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One of these days, I’m going to cut you into little pieces.
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Abstract

The marine sector is increasingly turning to wave energy converters (WECs) for
clean energy generation. For commercial-scale production, WEC farm deployment
is essential, but requires complex numerical simulations. While high-fidelity models
like Computational Fluid Dynamics (CFD) ensure accuracy, their substantial compu-
tational demands have prompt interest in model order reduction techniques. Proper
Orthogonal Decomposition (POD) projection-based reduced order models have
proven effective in monophase flows, yet face stability issues with multiphase flows.
A proposed multi-fidelity model integrates CFD for WEC near-field description, and
POD for far-field wave propagation. Bidirectional information exchange ensures
precise flow reconstruction and floater dynamics description. Testing confirms its ef-
ficacy in various scenarios, significantly reducing the computational burden, decisive
for tackling WEC farm design and optimization.

Résumé

Le secteur maritime s’oriente de plus en plus vers les convertisseurs d’énergie
des vagues (WECs), en particulier vers des fermes de WECs. Cependant, les
simulations numériques sont complexes, et bien que les modèles haute fidélité
assurent la précision, leurs exigences computationnelles ont stimulé l’intérêt pour
les techniques de réduction de modèles. Les modèles à ordre réduit basés sur la
Décomposition Orthogonale aux valeurs Propres (POD) sont efficaces dans les
écoulements monophasiques, mais rencontrent des problèmes de stabilité avec les
écoulements multiphasiques. Un modèle multifidélité intègre la CFD (Computational
Fluid Dynamics) pour le champ proche des WECs et la POD pour la propagation
des vagues en champ lointain. L’échange d’informations assure une description
précise de l’écoulement et de la dynamique des flotteurs. Les tests confirment son
efficacité, réduisant significativement la charge computationnelle, cruciale pour
aborder l’optimisation des fermes de WECs.
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Estratto

Il settore marittimo è sempre più orientato verso i convertitori di energia delle
onde (WECs), in particolare verso i parchi di WECs. Tuttavia, le simulazioni nu-
meriche sono complesse e, sebbene i modelli ad alta fedeltà assicurino precisione, i
loro requisiti computazionali hanno stimolato l’interesse per le tecniche di riduzione
di modello. I modelli a ordine ridotto basati sulla Decomposizione Ortogonale ai
valori Propri (POD) sono efficaci per flussi monofase, ma incontrano problemi di
stabilità con i flussi multifase. Un modello multifideltà è proposto, che integra la
CFD (Computational Fluid Dynamics) per il campo vicino ai WECs e la POD per la
propagazione delle onde nel campo lontano. Lo scambio di informazioni assicura
una descrizione precisa del flusso e della dinamica dei WECs. I test ne confer-
mano l’efficacia, riducendo significativamente il carico computazionale, cruciale per
affrontare l’ottimizzazione dei parchi di WECs.



Long Abstract

In response to the dynamic evolution of the energy landscape toward more sus-
tainable solutions, the marine sector has increasingly turned its focus toward wave
energy as a promising avenue for clean energy generation. The deployment of
Wave Energy Converters (WECs) in farms holds significant potential for achieving
commercial-scale production of renewable energy, but this endeavor necessitates
thorough numerical simulations due to the complex hydrodynamics involved. The
simulation of WEC farms poses considerable challenges due to their inherently
multiscale nature, encompassing the accurate representation of fluid-structure in-
teractions and the interactions among WECs, resulting in near-field effects, and
far-field effects, which represent the broader influence of the farm on its surround-
ing environment. While conventional high-fidelity models, notably Computational
Fluid Dynamics (CFD), are indispensable for capturing the complexities of highly
nonlinear phenomena in such systems, they come with a high computational price.
Model order reduction techniques emerge as a promising approach to mitigate this
challenge, aiming to reduce the computational complexity of numerical simulations
while maintaining accuracy. Among these techniques, the Proper Orthogonal De-
composition (POD) method stands out as an effective means of deriving a reduced
basis in high-dimensional flow systems. Projection-based Reduced Order Models
(ROMs) based on POD have demonstrated success in linear and weakly nonlin-
ear model reductions, particularly in monophase flows. However, when dealing
with multiphase flows, traditional ROMs obtained via POD and Galerkin projection
techniques face several obstacles. These include instability concerns, compatibility
issues with model order reduction - evident in the emergence of a fourth-order tensor
in the primary dynamical system -, complexities in modeling moving bodies, and
difficulties in implementation with commercial codes lacking direct access to the
source code. All these considerations lead to the development of a non-intrusive,
Galerkin-free approach based on domain decomposition and equipped with sensor
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information to account for travelling waves. This multi-fidelity model integrates
CFD and POD spatially. The high-fidelity CFD solver is deployed in the near-field
around obstacles, where viscous effects and nonlinearities predominate. In contrast,
the POD ROM model is tailored for weakly nonlinear regions, focusing on far-field
wave propagation. By leveraging a small high-fidelity domain, which represents
only a fraction of the original domain used in training the POD modes, the approach
achieves significant reductions in CPU costs while preserving precision. Central to
this approach is the bidirectional exchange of information between the two models,
facilitated by overlapping regions and subdomain boundaries. The simplicity and
efficacy of the coupling methodology make it readily applicable to diverse simula-
tions involving moving bodies, including wave energy conversion, allowing for an
efficient representation of multiscale properties. This methodology demonstrates
accurate flow reconstruction and a comprehensive description of floater dynamics.
Extensive validation tests encompass both in-sample simulations, for reproduction
configurations, and, more notably, out-of-sample simulations. The latter underscore
the accuracy and robustness of the proposed methodology, able to predict solutions
for unseen parameters. The efficiency of this hybrid fidelity model empowers the exe-
cution of intensive simulations, rendering it suitable for a wide range of applications,
including parametric studies, optimization tasks, and multiple-query simulations. By
substantially reducing computational costs, the coupled model not only expedites
optimization and design processes for wave energy converter farms but also paves
the way for enhanced scalability and sustainability in the marine energy sector.

Keywords: Proper Orthogonal Decomposition, Wave Energy, Mathematical
Modelling, Reduced-Order Models, Numerical Simulations, Multifidelity models.

Modélisation multi-échelle et multi-fidélité pour des extracteurs d’énergie
marine

Résumé étendu

Face à l’évolution de la scène énergétique vers des solutions plus durables, le
secteur marin s’intéresse de plus en plus à l’énergie des vagues pour la production
d’énergie propre. Le déploiement de convertisseurs d’énergie des vagues (WECs)
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dans des fermes offre un potentiel significatif pour une production à grande échelle,
mais cela nécessite de simulations numériques approfondies, en raison de la com-
plexité de l’hydrodynamique. La simulation de fermes de WECs pose des défis
considérables en raison de leur nature multi-échelle, incluant la représentation pré-
cise des interactions fluide-structure et entre les WECs, entraînant des effets de
champ proche, et de champ lointain, représentant l’influence plus large de la ferme
sur son environnement. Bien que les modèles haute fidélité, comme la CFD (Com-
putational Fluid Dynamics), soient essentiels pour capturer les complexités des
phénomènes non linéaires, ils sont accompagnés d’un coût computationnel élevé.
Les techniques de réduction de modèles émergent comme une approche promet-
teuse pour atténuer ce défi, visant à réduire la complexité computationnelle tout
en maintenant la précision. Parmi ces techniques, la méthode de Décomposition
Orthogonale aux valeurs Propres (POD) se distingue comme un moyen efficace de
dériver une base réduite dans les systèmes d’écoulement multidimensionnels. Les
Modèles d’Ordre Réduit (ROMs) basés sur la POD ont prouvé leur succès dans les
réductions de modèles linéaires et faiblement non linéaires monophasiques. Cepen-
dant, les ROMs traditionnels, obtenus par POD et projection de Galerkin, rencontrent
plusieurs obstacles dans les écoulements multiphasiques, notamment des problèmes
d’instabilité, de compatibilité avec la réduction de modèle, des complexités dans
la modélisation des corps en mouvement, et des difficultés dans l’implémentation
avec des codes commerciaux ne disposant pas d’un accès direct au code source.
Ces considérations ont conduit au développement d’une approche non intrusive et
Galerkin-free, basée sur la décomposition de domaine et équipée d’informations de
capteurs pour prendre en compte les vagues. Ce modèle multi-fidélité intègre la CFD
et la POD spatialement. Le solveur haute fidélité est déployé dans le champ proche
où les effets visqueux et non linéaires dominent, tandis que le modèle POD ROM
est adapté aux régions faiblement non linéaires, concentré sur la propagation des
vagues en champ lointain. En exploitant un petit domaine haute fidélité par rapport
au domaine original, cette approche permet des réductions significatives des coûts en
CPU, tout en préservant la précision. L’échange bidirectionnel d’informations entre
les deux modèles est facilité par des régions de chevauchement et des frontières des
sous-domaines. La méthodologie de couplage est facilement applicable à diverses
simulations impliquant des corps en mouvement, y compris la conversion d’énergie
des vagues, permettant une représentation efficace des propriétés multi-échelles.
Cette méthodologie démontre une reconstruction précise de l’écoulement et une
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description complète de la dynamique du flotteur. Des tests de validation approfondis
comprennent à la fois des simulations in-sample, pour des configurations de repro-
duction, et, plus notamment, des simulations out-of-sample. Ces dernières soulignent
la précision et la robustesse de la méthodologie proposée, capable de prédire des
solutions pour des paramètres inconnus. L’efficacité de ce modèle hybride permet
des simulations intensives, le rendant adapté à un large éventail d’applications, y
compris des études paramétriques, des tâches d’optimisation et des simulations
multi-objectif. En réduisant considérablement les coûts computationnels, le modèle
couplé non seulement accélère les processus d’optimisation et de conception pour
les fermes de convertisseurs d’énergie des vagues, mais ouvre également la voie à
une évolutivité et une durabilité accrue dans le secteur de l’énergie marine.

Mots-clés : Décomposition orthogonale aux valeurs propres, Énergie marine,
Modélisation mathématique, Modèles réduits, Simulations numériques, Modèles
multifidelité.

Modellazione multi-scala et multi-fedeltà per convertitori di energia da moto
ondoso

Riassunto esteso

Di fronte all’evoluzione del panorama energetico verso soluzioni più sostenibili,
il settore marino sta mostrando un crescente interesse nell’energia da moto ondoso
come fonte di energia pulita. La distribuzione di convertitori di energia delle onde
(WECs) in parchi offre un notevole potenziale per una produzione su vasta scala,
ma richiede altresì simulazioni numeriche approfondite, a causa della complessità
dell’idrodinamica. La simulazione di parchi di WECs presenta notevoli sfide a
causa della loro natura multi-scala, che include la rappresentazione precisa delle
interazioni fluido-struttura e tra i WECs, generando effetti sia nel campo vicino che
in quello lontano, il quale rappresenta l’influenza più ampia del parco sull’ambiente
circostante.

Sebbene i modelli ad alta fedeltà, come la CFD (Computational Fluid Dynamics),
siano essenziali per catturare le complessità dei fenomeni non lineari, presentano
un costo computazionale elevato. Le tecniche di riduzione di modello emergono
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come un approccio promettente per affrontare questa sfida, mirando a ridurre la
complessità computazionale mantenendo al contempo la precisione. Tra queste
tecniche, la decomposizione ortogonale ai valori propri (POD) si distingue come un
metodo efficace per derivare una base ridotta in sistemi di flusso multidimensionale.
I modelli a ordine ridotto (ROMs) basati sulla POD hanno dimostrato il loro successo
nelle riduzioni di modelli lineari e debolmente non lineari monofase. Tuttavia, i
ROM tradizionali, ottenuti attraverso la POD e la proiezione di Galerkin, incontrano
diverse difficoltà nei flussi multifase, tra cui problemi di instabilità, compatibilità con
la riduzione del modello, complessità nella modellazione dei corpi in movimento
e difficoltà nell’implementazione con codici commerciali che non dispongono di
accesso diretto al codice sorgente.

Queste considerazioni hanno portato allo sviluppo di un approccio non intrusivo
e Galerkin-free, basato sulla decomposizione del dominio e dotato di informazioni
da sensori per tenere conto delle onde. Questo modello multi-fedeltà integra CFD e
POD spazialmente. Il solver ad alta fedeltà è utilizzato nel campo vicino, dove gli
effetti viscosi e non lineari predominano, mentre il modello POD ROM è adattato
alle regioni debolmente non lineari, e concentrato sulla propagazione delle onde in
campo lontano. Sfruttando un piccolo dominio ad alta fedeltà rispetto al dominio
originale, questo approccio consente significative riduzioni dei costi in termini di
CPU, preservando al contempo la precisione. Lo scambio bidirezionale di infor-
mazioni tra i due modelli è facilitato da regioni di sovrapposizione e confini dei
sotto-domini.

La metodologia di accoppiamento è facilmente applicabile a varie simulazioni
che coinvolgono corpi in movimento, compresa la conversione di energia delle onde,
consentendo una rappresentazione efficiente delle proprietà multi-scala. Questa
metodologia dimostra una ricostruzione precisa del flusso e una descrizione completa
della dinamica del WEC. I test di validazione approfonditi includono sia simulazioni
in-sample, per la riproduzione della soluzione, sia, e soprattutto, simulazioni out-of-
sample. Queste ultime evidenziano la precisione e la robustezza della metodologia
proposta, in grado di prevedere soluzioni per parametri sconosciuti. L’efficacia
di questo modello ibrido consente simulazioni intensive, rendendolo adatto a una
vasta gamma di applicazioni, comprese studi parametrici, attività di ottimizzazione
e simulazioni multi-obiettivo. Riducendo notevolmente i costi computazionali, il
modello accoppiato non solo accelera i processi di ottimizzazione e progettazione per
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i parchi di convertitori di energia delle onde, ma apre anche la strada a una maggiore
scalabilità e sostenibilità nel settore dell’energia marina.

Parole chiave: Decomposizione ortogonale ai valori propri, Energia marina,
Modellazione matematica, Modelli di ordine ridotto, Simulazioni numeriche, Modelli
multifedeltà.

Unité de recherche
UMR 5251 Université, 33000 Bordeaux, France.



Résumé détaillé

Le passage à des énergies renouvelables devient crucial dans un monde où la de-
mande énergétique, en grande partie alimentée par des combustibles fossiles, a des
conséquences dévastatrices sur l’environnement. Malgré l’augmentation continue de
la consommation d’énergie, des alternatives comme le solaire, l’éolien et l’énergie
des vagues offrent des solutions plus durables. Cependant, leur adoption nécessite
une modélisation numérique précise pour équilibrer efficacité et coût, ce qui constitue
un défi majeur à relever.

Dans le cadre d’un programme de doctorat en cotutelle entre le Politecnico di
Torino (Italie) et l’Université de Bordeaux (France), cette thèse aborde la question
de l’équilibre entre la précision de la simulation et l’efficacité computationnelle.
Pour ce faire, elle combine deux domaines d’expertise différents : l’énergie des
vagues et la modélisation numérique. Le laboratoire Marine Offshore Renewable
Energy du Politecnico di Torino est spécialisé dans les énergies renouvelables en
mer, notamment la conception de convertisseurs d’énergie des vagues (WECs). De
son côté, l’Université de Bordeaux, en particulier l’équipe Inria MEMPHIS à l’IMB,
excelle dans les techniques de réduction de modèle pour les applications industrielles.
Bien que ces techniques permettent de réduire la complexité des simulations tout en
maintenant leur précision, leur application à des cas pratiques reste un défi dans ce
projet.

Modélisation numérique de fermes de convertisseurs d’énergie des vagues
Un aperçu approfondi de l’énergie des vagues et des technologies associées est
nécessaire pour introduire le problème, mettant en avant les convertisseurs d’énergie
des vagues et les divers aspects de leur développement, y compris la nécessité de
déployer plusieurs WECs dans des fermes. Les fermes de WECs, caractérisées par
le placement stratégique de plusieurs dispositifs, visent principalement à réaliser
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une compétitivité commerciale à grande échelle par rapport aux autres sources
d’énergie renouvelable. Le positionnement stratégique de plusieurs WECs favorise
une production d’énergie stable et abondante. L’interaction entre les vagues et les
WECs impacte la production d’énergie, avec la proximité entre ces dispositifs offrant
un potentiel d’amélioration de la production. En outre, le déploiement de WECs
identiques au même endroit présente des avantages opérationnels et des économies
de coûts, ce qui se traduit par une réduction des dépenses en capital et en exploitation.

La dynamique des vagues au sein d’une ferme de WECs présente une grande
complexité. Une approche de modélisation numérique exhaustive pour une ferme
doit prendre en considération divers aspects, tels que les phénomènes dans les champs
proche et lointain. Cela implique la description des interactions fluide-structure, des
interactions entre les WECs et de l’atténuation des vagues sur de vastes domaines.
De plus, les simulations doivent aborder la dynamique de plusieurs WECs, chacun
avec plusieurs degrés de liberté, ce qui contribue à la complexité du champ de vagues.
Des éléments tels que la turbulence, les systèmes d’amarrage et les stratégies de
contrôle ajoutent une couche de complexité supplémentaire au phénomène. En outre,
étant donné que les caractéristiques des vagues varient en fonction de l’emplacement
choisi pour la ferme, une simulation numérique fiable doit tenir compte de ces
variations pour refléter fidèlement la réalité. Répondre à ces exigences représente
une tâche très exigeante, nécessitant souvent la séparation des différents éléments et
l’utilisation d’hypothèses simplificatrices pour réduire les coûts de calcul.

Quelle que soit la précision déterminée, tout modèle numérique comporte des
approximations et des erreurs induites par des hypothèses simplificatrices visant
à réduire les coûts de calcul. Il existe une diversité de modèles numériques pour
simuler les fermes de WECs, mais les différences entre les phénomènes dans le
champ proche et dans le champ lointain peuvent limiter l’efficacité d’un modèle
adapté à l’un pour capturer l’autre dans sa totalité. Le choix du modèle implique
un compromis entre coût et précision : les modèles rentables peuvent surestimer
ou sous-estimer la dynamique, tandis que la précision accrue nécessite davantage
de calculs. Outre la simplification traditionnelle du problème, d’autres stratégies
alternatives comme les modèles basés sur les données ou les modèles à ordre réduit
se concentrent sur la réduction de la taille du problème.
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Modèles d’ordre réduit pour les écoulements Les Modèles d’Ordre Réduit
(ROM), qui visent à extraire les caractéristiques essentielles et à simplifier la com-
plexité informatique, sont appliqués dans divers domaines, comme la mécanique
des fluides. Le développement des ROMs comprend généralement deux phases,
appelées offline et online. La phase offline consiste en une phase d’entraînement
où des simulations haute fidélité des systèmes cibles sont exécutées pour différents
paramètres, et des bases réduites sont construites à partir de snapshots - distributions
spatiales de la solution d’une simulation numérique à des occurrences temporelles
particulières. Pendant la phase online, le ROM est mis en œuvre en projetant les
équations gouvernantes sur les bases réduites.

À la base d’un modèle à ordre réduit, il y a la définition d’une réalisation espace-
temps U(x, t), comme une superposition linéaire de Nr fonctions de base spatiales -
ou modes - Φ(x), et Nr coefficients temporels a(t), à la différence d’un champ de
référence U(x):

U(x, t) = U(x)+
Nr

∑
i=1

ai(t) Φi(x). (1)

Pour des problèmes linéaires et non linéaires, une méthode fréquemment utilisée
pour dériver une base réduite à partir des snapshots est la Décomposition Orthogo-
nale aux valeurs Propres (POD). La POD est un outil robuste pour construire des
modèles réduits pour des problèmes de grande dimension et maintient globalement
la dynamique non linéaire, même lors de la projection sur des sous-espaces linéaires
ou affines. Elle identifie les modes comme étant les fonctions déterministes les plus
corrélées, en moyenne, avec les réalisations, ce qui implique de trouver un ensemble
de fonctions qui minimisent l’erreur quadratique moyenne entre les réalisations et la
superposition linéaire. Cette optimisation énergétique signifie que seul un petit nom-
bre de modes, Nr, peut être nécessaire pour représenter efficacement les réalisations.
Lorsque Nr est égal au nombre de snapshots Ns, l’égalité dans l’équation (1) reste
valide. Cependant, en choisissant Nr≪ Ns, on obtient une approximation, tout en
réalisant une réduction cohérente de la taille du problème.

Les ROMs basés sur la POD pour les écoulements multiphasiques manquent de
preuves dans la littérature existante. Par conséquent, un POD ROM est introduit pour
les écoulements biphases impliquant de l’eau et de l’air. Une approche progressive
est adoptée, débutant par une étude de cas bien établie, l’écoulement autour d’un
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cylindre, où le modèle ROM basé sur la POD est connu pour être très efficace dans
les écoulements monophasiques à faible nombre de Reynolds. La configuration
est ensuite progressivement modifiée pour passer à des écoulements biphases à
haut nombre de Reynolds, impliquant l’analyse de différents termes des équations
de Navier-Stokes et leur effet sur le modèle réduit. Le modèle montre une bonne
réduction du problème avec la POD, avec moins de 3% des modes capturant 99% de
l’information. Une version asymptotiquement réduite permet d’éviter l’apparition
d’un tenseur du quatrième ordre, mais le modèle devient instable lors du traitement de
deux fluides distincts et d’une interface entre eux. La version actuelle du modèle POD
ROM ne suffit pas pour la réduction des écoulements multiphasiques, nécessitant
des recherches supplémentaires. Malgré cela, la réduction permise par la POD est
cohérente. Les défis inhérents aux ROMs dans la modélisation précise des corps en
mouvement remettent en question leur applicabilité dans la modélisation des WECs,
en plus des problèmes d’instabilité, proposant ainsi une approche alternative.

Modélisation multi-fidélité des convertisseurs d’énergie des vagues Une ap-
proche multi-fidélité est recommandée pour distinguer les différentes dynamiques
et sélectionner le solveur le mieux adapté à chacune d’entre elles. Habituellement,
un solveur haute-fidélité est choisi près du WEC, où les non-linéarités et les effets
visqueux sont plus prononcés. À l’opposé, un solveur de plus basse fidélité est utilisé
pour étendre les solutions sur des domaines plus vastes et doit interagir efficacement
avec le solveur haute-fidélité. Un modèle qui maintient la cohérence des variables
sur les deux solveurs est une solution pratique. La méthodologie proposée permet
cela, s’agissant d’un couplage bidirectionnel entre CFD et POD non intrusif basé sur
la décomposition de domaine et une approche Galerkin-free. Cette méthodologie se
résume à un problème de minimisation des moindres carrés, permettant son applica-
tion à des simulations impliquant des corps en mouvement, y compris la conversion
de l’énergie des vagues.

Les résultats sont obtenus pour un prototype simple, modélisé comme une sphère
(Figure 1), mais la méthodologie peut facilement s’adapter à des WECs plus com-
plexes et à pleine échelle avec plusieurs degrés de liberté. De plus, sans modifier la
stratégie de couplage, des détails supplémentaires tels que les systèmes d’amarrage
ou de contrôle peuvent être incorporés, améliorant ainsi le réalisme des simulations.
Pour le cas considéré, le volume du domaine haute-fidélité est réduit à seulement
0.015% du domaine d’origine, offrant ainsi une énorme économie computationnelle,
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Fig. 1 Esquisse de la décomposition de domaine pour la méthodologie de couplage,
avec la définition des différents sous-domaines et des frontières.

tout en maintenant la précision car les erreurs relatives maximales restent inférieures
à 0.2%. L’approche donne des résultats satisfaisants pour des cas de reproduction
du problème précédemment simulé, mais surtout la méthode démontre également
la capacité à prédire des solutions pour des paramètres non connus. Dans ce cas, la
précision est conservée et la réduction significative des coûts CPU est poussée encore
plus loin, permettant des simulations intensives, adaptées aux tâches d’optimisation
et aux simulations multi-objectif.

La recherche de cette thèse pose des questions ouvertes et suggère des pistes
pour de futures explorations. La méthodologie de couplage montre des résultats
encourageants et une réduction significative de la charge de calcul. Outre la modéli-
sation des fermes de WEC, une gamme étendue d’investigations est envisageable, y
compris des configurations hybrides avec d’autres sources d’énergie renouvelable.
Bien que cette étude se concentre principalement sur la dynamique des fluides,
d’autres aspects tels que les systèmes d’amarrage ou la stratégie de contrôle peuvent
nécessiter des approches différentes. La méthodologie de couplage n’exclut pas
l’utilisation d’autres modèles. Malgré la complexité, une simulation exhaustive reste
essentielle pour obtenir une vision d’ensemble du potentiel des énergie des vagues.
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Chapter 1

Introduction

Any activity demands energy, whether it is commuting to the city center, preparing a
meal, watching a video, or turning on the lights. The contemporary lifestyle requires
a substantial amount of energy, a demand that has exponentially risen since the
Industrial Revolution, as illustrated in Figure 1.1. The share of the energy source
displayed in the graph reflects how fossil fuels account for the majority of the
world’s energy supply. The extensive use of such non-renewable energy sources
has catastrophically compromised ecosystems and biodiversity. Moreover, their
inherent inability to swiftly regenerate contributes to a gradual depletion of these
resources. Despite this, energy consumption continues to grow daily. A transition to
renewable energies, albeit more challenging, is imperative. Traditional renewable
sources like solar and wind, being well-established, continually evolve towards more
efficient solutions. In this context, wave energy emerges as a recent prospect with
high potential, but also substantial complexities. The advancements in this field
heavily relies on extensive numerical modeling, which, in itself, presents several
challenges. The primary difficulty lies in achieving the delicate balance between
simulation accuracy and computational cost. Such trade-off is essentially the focus
of this work.

Within the framework of a cotutelle PhD programme between Politecnico di
Torino (Italy) and Université de Bordeaux (France), this thesis addresses the issue of
achieving the equilibrium between simulation precision and computational efficiency.
To this end, two different domains of expertise are combined, the wave energy
and the numerical modeling. On one side, at Politecnico di Torino, the Marine
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Offshore Renewable Energy Lab boasts extensive knowledge in offshore renewable
energies, encompassing all facets of technology development, including Wave Energy
Converter (WEC) design. A crucial stage in this process involves arranging multiple
WECs in farms to generate power at a commercial scale. Before deploying these
devices in real-world settings, thorough numerical simulations are conducted to
gain a comprehensive understanding of the underlying phenomena. Depending
on the developmental stage, various numerical approaches for WEC farms are
available, chosen based on predefined requirements and constraints such as storage
and simulation time. On the other side, at Université de Bordeaux, specifically within
the Inria MEMPHIS team at IMB (Institut de Mathématiques de Bordeaux), expertise
lies in various modeling techniques for industrial applications, including Model Order
Reduction (MOR). MOR techniques excel in reducing simulation complexity, thereby
lowering computational costs while maintaining high accuracy. Widely employed
in various domains, including fluid dynamics, these techniques demonstrate good
results in benchmark cases and show promise in real-world applications. However,
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the successful application of such mathematical tools to practical cases presents a
significant challenge in this project.

The research aims to create an accurate model for multiphase flows and moving
bodies, while managing computational demands to align with tight technology devel-
opment schedules. Given the scarce application of model order reduction to the wave
energy domain, outcomes are initially uncertain and the methodology may not be
readily clear. Indeed, following unsatisfactory outcomes from an initial implementa-
tion of a Reduced-Order Model (ROM) based on Proper Orthogonal Decomposition
(POD) for simulating a WEC prototype in regular waves, a methodical approach is
adopted, with the surrogate WEC model as the ultimate objective. Beginning with a
well-studied problem in model reduction involving a monophase flow, complexities
are gradually introduced. Motivated by the absence of evidence for multiphase
surrogate models in existing literature, efforts are made to develop a POD ROM
model for water and air, but stability issues persist, prompting further investigation.
However, an alternative approach involving the coupling of the POD ROM model
with a high-fidelity model is pursued and proves successful for numerical simula-
tions of WECs in waves. The algorithm, designed to accommodate multiphase flows
and moving rigid bodies, is both straightforward and versatile, effectively reducing
computational demands while maintaining accuracy. The findings of this thesis
represent cutting-edge advancements that lay the groundwork for accomplishing the
more extended objective of modeling WEC farms.

Throughout the leading project, two main short side projects provide opportuni-
ties to delve deeper into the numerical modeling of WEC farms, offering valuable
insights and alternative perspectives beneficial for the primary project.
A first STSM (Short-Term Scientific Mission) at Ghent University (Belgium) aims
at familiarizing with their well-established coupling methodology, and applying it
to a small-scale WEC farms. The project allows to appreciate the strength points
and limits of such coupling methodology, both mainly related to the fidelity of the
implemented numerical models. The experience serves to point the main important
nodes in the development of the coupling methodology presented in this work. The
other secondment at Optimad Srl in Turin (Italy), in the framework of the ARIA
project (Accurate ROMs for Industrial Applications), focuses on exploring the in-
tegration of ROMs across various simulations. A notable challenge is the use of
commercial softwares, where access to the source code is unavailable, and direct
modifications are precluded. The project allows to identify alternative approaches
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to directly reduce high-fidelity costs and subsequently applying MOR for learning
and predicting solutions. Furthermore, the project has provided access to Optimad’s
on-premise HPC cluster, instrumental in generating the results presented in this
document. Comprising 2 frontend nodes and 8 compute nodes, each node features
2 AMD CPU Epyc 7413 24-core processors, 128GB RAM, and Red Hat OS 8.5.0.
Interconnected via Ethernet 10Gbps, the nodes are accessible through a remote GUI
facilitated by Nice DCV.

The document is structured into three main chapters, aside from introduction and
conclusion.

Chapter 2 delves into the significance of wave energy and provides a non-exhaustive
overview of numerical modeling approaches for WEC farms. The chapter aims to:

• Review the fundamental definitions and classifications of WECs to establish a
connection between their characteristics and the numerical modeling approach.

• Discuss the key motivations behind developing WEC farms, define the main
attributes of a farm, and outline the primary objectives of studies related to
WEC farms.

• Explore the diverse range of modeling strategies utilized in WEC farm sim-
ulations, considering factors such as desired fidelity levels, computational
requirements, and the specific characteristics of WECs and farms targeted.

Additionally, some preliminary results from publications stemming from work
conducted at Ghent University are presented, contributing to the advancement of
research in numerical modeling of WEC farms.

Chapter 3 provides an introduction to Model Order Reduction (MOR) and Proper
Orthogonal Decomposition (POD) techniques, along with an approach for developing
a multiphase POD ROM model. Specifically, this chapter covers:

• A brief overview of MOR techniques, emphasizing projection-based ROMs,
with a focus on POD and its application to a well-known case for clarity.
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• Analysis of the various components comprising the model to understand their
impact and how to address them in the context of multiphase flows.

• Presentation of numerical results at each stage to illustrate the challenges
encountered.

• Brief introduction of the Dynamic Mode Decomposition (DMD) approach,
and comparison with the POD for a specific test case.

This chapter also emphasizes the unsuitability of the presented POD ROM model
for multiphase flow simulation, highlighting the importance of sharing unsuccessful
attempts to direct future research efforts.

Chapter 4 presents the coupling methodology, covering its definition, implemen-
tation, testing, and validation. This chapter includes:

• A brief overview of coupling methodologies in the wave energy and MOR
sectors.

• The theoretical framework and algorithmic implementation of the multi-fidelity
model.

• Presentation of various tests, along with corresponding numerical results,
utilized for refining the methodology.

• Application of the methodology to a case potentially modeling a point absorber
WEC type.

• Insights into the algorithm for implementing the WEC farm multi-fidelity
model.

The highly accurate results obtained from the coupled model indicate the promis-
ing prospects for continued research. Some potential perspectives are provided in
the conclusion chapter.



Chapter 2

The Numerical modeling of Wave
Energy Converter Farms

This chapter provides an overview of wave energy and the technology associated
with it. The primary classifications of Wave Energy Converters (WECs) and the
different aspects of technology development are addressed, including the necessity of
deploying several WECs in farms (Section 2.1). Within this framework, the key char-
acteristics of a WEC farm are defined in Section 2.2, as well as the main phenomena
occurring within such environments, based on current understanding. Additionally,
the primary objectives driving studies related to WEC farms are outlined, and some
advancements in this field, stemming from dedicated research efforts, are presented.
The chapter then explores the various numerical modeling strategies specifically
tailored to WEC farm simulation (Section 2.3). Although a wide range of references
is available for numerical modeling in wave energy, this chapter mainly covers those
related to wave energy converter farms.

2.1 Wave Energy

As the largest global greenhouse gas emissions come from electricity and heat
generation, and considering the fragile socio-political scenario of the recent years, a
robust expansion of renewable energy is imperative.
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Fig. 2.1 Share of renewable energy source, 2030 forecast [2]. Ocean energy en-
compasses sources like ocean waves, tidal range, tidal current, ocean current, ocean
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The International Energy Agency forecast [2] predicts a consistent increase
in electricity generation from renewable sources in the coming years, positioning
renewables as a primary source of electricity, constituting almost half of the global
electricity generation. Figure 2.1 illustrates the share of various renewable energy
sources in a polar plot, with the radius proportional to each source’s contribution.
These sources are categorized as controllable or constant, in contrast to variable
or intermittent sources, which are not dispatchable due to their fluctuating nature.
While hydropower continues to be a popular renewable energy source, output from
variable renewables such as wind and solar is expected to surpass it, benefiting
from increasingly lower generation costs, and provided accelerated investments
in grids and system flexibility, to ensure a smooth integration in the global power
mix. Ocean energy, in particular tidal and wave conversion systems, is expected to
contribute significantly in the short to medium term, owing to both local resource
availability and technological advancements. Salinity gradient and ocean thermal
energy conversion have not reached the same level of maturity. Despite the expected
small contribution depicted in Figure 2.1, ocean energy stands out as a consistent and
abundant source compared to solar and wind energy [3]. Specifically, wave energy
holds huge potential due to its high power density, predictability, and consistency
[4]. Waves can travel large distances with little energy loss, and even if they show a
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seasonal pattern, they are not intermittent, as wind and solar resources are. Despite
leveraging knowledge and infrastructure from the offshore oil sector [5], wave
energy technology is still in its early stages compared to wind and solar, lacking
cost competitiveness. Research and funding are dispersed across various wave and
marine current energy concepts under development, with no technology convergence,
unlike the wind energy sector.

The patent literature for wave energy converters features over a thousand patents
and over a hundred projects at different stages of development [6]. A wave energy
converter (WEC) is a device converting kinetic and potential energy from traveling
waves into mechanical or electrical energy. Classification of these technologies can be
based on operating principles (rotating mass, overtopping, oscillating water column,
oscillating surge converter) [7], deployment location (onshore, nearshore, offshore),
orientation (terminator, attenuator, point absorber), installation type (floating, bottom
standing, fully submerged) and foundation (attached or moored), or power take-off
(PTO) system (self-referenced or seabed referenced, pneumatic, hydro, hydraulic,
direct drive) [8]. To delve further into the specifics, some examples are provided, to
enhance comprehension of the challenges encountered in the numerical modeling
phase of the WECs.

• Point absorber. A structure with dimensions much smaller than the incident
wavelength, usually characterized by omnidirectionality. It typically comprises
two parts, a floating section, and a fixed structure, exploiting relative motion
for energy generation. Primarily capable of heaving or pitching, it results in
a numerically straightforward simulation due to the simplification to a single
DoF (degree of freedom) and its circular shape. The omnidirectional nature
aids in reducing the number of simulations for individual devices but does not
hold true for arrays affected by directional waves. Examples include CorPower
[9], Powerbuoy [10], and WaveStar [11]. The numerical modeling of point-
absorber farms varies from semi-analytical models [12–15] to more detailed
attempts, including Computational Fluid Dynamics (CFD) [16], and the farm
sizes may range from small to large (up to 100 units).

• Attenuator. Aligned with the predominant wave direction, commonly surface
floating, with some submerged designs proposed. Pelamis [17], activating a
PTO with motion between adjacent floating structural components, is a floating
attenuator example. Simulation of farms of 5 or 10 Pelamis involves using
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spectral models like SWAN for assessing, for instance, the environmental
impact on the Portuguese coastal environment [18], or using models such as
REFDIF based on the mild slope equations [19], and Boussinesq equations
[20] for smaller farms. A submerged variant is a rubber tube with elastic walls,
known as Anaconda [21], modeled as a farm of few rows in [22] with the
MIKE21BW Boussinesq wave propagation model.

• Rotating mass converter. A floating device housing an eccentric mass moved
by pitching or rolling motion. Modeling is challenging due to complex ge-
ometries, multiple DoFs, intricate mooring systems, and control systems.
Examples include ISWEC [23] or PeWEC [24], modeled in farms of up to 3
units, using the Boundary Element Method (BEM) [25–27].

• Terminator. Perpendicular to the wave direction. The most known technology
is the overtopping device, which converts wave energy into potential energy,
forcing water to be collected into a reservoir above the mean water level and
then, with the action of gravity, to be returned to the sea passing through
a hydraulic turbine. One example is the Wave Dragon [28], analyzed in a
5-WECs staggered farm by [29] using the MIKE21BW model, and by [30]
using MILDwave.

• Oscillating water column. A partially submerged hollow structure exploiting
the oscillatory motion of water inside and outside a chamber, driving an air
turbine. Some OWCs (Oscillating Water Columns) are onshore, integrated, for
example, in breakwaters, as Mutriku, working since 2011 [31]. Other OWCs
may be integrated into hybrid platforms as motion suppressors for floating
offshore wind turbines [32, 33]. Numerical simulation is challenging due to
the need to consider air compressibility. In [34], the linear potential theory is
used to model an infinite periodic linear array of OWC, equipped with a linear
PTO, so that there is a proportionality relationship between the excess air
pressure in the chamber and the air volume flow rate displaced by the interior
free surface.

• Oscillating surge wave energy converter. Exploiting the surging motion of a
flap moved horizontally by waves, typically designed for near-shore envi-
ronments and usually attached to the bottom. Simple in shape, the OWSC
(Oscillating Surge Wave Converter) is often simplified to one DoF [35, 36].
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Prototypes include the WaveRoller [37] and the Oyster [38], with the latter
extensively simulated in small to large farms using BEM [39, 27].

Regarding the working principles, the prevalence of point absorber-type WECs
is primarily attributed to their simplicity, followed by OWC and OSWC [40]. Single-
DoF WECs ideally operate at or near resonance to maximize power absorption.
Otherwise, most of the wave energy is stored as reactive power, which cannot be
converted into useful power. The strategy to enhance energy absorption involves
actively controlling PTO damping to adjust WEC stiffness and mass, at the cost of
complicating the technology.

The project’s location significantly shapes both the project itself and the numeri-
cal modeling of the WEC or WEC farm, in terms of bathymetry and wave climate. In
simulations of WEC farms, the bathymetry may undergo substantial changes due to
the extensive areas covered, necessitating consideration, as it directly impacts wave
behavior. Generally, there are three main categories. Onshore structures, installed
directly on land, obviate the need for mooring systems or lengthy cables connecting
WECs to the grid. While easily accessible, they exert a substantial environmental
impact on nearby communities. Nearshore installations typically reside in shallow
waters, with depths less than 40 meters, close to the shoreline. Offshore WECs
operate in deep waters, where the depth exceeds half the wavelength of the wave
or surpasses 40 meters. Offshore installations, although less visually impactful
from land, pose challenges in terms of accessibility and operation costs. Numerical
simulations for deep water waves versus shallow water waves differ significantly due
to distinct regimes. In offshore areas, the available wave power is often considerably
greater than onshore, unaffected by the sea floor, with flow characterized by higher
Reynolds numbers. However, frequent extreme events and complex energy extrac-
tion, attributed to high wave directionality, complicate the dynamics, especially in
the presence of mooring systems, vital for station-keeping in severe storm conditions.
Conversely, moving closer to the shore alters the simulation setup, with no mooring
system required and changes in wave conditions. As waves approach the shore,
they tend to align with it [41], reducing directionality and containing less energy
due to interactions with the seabed, where bottom friction dissipates part of the
incoming wave energy. Numerical models for these waves must consider wave
shoaling, refraction, and wave breaking.
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In assessing the wave climate, a comprehensive evaluation of environmental
factors influencing WEC power capture is crucial, encompassing not only sea-state
but also water depth, strength and direction of marine currents, and wind patterns.
Despite oceans covering over 70% of the Earth’s surface, not all areas are exploitable.
Optimal energy resources are typically found on the western coasts of continents,
especially between 30◦ and 60◦ latitude in both hemispheres [42]. Moreover, the
installation site must be easily accessible from the coast, and underwater cables
should not be overly long to prevent excessive power loss. Coastal regions, islands,
and archipelagos are particularly noteworthy, presenting significant potential for
wave energy due to their location in deep water areas with steep shorelines, enabling
the capture of substantial wave energy before dissipation processes occur near the
sea bottom. Detailed parameter assessment in a wave area using in situ instruments,
especially for offshore regions, is challenging. In such cases, a viable alternative
involves considering simulated data from numerical models continually calibrated
with measurements from satellite missions, research ships, buoys, and coastal stations.
Integrated datasets, such as ERA5, the fifth generation ECMWF (European Centre for
Medium-Range Weather Forecasts) reanalysis [43], cover the majority of the global
water surface, including oceans, seas, sheltered waters, and calmer seas, presenting
interesting locations for wave energy. These datasets boast global availability, no gaps
in time series reporting, and are characterized by good spatial and temporal resolution,
making them valuable resources for wave energy assessment over extended periods.

Information on the wave climate is crucial for the wave energy extraction process.
Control strategies, aimed at optimizing the WEC response by bringing it close to
the resonance condition for optimal power production, can be sophisticated. Given
the highly complex and nonlinear nature of ocean waves, control strategies mirror
these characteristics; consequently, the inclusion of a control system in the numerical
simulation of a WEC adds to its complexity.

Another factor to consider in the numerical simulation of a WEC, or WEC farm,
is the environmental impact, encompassing aspects like sediment transport, organism
movement, pollution dispersal processes, and, on a larger scale, the effects on the
benthic zone and coastal communities [44, 45]. For instance, incorporating sediment
transportation in the numerical simulation requires the addition of a model to address
such dynamics, further complicating the overall model [46]. Other considerations
include the materials used for the WEC, along with challenges related to corrosion,
fatigue, fouling, impact loading, fracture, and the associated costs of all project
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components. While a complete numerical simulation that considers all aspects
related to a WEC project would be ideal, it comes with extreme complexity and
a prohibitive computational cost. Consequently, each omission or simplification
makes the model simpler and more cost-effective, but it may move it further away
from reality. The inevitable choice involves striking a trade-off. Moreover, such
choices depend also on the level of development of a project. This is normally
defined in the Technology Readiness Level (TRL) framework, initially devised by
NASA for space technology, adjusted for wave energy technology development. TRL
delineates the state of a technology program, typically comprising nine development
levels that assess technology maturity through progression. In an effort to establish
a standardized development path in wave energy, a five-stage approach has been
conceptualized, ranging from small-scale model tests to intermediate stages and
concluding with full-scale sea demonstrations [40].

Numerous wave energy converters have been proposed, at different TRL levels,
contributing to a lack of convergence in technology and consensus. Varied reasons,
including socio-economic and technical factors, such as the diversity of wave climates
at different potential wave energy sites, their proximity to the coast, and variations
in device operating principles, contribute to this lack of convergence. Despite this
diversity in WECs and technology readiness, they all share a common destiny: the
deployment of multiple WECs in farms, a mandatory step toward achieving the
commercialization of wave energy. This step involves a heavy use of numerical
modeling, before experimental and real sea testing and final deployment.

2.2 Wave Energy Converter Farms

Similar to wind and solar energy, wave energy also necessitates the deployment of
multiple WECs in farms. These farms can vary in size, with a small group of WECs
often referred to as an array. An array can be viewed as a block, and when replicated
several times, it forms a large WEC farm. Numerical simulations typically focus on
small farms, primarily due to computational costs. The behavior of a small block is
considered indicative of the overall behavior of an ensemble of such blocks, making
it a reasonable assumption, even if some dynamics of large farms may emerge. The
concept of farm, involving the strategic placement of multiple WECs, is primarily
oriented towards achieving commercial scale and competitiveness compared to other
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renewable energies. The arrangement of multiple WECs allows for the capture of
a significant amount of energy and ensures stability in power output. As waves
travel, consisting of various components moving at different velocities, they interact
with the multiple WECs spread across the area in different ways. Each WEC has
its own production profile, which is likely independent of others, resulting in a
consistent overall power production of the entire farm. Furthermore, proximity
among devices may sometimes even boost the power generated by each WEC
compared to being isolated. The presence of one WEC can influence the surrounding
wave field and impact the dynamics of neighboring WECs if they are situated closely.
Furthermore, the deployment of multiple identical WECs simultaneously in the same
location enhances the feasibility of shared production, installation, and maintenance
operations, including the potential for utilizing common underwater cables and
mooring systems. This collective approach serves to minimize both capital (CapEx)
and operational (OpEx) expenditures.

To grasp the dynamics of a WEC farm intuitively, the linear potential theory and
regular waves can be employed. It is nonetheless important to retain that this model
has some limitations, which will be further explained in the next section.
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Fig. 2.2 Simplified representation of the different wave fields, incident, radiated and
diffracted, for two WECs. The picture is inspired from [47].

According to the linear theory, the wave field passing a WEC can be considered
as the superposition of an incident wave χI , a diffracted wave χD, and a radiated
wave χR. The incident wave is a plane wave traveling from a distance and impacting
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the WEC at a specific direction. The diffracted wave results from the deviation
and change in direction of the incident wave due to the presence of a stationary
WEC. The radiated wave occurs because of the displacement of water near the
WEC, caused by its oscillatory motion in still waters. Figure 2.2 depicts a simplified
sketch of the different wave fields, which all sum up to give the perturbed wave
field, χP = χI +χD+χR. Energy conservation implies that part of the energy carried
by the incident wave is redistributed by the diffracted and radiated waves in all
other directions, with magnitude decreasing as the distance from the WEC increases.
This behavior distinguishes a WEC from a wind turbine, which has a clear wake
downstream.

In a WEC farm, the superposition of these elements is complicated by the presence
of multiple WECs in close proximity. The diffracted and radiated waves of one WEC
impact another WEC in addition to the incident wave. For farms with multiple lines,
the rear rows are expected to experience an incident wave with less energy, as part
of it has been absorbed by the front rows. This less energetic incident wave is also
more perturbed due to the various contributions of diffraction and radiation from
the front WECs, which, in turn, experience less disturbed incoming water. When
designing a WEC farm, several aspects come into consideration, particularly the
positioning of the WECs and the spacing between them in the layout. The former
aspect is typically examined through arrays of a few WECs, as demonstrated in
[48, 49], where the authors explore inline, triangle, rhombus, and square layouts of
point absorbers across various wave climates (see Figure 2.3).

Linear arrays are found to be less efficient in power production, particularly suscepti-
ble to wave directionality, whereas square layouts, although more efficient, are also
affected. Triangular-based layouts prove to be the most suitable for multidirectional
wave climates. The other parameter, the spacing between WECs, significantly im-
pacts the disturbed wave field within the farm and is influenced by technological
factors. While closely spaced WECs experience stronger interactions, an optimal
farm layout should allow ample space for WEC movement (especially with multiple
DoFs and a loose mooring system), and maintenance boat navigation. By defining L
as a characteristic length of a general WEC (Figure 2.3), irrespective of its shape and
working principle, a general rule suggests maintaining a distance between WECs
of at least d = 2L, with a maximum of d = 20L to maintain interactions. Research
in [50] indicates that, while interaction decay is slow for regular waves, with a
maximum of 10-15% impact on the absorbed power even at a distance of d = 200L,
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Fig. 2.3 Graphical representation of different WEC farm layouts, for small arrays
(top line) and the general nomenclature for larger arrays (bottom line). The picture
is inspired from [49].

irregular waves show a faster decrease in absorbed power with distance, with im-
pacts of less than 10% within d = 40L. It should be mentioned that all of those
assessments are based on linear potential theory, which ignores viscosity. As a result,
interactions are anticipated to be more dispersed in real-world situations. Because of
this, a d = 20L cutoff distance appears reasonable; beyond this range, WECs can be
regarded as isolated. Nevertheless, the resulting farm would be abnormally large,
which would raise expenses - notably for electric cables - and create difficulties for
expensive and complex maintenance procedures.

Given the high infrastructure costs associated with WEC technologies, efforts are
focused on maximizing power output. Each WEC is equipped with a PTO system,
which amplifies interactions and causes an appreciable rise in incident wave cancel-
lation or decrease in wave amplification. The overall energy balance is maintained,
causing the wave passing the WEC to possess less energy, and a detectable wake
forms in the lee of the WEC. Since the energy from diffraction and radiation de-
creases with distance, it is likely that WECs that are closer together interact more
than those that are farther apart.

Based on these observations, one might anticipate predominantly negative in-
teractions, reducing the overall energy extraction of a WEC farm, compared to an
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equivalent number of isolated WECs. However, this assumption is not universally
accurate, as positive interactions can also occur.

To quantify the impact of wave interactions on power absorption, the q-factor is
defined as

q =
Ptot

nB Ps
, (2.1)

where Ptot represents the total power produced by the farm, Ps denotes the power
produced by a single, isolated WEC, and nB is the number of units in the farm.
Positive interactions yield q > 1, signifying that placing multiple WECs in a farm
layout is advantageous, since the total power surpasses that of isolated WECs.
Conversely, if q < 1, negative interactions predominate, resulting in a destructive
park effect.

Owing to the fact that the radiated wave is associated with the motion of the WEC,
which is influenced by the action of the PTO, a control strategy for the WEC farm
is crucial to comprehend its efficiency. Hence, numerous studies delve into the
optimization of WEC farm control strategies and related layouts [51–55] to obtain
high values of the q-factor.

Most research tend to agree on a few reoccurring components. In most cases, the
radiation and diffraction from the other rows help the initial row of a farm absorb
more energy. Negative interactions and less energetic waves are seen in succeeding
rows. Therefore, it is advisable to keep the number of rows to a minimum, in
order to prevent significant losses that might not be compensated by the higher
power of the front rows. This tendency is frequently seen both numerically and
experimentally, and only one study [56] shows numerical results evidencing an
increased power performance in the final row of a large farm of hundreds of WECs.
During the experimental campaign of the WECwakes project [57], wave height drop
is seen over five rows, in both aligned and staggered layouts (see Figure 2.3 for the
definition), starting from the second or third row. Furthermore, for the studied point
absorber WECs, characterized by axisymmetric shapes and only heaving motion,
favorable interactions are found. Specifically, a marginally positive impact of 3%
on the total power absorption for an aligned farm, and up to 16% when testing the
staggered arrangement. A point absorber’s radiated wave exhibits a circular form,
and when it interacts with another such radiated wave, the resulting wave field is
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simple. Comparable results might be obtained for OSWCs, which may be simplified
to a single DoF as well. Nonetheless, a more elaborate wave field can be expected
for more complicated WECs, with several coupled degrees of freedom.

The key objective of all the studies reported thus far is to maximize the power
output. The goal is to prevent detrimental interactions as much as possible or, in the
event that constructive interference is present, to maximize its benefits by designing
an optimal farm layout, in conjunction with a tailored control technique. A popular
approach for such a complicated multi-variate problem is to use genetic algorithms,
because the dimension of the state vector that needs to be optimized is typically too
large for an exhaustive search [58–60]. In [61], a comparison between the genetic
algorithm and another optimization approach, the parabolic intersection technique,
is conducted for five heaving WECs. The latter method involves defining a set of
parabolas, determined by points where scattered or radiated waves are either in phase
or out of phase with the ambient incident wave field, with the WECs positioned at
the center of these parabolas. Results indicate that while the genetic algorithm yields
highly optimal configurations for WEC farms, the parabolic intersection technique
offers advantages in terms of simplicity and efficiency, as it quickly identifies points
of constructive interference between parabolas for WEC placement.

Strategies for power output maximization are focused on what is known as the
"near field," which consists of events that occur within a limited radius surrounding
the WEC farm and in close proximity to the WECs. However, a WEC farm is
not a closed circle; rather, it is a component of the "far field", a wider system that
encompasses coastal populations and marine species. It is usual practice to use the
disturbance coefficient Kd to quantify these far-field effects, defined as

Kd =
χP

χI
, (2.2)

where χP is the total perturbed free surface elevation amplitude, and χI is the
undisturbed incident wave. This coefficient represents the change in the wave field
caused by the presence and action of a WEC or a WEC farm, compared to conditions
with only an incident wave. Thus, a Kd > 1 corresponds to an increment in the wave
field, and Kd < 1 symbolizes a wave attenuation. Positive interactions created in the
WEC farm typically propagate forward. Conversely, waves that have had part of
their energy absorbed by the WECs propagate behind the farm in the form of a wake.
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Even if the WEC farm is situated offshore, at a considerable distance from the coast,
waves travel long distances with minimal energy loss, potentially impacting coastal
territories. In a study carried out as part of the PhD project, a small farm of three
PeWECs demonstrates the generation of a wake reaching the coast, at a distance of
700m (see Figure 2.4) [26].

As these floating WECs possess more than one DoF, interactions may be quite
complex. Nevertheless, a visible wake is observed, especially with the action of the
PTO, along with a significant area of perturbed wave field in the front. While the
effects on local marine fauna in this region are challenging to define, the perturbed
wave field reaching the shore can significantly impact the coast and the nearby
communities. The wave height attenuation information may be used by sediment
transport and morphological models, to predict the coastline evolution [62–64].

Numerous studies explore the effects of a WEC farm on the surrounding area, and
for coastal protection purposes, the focus is on minimizing the Kd . Wave attenuation,
particularly in regions close to harbors and shores, can be advantageous for mitigating
coastal erosion, exacerbated by the effects of the climate crisis [65]. Current solutions
for coastal protection, such as groynes, breakwaters, or barriers, may have drawbacks
like impacts on marine life, turbidity, lagoon effects, danger to bathers, and visual
impact [66]. WECs, especially in the form of farms, have the potential to address
some of these issues by extracting energy from waves, resulting in a less energetic
wave field in their lee. As investments to adapt to climate crisis effects are expected
to be substantial, incorporating WEC farms into coastal protection strategies can
lead to reduced wear on existing structures, minimized erosion, and lower associated
risks. This cost synergy is crucial in reducing overall expenditure while increasing
value, ultimately enhancing the economic viability of WECs [67].

An attempt in this regard is made in [68], where a flap gate system is examined
using a semi-analytical approach and it is suggested that wave energy could be
extracted from the storm barriers that keep Venice Lagoon from flooding. As a side
activity of the PhD project, a multi-query strategy is proposed to balance both the
objectives of coastal protection and power production, while also identifying potential
synergies [27]. Findings show that maximizing power production causes a small
wake because the excited WECs disturb the surrounding wave field significantly.
Overall sufficient power can still be achieved by fine-tuning the control mechanism
to improve wave attenuation. It is advisable to identify the region with a minimal
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Fig. 2.4 Kd disturbance coefficient for the far-field of a WEC farm, taken from [26].
The comparison is among a single WEC (first row), a 3-WEC farm with separating
distance d = 5L (second row), and a 3-WEC farm with separating distance d = 20L
(third row). The pink square represents the near-field simulation domain, and the
WEC farm is enclosed in the white circle.
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wave attenuation of 10% (Figure 2.5) and fine-tuning the PTO to maximize power
output. Thus, one can select the best WEC technology and farm structure, adjust the
control strategy to meet the requirement, and extract the maximum power, by taking
into account a particular sea site and its minimum standards for coastal protection.
In this sense, WEC farms turn into an affordable answer that helps the surrounding
marine populations, while satisfying demands for clean energy and adaptation.

Typically, analyses of WEC farms prioritize objectives such as power production
and coastal protection, as well as finding a balance among the different goals, as
mentioned. Secondary effects like desalination, hydrogen production, and photo-
voltaic panel integration may also be explored, along with co-locating wave-wind
farms. Cost minimization serves as the primary driving factor behind these analyses,
considering both capital (CapEx) and operational (OpEx) expenditures associated
with WECs [69]. Aggregating multiple WECs helps mitigate these costs, reducing
the Levelized Cost of Energy (LCOE) overall and enhancing the competitiveness of
wave energy with conventional renewable energies. This corroborates the importance
of designing and deploying WEC farms, necessitating accurate yet cost-effective
numerical simulations at the different stages of the development.

A comprehensive numerical modeling approach for a WEC farm should encom-
pass various aspects, including both the near-field and far-field phenomena. This
involves capturing fluid-structure interactions, interactions among WECs, and wave
attenuation over large domains. Additionally, simulations must address the dynamics
of multiple WECs, each with several DoFs, contributing to the complexity of the
wave field. Factors like turbulence, snap loads from mooring systems, and significant
motions due to control strategies further complicate the phenomenon. Moreover,
since wave characteristics vary based on the chosen site for the farm, a reliable numer-
ical simulation must account for these variations to closely reflect reality. Meeting
these requirements is highly challenging, often necessitating the separation of the
various elements, and the use of simplifying assumptions to reduce computational
costs. In the following section, the different techniques for the numerical simulations
of WEC farms are presented. For complete reviews, please refer to [70–73].
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(a) Aligned layout.

(b) Staggered layout.

Fig. 2.5 Representation of the wake (identified for Kd < 0.9) behind the single WEC
and the farm of 3 and 5 OSWCs, for the aligned and staggered layouts. The result is
in frequency domain and corresponds to the period T = 6s, and the presence of the
PTO is not considered. The picture is taken from [26].



22 The Numerical modeling of Wave Energy Converter Farms

2.3 Numerical Strategies for WEC Farm Simulations

Early research on numerical modeling of WEC farms dates back over half a century
ago [74–76]. Since then, developments in technology have made it possible to
perform extremely precise numerical simulations.
Any numerical model, based on a selected accuracy, inevitably incorporates approxi-
mations and introduces errors, and further inaccuracies may arise from simplifying
assumptions. Such simplifications are usually necessary to reduce the computational
cost. Several different numerical models exist for the simulation of WEC farms and
are introduced in this section. A graphical representation of the trade-off between
accuracy and computational cost of the WEC farm models is shown in Figure 2.6.

Furthermore, differentiating between phenomena in the near-field and in the
far-field is essential for a WEC farm analysis. Since such events are different from
one another, a model that fits one, may not fully capture the other. The different
presented models are classified in Figure 2.7 by the application to the near-field or
the far-field, and with the number of WECs modeled.

An accurate description of the dynamics of fluid flows is given by the Navier-
Stokes equations, a set of partial differential equations (PDEs) currently lacking an
analytical solution. By partitioning the continuum into finite temporal time steps and
applying spatial discretization on a mesh or particles, it is possible to approximate
these equations numerically. In classical Computational Fluid Dynamics (CFD), the
approximate solution is computed at the grid points using an Eulerian technique.
Common discretization schemes include the finite difference, finite element, and
finite volume approaches. The finite difference method is the most direct approach
and uses nodal values of regular grids to estimate derivatives. The finite element
method divides the domain into a number of subdomains, and then uses local data to
produce local approximations of solutions that are recombined into global approxi-
mations of the solution. The finite volume approach builds an approximation of the
solution within cells by evaluating an accurate equation for the average value of the
solution over a given volume. Finite elements and finite volumes are advantageous
for handling intricate geometries and boundaries. Complex WEC geometries and
biphase fluids must be taken into consideration by solver algorithms, which need the
simultaneous solution of fluid equations in the water and air components. Surface
capturing methods, such as Volume of Fluid (VOF) and level set methods, predict the
free surface treating it as a sharp boundary and updating it over time, governed by a
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pure advection equation without diffusion. The VOF, the most widely implemented
in CFD solvers, describes the volume fractions in each cell of the computational
grid using a scalar function α . When a cell is full of the tracked phase, α = 1, when
the cell is completely empty then α = 0, else the function takes a value in between,
0 < α < 1, and in such cells lies the interface. When it comes to water and air, α = 1
denotes water, α = 0 denotes air, and the α = 0.5 isocontour defines the interface.
The level set method computes signed distances from the interface, resulting in
positive values in the water zone and negative values in the air region. For additional
information, see [77]. The most popular commercial and open-source CFD software
programs are CFX, Flow3D, Ansys Fluent, OpenFOAM, and StarCCM+, which is
the one used in the following studies.
A Lagrangian approach, at the basis of the Smoothed-Particle Hydrodynamics (SPH)
technique and integrated into the DualSPHysics software, discretizes the computa-
tional region with particles moving at local flow velocities and approximate solutions
at the position of each particle. This meshless model is suitable for problems dom-
inated by complex boundary dynamics, such as a free surface, although it usually
requires more computing power than grid-based techniques.

The main disadvantage of high-fidelity solvers is undoubtedly their computational
expense. Even while Chimera techniques can be used to minimize mesh density,
especially near body boundaries and the free surface, some phenomena may require
short time steps, leading to excessively long run times. However, these solvers attain
very high precision, which allows the addition of turbulence models, compressibility,
nonlinear dynamics, and viscous effects. As such, they have a greater affinity for
modeling near-field interactions than they do for modeling wave propagation in the
far-field. In addition to being unaffordable for large domains, this constraint results
from intrinsic mistakes in numerical approximations of the derivatives, which lead
to numerical dissipation and diffusion.

As a result, high-fidelity models find extensive use in single WEC simulations but are
seldom applied at the scale of a WEC farm. For instance, only two point absorbers
are simulated using CFD in [78] for regular waves, and simulations of free decay
tests for two and five WECs are conducted in [79]. Another study, [16], performs
RANS (Reynolds-Averaged Navier-Stokes) simulations of WEC arrays ranging from
two to nine units subjected to regular waves, achieving excellent agreement with
experimental data. However, these simulations primarily involve point absorbers
with a single DoF, and the use of symmetries, justified by regular waves, helps
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reducing computational costs. When dealing with more intricate WEC systems and
irregular, multidirectional waves, the simulation may become impractical. Such
computational expenses are unaffordable, particularly during design or optimization
phases. Therefore, to streamline simulation costs, certain simplifying assumptions
become necessary.

Computational cost

Model fidelity
O(seconds)

O(minutes)

O(hours)

O(days) CFD/SPH

B

S

SA

LP

WNLP

FNLP

Fig. 2.6 Graphical representation of the various numerical approaches according to
their computational cost and their level of fidelity. The plot is inspired from [80],
and applied to WEC farms modeling. The following abbreviations for the models
are used: SA for semi-analytical, LP for linear potential (with WNLP for weakly
nonlinear potential and FNLP for fully nonlinear potential), S for spectral, B for
Boussinesq. CFD/SPH are the high-fidelity models.

Assuming incompressibility, which is valid in all situations except for an OWC
and the dynamics of the air chamber, is a useful simplification. In other cases,
there is very little accuracy loss and while density remains constant, the number of
equations reduces. Assuming an inviscid fluid is a more significant simplification,
but the Navier-Stokes equations reduce to the Euler equations, once the stress
tensor vanishes. By assuming irrotational flow, the Laplace equation is satisfied and
velocity can be expressed as the gradient of a potential. Potential flow theory, for
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which multiple models are available, is based on those hypotheses. Large-amplitude
displacements are allowed in fully nonlinear potential flow models (abbreviated
FNLP in Figures 2.6, 2.7), which impose fully nonlinear free-surface and body
boundary conditions. A fully nonlinear time-domain method for wave analysis is
introduced by Longuet-Higgins and Cokelet [81], using a Mixed Eulerian-Lagrangian
method for surface wave modeling, and provide greater precision than RANS models
because of smaller numerical dissipation.
Eliminating the vertical dimension is another approach to simplify an equation. This
is implemented in shallow water equations, where the vertical velocity component
is left out, although the vertical flow structure is, nonetheless, taken into account.
Boussinesq-type modeling (B), based on depth-averaged shallow water equations, is
used in coastal wave propagation simulation, offering good accuracy in nonlinearity
and frequency dispersion [20]. While less suitable for wave-structure interaction
problems due to the inability to model the hydrodynamics of a moving device, like
for the software MIKE21BW, ongoing efforts aim to extend Boussinesq equations
for floating bodies [82–85]. Despite a smaller computational cost compared to CFD
models, it remains substantial, requiring additional simplifications, especially in
the case of nonlinearity. By treating the incident wave as a driving term and solely
accounting for the diffracted and radiated waves, the weakly nonlinear approach
(WNLP) simplifies the problem and allows the description of steep nonlinear waves
and large amplitude motions of the WEC.

So far in this section, the models have been solvable in the time domain, enabling
them to incorporate complex PTO and mooring systems and handle nonlinearities and
transient settings. Models based on Cummins equation assume linear hydrodynamics
but can account for the nonlinear Froude-Krylov force. However, the Cummins
approach has limitations, requiring the introduction of forces as functions of system
states or wave properties, necessitating the prior development of empirical formulas
for extreme situations. Thus, empirically derived coefficients and/or formulations
must inevitably be incorporated at some point (calibration of numerical model against
experiments).

In the frequency domain, potential theory assumptions persist, with additional
considerations for waves of small amplitude relative to wavelength and small body
motions, allowing linearization of the problem and boundary conditions. The super-
position principle holds, and the resultant wave field around a WEC is the sum of
incident, radiated, and diffracted wave fields. The body is described with an equation
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of motion based on Newton’s second law, balancing inertial force with external
pressure force, wave excitation force, and radiation force. The PTO and mooring
systems are linearized in order to preserve the superposition principle’s validity.
However, these models are limited to linear problems, with reduced accuracy around
resonance, lack of consideration for viscous effects, flow separation, vortex shedding,
and wave breaking, and an inability to draw conclusions regarding the controllability
of WECs due to nonlinear control techniques.

Nonetheless, because of their simplicity, ease of use, and low computational cost,
models based on linear potential flow theory (LP) are frequently employed for WEC
farm modeling [86–91]. Softwares that implement the Boundary Element Method
(BEM) in the frequency domain, including WAMIT, ANSYS Aqwa, Aquaplus,
WADAM, NEMOH, and its Python version Capytaine, and Achil3D in the time
domain, allow affordable simulations of farms with tens of WECs at a reasonable
cost, while taking near-field interactions into consideration. For far-field effects,
the linear form of the Boussinesq equations can ensure stability in linear wave
propagation over gradually varying bathymetries. Softwares such as MILDwave,
which employs mild-slope equations, depict the WEC hydrodynamics as a series
of cells with a certain degree of absorption, albeit lacking the modeling of WEC
responses and necessitating the fine-tuning of the absorption function using data
from other models [92], in addition to being confined to classical linear assumptions.
In [93], WECs are implemented in MILDwave using the sponge layer technique
and tuning their absorption coefficient separately for each wave period for a given
capture ratio.

An alternative approach that simplifies the representation of a WEC is the phase-
averaging, spectral wave model (S). Functioning as a probabilistic model, it employs
a statistical representation of waves through the energy spectrum. It produces a
probabilistic estimate of the WEC response in terms of average power capture by
using a transformation function. The evolving variable is the wave action density,
governed by a continuity equation, and defined as the wave energy density divided
by the wave frequency. A WEC array can be represented by the spectral model
at a sub-grid scale, where each WEC is represented at a single computational grid
point (as in the software TOMAWAC), or at a supra-grid scale, covering many
computational grid points (as in the software SWAN). The input spectrum only gives
a partial picture of the near field because it only contains the magnitude of each
spectral wave component and lacks phase information [94]. Thus, another model
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Fig. 2.7 Graphical representation of the various numerical approaches according
to their main application, to the near field or far field, and the number of WECs
usually modeled. The following abbreviations for the models are used: SA for
semi-analytical, LP for linear potential (with WNLP for weakly nonlinear potential
and FNLP for fully nonlinear potential), S for spectral, B for Boussinesq. CFD/SPH
are the high-fidelity models.

is needed to determine how the WEC modifies the wave action. For instance, the
impact of several farm configurations on the nearshore wave climate is examined
in [95] using SWAN and each WEC is modeled as an obstacle with a transmission
coefficient calculated with a CFD model. In [96], the experimental measurements
are used to obtain the absorption coefficients of five point absorbers simulated with
SWAN. Nevertheless, spectral models can calculate the effect of large-scale WEC
farms, and they are commonly used for far-field effect assessment [97].

Another simplified model, grounded in linear potential flow theory, is the semi-
analytical model (SA). Four distinct techniques exist, all sharing common simplifying
assumptions, such as identical devices consisting of single, vertically axisymmetric
bodies oscillating and absorbing energy in a single heave mode. In the first approach,
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the point absorber approximation, the device diameter is small compared to the
wavelength and device separation, allowing the radiated wave field of each device
to be calculated independently. Another strategy, the plane wave method, considers
large spacing between devices relative to the wavelength, treating the diverging wave
from one device as a plane wave at another device [98]. The multiple scattering
technique, on the other hand, views the diffraction and radiation as a series of separate
scattering events [99, 100]. Since each device’s escribed cylinder, centered at its
origin, must not enclose the origin of any other device, the location of the WECs is
crucial [101]. For the fourth strategy, the direct matrix method, the same assumption
applies, meaning that the devices’ vertical projections cannot cross over. This method
finds the solution for the amplitudes of all scattered waves simultaneously using
direct matrix inversion, combining the scattering equations and equations of motion
into a single matrix. The various techniques use analytical expressions that, in the
limit of an infinite series, either approximate or converge to a "exact" answer. They
are mainly applied to point absorber types of WEC, from small [102, 103] to large
[104] farms. Recent techniques [105] combine multiple scattering and direct matrix
theories to describe large farms at a substantially lower computing cost, without
imposing geometric constraints on WEC clusters. Since the focus of these methods is
on hydrodynamic interaction solutions, body dynamics and power estimations need
to be solved independently using a frequency, temporal, or spectral domain model
together with derived hydrodynamic parameters. Despite the simplifications, and
because of the matrix inversion, as the number of devices increases, the solution’s
computational demands still rise rapidly. To drastically speed up the simulation
time, a modification to the matrix method is described in [56]. An upfront cost
is required to compute the hydrodynamic coefficients for each individual WEC,
a process conducted only once for identical geometries. Additionally, the total
radiation coefficients, force transfer matrix, and diffraction transfer matrix for the
entire farm must be established, also a one-time task. Subsequently, the solution to
the Boundary Value Problem can be efficiently derived using these hydrodynamic
parameters, enabling the calculation of interactions in WEC farms ranging from
small to large, encompassing up to a hundred units. The methodology is based on
the typical assumptions of linear potential theory, but can be applied to arbitrary
geometries and modes of motions [106], and is suitable for optimization tools. The
DTOcean tool employs such methodology for calculating and optimizing power
absorbed and WEC-WEC interactions in WEC farms of arbitrary size [107]. An
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in-depth analysis of a WEC or tidal farm project and its LCOE (Levelized Cost of
Energy) variability is provided by the opensource DTOcean software, and takes into
account various factors such as farm layout, power calculation, electrical network
and station keeping design, installation and infrastructure, lifetime maintenance, and
downtime prediction [108].

Irrespective of the chosen technique for modeling a WEC farm, there is a trade-
off to consider. The choice of a very cost-effective model frequently entails a
strong approximation of reality, which increases the possibility of overestimating or
underestimating dynamics, and may provide misleading results, with consequences
for decision-makers. Accuracy rises with increasing computational demand. For
example, the cost of the BEM increases in proportion to the square of the number of
WECs, and the cost of CFD is significantly greater. Traditionally, the main approach
has been to simplify the problem being modeled. However, alternative strategies
exist, such as employing data-driven models or reduced-order models, focusing on
reducing the problem’s size.

In the wave energy domain, artificial intelligence methods and data-driven tech-
niques have been predominantly utilized for accurate wave resource characterization,
predicting wave parameters, computing missing wave data, estimating wave spectra,
and forecasting wave energy flux [109–111]. These methods are also employed
for optimizing the shape of WECs or controlling them to enhance performance for
single devices [112, 113], hybrid platforms [114], and WEC farms. For additional
details, see [115]. In the research by [116], an optimization technique based on the
semi-analytical method is integrated with machine learning for the prediction and
optimization of a farm with 40 OWSCs arranged in a staggered layout, according
to specified bathymetric and spatial limitations. In [117], the authors use and com-
pare different machine learning techniques to predict the net produced power of an
optimized farm including 10 offshore wind turbines and 10 WECs. Four adaptive
neuro-surrogate optimization methods are investigated for a farm of 16 totally sub-
merged three-tether buoys, in four actual wave Australian climates in [118].
When it comes to Reduced Order Models (ROMs), they may be applied to wave
equations, as the parametrized ROM for a wave equation-based FEM (Finite Ele-
ment Method) system by [119], or the nonlinear ROM suggested in [120], but they
are particularly applied to WEC control. For example, a reduced-order wave-to-
wire (WTW) model accounting for all elements of wave production for an OWC
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(hydrodynamics, aerodynamics, thermodynamics, rotor dynamics, and generator
dynamics), is proposed in [121]. By lowering the amount of unknowns in the state
space, this model can be used as a time-domain tool to effectively build control
systems for single OWCs in various sea states. A reduced electro-visco-elastic PTO
for OWC is a further instance, suggested in [122]. Furthermore, a nonlinear model
reduction by moment-matching is described in [123, 124] for WEC systems with
one DoF, and may be expanded to many degrees of freedom. While reduced-order
modeling in the context of wave energy remains relatively limited and focused on
specific domains, such as WEC control, its potential application to the numerical
simulation of WEC farms, characterized by parametric systems and optimization
problems, is evident. This approach addresses the challenges of computational load
and complexity associated with the hydrodynamics of WECs and farms, considering
near and far field effects and the numerous degrees of freedom involved.

2.4 Conclusion

Ocean energy holds a significant potential to contribute to the low-carbon energy
mix in Europe and around the world. However, the early-stage technologies and
various financial, environmental, and technical obstacles hinder the advancement
and market acceptance of wave energy. Numerical simulations play a crucial role in
accelerating the progress of wave energy technologies at all development stages. Yet,
the diversity of WEC categories, each with distinct characteristics, and the multitude
of prototypes pose significant challenges to the numerical simulations. Simulation
fidelity often depends on the complexity of the WEC being modeled, leading to
either oversimplified representations or highly approximate numerical methods,
particularly for intricate WEC designs. In addition, the multifaceted nature of WEC
development introduces further complexities, making it impractical to encompass
all aspects into a single simulation. As a result, studies typically focus on a few
aspects at a time, limiting the comprehensiveness of multi-query analyses. These
challenges extend to WEC farms, which face additional difficulties, such as multi-
scale phenomena and complex fluid dynamics. Conventional approaches to WEC
farm simulation often trade-off between efficiency and accuracy, with highly efficient
but approximate simulations, or prohibitively costly ones. However, achieving
minimal accuracy, especially in WEC farm modeling, necessitates a certain level of
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computational expense, regardless of the chosen technique. This motivates a change
in the strategy and the employment of model order reduction techniques, to reduce
problem complexity without resorting to any simplifying assumptions.



Chapter 3

Model Order Reduction for
Multiphase Flows

As an alternative to the conventional trade-off between accuracy and efficiency in
numerical simulation of WEC farms, data-driven model reduction offers a strategy
to extract essential features and reduce computational complexity while preserv-
ing accuracy. In this chapter, a Reduced-Order Model (ROM) based on Proper
Orthogonal Decomposition (POD) is introduced as a surrogate model for biphase
flows involving water and air. Given the significant difference between these fluids
and the potentially highly nonlinear phenomenon, a gradual approach is adopted.
Starting with a well-established case study, the flow past a cylinder, for which the
POD ROM model is known to behave very efficiently in monophase flows at low
Reynolds numbers, the setup is progressively modified to transition to biphase flows
at high Reynolds numbers. The passage involves analyzing different terms of the
Navier-Stokes equations and their effect on the POD ROM model. The model be-
comes progressively unstable when dealing with two completely distinct fluids, and
an interface between them. To address this, a correction term is proposed, and a
comparison to a fully data-driven, equation-free, ROM model is presented.
Notably, the non-intrusive nature of the current approach stands out, enabling the
construction of a surrogate model without direct reliance on the high-fidelity solver
used for generating the snapshots. This strategy avoids the challenges associated
with the implementation of ROMs in codes, especially when covered by commercial
licenses that prevent access to the source code. Instead, the only requirement is to
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provide snapshots on a uniform Cartesian mesh, which can be accomplished with
any high-fidelity solver.

The chapter is organized as follows. Section 3.1 introduces the primary moti-
vations behind Model Order Reduction, and Section 3.2 the theoretical aspects of
the Proper Orthogonal Decomposition and projection-based Reduced-Order Models.
The typical procedure for deriving a POD-ROM model is detailed in Section 3.3 for
the case of the monophase flow past a cylinder at low Reynolds numbers. The anal-
yses conducted to develop the multiphase POD ROM are presented in Section 3.4,
featuring the biphase flow past a cylinder test case, and a free wave test case.

3.1 Model Order Reduction

Advances in technology have made it possible to perform extremely accurate nu-
merical simulations of multiphysics, complex, and multi-scale phenomena, albeit
a high memory and CPU resource cost remains. Nevertheless, it is imperative to
lessen the computing load of these simulations in order to make them practically
usable. Model reduction appears as a strategy for extracting essential characteristics
and reducing computing complexity. Reduced-Order Models (ROMs) find applica-
tions across diverse fields, including thermo-acoustics [125], aeroelasticity [126],
image processing [127], graphics [128, 129], and fluid flows [130, 131]. In fluid
dynamics alone, ROMs are utilized for reactive flows [132, 133], hypersonic flows
[134], fluid control [135–138], flow-body interaction [139–141], and turbulence
description [142–145], among other areas. Applications for these models can be
found in many other fields, ranging from fluid-structure interaction in cardiovascular
problems [146] to the numerical simulation of the wake behind a wind turbine [147],
and the representation of the dynamics of multiphase flows [148, 149], as also in the
case of this study.

Developing ROMs usually comprises two phases, which are referred to as offline
and online. The offline stage consists of a training phase in which high-fidelity
simulations of the target systems are run for different parameters, and reduced
basis and projections are built on low-dimensional manifolds. During the online
stage, the ROM is implemented by projecting the governing equations onto the
low-dimensional manifold. This is the case of intrusive ROM methods, for which the
reduced solutions are determined by solving the reduced order model. Traditionally,
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projection-based model reduction is intrusive because it necessitates access to the
discretized PDE operators, typically unavailable when working with proprietary
software. Conversely, another class of ROMs, known as data-driven or non-intrusive,
are learned solely from snapshots - numerical approximations or measurements of
the dynamical system states - when discretized system operators are not accessible.

Model order reduction methods can be categorized according to the definition
and construction of the reduced order basis. Under the a posteriori approach, the
reduced basis is created during the training phase by either solving the original issue
at particular points in time or by solving a modified version of the original problem
with new parameters, or a combination of the two. There can be ROMs based on
Volterra kernels [150, 151], Harmonic Balance [152, 153], Krylov subspaces [154],
Balanced Truncation [155, 156], Proper Orthogonal Decomposition. On the other
hand, the a priori method enables the approximate calculation of the entire space-
time solution without the need for a training phase, meaning that the lower order
basis is determined gradually online as the problem is solved. One popular technique
is the Proper Generalized Decomposition (PGD) [157].

Snapshots, defined as the spatial distribution of a numerical simulation at particu-
lar time occurrences, indicating system dynamics, usually constitute the data set for
the ROMs. For both linear and nonlinear problems, a commonly used method for ob-
taining a reduced basis from these snapshots is the Proper Orthogonal Decomposition
(POD). POD is a strong tool for obtaining surrogate models for high-dimensional
problems and maintains overall nonlinear dynamics, even when projecting onto
linear or affine subspaces. But issues with instability, non-linearity, and intrusiveness
persist, frequently necessitating intricate coding changes [158].

Further alleviation of the computational burden is achievable through parametric
model order reduction (pMOR) [159].
Many dynamical systems are influenced by parameters, such as material properties,
system geometry and configuration, initial and boundary conditions. The usual
approach is the computation of the solution for the different parameter values with
repeated runs of the Full Order Model (FOM), following the red path in Figure 3.1.
As already mentioned, a ROM reduces the computational cost of the FOM, but for
parametric studies, the parametric dependence should also be retained in the reduced
model, since one cannot afford to create a new reduced model for every change in
the parameter values. pMOR enables training the ROM across a narrow parameter
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space and computing solutions for several parameter values (the blue path added to
the red one in Figure 3.1).

Offline

Online

Definition of the
Full Order Model

Running the FOM
over few parameters

Definition of the
basis functions

Definition of the
Reduced Order Model

Running the ROM
over several parameters

Solution

Fig. 3.1 Outline of the steps of a parametric study using the FOM (red path), and
using the ROM (red and blue path). The offline stage relates to the training of the
pROM, while the online stage concerns the execution of the reduced model.

As in various domains, also in the wave energy sector, applications like design,
control, optimization, and uncertainty quantification often entail repeated model
evaluations across a wide parameter space. In the context of WEC farms, simulating
various wave characteristics, farm layouts, WEC designs, mooring systems, and
control strategies is crucial. The computational demand for such comprehensive sim-
ulations and extensive parameter spaces is prohibitive. Nonetheless, a well-trained
pROM could significantly reduce overall computational costs. To be beneficial,
rapid online evaluations should outweigh the upfront offline cost, which can also be
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mitigated through various techniques, including hyper-reduction [160] and Empirical
Interpolation Method [161], or a combination of the pMOR with ANN (Artificial
Neural Network) [162]. However these are intrusive approaches, which are impos-
sible to implement in the context of a commercial software where the sources, and
thus the numerical residuals, are not available.

The model order reduction technique proposed in this chapter is non-intrusive, as
it can be applied irrespective of the CFD code used, or the numerical scheme chosen,
provided that the simulation is well-posed. The basic request is a dataset of snapshots,
with information on a consistent Cartesian mesh, at regular time instants. Although
not the primary focus of this study, the technique is also suitable for parametric
extension.

3.2 MOR Framework

In practical applications, numerical simulations of fluid flows can be highly resource-
intensive, often involving thousands or even millions of degrees of freedom. Con-
sequently, there is an increasing demand for reduced order models to provide low-
dimensional approximations. Reduction techniques typically involve the definition
of reduced basis functions, offering various options, such as Lagrange bases, Hermite
bases, Taylor bases, and POD bases. POD basis functions own several characteristics
that render them suitable for this specific problem: the reduction of high-fidelity
numerical simulations of multiphase flows based on the Navier-Stokes equations. In
this scenario, the laminar form of the equations is considered over a computational
domain Ω, expressed as:

∇ ·u = 0 in Ω, (3.1a)

∂u
∂ t

+(u ·∇)u =− 1
ρ

∇p+
1
ρ

∇ · (µ(∇u+(∇u)T ))+g in Ω. (3.1b)

To the best of the author’s knowledge, there is a lack of literature on reduced-
order models utilizing POD for multiphase flows. As a result, the study begins with
the monophase case, which has been extensively studied in existing literature, and
progressively advances to incorporate elements with the intention of developing a
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model for water and air, two distinctly different fluids, with a complex and nonlinear
interface between them.

3.2.1 Proper Orthogonal Decomposition

Originally introduced for a variety of purposes independently, Proper Orthogonal
Decomposition is recognized under different names, such as Karhunen-Loève de-
composition or expansion, Principal Component Analysis (PCA), and Singular Value
Decomposition (SVD). Historically, the POD was first introduced by Lumley in the
context of turbulence [163], one of the main domains of application. Particularly,
Lumley defined the so-called Classical POD, which is best suited for problems
well-defined in time but with limited spatial resolution. However, the problems
of interest here exhibit high spatial resolution, due to the large domain and mesh
size, along with a moderate time history. In such cases, the Snapshot POD, pro-
posed by Sirovich [164], is more appropriate. The study shall hence concentrate on
this methodology. For further details on both Classical POD and Snapshot POD,
including their distinctions, readers are encouraged to consult [165].

At the basis of a reduced-order model, there is the definition of a space-time
realization U(x, t), defined on a domain D : Ω× [0,T ], as a linear superposition of
Nr spatial basis functions - or modes - Φ(x), and Nr temporal coefficients a(t), at the
difference of a reference field U(x):

U(x, t)≈ Ũ(x, t) = U(x)+
Nr

∑
i=1

ai(t) Φi(x). (3.2)

Defining the inner product (·, ·)Ω between two fields VVV and WWW as: (VVV ,WWW )Ω =∫
ΩVVV ·WWW dx, the temporal coefficients in Eq. (3.2) are defined as:

ai(t) =
∫

Ω

[
U(x, t)−U(x)

]
Φi(x) dx =

([
U(x, t)−U(x)

]
,Φi(x)

)
. (3.3)

The definition of the basis functions is what distinguishes the POD technique
from others. Typically, predetermined functions, such as Chebychev polynomials,
Legendre polynomials, or trigonometric functions, are used as Φ(x). However,
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the POD defines modes as the deterministic functions that are best correlated, on
average, with the realizations. This involves identifying a set of functions that, on
average, minimizes the mean square error between the realizations and the linear
superposition:

min
{Φ j}Nr

j=1

1
T

T

∑
i=1

∥∥∥∥∥[Ui−U
]
−

Nr

∑
j=1

([
Ui−U

]
,Φ j
)

Φ j

∥∥∥∥∥
2

2

, (3.4)

or, equivalently, maximizes the projection on the observations:

max
{Φ j}Nr

j=1

Nr

∑
j=1

[
1
T

T

∑
i=1

∣∣([Ui−U
]
,Φ j
)∣∣2] . (3.5)

After some passages, the maximization problem can be cast in an equivalent
eigenvalue problem, which can be written as a Fredholm equation:

∫ T

0
C(t, t ′)ai(t ′)dt ′ = λi ai(t), (3.6)

where an operator, C(t, t ′), appears, and is defined as:

C(t, t ′) =
1
T

([
U(x, t)−U(x)

]
,
[
U(x, t ′)−U(x)

])
Ω . (3.7)

The correlation matrix C(t, t ′) is symmetric and positive definite, i.e. the eigenvalues
in Eq. (3.6) are all real and positive, λ1 ≥ λ2 ≥ ·· · ≥ λi ≥ 0. According to the
definition in Eq. (3.7), if U contained solely the velocity field, the eigenvalues would
be associated to the kinetic energy of the system, which is proportional to the square
of the velocity. Although this correspondence may not always hold true, and the λi

are not strictly speaking energy, they nevertheless indicate the relative significance
and contribution of the corresponding modes Φi to the information content of the
original data.

The POD modes form a complete orthogonal set, and can be chosen mutually
orthonormal, so that

∫
Ω

Φi(x) Φ j(x) dx = δi j, (3.8)
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where the Kronecker delta symbol is

δi j =

{
0 for i ̸= j,
1 for i = j.

Consequently, and because of their definition (Eq. (3.3)), the coefficients are
orthogonal, so the expression

1
T

∫ T

0
ai(t)a j(t)dt = λiδi j (3.9)

implies that the i-th coefficient only depends on the i-th mode, and not on the others.

Link to the SVD The Singular Value Decomposition of a real matrix A of dimen-
sions M×Nt is the factorization

A= QQQΣZZZT , (3.10)

where QQQ and ZZZ are non unique unitary matrices of dimensions M×M and Nt×Nt , re-
spectively, and Σ = diag(σ1, . . . ,σp), with σ1 ≥ σ2 ≥ ·· · ≥ σp ≥ 0, p = min(M,Nt).
The eigenvalue problem in Eq. (3.6) can be reformulated in a matrix form as the
factorization of Eq. (3.10). In this sense, a link can be found between the POD
basis functions Φ and the left eigenfunction matrix QQQ, between the temporal co-
efficients a and the right eigenfunction matrix ZZZ, and between the eigenvalues set
Λ = diag(λ1, . . . ,λNr) and Σ.

Reduction POD bases are particularly attractive because of their proven efficiency,
being the most energetically optimal bases, among all linear decompositions [165].
This energetic optimality implies that only a small number of modes, Nr, may
be required to effectively represent the realizations. When Nr = ∞, or in finite
dimensions as considered here, when Nr ≡ Ns, with Ns the number of original time
realizations (the snapshots), the expression in Eq. (3.2) holds true as an equality.
However, by choosing Nr≪ Ns, an approximation is obtained, while also achieving
a consistent reduction in the problem size. To determine the appropriate value of Nr,
the following ratio is defined:
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RIC =
∑Nr

i=1 λi

∑Ns
i=1 λi

, (3.11)

which indicates the percentage of energy retained in the first Nr modes compared
to the total energy of the problem. Truncation occurs at the number of modes that
yields a RIC (Relative Information Content) above a predefined percentage.

To significantly diminish the problem’s dimensionality, meaning having a small
Nr compared to the total Ns, it is essential that the eigenvalues decrease rapidly. In
many applications, such as fluid dynamics or heat transfer, an exponential decrease
in the eigenvalues is observed, increasing the likelihood of deriving low-order
approximate models. However, while POD modes optimally approximate a given
dataset in the least squares sense, they are not designed to approximate the dynamics
generating the data. Consequently, features with relatively small energy compared to
others may be neglected in a reduced model, despite being relevant aspects of the
full dynamical system. Additionally, while an increase in the number of POD modes
decreases the least squares error, there may be instances where incorporating more
POD modes results in a poorer approximation of the full dynamics [166].

3.2.2 POD Reduced-Order Model

Given that the POD technique yields efficient basis functions for representing space-
time realizations, there is an interest in utilizing them to build a low-dimensional
dynamical system for the computation of the temporal coefficients. A common
approach for reducing high-dimensional partial differential equations to a reduced
system of ordinary differential equations is the Galerkin or the Petrov-Galerkin
projection. The former is the most popular technique, in which the system of
equations is projected onto a set of test functions, set to be equal to the trial functions,
here the POD basis functions.

A classical system of PDEs, such as the Navier-Stokes equations, may be gener-
ally written as:

dU
dt

= F(U) (3.12)
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over the spatial domain Ω. Here, F is a differential operator containing only spatial
derivatives. The system is completed by the initial conditions, U(x, t = 0) = U0(x),
and the boundary conditions, and can be resolved over time. In real-world applica-
tions such as flow problems, dealing with numerous degrees of freedom is inevitable,
potentially resulting in a system space of significant dimension. In practical com-
putations, this can lead to dimensions on the order of O(106−1010), necessitating
integration over time with likely small time steps.
Evaluating the Galerkin projection of Eq. (3.12) onto the POD subspace of dimension
Nr, yields:

(
dU
dt

,Φ j

)
=
(
F(U),Φ j

)
with j = 1, ...,Nr. (3.13)

Substituting the definition of Eq. (3.2), after few passages, the following dynamical
system is obtained:

da(t)
dt

= FFF(a(t)), (3.14)

where FFF now may contain quadratic functions of a, because of the convective terms
present in the Navier-Stokes equations. The system is completed by initial conditions,
that can be directly inferred as a0

i = (U0(x),Φi), and boundary conditions. Given
that the POD basis functions inherently reflect the flow configurations from which
they are derived, the boundary conditions are automatically fulfilled. The dimension
of the resulting dynamical system is Nr, and is subsequently integrated over time. As
Nr typically falls within the order of magnitude of O(102), the dimensional reduction
is substantial.

3.2.3 Definition of the Errors

In this section, the definition of the errors as consistently computed throughout the
entire document, is outlined. Let ξ be a variable of interest, namely the velocity
u, possibly defined by components, or the Volume of Fluid (VOF) α , the pressure
p, the density ρ , the viscosity µ , or any combination of them. Let ξre f denote
the reference value of the variable, usually the high-fidelity target solution, and
ξapprox its approximation, possibly obtained from projection, or as solution of the
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reduced-order model or the coupling model (presented in the subsequent chapter).
The errors are defined over domains or subdomains, each declared by the subscript
k in Ωk. To define the errors, the L2-norm is also introduced, as the distance
∥ξ∥Ωk =

√∫
Ωk
(ξ (x))2dx.

The errors used in the document are absolute and relative. Absolute errors are
defined over time as:

ε
ξ

k (t) = ∥ξre f (t)−ξapprox(t)∥Ωk . (3.15)

Relative errors are considered integrated over time, as:

ε
ξ

k =
∫

T

∥ξre f (t)−ξapprox( t)∥Ωk

∥ξre f (t)∥Ωk

dt. (3.16)

In general, the variables may be computed on different domains, each with inde-
pendent spatial discretization. However, it is assumed that they will be discretized
at corresponding grid points prior to error calculation, and potentially interpolated,
if required. Any adjustment or manipulation of the values will be explicitly stated
when presenting the errors.

Throughout the document, various errors are compared, including projection and
model errors. The main difference lies in the definition of the temporal coefficients.
By defining apro j

j as the POD eigenvectors, the projection error is computed by
defining ξapprox = ξ +∑Nr

j=1 apro j
j Φ j across the computational domain of interest.

However, when temporal coefficients are computed by solving the dynamical system
of Eq. (3.14), or during the coupling methodology implementation as detailed in the
subsequent chapter, ξapprox is computed accordingly, and consequently the model
error. The projection error reflects the filtering effect of the POD truncation, and
quantifies, thus, the error due to the truncated modes. It represents the best achievable
approximation of the model with the defined POD basis functions, serving as a lower
bound. On the other hand, the model error indicates the actual error, which typically
exceeds the projection error, and may increase over time as discrepancies from the
truncated information accumulate.
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3.3 Monophase POD-ROM

Let a flow be described in a Cartesian coordinate system {x,y,z}, where the positive
x-axis is aligned with the mean flow, the y-axis extends in the vertical direction and
the z-axis spans in the transversal direction. Locations are defined by the vector
x = {x,y,z}, the velocity vector is defined as u = {u,v,w}, and the pressure is
represented by the scalar p.
In a generic monophase laminar flow, the evolution of the fluid variables is governed
by the Navier-Stokes equation of the following form:

∇ ·u = 0 in Ω, (3.17a)

∂u
∂ t

+(u ·∇)u =− 1
ρ

∇p+ν∆u+g in Ω. (3.17b)

with g, a vector of magnitude |g|= 9.81m/s2 directed negatively along the vertical
axis.

For the purpose of discussing the principles of model order reduction, and as an
introductory example, the flow past a cylinder is described and simulated. Such a
problem serves as a classical illustration in literature, combining a simple geometry
with a rich flow dynamics. In three dimensions, an infinite cylinder of diameter d is
positioned, at rest, normal to a flow of free stream speed u0 = [u0,0,0]. As the fluid
can have various characteristics (in terms of density ρ and dynamic viscosity µ), as
well as the flow velocity and the cylinder size, the dimensionless Reynolds number
is introduced: Re = ρu0d

µ
. Such a parameter represents the ratio between inertial and

viscous forces. At very low Reynolds numbers, the flow remains completely laminar
and symmetrical upstream and downstream of the cylinder. With increasing Re, a
wake develops behind the cylinder, leading to the formation of a flow pattern known
as the Karman vortex street. As Re continues to rise, the viscous effects diminish,
resulting in instability of the vortex street, development of a boundary layer, and
eventual transition to turbulent flow.
The primary focus is not on turbulence description, hence the chapter retains the
laminar version of the Navier-Stokes equations throughout. The main interest is to
begin with a well-established example, for which the definition of a reduced-order
model is manageable, and progressively introduce complexities to ultimately develop
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a ROM model for multiphase flows.
As mentioned, since the POD modes can be represented as linear combinations of
the realizations, they inherently possess the properties of the snapshots. For instance,
in the case of the incompressible Navier-Stokes equations, if the snapshots are
divergence free, then the POD modes will also satisfy this condition. Consequently,
the continuity equation, Eq. (3.17a), is always satisfied and not considered in the
Galerkin projection. Therefore, only the momentum equations, Eq. (3.17b), are
considered in the following.

3.3.1 Cylinder at Re = 200

At Re = 200, the laminar flow exhibits an unsteady, periodic shedding of Karman
vortices. Physically, this involves a combination of a mean flow, and the vortex
structures. In general, the focus is on the latter phenomenon, hence the mean flow
is often computed and subtracted from the snapshots, to better capture the smaller
structures.

The snapshots are produced using the commercial software StarCCM+, a Compu-
tational Fluid Dynamics (CFD) software based on the finite volume method. Given
the incompressibility assumption, the segregated flow solver is employed, where the
mass conservation constraint on the velocity field is fulfilled by solving a pressure-
correction equation. The SIMPLE algorithm is used to solve the Navier-Stokes
equations due to its robust stability independent of the chosen time step. For con-
vection, a second-order upwind discretization scheme is employed in space, with
10 inner iterations for convergence. Additionally, a hybrid Gauss-Least Squares
method, with a Venkatakrishnan limiter, is used for the gradients. Regarding the time
discretization, a second-order implicit unsteady time scheme, with a constant time
step, is chosen. Further details can be found in the StarCCM+ user guide [167].

In terms of numerical setup, the simulation domain spans Ω = [24×16×1]m,
discretized with an octree mesh and refined in the lee of the cylinder. The cylinder
has unit diameter, d = 1m, its surface Γc is modeled as a wall, and is located in a flow
with incoming unitary velocity in the longitudinal direction, so u0 = [1,0,0]m/s.
The Reynolds number is thus easily determined, with the primary focus being on
fluid characteristics. Dirichlet boundary conditions are imposed for velocity at
the inlet (Γinlet), top (Γtop) and bottom (Γbottom) boundaries, while for pressure at
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the outlet boundary, Γoutlet . Symmetry planes are employed at the front and back
boundaries, Γ f ront and Γback respectively, to reduce the computational cost and
maintain a manageable domain size (Figure 3.2).

Γoutlet

Γbottom

Γtop

Γinlet

Γ f ront

Γback

Γc

x

y
z

Fig. 3.2 Simulation domain for the monophase flow past a cylinder, with definition
of the boundaries. The vorticity is represented to show the Karman vortex street.

Two distinct test cases are defined, each involving different fluids: one with
density ρ = 1kg/m3 and another with ρ = 1000kg/m3. The dynamic viscosity
is adjusted such that both cases yield Re = 200, resulting in µ = 0.005m2/s and
µ = 5m2/s, respectively. Although the same Re implies similar dynamics, the effect
of gravity is more pronounced for higher density fluids, leading to an expected
difference in the pressure field. This difference primarily relates to the static pres-
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sure, whose magnitude increases with increasing distance from the reference, since
pstatic = ρ|g|y.

For the numerical results, the simulation is conducted with a fixed time step of
∆t = 0.1s over the time interval tsim = [0,100]s, to allow for initial development and
stabilization of the dynamics. After all the transients have died out, the solution
converges rapidly to a periodic state, and the analysis is focused on the interval
t = [90,100]s, corresponding to a multiple of the vortex shedding period, here of 5s.

Definition of the snapshot matrix In matrix form, the variables of interest are

U =

 u =

 u
v
w


p

 , (3.18)

and their values are collected at predefined time steps, generating the snapshots. The
snapshots matrix, hence, is S = [U(x, t1)T U(x, t2)T · · · U(x, tNs)

T ] ∈ R4nc×Ns ,
where nc is the number of points of the mesh where the solution is collected. In
the case of a parametric analysis, with varying parameters η , the snapshot matrix
would become S = (Sη1, Sη2, . . . ,SηNm

), with Nm the number of sampling points for
parameters η , and each Sηi as the snapshot matrix built with η = ηi, yielding to a
total of Ns := Ns×Nm snapshots. In this chapter, the parametric study is not treated,
and the ROM model primary objective is the reproduction of the FOM solution.

Numerically, for the considered case, the snapshots are sampled equidistantly
within the time interval, at every time step, which is ∆t = 0.1s, for a total of Ns = 101.
The variable values are extracted on a Cartesian mesh, with homogeneous spacing in
the three directions, ∆x = 0.1m, so nc = 426811. Therefore, expanding the snapshot
matrix, one obtains:
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S =



u(x1, t1) u(x1, t2) · · · u(x1, tNs)
...

... . . . ...
u(xnc, t1) u(xnc , t2) · · · u(xnc , tNs)

v(x1, t1) v(x1, t2) · · · v(x1, tNs)
...

... . . . ...
v(xnc , t1) v(xnc, t2) · · · v(xnc , tNs)

w(x1, t1) w(x1, t2) · · · w(x1, tNs)
...

... . . . ...
w(xnc , t1) w(xnc, t2) · · · w(xnc , tNs)

p(x1, t1) p(x1, t2) · · · p(x1, tNs)
...

... . . . ...
p(xnc , t1) p(xnc , t2) · · · p(xnc, tNs)



∈ R4nc×Ns. (3.19)

Following (3.2), such variables may be expressed as:

U(x, t) = U(x)+
Nr

∑
j=1

a j(t)Φ j(x), (3.20)

with the reference value, U, as non-null mean value. The mean value is normally
computed as the average value of the provided data over time. In finite dimensions,
this reduces to calculating the mean value across the total number of snapshots Ns:

U(x) =
1
Ns

Ns

∑
i=1

U(x, ti). (3.21)

Therefore, the mean value can be subtracted from the snapshot matrix, to give
S̃ = S−U.

Choice of the POD basis functions The temporal correlation matrix is computed
as

R = S̃T S̃ ∈ RNs×Ns, (3.22)

and the following eigenvalue problem is solved:
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Rϕi = λiϕi, i = 1, · · · ,Ns, (3.23)

where λ1 ≥ λ2 ≥ ·· · ≥ λNs ≥ 0. In a dynamical system, large eigenvalues capture the
essential characteristics, while smaller eigenvalues contribute minor perturbations
to the overall dynamics. When the mean field is not subtracted, the first POD
mode corresponds to it, resulting in a large eigenvalue compared to the others.
Consequently, very few modes could account for a high RIC, as most of the energy
is concentrated in the first mode. However, this approach would be trivial, since the
mean is already known everywhere, and the objective is to reduce the oscillating
part.

For the case of interest, the eigenvalue spectrum depicted in Figure 3.3 on a semi-
log scale and normalized to the first eigenvalue, shows a rapid decline in information
content with increasing mode number. This trend is also conveyed by the RIC, which
increases very quickly. Remarkably, the first 10 modes contain over 99.99% of the
total kinetic energy, leading to a truncation at Nr = 10, which represents the 10%
of the total Ns, yielding a substantial reduction. The preference for an even number
is due to the "pair by pair" pattern. Such a trend is related to the physics of the
problem - a parallel flow with constant-shaped structures moving downstream at a
constant speed. In such cases, the eigenvalue problem is degenerate and yields pairs
of nearly identical eigenvalues, separated by significant gaps in magnitude from the
other pairs. This pairing is less pronounced as Nr increases, corresponding to less
energetic modes (see left-hand side of Figure 3.3).

The POD basis functions are defined as:

Φi =
1√
λi

S̃ϕi, i = 1, · · · ,Ns, (3.24)

with associated POD temporal coefficients ai =
ϕi√

λi
.

In this case, a unique set of basis functions is defined for all the variables,

Φ =

 φφφ
u =

 φφφ
u

φφφ
v

φφφ
w


φφφ

p

 , (3.25)
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Fig. 3.3 Evolution of the eigenvalues in Eq. (3.23), normalized to the fist eigenvalue
(left), and of the RIC (right) with respect to the number of POD modes Nr, for the
case of the cylinder at Re = 200, with ρ = 1000kg/m3.

which are truncated to Nr, and lead to the following expanded matrix:

Φ =



φ u(x1, t1) φ u(x1, t2) · · · φ u(x1, tNr)
...

... . . . ...
φ u(xnc , t1) φ u(xnc , t2) · · · φ u(xnc , tNr)

φ v(x1, t1) φ v(x1, t2) · · · φ v(x1, tNr)
...

... . . . ...
φ v(xnc , t1) φ v(xnc , t2) · · · φ v(xnc , tNr)

φ w(x1, t1) φ w(x1, t2) · · · φ w(x1, tNr)
...

... . . . ...
φ w(xnc , t1) φ w(xnc, t2) · · · φ w(xnc, tNr)

φ p(x1, t1) φ p(x1, t2) · · · φ p(x1, tNr)
...

... . . . ...
φ p(xnc, t1) φ p(xnc, t2) · · · φ p(xnc , tNr)



∈ R4nc×Nr . (3.26)

Since, from Eq. (3.2),

U≃ Ũ = U+Φa, (3.27)

with a≈ (a1, a2, . . . , aNr)
T , and defining the sub-matrices
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φφφ
u =

φ u(x1, t1) · · · φ u(x1, tNr)
... . . . ...

φ u(xnc , t1) · · · φ u(xnc, tNr)

 ∈ Rnc×Nr ,

φφφ
v =

φ v(x1, t1) · · · φ v(x1, tNr)
... . . . ...

φ v(xnc, t1) · · · φ v(xnc, tNr)

 ∈ Rnc×Nr ,

φφφ
w =

φ w(x1, t1) · · · φ w(x1, tNr)
... . . . ...

φ w(xnc , t1) · · · φ w(xnc , tNr)

 ∈ Rnc×Nr ,

φφφ
p =

φ p(x1, t1) · · · φ p(x1, tNr)
... . . . ...

φ p(xnc , t1) · · · φ p(xnc , tNr)

 ∈ Rnc×Nr ,

(3.28)

each physical field can be approximated onto these bases:

u≃ ũ = u+φφφ
ua,

v≃ ṽ = v+φφφ
va,

w≃ w̃ = w+φφφ
wa,

p≃ p̃ = p+φφφ
pa.

(3.29)

For a clearer idea, in Figures 3.4-3.7 the first four basis functions for all the variables
are plotted in a two-dimensional x− y section of the domain, and in Figure 3.8 the
first projection coefficients are shown.

For all the modes, oscillations are concentrated behind the cylinder, with little
activity occurring before it, where the mean field suffices to replicate the actual sim-
ulation. The modes form pairs, such as (Φ1,Φ2),(Φ3,Φ4), and so forth, exhibiting
similar energy and frequency trends, in line with the eigenvalue descent pattern.
Each pair essentially represents the same spatial structure, with one element slightly
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shifted with respect to the other, in the streamwise direction. This behavior holds true
for the basis functions of all the variables. While φφφ

u and φφφ
v share similar amplitudes

but differ in shape, φφφ
w presents a much smaller amplitude, and the shape in the

chosen section is not very representative. Indeed, although the simulation is in three
dimensions, the phenomenon is predominantly two-dimensional, minimizing the
contribution of the third direction. The pressure shows a regular shape, similar to
velocity, but with larger magnitude in the basis functions. This discrepancy arises
from considering velocity and pressure with equal weight in the variable matrix,
whereas their difference in magnitude is of the order of O(105). Since the temporal
coefficients are the same for the entire basis function set, the modes capture this
difference also in their values.
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Fig. 3.8 Temporal evolution of the first six projection coefficients (in color). The
lines in grey are the other, less energetic, projection coefficients.

However, employing a global POD basis with U = (u, v, w, p)T offers the advantage
of using the same temporal coefficients a for each variable. The projection coeffi-
cients plotted in Figure 3.8 are representative of a fully developed flow, devoid of
transients, and manifesting periodic behavior. The temporal evolution of the first
represented coefficients aligns with the energy descent pattern by pair, with the
second pair of coefficients, a3,a4, having smaller amplitude and half the frequency
of the first pair. Each pair also reveals a 90-degree phase shift within the two compo-
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nents. Subsequent pairs have smaller amplitudes and higher frequency, following the
eigenvalue trend.

Computation of the ROM model As the basis functions inherit the properties
of the variables, they directly satisfy the continuity equation. Henceforth, just the
momentum equations are considered.

Substituting the definition of the variables (Eq. (3.29)) and doing a Galerkin
projection of φφφ

u on the Navier-Stokes momentum equations (Eq. (3.17b)), after few
passages, the dynamical system looks like:

Lȧ = A+Ba+aT Ca, (3.30)

that is expanded, using Einstein summation convention, as:

Nr

∑
j=1

Li j
da j

dt
= Ai +

Nr

∑
j=1

Bi j a j +
Nr

∑
j=1

Nr

∑
k=1

Ci jk a j ak, (3.31)

with

Li j =+
(
φ

u
i ,φ

u
j
)

(3.32a)

Ai =−(φ u
i ,(ū ·∇)ū)+ν (φ u

i ,∆ū)− 1
ρ
(φ u

i ,∇ p̄)+(φ u
i ,g) (3.32b)

Bi j =−
(
φ

u
i ,(ū ·∇)φ u

j
)
−
(
φ

u
i ,(φ

u
j ·∇)ū

)
+ν

(
φ

u
i ,∆φ

u
j
)
− 1

ρ

(
φ

u
i ,∇φ

p
j

)
(3.32c)

Ci jk =−
(
φ

u
i ,(φ

u
j ·∇)φ u

k
)
. (3.32d)

The tensor A contains terms associated to the mean field and gravity, given their
constant vector nature. Meanwhile, the tensor B encompasses terms related to con-
vection, diffusion, and pressure gradient effects. The tensor C contains a term linked
specifically to convection. If the modes were built solely on velocity, their orthog-
onality feature

(
φ u

i ,φ
u
j

)
= δi j, would cause the tensor L to be the identity matrix.

However, when additional variables beyond the velocity field are considered in the
mode construction, although the entire set of basis functions remains orthogonal, the
projection is performed only on the velocity component of the basis functions, φφφ

u,
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hence
(

φ u
i ,φ

u
j

)
̸= δi j, and L ̸= I.

All those tensors are constant over time, computed once using the POD modes,
and used throughout the integration in time. Given the initial condition a0 =

(
[
U0(x)−U(x)

]
,Φ), the system of ODE (Eq. (3.30)) is integrated using a fourth-

order Runge-Kutta scheme, resulting in a series of predicted time history of the
temporal coefficients.

Pressure Term

As the pressure contributes to the definition of the POD modes, it naturally influences
the dynamical model, evident in the terms in Eqs. (3.32b), (3.32c). By reverting one
step back and considering the Galerking projection onto the pressure term, one can
write:

−(φ u
i ,∇p) = (∇ ·φ u

i , p)− [φ u
i p ·n] . (3.33)

The integration by parts, along with Green’s formula, have been employed in this
derivation. The round brackets denote the value over the entire computational
domain Ω, whereas the square brackets represent the value on the boundary of the
computational domain Γ, with n the normal vector. Due to the divergence-free
property of the POD modes, inherited from the snapshots, the first term in Eq. (3.33)
vanishes, leaving only the term on the boundary. Moreover, a proper selection
of the simulation boundary conditions can potentially eliminate such term. As
explained in [168], for many flows, the pressure term is effectively zero (owing to
periodic boundary conditions or steady Dirichlet boundary conditions in the wall-
normal direction), or nearly so. However, the avoidance of the pressure modeling
impedes tracking its evolution, and may introduce significant errors, which cannot
be compensated by an increase in the number of modes [169, 170]. Moreover,
considering that the ultimate objective is the multiphase flow description, with a
possibly substantial pressure jump, and arbitrary boundary conditions, the pressure
integral neither vanishes nor can it be disregarded. Consequently, the pressure
variable is retained in the ROM model, albeit with a weighting applied. Since the
absolute value of the variables may be significantly different between velocity and
pressure, normalization of the snapshots is desirable, to ensure equal significance



56 Model Order Reduction for Multiphase Flows

across all variables. Taking the velocity as normalization reference (thus assigning it
a weight of unity), the snapshot matrix assumes the form:

U =

 u =

 u
v
w


Qp p

 , (3.34)

where the constant Qp permits arbitrary weighting of pressure with respect to velocity.
While the preceding results are obtained with Qp = 1, comparison with alternative
scenarios, such as for Qp = 0 and Qp = 10−5 can be insightful.

Case Qp = 0. In this case, the pressure is excluded from the model, and the basis
functions are built only on the velocity field. Consequently, if required, the pressure
can be reconstructed a posteriori. In monophase scenarios, this choice is often
acceptable.

Case Qp = 1. In this configuration, the pressure is integrated into the model, with
the basis functions derived from both velocity and pressure fields. For this specific
test case, velocity typically ranges around unity, while the pressure, here the total
absolute pressure, tends to be of the order of O(105). Moreover, as previously men-
tioned, the values and the effect of the pressure may be different when considering
different fluids, due to the static pressure, which increases under the effect of gravity.
The considerable difference in magnitude between the two variables might influence
the construction of basis functions, potentially leading them to be more affected by
pressure than velocity.

Case Qp = 10−5. In order to ensure equal importance to both velocity and pressure
during the construction of the basis functions, pressure is downweighted significantly
by setting Qp = 10−5. This choice aims to normalize all variables around unity or
at least within the O(1) range. Consequently, this weighting is applied consistently
across the different density values tested (ρ = 1kg/m3 and ρ = 1000kg/m3), even
though higher densities typically result in larger pressure values.
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Comparison ROM to FOM

Before comparing the results, the evaluation of the computational effort required for
both the FOM and the ROM is essential to grasp the real impact of techniques like the
POD. Running the FOM for t = 10s on StarCCM+ takes around 15minutes using 48
processors on a supercomputer. In contrast, computing the ROM over the same time
interval using Matlab only takes around 65seconds, on a single processor. It is worth
noting that such time corresponds to the online phase, while an offline phase, in
this case taking approximately 88seconds to compute, is necessary for computation,
excluding a snapshot pre-processing. Comparing the velocity magnitude and the
pressure at time T = 98s, reveals a very good agreement between the ROM and the
FOM, across all values of Qp. Figure 3.9 shows the FOM and ROM velocity fields
at the same instant, showing corresponding results.
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(a) FOM velocity field.
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(b) ROM velocity field.

Fig. 3.9 Comparison between FOM and ROM solutions, for the case with ρ =
1000kg/m3 and Qp = 10−5, for the velocity magnitude, on a x− y section, at time
T = 98s.

A quantitative difference can be appreciated in the absolute difference plots, for both
velocity and pressure, of Figure 3.10, simply calculated as ∥ξre f − ξapprox∥, with
ξ ≡ {u, p}. The main discrepancies are localized in the wake of the cylinder, where
larger oscillations occur.



58 Model Order Reduction for Multiphase Flows

0

1.91

3.82

5.74

7.65
·10−2

(m/s)

(a) Velocity field.

0

0.36

0.72

1.08

1.44
·10−3

(Pa)

(b) Pressure field.

Fig. 3.10 Absolute difference between FOM and ROM solutions for the case with
ρ = 1000kg/m3 and Qp = 10−5, for the velocity and the pressure magnitudes, on a
x− y section, at time T = 98s.

Analysis of Figure 3.11 and Table 3.1, indicates consistently small absolute and
relative errors, irrespective of density values and pressure weighting in the variable
matrix.

Error ρ = 1kg/m3 ρ = 1000kg/m3

Qp = 0 Qp = 1 Qp = 10−5 Qp = 0 Qp = 1 Qp = 10−5

Projection

ε̄u 5.10e-6 5.12e-6 5.10e-6 5.10e-6 5.14e-6 5.10e-6
ε̄v 5.37e-5 5.38e-5 5.37e-5 5.37e-5 5.40e-5 5.37e-5
ε̄w 1.56e-3 1.56e-3 1.56e-3 1.56e-3 1.56e-3 1.56e-3
ε̄ p - 1.29e-10 1.30e-10 - 1.17e-7 1.18e-7

ROM

ε̄u 2.74e-5 3.45e-5 3.45e-5 2.74e-5 3.43e-5 3.44e-5
ε̄v 3.79e-4 4.71e-4 4.71e-4 3.79e-4 4.68e-4 4.69e-4
ε̄w 3.16e-3 3.66e-3 3.67e-3 3.17e-3 3.67e-3 3.67e-3
ε̄ p - 6.97e-10 6.96e-10 - 6.33e-7 6.31e-7

Table 3.1 Relative errors for the velocity and pressure variables, for both fluid cases,
ρ = 1kg/m3 and ρ = 1000kg/m3. Projection and model errors are displayed.

Notably, Table 3.1 shows that projection errors remain unchanged regardless of the
fluid characteristics or the pressure weighting (except for the pressure itself), which
only affect the ROM model errors. As expected, ROM errors surpass projection
errors, albeit marginally. Moreover, absolute errors display an increasing trend over
time, which is typical as the ROM model approximates the FOM model with a
truncation, resulting in error accumulation. Besides, since the problem is three-
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dimensional, the w component of the velocity is considered and examined alongside
other variables, throughout the entire document. However, given that some problems,
such as this one, are predominantly evolving in two dimensions [171], there is
limited variation of the solution in the z direction. Consequently, relative errors
appear significant due to the division by a velocity field with very small values in
that direction.
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Fig. 3.11 Evolution of the absolute error for velocity and pressure variables over time.
Both fluid cases, with ρ = 1kg/m3 (left) and ρ = 1000kg/m3 (right) are displayed.
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Upon closer examination, several observations can be made to discern the im-
pact of the pressure weighting and different fluid properties. Firstly, the absolute
and relative errors in the velocity field remain consistent across the different fluid
characteristics, indicating that the underlying pattern remains unchanged. Relative
errors for all the variables are comparable for the different values of Qp, suggesting
minimal sensitivity to pressure weighting. Considering absolute errors allows to
detect a subtle difference: using pressure to construct the model marginally deterio-
rates its performance, irrespective of the weighting value. In terms of the pressure
field, the primary distinction lies in magnitude, which decreases with decreasing
Qp. Intuitively, a strong weight (like Qp = 10−5), reduces the pressure values, hence
diminishing their difference (and consequently the error). However, the evolution of
the absolute error remains unaffected by changes in Qp. This behavior likely stems
from the relatively minor fluctuations in the pressure, mainly driven by the static
pressure, with minimal dynamic pressure contributions. This raises questions about
the utility of incorporating the scalar pressure into the ROM model. Nonetheless,
despite the slight influence of the pressure on the final results, including it in the
ROM model ensures a more informative model, allowing also for the reconstruction
of this additional value.

Alternatively, one could consider utilizing the pressure gradient, instead of
pressure itself, in the ROM model. This approach would mitigate the influence of
static pressure, leading to a behavior analogous to the velocity field, characterized by
wake oscillations behind the cylinder, as depicted in Figure 3.12. Further analysis of
this approach will be undertaken in the context of multiphase flow scenarios.
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8.64 · 10−2

0.16
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Fig. 3.12 Magnitude of the pressure gradient, on a x− y section, at T = 98s, for the
case with ρ = 1000kg/m3 and Qp = 10−5.
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3.3.2 Cylinder at Re = 9×105

At low Reynolds numbers, the flow shows periodicity in the vortex street despite its
unsteadiness, helping to preserve a manageable problem. Notwithstanding, transi-
tioning towards real-world scenarios, such as those comprising air or water, normally
involves higher Reynolds numbers. For instance, using the same cylinder and the
same upstream velocity, air density and viscosity induce Rea ∼ 6.7×104, whether
with water characteristics, Rew∼ 9×105. Conventionally, Reynolds numbers as high
as Rew in open channels signify flow reaching a turbulent regime. Hence, turbulence
modeling becomes imperative for such scenarios, entailing its incorporation into the
Navier-Stokes equations.
However, in the context of wave energy applications, a laminar description might
be a reasonable assumption, without making any simplification. As argued in [71],
the transient nature of the phenomenon - a body and a flow field constantly oscil-
lating - raises doubts about the full development of a boundary layer on the body.
Furthermore, the complexity introduced by multiphase problems amplifies the chal-
lenges associated with turbulent flow treatment. These considerations, along with
examples of laminar CFD simulations of WECs validated against experimental data
[172], corroborate the choice of excluding turbulence in the high-fidelity simulations
conducted in this study.
Additionally, maintaining the laminar version of the governing equations simplifies
the treatment of the problem, avoiding the need to introduce closure terms and other
adjustments required for turbulence modeling [142, 170, 173]. Indeed, a ROM based
on POD is based on an energy criterion, wherein a turbulent flow tends to dissipate
energy in high frequencies corresponding to the less energetic eigenvalues, normally
truncated in the ROM. Consequently, the model may fail to represent such dissipa-
tion, potentially leading to instability. To recover the effect of the truncated modes,
a turbulent coefficient can be added to the model. This can be implemented within
the B tensor, where the third element of Bi j (Eq. (3.32c)), containing the kinematic
viscosity ν , is modified to ν(1+νT ), with νT a constant value, ideally smaller than
unity, yet sufficient to introduce artificial dissipation into the reduced model.
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Numerical Results

The simulation setup remains unchanged, except for the fluid characteristics, now
modeled after water. New snapshots are generated, and the model is built for varying
values of νT .

From Figure 3.13, the eigenvalue descent is less pronounced compared to the
case at Re = 200 (Figure 3.3), and the RIC increases with Nr at a slower rate. This
implies that a greater number of modes are required to adequately approximate the
solution. In this case, a RIC > 99.99% is attained with Nr = 48, indicating that either
a higher Nr is necessary for a satisfactory reduction, or maintaining Nr at a reasonable
level, for reduction purposes, would result in a lower RIC. Hence, truncation is done
at Nr = 21, yielding RIC > 99.00%, albeit at the cost of doubling the number of
retained modes, compared to the previous case.
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Fig. 3.13 Evolution of the eigenvalues spectrum, normalized to the fist eigenvalue
(left), and of the RIC (right) with respect to the number of POD modes Nr, for the
case of the cylinder at Re = 9×105.

Furthermore, the descent by pair observed previously becomes less discernible,
as corroborated by the coefficients plotted in Figure 3.14. Although the first two
coefficients remain dominant, as evidenced also by the eigenvalue plot, and out
of phase, their magnitude decreases with time. Coefficients a3 and a4 show a less
periodic behavior than expected. The smaller coefficients have significant amplitudes,
which also vary over time, and lack ordered frequencies. This overall behavior
suggests that the information is scattered across a wider spectrum, necessitating
larger Nr to correctly represent the phenomenon.
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Fig. 3.14 Temporal evolution of the first six projection coefficients (in color). The
lines in grey are the projection coefficients for subsequent indices.

The first basis functions depicted in Figures 3.15, 3.16 exhibit a less regular spatial
evolution compared to the case of Re = 200. Particularly in the velocity field, a
subtle difference is still present between the first two modes and the subsequent pair,
characterized by higher frequencies and a more disturbed wake. This slight effect is
not visible in the pressure field.

The analysis of the modes and coefficients suggests a more difficult flow dy-
namics, resulting in a correspondingly complex ROM model. Despite this, the
computational effort required for the FOM simulation remains consistent with the
previous case. The online phase of the ROM now takes around 90seconds, on a
single processor, which is still comparable to the previous case. However, the offline
phase of the ROM has increased to 7minutes due to the larger dimensions of the
tensors.
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Fig. 3.15 Spatial evolution on a x− y section of the first four basis functions for the
velocity field, φφφ
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The reconstruction of the ROM continues to provide a reliable approximation of
the FOM, as the relative errors in Table 3.2 remain at most of the order of O(10−3).
The addition of the viscosity coefficient νT impacts the results by helping reducing
the amplification of the coefficients through the introduction of artificial viscosity.
Notably, small values of νT give smaller errors with respect to the case with νT = 0.
Excessively large values of the artificial viscosity can have a detrimental effect,
resulting in excessive dissipation. This effect is visible in Figure 3.17, especially
for the higher frequencies. Nevertheless, the introduction of νT ̸= 0 primarily
affects the amplitude of the temporal coefficients without altering their phase, thus
maintaining the slight shift observed between the predicted coefficients and the
projection coefficients.

Error
Turbulent coefficient

νT = 0 νT = 0.2 νT = 0.6 νT = 1.0

Projection

ε̄u 8.13e-5 - - -
ε̄v 7.15e-4 - - -
ε̄w 1.98e-3 - - -
ε̄ p 1.03e-6 - - -

ROM

ε̄u 3.78e-4 3.34e-4 3.02e-4 3.09e-4
ε̄v 3.54e-3 3.17e-3 2.92e-3 3.02e-3
ε̄w 6.36e-3 5.56e-3 5.00e-3 5.12e-3
ε̄ p 3.80e-6 3.35e-6 3.03e-6 3.11e-6

Table 3.2 Relative errors for the velocity and pressure variables, for the cases with
varying turbulent coefficient values. Both projection and model errors are displayed.

The findings prove the necessity for a greater number of modes as the Reynolds
number increases, reflecting the increased complexity and instability of the flow.
Despite the need for a higher amount of information, the reduction is, nonetheless,
consistent, even if marginally less effective. The monophase ROM implemented
in this section is accurate, with careful consideration required to well represent
several fluid conditions. The literature on model order reduction for fluids focuses on
monophase flows, with an emphasis on the modeling of turbulence, or compressibility
in shock analysis. To the best of the author’s knowledge, there is currently limited
evidence of a ROM tailored specifically for real multiphase flows in three dimensions.
As the application of such multiphase ROM model would potentially be diverse,
extending beyond wave energy, further exploration of this subject is needed.



66 Model Order Reduction for Multiphase Flows

-75
-50
-25

0
25
50
75

a 1

proj νT = 0 νT = 0.2 νT = 0.6 νT = 1.0

-75
-50
-25

0
25
50
75

a 2

-40

-20

0

20

40

a 3

-40

-20

0

20

40

a 4

90 95 100

−40

−20

0

20

40

t (s)

a 5

90 95 100

−40

−20

0

20

40

t (s)

a 6

Fig. 3.17 Evolutionf of the first six temporal coefficients, for the varying values of
νT , in comparison to the projection coefficients, for the case at Re = 9×105.
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3.4 Multiphase POD-ROM

Considering the extensive research conducted on the flow past a cylinder, it serves
as an ideal subject for further inquiry. This investigation is prompted by lacking
answers in the field of low-dimensional models for multiphase flows. Employing the
same simulation framework used so far, a second fluid is introduced, dividing the
domain in a light (above) fluid with characteristics ρl and µl , and a heavy (below)
fluid, characterized by ρh and µh, as in Figure 3.18.

ρl

ρh

µl

µh

Γoutlet

Γbottom

Γtop

Γinlet

ΓcΓ f

Ω f

Ωa

Ωw

x
y

Fig. 3.18 x− y section of the simulation domain for the cylinder in multiphase flows,
with definition of the boundaries. In this case, two flows, a light (subscript l) and a
heavy one (subscript h), are simulated. The front and back boundaries are not visible,
but present in the three-dimensional simulation.

Following the strategy used in the previous section, the starting point is the mo-
mentum Navier-Stokes equations, which, for a multiphase, incompressible, laminar
flow read as:

∂u
∂ t

+(u ·∇)u =− 1
ρ

∇p+
1
ρ

∇ · (µ(∇u+(∇u)T ))+g. (3.35)

Similar to the monophase scenario, turbulence may be inserted in the equation, and
hence in the model. To maintain simplicity and relevance to specific cases of interest,
the study is confined to the laminar framework.
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Compared to the monophase case, the multiphase setup introduces additional vari-
ables into the model: the density and the viscosity, which now evolve, especially
across the interface between the two fluids. One approach is to incorporate ρ and µ

directly in the model. Alternatively, the Volume of Fluid method can be employed.
The variable α assumes unitary values in the heavy fluid, null values in the light
fluid, and values 0 < α < 1 at the interface of the two fluids. The evolution of
density and viscosity is then recovered using the expressions ρ = ρl +α(ρh−ρl)

and µ = µl +α(µh−µl). With this strategy, however, an additional equation appears
in the system, the one for the transport of α:

∂α

∂ t
+u ·∇α = 0. (3.36)

In StarCCM+, the segregated VOF solver is added to the simulation setup. For an ac-
curate resolution of the interface, the Adaptive Mesh Refinement (AMR) of two levels
is triggered at each time step along the free surface, and the HRIC (High Resolution
Interface Capturing) scheme is implemented to maintain a sharp interface between
the two immiscible fluids. Even though an implicit time scheme is used in the simu-
lation, the HRIC necessitates small values of the CFL (Courant–Friedrichs–Lewy),
to be kept below 0.4, to promote convergence. This forces the time step to small
values, even though the snapshots are collected at bigger ∆t. As in the previous case,
Dirichlet boundary conditions for velocity are imposed on Γinlet , Γtop, and Γbottom,
and for pressure on Γoutlet . Symmetry planes are employed for the transversal bound-
aries, Γ f ront and Γback, and the cylinder boundary Γc is modeled as a wall. A new
"boundary" appears, Γ f , the interface between the two fluids, which is initialized as
a flat line at the start of the simulation (Figure 3.18).

To preserve the clarity of the study at this stage, the VOF is not integrated
into the ROM model, hence avoiding adding an equation to the dynamical system.
Even though a solution can be derived, it would be cumbersome, since density and
viscosity, both linked to the VOF, appear in the momentum equation. For this reason,
the following fluid characteristics are considered in the variable matrix:
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U =


u =

 u
v
w


Qp p

Q1/ρ
1
ρ

Qµ µ


, (3.37)

where new weighting coefficients, Q1/ρ and Qµ , appear, to homogenize the values,
and have contributions from the different variables normalized with respect to the
velocity contribution. The set of basis functions is now:

Φ =


φφφ

u =

 φφφ
u

φφφ
v

φφφ
w


φφφ

p

φφφ
1/ρ

φφφ
µ


. (3.38)

where u and p are defined as in Eq. (3.29), and adding

1
ρ
(x, t) =

1
ρ̄
(x)+

Nr

∑
j=1

a j(t)φ
1/ρ

j (x),

µ(x, t) = µ̄(x)+
Nr

∑
j=1

a j(t)φ
µ

j (x).
(3.39)

The dynamical system deriving from the Galerkin projection looks quite complex:

Lȧ = A+Ba+aT Ca+aT (aT Da
)
, (3.40)

with the matrices:
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)
−
(

φ
u
i ,

1
ρ̄

∇φ
p
j

)
−
(

φ
u
i ,φ

1/ρ

j ∇ p̄
)
+

+

(
φ

u
i ,

1
ρ̄

∇µ̄(∇φ
u
j +(∇φ

u
j )

T )

)
+

(
φ

u
i ,

1
ρ̄

∇φ
µ

j (∇ū+(∇ū)T )
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Di jkl =+
(

φ
u
i ,φ

1/ρ

j ∇φ
µ

k (∇φ
u
l +(∇φ

u
l )

T )
)
+
(

φ
u
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1/ρ

j φ
µ

k ∆φ
u
l

)
. (3.41e)

In this case, the tensor L remains unchanged with respect to the monophase case,
but additional terms appear in A, because of the necessity of incorporating mean
fields for density and viscosity. The tensor B still contains terms for convection,
diffusion and pressure gradient, and similarly the tensor C. A new, fourth-order tensor
D emerges in the dynamical system, increasing its complexity. While a solution
remains attainable, the computational cost escalates significantly. For instance,
considering Nr = 10, three-dimensional tensors would have size 10×10×10 = 103,
but D would have size 104, posing prohibitive challenges. Not only does the offline
phase become more resource-intensive due to tensor construction, but also the online
phase faces increased demands as the temporal scheme needs to use large, full tensors
at each time step.
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In addition to the complexity of the model, the difference between the two fluids
of interest, water and air, is substantial, with one fluid exhibiting a density three orders
of magnitude greater than the other. Moreover, a traveling wave is a highly complex
and nonlinear phenomenon. Those considerations motivate a gradual approach for
the development of a ROM for such a multiphase problem. Consequently, all the
variables are analyzed for their influence on the model, making exception for the
velocity. Despite the light impact of pressure on the monophase case, it might have a
more pronounced effect on the multiphase case, particularly when using the gradient
instead of the absolute value in the variable matrix. Similarly, the density and the
viscosity are analyzed individually. Therefore, initially, the monophase case serves
as a starting point, with only viscosity altered, leading to the definition of a simplified
ROM model (Section 3.4.1). Subsequently, in Section 3.4.2, density variation is
introduced and the simplified ROM model is tested against scenarios with spatially
varying interfaces. The influence of density and pressure is further explored in
Section 3.4.3, integrated in the variable matrix in different forms. Finally, as the
fluid characteristics resemble and meet the water and air ones, the model shows
instabilities, that are tackled with correction terms or a different model reduction
technique in Section 3.4.4.

3.4.1 Viscosity Term

At this stage, the density is kept constant, and only the viscosity is varied. Focusing
on the viscosity term of the Navier-Stokes equations, Eq. (3.35), the gradient can be
split in two elements, as:

1
ρ

∇ · (µ(∇u+(∇u)T )) =
1
ρ

[
∇µ (∇u+(∇u)T )+µ∆u

]
(3.42)

where the first element can be called the symmetric gradient, standing from the
relationship sym∇u = 1

2(∇u+(∇u)T ), and the second element is the Laplacian.
The variable matrix for this case is:
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U =


u =

 u
v
w


Qp p
Qµ µ

 , (3.43)

where the density is absent, as is kept constant in the entire domain. The related
basis functions are:

Φ =


φφφ =

 φφφ
u

φφφ
v

φφφ
w


φφφ

p

φφφ
µ

 . (3.44)

The dynamical system remains unchanged with respect to the monophase expression
(Eq. (3.30)), but the tensors now have additional elements, because of the modes
built on the viscosity, φφφ

µ :
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The separation in two elements of the viscosity term allows to quickly analyze
their influence on the model. Three model definitions are considered: one implement-
ing the entire viscosity term, so with both elements, one keeping only the Laplacian
term and putting the symmetric gradient equal to zero, and one without the entire
viscosity term. The models are called, respectively, Visc, LaplVisc, and NoVisc.

Numerical Results. The problem under study remains the flow past a cylinder,
with the introduction of two distinct fluids, separated by an interface. Throughout
the domain, the density remains constant to the value ρ = 1000kg/m3, whereas the
viscosity varies, thus altering the Reynolds number. The analysis comprises two
cases, merged to the model definitions based on the viscosity term, one named LoRe
because characterized by lower Reynolds numbers with respect to the other case,
termed HiRe. For each case, specific weighing coefficients for pressure and viscosity
variables are defined. To ensure comparability, the number of retained modes is fixed
at Nr = 10, although the resulting RIC varies slightly, remaining above 99% in both
scenarios. The key attributes of the two cases are summarized in Table 3.3.

LoRe HiRe

µl (m2/s) 1 10−3

µh (m2/s) 5 1
Rel 103 106

Reh 200 103

Qp 10−5 10−5

Qµ 1/5 1
Nr 10 10

RIC (%) 99.72 99.07

Table 3.3 Fluid characteristics and model parameters for the two flow cases analyzed,
LoRe and HiRe.

To have an idea of the free surface evolution, a spatial representation of the
VOF field (though not considered as variable in the model), at two different times
during the simulation, is depicted in Figure 3.19, for the case LoRe. Remarkably, the
Karman street presence influences the interface between the two fluids, that, having
the same density, strongly mix and yield a highly oscillating wake in the lee of the
cylinder.
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Fig. 3.19 Snapshots of the VOF field on a x−y section for the cylinder in the biphase
flow with same density and different dynamic viscosity (case LoRe).

Nonetheless, the phenomenon retains a periodic nature, as evinced by the first four
temporal coefficients plotted in Figures 3.20, 3.21. These figures juxtapose the
projection coefficients, as a reference, with the coefficients obtained from the ROM
model, for all the cases considered, with different viscosity terms and Reynolds
numbers. In the LoRe case (Figure 3.20), where the difference between the two fluids
is minimal, the variance in the first temporal coefficients for the different viscosity
terms is subtle. A slight difference is visible for the smaller amplitude coefficients,
a3 and a4, where dissipation is less pronounced, resulting in slight phase shift in
peaks and troughs, that amplify with time. This behavior is intuitive, recalling that
these smaller coefficients primarily drive dissipation. When the viscosity term is
absent (model NoVisc), coefficients tend to diverge more readily due to the lack of
dissipation. As soon as at least one viscosity term is included in the model, this
trend relaxes. This effect is more evident in case HiRe (Figure 3.21), where the
discrepancy between fluids intensifies. Here, the coefficients have higher amplitude
and higher frequency than the projection coefficients.
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Fig. 3.20 Evolution of the first four projection and model coefficients for the flow
case LoRe. The three models, Visc, LaplVisc, and NoVisc are compared.
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Fig. 3.21 Evolution of the first four projection and model coefficients for the flow
case HiRe. The three models, Visc, LaplVisc, and NoVisc are compared.
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However, the inclusion or exclusion of viscosity in the model appears to have a
minor impact, as reflected in the relative errors presented in Table 3.4, where the last
column (NoVisc) shows slightly larger errors.

Error
Model

Visc LaplVisc NoVisc

LoRe

ε̄u 2.31e-4 2.33e-4 3.55e-4
ε̄v 3.40e-3 3.43e-3 5.28e-3
ε̄w 9.58e-3 9.68e-3 1.50e-2
ε̄ p 7.62e-6 7.66e-6 1.09e-5
ε̄µ 7.29e-4 7.35e-4 1.12e-3

HiRe

ε̄u 5.35e-4 5.35e-4 6.03e-4
ε̄v 9.35e-3 9.35e-3 1.05e-2
ε̄w 1.92e-2 1.91e-2 2.17e-2
ε̄ p 4.35e-6 4.35e-6 4.90e-6
ε̄µ 1.29e-3 1.29e-3 1.45e-3

Table 3.4 Relative errors for the velocity, pressure, and viscosity variables, in both
flow cases. The errors for the model accounting for the entire viscosity term (Visc),
only the Laplacian part (LaplVisc), and without viscosity term (NoVisc), are com-
pared.

This marginal difference may stem from the similarity of the two fluids, as the
densities are identical. Consequently, when dealing with two substantially different
fluids, the combined contribution of viscosity and density could exacerbate the
divergence from the Visc/LaplVisc models. Comparing Visc and LaplVisc, as the
discrepancy between fluids increases, model outputs tend to converge. More clearly,
the errors for both LoRe and HiRe remain largely consistent regardless of whether
the symmetric gradient is considered or not (see absolute errors in Figure 3.22).

Examining the viscosity term (Eq. 3.42), some remarks may be suggested. The
separation of the viscosity term into two elements allows to analyze their different
impacts on the model, and on the problem overall. The Laplacian term, which
involves the second derivative of velocity, represents the difference between the
velocity at a point and the mean velocity in a small surrounding volume, regarding
viscosity as momentum diffusion. The symmetric gradient term is the product of
two components: a term representing viscosity jump and another representing the
velocity jump. While the jump in viscosity may be significant, it predominantly



78 Model Order Reduction for Multiphase Flows

95 97.5 100

1
2
3
4

·10−3

t (s)

Lo
R

e
εµ

pro j εµ
Visc εµ

LaplVisc εµ
NoVisc

95 97.5 100

2

4

6
·10−3

t (s)

H
iR

e

Fig. 3.22 Evolution of the absolute error on µ , for the different cases, compared to
the projection error.

occurs at the fluid interface, which constitutes a small portion of the entire domain.
Furthermore, abrupt velocity variations are unlikely in incompressible fluids, leading
to potentially small overall values. Therefore, such multiplication may result very
small, supporting its exclusion from the ROM model.

In any case, this analysis suggests an asymptotic reduction of the reduced-order
model, a concept that will be verified afterwards also for cases with different viscosity
and density.

To assess the reduction in computational workload, the comparison focuses on
the time needed to compute tensors L, A, B, C, and D when present, across the
models. The comprehensive Visc model demands 17 minutes for these calculations,
primarily due to the computational intensity of the fourth-order tensor. In contrast,
the LaplVisc and NoVisc models only require a little over 2 minutes and 1 minute,
respectively. Additionally, a slight difference is noticeable in the temporal integration
of the dynamical system, with the complete model taking 43 seconds, compared to
35 seconds for the other two models.

3.4.2 Interface

The interface between the two fluids, regardless of it being flat or wavy, mainly spans
the horizontal direction, according to the employed reference system. However, its
vertical position may also affect the ROM model, as it demarcates specifics volumes
for each fluid. For instance, when the interface lies close to the top boundary of
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the domain, the heavy fluid predominates, filling most of the domain and exerting
a considerable influence on the model. Conversely, positioning the interface close
to the bottom boundary favors the amount of light fluid. A balance between the
two fluids is achieved as long as the interface is around the midpoint of the domain.
Given the different dynamics within each fluid, related to their respective Reynolds
numbers, the focus of this section is to examine the impact of varying interface
positions. The simulation domain remains unaltered, albeit the two fluids, owning
different values for both viscosity and density, being separated by an interface of
varying position, and yielding to the cases depicted in Figure 3.23.
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E
F

G

Hx

y

Fig. 3.23 Sketch of the positions of the fluid interface Γ f yielding the different
simulated cases.

The ROM model in the asymptotic reduction form (LaplVisc) is used for these
tests, so the viscosity is present in the Laplacian term. The variable matrix is defined
as follows:

U =



u =

 u
v
w


Qp p
Q1/ρ

1
ρ

Qµ/ρ
µ

ρ


, (3.46)
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where the density is also considered. The dynamical system is the same as in
Eq. (3.30), with the following expressions for the contributing tensors:
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For the numerical implementation, a summary of the main parameters is listed in
Table 3.5. The modes are truncated at the same Nr for all the cases, yielding slightly
different RICs, but always RIC > 99%.

µl (m2/s) 1.5×10−3

µh (m2/s) 1
ρl (kg/m3) 100
ρh (kg/m3) 1000

Rel 6.7×104

Reh 103

Qp 10−5

Q1/ρ 102

Qµ/ρ 1
Nr 12

RIC (%)
A: 99.81 B: 99.78 C: 99.56 D: 99.36
E: 99.17 F: 99.03 G: 99.36 H: 99.31

Table 3.5 Fluid characteristics and model parameters analyzed, for different positions
of the interface.

In the following, the first temporal coefficients computed with the ROM model are
plotted against the projection coefficients, for the several cases analyzed, organized
symmetrically based on the interface position. The main information conveyed by
Figures 3.24,3.25 is that as the volume of heavy fluid (where a lower Reynolds
number is present) decreases, the stability of the ROM model tends to degrade.
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Fig. 3.24 Evolution of the first four projection and ROM coefficients for cases A, B,
G, and H, for which the interface is situated at the greatest distance from the cylinder.
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Fig. 3.25 Evolution of the first four projection and ROM coefficients for cases C, D,
E, and F, for which the interface is situated close to the cylinder.
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The predicted temporal coefficients progressively deviate from the projection co-
efficients, including the most energetic ones. With the exception of cases D and
E, the dynamics behind the cylinder predominantly reside within one fluid. The
dynamics and the form of the temporal coefficients vary across cases, evidenced
by non-coincident crests and troughs (e.g., comparing a1 between cases A and H).
When the interface approaches the middle of the domain, the wake dynamics is
disturbed by the presence of both fluids, with very different characteristics. Cases D
and E exhibit similar dynamics, despite the lack of symmetry of case E, resulting
in a comparable behavior of the ROM model. In general, the dynamics are inade-
quately reproduced, with the predicted coefficients having different frequencies with
respect to the projection coefficients, and tending towards instability with significant
amplitudes.

The error plots in Figure 3.26 do not give a general trend across all variables.
Velocity and pressure errors generally escalate as the interface transitions from the
top of the domain to the bottom. This result underscores the substantial influence
of the heavy fluid volume on the model, despite cases G and H displaying temporal
coefficients that closely resemble the target form, compared to cases D and E.
However, ε̄1/ρ and ε̄µ/ρ are smaller when the interface is distant from the cylinder,
in either direction (cases A, B, G, and H). The interface remains relatively stationary,
even for disturbed flows in the lee of the cylinder, potentially due to the substantial
difference in the fluids, which prevents the interface from deviating from the flat
line. Another possibility for this behavior is related to the cylinder intersecting
the interface. Point-by-point differences, during error computation, may introduce
inaccuracies around the body, absent when the interface is farther from the cylinder,
and generally increasing the errors. Among all cases, case F stands out as the one
with the biggest mean errors for almost all variables. Also the right-hand side of
Figure 3.25 shows the worst coefficients among all cases analyzed, with a1 and a2

losing periodicity after a few seconds.
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Fig. 3.26 Visual representation of the relative errors for the velocity, pressure, density
and viscosity variables, of all the cases analyzed.
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The analysis conducted in this section shows the strong influence of the interface
position within the domain on the fidelity of the ROM model. Considering the
ultimate objective, the simulation of a floating body, some hypotheses might be
suggested. In such scenarios, a floating body, with the interface similar to case
E, is expected. However, given the disparity in water and air volumes, with the
primary interest lying in free surface evolution, body and mooring system forces,
considerations typically favor the limitation of the air domain. As a consequence,
cases resembling A and B are anticipated. Nonetheless, real-case scenarios entail
high Reynolds numbers, a wavy interface, a moving body, an incoming velocity u0

not confined solely to the horizontal direction.

3.4.3 Density and Pressure Term

The ROM models used in the preceding sections all define the pressure in the variable
matrix as a scalar, possibly with a weighing coefficient. However, as pointed out in
Section 3.3.1, the pressure is mainly dominated by its static component, suggesting
that an alternative form, such as the pressure gradient, may offer a more appropriate
description of an evolving flow. In addition, for biphase flows, the density assumes
significance as a variable, interlinked with pressure, viscosity and velocity terms
in the Navier-Stokes equations. Using the asymptotically reduced version of the
ROM model, the variable µ/ρ can be defined. Regarding the pressure term, various
options exist, separating or combining pressure and density. In general, the variable
matrix may contain diverse variables, in different forms and combinations. One
could then introduce space derivatives or even time derivatives of the snapshots, with
the result of getting different weights in the correlation and thus different modes
[174].

In this study, different models are explored, based on those considerations. The
first model, P, corresponds to the one used in the previous section, with all the
variables separated. Model gradP incorporates the gradient of the pressure, in the
three dimensions, in the variable matrix, while model DgradP combines the pressure
gradient and the density together. An overview of those models, in terms of the
variable and modes matrices, is provided in Table 3.6.
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Model Variable matrix Basis functions matrix

P U =


u =

 u
v
w


Qp p
Q1/ρ

1
ρ

Qµ/ρ
µ

ρ


Φ =


φφφ

u =

 φφφ
u

φφφ
v

φφφ
w


φφφ

p

φφφ
1
ρ

φφφ
µ

ρ



gradP U =



u =

 u
v
w


Qp ∇p =

 ∂x p
∂y p
∂z p


Q1/ρ

1
ρ

Qµ/ρ
µ

ρ


Φ =



φφφ
u =

 φφφ
u

φφφ
v

φφφ
w


φφφ

p =

 φφφ
px

φφφ
py

φφφ
pz


φφφ

1
ρ

φφφ
µ

ρ



DgradP U =



u =

 u
v
w


Qp

1
ρ

∇p =


1
ρ

∂x p
1
ρ

∂y p
1
ρ

∂z p


Qµ/ρ

µ

ρ


Φ =



φφφ
u =

 φφφ
u

φφφ
v

φφφ
w


φφφ

p/ρρρ =

 φφφ
px
ρ

φφφ
py
ρ

φφφ
pz
ρ


φφφ

µ

ρ


Table 3.6 Definition of the variable matrix and modes matrix for the different defined
models.
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The resulting dynamical system remains unchanged, as in Eq. (3.30), with slitghly
different expressions for the tensors. For model P, the expressions in Eq. (3.47a)-
(3.47d) hold. For model gradP, the main change is the direct expression of the basis
functions on the pressure instead of their gradient. Hence, they become:

Li j =+
(
φ

u
i ,φ

u
j
)

(3.48a)

Ai =−(φ u
i ,(ū ·∇)ū)−

(
φ

u
i ,

1
ρ̄

∇ p̄
)
+

(
φ

u
i ,

µ̄

ρ̄
∆ū
)
+(φ u

i ,g) (3.48b)

Bi j =−
(
φ

u
i ,(ū ·∇)φ u

j
)
−
(
φ

u
i ,(φ

u
j ·∇)ū

)
−
(

φ
u
i ,

1
ρ̄

φ
p
j

)
−
(

φ
u
i ,φ

1/ρ

j ∇p̄
)
+

+

(
φ

u
i ,

µ̄

ρ̄
∆φ

u
j

)
+
(

φ
u
i ,φ

µ/ρ

j ∆ū
)

(3.48c)

Ci jk =−
(
φ

u
i ,(φ

u
j ·∇)φ u

k
)
−
(

φ
u
i ,φ

1/ρ

j φ
p
k

)
+
(

φ
u
i ,φ

µ/ρ

j ∆φ
u
k

)
. (3.48d)

Finally, for model DgradP, the tensors are:

Li j =+
(
φ

u
i ,φ

u
j
)

(3.49a)

Ai =−(φ u
i ,(ū ·∇)ū)−

(
φ

u
i ,∇

p̄
ρ̄

)
+

(
φ

u
i ,

µ̄

ρ̄
∆ū
)
+(φ u

i ,g) (3.49b)

Bi j =−
(
φ

u
i ,(ū ·∇)φ u

j
)
−
(
φ

u
i ,(φ

u
j ·∇)ū

)
−
(

φ
u
i ,φ

p/ρρρ

j

)
+

(
φ

u
i ,

µ̄

ρ̄
∆φ

u
j

)
+
(

φ
u
i ,φ

µ/ρ

j ∆ū
) (3.49c)

Ci jk =−
(
φ

u
i ,(φ

u
j ·∇)φ u

k
)
+
(

φ
u
i ,φ

µ/ρ

j ∆φ
u
k

)
. (3.49d)

Numerical Results

Considering the configuration outlined in case C of Section 3.4.2, with the fluid
characteristics listed in Table 3.5, the snapshots are used to build three different
ROM models, for the three definitions of the variable matrix proposed. Case C is
chosen as a balanced compromise between a relatively equal volume of the two
phases and a minimally disruptive interface position, ensuring that the dynamics
around the cylinder remain almost undisturbed. Since the variable matrices are
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different, and different is the information correlated to build the basis functions, each
model inherently carries different information content. For the sake of comparison,
truncation is at Nr = 15, resulting in nearly identical values of the RIC (see Table 3.7).

Case P Case gradP Case DgradP

Qp 10−5 10−4 10−1

Q1/ρ 102 102 -
Qµ/ρ 103 103 103

Nr 15 15 15
RIC (%) 99.87 99.88 99.91

Table 3.7 Fluid characteristics and parameters for the different models.

In this section, alongside the quantitative comparison of the relative errors (Table 3.8),
a qualitative assessment of the temporal coefficients (Figure 3.27) is favored for its
simplicity.

Variable Error
Case

P gradP DgradP

Velocity
ε̄u 6.62e-4 4.86e-4 4.94e-4
ε̄v 8.61e-3 7.11e-3 6.49e-3
ε̄w 1.55e-2 1.12e-2 1.35e-2

Pressure

ε̄ p 5.34e-6 - -
ε̄∂x p - 6.47e-3 -
ε̄∂y p - 1.61e-4 -
ε̄∂z p - 8.24e-3 -

ε̄
1
ρ

∂x p - - 5.01e-3

ε̄
1
ρ

∂y p - - 1.96e-4

ε̄
1
ρ

∂z p - - 2.88e-3

Density ε̄1/ρ 9.28e-5 6.84e-5 -

Viscosity ε̄µ/ρ 8.93e-5 7.55e-5 6.40e-5

Table 3.8 Relative errors for the velocity, pressure, density and viscosity variables, in
the form analyzed for each model.
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Fig. 3.27 Evolution of the first four projection and ROM coefficients for models P,
gradP, and DgradP.
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The results show that using the pressure gradient with the density, as in the DgradP
model, facilitates the accurate reproduction of the temporal coefficients, with minor
amplitude discrepancies from the projection coefficients emerging from a3 onward,
and minimal discrepancy in frequency. Conversely, the other two models exhibit
reduced accuracy in both amplitude and frequency, evident as early as a1. However,
the errors are generally comparable, although the P model gives small errors for the
pressure mainly because of the small Qp value.

Even if the pressure gradient appears more suited for inclusion in the variable
matrix, it poses greater complexity as a standalone variable. During the production
of the snapshots, the pressure gradient can be stored rather than simply the pressure,
or alternatively, the gradient can be calculated a posteriori, independently of the high-
fidelity simulation. However, integrating the gradient into a ROM model renders the
reconstruction cumbersome for the scalar pressure value, as is typically a preferred
output. If, however, the values of the pressure are regarded merely as supplementary
information, potentially enhancing the ROM model, this dilemma is avoided.

3.4.4 POD-ROM Instability

Up to this point in the document, the chosen phases for the analysis are fictitious,
featuring density and viscosity values that differ significantly, but not excessively,
and aligning with, or approaching, real-world Reynolds numbers. However, the
final objective is the numerical simulation of real fluids, particularly water and air.
These two fluids are very different, with characteristics spanning several orders of
magnitude. As a result, the ROM model is expected to behave less efficiently than
for the previous cases, likely requiring more modes for an accurate approximation of
the variables.

Considering the key parameters for water and air listed in Table 3.9, taking
Nr = 15 yields a very high RIC. Nevertheless, the free surface, until this point,
remains static, as the water is too dense to be influenced by the wake of the cylinder
(see the snapshot in Figure 3.28). Despite this, constructing the ROM model is
feasible, but executing it becomes problematic. The dynamical system to solve
for a becomes highly unstable, leading to rapid divergence after only a few initial
iterations. Adjusting the time step or changing the temporal scheme has no effect on
the execution stability [175]. Additionally, using either the asymptotically reduced
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µa (m2/s) 1.803×10−5

µw (m2/s) 1.14×10−3

ρa (kg/m3) 1.2
ρw (kg/m3) 1025

Rea 6.66×104

Rew 8.99×105

Qp 10−5

Q1/ρ 1
Qµ/ρ 103

Nr 15
RIC (%) 99.68

Table 3.9 Fluid characteristics and model parameters for the water/air tested case.
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Fig. 3.28 Snapshot of the FOM velocity and density fields, at T = 98s.
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ROM, or the complete ROM, yields similar outcomes. The problem is, thus, dig
further, changing the test case to accommodate for a moving interface.

Free Wave Test

To have an example that better resembles the simulation of a wave, a different
simulation may be tested. Drawing inspiration from the well-known dam break test,
an asymmetric initial condition is defined, and allows the free surface to evolve
under the influence of gravity, without any body nor wave forcing. The result is a
traveling wave, albeit less steep than the wave typically created after the dam break.
This approach ensures that the interface between the two phases is evolving without
complicated phenomena, such as breaking waves and recirculation.

In this new setup, the simulation domain ΩHF = Ω has now size [Lx×Ly×Lz] =

[10× 6× 0.4]m. The initial position of the water-air interface, Γ f , is analytically
defined by

Γ0
f = Hw e−

1
2(x+ 3

2 y)
2

+Hs, (3.50)

where the parameter Hw defines the height of the initial wave relative to the sea
level Hs, at x→±∞. Hs can be adjusted to reach a desired water volume in the
computational domain, but is set to Hs = 0m for the moment. Similarly, the initial
condition is set to Hw = 0.6m to obtain a smooth wave (see Figure 3.29).

No-slip boundary conditions, u = [0,0,0]m/s, are now imposed at the inlet
(Γinlet), outlet (Γoutlet), bottom (Γbottom), and top (Γtop) boundaries. The front
and back boundaries, Γ f ront and Γback (not represented in Figure 3.29), remain
symmetry planes, as before, to maintain the computational domain small. The spatial
discretization and the temporal discretization schemes remain consistent with the
previous simulations. The snapshots are exported on a homogeneous Cartesian
mesh with ∆x = 0.05m, at multiples of the simulation time step, ∆t = 0.002s. The
simulation duration spans only t = [0,3]s, as, beyond that time, the free surface
stabilizes and reaches an equilibrium position. This evolution differentiates the test
from the flow past a cylinder case, because, here, the focus is on reproducing the
transitional phase, with no expectation of any periodicity in the solution.
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Γ f Γoutlet
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y

Fig. 3.29 Sketch of the flow configuration of the free wave test, and definition of the
boundaries. The initial condition (Eq. (3.50)) for Hw = 0.6m and Hs = 0m is plotted.
The front and back boundaries are not visible, but present in the three-dimensional
simulation.

Correction Term

Similar to the monofluid case discussed in Section 3.3.2, a possible explanation for
the instability of the ROM model may be related to inadequate dissipation. In the case
of multiple flows, this issue could be exacerbated due to the complexity introduced
by the interaction between different phases, potentially resulting in insufficient
dissipation to prevent the uncontrolled growth of the temporal coefficients and their
frequencies. As previously demonstrated, incorporating a fictitious viscosity term
into the ROM model helps in restraining the amplitude of coefficients, although no
effect is noticeable on their frequency.

In the monofluid scenario, the implementation of the numerical dissipation involves
adding a portion of the kinematic viscosity, as a constant. In the bifluid case,
this adjustment translates to assigning a weight τ , greater than unity, to viscosity-
related terms in the expressions of Eqs. (3.47a)-(3.47d). Various cases are explored,
considering the substantial complexity of the target bifluid flow, due to the significant
disparity between water and air properties. The two fluids are, in a first moment,
chosen with slightly different characteristics, to maintain small Reynolds numbers,
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with an approach similar to the cylinder test. The configurations are distinguished
by their density ratio, denoted as Rρ = ρh/ρl . Considered cases present a modest
difference, Rρ = 2, an intermediate difference, Rρ = 10, and then the more extreme,
water/air configuration, which is Rρ = w/a∼ 854. The snapshots are collected each
∆t = 0.004s. The number of modes is adjusted to ensure RIC≥ 99%, resulting in
considerable variation across cases (Table 3.10).

Rρ = 2 Rρ = 10 Rρ = w/a

µl (m2/s) 2.5 1.5×10−3 1.803×10−5

µh (m2/s) 1 1 1.14×10−3

ρl (kg/m3) 500 100 1.2
ρh (kg/m3) 1000 1000 1025

Rel 2×102 6.66×104 6.66×104

Reh 103 103 8.99×105

Qp 10−6 10−6 10−5

Q1/ρ 102 102 1
Qµ/ρ 102 103 105

Nr 7 17 20
RIC (%) 99.09 99.05 99.01

Table 3.10 Fluid characteristics and model parameters for the different density ratio
cases analyzed.

Except for Rρ = 2, the other cases exhibit instability, where the integration of the
temporal coefficients over time becomes highly unpredictable, leading to excessively
high coefficient values after few time steps. This instability manifests more rapidly
with higher Rρ values, reflecting the greater disparity between the fluids. Although
reducing the time step size may seem a potential solution, it fails to mitigate the
issue, resulting in coefficients with either excessively high or low values. Therefore,
a correction term is introduced to amplify the weight on viscosity terms, thereby
enhancing dissipation. For the case Rρ = 2, satisfactory results (see Figure 3.30)
are achieved without correction terms, owing to the smaller difference between the
fluids and the relatively low Reynolds number.
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Fig. 3.30 Evolution of the first four temporal coefficients (in color) for case Rρ = 2,
compared to their respective projection coefficients (in black).

However, when passing to Rρ = 10, the model shows instability, and the correction
term proves effective in stabilizing the system. The correction action is evident
in Figure 3.31, for various values of τ . The complete model, comprising both the
symmetric gradient and the Laplacian terms (Visc), is tested to validate that the
problem is not solely attributable to the simplifications of an asymptotic reduction.

While the correction term effectively prevents instabilities from accumulating and
causing the model to fail catastrophically, it also kills any temporal evolution of
the solution. Therefore, if the model fails and explodes, it also fails when all the
temporal coefficients remain constant throughout the entire time lapse. In addition,
with higher Rρ values, the correction term has limited efficacy, and the instability
persists.
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Fig. 3.31 Evolution of the first four temporal coefficients (in color) for case Rρ = 10,
compared to the projection coefficients (in black). The effect of various values of τ

is represented. For τ < 230, the model is still unstable, for τ > 350 the coefficients
are not evolving. Thus, results for such ranges are not displayed.

The POD ROM model, in its current form, is evidently ill-suited for bifluid
flows. The reasons may extend beyond viscosity alone, and comprise factors such
as the potential onset of a turbulent regime at high Reynolds numbers, whereas the
current model assumes a laminar flow. Another reason may be related to the use of a
limited number of modes, discarding higher-frequency modes, crucial for preventing
instability. However, increasing the number of retained modes contradicts the
objective of reducing model complexity and computational cost. Another possibility
may be linked to the interpolation process required to extract the snapshots. The
CFD model is based on finite volumes, and on a Cartesian octree mesh, with local
refinements in regions such as the free surface, or around a body. However, results



3.4 Multiphase POD-ROM 97

are extracted on a uniform Cartesian mesh, corresponding to the coarsest level of the
original CFD mesh. This discrepancy could introduce inaccuracies in the snapshot
data passed to the model, affecting its fidelity to the Navier-Stokes equations, at the
basis of the reduced model. For instance, interpolation errors might compromise
the divergence-free property of the basis functions, upon which the ROM model
relies. Additionally, lower amplitude modes are susceptible to bring numerical noise
to the model and to cause loss of orthogonality [176]. Such inaccuracies may not be
perceptible when plotting the basis functions, as in Figures 3.32, 3.33.

Alternatively, a completely data-driven model, that abstains from equations and
relies solely on reproducing provided information, shall be tested, to explore whether
the data are reconstructible. Dynamic Mode Decomposition offers a promising
approach, maintaining the notion of defining a physical field through spatial basis
functions and temporal coefficients. This approach stands in contrast to machine
learning-based data-driven models, which lack explicit modeling of underlying
physical principles.
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Dynamical Mode Decomposition

As the ROM based on the POD fails to describe the evolution of a biphase flow
with water and air, one may explore alternative techniques for problem reduction.
While the POD basis functions demonstrate proficiency in reducing the problem,
and yielding minimal projection errors, the primary issue appears to come from the
construction of the dynamical system. This issue is, thus, related to the Galerkin
projection and, by extension, the Navier-Stokes equations. A different approach
would, then, be to discard any physics-informed stage, and rely solely on data. A data-
driven technique not based on machine learning methods, yet sharing similarities with
a basis function-based approach like the POD, is the Dynamical Mode Decomposition
(DMD). DMD finds application in several domains, among which fluid dynamics,
and can be used with both numerical and experimental data [177]. The following
discussion of the theory underlying the DMD is not exhaustive, yet aims to provide a
fundamental comprehension of the application of such technique. For further details,
information may be found in [178–180].

The main objective remains the reduction of a dynamical system potentially
governed by a system of PDEs, such as before, in Eq. (3.12). Contrary to POD,
DMD adopts an equation-free perspective, assuming that the right-hand side of the
system, F, is unknown. The assumption is that any problem may be approximated
by a linear dynamical system such as:

dU
dt

= BU, (3.51)

which has initial conditions U(x, t = 0) = U0(x), and solution of the form

U(x, t) = bΨ(x)exp(ϒt) =
Nr

∑
i=1

biψi(x)exp(υit). (3.52)

Here, Ψ are the eigenvectors and ϒ the eigenvalues of the matrix B, and b are the
projection coefficients associated to U0, giving the initial amplitude of each mode.
The discrete expression of Eq. (3.51) read as

U(x, ti+1) = B̃U(x, ti), (3.53)
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which means that the flow field at time ti is connected to the subsequent flow field,
at time ti+1. In Eq. (3.53), B̃= exp(B∆t) is the discrete form of the continuous B,
with a time discretization of ∆t. The idea of the DMD is to produce a low-rank
eigendecomposition of B̃, that optimally fits the realizations for all the i considered,
so it can be seen as a minimization of

∥∥∥U(x, ti+1)− B̃U(x, ti)
∥∥∥

2
, (3.54)

in a least squares sense.

From a numerical point of view, there is, once again, a snapshot matrix S, with the
space-time values of the variables of interest over Ns time instances, as in Eq. (3.19).
Since the linear mapping is assumed to be approximately the same over all the
snapshots, one can rewrite the snapshot matrix as
S = [U(x, t1)T B̃U(x, t1)T B̃2 U(x, t1)T · · · B̃Ns−1 U(x, t1)T ]. For linear pro-
cesses, assuming a constant mapping does not result in any approximation. However,
in the context of nonlinear processes, it corresponds to a linear tangent approxima-
tion.

The objective is the derivation of the dynamic properties of the process described by
B̃, using the sequence S. To do so, two data matrices are defined, shifted in time,

S1 = [U(x, t1)T U(x, t2)T · · · U(x, tNs−1)
T ]

and
S2 = [U(x, t2)T U(x, t3)T · · · U(x, tNs)

T ],

and based on Eq. (3.53), the following expression holds:

S2 = B̃S1. (3.55)

When the size of the process is large, dealing with B̃ may become intractable, so
a rank-reduced representation, in terms of a POD-projected approximation B̂, is
preferred. First, the SVD of S1 is computed, with reference to the notation in
Eq. (3.10), as S1 = QQQΣZZZT , where the matrices are truncated to a certain level Nr.
Then, it can be demonstrated with only few passages, that the approximation can be
computed as:
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B̂= QQQT S2 ZZZ Σ−1. (3.56)

Computing the eigendecomposition of B̂,

B̂VVV = ΛVVV , (3.57)

allows to reconstruct the eigendecomposition of B̃ with the eigenvalues Λ and the
eigenvectors as Ψ = S2ZZZΣ−1VVV . By defining ϒ = ln(Λ)/∆t and having the initial
coefficients b from the expression U0 = Ψb, the solution is then approximated as:

U(x, t)≃
Nr

∑
i=1

biψi(x)exp(υit) = bΨ(x)exp(ϒt). (3.58)

The technique is tested on the same scenario as in the previous section, the
free wave test, directly using the characteristics of water and air, denoted as case
Rρ = w/a. No weighting coefficients are necessary in the snapshot matrix to balance
the contribution of the different variables. For the sake of comparison with the POD,
the eigenvalues of the SVD, Σ, and a RIC computed on such values, can be plotted in
Figure 3.34, showing that only a few modes contain the majority of the information.
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Fig. 3.34 Evolution of the eigenvalues spectrum, normalized to the fist eigenvalue
(left), and of the RIC (right) with respect to the number of DMD modes Nr. The
plots show only the first 200 modes.

Unlike POD, DMD not only provides modes Ψ, but also a set of associated
eigenvalues, that determine a low-dimensional dynamical system, governing the
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evolution of the mode amplitudes in time, b̂ = bexp(ϒt). To gain insight into how
basis functions and coefficients appear in the DMD technique, refer to Figures 3.35-
3.37, and Figure 3.38, respectively.
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Fig. 3.35 Spatial evolution on a x− y section of the first four basis functions of the
velocity field (in absolute value), ψψψu, for Nr = 5.

As the modes are complex, the absolute value is represented in Figures 3.35-3.37
for the first four basis functions, when Nr = 5. Across all variables, ψ1 shows a
small absolute value (with the exception of pressure) and minimal variation, while
subsequent basis functions are coupled, displaying corresponding absolute values.
The basis functions for µ/ρ are not depicted, being very similar to the basis functions
for 1/ρ , but with smaller absolute values, on the order of O(10−11), due to the
absence of weighting coefficients on the snapshots.
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Fig. 3.36 Spatial evolution on a x− y section of the first four basis functions of the
pressure field (in absolute value), ψψψ p, for Nr = 5.
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Fig. 3.37 Spatial evolution on a x− y section of the first four basis functions for the
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Fig. 3.38 Representation of the DMD temporal coefficients, plotted over real and
imaginary components, for Nr = 3,4,5,6.
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For the temporal coefficients, various truncations are explored, Nr = 3,4,5,6. The
DMD exhibits distinct ordering in the coefficients (compare corresponding lines
in Figure 3.38), in contrast to the POD, which has corresponding coefficients with
increasing index, regardless of the truncation. Moreover, unlike POD, the mean
is not subtracted from the data in the DMD calculation, so one mode corresponds
to a background mode that remains unchanged (i.e., it has zero eigenvalue), not
necessarily the first one. Specifically, when truncating at an odd number of modes,
this background mode appears as a single mode (e.g. first line, first and third columns
in Figure 3.38), and the rest are paired modes. On the other hand, when Nr is even,
two background modes exist, as visible in the third and fourth lines, second and
fourth columns of Fig 3.38. The remaining modes are paired as well, with opposite
phase.

The results show excellent agreement with the original snapshots (despite few
peak values, as visible in Figures 3.39-3.41), proving the suitability of the DMD in
the reproduction of the data.
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Fig. 3.39 Comparison between FOM and ROM solutions with Nr = 5, for the velocity
magnitude, on a x− y section, at time T = 1.5s.

Different Nr, leading to different levels of compression of the information are tested,
and the relative errors are listed in Table 3.11. The errors decrease with increasing
Nr, as expected. However, while the errors halve between Nr = 5 and Nr = 10, they
only slightly decrease when passing to Nr = 20. This suggests that, for the test
case considered, the main information is condensed in a few modes. In terms of
computational workload, constructing the various matrices offline takes a maximum
of 4 and a half minutes, while the online phase takes less than 3 minutes, regardless
of Nr. This duration, on a single processor, is significantly less with respect to the
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Fig. 3.40 Comparison between FOM and ROM solutions with Nr = 5, for the density
(the inverse), on a x− y section, at time T = 1.5s.
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Fig. 3.41 Absolute difference between FOM and ROM solutions with Nr = 5, for the
different variables (in absolute value), on a x− y section, at time T = 1.5s.

one and a half hours required for the original CFD simulation to run on 48 processors.
Regarding the POD ROM for cases where the dynamical system remains stable,
computational times are slightly larger, but comparable.
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Error
Case

Nr = 5 Nr = 10 Nr = 20

ε̄u 4.58e-4 2.32e-4 2.24e-4
ε̄v 3.62e-4 1.18e-4 1.06e-4
ε̄w 1.16e-3 1.01e-3 1.19e-3
ε̄ p 5.79e-6 1.97e-6 2.66e-6

ε̄1/ρ 1.15e-4 6.94e-5 7.77e-5
ε̄µ/ρ 1.07e-4 6.42e-5 7.18e-5

Table 3.11 Relative errors for the velocity, pressure, density, and viscosity variables
for different values of Nr.

The described DMD algorithm exploits the low dimensionality in the data to
provide a low-rank approximation of the linear mapping that best approximates the
nonlinear dynamics of the original collected data [181]. Based on the available data,
the DMD is able to predict future states of the system. Differing from the POD
Galerkin method, which requires solving a low-rank set of dynamical quantities to
forecast the future state, predicting future states with DMD simply involves plugging
the desired future time into the approximation equation, requiring no additional
computational effort.
However, handling dynamical evolution with a data-fit model is challenging and
typically results in a loss of flexibility in the surrogate model. This limitation
arises from a sensitivity to changes in the data distribution, which can lead to
inaccurate predictions and reduced performance in out-of-sample scenarios. Contrary
to POD, DMD modes contain distinct frequency information and are derived from
uniformly sampled time-resolved datasets [182]. As the DMD directly operates
on the given data, the order is important, as indicated by the definitions of S1 and
S2. Consequently, when the dynamics of the system change, DMD may struggle to
effectively capture these alterations. In contrast, the frequency-independent nature of
POD enables it to simulate various conditions within its range of applicability, hence
proving more robust in out-of-sample studies. At the core of the definition of the
POD basis lies a correlation matrix R, where snapshots corresponding to different
dynamics can be introduced. Thus, POD focuses on capturing the dominant modes
of variation in the data, allowing for better generalization to new or unseen data.
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3.5 Conclusion

In this chapter, building upon an established model, a surrogate model is derived for a
more intricate problem: a POD ROM model for three-dimensional multiphase flows.
The POD ROM applied to the monophase flow past a cylinder at Re = 200 demon-
strates promising results, with a maximum relative error of 0.4%, and significantly
reduced simulation time compared to the FOM. However, real-world simulations
of WECs normally involve higher Reynolds numbers. As the Reynolds number
increases, the viscous effects decrease and the flow could be considered inviscid,
and for small amplitude waves and body motions, several simplifications may be
accepted, as explained in the previous chapter. Nevertheless, such assumptions do
not hold for real WECs, which present nonlinearities, and, in such cases, viscous
effects become large. Higher Reynolds numbers must necessarily be tested, and the
viscosity terms in the Navier-Stokes equations must be handled carefully. A detailed
analysis of the different terms of the governing equations, and their effects on the
ROM model, gives insights on the versatility of the model, and the various forms it
can take. An encouraging outcome is the asymptotic reduction of the POD ROM,
offering a more manageable model. Simplifying the ROM model by considering only
the Laplacian term of the viscosity maintains results, without excessive complexity.
However, complete or asymptotically reduced ROM models encounter instability
issues when dealing with very different fluids. Some attempts to tackle the problem
yield only mediocre results. To ascertain whether the issue stems from the Galerkin
projection step, a comparison with a purely data-driven model reduction technique
such as DMD is necessary. While DMD proves effective for a water/air problem,
it inherently exhibits limitations, especially concerning out-of-sample scenarios
of interest. The present version of the POD ROM model does not suffice for the
multiphase flow reduction, demanding further research. Given the source of the
problem, a deeper exploration of the Galerkin projection is warranted. Exploring dis-
sipation in this scheme [183], and considering the potential of a nonlinear Galerkin
method [184] are options worth exploring. Additionally, integrating other reduction
techniques [185], or employing machine learning-based methods, along with using
closure terms to prevent instabilities, could be viable paths.

While this chapter concludes with the acknowledgment that a ROM based on
POD for multiphase flows remains an open question, the versatility of POD itself
remains evident throughout. This robustness offers hope for its application in the
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specific domain of interest. Furthermore, the challenges ROMs inherently face in
accurately modeling moving bodies raise doubts about their applicability in WEC
modeling, even before addressing instability issues. While research in that direction
would be valuable, an alternative approach may offer a more direct solution, as
presented and implemented in the next chapter.



Chapter 4

Multi-fidelity modeling of Wave
Energy Converters

The objective of this chapter is to develop a three-dimensional numerical model for
a WEC interacting with sea waves, in a bifluid environment consisting of air and
water. The primary aim is to devise an efficient computational tool that addresses
two key challenges: reducing the computational time associated with high-fidelity
models, and curing the lack of accuracy of low-fidelity reduced-order models in
regions affected by viscous and highly nonlinear effects. To achieve these objectives,
a multi-fidelity model is proposed, based on domain decomposition. This approach
combines a high-fidelity CFD solver, which accurately captures the behavior in
viscous and nonlinear regions, with a Galerkin-free POD ROM model, tailored for
weakly nonlinear regions. By spatially integrating these components, the dynamics
of a floating body is simulated within a unified framework. Numerical simulations
implementing the coupled model, not only provide a good approximation of the
solution in several test cases, but also alleviate the computational burden both in
terms of memory storage and speedup.

Following the introductory Section 4.1 on coupling methodologies for fluid flows,
the chapter proceeds to describe the multi-fidelity model and its implementation,
in Section 4.2. Subsequently, several tests are conducted to refine and tune the
coupled model (Section 4.3), leading to the application in wave energy simulations,
in Section 4.4.
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4.1 Coupling Methodologies

As outlined in Chapter 2, numerical modeling of WEC farms presents significant
challenges due to their multi-scale nature, necessitating the representation of both
near-field and far-field effects. However, these scales correspond to distinct phe-
nomena with different behaviors. The author of [50] notes that near-field wave
perturbations decay inversely with distance from the generating body, while far-field
effects decay with the square root of such distance. Additionally, far-field domains
can be extensive due to the long-distance propagation of waves. Typically, a single
modeling technique cannot effectively capture both near and far fields simultaneously
due to cost constraints, approximation issues, or suitability concerns. Therefore, a
common approach is to employ two separate solvers, one for each problem, coupled
using domain decomposition. This methodology, utilized in various domains, among
which ship hydrodynamics [186] and external aerodynamics [187], has also been
adapted for wave energy applications, with several coupled models proposed recently.
Coupled models generally fall into two categories: one-way coupling, where infor-
mation flows from one solver to another, and two-way coupling, where information
exchange occurs bidirectionally at each time step, ensuring a continuous balance
between near-field and far-field influences.

A well-established one-way coupling technique has been developed at Ghent
University, and extensively used for simulating WEC farms [188, 189, 26], as well
as farm clusters [190], and assessing their impact on the surrounding environment.
For the near field, the wave-structure interaction solver is NEMOH, which utilizes
Boundary Element Method (BEM), while the wave propagation solver is MILDwave,
based on mild-slope equations. The former is responsible for the calculation of the
radiated and diffracted wave fields inside a circular domain enclosing the entire farm,
while the latter propagates the total wave field, given by the superposition of the
incident and the BEM wave fields, from the circular boundary around the farm to
the limits of the large domain. The methodology is tested on regular and irregular
waves, for mildly varying bathymetries, and is also validated against experimental
data [191]. The main discrepancies found between numerical and experimental
results are linked to the nonlinearities, that are not considered in the coupled model.
The far-field calculation cost is fixed to the order of tens of minutes, regardless of
the number of WECs present. However, the computational expense of the BEM is
sensitive to the number of WECs, since the number of panels increases proportionally
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[192]. Additionally, irregular waves are computed as superposition of regular waves,
thus the computational cost increases with the frequency discretization of the wave
spectrum.

Another coupling method employing BEM for the near field is presented in [193].
However, in this case, each WEC is modeled separately, and then the interactions
and the far field are modeled using the plane wave approximation. The coupling
is two-way, as the contributions of the different WECs is iteratively updated. This
decomposition approach helps to reduce the computational burden for the near field,
enabling the modeling of farms with up to 50 WECs, which would otherwise be
prohibitively expensive with a standard BEM approach. Similar methodologies can
be found in other works [194, 195], where a potential flow model is coupled with
a wave model. However, as noted by the author in [196], the linearity of WEC
dynamics presents limitations, requiring empirical tuning for accurate predictions,
particularly near WEC resonance. Consequently, several coupled models have
been proposed, integrating high-fidelity solvers for wave-structure interactions and
low-fidelity solvers for wave propagation. The high-fidelity solver allows for the
consideration of all nonlinearities related to WECs, including viscosity effects.

Defining appropriate boundary conditions for such subdomains remains a signifi-
cant challenge, typically addressed through a two-way approach. A study presented
in [197] introduces a nested approach where the RANS solver OpenFOAM is inte-
grated with the fully nonlinear potential flow solver OceanWave3D, and primarily
focuses on wave propagation scenarios. The authors identify certain limitations, such
as the challenging parallelization of computations due to OceanWave3D constraints,
and the necessity of filtering VOF information during the exchange phase between
solvers on overlapping subdomains.
Another instance of coupling involves the same wave propagation solver, in con-
junction with the SPH solver DualSPHysics through open boundaries [198]. The
information is exchanged on a buffer zone, filled with layers of SPH buffer particles,
on which the boundary conditions are imposed. The SPH subdomain only has an
inlet and an outlet, and it develops for the entire water depth. Such a design is
chosen usually for application to offshore wind turbines [199, 200], but would be
computationally non-optimal for WECs floating in deep water. The communication
between the two solvers, with potentially different time steps, is regulated by an
intermediate Python program, either in a one-way, or two-way fashion. The one-way
coupled model is found to be four times faster than the fully high-fidelity model. The
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two-way coupling approach necessitates accurate and stable boundary conditions,
posing challenges for non-uniform velocities and surface elevations in the transversal
direction, especially in completely three-dimensional simulations involving multidi-
rectional waves.
A further example is a coupling methodology combining a CFD solver with a high-
order spectral model, tested on propagating waves and fixed structures [201]. In
this case, the spectral wave model limits the simulated waves to non-breaking, and
constant water depth, and the air field is modeled in a non-physical manner. As for
the other models, also in this case, the communication is made over an overlapping
subdomain, using the relaxation zone technique [202] to prevent wave reflections at
the computational domain boundaries. In the relaxation zones, the solution of one
solver is gradually attenuated to zero, and the solution information of the other solver
gradually risen. More insights on other similar coupling methodologies [203, 204]
can be found in [71], but they all share a common feature. Indeed, the passage
from the high-fidelity solver variables to the low-fidelity solver variables may not
be direct. For instance, the velocity, which is known as a vector in all the points of
the domain (or else particles), needs to be expressed as the gradient of the velocity
potential, a scalar field, for which irrotationality must be satisfied. Similarly, to
track a wave, one must passe from a VOF expression to a free surface elevation
function, where the air is not accounted. This intermediate passage may be source
of inaccuracies and instabilities. In this sense, the POD allows the methodology to
simplify, discarding the intermediate variable conversion. Additionally, enhancing
accuracy at the boundaries allows for a reduction in the size of the high-fidelity
subdomain without concerns about spurious reflections.

In the context of model order reduction, Domain Decomposition, or Component-
based techniques find widespread application. Domain decomposition methods
involve partitioning the computational domain into subdomains, which may overlap,
and reformulating the original problem into smaller subproblems, coupled through
the solution values at subdomain interfaces. Such zonal, multi-domain approaches
also allow for the use of different numerical schemes and equations within different
subdomains, accommodating diverse physical behaviors, and making them effective
for handling multiple-scale problems [205, 206]. For instance, in [207], authors de-
compose a network of pipes, which could be representing arteries or veins, construct
a reduced basis for the generic parts, and then combine them together for the solu-
tion on the entire domain. An analogous approach is implemented in [208], where
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several non-overlapping subdomains, distinguished by different characteristics, such
as material and thermal conductivity, are nested in the modeling of a thermal fin.
In [209], the behavior of an entire compressor is modeled incorporating low-order
models of blade row unsteady aerodynamics. In [210] and [211], parametric ROMs
are built for nonlinear elasticity problems, and thermo-hydro-mechanical systems
for radioactive waste disposal, respectively. Other domains of application may be
elastic-plastic structural problems [212], or neutron transport [213], or digital twin
technologies [214].

The idea of coupling FOM and ROM using domain decomposition is not new
[215]. In [216], POD and a Galerkin-free algorithm are used for the modeling of two-
dimensional high-speed flows with moving shock waves. Two domain decomposition
approaches are tested. One approach combines the FOM around the shock wave,
with the ROM elsewhere, and gives better results than the approach using ROM also
for the shock wave, which is not robust and accurate enough. For incompressible
Navier-Stokes equations, the research in [217] demonstrates the improvement in the
ROM performance in flow configurations that are not present in the training snapshots
set, by integrating the FOM into the component-based modeling framework.

The coupled model developed here adopts the same hybrid approach, dividing
the domain into a high-fidelity subdomain, and a reduced subdomain. In the context
of a WEC farm, this methodology is modular, with multiple high-fidelity subdo-
mains, connected to the reduced subdomain. A conceptual illustration is provided in
Figure 4.1, and further elaboration will be provided later in the chapter.

(a) Domain decomposition for a single WEC. (b) Domain decomposition for a WEC farm.

Fig. 4.1 Sketch of the domain decomposition of a single WEC and a WEC farm. The
white subdomains represent the high-fidelity areas, each embedding a yellow generic
WEC. The blue subdomain the where the POD is applied.

In terms of the domain decomposition techniques in ROMs, our coupling method-
ology could be defined as a non-overlapping, one-shot Schwarz alternating method.
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In the high-fidelity subdomain, the commercial software StarCCM+ is used to obtain
the accurate solution of the hydrodynamics of a WEC and the surrounding flow dy-
namics. In the other subdomain, a non-intrusive ROM approach is used, where POD
is employed in a Galerkin-free manner. The methodology operates independently
of the original physical system, requiring only the ability to export the evolution
of the primary variables involved in the problem from the simulation code. By
incorporating POD in the model, no simplifying assumptions about the problem
are necessary. Before testing the coupling methodology on floating structures, a
free flow evolution is chosen for simplicity. This allows to test and tune the model,
in terms of dimensions of the subdomains, sensitivity of the POD, definition of
the parameter space. All those aspects are treated in Section 4.3, following the
mathematical presentation in Section 4.2. The objective is to obtain an accurate
description of the evolution of the velocity field and the water surface, at a reduced
computational cost, when compared to the results of the high-fidelity simulations,
set as reference. Finally, Section 4 shows the application test of the floating body.

4.2 Multi-fidelity Model

The multi-fidelity model is defined for a generalized biphase simulation, which
may involve moving bodies and traveling waves, although these features are not
compulsory. The model is described in a generic setup, acknowledging the potential
presence of a body, and will be evaluated across different cases. Representing a
floating body as a sphere, the domain is now defined as in Figure 4.2. The air and
water characteristics are recalled: ρa = 1.2kg/m3 and µa = 1.803×10−5 m2/s, and
ρw = 1025kg/m3 and µw = 1.14×10−3 m2/s, respectively. The floating structure
has density ρa < ρs < ρw, and may have several degrees of freedom. Similar to the
previous chapter, the fluid domain Ω f is separated into two domains, Ωa for air and
Ωw for water, separated by the interface Γ f .

Both high-fidelity and low-fidelity models involved in the coupling methodology
have already been detailed in the previous chapter. In the following, they are recalled
to provide additional information related to the coupling approach.
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Fig. 4.2 Sketch of the flow configuration, and definition of the subdomains. The front
and back boundaries are not visible, but present in the three-dimensional simulation.

4.2.1 High-Fidelity Model

The flow is modeled by the two-phase incompressible, laminar, Navier-Stokes
equations (Eq. (3.1a), (3.1b)), with the VOF transport equation (Eq. (3.36)), over
the fluid domain Ω f = Ωa∪Ωw, completed with initial, and boundary conditions.
Additional equations are necessary to model the motion of the rigid body, based on
Newton’s law:

m
du
dt

= FFFext , (4.1)

dJωωω

dt
= MMMext , (4.2)

where m and J are the mass and inertia matrix of the body, and u and ωωω denote the
linear and angular velocities. The forces and torques are computed by:
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FFFext =−
∫

Γs

T(u, p)ndx+ggg, (4.3)

MMMext =−
∫

Γs

rrr∧T(u, p)ndx, (4.4)

where T(u, p) = −pI+ µ(∇u+∇uT ) is the stress tensor, n is the unit outward
vector to Γs, and rrr = x−xG with xG representing the body center of mass.

To correctly follow the dynamics of the body, a body-fitted overset mesh is
superposed to the background octree mesh, presenting a two-level refinement around
the free surface. An example of the computational mesh is depicted in Figure 4.3.

Fig. 4.3 Sketch of the computational mesh for a body moving with an evolving
wave. The rose part represents the overset mesh. The depicted mesh is used for the
simulation in Section 4.4.1.

4.2.2 Low-fidelity Model

For the low-fidelity modeling, the POD is employed to derive global basis functions
from a precomputed snapshot dataset. The key distinction from the model described
in the preceding chapter lies in the Galerkin-free approach. While the computation
of the POD basis functions remains consistent, the temporal coefficients are not
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obtained through the resolution of the dynamical system derived after the Galerkin
projection. Instead, a least squares method is preferred, inspired from [218], and
presented in Section 4.2.3.

The variables selected for this model include the velocity components and the
Volume of Fluid (VOF), hence U = (u, v, w, α)T . As previously done, other vari-
ables may be considered, such as pressure, density, and viscosity. Unlike the POD
ROM model, where the variable selection is mainly influenced by the interest in
reproducing specific variables, and the form of the governing equations and the
Galerkin projection, the current choice is mainly guided by the definition of the
boundary conditions in StarCCM+. Within the software, several types of boundary
conditions are available, with Dirichlet boundary conditions appearing to be the
most suitable for this approach. They allow to specify the values required along the
domain boundary. In StarCCM+, such conditions can be imposed either on velocity
or pressure, and on VOF. Consequently, density and viscosity are omitted, as the
VOF offers a more straightforward approach. Additionally, velocity is prioritized
over pressure, given that pressure is mainly represented by its hydrostatic component,
while velocity is the primary variable in the original POD treatment. Another con-
sideration involves whether to define a single set of basis functions for all variables,
separate sets for different variables, or a combination of them. In this case, the first
option is selected, offering the advantage of computing only one set of temporal
coefficients that connect all variables, albeit an alternative is tested in Section 4.3.3.
Therefore, the variables are hereafter approximated as:

u≃ ũ = u+φφφ
ua,

v≃ ṽ = v+φφφ
va,

w≃ w̃ = w+φφφ
wa,

α ≃ α̃ = α +φφφ
αa.

(4.5)

A potential drawback of such approach is that the same number of modes is con-
sidered for both the velocity field and the VOF, despite their potentially differing
behaviors and requirements, in terms of Nr, for accurate representation. This may
lead to a sub-optimal data compression.
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4.2.3 Hybrid Model

Each model involved in the multi-fidelity model is well-defined, thus the most
challenging aspect of the coupling methodology lies in their communication. This
is achieved through overlapping regions or boundary conditions, positioned along
sections separating the different subdomains. The approach used here is a modified
and extended version of the method introduced in [218]. The critical aspect of the
methodology is ensuring the correct boundary conditions definition for the high-
fidelity model. Imposing appropriate boundary conditions remains one of the primary
challenges in Computational Fluid Dynamics (CFD).

Numerical Approach

Before describing the coupling methodology, the decomposition of the computational
domain must be introduced (Figure 4.4).
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Fig. 4.4 Sketch of the domain decomposition for the coupling methodology, with
definition of the different subdomains and boundaries.

Let ΩHF be the entire computational domain, with boundaries ΓHF =ΓHF
top∪ΓHF

bottom∪
ΓHF

inlet ∪ΓHF
outlet ∪ΓHF

f ront ∪ΓHF
back. Now ΩHF corresponds to Ω f of Figure 4.2, and
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is divided into two main subdomains, Ωh f and Ωl f . The high-fidelity model is
employed in Ωh f , represented by the white and the green parts in Figure 4.4, with
boundaries Γh f = Γh f

top ∪Γh f
bottom ∪Γh f

inlet ∪Γh f
outlet ∪Γh f

f ront ∪Γh f
back. The low-fidelity

model is defined in Ωl f , which comprises the blue and the green parts in Figure 4.4.
Intuitively, the green part is an overlapping region Ωo = Ωh f ∩Ωl f , where both the
models are defined. Finally, M sensors are located at {xS

i }M
i=1, where the information

Ûi = (ûi, v̂i, ŵi, α̂i)
T is known, or part of it. As described later, those sensors are

important when there is a flow traveling in a certain direction. In this case, waves are
traveling from ΓHF

inlet to ΓHF
outlet , so the sensors are typically located close to the wave

source. In some applications, M = 0, as in the case of the free wave test.

The high-fidelity domain is localized around the floating body, where the main
nonlinearities are located (fluid-structure interactions, mooring and control systems
effects), and where the POD fails at giving an accurate representation. The size of
such domain must be large enough to account for the movements of the body, which
may have many degrees of freedom and the possibility to slightly shift in space,
for example if a loose mooring system is modeled. However, since it represents
the most computationally expensive part of the simulation, the high-fidelity domain
should be as small as possible, to minimize the computational burden. Moreover, it
should consist of at least Nr−M discrete points, to obtain a well-posed minimization
problem for {ai}Nr

i=1, as will be explained in the following.
The main requirements for the low-fidelity domain include an effective reduction of
the complexity of the problem while preserving the accuracy, and the possibility of
reconstructing the solution, at least on the overlapping region, and on the boundaries
of Ωh f , Γh f .

The objective of the coupling methodology is to find the temporal coefficients
a∗ = (a∗1, a∗2, · · · , a∗Nr

)T such that the reduced solution Ũ = U+Φa is as close as
possible to the high-fidelity solution Uh f on the overlapping domain Ωo, while also
being close to the observed (and possibly imposed) values {Ûi}M

i=1 at the M sensor
points. Similarly to data Û, also the field Ũ evaluated at point-wise locations xi is
denoted Ũi.

Mathematically, at a given time t, the temporal coefficients satisfy:
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a∗= argmin
a

(
1
|Ωo|

∫
Ωo

(
Uh f − Ũ

)2
dx+

β

M

M

∑
i=1

(
Ûi− Ũi

)2
)
, with Ũ=U+Φa,

(4.6)

where the parameter β is used to weight the sensor contributions. For low values of
β , the ROM approximation is mostly influenced by the FOM solution Uh f . For large
values of β , the ROM is mostly influenced by the sensor data Û, thus providing new
information to the FOM. Values in between, β ≈ 1, offer a compromise between
FOM and sensor data contributions. With respect to these choices, the optimal POD
field is then Ũ = U+Φa∗.

The minimization problem may be defined over the entire set of variables or
focus on specific ones, depending on the emphasis desired. Some tests, including the
one discussed in Sec 4.3.3, indicate that using both the velocity field and the VOF
leads to poorer coupling results, compared to solely using the VOF, or assigning
it a higher weight. Moreover, some interpolations are necessary for data exchange
between CFD and POD, potentially introducing errors. Combining velocity and
VOF variables in the minimization problem may amplify the errors, while using only
one variable could mitigate such issues. In addition, prioritizing the VOF aligns with
the objective of monitoring the evolution of the free surface and, in any case, the
velocity is inherently linked to the VOF through the transport equation (Eq. (3.36))
in the high-fidelity model. Based on those considerations, the minimization problem
becomes:

a∗ = argmin
a

(
1
|Ωo|

∫
Ωo

(
α

h f − α̃

)2
dx+

β

M

M

∑
i=1

(
Ûi− Ũi

)2
)
. (4.7)

The M sensors represent measurement locations within experimental setups, open
sea areas, or specific points on a computational grid. In any case, these sensors may
provide data on several variables, either directly (velocity and VOF in this case) or
indirectly. Considering that the first term of Eq. (4.7) is now exclusively reliant on
the VOF, and that water elevation is readily measurable, both in experimental and
numerical environments, the second term is also computed on VOF. The final version
of the minimization problem is:
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a∗ = argmin
a

(
1
|Ωo|

∫
Ωo

(
α

h f − α̃

)2
dx+

β

M

M

∑
i=1

(α̂i− α̃i)
2

)
. (4.8)

Each physical field used in the POD snapshots can, then, be approximated as:

ũ = u+φφφ
ua∗,

ṽ = v+φφφ
va∗,

w̃ = w+φφφ
wa∗,

α̃ = α +φφφ
αa∗.

(4.9)

Coupled Model

As the POD serves as the low-fidelity model, a division into offline and online stages
remains essential, accounting for the training of the POD basis functions. In contrast
to the depiction of the POD ROM description in Figure 3.1, two components are
slightly altered and highlighted in green in Figure 4.5: the definition of the ROM
model, now the coupled CFD/POD-ROM, and the operational phase.

For the first green block, the multi-fidelity model writes:

∂u
∂ t

+(u ·∇)u =− 1
ρ

∇p+
1
ρ

∇ · (µ(∇u+(∇u)T ))+g in Ωh f , (4.10a)

∇ ·u = 0 in Ωh f , (4.10b)

∂α

∂ t
+∇ · (αu) = 0 in Ωh f , (4.10c)

u = ũ = u+φφφ
ua∗ on Γh f , (4.10d)

α = α̃ = α +φφφ
αa∗ on Γh f , (4.10e)

a∗ = argmin
a

(
1
|Ωo|

∫
Ωo

(
α

h f − α̃

)2
dx+

β

M

M

∑
i=1

(α̂i− α̃i)
2

)
, with α̃ = α +φφφ

αa.

(4.10f)

Here, Dirichlet boundary conditions are used for both velocity and VOF fields.
Moreover, since the basis functions are defined over Ωl f , which also includes Γh f ,
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Offline

Online

Definition of the
Full Order Model

Running the FOM
over few parameters

Definition of the
basis functions

Definition of the
coupled model

Running the CFD-POD
over several parameters

Solution

Fig. 4.5 Outline of the steps in a parametric study using the coupled CFD/POD-ROM
model (red, blue, and green path). The comparison is still with the FOM model (red
path), as in Figure 3.1.

the reconstruction of the fields in Eqs. (4.10d), (4.10e) is available in the low-fidelity
domain, and acts as a propagation model.

For a clear overview of the coupling methodology during runtime, represented
by the second green box in Figure 4.5, it must be recalled that the high-fidelity
simulation is run on a commercial software, StarCCM+. This not only influences the
way the boundary conditions are imposed, but also affects the coupling algorithm,
and its implementation. Specifically, communication with the software occurs via
CSV (Comma Separated Values) tables, for importing and exporting variable values.
Moreover, to interact with the application and instruct the program on the tasks to
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execute, Java macro files are essential. Consequently, the coupling methodology
needs to be implemented into such Java macros.

The workflow of the coupling methodology is the following. First of all, few
FOM simulations are conducted on ΩHF , sampling the parameter space. Snapshots
are collected for the variables of interest U(x, t;η) = (u, v, w, α)T , and used to
build the snapshot matrix S = (Sη1, Sη2, . . . ,SηNm

). Following the methodology
outlined in the previous chapter, the POD basis functions Φ = (φφφ u, φφφ

α)T are defined,
and truncated to a number Nr yielding RIC(Nr) ≥ δ , for a predefined δ . In this
offline phase, StarCCM+ is used for the CFD simulations and snapshot generation,
while the data processing is implemented in Matlab, though could be coded in
any other programming language. The online phase occurs concurrently within
StarCCM+ for the simulation in Ωh f , and within the Java macro for the computation
necessary to update the boundary conditions on Γh f . More in detail, the simulation
is initiated on Ωh f , with the imposition of initial conditions and boundary conditions
of the target setup. A single time step is computed with the CFD solver, solving
Eqs. (4.10a), (4.10b), (4.10c). The solution Uh f over Ωh f is then exported from
StarCCM+, and read into the Java macro. Subsequently, these results are used in the
minimization problem described by Eq. (4.10f) over Ωo, along with the precomputed
basis functions known in the domain Ωl f , which also includes the overlapping
region. The temporal coefficients a∗ for the current time step are computed and
applied in Eqs. (4.10d), (4.10e), to determine the variable values on the boundary
Γh f . Such boundary conditions are then transmitted back to StarCCM+, enabling
it to proceed with the next time step. The iterative process continues until the
simulation is completed. It should be noted that, once that the temporal coefficients
a∗ are computed, the solution is automatically known in the entire Ωl f subdomain.
However, this calculation can also be done a posteriori, during the post-processing.
The choice is driven by the potential necessity of having the solution available
across the entire simulation domain, particularly if it is required for other model
couplings, such as nesting multiple coupled models to create a WEC farm. Finally,
post-processing tasks are implemented in Matlab, primarily involving the importation
of the solution, and computation of errors.

A more condensed version of the coupling algorithm is given in the following. It
should be noted that the boundary conditions are imposed in an explicit manner, at
t = tn, even though the time scheme, in the CFD solver, is implicit. This particular is
addressed in the next section.
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Offline Phase

Snapshots for U(x, t;η) = (u, v, w, α)T ← FOM in ΩHF

Definition of the basis functions set Φ = (φφφ u, φφφ
α)T ← Snapshot matrix S

Online Phase

At t = tn
Impose boundary conditions on Γh f ← Ũ ▷ Eqs. (4.10d), (4.10e)

Do a time step in Ωh f → Compute Uh f ▷ Eqs. (4.10a), (4.10b), (4.10c)
At t = tn+1

Compute a∗←Minimization problem in Ωo ▷ Eq. (4.10f)
return Ũ ▷ Eqs. (4.10d), (4.10e)
goto top of online phase.

Definition of the Interpolations

In general, the high-fidelity and the low-fidelity solutions can be computed on
different meshes. However, they require a common framework for communication.
The high-fidelity model implements a finite volume method on an octree grid, which
is refined near the interface, and may include an overset grid when considering
moving bodies. On the other hand, the low-fidelity solution is computed on the
points of a uniform Cartesian grid, corresponding to the coarser cell size present in
the high-fidelity mesh. Moreover, StarCCM+ exports the results on defined Cartesian
coordinates, chosen here as the coarser meshgrid of the high-fidelity model, in the
form of CSV tables. Consequently, an interpolation step is necessary, to transition
from a finite volume approach to a finite difference one. The CFD software uses a
default zeroth order interpolation method, meaning that no interpolation is actually
performed on the data. The points in the table are considered unordered, and each
point is assigned the value from the closest face or cell available, following a nearest
neighbor approach. The same strategy is employed in reverse, when a table is
imported in StarCCM+, to impose, for example, the boundary conditions on the
boundary surfaces of the simulation domain.
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In this study, the minimization on the overlapping domain is conducted on the
low-fidelity Cartesian mesh for simplicity reasons, but one can opt to minimize on the
high-fidelity octree mesh. Regardless of the choice, interpolations are required when
information between subdomains is exchanged. For this reason, two interpolation
functions are introduced, I↓ and I↑. The former represents the interpolation from
the high-fidelity octree mesh, possibly with local refinements, to the low-fidelity
mesh, which is the Cartesian uniform mesh of the coarser level (the background
mesh). This interpolation is used to export the Ωh f results, and to obtain the POD
coefficients a∗ in Ωo. The latter represents the interpolation needed to impose the
Dirichlet boundary conditions on Γh f , thus transitioning from the low-fidelity to
the high-fidelity meshes. Then, for the Eqs. (4.10d), (4.10e), the values of u and α

imposed as boundary conditions are actually

u = I↑(ũ) v = I↑(ṽ) w = I↑(w̃) α = I↑(α̃) on Γh f . (4.11)

One may wish the property I↑ = I −1
↓ to hold, but it might be not satisfied in the

numerical standpoint.

Another interpolator is required when M ̸= 0 sensors are employed in the coupling
methodology. In such cases, IS represents the interpolation from low-fidelity
Cartesian mesh to the sensor locations xS

i ∈Ωl f . Given that the sensor locations are
typically static, and their number M is likely small, directly interpolating the POD
modes onto {xS

i }M
i=1 is the most straightforward and accurate approach, compared to

the inverse. Since, here, only the VOF is considered at the sensors, αi = IS(α), and
Eq. (4.10f) becomes

a∗ = argmin
a

(
1
|Ωo|

∫
Ωo

(
I↓(α

h f )− α̃

)2
dx+

β

M

M

∑
i=1

(α̂i−IS(α̃))2

)
. (4.12)

Interpolators also allow to compute errors on corresponding meshes. Therefore,
Eqs. (3.15), (3.16) undergo slight modifications, as ξre f becomes I↓(ξre f ), and
ξapprox changes accordingly if it relates to the CFD solution; otherwise, no interpo-
lation is needed, when relative to the POD reconstruction. However, interpolators
inevitably introduce interpolation errors, which cannot be eliminated. There exists,



4.3 Coupled Model Sensitivity Analysis 127

thus, a lower bound for the error that must be considered, and errors arising from the
coupling methodology accumulate on this unavoidable value. Interpolation errors
can also accumulate, for example when interpolating the high-fidelity solution from
Ωh f , and interpolating back the updated boundary conditions on Γh f . In that case,
there is a combination of the form: ŨΓh f = I↓(Uh f )◦I↑(Ũ). Although efforts have
been made to enhance the order of the interpolations, notable improvements have
not been achieved.

4.3 Coupled Model Sensitivity Analysis

After the definition of the coupling methodology, and its implementation, several
tests are needed to evaluate accuracy, robustness, and efficiency of the multi-fidelity
model. Different setups are considered, with or without a moving body, with or
without incoming waves, and variations in spatial and temporal domains. The main
objective is the accurate reconstruction of the solution, the so-called in-sample test,
but some prediction, or out-of-sample, tests are conducted as well.

For this analysis, the free wave test introduced at the end of the previous chapter
is used, omitting any body presence or incoming wave, so M = 0. This test case is
computationally affordable, and allows for in-depth parameter sensitivity analysis.
While other flow configurations may yield different optimal parameter values, this
study serves to identify the parameters crucial to the coupling strategy.
The big domain ΩHF extends for [LHF

x ×LHF
y ×LHF

z ] = [10×6×0.4]m. Now, the
high-fidelity subdomain is defined with default size [Lh f

x ×Lh f
y ×Lh f

z ] = [4×2.5×
0.4]m, yielding a reduction of 6 in volume (the R6 case in Section 4.3.5). The small
size of LHF

z ≡ Lh f
z ensures reasonable computational costs. Maintaining the same

domain size in the z direction, for both domains, establishes a simplified condition
where the boundary conditions of the high-fidelity model are only four, in the x and
y direction. With reference to Figure 4.4, the boundary conditions ΓHF for the large
domain used for the snapshots, ΩHF , are all modeled as no-slip wall conditions,
resulting in zero fluid velocity. Exceptions are ΓHF

f ront and ΓHF
back, defined as symmetry

planes, where the normal velocity and the normal gradient of the variables are zero,
resulting in zero flux across the plane. The same conditions are imposed on Γh f

f ront

and Γh f
back for the high-fidelity subdomain. On the other boundaries, Γh f

inlet , Γh f
outlet ,

Γh f
top, and Γh f

bottom, Dirichlet conditions are applied to velocity and VOF. Pressure
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is inferred using the value at the interior of the domain and cannot be controlled
externally, for the well-posedness of the system to be solved numerically. Finally,
in the initial part of the sensitivity analysis, the overlapping region extends over the
entire high-fidelity subdomain, so Ωo ≡ Ωh f . The initial condition is defined by
Eq. (3.50), with Hw = 0.6m and Hs = 0m. The overall configuration is depicted in
Figure 4.6.

ΩHF

Ωl f

Ωh f

Ωo

Γh f
Γ f

x
y

x
z

Fig. 4.6 Sketch of the flow configuration with definition of the subdomains. The
initial condition (Eq. (3.50)), with Hw = 0.6m and Hs = 0m is shown.

Once the numerical setup is established, the sensitivity analysis can commence.
The analysis delves into various physical and numerical parameters, each indepen-
dently varied, while holding the others constant. To minimize potential biases, ideal
scenarios will be considered for fixing the remaining parameters. The numerical
sensitivity mostly pertains to the discretization of the mesh of the FOM model
(Section 4.3.1), and the coupling temporal scheme (Section 4.3.2), as well as the
definition of the POD (Section 4.3.3), and its sensitivity (Section 4.3.4), divided
in the number of truncated modes and the number of snapshots used. Geometrical
sensitivity relates to the sizes of the subdomains, so of the small high-fidelity Ωh f

(Section 4.3.5), and the overlapping region Ωo (Section 4.3.5). Physical sensitivity
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may be defined for the out-of-sample analysis (Section 4.3.6), with different heights
of the initial wave condition, and the analysis of the information over time, towards
clustering (Section 4.3.7).

4.3.1 Mesh Sensitivity

The first step in the coupling methodology involves the computation of the FOM
solution for the definition of the basis functions. To have a correct numerical
simulation of the phenomenon of interest, the FOM simulation has to be correctly
defined and give accurate snapshots. In the setup of the FOM model, an important
role is played by the spatial discretization, based on an Eulerian frame of reference.
A hierarchical Cartesian (octree) mesh is used throughout the entire study, requiring
careful definition to correctly discretize the evolving free surface, and, if applicable,
the motion of a rigid body. To this aim, local refinements are defined, to balance
computational cost and accuracy of the solution. The background mesh is uniform
in all the directions, so the discretization is constant ∆x = ∆y = ∆z = h, and the
value of h may vary. Larger values of h result in a coarse mesh, that is lightweight
but may provide inaccurate results. Conversely, smaller h values lead to precise
discretizations, but at the expense of increased computational burden. To strike the
right balance, four different meshes {Mi}4

i=1 are tested, for different h values, as
listed in Table 4.1. The initial number of cells ni

c, for mesh Mi, is also provided,
with n1

c > n2
c > n3

c > n4
c . Each mesh incorporates two levels of refinement near the

air-water interface, causing the number of mesh cells to evolve slightly over time,
as the air-water interface moves. To evaluate mesh performance, comparisons are
made using the finest M1 as reference, computing relative errors on the coarsest
grid, M4. The total simulation is run up to T = 3s, with a constant time step of
∆t = 0.002 s. Following the error definition in Section 3.2.3, ξre f ≡ ξM1 , ξapprox ≡
ξMi, i = {2, 3, 4}, and Ωk ≡ΩHF . The errors are computed on velocity, VOF and
pressure, and are displayed also in Table 4.1. For each quantity (u, v, w, α , and p), a
first-order behavior is observed.
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Mesh h(m) nc ε
u
mesh ε

v
mesh ε

w
mesh ε

α
mesh ε

p
mesh

M4 0.2 1.8×104 1.7e-3 6.6e-4 3.9e-2 1.8e-4 2.1e-5
M3 0.1 8.5×104 1.0e-3 3.3e-4 1.5e-2 1.1e-4 1.0e-5
M2 0.05 4.4×105 5.2e-4 1.7e-4 8.6e-3 5.0e-5 3.5e-6
M1 0.025 2.5×106 - - - - -

Table 4.1 Mesh characteristics and relative errors with respect to the finest mesh M1.

In Figure 4.7, a snapshot illustrating the position of the free surface, identified
at α = 0.5, is presented for the various Mi meshes. Coarser grids exhibit less
precise resolution, suggesting a need to increase the number of local refinement
levels. However, during the solution export, interpolations become necessary, and
could potentially lose information, if the background is overly coarse. Among the
meshes, M2, with h = 0.05m, represents a favorable trade-off between computa-
tional efficiency and accuracy, making it the chosen configuration for both ΩHF and
Ωh f simulation setups. Moreover, when exporting the CFD solution in both cases,
interpolation is performed onto a uniform Cartesian mesh with M2 characteristics,
without local refinements, to ensure computation consistency. The same framework
is retained for POD calculations, including the definition of the basis functions, and
the resolution of the minimization problem during coupling.

M1 M2 M3 M4

Fig. 4.7 Outline of the free surface (located at α = 0.5), for the different mesh
discretizations Mi.
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4.3.2 Coupling Algorithm Sensitivity

Once the CFD solution is obtained on the M2 mesh over ΩHF , the POD basis func-
tions can be computed, and the coupling model executed. However, a remark raised
in the previous section must be addressed before proceeding. The discretization
of the Navier-Stokes equations in the CFD software employs an implicit temporal
scheme, chosen for stability considerations, when simulating traveling waves. In
the coupling algorithm, the boundary conditions (4.10d), (4.10e) are imposed at
time tn, while they should be, more correctly, applied at time tn+1. If the latter
was the case, the minimization problem would become a fully coupled non-linear
problem, where all equations (4.10a)-(4.10f) must be solved at the same time, i.e.
the solution U = (u, v, w, α) and POD coefficients a∗ must be solved simultaneously.
Such non-linear minimization can be expensive in the numerical viewpoint, whereas
an explicit coupling reduces to a least squares problem, where the POD coefficients
a∗ are computed from the known solution Uh f obtained from the previous time step.
The goal is, thus, to investigate whether an explicit coupling approach might be
acceptable, instead of an implicit one. To assess this, a comparison between the two
approaches is conducted within a "fake" coupling setup. This means that, in order to
avoid truncation errors due to the POD expansion (Nr ≤Ns), the boundary conditions
imposed on Γh f are simply the high-fidelity solution Ũ = UHF , pre-computed on the
large domain for the same physical configuration. Essentially, this is equivalent to
considering all the POD modes built from snapshots, computed at all times, without
any truncation. So, in the implicit version, boundary conditions on Γh f are imposed
using Ũn+1 = Un+1

HF , while in the explicit version, using Ũn = Un
HF . In both versions,

due to the export and import passages with the CFD software, interpolations are per-
formed, so the real boundary conditions that are imposed are Un+1 =I↑ ◦I↓(Un+1

HF )

and Un =I↑◦I↓(Un
HF). One may expect to obtain null errors, at least in the implicit

case. However, since I↓ = I −1
↑ is not numerically verified, this is not the case.

Moreover, due to interpolation on the velocity fields, the mass conservation may
be violated, possibly leading to some pressure oscillations. Errors, both absolute
and relative, are computed for two cases: one with a time step ∆t = 0.002s, and
another with a bigger time step, ∆t = 0.004s. The original high-fidelity simulation
on ΩHF is computed for t = [0,3]s, with ∆t = 0.002s for stability reasons in the VOF
computation. However, the coupling simulation could have, in principle, a different
time step, provided it preserves the same constraints of the original simulation. In
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this case, doubling the time step also doubles the CFL, potentially compromising
the accuracy of the HRIC scheme. Nevertheless, since the exchange of information
occurs on a constant Cartesian mesh, the values of the free surface, refined during
the CFD simulation, are interpolated, inevitably leading to some loss of accuracy
in any case. Table 4.2 shows the relative errors on the subdomain Ωh f , with ξapprox

given by the results from the CFD solver during coupling runtime.

Case ε̄u ε̄v ε̄w ε̄α ε̄ p

Ωh f

Implicit
dt = 0.002s 2.60e-5 1.69e-5 1.89e-3 5.78e-6 2.06e-6
dt = 0.004s 7.15e-5 5.13e-5 3.19e-3 1.49e-5 4.89e-6

Explicit
dt = 0.002s 2.98e-5 1.91e-5 1.94e-3 7.58e-6 2.37e-6
dt = 0.004s 8.67e-5 5.93e-5 3.28e-3 2.23e-5 6.00e-6

Table 4.2 Relative errors of the coupling approach with two time steps, for explicit
and implicit "fake" coupling.

As Table 4.2 and Figure 4.8 show, the errors are comparable for all the cases,
for implicit, explicit, and both the time steps, with a constant evolution over time.
Therefore, for sake of simplicity and efficiency, the explicit version with ∆t = 0.004s
is adopted in the coupling methodology. During in-sample test, i.e. where the
same parameters in Eq. (3.50) are used in both ΩHF and Ωh f , the errors computed
with exact explicit boundary conditions establish a lower bound for the coupling
methodology. The exact boundary conditions can be equivalently computed by
POD with Nr = Ns = Ni, with Ni the number of temporal iterations required by the
high-fidelity solution. Extra errors will thus inevitably be added when considering
reduced basis with Nr≪ Ns ≤ Ni, as presented in Section 4.3.4.
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Fig. 4.8 Evolution of the absolute errors for the velocity, VOF and pressure variables
over time, for the different coupling approaches tested.
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4.3.3 Definition of the POD basis functions set

After establishing the mesh and the coupling algorithm, the analysis can move to the
low-fidelity component. Here, decisions must be taken regarding the strategy for
defining the basis functions, as well as determining the appropriate number of modes
and snapshots.

Throughout the document, a single set of basis functions is employed, for sim-
plicity of the related model, and for the better results generally obtained. However,
exploring alternative approaches could potentially yield even more favorable out-
comes. In this section, an approach where the basis functions are constructed
separately for the velocity and the VOF, is introduced.

While the reference approach defines the basis functions as Φ = (φφφ u,φφφ α)T ,
this approach considers velocity and VOF having separated basis functions: Φ =

(ζζζ
u
,ϑϑϑ α)T . Consequently, the minimization problem undergoes a transformation, as

it is now formulated for both velocity and VOF. Hence, Eq. (4.6) is split into two
expressions, one for velocity and one for VOF:

c∗u = argmin
cu

(
1
|Ωo|

∫
Ωo

(
uh f − ũ

)2
dx+

β

M

M

∑
i=1

(ûi− ũi)
2

)
, with ũ = u+ζζζ

ucu,

c∗α = argmin
cα

(
1
|Ωo|

∫
Ωo

(
α

h f − α̃

)2
dx+

β

M

M

∑
i=1

(α̂i− α̃i)
2

)
, with α̃ = α +ϑϑϑ

αcα .

(4.13)

The physical fields are now approximated as:

ũ = u+ζζζ
uc∗u,

ṽ = v+ζζζ
vc∗u,

w̃ = w+ζζζ
wc∗u,

α̃ = α +ϑϑϑ
αc∗α .

(4.14)
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Fig. 4.9 Evolution of the eigenvalues spectrum, normalized to the fist eigenvalue
(left), and of the RIC (right) with respect to the number of POD modes Nr, for the
two approaches for the definition of the basis functions. The plots show only values
for the first 200 modes.

The POD (normalized) eigenvalue spectrum {λi/λ1}Ns
i=1 and relative information

content RIC(Nr) = ∑Nr
i=1 λi/∑Ns

i=1 λi are plotted in Figure 4.9, for the two different
approaches. Separating the two physical fields yields to a different compression of
the information, evident in the varying rates in the eigenvalue descent for velocity and
VOF, and conversely, increase in the RIC. In general, velocity and VOF information
may exhibit slight variations in their evolution, despite their close correlation, as
also visible in the first projection coefficients in Figure 4.10. This discrepancies
suggest the potential for selecting different Nr values for each field, achieving optimal
information compression. However, as visible from Eq. (4.13), the minimization
problem doubles, necessitating two distinct coefficient sets, and increasing runtime
demands, albeit not representing the most computationally costly step of the coupling
methodology. Moreover, if M ̸= 0, integrating sensor data information on the velocity
becomes imperative, posing potential challenges if such data are not readily available.

In any case, holding Ns = 750 and Nr = 30 for all physical fields, in both approaches,
allows for comparison of results from the coupled model. Outcomes obtained from
the coupled model, as detailed in Table 4.3, show the advantage of using the same
basis functions set for all considered physical fields, resulting in errors reduced by
up to one order of magnitude. Such a result could potentially be attributed, once
more, to the interpolation procedures, which might undermine any enhancement
in accuracy, when utilizing separate basis functions. Additionally, simultaneously



136 Multi-fidelity modeling of Wave Energy Converters

−100

0

100

· 1
a cu cα

−50

0

50

· 2
−60
−40
−20

0
20
40

· 3

−20
0

20

· 4

−30
−20
−10

0
10
20

· 5

−30
−20
−10

0
10
20

· 6

0.5 1 1.5 2 2.5 3

−10
0

10
20

t (s)

· 7

0.5 1 1.5 2 2.5 3

−10
0

10
20

t (s)

· 8

Fig. 4.10 First eight projection coefficients for the two approaches for the definition
of the basis functions.

Case ε̄u ε̄v ε̄w ε̄α

Ωl f \Ωo
Φ = (ζζζ

u
,ϑϑϑ α)T 6.61e-4 5.26e-4 1.78e-3 1.47e-4

Φ = (φφφ u,φφφ α)T 7.63e-5 5.35e-5 7.09e-4 1.86e-5

Ωh f
Φ = (ζζζ

u
,ϑϑϑ α)T 1.17e-3 6.88e-4 4.19e-2 3.70e-4

Φ = (φφφ u,φφφ α)T 1.91e-4 1.32e-4 1.08e-2 2.63e-5

Table 4.3 Relative errors over the high-fidelity domain Ωh f and over the remaining
low-fidelity domain Ωl f \Ωo, for the two approaches for the definition of the basis
functions.
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minimizing both velocity and VOF could intuitively yield optimal results. However,
when applying boundary conditions to the CFD model, ensuring consistency in
variable values is crucial, given their close numerical relationship. The simultaneous
minimization might not always makes such consistency achievable numerically.
In any case, these findings corroborate the decision to adopt a simple model, which
provides a single set of temporal coefficients, a choice maintained throughout the
chapter. Although alternative strategies might promise even better results, the current
approach is deemed satisfactory for the present analysis.

4.3.4 POD Sensitivity

Being the POD strategy defined at this point, a sensitivity analysis on the number of
modes Nr, and of snapshots Ns, can be conducted. The evolution of the eigenvalues
and the RIC is recalled, for the POD strategy considered, in Figure 4.11.
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Fig. 4.11 Evolution of the eigenvalues spectrum, normalized to the fist eigenvalue
(left), and of the RIC (right) with respect to the number of POD modes Nr. The plots
show only values for the first 200 modes.

In a first moment, in both Nr and Ns sensitivity analyses, the projection errors are
examined, for varying Nr and Ns, computed following the definition in Section 3.2.3.
Here, ξre f ≡ ξHF , ξapprox ≡ ξ +∑Nr

k=1 apro j
k (ti)φφφ

ξ

k for i = 1, . . . ,Ni. The projection
coefficients are computed as apro j

k (ti) =I↓(UHF(ti))T ·Φk. Subsequently, the results
of the coupled model are produced for few values of Nr and Ns, and compared to
the high-fidelity reference solution. Errors are computed in subdomains Ωh f , and
Ωl f \Ωo, and in this test case, the overlapping region is still considered Ωo ≡Ωh f .
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The dual objective of the hybrid fidelity coupling is recalled. Firstly, the POD
reduced order solution Ũ = U+Φa∗, with the optimized coefficients a∗, is used
to provide appropriate boundary conditions for the small high-fidelity domain Ωh f .
Secondly, it propagates information through the large domain, Ωl f \Ωo = ΩHF \Ωh f .
Particularly, the ξapprox is determined by the CFD solution computed on Ωh f during
runtime, or by the POD reconstruction over Ωl f \Ωo, using the basis functions and
the temporal coefficients a∗, at each time step.

Sensitivity of the number of modes

The sensitivity of the number of modes Nr is studied keeping constant the number
of snapshots Ns = 750, across the entire domain ΩHF . For an effective reduction,
one wishes to minimize Nr as much as possible. The trend of the errors plotted
in Figure 4.12 aligns with the trend of the POD eigenvalues in Figure 4.11: errors
decrease as the number of POD modes increases. Although in principle, Nr could
exceed 100, one can already foresee, from Figure 4.12, the projection errors reaching
a plateau, thus showing marginal improvement beyond this point. Moreover, the
computational time increases with the number of POD modes retained, hence, it
should be limited as much as possible.
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Fig. 4.12 Evolution of the projection errors for the velocity and the VOF fields, with
respect to the number of POD modes Nr. The plots show only values for the first
100 modes.
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From Table 4.4, the coupled model proves a similar trend, albeit with larger
errors compared to the projection, summing the approximations associated to model
reduction, to the lower bound related to interpolation. Furthermore, errors in the
high-fidelity subdomain generally surpass those of the low-fidelity reconstruction.
This discrepancy likely arises because in Ωl f , the solution is filtered by the POD
basis functions defined across the large domain, employing a coarse mesh scale,
while the CFD model accurately resolves the Navier-Stokes equations in each cell of
the mesh.

Case ε̄u ε̄v ε̄w ε̄α

Ωl f \Ωo

Nr = 5 7.28e-4 6.53e-4 1.25e-3 1.10e-4
Nr = 10 2.57e-4 1.88e-4 9.98e-4 4.75e-5
Nr = 20 1.17e-4 8.09e-5 7.98e-4 2.60e-5
Nr = 30 7.63e-5 5.35e-5 7.09e-4 1.86e-5
Nr = 50 6.01e-5 4.61e-5 6.33e-4 1.28e-5
Nr = 100 5.71e-5 4.68e-5 5.95e-4 1.11e-5

Ωh f

Nr = 5 1.36e-3 1.10e-3 1.06e-1 2.61e-4
Nr = 10 4.42e-4 3.21e-4 2.11e-2 6.55e-5
Nr = 20 3.34e-4 2.27e-4 2.91e-2 2.58e-5
Nr = 30 1.91e-4 1.32e-4 1.08e-2 2.63e-5
Nr = 50 1.49e-4 1.08e-4 7.81e-3 2.65e-5
Nr = 100 1.16e-4 8.40e-5 4.86e-3 2.73e-5

Table 4.4 Relative errors over the high-fidelity domain Ωh f and over the remaining
low-fidelity domain Ωl f \Ωo, for the model based on different numbers of POD
modes.

Table 4.4 also shows that starting from Nr = 20, the VOF error is almost constant
in the domain Ωh f . The higher VOF POD modes are probably being filtered by the
interpolator I↑ used to impose the boundary conditions. Since all the other errors
are still decreasing with Nr, a slightly larger value, Nr = 30 is arbitrarily chosen,
which still accounts for only 4% of the total size of the problem.

Finally, a qualitative comparison of the temporal evolution of the first five POD
coefficients apro j(t) obtained by projection (eigenvectors of the POD) and by the
coupling strategy a∗(t), is given in Figure 4.13. The close agreement observed
validates the reduced order model obtained with the Galerkin-free coupling strategy.
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Fig. 4.13 Comparison of the POD temporal coefficients obtained by projection (in
black) and by the coupling strategy (in orange).

Sensitivity of the number of snapshots

As observed earlier, the number of temporal iterations Ni for the original high-
fidelity simulation does not necessarily correspond to the number of snapshots Ns

collected to build the snapshot matrix S. For several reasons, the original simulation
may require numerous iterations, but only fewer Ns ≤ Ni could suffice to correctly
capture the right evolution of the phenomenon. Therefore, varying Ns can potentially
reduce the cost of the offline phase. In the studied scenario, the original time step
is ∆t = 0.002s, resulting in Ni = 1500, whereas the coupling model time step is
∆t = 0.004s, yielding Ni = 750 for the reproduction of the same temporal evolution
t = [0,3]s. Holding the number of POD basis functions constant to Nr = 30 and the
higher Ns bound fixed to 750, different multiples of ∆t are explored, yielding smaller
values for Ns. Figure 4.14 illustrates that the projection errors slightly decrease
with an increasing amount of snapshots considered, showing a mild trend. The
relative errors presented in Table 4.5 reinforce the notion that the impact of Ns is
limited. The RIC decreases with increasing Ns, because the reduction increases, or,
equivalently, Nr/Ns decreases. However, this increase in Ns does not necessarily
translate to largely smaller errors, as demonstrated. Those considerations, along with
the anticipation of the following sensitivity analyses (Section 4.3.6 and Section 4.3.7),
where the snapshots dataset will undergo substantial changes, motivate the choice of
setting Ns = 250 in what follows.
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Fig. 4.14 Evolution of the projection errors for the velocity and the VOF fields, with
respect to the number of snapshots Ns.

Ns Multiple of ∆t RIC (%) ε̄u
pro j ε̄v

pro j ε̄w
pro j ε̄α

pro j

50 15 99.80 6.4e-4 2.6e-4 7.3e-3 2.7e-4
75 10 99.78 4.6e-4 2.0e-4 5.6e-3 1.9e-4
150 5 99.77 2.3e-4 1.1e-4 3.1e-3 9.7e-5
250 3 99.77 1.4e-4 6.4e-5 1.9e-3 5.8e-5
750 1 99.77 4.7e-5 2.1e-5 6.4e-4 1.9e-5

Table 4.5 Characteristics and projection errors of velocity and VOF fields, for various
number of snapshots Ns.

Finally, the ultimate configuration is Nr = 30 and Ns = 750. Such a configuration
produces absolute errors evolving with time as plotted in Figure 4.15.
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Fig. 4.15 Evolution of the absolute errors for the velocity and VOF fields over
time, over the high-fidelity domain Ωh f and over the remaining low-fidelity domain
Ωl f \Ωo. The POD ROM model is built with Nr = 30 and Ns = 750.
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4.3.5 Subdomains Size Sensitivity

The selection of the size of the subdomains does not directly affect the coupling
methodology, but does impact the outcomes of the coupled model. Variations in
the size of the high-fidelity subdomain yield corresponding fluctuations in model
errors, with an opposite effect on computational costs. Similarly, alterations in the
dimensions of the overlapping region, Ωo, currently encompassing the entire Ωh f ,
impact both the computational burden of the minimization problem for a∗, and the
accuracy of such resolution. The two sensitivity analyses are treated independently,
holding the other parameter constant.

Sensitivity of the size of high-fidelity domain

At this stage, the overlapping region is still held Ωo ≡Ωh f . A large Ωh f is expected
to result in more accurate outcomes, compared to smaller subdomain sizes, since a
larger portion of the entire ΩHF is simulated with the high-fidelity solver, leaving
only a small portion for approximation by the low-fidelity solver. To investigate
this, three different sizes are considered, denoting each configuration RD, with
parametrization via the volume ratio D = |ΩHF |

|Ωh f | . All the simulations previously
shown use R6. Two other sizes, namely a larger one with R3, and a smaller one
with R8 are now simulated as well. The three cases are outlined in Figure 4.16 and

Table 4.6 shows the ratio of the number of mesh cells at initialization, Rncells =
nΩHF

cells

n
Ωh f
cells

.

The relationship is not linear, but rather depends on the shape and position of Ωh f ,
especially considering that the majority of the cells are concentrated around the free
surface, where adaptive mesh refinement is employed.

ΩHF ΩHF ΩHF

Ωh f Ωh f Ωh f

Case R3 Case R6 Case R8

Fig. 4.16 Outline of the high-fidelity subdomain Ωh f with varying size, yielding the
different test cases.
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Case RD Rncells

R3 3 1.69
R6 6 3.38
R8 8 4.50

Table 4.6 Volume ratio RD and number of mesh cells ratio Rncells for the the three test
cases analyzed.

From Table 4.7, the errors obtained for the R3 and R6 cases are almost the same,
while the error for the R8 case is larger. A good trade-off between computational
time and accuracy seems to be the R6 case. This case has been chosen in the previous
sections and will, thus, continue to be used in what follows.

Case ε̄u ε̄v ε̄w ε̄α

Ωl f \Ωo

R3 6.77e-5 3.92e-5 7.38e-4 1.42e-5
R6 7.63e-5 5.35e-5 7.09e-4 1.86e-5
R8 1.34e-4 1.20e-4 7.86e-4 2.52e-5

Ωh f

R3 1.44e-4 1.41e-4 9.69e-3 2.08e-5
R6 1.91e-4 1.32e-4 1.08e-2 2.63e-5
R8 6.31e-4 3.09e-4 2.27e-2 4.88e-5

Table 4.7 Relative errors over the high-fidelity domain Ωh f and over the remaining
low-fidelity domain Ωl f \Ωo, for the test cases with varying high-fidelity domain
size.

The modest size of the computational domain selected for the sensitivity analysis
enables a straightforward comparison of computational times. Both the original CFD
simulation on ΩHF and the coupled model are executed on the same computer, using
6 processors. In the R6 scenario, alongside a high-fidelity mesh cell reduction of
over 3 (as indicated in Table 4.6), a speedup factor of 4.35 is achieved.

Sensitivity of the size of the overlapping domain

In the previous analysis, the overlapping region is considered Ωo≡Ωh f for simplicity,
and corresponds hereafter to the reference, case 0. Three other frame-shaped domains
Ωo are also considered, and presented in Figure 4.17.
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Ωh f Ωh f

Ωh f Ωh f

Case 0 Case a

Case b Case c

Fig. 4.17 Outline of the overlapping subdomain Ωo with varying size, yielding the
different test cases.

If no sensors are considered (M = 0), the minimization problem for a∗ is well-
posed if the number of mesh cells Ne included in Ωo is Ne ≥ Nr. Each configuration
tested here satisfies this requirement. The cases (a), (b), and (c) all present hollow
overlapping regions, embedding the region where a rigid body is supposed to be
moving. In general, as mentioned, POD encounters challenges when applied to
systems involving moving bodies. This difficulty primarily arises because POD basis
functions are spatially defined on fixed points, possibly on a mesh grid. However, the
movement of a body, whether followed through a deforming mesh or an overset mesh,
can disrupt the position or availability of values at these points. To mitigate these
issues, one could opt for the implementation of more intricate methods [219, 220].
Alternatively, a simple strategy would be to exclude the portion of the domain
where the body is expected to move. This last approach is implemented in the
proposed coupling methodology, and ensures that the POD basis functions remain
appropriately defined on a consistent mesh.

Case 0, embedding the majority of points for the minimization problem, is
expected to give the most accurate outcomes. However, for the reason just explained,
it is not a suitable choice for simulations involving moving bodies. On the other
hand, cases (a) and (b) feature uniformly shaped overlapping regions, extending 5
and 10 grid elements from the boundaries, respectively. A non-uniform overlapping
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region is considered for case (c), with fewer elements above and below the body
area, primarily extending longitudinally along the zone containing the free surface.

Case ε̄u ε̄v ε̄w ε̄α

Ωl f \Ωo

0 7.61e-5 5.33e-5 7.22e-4 1.86e-5
a 2.23e-3 1.98e-3 4.45e-3 2.92e-4
b 1.81e-3 1.80e-3 2.47e-3 2.59e-4
c 2.30e-4 2.06e-4 8.05e-4 2.83e-5

Ωh f

0 1.85e-4 1.29e-4 1.14e-2 2.61e-5
a 3.50e-3 3.63e-3 4.28e-1 3.67e-4
b 2.48e-3 2.32e-3 1.39e-1 5.12e-4
c 3.09e-4 2.49e-4 1.17e-2 4.73e-5

Table 4.8 Relative errors over the high-fidelity domain Ωh f and over the remaining
low-fidelity domain Ωl f \Ωo, for the test cases with varying overlapping domain
size.

The relative errors computed in the small high-fidelity domain Ωh f and in the low-
fidelity domain Ωl f \Ωo are reported in Table 4.8. The errors obtained in case (c) are
quite close to those obtained in case 0, while the errors obtained in cases (a) and (b)
are one order of magnitude higher. Indeed, the most sensitive boundary conditions
for Ωh f are the lateral ones (left and right) where appropriate conditions have to be
imposed, especially for the water level, numerically imposed by the VOF α . A large
overlapping zone is thus required in this region, case (c) satisfies this requirement,
and will be thus used in what follows.

4.3.6 Prediction Sensitivity

Until this section, the data collected from the original high-fidelity simulation, with
initial conditions using Hw = 0.60m and Hs = 0m, are used to build the POD basis
functions for the coupled model, that reproduces the simulation for the same initial
conditions. In other words, what is performed is an in-sample test, also called a
reproduction problem. In this section, data from simulations based on different
initial conditions Hw are collected and used in the training phase, and the coupling
algorithm is evaluated for the simulation initialized with Hw = 0.60m (here case
0), which is not included in the database. Several training sets are considered (see
Figure 4.18), combining different Hw. The chosen Hw are progressively farther
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from the target initial conditions (cases A, B, C, and D), or are all collected in a
large dataset (case E). In either case, the various initial conditions are all defined
symmetrically with respect to the target value, Hw = 0.60m. This selection ensures
the most challenging prediction scenario. Any other Hw value would be closer
to at least one of the solutions present in the trained dataset, making it easier to
predict than Hw = 0.60m, which maintains the same distance from all solutions in
the datasets constructed in this section.
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Fig. 4.18 Quantitative (left) and graphical (right) definition of the varying parameter,
Hw, for the out-of-sample tests. Case 0 represents the in-sample test, taken as
reference. Case E groups the snapshots from all the other cases, except case 0.

The main parameters are recalled. For each case, Nr = 30 POD modes are considered.
The number of snapshots for each Hw is Ns = 250, so cases A, B, C, and D have a
dataset of Ns = 500 elements, and case E has a large dataset with Ns = 2000.

The relative errors, both projection (Table 4.9) and coupled model (tabular
representation in Table 4.10, and in graphical representation in Figure 4.19) ones,
show the same trend. The solution for the baseline configuration (case 0) can be
well approximated using training sets that do not contain the in-sample snapshots.
In particular, datasets from initial conditions closer to the target (case A) give good
results. The relative errors increase when the training points are farther from the
baseline configuration (cases B, C, and D). The large dataset (case E) provides good
results, with an expected better robustness than the other cases A-D.
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Case Hw (m) RIC (%) ε̄u
pro j ε̄v

pro j ε̄w
pro j ε̄α

pro j

0 0.60 99.97 4.90e-5 2.20e-5 6.57e-4 2.02e-5

A 0.58,0.62 99.92 7.21e-5 3.89e-5 1.19e-3 2.61e-5

B 0.55,0.65 99.86 1.41e-4 8.08e-5 1.24e-3 4.36e-5

C 0.52,0.68 99.85 2.00e-4 1.03e-4 1.33e-3 5.82e-5

D 0.50,0.70 99.84 2.39e-4 1.17e-4 1.35e-3 6.80e-5

E

0.58,0.62

99.79 1.53e-4 7.44e-5 1.17e-3 4.71e-5
0.55,0.65
0.52,0.68
0.50,0.70

Table 4.9 Characteristics and projection errors of velocity and VOF fields, for various
combinations of initial condition parameter Hw.

Case ε̄u ε̄v ε̄w ε̄α

Ωl f \Ωo

0 6.29e-5 4.23e-5 7.09e-4 1.74e-5
A 1.09e-4 8.57e-5 1.27e-3 2.41e-5
B 2.68e-4 2.32e-4 1.43e-3 4.84e-5
C 3.54e-4 2.82e-4 1.47e-3 6.75e-5
D 6.76e-4 5.56e-4 1.57e-3 1.18e-4
E 3.21e-4 2.68e-4 1.30e-3 5.83e-5

Ωh f

0 1.72e-4 1.19e-4 1.26e-2 1.37e-5
A 3.43e-4 2.14e-4 2.29e-2 1.95e-5
B 3.64e-4 2.48e-4 2.11e-2 5.14e-5
C 4.50e-4 2.98e-4 1.66e-2 5.97e-5
D 6.18e-4 4.94e-4 2.26e-2 2.02e-4
E 4.58e-4 2.96e-4 2.04e-2 7.12e-5

Table 4.10 Relative errors over the high-fidelity domain Ωh f and over the remaining
low-fidelity domain Ωl f \Ωo for the different sampling test cases.
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Fig. 4.19 Visual representation of the relative errors for the velocity and VOF
fields over the high-fidelity domain Ωh f and over the remaining low-fidelity domain
Ωl f \Ωo, of all the cases analyzed.
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Examining Figure 4.19, case D stands out showing large errors compared to
the other cases, as the solutions contained in the dataset are the farthest from the
target Hw. When the dataset is trained on solutions with initial conditions that are
too distant from the target, and Nr is maintained constant, the model’s performance
degrades. Indeed, tests can be extended to larger ranges of Hw. For demonstration
purposes, another case, case F, is added to the analysis. The dataset comprises
solutions from simulations with initial conditions Hw = {0.40,0.80}m. Truncation
is consistently set at Nr = 30, yielding RIC = 99.82%, comparable to the other cases
(refer to Table 4.9). The relative errors are detailed in Table 4.11, and graphically
depicted in Figure 4.20, compared to the reference, case 0, and case D, the worst
case in the previous comparison.

ε̄u ε̄v ε̄w ε̄α

Projection 3.87e-4 1.90e-4 5.93e-3 1.05e-4

Ωl f \Ωo 1.67e-3 1.62e-3 8.88e-3 2.05e-4

Ωh f 1.54e-3 1.62e-3 5.67e-2 4.13e-4

Table 4.11 Relative errors, obtained from projection and from the coupled model over
the high-fidelity domain Ωh f and over the remaining low-fidelity domain Ωl f \Ωo
for case F.

As anticipated, the errors progressively escalate to significant magnitudes. Moreover,
upon examination of the solution computed by the CFD model in Ωh f , inaccuracies
generate, as depicted in the snapshot in Figure 4.21. The free surface and the velocity
begin to manifest instabilities, with observable breaking waves. Not only does this
outcome deviate from the desired result, but it also lacks physical accuracy, a critical
concern. The issue with such data far from the target lies in the model’s inability to
extract useful information from this dataset for its reconstruction. A smaller Hw leads
to a simulation with a tiny wave, with the free surface undergoing slight temporal
evolution. On the contrary, a higher Hw generates a steep wave, with substantial water
movement within the domain. Both behaviors strongly differ from the evolution
of the free surface initiated at Hw = 0.6m, and thus are not useful for its accurate
modeling. Truncating at a larger Nr may ameliorate results, but would go against
reduction principles. Thus, the careful definition of the training set is imperative, and
heavily dependent on the specific problem at hand. Improved sampling strategies,
such as employing clustering techniques, could be explored. Nonetheless, this
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Fig. 4.20 Visual representation of the relative errors for the velocity and VOF fields
over the high-fidelity domain Ωh f and over the remaining low-fidelity domain Ωl f \
Ωo, of the farthest cases (D and F) from the target (case 0), plotted for comparison.
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Fig. 4.21 Snapshot of the high-fidelity solution on Ωh f during coupling, for case F.
Both velocity and VOF fields are represented, on a x− y section, at T = 0.5s.

section proves the ability of the coupling methodology for parametric investigations,
where the varying parameter, here, is the initial wave height, while other parameters
could be similarly explored.

4.3.7 Clustering Sensitivity

As the simulation progresses, the absolute error has a general upward trend (see
Figure 4.15), primarily due to the accumulation of approximations introduced by the
reduced-order model. While this trend is less pronounced in the low-fidelity subdo-
main, it exhibits a gradual increase over time. In the high-fidelity subdomain, the
velocity error initially increases within the first few seconds before stabilizing. This
stabilization can be attributed to the nature of the test case, rapidly transitioning to a
state of calm water surface, where the approximation becomes more straightforward,
after the initial period. The VOF, however, continues to exhibit a consistent upward
trend.
Clustering presents a potential strategy to mitigate error growth. Clustering involves
partitioning a vast dataset into smaller, more manageable, groups, by reducing the
dimensionality of each group for analysis purposes. While clustering techniques are
commonly employed to pattern recognition or classification problems, they have also
found application in addressing data compression and model order reduction chal-
lenges [221]. The existing literature of model order reduction contains considerable
number of clustering techniques, and the K-means stands out as a common strategy
applied when the number of clusters is predetermined. K-means is a technique
that aims to minimize the average squared distance between points within the same
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cluster [222]. In this case study, the dataset S comprises the snapshots U(x, t;η), and
the interest is in selecting arbitrarily K centers {q1, . . . ,qK}, to minimize the total
squared distances between each point and its nearest center. Typically, the Euclidean
distance serves as the deviation measure, so one must solve, for each group:

∑
U∈S

min
q∈Q
∥U(x, t;η)−q∥2. (4.15)

This implies that for each i ∈ 1, . . . ,K, the cluster Qi comprises the data in S that are
closer to qi than to any other q j, with j ̸= i. Subsequently, the center of mass qi of
all the data in the cluster Qi is computed as qi =

1
Qi

∑U∈Qi U(x, t;η). This iterative
procedure, which involves sorting the elements of S, and recomputing the cluster
center based on any new addition, continues until Q remains unchanged. While
K-Means lacks accuracy guarantees, its simplicity and computational efficiency
make it highly appealing for practical applications. In this case, η = 0, and the
only variable parameter is the time. Applying the kmeans function in Matlab to the
current snapshots dataset provides a first insight into how the 250 snapshots could be
partitioned. By requesting K = 2, K = 3, or K = 6 clusters, the algorithm gives the
results shown in Figure 4.22.
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Fig. 4.22 Division of the snapshots in clusters, according to the kmeans function in
Matlab.
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There is a nearly consistent division corresponding to the time evolution, with
snapshots distributed fairly evenly across each cluster. The case being studied
appears to be relatively straightforward, motivating the division of the entire dataset
into distinct clusters, effectively based on time evolution. The division is, thus,
unambiguous. The approach involves segmenting the complete simulation time
into several intervals, and defining different sets of basis functions based on the
snapshots corresponding to each interval, as illustrated in Figure 4.23. Given that
the simulation time spans t = [0,3]s, three scenarios are compared, dividing into
K = 2,3,6 intervals, yielding cases T1/K .

T (s)
0 3

Case T1/1

Ns1

T (s)
0 31.5
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Fig. 4.23 Outline of the cluster separation of the snapshots, yielding to various test
cases. The total time is divided in K = 2,3,6 clusters, compared to the reference
case T1/1 (no clustering, with K = 1).

Contrary to the K-means algorithm, no centers nor distances need to be computed,
since the clusters are defined solely on time. Furthermore, during the coupling
process, instead of selecting the closest cluster to the solution at each time step, a
simple switch between consecutive clusters is required, when their respective range
of applicability ends. As visible in Figure 4.23, the clusters are partially overlapping,
incorporating a few snapshots from the nearest cluster, to prevent abrupt shifts in the
solutions. However, the transition between clusters occurs precisely at the designated
time, so at T = 1s and T = 2s in case T1/3, for example. The number of snapshots in
each cluster, for the test cases considered, along with their respective RIC, are listed
in Table 4.12. The number of modes is held constant across all cases, set to Nr = 30.
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Case NsK Ns RIC (%)

T1/1 Ns1 250 99.77

T1/2
Ns1 142 99.94
Ns2 143 99.94

T1/3

Ns1 100 99.96
Ns2 119 99.96
Ns3 101 99.98

T1/6

Ns1 59 99.99
Ns2 76 99.98
Ns3 77 99.99
Ns4 77 99.97
Ns5 76 99.99
Ns6 60 100

Table 4.12 Characteristics of the test cases considered. NSK represents the number of
snapshots in the K-th cluster.

The absolute errors plotted in Figure 4.24 demonstrate the potential improvement
in the approximation of the solution using the clustering technique, controlling the
error to a nearly constant value over time. This is particularly noticeable for the
velocity in the high-fidelity subdomain Ωh f , although less remarkable for the VOF,
and for the low-fidelity reconstruction. The reason for the VOF error trend may
lie in the fact that the chosen case lacks significant evolution of the free surface.
Regarding the low-fidelity error, on the left-hand side of Figure 4.24, the mild
upward trend of errors for the basic simulation suggests that clustering may not
bring significant improvements. Additionally, the interpolation process may be, once
again, responsible for filtering out any potential improvement during runtime.
As also the relative errors in Table 4.13 highlight, increasing the number of clusters
does not necessarily lead to improved solutions. Indeed, for this particular test case,
two clusters are enough, and larger K gives comparable, or even worse, solutions,
as observed for case T1/6. Alternatively, one could continue dividing the simulation
time into smaller time intervals, although a minimum number of snapshots for each
subset would need to be ensured. Nevertheless, excessively small clusters might fail
to accurately capture the simulation dynamics, and could prove detrimental.
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Fig. 4.24 Evolution of the absolute errors for velocity and VOF fields over time.
Both errors over the high-fidelity domain Ωh f and over the remaining low-fidelity
domain Ωl f \Ωo are plotted for the different clustering test cases.
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Case ε̄u ε̄v ε̄w ε̄α

Ωl f \Ωo

T1/1 2.28e-4 1.60e-4 2.16e-3 5.58e-5
T1/2 5.61e-5 3.99e-5 6.62e-4 1.32e-5
T1/3 4.67e-5 3.20e-5 6.26e-4 1.09e-5
T1/6 5.58e-5 3.52e-5 7.00e-4 1.28e-5

Ωh f

T1/1 1.85e-4 1.29e-4 1.14e-2 2.61e-5
T1/2 8.92e-5 5.67e-5 3.09e-3 3.08e-5
T1/3 9.52e-5 6.28e-5 3.62e-3 2.85e-5
T1/6 1.01e-4 6.26e-5 3.34e-3 3.41e-5

Table 4.13 Relative errors for velocity and VOF fields over the high-fidelity domain
Ωh f and over the remaining low-fidelity domain Ωl f \Ωo, for the different clustering
test cases.

4.4 Wave Energy Converter

At this stage, the simulation of a wave energy converter with the coupled model
might seem intimidating. Actually, it should be more manageable than one might
think. Indeed, the moving body is only modeled within the high-fidelity subdomain,
a region that remains outside the coupling methodology, and can be simulated using
CFD solvers and overset meshes tailored to the situation. To prove this, an infinite
cylinder is first inserted in the simulation, holding all other variable or parameter as
defined until this point (Section 4.4.1). Subsequently, a sphere is simulated with an
incoming wave, increasing the complexity, with a fully three-dimensional problem
and simulation, and a distinct free surface evolution (Section 4.4.2). As the coupling
methodology proves its efficiency, an algorithm is proposed for the simulation of a
WEC farm, in Section 4.4.3.

4.4.1 Floating Cylinder

The selected body for this study is a cylinder with horizontal axis and a radius of
0.3m, extending across the entire domain in the z direction. The mass of the body is
10kg, and it has only one degree of freedom, the heave (Figure 4.25).

Consistent with previous decisions, the size of the high-fidelity subdomain
matches case R6, and the overlapping region matches case (c), of Section 4.3.5. The
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Ωh f

Fig. 4.25 Simulation setup for the modeling of a cylinder, moving in heave (according
to the arrow), and floating on water with free surface initial condition plotted in blue.

number of modes retained is Nr = 30, and two cases are simulated: one without
clustering, called Body T1/1, and another with three clusters, labelled Body T1/3.
The clustering characteristics remain unchanged from the previous section, and
the comparison aims to assess the impact of the temporal clustering technique in
scenarios involving a moving body, a factor not previously considered. The relative
errors in Table 4.14 show a general decreasing trend using clustering, albeit at a rate
smaller than in cases without a moving body. For the subsequent test, no clustering
will be implemented. However, in the case of a parametric study, with η ̸= 0, a
clustering would likely prove more beneficial.

Case ε̄u ε̄v ε̄w ε̄α

Ωl f \Ωo
Body T1/1 7.96e-5 5.64e-5 6.43e-4 1.89e-5
Body T1/3 4.57e-5 3.46e-5 5.68e-4 1.10e-5

Ωh f
Body T1/1 2.29e-4 1.81e-4 2.82e-3 3.87e-5
Body T1/3 1.62e-4 1.19e-4 1.91e-3 4.11e-5

Table 4.14 Relative errors for velocity and VOF fields over the high-fidelity domain
Ωh f and over the remaining low-fidelity domain Ωl f \Ωo, in the cases with and
without clustering.

Moreover, there is a minimal degradation of the solution in the coupled model with
the presence of a body, compared to the case with only the wave (see, for example,
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Table 4.13). In addition to error assessment, a comparison of the vertical translation
motion, and the force exerted on the body, is conducted to understand whether
the coupled model can adequately capture the evolution of the body performance.
Figure 4.26 corroborates the results, and highlights the suitability of the coupled
model for the simulation of the dynamics of a body in a multiphase flow.
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Fig. 4.26 Evolution of the force acting on the body and the heave motion of the body
over time. The solutions from the coupled model are compared to the high-fidelity
simulation solution over ΩHF used to build the basis functions (HF).

4.4.2 Point Absorber with Incoming Wave

The goal is to numerically model a class of wave energy converters, where the
energy harvesting devices are floating bodies, with rigid motions, driven by sea
waves. Floating wave energy converters are typically deployed in deep waters,
ideally located far from the shoreline. These devices are equipped with a mooring
system and harness the oscillatory motion generated by the waves to produce energy.
Here, a sphere floating on sea waves is considered. The floating body could easily
approximate a point absorber WEC type, i.e., the only degree of freedom is in the y
direction (aligned with gravity). The sphere modeled here has radius 0.3m and mass



160 Multi-fidelity modeling of Wave Energy Converters

20kg. The incoming wave is imposed by M > 0 sensors in the coupling strategy.
The objective is to predict the wave behavior and the motion of the floating body,
subjected to an imposed wave. The wave is defined with some characteristics (period,
height, and wavelength), defined later in the section.

Compared to the previous case of the floating cylinder, in addition to the presence of
an incoming wave, the domain also slightly changes. The original computational
domain, noted Ωsim, expands to [85×45×10]m, see Figure 4.27.

Ωsim

ΩHF

x

y

z

Fig. 4.27 Representation of the original computational domain Ωsim, with the differ-
ent local mesh refinements.

The large size of this domain is necessary to take into account the water depth, the
multiple wavelengths, and artificial forcing zones that avoid spurious reflections.
For this simulation, a mesh with several refinements is used, to have at least 13
cells per wave height, and an aspect ratio of 2, in the longitudinal direction, in the
area of main interest around the free surface. A coarser background mesh is used
for the areas where the computation is less complex, or the solution is imposed.
For example, wave forcing and damping is employed to avoid waves that could be
reflected back into the domain, and affect the simulation’s results. Wave forcing is
used to ensure specified wave shapes, and is applied for 3 wavelengths from the inlet
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boundary, and one wavelength from the back boundary, where Dirichlet conditions
are applied on the velocity. Wave damping, introducing vertical resistance to vertical
motion, allows to numerically reduce wave amplitude, and is used for 3 wavelengths
from the outlet, where Dirichlet boundary conditions are imposed on pressure. Also
at the top boundary, Dirichlet conditions are applied on the pressure. All those
considerations allow to have a simulation of a traveling wave which is accurate. Tests
are conducted to check that the resulting wave corresponds to the theoretical wave
inserted in the model. Subsequently, the floating body is inserted, modeled with
the Dynamic Fluid Body Interaction (DFBI) in StarCCM+, which allows to predict
dynamic 6-DoFs motion of bodies, due to fluid forces, and potentially constraining
them in any direction. In this case, the only degree of freedom is the translation along
the y direction, and all the other motions are constrained. This choice is for sake of
simplicity, velocity of simulation, and validation of the methodology, but a complete
6-DoFs body, with a mooring system, and a control strategy, could potentially be
simulated.
As long as the CFD solver is able to deal with such nonlinearities, the coupling
method is not affected. Also, without loss of generality, a smaller domain, ΩHF ⊂
Ωsim, is considered to reduce the memory footprint and CPU costs for POD basis
functions. Even though it is necessary to compute the actual solution on Ωsim, its
trace is considered only on ΩHF . Similar to the previous test case, the domain ΩHF

is [10×6×0.8]m. This allows to consider more than one wavelength in the domain.
The domain Ωh f is [4×2.5×0.6]m, which represents 0.015% of the volume of the
real simulation domain ( |Ωsim|

|Ωh f | = 6375).

The sketch of the domain decomposition is depicted in Figure 4.28. The change
in the domains, for this section, is mainly driven by the need to pass to a completely
three-dimensional simulation. Indeed, a sphere is now simulated, and even though
the incoming waves are all unidirectional, the fluid-structure interactions may induce
oscillations in transversal directions. Therefore, as visible in the top of Figure 4.28,
the boundary Γh f

back is added to Γh f , where the boundary conditions are imposed
during the coupling process. For Γh f

f ront , however, a symmetry condition is still used
to reduce the computational burden of the FOM simulation, and is also kept in the
coupled model. This is possible as long as the incoming waves are unidirectional,
and the floating body is axisymmetrical. When considering multidirectional waves
and more complex WEC types, or WEC farms, where the flow dynamics is very
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Fig. 4.28 Sketch of the domain for the simulation of the spherical point absorber,
with definition of the subdomains and boundaries.

complex in all directions, then, no symmetry planes can be used, and the boundary
conditions are imposed in all six boundaries of Γh f .

An overset mesh is used for the sphere in the whole domain Ωsim, and in the
small domain Ωh f . These domains become unsteady, and computing the POD
basis functions onto an unsteady domain is challenging. The solution previously
implemented is to remove a subdomain including all the possible motions of the
floating body. The choices of domains Ωh f and Ωo are made accordingly to the
previous sections, inspired from R6 (c), and satisfy the previous requirement, i.e., all
possible body locations are in Ωh f \Ωo. The POD basis functions are only computed
on Ωl f = Ωo∪ (ΩHF \Ωh f ). Particularly, the overlapping region conserves the same
size in the x and y directions, from the test case (c) presented in the dedicated section,
but a new area is added in the z direction. With the new dimensions, the volume
ratio between ΩHF and Ωh f becomes 8, yielding a bigger reduction with respect
to the test case used in the sensitivity analysis. Numerically, ΩHF is composed of
413457 cells, Ωh f is composed of 53703 cells, and Ωo is composed of 38493 cells.
For simplicity reasons, M = 3482 sensors are used, covering a domain of dimension
[0.2×2×0.8]m, see Figure 4.31.
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With this test case, two analyses are carried out: an in-sample reconstruction,
and an out-of-sample prediction. IS denotes the in-sample case where the POD
basis is computed with a database from the baseline condition W0, and OOS denotes
the out-of-sample case, where the POD basis is computed with a database from
conditions W1 and W2. Waves W0, W1 and W2 are defined in Table 4.15, and
plotted in Figure 4.29. All the waves have low steepness to be sure to avoid breaking
waves. All three waves differ both in wave height and wavelength, so the parameter
space has two dimensions, although not very populated for now.

Wave Wave period (s) Wave height (m) Wavelength (m)

W0 2 0.4 6.25
W1 1.95 0.36 5.94
W2 2.05 0.44 6.56

Table 4.15 Characteristics of the tested waves.
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Fig. 4.29 Visualization of the tested waves. The target wave, W0, has characteristics
(wave height and wave period) equal to the mean of the characteristics of the other
two waves, W1 and W2, used for the out-of-sample test.

The number of POD modes is always Nr = 30. Each simulation lasts until T = 6
s, allowing an incoming wave to impact the floater. The snapshots are collected at
∆t = 0.012s, for a total of NS = 500 for each simulation.
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Case ε̄u ε̄v ε̄w ε̄α

Ωl f \Ωo
IS 2.40e-4 1.67e-4 4.35e-4 3.02e-5

OOS 4.74e-4 3.39e-4 1.09e-3 5.23e-5

Ωh f
IS 4.35e-4 3.08e-4 1.59e-3 4.38e-5

OOS 4.80e-4 3.87e-4 1.62e-3 7.77e-5

Table 4.16 Relative errors for velocity and VOF fields over the high-fidelity domain
Ωh f and over the remaining low-fidelity domain Ωl f \Ωo, for In-Sample (IS) and
Out-Of-Sample (OOS) tests.

The computed errors are reported in Table 4.16. The errors obtained in the
out-of-sample (OOS) case are slightly larger than in the in-sample (IS) case, but they
are comparable. The evolution of the vertical translation of the body and the vertical
force acting on it are plotted in Figure 4.30.
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Fig. 4.30 Evolution of the force acting on the sphere and the heave motion over time.
The solutions from the coupled model (hf+POD) are compared to the high-fidelity
simulation solution over ΩHF used to build the basis functions (HF).

For the IS case, the temporal evolution of the force and the position of the body is
very close to the reference one (HF), with a small dissipation, visible at the peaks
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and troughs. For the OOS case, the difference between the predicted solution and
the reference one is slightly larger, but the overall behavior is good. In this case, in
addition to a higher dissipation, maybe also linked to the chosen time step, a phase
shift is visible. This is most probably related to the fact that the training dataset
contains different wave periods from the target one, and some difficulties have
already been pointed out in the phase reconstruction by the POD. The comparison of
the force on the body and its translation is kept graphical, since an error, considering
such a phase shift, would not be representative. An error based on a Wasserstein
distance might be more appropriate than the L2 norm, for example. Anyway, to limit
the phase shift, a clustering technique could be a good approach, starting from a
larger dataset than the one available here, and letting the model find the closer cluster
at each time step. In any case, these first results show that it is possible to obtain
good predictions for out-of-sample cases with large CPU gains. Indeed, recalling
that |Ωh f |

|Ωsim| = 0.015% points out the significant CPU savings.

In terms of computational times, a direct comparison is not feasible, as the
original CFD simulation on Ωsim and the coupled model are executed on different
computers. However, certain observations can still be made. A single high-fidelity
simulation on Ωsim, using a set of wave characteristics outlined in Table 4.15, requires
approximately 10 hours and 30 minutes, with 48 processors. In contrast, the coupled
model delivers results in less than 4 hours, using 6 processors. Although the speedup
achieved is already significant, it does not mirror the storage gain ratio, since the
computational bottleneck, implementing the DFBI model, and the overset mesh
for the moving body, is present in both high-fidelity simulations, whether in Ωsim

or Ωh f . Furthermore, despite the necessary expense of the offline training phase,
which entails running costly simulations for a few parameter values (here W1 and
W2), it enables the generation of a wide array of new solutions, for numerous other
parameter values (where W0 only represents one example, and the most distant in
terms of parameter values), at the reduced cost afforded by the coupled model.

Finally, a snapshot of the air-water interface (from the VOF variable α) with
the spherical point absorber, obtained with the multi-fidelity model, is given in
Figure 4.31. The air-water interface is continuous across the whole domain, with
little spurious effects being observed near the overlapping zone.
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x

y z

Fig. 4.31 Snapshot of the air-water interface, located at α = 0.5, obtained from the
coupled model in the out-of-sample test. The green domain represents ΩHF , the
violet domains represent the total support of the minimization problem, given by
both the overlapping domain (around the sphere) and the sensor locations, here taken
over a region close to the inlet boundary (on the left). Only one half of the domain
in the z direction is actually computed, the visualization in the whole domain is
obtained by symmetry.

For a closer examination and better understanding of the results, snapshots of the
velocity and VOF fields, at T = 1s and T = 5s, are plotted in Figures 4.32, 4.33,
respectively. These results, as also the representation in Figure 4.31, are obtained
from the multi-fidelity model for the out-of-sample (OOS) test. Near the Ωh f domain,
indicated by a light dotted line, a slight discontinuity in the values is noticeable.
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Fig. 4.32 Snapshot at T = 1s. Top: coupled solution for velocity and VOF fields.
Bottom: corresponding absolute difference from the FOM solution.
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Fig. 4.33 Snapshot at T = 5s. Top: coupled solution for velocity and VOF fields.
Bottom: corresponding absolute difference from the FOM solution.
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The VOF field snapshots (Figures 4.32b, 4.33b) display a colorbar extension for
α < 0 and α > 1, which are non-physical values confined to the low-fidelity subdo-
main. While the CFD solver restricts such non-physical values, the approximation
in the reconstruction with basis functions permits their occurrence, potentially ac-
cumulating over time. An ongoing analysis involves penalizing the reconstruction
to mitigate such occurrences, which could also lead to improved boundary condi-
tions for the high-fidelity solver, thereby enhancing the overall solution. Examining
the absolute differences in both velocity and VOF fields, in the lower parts of Fig-
ures 4.32, 4.33, reveals that, as expected, the primary differences, between the
reference and reconstructed solutions, are concentrated around the free surface,
where, additionally, the POD model reconstructs a less sharp interface, with some
spurious values around α = 0.5. Remarkably, within the high-fidelity domain, sig-
nificant differences are observed at the center of Ωh f , where the body is in motion,
hence such values are not representative. While these differences are computed
for consistency with the methodology employed throughout the document, a more
refined approach to error computation, in such areas, should be considered. As
mentioned, the other region exhibiting high absolute difference magnitude is around
the free surface, where point-by-point differences are computed. Consequently, due
to possible phase shifts, some points may lack the presence of the free surface where
it should be, resulting in very large differences. However, this does not necessarily
imply poor performance of the coupled model.

Moreover, the absence of spurious reflections is noteworthy. In simulations
involving waves, establishing appropriate boundary conditions is a significant chal-
lenge [223, 224], often necessitating large domains (as Ωsim here), and forcing or
damping models [225, 226]. The computational costs required to solve the Navier-
Stokes equations, in such a computational domain, can become prohibitively large.
In this section, leveraging POD to provide suitable boundary conditions has proven
to be an effective approach, enabling a reduction in the computational domain size.
Consequently, there is no need for buffer layers in the coupling methodology, as
required in other coupling approaches, since only the values of the variables of
interest at the boundary sections of the high-fidelity domain are sufficient.

Finally, one might argue that the floating body utilized in this section does not
closely resemble a real WEC, given its smaller dimensions and weight compared
to typical WECs. This objection is valid, as WECs generally have, indeed, much
larger dimensions and weight. However, this difference does not undermine the
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efficacy of the coupling methodology. Numerical simulations are essential not only
for real-scale dimensions, but also for describing experimental tests, which are often
conducted at reduced scales. The size of the sphere and the simulated waves of
this section align with various experimental designs [172, 227–229], where Froude
and Reynolds scaling techniques are commonly applied to ensure kinematic and
dynamic similarities between the scaled model, and the real-world scenario [230–
232]. However, these considerations mainly pertain to the original high-fidelity
solver, which generates the snapshots, and resolves fluid-structure interactions. The
POD analysis is conducted based on such results. Therefore, as long as the CFD
model is validated, and accurately represents the intended problem, the coupling
methodology is expected to yield reliable results. This underscores the importance
of validating against the high-fidelity solution, and the absence of experimental data
validation for the simulations conducted in this thesis.

4.4.3 WEC Farm Coupling Algorithm

As the title of this manuscript suggests, the ultimate aim is the simulation of WEC
farms. The presented coupled CFD/POD methodology demonstrates its suitability
for simulating a single WEC. The next logical step involves integrating multiple
coupled models. The algorithm for this integration should augment the size of the
minimization problem, while retaining simplicity as a least squares problem.

To provide a brief overview of the potential algorithm, nB = 3 WECs of the
same type are chosen, each with identical setups for high-fidelity, and low-fidelity
domains, and simulations. As WECs are typically positioned relatively close together
in a farm, ΩHF domains may potentially overlap, as illustrated in Figure 4.34a. In
such scenarios, the minimization problem extends from the current support, the
overlapping region Ωo (orange areas in the figure), and the sensor locations xS, to an
additional area, ΩE , defined by the overlapping regions highlighted in blue in the
figure.

Expanding the framework in this manner, slightly increases the complexity of the
minimization problem. With information now coming from multiple directions,
not only from sensors and from the center of ΩHF , the minimization problem for
each body j must be solved over the new region Ω j

O = Ω j
o ∪ xS

j ∪Ω j
E , where Ω j

E

encompasses all overlaps related to the j-th body, and ΩE is the union of the nP
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Fig. 4.34 Visual representation of the coupling methodology for a WEC farm, con-
sidering small (above) and large (below) distances among WECs.
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overlapping patches, as depicted in blue in Figure 4.34. The minimization problem
is not solved once any more, but with an iterative process, inspired from the Schwarz
alternating method [233, 234], which involves solving the least squares problem
multiple times, until convergence in the overall ΩO =

⋃nP
j=1 Ω j

O, represented by all the
colored regions in Figure 4.34. In this way, the solution for the temporal coefficients
accounts for the information coming from all the WECs.

However, the distance between devices, in a farm, may vary, especially in
parameter studies, resulting in different forms of overlap. A minimum WEC-WEC
spacing may be established, to ensure adequate space for the different Ω j

h f to neither
touch, nor overlap. For the maximum distance, a limit may not be strictly related
to the coupling methodology, but rather follow conventional farm guidelines. In
scenarios where devices are spaced farther apart, the coupled farm model might
resemble the configuration depicted in Figure 4.34b, where additional domains
without devices are patched in. As a WEC farm simulation should describe both near
and far fields, POD basis functions need to be defined also around the farm, including
areas without WECs. Training can thus be conducted on various wave characteristics
without the presence of moving bodies. These subdomains are then incorporated
into the minimization process alongside the other subdomains containing the WECs,
following the same principle of overlapping macro-areas. Furthermore, by limiting
the size of propagating patches in this manner, the inherent dissipation of a CFD
model is also constrained.

The main challenge in this algorithm lies in simulating multiple bodies in different
Ωh f domains in StarCCM+. Although the software allows for parallel computations,
gathering information from each simulation, or from a single simulation with several
computational domains, is necessary at each time step, to solve the minimization
problem in the overall overlapping region ΩO, and provide the respective boundary
conditions to each Ω j

h f , for the subsequent time step. This aspect is currently under
investigation.

Validating such a farm model with a CFD solution, over a large domain, presents
significant challenges. Therefore, validation against experimental data, or another
validated model, may be more practical. In such cases, bypassing numerical valida-
tion, given its complexity, could be preferable, with direct experimental validation
being a viable alternative.
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4.5 Conclusion

The primary objective of this chapter is to efficiently model the behavior of WECs
under the influence of ocean waves, which presents a complex challenge due to the
interaction between the floating structure, and the dynamic fluid environment of real
waves. While the solution of the full order model is accurate, it becomes prohibitively
costly when applied to large-scale WEC problems. Indeed, accurately modeling real
waves necessitates a significantly large computational domain to accurately generate
and potentially dampen waves, particularly to prevent reflections. In this framework,
POD has proven essential to save computational resources and can be used to provide
appropriate information on the boundaries of the simulation domain. A non-intrusive,
two-way coupling methodology is proposed, based on domain decomposition, and a
Galerkin-free approach. The methodology simplifies to a least squares minimization
problem, enabling application to simulations involving moving bodies, including
wave energy conversion.

Beginning by considering a simple prototype, a point absorber sphere, the method-
ology can easily adapt to more complex, and full-scale, WECs, with multiple degrees
of freedom. Furthermore, without altering the coupling strategy, additional details
such as mooring, or control systems, can be incorporated, thus enhancing realism in
the simulations. Parameter tuning, such as adjusting domain sizes or the number of
POD modes, is problem-specific, and can be tailored to strike a balance between ac-
curacy and speedups. For the case considered, the volume of the high-fidelity domain
is reduced to just 0.015% of the original domain, yielding a huge computational
saving, while still maintaining accuracy, as the maximum relative errors stay below
0.2%. The approach yields fitting results for in-sample cases, where the reproduction
of the previously simulated problem, also used to obtain the POD modes, is needed
to assess the validity of the coupled model. Notably, the method also demonstrates
the ability to predict solutions for unseen parameters, in out-of-sample simulations.
In this case, the accuracy is conserved, and the significant reduction in CPU costs is
pushed even further, enabling intensive simulations, suitable for optimization tasks
and multiple-query simulations.

Although the model yields satisfactory results, there is room for improvement.
For instance, optimizing sensor locations could enhance accuracy, and computational
savings. Additionally, exploring advanced clustering techniques on snapshots could
reduce the POD offline stage, while simultaneously improving the online stage by
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decreasing the number of POD modes for each cluster. Moreover, the WEC farm
simulation is partially addressed, but further development is needed to fully model
and optimize such systems.



Chapter 5

Conclusion

This thesis represents a convergence of two distinct domains, typical of a cotutelle
programme. On one side, there is a mathematical tool, with a very high potential in
simplifying complex numerical simulations, as evidenced by numerous examples
in literature, albeit often still distant from real-world scenarios. On the other side,
there is the highly applied domain of wave energy, encompassing various aspects,
including numerical simulations on actual fluids, and possibly non-idealized cases.
The development of WEC farms poses significant challenges, given their multi-scale
nature, nonlinearities, numerous degrees of freedom, and the extensive numerical
simulations required prior to practical testing and deployment. Despite being less
obvious, computationally intensive numerical simulations also contribute to pollu-
tion due to the substantial computing resources they demand, in terms of storage,
time, energy, hardware, software, and network usage. Therefore, reducing computa-
tional costs not only facilitates progress in wave energy, leading to cleaner energy
production, but also minimizes the carbon footprint associated with simulations.
This further motivates the application of promising mathematical tools to real-world
scenarios.

The chapter structure of the document mirrors the sequential progression of the
project. An initial assessment of the current state of the art is crucial to delineate the
problem and determine the direction of research. Following Chapter 2, the need for
a modeling approach capable of addressing the multi-scale nature of WEC farms
becomes imperative. Additionally, a multi-fidelity model is preferable to separate
different dynamics, and identify the most suitable solver for each one. Typically, a
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high-fidelity solver is favored around the WEC, where nonlinearities and viscous
effects are concentrated. Conversely, a lower-fidelity solver is employed to propagate
solutions across larger domains, and needs to interact effectively with the high-
fidelity solver. A model that maintains consistency in variables across both solvers is
the most practical solution. Deviating from conventional methods, the use of model
order reduction aligns well with all the requirements. However, ROMs based on POD
for multiphase flows lack evidence in existing literature. Hence, an initial exploration
is necessary to assess the feasibility of applying such a technique to the specific
problem at hand. Chapter 3 deals with this aspect. Actually, a POD ROM model is
implemented for a biphase flow, showing a good reduction of the problem with the
POD, since less than 3% of the modes possess 99% of the information. Moreover,
an asymptotic reduced version allows to obtain a dynamical system composed of
at most third-order tensors, avoiding the appearing of a fourth-order tensor, which
would be cumbersome and against the idea of reduction. However, the dynamical
system fails to give a solution, when applied to real water/air flows. Considering
the limitations of POD ROM models with highly nonlinear problems, and recalling
the multi-fidelity approach, the coupling methodology proposed in Chapter 4 is
tested, and validated. The Galerkin-free approach enables the preservation of POD
reduction, without the burden of the stability issues. Moreover, coupling the POD
with the CFD around the WECs allows for accurate descriptions of nonlinearities in
that region, while the wave propagation is handled by the POD across the broader
domain. Communication between the two solvers is straightforward, as the variables
remain unchanged, eliminating the need for transformations, and preserving accuracy.
The only exception is the interpolation, necessary to establish a common framework
for information exchange. Additionally, potential dissipation inherent to CFD for
wave propagation is mitigated by computing the snapshots for POD training on small
patches, thus enabling control over numerical dissipation.

The research conducted in this PhD project raises several unresolved questions,
and offers numerous clues for future exploration. Currently, the coupling method-
ology demonstrates promising results, and significant reduction rates. Beyond the
immediate task of modeling WEC farms, including scenarios with hybrid configura-
tions involving additional energy systems, such as wind energy, lies a wide range of
potential investigations.
For instance, there is a need to consider sensor placement and data acquisition, as
the current assumption is idealized. Presently, numerous sensors are positioned at
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the inlet zone of the high-fidelity domain, providing extensive data on the variables
of interest. However, in real-world scenarios, such as at sea or in experimental
basins, sensors are typically scarce, sparsely distributed, and collect limited data,
potentially noisy and incomplete. Addressing this issue is essential to adapt the
external information to the numerical simulation, in addition to the fine-tuning of the
model to suit the specifics of the case under investigation.
Another area of focus could involve refining the implementation of the algorithm
to optimize the code, both in the offline and online steps, enhance information ex-
change, and suitably tune parameter values related to model, geometry, and training
phase. Establishing a user-friendly platform for running multiple simulations, par-
ticularly for optimization and parametric studies, could be beneficial, potentially
in collaboration with the StarCCM+ support. Alternatively, adapting the model for
integration into an open-source CFD code would widen the access to the model. The
non-intrusive nature of the approach offers flexibility for implementation. However,
while non-intrusiveness is advantageous, exploring an intrusive model, especially in
the case of a POD ROM, might be worthwhile, to assess potential improvements in
the Galerkin projection and governing equations. The primary objective would be to
stabilize the surrogate model, and prevent excessively large temporal coefficients in
the dynamical system solution. Further testing could involve assessing uncertainty
propagation at different stages of ROM model development, and exploring alter-
native combinations of variables, to better understand potential crossover effects.
Additionally, a shift from linear to nonlinear methods might be considered. Given
the focus on tracking free surface evolution, which can exhibit highly nonlinear
behavior, linear approximations in a POD ROM model may prove inadequate, even
with a high number of modes. Techniques such as optimal transportation [235], or
Wasserstein distances [236], could be explored for describing wave front movement,
aligning with shock-capturing methods, usually applied for numerical dissipation
activation or with error indicators for mesh adaptation and refinement. Nonetheless, a
primary challenge would involve defining the correct forward and backward mapping
functions, in three dimensions.

In the case of WEC modeling, various factors must be considered. In this study,
the focus has been primarily on analyzing the fluid dynamics aspect. However, other
components, such as the mooring system or control strategy, may require differ-
ent approaches, possibly involving reduction techniques. While the methodology
proposes a coupling between two solvers for fluid dynamics, there is no restriction
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against coupling with other models, potentially including other reduced models. In
any case, efforts should be made to prevent the simulation from becoming overly
complex. Nevertheless, achieving a comprehensive simulation is desirable, in wave
energy applications, to enable policymakers and stakeholders to make well-informed
decisions.
Similar considerations may apply to various other application sectors of the method-
ologies outlined in this document. Specifically, the coupling methodology is inher-
ently versatile, with the high-fidelity solver handling the most intricate aspects, and
boundary condition management posing the primary challenge. As the coupling
simplifies to a least squares problem, there are no restrictions on the variables of
interest, provided that a set (or sets) of basis functions can be associated to them.
Hence, while initially developed for a specific domain, the findings of this thesis
may have broader applications across multiple domains.
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