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Abstract

The study of object perception algorithms is fundamental for the development of

robotic platforms capable of planning and executing actions involving objects with

high precision, reliability and safety. Indeed, this topic has been vastly explored in

both the robotic and computer vision research communities using diverse techniques,

ranging from classical Bayesian őltering to more modern Machine Learning techniques,

and complementary sensing modalities such as vision and touch. Recently, the ever-

growing availability of tools for synthetic data generation has substantially increased

the adoption of Deep Learning for both 2D tasks, as object detection and segmentation,

and 6D tasks, such as object pose estimation and tracking.

The proposed methods exhibit interesting performance on computer vision bench-

marks and robotic tasks, e.g. using object pose estimation for grasp planning purposes.

Nonetheless, they generally do not consider useful information connected with the

physics of the object motion and the peculiarities and requirements of robotic systems.

Examples are the necessity to provide well-behaved output signals for robot motion

control, the possibility to integrate modelling priors on the motion of the object and

algorithmic priors. These help exploit the temporal correlation of the object poses,

handle the pose uncertainties and mitigate the effect of outliers. Most of these concepts

are considered in classical approaches, e.g. from the Bayesian and Kalman őltering

literature, which however are not as powerful as Deep Learning in handling visual

data. As a consequence, the development of hybrid architectures that combine the

best features from both worlds is particularly appealing in a robotic setting.

Motivated by these considerations, in this Thesis, I aimed at devising hybrid

architectures for object perception, focusing on the task of object pose and velocity

tracking. The proposed architectures use Kalman őltering supported by state-of-the-art

Deep Neural Networks to track the 6D pose and velocity of objects from images. The

devised solutions exhibit state-of-the-art performance, increased modularity and do not

require training to implement the actual tracking behaviors. Furthermore, they can

track even fast object motions despite the possible non-negligible inference times of the
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adopted neural networks. Also, by relying on data-driven Kalman őltering, I explored

a paradigm that enables to track the state of systems that cannot be easily modeled

analytically. Speciőcally, I used this approach to learn the measurement model of soft

3D tactile sensors and address the problem of tracking the sliding motion of hand-held

objects.
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Chapter 1

Introduction

On a daily basis, we humans interact naturally with surrounding objects to perform

several essential tasks. To do so, we implicitly reason on their position in space and

coordinate the motion of our limbs to eventually reach, grasp and manipulate them.

All these actions involve precise and resolved motions. These are possible because

our perceptual system consists of diverse and complementary senses that our brain

combines to provide precise, accurate and reliable information about the status of the

objects. If one of our senses cannot operate at its best in a given scenario, e.g. our

sight when acting in a dark environment, we exploit complementary senses like touch.

Achieving precision, accuracy, reliability1 and complementarity in robot perception

is quite a challenging task.2 This claim is put forward by the enormous body of

literature dedicated to machine and robot perception from both the computer vision

and robotics communities. Moreover, the diversity of the offered methodologies makes

no doubt on the lack of consensus on the most favourable techniques for the development

of modern robots perception skills.

At the same time, an indisputable fact is that Machine Learning, and especially

Deep Learning, has reaped large consensus among researchers. Considering that vision

is the dominant sense for humans, Deep Learning has paved the way to the development

of data-driven techniques that elaborate unstructured data, such as images, and extract

very targeted information with results not even foreseeable in the past. Nonetheless,

beside the ceaseless development of such data-driven techniques, the risk of loosing

1In this context, we deőne a robot perception algorithm as reliable if it produces a well-behaved
output signal without discontinuities and irregularities that would make it unsafe for the robot.

2Taking inspiration from humans does not necessarily represent the optimal strategy for the devel-
opment of robotic perception skills. Nevertheless, precision, accuracy, reliability and complementarity
seem to be, with high certainty, desirable properties of robot perception algorithms.
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Figure 1.1 In the őrst row, sample images from a computer vision dataset. In the
second row, the output of a learning-based method for object pose estimation, DOPE
(Tremblay et al., 2018), superimposed on the input images. The estimated pose of the
red box object is discontinuous and not well-behaved. The experiment was carried out
by the author of this Thesis.

sight of certain desirable properties of the perception algorithms we develop is not to

be overlooked.

A signiőcant case is that of those learning-based methods, known as object pose

estimation algorithms, which answer to the problem of estimating the pose of objects

in the three-dimensional space from a single digital image (Peng et al., 2019; Song

et al., 2020; Tremblay et al., 2018; Wang et al., 2019; Xiang et al., 2018). Methods

designed to solve the task at hand should exhibit robustness to occlusions, challenging

lightning conditions, visual ambiguities and be as less data hungry as possible. On

the other hand, less attention is devoted to the requirements of robots that use the

output of these methods to plan and execute actions accordingly. Example of such

requirements are, but are not limited to, a well-behaved and regular output without

discontinuities, a measure of the output uncertainty and principled mechanisms to

inject prior information the robot could have at its disposal. Enforcing these latter

properties, goes in the direction of developing robots that operate safely and react to

unforeseen conditions smoothly.

Remarkably, the aforementioned requirements are among those that so-called

tracking3 methods could help achieve. Speciőcally, tracking the pose of objects may

3łAt őrst sight, tracking might seem to be a special case of estimation. However, it is wider in
scope: Not only does it use all the tools from estimation, but it also requires extensive use of statistical
decision theory when some practical problems are considered.” (Bar-Shalom et al., 2002)
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Figure 1.2 An example of robotic manipulation where a learning-based approach,
DOPE (Tremblay et al., 2018), is used to estimate the pose of the bottle held in the
hand of the robot. The estimated pose, that is superimposed on the input images, is
not reliable and is characterized by discontinuities. Exploiting prior information on the
interaction with the hand and alternative sensing modalities, e.g. touch, could help
make the estimated pose more stable. The experiment was carried out by the author
of this Thesis using the iCub humanoid robot platform.

help robots give a solid structure to the data collected from the sensors and account for

how they relate with the object pose, their temporal evolution and their uncertainty.

Methods that incorporate a tracking framework are usually referred to as object pose

tracking algorithms. We remark that these methods are inherently different from object

pose estimation algorithms that process one image at a time and usually discard the

temporal evolution of the information.

One of the most adopted algorithms for object pose tracking is the renowned

Kalman Filter4 (Kalman, 1960). Formulated more than 60 years ago, it has been

applied to a considerable variety of problems: from the estimation of the trajectories of

a manned spacecraft going to the Moon and back, during the Apollo Project (McGee

et al., 1985), to the development of the Global Positioning System (GPS) (Brown,

1991), to automotive applications (Rogers, 2003), image processing (Fronckova and

Slaby, 2020), őnance (Wells, 2013), sensor fusion (Gustafsson, 2010), inverse problems

(Evensen, 2009) and robot vision (Chen, 2012). Nowadays, researchers continue to

study this algorithm in order to enhance its performance and/or broaden its application

őelds.

Recently, Kalman őltering has been used to estimate the trainable parameters

of neural networks (de Lima et al., 2017). In the opposite direction, Deep Neural

Networks (DNNs) have been used to complement Kalman őlters leading to hybrid

4łFiltering is the estimation of the (current) state of a dynamic system - the reason for the use
of the word łőlter” is that the process for obtaining the łbest estimate” from noisy data amount to
łőltering out” the noise. The term őltering is thus used in the sense of eliminating an undesired signal,
which, in this case, is the noise.” (Bar-Shalom et al., 2002)
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approaches for tracking the pose of objects using depth and RGB data (Deng et al.,

2019; Wong et al., 2017). DNNs are useful in this respect as they allow extracting

information from the RGB channels that otherwise would be very difficult to integrate

in the őltering algorithm. More in general, neural networks can be employed to learn

measurement models for robots sensors that are difficult to model analytically (Kloss

et al., 2021; Lee et al., 2020; Revach et al., 2021). On the other hand, the őlter offloads

the network from tasks that we could avoid learning from data, e.g. the tracking task

itself. Nonetheless, we remark that full learning-based approaches for object pose

tracking have been proposed as well (Garon and Lalonde, 2017; Ge and Loianno, 2021;

Leeb et al., 2019; Wen et al., 2020a).

The coexistence of hybrid approaches for object pose tracking and full learning-

based approaches for both object pose estimation and tracking emphasizes that we are

witnessing a period of transition between the past and the more recent data-driven

techniques. At the same time, one could argue that hybrid approaches represent a way

to deliberately embrace techniques from the past and take the best from both worlds.

In this work of Thesis, I commit to the latter interpretation and propose several

hybrid architectures for tracking the pose and the velocity of objects from RGB and

depth images or using three-dimensional tactile sensors. The main contributions of

the PhD project are summarized in the Sec. 1.1. Next, Sec. 1.2 outlines the Thesis

structure.

1.1 Contribution

The activities carried out during the PhD project were aimed at addressing the following

problems:

• The design of hybrid architectures for object pose tracking that try to restrict,

as much as possible, the role of neural networks to 2D tasks, that are easier to

learn, while leveraging Kalman őltering for the actual task of tracking the 6D

pose and velocity of objects (Piga et al., 2021a, 2022).

• The exploitation of real-time external sources of the object velocities, such as the

optical ŕow, to enhance the output of possibly slow and delayed neural networks

in order to better handle fast moving objects (Piga et al., 2022).
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• The benchmarking and comparison of data-driven approaches for 6D object pose

estimation and tracking with hybrid approaches for object pose tracking (Piga

et al., 2021a, 2022).

• The integration of robots sensors that are difficult to model mathematically, such

as soft three-dimensional tactile sensors, within in-hand object pose tracking

methods (Piga et al., 2021b).

Addressing the aforementioned problems resulted in the development of several methods

for tracking the pose and the velocity of objects that represent the actual contribution

of this Thesis:

• A method, named MaskUKF (Piga et al., 2021a), which combines Deep Neural

Networks, for object segmentation, and depth information within a Kalman

őltering framework and that does not require a separate training for each object

of interest.

• A method, named ROFT: Real-time Optical Flow-aided 6D object pose and

velocity Tracking (Piga et al., 2022), which combines real-time optical ŕow and

depth, slow and delayed Deep Neural Networks for object segmentation and

pose estimation from RGB images within a Kalman őltering framework, that is

capable of handling fast moving objects.

• A method embracing the recent Differentiable Kalman Filtering paradigm5 that

tracks in-hand translational sliding motions of objects from tactile feedback only

(Piga et al., 2021b).

1.2 Outline

The Thesis is organized as follows.

A thorough description of the Kalman Filter algorithm and its variants is provided

in Chapter 2.

The Chapter 3 introduces the concepts of object pose and velocity and provides

a formal and general deőnition of the tasks of tracking the pose and the velocity of

an object. It also highlights the differences between the object pose estimation and

5Differentiable Kalman őlters maintain their algorithmic inner structure while allowing dynamics
and measurement models to be learned from data in a supervised manner.
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tracking tasks. The Chapter ends with a detailed overview of classical, data-driven

and hybrid state-of-the-art methods.

In Chapter 4, I present the MaskUKF algorithm, including the mathematical

formulation and experimental evaluations. In the same Chapter I present the results of

a simulated robot motion control task, with the iCub humanoid robot, where MaskUKF

is compared with a data-driven pose estimation method and a baseline. The contents

of this Chapter represent an extension of the work presented in (Piga et al., 2021a).

In Chapter 5, I describe the optical ŕow-aided pipeline ROFT. The mathematical

derivation is followed by experimental evaluations, a comparison with data-driven pose

estimation and tracking methods and several ablation studies aimed at revealing the

modularity of the proposed pipeline. The contents of this Chapter are associated with

the work presented in (Piga et al., 2022).

In Chapter 6, I present the data collection and training activities that led to the

development of a differentiable Kalman őlter which tracks in-hand translational sliding

motions of objects using tactile feedback. In particular, the Chapter describes the setup

involving the iCub humanoid robot and its tactile sensors and present the experimental

results. The contents of this Chapter are associated with the work presented in (Piga

et al., 2021b).

Finally, Chapter 7 ends the Thesis work with additional remarks and possible future

research directions.



Chapter 2

Background

In this section I will cover the theory of Kalman őltering (Kalman, 1960) for state

tracking and describe the most common variants of the main algorithm that have been

used in this Thesis. In Sec. 2.1, I will present the basics of Kalman őltering, in Sec.

2.2 its extensions to high dimensional measurements and, in Sec. 2.3, to orientation

tracking. Next, in Sec. 2.4, I will consider the theory of Kalman Smoothing. Finally,

in Sec. 2.5, I will present the theory of differentiable Kalman őlters.

2.1 Kalman őltering for linear and nonlinear systems

This section presents the basics of Bayesian őltering (Särkkä, 2013) and explains how

it can be used to derive the equations of the Kalman őlter algorithm (Kalman, 1960;

Särkkä, 2013) and its most common extensions known as the Extended Kalman őlter

(EKF) (McGee et al., 1985; Smith et al., 1962; Särkkä, 2013) and the Unscented Kalman

őlter (UKF) (Särkkä, 2013; Wan and Merwe, 2000).

The adopted notation and the mathematical derivations presented in this Section

are mostly adapted from (Särkkä, 2013).

2.1.1 Basics of Bayesian őltering

The Kalman őlter belongs to the family of recursive Bayesian őltering algorithms. These

algorithms estimate key probability distributions functions of the state xt of a given

system at time t starting from collections of noisy measurements z1:T = {z1, . . . , zT}
with T ⪋ t. The measurements represent an indirect indication of the state x and

are usually obtained by means of sensors of different nature. In the following, it is
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assumed that both the state and measurements are represented using Euclidean vector,

i.e. xt ∈ R
n and zt ∈ R

m with n and m the dimensions of the state and measurement

vectors, respectively.

Among the possible distribution functions, it is of interest to estimate the őltering

distribution function of the state xt given the current and previous measurements

z1:t = {z1, ..., zt}:

p(xt|z1:t). (2.1)

This distribution can be evaluated recursively by resorting to the Bayes rule as follows:

p(xt|z1:t) ∝ p(zt|xt)p(xt|z1:t−1), (2.2)

where

• p(zt|xt) is the measurement likelihood that measures the plausibility of the

measurement zt given the knowledge of the state xt;

• p(xt|z1:t−1) is the predictive distribution function of the state xt.

The predictive distribution describes how the state should evolve at time t according

to a state transition probability distribution p(xt|xt−1) and taking into account the

őltering distribution at time t− 1, p(xt−1|z1:t−1). The current measurement zt does not

contribute to the predictive distribution. The predictive distribution can be computed

using the Chapman-Kolmogorov equation:

p(xt|z1:t−1) =

∫

p(xt, xt−1|z1:t−1)dxt−1

=

∫

p(xt|xt−1)p(xt−1|z1:t−1)dxt−1.

(2.3)

The recursive update rules of both the predictive and őltering distributions are

valid under the assumption that the states are a Markov sequence, i.e.

p(xt|x1:t−1, z1:t−1) = p(xt|xt−1), (2.4)

and that the measurements are conditionally independent given the states, i.e.

p(zt|x1:t, z1:t−1) = p(zt|xt). (2.5)
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In general, the integral in Eq. (2.3) cannot be solved in closed form and its

result depends heavily on the speciőc nature of the probability distributions at hand.

Consequently, the őltering distribution in Eq. (2.2) cannot be evaluated in closed form.

2.1.2 Basics of Kalman őltering

In the Kalman őltering setting, the őltering distribution p(xt|z1:t) is approximated

using a Gaussian distribution

p(xt|z1:t) ≃ N (x;µt, Pt)

∣

∣

∣

∣

x=xt

, (2.6)

where µt and Pt are the mean vector and the covariance matrix that characterize the

distribution. The approximation is possible if the following assumptions are made:

• the state xt evolves according to a discrete difference equation

xt = ft(xt−1, wt−1),

wt ∼ N (0, Qt),
(2.7)

with ft a generic nonlinear function and wt a sequence of zero mean Gaussian

noise samples with covariance Qt and independent from the states;

• the measurements zt can be modelled once the state xt is given as

zt = ht(xt, νt),

νt ∼ N (0, Rt),
(2.8)

with ht a generic nonlinear function and νt a sequence of zero mean Gaussian

noise samples with covariance Rt and independent from the states;

• the joint probability distribution of consecutive states conditioned to the history

of the measurements p(xt−1, xt|z1:t−1) is Gaussian;

• the joint probability distribution of the current state and the current measurement

conditioned to the history of the measurements p(xt, zt|z1:t−1) is Gaussian;

• the prior p(x0) is Gaussian with mean µ0 and covariance P0.

The mathematical models in Eqs. (2.7) and (2.8) are called the state model and the

measurement model respectively.
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Under the aforementioned assumptions, it is possible to prove (Särkkä, 2013) that

there exist closed form approximate solutions to the Bayesian recursive update rules

of the predictive and őltering distributions. Using the Kalman őltering terminology,

these rules are called the Kalman prediction and correction steps, respectively. The

mathematical form of the updates is reported in the remainder of this chapter for

several alternatives of the state and measurement models in Eqs. (2.7) and (2.8).

We will make the assumption that the őltering distribution at time t−1 is Gaussian

in order to prove that the őltering distribution at time t is actually Gaussian in a

Kalman őltering setting. This assumption is sound, given the recursive nature of the

Bayesian update rules, and resembles the inductive step of the mathematical proof

technique known as łmathematical induction”. The base step, that is that the őltering

distribution at time t = 0 is Gaussian, corresponds to one of the hypotheses. Indeed,

the prior p(x0) corresponds to the őltering distribution p(x0|y1:0) at time t = 0 where

y1:0 is an empty set of measurements.

2.1.3 Linear Kalman őltering

Linear Kalman őlters assume that the functions ft and ht are linear functions of

the state xt represented by the matrices Ft and Ht respectively. Furthermore, the

contribution of the noise samples wt and νt is additive. The resulting linear models are

as follows:

xt = Ftxt−1 + wt−1,

wt ∼ N (0, Qt);
(2.9)

zt = Htxt + νt,

νt ∼ N (0, Rt).
(2.10)

In this conőguration, the joint probabilities p(xt−1, xt|z1:t−1) and p(xt, zt|z1:t−1) are

Gaussian distributions by construction as shown in the following.
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Prediction step

Using the deőnition of conditional probability, it is possible to rewrite p(xt−1, xt|z1:t−1)

as

p(xt−1, xt|z1:t−1) = p(xt|xt−1, z1:t−1)p(xt−1|z1:t−1)

= p(xt|xt−1)p(xt−1|z1:t−1),
(2.11)

where we used the assumption that the states are a Markov sequence. Considering

the state model in Eq. (2.9), it is evident that the transition probability distribution

p(xt|xt−1) is Gaussian and evaluates to

p(xt|xt−1) = N (x;Ftxt−1, Qt−1)

∣

∣

∣

∣

x=xt

. (2.12)

The right-hand side factor in (2.11) corresponds to the őltering distribution at time

t− 1 that is a Gaussian distribution by hypothesis. The resulting joint distribution is

Gaussian, as required, as it is the product of two Gaussian distributions:

p(xt−1, xt|z1:t−1) = N
([

xt−1

xt

]

;µ
′

t, P
′

t

)

,

µ′
t =

[

µt−1

Ftµt−1

]

,

P
′

t =

[

Pt−1 Pt−1F
T
t

FtPt−1 FtPt−1F
T
t +Qt−1

]

,

(2.13)

where µt−1 and Pt−1 are the mean and the covariance of the Gaussian őltering distri-

bution p(xt−1|z1:t−1) at time t− 1.

Starting from the joint distribution in Eq. (2.13), it can be shown (Särkkä, 2013)

that the predictive distribution p(xt|z1:t−1) is a Gaussian distribution

p(xt|z1:t−1) = N (x;µ−
t , P

−
t )

∣

∣

∣

∣

x=xt

,

µ−
t = Ftµt−1,

P−
t = FtPt−1F

T
t +Qt−1.

(2.14)

This step is also called Kalman prediction step.
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Correction step

To derive the correction step, we use again the deőnition of conditional probability

and rewrite the joint probability p(xt, zt|z1:t−1) as follows:

p(xt, zt|z1:t−1) = p(zt|xt, z1:t−1)p(xt|z1:t−1)

= p(zt|xt)N (x;µ−
t , P

−
t ).

(2.15)

Here, we made the assumption that the measurements are conditionally independent

given the states. Given the deőnition of the measurement model in (2.10), we őnd that

the measurement likelihood p(zt|xt) is Gaussian and evaluates to

p(zt|xt) = N (z;Htxt, Rt)

∣

∣

∣

∣

z=zt

. (2.16)

As a result, the joint distribution is Gaussian, as required, because it is the product of

two Gaussian distributions:

p(xt, zt|z1:t−1) = N
([

xt

zt

]

;µ
′′

t , P
′′

t

)

,

µ
′′

t =

[

µ−
t

Htµ
−
t

]

,

P
′′

t =

[

P−
t P−

t H
T
t

HtP
−
t HtP

−
t H

T
t +Rt

]

.

(2.17)

Taking into account (2.17), we can show (Särkkä, 2013) that that the őltering

distribution p(xt|z1:t) is a Gaussian distribution

p(xt|z1:t) = N (x;µt, Pt)

∣

∣

∣

∣

x=xt

,

µt = µ−
t +Ktet,

Pt = P−
t −KtPz,tK

T
t ,

et = zt −Htµ
−
t ,

Pz,t = HtP
−
t H

T
t +Rt,

Kt = P−
t H

T
t P

−1
z,t ,

(2.18)
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where et is called the Kalman innovation, Pz,t is the predicted covariance of the

measurement and Kt is called the Kalman gain. This step is also called Kalman

correction step. The vector Htµ
−
t and the covariance matrix Pz,t have a clear meaning

in probabilistic terms as they allow deőning a predictive distribution p(zt|z1:t−1) in the

measurement space:

p(zt|z1:t−1) = N (z;Htµ
−
t , Pz,t)

∣

∣

∣

∣

z=zt

. (2.19)

We notice that the solution provided by the Linear Kalman őlter is not approximate

but rather exact, i.e. the resulting distributions are actually Gaussian.

The resulting algorithm

Algorithm 1. Kalman őlter

Given a system described by the state model in Eq. (2.9) and the measurement

model in Eq. (2.10) and an initial prior

p(x0) ∼ N (µ0, P0),

the predictive and őltering distributions of the state are Gaussian and can be computed

with the following Kalman őlter prediction and correction steps:

• Prediction step:

p(xt|z1:t−1) = N (x;µ−
t , P

−
t )

∣

∣

∣

∣

x=xt

,

µ−
t = Ftµt−1,

P−
t = FtPt−1F

T
t +Qt−1.

(2.20)

• Correction step:

p(xt|z1:t) = N (x;µt, Pt)

∣

∣

∣

∣

x=xt

,

µt = µ−
t +Ktet,

Pt = P−
t −KtPz,tK

T
t ,

et = zt −Htµ
−
t ,

Pz,t = HtP
−
t H

T
t +Rt,

Kt = P−
t H

T
t P

−1
z,t .

(2.21)
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2.1.4 Extended Kalman őltering

If the functions ft and ht in the models in Eqs. (2.7) and (2.8) are nonlinear, the joint

distribution p(xt−1, xt|z1:t−1) of xt−1 and xt and the joint distribution p(xt, zt|z1:t−1) of

xt and zt are non-Gaussian in general, hence the hypotheses indicated in Sec. 2.1.2 are

not valid anymore. In this conőguration, it is not possible to use the standard Linear

Kalman őlter as presented in the previous section.

An alternative formulation of the Kalman őlter, known as the Extended Kalman

őlter (EKF) (McGee et al., 1985; Smith et al., 1962; Särkkä, 2013), can be used in

this case. The EKF relies on the Gaussian approximation of the joint distributions of

interest made possible by the following algorithm (Särkkä, 2013).

Algorithm 2. Linear approximation of a non-additive transform

The linear Gaussian approximation of the distribution of the variable

[

x

y

]

, (2.22)

where y = g(x, q), x ∼ N (µx, Px), q ∼ N (0, Pq), x and q are independent and g is a

nonlinear and differentiable function is given as

[

x

y

]

∼ N
([

µx

µy

]

,

[

Px Pxy

P T
xy Py

])

, (2.23)

where

µy = g(µx, 0),

Py = Jx(µx)PxJx(µx)
T + Jq(µx)PqJq(µx)

T ,

Pxy = PxJx(µx)
T ,

Jx(µ) =
∂g(x, q)

∂x

∣

∣

∣

∣

x=µ,q=0

,

Jq(µ) =
∂g(x, q)

∂q

∣

∣

∣

∣

x=µ,q=0

.

(2.24)

The approximation takes advantage of the differentiability of the function g in

order evaluate the Jacobians Jx and Jq. These Jacobians are those required to deőne a

Taylor expansion of the őrst-order, or linear expansion, of the function g around the
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mean (µx, 0):

y = g(x, q) ≃ g(µx, 0) + Jx(µx)(x− µx) + Jq(µx)(q − 0). (2.25)

For this reason, the approximation is termed linear.

Prediction step

Application of the Algorithm 2 to the state model in Eq. (2.7) allows evaluating a

Gaussian approximation of the joint distribution p(xt−1, xt|z1:t−1) as follows:

p(xt−1, xt|z1:t−1) ≃ N
([

xt−1

xt

]

;µ
′

t, P
′

t

)

,

µ′
t =

[

µt−1

ft(µt−1, 0)

]

,

P
′

t =

[

Pt−1 Pt−1F
T
x,t

Fx,tPt−1 Fx,tPt−1F
T
x,t + Fw,tQt−1F

T
w,t

]

,

(2.26)

where µt−1 and Pt−1 are the mean and the covariance of the Gaussian őltering distri-

bution p(xt−1|z1:t−1) at time t− 1, and Fx,t and Fw,t are the Jacobians Jx(µt−1) and

Jw(µt−1) evaluated using g = ft.

Once a Gaussian approximation of the joint distribution in Eq. (2.26) is available,

it is possible to evaluate the predictive distribution as done for the Linear Kalman

őlter as follows (Särkkä, 2013):

p(xt|z1:t−1) ≃ N (x;µ−
t , P

−
t )

∣

∣

∣

∣

x=xt

,

µ−
t = ft(µt−1, 0),

P−
t = Fx,tPt−1F

T
x,t + Fw,tQt−1F

T
w,t.

(2.27)

This step is also called the Extended Kalman prediction step.

A comparison with the predictive distribution in the linear setting, as per Eq.

(2.14), shows that the equivalent distribution in the nonlinear setting is obtained by

substituting the state transition matrix Ft with the Jacobian Fx,t, the product Ftµt−1

with ft(µt−1, 0) and by weighting the noise covariance Qt with the Jacobian Fw,t.
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Correction step

The same reasoning can be applied to the measurement model in Eq. (2.8) resulting in

the following Gaussian approximation of the joint distribution

p(xt, zt|z1:t−1) ≃ N
([

xt

zt

]

;µ
′′

t , P
′′

t

)

,

µ
′′

t =

[

µ−
t

ht(µ
−
t , 0)

]

,

P
′′

t =

[

P−
t P−

t H
T
x,t

Hx,tP
−
t Hx,tP

−
t H

T
x,t +Hν,tRtH

T
ν,t

]

,

(2.28)

and őltering distribution

p(xt|z1:t) ≃ N (x;µt, Pt)

∣

∣

∣

∣

x=xt

,

µt = µ−
t +Ktet,

Pt = P−
t −KtPz,tK

T
t ,

et = zt − ht(µ−
t , 0),

Pz,t = Hx,tP
−
t H

T
x,t +Hν,tRtH

T
ν,t,

Kt = P−
t H

T
x,tP

−1
z,t ,

(2.29)

where Hx,t and Hν,t are the Jacobians Jx(µ−
t ) and Jν(µ−

t ) evaluated using g = ht. This

step is also called the Extended Kalman correction step.

Also in this case, the őltering distribution can be obtained starting from the same

distribution in the linear setting, as per Eq. (2.18), by substituting the measurement

matrix Ht with the Jacobian Hx,t, the product Htµ
−
t with ht(µ−

t , 0) and by weighting

the noise covariance Rt with the Jacobian Hν,t.

The resulting algorithm

Algorithm 3. Extended Kalman őlter

Given a system described by the state model in Eq. (2.7) and the measurement

model in Eq. (2.8), where the functions ft and ht are nonlinear and differentiable, and

an initial prior

p(x0) ∼ N (µ0, P0),
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the predictive and őltering distributions of the state are approximately Gaussian and

can be computed with the following Extended Kalman őlter prediction and correction

steps:

• Prediction step:

p(xt|z1:t−1) ≃ N (x;µ−
t , P

−
t )

∣

∣

∣

∣

x=xt

,

µ−
t = ft(µt−1, 0),

P−
t = Fx,tPt−1F

T
x,t + Fw,tQt−1F

T
w,t,

(2.30)

where

Fx.t =
∂ft(x, w)

∂x

∣

∣

∣

∣

x=µt−1,w=0

,

Fw,t =
∂ft(x, w)

∂w

∣

∣

∣

∣

x=µt−1,w=0

.

(2.31)

• Correction step:

p(xt|z1:t) ≃ N (x;µt, Pt)

∣

∣

∣

∣

x=xt

,

µt = µ−
t +Ktet,

Pt = P−
t −KtPz,tK

T
t ,

et = zt − ht(µ−
t , 0),

Pz,t = Hx,tP
−
t H

T
x,t +Hν,tRtH

T
ν,t,

Kt = P−
t H

T
x,tP

−1
z,t ,

(2.32)

where

Hx.t =
∂ht(x, ν)

∂x

∣

∣

∣

∣

x=µ−

t ,ν=0

,

Hw,t =
∂ht(x, ν)

∂ν

∣

∣

∣

∣

x=µ−

t ,ν=0

.

(2.33)
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2.1.5 Unscented Kalman őltering

The Extended Kalman őlter allows applying the Kalman őltering methodology to any

nonlinear system in the form given by Eqs. (2.7) and (2.8) under the assumption that

the functions ft and gt can be approximated using a őrst-order linear Taylor expansion.

An alternative approach, known as the Unscented Kalman őlter (UKF) (Särkkä,

2013; Wan and Merwe, 2000), tries to extend the Kalman őltering methodology to

nonlinear functions using a different philosophy. Instead of approximating the nonlinear

functions, used in the state and measurement models, it tries to directly approximate the

mean and the covariance of the joint distributions p(xt−1, xt|z1:t−1) and p(xt, zt|z1:t−1).

Similarly to the EKF, this is made possible by a suitable algorithm for the Gaussian

approximation of a non-additive transform. The algorithm is the following (Särkkä,

2013).

Algorithm 4. Unscented approximation of a non-additive transform

The Unscented Gaussian approximation of the distribution of the variable

[

x

y

]

, (2.34)

where y = g(x, q), x ∼ N (µx, Px), q ∼ N (0, Pq), x and q are independent and g is a

nonlinear function is given as

[

x

y

]

∼ N
([

µx

µy

]

,

[

Px Pxy

P T
xy Py

])

, (2.35)

where the sub-vectors and sub-matrices can be computed as follows. Let the dimension-

ality of x and q be n and nq, respectively, and let ñ = n+ nq.

1. Form a set of 2ñ+ 1 points, called sigma points:

X (0) = µ̃,

X (i) = µ̃+
√
ñ+ λ

[√

P̃
]

i
,

X (i+n) = µ̃−
√
ñ+ λ

[√

P̃
]

i
, i = 1, . . . , ñ,

µ̃ =

[

µx

0

]

, P̃ =

[

Px 0

0 Pq

]

,

(2.36)
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where λ is a scaling parameter, later deőned, the operator [·]i indicates the i-th

column of its argument and the matrix square root
√

P̃ denotes a matrix such

that
√

P̃
√

P̃
T

= P̃ .

2. Propagate the sigma points through the function g:

Y(i) = g(X (i),x,X (i),q), i = 0, . . . , 2ñ, (2.37)

where X (i),x, X (i),q denote the őrst n and nq components of X (i) respectively.

3. Computer the sub-vectors and sub-matrices:

µy =
2ñ
∑

i=0

W (m)
i Y(i),

Py =
2ñ
∑

i=0

W (c)
i

(

Y(i) − µy

) (

Y(i) − µy

)T
,

Pxy =
2ñ
∑

i=0

W (c)
i

(

X (i),x − µx

) (

Y(i) − µy

)T
,

(2.38)

where W (m)
i and W (c)

i are suitable weights, later deőned.

The scaling parameter λ is deőned as follows (Wan and Merwe, 2000):

λ = α2(ñ+ κ)− ñ. (2.39)

The parameters α and κ determine how the sigma points spread out around the

mean µ̃. The weights W (m)
i and W (c)

i are given as follows (Wan and Merwe,

2000):

W (m)
0 =

λ

ñ+ λ
,

W (c)
0 =

λ

ñ+ λ
+ (1− α2 + β),

W (m)
i =W (c)

i =
1

2(ñ+ λ)
, i = 1, . . . , 2ñ.

(2.40)

The parameter β is an additional parameter that can be used to incorporate prior

knowledge of the distribution of x (Wan and Merwe, 2000).
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The advantage of the Algorithm 4 over the Algorithm 2, used in the EKF, is that it

is not based on a linear approximation at a single point and instead uses an ensemble

of points, the sigma points, in order to approximate the effect of the function g on the

input variable x. Furthermore, the function g is not required to be differentiable and its

Jacobian with respect the inputs is not required. On the other hand, one disadvantage

over the Algorithm 2 is that it requires a slightly increased computational effort. E.g.

the Algorithm 2 requires evaluating the function g once in the mean (µx, 0) while the

Algorithm 4 requires evaluating the function g on all the 2ñ+ 1 sigma points.

Prediction and correction steps

Application of the Algorithm 4 to the state and measurement models given by Eqs.

(2.7) and (2.8) allows obtaining an Unscented Gaussian approximation of the joint

distributions p(xt−1, xt|z1:t−1) and p(xt, zt|z1:t−1), respectively. Consequently, the pre-

dictive and őltering distribution can be evaluated in an analogous manner to the Linear

and Extended Kalman őlters.

The resulting algorithm

Algorithm 5. Unscented Kalman őlter

Given a system described by the state model in Eq. (2.7) and the measurement

model in Eq. (2.8), where the functions ft and ht are nonlinear, and an initial prior

p(x0) ∼ N (µ0, P0),

the predictive and őltering distributions of the state are approximately Gaussian and

can be computed with the following Uscented Kalman őlter prediction and correction

steps:

• Prediction step:
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1. Form the sigma points for the augmented variable (xt−1, wt−1):

X (0)
t−1 = µ̃t−1,

X (i)
t−1 = µ̃t−1 +

√
ñ+ λ

[
√

P̃t−1

]

i

,

X (i+n)
t−1 = µ̃t−1 −

√
ñ+ λ

[
√

P̃t−1

]

i

, i = 1, . . . , ñ,

µ̃t−1 =

[

µt−1

0

]

, P̃t−1 =

[

Pt−1 0

0 Qt−1

]

,

(2.41)

where ñ is the size of the augmented variable and λ is deőned as in Eq.

(2.39).

2. Propagate the sigma points through the function ft in Eq. (2.7):

X (i)
t = ft(X (i),x

t−1 ,X (i),w
t−1 ), i = 0, . . . , 2ñ, (2.42)

where X (i),x
t−1 and X (i),w

t−1 denote the part of the sigma point associated to x

and w respectively.

3. Compute the approximation of the predictive distribution:

p(xt|z1:t−1) ≃ N (x;µ−
t , P

−
t )

∣

∣

∣

∣

x=xt

,

µ−
t =

2ñ
∑

i=0

W (m)
i X (i)

t ,

P−
t =

2ñ
∑

i=0

W (c)
i

(

X (i)
t − µ−

t

)(

X (i)
t − µ−

t

)T

,

(2.43)

where the weights W (m)
i and W (c)

i are deőned as in Eq. (2.40).

• Correction step:
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1. Form the sigma points for the augmented variable (xt, νt):

X−(0)
t = µ̃−

t ,

X−(i)
t = µ̃−

t +
√
ñ+ λ

[
√

P̃−
t

]

i

,

X−(i+n)
t = µ̃−

t −
√
ñ+ λ

[
√

P̃−
t

]

i

, i = 1, . . . , ñ,

µ̃t =

[

µ−
t

0

]

, P̃−
t =

[

P−
t 0

0 Rt

]

.

(2.44)

2. Propagate the sigma points through the function ht in Eq. (2.8):

Z(i)
t = ht(X−(i),x

t ,X−(i),ν
t ), i = 0, . . . , 2ñ, (2.45)

where X−(i),x
t and X−(i),ν

t denote the part of the sigma point associated to x

and ν respectively.

3. Compute the approximation of the őltering distribution:

p(xt|z1:t) ≃ N (x;µt, Pt)

∣

∣

∣

∣

x=xt

,

µt = µ−
t +Ktet,

Pt = P−
t −KtPz,tK

T
t ,

et = zt − µz,t,

µz,t =
2ñ
∑

i=0

W (m)
i Z(i)

t ,

Pz,t =
2ñ
∑

i=0

W (c)
i

(

Z(i)
t − µz,t

)(

Z(i)
t − µz,t

)T

,

Pxz,t =
2ñ
∑

i=0

W (c)
i

(

X−(i),x
t − µ−

t

)(

Z(i)
t − µz,t

)T

,

Kt = Pxz,tP
−1
z,t .

(2.46)
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2.2 Sequential Kalman őltering for high-dimensional

measurements

Algorithms for object perception use images acquired from a camera as input. A

considerable number of these methods process the information stored in the image, e.g.

intensity, depth, at the pixel level. In a Kalman őltering setting, this choice implies that

the size of vector of the measurements zt can be considerable, in the order of thousands

or more. Measurement vectors with this characteristic, termed high-dimensional, make

difficult to implement Kalman őltering algorithms efficiently (McManus and Barfoot,

2011; Simon, 2006).

In this section, I will brieŕy recall the reasons behind the inefficiency and explore

the solutions from the state of the art for handling high-dimensional measurements in

a Kalman őltering setting.

The mathematical treatment presented in this Section is mostly adapted from

(Simon, 2006) and (McManus and Barfoot, 2011).

2.2.1 Inefficiency due to high-dimensional measurements

The most general recipe for implementing a Kalman correction step is the following:

µt = µ−
t +Ktet,

Pt = P−
t −KtPz,tK

T
t ,

et = zt − µz,t,

Kt = Pxz,tP
−1
z,t ,

(2.47)

where µ−
t is the predicted mean of the state, µz,t is the predicted mean of the measure-

ment, Pz,t is the predicted covariance of the measurements and Pxz,t is the predicted

state-measurement cross-covariance. Each Kalman őlter alternative that we have

discussed, i.e. the KF, EKF and UKF variants, can be obtained by evaluating the

quantities µz,t, Pz,t and Pxz,t accordingly as shown in the previous sections.

As it can be seen from Eq. (2.47), the computation of the Kalman gain Kt requires

the inversion of the predicted covariance Pz,t. The covariance is formally deőned as

Pz,t = E
[

(zt − µz,t)(zt − µz,t)
T |z1:t−1

]

, (2.48)



2.2 Sequential Kalman őltering for high-dimensional measurements 24

where E is the expectation operator. If m is the size of the measurement vector zt, the

resulting covariance has size m×m. In the case of high-dimensional measurements,

inverting a matrix of that size might require non-negligible computation times and make

a real-time implementation of the őlter unfeasible. For this reason, several alternatives

have been proposed in the literature such as the Kalman Information őlter (Anderson

and Moore, 2012) or the sequential Kalman őltering paradigm (Simon, 2006). In this

Thesis, we adopted the latter approach.

2.2.2 Sequential Kalman őltering

Sequential Kalman őltering tries to overcome the computational complexity due to the

inversion of large matrices by decomposing the Kalman correction step into several

smaller correction steps each requiring the inversion of a considerably smaller matrix.

The following mathematical derivations are taken from (Simon, 2006).

Assumptions

The sequential approach makes the following assumptions:

• the measurement model model in Eq. (2.8) is characterized by additive noise:

zt = ht(xt) + νt,

νt ∼ N (0, Rt);
(2.49)

• the function ht is linear or nonlinear and differentiable;

• the measurement vector zt ∈ R
m is divided in subvectors zj,t ∈ R

m̃ such that

zt =
[

zT1,t zT2,t · · · zTj,t · · · zTM,t

]T

, (2.50)

and m = m̃M where m̃ ≥ 1;

• the noise covariance matrix Rt is block-diagonal, i.e. the subvectors zj,t are

uncorrelated:

Rt =









R1,t · · · 0
... . . . ...

0 . . . RM,t









. (2.51)
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The methodology presented in the following can be only applied in combination with

the theory of the Linear and Extended Kalman őlters. Extensions to the Unscented

Kalman őlter are also possible but require further development (McManus and Barfoot,

2011) and are discussed later. For this reason, in the following, the measurement model

in Eq. (2.49) will be substituted with its őrst-order Taylor approximation around a

given mean µ

zt = ht(xt) + νt ≃ h(µ) +Hx,t(µ)(xt − µ) + νt,

νt ∼ N (0, Rt).
(2.52)

Hx,t is the Jacobian

Hx,t(µ) =
∂ht(x, ν)

∂x

∣

∣

∣

∣

x=µ,ν=0

. (2.53)

In case of a linear function ht, Eq. (2.49) simpliőes to

zt = ht(xt) + νt = Htxt + νt,

νt ∼ N (0, Rt),
(2.54)

where Ht is the measurement matrix as deőned in Eq. (2.10).

Sequential correction step

The sequential approach implements the Kalman correction update as a sequence of

Kalman correction updates, each applied to the j-th subvector zj,t when j ranges from

1 to M . In the following, µj,t will indicate the corrected state after the j-th subvector

has been incorporated. By convention, µ0,t corresponds to the predicted state µ−
t ,

obtained from the Kalman prediction step, while the last iterate µM,t corresponds to

the actual corrected state µt. Similarly, Pj,t will indicate the corrected covariance of

the state after the j-th subvector has been processed.

The actual correction step is as follows. For j = 1, · · · ,M :

µj,t = µj−1,t +Kj,tej,t,

Pj,t = Pj−1,t −Kj,tPz,j,tK
T
j,t,

ej,t = zj,t − hj,t,
Pz,j,t = Hx,j,tPj−1,tH

T
x,j,t +Rj,t,

Kj,t = Pj−1,tH
T
x,j,tP

−1
z,j,t,

(2.55)
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where Kj,t is the Kalman gain at the j-th iteration, Pz,j,t is the predicted covariance

of the j-th subvector of the measurement zt, Rj,t is the j-th diagonal block of Rt and

hj,t is the subvector obtained by considering the rows of the vector ht(µj−1,t) in the

interval [m̃(j − 1) + 1, m̃j]. Hx,j,t is the submatrix obtained by considering the rows of

the Jacobian Hx,t(µ
−
t ) in the interval [m̃(j − 1) + 1, m̃j]. The matrix Hx,j,t has size

m̃× n where n is the size of the state vector xt.

As it can be seen, the Sequential paradigm requires inverting the matrix Pz,j,t ∈
R

m̃×m̃. The size of this matrix can be made as small as required by acting on the

number of subvectors M . In the limit case where M = m, the matrix Pz,j,t becomes a

scalar and no matrix inversions are required.

In the linear case, the correction step is the same as in Eq. (2.55) after substituting

the Jacobian Hx,t(µ) with the measurement matrix Ht and the evaluation ht(µj−1,t)

with Htµj−1,t.

The resulting algorithm

Algorithm 6. Sequential Kalman őlter

Given a system described by the state model in Eq. (2.7) and the measurement model

in Eq. (2.8), where the functions ft and ht are linear or nonlinear and differentiable,

the measurement zt is divided in subvectors

zt =
[

zT1,t zT2,t · · · zTj,t · · · zTM,t

]T

,

the measurement noise νt is additive with block-diagonal covariance matrix Rt

Rt =









R1,t · · · 0
...

. . .
...

0 . . . RM,t









,

and an initial prior

p(x0) ∼ N (µ0, P0),

the predictive and őltering distributions of the state are approximately Gaussian and

can be computed with the following Sequential Kalman őlter prediction and correction

steps. The distributions are exactly Gaussian if the functions ft and ht are linear.

• Prediction step:
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The prediction step is the same as that of the Kalman őlter in Eq. (2.20) or the

Extended Kalman őlter in Eq. (2.30) when the function ft is linear or nonlinear

and differentiable, respectively.

• Correction step:

1. Initialize the iterates µ0,t and P0,t as follows:

µ0,t = µ−
t ,

P0,t = P−
t .

(2.56)

2. For j = 1, · · · ,M , perform the following:

µj,t = µj−1,t +Kj,tej,t,

Pj,t = Pj−1,t −Kj,tPz,j,tK
T
j,t,

ej,t = zj,t − hj,t,
Pz,j,t = Hx,j,tPj−1,tH

T
x,j,t +Rj,t,

Kj,t = Pj−1,tH
T
x,j,tP

−1
z,j,t,

(2.57)

where

hj,t = ht(µj−1,t)(m̃(j−1)+1:m̃j),

Hx,j,t = Hx,t(µ
−
t )(m̃(j−1)+1:m̃j,1:n).

(2.58)

3. Compute the approximation of the őltering distribution:

p(xt|z1:t) ≃ N (x;µt, Pt)

∣

∣

∣

∣

x=xt

,

µt = µM,t,

Pt = PM,t.

(2.59)

If the function ht is linear, the Jacobian Hx,t(µ) is substituted with the measure-

ment matrix Ht as deőned in Eq. (2.10), and the term ht(µj−1,t) with Htµj−1,t.

2.2.3 Sequential Unscented Kalman őltering

The Sequential Kalman őlter relies on the theory of the Kalman őlter and the Extended

Kalman őlter. Hence, it can be applied to any system described by the Eqs. (2.7) and
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(2.8) where the functions ft and ht are linear or nonlinear but at least differentiable. If

the functions are not differentiable, we could restort to the Unscented Kalman őlter

theory and attempt to apply the Sequential paradigm to it. Nevertheless, it can be

shown (McManus and Barfoot, 2011) that, while this approach is attainable, it would

result in an incorrect evaluation of the predicted covariance of the measurement Pz,t,

hence to incorrect estimates.

In the next sections, we follow the derivations proposed in (McManus and Barfoot,

2011) which allow adapting the sequential paradigm to the theory of the Unscented

Kalman őlter without incurring in the aforementioned problems.

The statistical Jacobian form of the Unscented Kalman correction step

In the following, it will prove useful to rewrite the Unscented Kalman correction step

in Algorithm 5 using the so-called statistical Jacobian form (McManus and Barfoot,

2011).

Given that the sequential paradigm assumes additive measurement noise, the

Correction step simpliőes as it is not required to extract the sigma points from the

augmented variable (xt, νt) (see Eq. (2.44)). Instead, the propagated sigma points X (i)
t

in Eq. (2.42) can be used directly. The resulting correction step is as follows:

1. Form the sigma points for the variable xt:

X−(i)
t = X (i)

t , i = 0, . . . , 2n, (2.60)

where X (i)
t are the propagated sigma points as in Eq. (2.42) and n is the size of

the state xt.

2. Propagate the sigma points through the function ht in Eq. (2.49):

Z(i)
t = ht(X−(i)

t ), i = 0, . . . , 2n. (2.61)
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3. Compute the approximation of the őltering distribution:

p(xt|z1:t) ≃ N (x;µt, Pt)

∣

∣

∣

∣

x=xt

,

µt = µ−
t +Ktet,

Pt = P−
t −KtPz,tK

T
t ,

et = zt − µz,t,

µz,t =
2n
∑

i=0

W (m)
i Z(i)

t ,

Pz,t =
2n
∑

i=0

W (c)
i

(

Z(i)
t − µz,t

)(

Z(i)
t − µz,t

)T

+Rt,

Pxz,t =
2n
∑

i=0

W (c)
i

(

X−(i)
t − µ−

t

)(

Z(i)
t − µz,t

)T

,

Kt = Pxz,tP
−1
z,t ,

(2.62)

where the weights W (m)
i and W (c)

i are deőned as in Eq. (2.40), but with ñ

replaced by n.

As it can be seen, the uncertainty due to the measurement noise νt is handled by

adding the noise covariance matrix Rt directly to the weighted sum in the evaluation

of covariance Pz,t. This represents an adaptation of the Algorithm 4 for the Unscented

approximation of a non-additive transform to the case of an additive transform.

Under the hypothesis that weightsW (m)
i are strictly positive, the following matrices

X and Z are introduced:

X =

[

√

W (c)
0

(

X (0)
t − µ−

t

)

· · ·
√

W (c)
2n

(

X (2n)
t − µ−

t

)

]

, (2.63)

Z =

[

√

W (c)
0

(

Z(0)
t − µz,t

)

· · ·
√

W (c)
2n

(

Z(2n)
t − µz,t

)

]

. (2.64)

Furthermore, recalling that the sequential paradigm assumes that the measurement zt
is divided in M subvectors, as in Eq. (2.50), the matrix Z is partitioned along its rows

as follows:

Z =









Z1

...

ZM









, (2.65)
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where each submatrix Zj is associated to the j-th subvector zj,t. Using these deőnitions,

the step 3 of the Unscented Kalman correction can be rewritten as follows:

p(xt|z1:t) ≃ N (x;µt, Pt)

∣

∣

∣

∣

x=xt

,

µt = µ−
t +Ktet,

Pt = P−
t −KtPz,tK

T
t ,

et = zt − µz,t,

µz,t =
2n
∑

i=0

W (m)
i Z(i)

t ,

Pz,t = ZZT +Rt,

Pxz,t = XZT ,

Kt = Pxz,tP
−1
z,t .

(2.66)

Noting that P−
t = XX T , Pz,tK

T
t = P T

xz,t and substituting for et, Kt and Pxz,t, the

above equations can be further simpliőed to:

p(xt|z1:t) ≃ N (x;µt, Pt)

∣

∣

∣

∣

x=xt

,

µt = µ−
t + XZTP−1

z,t (zt − µz,t) ,

Pt = XX T −XZTP−1
z,t ZX T ,

µz,t =
2n
∑

i=0

W (m)
i Z(i)

t ,

Pz,t = ZZT +Rt.

(2.67)

The notation used in (2.67) is also termed the statistical Jacobian form of the Unscented

Kalman correction step (McManus and Barfoot, 2011).
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‘Naive’ Sequential Unscented Kalman correction

Application of the sequential approach to the Unscented Kalman correction as presented

in Eq. (2.67) would result in the following iteration. For j = 1, · · · ,M :

µj,t = µj−1,t + XZT
j P

−1
z,j,t (zj,t − µz,j,t) ,

Pj,t = XX T −XZT
j P

−1
z,j,tZjX ,

µz,j,t = (µz,t)(m̃(j−1)+1:m̃j),

Pz,j,t = ZjZT
j +Rj,t.

(2.68)

The resulting mean µt = µM,T can be obtained as follows:

µt = µ−
t +

M
∑

j=1

(

XZT
j P

−1
z,j,t (zj,t − µz,j,t)

)

= µ−
t + X

M
∑

j=1

(

ZT
j P

−1
z,j,t (zj,t − µz,j,t)

)

= µ−
t + XZT P̃−1

z,t (zt − µz,t) ,

(2.69)

where

P̃z,t =









Z1ZT
1 +R1,t · · · 0

... . . . ...

0 . . . ZMZT
M +RM,t









. (2.70)

We notice that the above equality holds because the inverse of the block diagonal

matrix P̃z,t is equal to a block diagonal matrix where the j-th block corresponds to the

inverse P−1
z,j,t.

Similarly, the state covariance Pt can be obtained as follows:

Pt = XX T −XZT P̃−1
z,t ZX T . (2.71)

The mean and covariance update steps in Eqs. (2.69) and (2.71) are very similar to

those of the Unscented Kalman correction steps in Eq. (2.67). However, the predicted

covariance of the measurement Pz,t is substituted with the block diagonal matrix P̃z,t.

Comparing P̃z,t with the deőnition of Pz,t = ZZT +Rt, it is clear that they are different
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as Pz,t would expand to

Pz,t =









Z1ZT
1 +R1,t · · · Z1ZT

M
... . . . ...

ZMZT
1 · · · ZMZT

M +RM,t









, (2.72)

i.e. P̃z,t is missing all the off-diagonal terms. In addition, it can be shown (McManus

and Barfoot, 2011) that using P̃z,t in the state covariance update cannot guarantee

that Pt is a positive deőnite matrix, as required by the theory of Kalman őltering.

For these reasons, ‘naively’ processing the measurements sequentially in an Unscented

Kalman őltering setting is not feasible. A different approach, proposed by McManus

and Barfoot (2011), is presented in the following.

Sequential Unscented Kalman correction

The Sequential Unscented Kalman correction step proposed in (McManus and Barfoot,

2011), makes use of the well known Sherman-Morrison-Woodbury (SMW) identities

(Gentle, 2007):

A−1 − A−1B(C−1 +DA−1B)−1DA−1 = (A+BCD)−1, (2.73)

A−1B(C−1 +DA−1B)−1 = (A+BCD)−1BC. (2.74)

Here, A, B, C and D are any dimensionally compatible matrices.

The proposed approach is obtained by considering that the state covariance update

rule in (2.67) can be rewritten as follows:

Pt = XX T −XZTP−1
z,t ZX T

= X (X T −ZTP−1
z,t ZX T )

= X (I −ZTP−1
z,t Z)X T

= X (I −ZT (ZZT +Rt)
−1Z)X T

= X (I + ZTR−1
t Z)−1X T ,

(2.75)

where, in the last step, the őrst form of the SMW identity has been applied with A = I,

B = ZT , C = R−1
t and D = Z.
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Rt is block diagonal by hypothesis, hence its inverse is a diagonal matrix where the

j-th block is given by R−1
j,t . As a consequence, Eq. (2.75) further expands to

Pt = X (I +
M
∑

j=1

ZT
j R

−1
j,tZj)

−1X T

:= XCX T ,

(2.76)

where the quantity C has been deőned as

C := (I +
M
∑

j=1

ZT
j R

−1
j,tZj)

−1. (2.77)

The quantity C−1 can be computed sequentially by summing up M contributions and

has dimension 2n+ 1× 2n+ 1 given that each Zj has dimension m̃× 2n+ 1 and each

Rj,t has size m̃× m̃ where n is size of the state xt. Given that in a high-dimensional

measurements setting, where the measurement zt ∈ R
m, it is assumed that m≫ n, the

matrix C−1 is relatively inexpensive to invert.

Similarly, it is possible to extend this approach to the state mean update rule in

(2.67). It can be rewritten as follows:

µt = µ−
t + XZTP−1

z,t (zt − µz,t)

= µ−
t + XZT (ZZT +Rt)

−1(zt − µz,t)

= µ−
t + X (I + ZTR−1

t Z)−1ZTR−1
t (zt − µz,t),

(2.78)

where, in the last step, the second form of the SMW identity has been applied with

A = I, B = ZT , C = R−1
t and D = Z. Using again the fact that Rt is block diagonal,

(2.78) further expands to

µt = µ−
t + X (I +

M
∑

j=1

ZT
j R

−1
j,tZj,t)

−1

(

M
∑

j=1

ZT
j R

−1
j,t (zj,t − µz,j,t)

)

:= µ−
t + XCd,

(2.79)

where the quantity d has been deőned

d :=
M
∑

j=1

ZT
j R

−1
j,t (zt − µz,j,t). (2.80)
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Remarkably, the state mean and state covariance update rules in Eqs. (2.79)

and (2.76) are obtained from the statistical Jacobian form of the Unscented Kalman

correction step, in Eq. (2.67), by applying the Sherman-Morrison-Woodbury identities.

Hence, these rules provide an algebraically identical result to Unscented Kalman

correction step where all the sub-measurements are condensed in a single measurement

vector zt. For this reason, these rules are also theoretically sound in terms of the

positive deőniteness of the obtained state covariance matrix Pt.

Resulting algorithm

Algorithm 7. Sequential Unscented Kalman őlter

Given a system described by the state model in Eq. (2.7) and the measurement

model in Eq. (2.8), where the functions ft and ht are nonlinear, the measurement zt is

divided in subvectors

zt =
[

zT1,t zT2,t · · · zTj,t · · · zTM,t

]T

,

the measurement noise νt is additive with block-diagonal covariance matrix Rt

Rt =









R1,t · · · 0
...

. . .
...

0 . . . RM,t









,

and an initial prior

p(x0) ∼ N (µ0, P0),

the predictive and őltering distributions of the state are approximately Gaussian and

can be computed with the following Sequential Unscented Kalman őlter prediction and

correction steps.

• Prediction step:

The prediction step is the same as that of the Unscented Kalman őlter in Eqs.

(2.41)−(2.43).

• Correction step:

1. Form the sigma points for the variable xt:

X−(i)
t = X (i)

t , i = 0, . . . , 2n, (2.81)
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where X (i)
t are the propagated sigma points as in Eq. (2.42) and n is the

size of the state xt.

2. Propagate the sigma points through the function ht in Eq. (2.49):

Z(i)
t = ht(X−(i)

t ), i = 0, . . . , 2n. (2.82)

3. Evaluate the statistical Jacobian matrices Xt, Zt and the predicted mean of

the measurements µz,t:

Xt =

[

√

W (c)
0

(

X (0)
t − µ−

t

)

· · ·
√

W (c)
2n

(

X (2n)
t − µ−

t

)

]

,

Zt =

[

√

W (c)
0

(

Z(0)
t − µz,t

)

· · ·
√

W (c)
2n

(

Z(2n)
t − µz,t

)

]

=
[

ZT
1,t . . . ZT

M,t

]T

,

µz,t =
2n
∑

i=0

W (m)
i Z(i)

t ,

(2.83)

where the weights W (m)
i and W (c)

i are deőned as in Eq. (2.40), but with ñ

replaced by n, and are strictly positive.

4. Initialize the iterates d0,t and C−1
0,t as follows:

d0,t = 0,

C−1
0,t = I.

(2.84)

5. For j = 1, · · · ,M , perform the following:

dj,t = dj−1,t + ZT
j,tR

−1
j,t (zj,t − µz,j,t),

C−1
j,t = C−1

j−1,t + ZT
j,tR

−1
j,tZj,t,

(2.85)

where

µz,j,t = (µz,t)(m̃(j−1)+1:m̃j). (2.86)
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6. Compute the approximation of the őltering distribution:

p(xt|z1:t) ≃ N (x;µt, Pt)

∣

∣

∣

∣

x=xt

,

µt = µ−
t + XtCtdt,

Pt = P−
t + XtCtX T

t ,

(2.87)

where

dt = dM,t,

C−1
t = C−1

M,t.
(2.88)

2.3 Kalman őltering for orientation tracking

In the previous sections, we presented the theory of Kalman őltering for linear and

nonlinear systems and later extended to the case of high-dimensional measurements.

As mentioned in the Sec. 2.1.1, all the algorithms presented thus far are valid under

the assumption that both the state xt and the measurements zt admit a representation

in terms of Euclidean vectors, i.e. they belong to a vector space.

The main focus of his Thesis is on tracking the 6D pose Tt

Tt =

[

Rt pt

0T 1

]

(2.89)

of a rigid body, where pt ∈ R
3 is a 3D Euclidean vector representing the position of the

object and Rt ∈ SO(3) is a rotation matrix representing the orientation of the object.

We recall that SO(3) indicates the set deőned as follows (Lynch and Park, 2017):

SO(3) = {R ∈ R
3×3 | RRT = I and det(R) = 1}. (2.90)

While the translational component pt admits an Euclidean representation within a 3D

vector space, the rotational component Rt belongs to a kind of set termed group that

satisőes speciőc constraints as in Eq. (2.90). These constraints convert into additional

design requirements in the development of Kalman őltering algorithms.

In this section, I will present some of the possible extensions to the Kalman

prediction and correction steps when the state xt and/or the measurements zt contain

rotational components. Speciőcally, I will consider two possible parametrizations of
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the rotation Rt: a more classical one based on Euler angles and a more modern one

based on the theory of unit quaternions.

2.3.1 Parametrization with Euler angles

The Euler angles (Lynch and Park, 2017) represent one of the most classical ways of

parametrizing the orientation of a rigid body with respect to a given őxed reference

frame. Given a rotation matrix R representing the orientation, its parametrization in

terms of the Euler angles ϕ, χ and ψ is obtained by expressing R as the product of

three rotation matrices depending on those angles:

R = R1(ϕ)R2(χ)R3(ψ). (2.91)

Here, Ri is an elementary rotation matrix around the x, y or z axis of the őxed reference

frame. The number of possible combinations of the three axes is limited to two sets

of combinations termed the proper Euler angles and the Tait-Byran angles. A very

common combination is the so called Roll-Pitch-Yaw (RPY) convention, or ZYX,

R = Rz(ϕ)Ry(χ)Rx(ψ), (2.92)

consisting in a rotation around the x axis of the őxed reference frame, followed by a

rotation around the y őxed axis and őnally a rotation around the z őxed axis.

Using the Euler angles, it is possible to represent a rotation using three scalars, ϕ,

χ and ψ, and interpret the vector







ϕ

χ

ψ






∈ R

3 (2.93)

as a 3D Euclidean representation of the rotation. Although this assumption is not totally

sound, this choice allows using the Kalman prediction and correction steps presented in

the previous section with some minimal changes. In the following discussion, it will be

assumed that the state xt and/or the measurements zt are in the form of three Euler

angles.
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Deőnition of suitable operators for the angular components

The most critical aspect in using this representation is that some of the steps within a

Kalman őlter requires the evaluation of the sum, the difference and the weighted mean

among components belonging to the state space or the measurement space. Examples

are:

• the evaluation of the innovation:

et = zt − µz,t;

• the evaluation of the corrected mean of the state:

µt = µ−
t +Ktet;

• the evaluation of the sigma points (in the Unscented őltering setting):

ś in the prediction step

X−(i)
t = µt−1 ±

√
n+ λ

[

√

Pt−1

]

i
;

ś in the correction step

X (i)
t = µ−

t ±
√
n+ λ

[

√

P−
t

]

i

;

• the evaluation of the predicted mean and covariance of the state (in the Unscented

őltering setting):

µ−
t =

2ñ
∑

i=0

W (m)
i X (i)

t , P−
t =

2ñ
∑

i=0

W (c)
i

(

X (i)
t − µ−

t

)(

X (i)
t − µ−

t

)T

;

• the evaluation of the predicted mean and covariance of the measurements (in the

Unscented őltering setting):

µz,t =
2ñ
∑

i=0

W (m)
i Z(i)

t , Pz,t =
2ñ
∑

i=0

W (c)
i

(

Z(i)
t − µz,t

)(

Z(i)
t − µz,t

)T

.
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When these operations act on angular entities, as the Euler angles, it is not guaranteed

that the result of the operation is still meaningful in a Kalman őltering setting. As

an example, evaluating a scalar innovation et where the measurement zt assumes the

value 2π and the predicted mean of the measurement µz,t assumes the value −2π would

result in

et = 2π − (−2π) = 4π.

However, given that 2π and −2π actually represent the same angle, we would expect

that the innovation evaluates to zero.

In order to properly evaluates the result of the operations acting on the angular

components, a crude but commonly adopted solution consists in substituting the sum

operator + between scalar angular components with the following operator ⊕:

α⊕ β := arg(exp(j(α + β)), (2.94)

where α and β are angular components, j is the complex imaginary unit such that

j2 = −1, exp() is the complex exponential function and arg() is the argument of a

complex number. It is recalled that the argument of a complex number z = x+ jy is

formally deőned as the solution of the pair of equations

x

|z| = cos(arg(z)),

y

|z| = sin(arg(z)).
(2.95)

Using the redeőned operator, the sum between the angular components is evaluated

within the complex unit circle which takes into account the circular nature of the

angular components α and β.

Similarly, the difference operator − can be substituted with the ⊖ operator deőned

as:

α⊖ β := α⊕ (−β). (2.96)

Finally, the weighted mean of angular components αi

∑

λiαi, (2.97)

where λi ∈ R are the weights, can be substituted with the following circular mean

arg
(

∑

λi exp(jαi)
)

, (2.98)
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which corresponds to őnding the mean direction among the directions exp(jαi) in the

complex plane given the weights λi.

Example

As an example, the following algorithm shows how to apply the operators deőned in

Eqs. (2.94) − (2.98) in order to implement an Unscented Kalman őlter when the state

xt and/or the measurements zt represent the orientation of a rigid object parametrized

using the Euler angles.

Algorithm 8. Unscented Kalman őltering using Euler angles

Given a system described by the state model in Eq. (2.7) and the measurement

model in Eq. (2.8), where the functions ft and ht are nonlinear and the state xt and/or

the measurements zt represent the orientation of a rigid body in terms of three Euler

angles






ϕ

χ

ψ






,

and an initial prior

p(x0) ∼ N (µ0, P0),

the predictive and őltering distributions of the state are approximately Gaussian and

can be computed with the following prediction and correction steps:

• Prediction step:

1. Form the sigma points for the augmented variable (xt−1, wt−1):

X (0)
t−1 = µ̃t−1,

X (i)
t−1 = µ̃t−1 ⊕

√
ñ+ λ

[
√

P̃t−1

]

i

,

X (i+n)
t−1 = µ̃t−1 ⊖

√
ñ+ λ

[
√

P̃t−1

]

i

, i = 1, . . . , ñ,

µ̃t−1 =

[

µt−1

0

]

, P̃t−1 =

[

Pt−1 0

0 Qt−1

]

,

(2.99)

where ñ is the size of the augmented variable and λ is deőned as in Eq.

(2.39).
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2. Propagate the sigma points through the function ft in Eq. (2.7):

X (i)
t = ft(X (i),x

t−1 ,X (i),w
t−1 ), i = 0, . . . , 2ñ, (2.100)

where X (i),x
t−1 and X (i),w

t−1 denote the part of the sigma point associated to x

and w respectively.

3. Compute the approximation of the predictive distribution:

p(xt|z1:t−1) ≃ N (x;µ−
t , P

−
t )

∣

∣

∣

∣

x=xt

,

µ−
t = arg

(

2ñ
∑

i=0

W (m)
i exp

(

jX (i)
t

)

)

,

P−
t =

2ñ
∑

i=0

W (c)
i

(

X (i)
t ⊖ µ−

t

)(

X (i)
t ⊖ µ−

t

)T

,

(2.101)

where the weights W (m)
i and W (c)

i are deőned as in Eq. (2.40).

• Correction step:

1. Form the sigma points for the augmented variable (xt, νt):

X−(0)
t = µ̃−

t ,

X−(i)
t = µ̃−

t ⊕
√
ñ+ λ

[
√

P̃−
t

]

i

,

X−(i+n)
t = µ̃−

t ⊖
√
ñ+ λ

[
√

P̃−
t

]

i

, i = 1, . . . , ñ,

µ̃t =

[

µ−
t

0

]

, P̃−
t =

[

P−
t 0

0 Rt

]

.

(2.102)

2. Propagate the sigma points through the function ht in Eq. (2.8):

Z(i)
t = ht(X−(i),x

t ,X−(i),ν
t ), i = 0, . . . , 2ñ, (2.103)

where X−(i),x
t and X−(i),ν

t denote the part of the sigma point associated to x

and ν respectively.
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3. Compute the approximation of the őltering distribution:

p(xt|z1:t) ≃ N (x;µt, Pt)

∣

∣

∣

∣

x=xt

,

µt = µ−
t ⊕Ktet,

Pt = P−
t −KtPz,tK

T
t ,

et = zt ⊖ µz,t,

µz,t = arg

(

2ñ
∑

i=0

W (m)
i exp(jZ(i)

t )

)

,

Pz,t =
2ñ
∑

i=0

W (c)
i

(

Z(i)
t ⊖ µz,t

)(

Z(i)
t ⊖ µz,t

)T

,

Pxz,t =
2ñ
∑

i=0

W (c)
i

(

X−(i),x
t ⊖ µ−

t

)(

Z(i)
t ⊖ µz,t

)T

,

Kt = Pxz,tP
−1
z,t .

(2.104)

We notice that the operators exp(), arg(), ⊕ and ⊖ are to be intended as they

act separately on each scalar component of the vectors representing the state, the

measurements and derived quantities (e.g. means and sigma points). Furthermore, if a

vector contains components that are not angular, e.g. because the state and/or the

measurements contain additional Euclidean components or noise components, as in

Eqs. (2.99) and (2.102), the redeőned operators are to be applied only to the parts of

the vector that contain the angular components.

2.3.2 Parametrization with unit quaternions

Unit quaternions (Lynch and Park, 2017; Sola et al., 2018) represent an alternative

way to parametrize the orientation of a rigid body. The following deőnitions are taken

from (Lynch and Park, 2017).

By analogy with the complex numbers, a quaternion q ∈ H is an expression of the

form

q = qw + qxi+ qyj + qzk, (2.105)

where qw is the real part, qx, qy and qz are the imaginary parts and the symbols i, j

and k are such that i2 = j2 = k2 = ijk = −1. The quaternion q is sometimes expressed
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directly as a four dimensional vector

q = (qw, qv), (2.106)

where qv = (qx, qy, qz) and qw are called the vectorial and scalar part of the quaternion

q, respectively. The quaternions have a multiplicative group structure. In this respect,

the quaternion product qp between two quaternions q1 and q2 is deőned as follows:

qp = q1q2 = (qp,w, qp,v),

qp,w = q1,wq2,w − q1,vq2,v,
qp,v = q1,wq2,v + q2,wq1,v + q1,v × q2,v,

(2.107)

where q1,vq2,v and q1,v × q2,v are the scalar and cross product between the vector

components of the two quaternions, respectively. For a given quaternion q, it is possible

to deőne a norm ∥q∥ as follows:

∥q∥ =
√

q2w + ∥qv∥2, (2.108)

where ∥qv∥ is the norm of the vectorial part of the quaternion.

Quaternions with unitary norm, termed unit quaternions, can be used to parametrize

the orientation of a rigid body. We recall that for a given rotation matrix R ∈ SO(3) it

is possible to associate an axis-angle representation (n, θ) corresponding to a rotation

around the 3D axis n = (nx, ny, nz) by an amount of θ. R can be written as a function

of the axis and the angle as follows:

R(n, θ) = cos(θ)I + sin(θ)n̂+ (1− cos(θ))n̂2, (2.109)

where n̂ is the cross product matrix of the axis

n̂ =







0 −nz ny

nz 0 −nx

−ny nx 0






. (2.110)

Starting from the axis-angle representation, it can be shown (Lynch and Park, 2017)

that the quaternion

q(n, θ) =

(

cos

(

θ

2

)

, n sin

(

θ

2

))

(2.111)
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is a proper quaternion, it has unitary norm and can be used to represent the rotation

of a rigid body. Given a quaternion q representing a rotation R, the same rotation is

also represented by the quaternion −q. In this respect, it is said that the quaternions

double cover the space of the rotations. The inverse of a quaternion, i.e. the quaternion

representing the rotation RT , can be obtained as q−1 = (−qw, qv).
One of the advantages of using the unit quaternions as opposed to the Euler angles

is that they are a proper Lie group (Sola et al., 2018), i.e. a smooth manifold for which

a tangent space can be deőned at each point. The tangent space is a vector space

on which it is possible to properly deőne operations like additions, subtractions and

averaging, as required by the Kalman őlter algorithm. From a geometric standpoint,

using the unit quaternion implies that the state vector xt and/or the measurements

zt evolve on a spherical 3-dimensional surface in 4-dimensional space that is called

the 3-sphere S3. The fact that the surface is spherical is a direct consequence of the

unitary norm constraint, i.e. ∥q∥ = 1, which in turn is a direct consequence of the

constraints deőning the SO(3) group.

The following mathematical treatment is adapted from the theory presented in

Chiella et al. (2019); Lynch and Park (2017); Sola et al. (2018).

The Lie algebra of the unit quaternions

As for any Lie group, it is is possible to deőne a tangent space to any point of the

manifold of the unit quaternions. Among the possible tangent spaces, it is of interest

to consider the so called Lie algebra so(3), deőned as the tangent space at the identity

rotation. The elements belonging to this space are the 3× 3 skew-symmetric matrices.

The Lie algebra is a vector space, hence its elements can be identiőed with vectors

ω in R
n where n = 3 is the number of degrees of freedom of SO(3). Intuitively,

these vectors can be seen as perturbation vectors or angular velocities such that if the

reference frame attached to the rigid body follows that angular velocity for one unit

time, the overall orientation changes from the identity rotation to a new rotation R.

Given a Lie group, it is always possible to deőne two maps, the exponential map

exp() and its inverse log(), that allows moving from the Lie algebra to the group and

vice versa. Given that the quaternions are used to represent the rotations and that

so(3) can be identiőed with R
3, these maps transform a quaternion q = (qw, qv) ∈ H to

the vector representation ω ∈ R
3 in its Lie algebra and vice versa. The maps are the



2.3 Kalman őltering for orientation tracking 45

following:

q = exp(ω) := cos

(∥ω∥
2

)

+
ω

∥ω∥sin
(∥ω∥

2

)

∈ H, ∥ω∥ ≠ 0, (2.112)

ω = log(q) := 2qv
atan(∥qv∥, qw)

∥qv∥
∈ R

3, ∥qv∥ ≠ 0. (2.113)

In case ∥ω∥ = 0, the exponential evaluates to the identity quaternion, q = 1. Similarly,

in the case ∥qv∥ = 0, the logarithm evaluates to the null vector ω = 0. In order to

avoid problems due to the double cover of the quaternions, it is necessary to ensure

that the scalar part qw is positive before evaluating the logarithm. If it is not, the

quaternion −q should be used instead.

Deőnition of suitable operators for the quaternion components

As done for the Euler angles, it is now possible to proceed with the deőnition of suitable

operators for the sum, the difference and the weighted mean involving unit quaternions

and their representatives in the Lie algebra (Chiella et al., 2019).

In the following, it will be useful to deőne the łsum” between a quaternion q1 ∈ H

and a vector ω2 ∈ R
3 in the Lie algebra as follows:

q1 ⊕ ω2 := exp(ω2)q1 ∈ H. (2.114)

It will also be required to deőne the łdifference” between two quaternions q1 and q2 as

follows:

q1 ⊖ q2 := log(q1q
−1
2 ) ∈ R

3. (2.115)

Finally, the weighted mean of a set of quaternions qi ∈ H with weights λi ∈ R can be

computed by considering the eigenvector corresponding to the maximum eigenvalue of

the matrix
∑

λiqiq
T
i ∈ R

4×4. (2.116)

The above deőned mean will be indicated as q̄({qi}, {λi}).

Example

As done for the Euler angles, we provide an example showing how to implement an

Unscented Kalman őlter when the state xt and/or the measurements zt represent the

orientation of a rigid body parametrized using unit quaternions.
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In the following, we assume that the columns belonging to the state covariance Pt

can be interpreted as łperturbation” vectors belonging to the Lie algebra of the unit

quaternions, i.e. they can be represented as vectors in R
3 (Chiella et al., 2019). As a

result, the dimension of the covariance matrix is 3× 3 (instead of 4× 4).

Algorithm 9. Unscented Kalman őltering using unit quaternions

Given a system described by the state model in Eq. (2.7) and the measurement model

in Eq. (2.8), where the functions ft and ht are nonlinear and the state xt and/or the

measurements zt represent the orientation of a rigid body in terms of a unit quaternion

q ∈ H, and an initial prior

p(x0) ∼ N (µ0, P0),

the predictive and őltering distributions of the state are approximately Gaussian and

can be computed with the following prediction and correction steps:

• Prediction step:

1. Form the sigma points for the augmented variable (xt−1, wt−1):

X (0)
t−1 = µ̃t−1,

X (i)
t−1 = µ̃t−1 ⊕

√
ñ+ λ

[
√

P̃t−1

]

i

,

X (i+n)
t−1 = µ̃t−1 ⊕

√
ñ+ λ

[

−
√

P̃t−1

]

i

, i = 1, . . . , ñ,

µ̃t−1 =

[

µt−1

0

]

, P̃t−1 =

[

Pt−1 0

0 Qt−1

]

,

(2.117)

where ñ is the size of the augmented variable and λ is deőned as in Eq.

(2.39).

2. Propagate the sigma points through the function ft in Eq. (2.7):

X (i)
t = ft(X (i),x

t−1 ,X (i),w
t−1 ), i = 0, . . . , 2ñ, (2.118)

where X (i),x
t−1 and X (i),w

t−1 denote the part of the sigma point associated to x

and w respectively.
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3. Compute the approximation of the predictive distribution:

p(xt|z1:t−1) ≃ N (x;µ−
t , P

−
t )

∣

∣

∣

∣

x=xt

,

µ−
t = q̄({X (i)

t }, {W (m)
i }),

P−
t =

2ñ
∑

i=0

W (c)
i

(

X (i)
t ⊖ µ−

t

)(

X (i)
t ⊖ µ−

t

)T

,

(2.119)

where the weights W (m)
i and W (c)

i are deőned as in Eq. (2.40).

• Correction step:

1. Form the sigma points for the augmented variable (xt, νt):

X−(0)
t = µ̃−

t ,

X−(i)
t = µ̃−

t ⊕
√
ñ+ λ

[
√

P̃−
t

]

i

,

X−(i+n)
t = µ̃−

t ⊕
√
ñ+ λ

[

−
√

P̃−
t

]

i

, i = 1, . . . , ñ,

µ̃t =

[

µ−
t

0

]

, P̃−
t =

[

P−
t 0

0 Rt

]

.

(2.120)

2. Propagate the sigma points through the function ht in Eq. (2.8):

Z(i)
t = ht(X−(i),x

t ,X−(i),ν
t ), i = 0, . . . , 2ñ, (2.121)

where X−(i),x
t and X−(i),ν

t denote the part of the sigma point associated to x

and ν respectively.
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3. Compute the approximation of the őltering distribution:

p(xt|z1:t) ≃ N (x;µt, Pt)

∣

∣

∣

∣

x=xt

,

µt = µ−
t ⊕Ktet,

Pt = P−
t −KtPz,tK

T
t ,

et = zt ⊖ µz,t,

µz,t = q̄({Z(i)
t }, {W (m)

i }),

Pz,t =
2ñ
∑

i=0

W (c)
i

(

Z(i)
t ⊖ µz,t

)(

Z(i)
t ⊖ µz,t

)T

,

Pxz,t =
2ñ
∑

i=0

W (c)
i

(

X−(i),x
t ⊖ µ−

t

)(

Z(i)
t ⊖ µz,t

)T

,

Kt = Pxz,tP
−1
z,t .

(2.122)

We notice that if the state and/or the measurements contain components that are

not represented using quaternions, e.g. because they contain additional Euclidean

components or noise components, as in Eqs. (2.117) and (2.120), the redeőned operators

⊕, ⊖ and q̄ are to be applied only to the parts that contain the quaternion components.

Furthermore, special care must be taken when deőning the dimension ñ, used in Eqs.

(2.117) and (2.120), that decides the number of sigma points. When considering states

(or measurements) evolving in a vector space, it corresponds to the sum of the size n

of the state xt and of the size of the noise variable wt (or νt in the Correction step).

More generally, it is deőned as the sum of the number of degrees of freedom of the

manifold where the state (or the measurements) evolves in and the size of the noise

variable. In the case of the space of the unit quaternions, although four scalars are

required to actually represent a quaternion, the number of degrees of freedom of the

rotations, i.e. of the group SO(3), is three. Hence ñ evaluates to 3 + nq (or 3 + nν in

the Correction step).

2.4 Kalman smoothing

Thus far, I considered the problem of estimating the őltering distribution p(xt|z1:t)
of the state xt given the current and previous measurements z1:t = {z1, · · · , zt}. The

presented algorithms, under the name of Kalman őlter and associated variants, provide
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an approximation of the őltering distribution in terms of a Gaussian distribution that

can be updated recursively (and online) once a new measurement zt is available.

However, sometimes it is of interest to estimate the distribution of the state xt
given all the available measurements z1:T = {z1, · · · , zT}, known as the smoothing

distribution:

p(xt|z1:T ). (2.123)

Estimating the smoothing distribution can be useful in those cases in which there is

the necessity to estimate the state of the system offline in order to provide a ground

truth signal for evaluation purposes or for training purposes (e.g. to train a neural

network). The smoothing distribution provides information on the state at time t

using all the measurements, i.e. also the future measurements, hence resulting in more

precise estimates than using a Bayesian őltering approach (Särkkä, 2013).

As for the őltering distribution, there exists a branch of the Bayesian theory,

termed Bayesian smoothing, that formalizes the problem of estimating the smoothing

distribution. In the next sections, we will closely follow the theory of Bayesian and

Kalman smoothing as presented in (Särkkä, 2013).

2.4.1 Basics of Bayesian smoothing

The smoothing distribution can be evaluated by resorting to the Bayesian smoothing

equation (Kitagawa, 1994)

p(xt|z1:T ) = p(xt|z1:t)
∫

p(xt+1|xt)p(xt+1|z1:T )
p(xt+1|z1:t)

dxt+1, (2.124)

where p(xt|z1:t) is the usual őltering distribution at time t, p(xt+1|xt) is the transition

probability distribution at time t+ 1, p(xt+1|z1:t) is the usual predictive distribution at

time t+ 1 and, őnally, p(xt+1|z1:T ) is the smoothing distribution at time t+ 1. The

smoothing acts recursively as the smoothing equation allows obtaining p(xt|z1:T ) given

the distribution p(xt+1|z1:T ), i.e. it is a backward recursion (while the Bayesian őltering

recursion is a forward recursion). Intuitively, the reason for using a backward recursion

is simply that the initial condition of the recursion, i.e. the smoothing distribution at

time T , p(xT |z1:T ), corresponds to the őltering distribution at time T that is available

after processing all the measurements using the Bayesian őltering equations.

In order to show that the Bayesian smoothing equation is as presented in Eq.

(2.124), it suffices to consider the conditional probability p(xt|xt+1, z1:T ) which links
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two consecutive states xt and xt+1 under the assumption that all the measurements

are known. Using the fact that the states are a Markov sequence, as required by the

Bayesian őltering theory, it holds that

p(xt|xt+1, z1:T ) = p(xt|xt+1, z1:t). (2.125)

The usual interpretation of the Markov property is that the state xt is independent of

the past states and measurements given the state xt−1. In order to better explain the

Eq. (2.125), it is worth mentioning that a more general interpretation (Särkkä, 2013)

also assumes that the past state is independent of the future states and measurements

given the present, i.e.:

p(xt−1|xt:T , zt:T ) = p(xt−1|xt). (2.126)

Substituting t− 1 with t and t with t+ 1, the property becomes

p(xt|xt+1:T , zt+1:T ) = p(xt|xt+1). (2.127)

Finally, by conditioning both sides with the past measurements z1:t, the following holds:

p(xt|xt+1:T , zt+1:T , z1:t) = p(xt|xt+1:T , z1:T )

= p(xt|xt+1, z1:t),
(2.128)

which is the same as Eq. (2.125) if the set of future states xt+1:T is limited to the

future state xt+1.

Expanding Eq. (2.125) using the Bayes rule, we őnd that

p(xt|xt+1, z1:T ) = p(xt|xt+1, z1:t)

=
p(xt+1|xt, z1:t)p(xt|z1:t)

p(xt+1|z1:t)

=
p(xt+1|xt)p(xt|z1:t)

p(xt+1|z1:t)
,

(2.129)

where we used the usual Markov property for the őrst factor in the numerator. Using

the deőnition of the conditional probability, the joint distribution of xt and xt+1 given
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all the measurements is obtained as:

p(xt, xt+1|z1:T ) = p(xt|xt+1, z1:T )p(xt+1|z1:T )

=
p(xt+1|xt)p(xt|z1:t)p(xt+1|z1:T )

p(xt+1|z1:t)
,

(2.130)

where p(xt+1|z1:T ) is the smoothing distribution at time t+ 1. Marginalization of the

variable xt via integration over xt+1 provides the Bayesian smoothing equation

p(xt|z1:T ) =
∫

p(xt, xt+1|z1:T )dxt+1

=

∫

p(xt+1|xt)p(xt|z1:t)p(xt+1|z1:T )
p(xt+1|z1:t)

dxt+1

= p(xt|z1:t)
∫

p(xt+1|xt)p(xt+1|z1:T )
p(xt+1|z1:t)

dxt+1,

(2.131)

where the őltering distribution at time t p(xt|z1:t) is not considered in the integration

as it does not depend on the state xt+1.

As in the case of the Bayesian őltering equations, the integral in Eq. (2.131) cannot

be solved in closed form in general.

2.4.2 Basics of Kalman smoothing

Similarly to the Kalman őltering case, it is possible to tackle the Bayesian smoothing

problem by approximating the smoothing distribution using a Gaussian distribution

p(xt|z1:T ) ≃ N (x;µs
t , P

s
t )

∣

∣

∣

∣

x=xt

, (2.132)

where µs
t and P s

t are the mean vector and the covariance matrix that characterize the

distribution. The approximation is possible if the following assumptions are made:

• the state xt evolves according to a discrete difference equation

xt = ft(xt−1, wt−1),

wt ∼ N (0, Qt),
(2.133)

with ft a generic nonlinear function and wt a sequence of zero mean Gaussian

noise samples with covariance Qt and independent from the states;
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• the joint probability distribution of consecutive states conditioned to the history

of the measurements p(xt, xt+1|z1:t) is Gaussian;

• the joint probability distribution of consecutive states conditioned to all the

measurements p(xt, xt+1|z1:T ) is Gaussian;

• the prior p(xsT ) is Gaussian with mean µs
T and covariance P s

T .

Under the aforementioned assumptions, it is possible to prove (Särkkä, 2013) that

there exist closed form approximate solutions to the Bayesian backward recursive

update rule of the smoothing distribution. The mathematical form of the update is

reported in the following for the case of a linear motion model as in Eq. (2.9).

2.4.3 Linear Kalman smoothing

Linear Kalman smoothers assume that the function ft is a linear function of the state

xt represented by the matrix Ft. Furthermore, the contribution of the noise samples

wt is additive. The resulting linear model is as follows:

xt = Ftxt−1 + wt−1,

wt ∼ N (0, Qt).
(2.134)

In this conőguration, the joint probabilities p(xt+1, xt|z1:t) and p(xt+1, xt|z1:T ) are

Gaussian distributions by construction as shown in the following.

Smoothing step (I)

Using the deőnition of conditional probability, it is possible to rewrite p(xt, xt+1|z1:t) as

p(xt, xt+1|z1:t) = p(xt+1|xt, z1:t)p(xt|z1:t)
= p(xt+1|xt)p(xt|z1:t),

(2.135)

where we used the assumption that the states are a Markov sequence. Considering the

state model in Eq. (2.134), it is evident that the transition probability distribution

p(xt+1|xt) is Gaussian and evaluates to

p(xt+1|xt) = N (x;Ftxt, Qt)

∣

∣

∣

∣

x=xt+1

. (2.136)
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Furthermore, the second factor p(xt|z1:t) is simply the őltering distribution at time t

that is Gaussian with mean µt and covariance Pt as per Eq. (2.21). The resulting joint

distribution is Gaussian, as required, as it is the product of two Gaussian distributions:

p(xt, xt+1|z1:t) = N
([

xt

xt+1

]

;µs′

t , P
s′

t

)

,

µs′

t =

[

µt

Ftµt

]

,

P s′

t =

[

Pt PtF
T
t

FtPt FtPtF
T
t +Qt

]

.

(2.137)

Starting from the joint distribution in Eq. (2.137), it can be shown (Särkkä, 2013) that

the distribution of the state at time xt given the knowledge of the state at time xt+1

and the measurements z1:t is as follows

p(xt|xt+1, z1:t) = N (x;µs′′

t , P
s′′

t )

∣

∣

∣

∣

x=xt

,

µs′′

t = µt +Kt(xt+1 − Ftµt),

P s′′

t = Pt −Kt(FtPtF
T
t +Qt)K

T
t

Kt = PtF
T
t (FtPtF

T
t +Qt)

−1.

(2.138)

Using the Markov property in Eq. (2.125), it is clear that the above distribution is the

same as p(xt|xt+1, z1:T ).

Smoothing step (II)

Using again the deőnition of conditional probability, the joint probability p(xt+1, xt|z1:T )
can be rewritten as

p(xt+1, xt|z1:T ) = p(xt|xt+1, z1:T )p(xt+1|z1:T ), (2.139)

where the őrst factor is Gaussian and has been evaluated in the Smoothing step (I)

while the second factor is the smoothing distribution at time t+ 1

p(xt+1|z1:T ) = N (x;µs
t+1, P

s
t+1)

∣

∣

∣

∣

x=xt+1

, (2.140)

that is Gaussian by hypothesis.
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The resulting joint distribution is Gaussian, as required, as it is the product of two

Gaussian distributions:

p(xt+1, xt|z1:T ) = N
([

xt+1

xt

]

;µs′′′

t , P s′′′

t

)

,

µs′′′

t =

[

µs
t+1

µt +Kt(µ
s
t+1 − Ftµt)

]

,

P s′′′

t =

[

P s
t+1 P s

t+1K
T
t

KtP
s
t+1 KtP

s
t+1K

T
t + P s′′

t

]

.

(2.141)

Starting from the joint distribution in Eq. (2.141), it can be shown (Särkkä, 2013)

that the smoothing distribution p(xt|z1:T ) is a Gaussian distribution

p(xt|z1:T ) = N (x;µs
t , P

s
t )

∣

∣

∣

∣

x=xt

,

µs
t = µt +Kt(µ

s
t+1 − Ftµt),

P s
t = Pt +Kt(P

s
t+1 − FtPtF

T
t −Qt)K

T
t .

(2.142)

We notice that the solution provided by the Linear Kalman smoother is not

approximate but rather exact, i.e. the resulting distribution is actually Gaussian. The

Linear Kalman smoother is sometimes also called the Rauch-Tung-Striebel smoother

(RTSS) (Rauch, 1963).

The resulting algorithm

Algorithm 10. Kalman smoother (Rauch-Tung-Striebel smoother)

Given a system described by the state model in Eq. (2.9) and an initial prior

p(xT ) ∼ N (µs
T , P

s
T ),

the smoothing distribution of the state is Gaussian and can be computed with the

following Kalman smoothing step. The recursion starts from the last time step T ,

with µs
T = µT and P s

T = PT where µT and PT are the mean and the covariance of the

őltering distribution at time T .
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• Smoothing step:

p(xt|z1:T ) = N (x;µs
t , P

s
t )

∣

∣

∣

∣

x=xt

,

µs
t = µt +Kt(µ

s
t+1 − Ftµt),

P s
t = Pt +Kt(P

s
t+1 − FtPtF

T
t −Qt)K

T
t ,

Kt = PtF
T
t (FtPtF

T
t +Qt)

−1,

(2.143)

where µt and Pt are the mean and the covariance of the őltering distribution

at time t and µs
t+1 and P s

t are the mean and the covariance of the smoothing

distribution at time t+ 1.

2.5 Differentiable Kalman őltering

The implementation of a Kalman őltering-based algorithm for state estimation requires

the deőnition of suitable motion and measurement models as per the Eqs. (2.7) and

(2.8).

Motion and measurement models are usually őrst principles models, i.e. they are

obtained form the combination of suitable physical laws that describe the system

of interest. However, deriving such models is not always possible if the system is

considerably complex or its working principles are not completely known. Recent

advances in differential Kalman őltering (Haarnoja et al., 2016; Kloss et al., 2021) allow

learning the required models from experimental data using a backpropagation-based

training process.

In this section, I will brieŕy introduce the differentiable Kalman őltering paradigm

that has been used in this Thesis to integrate tactile sensing within object pose tracking

algorithms. The adopted mathematical formulation is similar to that presented in

(Kloss et al., 2021) and (Lee et al., 2020).

2.5.1 Motion models using neural networks

The differentiable paradigm substitutes the function ft in Eq. (2.7) with an alternative

functions f̃t that might be in part speciőed by the user and in part modelled using one

ore more neural networks. To better contextualize the deőnition of f̃ , the following

example is made.
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Consider the state of a system evolving over the real line that is described in terms

of its zero-th and őrst derivative pt ∈ R and vt = ṗt ∈ R. The state of the system is

given by xt = (pt, vt) ∈ R
2. A possible motion model is as follows:

[

pt

vt

]

= f̃t(xt−1, wt−1)

=

[

pt−1 + vt−1∆t

vt−1

]

+NNf (xt−1, vt−1) + wt−1,

wt ∼ N (0, Qt),

Qt = NNw(xt−1).

(2.144)

The function f̃ contains a part that is speciőed by the user and indicates that pt is the

integral of vt under the assumption that ∆t is the interval of time between consecutive

steps. This part is combined with the output of a neural network NNf which uses

the previous state xt−1 as input and whose parameters are to be optimized using a

training procedure. The network models those parts of the system that are not known

a priori. The overall model is perturbed with additive Gaussian noise with zero mean

and covariance Qt. The covariance matrix itself can be parametrized using a neural

network NNw depending on the state at time t− 1.

2.5.2 Measurement models using neural networks

With respect to the measurement process, a commonly adopted strategy (Kloss et al.,

2021; Lee et al., 2020) is to train a neural network NNz which maps the output of the

sensing system zt to the state xt or a partition of the state Hxt where H is as follows:

H =









...

hTj
...









. (2.145)

Here, hj = ei if the j-th component of the measurement corresponds to the i-th

component of the state xt, ei is the i-th vector of the canonical base of Rn and n is

the size of the state xt. As a result, z̃t = NNz(zt) is used as the actual measurement,
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instead of zt, and the measurement model is simply

z̃t = Hxt + νt,

νt ∼ N (0, Rt),

Rt = NNν(xt, zt).

(2.146)

The measurement noise covariance can be parametrized using a neural network NNν

depending on both the current state and measurement.

An alternative strategy, that I adopted in this Thesis, consists in using a neural

network also to predict the measurement given the state. Similarly to the function f̃t,

the function ht in Eq. (2.8) is substituted with an alternative function h̃t that might be

in part speciőed by the user and in part modelled using a neural network. An example

of deőnition of h̃ for the system indicated above could be as follows:

z̃t = h̃t(xt, νt)

= g(xt) +NNh(xt) + νt,

νt ∼ N (0, Rt),

Rt = NNν(xt, zt).

(2.147)

Here, g(xt) models any prior information that is available on the measurement process

while the neural network NNh models those part of the measurement process that

are not known and could be learned from data. Also in this conőguration, a network

NNz is used to map the real measurements zt to the same space of the predicted

measurements, making possible the evaluation of the Kalman innovation term.

2.5.3 Training protocol

Once the motion and measurement models, suitably augmented using neural networks,

have been chosen, the networks architecture can be trained using appropriate data.

Speciőcally, it is assumed that the following are available:

• a set X of N sequences {xgtt,i} of the full state of the system;

• a set Y of N sequences {zt,i} of measurements collected from the sensing system

and that are compatible with the ground truth states.
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The index i indicates the speciőc sequence among those available. The sequences can

be acquired from the real system under investigation or simulated, whenever possible,

to reduce the time and effort required for data collection.

Each sequence belonging to X and Y is divided in subsequences of length Ts < T

with T the total length of each sequence. Each subsequence starts at t = t0,s. Given a

batch size B < N and a selection XB of B sequences among those available, a set of B

őlters, that share the same parameters for the networks NNf , NNw, NNh and NNν ,

is initialized by sampling from the normal distribution

N (xt; x
gt
t,i, P0), (2.148)

with i ∈ XB, t = t0,s for a given subsequence s and P0 the initial state covariance

provided by the user. Then, the state of each őlter is updated using the measurements

from Y for Ts steps via suitable Kalman prediction and correction steps.

Given the nonlinearity of the neural networks used in the motion and measurement

models, the Extended or Unscented Kalman prediction and correction steps are required.

In case the Extended Kalman őlter is used, the requirement to evaluate the Jacobians

of the functions f̃t ad h̃t is satisőed by resorting to modern automatic differentiation

techniques as commonly used in Machine Learning software frameworks.

Given a subsequence s, the training loss can be evaluated as follows (Lee et al.,

2020):

Ls =
1

TsBn

∑

i∈XB





t0,s+Ts
∑

t=t0,s+1

(xgtt,i − µt,i)
T (xgtt,i − µT

t,i)



 , (2.149)

where n is the size of the state xt and µt,i is the corrected mean from the i-th őlter

at time t. Remarkably, the corrected mean depends on the Kalman gain Kt which in

turn depends on the process and measurement covariance matrices Qt and Rt. Hence,

the associated networks Nw and Nν are also taken into account in the evaluation of

the training loss.

The loss Ls is used to optimize the parameters of all the networks resulting in the

so-called backpropagation through time (BPTT) mechanism (Mozer, 1989). Within

each training epoch, the optimization procedure is repeated for all the sub-sequences

within a sequence and for all the sets of B sequences among those available in X. After

that, the training epoch is completed and a new one is processed until all the epochs

have been processed.
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Once the training process is complete, the resulting motion and measurement

models can be used as part of the Kalman őlter to process new measurements, not

seen at training time, and obtain the associated estimates of the state xt.



Chapter 3

Object Pose and Velocity Tracking

Object pose tracking is the computer vision and robotic task that estimates the 3D

position and the 3D orientation of an object of interest using images as primary input.

Additional sensory modalities, e.g. touch sensing, can be used in alternative or in

combination with visual inputs. Solving this task is fundamental for the development of

autonomous robotic platforms that could identify the pose of objects in the surrounding

environment and execute assigned tasks accordingly. Examples of these tasks are robot

navigation in an environment with obstacles, grasping and manipulation of objects.

The pose tracking task can be extended to tracking the linear and angular velocity

of the object, in addition to the pose. The information on the velocity is sometimes

required if the robot interacts with moving objects in highly dynamic environments.

Furthermore, robot motion control architectures often require the velocity as feedback

to close the control loop.

In this chapter, I will őrst provide, in Sec. 3.1, a formal deőnition of the pose and

the velocity of an object and of the object pose and velocity tracking tasks. In Sec. 3.2,

I will concisely deőne the concept of triangle mesh representation of an object, that will

be used to describe the 3D geometry of the object in the following sections. In Sec. 3.3,

I will contextualize the concepts of object pose and velocity in a scenario where images

are used as inputs to the tracking algorithm. Next, in Sec. 3.4, I will describe the most

commonly adopted metrics for evaluating object pose and velocity tracking algorithms

in the computer vision and tracking communities. The chapter concludes with Secs.

3.5, 3.6 and 3.7 where I propose an overview of object pose tracking methods from the

computer vision and robotics literature. The presented methods range from classical

őltering or optimization-based approaches to more recent ones leveraging deep learning

or a combination of deep learning and őltering or optimization.
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3.1 Theory and problem formulation

The object pose tracking problem is deőned as the task of updating the position and the

orientation of a rigid object O of interest given an initial condition and a set of indirect

measurements of these quantities. In a robotic context, the indirect measurements

are usually provided by vision sensors, e.g. RGB-D cameras, Lidar systems, or tactile

sensors, i.e. sensors that provide information on the contact between the object and

the robot end-effector and the associated magnitude.

In the following, we őrst provide a formal deőnition of the pose of an object and

of the associated object pose tracking task. Next, the deőnition of the velocity of an

object is presented and the object pose tracking task is extended to the task of tracking

both the pose and the velocity of the object.

The mathematical notation and the concepts presented in this Section are adapted

from (Lynch and Park, 2017).

3.1.1 Deőnition of object pose

More formally, the position and the orientation of a rigid object O are represented as

the relative pose of a reference frame {B} attached to the object body

{B} = {Ob; ib, jb, kb}, (3.1)

with origin Ob and axes ib, jb and kb, with respect to a őxed frame {I}

{I} = {Oi; ii, ji, ki}, (3.2)

with origin Oi and axes ii, ji and ki (see Fig. 3.1).

Numerically, the pose is represented using a 4× 4 matrix T

T =

[

R p

0T 1

]

, (3.3)

where R ∈ SO(3) is a rotation matrix describing the relative orientation between the

frames and p ∈ R
3 is the vector connecting the origin of the two frames.
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Figure 3.1 Representation of the őxed frame {I} and object frame {B}. The vector
pt connects the origin of the two reference frames. A generic point A can be localized
with respect to both reference frames using the vectors Ia and Ba.

The vector p can be expressed as

p = OiOb =







px

py

pz






, (3.4)

where px, py and pz are simply the coordinates of the origin Ob expressed in the frame

{I} (see Fig. 3.1).

If ib, jb and kb are considered as vectors of coordinates in R
3, expressed in the frame

{I}, then the rotation matrix R assumes the form

R =







| | |
ib jb kb

| | |






. (3.5)

Given a point A, the matrix T can be also interpreted as a linear transformation

that converts the coordinates Ba ∈ R
3 of a vector ObA expressed in the frame {B} to



3.1 Theory and problem formulation 63

the coordinates Ia of the vector OiA expressed in the frame {I}:
[

Ia

1

]

= T

[

Ba

1

]

=

[

RBa+ p

1

]

.

(3.6)

The relationship between Ia and Ba is also represented in Fig. 3.1.

The matrix T can be inverted as follows:

T−1 =

[

RT −RTp

0T 1

]

. (3.7)

If the pose of the frame {B} is not stationary but changes over time, the transfor-

mation T becomes a function of the time:

Tt =

[

Rt pt

0T 1

]

, (3.8)

where pt and Rt are the position vector and the rotation matrix at time t, respectively.

3.1.2 A deőnition of object pose tracking

Using the above notation, the task of tracking an object pose, also termed 6D object

pose tracking, can be deőned as the process of updating the pose of the object Tt for

each time t given:

• the pose Tt−1 at previous time t− 1;

• a new measurement zt = zt(Tt) that depends on the pose Tt.

The tracking process is initiated by the speciőcation of an initial pose T0 provided by

the user. The dependency on these terms can be made explicit by indicating the pose

as Tt(zt(Tt), Tt−1, T0).

We remark that the 6D object pose tracking task is related to but fundamentally

different from the computer vision task known as ł6D object pose estimation”. The

latter task is is regarded with the estimation of the pose of the object Tt at time t

usually from an RGB, or RGB-D, image It. An object pose estimation method does

not use the information of the pose Tt−1 at time t− 1. In other words, it solves the
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Figure 3.2 A scheme representing the difference between the object pose estimation
and object pose tracking tasks.

estimation problem by considering each input image independently. Furthermore, it

does not need an initial condition. The dependency on the input image It can be

made explicit by indicating the pose as Tt(It). The difference between the two tasks is

schematized in Fig. 3.2.

The object pose estimation and pose tracking tasks are evenly important. Pose

estimation methods are typically used to identify the pose of one or more objects in a

scene and execute robotic tasks such as planning the trajectory of the robot end-effector

in a cluttered scene or őnding grasping candidates. Furthermore, they can be used

to start, at any time, the pose tracking process as the estimated pose Tt(It) can be

employed as an initial condition T0 for a pose tracking method.

On the other hand, there exist scenarios and tasks where a pose tracking methodol-

ogy might be more suited. These scenarios include for example:

1. object manipulation requiring continuous and well-behaved state feedback;

2. interaction with objects characterized by moderate-to-fast motions;

3. integration of a priori information on the motion of the object.

In the following I will identify possible advantages in using a pose tracking methodology

when dealing with the scenarios indicated above.

Scenario 1

Object pose tracking algorithms combine the history of the object pose with the

incoming observations from the sensors. Using past information is reasonable as

consecutive object poses are not independent but rather linked by differential constraints,

i.e. the pose Tt depends on the pose Tt−1 at time t− 1 and the velocity of the object

in between.



3.1 Theory and problem formulation 65

By taking into account these temporal constraints, these methods are able to

produce continuous and well-behaved pose signals Tt that are suitable for object

manipulation tasks involving closed loop control.

Scenario 2

The pose of an object characterized by moderate-to-fast motions is in general very

difficult to estimate. In this scenario, 6D object pose estimation methods could be used

if the execution time of the algorithm is compatible with the velocity of the object.

However, fast motions usually produce blurred images It that could make the estimates

Tt(It) much less reliable.

If external sources of information about the velocity of the object are available, e.g.

from an Inertial Measurement Unit (IMU) or using blur robust Optical Flow (OF)

methods, these can be naturally integrated as measurements zt within object pose

tracking methods, making them preferable to object pose estimation methods.

Scenario 3

Object pose tracking methods usually provide explicit mechanisms to incorporate a

priori information on the motion of the object. As an example, Kalman őlters (see

Chapter 2) require the speciőcation of a suitable motion model.

Whenever available, using prior information in the form of a motion model is

beneőcial for integrating the information encoded in the measurements and reducing

the effect of the measurement noise. Furthermore, motion models can be used to

predict the pose of the object in case the measurements are not available for short

periods of time.

3.1.3 Deőnition of object velocity

As discussed in the previous section, the velocity of the object plays an important role

in the process of tracking the pose of a rigid object. It is possible to extend the task of

object pose tracking to that of tracking the pose and the velocity of the object.

Deőnition of the angular velocity in 3D space

In order to properly deőne this task, it is necessary to formally deőne the concept of

velocity of a rigid object. To this end, it is convenient to őrst deőne the concept of
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velocity associated to the orientation of the object. For the sake of clarity, we omit the

subscript t indicating the time dependency of the rotation matrix Rt.

By taking the time derivative of the rotation matrix R the following holds:

Ṙ =
d

dt
(R)

=







| | |
i̇b j̇b k̇b

| | |






,

(3.9)

where we expand R according to Eq. (3.5) and ib, jb and kb are the unit vectors of the

axes of the frame {B} expressed in the frame {I}.
By assuming that the frame {B} rotates with an angular velocity ω, the time

derivative of the unit vectors can be expressed using the Poisson formula (Miele, 2016)

as follows:






| | |
i̇b j̇b k̇b

| | |






=







| | |
ω × ib ω × jb ω × kb
| | |






. (3.10)

From a physical point of view, the derivative of a unit vector is perpendicular to the

plane identiőed by the vector itself and the angular velocity. Given that the vectors

ib, jb and kb are expressed in the frame {I}, we assume that the angular velocity is

expressed in the same frame too.

It is recalled that the cross product a× b between two vectors a = (ax, ay, az) ∈ R
3

and b ∈ R
3 can be expressed as the product between a skew-symmetric matrix â

â =







0 −az ay

az 0 −ax
−ay ax 0






∈ R

3×3, (3.11)

and the vector b, i.e.

a× b = âb. (3.12)

The operator ˆ is sometimes called the hat operator. Its inverse operator, the vee

operator ∨, is deőned such that

(â)∨ = a ∈ R
3. (3.13)
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Taking into account the operators deőned above, the time derivative of R becomes

Ṙ =







| | |
ω̂ib ω̂jb ω̂kb

| | |







= ω̂







| | |
ib jb kb

| | |







= ω̂R.

(3.14)

The angular velocity can be expressed as

ω̂ = ṘR−1 = ṘRT ∈ so(3), (3.15)

or, using the vee operator, as

ω = (ṘRT )∨ ∈ R
3. (3.16)

As indicated above, the hat of the angular velocity belongs to the Lie algebra so(3) of

the group SO(3), both deőned in Sec. 2.3. In that section, the Lie algebra of SO(3)

was used to represent a given rotation R as the łangular velocity” that the frame {B}
has to travel with in one unit time to move from the identity rotation to R. In this

section, instead, it is used to represent the instantaneous axis of rotation ω
∥ω∥
∈ R

3 the

object is rotating around and the rate of rotation ∥ω∥ ∈ R around that axis.

The exp() and log() maps which transform a rotation matrix R ∈ SO(3) to its

vector representation ω ∈ R
3 in the Lie algebra and viceversa are deőned as follows:

R = exp(ω) := I3 + sin(∥ω∥) ω̂

∥ω∥ + (1− cos(∥ω∥))
(

ω̂

∥ω∥

)2

, ∥ω∥ ≠ 0, (3.17)

ω = log(R) := nθ, θ ̸= 0, (3.18)

where (n, θ) is a proper axis-angle representation of the rotation matrix R. In case

∥ω∥ = 0, the exponential evaluates to the identity rotation, R = I3. Similarly, in the

case θ = 0, the axis n is not deőned and the logarithm evaluates to the null vector

ω = 0.
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The őnal expression of the angular velocity at time t is as follows:

ωt = (ṘtR
T
t )

∨ ∈ R
3. (3.19)

Deőnition of the spatial and mixed velocities in 6D space

Similarly to the rotation Rt, that belongs to the group SO(3), the full 6D pose of the

rigid object Tt belongs to the group SE(3) deőned as

SE(3) =

{[

R p

0T 1

]

| p ∈ R
3, R ∈ SO(3)

}

. (3.20)

In this respect, it is reasonable to extend to SE(3) the property that post-multiplying

Ṙ by R−1 results in a matrix representation of the angular velocity expressed in the

frame {I}. For the sake of clarity, we omit the subscript t indicating the time

dependency of the pose Tt.

The product Ṫ T−1, with T−1 as per Eq. (3.7), expands to

Ṫ T−1 =

[

Ṙ ṗ

0T 0

][

RT −RTp

0 1

]

=

[

ṘRT ṗ− ṘRTp

0T 0

]

=

[

ω̂ ṗ+ ω̂(−p)
0T 0

]

=

[

ω̂ ṗ+ ω × (−p)
0T 0

]

=

[

ω̂ v

0T 0

]

.

(3.21)

The resulting expression is called the spatial velocity V of the object

V̂ = Ṫ T−1 =

[

ω̂ v

0T 0

]

∈ se(3), (3.22)
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Figure 3.3 Representation of the angular velocity ωt, the velocity ṗt of the point
Ob and the velocity vt of a point belonging to a rigid extension of the object O and
instantaneously coincident with Oi.

and, similarly to the angular velocity, it belongs to the Lie algebra se(3) of the group

SE(3). The associated vector representation in R
6 is given by

V = (Ṫ T−1)∨ =

[

v

ω

]

∈ R
6, (3.23)

where we used an equivalent vee operator for se(3).

Remarkably, the velocity v is not simply the velocity vOb
of the origin Ob of the

frame {B} expressed in the frame {I}. That velocity would be instead vOb
= ṗ.

From a physical point of view, v = ṗ+ ω × (−p) represents the velocity, expressed

in the frame {I}, of a point belonging to the rigid body O that is instantaneously

coincident with the origin Oi. In other words, it is the velocity of a rigid extension

of the rigid body the extends up to the origin of the őxed frame (see Fig. 3.3). This

interpretation comes from the classical formula linking the linear velocities of two

points A, B belonging to the rigid object O, i.e.

vB = vA + ω × AB, (3.24)
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with AB the vector from A to B. In our case, A = Ob, B = Oi hence AB = ObOi = −p,
according to the deőnition of p in Eq. (3.4). As previously noticed, vOb

= ṗ. The

resulting velocity vB = vOi
is equal to v, as expected.

Sometimes, it is required to work with a different deőnition of the 6D velocity of

the object

Vm =

[

vm

ω

]

=

[

ṗ

ω

]

∈ R
6, (3.25)

that is termed mixed velocity of the object. We remark that it does not exist any

element in the Lie algebra se(3) such that the application of the vee operator on it

corresponds to the mixed velocity Vm expressed in the frame {I}. In this Thesis, we

used both formulations of the velocity in order to accomplish different tasks.

The őnal expressions of the 6D velocities of the rigid body at time t are as follows:

Vt = (ṪtT
−1
t )∨ =

[

vt = ṗt + ωt × (−pt)
ωt

]

∈ R
6, (3.26)

Vm
t =

[

vmt = ṗt

ωt

]

∈ R
6. (3.27)

3.1.4 A deőnition of object pose and velocity tracking

We deőne the task of object pose and velocity tracking as the process of updating the

pose Tt and the mixed velocity Vm
t of the object for each time t given:

• the pose Tt−1 at previous time t− 1;

• the mixed velocity Vm
t−1 at previous time t− 1;

• a new measurement zt = zt(Tt,Vm
t ) that depends on the pose Tt or the velocity

Vm
t or both.

The tracking process is initiated by the speciőcation of an initial pose T0 and an initial

velocity Vm
0 provided by the user. The dependency on these terms can be made explicit

by indicating the pose as Tt(zt(Tt,Vm
t ), Tt−1,Vm

t−1, T0,Vm
0 ).
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3.2 Three-dimensional object representation using tri-

angle meshes

Before presenting the concepts of the following sections, it is useful to deőne the

representation that we will use to model the shape and the geometry of the object O
throughout the Thesis, namely the polygon mesh representation (Smith, 2006).

In 3D computer graphics, a polygon mesh is a collection of vertices, edges and faces

that describe the shape of a given object. Each vertex is a point on the surface of

the object while an edge represents a connection between two vertices. Given a list of

edges, a face is then described as a closed set of a certain number of edges. The faces

typically consist of triangles, i.e. closed sets of three edges, although more general

convex polygons can be used. If triangular faces are used, the polygon mesh is usually

referred to as a triangle mesh. In this Thesis, we only consider triangle meshes.

In order to actually describe a triangle mesh, it is required to provide a numerical

representation of the above mentioned concepts. The representation of the edges and

of the faces is typically very dependant on the speciőc őle format used to store the

polygon mesh data. For this reason, it is not discussed.

As regards the set of vertices, they consist of a set of points Aj sampled on the

surface of the object O. For each vertex, several properties are considered. The most

important is the position of the vertex in the object frame {B}. It is usually described

using a vector ObAj from the origin of the frame {B} to the point Aj corresponding

to the vertex. The vector is represented by means of its coordinates Baj expressed in

the frame {B}.
Other possible properties associated to each vertex are the normals, the colors and

the texture coordinates.

Each normal describes the local curvature of the object at the vertex position and

deőnes the direction that points out from the surface of the object at the same position.

As regards the texture, it refers to a broad set of properties of the surface of

the object, such as the color, the reŕectivity, the transparency or the tactile texture.

However, in most cases, the texture description of a mesh only takes into account the

colors of the surface. In this respect, it is possible to assign a color to each vertex

in the mesh. As an alternative, it is possible to use the so-called texture coordinates

which represent, for each vertex, the 2D coordinates of a digital image, termed texture

map. The texture map contains the colors to be assigned to each vertex. If the texture

coordinates are available, the mesh is usually referred to as a textured mesh.
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In this Thesis, we will mostly use the concepts of triangle mesh and vertex positions.

Nonetheless, the concepts of vertex normals and of textured mesh will be useful to

describe some of the state-of-the-art methods for object pose tracking in Secs. 3.5, 3.6

and 3.7.

3.3 Object pose and velocity from the camera per-

spective

Most algorithms for 6D object pose and velocity tracking assume that the measurements

of interest zt are extracted from a stream of RGB images It and depth images Dt.

Two of the methods presented in this Thesis share the same assumption. For this

reason, this section provides a mathematical model of the camera and highlights how

it connects with the concepts of object pose and velocity presented in the previous

sections.

In the following, we assume that the camera is attached to the őxed frame {I}.
Although the camera might move freely in space, we assume that its pose is őxed

and that the object O undergoes an additional apparent motion that reŕects the

actual motion of the camera. This choice is sound as long as we make the reasonable

assumption that the task at hand requires to track the relative motion between the

camera and the object.

3.3.1 Connection between the object pose and the object point

cloud

Each image It is made of pixels whose coordinates in the image plane are usually

indicated with a tuple (u, v). The actual content of the image It consists of the

brightness values of the three RGB channels for each pixel. If an RGB-D camera is

adopted, an additional image Dt, called depth image, is provided that contains the

distance in meters from the origin of the camera to the surrounding environment for

each pixel along the axis ki (see Fig. 3.4).

The depth image allows associating the coordinates (u, v) of a pixel to the 3D

coordinates of the point Puv, corresponding to that pixel, expressed in the camera

frame. Given that the camera frame is coincident with the frame {I}, these coordinates,

indicated as Ipuv, are that of the vector OiPuv expressed in the frame {I}.



3.3 Object pose and velocity from the camera perspective 73

Figure 3.4 Representation of the vector Ipuv from the origin Oi to the point Puv

belonging to the object O, the depth duv, i.e. the z coordinate of the vector, and the
projection of the vector onto the image plane, corresponding to the pixel coordinates
(u, v). The object linear velocity ṗt and angular velocity ωt, and the corresponding
velocity of the pixel location (u̇, v̇) are also represented.

The pinhole camera model (Ma et al., 2004) provides the expression of these

coordinates as a function of the pixel coordinates (u, v) and the depth of that pixel

duv ∈ Dt:

Ipuv =
Ipuv(duv) =







puv,x

puv,y

puv,z






=







(u−cx)
fx

duv
(v−cy)

fy
duv

duv






∈ R

3. (3.28)

Here, fx and fy are the camera focal lengths while cx and cy are the coordinates of the

camera principal point. The relationship between the pixel coordinates (u, v) and the

vector Ipuv is represented in Fig. 3.4.

Given a set of pixels Ω in the image that contain the object of interest O, we deőne

the partial point cloud of the object O given the depth image Dt as the set of point

coordinates

C(Ω, Dt) := {puv(duv) ∀(u, v) ∈ Ω | duv ∈ Dt} . (3.29)

The knowledge of the pose of the object Tt allows making a prediction of the object

point cloud. Suppose that a set of points {Aj} are sampled on the surface of the object

∂O and that the vectors ObAj from the origin of the frame {B} to each point are
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available. These vectors are represented using the coordinates Baj(Aj) ∈ R
3 that are

easily obtained from a triangle mesh representation of the object, as described in Sec.

3.2. Using the deőnition of Tt as a transformation matrix, as in Eq. (3.6), it is possible

to express the coordinates Iaj(Aj, Tt) ∈ R
3 of the vectors OiAj as follows:

[

Iaj

1

]

= Tt

[

Baj

1

]

. (3.30)

We deőne the predicted point cloud of the object O given the object pose Tt as the set

of point coordinates

C({Aj}, Tt) :=
{

Iaj(Aj, Tt) ∀Aj

}

. (3.31)

The deőnition of the partial and predicted point clouds of the object and their

comparison make it possible to relate the object pose Tt with the depth image Dt and

is fundamental for the development of object pose tracking algorithms from depth

images.

3.3.2 Connection between the object velocity and the object

optical ŕow

Similarly to the object pose, it is possible to relate the velocity of the pixels locations

[

u̇

v̇

]

=
d

dt

[

u

v

]

∈ R
2 (3.32)

(see Fig. 3.4) with the object spatial velocity V . To this end, we őrst recall the concept

of optical ŕow.

Given consecutive images It−1 and It, the optical ŕow can be deőned as the set of

displacements
[

∆u

∆v

]

∈ R
2 (3.33)

a given pixel (u, v) ∈ It−1 has travelled in order to reach its new location (u + ∆u, v +

∆v) ∈ It. We assume that the displacements can be expressed as

∆u = u̇∆t,

∆v = v̇∆t,
(3.34)
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where ∆t is the time elapsed between the instants of time t− 1 and t. The optical ŕow

can be easily evaluated in real-time using suitable algorithms (NVIDIA, 2021) given

two consecutive frames It−1 and It.

Given a set of pixels Ω in the image that contain the object of interest, we deőne

the optical ŕow associated to the object O given the images It and It−1 as the set of

displacements

F (Ω, It, It−1) :=

{

F (u, v) =

[

∆u(It, It−1)

∆v(It, It−1)

]

∀(u, v) ∈ Ω

}

. (3.35)

The knowledge of the object spatial velocity Vt and of the depth image Dt at the

same instant of time, makes it possible to predict the object optical ŕow. To this end,

we rewrite the pinhole camera model in Eq. (3.28) by moving the pixel coordinates u

and v to the left-hand side:

u = cx +
puv,x
duv

fx = cx +
px
d
fx,

v = cy +
puv,y
duv

fy = cy +
py
d
fy.

(3.36)

For the sake of clarity, we omit the subscript uv in the x and y coordinates px and py
and in the depth d.

Differentiating the above expression with respect to time, the velocity of the u

coordinate is as follows:

u̇ = fx

(

1

d
ṗx + px ˙(d−1)

)

= fx

(

1

d
ṗx −

px
d2
ḋ

)

= fx

(

1

d
ṗx −

px
d2
ṗz

)

,

(3.37)



3.3 Object pose and velocity from the camera perspective 76

where we use the fact that d = pz. Taking into account Eq. (3.28), it can be further

expanded to:

u̇ = fx

(

1

d
ṗx −

u− cx
fx

d

d2
ṗz

)

=
fx
d
ṗx − ��fx

��fx

u− cx
d

ṗz

=
fx
d
ṗx −

u− cx
d

ṗz.

(3.38)

The same reasoning extends to the other coordinate v. Using the vector notation, the

following holds:

[

u̇

v̇

]

=

[

fx
d

0 −u−cx
d

0 fy
d
−v−cy

d

]







ṗx

ṗy

ṗz







:= Jv(d)
I ṗuv,

(3.39)

where we deőned the matrix Jv(d) and I ṗuv is simply the velocity of the point Puv

expressed in the camera frame. In order to make explicit the connection between the

above model and the object spatial velocity V , we rewrite the velocity I ṗuv, resorting

to Eq. (3.24), as follows
I ṗuv = vOi

+ ω × Ipuv, (3.40)

where ω is the angular velocity of the object O and vOi
is the velocity of a rigid

extension of the object that is instantaneously coincident with the origin of the camera

frame Oi, i.e. the linear velocity v part of the spatial velocity V. Substituting the

velocity in (3.39), the pixel locations velocities become:

[

u̇

v̇

]

= Jv(d)
I ṗuv

= Jv(d)(v − I p̂uvω)

= Jv(d)v − Jv(d)I p̂uvω

=
[

Jv(d) −Jv(d)I p̂uv
]

[

v

ω

]

:=
[

Jv(d) Jω

]

V ,

(3.41)
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where we deőned the matrix Jω and we used the fact that ω×Ipuv = −Ipuv×ω = −I p̂uvω.

The term Jω can be further expanded to

−Jv(d)I p̂uv =
[

fx
d

0 −u−cx
d

0 fy
d
−v−cy

d

]







0 pz −py
−pz 0 px

py −px 0







=

[

−u−cx
d
py

fx
d
pz +

u−cx
d
px −fx

d
py

−fy
d
pz − v−cy

d
py

v−cy
d
px

fy
d
px

]

=

[

− (u−cx)(v−cy)

fy

f2
x+(u−cx)2

fx
− (v−cy)fx

fy

−f2
y+(v−cy)2

fy

(u−cx)(v−cy)

fx

(u−cx)fy
fx

]

,

where we substituted px, py and pz according to Eq. (3.28).

By recalling that ∆u = u̇∆t and ∆v = v̇∆t, it is őnally possible to predict the

optical ŕow of a given pixel (u, v) given the object spatial velocity Vt and the depth

duv as follows:
[

∆u(Vt, duv)
∆v(Vt, duv)

]

= ∆t

[

Jv(duv) Jω

]

Vt. (3.42)

Given a set of pixels Ω in the image that contain the object of interest, we deőne

the predicted optical ŕow associated to the object O given the object spatial velocity

Vt and the depth image Dt as the set of displacements

F (Ω,Vt, Dt) :=

{[

∆u(Vt, duv)
∆v(Vt, duv)

]

∀(u, v) ∈ Ω | duv ∈ Dt

}

. (3.43)

The deőnition of the optical ŕow and the predicted optical ŕow of the object and

their comparison makes it possible to relate the object velocity Vt with consecutive

images It−1, It and is useful for the development of object pose and velocity tracking

algorithms from RGB-D images.

3.4 Evaluation metrics

Object pose tracking algorithms are evaluated primarily in terms of the error between

the tracked pose Tt and the ground truth pose T gt
t . In case of object pose and velocity

tracking algorithms, the error between the velocity Vt and the ground truth velocity

Vgt
t is also considered.
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Drawing from the classical literature on target tracking (Bar-Shalom et al., 2002),

the Root Mean Square Error (RMSE) is one of the possible metrics that can be used

to evaluate the tracking error of a given algorithm along a given test trajectory.

Recently, other metrics, as the Average Distance Distinguishable (ADD) and the

Average Distance Indistinguishable (ADI), were proposed in the literature of 6D object

pose estimation (Xiang et al., 2018).

In the present work, we adopt both metrics as they provide insights on different

aspects of the performance of a given algorithm.

Another important evaluation criterion is the execution time deőned as the average

time required to execute a single iteration of the algorithm under examination.

In this section, I will brieŕy introduce and discuss the aforementioned metrics that

have been used to compare the methods proposed in the present Thesis with other

state-of-the-art algorithms.

3.4.1 Root Mean Square Error (RMSE)

Given a discrete time signal {xt}, that is N steps long, and a ground truth signal {xgtt }
to be compared, the Root Mean Square Error (RMSE) associated to {xt} is deőned as

follows:

RMSE({xt}) =

√

√

√

√

1

N

N
∑

t=1

e(xt, x
gt
t )

2, (3.44)

where e(xt, x
gt
t ) ∈ R represent the error between the estimated and ground truth signals

at time t. The deőnition of the error e depends on the set xt belongs to.

Positional RMSE

Given a pose Tt ∈ SE(3) and its positional component pt ∈ R
3, the positional RMSE

error in meters is obtained by deőning the error e as

e(pt, p
gt
t ) = ∥pt − pgtt ∥ (m). (3.45)
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Rotational RMSE

Given a pose Tt ∈ SE(3) and its rotational component Rt ∈ SO(3), the rotational

RMSE error in degrees is obtained by deőning the error e as

e(Rt, R
gt
t ) = ∥log(Rgt

t R
T
t )

∨∥ 180

π
(deg), (3.46)

where

• log(Rgt
t R

T
t ) ∈ so(3) is the matrix logarithm of the relative orientation Rgt

t R
T
t ;

• log(Rgt
t R

T
t )

∨ ∈ R
3 is the vector representation of the matrix logarithm;

• ∥log(Rgt
t R

T
t )

∨∥ represents a proper error metric on SO(3) taking values in the

interval [0, π] (Huynh, 2009).

We remark that this metric is easily evaluated as the angle of rotation of the matrix

Rgt
t R

T
t (Huynh, 2009).

Linear velocity RMSE

Given a spatial velocity V ∈ R
6 and its linear velocity component v ∈ R

3, the linear

velocity RMSE in meters per second is obtained by deőning the error e as

e(vt, v
gt
t ) = ∥vt − vgtt ∥ (m/s). (3.47)

The same deőnition can be applied to the mixed velocity Vm.

Angular velocity RMSE

Given a spatial velocity V ∈ R
6 and its angular velocity component ω ∈ R

3, the angular

velocity RMSE in degrees per second is obtained by deőning the error e as

e(ωt, ω
gt
t ) = ∥ωt − ωgt

t ∥
180

π
(deg/s). (3.48)

3.4.2 Average Distance Distinguishable (ADD)

The Average Distance Distinguishable (ADD) is a popular metric used to benchmark

6D object pose estimation algorithms (Xiang et al., 2018). Nonetheless, it has been

adopted also to benchmark 6D object pose tracking algorithms (Deng et al., 2019; Wen
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et al., 2020a). Moreover, using this metric allows comparing with other state-of-the-art

algorithms especially when their implementation is not publicly available.

Given a triangle mesh description of the object, a list of n points {Aj}, sampled on

the mesh, the pose Tt and the ground truth pose T gt
t , we deőne the two point cloud

sets C({Aj}, Tt) = {aj} and C({Aj}, T gt
t ) = {agtj } according to Eq. (3.31). The ADD

metric is then deőned as

ADD(Tt) =
1

n

∑

j

∥agtj − aj∥. (3.49)

In the deőnition above, we assume that the coordinate vectors aj and agtj are associated

to the same 3D point Aj sampled on the surface of the object ∂O, as described in Sec.

3.3.1.

The ADD metric does not take into account the actual error between the estimated

and ground truth poses. Instead, it directly compares the predicted point clouds of the

object at the estimated and ground truth poses. Speciőcally, it considers the mean

distance between the points belonging to the two point clouds.

The ADD metric is not usually used as it is, instead the following derived metrics

are considered.

Percentage of ADD under a threshold

Given a trajectory {Tt} of N object poses, the ADD < ϵ metric is deőned as the

percentage of poses for which the ADD metric is below a given threshold ϵ in meters:

ADD < ϵ =
|{t | ADD(Tt) < ϵ}|

N
∈ [0, 1], (3.50)

where | · | indicates the cardinality of a set.

Area under the curve of ADD given a threshold

Given a trajectory {Tt} of N object poses, we deőne the ordered set of ADD distances

less than a threshold ϵ as

ADD({Tt})ϵ :=
{

0,ADD(Tt̃(1)), · · · ,ADD(Tt̃(k))
}

∪ {ϵ} , (3.51)
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where t̃(·) is a permutation of the instants of time {1, · · · , N} such that

0 ≤ ADD(Tt̃(1)) ≤ · · · ≤ ADD(Tt̃(k)) ≤ ϵ (3.52)

and k ≤ N . The strict equality k < N holds if there are poses for which the ADD

distance is greater than ϵ. A set of accuracies

{

0,
1

Nϵ
, · · · , k

Nϵ

}

∪
{

k

Nϵ

}

(3.53)

is associated to the list of the distances. Then, we deőne the curve of ADD distances

(ADD-C) as the curve

ADD-C({Tt})ϵ :=
{

(0, 0), (ADD(Tt̃(1)),
1

Nϵ
), · · · , (ADD(Tt̃(k)),

k

Nϵ
), (ϵ,

k

Nϵ
)

}

,

(3.54)

where each pair is a point belonging to the curve. The area under the curve (ADD-AUC)

metric is then deőned as the rectangular approximation of the integral of the ADD-C

curve.

In the ideal situation in which all the distances are equal to zero, i.e. the algorithm

under examination does not commit any error, then k = N and the integral evaluates

to ϵ k
Nϵ

= 1. On the other hand, if all distances are greater than ϵ then k = 0 and

the area evaluates to 0. In general, the ADD-AUC metric belongs to the interval

[0, k
N
] ⊆ [0, 1].

Differently from the ADD < ϵ metric, which only considers the percentage of

distances below a given threshold, the ADD-AUC metric takes into account how the

distances are distributed in the interval [0, ϵ]. As a consequence, two algorithms that

have the same ADD < ϵ, might have very different ADD-AUC metrics.

3.4.3 Average Distance Indistinguishable (ADI)

The Average Distance Indistinguishable (ADI) is deőned similarly to the ADD metric

with the difference that it can be used for objects with rotational symmetries that

could cause ambiguities in the pose estimation process. The ADI metric is deőned as

ADI(Tt) =
1

n

∑

j

min
k
∥agtj − ak∥, (3.55)
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where the distance between the points agtj and aj , as in the ADD metric, is substituted

with the minimum distance between each point agtj and each other point ak. The

ADI < ϵ and ADI-AUC metrics are similarly deőned.

3.4.4 Comparison between the ADD/ADI and the RMSE met-

rics

The ADD and ADI-based metrics do not express the actual translational or rotational

error directly. Instead, they provide statistics depending on the number of poses having

an ADD or ADI distance lower than the threshold ϵ and on how it compares with

the total number of poses. The actual magnitude of the distance of all the other

poses does not affect these metrics, irrespective of the fact that it is slightly greater or

much greater than ϵ, as might happens if the algorithm produces spikes in the output.

However, the presence of spikes might negatively affect the execution of robotic tasks

involving closed loop control. For this reason, we also consider the RMSE metric which

is more susceptible to such spikes as it does not use any thresholding mechanism.

3.5 Classical object pose tracking

In this section, I will provide an overview of classical approaches for object pose

tracking. The majority of these methods have been proposed before the recent spread

of Deep Learning techniques in the computer vision and robotics communities.

In Sec. 3.5.1, I őrst present methods that consider the object as a standalone

entity. Then, in Sec. 3.5.2, I overview methods that track the object pose during

an interaction with the robot end-effector. Finally, in Sec. 3.5.3, I brieŕy mention

methods that jointly track the shape and the pose of the object.

For the sake of comparison, Table 3.1 summarizes the main characteristics of the

presented works, including the methods that are described in the following Secs. 3.6

and 3.7.

3.5.1 Object pose tracking

Bayesian őltering-based methods

The most classical approaches for object pose tracking combine Bayesian őltering with

depth information in order to track the 6D pose of the object.
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Wüthrich et al. (2013) use a particle őlter (Ristic et al., 2003) to update the state

of the object in real-time given the whole depth image of the scene. In order to dismiss

parts of the image that does not contain the object, due to the limited extension of the

object or occlusions, they propose to model occlusions as additional binary states for

each pixel. Despite the high-dimensionality of the state, the method runs in real-time.

Issac et al. (2016) use instead an Unscented Kalman őlter to track the object pose

and velocity from depth images in real-time. The proposed őlter handles the occlusions

by modelling the depth noise using a heavy-tailed Gaussian distribution. Such a

distribution allows modelling the occlusions as outliers in the depth measurements,

that are rejected thanks to an enhanced formulation of the őlter. The proposed őlter

provides smoother estimates in general and steadier estimates than the particle őlter

in (Wüthrich et al., 2013) in presence of total occlusion of the object.

Despite the promising results, recent works, e.g. (Wen et al., 2020a), have shown

the limits of the aforementioned methods in terms of object pose accuracy. Moreover,

the recent availability of object segmentation algorithms (He et al., 2017; Xiang et al.,

2018), which identify the pixels in the image containing the object, could make the

proposed strategies for occlusion handling overly complex nowadays. In the Chapter

4 of this Thesis, I will present an algorithm similar to (Issac et al., 2016) that does

not need ad-hoc strategies for occlusion handling, rather it exploits recent advances in

deep learning for object segmentation and combines them with Kalman Filtering to

accomplish the object pose tracking task.

Choi and Christensen (2013) propose a similar approach as Wüthrich et al. (2013)

while considering also the normals to the surface of the object and the points colors in

the formulation of the measurement models. The information from the normals allow

alleviating the uncertainty in the association between the measured and predicted

object surfaces. Using the colours, instead, help handle rotational ambiguities that can

be disambiguated using the object texture. On the other hand, this method requires a

textured 3D model of the object and the estimates of the surface normals, which might

be noisy. This method requires a large number of particles, in the order of thousands,

to accomplish the tracking task with real sequences. The resulting frame rate, which is

approximately 20 frames per second, could make the algorithm unsuitable for tracking

fast object motions as those considered in the Chapter 5 of this Thesis.

In (Jongeneel et al., 2021), the authors concentrate on the task of tracking the

pose of objects that are tossed on a surface. This problem is challenging due to the

abrupt changes in the velocity of the object after the impact with the surface. In
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this respect, they design an Unscented Particle Filter (Van Der Merwe et al., 2000)

which incorporates the effects of the impact and the role of the friction in a motion

model. The particles are then weighted by projecting several 3D object points onto

the image plane and by evaluating the őtness with the incoming RGB images using

a color histograms-based likelihood function. As mentioned above, this Thesis also

addresses the problem of tracking fast object motions which is closely related to the

topic addressed in (Jongeneel et al., 2021). However, the latter focuses on the speciőc

scenario of objects that are tossed on a surface, which is not considered in this Thesis.

Optimization-based methods

Tjaden et al. (2019) propose to reduce the set of features to be used for tracking to

plain RGB data. They use a probabilistic formulation which divides the image in

subregions each associated to a temporally consistent color histogram that is updated

at each frame. The histograms contribute to local cost functions which evaluate the

consistency between the predicted silhouette of the object, obtained from the 3D

model, and the actual image. The method optimizes the cost function using a second

order optimization method providing faster convergence rates than common gradient

descent-based methods, leading to real-time performance.

Very recently, Li and Stueckler (2021) combined RGB-D data with events from an

event camera. They use optimization to őnd the pose of the object which minimizes

the error between the measured events and the predicted events, depending on the

depth and on the object velocity. They also add a regularization term which minimizes

the instantaneous object acceleration. The pose of the object is also evaluated on

sparse keyframes, using RGB data, that are used to constraint the trajectory obtained

from the events in order to fuse the two modalities. A major limitation of this method

is that it cannot run in real time, making it unsuitable for real-time tracking purposes.

We remark that the above mentioned methods employ slightly different sensing

modalities than those adopted in this Thesis. I.e. Tjaden et al. (2019) use RGB images

only and Li and Stueckler (2021) use also image events while the methods presented

in this Thesis employ RGB-D sensing. Nonetheless, they are reported for the sake of

completeness.

An additional class of methods solve the so-called łobject pose reőnement” task.

Given an initial condition, usually the output of an object pose estimator, they

iteratively reőne the pose of the object. In this scenario the object is typically static, i.e.

it does not move. Although their aim is slightly different from tracking, the iterative
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nature of these methods make them comparable. The majority of these methods use

deep learning techniques and will be presented in next Secs. 3.6 and 3.7. Nevertheless,

there are also works which tackle the problem using numerical optimization solely.

(Bauer et al., 2020) propose a simulation-based physics-guided iterative reőnement

process from RGB-D images which enforces the physical plausibility of the object pose

in presence of constraints such as the surface of a table or other objects. Although this

method cannot run in real time, it might be useful to track objects in cluttered scenes

if they move quite slowly.

Point set registration-based methods

Several methods for object pose tracking have been proposed in the context of point

set registration, starting from the Iterative Closest Point (ICP) method (Besl and

McKay, 1992). These methods őnd the pose of the object that reduces the distance

error between the measured partial point cloud of the object and the predicted point

cloud according to the current pose. They thus neglect the problem of extracting the

partial point cloud of the object from the whole scene point cloud and concentrate on

the registration problem.

Gao and Tedrake (2019) propose FilterReg, a probabilistic method for point cloud

registration that is cast as a maximum likelihood estimation problem and solved using

the expectation-maximization (EM) algorithm. Differently from ICP, which associates

measured and predicted points using a nearest neighbours metric, FilterReg models the

predicted point cloud as a Gaussian Mixture Model (GMM). This allows introducing

more complex weighting mechanisms, for each point, and handle the presence of outliers.

The tracking capabilities of this method are shown in a table-top robot manipulation

scenario, where FilterReg tracks the pose of each link of the robot and the manipulated

object using an external depth camera while treating the points from the table as

outliers.

In TEASER (Yang et al., 2020), the authors dedicate even more attention to the

problem of rejecting the outliers by providing a certiőable method, i.e. a method which

provides easy to check conditions that indicate if the provided solution is optimal or

not. This method runs in real-time which makes it feasible for tracking purposes.

We recall that registration methods minimize the distance error between the

measured and the target point cloud. On the other hand, they do not provide an

estimate of the object velocity, which might be crucial to close the control loop in
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speciőc robotic applications (Piga et al., 2021a; Viña et al., 2015). In the Chapter 4 of

this Thesis, I will provide experimental results supporting this statement.

3.5.2 Object/end-effector pose tracking

Several works make the additional assumption that the object is within the end-effector

of a robot, e.g. during a grasp, or in contact with it, e.g. during pushing or more

general manipulation actions.

Bayesian őltering-based methods

Vezzani et al. (2017) propose the Memory Unscented Particle Filter (MUPF) to localize

the pose of an object given a set of 3D tactile point measurements acquired on the

surface of the object. The proposed method processes the measurements sequentially

in small batches while taking into account the multimodality of the pose distribution

due to the reduced number of points in a batch. Given that the measurements are in

the form of 3D points, the algorithm could be extended to mixed sets of points from

touch and vision, however this scenario has not been explored.

The MUPF updates the pose by spreading the particles in the state space according

to a motion model and then weighting them according to the incoming measurements.

Koval et al. (2013) propose to do the opposite. Indeed, when working with tactile

measurements belonging to the surface of the object, they found that exploring the

state space with a motion model can produce many pose candidates that are not in

contact with the measurements. As a result, the pose distribution is not adequately

represented by the particles. For this reason, they propose to sample the particles

from a distribution which assigns high probability to those that are consistent with

the tactile measurements, and then weight them according to the motion model. This

choice also reduces the number of particles with respect to conventional particle őlters

thus increasing the frame rate.

In Hebert et al. (2012), the authors do not use tactile information and propose an

Unscented Kalman őlter for pose tracking that exploits depth, visual RGB features

and the 2D silhouette to update the object pose. The same strategy is applied to

parts of the end-effector of the robot, which makes possible to track its relative pose

with respect to the object. This information is useful as feedback to maintain a stable

contact with the object, e.g. during grasping or pushing actions, using a closed loop

controller.
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More recently, Wen et al. (2020b) focused on scenarios where the robot end-effector

occludes the object to be tracked. The proposed approach őrst estimates the hand

state using a particles-based approach which tries to maximize the overlap between

the hand 3D model and the point cloud. Then, given the state of the hand, the point

cloud of the hand is removed from that of the scene. The remaining points are used to

propose object pose candidates using an hypotheses generation method (Mitash et al.,

2019). Finally, false hypotheses are pruned using physical reasoning, e.g. avoiding

compenetration with the hand, and the remaining poses are evaluated according to

őtness with the observed point cloud. Remarkably, this work compares with some RGB-

based deep neural networks for pose estimation showing how hand-object occlusions

cause important drop in performance if the end-effector is not taken into account in the

problem formulation. The method cannot run in real-time, however it can be useful to

track slowly moving objects during grasping or post-grasping stages.

Hang et al. (2020) study a related but fundamentally different problem. They assume

underactuation in the robot hand which makes difficult to sense the hand conőguration

and the position of the contacts between the hand and the object. Readings from

the hand encoders are not available as well in the considered scenario. Instead, they

measure the pose of the tip of the object using a őducial marker and combine it with

geometric grasp constraints within a particle őlter. The őlter weights several hand

conőguration hypotheses using the information of the observed object’s movements

and iteratively tracks the hand conőguration. The proposed őlter is eventually used to

control the pose of the grasped object without using joints encoders nor tactile sensing.

Although some of methods presented in this section estimate the pose of both the

object and the end-effector separately, e.g. (Hebert et al., 2012) and (Wen et al., 2020b),

none of them explicitly consider the possibility that the object undergoes non-negligible

relative motions with respect to the end-effector. This hypothesis is considered instead

in Costanzo et al. (2020). The authors study in-hand object manipulation tasks under

the hypothesis that the object might slide between the őngers of a parallel jaw gripper

equipped with tactile sensors. They control the grip force acting on the object in order

to avoid possible rotational slippage or generate in-hand object rotations that allow

changing the grasp conőguration without performing re-grasping. In order to close the

control loop, they estimate the relative rotational velocity of the object with respect to

the őngers using an Extended Kalman Filter that incorporates a dynamical model of

the rotational friction acting on the object.
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In the Chapter 6 of this Thesis, I will consider a scenario that is closely related to

that of (Costanzo et al., 2020) as regards the perception of the object state. Speciőcally,

I will address the problem of estimating the relative translational velocity of the object

with respect to the őngers of a humanoid robot hand during in-hand sliding motions

using tactile sensors. The estimate is obtained using an Extended Kalman Filter whose

measurement model is learned from ground-truth data using the differentiable Kalman

őltering paradigm (Kloss et al., 2021; Lee et al., 2020). In this regard, the presented

developments do not extend the work presented in (Costanzo et al., 2020), rather they

explore a different approach to addressing the object perception problem while focusing

on translational motions instead of rotational ones. We remark that, differently from

(Costanzo et al., 2020), this Thesis does not address the problem of controlling the

object sliding motion.

Optimization-based methods

Izatt et al. (2017) use the optimization-based framework DART (Schmidt et al., 2014)

for object tracking from depth-images to combine depth data with tactile point clouds.

The tactile point clouds are reconstructed using the vision-based sensor GelSight (Yuan

et al., 2017) while the object is manipulated by the robot end-effector. Interestingly,

the proposed method explicitly models the non-penetration constraint between the

hand and the object to favour physically plausible object pose estimates. This work

demonstrates that the addition of contact-based geometric information signiőcantly

improves the tracking performance during contact, and provides robustness to occlusions

of small objects due to the robot end-effector.

The DART framework (Schmidt et al., 2014) is similarly used in (Schmidt et al.,

2015) where the vision-based sensors are substituted with more general force-torque

sensors and touch sensors for contact detection.

Fusion of visual and tactile sensing is also explored in Yu and Rodriguez (2018a).

The authors use the incremental smoothing and mapping tracking framework (iSAM)

(Kaess et al., 2008) to track the pose of a known planar object during pushing actions.

The task is accomplished by fusing a global visual prior with local contact sensing

implemented using force-torque sensors. The method runs faster than real-time at 100

Hz. Differently from other works, this method considers a simple 3D tracking scenario

which accounts for the 2D Cartesian position on the plane and one rotational degree of

freedom. On the other hand, it is one of the few to model the object pushing constraint
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which is more challenging than usual in-hand object interactions where the object is

constrained by the őngers of the end-effector.

We remark that the above mentioned methods track the object pose by using

visual and tactile data at the same time. Instead, the methods presented in this Thesis

consider the two sensing modalities separately. Nonetheless, these methods are reported

for the sake of completeness.

Very recently, Liang et al. (2020) propose to use GPU-accelerated parallel simula-

tions of the hand-object interaction in an online particle-based optimizer to track the

6D object pose of the object using tactile feedback. The considered scenario is that

of in-hand object manipulation where, differently from other works, relative motions

between the őngers and the object are allowed. The proposed method is initialized

using a noisy visual prior. Interestingly, this is one of the few works that explicitly

considers the object slippage with a speciőc constraint in the problem formulation. The

results are obtained using simulated and real data from a robot setup. However, the

slippage constraint is implemented only in simulation. In this respect, the developments

from the Chapter 6 of this Thesis provide insights on a closely related problem, i.e.

tracking in-hand object sliding motions from tactile data, supported by experimental

results from a real robot setup.

3.5.3 Joint object reconstruction and pose tracking

We would like to mention few works that extend the problem of tracking the pose of

the object to the joint tracking of the pose and reconstruction of the model of the

object. Although this Thesis does not address the problem of reconstructing the model

of the object, the following works are reported for the sake of completeness.

Kumru and Özkan (2021) propose a Gaussian processes-based method to jointly

tracks the object position, orientation and velocity, together with the shape of the

object from a partial 3D point cloud of the object. The method is implemented

efficiently by casting the Gaussian process regression to an iterative Extended Kalman

őltering task. Remarkably, the proposed method provides an analytical description of

the 3D object shape together with conődence intervals that can be used to understand

which parts of the shape estimate are more uncertain and require more information to

be reőned. Furthermore, given that the shape is not only estimated but tracked over

time, this method potentially extends to non-rigid objects.

In (Grinvald et al., 2021), the authors use a single Truncated Signed Distance

Function (TSDF) (Curless and Levoy, 1996; Osher and Fedkiw, 2003) volume to
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reconstruct the surface belonging to all the objects in the scene. The object pose is

then tracked by using ICP on the reconstructed surfaces and the partial point cloud of

each object, segmented using an external source of object masks. A major limitation

of this method is that it does not reach real-time performance. Nonetheless, it is worth

mentioning as it reconstructs and tracks several objects at the same time.

3.6 Deep learning for object pose tracking

In this section, I will present methods for 6D object pose tracking and reőnement that

use a full machine learning or deep learning formulation to accomplish the task.

3.6.1 Object pose tracking

Joseph Tan et al. (2015) use random forests (Denisko and Hoffman, 2018) to track the

pose of a rigid object from depth images in real-time. The tracking problem is cast as

a registration problem between the 3D points on the model of the object and the 3D

points from the depth image. The errors between corresponding points are used as

inputs to the random forest that is trained to predict the relative transformation that

aligns the point clouds. Application of such relative transformation to the previous

estimate allows tracking the object in consecutive frames. In order to track objects

from different camera viewpoints, the training dataset contains the data corresponding

to a őxed number of camera poses sampled around the object. The proposed method

is able to provide the transformation even when using a subsets of the points from the

visible object surface, which makes it robust to possible occlusions.

In (Garon and Lalonde, 2017), the authors propose to use a Convolutional Neural

Network (CNN), which takes two RGB-D images as input, to directly regress the

transformation in the object pose between consecutive time stamps. The őrst image

fed to the CNN is the current observation from the camera, cropped according to

the previous object pose. The second image is a synthetic rendering of the RGB and

depth channels obtained using a textured 3D model of the object according to the

previous pose. The training set is obtained by sampling several camera poses and

generating pairs of images where the current observation from the camera is simulated

by rendering the object on synthetic background and applying random background,

noise and lightning. The actual tracking is obtained, as usual, by applying the regressed
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transformation to the previous object pose. This work compares against (Joseph Tan

et al., 2015), showing better performance in terms of translational and rotational errors.

The idea of comparing rendered images with current observations is also considered

in (Leeb et al., 2019). Differently from the previous work, object crops are here

substituted with the output of a segmentation recurrent neural network, based on

Long Short-Term Memory (LSTM) (Yu et al., 2019). The network takes as input

the previous and current RGB frame and the previous mask. The actual tracking

is obtained by means of two additional LSTM-based networks that take as input

the previous and current RGB frames and masks and provide the object translation,

scale and rotation as the output, respectively. The training set is obtained using a

synthetic image generator that randomly picks object sizes, textures and initial poses.

According to the authors, the tracking accuracy is maintained only for the őrst 30 to

60 frames, including frames with occlusions, implying that this method is not suitable

for long-term tracking without re-initialization.

Recently, Wen et al. (2020a) proposed se(3)-TrackNet which shares very similar

ideas to (Garon and Lalonde, 2017). Nonetheless, their implementation achieve an

interesting frame rate of 90 fps. Furthermore, they provide results on the commonly

adopted YCB-Video dataset (Xiang et al., 2018) which makes easier to compare to

their work. The experimental results from the Chapter 4 of this Thesis emphasize some

limitations of this method. Although it shows remarkable results when initialized using

the ground truth pose of the object, it proves to be very sensitive to perturbations

to the initial condition leading to early track loss. Similarly, experiments on tracking

fast object motions, from Chapter 5, result in track loss after few frames. As the

experimental results from this Thesis will prove, hybrid architectures for 6D object

pose tracking, as those proposed in Chapters 4 and 5, are more robust to perturbations

of the initial conditions and better suited to track fast object motions.

In (Dubeau et al., 2020), the authors extend their previous work (Garon and

Lalonde, 2017), mentioned above, by considering an additional source of information

in the form of events from an event camera. The integration is obtained by training

an additional network which predicts the relative object pose transformation given

the input events. The transformation is combined with the previous pose estimate to

obtain a new prediction. Finally, the prediction is used to render a synthetic RGB-D

frame of the object as required by the original pipeline in (Garon and Lalonde, 2017).

This way RGB-D data and events are combined in a single pipeline.
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Very recently, Ge and Loianno (2021) proposed VIPose. They adopt the same

strategy as (Garon and Lalonde, 2017) and (Wen et al., 2020a). However, they do not use

depth and, instead, provide inertial measurements, from an Inertial Measurement Unit

(IMU) attached to the camera, to the network. This addition makes the predicted inter-

frames transformation more robust to severe occlusions of the object as the information

on the object motion can be recovered from the IMU data. One considerable limitation

of this method is that the inertial information is consistent with the apparent motion

of the object in the camera plane only if the object is not moving. In this respect, the

method presented in the Chapter 5 of this Thesis, which complements the RGB data

with the information on the 6D motion of the object extracted from the optical ŕow,

can be used regardeless of whether the camera and/or the object are moving or not.

We stress the fact that most of the methods from this section, namely (Dubeau

et al., 2020; Garon and Lalonde, 2017; Ge and Loianno, 2021; Wen et al., 2020a)

require a separate training for each object of interest in order to learn the tracking

task. In this regard, in the Chapter 4 of this Thesis I will describe a depth-based 6D

object pose tracker which has much modest training requirements resolving to that of

a segmentation network. The segmentation network can be trained for a set of objects

in the őrst place, without requiring a separate training for each object. Furthermore,

recent works, such as (Ceola et al., 2021), have shown that it is possible to extend the

segmentation task to new objects, not considered in the original training set, online in

a few seconds. To the best of our knowledge, a similar extension is not possible at the

moment with deep learning architectures for 6D object pose tracking.

3.6.2 Object pose reőnement

The following algorithms share several similarities with those presented in the previous

section. Nonetheless, given that they are officially presented as łpose reőnement”

methods, they are described in a separate section.

Manhardt et al. (2018) train a deep neural network to predict the inter-frame object

pose transformation from RGB data. Differently from the other methods, a new visual

loss is proposed that drives the pose update by minimizing the alignment error of

the object contours. This choice makes the algorithm segmentation-free, robust to

occlusions and agnostic to symmetries. The method can run in real-time making it

feasible for tracking purposes. The claimed accuracy is similar to that of 3D ICP

methods without the need for depth data. We remark that this method requires a

separate training for each object using synthetic images.
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According to the authors of Li et al. (2018), the gap between Manhardt et al.

(2018) and depth-based methods is nonetheless still large. For this reason they propose

another pose reőnement method, called DeepIM. Given an initial pose, the network

iteratively reőnes the object pose by matching the rendered image against the observed

RGB image. Interestingly, and differently from all the other learning-based methods

presented thus far, the structure of DeepIM is inspired to that of networks for optical

ŕow estimation such as FlowNet (Dosovitskiy et al., 2015). Indeed, taking the observed

and rendered image and their corresponding masks as input, the convolution layers of

FlowNet are used to output a feature map which is then fed to several fully connected

layers to predict the relative pose. According to the authors, the obtained results show

that intermediate representations related to optical ŕow are better suited for pose

reőnement rather than standard CNN features specialized for, e.g., object recognition

tasks. Interestingly, the method presented in the Chapter 5 of this Thesis, named

ROFT, shares similarities with this method as it uses the optical ŕow to estimate the

6D object velocity. The velocity is then used to update the object pose, a process

which resembles the object pose reőnement step of DeepIM. A substantial difference

between the two methods is that DeepIM uses the features of the network FlowNet

to accomplish the task, while ROFT uses the plain optical ŕow and a Kalman Filter

without the need for additional training.

3.7 Hybrid approaches for object pose tracking

The chapter ends with an overview of state-of-the-art hybrid methods for object pose

tracking and reőnement. These methods combine Deep Learning techniques with

Bayesian őltering or optimization.

3.7.1 Object pose tracking

Bayesian őltering-based methods

SegICP (Wong et al., 2017) incorporates off-the-shelf object segmentation networks

with a multi-hypothesis point cloud registration procedure in order to estimate the

pose of the object given its 3D model. The obtained pose is used as a measurement

update in a Kalman őlter to track the object pose and velocity. Although this work

shares many similarities with the method proposed in the Chapter 4 of this Thesis,

named MaskUKF, it lacks an experimental validation against a standard dataset using
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standard metrics. Moreover, it does not provide comparisons with other state-of-the-art

methods. In this respect, the experimental evaluation of MaskUKF provides a more

clear picture on how an object segmentation-aided depth-based 6D tracker compares

with the state of the art.

PoseRBPF (Deng et al., 2019) formulates the object pose tracking problem as a

Rao-Blackwellized particle őler (Särkkä, 2013) with decoupled rotation and translation

tracking. The particles are used to represent possible hypotheses of the translational

part of the state. The rotation space is instead represented using the latent space of

an autoencoder (Martin et al., 2018) for image reconstruction. Rotation tracking is

implemented by discretization of the rotation space into bins each associated to an

embedding in the latent space. By comparing the latent vectors with the embeddings

associated to the input image, the full rotational distribution of the object is tracked.

Furthermore, the latent vectors allow weighting the particles of the őlter. State-of-the

art performances are achieved using a considerable number of particles resulting in non

real-time performance. This fact represents a practical limitation when tracking fast

object motions. Moreover, the fact that the state space is explored via random walks,

as typically done in particle őlters, also affects the performance in this scenario leading

to track loss. These statements will be supported by the experimental evaluation

from the Chapter 5. We remark that this method requires training the autoencoder

separately for each object of interest given a textured 3D mesh model.

Optimization-based methods

Similarly to SegICP, MaskFusion (Runz et al., 2018) takes advantage of deep neural

networks for object segmentation to identify parts of the RGB-D image where the

object of interest is present. However, it does not require the model of the object as

it is substituted with a set of surface elements, termed łsurfels”, that are constructed

online while the RGB-D camera scans the scene. The surfels-based representation is

used to track the object pose in real-time by minimizing the distance between the

3D measured points, extracted from the depth image, and the points sampled on

the surfels. The cost function also includes a photometric term which matches the

measured points with the sampled points according to the constancy of the brightness.

Remarkably, this method is compatible with slow segmentation networks as it uses

a coarser depth-based segmentation method when the output of the network is not

available. In this regard, we recall that the method presented in the Chapter 5 of

this Thesis similarly handles slow and delayed sources of object segmentation masks.
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Differently from MaskFusion, it does not require an additional segmentation method

when the masks are not available, rather it exploits the availability of high frame rate

optical ŕow to propagate the measured masks.

Zhang et al. (2020) combine off-the-shelf object segmentation networks, partial

point clouds of the object and the measured optical ŕow to estimate and track the pose

and the linear velocity of the object. In order to estimate the pose of the object, the

3D points on the object at the previous frame are back-projected to the image plane

and propagated with the measured optical ŕow. The same 3D points are also updated

according to the pose to be optimized, back-projected and compared with the points

propagated with the optical ŕow until their distance is minimized in least-squares

sense. Remarkably, the proposed method also reőnes the measured optical ŕow such

that the points distance is further minimized. On the other hand, it does not provide

any strategy to handle possibly slow segmentation networks. The method presented

in the Chapter 5 of this Thesis, named ROFT, is similar to this method as it uses

the optical ŕow to reason on the motion of the object in the 2D space and update

the object velocity accordingly. Differently from this method, ROFT can handle slow

object segmentation sources. Furthermore, ROFT estimates the full 6D object velocity,

i.e. both linear and angular, instead of the linear velocity solely. This method does not

reach real-time performance and reaches a maximum frame rate of 6 fps.

Similarly to (Dubeau et al., 2020), the authors of (Masuda et al., 2021) propose

to use events from an event camera to track the object pose and velocity. Differently

from pure deep learning approaches, which directly regress the inter-frame relative pose

using the accumulated events, the authors train a differentiable Multilayer Perceptron

network (MLP) (Haykin, 1999) that compares the measured events with the object

pose and velocity, producing an estimation error as output. Once the error network

has been trained, an optimization problem is used to őnd the object pose and velocity

which minimizes the error online. We report this method for the sake of completeness,

given that this Thesis does not address the task of object pose tracking using event

cameras.

Hybrid approaches for object pose reőnement are also proposed in the literature.

In (Periyasamy et al., 2019), the authors propose a pose reőnement approach where

the rendered and observed scene are not compared in the RGB space directly. Instead,

the authors propose to map the predicted pose and the current observation to a

common abstract feature space that is learned in a self-supervised manner from pixel

correspondences. The path from the predicted pose to the feature space, for each
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pixel, is obtained using a differentiable renderer, i.e. a renderer that can be inverted.

This feature makes possible to őnd the inter-frame pose transformation by minimizing

online a simple pixel-wise error in the abstract space using a őrst-order gradient-based

optimizer. The method reaches quasi real-time performance, i.e. 20 fps, making it

feasible for tracking purposes.

Very recently, (Iwase et al., 2021) proposed a similar approach as in (Periyasamy

et al., 2019) while increasing the achievable frame rate up to 92 fps. Furthermore, this

method does not require the texture of the 3D models of the object at training time.

3.7.2 Object/end-effector pose tracking

In this last section, I present several recent works that use a combination of machine

learning and Kalman őltering or optimization to track the pose of objects mainly

during pushing and insertion tasks using vision and touch. One of the reasons for using

machine learning in this context is the ever-growing diffusion of tactile sensors based

on visual sensing or made from soft materials. The output of these sensors might be

challenging to integrate in classical Kalman őltering and optimization pipelines because

it is high-dimensional or difficult to be interpreted and modelled. Using machine

learning allows extracting intermediate representations that can be integrated more

easily in the tracking process.

In the Chapter 6 of this Thesis I considered a related scenario, i.e. that of tracking

the sliding motion of an object between the őngers of a multi-őngered hand using

soft tactile sensors. Although the kind of interaction between the object and the

end-effector is different, i.e. sliding in lieu of pushing or object insertion, the reasons

for using an hybrid approach still hold, i.e. extracting intermediate representations of

the measured signal that are compatible with the tracking framework. To the best of

our knowledge, the proposed method represents one of the őrst tentatives to track the

sliding motion using an hybrid paradigm. On the other hand, model-based approaches

which address a similar problem, e.g. (Costanzo, 2021; Costanzo et al., 2020; Liang

et al., 2020), have been proposed.

Bayesian őltering-based methods

Lee et al. (2020) propose to use differentiable Kalman őlters (Kloss et al., 2021) to learn

how to optimally fuse different sensor modalities, such as vision and touch. Speciőcally,

differentiable őlters allow learning the dynamics and measurement models from data
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while preserving the algorithmic prior of the Kalman őlter prediction and correction

steps. The approach is tested within simulated 2D object pose tracking tasks involving

planar pushing and in-hand manipulation. The proposed learned őlters show the

ability to adaptively select the correct sensing modality to be used, among vision and

touch, when vision is available and the contact is missing or, vice versa, when the

contact information is available and the object is occluded in the input images. We

recall that the differentiable Kalman őltering paradigm has been used to develop the

method presented in the Chapter 6. Speciőcally, it has been used to learn a possible

measurement model of soft tactile sensors, which relates the output of the sensors with

the object velocity.

Optimization-based methods

Yu and Rodriguez (2018b) propose to use the same optimization framework as in Yu

and Rodriguez (2018a), which fuses visual and tactile measurements to track the pose of

a pushed object, in a different scenario. Speciőcally, they consider the task of inserting

an object picked by a suction cup into a tight space. Although the original framework

is able to compensate weak visual sensing in presence of occlusions with local tactile

sensing, the task of interest introduces further challenges. Indeed, the insertion task

makes difficult to detect the position of the contact points between the object and the

insertion space. The authors tackle this problem by training a Support Vector Machine

(SVM) (Haykin, 1999) network to classify the type of contacts among a set of possible

conőgurations. The additional information is integrated in the optimization problem

by providing additional constraints which make the estimated object pose compatible

with the contacts.

Recently, Suresh et al. (2021) re-proposed the framework for visuo-tactile tracking

of a pushed object (Yu and Rodriguez, 2018a), mentioned above, and extended it to

the task of joint pose and shape estimation. The problem is formulated as a factor

graph optimization problem (Dellaert and Kaess, 2017) which associates visual and

tactile information with the shape of the object that is updated by training a Gaussian

process implicit surface (GPIS) (Williams and Fitzgibbon, 2006) online using tactile

data.

More recent works exploit the availability of vision-based tactile sensors (Lambeta

et al., 2020; Yuan et al., 2017). These sensors provide rich contact information in the

form of RGB images capturing the local deformation of soft materials covering the

sensor itself.
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Sodhi et al. (2021a) use the Digit (Lambeta et al., 2020) vision-based tactile sensor

to estimate the pose of a planar object being pushed by a manipulator. They őrst

learn a suitable observation model that maps consecutive tactile images to the relative

pose of the sensor. Then, they combine this information within a factor graph-based

optimization (Dellaert and Kaess, 2017) approach for object pose tracking using tactile

feedback alone.

Very recently, the same authors (Sodhi et al., 2021b) tackle the problem of tracking

the 6D pose of small objects during in-hand manipulation using vision-based tactile

sensors. They use again factor graph optimization to infer the object pose given

measurements of the normals of the surface of the object in contact with the sensor. The

normals are obtained from the tactile images using an adversarial network (Goodfellow

et al., 2014) trained supervisedly using pairs of tactile and surface normal images

obtained in simulation and from the real setup after manual labelling.



Chapter 4

Object segmentation-aided 6D Object

Pose and Velocity Tracking

Object perception is one of the key challenges of modern robotics, representing a

technology enabler to perform manipulation tasks effectively. Speciőcally, the estimation

and tracking of the 6D pose of objects from camera images is useful to plan grasping

actions while taking into account possible obstacles directly in the 3D world. Object

manipulation is another important application, where the evolution of the object pose

and velocity over time is fundamental for closing the control loop.

The problem of 6D object pose estimation and tracking from RGB(-D) images

has been extensively addressed in the past both in the computer vision and robotics

community, the latter focusing on solutions based on the use of Kalman and particle

őltering techniques (Issac et al., 2016; Vezzani et al., 2017; Wüthrich et al., 2013).

Recently, deep learning techniques have been employed to solve the 6D object pose

estimation problem (Li et al., 2018; Peng et al., 2019; Song et al., 2020; Wang et al.,

2019; Xiang et al., 2018). The ever-growing availability of tools for synthetic data

generation made possible to train these methods without the need to manually label

massive amount of data as in the past. Although the proposed methods have shown

impressive results on standard benchmarks, it is still not clear whether their performance

is adequate enough for robotics. As an example, some of these methods have been

successfully employed in one-shot grasping tasks (Wang et al., 2019). However, to

the best of our knowledge, the possibility of closing the loop for tasks that require a

continuous estimation of the object pose has not yet been thoroughly assessed.

Deep learning has been recently employed also in 6D object pose tracking method-

ologies. PoseRBPF (Deng et al., 2019) combines Rao-Blackwellized particle őltering
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with a deep neural network in order to capture the full object orientation distribution,

even in presence of arbitrary symmetries. Its best performance is achieved only with a

large amount of particles, leading to low frame rates. Moreover, the method requires a

separate training for each object. se(3)-TrackNet (Wen et al., 2020a) instead departs

from the hybrid paradigm and proposes a full end-to-end deep learning architecture.

Speciőcally, it learns how to predict the change in the pose of the object between

consecutive images, i.e. it tracks the pose of the object, given the current RGB-D

observation and a synthetically rendered image of the object at the previous instant of

time. Although the idea to completely replace the algorithmic prior given by Kalman

and particle őltering with a neural network certainly deserves to be investigated, it

is not clear how this method behaves if the residual pose between consecutive steps

gets too large, for whatever reason, than the residuals seen at training time. Like

PoseRBPF, se(3)-TrackNet needs to be trained separately for each object.

Given the above considerations, during the PhD I proposed a method (Piga et al.,

2021a), called MaskUKF, that uses 2D binary masks and an Unscented Kalman Filter

(UKF) (Wan and Merwe, 2000) to track the pose and the velocity of the object from

depth observations. MaskUKF provides similar or superior performance to state-of-the-

art 6D object pose estimation and tracking methods without the need to be trained

separately for each object of interest. Indeed, the training requirements reduce to that

of a deep neural network for 2D object segmentation of a set of objects. Moreover, the

proposed method proves to be more robust to perturbations of the initial condition of

the object pose with respect to the compared 6D object pose tracking methods.

The major contributions, discussed in the present chapter, are the following:

• The design and the implementation of a 6D object pose and velocity tracker which

conveniently combines deep learning, only for the task of 2D object segmentation,

with classical Kalman őltering and that does not need to be trained separately

for each object of interest.

• The explanation on how to use depth information directly in an Unscented

Kalman őltering setting and how to leverage recent advances in Sequential

Unscented őltering to reach real-time performance.

• The rigorous benchmark of the method on the renowned YCB-Video dataset

against state-of-the-art 6D object pose estimation methods and tracking methods,

with particular attention to the usage of the same initial conditions for all the

compared methods.
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• The design of a heuristic 1-parameter procedure to identify and reject outliers in

the depth observation which increases the tracking performance.

• The execution of experiments on a humanoid robot platform in simulation which

shows the importance of joint pose and velocity tracking in a robotic setting where

closed loop control is employed and the necessity to prefer tracking methods over

pose estimation in this setting.

The proposed method has been also compared against a baseline consisting in a

simpler architecture which uses an Iterative Closest Point (ICP) (Besl and McKay,

1992) registration algorithm from Rusu and Cousins (2011) and the masks from the

segmentation network.

A video of the experiments is available online1. The code used for the experiments

is made publicly available for free with an Open Source license online2.

The remainder of this chapter is organized as follows. In Sec. 4.1, I present the

proposed method in detail with the help of the theory from Chapters 2 and 3. The

experimental results of the evaluation on the YCB-Video dataset are provided in Sec.

4.2. Finally, in Sec. 4.3, I discuss the results of the closed loop control experiments

with a humanoid robot platform in simulation.

4.1 Description of the method

The proposed method tracks the pose Tt and the velocity Vm
t of an object of interest O

using a Unscented Kalman Filter given a partial point cloud C(Mt, Dt) of the object

deőned as in Eq. (3.29). It is recalled that Dt is the depth image at time t while Mt is

a set of pixel locations in the input RGB image It that contain the object of interest.

In the scenario considered for this approach, it is assumed that an object seg-

mentation algorithm is available in order to identify the object of interest within the

image It and provide the set of locations Mt, in the following referred to as the object

segmentation mask.

In the remainder of this section, all the components of the tracking algorithm are

described.
1https://www.frontiersin.org/articles/10.3389/frobt.2021.594583/full#supplementary-material
2https://github.com/hsp-iit/mask-ukf

https://www.frontiersin.org/articles/10.3389/frobt.2021.594583/full#supplementary-material
https://github.com/hsp-iit/mask-ukf
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4.1.1 Deőnition of the state and the measurements

The state to be tracked xt is deőned as

xt =













pt

vmt

ot

ȯt













∈ R
12, (4.1)

where

• pt ∈ R
3 is the positional part of the pose Tt;

• ot ∈ R
3 is an Euler ZYX parametrization of the rotational part Rt of the pose Tt;

• vmt is the linear velocity part of the mixed velocity Vm
t ;

• ȯt :=
dot
dt
∈ R

3 is the vector of the angular rates.

It can be easily shown (Stevens et al., 2015) that the angular velocity part ωt of the

mixed velocity Vm
t can be obtained as a linear function of the angular rates

ωt =







0 −sϕ cϕcχ

0 cϕ sϕcχ

1 0 −sχ






ȯt, (4.2)

where ϕ, χ and ψ are the Euler angles composing ot and cα, sα are shorthands for

cos(α) and sin(α) for a given angle α, respectively. We remark that the matrix in Eq.

(4.2) is singular if cχ = 0. Nevertheless, in the following developments we will not use

the inverse map from the angular velocity to the angular rates.

The point cloud set C(Mt, Dt) is used as a measurement

zt =
[

zT1,t · · · zTj,t · · · zTLt,t

]T

∈ R
3Lt , (4.3)

where each subvector zj,t ∈ R
3 is the j-th vector in the set C(Mt, Dt) and Lt is the

cardinality of the set at time t. The cardinality changes over time as the number

of points on the object surface that are visible from the camera viewpoint depends

on the object pose and might vary due to occlusions. We remark that the adopted

tracking framework, i.e. the Unscented Kalman őlter, naturally handles time-varying

measurement models.
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4.1.2 Choice of the őltering algorithm

In order to track the state of the object, we adopted the Unscented Kalman Filter for

the following reasons:

• the ability to handle model and measurement functions f and h even if they are

not provided with an analytical expression (as in this scenario for the measurement

function h, later described);

• the availability of a sequential variant of the algorithm, discussed in Sec. 2.2.3,

that efficiently processes high-dimensional measurements as in the case of point

clouds;

• the recognized superiority (Julier and Uhlmann, 2004; Wan and Merwe, 2000)

over alternatives based on linearization, e.g. the Extended Kalman Filter, in

terms of unbiasedness and consistency.

Considering the above motivations, I adopted the Algorithm 7 łSequential Unscented

Kalman őlter” to accomplish the task at hand. Furthermore, given that the state xt
contains several angular components, i.e. the Euler angles, the algorithm has been

modiőed to take them into account as in the Algorithm 8 łUnscented Kalman őltering

using Euler angles”.

4.1.3 Motion model

The motion model accounts for the prior knowledge about the motion of the object.

We adopted the White Noise Acceleration model (WNA) (Bar-Shalom et al., 2002)

from the tracking literature.

The WNA model assumes that the second derivative of the position p̈(t) ∈ R
3 is

driven by a white noise process wr(t) with assigned power spectral density Qp ∈ R3×3.

The same model has been used for the rotational part of the state, with power spectral

density Qo, resulting in

r̈(t) = ωr(t),

ö(t) = ωo(t).
(4.4)

In order to obtain a discrete time model as in Eq. (2.7), we discretized the WNA

model assuming constant linear velocity and angular Euler rates within each sampling
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period ∆t. The őnal model is as follows

xt = f(xt−1, wt−1)

= Fxt−1 + w,

w ∼ N (0, Q),

(4.5)

where F is the state transition matrix, that depends on ∆t, and Q is the process

noise covariance matrix depending on Qp, Qo and ∆t. The complete expression of the

matrices is as follows:

F =













I3 I3∆t 0 0

0 I3 0 0

0 0 I3 I3∆t

0 0 0 I3













∈ R
12×12, (4.6)

Q =
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∈ R
12×12. (4.7)

4.1.4 Measurement model

The speciőcation of the measurement model accounts for the deőnition of the function

h in Equation (2.8). The role of h is to establish the relationship between the state xt
and the measurements that we expect to observe when the object O is in conőguration

xt. To this end, given a triangle mesh description of the object (see Sec. 3.2) and a

őxed list of Lm points {Aj} sampled on the mesh, the predicted point cloud of the

object in conőguration xt

C({Aj}, xt) = {aj,t(Aj, xt)},

as deőned in Eq. (3.31), is considered. For the sake of clarity, we omit the explicit

dependence of the coordinates aj,t from the point Aj and the state xt in the following.

In order to actually implement a Kalman őltering approach, it is required to decide

how to compare the Lt measured points coordinates zj,t ∈ R
3 with the Lm predicted

points coordinates aj,t, i.e. to solve the problem of associating the elements belonging

to the two sets. In this respect, we adopted a likelihood őeld-based model (Thrun
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et al., 2005) for which the overall point cloud vector zt is considered as an ensemble of

independent points zj,t each distributed according to a normal distribution

zj,t ∼ N (πj,t, σ
2
j I3), (4.8)

where the mean πj,t is deőned as the point aj,t having minimum distance from the real

measured point zj,t
πj,t(xt) = arg min

ak,t
∥zj,t − ak,t∥ . (4.9)

The above equations can be easily cast into the following measurement model

zt = ht(xt) + νt,

νt ∼ N (0, Rt),
(4.10)

where

ht(xt) =
[

π1,t(xt)
T . . . πLt,t(xt)

T
]T

,

Rt = diag(σ2
1I3, . . . , σ

2
Lt
I3).

(4.11)

In summary, given the object in conőguration xt, the point cloud that we expect

to observe is predicted by projecting the measured point cloud zt on the surface of

the object. This choice represents a possible, although not unique, solution to the

problem of associating the measured point cloud with the predicted one. Nonetheless,

it guarantees that the size of the sigma points of the measurements Z(i)
t , hence the

size of the predicted mean of the measurement, µz,t, is the same as the size of the

measurement vector zt. This assumption is required to evaluate the Kalman innovation

and perform the correction step. Alternative solutions, e.g. projecting the points {Aj}
sampled on the mesh onto the measured point cloud, would possibly produce vectors

of incompatible sizes thereby making impossible to execute the algorithm.

It is worth mentioning that the resulting measurement model is nonlinear with

additive noise and the noise covariance matrix Rt has a diagonal block structure as

required by the hypothesis of the Sequential Unscented Kalman Filter (see Algorithm

7).



4.1 Description of the method 107

Implementation of the measurement function

In order to implement the Unscented Kalman correction step using the measurement

equation (4.11), it is required to solve the Lt(2n + 1) optimization problems corre-

sponding to the evaluation of the Lt projections πt,j in Eq. (4.11) for each of the 2n+1

sigma points as per the Eq. (2.82).

To reduce the computational cost of these evaluations, we approximate the projec-

tions using a Nearest Neighbor approach. To this end, the points {Aj} are inserted in

a 3D k-d tree. Then, for each sigma point X−(i)
t , the measurements zj,t are transformed

to the reference frame of the object in conőguration X−(i)
t and an efficient Nearest

neighbour query is executed on the tree for each transformed measurement. The re-

sulting projections are then transformed back to the camera reference frame according

to the pose X−(i)
t .

We notice that the proposed measurement function is only available by means of

numerical evaluations, i.e. the output of the nearest neighbour search, but it does not

have an analytical form. This choice is made possible by the adoption of the Unscented

Kalman őlter that, differently from other alternatives such as the Extended Kalman

őlter, does not require the evaluation of the Jacobian of the measurement function

with respect to the state which might be intractable in this case.

We remark that the proposed approximation implicitly assumes that representing

the object model as a set of 3D points {Aj} is sufficient to accurately project the

measured point cloud on the surface of the object, as required by the measurement

model described in Sec. 4.1.4. In order to quantify how the approximation might

impact on the tracking performance, we also considered implementing the projections

in Eq. (4.11) by taking advantage of the full triangle mesh description of the object

model. Concretely, we adopted the Computational Geometry Algorithms Library

(CGAL) (The CGAL Project, 2022). This library allows evaluating the point in the

union of all the triangular primitives of the mesh, i.e. its trianglular faces, which is

closest to a given query point. A comparison of the overall performance obtained using

the two approaches, i.e. the k-d tree and CGAL, is discussed in Sec. 4.2.10.

4.1.5 Outliers rejection

Point clouds from modern RGB-D sensors are characterized by non Gaussian noise

and outliers that violate the hypotheses of the model in Equation (4.10) which might

induce biases in the estimates in Gaussian őlters such as the Kalman őlter (Issac et al.,
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2016). To tackle this, it is possible to try identifying the outliers and exclude them

from the measurement vector zt.

In this project, I proposed to identify the outliers by picking pairs of points on the

point cloud zt, zi,t and zj,t, and their projections, πi and πj respectively, on the surface

of the object in a conőguration corresponding to the previous state xt−1.

Under the assumption that the tracking process has already reached a steady state

condition, it is expected that the point cloud at time t őts very closely the surface

of the object in the estimated conőguration at time t− 1. As a result, the distance

dij between the two points and the distance dπij between their projections should be

almost preserved if both zi,t and zj,t are not outliers, i.e. belong to the surface of the

object. Then, by comparing the absolute difference between dij and dπij to a threshold

|dij − dπij| > δoutlier, (4.12)

it is possible to identify the presence of outliers. In such a case, the point among zi,t
and zj,t that has higher distance from its projection is marked as an outlier. I.e., if

∥zi,t − πi∥ > ∥zj,t − πj∥, (4.13)

then zi,t is marked as the outlier and vice versa.

Since outliers that violate the additive Gaussian noise hypothesis are usually

distributed relatively far from the actual surface of the object, we propose, as a

heuristic, to choose candidate pairs of points as the combination of one point zi,t and its

furthest point zfi,t on the point cloud for each point on the point cloud zt. Every time

an outlier is found, it is removed from the point cloud and the procedure is repeated

until all points have been visited. An efficient evaluation of the points zfi,t is obtained

using the algorithm proposed in (Curtin and Gardner, 2016).

4.1.6 Handling of missing or invalid measurements

The tracking process depends on the availability of the segmentation masks Mt that

are required to extract the point cloud of the object from the depth image Dt. The

tracking process is initiated using the őrst segmentation mask M0. Then, it is assumed

that a new mask Mt is available at each time step t. In case the mask is not available

at time t, the most recent available mask is used instead.
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Sometimes it might happen that the mask Mt is empty because the object is totally

occluded in the scene. In this case the point cloud of the object is not available. On

the other hand, it might also happen that the point cloud is available but the majority

of the points are not valid. This condition usually veriőes if the object of interest has

semi-transparent parts or parts of the texture that are not diverse enough for the depth

estimation process. In all these cases, the measurements zt are not reliable or are too

few to be informative enough. In order to actually determine if the measurements are

too few, we evaluate the ratio Lvalid
t

Lt
between the number of valid points and the total

number of points at time t, and compare it against a threshold ϵvalid.

Such an absence of measurements is usually counteracted by the usage of the Kalman

prediction step only. However, if the object is undergoing a motion characterized by

moderate to high velocities, this approach is discouraged and might lead to unbounded

estimates and track loss.

Alternatively, in this project I proposed to sample a virtual point cloud on the

mesh of the object in a conőguration corresponding to the previous estimate xt−1. The

resulting measurement will be indicated as zvirtualt (xt−1). We remark that the virtual

point cloud is not kept őxed, instead a new virtual cloud is sampled at each time t as

long as the absence of measurements endures. The advantage of this choice is that the

estimated velocities are driven to zero in case the absence of information persists for

multiple frames allowing the tracking process to safely recover when the measurements

are available again. We remark that this procedure does not arbitrarily alter the state

of the őlter which would impair the correctness of the state covariance associated with

the state.
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Figure 4.1 Illustration of the MaskUKF framework for 6D object pose and velocity
tracking. For each RGB-D frame, an object segmentation algorithm provides the
segmentation mask of the object of interest. The mask is combined with the depth
frame to produce a partial point cloud of the object that is further reőned to remove
possible outliers. The resulting measurements are fed into an Unscented Kalman őlter
to update the belief of the object pose and velocity.

MaskUKF: Instance Segmentation-aided 6D Object Pose and Velocity Tracking

1: procedure MaskUKF(µ0, P0, δ
outlier, ϵvalid)

2: µt=0 = µ0

3: Pt=0 = P0

4: for each (It, Dt) do
5: Mt ← InstanceSegmentation(It) or last mask available
6: zt ← C(Mt, Dt)
7: if Mt empty or (Lvalid

t /Lt) < ϵvalid then
8: zt = zvirtualt (µt−1) ▷ See 4.1.6
9: else

10: zt ← OutlierRejection(zt, δ
outlier) ▷ See 4.1.5

11: end if
12: (µt, Pt) = SequentialUKF(f(·), ht(·), µt−1, Pt−1, zt) ▷ See Algorithms 7, 8
13: ▷ See 4.1.3 for f(·)
14: ▷ See 4.1.4 for ht(·)
15: end for
16: end procedure

4.1.7 Resulting algorithm

The proposed algorithm for 6D object pose and velocity tracking is summarized in the

table entitled łMaskUKF: Instance Segmentation-aided 6D Object Pose and Velocity

Tracking”. The overall framework is also depicted in Fig. 4.1.
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4.2 Experimental evaluation

This section reports on the performance achieved by the proposed method on the

standard dataset YCB-Video (Xiang et al., 2018) and provides comparisons with

state-of-the-art algorithms for 6D object pose tracking. Following prior works (Deng

et al., 2019; Wen et al., 2020a), the comparison is also extended to 6D object pose

estimation algorithms as they solve a related task, although fundamentally different as

explained in Sec. 3.1.2.

The analysis includes the standard ADI-AUC metric (Xiang et al., 2018), as well as

the pose RMSE (Bar-Shalom et al., 2002) tracking errors. Furthermore, the evaluation

includes an ablation study where the outlier rejection mechanism in Sec. 4.1.5 is

disabled in order to assess its effectiveness. Qualitative results are also provided in

Figs. 4.2, 4.3, 4.4 and 4.5.

4.2.1 Description of the evaluation dataset

The YCB-Video dataset features RGB-D video sequences of 21 objects from the YCB

Object and Model Set (Calli et al., 2015) under different occlusion conditions. The

dataset contains 92 RGB-D video sequences recorded at 30 fps, split in a training set

of 80 videos and a testing set of 12 videos from which 2949 key-frames are extracted in

order to evaluate performance metrics. Every frame is annotated with segmentation

masks and 6D object poses.

4.2.2 Description of the compared algorithms

Pose tracking methods

PoseRBPF combines a deep convolutional autoencoder for implicit orientation en-

coding (Martin et al., 2018) with a particle őlter in order to track the position and the

orientation of the object over time from RGB-D observations. PoseRBPF requires a

textured 3D mesh model of the object both at training and test time. The autoencoder

needs to be trained separately for each object of interest. In order to be initialized,

the algorithm requires the 2D coordinates of the center of a bounding box enclosing

the object in the image. This algorithm can be considered as a representative of

the category of hybrid approaches which fuse Deep Learning and Bayesian őltering,

similarly to the proposed method.
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The comparison has been extended to more recent approaches based on Deep

Learning solely. One of these methods is se(3)-TrackNet, a deep convolutional neural

network that tackles the 6D object pose tracking problem end-to-end. Given a new

RGB-D image and a prediction of the RGB and depth images corresponding to the

previous estimate, obtained using a rendering software, the network predicts a relative

pose of the object between the previous and next time steps. se(3)-TrackNet requires

a textured 3D mesh model both at training and test time. It needs to be trained

separately for each object of interest. As regards the initialization, it requires the full

6D pose of the object.

It is worth recalling that the proposed method, MaskUKF, requires an instance

segmentation algorithm that can provide the segmentation masks of the object of

interest. This component is typically implemented as a deep neural network to be

trained once, for all the objects in a set, but not separately for each object. Furthermore,

recent advances in object segmentation, such as (Ceola et al., 2021), have shown that it

is possible to learn how to segment a new object, not considered in the original training

set, with an online training procedure taking a few seconds. MaskUKF requires a

non-textured 3D mesh model at test time. For the initialization stage, it requires the

full 6D pose of the object.

Pose estimation methods

DenseFusion (Wang et al., 2019) is a deep convolutional neural network that fuses

segmentation, RGB and depth information at the pixel level in order to regress the 6D

pose of the object. Similarly to the other methods, it requires a 3D mesh model of

the object at training time but it does not require it at testing time. It also needs the

object segmentation in order to extract the relevant part of the depth image, similarly

to MaskUKF, and of the RGB image. The algorithm is trained once, for all the objects

of interest.

DOPE (Tremblay et al., 2018) is another example of deep convolutional neural

network for 6D object pose estimation. Differently from DenseFusion, it uses the RGB

information only and avoid regressing the pose directly. Instead, it predicts a set of 2D

keypoints belonging to the object and whose 3D coordinates in the frame attached to

the object mesh are known. The 2D-3D correspondences are then used to estimate

the pose of the object resorting to the Perspective-n-Point (PnP) algorithm. The PnP

algorithm is a classic algorithm that is commonly used to estimate the pose of a moving

camera given a set of 3D points in the world and their corresponding 2D projections
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in the image. The algorithm requires a textured 3D mesh model at training time. It

needs to be trained separately for each object of interest.

Both methods do not require an initial condition as they are 6D object pose

estimation algorithms.

Baselines

As baseline, the classic point cloud registration algorithm ICP (Besl and McKay, 1992)

from (Rusu and Cousins, 2011) has been considered. In order to have a fair comparison

with the proposed method, the adopted ICP algorithm is assisted by segmentation

in order to extract the relevant part of the point cloud of the entire scene. It is also

equipped with its own outlier rejection procedure, similarly to MaskUKF.

Given that the ICP algorithm needs to be initialized with the 6D pose of the object,

at each iteration, we use the estimate from the previous frame as the initialization.

The ICP algorithm requires a non-textured 3D mesh model of the object at test time.

4.2.3 Description of the experimental setup

Source of segmentation masks

The proposed method relies on the availability of the segmentation masks Mt of the

object of interest as input. As source of segmentation masks, we considered two

alternatives. The őrst is the semantic segmentation network from the PoseCNN (Xiang

et al., 2018) framework as trained by the authors on all the 200k+ frames of the

YCB-Video dataset. The second alternative is the Mask R-CNN (He et al., 2017)

network, a consolidated region-based approach for object detection and segmentation,

trained using 50k frames from the same dataset.

The reason for using PoseCNN is that it is also adopted in DenseFusion. In order

to have a fair comparison, we use the same segmentation.

The reason for using MaskR R-CNN is that, differently from the segmentation

network from PoseCNN, it has not been proposed in the pose estimation and tracking

communities and represents an off-the-shelf and commonly adopted solution for object

segmentation.
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Source of points for point cloud prediction

The algorithm relies on the availability of a list of points {Aj} sampled on the surface of

the object O, required to make a prediction of the object point cloud given a candidate

pose of the object. To this end, we used the set of uniform point clouds sampled on

the mesh of the objects, that are provided within the YCB-Video dataset. Each point

cloud comprises 2621 3D points.

Initialization

The initialization of the tracking process is done resorting to the ground truth pose of

the object. However, given that the ground truth is not available in reality and in order

to reproduce a more reasonable scenario, we perturbed the ground truth pose with a

displacement of 5 cm along each Cartesian axis and a variation of 10 degrees for each

Euler angle. For the sake of completeness, we also provide the results obtained when

initializing with the actual ground truth, i.e. without the additional perturbation.

We remark that the same initial condition has been used for all the tracking

algorithms considered in the comparison and for the baseline ICP. When required, we

made use of the software implementation of the compared algorithms, as provided by

their authors, to execute the experiments using different initial conditions.

In the proposed scenario, re-initialization is not allowed during the tracking process

for all the algorithms. For this reason, we disabled the re-initialization mechanisms used

within PoseRBPF. Furthermore, as can be seen from the software implementation of

PoseRBPF, it executes the initialization stage repeatedly at time t = 0 and subsequent

times until the rotational error, evaluated with respect to the ground truth, is below a

given threshold. Given that the ground truth is usually not available in a real tracking

scenario, we disabled this mechanism, i.e. the algorithm is initialized once as all the

others. Nonetheless, for the sake of completeness, we report the results obtained when

using the above mentioned łmultistage” initialization step.

Choice of the algorithm parameters

In Table 4.1 we report the parameters of MaskUKF that we used for the experiments.

The values of the entries in the covariance matrices P0, Qp, Qr and Rt were chosen

empirically in order to ensure a fast response of the őlter while limiting, as much as

possible, the effect of the noise from the measured point cloud on the output.
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Table 4.1 Parameter set for MaskUKF for the experiments on the YCB-Video dataset.

Parameter Values
P0 (1:3,1:3) diag(10−2, 10−2, 10−2)m2

P0 (4:6,4:6) diag(10−2, 10−2, 10−2) (m/s)2

P0 (7:9,7:9) diag(10−2, 10−2, 10−2) rad2

P0 (10:12,10:12) diag(10−2, 10−2, 10−2) (rad/s)2

Qp diag(0.1, 0.1, 0.1) (m/s)2/s

Qr diag(0.2, 0.2, 0.2) (rad/s)2/s
Rt diag(0.001, · · · , 0.001)m2

δoutlier 0.01m
ϵvalid 0.2

As regards the outlier rejection mechanism, we set δoutlier to 1 cm. Ideally, this

parameter should be as small as possible to limit the number of false negatives, i.e.

points that are outliers but that are considered as valid. On the other hand, due the

noise in the measured point cloud, a too small value might lead to false positives,

i.e. points that are valid but that are erroneously classiőed as outliers. We found

experimentally that setting the threshold to 1 cm provides a good balance between the

two phenomena.

4.2.4 Description of the adopted metrics

Following prior work Wang et al. (2019), the ADI-AUC metric (see Sec. 3.4.3), with

the threshold ϵ set to 10cm is reported for each object and for the union of all the

objects, in order to determine the overall performance of the algorithms. Although

more strict, the ADD-AUC metric has not been considered, instead, as the proposed

algorithm, MaskUKF, and ICP do not use the RGB information. Hence, they cannot

distinguish between different orientations of objects that would look identical according

to the information provided by the depth only.

We evaluated the ADI-AUC metric on the 2949 key-frames provided by the YCB-

Video dataset.

As explained in Sec. 3.4.4, it is also important to compare the algorithms using the

RMSE metric from the őltering and tracking literature. In this respect, we used the

positional and rotational RMSE errors, deőned in Sec. 3.4.1. For objects that have

a pure cylindrical shape, the part of the angular error along the symmetry axis has

been neglected. In fact, algorithms that only use the depth information, as MaskUKF

and ICP, cannot infer the rotation along that axis. A similar reasoning was considered

for texture-less objects, whose rotation along the axes of symmetry, if any, cannot be

estimated even using RGB information.
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Table 4.2 Quantitative evaluation on YCB-Video dataset key-frames using the ADI-
AUC metric. A bold entry indicates a better result. For the tracking algorithms,
the best results are decided taking into account the experiment initialized with the
perturbed ground truth.

metric ADI-AUC, ϵ = 10 cm

method DOPE
Dense se(3)- PoseRBPF

ICP MaskUKF ICP MaskUKF
Fusion TrackNet (200 particles)

segm. -
Pose

- - PoseCNN Mask R-CNN
CNN

init. - - pert. gt pert. gt
gt

pert. gt pert. gt pert. gt pert. gt
(multi)

002 - 96.4 0.5 96.5 93.2 95.4 95.9 95.0 95.0 96.1 96.1 93.9 93.9 96.1 96.3
003 65.0 95.5 93.1 97.2 78.6 95.2 95.2 97.0 97.0 96.7 96.8 96.3 96.3 89.2 88.8
004 84.9 97.5 31.1 98.1 57.0 95.8 95.8 97.6 97.6 98.1 98.3 97.0 97.5 98.1 98.2
005 84.0 94.6 3.9 89.0 67.7 89.8 90.2 94.3 94.3 96.7 96.9 95.8 95.9 94.1 94.2
006 90.7 97.2 18.9 94.4 45.0 96.3 96.3 97.8 97.8 98.2 98.3 98.0 98.0 98.2 98.3
007 - 96.6 31.5 91.1 37.6 82.5 82.5 96.9 96.9 94.1 96.7 97.2 97.3 96.2 94.4
008 - 96.5 3.5 98.5 87.4 89.1 86.2 91.0 93.4 93.8 97.2 91.0 91.1 75.7 79.7
009 84.8 98.1 2.5 98.3 11.5 97.8 97.8 97.7 97.7 98.3 98.3 98.5 98.5 98.7 98.7
010 21.3 91.3 17.6 80.2 14.4 53.9 59.7 87.5 88.5 93.2 93.3 84.1 87.7 94.0 95.9
011 - 96.6 0.5 97.0 59.6 94.5 95.2 97.2 97.2 97.6 97.7 96.6 97.6 97.7 97.8
019 - 97.1 97.5 97.7 79.8 95.0 95.0 97.7 97.7 96.5 96.6 97.6 97.6 96.4 96.5
021 - 95.8 44.7 97.2 71.0 94.5 94.5 94.9 95.9 97.0 97.1 96.1 96.4 97.0 97.1
024 - 88.2 84.5 96.5 84.5 91.7 90.4 97.3 97.3 97.6 97.8 94.2 96.1 97.5 97.6
025 - 97.1 0.7 96.7 81.5 97.2 97.2 94.5 97.3 97.1 97.1 94.5 97.3 97.4 97.6
035 - 96.0 2.3 97.4 53.9 96.8 96.8 97.5 97.5 96.5 97.4 97.4 97.4 89.8 97.5
036 - 89.7 1.3 96.2 89.4 91.6 85.7 92.4 92.4 95.0 95.0 91.7 91.7 94.7 94.9
037 - 95.2 1.1 97.1 14.0 95.9 95.9 84.8 85.0 96.5 96.6 86.0 86.2 95.7 95.7
040 - 97.5 95.0 95.3 67.1 95.2 96.3 91.5 96.4 96.8 96.9 91.1 96.1 95.6 94.9
051 - 72.9 1.4 96.8 92.6 92.9 94.0 53.9 53.8 70.0 81.6 43.1 42.2 47.1 47.2
052 - 69.8 63.2 94.3 51.7 67.2 67.2 76.1 74.0 80.3 80.2 80.8 81.4 35.7 41.4
061 - 92.5 0.5 7.4 92.3 96.6 96.4 84.1 98.2 97.7 97.8 93.6 96.9 97.1 97.2
ALL - 93.1 30.3 92.8 63.9 89.9 90.2 91.9 92.6 94.2 95.3 91.5 92.3 89.5 90.4

We evaluated the RMSE metric on all the frames of each considered sequence from

the YCB-Video dataset, as it is common in the őltering and tracking literature.

4.2.5 Results: ADI metric

Table 4.2 shows the evaluation for all the 21 objects in the YCB-Video dataset using

the ADI-AUC metric.

For the tracking algorithms, the łinit.” row indicates the type of initialization.

Speciőcally, łpert.” indicates the initialization with the perturbed ground truth, łgt”

with the actual ground truth and łgt (multi)” indicates the PoseRBPF initialization

strategy which involves multiple frames.

Comparison with pose tracking algorithms

When considering both segmentation sources and the initialization with the perturbed

ground truth, MaskUKF outperforms se(3)-TrackNet and PoseRBPF with an increase

in performance of approximately 300% and 150%, respectively, on average.

When considering both segmentation sources and the initialization with the actual

ground truth, the performance is instead comparable but still better for MaskUKF

when considering the PoseCNN segmentation.
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These results suggest that MaskUKF is more robust to perturbations of the initial

conditions that, instead, cause an important drop in performance for the other tracking

methods considered in the comparison.

As regards the multistage initialization of PoseRBPF, it can be seen that, according

to this metric, it does not provide any sensible improvement in performance.

Comparison with pose estimation algorithms

When considering the segmentation from PoseCNN, MaskUKF outperforms the Dense-

Fusion framework that uses the same segmentation source. Even if the increase in

performance is moderate, the training requirements of MaskUKF are much less de-

manding. Indeed, it can track the object pose given a suitable initial condition and a

trained segmentation network which does not require 6D pose labels at training time

and solves a simpler task than estimating the 6D pose of an object given an image.

When comparing with DOPE, for the objects for which the results are available,

MaskUKF performs better for all the objects independently of the segmentation source.

We remark that DOPE does not use the depth information, while all the other methods

do. The results are useful to identify the improvement in performance when using

RGB-D information or depth information alone, as in the case of MaskUKF and ICP.

Comparison with the baseline

When considering the segmentation from PoseCNN, MaskUKF outperforms the ICP

baseline when using both the perturbed or the actual ground truth for initialization.

When considering the Mask R-CNN segmentation, both algorithms experience a drop

in performance that is within 5 ADD-AUC units. We veriőed that this is due to

missing detections or completely wrong segmentation. When using Mask R-CNN, ICP

performs better than MaskUKF, however the difference is no more than 2 ADD-AUC

units.

In general, the results suggest that the performance might vary with the speciőc

segmentation algorithm that is adopted. Hence, the őnal user might increase the

performance of MaskUKF and ICP by using a better segmentation network if at

disposal. The same reasoning cannot be applied to end-to-end tracking methods, such

as se(3)-TrackNet, that are not as modular as MaskUKF and ICP from this perspective.

Indeed, they would require to be retrained for the entire 6D tracking task and for
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Table 4.3 Quantitative evaluation on all the frames of the YCB-Video dataset using
the positional RMSE metric. A bold entry indicates a better result. For the tracking
algorithms, the best results are decided taking into account the experiment initialized
with the perturbed ground truth.

metric Positional RMSE (cm)

method DOPE
Dense se(3)- PoseRBPF

ICP MaskUKF ICP MaskUKF
Fusion TrackNet (200 particles)

segm. -
Pose

- - PoseCNN Mask R-CNN
CNN

init. - - pert. gt pert. gt
gt

pert. gt pert. gt pert. gt pert. gt
(multi)

002 - 0.5 41.8 0.5 0.7 0.4 0.5 0.7 0.8 0.6 0.5 1.1 1.1 0.6 0.5
003 23.6 0.9 3.6 0.3 7.4 0.7 0.7 0.4 0.4 0.7 0.5 0.7 0.7 3.6 3.7
004 8.5 0.3 27.3 0.3 8.3 0.6 0.6 0.4 0.4 0.4 0.3 0.7 0.5 0.5 0.3
005 14.7 0.5 24.4 7.3 7.7 4.2 4.1 1.6 1.5 1.2 1.1 1.5 1.5 3.2 3.3
006 1.9 0.4 26.4 1.5 8.4 0.3 0.3 0.4 0.4 0.5 0.2 0.2 0.2 0.3 0.2
007 - 0.4 220 1.2 10.5 3.2 3.2 0.6 0.4 1.3 0.6 0.5 0.4 0.8 1.0
008 - 0.7 32.3 0.2 2.4 1.6 2.6 1.4 1.3 1.5 0.6 1.9 1.8 8.9 8.5
009 2.7 0.3 389 0.2 16.0 0.3 0.3 0.6 0.6 0.5 0.4 0.3 0.3 0.4 0.2
010 27.1 7.5 33.0 39.2 15.6 11.1 10.6 4.1 4.0 1.6 1.6 4.9 4.8 2.2 1.4
011 - 0.7 218 0.4 5.8 0.9 0.7 0.7 0.7 0.9 0.9 1.5 0.7 0.9 0.8
019 - 0.3 0.3 0.2 8.0 0.5 0.5 0.2 0.2 0.9 0.5 0.2 0.2 0.9 0.5
021 - 1.1 16.8 0.4 6.5 0.9 0.9 1.4 1.2 0.6 0.4 0.8 0.7 0.5 0.4
024 - 0.7 3.8 0.6 2.6 2.0 1.9 0.4 0.4 0.5 0.3 1.4 1.0 0.5 0.3
025 - 0.7 173 0.5 4.7 0.4 0.4 0.5 0.4 0.6 0.5 0.5 0.4 0.5 0.4
035 - 0.6 28.7 0.4 9.3 0.9 0.4 0.5 0.5 1.1 0.6 0.5 0.4 3.2 0.4
036 - 1.6 30.6 0.6 2.9 2.1 3.2 1.8 1.8 1.4 1.4 3.0 3.0 1.6 1.5
037 - 1.6 71.8 0.5 17.0 0.5 0.5 2.8 2.7 0.6 0.6 3.2 3.2 1.3 1.4
040 - 0.5 1.1 0.3 4.5 0.6 0.6 2.8 1.1 1.0 1.0 2.8 1.1 1.8 1.7
051 - 12.4 38.3 0.7 3.4 3.3 1.5 15.3 15.9 13.2 11.5 17.9 18.9 16.7 16.9
052 - 5.1 7.5 1.4 14.3 14.6 14.6 5.8 6.6 5.5 5.4 4.3 4.5 13.5 12.1
061 - 0.9 28.8 28.1 2.7 1.6 0.8 4.3 0.4 0.5 0.4 2.3 1.1 0.7 0.6
ALL - 3.2 98.4 10.0 8.4 4.3 4.3 3.7 3.8 3.1 2.7 4.1 4.3 4.9 4.7

each object. This requirement is more demanding than retraining a 2D segmentation

network once for all the objects of interest.

Remarkably, despite its algorithmic simplicity, the ICP baseline, combined with

a segmentation network, outperforms or behaves similarly to more complex object

pose tracking methods. This fact suggests that the YCB-Video dataset might be

not challenging enough, despite having become a popular dataset for pose estimation

benchmarking, and might be unsuitable to identify the shortcomings of classical

approaches as ICP when considering metrics as the ADI-AUC.

4.2.6 Results: RMSE metric

Tables 4.3 and 4.4 shows the evaluation for all the 21 objects in the YCB-Video dataset

using the positional and rotational RMSE metrics.

Comparison with pose tracking algorithms

When considering both segmentation sources and the initialization with the perturbed

ground truth, MaskUKF outperforms se(3)-TrackNet and PoseRBPF. On average, the

positional error reduces by≈ 95% with respect to se(3)-TrackNet, while it approximately

halves with respect to PoseRBPF. Considering the angular error, the error reduces
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Table 4.4 Quantitative evaluation on all the frames of the YCB-Video dataset using
the rotational RMSE metric. A bold entry indicates a better result. For the tracking
algorithms, the best results are decided taking into account the experiment initialized
with the perturbed ground truth.

metric Rotational RMSE (deg)

method DOPE
Dense se(3)- PoseRBPF

ICP MaskUKF ICP MaskUKF
Fusion TrackNet (200 particles)

segm. -
Pose

- - PoseCNN Mask R-CNN
CNN

init. - - pert. gt pert. gt
gt

pert. gt pert. gt pert. gt pert. gt
(multi)

002 - 2.3 83.5 2.4 33.8 72.8 4.7 2.0 2.1 1.6 1.4 14.8 14.6 1.5 1.2
003 30.7 4.9 3.4 2.2 97.1 5.7 5.7 2.3 2.3 3.0 2.8 3.1 3.1 59.7 14.5
004 13.3 2.9 42.3 1.3 99.0 5.8 5.8 2.0 2.0 1.8 1.5 76.1 2.6 2.0 1.5
005 18.8 9.2 40.0 28.1 134 77.8 22.4 63.7 31.4 13.0 4.7 45.6 45.6 6.3 6.1
006 4.7 27.8 58.1 28.6 112 7.3 7.3 5.3 5.2 3.3 2.6 3.6 3.2 3.2 2.6
007 - 37.2 64.2 17.9 85.4 32.2 32.3 61.6 8.5 29.5 12.6 61.3 6.6 77.1 70.4
008 - 7.6 38.7 1.8 10.5 172 11.2 89.6 20.5 18.3 3.9 20.1 20.0 142 75.4
009 7.4 3.9 74.9 3.1 135 4.8 4.8 4.6 4.6 2.4 1.4 2.0 2.0 1.8 1.1
010 45.9 54.1 77.0 50.1 153 81.7 75.1 131 134 68.5 68.3 114 133 5.6 5.0
011 - 46.1 81.3 20.5 143 34.4 13.4 10.6 10.6 5.5 5.5 19.4 7.6 5.3 4.6
019 - 7.6 2.1 2.0 178 12.6 12.6 2.1 2.1 4.0 3.3 2.3 2.3 4.0 3.5
021 - 14.2 74.1 2.9 124 9.8 9.8 87.0 78.7 7.5 7.5 24.4 15.1 7.0 6.9
024 - 85.9 8.3 5.5 126 5.5 5.3 4.2 4.0 2.7 2.0 25.0 8.1 3.1 2.4
025 - 50.3 110 12.6 163 7.7 7.7 122 18.3 6.0 6.0 120 12.3 17.4 16.5
035 - 22.1 85.5 1.9 129 3.5 3.5 3.3 3.3 6.1 4.4 3.7 2.5 21.1 2.0
036 - 7.7 120 2.1 170 9.6 21.3 9.5 9.4 1.6 1.6 21.3 21.3 1.7 1.7
037 - 82.3 54.8 6.6 114 8.5 8.5 31.0 31.0 5.1 4.6 32.4 32.5 5.8 5.7
040 - 4.3 15.9 15.6 92.4 120 7.0 10.8 10.2 5.5 7.6 120 11.1 6.7 18.3
051 - 100 60.4 3.2 18.6 13.9 6.4 75.8 62.1 85.2 52.9 74.8 55.1 72.8 54.4
052 - 122 80.2 4.9 68.9 36.0 36.0 52.3 48.8 22.8 51.9 24.3 14.6 67.8 65.3
061 - 91.6 150 55.6 108 177 5.8 139 5.5 3.5 2.7 176 87.1 10.5 9.3
ALL - 45.1 67.3 18.8 116 56.8 22.9 60.8 42.9 26.0 22.3 62.3 38.8 38.5 28.7

with respect to se(3)-TrackNet by approximately 60% and 40%, on average, when using

the PoseCNN segmentation and Mask R-CNN, respectively. The reduction increases

to ≈ 80% and ≈ 70% with respect to PoseRBPF.

When considering both segmentation sources and the initialization with the actual

ground truth, the positional error becomes comparable on average with that obtained

by PoseRBPF. On the other hand, the error produced by se(3)-TrackNet is, on

average, slightly more than twice as that of MaskUKF and PoseRBPF. The analysis

of the rotational error reveals that se(3)-TrackNet outperforms both PoseRBPF and

MaskUKF. For example, MaskUKF with the PoseCNN segmentation obtains, on

average, 26 degrees, PoseRBPF obtains 56 degrees while se(3)-TrackNet achieves 18.8

degrees.

In general, these results indicate that se(3)-TrackNet could provide better perfor-

mance than PoseRBPF and MaskUKF for the orientation tracking task if the initial

condition is equal to the actual ground truth. Nevertheless, when the initial condition

is perturbed, MaskUKF results more robust with an increase from ≈ 4 to ≈ 10 degrees

on average, reaching 26.0 and 38.5 degrees when using the PoseCNN segmentation and

Mask R-CNN, respectively. For se(3)-TrackNet, instead, the error increases by more

than three times, reaching 67.3 degrees, while for PoseRBPF it approximately doubles

reaching 116 degrees. A similar reasoning holds for the positional error. For MaskUKF
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Table 4.5 Maximum occlusion percentage among YCB-Video dataset frames for each
object.

objects %
005_tomato_soup_can 96.9
010_potted_meat_can 69.6

061_foam_brick 68.2
003_cracker_box 61.2

024_bowl 59.7
052_extra_large_clamp 59.0

008_pudding_box 51.4
035_power_drill 47.6

037_scissors 45.4
036_wood_block 44.9

002_master_chef_can 44.6
021_bleach_cleanser 43.0

011_banana 42.5
004_sugar_box 40.95

051_large_clamp 39.3
040_large_marker 22.3

025_mug 15.5
019_pitcher_base 12.8

007_tuna_ősh_can 8.0
006_mustard_bottle 3.6

009_gelatin_box 0.8

it increases by approximately 0.3 cm on average, reaching 3.1 and 4.9 cm using the

alternative segmentation sources. For se(3)-TrackNet it increases by 9 times reaching

98.4 cm and for PoseRBPF it doubles reaching 8.4 cm.

We notice that the considerable average positional error of se(3)-TrackNet is due to

the fact that the perturbation applied to the ground truth, at initialization time, leads

to early track loss for almost all objects.

We also remark that the multistage initialization procedure of PoseRBPF allows

reducing the rotational error even further from 56.8 degrees to 22.9 degrees on average,

when using the exact ground truth for initialization. I.e. better than MaskUKF but

still not good as se(3)-TrackNet.

Comparison with pose estimation algorithms

When equipped with the PoseCNN segmentation network, MaskUKF outclasses the

DenseFusion framework that uses the same segmentation source. While the increase in

performance is minimal for the Cartesian error, the difference is considerable for the

angular error that, in average, is almost halved. For speciőc objects, e.g. 037, 021, 024

and 061, the reduction is indeed substantial, e.g. for the object 061 from 91.6 degrees

to 3.5. Remarkably, these objects are among those involved in moderate to severe

occlusions as can be seen in Table 4.5 where we reported the maximum percentage of

occlusion for each object among all YCB-Video frames.
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When comparing with DOPE on the available objects, it can be seen that MaskUKF

provides better estimates of the object translation independently of the considered

segmentation. The errors are in the order of few centimeters while the errors produced

by the DOPE network can reach values as high as 27 centimeters (see e.g. the object

010). Considering the rotational error, MaskUKF provides better performance except

for the object 010 when using the PoseCNN segmentation and the object 003 when

using the Mask R-CNN segmentation. Nevertheless, the performance for the same

objects using the alternative segmentation reduces from ≈ 30 degrees to ≈ 3 and from

45.9 degrees to ≈ 5 degrees respectively. This fact shows again that the performance of

MaskUKF depends on the adopted segmentation. It also indicates that the performance

can be improved by picking a better segmentation network for the task at hand.

Comparison with the baseline

When equipped with the PoseCNN segmentation network, MaskUKF outperforms the

ICP method. While the increase in performance is minimal for the Cartesian error,

the difference is considerable for the angular error that, on average, is almost halved

when using the ground truth for the initialization and reduced by approximately one

third when using the perturbed ground truth for initialization.

Using the segmentation from Mask R-CNN, MaskUKF still outperforms ICP in

terms of the angular error while the Cartesian error is comparable. As already noticed,

also the RMSE metrics reveals, on average, a drop in performance when using this

segmentation with respect to PoseCNN due to missing detections or completely wrong

segmentation.

If both segmentations are considered, it can be seen that, for speciőc objects, the

reduction in angular error is indeed substantial even when considering the perturbed

ground-truth as the initialization. As an example, when using Mask R-CNN, the

angular error for object 005 is ≈ 6 degrees for MaskUKF while, for ICP, is ≈ 45 degrees.

With the same segmentation, the error for object 010 is ≈ 5 degrees while, for ICP,

is 114 degrees. Moving to the PoseCNN segmentation, for the object 061 MaskUKF

achieves ≈ 3 degrees while, for ICP, it reaches 139 degrees. Similar examples are those

of objects 021, 024 and 037, that are among those involved in moderate-to-severe

occlusions (see Table 4.5).



4.2 Experimental evaluation 122

Table 4.6 Frame rate comparison (fps).

method DOPE DenseFusion se(3)-TrackNet
PoseRBPF

ICP MaskUKF
(200 particles)

fps 4.31 30.0 90.9 7.6 91.7 52.6

4.2.7 Results: frame rate comparison

In Table 4.6 we report a comparison of the frame rates achieved by the compared

algorithms.

For MaskUKF, the frame rate is evaluated as the inverse of the mean time, averaged

on the total number of frames of the testing sequences, required to perform outlier

rejection and the Kalman prediction and correction steps. The time required to segment

the object is not considered in the computation since MaskUKF can run asynchronously

with respect to the frame rate of the segmentation algorithm, if needed (see 4.1.6).

For ICP, the evaluation was done on the mean time required to perform the

registration step between the source and the target point cloud.

For PoseRBPF, se(3)-TrackNet, DenseFusion and DOPE the frame rates are those

reported in the associated publications.

We remark that the frame rate reported by the authors of DenseFusion, i.e. 16.7 fps,

includes the time required to segment the object. In order to have a fair comparison,

the segmentation time has been omitted resulting in a frame rate of 30 fps for this

algorithm. MaskUKF, ICP and se(3)-TrackNet exceed the real-time performance

requirement (30 fps). This fact might be useful in case a faster than real-time image

source is available.

4.2.8 Qualitative results

Comparison between object pose estimation, pose tracking and ICP

In this section, I will compare qualitatively the proposed tracking method, MaskUKF,

with an object pose estimation method, i.e. DenseFusion, and a registration algorithm,

i.e. ICP, in order to emphasize some of the advantages of using a tracking method.

In Fig. 4.2, the estimated pose is represented as a coloured point cloud transformed

in the estimated pose and projected onto the input RGB frame. Both ICP and

DenseFusion fail to estimate the correct pose of the cans 010 and 005 in the leftmost
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Figure 4.2 Qualitative results on the YCB-Video dataset. All the results reported
here are obtained using the segmentation masks from PoseCNN. The estimated pose is
represented as a coloured point cloud transformed in the estimated pose and projected
onto the 2D RGB frame.

columns due to severe occlusions. In the central column, the orientation of the bleach

cleanser (021) from DenseFusion and ICP is wrong. Another interesting case is that of

the cracker box (003), on the right, that is only partially visible in the RGB frame.

While DenseFusion struggles to estimate the correct orientation, MaskUKF and ICP

are able to provide it properly. These results suggest that the algorithms based on 3D

geometric correspondences between the measured point cloud and the 3D model, such

as MaskUKF and ICP, better handle the presence of occlusions than the DenseFusion

pose regression network. Nonetheless, if the available correspondences are few in

number, as happens in presence of severe occlusions, the orientation estimated by ICP

tends to be wrong.

Fig. 4.3 shows trajectory samples of the estimated pose for the bleach cleanser

(021), obtained by different algorithms. In this scenario, the cleanser is visible from its

shortest and texture-less side (see Fig. 4.2) hence producing partial and ambiguous

measurements. The trajectories of MaskUKF are smoother than those of DenseFusion.

In particular, the orientation estimate by DenseFusion is affected by considerable

discontinuities. We can explain the smoothness of MaskUKF in terms of the motion

model that helps regularize the estimate and reduce the effect of the noise. Considering
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Figure 4.3 Comparison of the trajectories of several algorithms for the object bleach
cleanser (021) within a subset of the sequence 0055 from the YCB-Video dataset.
MaskUKF is more precise than ICP and smoother than DenseFusion which exhibits
spikes and irregularities. In this őgure, the orientation of the object is represented in a
compact way using the Euler vector θn = (θx, θy, θz) obtained as the product of the
axis of rotation n and the angle of rotation θ.

ICP, we observe that the level of noise in the output is comparable to that of MaskUKF.

However, the error with respect to the ground truth is visibly higher, especially for

the rotational part of the state. Indeed, as shown both in the plot and in Fig. 4.2,

the estimate from ICP has the tendency to pivot around the visible part of the object

resulting in a steady but totally wrong estimate of the orientation.

Qualitative evaluation of object velocity tracking

Differently from se(3)-TrackNet and PoseRBPF, MaskUKF also provides an estimate of

the mixed velocity Vm of the object consisting in the linear velocity vm = (vmx , v
m
y , v

m
z )

and the angular velocity ω = (ωx, ωy, ωz).

In Fig. 4.4, a qualitative example of the tracked velocities is shown. We remark

that the YCB-Video dataset does not provide the ground truth velocities. Hence, they

have been extracted from the ground truth poses by őnite differentiation.
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Figure 4.4 Comparison between the estimated linear velocity vm and angular velocity
ω and the ground truth velocities within a video sequence from the YCB-Video dataset.
The ground truth velocities are obtained from őnite differences.

4.2.9 Discussion on the robustness to perturbations of the ini-

tial conditions

One of the most interesting aspects highlighted by the experimental evaluation is

the increased robustness of MaskUKF to perturbations of the initial condition of

the object pose. It can be largely attributed to the fact that MaskUKF is a hybrid

framework where the 6D tracking part depends on the Kalman őltering stage. Hence,

the convergence properties can be modiőed by tuning the process and measurement

covariance matrices as well as the initial condition of the state and the associated

covariance. In MaskUKF, the effect of the training data is limited to the segmentation

stage. This stage decides how the partial point cloud of the object is extracted from

the entire scene but does not affect directly the mechanism which updates the state

given the input measurements. I.e. the training data does not affect the algorithmic

prior given by the Kalman őlter itself. On the other hand, end-to-end approaches,

such as se(3)-TrackNet, learn how to track the object pose directly from the data.

However, they do not only learn where to extract interesting information given the

input images but also how to update the state of the object. As a consequence, in

presence of overőtting, slight changes in the initial conditions might produce pose
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Table 4.7 Performance of MaskUKF, with PoseCNN segmentation, with different
implementations of the measurement function.

metric ADI-AUC Positional RMSE (cm) Rotational RMSE (deg)
w/ k-d tree 94.2 3.1 26.0
w/ CGAL 94.6 2.8 28.3

residuals not seen at training time and that are not well handled resulting in track loss

as the presented results show.

On the other hand, PoseRBPF is a hybrid approach, similarly to MaskUKF.

However, its initialization mechanism proved to work well only if several initializations

are allowed within the őrst frames of the trajectory. Unfortunately, this mechanism

requires the knowledge of the ground truth, or an external source of pose measurements,

to decide whether the initialization is good enough by comparing the rotational error

with a threshold. As a consequence, this strategy might be unfeasible in some contexts.

Furthermore, there are no guarantees on the maximum number of initializations that

are required to satisfy the condition based on the threshold.

4.2.10 Discussion on the approximation of the measurement

function

Table 4.7 compares the overall tracking performance obtained when using different

implementations of the measurement function in Eq. (4.9) - (4.11), as discussed in Sec.

4.1.4. Speciőcally, the őrst row refers to the implementation where the projections in

(4.9) are obtained via a nearest neighbour search on a k-d tree containing approximately

2000 points sampled on the 3D mesh of the object. The second row, instead, refers to

the alternative implementation where the projections are obtained via closest point

queries executed on the full 3D triangle mesh using the CGAL library.

We remark that, on average, the 3D meshes from the YCB-Video dataset contains

approximately 250k+ vertices and 500k+ faces, i.e. they can be considered as fairly

accurate reconstructions of the shape of the actual objects. As a consequence, the

alternative implementation does not allow reaching the real-time performance resulting

in a up to ten time slower execution.

Despite the fact that the 3D mesh model is much more accurate than a sampled point

cloud, the overall tracking performance, as can be seen from the table, is comparable.

One possible explanation of the results is that most of the objects adopted in the

YCB-Video dataset have shapes of boxes and cylinders or comparable to them with
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Figure 4.5 Sample estimates from MaskUKF executed on a YCB-Video sequence with
and without the outlier rejection mechanism. The estimated pose is superimposed over
the grayed-out input frames.

Table 4.8 Performance of MaskUKF, with PoseCNN segmentation, with and without
outlier rejection.

metric ADI-AUC Positional RMSE (cm) Rotational RMSE (deg)
w/ outlier rejection 94.2 3.1 26.0
w/o outlier rejection 83.3 5.05 76.9

very few exceptions, e.g., the banana (010), the scissors (025), the power drill (035)

and the clamps (051 and 052). For the former shapes, it is reasonable to expect that

even a simple point cloud sampled on the mesh of the object could be sufficient for the

task at hand and could produce similar results.

4.2.11 Discussion on the role of the outlier rejection mecha-

nism

Table 4.8 shows the effectiveness of the outlier rejection procedure presented in section

4.1.5. MaskUKF performs better when the outliers are taken into account, especially

in terms of the reduced angular error.

To better visualize the effects of outliers in the depth measurements, in Fig. 4.5

we show sample estimates of the pose of the object sugar box (004) when the outlier
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rejection mechanism is enabled or disabled. As it can be seen, the outliers can

substantially impact the estimate of the object orientation if not properly handled.

4.2.12 Discussion on the requirements of object manipulation

tasks

We conclude this section by considering several examples of robotic manipulation tasks

along with their requirements and discussing whether the latter are compatible with

the pose accuracy achieved by the methods compared in the previous sections.

Object grasping

It is a known fact (Pattacini et al., 2010) that a successful grasp depends substantially

on the ability of the robot to place the end-effector very near to the intended grasping

position and less on the orientation (which remains nonetheless important). Indeed, if

the end-effector reaches the right orientation but the positional error is in the order of

even few centimeters, the grasp will fail more than if the position is correct but the

orientation alignment is not fulőlled, with errors up to ten degrees.

In this respect, by looking at the individual rows of Table 4.3, and excluding the few

error peaks, we can conclude that for the majority of the objects the positional error

is in the order of one or two centimeters for MaskUKF, ICP and DenseFusion (when

using the PoseCNN segmentation). For MaskUKF and ICP, this fact holds in the more

challenging case in which the methods are initialized with the perturbed ground truth.

The same cannot be said for PoseRBPF and especially for se(3)-TrackNet, unless a

very precise initialization, i.e. similar to the ground truth, is available.

Considering the orientation error, as per the Table 4.4, the best performing method,

i.e. MaskUKF with PoseCNN segmentation, provides angular errors below ten degrees

for 15 objects out of 21, with a perturbed initialization. Using the same segmentation,

ICP and DenseFusion can reach the same accuracy for 9 objects out of 21. This

number reduces to 3 for se(3)-TrackNet and to 0 for PoseRBPF. Also in this case, if a

very precise initialization is available, the latter methods would provide a reasonable

orientation error for 13 object ouf of 21.

These considerations suggest that the compared methods are certainly suitable

for grasping purposes but not for all objects and not under all circumstances, i.e. a

good initialization is required for some of them. We would like to remark that these

conclusions are partially conőrmed by the publication associated to DenseFusion (Wang
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et al., 2019) where the method is tested in grasping experiments showing a 73% success

rate, although the tests were limited to 5 objects.

Future improvements in the accuracy of object pose tracking and estimation

algorithms might certainly beneőt the reliability of robot grasping pipelines.

Pouring on an object

In order to successfully execute a pouring action, we expect that the positional error is

at least compatible with the radius of the container of interest.

Among the objects that appear in the YCB-Video dataset and can be used as

containers where a robot can pour on, we consider the bowl (024) and the mug (025).

The bowl has a radius of 7.5 cm which is compatible with the positional error of

approximately half a centimeter achieved by MaskUKF and ICP (both initialized with

a perturbed grund truth and using the PoseCNN segmentation). A similar accuracy

is achieved by DenseFusion with the same segmentation. With PoseRBPF and se(3)-

TrackNet (both initialized with the perturbed ground truth) the error reaches 2.6 cm

and 3.8 cm, respectively, i.e. still compatible.

The mug is more challenging as the radius reduces to 4 cm. In this case, MaskUKF,

ICP and DenseFusion still provide a reasonable performance. The errors of PoseRBPF

and se(3)-TrackNet are not compatible instead.

We remark that the angular error also plays an important role, since a small error

helps avoiding collisions with the object during the pouring action. In this respect,

MaskUKF and ICP provide errors less than 5 degrees for the bowl and, for MaskUKF

only, less than 6 degrees for the mug. As before, we only consider the conőguration

with the PoseCNN segmentation and with the perturbed initialization. The errors of

DenseFusion, PoseRBPF and se(3)-TrackNet are instead considerably higher for both

objects, excluding the case of the bowl where se(3)-TrackNet achieves an angular error

less than 9 degrees.

Further considerations on the pouring task are presented in the Sec. 4.3 of this

Chapter. In that section, an object pose tracking method, i.e. MaskUKF, is compared

with object pose estimation and registration methods, i.e. DenseFusion and ICP, on a

pouring task performed in simulation with a humanoid robot. The results will highlight

the fact that using a tracking framework provides several beneőts for the pouring task.
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In-hand object manipulation

In some cases, the requirements for grasping an object that we indicated above might

not be sufficient to carry out the task at hand. An example is that of in-hand object

manipulation where the robot acts to change the relative pose between the end-effector

and the object.

In (Costanzo et al., 2021), the authors control the relative orientation between the

object and the end-effector via object or gripper pivoting actions involving rotational

sliding. They report that the grasping position should be reached with an error of

no more than 2mm in order to have a successful pivoting. As the authors report,

recent methods for 6D object pose estimation, such as DenseFusion, do not meet these

requirements.

The results presented in this Chapter show that none of the considered methods

would be suitable for this scenario. In this respect, we recognize the necessity to

consider these kind of requirements in the development of future methods for object

pose tracking and estimation.

4.3 Pose estimation and pose tracking for robot mo-

tion control

Thus far, the MaskUKF algorithm has been compared with other object pose tracking,

estimation and registration methods on a given dataset. On the one hand, the

results indicate possible advantages and disadvantages of different kind of tracking

architectures, i.e. end-to-end as opposed to hybrid. On the other hand, they allowed

identifying possible general advantages of pose tracking methods over pose estimation

or registration ones.

In this section, I will extend the latter comparison to a different task, i.e. the control

of the motion of a robot for the execution of a task depending on the pose of the object.

The results will show that using a pose tracking method, such as MaskUKF, allows

executing the task with safer movements and better precision than when using a pose

estimation or registration algorithm. The algorithms considered for the comparison

are the pose estimation network DenseFusion and the ICP registration algorithm.

In the remainder of this section, the experimental setup and the adopted metrics

will be őrst described followed by the presentation of the experimental results.
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Figure 4.6 The iCub robot in the Gazebo environment. The root frame attached to
the robot is also depicted.

4.3.1 Description of the experimental setup

The task at hand is concerned with the goal of following a moving container with the

end-effector of a humanoid robot while the robot is holding a bottle and pouring its

content inside the container. The experiment is executed in a simulated environment,

namely the Gazebo (Koenig and Howard, 2004) environment, using the iCub humanoid

robotic platform (Metta et al., 2010),

In order to command the robot, the output of a given object perception algorithm

is fed as reference signal to a closed loop control system, later described. The task is

depicted in Figs. 4.6 and 4.7.

Assumptions

We assume that the 6D pose and the velocity of the container are estimated and or

tracked using RGB-D information. On the other hand, the position of the bottle is

known given the robot kinematics, i.e. the focus is on tracking the state of the container

only.
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Figure 4.7 The iCub robot in the Gazebo environment while it follows a moving
container, i.e. the red bowl, during a pouring task using the estimate of the pose and
velocity of the container as feedback signal.

Furthermore, there is no interest in the grasping task nor in the pouring action

per se but more on the possibility of exploiting the estimated signal in a closed loop

fashion in order to follow the container as close as possible while avoiding contacts

that might compromise the pouring action and leakages of the content of the bottle.

I adopted the YCB Object and Model Set (Calli et al., 2015) to provide the reference

objects for the experiment; in particular, I chose the mustard bottle (006) as the bottle

and the bowl (024) as the container (see Fig. 4.6).

The experiment is carried out in the Gazebo environment using a simulated model

of the iCub robotic platform. Even though iCub features 53 DoF, only a subset of

these are used in the experiment, i.e. 3 DoF in the torso, 7 DoF in the arm and 6 DoF

in the head, where the stereo vision system is mounted.

It is assumed that the vision system of the robot provides the object segmentation

and RGB-D images of the scene to be used to estimate and/or track the pose of the

container. Additionally, the iCub gaze control system (Roncone et al., 2016) is used to

track the container in the image plane by using the estimated Cartesian position of

the object as a reference gazing point.

At the beginning of the experiment, the end-effector is reset to a rest conőguration

near the container. Then, a sinusoidal trajectory is assigned to the moving container

along the y direction of the robot root frame (shown in Fig. 4.6). Similarly, a sinusoidal

trajectory is assigned to the orientation of the container along the x axis of the robot
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root frame. Each experiment lasts 1 minute in order to test the reliability of the overall

system. An excerpt of the trajectory of the moving container can be seen in Fig. 4.7.

The MaskUKF and ICP algorithms, which require an initial condition, are reset to

the ground truth state provided by the simulation environment.

Description of the control system

In order to carry out the above described task, the torso (two DoF out of three) and

one of the arms are considered as a 9 DoF serial chain whose dynamic behavior is

described by the standard equation

M(q)q̈ + h(q, q̇) = τ, (4.14)

where q, q̇ and q̈ ∈ R
9 are the joints angles, velocities and accelerations respectively,

M(q) ∈ R
9×9 is the Mass matrix of the chain, h(q, q̇) ∈ R

9 represents the effect of

centrifugal, Coriolis and gravity terms and τ ∈ R
9 are the torques applied to the chain

joints axes.

In order to command the end-effector of the robot and follow the moving container

over time, a two-layer control architecture is adopted. The őrst layer consists in an

Inverse Dynamics controller

τcmd = Jee(q)
TΛ(q)

(

V̇m
des − J̇ee(q)q̇

)

+ h(q, q̇),

Λ(q) =
(

Jee(q)M(q)−1Jee(q)
T
)−1

.
(4.15)

Here, Jee ∈ R
6×9 is the Jacobian of the end-effector expressed in the robot root frame

which links the joints velocities q̇ with the end-effector linear velocity vmee ∈ R
3 and

angular velocity ωee ∈ R
3

[

vmee

ωee

]

= Jee(q)q̇, (4.16)

both expressed in the robot root frame. We recall that the subscript m indicates that

the velocity is expressed using the mixed convention introduced in Sec. 3.1.3. The

matrix Λ(q) ∈ R
9×9 in Equation (4.15) is also called the Task Space Mass matrix. The

term V̇m
des ∈ R

6 is a vector containing the desired linear acceleration of the end-effector
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v̇mdes ∈ R
3 and the desired angular acceleration ω̇des ∈ R

3

V̇des =
[

v̇mdes
ω̇des

]

, (4.17)

both expressed in the robot root frame.

If controlled using the torques in Equation (4.15), the system in Equation (4.14)

reduces to the system of equations

V̇m
ee =

[

v̇mee

ω̇ee

]

= V̇m
des. (4.18)

In essence, the őrst layer allows reducing the dynamics of the serial chain to a linear

system having V̇m
des as input.

The second control layer consists in a Proportional Derivative (PD) controller

V̇m
des = kpep + kdev, (4.19)

where ep ∈ R
6 is the end-effector conőguration error

ep =

[

pee − pdes
log(RdesR

T
ee)

∨

]

, (4.20)

and ev ∈ R
6 is the end-effector velocity error

ev =

[

vmee − vmdes
ωee − ωdes

]

. (4.21)

Here, pee ∈ R
3 is the Cartesian position of the end-effector, Ree ∈ SO(3) is the

orientation of the end-effector, vmee ∈ R
3 is the linear velocity of the end-effector and

ωee ∈ R
3 is the angular velocity that are known via the robot forward kinematics and

forward differential kinematics maps. Moreover, pdes ∈ R
3 is the desired position of

the end-effector, Rdes ∈ SO(3) is the desired orientation of the end-effector, vdes ∈ R
3

is the desired linear velocity of the end-effector and ωdes ∈ R
3 is the desired angular

velocity. We recall that the expression log(RdesR
T
ee) belongs the Lie algebra so(3) while

log(RdesR
T
ee)

∨ ∈ R
3. The log() map and the vee operator ∨ are deőned in Eqs. (3.18)

and (3.13), respectively.
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In the proposed experiment, it is assumed that position of the tip of the bottle

with respect to the robot end-effector is constant and known. Given this assumption,

the end-effector frame ee in Equations (4.20) - (4.21) is considered to be attached to

the tip of the bottle.

The design of the control system is őnalized by setting the desired quantities as

follows:

pdes = pt,

Rdes = RtR0,

vdes = vmt ,

ωdes = ωt,

(4.22)

where pt, Rt are the estimated position and orientation of the container and vmt , ωt

are the estimated Cartesian and angular velocities of the container. The rotation R0

represents a default pouring conőguration that is chosen such that the tip of the bottle

points downwards. Consequently, the term RtR0 represents a perturbation of the

default pouring conőguration depending on the estimated orientation of the container.

Estimation of the object velocity

The speciőcation of the desired quantities in Eq. (4.22) requires the knowledge of

the Cartesian and angular velocities of the container, vmt and ωt. We remark that

these velocities are naturally provided by MaskUKF as a part of the state. Conversely,

DenseFusion and ICP are pose estimation and registration algorithms, respectively,

hence they do not provide an estimate of the object velocity. For this reason, we

evaluated the velocity online by using őnite differentiation.

We observe that the őnite-differences approximation is typically noisy and might

result in jerky motions of the robot end-effector, especially when the amount of feedback

to the control system is increased. In turn, these motions might introduce noise in the

stream of RGB-D images from the vision system of the robot, resulting in noisy pose

estimates. For these reasons, we considered an additional scenario in which both the

poses and the velocities, obtained by őnite differentiation, of DenseFusion and ICP are

őltered using a low-pass őlter. Considering this additional scenario will allow comparing

the closed-loop performance obtained with a Kalman őltering-based approach, such as

MaskUKF, with that obtained with a pose estimation/registration method combined

with a simpler low-pass őlter.
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We implemented the őltering stage using a standard single-pole őlter whose time-

domain description is given by the discrete recurrence

yt = yt−1 + α(ut − yt−1), (4.23)

with ut ∈ R
n and yt ∈ R

n the n-dimensional input and the output of the őlter,

respectively. The parameter α ∈ [0, 1] is associated with the cutoff frequency fc of the

őlter as follows

fc =
α

(1− α)2π∆t

(Hz), (4.24)

with ∆t the sampling time. When α = 0 the őltering action is maximum, while if α = 1

no őltering takes place, i.e. yt = ut. The őlter, as in Eq. (4.23), has been applied on

the signals pt, vmt and ωt.

As regards the rotational part of the state Rt ∈ SO(3), the equation has been

modiőed to account for the group structure of the rotation matrices as follows:

δR = log(Ru
t (R

y
t−1)

−1)∨ ∈ R
3,

Ry
t = exp((AδR)

∧)Ry
t−1 ∈ SO(3).

(4.25)

We recall that the exp() and log() maps are deőned in Eqs. (3.17) and (3.18), respec-

tively. The hat and vee operators, ∧ and ∨, are deőned in Eqs. (3.12) and (3.13),

respectively.

In Eq. (4.25), Ry
t and Ru

t are the input and output rotation matrices while δR is

a vector representation of the error between the previous output rotation Ry
t−1 and

the input rotation Ru
t in the Lie algebra of SO(3). The matrix A ∈ R

3×3 is a diagonal

matrix

A = diag(αx, αy, αz), (4.26)

where the parameters αi ∈ [0, 1] weight the error δR along each of the robot root frame

axes and allow deciding the amount of őltering, similarly to Eq. (4.23).

Choice of the algorithm parameters

The parameters of MaskUKF that we used in the experiments are reported in Table

4.9. They are the same that have been used for the experiments on the YCB-Video

dataset, with the exclusion of the power spectral densities Qp and Qr. Speciőcally,

we increased the value of the entries of these matrices by one order of magnitude in
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Table 4.9 Parameter set for MaskUKF for the robot motion control experiment.

Parameter Values
P0 (1:3,1:3) diag(10−2, 10−2, 10−2)m2

P0 (4:6,4:6) diag(10−2, 10−2, 10−2) (m/s)2

P0 (7:9,7:9) diag(10−2, 10−2, 10−2) rad2

P0 (10:12,10:12) diag(10−2, 10−2, 10−2) (rad/s)2

Qp diag(1.0, 1.0, 1.0) (m/s)2/s

Qr diag(1.0, 1.0, 1.0) (rad/s)2/s
Rt diag(10−3, · · · , 10−3)m2

δoutlier 0.01m
ϵvalid 0.2

order to obtain a more responsive output of the őlter. This choice is motivated by the

fact that the considered scenario is more dynamic than the scenario presented in the

YCB-Video sequences.

4.3.2 Description of the adopted metrics

In order to compare different algorithms on the proposed task, two errors are considered.

The őrst is the Cartesian error along the y direction of the robot root frame, where

the actual motion of the container happens, between the end effector position and the

ground truth position of the object, i.e.

ey = |pee,y − pgtt,y| (cm). (4.27)

If both the control system and the object perception system work as expected, this

error should be as small as possible. Indeed, if the control system works as expected

pee should track pdes = pt almost closely and if the object perception algorithm works

as expected, pt should match pgtt almost closely. Hence, the proposed metric accounts

for the overall system composed by the object perception algorithm and the control

loop.

Similarly, the orientation tracking task is evaluated with the angular error

eR = ∥log((Rgt
t R0)R

T
ee)

∨∥ 180

π
(deg), (4.28)

between the orientation Ree of the end-effector and the desired orientation Rgt
t R0

evaluated using the real orientation of the object Rgt
t .
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Figure 4.8 RMSE Cartesian and angular error for the object following experiment
for varying proportional gains kp. Using MaskUKF allows increasing the gain up to
kp = 640 reaching better tracking performance.

4.3.3 Results

In this section, we compare the performance obtained with MaskUKF with that

obtained with the pose estimation and registration algorithms DenseFusion and ICP.

We őrst discuss the results obtained when using the plain output of DenseFusion

and ICP, i.e. without applying the low-pass őltering stage.

Results without low-pass őltering

In Fig. 4.8, MaskUKF, DenseFusion and ICP are compared in terms of the Cartesian

error ey and the angular error eR. Speciőcally, the Root Mean Square Error (RMSE)

along 1 minute of experiment is shown for several choices of the proportional gain kp,

namely kp ∈ {5, 10, 20, 40, 80, 160, 320, 640}. For each choice of the gain, the derivative

gain kd is set equal to 2
√

kp as this choice assures the fastest possible closed loop

dynamics for the double integrator system in Equation (4.18).

As shown in Fig. 4.8, both the errors decrease for all the algorithms when the gain

increases up to kp ≈ 80. The error trend changes for DenseFusion in the experiment

with kp = 160 and for ICP in the experiment with kp = 320. We could not perform

the experiments for higher gains for both algorithms as they would result in jerky and

erratic motions of the robot end-effector. Conversely, the tracking method MaskUKF

allows increasing the gain up to kp = 640 and reaching a lower tracking error.

This behavior can be explained in terms of the reduced amount of noise in the pose

estimates produced by MaskUKF as shown qualitatively in Sec. 4.2.8. Furthermore,
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Figure 4.9 Evolution of the y coordinate of the end-effector for several algorithms
and different proportional gains. The results of DenseFusion with kp = 320 are not
reported because that conőguration is not achievable.

Figure 4.10 Evolution of the angular error of the end-effector for several algorithms
and different proportional gains. The results of DenseFusion with kp = 320 are not
reported because that conőguration is not achievable.

MaskUKF naturally provides a őltered estimate of the 6D velocity of the object, as

shown in Sec. 4.2.8, that is required to implement the PD controller in Eq. (4.19).

On the other hand, for DenseFusion and ICP the velocities are obtained by őnite

differentiation in this scenario. As we have discussed in Sec. 4.3.1, this kind of

approximation is typically noisy, thus reducing the maximum possible amount of

feedback hence the tracking performance of the closed loop system.

In the following we show samples of the actual trajectories of the end-effector for

several choices of kp, namely 80, 160 and 320.

In Fig. 4.9, we show the desired and achieved trajectory of the y coordinate for

the őrst 25 seconds of the experiment. Using MaskUKF, the end-effector achieves a

regular and smooth behavior in all cases. Using the ICP algorithm with kp = 320, the

end-effector fails to track the container after ≈ 18 seconds. Using DenseFusion with

kp = 160, the tracking is lost after ≈ 23 seconds.
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Figure 4.11 Comparison between MaskUKF and DenseFusion on the simulated task
of following the red container. Using DenseFusion with kp = 160 might produce unsafe
motions for the robot and the surrounding environment.

In Fig. 4.10, we show the evolution of the angular error for the same choice of

the proportional gains. Moving from kp = 80 to kp = 160 helps reducing the mean

angular error when using MaskUKF and ICP. Moving to kp = 320, MaskUKF reaches

the minimum error. With ICP the error still reduces with respect to kp = 160, however

the tracking is lost after ≈ 18 seconds. When using DenseFusion with kp = 80, the

error is much higher than with MaskUKF and ICP. The error increases even more

when moving to kp = 160.

For both the Cartesian and angular errors, the results of DenseFusion with kp = 320

are not reported as that conőguration is not achievable.

In Fig. 4.11, we show examples of the end-effector conőgurations achieved when

using MaskUKF and DenseFusion with kp = 160. As can be seen, with DenseFusion

the motion of the end-effector might be unsafe for the robot.

In summary, in this scenario MaskUKF provides better performance in terms of

tracking precision and reliability when the amount of feedback given to the control

system is increased. We mention that this result depends in large part on the adoption

of a Kalman őltering framework which, leveraging even a rather simple motion model

as in Equation (4.5), can help reducing the amount of noise in the estimates of both

the pose and the velocity of the object.
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Table 4.10 Parameters of the low-pass őlter used to őlter the output poses and velocities
of DenseFusion and ICP.

Method Signal Values of α

DenseFusion

pt 1.0
vmt 0.5
ωt 0.1
Rt (αx, αy , αz) = (1.0, 0.01, 1.0)

ICP

pt 1.0
vmt 0.6
ωt 0.1
Rt (αx, αy , αz) = (0.8, 0.05, 0.8)

Results with low-pass őltering

In this section we discuss the results obtained when the output of DenseFusion and

ICP is őltered using a low-pass őlter, as discussed in Sec. 4.3.1. The parameters of the

low pass-őlter that we used in the experiments are reported in the Table 4.10. For the

signals pt, vmt and ωt we used the same value of α for all the three channels. On the

contrary, we used different values of the parameters for the rotation Rt, as we detail

later.

The parameters were chosen empirically in order to remove as much as possible the

noise in the estimated poses and velocities, obtained via őnite differences, while at the

same time avoiding to introduce too much delay and corrupt the information encoded

in the signal.

For both DenseFusion and ICP, we decided not to őlter the Cartesian position,

i.e. α = 1.0, as we found that the amount of noise in the signal was negligible. The

linear velocity was instead moderately őltered. As regards the orientation of the object,

we observed that both algorithms introduce a considerable amount of noise for the

rotations about the y axis of the robot root frame. However, the container rotates

about the x axis solely, as we speciőed in Sec. 4.3.1. For this reason, we could őlter out

almost all the noise of the y axis, i.e. we set αy = 0.01 and αy = 0.05 for DenseFusion

and ICP, respectively. On the other hand, the amount of őltering for the x axis was

limited in order to preserve the information on the actual orientation of the object.

Finally, we observed that the angular velocity obtained using őnite differences was

considerably noisy for both algorithms, hence we had to őlter it substantially, i.e. we

set α = 0.1.

In Fig. 4.12, we compare the Cartesian and angular errors obtained with MaskUKF,

DenseFusion and ICP. For DenseFusion and ICP we report both results with and

without low-pass őltering.



4.3 Pose estimation and pose tracking for robot motion control 142

Figure 4.12 RMSE Cartesian and angular error for the object following experiment for
varying proportional gains kp. For DenseFusion and ICP the results with and without
low-pass őltering are shown.

When using ICP, we can observe that the őltering stage helps reducing the tracking

error. Indeed, for kp up to ≈ 480 the error trend is very similar to that of MaskUKF.

However, the absolute error is still slightly higher than that obtained with MaskUKF.

Moreover, for slightly higher gains, the error increases considerably, especially the

angular one.

A remarkable disadvantage of ICP is that, in our experiments, it required an ad-hoc

tuning of the low-pass őlter for the object rotation, i.e we had to pick different values

for αx, αy and αz (see Table 4.10). However, this choice was possible only because

it was known that the object rotates about a speciőc axis. On the contrary, with

MaskUKF we could obtain better results while using the same value for all the diagonal

entries of the power spectral density Qr (see Table 4.9), i.e. no prior information on

the rotational motion of the object was used.

When considering DenseFusion, it can be seen that the őltering stage helps reducing

the tracking error, however the reduction is much lower than that obtained with ICP,

especially for the rotational components. This behavior depends on the fact that the

amount of noise in the output of DenseFusion does not allow to recover the signal of

interest completely. Of course, the low-pass őlter helps reducing the negative effect of

the noise on the control loop. In fact, it was possible to increase the proportional gain

kp up to 320, which was impossible in the non-őltered scenario. On the other hand,

since the estimated poses and velocities are affected by important errors, which cannot

be mitigated by the őltering stage, the tracking performance remains unsatisfactory.
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In conclusion, these results show that approaches like MaskUKF, which apply a

őltering framework directly to the measured point cloud, exhibit important advantages

with respect to a pose estimation or pose registration method even when they are

combined with an additional őltering stage afterwards.

4.3.4 Discussion on the requirements of the pouring task

We conclude the analysis of the results with a short discussion on the requirements

of the pouring task and how they relate with the tracking errors achieved by the

considered algorithms.

As we discussed in Sec. 4.3.1, the aim of the proposed experiment is to use the

tracked object pose and velocity to close the control loop in order to follow the container

and avoid possible leakages. In this respect, we deem useful to consider the percentage

of frames, along the 1-minute-long experiment, for which the end-effector is closer to

the center of the container than the radius r of the container itself:

|{t | ∥pt,ee − pt∥ < r}|
T

100. (4.29)

Here, T is the total number of frames in an episode of the experiment and | · | indicates

the cardinality of a set.

In Fig. 4.13, we plot the percentage deőned in Eq. (4.29) for the radii r ∈ (0, 10] cm

and for several algorithms. For each algorithm, we considered the best conőguration

achieved according to the experiments presented in the previous sections. Speciőcally,

for DenseFusion and ICP we considered the scenario where their output is őltered

using a low-pass őlter.

We remark that the plot was realized using the data of the experiment with the bowl

container (024) from the YCB Model Set that has a radius of 7.5 cm. As a consequence,

the results do not take into account the fact that, for smaller radii, the estimation

error might get worse as the amount of occlusion of the object would increase. In this

respect, these results represent an upper-bound of the performance that we expect to

achieve.

Looking at the őgure, we observe that with MaskUKF it might be possible to

complete the pouring without leakages for radii as lower as ≈ 4 cm. This lower limit

increases to ≈ 6 cm and ≈ 7.5 cm for ICP and DenseFusion, respectively. In the best

case, i.e. 4cm, this might allow completing the pouring task for objects like a bowl, a



4.3 Pose estimation and pose tracking for robot motion control 144

Figure 4.13 Percentage of the end-effector positions that fulől the pouring requirements
for several radii of the container and several algorithms.

mug or a glass. For smaller objects, e.g. a coffee cup, the pouring task would not be

possible instead.

The above considerations, although preliminary, motivate the necessity to dedicate

further research efforts in the development of algorithms for object pose tracking and

estimation. This research would beneőt future robots that are requested to carry out

everyday tasks, such as the pouring task, even in presence of small objects.



Chapter 5

Optical ŕow-aided 6D Object Pose

and Velocity Tracking

In the previous chapter, I described the importance of the 6D object pose and velocity

tracking task and compared several pose estimation and tracking methods on the

standard computer vision benchmark YCB-Video as well as on a robot motion control

task. Independently from the performance achieved by each algorithm, one of the

facts highlighted by the experimental evaluation is that object pose tracking methods

might behave very differently when the initial conditions are perturbed with respect to

the actual ground truth. In this regard, one might argue that the sensitivity to the

initial conditions has to be carefully considered not only at the őrst time instant of the

trajectory but also at any other instants. Indeed, track losses may occur not only at

the initialization but also during the trajectory, especially if the object of interest is

involved in dynamic motions characterized by moderate-to-fast velocities.

Unfortunately, most object pose estimation and tracking algorithms are tested

on datasets, such as YCB-Video, which comprise scenes with slowly moving objects

that might be inadequate to highlight the presence of track losses. Furthermore,

several methods overlook the fact that, in case of limited computational resources or

due to architectural complexities, large computation times can induce non-negligible

delays and sparsity in the output, which negatively affect the overall tracking process.

Additionally, most of the methods do not model the object motion using a speciőc

prior or adopt a simple constant velocity model that might be inadequate in case of

fast moving objects.

In this respect, several works from the past (Brox et al., 2006; Pauwels et al., 2016;

Pressigout et al., 2008) proposed to integrate information on the actual pixels motion,
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obtained using the optical ŕow, to improve the tracking performance. The optical ŕow

has been also recently combined with deep neural networks. DeepIM (Li et al., 2018)

leverages the FlowNet (Dosovitskiy et al., 2015) network for optical ŕow prediction

to iteratively reőne 6D object poses. Following a different path, Zhang et al. (2020)

combine object segmentation, optical ŕow and depth information to track the 6-DoF

motion and the linear velocity of objects within automotive scenarios. Nevertheless,

these scenarios are quite different from those considered in this Thesis.

Considering the aforementioned reasoning, during the PhD I dedicated considerable

research efforts in designing a method that could exploit the availability of real-time

algorithms for optical ŕow estimation in order to increase the tracking performance

in scenarios with fast moving objects. Speciőcally, I proposed to combine real-time

optical ŕow with low frame rate Convolutional Neural Networks (CNNs) for instance

segmentation and 6D object pose estimation to achieve real-time 6D object pose and

velocity tracking from RGB-D images. The proposed method (Piga et al., 2022) has

been called łReal-time Optical Flow-aided 6D object pose and velocity Tracking” or

ROFT.

Although the presented ideas are similar to those of (Zhang et al., 2020), one

important difference is that ROFT explicitly accounts for delayed and low frame rate

instance segmentation in case of limited computational resources.

The major contributions, discussed in the present chapter, are the following:

• The design of a mechanism that exploits real-time optical ŕow to synchronize

delayed instance segmentation and 6D object pose estimation streams with a

given RGB-D input stream.

• The design of an algorithm that combines optical ŕow and the aforementioned

synchronized streams in a Kalman őltering approach that tracks both the 6D

pose and the 6D velocity of a given object.

• The design of a novel a synthetic photorealistic dataset, Fast-YCB, comprising

scenes with fast moving objects from the YCB Model Set (Calli et al., 2015) with

linear velocities up to 63 cm/s and rotational velocities up to 266 degrees/s.

The proposed method has been compared with state-of-the-art 6D object pose

trackers on the newly introduced Fast-YCB dataset and on the publicly available

dataset for object and hand pose estimation HO-3D (Hampali et al., 2020).
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A video of the experiments is available online1. The code used for the experiments

is made publicly available for free with an Open Source license online2. The Fast-YCB

dataset has been also made available online3.

The remainder of this chapter is organized as follows. In the Secs. 5.1, 5.2, 5.3 and

5.4 the proposed method is presented in detail with the help of the theory presented

in Chapters 2 and 3. The experimental results of the evaluation on the considered

datasets are then provided in Sec. 5.5.

5.1 Description of the method

The proposed method tracks the pose Tt and the velocity Vm
t of an object of interest

O using a cascaded őltering architecture consisting of a Linear Kalman Filter and an

Unscented Kalman Filter. The inputs to the architecture are

• the RGB images It;

• the depth images Dt;

• the set of optical ŕow vectors Ft = Ft(Mt−1, It, It−1), as deőned in Eq. (3.35),

associated to the object;

• a source of object pose measurements T z
t ∈ SE(3);

• a source of object segmentation masks Mt.

The superscript z in T z
t indicates that this pose is measured and should not be confused

with the tracked pose Tt. We notice that the deőnition of Ft depends on the mask at

time t− 1, instead of time t, because the optical ŕow vector őeld describes the motion

of points from frame t− 1 to frame t.

Although any source of masks Mt and poses T z
t can be used, in this scenario it is

assumed that both are only available at low frame rate resulting in non-synchronized

and delayed streams Md
t and T d

t . A practical example, that we considered in this

project, is that of deep learning-based networks for object segmentation and 6D pose

estimation from RGB images as they could have non-negligible inference times.

1https://ieeexplore.ieee.org/ielx7/7083369/9568780/9568706/supp1-
3119379.mp4?arnumber=9568706

2https://github.com/hsp-iit/roft
3https://github.com/hsp-iit/fast-ycb

https://ieeexplore.ieee.org/ielx7/7083369/9568780/9568706/supp1-3119379.mp4?arnumber=9568706
https://ieeexplore.ieee.org/ielx7/7083369/9568780/9568706/supp1-3119379.mp4?arnumber=9568706
https://github.com/hsp-iit/roft
https://github.com/hsp-iit/fast-ycb
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Figure 5.1 Illustration of the ROFT framework for 6D object pose and velocity tracking
given the optical ŕow Ft and low frame rate segmentation masks Md

t and object poses
T d
t .

In the remainder of this section, all the components of the tracking algorithm are

described. Speciőcally, the proposed architecture consists of three stages. First the

optical ŕow Ft is used to synchronize the stream of masks Md
t with the input RGB

stream It. Next, the optical ŕow Ft, the depth Dt and the synchronized masks Mt

are combined to track the 6D object spatial velocity Vt within a linear Kalman Filter.

In the third stage, the estimated velocities Vt are fused with the low frame rate pose

measurements T d
t within an Unscented Kalman Filter in order to track the 6D pose Tt

of the object.

An overview of the pipeline is depicted in Fig. 5.1. The three stages are detailed in

the following Secs. 5.2, 5.3 and 5.4.

5.2 Optical ŕow-aided object segmentation

Given the input RGB stream It, the optical ŕow frames Ft, that are synchronized with

It, are combined with the low frame rate and non-synchronized stream of segmentation

masks Md
t in order produce a stream of masks Mt that is synchronized with It.

Let M ⊞ F be the operator

M ⊞ F = {(u, v) + F (u, v) ∀(u, v) ∈M}, (5.1)
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which propagates the pixels coordinates in the mask M according to the ŕow vectors

F (u, v).

The synchronized stream Mt is initialized using the őrst available mask Md
0 , under

the assumption that the object is stationary at time t = 0. In order to provide a

continuous and synchronized stream of masks Mt, the masks are recursively updated

using the optical ŕow

Mt =Mt−1 ⊞ Ft, (5.2)

until a new mask Md
t from the network is available. Meanwhile, the frames Ft are

stored in a buffer BF .

After Ns steps, it is assumed that a new mask Md
t , associated to the RGB frame

It−Ns
, is available. Since the received mask is associated to a past RGB frame, it is

iteratively propagated forward in time using the buffered ŕow frames from BF up to

time t

Mt =
(((

Md
t ⊞ Ft−Ns+1

)

⊞ . . .
)

⊞ Ft−1

)

⊞ Ft. (5.3)

From here, the propagation scheme in Eq. (5.2) is reactivated until a new mask from

the network is available again.

The propagation process in Eq. (5.2) is illustrated in Fig. 5.1, on the left, in the

green łPrediction - Correction” block. In the same őgure, on the left, we illustrate the

synchronization process in Eq. (5.3) in the yellow łSynchronization” block.

We remark that the synchronized masks might be discontinuous due to the noise

in the optical ŕow vectors. Nevertheless, the proposed approach relies more on the

availability of pixel coordinates in the image It belonging to the surface of the object

rather than the exact shape of the segmentation mask.

5.3 6D object spatial velocity tracking

Having available a stream of depth images Dt, optical ŕow frames Ft and synchronized

segmentation masks Mt, the second stage of the architecture tracks the 6D spatial

velocity of the object Vt from optical ŕow measurements using a linear Kalman Filter.

In the remainder of this section, all the components of the őlter are described.
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5.3.1 Description of the state and the measurements

The state to be tracked Vt is deőned as

Vt =
[

vt

ωt

]

∈ R
6, (5.4)

corresponding to the object spatial velocity as deőned in Eq. (3.23). We recall that,

according to the deőnition, ωt is the angular velocity of the object and vt is the velocity

of a point, belonging to the object, which coincides with the origin of the camera

instantaneously.

The optical ŕow Ft = Ft(Mt−1, It, It−1) is used as a measurement

zt =
[

zT1,t · · · zTj,t · · · zTLt,t

]T

∈ R
2Lt , (5.5)

where each subvector zj,t ∈ R
2 is one of the ŕow vectors Ft(u, v) in the set Ft and

Lt is the cardinality of the set at time t. The cardinality changes over time as the

number of pixels in the mask Mt−1 depends on the object pose and on possible object

occlusions. We remark that the adopted tracking framework, i.e. the linear Kalman

őlter, naturally handles time-varying measurement models.

5.3.2 Motion model

We assume that the underlying dynamics of the state vector V is described by the

simple motion model

Vt = f(Vt−1, wt−1),

= Vt−1 + w,

w ∼ N (0, diag(Qv, Qω)) ,

(5.6)

where the velocity increments Vt − Vt−1 are Gaussian with covariances Qv ∈ R
3×3 and

Qω ∈ R
3×3 associated to the linear and angular velocity, respectively.

5.3.3 Measurement model

The speciőcation of the measurement model accounts for the deőnition of the function

h in Equation (2.8). The role of h is to establish the relationship between the state

Vt and the optical ŕow vectors that we expect to observe. To this end, it is possible
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to rely on the deőnition of predicted optical ŕow given the velocity Vt and the depth

image Dt

Ft(Mt−1,Vt, Dt) =

{[

∆u(Vt, Dt)

∆v(Vt, Dt)

]

∀(u, v) ∈Mt−1

}

, (5.7)

provided in Eq. (3.43). By recalling the expressions of ∆u and ∆v, as per Eq. (3.42),

and by stacking them in a single vector, the following measurement model is obtained:

zt = ht(Vt, νt)

=

[

· · ·
[

∆u(Vt, Dt)

∆v(Vt, Dt)

]T

· · ·
]T

+ νt

= J(Mt−1, Dt)Vt + νt,

νt ∼ N (0, Rt),

(5.8)

where

J(M,D) =







· · ·
Juv(D)

· · ·






(u, v) ∈M,

Juv(D) =
[

Jv(d) Jω

]

∆t d ∈ D,

Jv(d) =

[

fx
d

0 −(u−cx)
d

0 fy
d

−(v−cy)

d

]

,

Jω =

[

−(u−cx)(v−cy)

fy

f2
x+(u−cx)2

fx

−(v−cy)fx
fy

−f2
y−(v−cy)2

fy

(u−cx)(v−cy)

fx

(u−cx)fy
fx

]

,

Rt = diag(σ2
1I2, . . . , σ

2
Lt
I2).

(5.9)

In summary, the optical ŕow predictions for all the pixels belonging to the mask Mt−1

are expressed using a linear measurement model with additive noise. The size of zt is

equal to the cardinality 2|Mt−1|, i.e. twice the number of pixels belonging to the mask.

We mention that the possibility to express the optical ŕow prediction as a linear

function of the state depends on the choice to represent the velocity using the spatial

representation V . Indeed, it can be shown that, by choosing the mixed representation

Vm, instead, the prediction would also require to include the object pose Tt in the state

and the model would become nonlinear.
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5.3.4 Choice of the őltering algorithm

In order to track the velocity of the object, we adopted the standard Linear Kalman

Filter for the following reasons:

• the motion and measurement models are both linear;

• the availability of a sequential variant of the algorithm, discussed in Sec. 2.2.2,

that efficiently processes high-dimensional measurements as in the case of the

optical ŕow vectors.

Given the above motivations, we adopted the Algorithm 6 łSequential Kalman őlter”

to accomplish this task.

5.4 6D object pose tracking

In this section, the last stage of the architecture is presented. It fuses non-synchronized

pose measurements T d
t , available at low frame rate, with the estimated velocities Vt,

available for all frames, using an Unscented Kalman Filter in order to track the 6D

pose of the object. In the remainder of this section, all the components of the őlter are

described.

5.4.1 Description of the state and the measurements

The state to be tracked xt is deőned as

xt =













pt

vmt

qt

ωt













(5.10)

which comprises the Cartesian position pt ∈ R
3, a unitary quaternion qt ∈ H for the

3D orientation, the linear mixed velocity vm ∈ R
3 and the angular velocity ω ∈ R

3.
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In order to track the state, we use the spatial velocity Vt, estimated as discussed in

Sec. 5.3, and the poses T d
t as measurements:

zt =













p(T d
t )

q(T d
t )

v(Vt)
ω(Vt)













. (5.11)

Here, p(T d
t ) and q(T d

t ) are the Cartesian position and the quaternion components

of the measured pose T d
t , while v(Vt) and ω(Vt) are the linear and angular velocity

components of the measured spatial velocity Vt.
As explained in the introduction, the pose measurements are available at low frame

rate. Speciőcally, it is assumed that they are available every Np steps. When they are

not available, the measurements reduce to the velocity only

zt =

[

v(Vt)
ω(Vt)

]

∈ R
6. (5.12)

5.4.2 Motion model

We assume that the state xt evolves according to the following model

xt = f(xt−1, wt−1)

= Fpxt−1 + Fq(ωt−1)xt−1 +







wv

04

wω






,

wv ∼ N (Qv),

wω ∼ N (Qω).

(5.13)

For the positional part, a White Noise Acceleration model (WNA) is used with Fp the

state transition matrix

Fp =







I3 I3∆t 0

0 I3 0

0 0 0






∈ R

13×13. (5.14)
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The vector wv ∈ R
6 is the noise associated to the positional part with noise covariance

matrix

Qv =

[

Qp
∆3

t

3
Qp

∆2
t

2

Qp
∆2

t

2
Qp∆t

]

∈ R
6×6, (5.15)

where Qp is the power spectral density of the noise.

For the rotational part, a standard quaternion kinematics transition matrix (Chiella

et al., 2019) is adopted

Fq(ω) =









0 0 0

0 cos(∥ω∥∆t

2
)I4 +

sin(∥ω∥
∆t
2
)

∥ω∥
Ω(ω) 0

0 0 I3









∈ R
13×13, (5.16)

where Ω(ω) is as follows

Ω(ω) =













−ωx −ωy −ωz 0
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





∈ R
4×4. (5.17)

The vector wω ∈ R
3 is the noise associated to the angular velocity with noise covariance

matrix Qω. This noise contribution affects the quaternion indirectly via the transition

matrix Fq.
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5.4.3 Measurement model

The measurement model relating the state xt with the measurements zt is time-variant

as it depends on the availability of the pose measurements T d
t , available every Np steps:

zt = ht(xt, νt)
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,

ν∗ ∼ N (0, R∗),

(5.18)

where ν∗ are the noise contributions for each component of the measurement with

R∗ the associated covariance matrices. It is recalled that ⊕ is the addition operator,

deőned in (2.114), that takes into account the quaternion arithmetic. In this regard,

the noise νq ∈ R
3 is to be considered as a perturbation vector in the Lie algebra of the

quaternions.

We remark that the extra term ωt × (−pt) makes the measured spatial velocity

v(Vt) comparable with the mixed velocity vmt belonging to the state xt.

5.4.4 Choice of the őltering algorithm

The actual tracking of the state xk is performed using an Unscented Kalman Filter.

This choice is dictated by the nonlinearity of the motion and measurement models.

Hence, we adopted the Algorithm 5 łUnscented Kalman őlter” to address this task.

Furthermore, given that the state xt and the measurement zt contain quaternion

components, the algorithm has been modiőed to take them into account as in the

Algorithm 9 łUnscented Kalman őltering using unit quaternions”.
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5.4.5 Synchronization of pose measurements

The pose measurements T d
t are available at low frame rate. We assume that a new

pose is available each every Np steps, hence it is associated to the RGB frame It−Np

and could not be used directly as measurement at time t. For this reason, when a

new pose measurement T d
t becomes available, the őlter is reset to the previous state

xt−Np
and a single UKF update is executed using the pose T d

t and the velocity Vt−Np

as measurements. It is assumed that previous velocity measurements are stored in a

buffer BV . After that, additional UKF update steps are executed using the remaining

buffered velocities in BV from Vt−Np+1 to Vt in order to obtain a synchronized estimate

xt. This process is illustrated in Fig 5.1, on the right, in the yellow łSynchronization”

block.

5.4.6 Rejection of pose measurements outliers

The pose measurements T d
t can be affected by outliers which might induce biases in the

estimates in Gaussian őlters such as the Kalman őlter (Issac et al., 2016). A practical

example is that of deep learning-based networks for 6D pose estimation whose output

might contain spikes, as shown in Sec. 4.2.8 and in Figs. 1.1 and 1.2.

To overcome this issue, when using T d
t in the synchronization process described in

Sec. 5.4.5, two UKF updates are actually executed resulting in two hypotheses. One

of the two considers both pose and velocity measurements, the other considers only

the velocity. Assuming that a 3D triangle mesh of the object (see Sec. 3.2) is available,

two synthetic depth maps, DV,T and DV respectively, are rendered for both hypotheses

and compared to the measured depth Dt−Np
. The comparison is quantiőed in terms of

two errors eV,T = e(DV,T ) and eV = e(DV) where

e(D) =
∑

(u,v)∈Mt−Np

|Dt−Np
(u, v)−D(u, v)|. (5.19)

If the two errors differ considerably, according to a threshold γ,

eV,T > γeV , (5.20)

the pose T d
t is marked as outlier and skipped. This process is illustrated in Fig. 5.2.
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Figure 5.2 Illustration of the outlier rejection mechanism employed in ROFT.

5.4.7 Resulting algorithm

The proposed algorithm for 6D object pose and velocity tracking is summarized in

the table entitled łROFT: Real-time Optical Flow-aided 6D Object Pose and Velocity

Tracking”. The overall framework is also depicted in Fig. 5.1.
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ROFT: Real-time Optical Flow-aided 6D Object Pose and Velocity Tracking

1: procedure ROFT(µ0, P0,V0, PV,0,M0, Ns, Np, γ)
2: µt=0 = µ0 ▷ Initialization of the pose tracker
3: Pt=0 = P0

4: Vt=0 = V0 ▷ Initialization of the spatial velocity tracker
5: PV,t=0 = PV,0

6: Mt=0 =M0 ▷ Initialization of the mask stream
7: for each (It, Dt[,M

d
t , T

d
t ]) do

8: Ft = Ft(Mt−1, It, It−1) ▷ Optical ŕow evaluation

Stage 1 - Optical ŕow-aided object segmentation

9: if Md
t available then

10: {Ft−Ns+1, · · · , Ft} ← BF

11: Mt =
(((

Md
t ⊞ Ft−Ns+1

)

⊞ . . .
)

⊞ Ft−1

)

⊞ Ft

12: else
13: Mt =Mt−1 ⊞ Ft

14: BF = BF ∪ {Ft}
15: end if

Stage 2 - 6D object spatial velocity tracking

16: zt ← Ft(Mt−1, It, It−1)
17: (Vt, PV,t) = SequentialKF(f(·), h(·, Dt),Vt−1, PV,t−1, zt)
18: ▷ See Algorithm 6 for SequentialKF(·)
19: ▷ See 5.3.2 for f(·)
20: ▷ See 5.3.3 for h(·)
Stage 3 - 6D object pose tracking

21: if T d
t available then

22: Vt−Np
← BV

23: z ← {T d
t ,Vt−Np

}
24: (µt−Np+1, Pt−Np+1)← OutlierRejection(µt−Np

, z,Dt−Np
,Mt−Np

, γ)
25: ▷ See 5.4.6
26: for each Vj ∈ BV , j ∈ [t−Np + 1, t] do ▷ See 5.4.5
27: z ← Vj
28: (µj, Pj) = UKF(f(·), h(·), µj−1, Pj−1, z)
29: end for
30: else
31: zt ← Vt
32: (µt, Pt) = UKF(f(·), h(·), µt−1, Pt−1, zt)
33: BV = BV ∪ {Vt}
34: end if
35: ▷ See Algorithms 5 and 9 for UKF(·)
36: ▷ See 5.4.2 for f(·)
37: ▷ See 5.4.3 for h(·)
38: end for
39: end procedure
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5.5 Experimental evaluation

This section reports on the performance achieved by the proposed method on the

Fast-YCB (Piga et al., 2022) and HO-3D (Hampali et al., 2020) datasets and provides

comparisons with state-of-the-art algorithms for 6D object pose tracking.

The analysis includes the standard ADD-AUC metric (Xiang et al., 2018), as well

as the pose RMSE (Bar-Shalom et al., 2002) tracking errors. Velocity RMSE tracking

errors are also discussed for the Fast-YCB dataset for which ground-truth velocities

are available. The evaluation also includes the results of several ablation studies where

all the key components of the pipeline are selectively disabled in order to assess their

individual importance. We also provide qualitative results on the adopted datasets

and on object gaze-tracking and grasping experiments executed on the iCub humanoid

robot platform (Metta et al., 2010).

5.5.1 Description of the evaluation datasets

Several standard datasets for 6D object pose estimation have been proposed in the

literature such as T-LESS (Hodan et al., 2017), LineMOD (Hinterstoisser et al., 2012)

and YCB-Video (Xiang et al., 2018). Among them, YCB-Video has also been adopted

to benchmark 6D object pose trackers such as PoseRBPF (Deng et al., 2019) and

se(3)-TrackNet (Wen et al., 2020a). However, the provided sequences are characterized

by slowly varying poses and low velocities, hence not necessarily ideal to benchmark

6D object pose tracking algorithms.

Fast-YCB

Given the aforementioned motivations, I proposed a new dataset, called Fast-YCB

(Piga et al., 2022), consisting of six photorealistic synthetic sequences, each comprising

fast motions of a single object taken from the YCB Model Set (Calli et al., 2015) in a

tabletop scenario. The six objects have been selected in order to consider a variety of

shapes (box, cylinders or irregular), sizes (small, medium and large) and textures (see

Fig. 5.3). Each sequence is rendered with bright static light conditions and provided

with 30 frames per second (fps) 1280x720 RGB-D frames and exact ground-truth 6D

object poses and velocities. Optical ŕow frames are also provided as part of the dataset.

We remark that object trajectories, used in the rendering process, were captured from

real-world hand-object manipulation using a marker board attached to the manipulated

object.
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Figure 5.3 Sample frames taken from the Fast-YCB dataset. The time length of the
reported frames is approximately 1 second.

HO-3D

We extended the analysis on real-world data by considering the public HO-3D (Hampali

et al., 2020) dataset, comprising real images of hand-held YCB objects that are involved

in challenging rotational motions. Furthermore, this dataset presents more variability

in terms of background, object occlusion and lightning conditions. Each sequence is

provided with 30 fps 640x480 RGB-D frames. This dataset offers ground-truth 6D

object pose labels for benchmarking while it lacks annotations of the 6D object velocity.

For the evaluation, 18 among all the sequences of the dataset have been selected,

excluding those containing discontinuities in the pose trajectory, hence not suitable for

tracking purposes.

Additional sequences

For further qualitative evaluation, some real unlabeled sequences acquired with an

Intel RealSense D415 camera, representing a scenario similar to that of Fast-YCB,

were also collected.

5.5.2 Description of the compared algorithms

The proposed method is compared against two state-of-the-art object pose trackers

from RGB-D images: PoseRBPF (Deng et al., 2019) and se(3)-TrackNet (Wen et al.,

2020a). These algorithms have been already presented in the previous chapter. The

reader is referred to the Sec. 4.2.2 for further information.
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5.5.3 Description of the experimental setup

Source of segmentation masks

As source of segmentation masks Md
t , we used the state-of-the-art Mask R-CNN

instance segmentation network (He et al., 2017), pre-trained on the COCO dataset

(Lin et al., 2014). In order to obtain a segmentation model for the objects of interest

from the YCB Model Set (Calli et al., 2015), we őne tuned the network on a synthetic

dataset generated using the BOP BlenderProc rendering engine (Denninger et al.,

2020).

Source of pose measurements

Object pose measurements T d
t were obtained using the 6D object pose estimation

network DOPE (Tremblay et al., 2018), originally trained on purely synthetic data.

This algorithm has been presented in the previous Chapter. The reader is referred to

the Sec. 4.2.2 for further information.

Retraining of the compared algorithms

Since all the aforementioned methods were originally trained on purely synthetic images

comprising the objects of interest, DOPE, PoseRBPF and se(3)-TrackNet have not been

retrained in order to execute the experiments, instead the original weights provided by

the authors were used.

Considered frame rates, initialization and re-initialization

All the tracking methods involved in the comparison were initialized using the őrst

available pose T d
0 from the DOPE pose estimation network.

Although the authors of se(3)-TrackNet suggest that the algorithm can be executed

without periodic re-initialization, it was experimentally observed that it looses track on

both the considered datasets. For this reason, and in order to have a fair comparison

with ROFT, the predictions from DOPE, delayed and at low frame rate, were used to

re-initialize se(3)-TrackNet periodically. It is worth mentioning that the re-initialization

stage does not affect the real-time performance.

Differently from se(3)-TrackNet, PoseRBPF cannot run in real-time and it is

reported to achieve the highest frame rate of 17.5 fps in the conőguration with 50

particles (Deng et al., 2021). In the adopted setup, this conőguration could not achieve
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Table 5.1 Parameter set for ROFT for the experiments on the Fast-YCB and HO-3D
datasets.

Pose tracker parameters
Parameter Values
P0 (1:3,1:3) diag(10−3, 10−3, 10−3)m2

P0 (4:6,4:6) diag(10−3, 10−3, 10−3) (m/s)2

P0 (7:9,7:9) diag(10−3, 10−3, 10−3) (rad/s)2

P0 (10:12,10:12) diag(10−3, 10−3, 10−3) (rad/s)2

Qp diag(1.0, 1.0, 1.0) (m/s)2/s

Qω diag(1.0, 1.0, 1.0) (rad/s)2

Rp diag(10−3, 10−3, 10−3)m2

Rq diag(10−4, 10−4, 10−4) (rad/s)2

Rv diag(10−1, 10−1, 10−1) (m/s)2

Rω diag(10−4, 10−4, 10−4) (rad/s)2

γ 2.0

Velocity tracker parameters
Parameter Values
V0 (1:3) diag(0.0, 0.0, 0.0)m/s
V0 (4:6) diag(0.0, 0.0, 0.0) rad/s

PV,0 (1:3,1:3) diag(10−3, 10−3, 10−3) (m/s)2

PV,0 (4:6,4:6) diag(10−3, 10−3, 10−3) (rad/s)2

Qv diag(10−1, 10−1, 10−1) (m/s)2

Qω diag(10−1, 10−1, 10−1) (rad/s)2

Rt diag(1.0, · · · , 1.0) px2

more than 13.5 fps, which implies to execute a őltering step every 2.2 frames. As this

is not feasible due to the discrete nature of a dataset sampled at 30 fps, PoseRBPF

was used by executing a őltering step every 2 frames. The resulting conőguration

corresponds to an equivalent frame rate of 15 fps.

Similarly to se(3)-TrackNet, it was observed that PoseRBPF can lose the track.

However, the provided mechanism for re-initialization requires more than 2 seconds on

average, due to the need for exploring the state space, making it incompatible with

the claimed frame rate. For this reason the re-initialization mechanism of PoseRBPF

was disabled during the experiments.

Additional implementation details

It is assumed that the RGB-D input stream It is available at 30 fps. In order to

obtain the optical ŕow frames Ft, the readily available NVIDIA Optical Flow SDK

(NVIDIA, 2021) was adopted as it provides real-time performance with small CUDA

cores utilization.

Given that the proposed approach considers a scenario where the output of the

segmentation and pose estimation networks is only available at low frame rate, Mask

R-CNN and DOPE were executed at 5 fps. This conőguration corresponds to a delay

of 200 ms or, equivalently, to a value of Ns = Np = 6.

The actual values of the covariance matrices Q∗ and R∗, reported in Table 5.1, were

chosen empirically in order to ensure a fast response with minimal overshoot, residual

oscillations and noise in the output. Remarkably, the same set of parameters has been

used in all the experiments independently of the considered dataset or object.
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Table 5.2 Results on the Fast-YCB dataset: ADD-AUC and RMSE positional and
angular errors for several methods.

metric ADD-AUC, ϵ = 10 cm Positional RMSE [cm] Rotational RMSE [deg]

method DOPE ROFT
Pose se(3)-

DOPE ROFT
Pose se(3)-

DOPE ROFT
Pose se(3)-

RBPF TrackNet RBPF TrackNet RBPF TrackNet
003 54.92 78.50 68.94 63.02 5.1 2.5 2.6 7.9 28.325 7.545 38.455 31.729
004 60.01 81.15 82.78 73.70 5.1 2.4 1.9 4.4 34.636 8.391 17.073 31.623
005 64.14 79.00 75.93 80.82 4.7 2.9 1.1 3.3 29.556 16.571 63.811 26.282
006 57.20 73.10 82.92 74.83 8.6 3.1 2.0 11.9 36.132 13.292 18.418 35.480
009 60.01 74.26 11.32 69.00 34.4 4.7 13.3 35.5 27.936 16.368 65.857 32.311
010 57.03 73.87 87.29 71.30 6.1 3.1 1.2 19.2 31.444 10.838 23.758 44.712
ALL 58.83 76.59 68.10 72.06 15.1 3.2 5.7 17.6 31.491 12.675 42.979 34.155

5.5.4 Description of the adopted metrics

Following prior works (Deng et al., 2019; Wen et al., 2020a), the ADD-AUC metric

(see Sec. 3.4.2) with the threshold ϵ set to 10 cm is reported for each object and

for the union of all the objects, in order to determine the overall performance of the

algorithms. The ADI-AUC metric for symmetric objects is not considered given that

all the considered objects are not symmetric and all the algorithms have access to the

RGB information.

Similarly to the experimental evaluation in Chapter 5, the evaluation also include

the positional and rotational RMSE metrics (see Sec. 3.4.1). With regard to the

Fast-YCB dataset, which also provides the ground-truth velocity of the object for all

the frames, we also considered the linear and angular velocity RMSE errors (see Sec.

3.4.1).

We evaluated the above metrics by considering all the frames of each considered

sequence.

5.5.5 Results on Fast-YCB

Performance of 6D object pose tracking

In Table 5.2, ROFT is compared against the state of the art in 6D object pose tracking

from RGB-D images. The comparison is extended to the estimation network DOPE

(also used as pose measurement T d
t in ROFT) running at 5 fps as baseline. To this

end, the ground-truth signal at each t is compared with the last available output from

the network.

Considering all the objects on average, ROFT achieves the best performance

according to all the metrics and gets an average Cartesian error in the order of few

centimeters and an average angular error of approximately 13 degrees. Remarkably, it

outperforms the other methods in terms of angular error both on average and for each
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Table 5.3 Results on the Fast-YCB dataset: RMSE linear and angular velocity errors.

metric Linear velocity RMSE (cm/s)) Angular veocity RMSE (deg/s)

method ROFT
ROFT

ROFT
ROFT

w/o segm. sync. w/o segm. sync.
003 5.237 8.469 18.250 38.163
004 8.500 15.996 24.949 65.321
005 9.592 21.033 41.212 78.006
006 7.227 16.409 26.553 65.494
009 22.277 32.428 46.374 94.324
010 6.388 23.194 26.083 67.406
ALL 11.409 20.931 32.119 70.164

object separately. The angular error is reduced on average by approximately 71%, 63%

and 60% with respect to PoseRBPF, se(3)-TrackNet and DOPE, respectively.

We remark that the experiments with se(3)-TrackNet involve re-initialization from

the DOPE predictions once they are available (at 5 fps). Without re-initialization, we

found that se(3)-TrackNet would lose the track of the object pose in almost all the

experiments leading to a ADD-AUC percentage of 50.55% (i.e. 21.5 points less than

the performance achievable with re-initialization).

Performance of 6D object velocity tracking

In Table 5.3, the RMSE errors for the linear and angular velocities Vt are reported.

We compare the performance in the case in which the optical ŕow-aided segmentation

mechanism, presented in Sec. 5.2, is enabled or disabled.

In terms of absolute errors, ROFT gets approximately 11 cm/s and 32 deg/s errors

on average. These results are judged as fairly accurate considering that the objects

motion reaches velocities up to 63 cm/s and 266 deg/s. With respect to the scenario

in which the non-synchronized masks are used (indicated as łw/o segm. sync.” in

the table), the masks reőned with the optical ŕow help reducing the tracking error

considerably (on average, 45% and 54% less error for the linear and angular parts,

respectively).

5.5.6 Results on HO-3D

In Table 5.4 ROFT is compared against the baseline (DOPE) and the state of the

art on the HO-3D dataset. Given the considerable amount of occlusions due to the

interaction between objects and the human hand, this dataset poses more challenges

to deep neural networks for object segmentation, pose estimation and tracking. As a
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Table 5.4 Results on the HO-3D dataset: ADD-AUC and RMSE positional and angular
errors for several methods.

metric ADD-AUC, ϵ = 10 cm Positional RMSE (cm) Rotational RMSE (deg)

method DOPE ROFT
Pose se(3)-

DOPE ROFT
Pose se(3)-

DOPE ROFT
Pose se(3)-

RBPF TrackNet RBPF TrackNet RBPF TrackNet
003 48.81 70.52 54.21 52.07 9.8 3.3 3.8 6.8 45.918 23.085 67.665 42.743
004 60.28 73.80 60.87 67.20 10.5 3.1 2.8 8.9 47.169 27.243 71.168 45.790
006 36.32 56.29 59.09 51.89 17.0 6.6 2.9 16.3 78.987 40.107 86.246 76.446
010 43.27 46.23 53.87 53.67 13.1 9.0 3.2 14.1 57.547 41.618 107.586 54.454
ALL 49.34 63.31 57.82 58.36 12.7 5.7 3.1 11.9 57.761 33.437 83.318 55.462

Table 5.5 ADD-AUC and RMSE errors averaged on all the selected HO-3D sequences
when ground-truth inputs are used.

variant
ADD-AUC RMSE RMSE

(%) et (cm) ea (deg)
ROFT 63.31 5.7 33.437
ROFT w/ GT segm. 62.54 5.5 34.693
ROFT w/ GT pose 82.00 2.3 15.820
ROFT w/ GT segm. and pose 81.86 2.1 16.238

result, the quality of the PoseRBPF and se(3)-TrackNet predictions and of the inputs

to ROFT, i.e. masks from Mask R-CNN and poses from DOPE, reduces considerably.

According to the ADD-AUC metric, even the best performance, reached by ROFT,

stops at approximately 64%. The best performance in terms of RMSE Cartesian error

is instead obtained by PoseRBPF. On the other hand, ROFT still achieves the best

performance in terms of RMSE angular error for each object, with average reductions

in the error by approximately 60%, 44% and 40% compared to PoseRBPF, DOPE and

se(3)-TrackNet respectively.

Remarkably, as shown in Table 5.5, the performance of ROFT improves by increasing

the quality of the inputs. E.g., using ground-truth poses leads to an increase of more

than 18 points of the ADD-AUC metric and a reduction of both the RMSE errors to

less than half the original error.

5.5.7 Results: frame rate comparison

ROFT achieves 96.2 fps compared to 142.4 fps obtained by se(3)-TrackNet and 13.5 fps

achieved by PoseRBPF (with 50 particles). The frame rate has been evaluated as the

inverse of the mean iteration time averaged on all the sequences of both Fast-YCB and

HO-3D datasets. All the experiments have been executed on the same hardware, i.e. a

mobile computer equipped with an Intel Core i9-10980HK CPU and an NVIDIA RTX

2080S GPU. Our method and se(3)-TrackNet exceed the typical real-time requirement

of 30 fps.
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Figure 5.4 Qualitative results for the object cracker box (003). On the left: frames
from Fast-YCB. On the right: frames acquired with a RealSense D415 camera. The
time length of the object motion is approximately 1 second. The red contour in the
Segmentation row represents the stream of delayed masks Md

t , the green dots represent
the masks Mt propagated using the optical ŕow.

5.5.8 Qualitative results

In this section I compare qualitatively the proposed tracking method, ROFT, with the

network DOPE and the tracking methods PoseRBPF and se(3)-TrackNet on a synthetic

sequence extracted from the Fast-YCB dataset and on a real sequence acquired in a

similar scenario with a RealSense RGB-D camera.

In Fig. 5.4, the estimates are represented by superimposing the textured mesh of

the object cracker box (003), transformed according to the estimated pose, on the input

frames. ROFT provides well-synchronized estimates in case of fast motions from both

the Fast-YCB dataset and the real sequences. The estimates from DOPE (used as pose

measurements in ROFT) and se(3)-TrackNet show lack of synchronization especially

with regard to the orientation of the object. The performance of PoseRBPF is similar

to that of ROFT on the synthetic sequence, but it looses track on the real sequence.

These results can be largely attributed to the usage of the optical ŕow via the

object velocity V . The velocity conveys the 6D direction of motion to the Unscented

Kalman őlter that is valuable in presence of fast motions. Methods based on particle

őltering, as PoseRBPF, usually do not employ this kind of information and explore the



5.5 Experimental evaluation 167

Table 5.6 Performance of ROFT on the Fast-YCB dataset when key components are
selectively disabled.

metric ADD-AUC Positional RMSE (cm) Rotational RMSE (deg)
ROFT w/ GT segm. and pose 84.51 2.5 10.591
ROFT w/ GT pose 83.97 2.6 11.507
ROFT w/ GT segm. 77.08 3.1 11.901
ROFT 76.59 3.2 12.675

ROFT w/o pose sync. 74.83 3.0 17.060
ROFT w/o outlier rej. 74.79 10.8 14.248
ROFT w/o segm. sync. 64.69 5.4 27.497
ROFT w/o velocity 54.23 19.8 36.492
ROFT w/o pose 13.27 15.9 80.012
DOPE (ideal) 84.94 8.7 16.277
DOPE 58.83 15.1 31.491

state space via random walks. Conversely, end-to-end approaches for object tracking,

as se(3)-TrackNet, predict the relative 6D pose between consecutive time steps directly

from images. This task is rather complex to be accomplished and might result in

underestimation of the actual motion or tracking loss. ROFT, instead, uses optical

ŕow which solves the simpler task of estimating the motion of pixels in 2D space. This

information is later converted to the 6D domain using a őltering based approach that

does not require training.

In the second row of the same őgure the stream of non-synchronized masks Md
t from

Mask R-CNN (red silhouette) is shown and compared with the output of the optical

ŕow-aided mask synchronization mechanism as described in 5.2 (green dots). We notice

that, although the obtained masks are discontinuous, they provide a reasonable source

of pixel coordinates belonging to the object as required by the 6D velocity tracking

stage described in Sec. 5.3.

5.5.9 Ablation studies

In this section I will provide the results of several ablation studies whose aim is to

assess the effectiveness of the many components that constitute the ROFT pipeline.

Furthermore, I will provide the outcome of additional experiments where the sources of

segmentation masks and pose estimates are replaced with ground-truth segmentation

and/or pose measurements.

The results are provided in the Table 5.6. Here, łw/ GT segm” indicates using the

ground-truth segmentation, łw/ GT pose” indicates using the ground-truth pose, łw/o

pose sync.” indicates disabling the synchronization of pose measurements as per Sec.

5.4.5, łw/o outlier rej.” indicates disabling the outlier rejection mechanism as per Sec.

5.4.6, łw/o velocity” indicates that the velocity measurements are discarded in Eq.
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(5.18) and łw/o pose” indicates that the pose measurements are discarded in the same

equation. The table also include a comparison with the delayed DOPE predictions at

5 fps, indicated as łDOPE”, and DOPE predictions on all the frames at 30 fps without

delay, indicated as łDOPE (ideal)”.

Excluding DOPE (ideal) and experiments with ground-truth inputs, the full ROFT

pipeline reaches the best performance according to the ADD-AUC (76.59%) and RMSE

angular error metrics (12.675 deg). While the pose synchronization mechanism increases

the RMSE Cartesian error by only 0.2 cm, it reduces the average angular error by

approximately 5 degrees. On the other hand, the outlier rejection mechanism mostly

affects the Cartesian error, reducing it by approximately 7 cm. Remarkably, ROFT

achieves better RMSE errors even when compared with the DOPE (ideal) scenario.

This phenomenon can be explained by the presence of the outlier rejection mechanism.

If velocity measurements Vt are not used, the performance degrades considerably

because the őltering process performs corrections based on a new pose every Np steps

only. Also, using DOPE alone at 5 fps would give better results in this scenario.

This result conőrms the importance of using the optical ŕow via the object velocity

Vt. Conversely, when the velocities are used without pose measurements T d
t , the

performance of ROFT is the lowest due to the noise in the velocities, which gets

integrated over time.

Overall, these results show that each component of the pipeline contributes to

the overall performance. Remarkably, only a combination of pose and velocity mea-

surements justiőes the necessity to use a Kalman őltering approach for information

fusion.

Experiments with ground-truth inputs show that the performance of ROFT can

be further increased. This suggests that pipelines with a certain degree of modularity,

as the one proposed, where each component plays a clear and explainable role, can

be more conveniently improved by possibly replacing some of their components with

better ones. It is recalled that a similar modularity is not achievable with end-to-end

approaches for tracking such as se(3)-TrackNet.

5.5.10 Tracking and grasping experiments on a humanoid robot

In order to assess the effectiveness of the proposed tracker for robotics applications,

I developed an online application with the iCub humanoid robotic platform (Metta

et al., 2010). The gaze control system of the robot (Roncone et al., 2016) is used to
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track the object of interest in the image plane by using the estimated position pt ∈ R
3

as a reference gazing point (see Fig. 5.5).

We remark that, in this scenario, both the camera, mounted on the head of the

robot, and the object move. Ego-motion is implicitly taken into account by the fact

that the algorithm estimates the relative motion of the object with respect to the

camera. Our experiments conőrm this observation, demonstrating that ROFT retains

good performance in presence of camera motions.

Figure 5.5 The iCub humanoid robot while it gaze-tracks the mustard bottle from the
YCB Model Set using the output of ROFT as feedback.

The proposed experiment also aims at evaluating whether the tracked poses are

accurate enough to enable robot grasping. To this end, we designed a simple grasping

application. When the object is within the reachable space of the robot and the

estimated velocity is almost zero, the pose tracked by ROFT is used to plan a grasping
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action. Speciőcally, we consider the 3D model of the object at the estimated pose and

we őnd possible grasping candidates using the planning approach proposed in (Nguyen

et al., 2018). The best grasping candidate is őnally executed using the Cartesian

controller (Pattacini et al., 2010) of the robot. Sample grasping sequences are shown

in Figs. 5.6 and 5.7.

Figure 5.6 The iCub humanoid robot while it grasps the mustard bottle from the YCB
Model Set. The output pose from ROFT is used to plan the grasping action.

Remarkably, by tracking the pose of the object over time, we were also able to

implement a simple adaptive strategy which interrupts the grasping action if the object

moves away from the planned grasp pose.

5.5.11 Limitations

This section ends the experimental evaluation by discussing some limitations of the

method.
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Figure 5.7 Another example of iCub humanoid robot grasping the mustard bottle from
the YCB Model Set. The output pose from ROFT is used to plan the grasping action.

Tracking in presence of ego-motion

The proposed tracking framework has been designed to track the relative pose and the

relative velocity between the camera reference frame {I} and the reference frame {B}
attached to the object of interest (see Sec. 3.1.1). This choice implies that it can also

be used in the presence of a moving camera, as the robotic experiments in Sec. 5.5.10

demonstrates qualitatively.

Nonetheless, the numerical experiments have been conducted on the Fast-YCB

and HO-3D datasets, which have been acquired using a stationary camera and do not

include camera ego-motion. I plan to further investigate quantitatively the effect of

ego-motion on the proposed pipeline in future research.
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(a) (b)

Figure 5.8 (a) Example of out-of-plane object rotation. (b) Top: input images. Bottom:
example of imprecise estimates in presence of out-of-plane object rotations.

Tracking out-of-plane object rotations

The experiments revealed that out-of-plane object rotations (see Fig. 5.8a) can

sometimes result in the underestimation of the optical ŕow motion vectors Ft. The

difficulty to track the pixels motion comes from object self-occlusions and causes less

precise tracking of the angular velocity ωt(Vt) and, therefore, of the object pose. An

example of the phenomenon is shown in Fig. 5.8b. Nevertheless, we observed that this

condition mainly affects the magnitude of the angular velocity rather than its direction,

as the őnal orientation of the object in Fig.5.8b shows.

It can be expected that an online adaptation of the covariance matrices R∗ in Eq.

(5.18) could help improve the tracking performance by giving more importance to

the velocity measurements when required. I plan to investigate the design and the

validation of such adaptation schemes in future research.



Chapter 6

Differentiable Filtering for 1D Object

Sliding Tracking

In the previous chapters, I considered the problem of tracking the 6D pose and the

velocity of a given object from RGB-D images. However, there are scenarios in which a

robot might not be able to effectively use the visual sensing modality for several reasons,

e.g., due to unusual lighting conditions or because the object is mostly occluded by

other objects or by the end-effector of the robot during in-hand object interactions.

For these reasons, it is also important to develop object pose estimation and tracking

algorithms that consider other sensing modalities, such as tactile sensing.

State-of-the-art methods addressing speciőcally the problem of in-hand object

tracking either use visual information and concentrates on achieving robustness to

occlusions (Wen et al., 2020b) or focus on providing rich and efficient tactile contact

modelling (Liang et al., 2020) that can help explaining complex within-hand object

motions in real-time.

Among the most typical in-hand object motions, object slipping and sliding are

particularly challenging to be perceived and controlled. For this reason, they have

been extensively explored and studied within the literature on tactile-based perception

and control. In this respect, several works (Dong et al., 2019; Meier et al., 2016; Veiga

et al., 2018) propose methods, often learning-based, for slip detection and prediction

and how to utilize them for grip stabilization. On the other hand, most works dealing

with in-hand object pose estimation and tracking do not address the problem, as in

Wen et al. (2020b). An exception is Liang et al. (2020), where a physical engine is

used to model the tactile interaction with the object and is integrated in an object

pose tracker that explicitly takes into account slippage. More recently, Costanzo (2021)
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proposed a nonlinear observer which combines a model of the Coulomb and viscous

friction with tactile measurements in order to estimate the relative orientation between

the object and the őngers of a parallel jaw gripper. They show how to use feedback

from the observer in order to reject the possible rotational slippage of the object or

regulate the orientation of the object to a desired reference.

During the PhD, I explored the problem of tracking the position and the velocity

of an object subjected to in-hand sliding motion using tactile observations (Piga et al.,

2021b). The tracking algorithm is implemented as a differentiable Kalman őlter (Kloss

et al., 2021). This paradigm enables tracking the state of systems that might not be

easily modeled analytically, as in the case of in-hand object manipulation involving

tactile sensing. This is made possible by learning the measurement model of the sensors

from ground-truth data obtained with visual feedback.

The major contributions presented in this chapter are the following:

• The modelling of tactile sensing modalities in the context of differentiable Kalman

őltering for state tracking without the need to manually write mathematically

challenging motion and measurement models;

• The development of strategies for collecting labelled data using Kalman smoothers

starting from noisy ground-truth data;

• The execution of experiments on a real humanoid anthropomorphic hand equipped

with soft tactile sensors.

We remark that Liang et al. (2020) provide experiments both in simulation and

using real-world data. However, the results regarding the slippage are not provided for

the real-world scenario and analyzed only in simulation. Conversely, this work also

provides results on sliding tracking using real-world tactile data. As regards the method

proposed in (Costanzo, 2021), we observe that it focuses on tracking relative rotational

motions between the object and the end-effector in presence of rotational slippage.

Conversely, this work concentrates on translational sliding motions. Furthermore,

(Costanzo, 2021) employs a model-based approach, while this work addresses the task

at hand using an hybrid approach.

A video of the experiments is available online1. The code used for the experiments

is made publicly available for free with an Open Source license online2.

1https://www.frontiersin.org/articles/10.3389/frobt.2021.686447/full#supplementary-material
2https://github.com/hsp-iit/dekf-tactile-őltering

https://www.frontiersin.org/articles/10.3389/frobt.2021.686447/full#supplementary-material
https://github.com/hsp-iit/dekf-tactile-filtering
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The remainder of this chapter is organized as follows. In Sec. 6.1, I present the

proposed method in detail with the help of the theory from Chapters 3 and 4. Then,

Sec. 6.2 explains the working principle of the adopted tactile sensors and describes the

procedures for data collection and training of the differentiable őlter. Finally, in Sec.

6.3, I discuss the experimental results and possible limitations of the method.

6.1 Description of the method

The proposed method tracks the one-dimensional position pt ∈ R and the associated

velocity vt ∈ R of an object of interest O while it slides between the őngertips of

a multiőngered robotic hand using noisy tactile data τ . A differentiable Extended

Kalman őlter (see Sec. 2.5) is used to accomplish the task.

We assume that the tactile data is represented using an Euclidean vector τ ∈ R
ML

where M indicates the number of sensorized őngers and L indicates the number of

channels associated to each sensor. In the literature, there exist several implementations

of soft tactile sensors, e.g. (Tomo et al., 2016; Wettels et al., 2014), which deform in

the 3D space during the interaction with the object. For these sensors, the number of

channels is usually in the order of 3 or more, i.e. L ≥ 3.

Differently from the other chapters, here we will assume that the inertial frame {I},
introduced in Sec. 3.1.1, is not attached to the camera, as this work deals only with

tactile data. Conversely, the frame will be attached directly to the root frame of the

robot that manipulates the object. Consequently, pt will represent the position of the

object with respect to the origin of the robot frame and expressed in the robot frame.

6.1.1 Assumptions on the considered manipulation task

The developments presented in this section assume that the object of interest slides

between the őnger of the robot hand. More speciőcally, we assume that

• the object can only slide along a single translational direction;

• the object does not rotate during the sliding motion;

• the object is only subjected to the gravity force, i.e. no external disturbances act

on it;

• the motion of the object is caused by a periodic reduction of the grasp force

resulting in a sequence of stick-slip-like motions.
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We remark that the above assumptions do not include all the possible scenarios

in which an object might start sliding. As an example, an increasing shear load that

eventually reaches and exceeds the maximum static friction force. Moreover, the

assumption that the sliding motion occurs along a single direction might not be always

veriőed when using a general multi-őngered hand. Nonetheless, these scenarios have

not been considered in this project and the experiments have been conducted under

controlled conditions in order to fulőll the aforementioned assumptions.

In the remainder of this section, all the components of the tracking algorithm are

described.

6.1.2 Deőnition of the state and the measurements

The state to be tracked xt is deőned as

xt =

[

pt

vt

]

∈ R
2, (6.1)

where pt and vt are the position and the velocity of the object. Without loss of

generality, we let p0 = 0.

In order to track the state xt, the tactile data τ ∈ R
ML is used as a measurement.

However, as we will prove in the experimental evaluation, using the derivative of the

tactile signal τ̇t, instead of the plain signal τt, is crucial in order to obtain a meaningful

estimation of the state under the hypotheses stated in 6.1.1. For this reason, we will

assume that the measurements take the form

zt = τ̇t ∈ R
ML. (6.2)

6.1.3 Motion model

Motion and measurement models are usually őrst principles models, i.e. they are

obtained form the combination of suitable physical laws that describe the system of

interest. This way of proceeding was indeed considered in Chapters 5 and 6. However,

writing the mathematical expression of these models is not always possible if the

system under investigation is considerably complex or the working principles are not

completely known. This is the case for the majority of the tactile sensors adopted in

the literature. For this reason, the differentiable Kalman őltering paradigm, presented

in Sec. 2.5, has been adopted.
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The differentiable Kalman őltering paradigm allows injecting neural network mod-

ules within the standard motion and measurement model in Eqs. (2.7) and (2.8) such

that the models, or part of them, can be learned from experimental data.

In the speciőc case of this project, we adopted an hybrid motion model. It combines

the physical notions of position and velocity with a neural network. The model is as

follows:

xt = fθ1(xt−1, wt−1),

=

(

pt−1 + vt−1∆t

vt−1 +NNθ1(xt−1)

)

+ w,

w ∼ N (0, Q).

(6.3)

The positional part pt is updated using a constant velocity model (Bar-Shalom et al.,

2002) where the elapsed time ∆t is assumed equal to the sampling period of the

algorithm. Instead, the change in velocity between consecutive instant of times vt−vt−1

is modelled as the output of a neural network NNθ1 with parameters θ1 given the state

at the previous instant of time xt−1:

vt − vt−1 = NNθ1(xt−1) ∈ R. (6.4)

The process noise covariance matrix Q ∈ R
2×2 is also considered as a parameter to be

learned.

In conclusion, we know that the position is the integral of the velocity, thus we

combine this information within the model without the need to learn it from data.

Conversely, the change in velocity could be modelled by reasoning on the forces acting

on the object. However, given that extracting the forces from non-calibrated tactile

sensors might be challenging, then deriving a model for the velocity from őrst principles

might be difficult. For these reasons, we found convenient to describe the model using

a neural network.

6.1.4 Measurement model

Given the complexity of the measurement process, depending on the speciőc nature of

the tactile sensors, we propose to design the measurement function h(x) using a neural
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network NNθ2 with parameters θ2. The resulting measurement model is:

zt = hθ2(xt, νt)

= NNθ2(xt) + ν,

ν ∼ N (0, R),

(6.5)

where NNθ2(xt) ∈ R maps the state xt to a one-dimensional feature. In order to make

the learned feature comparable with the actual measurement τ̇ ∈ R
ML, we employ a

secondary network NNθ3 with parameters θ3 such that the actual measurement become

zt = NNθ3(τ̇t) ∈ R. (6.6)

In summary, the adopted measurement model uses two neural networks in order

to i) map the actual measurement τ̇ to a 1-dimensional measured feature NNθ3(τ̇t)

and ii) map the state xt to a 1-dimensional feature NNθ2(xt). The two networks are

not trained separately as the target feature and its characteristics are not known a

priori. Instead, they are trained jointly such that the best intermediate feature for the

tracking task can be learned from the data.

We adopted a one-dimensional feature in lieu of a multi-dimensional one as we

assume that the sliding motion can occur only along a single translational direction.

The position associated to the motion is easily recovered by integrating the velocity

once p0 = 0 is őxed, as Eq (6.3) models. Hence, the őlter should be mainly responsible

for correcting the velocity part of the state vt ∈ R, for which a one-dimensional

measurement should be sufficient.

Similarly to the motion model, the measurement noise covariance matrix R ∈ R is

considered as a parameter to be learned.

6.1.5 Choice of the őltering algorithm

The proposed motion and measurement models both contain neural network modules

that make the motion and measurement functions f and h nonlinear. Although the

Unscented Kalman őlter could be used to track the state, one of its main advantages

(i.e. no need for evaluating the Jacobians) no longer holds. Indeed, almost every

machine learning software framework allows evaluating the Jacobians analytically using

the so-called łautomatic differentiation”. For this reason, we adopted an Extended

Kalman őlter in order to accomplish the task.



6.1 Description of the method 179

6.1.6 Speciőcation of the neural networks

In this section, I will provide a concise description of the inner architecture of the

networks NNθ1 , NNθ2 and NNθ3 . Furthermore, I will explain how to handle the

trainable noise covariance matrices Q and R.

Following prior work (Lee et al., 2020), the network NNθ1 in Equation (6.3) is

designed such that the input xt−1 is őrst fed through a multi-layer encoder with the

following structure:

• 1 linear layer with 64 units;

• 1 ReLU activation;

• 1 linear residual layer.

The extracted feature is then passed to a shared stage composed by:

• 1 linear layer with 64 units;

• 3 linear residual layers;

• 1 linear layer with 64 units with output size equal to 1.

The above mentioned linear residual layer is composed as follows:

• 1 linear layer with 64 units;

• 1 ReLU activation;

• 1 linear layer with 64 units;

• 1 summation junction with the input to the residual layer;

• 1 ReLU activation.

We mention that the consecutive linear layers in the shared stage cannot be uniőed

in a single linear layer because the residual linear layer contains nonlinear activation

functions in the output. We also notice that the output of the last layer of the shared

stage has size equal to 1 since it needs to be summed up to the previous velocity vt−1

as per Equation (6.3).

The reason for using a shared stage is that, in case an input ut to the system is

available, a secondary multi-layer encoder can be used to extract features from ut (Lee
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Figure 6.1 Overview of the proposed differentiable őltering architecture for object
sliding tracking. The letter σ indicates the ReLU activation function. The linear layers
of the network are represented as blue blocks. Instead, the linear residual layers are
represented as green blocks.

et al., 2020). Then, the features extracted from xt−1 and ut could be concatenated and

then passed to the shared stage (Lee et al., 2020). Given that in this work there are

no available inputs, the state features are directly fed to the shared stage.

The same structure as above has been used for the networks NNθ2 and NNθ3 . Also

for these networks, the output size of the last layer equals to 1 as it is the size chosen

for the measurement feature in Eq. (6.5).

The structure of the network NNθ! is summarized in Fig. 6.1 together with the

interconnections with the other networks NNθ2 and NNθ3 throughout the őltering

architecture. The inner structure of the linear residual layer is also represented in the

bottom left part of the same őgure.

Handling of the noise covariance matrices

Following prior work (Lee et al., 2020), the training procedure does not directly learn

the matrices Q and R. Instead, their Cholesky decomposition LQ ∈ R
2×2 and LR ∈ R

1

is considered. In order to take into account this choice, the actual implementation of

the Extended Kalman prediction and correction steps evaluates the covariance matrix

Q as LQL
T
Q and the covariance matrix R as LRL

T
R, as per the deőnition of the Cholesky

decomposition.
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dEKF for Object Sliding Tracking

1: procedure dEKF(µ0, P0, Pτ,0, θ1, θ2, θ3)
2: µt=0 = µ0 ▷ Initialization of the object sliding tracker
3: Pt=0 = P0

4: τt=0 = τ0, τ̇t=0 = 0 ▷ Initialization of the őlter of the tactile signal
5: Pτ,t=0 = Pτ,0

6: for each (τt) do

Filtering of the derivative of the tactile signal

7: Deőnition of the functions f and h:
[

τt
τ̇t

]

= f

([

τt−1

τ̇t−1

])

=

[

τt−1 + τ̇t−1∆t

τ̇t−1

]

,

zt = h

([

τt
τ̇t

])

= τt.

8: zt ← τt
9: (τt, τ̇t, Pτ,t) = KF(f(·), h(·), τt−1, τ̇t−1, Pτ,t−1, zt) ▷ See Algorithm 1

Object sliding tracking

10: zt ← NNθ3(τ̇t)
11: (µt, Pt) = EKF(fθ1(·), hθ2(·), µt−1, Pt−1, zt) ▷ See Algorithm 3
12: ▷ See 6.1.3 for fθ1(·)
13: ▷ See 6.1.4 for hθ2(·) and NNθ3(·)
14: end for
15: end procedure

6.1.7 Resulting algorithm

The proposed algorithm for object sliding tracking is summarized in the table entitled

łdEKF for Object Sliding Tracking”. The overall framework is also depicted in Fig. 6.1.

As speciőed in Sec. 6.1.2, the őrst derivative of the tactile signal τ̇t is required to

actually implement the őltering architecture. Given that tactile sensors usually do not

provide the derivative of their own output, a linear Kalman őlter is used to estimate

the derivative τ̇t. Further details can be found in the above mentioned table.

6.2 Data collection and training

The physical setup used for data collection and training comprises the iCub humanoid

platform (Metta et al., 2010) and a special version of the uSkin soft tactile sensors

(Tomo et al., 2016) that has been adapted (Holgado et al., 2019) for the iCub robot.
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The remainder of this section is organized as follows. After a brief description

of the sensors in Sec. 6.2.1 and of the iCub humanoid platform in Sec. 6.2.2, Sec.

6.2.3 explains how the training and testing data were collected via experiments of

controlled sliding of several objects and post-processed. Finally, in Sec. 6.2.4, the

adopted training protocol is brieŕy discussed.

6.2.1 Description of the tactile sensors

The adopted tactile sensors are magnetic soft tactile sensors. The sensing principle is

the following: when external forces deform the sensor, due to the interaction with the

object, the deformation is sensed by an electronic circuit such that the output signal

is correlated with the interaction between the sensor and the object. In the case of

magnetic sensors, a magnet is embedded on the surface of the sensor, and a Hall effect

sensor detects changes in the magnetic őeld.

The speciőc sensor that has been used is the uSkin sensor (Tomo et al., 2016) and

in particular a special version of the uSkin sensor that has been adapted (Holgado

et al., 2019) for the anthropomorphic hands of the iCub robot.

The main sensing module of size 6× 6× 3.8 mm, shown in Fig. 6.2-A, consists of

(from the bottom):

• a PCB board hosting the Hall effect sensor chip;

• a single soft silicone skin cover;

• a neodymium magnet;

• a ŕexible textile cover (realized with a high friction grip tape).

Integration of the above sensing module on the őngertips of the iCub hands is

achieved with a suitable őngertip adapter (Holgado et al., 2019) show in Fig. 6.2-B. The

adapter hosts two sensing modules that follow the original curvature of the őngertip

assembly. A top layer of grip tape is őnally placed over the whole assembly in order to

provide good friction properties and protect the underlying sensors. The őnal assembly

is shown in Fig. 6.2-C.

Once mounted on the őngertips of the iCub robot, the sensors allows measuring

the interaction between the őngertips and the object. Speciőcally, the output of the

sensor consists of 3 channels, i.e. L = 3, that are proportional to the sensed magnetic
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Figure 6.2 In (A), the exploded view of the sensing module. In (B), the CAD model
of the őngertip adapter for the iCub őnger hosting two sensing modules. In (C), the
őnal assembled őngertip adapters with the grip tape cover. In (D), the iCub humanoid
robot left hand equipped with uSkin deformable soft tactile sensors.

őeld. The resulting vector of 3 coordinates, for each őnger f , is indicated as

τ f =







τ fx

τ fy

τ fz






∈ R

3, (6.7)

where the x, y and z axes are represented in Fig. 6.2-A. The 3D nature of the output

signal allows measuring the following types of interactions between the object and the

őngertip:

• normal interactions, such as normal forces exerted by the robot when grasping

an object;

• lateral interactions, such as lateral and shear forces occurring when the object

slides between the őngers of the robot.
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Given that only the thumb, index and middle őngers of the robot were used in the

experiments, the resulting vector τ is composed as

τ =







τ thumb

τ index

τmiddle






∈ R

9. (6.8)

6.2.2 Description of the iCub humanoid robot

The robot platform adopted in this work is the iCub humanoid platform (Metta et al.,

2010). The hands of the iCub are endowed with 9 joints that can be controlled using

several control modes in order to decide the position of the őngertips. In this work, we

only control the position of the thumb, index and middle őngers using voltage inputs.

Each őnger is equipped with two uSkin sensing elements, as previously described.

Furthermore, a RGB camera system is mounted on the head of the robot. The

camera system is used to track the actual position of the object, using ArUco markers

(Garrido-Jurado et al., 2014), and collect the data required for training and testing

purposes.

6.2.3 Data collection and post-processing

In this section the procedures required to collect the training and testing data will be

described. According to the differentiable Kalman őltering paradigm, described in 2.5,

it is required to collect a set X of ground-truth trajectories of the state {xgtt,i} and the

associated tactile signals {τ̇t,i}.
To this end, a repeatable controlled sliding experiment was designed. In this

experiment, the object of interest is manually placed on a table in front of the robot

in a őxed starting pose. The arm of the robot is moved near the object, in a őxed

pose, such that the hand can grasp the object. Once the object has been grasped,

the robot arm moves up and then the thumb, index and middle őngers are controlled

in a way such that the grasp force is reduced periodically resulting in a sequence of

stick-slip-like motions (see Fig. 6.3).

During each experiment, the position of the object pAt ∈ R, is acquired at 30 Hz

using an ArUco marker placed on the top of the object such that it is visible from the

RGB camera system mounted on the head of the robot. The signal from the marker is

then post-processed in order to obtain the ground-truth state.
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Figure 6.3 Outcome of the controlled sliding experiment with a box-shaped object.

At the same time, all the relevant tactile signals coming from the setup are also

recorded at the same frequency. Only one of the two sensors mounted on each őnger

was recorded as it was noticed that the second sensing unit was not őrmly in contact

with the object. As previously explained in Sec. 6.1.7, the derivative of the tactile

signal is obtained by running a linear Kalman őlter using the raw tactile data τt.

Description of the controlled sliding experiment

Taking into account the kinematics of the robot hand, the placements of the sensing

units on each őnger and the reference frame attached to each sensor, it was found

experimentally that the object sliding could be controlled by regulating the z channel

of one of the two sensors mounted on each őnger. These channels will be indicated

as τ thumb
z , τ indexz and τmiddle

z . Indeed, they are proportional to the displacement of the

sensor membrane in a direction that is approximately orthogonal to the surface of the

object. The regulation of these signals allows deciding the grasp quality and, eventually,

to start and stop the object sliding.

The actual control is made by a PI controller running at 100 Hz. Speciőcally, the

output of the controller is used to decide the voltage Vf of the proximal joint of the
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őnger as follows:

Vf = kp,f (τ
f
z,des − τ fz ) + ki,f

∫

(τ fz,des − τ fz ) dt, (6.9)

where f ∈ {index,middle, thumb}, kp,f is the proportional gain for the őnger f , ki,f
is the integral gain for the őnger f , τ fz is the z tactile channel for the őnger f and

τ fz,des is the desired value for the őnger f . The distal joints of each őnger were instead

regulated to suitable conőgurations using the iCub built-in joint position control loops.

The desired values τ fz,des were chosen by taking inspiration from a former work on

hierarchical grasp control using tactile feedback (Regoli et al., 2016). Given a desired

grasp strength gdes in Newton, in this work the forces F f
des exerted by the őngers on

the object are partitioned as follows:

F index
des = Fmiddle

des =
gdes
2
, F thumb

des = gdes. (6.10)

A similar reasoning was replicated by deőning a generalized grasp strength in the space

of the sensors output, τg,des, and assigning the following desired values:

τ indexz,des = τmiddle
z,des =

τg,des
2

, τ thumb
z,des = τg,des. (6.11)

The design of the desired references is concluded by assigning a periodic smooth

trajectory to the desired grasp strength τg,des such that it moves alternatively between

a maximum value τg,max and a minimum value τg,min. The two values were chosen, for

each object, such that when the grasp strength is regulated to the maximum value

the object does not move. Conversely, when it is regulated to the minimum value

the object slides noticeably between the őngers of the robot hand. An example of

the commanded and achieved trajectory for the index and middle őngers is shown

in Fig. 6.4. Fig. 6.3 shows the outcome of the controlled sliding experiment using a

box-shaped object.

Description of the post-processing procedures

The position of the object pAt , acquired using the ArUco marker, cannot be used as

ground truth state xgt due to the noise in the marker estimation and the absence of

the velocity vt in its output. In order to provide an almost noise-free ground-truth

signal, a linear Kalman Smoother was adopted (see Algorithm 10 in Sec. 2.4.3).
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Figure 6.4 Comparison between the desired grasp strength and the achieved grasp
strength for the index and middle őngers during the execution of a controlled sliding
experiment.

In the speciőc scenario, the state to be smoothed xsmt is set equal to the state of

interest xt:

xsmt =

(

psmt

vsmt

)

∈ R
2. (6.12)

It is assumed that the state changes according to a simple constant velocity model

with Gaussian noise (Bar-Shalom et al., 2002):

xsmt =

(

psmt

vsmt

)

=

(

psmt−1 + vsmt−1∆t

vsmt−1

)

+ wsm,

wsm ∼ N (0, Qsm),

(6.13)

where ∆t is the sampling time of the algorithm and Qsm ∈ R
2×2 is the process noise

covariance matrix.

The Kalman smoother is then fed with the ArUco estimate pAt as the measurement

zsmt (after removing the őrst sample from the signal such that the position of the object
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Figure 6.5 On the left, a comparison between the ground-truth position from the
ArUco marker detection system pAt , its őltered version xsmt|t and its smoothed version
xsmt|T obtained using a Kalman őlter and smoother respectively. On the right, compari-
son between the ArUco velocity signal obtained using őnite differences, őltered and
smoothed version.

starts from zero). The measurement process is őnally easily modelled as:

zsmt = psmt + νsm,

νsm ∼ N (0, Rsm),
(6.14)

where Rsm ∈ R is the measurement noise covariance. Given the smoothed state xsmt,i
for the i-th experiment, we deőne the ground-truth trajectory xgtt,i as

xgtt,i := xsmt,i . (6.15)

In all the experiments, we set Qsm = diag(0.01, 0.01) and Rsm = 10.0 as this

conőguration proved to be a good compromise between the smoothing action and the

reduction of the error between psmt and pAt .

An example of the outcome of the smoothing procedure is shown in Fig. 6.5 where

the ArUco estimate is compared with the smoothed estimate xsmt|T and the estimate xsmt|t
that could have been obtained using a linear Kalman őlter. For the velocity component,

an additional comparison is made with the signal obtained by őnite differentiation

of pAt . As it can be seen, the smoothed estimate contain less noise than the ArUco

estimate and the őltered estimate. Furthermore, the smoothed velocity vsmt|T has less



6.2 Data collection and training 189

Figure 6.6 Example of the trend of the state RMSE, averaged on all the training
trajectories, as a function of the number of epochs.

delay than the őltered counterpart and is signiőcantly more reliable than using őnite

differences.

6.2.4 Training protocol

The whole őltering architecture is learned end-to-end using backpropagation through

time, as described in Sec. 2.5.3, over subsequences of the trajectories of progressively

increasing length Ts. Speciőcally, 5 epochs were executed for each subsequence Ts
and the subsequences were chosen in the set {2, 4, 8, 16, 32}. In Fig. 6.6 we show an

example of the trend of the state RMSE averaged on all the training trajectories along

the training procedure.

We remark that the overall architecture, comprising the networks NNθ1 , NNθ2 and

NNθ3 , is trained end-to-end, i.e. the networks are not trained separately. Furthermore,

the overall architecture needs to be trained separately for each considered object.

Nonetheless, in the experimental evaluation we also tested training the architecture

using the data from all the objects of interest.

The overall data collection and training pipeline is schematized in Fig. 6.1, on the

right.
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Figure 6.7 Picture of the objects used in the experiments. From the left, a box-shaped
object, a water bottle and a mustard bottle.

6.3 Experimental evaluation

In this section, I will present the results of several experiments aimed at evaluating the

performance of the proposed method.

Controlled sliding experiments, as described in Sec. 6.2.3, were executed using three

objects of different shape and materials. The objects are shown in Fig. 6.7: from the

left a box-shaped object made of paper, a water bottle made of plastic and a mustard

bottle made of rigid plastic. Data has been collected during the experiments and then

post-processed in order to train the őltering architecture.

The performance are evaluated on both the training and testing sequences in terms

of the positional RMSE and linear velocity RMSE, deőned as per Sec. 3.4.1, averaged

on the training and testing trajectories respectively. The evaluation also includes

several ablation studies aimed at assessing:

• changes in performance when using a subset of the tactile channels instead of

the full set;
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Table 6.1 Position and velocity RMSE and maximum training and testing errors using
the full (xyz) set of the tactile channels for all the őngers.

data set Training data using xyz tactile channels Testing data using xyz tactile channels
error Positional error (cm) Velocity error (cm/s) Positional error (cm) Velocity error (cm/s)
metric RMSE max RMSE max RMSE max RMSE max
bottle 0.200 0.413 0.024 0.086 0.264 0.548 0.028 0.110

mustard 0.715 1.419 0.048 0.212 0.977 1.882 0.063 0.286
box 0.422 0.702 0.025 0.109 0.460 0.811 0.034 0.142

MEAN 0.446 0.845 0.032 0.136 0.567 1.080 0.042 0.179

• the necessity of using the derivative of the tactile measurements τ̇ instead of the

plain measurements τ as required in Sec. 6.1.2;

• the generalization capabilities of the algorithm when trained using data of one

object in the group and tested on the remaining ones;

• the relevance of the object weight in the training procedure.

Qualitative results on position and velocity tracking performance and considerations

on the training and online inference times are also provided. The section is concluded

with a discussion of the limitations of the proposed method.

In all the experiments, we set p0 = 0, v0 = 0 and P0 = diag(10−1, 10−1). We recall

that the process and measurement noise covariances Q and R, as per Eqs. (6.3) and

(6.5), are learned during the training process.

6.3.1 Description of the collected data

One hundred 3 1 minute-long experiments were executed for each object. Half of the

sequences for each object were used as training data and the remaining sequences for

testing. Sample signals from the ArUco marker detection system and of the tactile

sensors output are shown in Fig. 6.8. As can be seen in the top-left plot, the trajectory

of the object is approximately periodic and composed by a sequence of sliding motions,

caused by the reduction in the grasp force, alternated with stationary phases. We

remark that all the experiments follow a similar pattern.

6.3.2 Results on position and velocity tracking

In Table 6.1, we report the RMSE and max errors on position and velocity tracking

for each object considering the training and testing sets. For each object the őlter was

trained using the data belonging to the training set of that object only.
3The number of experiments for the object łmustard bottle” amounts to 75.
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Figure 6.8 Data traces for one of the data collection experiment performed using
the mustard bottle. The tactile signals correspond to the raw sensor reading using
arbitrary units.
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Table 6.2 Position and velocity RMSE and maximum testing errors using several
conőgurations of the tactile channels (xyz, xy and z).

data set Testing data
error Positional error (cm) Velocity error (cm/s)
metric RMSE max RMSE max

channels xyz xy z xyz xy z xyz xy z xyz xy z
bottle 0.264 0.284 0.674 0.548 0.549 1.320 0.028 0.030 0.056 0.110 0.117 0.152

mustard 0.977 0.706 0.754 1.882 1.423 1.613 0.063 0.067 0.084 0.286 0.301 0.303
box 0.460 0.492 0.442 0.811 0.811 0.810 0.034 0.038 0.042 0.142 0.147 0.148

MEAN 0.567 0.494 0.623 1.080 0.928 1.248 0.042 0.045 0.061 0.179 0.188 0.201

The numerical results show that the training RMSE error in position is below 0.5

cm on average with a maximum average error of 0.845 cm. The performance degrades

only slightly on the testing set: the testing RMSE error is below 0.6 cm on average,

that is deemed as fairly accurate, with a maximum average error of 1.080 cm.

The training RMSE error in velocity is below 0.04 cm/s with a maximum average

error of 0.136 cm/s. The performance slightly reduces on the testing set with RMSE

errors below 0.05 cm/s and a maximum average error of 0.179 cm/s.

The best performance is achieved with the water bottle object, while for the

mustard bottle it degrades more than other objects. We found experimentally that

this condition depends on the fact that the sliding experiment has a larger variability

over the experiments trials for this object than the others.

6.3.3 Relevance of the tactile channels

In Table 6.2, we consider the outcome of several training experiments where only a

subset of the tactile channel set {τ fx , τ fy , τ fz } is considered for each őnger f instead of

the full set. Given the choice of the reference frame attached to each tactile sensor (see

Fig. 6.2), we expect that the actual information on the sliding motion is stored in the

x and y channels. On the other hand, the information stored in the z channel, while

still useful in general, should not be required to estimate the sliding motion.

As it can be seen from the results on the testing set, the performance achieved

using the xy conőguration is similar to that achieved using the xyz conőguration but

slightly better in terms of positional error. On the other hand, the velocity error is

lower for the xyz conőguration but the difference is not substantial. If only the z

channel is fed to the őlter, the performance degrades such that for two objects out of

three the maximum error in position is more than 1 cm.

The fact that the őlter is able to produce a reasonable estimate even when using

only the z channel depends on the fact that the evolution of this channel is constrained



6.3 Experimental evaluation 194

Table 6.3 Comparison between position and velocity RMSE and maximum testing
errors when using plain tactile measurements or their time derivative.

data set Testing data using xy tactile channels
error Positional error (cm) Velocity error (cm/s)
metric RMSE max RMSE max

measurement τ τ̇ τ τ̇ τ τ̇ τ τ̇
bottle 0.381 0.284 0.648 0.549 0.033 0.030 0.109 0.117

mustard 2.698 0.706 4.045 1.423 0.107 0.067 0.401 0.301

box 0.699 0.492 1.199 0.811 0.049 0.038 0.158 0.147

MEAN 1.259 0.494 1.964 0.928 0.063 0.045 0.223 0.188

by the closed-loop controller, as we explained in Sec. 6.2.3. Indeed, in our experiments,

when the maximum generalized grasp strength is commanded, i.e. τg,des = τg,max, the

object is expected not to slide. Conversely, when the commanded signal shifts towards

τg,min the object is expected to start sliding. Hence, the network could learn how to

associate the z channel with the object velocity in a meaningful manner. However,

we remark that this behavior is to be discouraged. It might happen that even when

the minimum grasp strength is commanded, the object does not slide or barely slides.

Possible reasons are non-idealities in the control loop or the fact that the object touches

parts of the hand, or the table, thus preventing the sliding motion. In these cases, using

the information stored in the z channel only, at training time, would make the training

procedure ill-posed. This fact might explain why the achieved performance is worst

than the other conőgurations. In Fig. 6.9, we provide qualitative results on position

and velocity tracking for one of the experiments. In the plot labelled as łEstimate (z,

mod.mustard)”, we can actually see that using the z channel only might result in the

estimation of non-zero velocities even if the object is not moving, which is undesirable.

6.3.4 Relevance of the derivative of the tactile measurements

In Table 6.3, we report the outcome of several training experiments where the őlter is

fed with the raw tactile measurements τ or with their derivative τ̇ .

The numerical results demonstrate the necessity to adopt the derivative of the

tactile measurements instead of the plain measurement. The RMSE positional error is

reduced by ≈ 60% on average and the maximum error by ≈ 50%.

Although the performance degrades considerably, it seems from the numerical

results that it is still possible to train the network using the plain tactile measurements.

However, as shown in Fig. 6.9, in the plot łEstimate (xy, no derivative)”, the actual

shape of the estimated signal is different from the ground truth in certain key aspects.

At the beginning of the experiment, when the object is still not sliding, the slope of the
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Table 6.4 Position and velocity RMSE testing errors using different combinations of
training and testing sets. The model name łall” indicates a training set consisting in
the union of the training sets of all the objects.

data set Testing data using xy tactile channels
metric Positional RMSE (cm) Velocity RMSE (cm/s)

trained on bottle mustard box all bottle mustard box all
bottle 0.284 0.600 2.040 0.519 0.030 0.080 0.092 0.041

mustard 0.978 0.706 2.930 0.664 0.077 0.067 0.114 0.066

box 0.800 0.821 0.492 0.676 0.062 0.067 0.038 0.051
MEAN 0.687 0.709 1.821 0.620 0.056 0.071 0.081 0.053

estimated position is wrong and it reaches a non zero position almost instantaneously in

a neighbourhood of t = 0. This is conőrmed by the estimated velocity where, at t = 0,

an initial spike in the velocity is reported. Furthermore, the shape of the estimated

velocity does not follow the actual proőle of the ground-truth velocity.

6.3.5 Generalization capabilities

In Table 6.4, we consider the outcome of several experiments where the learned őlter is

tested on a given object using the model trained on a different one.

Using the model trained on the data of objects bottle and mustard, the average

RMSE positional error is in the order of 0.7 cm. By comparing with the performance

in the ideal case, where each object is tested using the correct model, as in Table 6.2,

it can be seen that the RMSE positional error approximately increased by an amount

of 0.2 cm which can be considered a good compromise.

Conversely, if the model trained on the box is used, the performance on the other

two objects degrades consistently with per object RMSE errors above 2 cm and average

RMSE error above 1.8 cm. This outcome can be explained by the fact that this object

is of a different material, i.e. paper instead of plastic, hence the frictional properties of

the object are different resulting in a possible different response of the tactile sensors.

Nevertheless, the results from the same table show that the őlter can be trained

using the data from all the objects of interest (indicated as łall” in the table) and achieve

the best performance. While this conőguration requires the collection of training data

for all the objects of interest, it allows using a single model online without the necessity

to know the identity of the object being manipulated by the robot.

In Table 6.5, we report the outcome of another experiment aimed at understanding

the relevance of the object weight in the training procedure. Speciőcally, we consider

the scenario in which the object has weight wtarget and the training data is available for

two neighbouring weights w1 and w2, such that w1 < wtarget < w2. In this experiment,
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Table 6.5 Position and velocity RMSE testing errors for the box-shaped object with a
weight of 125 grams when training using data corresponding to the target weight (125
grams) or the combination of weights (100 grams and 150 grams).

data set Testing data using xy tactile channels
error Positional error (cm) Velocity error (cm/s)
metric RMSE max RMSE max

box (trained w/ 125 grams) 0.394 0.774 0.046 0.155
box (trained w/ 100 grams and 150 grams) 0.615 1.121 0.074 0.368

the network is trained using data corresponding to the weights w1 and w2 and the

performance is then assessed using the testing data corresponding to the target weight

wtarget. The performance is compared with the baseline conőguration in which the

őlter is trained using the data corresponding to the target weight wtarget.

The aforementioned experiment was executed using the box-shaped object using

w1 = 100 grams, w2 = 150 grams and wtarget = 125 grams as the weights. We collected

50 experiments, 10 of which for testing purposes. In order to have a fair comparison

with the baseline conőguration, the number of experiments used for training was őxed.

Speciőcally, we trained for the target weight by using all the 40 experiments designated

as training data. When training for the neighbouring weights, instead, we picked 20

experiments from the training data of each weight, resulting in 40 experiments overall.

The tracking performance achieved when using the model trained on the neigh-

bouring weights remains quite acceptable. In this conőguration, the RMSE and

maximum positional errors increase by approximately 0.22 cm and 0.35 cm with respect

to the baseline, respectively. The RMSE and maximum velocity errors increase by

approximately 0.03 cm/s and 0.21 cm/s.

6.3.6 Qualitative results

In Fig. 6.9, we report some qualitative results on position and velocity tracking for one

of the experiments involving the mustard bottle. The ground-truth signal is compared

with the estimates obtained using the xy tactile conőguration in three cases:

• using the model trained on the data of the mustard bottle object;

• using the model trained on all the objects, indicated as łall”;

• using the plain tactile measurements instead of their derivatives.

Furthermore, we consider the model trained on the data of the mustard bottle object

when using the z tactile channel only.



6.3 Experimental evaluation 197

Figure 6.9 Comparison of the position pt and velocity vt trajectories, and associated
errors ep,t, ev,t, for several conőguration of the tactile measurements. The trajectories
are from one of the experiments with the mustard bottle object. All the experiments,
excluding the one labelled as łEstimate (z, mod.mustard)”, were executed using the xy
conőguration of the tactile channels.

In the őgure, we report the evolution of the position pt and velocity vt signals

alongside the associated errors ep,t and ev,t with respect to the ground truth.

Overall, the conőguration that best follows the actual proőles is given by the

model trained on all the data. The model that uses only the z tactile channel fails in

estimating the correct velocity in the őnal part of the experiment. Conversely, the

model using the plain tactile measurements fails to estimate the correct position in the

initial part of the experiment and completely fails to estimate the actual velocity of

the object.

In Fig. 6.10, we show the outcome of running the őlter online using the tactile data

from the iCub humanoid robot. In each frame, we show, on the right, the estimate of

the object position and the readings from the ArUco detection system. At the same

time, we show the actual value of the desired grasp strength.
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Figure 6.10 The output of the proposed tracker while it runs online using the tactile
data from the iCub humanoid robot.

6.3.7 Training and inference times

Although the software implementation employed for the experiments uses the GPU-

enabled machine learning framework PyTorch (Paszke et al., 2019), the experiments

were run using CPU computations, instead of a GPU, as it was found that both training

and inference times were lower. This outcome is expected given that our application

does not involve images as input to the network architecture, which typically require

the use of GPUs to reduce both training and inference times.

Taking into account the number of experiments whose data is used for training (see

Sec. 6.3.1) and the adopted training protocol (see Sec. 6.2.4), the training procedure

for a single object completes in 22 minutes and 55 seconds. The time required for

smoothing both the training and testing data, as per the Sec. 6.2.3, amounts to 52

seconds while in order to evaluate the derivatives of the tactile measurements for all

the experiments, as per the Sec. 6.1.7, the required time amounts to 5 minutes and 14

seconds.

Regarding inference times, the overall őltering pipeline can run at 119 Hz (including

the time required to evaluate the derivatives of the tactile measurements), providing

real-time state feedback for robot control purposes.
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All the presented experiments were executed on an Intel i7-9750H multi-core CPU.

6.3.8 Assumptions and limitations

In this section I will further discuss the assumptions this work relies on, as per Sec.

6.1.1, and list possible limitations of proposed method.

Handling of object rotations

In this work, the focus was on the problem of tracking pure translational sliding motions

instead of general slippage motions involving rotations of the object. Similarly to other

works from the slip detection literature (Veiga et al., 2018), the adopted data collection

procedure is not designed to capture object rotations. While ground-truth data for

object translational motions can be easily collected even by using a simple marker

and a limited amount of data post-processing, rotations during slippage might be of

limited and subtle magnitude, hence more difficult to collect due to the noise in the

marker pose detection process. Furthermore, in-hand object rotations heavily depend

on the position of the contact points with respect to the object center of mass and on

the inertial properties of the object. However, a precise control of the contact points,

useful to achieve a repeatable data collection procedure, is out of scope of this Thesis.

Nonetheless, I deem important to study how to account for object rotations in the

proposed architecture and I plan to investigate this in future research. In this respect,

we remark that some works, e.g. (Costanzo, 2021; Costanzo et al., 2020), have already

explored the problem of tracking the rotational motion due to the object slippage using

model-based approaches.

Handling of external disturbances

In this work, the problem of object sliding tracking is tackled in a scenario involving

in-hand object manipulations in which gravity is the only external force applied to the

object. It is important to remark that this scenario is not unrealistic and that it is

adopted by other works, e.g. in the literature on tactile-based object manipulation and

perception (Meier et al., 2016), (Bimbo et al., 2015), (Liang et al., 2020), (Suresh et al.,

2021). Indeed, it is important to őrst address this scenario before considering the more

general case in which other forces and external disturbances act on the object.
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Characteristics of the considered objects

In this work, the considered objects comprise two prism-shaped objects (i.e. the box-

shaped object and the water bottle made of plastic) and one object with non-convex

shape, i.e. the mustard bottle. The former are characterized by a constant cross

section such that the őngers can slide freely on the object surface while avoiding to be

blocked by irregular changes in the object shape. While the mustard bottle presents

some irregularity in the shape of the lateral edges, the experiments were limited to

the case in which the őngers slide along the wider surface of the bottle. Although it is

believed that tracking the sliding motion along irregular surfaces would be useful, it

is also recognized that this problem is connected more with the ability of the őngers

controller to follow an irregularly-shaped surface rather than the ability of the őltering

architecture to process the signal produced by the sensors in that scenario.

Regarding the size, and especially the length, of the objects, the considered objects

have at least one direction with a non-negligible length (see Figs. 6.2 and 6.7) as

compared to that of the palm of the hand of the adopted robotic platform, i.e. the

iCub humanoid robot. The reason behind this choice is mostly practical, as there

is interest in the problem of estimating the sliding motion of the object, hence it is

required to have objects that could actually slide between the őngers of the hand for

a certain number of centimeters. This assumption does not prevent the possibility

to use the proposed pipeline with objects that are smaller than those adopted in the

experiments, as long as the desired tracking precision stays within the average position

error achieved by the proposed pipeline.

Application to closed-loop control

A natural question arising from the proposed experiments is whether it is possible to

control the motion of the őngers continuously, using the feedback from the learned

őlter, in order to control the sliding velocity of the object and track a desired reference

velocity. Furthermore, it would be important to understand whether the learned motion

and measurement models can be utilized in the synthesis of a control system using

model-based control techniques. I plan to investigate these aspects in future work.
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Conclusions and future directions

In this Thesis, I proposed several methods for tracking the pose and the velocity of

an object using RGB-D images and tactile sensing. The proposed methods are hybrid

as they combine Kalman őlters for state tracking with Machine Learning techniques

for object perception, from RGB images, and tactile sensing encoding. The hybrid

approach effectively exploits techniques for state tracking without the need for learning

the tracking task with time consuming data-driven training. On the other hand,

learning techniques are useful to extract high-level information, from unstructured

data as digital images, that the methods proposed in this Thesis help integrating in

the tracking process.

The őrst contribution is the design of a real-time 6D object pose and velocity

tracker, named MaskUKF, which combines depth information and 2D segmentation

provided by a deep neural network within an Unscented Kalman őlter (Chapter 4).

The proposed algorithm uses the object segmentation to extract the part of the point

cloud relative to the object and associate it with the 3D model of the object in order to

update its pose and velocity. It performs similarly or better than other state-of-the-art

pose estimators and trackers on a standard computer vision benchmark involving

objects from the YCB Model Set. In this regard, it was found that MaskUKF is more

robust to perturbations of the initial condition of the pose when compared with a full

deep learning-based tracker. This property depends on the basin of attraction of the

őlter that is function of its parameters but does not depend on the training data as in

the case of deep end-to-end alternatives.

MaskUKF also has modest training requirements that resolve to that of a deep

neural network for object segmentation. Such a network can be trained once for a
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set of objects, while most deep learning-based trackers require a per-object training

procedure. Moreover, training an object pose tracker end-to-end requires 6D pose

annotations, which are much more complex to be achieved.

In addition, MaskUKF also provides an estimation of the velocity of the object.

This turned out to be advantageous for closed-loop control. By using MaskUKF in our

experiments with the iCub humanoid robot, it was possible to increase the bandwidth of

the controller more than when using the feedback from a pose estimation network. This

allowed reaching lower tracking errors on the task at hand, while avoiding instabilities.

The second main contribution of this work is the design of a real-time 6D object

pose and velocity tracker, named ROFT, that can handle objects involved in moderate-

to-fast motions with the help of optical ŕow (Chapter 5). Speciőcally, ROFT combines

depth information, optical ŕow and external sources of object segmentation masks and

6D poses within a cascaded Kalman őltering architecture. The proposed pipeline is

able to track the 6D object velocity from the 2D domain using the optical ŕow and

then fuse the estimated velocities with the 6D pose measurements to provide real-time

pose tracking. Remarkably, ROFT is designed to take advantage of high frame rate

optical ŕow in order to handle low frame rate, hence delayed, object segmentation

masks and 6D poses. This scenario is common if the latter are provided by deep neural

networks.

While benchmarking tracking algorithms, I noticed that commonly adopted datasets,

in particular the YCB-Video dataset, contain sequences with slowly moving objects

and not sufficiently challenging for the state-of-the-art. An additional contribution

of my thesis consisted in generating a dataset speciőcally designed to address this

problem. The dataset, called Fast-YCB, contains scenes of objects from the YCB

Model Set involved in fast motions. ROFT was compared against other pose tracking

methods from the literature on the Fast-YCB dataset showing better performance,

especially with respect to orientation tracking.

One of the key features of ROFT, that differentiates it from end-to-end approaches,

is its modular design which allows increasing the performance by replacing the seg-

mentation and pose estimation sources with better ones if at disposal. This aspect has

been veriőed experimentally via ablative studies where the latter sources are replaced

with their ideal ground-truth counterparts, resulting in a performance increase.
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ROFT has been also successfully employed on the iCub humanoid robot to perform

gaze-tracking and grasping of objects by using the tracked poses and velocities as

references for the gaze controller and as inputs to the grasp planner, respectively.

The third and őnal contribution of this Thesis is the development of a method

for real-time tracking of sliding motions of hand-held objects using tactile feedback

(Chapter 6). This method was implemented using the differentiable Kalman őltering

paradigm. Speciőcally, the measurement model, describing the association between the

object state and the readings from the tactile sensors, is learned from data while the

algorithmic structure of the Kalman őlter is preserved. This combination is particularly

useful if the working principle of the employed sensor is too complex to be modelled or

even unknown.

The proposed method has been trained and tested with experimental data collected

on the iCub humanoid robot platform that has been equipped with modern 3D

magnetic-based soft tactile sensors. The experimental results on several objects showed

good overall performance on the sliding tracking task using tactile feedback alone.

Furthermore, they highlight and conőrm the necessity of using 3D tactile sensing in

order to track the sliding motion reliably.

The aforementioned contributions suggest possible future directions of research

related to the presented work.

As mentioned in Chapter 4, MaskUKF requires the 3D model of the object, without

textures, in order to track the object pose. A possible extension of this work would

entail substituting the complete model of the object with simpler descriptions, e.g. given

by superquadrics primitives reconstructed from the point cloud. This extension would

not only allow to relax the requirements on object modelling but also to understand

the effects of using less precise models on the tracking performance.

Considering the ROFT pipeline, described in Chapter 5, it requires, as input, a

source of 6D pose measurements, usually provided by a pose estimation network. One

possible limitation is that the pose estimation network needs to be trained for each

object separately. A solution to mitigate this requirement would be to substitute

the network with a category level-based one which generalizes to unseen instances of

objects belonging to speciőc categories. A different solution, would be to exploit recent

advances in 2D object keypoints detection and use them, in conjunction with depth

measurements and the 3D object model, to substitute the 6D pose measurements.
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The advantage of the latter solution is that the keypoints detection network could be

trained once, for all the objects of interest, thus relaxing the aforementioned limitation.

As mentioned in Chapter 5, the ROFT pipeline makes use of optical ŕow measure-

ments which might be less effective in presence of out-of-plane object rotations, due to

object self-occlusions. This limitation leads to underestimation of the angular velocity

of the object. A viable solution to this limitation would be to exploit the differentiable

Kalman őltering approach to learn an additional measurement model, to be integrated

in ROFT, providing the missing part of the angular velocity when necessary.

With regard to the third contribution, as per Chapter 6, a clear direction of research

is motivated by the necessity to avoid collecting real data of the tactile sensor to train

the proposed method. In this respect, the development of simulation platforms that

can reproduce the behavior of soft materials, a common ingredient of modern robotic

tactile sensors, could help exploiting simulated data for the training stage. Nonetheless,

acquiring real labelled data might still be important for testing purposes and to augment

the dataset in order to improve generalization. In this respect, the visual trackers

developed in this Thesis could be used to collect such data.

In conclusion, the studies presented in this Thesis explored how a balanced combi-

nation of Kalman őltering for state tracking and Machine learning allows attaining

remarkable improvements in object pose tracking, with respect to full data-driven

approaches, in terms of accuracy, modularity, relaxation of the training requirements

and suitability for robot motion control purposes. The proposed algorithms will beneőt

a wide range of robotic applications that require precise information on the state of

the objects, including object tracking, grasping and manipulation.
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