larger error in the first stage of the crashing, due to the 
struggling of the model in accurately predicting the first peak force, while it 
converges around an average value of 0.1 after that 20% of the origami crashbox is 
crashed. On the other hand, it should be noted that the FE predicted value of the 
force at the collapse initialization (first peak) has high uncertainty and suffers the 
larger oscillation of the FEM results that are overall smoothed and averaged by the 
PINN that predicts smoother curves, resulting in larger errors in with the increasing 
crushing. However, the average error is almost constant toward the crashing, with 
higher values (between 0.2 and 0.3) in correspondence to the crashing of the second 
modulus where non-linear and history-dependent phenomena take place and 
negatively affect the predictive capability of the model.  

4.4.2 Optimization of the origami tube with the PINN 

The PINN model is used to optimize the geometry of the origami-shaped crash 
box by initially simulating 40 single modules (N=40) with different geometry. The 
full domain that the PINN can explore counts 1560 different configurations that can 
be predicted with the proposed algorithm. The energy response results are reported 
in Figure 4.13: the rapid exploration of the extended DoE confirms that the variation 
of origami geometry, even not affecting the total mass of the component, leads to a 
significant variation in the absorbed energy as observed in [127]. All the possible 
configurations of the 40 modules have been predicted with the PINN and are 
reported in Figure 4.13. 
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Figure 4.13. Machine learning predictions of 1560 different geometric configurations 
of a double module origami-inspired crash box, in red the five curves with the highest 
absorbed energy. 

 

Figure 4.12 shows that the accuracy of the PINN in predicting the energy values 
varies within different crashing intervals, with more accurate prediction in the 
initial region, gradually decreasing until the complete crashing where a high non-
linear failure mechanism combines. Considering this, a scoring method is 
introduced to evaluate the best curves by ranking all predicted responses at different 
intervals and assigning a score (5 to the best prediction and 0 to the worst 
prediction) to the best five predictions at each crashing level (Figure 4.14) 
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Figure 4.14. Scoring algorithm ranking a selection of the best different 
configurations at each crashing level by the normalized absorbed energy. Scores from 1 
to 5 are assigned at each interval. 

The proposed scoring strategy counters the accuracy decrease in the prediction 
of the absorbed energy close to the complete crushing, rewarding the crash tubes 
that show a consistently higher performance among all the configurations. Indeed, 
Figure 4.15 shows the normalized energy absorption of all predicted configurations 
at 40%, 70% and 90% of ultimate displacement, evidencing the existence of 
temporary peaks vanishing outside certain intervals. This is in line with the energy 
curves shown in Figure 4.13, where a small difference in the absorbed energy is 
evidenced for the first phase of the crashing where the curves are grouped. With the 
increasing displacement, the absorbed energy of the different origami tubes 
diverges from the average values, yielding the presence of optimal configurations 
with higher energy absorption capability. These reflect the yellow spots in the 
response map at 90% of the crashing in Figure 4.15. 
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Figure 4.15. Heatmap of the normalized absorbed energy at 40%, 70% and 90% 
crashing intervals. 

The best two configurations show (see Figure 4.14) absorbed energy of 175J 
and 171J, respectively, with their geometrical features reported in Table 4.3 

Table 4.3. Geometrical features of the two configurations with the highest absorbed 
energy predicted by the PINN. 

 c_bot 
[mm] 

c_top 
[mm] 

h_bot 
[mm] 

h_top 
[mm] 

E  
[J] 

1 42.2 54.5 93.25 81.4 175 

2 42.2 41.2 63.2 79.8 171 

 

The crash response for these origami tubes is then computed using the  FE 
model and the results are compared in terms of absorbed energy, to confirm the 
quality of the results and the efficiency of the machine learning-based optimization 
algorithm.  
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Figure 4.16. The absorbed crash energy of the optimized configurations predicted 
with the PINN model compared with the results of the FEM 

The comparison is reported in Figure 4.16 and shows a good agreement 
between the response predicted by the PINN algorithm and that calculated through 
the FE analysis up to 80% of the total crashing. This proves that the proposed 
methodology can be reliably applied to the design of the origami tube and 
guarantees a remarkable reduction of the computational effort. 

The presented PINN algorithm can predict the crashing response of the 
assembled structures with reduced computational efforts and an overall good 
accuracy; more specifically, given a set of N single module crash simulations, the 
algorithm can estimate the response of N!/(N-2)! geometric configurations of the 
double modules crash box by drastically reducing the computational cost. Indeed, 
once the model is trained, the assessment of the full crashbox response computed 
with the PINN takes approximately 0.1 seconds on a 16-CPU laptop, while an FEA 
of a crashbox with two modules takes around 35 minutes on a 40-CPU cluster. 
Figure 4.17 shows the computational saving in terms of simulation hours for 
different N, showing an average speed up of 30 times. 
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Figure 4.17. Computational time comparison between FEM and ANN optimization 

 

4.5  Conclusions 

In this Chapter, an MDS method to surrogate the FEA of origami-shaped composite 
tubes has been presented to reduce the computational cost of the crashing 
simulations and accelerate the exploration of the design space with overall good 
accuracy. The method demonstrates that with an experimentally calibrated FEM in 
the hands, a reliable database of structural responses can be generated to train a 
surrogate PINN that can further explore the design space learning from the FE 
results and rapidly predict the response of new structures. The importance of 
extracting the mechanistic information from the available data has been discussed 
and the efficiency in blending the physical knowledge with the predictive capability 
of NN has been demonstrated. Indeed, the MDS method showed a higher predictive 
capability of the standard NN that reflects the accuracy and reliability of the 
network. The proposed method has been used to optimize the geometry of the 
origami-shaped composite tubes under axial crashing and, after having optimized 
the structure, to achieve the maximum absorbed energy with a speed up of 30x, if 
compared to a FEA-driven optimization with a full exploration of the design space. 
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The proposed method is still limited by the analysed geometry, and it is expected 
to have lower performance if used to predict the response of composite tubes with 
different geometries of the modules. To have a more generic surrogate model 
different algorithms should be explored that can handle the structure geometry as 
input parameters, for example, the Graph-based NN (GNN) and the Geodesic 
Convolutional NN (GCNN) could be considered. Recent works [42,44,131] have 
demonstrated the applicability of this architecture to surrogate numerical models 
operating on mesh structures, opening the door for a geometry-independent 
surrogate model of the FEA.  
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5 Data driven method for the 
prediction of the fatigue response 
of additively manufactured parts 
from the process parameters 

5.1  Introduction 

In the previous Chapters, three different MDS methods have been introduced 
to model the structure-to-property relationship, assessing the material properties 
(Chapters 2 and 3) and the structural response (Chapter 4) of composite by 
leveraging on the availability of experimental data or FEM-generated data, 
respectively. Recalling the PSP paradigm of integrated computational materials 
engineering (ICME), a strong link exists between the process (i.e., the 
manufacturing) and the structure of materials, which eventually affects the 
mechanical properties. Therefore, modelling the process-to-structure link is of 
fundamental importance to effectively predict the mechanical properties of 
advanced materials which exhibit a variable microstructure (e.g., defects, fibre 
orientation in FRP, inclusion in metals, ...). Computational tools that predict the 
formation of defects and manufacturing-induced variation of the microstructure can 
be coupled with the mechanical models to cover the full PSP relationship in the 
modelling environment, but these usually require multi-disciplinary knowledge, 
extensive experimental campaigns to achieve an efficient calibration of the material 
models and a costly set of simulation suites. However, ML models have opened the 
door for a direct, easy-to-implement and data-driven solution to link the 
manufacturing process to the microstructural variations that eventually affect the 
mechanical response. 

5.1.1 Fatigue Strength in Additive Manufacturing 

The assessment of the manufacturing-induced defects is of paramount 
importance for predicting the fatigue strength of parts produced via Additive 
Manufacturing (AM). Although the strength and stiffness of metal structures 
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produced with AM have been proven to be comparable, or even superior, to that of 
traditionally manufactured counterparts, the performance of AM components under 
cyclic loads is generally lower [132–135]. This discrepancy primarily arises from 
manufacturing defects, such as pores or lack of fusion defects [133,135–137], that 
inevitably originate during the manufacturing process. These defects serve as 
critical sites for crack nucleation. 

Current research efforts are focused on identifying optimal process parameters 
that can minimize critical defects in AM parts. This strategy has been proven 
effective in enhancing the fatigue resistance of AM parts [132]. However, even if 
the combination of process parameters that minimize defect density is achieved, 
there is still a possibility of rare and significant defects forming in the final part. 
Consequently, ensuring the structural integrity of AM components under fatigue 
conditions requires considering the inherent defectiveness of the material during 
the design process and accounting for the impact of defects on fatigue response. 

 

5.1.2 Design strategies to address the effect of defects 

Various strategies can be employed to achieve this objective. For instance, 
performing a micro-CT scan of the part can provide comprehensive information 
regarding the material's defectiveness. Designing the part reliably can be 
accomplished by utilizing established literature models that assess fatigue strength 
in the presence of defects [138–140], such as the Murakami model [141] or the El 
Haddad model [142]. These literature approaches allow to model the dependency 
of the fatigue strength on the defect size distribution. However, these models do not 
establish a correlation between the estimated fatigue strength and the primary 
manufacturing process parameters, which primarily govern material defectiveness 
and, consequently, fatigue response. Therefore, the structural integrity of the part 
can only be verified after the production of the component or if the distribution of 
defect sizes is known in advance.  

Nonetheless, critical manufacturing process parameters, such as beam 
diameter, beam power, layer thickness, powder size, and post-treatments (e.g., heat 
treatments), significantly affect the fatigue response [143]. Thus, they should be 
considered during the design phase. Neglecting their influence would render the 
design ineffective and less efficient since the defect population and final 
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microstructure are influenced by the parameters. Therefore, an ideal approach 
would involve establishing a correlation between fatigue strength, the stress-life 
relationship, and the process parameters as well as the post-treatment. This 
correlation would provide a reliable assessment of the structural integrity of AM 
parts under fatigue conditions. 

5.1.3 The influence of process parameters on the fatigue response 

  According to the literature [143–145], one of the main reasons for the 
variability of the fatigue strength of AM parts is associated with the large number 
of process parameters that differently affect the defect population and, 
consequently, the fatigue strength. Therefore, it is rather difficult to define a simple 
model that allows estimating and predicting the fatigue strength from the process 
parameters. For example, the effect of a specific parameter can be estimated with 
an appropriate experimental plan, like what is done in [143,146]. However, the 
main drawback associated with these approaches is that the interactions between 
the manufacturing process parameters can be only accounted for with extensive 
and, thus, unaffordable experimental plans.  

ML algorithms are ideal candidates to understand the effect of process 
parameters, and their interaction, on the fatigue response of AM parts. In the 
literature, ML algorithms have been used for assessing the structural integrity of 
AM components. Zahan and Li [147] introduced a machine learning methodology 
trained on artificial data to assess the fatigue limit of AM Ti6Al4V and SS316L 
alloys. The effect of process parameters is embedded in the computational approach 
used to generate data, accounting for hatch spacing, speed, layer thickness and 
powder size. Maleki et al. [148] have studied the efficiency of both shallow and 
deep neural networks in predicting the effect of thermal and shot peening post-
treatment on the fatigue life of AM AlSi10Mg parts. The models are trained on 
experimental data of notched specimens manufactured with a specific combination 
of printing parameters, thus not accounting for their effect on the fatigue response. 
Results show a 99% accuracy of deep learning autoencoders in predicting the post-
processing effect on fatigue life, outlining the promising capabilities of ML for the 
prediction of the fatigue response of AM parts. Chen and Liu [149] recently 
proposed a probabilistic physics-guided model predicting the S-N curve of AM 
Ti6Al4V produced with Selective Laser Melting (SLM) from manufacturing 
parameters. Authors gained accuracy and efficiency by imposing soft constraints 
on the S-N curve trend, e.g., monotonicity, slope decreasing with the number of 
cycles at failure. [150] proposes an ML method to investigate the synergic influence 
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of defect size, depth, location and building orientation on Ti-6Al-4V, achieving an 
accuracy of 98% in the prediction. 

The main contributions of the referenced literature are reported in Table 5.1. 

Table 5.1. Literature on fatigue response of AM 

Reference Focus 

[132-135] Fatigue response of AM components 
and manufacturing defects. 

[135-137] Manufacturing defect of AMed metals. 

[138-142] Literature models for fatigue strength 
assessment in the presence of defects. 

[143-146] Effect of AM parameters on the fatigue 
response. 

[147-150] ML methods for assessing the fatigue 
response in Ame alloys. 

 

Here, two ML algorithms have been designed to predict the S-N relationship of 
AM parts starting from the SLM process parameters (i.e., layer thickness, beam 
diameter, hatch distance, energy density, building orientation, and power) and heat 
treatment properties (i.e., heating temperature and duration), as described in [151].  

The two models trained and tested to fulfil the objective, are a FFNN and a 
PINN model. The first is a standard FFNN that predicts the stress amplitude from 
the process parameters and the number of cycles that the part should withstand. This 
algorithm operates as a black box that approximates the relationship between 
process parameters with the S-N response of observed data. The second one is based 
on the experimental evidence that process parameters mainly affect the size of 
defects and the microstructure, whereas the heat treatment properties have a main 
influence on the resulting microstructure, thus differently affecting the fatigue 
response. To infuse the empirical knowledge into the network architecture, a novel 
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modular architecture is introduced, where the input parameters are arranged to feed 
separate neural network branches, respectively accounting for defect and 
microstructure effects on fatigue life prediction. On the output side, the network 
modules are merged within a physics layer mimicking the Murakami equation 
[141]. The proposed hybrid data-driven and phenomenological model is novel and 
aims at preserving the mechanistic knowledge of fatigue modelling while 
leveraging the ability of machine learning methods to learn from the available data. 
The model architecture replicates the process-structure-property paradigm to get an 
insight into the mechanistic relationship that links the process with the fatigue 
properties. 

Both models are trained and validated on experimental datasets taken from the 
literature obtained by testing AlSi10Mg alloy specimens. The advantages and the 
limitations of the two ML algorithms are highlighted and their capability of 
properly modelling the fatigue response and the influence of specific process 
parameters on the fatigue response is discussed. 

 

 

5.2  Methods 

5.2.1 Data driven framework 

The fatigue response of materials in its simplest form is expressed as the 
relation between the applied stress amplitude (s) and the number of cycles to failure 
(N). Due to the stochastic nature of the fatigue phenomenon, the stress-life 
relationship is assessed through rather expensive and time-consuming experimental 
tests, to properly model the intrinsic scatter.  

The fatigue response of AM parts is governed by defects [152], that are in turn 
related to the process parameters. These pones the challenge of defining the 
influence of the SLM process on the material strength under cyclic loads. First, the 
main parameters affecting the defect population, the microstructure, and, 
consequently, the fatigue response [153] are identified:  

• Building orientation (𝛼): has a relevant effect on the defect size and, 
accordingly, on the fatigue response [154,155]. 
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• Input power (𝑃) and scan speed (𝑣): these two parameters can be condensed 

in the energy per unit length parameter, which should be appropriately 
selected, to avoid the formation of lack of fusion defects due to the 
insufficient power per unit length [156]. 

• Hatch distance (ℎ): influences the defect size and the fatigue response, with 
the fatigue response improving as the hatch distance is reduced [157,158]. 
According to [159], a larger hatch spacing introduces larger pores and hence 
degrades fatigue life. 

• Layer thickness (𝑡): larger values induce higher porosity that eventually 
influences the fatigue response [153,160].  

• Heating platform temperature (𝑇𝑝): is proven to affect the fatigue response 
of different AM materials, like AlSi10Mg. According to [137], indeed, 
heating the building platform helps stabilise the melt pool, with a positive 
effect on the defect size. The fatigue strength of specimens produced with a 
heated platform is larger than that of specimens manufactured with a non-
heated platform. Similarly, according to [161], specimens manufactured 
with a heated platform are more “damage tolerant”. 

• Powder size [162,163]: although specimens produced with finer powder 
have revealed fewer defects, the critical defect sizes are considerably larger 
in specimens manufactured with this type of powder. Due to the presence 
of much larger defects in specimens produced with fine powder, a smaller 
fatigue response has been found for these specimens as compared with their 
counterparts fabricated from the coarse powder. 

• Beam diameter (𝑑): has a very important role in porosity formation. 
Porosity can increase significantly when using larger laser diameters [164] 
possibly due to a decrease in beam power density. Power density is defined 
as the power per unit area, usually expressed in 𝑀𝑊𝑐𝑚−2. Lower power 
density requires slower scanning speeds to manufacture samples without 
imperfections. In turn, slower speeds can cause larger and deeper melt pools 
which can promote the formation of keyhole porosity. Large beam 
diameters with slow speeds can thus limit the process window in the power-
velocity graph, yielding a less efficient densification mechanism [164,165]. 

Beyond manufacturing parameters, post-treatments also induce the 
modification of the microstructure and the relaxation of the residual stresses, 
affecting the fatigue response [154], while their effect on the defect population is 
negligible [166]. 
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According to the above analysis, the number of the involved parameters 

influencing the fatigue response of AM parts makes a fully experimental approach 
rather unpracticable, opening the path to data-driven methods. To train the models, 
a dataset composed of fatigue testing data has been populated with the results from 
the literature. 

5.2.2 The dataset 

The dataset used to train the ML models is composed of 561 data points (Table 
5.2), each defined as a set of process parameters, heat treatment parameters, stress 
amplitude and the number of cycles at failure. The stress amplitude at stress ratio 
𝑅 = −1 is considered in the following analysis. If the experimental data in the 
literature datasets considered for the validation of the model have been obtained 
through tests at different stress ratios, the Smith-Watson-Topper (SWT) correction 
has been applied to assess the equivalent stress amplitude sa,eq at R=-1 (i.e., 𝑠𝑎,𝑒𝑞 =

𝑠𝑚𝑎𝑥 ∙ √
1−𝑅

2
, being smax the maximum applied stress in a load cycle). 

 

Table 5.2. AM process parameters of data used to train the machine learning model. 

α 
[°] 

P 
[W] 

h 
[mm] 

v 
[mm/min] 

d 
[µm] 

t 
[µm] 

T 
[°C] 

Ref. 

0 250 150 500 200 50 30 

[167] 

90 250 150 500 200 50 30 

45 250 150 500 200 50 30 

0 250 150 500 200 50 300 

90 250 150 500 200 50 300 

45 250 150 500 200 50 300 

0 300 80 2667 70 30 170 
[145] 

90 300 80 2667 70 30 170 
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0 200 61 2667 70 30 170 

90 200 61 2667 70 30 170 

0 275 80 2667 70 30 170 

0 370 190 1300 100 - 35 
[168] 

90 370 190 1300 100 - 35 

90 350 190 1200 83 50 35 
[169] 

90 350 190 1200 83 50 200 

0 400 190 1200 83 50 35 
[170] 

0 400 190 1200 83 50 200 

0 370 160 1300 100 30 35 

[159] 

0 370 190 1300 100 30 35 

0 370 220 1300 100 30 35 

90 370 160 1300 100 30 35 

90 370 190 1300 100 30 35 

90 370 220 1300 100 30 35 

0 350 170 1150 80 50 150 
[171] 

90 350 170 1150 80 50 150 

0 400 200 1000 125 30 35 [172] 
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0 400 200 1000 125 30 35 [173] 

0 400 200 1000 70 - 35 

[174] 45 400 200 1000 70 - 35 

90 400 200 1000 70 - 35 

 

In case of missing data, an imputing approach has been used: first, a feature 
correlation study has been performed to assess the interdependency of process 
parameters; second, the most correlated feature to the missing field is used to train 
a regression model (i.e., imputer). The results of the correlation study are reported 
in  Table 5.3, where it can be observed that larger beam diameters usually come 
with larger thicknesses while increasing the scanning speed requires reduced values 
of t. 

Table 5.3. The correlation coefficient of process parameters used to select the 
relevant features to predict missing values. 

Parameter t h d v 

t 1 -0.04 0.33 -0.48 

h -0.04 1 -0.17 -0.18 

d 0.33 -0.17 1 -0.75 

v -0.48 -0.18 -0.75 1 

The missing values of layer thickness in [168] and [174] are obtained by 
training a regression model that predicts t from the beam diameter and scanning 
speed. The imputed values are 31 and 51 µm for the data referred to in the above-
mentioned articles, respectively. 

The database has been then used to train and validate the data-driven model 
described in the following. 
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5.2.3 ML models 

The implemented FFNN has a conventional architecture, trained with a 
backpropagation algorithm using an Adam gradient descent optimization scheme. 
The MDS model is a mechanistic PINN with a modified architecture that mimics 
the fundamental theory of Murakami, as described in the following. 

5.2.3.1 Mechanistic Neural Network 

The method combines the knowledge of the effect of the defects and the 
material microstructures on the nucleation and propagation phenomena that govern 
the fatigue response with the neural network model. 

Defects detrimentally affect the fatigue response as they represent critical sites 
from which the crack can favourably nucleate, and eventually propagate until 
failure. According to [141], the fatigue response is driven by the largest defect or 
the most critical from a fracture mechanic perspective. Accordingly, large, and rare 
defects, rather than the defect density (i.e., the number of defects in a unit material 
volume), control the fatigue response. Indeed, parts with a high defect density but 
with defects characterized by small size can show higher fatigue strength than parts 
with smaller defect density, but with rare large detrimental defects.  

The dependency between the fatigue limit and the characteristic defect size can 
be expressed as: 

𝑠𝑙 =
𝐶1 ∙ (𝐻𝑉 + 120)

(√𝑎𝑐)
1
6

 (5.1) 

being sl the fatigue limit, i.e., “the threshold for crack propagation”, 𝐻𝑉 the 
material Vickers hardness, 𝑎𝑐 the characteristic defect size and 𝐶1 a coefficient that 
accounts for the location of the defect (i.e., surface defects are more critical than 
internal defects since characterized by a larger Stress Intensity Factor (SIF)[141]). 
According to Equation 5.1, the defect characteristic size is accounted as the square 
root of the defect area in a direction perpendicular to the maximum applied stress.  

Equation 5.1 puts into evidence that the material Vickers hardness also affects 
the fatigue response. Indeed, according to Murakami, the material Vickers hardness 
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is the "microstructural parameter", i.e., it accounts for the influence of the 
microstructure on the fatigue response. The fatigue response thus depends on the 
defect size and on the material microstructure, which can be represented by the 
material Vickers hardness. 

The Murakami formulation has proven to be valid for parts produced through 
AM processes, by considering an equivalent defect size in place of ac[175]. 
Equation 5.1 can be also exploited to assess the dependency of the fatigue response 
in the presence of defects and the fatigue life, i.e., by normalizing the applied stress 
amplitude sa by the corresponding fatigue limit sl computed with Equation 5.2: 

𝑠𝑎
𝑠𝑙
= 𝐶 ∙ 𝑁𝑓

𝑘, (5.2) 

being 𝑁𝑓 the number of cycles to failure and 𝐶 and 𝑘 two material parameters 
that must be estimated from the experimental data. Equation 5.2 has been employed 
in different forms to model the dependence between sa, Nf and the defect size 
[141,176,177] and more complex trends, like the duplex trend [178].  

Standing on what has been discussed so far, the fatigue design of AM parts 
requires a model able to correlate the defects and the material microstructure to the 
fatigue strength. Defect size and material microstructure are differently affected by 
the process and post-treatments parameters [152]. Heat treatments have an overall 
marginal influence on the defect size [166,179–181], while strongly affecting the 
final microstructure and, accordingly, the Vickers hardness, as experimentally 
shown in [182]. 

To summarize, Figure 5.1 clarifies the factors affecting the fatigue response of 
AM parts. Process parameters influence the defect size and the microstructure, 
whereas heat treatments affect only the microstructure. According to [179], the 
heating temperature can be considered the main factor that controls the 
microstructure and, consequently, the Vickers hardness.  
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Figure 5.1. A flow chart that summarizes how the SLM and heat treatment factors 
affect the fatigue life of AM parts. 

This physical evidence is exploited to build a PINN model that predicts the 
fatigue response of AM parts from the input process parameters, and heating 
treatment variables.  

In the physically inspired model, the prior mechanistic knowledge about the 
relations between the process parameters and the microstructural properties is 
enforced in intermediate layers of the network.  

The PINN modular structure is composed of two main branches: 

• Defect estimation: vector of variables 𝜽 (layer thickness, beam diameter, 

hatch distance, scanning speed, building orientation, power, and 

temperature of the platform) feeds the neural network ℕ1 that predicts the 

effect of these parameters on the defect size. 

• Microstructure estimation: vector of variables 𝝓 (process parameters and 

duration and temperature of the thermal treatment) feeds the neural network 

ℕ2 that predicts the microstructural strength parameter. 

According to Equations 5.3-4, the fatigue strength, defined as the stress value 
at which the failure occurs after Nf cycles, is proportional to the microstructural 
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strength and inversely proportional to the defect area. Following this prior 
knowledge, the ratio from the defect estimation branch and the microstructure 
branch results is computed in a custom layer of the network. The ratio is passed to 
a trainable layer to predict the fatigue strength sa according to Equation 5.3: 

𝑠𝑎 =
𝑓(𝐻𝑉)

𝑓(√𝑎𝑐)
𝑓(𝑁𝑓), (5.3) 

where 𝑓(𝐻𝑉) is a function of the Vickers hardness (and, accordingly, of the 
part microstructure), 𝑓(√𝑎𝑐) is a function of the defect size, whereas 𝑓(𝑁𝑓) is a 
function of 𝑁𝑓. Equation 5.3 correlates the fatigue strength (𝑠𝑎) to the fatigue life 
(𝑁𝑓) and model the influence of defects and microstructure on fatigue life. These 
quantities, 𝑓(𝐻𝑉), 𝑓(√𝑎𝑐) and 𝑓(𝑁𝑓) are unknown in the design phase and are 
estimated by the NN. For this reason, a custom layer replicating Equation 5.3 with 
trainable parameters 𝒘𝑪 is built. This final layer takes as input the latent scalar 
variables Φ and Θ, and the input 𝑁𝑓 to predict the fatigue strength 𝑠𝑎 at the number 
of cycles Nf: 

𝑠𝑎 =
ℕ1(𝜽;𝒘𝜽, 𝒃 𝜽)

ℕ2(𝝓;𝒘𝝓, 𝒃𝝓)
(
𝑤𝐶
1

𝑁𝑓
)

𝑤𝐶
2

=
Θ

Φ
(
𝑤𝐶
1

𝑁𝑓
)

𝑤𝐶
2

 (5.4) 

In Equation 5.4, w and b are the trainable weight and bias of the microstructural 
and defect networks, respectively indicated with 𝜙 and 𝜃. 
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Figure 5.2. Schematic representation of the modular MDS NN. 

Since the output layer takes as input the latent parameters Φ and Θ, the encoded 
process parameters are related to the 𝑠𝑎 − 𝑁𝑓 trend and the network can learn the 
effect of these variables on the shape of the fatigue response over the entire life. It 
is worth noting that the c1 coefficient in the Murakami formulation depends on the 
defect location, accounting for the larger criticality of surface defects. The injected 
physic in the NN model mimics the Murakami formulation in its form and 
constrains the interaction between defect-correlated and microstructure-correlated 
features, enforcing the prediction of interpretable latent variables (Figure 5.2), but 
does not directly estimate the C parameter of Equation 5.2. Most of the analysed 
datasets do not report information on the defect size and location, precluding the 
direct usage of the defect information for the model training. Superficial defects 
have a decremental effect on the fatigue strength, yielding a 10% fatigue strength 
reduction for internal defects, therefore the uncertainty on the locations of the 
defects is estimated to influence the model accuracy of the same quantity. 

The loss function of the NN is expressed as follows:  

ℒ =
1

𝑁
|𝐒 −

ℕ1(𝜽;𝒘𝜽, 𝒃 𝜽)

ℕ2(𝝓;𝒘𝝓, 𝒃𝝓)
(
𝑤𝐶
1

𝑵𝒇
)

𝑤𝐶
2

|

𝐹2

 (5.5) 
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Where operator |∙|𝐹2 stands for the Frobenius norm.  

The designed PINN intrinsically complies with the S-N monotonicity 
constraint, being the derivative of the output layer with respect to the number of 
cycles always negative.  

 

5.3  Results 

5.3.1 FFNN 

The structure of the neural networks used in this section is summarised in Table 
5.4. 

Table 5.4. Summary of FFNN optimized structures with activation function and 
number of neurons of each layer 

Layer Neurons Activation 
function Output shape 

Input 40 ReLU (40, 1) 

Dense 1 50 ReLU (50, 1) 

Dense 2 50 ReLU (50, 1) 

Dense 3 40 ReLU (40, 1) 

Output 40 ReLU (1, 1) 

The model has been trained with three different subsets of the available 
parameters: 

a) Orientation, energy, beam diameter, hatch, layer thickness, number of 
cycles, and plate temperature. 

b) Same of configuration a) with duration and temperature of thermal 
treatment. 

c) Same as configuration b) with powder size. 
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To assess the approximation capability of the ML models, neural networks are 

trained with 80% of the available data, while the remaining 20% is used as a 
validation dataset to check that the network is not overfitting the training 
observations. The network MSE is minimized with the adaptive optimizer 
algorithm Adam, setting a learning rate of 0.07 and an exponential decay rate of 
0.9. Network weights and bias are updated at each iteration with a standard back-
propagation algorithm and the training is stopped when an increase of 5% on the 
MSE is not registered for 20 iterations. 

The mean squared errors of the three FFNN models are compared in Figure 5.3. 

 a) 

 
b) 
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Figure 5.3. A comparison of the FFNN loss on training and validation data over the 

training epochs (a) and the accuracy plot of the trained model (b) for the three analysed 
configurations (a, b and c). 

Configuration a of the FFNN architectures reveals the best accuracy, with an 
MSE of 700 and 800 on the training and validation datasets (i.e., there is no 
overfitting on training observation), respectively (see Figure 5.3a). Results are 
reported in the accuracy plot (Figure 5.3b) where a ±30% error band is reported in 
shaded red. It can be concluded that FFNN struggles to learn the effect of post-
treatment parameters and powder size effect on the fatigue response, the reduced 
parameters set configuration being the most effective in predicting the fatigue 
stress. From here on, results referring to FFNN are obtained with configuration a). 

5.3.2 Mechanistic NN 

The combined PINN is composed of three main subnetworks: 

• Microstructural branch: predicting the influence of AM manufacturing 
parameters and heat treatment effect on the final microstructure. 

• Defect branch: predicting the effect of AM manufacturing parameters on 
the defects. 

• Output branch: a single custom layer computing the interaction of the 
previous branch predictions with the finite lifetime. 
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A schematic representation of the proposed PINN is presented in Figure 

5.4.  

 

Figure 5.4. The neural network architecture of the PINN. In red are the 
manufacturing parameters, in green, are heat treatment variables and in yellow is the life 
cycle. Dashed lines indicate custom layers, while continuous lines indicate neural 
network connections. 

The two branches - accounting for the effect of manufacturing parameters on 
microstructure and defects, respectively - predict the latent variables Θ and Φ. 
Following the latent variables prediction, a custom layer calculates the ratio Θ/Φ, 
recalling Equation 5.3. The characteristic ratio and the number of cycles to failure 
are concatenated into a vector that feeds the last NN block, where Equation 5.4 is 
performed. The interaction between the ratio Θ/Φ, and the number of cycles 𝑁𝑓, 
allows the network to learn an S-N relation whose trend depends on the interaction 
of the manufacturing parameters with 𝑁𝑓. In other words, the parameters 𝑤1∗ and 
𝑤2
∗ of Equation 5.4 depend on the manufacturing process; otherwise, the network 

could only predict S-N curves with a fixed trend, scaled by a factor Θ/Φ. 

The hyperparameters of the model architecture are summarised in Table 5.5. 
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Table 5.5. Physic-informed neural network architecture 

NN branch Layer Neurons Activation 
function 

ℕ𝟏 Input 1 10 SELU 

Dense 1 5 SELU 

 Dense 2 1 Linear 

ℕ𝟐 Input 2 10 SELU 

Dense 3 5 SELU 

 Dense 4 1 Linear 

Output Dense 5 10 ReLU 

 Dense 6 5 Linear 

 Dense 7 1 Linear 

 Custom - - 

The weights of dense layers are regularized with an L1 regularization penalties 
algorithm, adding to the loss function the L1 norm of the layer weights. In this way, 
the training process converges to a simpler network, suppressing weak connections 
with low weights, and gaining robustness against noisy data. The activation 
functions of the input and hidden layers of the ℕ1 and ℕ2 networks have been 
selected with sensitivity analysis on the network performance, varying the 
activation function among linear, ReLU, Hyperbolic tangent, Exponential Linear 
Unit (ELU) and SELU. The network has been trained ten times with each activation 
function, with a random selection of the training data. Table 5.6 summarizes the 
results of this analysis, comparing the mean and the standard deviation of the mean 
squared error of the PINN with different activation functions. 
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Table 5.6. Mean and standard deviation of the mean squared error of the PINN with 

different activation functions. Results refer to ten repetitions of the training process with 
training data randomly sampled. 

 MSE  

Activation Mean St. dev. 

Linear 728 314 

Tanh 1639 415 

ReLU 5060 6602 

ELU 2530 4438 

SELU 666 189 

The best activation function is the SELU, leading to a consistently lower error 
in the predictions. The higher non-linearity of the SELU function lets the network 
capture the complex interaction of the process parameters and its effect on the latent 
variables. The results of the model are shown in the accuracy plot of Figure 5.5, 
where the predicted fatigue life is compared with the experimental data on a scatter 
plot, where the dashed lines indicate the perfect accuracy, which is impossible to 
achieve due to the intrinsic scatter of the experimental results, while the red shaded 
band refers to the ±50 MPa error band. Most of the data, from both training and 
validation sets, falls within the error band, while only a few points deviate more 
than 50 MPa from the exact values. 
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Figure 5.5. A comparison of the PINN prediction with the experimental observation 
for all the available data. The shaded area represents the ±50MPa error band 

Since the scatter in the fatigue response of AM parts increases with the number 
of cycles, i.e., at lower stresses, in the left portion of the plot we observe a lower 
accuracy of the model. The reason behind this behaviour relies on the deterministic 
nature of the proposed approach, in contrast with the stochastic nature of the fatigue 
phenomenon; a modification of the PINN predicting a probabilistic result is under 
study and will be the object of future research.  

Figure 5.6 shows the predicted S-N curves of three different process 
configurations comprised in the dataset. The datasets have been selected to show 
the strong influence of the process parameters on the fatigue response of AlSi10Mg 
parts manufactured with AM and the ability of the model to predict it. The  PINN 
can efficiently assess the fatigue behaviour of parts produced with different process 
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conditions that yield remarkable variation in the S-N plots, e.g., 80 MPa (blue 
circle), 100 MPa (green squares) and 120 MPa (orange triangles) strength at 106 
cycles. Beyond an overall good precision, the model shows robustness to the 
outliers. As can be observed for the green curve, the physical behaviour is preserved 
against scattered data. 

 

Figure 5.6. Fatigue curves predicted with the PINN algorithm and compared with the 
experimental data. The process parameters and experimental data are referred to 
[167,183] 

Moreover, Figure 5.6 shows that the predicted stress-life curves of the PINN 
reflect distinguishable characteristics of the fatigue response of the AlSi10Mg alloy 
[184]: 
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• The bi-linear trend within a lifetime range above 104 cycles. 
• A knee point, defined as the value of 𝑁𝑓 where the slope of the S-N curves 

changes, between 104 and 106 cycles. 
• The slope decreases after the knee point. 

The bi-linear trend is enabled by selecting a ReLU activation function of 
the network operating on Nf. The possible occurrence of a bilinear trend must 
be considered for the investigated aluminium alloy, according to the 
experimental evidence [185,186]. 

5.3.2.1 Interpretability 

The model can be interpreted as a physics-informed encoder that embeds the 
effect of process parameters into two latent variables, Θ and Φ, controlling the 
variation of AM material strength due to defects and microstructural properties, 
respectively. While complying with the empirical findings and established models, 
this architecture introduces interpretable mechanisms of the ML model. Indeed, ℕ1 
and ℕ2 subnetworks can be independently analysed to assess the effect of 
microstructural (𝜽) and defect-associated (𝝓) variables on the fatigue response. 

Figure 5.7a shows the effect of latent variables Θ and Φ on the fatigue strength 
at 106 cycles. It can be observed that an increase of the defect-associated variable 
Φ leads to a fatigue strength reduction (moving right in the graph from the diagonal, 
while the microstructure-associated variable Θ has the opposite effect. The physics 
latent space encodes the process effect on the fatigue response, making the NN 
interpretable from an engineering perspective. The latent variables map indicates 
the best manufacture condition at the desired lifetime 𝑁𝑓 and, can thus be used to 
optimize the process parameters to enhance the fatigue response. Figure 5.7b shows 
the effect of the output layer on the relation between the stress amplitude and the 
characteristic ratio at different values of 𝑁𝑓. It can be observed that the number of 
cycles affects the slope of the curve, modelling different latent parameter effects at 
the different number of cycles. 

 

a)  
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b) 

 
 

Figure 5.7. a) Fatigue strength variation with latent variables at 𝑵𝒇=𝟏𝟎𝟔 b) 
Correlation of the fatigue strength with 𝚯/𝚽 at different 𝑵𝒇 
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5.3.3 Comparison 

In this subsection, the results of the PINN and FFNN are compared, and the 
models are evaluated in terms of overall accuracy, ability to extrapolate results 
beyond the observed domain and efficiency in capturing the process parameters 
effect. Finally, a new testing set of experimental data is introduced to test the models 
beyond the training and validation domains.  

5.3.3.1 Model accuracy 

Figure 5.8a reports the model prediction compared to the experimental data, 
with the black dashed line indicating the exact predictions, and the red shaded area 
evidencing the ±50MPa error interval. The proposed modular PINN enhances the 
prediction accuracy of the ML model, efficiently predicting the fatigue strength in 
the finite life region (at higher stress levels). The loss history plot during the training 
process (Figure 5.8b) shows that the PINN achieves an approximately 20% lower 
MSE (626 respect to 756), by introducing the physical relations between the 
mechanistic feature of the phenomena.  

 

a) 
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b) 

 

Figure 5.8. a) FFNN and PINN predictions compared to experimental observation. 
The shaded band refers to a 20% error. b) MSE of PINN and FFNN during the training 
process. 
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The MSE of the testing dataset is 730 and 1100 for the PINN and FFNN, 

respectively. 

5.3.3.2 Extrapolation outside the observed domain 

 The trained models can be used to assess the S-N relation in the Very-High-
Cycle Fatigue (VHCF) range, i.e., beyond 106 cycles. The VHCF response learned 
from the available data can be extended to manufacturing configurations not yet 
tested above 106 cycles. Accordingly, the VHCF response of aluminium alloys with 
a different set of parameters can be extrapolated by transferring the learned relation 
from the tested manufacturing configurations. Figure 5.9 shows a representative 
example of the predicted VHCF response for two different datasets [145,187] 
obtained with a different combination of manufacturing process parameters, 
reported in Table 5.2.  

a) 

 

 

b) 
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Figure 5.9. Extrapolated predictions of NN models outside the observed interval for 
fatigue data in a) [145] and b) [167] 

Enforcing the physics constraint during the training of the neural networks 
leads towards a more reliable extrapolation model that predicts the physics-
compliant fatigue response of AM alloy beyond the observed domain. FFNN 
predictions decrease monotonically within the entire lifecycle domain, even above 
106 cycles, whereas the PINN curves exhibit a double linear trend in agreement with 
the experimental observations. This analysis proves the best predicting capability 
of the PINN model, where the training process is guided by experimental evidence 
on the influence of defects and microstructure on the fatigue response. On the other 
hand, a “black box” approach would perform better only if a significantly larger 

dataset was considered for training the network. Accordingly, a PINN approach 
should be preferred since its results are interpretable and the physical mechanisms 
of the fatigue response of AM parts are preserved. 

5.3.3.3 Process parameters sensitivity 

In this section, the ML models are used to predict the effect of individual 
parameters on the fatigue response of AlSi10Mg alloys. The sensitivity analysis of 
the fatigue response to the AM process parameters is performed on the baseline 
configuration described in Table 5.7. 
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Table 5.7. AM process parameter configuration used for the sensitivity analysis 

 α 
[°] 

P 
[W] 

h 
[µm] 

v 
[m/min] 

d 
[µm] 

t 
[µm] 

Tp 
[°C] 

A 0 250 80 2 100-200 50 80 
B 0 250 80 2 100 30-70 80 

 

Figure 5.10 shows the predicted fatigue response sensitivity to the beam 
diameter (Figure 5.10a) and the layer thickness (Figure 5.10b). The prediction of 
the PINN model (red) is compared with the FFNN (black) at different levels of the 
process variables. 

a) 

 

b) 
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Figure 5.10. Predicted SN curve sensitivity to the AM process parameters: a) beam 
diameter; b) layer thickness. 

The PINN prediction of the fatigue response of additively manufactured 
AlSi10Mg parts with different beam diameter values reflects the trend found 
experimentally in the literature. For example, the analysis carried out in [164] 
shows that larger defects tend to form as the diameter of the laser beam is increased, 
thus negatively affecting the fatigue response. A similar trend can be observed in 
Figure 5.10a, where the S-N curves obtained with increasing diameters of the laser 
beam move downward. 

The sensitivity of the ML models to the hatch distance h parameter has been 
investigated by comparing the FFNN and PINN results with the experimental 
results in [188], where h has been varied between 160, 190 and 200 µm and 
specimens have been tested at a stress amplitude of 100 MPa and 80 MPa with a 
stress ratio of 0.1 (Figure 5.11). These data were used as a testing set, meaning that 
are not included neither in the training nor in the testing dataset. After having 
applied the STW corrections, the number of cycles to failure at 80MPa and 100MPa 
has been predicted with the PINN (Fig. 5.11a) and the FFNN (Fig. 5.11b) models. 
Cross markers indicate the predicted life at 100 MPa, plus markers refer to 80 MPa 
amplitude. 



Results 5—151 

 
a) 

 

b) 

.  
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Figure 5.11. The predicted number of cycles at failure with PINN (a) and FFNN (b) 

by considering the process parameters and experimental data in [159]. Cross markers 
indicate the predicted life at 100 MPa, plus markers refer to 80 MPa amplitude (both at 
R=0.1). 

Figure 5.11a demonstrates the efficiency of the PINN to capture a linearly 
decreasing trend of Nf with increasing h, in line with the experimental evidence. 
Additionally, the decrement of the fatigue life with the increased stress amplitude 
is in agreement with the experimental results, with most of the experimental and 
PINN results coinciding with the PINN predictions being slightly conservative. 
FFNN, on the contrary, significantly overestimates the fatigue life. Results in 
Figure 5.11b confirm that the FFNN model struggles in predicting fatigue 
behaviour under processing conditions different from the one contained in the 
training database.  

Figure 5.12 shows the Pearson’s correlation coefficient between the AM 
parameters with the stress amplitude, for both FFNN and PINN predictions 
compared with experiments. The 95% confidence interval of the experimental data 
is described by the black lines, highlighting the stochastic nature of the fatigue 
response. In contrast, the PINN predictions are deterministic and represent the mean 
value of the fatigue response. Looking at the results of the correlation analysis 
between the process parameters and the fatigue strength, it can be concluded that 
the PINN accurately captures the mechanistic relations on the mean of the observed 
data. Future work will be implementing a statistical model capable of predicting a 
scattered response, as observed in experiments. 

 

Figure 5.12. Correlation study of process parameters with stress amplitude. Results 
from the FFNN and PINN are compared with the experimental observation. 
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5.3.3.4 Validation 

In this section, the trained ML algorithms are validated against an additional 
dataset, not considered in previous analyses, which process parameters are reported 
in Table 5.8.  

Table 5.8. AM manufacturing parameters of the validation dataset 

α 

[°] 

P 

[W] 

h 

[mm] 

v 

[m/min] 

d 

[µm] 

t 

[µm] 

Tp 

[°C] 

Th 

[°C] 

Ref. 

90 350 130 1.65 - 50 150 200 [189] 

Being the laser beam diameter not reported in the article, multiple predictions 
are performed varying its value in the range between 70 and 200 μm (i.e., the 
maximum and minimum values of beam diameter observed in the full dataset). The 
results of the multiple predictions are compared with the experimental data in 
Figure 5.13. 
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Figure 5.13. PINN predictions of the testing dataset compared with experimental 
results. Multiple lines refer to different values of the beam diameter, varied in the range 
of 70 to 200 µm, whereas black dots indicate the experimental data. 

Figure 5.13 shows that the S-N curve estimated with the PINN models is in 
good agreement with the experimental data. On the other side, the FFNN 
overestimates the effect of the beam diameter on the fatigue response, leading to 
inaccurate predictions. The PINN predicts the fatigue strength of the AlSi10Mg 
with an average error of 4% and a maximum error of 17% (computed on a fatigue 
curve obtained with a beam diameter of 135 𝜇𝑚). 

This further validation confirms the power of using ML approaches for 
estimating the fatigue response of AM parts starting from the process parameters. 
Indeed, once the network has been trained, the optimal process parameters ensuring 
the best fatigue performances can be attained without the need for time-consuming 
and expensive experimental tests to assess the S-N curve or the defect population. 
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Moreover, the larger efficiency of PINN approaches instead of a “black box” has 

been further proven with this validation, since the predicted S-N curve is close to 
that estimated from the experimental data. 

 

5.4 Conclusions 

A novel data driven method based on established fatigue models has been 
developed to predict the influence of the AM process parameters on the fatigue 
strength of AlSi10Mg parts. Using the experimental results of SLM alloy fatigue 
testing, a standard FFNN and the MDS NN models have been trained to assess the 
fatigue life directly from the layer thickness, beam diameter, hatch distance, energy 
density, building orientation, and heat treatment properties. The PINN combines a 
custom architecture with a modified loss function to merge the damage-tolerant 
fatigue equations with the NN in a streamlined pipeline: the process parameters are 
used to predict two latent variables associated with the material defectiveness and 
the resultant microstructure with separate networks, which are passed to a custom 
layer that mimics the Murakami equations to predict the fatigue strength. As a 
result, the proposed architecture enforces proper constraints on the S-N curves to 
get physics-consistent predictions.  

The FFNN and PINN are compared, highlighting the PINN's higher accuracy, 
and ability to predict S-N curves with the characteristic features of fatigue curves 
like the bi-linear trend, and knee point around 104 cycles. The physics-based model 
is interpreted and the relation between the latent variables representing the 
microstructure and defect effect on the fatigue response is investigated, confirming 
the physics compliance of the proposed architecture. The parameter sensitivity of 
the trained model is also verified, showing, for example, that the beam diameter 
reduced the fatigue strength, in agreement with the literature results. Finally, the 
FFNN and PINN are validated against an AlSi10Mg dataset [189] not included in 
the training and validation database. The FFNN cannot predict the fatigue response 
properly, overestimating the effect of the beam diameter, leading to unphysical 
curves with large errors. The PINN instead, shows a good agreement with the 
experimental data (mean error of 4% and maximum error of 17%). This validation 
further proved the effectiveness of the strategy developed to model the influence of 
defects and microstructure on the fatigue response and to consider the experimental 
evidence in the model. 
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In conclusion, the PINN model designed to enforce the physics knowledge on 

the fatigue of metals has been shown to accurately predict the S-N response of AM 
AlSi10Mg from the process parameters and heat treatment properties and should be 
preferred to FFNN “black box” approach, due to its better predictive capability. The 
developed model allows designers to assess the fatigue strength directly from the 
process parameters and heat treatment properties, thus without the need to perform 
time-consuming and expensive experimental fatigue tests. Moreover, it can be 
reliably used to optimize the part design to achieve the best fatigue performance. 
The proposed methodology is inspired by macroscale phenomenological methods 
that do not explicitly model the microscale mechanism that governs the nucleation 
and propagation of cracks; hence the model cannot capture this lower scale 
phenomena. Future research will focus on the extension of the present framework 
to other classes of materials (i.e., transfer learning) and the implementation of 
probabilistic models to capture the epistemic nature of the fatigue phenomenon with 
probabilistic ML models combined with physics-informed architectures. 
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Appendix 

Appendix A. Homogenization method 

 

A.1. Two-scale equilibrium problem 

The macroscopic response of heterogeneous materials is governed by 
deformation mechanisms taking place at two different scales: the microscale and 
the macroscale. The microscale is defined by the RVE which has a characteristic 
dimension l, while the macroscale is defined by the scale of the analysed structure 
L. Under the assumption of linear elasticity, the two scales can be studied separately 
(l<<L), and the heterogeneous response of the material can be replaced by 
homogenized behaviour. At the macroscale, the constitutive model of the material 
is given by: 

𝜎 = 𝐶̅𝜀 ̅, (𝐴. 1) 

With 𝐶̅ the elastic tensor, 𝜎 and 𝜀 ̅the average stress and strain fields that comply 
with the microscale equilibrium are given by: 

{
 
 

 
 𝑑𝑖𝑣𝜎 = 0,                                𝑖𝑛 Ω,

ε(x) = ∇S(𝑢∗(𝑥)) + 𝜀,̅ 𝑖𝑛 Ω,

𝜎(𝑥) = 𝐶𝑖: 𝜀(𝑥),                      𝑖𝑛 Ω𝑖,

∇𝑠(𝑢∗(𝑥)) = 0,                      𝑖𝑛 Ω,

(𝐴. 2) 

where 𝐶𝑖 is the stiffness tensor of phase i, and ∇S(𝑢∗(𝑥)) is the fluctuating part 
of the strain in the RVE, whose average should vanish over the RVE.  

A.2 Fast Fourier Transform (FFT) method 

Under the assumption of periodic boundary conditions, the microscale problem 
can be solved using the  FFT method developed by H. Moulinec and P. Suquet[190]. 
The method proposes an auxiliary problem to A.2, introducing a reference material 
with a stiffness tensor 𝐶0 and a polarization stress field 𝜏(𝑥). The problem can be 
expressed as: 
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{
 
 

 
 

𝑑𝑖𝑣𝜎 = 0,                                𝑖𝑛 Ω,

ε(x) = ∇S(𝑢∗(𝑥)) + 𝜀,̅ 𝑖𝑛 Ω,

𝜎(𝑥) = 𝐶0: 𝜀(𝑥) + 𝜏(𝑥),                      𝑖𝑛 Ω𝑖 ,

𝜏(𝑥) = (𝐶𝑖 − 𝐶0): 𝜀(𝑥),   𝑖𝑛 Ω𝑖,

∇𝑠(𝑢∗(𝑥)) = 0,                      𝑖𝑛 Ω.

(𝐴. 3) 

That leads to: 

∇ ∙ (𝐶0: 𝜀)̅ + ∇ ∙ (𝐶0: 𝜀̂) + ∇ ∙ (𝜏(𝑥)) = 0, (𝐴. 4) 

giving: 

∇ ∙ (𝐶0: 𝜀̂) = −∇ ∙ 𝜏(𝑥), (𝐴. 5) 

The solution to this problem can be expressed by introducing the isotropic 
Green’s operator Γ0 based on the reference material 𝐶0: 

𝜀̂(𝑥) = −Γ0 ∗ 𝜏(𝑥), 𝑖𝑛 Ω, (𝐴. 6) 

with * indicating the convolution product. Leading to: 

𝜀(𝑥) = 𝜀̅ − Γ0(𝑥) ∗ (𝜎(𝑥) − 𝐶0: 𝜀(𝑥)), (𝐴. 7) 

Green’s function for isotropic materials with applied periodic boundary 

conditions in the Fourier space is given by: 

Γ̂𝑖𝑗𝑘𝑙
0 =

1

4𝜇0|ξ|
(𝛿𝑘𝑖𝜉ℎ𝜉𝑗 + 𝛿𝑙𝑖𝜉𝑙𝜉𝑖 + 𝛿𝑘𝑗𝜉𝑘𝜉𝑗 + 𝛿𝑗𝑙𝜉𝑗𝜉𝑙) −

𝜆0 + 𝜇0

𝜇0(𝜆0 + 2𝜇0)

𝜉𝑖𝜉𝑗𝜉𝑘𝜉𝑙
|𝜉|4

, (𝐴. 8) 

where 𝜉 is the coordinate in the Fourier space, 𝜇0 and 𝜆0are the Lame’s 

constants of the reference materials. 

The problem can then be solved iteratively with a fixed-point solution scheme, 
as described in Table A0.1: 

Real space Fourier space 

Initialize          𝜺𝒊(𝒙) = 𝜺̅  



Appendix A. Homogenization method 5—159 

 

𝝈𝒊(𝒙) = 𝑪(𝒙): 𝜺𝒊(𝒙)  

𝝉(𝒙) = 𝝈𝒊(𝒙) − 𝑪𝟎: 𝜺𝒊(𝒙) 𝝉̂𝑖(𝝃) 

 𝜺̂𝑖+1(𝝃) = 𝜺̂𝑖 − 𝚪̂(𝝃): 𝝉̂𝑖(𝝃) 

𝜺𝒊+𝟏(𝒙) 𝜺̂𝑖+1(0) = 𝜺̅ 

Table A0.1. FFT fixed-point iterative solution scheme 

The iteration is completed until the convergence of the strain tensor. 
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Conclusions 

In this thesis, four Physically Informed Data Science methods have been 
presented to model the mechanistic relationship in the process-structure-property 
paradigm of advanced materials. First, the main methodologies that combine 
physical knowledge with data science methods have been introduced and a uniform 
taxonomy has been proposed. In the second Chapter, a data-driven method to 
characterize the mechanical response of heterogeneous materials with a model-free 
approach is described. A PINN with a modified architecture has been designed to 
learn the macroscale constitutive model of heterogeneous materials from the 
distributed strain measured with the DIC. The method complies with the governing 
equations of energy balance and force equilibrium while preserving the strain 
convexity and constitutive symmetry.  A data reduction method based on the k-
means clustering algorithm is introduced to reduce the computational cost of the 
model training while filtering the noise in the experimental observation. The 
method has been first tested on artificial data of an off-axis tensile test of an elastic 
orthotropic material simulated with a FEM, which demonstrated the ability of the 
method to learn all the elastic constants of the orthotropic constitutive equation with 
a single test. A linear and a cubic continuum damage law have been introduced in 
the FEM to assess the ability of the method to learn the nonlinear material response. 
Finally, the distributed strain measured during tensile tests of carbon fibre woven 
reinforced epoxy has been used to test the method, which efficiently learns the 
nonlinear shear response of the composite material. The damage characterized with 
the PINN is compared to the strain maps of the specimen, revealing a remarkable 
accuracy in the identification of the damaged zone with the reduced dataset. In the 
third Chapter, the reconstructed microstructure of a fibre-reinforced composite 
obtained with microCT analysis is processed together with the  DIC data to calibrate 
the mechanical properties of the composite constituents accounting for the 
manufacturing-induced defectiveness. The microstructure data fed a multiscale 
model based on the FFT method, whose results are statistically compared with the 
DIC measurements, and the parameters of the multiscale models are calibrated with 
an optimization procedure. As a result, a microscale representation of the FRP is 
calibrated, which presents a variable microstructure defined with the microCT 
analysis and the variable material properties defined with the optimization 
procedure, defined as a Stochastic Volume Element (SVE). A multiscale model of 
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a FRP part is developed using the SVE and the buckling response has been 
investigated, comparing the results of the method with a standard hierarchical 
multiscale approach. The results of the virtual case study revealed that the material 
uncertainty could propagate to the part scale and induce a structural response that 
cannot be predicted with standard procedure, which is reflected in a 20 to 30% 
reduction of the maximum bearing load. In Chapter 4, a data-driven method to 
predict the crushing response of origami-shaped composite structures is presented, 
moving from the material scale to a structural application. A physic-informed 
model is trained on simulation results generated with a FEM model, previously 
calibrated with experimental tests, to assess the absorbed energy and the crushing 
force of a modular origami-shaped tube, while preserving the physical constraints 
between the energy balance and the crushing force. Being the full structure 
composed of two axially stacked submodules with different geometries, the PINN 
can predict the response of the crash box by elaborating the crushing response of 
the single submodules, substantially reducing the computational cost. The efficient 
surrogate model has been used to optimize the tube geometry by rapidly exploring 
the design space with the PINN to define the configuration with the highest 
absorbed energy. The response of the optimized structures has been simulated with 
the FEM, showing a remarkable accuracy while yielding a consistent time reduction 
(i.e., 30 times faster) when compared with FEM-based optimization. In the last 
Chapter, the fatigue response of the aluminium alloy manufactured with the AM 
technology is modelled using a neural network designed to mimic the Murakami 
models that link the fatigue strength with the material microstructure and its 
defectiveness. The proposed MDS model assesses the fatigue response from the 
main manufacturing parameters of the SLM process, intending to reduce the 
experimental test necessary to methodically explore the correlation between the 
process parameters and the material strength under cyclic loads. The method learns 
the process-properties relationship by combining the predictive capability of the 
neural networks with the physic knowledge about the defect and microstructure 
effect on the fatigue response, which is embedded in the model through a custom 
architecture of the neural network. The results show the ability of the method to 
establish a relation between the processing conditions and the resultant fatigue 
strength with an overall good accuracy, efficiently predicting the effect of the SLM 
parameters on the material response. The method has been tested on a validation 
dataset and compared with standard NN, showing a superior accuracy of the 
predictions and a remarkable extrapolation capability outside the training domain.  
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The goal of this work was to explore the capabilities of the data science methods 

to model mechanical engineering phenomena in the field of advanced materials, 
where the traditional approaches are continuously evolving to keep pace with 
increasing complexity. Beyond the established machine learning models, physic-
based data-driven models can enhance the predictive capabilities while constraining 
the fundamental principles of the mechanics through modified training schemes, 
custom architectures, or hybrid approaches. Following the fundamental steps of the 
MDS, a framework should be specifically designed for the modelled phenomenon, 
defining mechanistic relevant quantities from the data, designing the preprocessing 
pipeline, defining the mechanistic knowledge to bring in the picture and developing 
the machine learning architecture that can efficiently predict the quantity of interest. 
Furthermore, this work wanted to apply data-driven approaches with experimental 
data to overcome the common material characterization and model calibration 
approaches, demonstrating the advantages of these methods when abundant 
experimental observations are available. In conclusion, the results obtained in this 
thesis have demonstrated the potential for the application of data-driven methods in 
the characterization and modelling of advanced materials (e.g., composites and 
AMed metals) when combined with the knowledge about governing physics. More 
work should be done in the development of the method to overcome the limitations 
in terms of extrapolation predictivity outside the training domain, universal 
applicability to similar yet different materials or structures (e.g., transfer learning 
and mesh-based methods), uncertainty quantification and model explainability 
(e.g., probabilistic machine learning models and explainable architectures), and 
method integration into common engineering tools (e.g., PINN material model 
integrated into FEM, PINN structure surrogate integrated into assembly models). 
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