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Abstract 

Objective. The journey of a bionic prosthetic user is characterized by the opportunities and limitations 

involved in adopting a device (the prosthesis) that should enable activities of daily living (ADL). Within 

this context, experiencing a bionic hand as a functional (and, possibly, embodied) limb constitutes the 

premise for mitigating the risk of its abandonment through the continuous use of the device. To achieve 

such a result, different aspects must be considered for making the artificial limb an effective support for 

carrying out ADLs. Among them, intuitive and robust control is fundamental to improving amputees’ 

quality of life using upper limb prostheses. Still, as artificial proprioception is essential to perceive the 

prosthesis movement without constant visual attention, a good control framework may not be enough to 

restore practical functionality to the limb. To overcome this, bidirectional communication between the 

user and the prosthesis has been recently introduced and is a requirement of utmost importance in 

developing prosthetic hands. Indeed, closing the control loop between the user and a prosthesis by 

providing artificial sensory feedback is a fundamental step towards the complete restoration of the lost 

sensory-motor functions. Within my PhD work, I proposed the development of a more controllable and 

sensitive human-like hand prosthesis, i.e., the Hannes prosthetic hand, to improve its usability and 

effectiveness. 

Approach. To achieve the objectives of this thesis work, I developed a modular and scalable software 

and firmware architecture to control the Hannes prosthetic multi-Degree of Freedom (DoF) system and 

to fit all users’ needs (hand aperture, wrist rotation, and wrist flexion in different combinations). On top 

of this, I developed several Pattern Recognition (PR) algorithms to translate electromyographic (EMG) 

activity into complex movements. However, stability and repeatability were still unmet requirements in 

multi-DoF upper limb systems; hence, I started by investigating different strategies to produce a more 

robust control. To do this, EMG signals were collected from trans-radial amputees using an array of up 

to six sensors placed over the skin. Secondly, I developed a vibrotactile system to implement haptic 

feedback to restore proprioception and create a bidirectional connection between the user and the 

prosthesis. Similarly, I implemented an object stiffness detection to restore tactile sensation able to 

connect the user with the external word. This closed-loop control between EMG and vibration feedback 

is essential to implementing a Bidirectional Body - Machine Interface to impact amputees’ daily life 

strongly. For each of these three activities: (i) implementation of robust pattern recognition control 

algorithms, (ii) restoration of proprioception, and (iii) restoration of the feeling of the grasped object's 

stiffness, I performed a study where data from healthy subjects and amputees was collected, in order to 

demonstrate the efficacy and usability of my implementations. In each study, I evaluated both the 

algorithms and the subjects’ ability to use the prosthesis by means of the F1Score parameter (offline) 

and the Target Achievement Control test-TAC (online). With this test, I analyzed the error rate, path 

efficiency, and time efficiency in completing different tasks. 
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Main results. Among the several tested methods for Pattern Recognition, the Non-Linear Logistic 

Regression (NLR) resulted to be the best algorithm in terms of F1Score (99%, robustness), whereas the 

minimum number of electrodes needed for its functioning was determined to be 4 in the conducted 

offline analyses. Further, I demonstrated that its low computational burden allowed its implementation 

and integration on a microcontroller running at a sampling frequency of 300Hz (efficiency). Finally, the 

online implementation allowed the subject to simultaneously control the Hannes prosthesis DoFs, in a 

bioinspired and human-like way. In addition, I performed further tests with the same NLR-based control 

by endowing it with closed-loop proprioceptive feedback. In this scenario, the results achieved during 

the TAC test obtained an error rate of 15% and a path efficiency of 60% in experiments where no sources 

of information were available (no visual and no audio feedback). Such results demonstrated an 

improvement in the controllability of the system with an impact on user experience. 

Significance. The obtained results confirmed the hypothesis of improving robustness and efficiency 

of a prosthetic control thanks to of the implemented closed-loop approach. The bidirectional 

communication between the user and the prosthesis is capable to restore the loss of sensory functionality, 

with promising implications on direct translation in the clinical practice. 

 

Key-words: Electromyographic Signal, Hannes Prosthetic Hand, Pattern Recognition, Body-Machine 

Interface, Haptic Feedback, Closed-Loop Control, Bidirectional Body-Machine Interface. 
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Introduction 

The absence of an upper limb caused by amputation or congenital disabilities is a significant impairment 

that severely impacts daily activities and independence (refer to paragraph 1.1). The hand plays a crucial 

role in exploring and interacting with the external world and accomplishing simple tasks of everyday 

life. To address these limitations, researchers have developed active upper limb prostheses (ULP) to 

enhance the quality of life of individuals affected by limb loss (refer to paragraph 1.1). 

Electromyographic activity is the primary method of controlling active ULPs, utilizing various control 

approaches and interfaces to accommodate the complexity of the prostheses (refer to paragraph 1.2.1.1 

and 1.3). While literature suggests that multi-DoF prostheses can mimic the capabilities of real limbs, 

there remains a significant discrepancy between technology and controllability (as evidenced in section 

1.3.3) [1-9]. Controllability has been identified as a major cause of prosthetic abandonment, and lack of 

feedback is essential in improving the usability of these devices, according to Qu, et al. [10] and 

Kyranou, et al. [3]. 

However, incorporating these aspects within the prosthesis and socket is crucial for effective 

implementation and real-life application, thus restoring lost functionality for ADLs. This integration is 

a critical aspect of the development of advanced prosthetic technologies (Figure 1) to enable effective 

bidirectional communication between the user and the external environment. 

Based on the above considerations, the three aims of this thesis are: 

• A1 – Development of the integrated Hannes multi-DoF system architecture. 

This first Aim was the development of the software and firmware architectures for the control 

of the Hannes system [11] (Figure 2), which includes all the DoFs described in section 2.3 plus the 

active elbow DoF, developed but not included in the current study. The firmware implementation 

was subdivided according to the involved microcontroller-based electronic boards connected via 

CAN protocol. The software development mainly concerned a Bluetooth-based Graphical User 

Interface (GUI) capable of collecting data from the Master-board and setting the prosthesis 

parameters. This activity, performed during the first year, was instrumental in fulfilling the other 

Aims. 

 

Figure 1 Evolution of robotic hand: from industry to human prosthesis. 
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• A2 - Closing the gap between technology and controllability  

The second Aim had the goal to close the gap between technology and controllability. Thus, 

throughout the second year, I investigated different strategies to create a more robust control of 

the Hannes multi-DoF [12-15]. To do this, electromyographic signals (EMG) were collected from 

trans-radial amputees using an array of up to six EMG sensors placed over the skin. Different 

Machine Learning algorithms were tested and compared to study muscle synergies and state 

machine paradigms. The final goal was to design a robust joint selection strategy and a human-

like joint control [12-15]. 

• A3 - Haptic Feedback in Bidirectional Body-Machine Interface 

This final Aim, which also constitutes the ultimate goal of my PhD, was focused on developing a 

Bidirectional BMI capable of retrieving force and/or proprioceptive information from the Hannes 

hand and transmitting custom haptic feedback toward the residual amputee’s forearm. These new 

features allowed and will allow Hannes to interact more naturally with both the environment and 

the patient. The acquired data was “fused” with the pattern recognition algorithm. In order to deepen 

our knowledge of the role of tactile events in prosthetics, I have been exploring different phenomena, 

including the restoration of haptic feedback and embodiment training based on visual-haptic 

respiratory biofeedback in spatial augmented reality. These activities were performed in the 

third year [16]. 

 

This research was conducted at the Rehab Technologies Laboratory of the Istituto Italiano di Tecnologia 

(IIT) in Genova, in collaboration with Centro Protesi INAIL of Vigorso di Budrio. My role as a software 

and firmware engineer was integral to the iHannes project (PR19-PAS-P1). Technical activities were 

primarily carried out at the Rehab Technologies lab (A1 and A2), and clinical validation experiments 

were performed with amputees through direct collaboration with INAIL. Furthermore, I had the 

privilege of contributing to the Sensory Motor Lab at Aalborg University, under the leadership of 

Professor Strahinja Dosen. During a six-month period, I focused on analyzing feedback aspects (A3), 

 

Figure 2 Hannes Multi-DoF system. 
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specifically non-invasive proprioceptive feedback on amputees. The resulting methods were validated 

on both able bodies in Denmark and amputees at the INAIL prosthetic center. 

The first activity I performed to reach the aims was a literature review to contextualize the amputation 

problem. Chapter 1 presents the amputation problem with particular attention on commercial prosthesis 

solutions and research solutions. Subsequently, there is a description of the input signals for controlling 

prosthesis and feedback signals for haptic recovery. Then control strategies were analyzed at different 

levels, from low-level control to actuate single motor, to high-level control to perform complex tasks 

and actuate multi-DoF prosthesis. Such an analysis was part of a published review Marinelli, et al. [6], 

which offers an overview of the State of the Art in the field. 

Chapter 2, Chapter 3, and Chapter 4 constitute the body of this thesis. These chapters include both 

development (A1) and validation (A2 and A3) of the Hannes prosthetic system. In particular, Chapter 

2 incorporates all the works concerning the user aspects, such as functionality, efficiency, and 

embodiment of the Hannes prosthesis (part of A3) and its mechatronic improvements to cover the user 

needs (A1). This chapter describes the benefit of using a single DoF prosthetic device (section 2.1), the 

level of integration of such a technology into the body scheme (section 2.2), and the design of multi-

DoFs Hannes to improve its functionality (section 2.3) in a User-centered prosthetic design. 

Subsequently, Chapter 3 analyses the problem of controlling multi-DoF Hannes, with the final goal of 

closing the gap between technology and controllability to realize a Body – Machine Interface (A2). This 

chapter describes all the aspects related to the increase of DoFs to be controlled and how to design a 

robust, efficient, and human-like control solution. 

Finally, Chapter 4 describes the restoration of haptic information at different levels of sensory feedback, 

from proprioception to tactile, to cover the A3. Such an implementation focuses on integrating feedback 

on real cases of prosthesis sockets to realize a Bidirectional Body – Machine Interface. 

The general Conclusions at the end of this manuscript integrated all the obtained results to outline each 

performed activity's role in developing a real effective prosthesis solution. Overall, the results of this 

Thesis, thanks to the capability to recover functionality and sensory information, allow for better 

prosthesis integration into the body scheme and better interaction between the human and external word 

[17, 18], thus making a fundamental step towards improving the amputees' quality of life. 
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Chapter 1. Active Upper Limb Prostheses: A Review 

on Current State and Upcoming Breakthroughs 

Over the past twenty years, poly-articulated upper limb prostheses (ULPs) have undertaken several 

technological and scientific developments to satisfy the different needs of the upper limb amputee 

community. Nonetheless, in a recent study, Salminger, et al. [19] observed overall abandonment rates 

of ULPs of about 44% in a population of mainly (92%) myoelectric prostheses users. They also 

highlighted how the past decade of developments still presents technological limiting factors that did 

not permit the restoration of the full functionalities of a missing limb, hence leading to a substantial 

increased rate of prosthesis abandonment. The main cause of such ineffectiveness mainly resides in a 

non-sufficiently patient-tailored design process [19]. 

According to the American Orthotic & Prosthetic Association [20], partial amputations, i.e. finger 

amputations, represent the majority of upper-limb losses (75.6%), while trans-radial and trans-humeral 

amputations constitute a percentage oscillating between 5 and 6%. Despite this, the level of impairment 

caused by trans-radial and trans-humeral amputations is greater than for partial amputations. 

Without tracing back all the evolution of upper limb prostheses – the reader might find useful the 

reviews of Trent, et al. [4] and Ribeiro, et al. [21]). Trent, et al. [4] work focuses on a classification of 

the upper-limb prostheses architectures based on the type of adopted actuation, e.g., passive, body-

powered or active. On the other hand, Ribeiro, et al. [21]’s research investigates the most relevant control 

signals used for the man-machine interface. 

This work focuses on trans-radial and trans-humeral devices, excluding partial amputations, and it 

details the latest and most technologically advanced solutions, namely poly-articulated myoelectric 

prostheses. Moreover, this review aims at presenting and analyzing the key elements of state-of-the-art 

upper limb prostheses in a user-centered and human-in-the-loop fashion and to provide guidelines for 

the development of such prostheses and the relative control algorithms, to possibly achieve solutions 

capable of promoting the systems use and overcoming the elevated abandonment rates observed so far. 

Overall, the reader could take advantage of this review as an analytical collection of solutions 

constituting a premise to provide the user with a seamless control experience. 

1.1. Upper limb Prosthetics classification: a twofold perspective 

An ULP system can be observed from two main points of views: its mechatronics, namely the 

combination of the mechanical and electronic components necessary for its operation, and the control 

strategies and algorithms implemented to orchestrate its functions. Research groups have therefore 

attempted to solve the prostheses abandonment problem by addressing different technological and 

scientific challenges, either focusing on mechatronic design, or on control strategies aimed at increasing 
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the human-machine interaction and, in some cases, introducing feedback sources, as detailed in the next 

sections.  

ULP control can be divided into two synergistically interacting sub-systems: the user-level and the 

device-level, as depicted in Figure 3. The user-level includes the patients and the most proximal device 

component interacting with the user (i.e., the socket), while the device-level extends from the socket to 

the ULP device. These two sub-systems overlap at the socket level, which is involved in a bidirectional 

flow of information. On one hand, it receives inputs from the user (i.e. movement intentions) and 

translates them into movement commands for the device; on the other hand, it receives information (both 

from the device and the environment) and communicates it to the user through sensory feedback (Figure 

3). Importantly, the socket itself severely limits the user comfort, and together with the prosthetic weight 

highly contributes to the prosthetic abandonment. 

Even if the state-of-the-art in prosthetic research encompasses studies based on psychological 

processes too, commercial ULP systems have focused on restoring functional capabilities by capitalizing 

on the device-level only, therefore on mechatronic, and several solutions can be found on the market for 

trans-radial level of amputations. Commercially available systems merge basic functionalities and 

aesthetic requirements, targeting the clinical needs given by a certain kind of amputation, rather than 

focusing on each patient's specific needs.  

Commercial solutions range from tri-digital hands, e.g., VaryPlus Speed, SensorHand Speed by 

Ottobock [22] and Motion Control Hand by Fillauer [23]; through polyarticulated hand under-actuated, 

e.g., Michelangelo by Ottobock [24]; to fully actuated polyarticulated hand, e.g., BeBionic by Ottobock 

[25], i-Limb by Ossur [26],Vincent Hand by Vincent Systems [27], TASKA hand by Taska Prosthetics 

 

Figure 3 Graphical representation of a ULP system and its elements. 

The user level (left panel) includes: input data sent from subject to the prosthesis (Input Signals), artificial sensory feedback 

information delivered from the prosthesis to the user (Sensory Feedback), and external sources of interaction (External 

Factors), such as actuation coming from the unimpaired limb or environmental/accidental sources of feedback such as 

vision and sound. The device-level (right panel) includes the control commands used to drive the prosthesis and the 

feedback information collected by the end-effector. The user-device interface is characterized by a bidirectional exchange 

of information (overlap of the two panels). 
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[28], BrainRobotics Hand by BrainRobotics [29], Ability Hand by Psyonic [30], and COVVI hand 

[31] by COVVI. 

In the last decades, many research groups have focused on the mechatronic development of ULP 

devices, entrusting the intelligence of the device to the embedded mechanics in a very thorough design, 

structuring the development of the concept of under-actuation, such as the Vanderbilt Multigrasp 

Hand [32], the MIA Hand [33], the SoftHand Pro [34], the KIT Hand [35], and the Hannes Hand 

[11]. 

On the other hand, there is a family of very dexterous devices, not yet market-ready, that mimic the 

complexity of the human hand, implementing a fully-actuated multi-degrees of freedom mechatronics, 

e.g. the University of Bologna Hand [36] or the Shadow Hand [37]. 

However, this great variety of products does not match with the elevated abandonment rates, 

demonstrating the lack of satisfaction of the patients’ needs from a mechatronic perspective. In 

particular, structural and supporting part lack of adjustability of user size, allow limited kinematic and 

motion possibilities and more advanced systems present limited operational time [38]. This leads to 

limited satisfaction and feeling of security. Moreover, these systems generally present poor personal and 

social acceptance because of limited anthropomorphism, high weight and presence of acoustic 

disturbances during use [38], This suggests that ULP development should not only focus on the device 

level, but improvements at the user level could play a key role for truly meeting the user requirements 

and consequently obtain device acceptance. Motivated by this, in this review, we analyse all the possible 

approaches that could potentially address the user needs in terms of device controllability, robustness 

and hence embodiment and user experience. To this end, it is fundamental not only to focus on the 

functionality restoration but also on the sensory information recovery, which are fundamental to 

effectively control the device. All the described approaches range from improvements in decoding user 

intentions, hence analysing all possible input sources and their related control strategies, to inclusion of 

additional sources of feedback capable to restore the sensory information. These approaches tackle the 

issues related to poor device control because of lack of intuitiveness and sensory feedback. 

Therefore, in this review we present current and emerging methods in ULP development, detailing 

various sources of input and feedback signals, as well as control strategies. We also highlight current 

challenges and open issues in the field, specifically focusing on the importance of user experience and 

involvement in the design and development process. This is fundamental to promote patient-tailored 

approaches leading to the development of truly personalized devices, which are currently lacking. We 

finally provide an overview of the most promising approaches that if followed, may one day provide 

upper limb amputees with a true substitute of their missing arm. 

1.2. Input and Feedback Signals for Prosthetic Control 

Prosthetic control is regulated by a flow of signals, as depicted in Figure 4. Input signal runs from 
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the user to the device and they are often of biological or electrophysiological nature, in which case are 

called biosignals. Signals flowing in the opposite direction convey information from the device to the 

user and are therefore defined as sensory feedback signals. Moreover, some external factors convey to 

the user additional source of feedback (i.e., incidental feedback), such as visual or auditory information 

that can be used to estimate the prosthesis state [5, 39, 40]. 

Input signals include all the sources of information that can be taken from the amputee and translated 

into motor commands for driving the prosthesis (e.g., electromyography - EMG), see section 1.2.1. 

Instead, sensory feedback information encompasses different prosthetic sensing solutions acquired 

either from the prosthetic device or from the environment, see section 1.2.1 that can be translated into 

sensory stimuli for the amputee (e.g., vibrotactile stimulation, see section 1.2.3). All types of signals can 

 

Figure 4 Graphical representation of information flow of a possible ULP architecture. 

Input flow (top panel): from user (input signals i.e., from EMG sensors) to prosthesis (control commands i.e., through 

power train). Feedback flow (bottom panel): from prosthesis (end-effector feedback i.e., from tactile force sensors) to user 

(sensory feedback i.e., through vibrotactile motors). 

 

Figure 5 Input sources for ULP. 
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be classified according to their level of invasiveness, with consequent advantages and drawbacks. 

1.2.1. Input Signals 

In recent years, many research activities have focused on the extraction of useful information from 

the biological signals in order to suitably control upper limb prostheses. Traditionally, the surface EMG 

(sEMG) is the most widespread signal for prosthesis control but its use still faces many drawbacks [3]. 

In the following, we describe various methods to employ EMG as input signal for ULP control and we 

also explain how other input sources can be exploited to obtain more dexterous prosthetic behavior, 

overcoming the limitations of current ULP systems.  

Figure 5 collects input signals for ULP control that will be described in the following subsections, 

ranging from those used by commercial systems, up to those currently under investigation. 

1.2.1.1. Biosignals → Electromyography 

The term biosignal indicates every possible signal that can be detected and measured from biological 

beings, humans – in our case. Usually, the term is used for signals of electric nature (i.e., EMG), but 

actually every signal collected from the activity of different tissues or organs belonging to the human 

body, can be considered as a biosignal.  

We here adopt this latter definition to group input sources that are described next. Given its large use 

both in research and commercial ULP devices, electromyography deserves a dedicated subsection, while 

other biosignals are grouped together. We also dedicate a whole subsection to brain-derived signals, 

which are especially used in brain-machine and brain-computer interfaces (BMIs, BCIs), but that are 

also showing potential use for ULP applications. Table 1 summarizes biosignals for ULP control that 

will be described in the following subsections. 

Table 1: biosignals used as input sources in prosthetic applications. 

        
Measured 

Property 

Sensors’ 

placement 
PROs CONs 

Sensor 

Fusion 
Examples 

E
le

ct
ro

m
y
o
g
ra

p
h

y
  

(E
M

G
) 

S
u

rf
a

ce
 

E
M

G
 

Muscle 

Electric 

Potentials 

On the skin over 

targeted muscles 

2–32, up to 192 

sensors 

Non-invasive, 

long-term use, a 

large number of 

people 

Sweating, 

electrodes shift, 

Muscle fatigue, 

Electromagnetic 

noise 
NIRS, 

IMU, 

FMG, 

SMG, 

MMG 

[41] 

up to 27 gestures 

In
v
a
si

v
e 

E
M

G
 

Underneath the 

skin, on or inside 

targeted muscles 

4-8 sensors 

High 

signal/noise 

ratio, directly 

on the nerve, no 

shift with 

respect to the 

source 

Invasive, 

infections 
[42, 43] 
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F
o
r
ce

- 

m
y
o
g
ra

p
h

y
 

(F
M

G
) 

Change of 

muscle 

morphology 

measured on 

the 

skin surface 

Over targeted 

muscle, 

over related 

tendons 

8, up to 126 

sensors 

Physiologic, 

small size, high 

signal/noise 

ratio, flexible 

Muscle fatigue, 

sensors shift, 

pre-load force, 

small spatial 

resolution, 

crosstalk 

EMG 
[44] 

up to 8 gestures 

M
e
ch

a
n

o
-m

y
o
g
ra

p
h

y
  

(M
M

G
) 

Muscle fiber 

oscillations 

using 

microphone or 

accelerometers 

Over targeted 

muscle 

6-20 sensors 

low cost, no 

pre-

amplification, 

no precise 

positioning, no 

skin impedance 

or sweat 

influence 

Ambient 

acoustic noise, 

Adjacent 

muscle 

crosstalk, 

Sensor 

displacement 

EMG, 

IMU 

[45-47] 

up to 5 gestures 

S
o
n

o
- 

m
y
o
g
ra

p
h

y
 

(S
M

G
) 

Change of 

muscle 

morphology 

Over targeted 

muscle, 

over related 

tendons 

transducers of 

different shapes  

Deep and 

superficial 

muscles, some 

models are 

cheap and 

energy-efficient 

Probe shift, 

tissue 

impedance, no 

wireless, some 

models 

expensive and 

bulky 

EMG 
[48] 

up to 15 gestures 

N
ea

r
-I

n
fr

a
re

d
 

S
p

ec
tr

o
sc

o
p

y
 

(N
IR

S
) 

Tissue 

oxygenation 

through 

the amount of 

scattered light 

Over targeted 

muscle 

2-4 sensors 

Deep and 

superficial 

muscles, high 

spatial 

resolution, no 

electronic 

interference 

Ambient light, 

Muscle fatigue, 

tissues heating 

EMG, 

IMU 

[49] 

up to 9 gestures 

E
le

ct
ri

ca
l 

Im
p

ed
a
n

ce
 

T
o
m

o
g
ra

p
h

y
 

(E
IT

) Tissue 

impedance 

Over targeted 

muscle, 

over related 

tendons 

8, up to 64 sensors 

No need precise 

positioning 

Low time 

resolution, 

sweating, 

Electromagnetic 

noise, high 

consumption 

- 
[50, 51] 

up to 8 gestures 

C
a
p

a
ci

ta
n

ce
  

se
n

si
n

g
 

Tissue 

capacitance 

Over targeted 

muscle, 

over related 

tendons 

3 receiver sensors 

Non-invasive, 

low cost, deep 

and superficial 

muscles 

Sweating, 

Electromagnetic 

noise, 

displacement, 

ambient 

temperature 

- 
[52, 53] 

up to 2 gestures 
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M
a
g
n

et
o

-

m
y
o
g
ra

p
h

y
 Magnetic 

fields 

generated by 

muscle 

Over/inside 

targeted muscle 

7 sensors 

Not sensitive to 

sensor’s shift 

and sweat 

Magnetic 

interference, 

can be invasive, 

movement 

artifacts 

- 
[54] 

concept 

P
e
ri

p
h

er
a
l 

N
eu

ra
l 

In
te

r
fa

ce
s 

(P
N

Is
) 

Electrical 

activity of the 

nerves 

Microelectrode 

arrays placed on 

different fascicles 

within the median 

and ulnar nerves 

Intuitive, direct 

maps of 

complex 

movements, 

high accuracy, 

robust  

Invasive, 

difficult to 

separate EMG 

and PNI 

components, 

recording 

channels really 

closed each 

other 

- 
[55] 

up to 15 DoFs 

In
tr

a
co

r
ti

c
a
l 

n
eu

ra
l 

si
g
n

a
ls

 

Intracortical 

neural signals 

from the brain, 

action 

potentials of 

individual 

neuron 

16-192 high-

density channels 

electrodes inserted 

into the motor 

cortex tissue 

Accurate and 

capable of 

collecting the 

most 

information-

rich data, high 

spatial 

resolution 

Very invasive, 

influenced by 

tissue reactions 

- 
[56-59] 

7-10 DoFs 

E
le

ct
ro

co
rt

ic
o
g
ra

p
h

y
 

(E
C

o
G

) Electrical 

activity of 

brain’s surface 

32-128 high-

density channels 

on sensorimotor 

regions 

Less attenuated 

than EEG, good 

spatial 

resolution and 

wide frequency 

content 

Surgical 

procedure and 

lack to measure 

single cell 

activity 

- 

[60-63] 

4 gesture 

recognition and 

wrist movements 

E
le

ct
ro

e
n

ce
p

h
a
lo

g
r
a
p

h
y
 

(E
E

G
) 

Electrical 

activity of the 

brain 

6-32 channels 

headsets 

Not invasive, 

low cost, 

portable, stable, 

and very easy 

to use 

Signal 

attenuated by 

the dura, the 

skull, and the 

scalp, loss of 

important 

information 

- 
[64-67] 

single DoF 
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F
u

n
ct

io
n

a
l 

N
ea

r
-I

n
fr

a
re

d
 S

p
ec

tr
o
sc

o
p

y
 

(f
N

IR
S

) 

Activity-

related brain 

oxygenation, 

near-infrared 

led, and a 

photodetector 

measure the 

amount of IR 

light absorbed 

by the 

hemoglobin in 

the brain 

10-200 channels 

of optodes 

Non-invasive, 

simultaneous 

detection 

information 

under the skin, 

low cost 

Few 

centimeters 

penetration of 

cortical tissue, 

not great 

accuracy, and 

system too 

cumbersome 

- 

[68] 

3 DoFs trans-

humeral amputees 

 

While cosmetics, electronic components and computational efforts have undergone a significant 

improvement, the control strategies currently used in prosthetic applications have not changed since 

their first appearance in the 1960s [69]. The EMG has been one of the major sources to control upper 

limb prostheses [70]. These signals carry information about neuromuscular activity, and they are used 

to retrieve human intention. EMG is indeed a technique for studying the activation of the skeletal 

muscles through the recording of electrical potentials produced by muscle contraction [71]. The theory 

behind the sEMG electrodes is that they form a chemical equilibrium between the detecting surface of 

the electrode and the skin of the body through electrolytic conduction, so that the current can flow into 

the electrode. 

Multiple methods have been used to obtain the intended gesture from the processed EMG signals, 

all of which exploit the fact that the amputees can still generate different and repeatable muscular 

patterns related to each forearm movement with residual muscles of the stump. Low-density EMG is 

commonly used in prosthetic application, both in research and commercial context. Noteworthy, EMG 

signals can also be collected with invasive methods. The sEMG can be thus classified according to the 

level of resolution and density of the sensors. In the following, we provide an overview of the different 

types of EMG-based biosignals. 

Surface EMG 

The sEMG can be classified according to the number of electrodes used (Figure 6). Low-density 

EMG generally refers to the use of a small (<10) number of EMG bipolar sensors, that can be either 

wet, i.e. contain an electrolytic substance that serves as interface between skin and electrodes, or dry 

[72]. Conversely, high-density EMG is typically composed by wet monopolar sensors spread on a 

planar patch, around 1cm apart, and with the ground reference generally placed on the wrist or on the 

elbow [73]. 
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Importantly, sEMG electrodes also differ in their electronic configuration, as they can be either 

preamplified or not [74]. Merletti and Muceli [75] provided a guide with the best practice to acquire and 

manipulate EMG data according with the different aims, from signal analysis to motion prediction. 

Prosthetic control with low-density EMG is generally obtained by using two bipolar electrodes 

placed on antagonist muscles. This configuration allows the control of the prosthetic system in a robust 

and simple way [71]. However, the detection of complex and simultaneous movements of the phantom 

limb can be improved by using an array of EMG electrodes placed on the superficial skin of the residual 

forearm [13, 76-78], The use of sEMG in prosthetic applications has become the most widespread source 

of information about voluntary movement [69] because of the direct correlation between EMG activity 

and subjects’ intentions. 

Differently from the low-density, the high-density sEMG (HD-sEMG) is based on a higher number 

of electrodes placed on a small portion of the body. Recently, a growing number of researchers has 

focused on the use of these electrodes aiming to increase the amount of collected data, although at the 

cost of a greater computational burden. HD-sEMG sensors have been used to discriminate muscular 

patterns related to different gestures. Their signals can be handled in various ways to retrieve unique 

and repeatable information, as described in section I.1.3. These sensors have to be positioned according 

to the distribution of the underlining muscle fibers and this configuration provides a low resolution map 

of the synergistic activation of the muscles during movement production [79, 80]. For example, from 

contraction of the muscles under the acquisition grids, it is possible to extract bi-dimensional images, in 

which the EMG amplitude is mapped to a color scale. These maps can be thus handled by complex 

algorithms, as the ones used for objects detection in robotic navigation [81]. The main limitation of the 

HD-sEMG, which currently bounds its application to a laboratory scenario, is the skin-electrode contact 

since it requires conductive gel to reduce the interface impedance. The wet area is mainly needed to 

reduce artifacts in the EMG signals since it is generally acquired in monopolar configuration. Another 

disadvantage of this technique consists in the fact that computation is time-consuming. 

Overall, the main drawback of sEMG-based approaches is constituted by the influence that skin 

impedance, sweat, and electrode shift have on the stability of the input signals [82]. Additionally, muscle 

crosstalk and the difficulty to reach deep muscles further limit the quality of the collected signal. In the 

 

Figure 6 sEMG electrodes. 
A: bipolar dry sensors, Ottobock and IIT/INAIL 
respectively. B: high-density wet sensors (OT 
Bioelettronica). 
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context of ULP, the use of sEMG can be further complicated by the fact that the amputation strongly 

affects muscles strength and organization and therefore signal quality, as discussed in section 6.4 of 

Marinelli, et al. [6]. 

Invasive EMG and Surgical Procedures 

The invasive approach has been exploited to explore the activity related to the production of 

movement for many years [83] and it is still investigated by many groups. However, the main drawback 

of this approach is constituted by the surgery and by the technological barriers still faced by the available 

equipment. On the other hand, invasive electromyography (iEMG) allows to measure single motor unit 

action potentials, enabling a higher selectivity and a better accuracy of the input signal, overcoming the 

limitations imposed by sEMG. There are several examples of iEMG, which vary in the type of electrodes 

and level of invasiveness, as detailed hereafter. 

EMG can be invasively detected by inserting electrodes into the internal surface of muscles [84]. 

This invasive technique exploits two different percutaneous electrodes: needles and fine wires [72, 85]. 

The most used are needle electrodes. These electrodes are concentric, and their bare hollow needles 

contain an insulated fine wire into their cannula, which is exposed on the beveled tip, which is the active 

recording site. Wire electrodes are typically made of non-oxidizing and stiff materials with insulation, 

they can be implanted more easily and are usually less painful than needle electrodes.  

Since both these sensors are percutaneous, i.e., passing through unbroken skin and leaving an open 

passage between the internal structures of the body and the external world, the risk of infection is quite 

probable. For this reason, and because of their intrinsic discomfort due to the percutaneous wire that can 

easily break, their usage is limited to laboratory research [86, 87]. A detailed description of invasive 

electrodes both to record biological signals and to deliver electrical stimulation can be found in 

Raspopovic, et al. [88]. 

In the last decades, growing attention has been paid to the development of intramuscular electrodes 

that could be implanted under the skin of the subject to achieve the advantages of invasive sensors and 

simultaneously avoid the risks and inconvenience of percutaneous instruments. For example, Weir, et 

al. [89] developed an implantable myoelectric sensor (IMES), a system able to receive and process up 

to 32 implanted sensors with wireless telemetry. A transcutaneous magnetic link between the implanted 

electrodes and the external coil allows reverse telemetry, which transfer data from the sensors to the 

controller, commanding the control of the prosthesis, and forward telemetry to supply power and 

configuration settings to the electrodes. These sensors are designed for permanent long-term 

implantation without any kind of servicing requirement and have been tested on animals. Four months 

after the implantation of IMESs in the legs of three cats, the sensors were still functioning [89]. 

Intramuscular electrodes have been used in prosthetic application to decode 12 different hand gestures 

from 4 healthy subjects [42]. Moreover, it has been shown that the application of this invasive approach 

enhances the simultaneous control of multi-DoFs system [90]. 
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Recently, the group of Ortiz-Catalan showed an invasive procedure for ULP control. They positioned 

EMG electrodes under the skin of amputated subjects and sutured them directly on the external surface 

of the muscles [43]. More precisely, sensors were sewn onto the epimysium of the two heads of the 

biceps’ muscles and the long and lateral heads of the triceps muscles. These invasive electrodes were 

used in combination with an osseointegrated prosthesis, i.e. a system obtained following a very invasive 

surgical procedure, which allows to anchor the prosthesis to the remaining limb’s bone [43]. In the 

context of ULP, osseointegration is offered for trans-humeral amputees, and the prosthesis is anchored 

to the humerus with two mechanical elements: the fixture, a screw made of titanium placed inside a hole 

made in the bone that becomes osseointegrated, and the abutment, placed within the fixture and 

extending outside of the body in a percutaneous way, onto which the prosthesis is connected. This 

technique was tested on four osseointegrated patients. 

This latter example indicates that also surgical approaches can be taken to improve the quality of the 

collected EMG. A promising surgical technique that is performed in case of high-level amputation is 

Targeted Muscle Reinnervation (TMR). This method was developed by the group of Kuiken in the early 

2000s and consists in transferring residual arm nerves to alternative muscle sites. Following 

reinnervation, these target muscles are able to produce EMG that can be collected and used to control 

prosthetic arms [91]. This strategy works at the condition that each reinnervated muscle produces an 

EMG signal in response to only one transferred nerve, with the consequence that native nerves 

innervating the target muscle has to be cut during the surgical procedure to avoid unwanted EMG signals 

[92]. In the last 15 years, TMR has allowed intuitive control of ULP to several subjects with high-level 

amputation for whom standard ULP devices allowed a poor restoration of motor functions [92]. 

Importantly, given that it is performed on complex amputations, this technique is strongly tailored to 

each patient's physical and clinical status [93, 94]. 

Recently, a new surgical method for improving EMG-based control has emerged: the regenerative 

peripheral nerve interface (RNPI) [95]. Just as TMR, its goal is to turn a muscle into a biological 

amplifier of the motor command, in order to improve the quality of the EMG signal recorded, processed 

and used to drive the prosthesis. To this end, RNPI exploits the regeneration capabilities of nerves and 

muscles, to implant a transected nerve into a free muscle graft. Following regeneration, revascularization 

and reinnervation by the transected nerve, the muscle graft effectively becomes a stable peripheral nerve 

bioamplifier, able to produce high-amplitude EMG signals [96]. The potential of this novel interface has 

been tested by Vu, et al. [97]: they used EMG signals collected by intramuscular bipolar electrodes 

implanted into RNPIs obtained in amputated individuals, who could successfully perform real-time 

control of an artificial hand. Surprisingly, subjects were able to control the device with a high level of 

accuracy even 300 days post-implantation, without recalibration of the control algorithm. 

Another surgical technique, not directly related to EMG signals but worth mentioning, is cineplasty, 

an old method revived in the last years with a new and more modern approach. This method was 

introduced for the first time by Vanghetti in 1899 and then replicated by Sauerbruch ten years later [98]. 
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It consisted of the direct mechanical linking of residual muscles and/or residual tendons of the affected 

limb to the prosthesis through external cables (i.e., Bowden cables). In 2001, Heckathorne and Childress 

[99] implemented an evolution of this surgical solution for the control of 1 DoF ULP by exploiting 

exteriorized tendons directly linked to a force sensor. 

1.2.2. Prosthetic Sensing 

Natural movements occur with a bidirectional flow of neural information, i.e., motor commands on 

one direction and sensory feedback on the other. In prosthetic applications, while many efforts have 

been spent to provide signals carrying motor intentions, a less explored path is the integration of sense 

of touch into the prosthesis [100]. This lack is highly responsible for the missing perception of the 

prosthesis as part of one’s own body and is also precluding a closed-loop control of the prosthesis.  

More recently, the scientific community has started exploring different methods to equip prosthetic 

devices with perception of tactile and pressure information [101-105], although often resulting in very 

complex, unreliable, or unpractically cumbersome solutions. The few solutions tested on real prosthetic 

setups impacted on their anthropomorphism and dexterity.  

To integrate touch sensors into robotic and prosthetic devices (Figure 4, end-effector feedback) [103, 

106, 107], different technologies have been investigated and employed [108], namely capacitive [109, 

110], resistive [102, 111, 112], piezoelectric (screen printed piezoelectric polymer, PVDF) [113], and 

magnetic sensors [114]. Other examples include technologies based on electrical impedance [51, 112], 

pressure and electrical impedance [115], optical fibers (Bragg fiber [116]), Micro-electro-

mechanical Systems (MEMS, texture sensing [117]) combined with Spiking based on Izhikevich 

neuron model [118]) and Optoelectronic [119]. 

Examples of the application of these sensors into prosthetic devices include the E-dermis 

(piezoelectric sensors integrated on the Bebionic’s fingertips) [120], E-skin (integrating different types 

of sensors) [106], and BioTac (impedance sensor integrated on the Shadow Hand [121]) [122]. 

Among commercial devices, the SensorHand Speed [123] made by Ottobock is the only one including 

tactile sensors based on resistive technology  [123]. 

Therefore, tactile sensation is the first step towards novel and more efficient control strategies that 

do make use of feedback information [124]. To this end, artificial intelligence can be exploited to detect 

the grasp of different objects from sensor data [125]. 

1.2.3. Sensory Feedback 

Sensory feedback patterns are designed to enrich the perceived responsiveness of the device and the 

subjective experience of its use as a limb [88, 126, 127]. Such a result derives from the elicitation of 

physiological and psychological reactions that promote embodiment processes (described in paragraph 

5.1 of Marinelli, et al. [6]). Furthermore, such stimulations (haptic feedback in many cutting-edge 

devices) are designed as a fundamental component of bidirectional human-machine interfaces 
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empowering prosthetic control [128]. Establishing such a closed-loop can trigger learning processes 

even for artificial sensations [129], pointing at somatosensory plasticity processes. These phenomena 

provide the user with an engaging guidance within a natural interaction, facilitating the execution of 

prosthetic maneuvers during calibration, training, and daily use. Importantly, such an enhanced practice 

will ease the production of consistent biosignals that will progressively become easier to interpret as 

user commands. 

However, current commercial prostheses generally do not incorporate an explicit haptic feedback but 

the incidental feedback, like visual and the sound cues, could be exploited by the user to estimate the 

prosthesis state [39]. For example, the acoustic feedback provides a guidance on how to reach target 

during the rehabilitation session, in this way the rehabilitation step can be more interactive and engaging 

if appropriately designed (never obnoxious, possibly plausible). Overall, the next sub-sections will 

discuss the design of sensory feedback in prosthetics, distinguishing invasive and non-invasive 

stimulation modalities. 

1.2.3.1. Non-invasive methods  

Non-invasive feedback restoration for upper limb amputees is a hot topic in the research community, 

and yet it has not achieved broad clinical application [5]. Many solutions have been proposed, but the 

main problem lays in their poor robustness. [21] highlighted the most widespread types of non-invasive 

feedback, described in Table 2. 

Table 2: Non-invasive methods for sensory feedback in ULP. 

Feedback 

sense 

Instruments and 

feedback information 
Application PROs CONs Examples 

T
o
u

ch
 

(c
u

ta
n

eo
u

s 
st

im
u

la
ti

o
n

) V
ib

ra
ti

o
n

a
l 

Eccentric rotating 

motors, proprioception, 

force 

Array over the 

forearm or over 

the arm 

Non-

invasive, 

robustness 

control, brief 

training 

period, 

intuitive, 

cheap, small 

[130, 131] up to 3 

DoFs or different 

force levels 

Non-physiological, 

need calibration, 

coupled intensity and 

rotation frequency, 

position 

displacement 

M
ec

h
a
n

o
ta

ct
il

e 

Linear actuator, pressure 

sensation, spatial touch 

sensation 

Detected areas to 

reproduce real 

touch sensation, 

array over the 

arm 

Non-

invasive, 

intuitive, 

brief training 

period, 

decoupled 

intensity and 

frequency 

[127, 132, 133] 

different pression 

level, touch sensation 

Need spatial and 

intensity calibration, 

bulky, position 

displacement 
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E
le

ct
ri

ca
l 

Transcutaneous 

stimulation using bipolar 

electrodes, pressure, slip, 

proprioception 

Array over the 

forearm or arm 

No electrode 

displacement, 

low power 

consuming, 

high sensor 

skin contact, 

intensity or 

frequency 

modulation 

[134-136] touch 

location, pression, 

proprioception 

Noise during 

acquisition, long 

calibration, not 

localized sensation 

S
o
u

n
d

 

(A
co

u
st

ic
) Acoustic speaker, 

proprioceptive 

movements 

Laptop speaker 

to guide the 

training 

acquisition and 

improve the 

pattern 

recognition 

strategy 

Low cost, no 

calibration, 

intuitive 

- 
[137] multiple arm 

positions 

V
is

io
n

 

(V
is

u
a
l)

 

Camera on board, 

external camera 

head-mounted 

displays, laptop 

displays, virtual 

reality, 

augmented 

reality 

Increase 

perceptual 

experience, 

engagement, 

intuitive, 

promote 

training 

Bulky, not portable, 

uncomfortable 

[138-142] trajectory, 

force 

The most investigated feedback relies on the sense of touch and therefore consists of cutaneous 

stimulation. This can be performed with different modalities namely, vibrational, mechanotactile or 

electrical stimulation.  

The vibrational feedback is generally implemented with the addition of eccentric rotating motors 

placed in contact with the skin surface of the stump [21]. This method is generally employed to augment 

the robustness of the control system by providing the user with additional information regarding the 

position of the prosthetic device but it lacks intuitiveness, as the association between perceived sensation 

and the corresponding information has to be learned by the user. For example, in Bark, et al. [130], the 

motors were placed in 4 distinct areas of the stump to guide the user through the desired trajectory while 

grasping object and the results showed a significant decrease in the root mean square angle error of their 

limb during the learning process. More recently, Markovic, et al. [131] proposed a joint-oriented 

feedback criterion consisting of three vibromotors placed on the arm to provide the information on which 

joint is currently activated by the user, thus restoring proprioceptive sensation. The experiment was 

performed by 12 able-body subjects and 2 amputees controlling 3 DoF prosthesis, and it was found that 

the myoelectric multi-amplitude control outperformed the pattern recognition method when the 

feedback was applied. 
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Differently from the vibrational, the mechanotactile feedback is based on the application of linear 

actuators on the skin and provides pressure sensation. Antfolk, et al. [132] exploited this technique and 

proposed a multisite mechanotactile system to investigate the localization and discrimination threshold 

of pressure stimuli on the residual limbs of trans-radial amputees. They demonstrated that subjects were 

able to discriminate between different location of sensation and to differentiate between three different 

levels of pressure. This study demonstrated that it is possible to transfer tactile input from an artificial 

hand to the forearm skin after a brief training period. Recently, Svensson, et al. [127] used it to translate 

the interaction between a virtual reality environment and a virtual hand into user sensation. The authors 

showed that by placing the tactile actuators in correspondence with the areas of the skin involved in 

object manipulation, subjects were able to feel a real touch sensation that increased their sense of body 

ownership. For example, pressure applied to the prosthetic fingers was perceived as a tactile sensation 

on the skin [127]. 

The electrical feedback is based on transcutaneous stimulation. The elicited sensations range from 

perception of pressure [134] to slip sensations [135], depending on the electrical parameters (i.e., current 

amplitude, pulse frequency, pulse width). One advantage of this approach with respect to the vibrotactile 

and mechanotactile ones is the lack of moving components avoiding problems of electrode displacement 

and, thus, improving the sensors-skin contact. Nevertheless, it is important to take into account that the 

noise introduced by the electric stimulation can corrupt the acquisition of muscular activity, causing 

errors if the ULP is myoelectrically controlled. Moreover, the perceptions are not strictly confined to 

the zone under the stimulating device but they can spread in a wider region if the area above a nerve is 

considered. 

Another sensory modality exploited for feedback delivery is the acoustic one. Gigli, et al. [137] 

recently tested a novel acquisition protocol with additional acoustic feedback in 18 able-body 

participants to improve myoelectric control. The protocol consisted in dynamically acquiring EMG data 

in multiple arm positions while returning an acoustic signal to urge the participants to hover with the 

arm in specific regions of their peri-personal space. The results showed that the interaction between user 

and prosthesis during the data acquisition step was able to significantly improve myoelectric control. 

Auditory feedback has also been employed to convey artificial proprioceptive and exteroceptive 

information. Lundborg, et al. [143] and Gonzalez, et al. [144] employed auditory feedback by encoding 

the movement of different fingers into different sounds. The method demonstrated that the inclusion of 

auditory feedback reduces the mental effort and increase the human-machine interaction; furthermore, 

better temporal performance and better grasping performance were obtained. 

In the last years, there have been some examples exploiting vision to deliver sensory feedback. 

Indeed, visual stimulation can be provided as explicit feedback through screens during game-like 

exercises, helping the prosthetic user to learn how to control the device (e.g., adjusting trajectory or 

grasping force) [145]. However, adding sensory information to the prosthetic user’s perceptual 

experience in real contexts requires solutions like Augmented Reality (AR, occurring when computer-
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generated items overlay a real setting) or Mixed Reality (MR, a term that represented different 

combinations of real and virtual items) [146, 147]. AR and MR environments, implemented through 

wearable solutions like head-mounted displays, can support the actual control of a prosthetic device 

through visual feedback that does not occlude the real context [138, 139, 141]. However, they can also 

be used for prosthetic use training [140, 148] – in such a case, Virtual Reality (VR, a fully computer-

generated setting) can offer visual feedback too [149, 150], especially within game-based frameworks 

[151] for engaging the users and motivating their activity. 

1.2.3.2. Invasive methods 

There are different technologies that can be employed to provide a sensation directly to the nerve 

[88, 152]. The most used employ intrafascicular electrodes, such as transverse intrafascicular 

multichannel electrodes (TIME) and wire and thin-film longitudinal intrafascicular electrodes 

(LIFE), which can both record muscle activity (e.g., iEMG) and stimulate nerves. Other solutions are 

characterized by the fact that the electrodes are placed around the nerves, such as cuff electrodes and 

flat interface nerve electrodes (FINE). 

The first example of ULP with sensory stimulation dates back to 1979 and it was based on the 

remapping between pressure signals acquired by prosthesis sensors to an amplitude-frequency 

modulation. This consisted of a series of pulses delivered with a pulse rate proportional to the increment 

of the pinch force and provided through dry electrodes placed over the skin in correspondence of the 

median nerve, as described in Shannon [153]. Later, the group of Micera employed thin-film 

intrafascicular electrodes longitudinally implanted in peripheral nerves (tf-LIFE4) to deliver electrical 

stimulation. With this method, they were able to elicit sensation of missing hand in the fascicular 

projection territories of the corresponding nerves and to modulate the sensation by varying the pulse 

width and pulse frequency [154]. Importantly, this method avoids muscle crosstalk, fundamental for 

guaranteeing myoelectric control. More recently, new bioinspired paradigms have been suggested to 

better induce natural sensations [88]. In particular, the study of Oddo, et al. [155] showed that it is 

possible to restore textural features recorded by an artificial fingertip. This device embedded a 

neuromorphic real-time mechano-neuro-transductor, which emulated the firing dynamics of SA1 

cutaneous afferents. The emulated firing rate was converted into temporal pattern of electrical spikes 

that were delivered to the human median nerve via percutaneous microstimulation in one trans-radial 

amputee.  

Valle, et al. [156] suggested a ‘hybrid’’ encoding strategy based on simultaneous biomimetic 

frequency and amplitude modulation. This kind of stimulation was perceived more natural with respect 

to classical stimulation protocol, enabling better performance in tasks requiring fine identification of the 

applied force. This paradigm was tested and validated during a virtual egg test [156], where the subject 

needed to modulate the force applied to move sensorized blocks. This encoding strategy not only 
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improves gross manual dexterity in functional task but also improved the prosthesis embodiment, 

reducing abnormal phantom limb perceptions.  

Similarly, Osborn, et al. [120] implemented a neuromorphic feedback paradigm based on Izikevich 

neuron model to generate the current spike train to inject directly in the median and ulnar nerves, using 

beryllium copper (BeCu) probes. Their prosthesis proposes a neuromorphic multilayered artificial skin 

to perceive touch and pain. Their transcutaneous electrical nerve stimulation (TENS) allows to elicit 

innocuous and noxious tactile perceptions in the phantom hand. The multilayered electronic dermis (e-

dermis) produces receptor-like spiking neural activity that allows to discriminate object curvature, 

including sharpness in a more natural sensation spanning a range of tactile stimuli for prosthetic hands. 

The authors were able not only to restore finger touch discrimination and objects recognition, but also 

to provide a pain sensation when the prosthesis touched sharp objects. In particular, they found that pain 

sensation is generated by a stimulation of 15-20Hz. 

Tan, et al. [157] suggested that simple electronic cuff placed around nerves in the upper arm can 

directly activate the neural pathways responsible for hand sensations. This neural interface enabled the 

restoration of different sensations at many locations on the neuroprosthetic hand. Different stimulation 

patterns could transform the typical “tingling sensation” of electrical stimulation into multiple different 

natural sensations, enabling the amputees to perform fine motor tasks and improving the embodiment. 

In George, et al. [158] a biomimetic method was described to restore both force and haptic sensation. 

The sensory feedback was implemented to restore the force sensation and promote objects recognition: 

Utah Slanted Electrode Array (USEA) electrodes were used to deliver stimulation proportional to the 

variation of contact force exchanged between the prosthesis and the object during manipulation. Instead, 

the haptic sensation was based on the distribution of stimulation delivered during contact with the object 

with a fixed frequency and amplitude. The characteristic of this encoding scheme is based on electrical 

biphasic, charge – balanced of 200- or 320-µs phase durations. The biomimetic model describes the 

instantaneous firing rate of the afferent population using the contact stimulus position, velocity, and 

acceleration simulating all tactile fibers to any spatiotemporal deformation of the skin and hand. This 

strategy allows the amputee to augment the active exploration experience and to discriminate object size 

and stiffness. 

Liu, et al. [159] have shown that primary afferents encode different stimulus features in distinct yet 

overlapping ways: scanning speed and contact force are encoded primarily in firing rates, whereas 

texture is encoded in the spatial distribution of the activated fibers, and in precisely timed spiking 

sequences. When multiple aspects of tactile stimuli vary at the same time, these different neural codes 

allow for information to be multiplexed in the responses of single neuron and populations of neurons. 

Exploiting this sensory architecture with invasive methods may lead to the development of prosthetic 

devices able to truly evoke natural sensations.  

Another promising approach is targeted sensory reinnervation (TSR), i.e. the sensory version of 

TMR, which consists in coupling a pressure sensor placed on the prosthetic device to surgically 
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redirected cutaneous sensory nerves [160]. This technique strongly helps discrimination of objects size 

and stiffness during active exploration, especially if the tactile feedback is biomimetic [158]. Recently, 

Marasco, et al. [161] have developed a prosthetic system based on both targeted sensory and motor 

reinnervation. TSR was used to deliver both touch and kinesthetic feedback. The authors showed that 

the system was able to significantly improve device control and promote embodiment. 

These results indicate that, in order to close the loop on user and provide useful sensation (regardless 

the specific feedback modality), an optimal feedback control policy is necessary [5], as discussed in 

section 4.4 of Marinelli, et al. [6]. 

1.3. Prosthetic Control Strategies and Algorithms 

Although the focus of this section is on the active prosthesis, it is worth mentioning that an important 

portion of the amputees still uses body-powered prosthesis [162]. These are cable-operated devices 

usually equipped with split hook or hand as terminal part [163]. 

Ranging from standard control approaches (e.g., dual-site control [164]) to simultaneous control of 

multiple degrees of freedom (e.g., pattern recognition [165]), the literature offers disparate solutions for 

ULP control depending on the type of input signal and the sensors density. 

In general, prosthetic control is performed at different levels. The low level refers to motor actuation 

(Figure 7 D) and, more in general, to the control of the active degrees of freedom of the device; the 

medium level consists of the translation of movement intentions into joint references and gestures 

(Figure 7 C); the high-level control translates input signals collected from the user (Figure 7 A) into 

movement intentions (Figure 7 C, yellow panel – layer 1). In the next sections, we describe these 

different levels of control and provide examples of the different strategies that can be used. 

1.3.1. Low-level control: from control commands to motor actuation 

The low-level control combines the well-known strategies implemented in the automation industry 

to operate autonomous machines, e.g., industrial robots. We will not detail the structure and 

mathematical formality of these control architectures. However, if the readers are curious, a more 

complete and detailed analysis of robot lower-level control is provided by the comprehensive work of 

Siciliano, et al. [166].   

In brief, at the base of these controls, there is always an active and controllable actuator, that for 

upper limb prosthetic solutions coincides – most of the times – with an electrical motor (either brushed 

or brushless) often coupled to a dedicated transmission system (e.g., a planetary gear) to reach the 

desired torque-speed characteristic. It is possible to present the low-level control of upper limb 

prostheses as the combination of three possible nested controllers: the current, the speed and the 

position control loops (Figure 7 D). 

The current control loop takes care of reliably tracking desired current trajectories. To be 

implemented, it requires the presence of reliable and precise current measurement sensors. The current 
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control also provides a relatively good force/torque control of the system, being the current absorbed by 

the actuator directly proportional to the generated output torque. On top of the current controller, it is 

usually found a speed control loop to regulate the rotational speed of the motor and, thus, the speed of 

the actuated system. The combination of an external speed controller with an internal current control 

guarantees the possibility of safely operate the actuating unit in terms of desired speeds and torques. 

Sometimes, on top or in substitution to the speed controller, systems also implement a position control 

loop. The position controller guarantees the tracking of desired angular trajectories. It is therefore 

preferable to use the speed controller if the goal is to precisely track given trajectories in specific time 

intervals. The implementation and application of speed and position controllers can be performed either 

before (fast shaft) or after (slow shaft) of the transmission system. The decision depends on the 

availability of sensing devices (e.g., angular sensors such as encoders or resolvers) to measure the 

required physical quantities.  

All these controllers are implemented in a negative feedback architecture and typically controlled by 

means of PID controllers, whose proportional (P), integrative (I) and derivative (D) parameters are 

tuned to reach the desired system response in terms of control reactivity (rise time and settling time), 

precision (steady-state error and overshoot) and stability. It is worth mentioning that a negative feedback 

 

Figure 7 Architecture of ULP control: 

actuation and feedback. Input signals collected from the user (A) are processed into the embedded processing unit (C) to 

generate control commands for the single joint control unit (D). Feedback information coming from the prosthesis or its 

interaction with the environment (E) are also processed in the embedded processing unit (C) to deliver sensory feedback 

(B). The embedded processing unit (C) can be set up by different layers: layer 1 (intention detection, yellow panel) is the 

software turning the input signals (A) sampled by master board into detected movement intentions, by means of specific 

control algorithms (e.g., machine learning or deep learning algorithms); layer 2 (human-robot interaction, green panel) is 

the software responsible of processing prosthesis position (joint and cartesian space control) and external information 

(tactile identification, E); layer 3 (encoding haptic feedback, blue panel) is the software responsible for encoding the 

information processed in layer 2 into sensory feedback.  The output of the embedded processing unit are control commands 

(mediated by actuator drivers) both to move the device and to provide sensory feedback. This has a direct impact on the 

user experience (F) in terms of learning how to use the device (training) and of user-prosthesis integration (embodiment). 
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architecture is typically only bounded to the low-level control of the prosthesis, while higher level 

controllers and especially high-level control (see Section 4.3) are often treated in an open-loop fashion, 

where the user directly generates the reference control signal without any feedback verification. The 

generated reference commands will then be directly sent to the low-level controller. 

1.3.2. Mid-level control: from movement intention to control commands 

The mid-level techniques (Figure 7 C, yellow panel – layer 1) aim to synthetize the control 

commands to suitably activate the electric motors of the multiple DoFs ULP (actuation drivers in Figure 

7 C). These signals are the input of the aforementioned low-level control.  

A major classification of the mid-level control strategies for multi-DoFs robots divides them in two 

categories: joint-space and task-space (Cartesian) controllers [167, 168]. 

Joint-space control strategies directly feed the commands to each of the actuated joints, namely 

DoFs, of the upper-limb robotic device. It is a direct approach that does not require any particular 

mathematical manipulation. In such a scenario, the mid-level control receives information from the high-

level (see Section 4.3), then it assigns specific commands to each low-level controller (see Section 4.1). 

The logic used to assign the control commands is strongly based on the kind of information coming 

from the high-level side. Nonetheless, it will most likely reduce to a set of independent commands for 

each of the actuated joints. 

On the other side of the spectrum, we have task-space based control strategies. In this case, the 

control commands for each of the joints are the results of a mathematical manipulation that involves the 

transformation from the Cartesian space to the joint space. If the aim is to regulate the Cartesian 

trajectory, the controller will need to translate the Cartesian trajectories into joint angles, by means of a 

process known as inverse kinematics. If instead the aim is to regulate the Cartesian force, the controller 

will transform the Cartesian forces into joint forces (or torques) utilizing the process of inverse 

dynamics. 

Both these approaches are well known to robotic applications and will not be treated in detail in this 

review. Nonetheless, the authors suggest the comprehensive works of Corke and Khatib [168] and 

Siciliano, et al. [167] to get the fundamentals of the aforementioned approaches. 

In general, Cartesian based controls are more intuitive for the external user, namely any subject 

interacting with the robot as an external tool. In fact, the robot behavior can be more naturally interpreted 

being the forces or the trajectories referred to the three-dimensional space we are used to deal with. 

However, from a computational and complexity point of view, task-space controllers require a bigger 

effort and introduce limitations to their application, e.g., singularities, redundancies. On the other hand, 

joint space control behavior is less intuitive to predict but it is easier and less complex to implement. 

Which approach is better for upper-limb prosthetic devices is still unclear. However, it is important 

to notice that, even if Cartesian controls are more intuitive from an external perspective, they might 
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appear more complex from an internal perspective, such as the one of a prosthesis user, where the motion 

of the arm is more likely imagined in terms of joint motions and not Cartesian ones. 

1.3.3. High-level control: from input signals to movement intentions 

This section summarizes the most assessed techniques for ULP control. Considering the prostheses 

available on the market but also the research activities, the main input source exploited to control such 

devices is the EMG. On the basis of the EMG type multiple control strategies can be employed, and the 

last decades of studies on active prostheses mainly focused on the control strategy design and 

development. 

The most common control strategy is based on dual site control which consist in two electrodes 

placed in two antagonist muscles [164]. This solution allows the control of the motor in two directions 

according to the muscle amplitude of the selected electrodes. The synthetized reference usually is 

proportional to the amplitude of the muscle signal in term of speed or force. With the introduction of 

multiple DoFs, a co-contraction strategy has been implemented to switch between controlled joints 

[169]. This allows the control of a single DoF at a time using two electrodes as in dual-site control. 

When both muscles are simultaneously contracted the control signal switches the joint to be controlled. 

This is a simple solution yet unnatural and lacking intuitiveness. 

Another diffused strategy to control prosthesis with multiple active DoF is the finite state machine 

(FSM) [170]. Commercially available ULPs implement this strategy to switch the position of the thumb 

to reproduce different types of grasp [24-26]. For example, the Michelangelo hand allows to switch the 

thumb position when a signal of opening is triggered with the hand in a fully opened configuration [24]. 

With the aim of increasing the number of controlled DoFs, many different methods were proposed, 

such as muscle synergies, feature extraction (WFE), multi-amplitude threshold control and 

machine learning methods. Muscle synergies capture muscle activation invariance during motor 

production and can be exploited as control variables for ULP, with aim of obtaining a biomimetic 

human-like behavior [171]. The main idea is to extract motion primitives from muscle synergies and 

combine them to generate complex arm movements [172, 173]. Furui, et al. [174] propose a biomimetic 

control based on muscle synergies to extract motion primitives and combine them to generate complex 

movements. Feature extraction methods foresee the computation of some EMG-based metrics that 

reflect movement intentions [175]. Multi-amplitude threshold methods work as dual-site control, but 

they associate different amplitudes of the input signal to different DoFs [131]. Although robust, these 

techniques are poorly used because they lack intuitiveness [131]. 

1.3.3.1. Machine Learning Algorithms 

Figure 8 illustrates the main machine learning methods employed for ULP control These methods 

generally solve a pattern recognition problem in which, given the input signal, an output movement have 

to be identified. 
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The first PR-based control schemes arose around the second half of 1960s [176]. In this 

configuration, the acquired EMG signals are elaborated by the controller to determine the action to be 

performed by the prosthesis. The five pillars of this computation process are: pre-processing, data 

segmentation, feature extraction, classification, and post-processing. Each step is briefly described in 

Table 3. 

Table 3: Pattern recognition steps. 

Pre-processing 
During this phase, the incoming signals are firstly filtered to delete the interferences, such as 

acquisition noise and artifacts. 

Data segmentation This process divides the signals into time-windows, overlapping or adjacent [177]. 

Features extraction 

It reduces the signal information into a set of representative features in time domain (e.g., variance, 

zero crossing, etc.), frequency domain (e.g., mean frequency, spectral properties, etc.) or time-

frequency domain (e.g., the wavelength transform, an alternative to the traditional Fourier Transform 

useful for noise-removal and data compression [178]), as described in Boostani and Moradi [179]. 

Importantly, this part can greatly affect the computational costs. 

Classification 
This is the crucial step for the classifier, where the controllers recognize and classify the signals input 

information and generate an output for the actuators. 

Post-processing 

It has the main goal to reduce as much as possible the misclassification. An example is the majority 

vote strategy, in which the current output is calculated on the previously most recognized class. The 

majority vote scheme is used for eliminating spurious misclassifications caused by too short 

windows on which the most recurrent class is selected; it employs the previous classification results 

and evaluates the current output on the basis of the previously most recognized class [180]. 

EMG-based pattern recognition controllers are now investigated by many groups and are even 

available in commercial prostheses [76, 78, 181]. 

The PR-based controllers apply linear and non-linear methods to classify the EMG signal into a 

possible large number of movements. The two main families of classification methods used in this 

context are regression [182] and classification techniques [71]. While the former is usually simple to 

implement and train, the latter are generally more difficult to employ. The embedding of neural 

networks (NN) in an ULP strictly depends on the structure of the algorithm (number of layers and 

neurons), since complex architecture requires high computational effort [183].  

Statistical regression models usually produce good results in terms of high accuracy percentages. 

However, the out-of-laboratory results are particularly poor, because these techniques are extremely 

sensitive to changes of the input signals [177]. Motivated by this issue, in the last decade, many groups 

focused on classification-based techniques to implement more reliable decoders. Importantly, training 

classifiers requires longer than training linear models, however, the formers can achieve better results 

during real-time execution. Different classifiers have been exploited in ULP control such as Support 

Vector Machine, Regularized Least Squares, whereas the gold-standard is the Linear Discriminant 

Analysis [12, 176, 184]. Among NN, the most common architecture is the Multi-Layer Perceptron 

(MLP) [185, 186]. The MLP is a supervised ML technique, which exploits labeled data to train the 



IOP Publishing Prog. Biomed. Eng. 5 (2023) 012001 https://doi.org/10.1088/2516-1091/acac57 

 

25 

C
h

a
p

te
r 

1
 

algorithm. It is characterized by three types of layers: input, hidden and output layer. The first one 

contains the same number of neurons as the input signals (for example, features extracted from EMG 

signals), the second stage can have one or more layers where there are all the trainable neurons, while 

the last layer comprises all the output nodes representing the results (for example, classification 

likelihood of each class of movement). Neurons of a certain layer are fully connected to the neurons in 

the next layer via nonlinear activation functions. However, as for the regression algorithms, the 

performance results obtained in the lab are not easily replicated in the real-life scenario. Moreover, the 

complexity of the controlled prosthesis (e.g., the number of DoFs) corresponds to a higher number of 

neurons in the NN, with important consequence not only on the computational burden, but also on the 

memory consumption. 

When considering an increase in the number of controllable DoFs, current pattern recognition 

approaches demonstrated poor performance [187]. As a matter of fact, to enhance the classification rate 

(i.e., number of correctly recognized movement) a greater content of information should be handled. 

The higher the amount of input data, the more complex would the ML algorithm be.  

Therefore, HD-sEMG can be exploited to increase the amount of muscular information but this 

comes at the cost of higher computational burden. It has been proven that the use of this type of data can 

be helpful in increasing the robustness against electrode shift [188], allowing an improvement of the 

classification by exploiting spatial images of the muscular contractions [189], and for retrieving 

measures of motor unit potentials, which can be difficult to assess without invasive techniques [190].  

Different techniques can be exploited to extract motor units' activity from the HD-sEMGs. The main 

used decomposition algorithm is the blind source separation (with the Convolution Kernel 

Compensation described by Holobar and Zazula [191]) which seems to be the most suitable since it does 

not make any prior assumptions on the action potential shapes. The main problems related to this 

technique is the lack of a useful output for the prosthesis control, since the decomposition provides an 

extraction of principal features of the EMG signals. On the one hand, the algorithm returns reliable 

information about neural activity, but, on the other hand, it increases the computational burden required 

to the system. Indeed, the Holobar algorithm has been used together with ML algorithms to control 

robotic arm in real-time [192].  

 

Figure 8: Division of machine learning approaches for 

ULP control. 
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Another approach includes the exploitation of ML algorithms where the input EMG signals are 

considered as numeric values and the definition of the output is based on a Black Box technique. 

Therefore, the mathematical tools contained in the Black Box do not take into account the biomechanics 

of the amputated limb and they are not specific for prosthetic applications.  

It is relevant to feed the ML algorithm via a set of EMG signals (muscular patterns) specific for 

different prosthesis movements in such a way that the classifier does not misclassify. However, it is not 

always feasible to acquire the same signals for each movement due to different sources of errors (i.e., 

muscle fatigue, sweating, electrode misalignment). Indeed, more complex classifiers belonging to the 

Deep Learning (DL) field are exploited to make the control more robust. A possible application can be 

the use of Convolutional Neural Network (CNN), which exploits dimensionality reduction to extract 

complex features from the activation maps of the HD-sEMG without dramatically increasing the 

computation time [193]. This type of algorithm is also ideal for increasing the number of DoFs (and 

therefore the number of classes to be recognized) while keeping a quite high accuracy rate [178]. 

Moreover, Zhai, et al. [194] has proved that the exploitation of CNN can help in removing issues of 

daily life noise, updating its feature map to include this new information, avoiding the need of periodical 

readjustment. 

Adaptive technique based on reinforcement learning [195, 196] has been recently investigated, with 

the aim of facilitating the learning process of prosthetic use. This approach is promising as it points 

towards the development of a “human–prosthesis symbiosis in which human motor control and 

intelligent prosthesis control function as one system”, as defined by the group of Huang, et al. [197].  

Other DL algorithms take into account time series with feedback loops with prior hidden layers [142]. 

This architecture allows storing the history of the input signals by considering the information of 

previous time instants, also resulting in performance improvements with respect to simpler DL 

architectures [198]. 

Recently, novel DL strategies have also been proposed for ULP: Recurrent Neural Networks 

process temporal or sequential information; Temporal Convolutional Networks take advantage of a 

one-dimensional convolution layer running along the time dimension to learn the time dependence of a 

given input signal [199]; Transformers are attention-based architectures applied to HD-sEMG data 

[200, 201]. 

Overall, the main problem related to ML applied to the bionic field is the evident gap between the 

results observed in a closed safe environment, such as a laboratory, and in real daily life [202]. 

1.3.3.2. Model-based approaches 

To overcome the limitations of ML algorithms for ULP control, some groups investigated the model-

based approach, which consists of an accurate description of the muscles and bones involved in the 

movements starting from the Hill model of muscle fiber [79]. For example, the neuromusculoskeletal 

model extracts from the residual EMGs the activation dynamics of the limb [203, 204]. The activation 
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dynamics combined with the kinematics of the limb produces the contraction dynamics. This consists 

of the modification of fiber length involved in the motion along the specific DoFs. In particular, Sartori, 

et al. [80] implemented a control strategy based on the physiology and kinematics of a real hand and 

tested it with an amputated subject performing some complex grasping tasks. This approach needs a 

calibration step to scale the model to the subject specific activation EMGs. Results showed great stability 

over the noise introduced by sensors or movements artifacts. Moreover, the amputee was able to 

reproduce simultaneous multi-DoF gestures. The limitation of this approach is its susceptibility to 

electrode shift and fatigue condition that affects the EMG acquisition. The real-life scenario is yet to be 

tested, but preliminary results appear very promising [80]. 

1.3.3.3. Sensor/Data-fusion and other techniques 

For ULP control using different input sources together with or without EMG signals, other methods 

can be adopted. In case of force myography, the same algorithms used for EMG input can be applied. 

For example, machine learning techniques can be used to analyze and synthetize output starting from 

FMG input [205]. The adoption of other input signals different from EMG clearly requires the 

implementation of ad-hoc methods for their processing. For example, voice control introduces audio 

analysis method to detect and translate command into prosthetic movements [206, 207]. Further, tongue 

control allows the motion of the prosthesis using a wireless controller resembling a dental retainer and 

providing the functionality of a wireless joystick or keyboard [208]. 

The high complexity of ULP control has led to the development of sensor fusion approaches, in 

which input signals of different nature are simultaneously collected and then processed to estimate the 

intended movement more reliably and accurately. 

On low-density sEMG, we can find robust and semi-autonomous control solutions based on custom 

multi-amplitude algorithms, as those implemented on the Michelangelo hand with Closed-Loop Multi 

Amplitude Control (CMAC) [131, 209]. The adoption of IMU sensors may lead to further 

improvements, such as the automatic adaptation to unexpected external factors, including sweat, muscle 

fatigue, mental stress, electrode re-positioning and weather conditions. The state-of-the-art algorithms 

have to cope with these challenging issues. Therefore, the combination of EMG and IMU as input to a 

classifier could provide useful localization information of the hand position, which could delete possible 

false positives, actively improving the obtained accuracy [210, 211]. Moreover, it has been observed 

that integrating EMG, IMU and artificial vision sensors could benefit both the classifier accuracy and 

the increment of available DoFs [209]. Other promising research advancements demonstrated that 

mixing EMG with FMG could lead to an improved multi-DoFs control as proposed by [212]. Similarly, 

Jiang, et al. [213] proposed a sensor fusion approach among EMG and FMG. Moreover, by fusing FMG 

and IMU, other interesting results were presented by [214]. In addition, other research activities treated 

NIRS fused with EMG [215] and IMU respectively [216]. 
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In conclusion, a data fusion aims at compensating some of the main limiting factors of single input 

approaches (such as EMG-based or others) as these latter suffer from artifacts, electrodes shift, etc. 

1.3.4. Control strategies for the Sensory Feedback and Closed-Loop approaches 

Recent developments in the prosthetic field have focused attention on sensory feedback restoration. 

In particular, many groups began studying how to provide the user with information about the interaction 

between the prosthetic system and the physical world. This information needs to be collected (Figure 7 

E), processed (Figure 7 C, green panel – layer 2) and encoded into control signals (Figure 7 C, blue 

panel – layer 3) for the feedback system (Figure 7 B, e.g., vibromotors, electrostimulation, etc.). 

The control strategy implemented to encode this information depends on the type of sensation to 

restore as, for instance, tactile feedback (pressure, temperature, pain) or proprioception feedback 

(gestures, joint movements). o this aim, different solutions have been developed.  

Mamidanna, et al. [217] focused their research activity on the force feedback that the prosthesis 

applies to the grasped objects by using vibromotors attached to the forearm skin. To do that, an encoding 

scheme of the current absorbed by the prosthetic motor was translated into vibromotors amplitude. Other 

sensorized solutions have been developed to directly translate the prosthesis interaction to user sensation 

like artificial skin able to translate the distribution of pressure and intensity to tactile and pain sensations 

on users with invasive interfaces [218]. Similarly, Markovic, et al. [131] implemented a proprioceptive 

feedback translating prosthesis movements into vibration orientation and shape to be intuitively 

interpreted by users. 

In addition to prosthetic feedback, some groups are working on user feedback in terms of providing 

information about how the prosthesis is controlled by means of closed-loop approaches. For example, 

Schweisfurth, et al. [219] have tested on amputees a ULP system in which EMG input used to drive the 

prosthesis was translated into intensity of vibromotors activation. In this configuration, the amount of 

EMG activity detected is directly proportional to prosthesis grasping strength and to intensity of 

vibration amplitude. In another work, the control commands generated by the user and translated into 

joint angles were encoded as proprioceptive information delivered through electrical stimulation [136]. 

This allowed user to understand if the intended control command was correctly detected by the 

algorithms. 

Similarly, Tecnalia developed a ULP system with sensory feedback by merging into a unique device 

EMG acquisition and electrical stimulation [220]. Although this solution significantly reduced the 

problem of encumbrance, it still faces some issues mainly related to the artifacts that the stimulation 

produces on the EMG signal and that cannot be removed using standard signal processing algorithms 

[221]. 

As for decoding of movement intention from input signals, the interpretation of feedback information 

needs a calibration procedure aimed at familiarizing the user with the ULP device. In this context, it is 
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fundamental to guide the user to: (i) produce the correct input signal to perform the desired movement, 

and (ii) to intuitively convert the feedback signal into useful information for motor planning. 
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Chapter 2. Beyond current prosthetic design 

In the pursuit of improving the acceptance and usability of upper limb prostheses (ULPs), various 

approaches have been explored. A comprehensive review by Cordella, et al. [1] provided valuable 

guidelines, drawing insights from user requirements and case studies such as Luchetti, et al. [222]. These 

requirements encompassed important aspects such as the ability to perform daily activities with minimal 

visual attention, precise dexterity, and appropriate strength control. Furthermore, biomimetic sensory 

feedback and anthropomorphic features were identified as essential, alongside considerations of device 

duration, reliability, and technical aspects affecting comfort, such as heat dissipation and motor noise 

reduction [6]. 

To bridge the gap between laboratory research and real-life applications, it is vital to involve 

clinicians, researchers, and amputees themselves in co-creation frameworks and effective user research 

methodologies [223]. Surveys, workshops, and initiatives like the Cybathlon competitions have been 

instrumental in gathering insights from all stakeholders, ensuring that the issues faced by prosthetic 

users are accurately represented and addressed [224]. User-centered evaluation methodologies and 

metrics need to be tailored specifically for ULPs, considering their biomimetic behavior, feedback, and 

hand-like manipulation tasks [202, 225]. Such aspects were studied in the first work of this chapter (see 

paragraph 2.1): 

• Caserta, et al. “Benefits of the Cybathlon 2020 Training for a Prosthetic Hand User: a case 

study on the Hannes system.” Journal of NeuroEngineering and Rehabilitation, 2022. [17] 

Designing ULPs must also take into account individual preferences, which can be influenced by 

demographic factors, level and type of amputation, pain symptoms, and the type of prosthesis employed 

[226-231]. Understanding amputees' preferences is crucial not only for designing the physical interface 

but also for developing virtual and augmented environments for prosthetic training [232]. Engaging 

exercises in the form of game-like activities have proven effective in motivating users to train and 

provide consistent biosignals, essential for machine learning-based control systems [233]. Additionally, 

training programs should focus on playfully engaging users to strengthen their muscles and accurately 

replicate real-world prosthetic tasks, facilitating skill transfer [234]. For these reasons we studied 

approaches to promote such aspects in the second work of this chapter (see paragraph 2.2): 

• Barresi, et al. “Exploring the Embodiment of a Virtual Hand in a Spatially Augmented 

Respiratory Biofeedback Setting.” Frontiers in Neurorobotics, 2021. [18] 

One effective strategy for promoting positive interaction between users and ULPs is to design 

prostheses that closely resemble the functionality of a real hand. This approach aims to facilitate a sense 

of ownership and embodiment, where users perceive the artificial limb as an integral part of their body 

scheme [235]. The embodiment phenomenon, encompassing self-location, ownership, and agency, 

enhances movement control, object discrimination, manual accuracy, and sensitivity. Furthermore, it 
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contributes to reducing phantom-limb pain and the risk of prosthesis abandonment [236-238]. 

Evaluating and stimulating prosthetic embodiment is often done using methods based on the Rubber 

Hand Illusion (RHI) studies, involving questionnaires, biosignal analysis, and proprioceptive drift 

measurements [239-242]. 

Enhancing the embodiment of artificial limbs requires a nuanced understanding of the underlying 

processes. Factors such as daily prosthetic practice, individual characteristics, and multisensory 

feedback congruency play crucial roles in this regard. Importantly, embodiment training strategies can 

be explored in virtual and augmented settings, although further investigation is needed to generalize the 

effects to real prosthetic devices [18]. By establishing optimal techniques to promote embodiment, users 

can be fully engaged in exploring the potential of their prosthetic devices, creating a virtuous circle of 

improved acceptance and usability. 

However, achieving a truly "biomimetic" experience in prosthetic embodiment presents 

technological challenges that must be addressed. This includes developing advanced control patterns 

and considering cosmetic improvements to enhance the overall user experience and acceptance of 

artificial limbs. In that direction we developed multi-DoF prostheses able to replicate human motions as 

described in the third work of this chapter (see paragraph 2.3): 

• Boccardo, et al. “Improvements to an under-actuated Prosthetic Hand toward a dexterous 2-

DoF Wrist” Mechatronics, 2023. (submitted) 
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2.1. Benefits of the Cybathlon 2020 Training for a Prosthetic Hand 

User: a case study on the Hannes system 

2.1.1. Background  

Losing a limb has devastating different consequences: the amputee is no longer able to perform his 

usual activities of daily living (ADLs), he is not completely autonomous and independent, and this 

results in a dramatic decrease of the quality of life [243]. The loss of an upper limb irreversibly alters 

the look and affective interactions of the amputee, causing severe repercussion such as social rejection, 

self-pity and low self-esteem. In addition, also the biomechanics of the body changes, trying to 

compensate the missing limb. This leads to the excessive use of the rest of the body or to incorrect body 

postures, which in turn produce extreme fatigue [244].  

Typically, the main strategy for compensating a hand loss is using an artificial upper limb, a 

prosthesis. A prosthesis is, therefore, an assistive device which should become an essential element of 

the amputee’s daily life. Current prosthetic options range in both cosmetics and functionality, to satisfy 

a variety of user needs and lifestyles. The most advanced prostheses currently available are the so called 

“Myoelectric prostheses”. These devices use electromyographic (EMG) signals, generated from the 

contraction of the stump’s residual muscles, for the activation of the functional elements. However, even 

though they offer an increased functionality compared to the simpler options such as cosmetic or body-

powered, there are still problems related to weight, cost, maintenance, reliability, and complexity of 

control [162]. 

Due to all these limitations, the device abandonment rate is still high, and a large part of the amputees’ 

population even prefers not to use any prosthesis at all during their daily life [226]. Decades of research 

and development (R&D) on bionic limbs suggest that the design of prosthetic hands requires accurate 

investigations about users’ needs, paying attention at improving user experience. Indeed, this may 

increase the technology acceptance of the prostheses. UX depends on many factors such as the control 

approach used to control the prosthesis [245], interactive training methods [246], embodiment 

stimulation [18], and biomimetic design strategies [247]. Furthermore, the development of a prosthesis 

capable to induce the embodiment and to be felt as a valid and natural substitution of the missing limb 

by the amputee, rather than a simple tool, is an important target as well.  

However, the detachment between the communities of users, researchers, developers, and all 

stakeholders can become an obstacle for fertile improvements in prosthetic user experience. Thus, novel 

strategies for gathering these communities [223] around the same scope, possibly also promoting a 

proper representation of the user’s issues and needs, could be advantageous.  

The Cybathlon competition for assistive technology have been conceived to reach such a result, 

reducing the gap discussed above [224]. This unique world championship proposes six different 

disciplines in which people with physical disabilities compete against each other with both commercial 
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devices and research prototypes. Within this context, the Powered Arm Prosthesis Race is dedicated to 

people with transradial or more proximal arm amputation, or dysmelia, and equipped with arm 

prosthesis. Preparing for such a competition requires a careful attention to realistic tasks, increasing the 

ecological validity of the user performance assessed during the competition – potentially as in 

technology benchmarking [248]. On the other hand, training a prosthetic user for a Cybathlon challenge 

means for R&D teams the opportunity of exploit these tasks to explore novel solutions that will be 

extensively tested according to clinical protocols.  

This paper presents the Cybathlon 2020 experience of our participating Pilot 1 with the novel 

prosthetic system Hannes. Furthermore, to verify if the Cybathlon-based training and related 

competition had a positive and substantial influence on the relationship between Pilot 1 and Hannes, we 

administered to both him and a non-runner Hannes user the same evaluation on functionality, 

embodiment and user experience with tests and questionnaires unrelated to Cybathlon. 

2.1.2. Methods 

Two male right transradial amputees and myoelectric prosthetic users were recruited as pilots in 

February 2020 to form the REHAB TECH team. The first, aged 32, has a 5-years’ experience in 

myoelectric control with a Bebionic polyarticulated prosthesis by Ottobock, and was chosen as first pilot 

(Pilot 1). The second participant, age 34, is a user of a tridigital Myohand Varipuls Speed by Ottobock 

since 2010, and was selected as second pilot (Pilot 2). Both subjects were given the Hannes prosthetic 

hand and had the chance to keep it for seven weeks for Home Use. They underwent a Preliminary Phase 

 

Figure 9 Scheme of planned activities: 

both pilots underwent the same Preliminary Phase (Tb) of five days for the setting up of the Hannes prosthesis and then 

started their seven weeks of Home Use with Hannes. At the beginning of this period, they participated to the Initial 

Evaluation (Ti) for the investigation of functionality, embodiment and UX with Hannes. Pilot 2 repeated the same tests 

and questionnaires at the end of the seven weeks in the Final Evaluation (Tf). Pilot 1 participated to the same Final 

Evaluation right after the Cybathlon Race, performed at the end of the same Home Use period, during which he also 

followed four Live Training Sessions. 
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(Tb) with a prosthesis fitting process of five days, comprising a myometric exam for the residual muscles 

functional state evaluation and EMG sensors positioning, stump fitting, and preliminary training, 

including familiarization with the Hannes prosthesis. Due to the movement restrictions caused by the 

COVID-19 pandemic that hit Italy and the entire world and official institutional restrictions, we were 

forced to train solely Pilot 1 for the Cybathlon competition. However, we decided to still let Pilot 2 use 

Hannes prosthesis for the predetermined Home Use period. Given his participation, for an ease of 

understanding, we chose to keep referring to him as Pilot 2, even if he was completely unfamiliar with 

Cybathlon training, competition, tasks and anything related to it. The Cybathlon Training with Pilot 1 

consisted of only four Live Training Sessions of two days each, executed during the seven weeks of 

Home Use. The training started at the end of September 2020, and it was completed the day before the 

competition, which took place on the 12th of November. This poor preparation was due to the distance 

of the pilot’s residence from the training location, i.e. the Rehab Technologies Laboratory of Istituto 

Italiano di Tecnologia (IIT). Functionality, Embodiment and User Experience evaluation with Hannes 

was carried out for both pilots at the end of the Preliminary Phase and before the Home Use period in 

the Initial Evaluation (Ti). The same methods were repeated in the Final Evaluation (Tf) by Pilot 2 after 

the Home Use, and by Pilot 1 after the Cybathlon Race, occurred immediately after the same Home Use 

period (Figure 9). The evaluation was carried out with tests and questionnaires unrelated to Cybathlon 

race, on which both pilots were not specifically trained. During the Home Use, the pilots were 

encouraged to use the Hannes prosthesis in all possible activities, including work, domestic and 

recreational contexts, as if it was their sound hand. 

2.1.2.1. The Hannes prosthetic system 

The Hannes hand prosthesis is a poly-articulated myoelectric prosthetic hand. The major improvements 

provided by this device are the naturalness of forms, movements and orientation of the rotation axes and 

hand posture. Indeed, the prosthetic design was developed focusing on the anthropometry of the real 

human hand, both from an aesthetic and biomechanical point of view, allowing the user to perceive the 

device as an integral part of the body rather than a simple external tool.  

The Hannes system contains four main components: an electric actuator (DC motor), two custom-

made control boards (Motor control board and EMG processing board), two EMG sensors implementing 

a proportional dual-site control and a tendon-driven, underactuated transmission mechanism (Figure 

10). The embedded differential system is capable to properly offer the patient a harmonious, quick, and 

precise grasping behaviour. The passive Flexion/Extension flexible wrist, separately placed at the base 

of the prosthetic hand to guarantee system modularity, can be fixed in five different positions (two for 

flexion, two for extension and one for neutral position) or left free. In addition, the wrist module offers 

several discrete positions in Pronation/Supination with a 360° mechanical and electrical slip ring 

connection. Finally, a passive thumb can be locked in three positions to allow the main grasp types: 
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lateral, power and pinch. All these features were implemented to develop Hannes as a prosthetic system 

uniquely similar to the real human hand, as it is detailed in reference [247]. 

2.1.2.2. Cybathlon experience 

2.1.2.2.1. Protocol 

The Powered Arm Prosthesis Race included six consecutive tasks inspired by daily life activities, to 

accomplish in the minor possible time and to finish within eight minutes. Some tasks required the use 

of both hands and arms, simulating bimanual interactions, whereas others forced the pilot to exploit only 

his prosthesis. In this case, the object, or the part of it colored in blue, could exclusively be manipulated 

by the device. Two tasks (‘Clean Sweep’ and ‘Home Improvement’) were slightly modified, and one 

completely changed (‘Wire Loop’ into ‘Stacking’) after the subscription to the competition, in 

accordance with the new Global Edition format [249], which was designed to overcome limitations 

given by the pandemic crisis.  

The racetrack was composed of: 

1. Breakfast task – 14 points 

Preparing a meal using kitchen tools is a fundamental activity for an autonomous living. In this 

task, a breakfast table must be set up by cutting bread, opening a bottle, a jam jar and a can, 

unwrapping a pack of sugar cube, and lighting a candle with a matchstick. 

2. Laundry task – 15 points  

This task challenged the practicality of the prosthesis during the wearing of standard clothes and 

its ability with fine activities such as tying shoes, closing and opening a zip, hanging a t-shirt 

with clothespins, and closing two blazer’s buttons. 

 

Figure 10 The Hannes Prosthetic System. 
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3. Clean Sweep task – 16 points 

This task required the ability to handle and grasp objects with different size, weight, texture and 

shape, which can be easily found in daily life. Eight blue objects (a pen, a plastic glass filled 

with balls, a USB pen, a ball, a key with a ring, a coffee mug filled with balls, a credit card, and 

a DVD case) must individually be moved from a table to another one, also testing the prosthetic 

user’s capability to maintain the grasp and the grip force during big movements. Originally, all 

these objects were supposed to be located in a dedicated wooden support. 

4. Home Improvement task – 17 points 

Being able to accomplish manual duties during maintenance work at home is again important 

for the independent living of an amputee with his prosthesis. Indeed, in this task the pilot must 

cut a paper with scissors, drive in a nail, and insert a light bulb in a lamp.  

In the last version, stair climbing and descending with hammer and scissors in a toolbox was 

removed. 

5. Haptic Box task – 20 points 

The sensory feedback implemented in a prosthetic system could improve control, acceptance, 

and embodiment of the prosthesis. By relying only on this feedback from the prosthesis, for 

example with vibrations at the socket, sounds or haptic feedback, the pilot should be able to 

recognize and match six different objects in shape and texture, hidden from the view and 

inserted in wooden boxes. 

6. Stacking task – 18 points 

To test the ability in the maintenance of a solid grasp during big postural movements of the arm 

and the body, in this task the pilot must flip ten blue cups and stack them into a vertical pyramid. 

This task substituted the old ‘Wire Loop’ one, where pilots were supposed to hold a conductive 

wire loop with a blue handle in a curved metal wire without touching it. 

Each team had three attempts for the race. The total score was calculated as the sum of the successful 

tasks, and the best attempt was considered for the final ranking. In case of equal scorings between two 

or more teams, the ranking was established using the total completion time, which included only 

successful tasks. In Figure 11 our Pilot 1 performing some previously mentioned tasks during the official 

competition. 

2.1.2.2.2. Training  

The REHAB TECH Pilot 1’s training consisted in the repetition of each task multiple consecutive 

times to become familiar with the proposed activities. The most difficult tasks and specific exercises 

were identified, and a particular attention was given to them. During the trainings and the Home Use, 

Pilot 1, together with the help of the team, focused on overcoming these difficulties, searching for the 

right strategy to successfully complete the tasks.  
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In the first training session each task setup was prepared one by one, and Pilot 1 repeated each task 

until it was accomplished. Accordingly, we collected the time of the best performance of each successful 

task, and during the data processing we summed these times to recreate a complete race. For this reason, 

this first simulated race, highlighted with a black squared box in Figure 12, does not contain any failure. 

Afterwards, three other simulated races were performed at the end of each successive training session, 

following official rules of the competition, with the six tasks performed in a row on the racetrack. We 

then examined all these simulated races and the official one, reporting the time of completion of each 

single task, to investigate the evolution of the performances achieved during the training.  

Throughout the training period we additionally collected notes and considerations about the pilot’s 

strategies, its performances and the type of proposed tasks and activities, which could be useful to 

improve the training of future Cybathlon competitions and even the practicing of an amputee with a new 

prosthesis.  

 

Figure 11 REHAB TECH Pilot 1 

driving Hannes during the Powered Arm Prosthesis Race of the Cybathlon 2020 Global Edition. 
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After the competition, a further analysis was carried out to better understand Pilot 1’s results with 

respect to the other participants. We analysed the time of each task of the best race of each team, from 

which the ranking of individual task is appreciable.  

2.1.2.3. Hannes’s evaluation 

The aim of the evaluation, which involved both pilots, was to assess possible progresses and 

improvements in the dexterity while using Hannes (from a functional point of view), its embodiment 

process, and user experience, focusing the attention on a possible positive impact of the Cybathlon-

based training and competition in Pilot 1’s results. Both pilots executed the protocol twice (Ti and Tf) 

and were not trained on the proposed evaluation protocol during the Home Use. 

2.1.2.3.1. Functional evaluation 

The functional evaluation was executed with three standard and globally validated clinical tests, 

performed only with the prosthetic hand, to measure the level of dexterity: 

• Minnesota Manual Dexterity Test (MMDT) [250], only the Placing Test 

This test evaluates the dexterity obtained with the prosthesis by measuring the time spent to 

reorder a set of sixty small plastic discs. These latter must be placed, starting from the corner 

corresponding to the amputated side (in order not to invade and obstacle the field of view), one 

column after another in the board below, from the top to the bottom. The score is the time 

required to complete the task; therefore, lower scores indicate better performances. 

• Southampton Hand Assessment Procedure (SHAP) [251]  

This clinical test, designed to evaluate the functionality of the upper limb, measures the time 

spent to move forward on a board six different objects, both light and heavy, with six different 

grips, and the time needed to accomplish fourteen ADLs. These results are then used to calculate 

six indices, one for each grip, and an overall index called Index Of Functionality (IOF) (0-100), 

which provides an overall assessment of hand function. Scores between 95 and 100 are 

considered referable to the normality range. Accordingly, higher scores suggest better 

functionality. 

• Box and Block Test (BBT) [252, 253] 

BBT test is composed by a wooden box divided into two compartments, separated by a wall, 

and by 150 wooden cubes with a lateral length of 2.5 cm. The subject must move, one by one, 

the maximum number of cubes from one compartment to the other one, without touching the 

wall, within 60 seconds. The final score is the total number of transferred cubes, hence higher 

scores manifest better dexterity. 

Furthermore, two standard and globally validated questionnaires were administered with the same aim: 

• Quick Disabilities of the Arm, Shoulder, and Hand (QuickDASH) [254] 
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This questionnaire provides a general measure of the functional activities and the 

musculoskeletal disorders of the upper limb, validated for amputated patients. The subject must 

evaluate his capacity in performing eleven actions while thinking about his last week, by 

choosing from a 5-point scale where 1 is “No difficulty” and 5 is “I could not do it”. The final 

DASH score is a number between 0 and 100, and lower scores indicate better performances. 

• Orthotics and Prosthetics User Survey-Upper Extremity Functional Status module (OPUS-

UEFS) [255, 256]  

This scale is specifically designed for amputees, and it includes twenty-eight activities 

concerning the self-care and the usage of daily life instruments. The evaluation method consists 

in a 5-point scale from 4 (the subject can easily perform the task) to 0 (the subject is not able to 

perform the task), besides the “not applicable” choice, with the additional information about the 

performing of the task with or without the prosthesis. The outcomes are the percentage of usage, 

exploiting the number of tasks indicated to be executed with the prosthesis, and its goodness. 

2.1.2.3.2. Embodiment evaluation 

The embodiment is the integration of an external object into the internal body scheme: an embodied 

object is hence perceived as if it is part of the body itself [257]. The level of embodiment was first 

evaluated with postural sway, searching for potential variations, and preferably decreases, with Hannes 

over time. The postural balance test required the subject to be motionless standing on a force plate, with 

his knees straight and arms down at his sides. First, the participant had to look at an eye-level fixation 

point on the wall for 60 seconds (eyes-opened - EO - condition). Immediately afterward, he had to close 

his eyes and remained standing for 60 seconds (eyes-closed - EC - condition). The sample frequency of 

the data acquisition, made with the force plate (AMTI), was 1000 Hz, while the data were extracted and 

elaborated by a custom-made Matlab software [258] and filtered with a low-pass filter with a cut-off 

frequency of 20 Hz. The required parameters were calculated and generated in an Excel file as described 

in [258]. The programmed outputs were: 

• Centre of Pressure (CoP) medio-lateral (ML) path length, calculated as the cumulative 

displacement in the medio-lateral direction of the CoP [259, 260]; 

• CoP anterior-posterior (AP) path length, calculated as the cumulative displacement in the 

anterior-posterior direction of the CoP [259, 260]; 

• CoP total path (TP) length, calculated as the cumulative displacement of the CoP [259, 260]; 

Furthermore, three items of an ad-hoc questionnaire (item 1, 2, 3; subsection ‘Embodiment’), 

inspired by the RHI questionnaires [257, 261], explored the embodiment obtained with Hannes in a 

subjective way and are shown in Table 4. The ad-hoc questionnaire was formulated with statements as 

in [242] and as the standard validated questionnaires exploited in this evaluation. 
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 2.1.2.3.3. User experience evaluation 

The user experience is intended as the set of subjective consequences of all relationships between 

the user and the prosthesis [262], in term of individual perceptions, expectations, and reactions, also 

about aesthetics, comfort and technology acceptance [263]. User experience can be investigated through 

questionnaires filled out by the subjects. In our case, seven statements of the already cited ad-hoc 

questionnaire had the goal to evaluate these aspects and are reported in Table 4. Four of them belong to 

the ‘System Use’ subsection (item 4, 5, 6, 7), the remaining three (item 8, 9, 10) to the ‘Daily life impact’ 

one. 

The ad-hoc questionnaire (Table 4) hence contained a total of 10 statements, to which assign a score 

within a 5-point Likert type scale, where 1 was ‘Strongly Disagree’ and 5 ‘Strongly Agree’ in order to 

maintain the same form of the previous validated questionnaires. In all items, an increase in the scoring 

means an improvement. 

The user experience was also investigated with three other standard and validated questionnaires: 

• Raw NASA Task Load Index (Raw NASA-TLX) [264] 

This questionnaire measures the workload perceived to assess a task or a series of performances. 

The perception of the workload can change, depending on the level of UX reached. It consists 

of 6 subjective subscales, rated within a 20-point range with 1-point steps. The raw version of 

the NASA-TLX, exploited in this evaluation, lacks the individual weighting of the subscales, 

there is evidence supporting this shortened version, which could even increase experimental 

validity [265]. The NASA score is calculated as a percentage, and lower scores represent better 

performances.  

• System Usability Scale (SUS) [266] 

Table 4 Ad-hoc subjective questionnaire. 

 

SUBSECTIONS ITEMS 

Embodiment 

1. When I look at the prosthesis it seems to look directly at my own hand instead of 

a device 

2. The prosthesis seems to be part of my body 

3. I feel the prosthesis belongs to me 

System use  

4. I feel I can exploit the device at its best 

5. I manage to well coordinate the two hands using them together 

6. I am immediately able to understand if an object was reachable or manipulable 

with the prosthesis 

7. I don't think the device presents usage risks (that do not depend on me) 

Daily life impact  

8. I think I can use the device in different daily contexts 

9. The device brought positive changes in relationship with others 

10. The device usage improves my quality of life in terms of autonomy 
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This scale provides a validated tool for measuring the usability of a system. It comprises 10 

statements with five response options, from ‘Strongly disagree’ (1 point) to ‘Strongly agree’ (5 

points). It is a very easy scale, and it can be used on small sample sizes, assuring anyway reliable 

results. Therefore, it can effectively differentiate usable and unusable systems. The SUS score 

is calculated as a number between 0 and 100, and it is considered above average when higher 

than 68 points, meaning that the system is usable. Hence, higher scores indicate higher usability. 

• Trinity Amputation and Prosthesis Experience Scales (TAPES), only part 1 [267] 

This questionnaire measures the overall appreciation in using the prosthesis and its influence in 

the performance of ADLs. Part 1 of TAPES consists of two subscales with a 5-point rating scale 

regarding, respectively, the psychosocial adjustment, and the prosthetic satisfaction. The overall 

index is shown in the form of a percentage, and higher scores indicate greater levels of 

adjustment. 

Results obtained in both Initial and Final Evaluation are analysed, together with the difference 

between the final and the initial value (Tf - Ti). 

In addition, rates of improvement/deterioration of the Final Evaluation (Tf) with respect to the first 

one (Ti) are evaluated with the following formula: 

                                     𝑇𝑓 − 𝑇𝑖  [%] =
(𝑇𝑓 − 𝑇𝑖)

𝑇𝑖
∗ 100                                       (1) 

 

Figure 12 Performance evolution: 

the four simulated races executed during live training sessions and the performance of the official race. 
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2.1.3. Results 

2.1.3.1. Cybathlon training sessions  

The results of each simulated race executed during the training period are reported in Figure 12, 

showing performance progresses achieved during the training by our Pilot 1. A gradual decrease can be 

appreciated over time. From the first simulated race (637 s), higher than the time limit (480 s equal to 8 

minutes) of more than two minutes and half, the total time decreased and became lower than the limit 

in the last training session (471 s) and in the official race (416 s). In the second simulated race Pilot 1 

failed task 2 and task 5, in the third one task 4 and 5, while in the last simulated race only failed task 5, 

as in the official competition. 

The result trend followed the learning process of our Pilot 1. Some tasks and relative subtasks were 

performed very easily and quickly, whilst others, which initially seemed to be even physically 

impossible, required a more intense training. Indeed, it took several trials for Pilot 1 to formulate 

appropriate strategies to best exploit his Hannes device. Analysing in depth each task, no specific 

difficulties were found in the execution of the subtasks composing task 1 and task 3, since they were all 

bimanual exercises very similar to usual daily life activities, typically performed during the home use. 

Hence, the training was immediately focused on reducing the completion time. In contrast, the 

clothespins subtask of task 2 revealed to be challenging. Indeed, it was difficult to manipulate the 

clothespin while also having a strong-held grip in a comfortable posture. With some practice, Pilot 1 

was able to identify the right strategy, which permitted a strong and safe grasp in a natural way, with 

him in front of the clothesline holding the clothespin between the index and thumb, as performed by 

non-amputees. Task 4 was found tough in all subtasks, as only the prosthetic hand was allowed to 

manipulate the blue objects comprised in it: hammer, bulb and scissors. Regarding the scissors, it was 

Table 5 Final ranking of the Powered Arm Prosthesis Race of the Cybathlon 2020 Global Edition. 

 

RANK TEAM SCORE TOTAL TIME (s) 

1 Maker Hand 100 344 

2 SoftHand Pro 100 403 

3 e-OPRA 100 452 

4 SuperMotorica 86 390 

5 BFH HuCE 86 425 

6 REHAB TECH 80 367 

7 x-OPRA 80 414 

8 Hands On 70 319 

9 Viswajyothi 51 360 

10 Smart ArM 49 366 

11 Touch Hand 34 252 

12 CyberTum ARM 35 360 

13 Imperial ARM 15 151 
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not possible to hold them with the sound hand to insert the prosthetic fingers in the finger holes. After 

the training, the adopted strategy consisted in sliding the scissors till the edge of the table and exploit it 

to insert thumb, index, middle and ring prosthetic fingers roughly about half their length, to have a firm 

grip but with a certain range of motion to allow the continuous scissors’ operating for cutting the paper. 

The lamp subtask, which consisted in inserting and screwing the bulb in the lamp shade, needed long 

training to find the optimal postural movements’ combination of legs, prosthetic side elbow and shoulder 

for the screwing of the bulb without active pronation/supination of the wrist. Instead, the hammer 

subtask was relatively easy, as the strong grasp and mechanical resistance provided by the prosthesis 

allowed nail hammering without risk of tool loosening and prosthesis rupture. Also task 6, where only 

the prosthetic hand was allowed to touch blue cups, needed an intense training to overcome the absence 

of wrist active pronation/supination, forcing compensatory movements of the prosthetic side shoulder 

and the constant bending of the legs. For our Pilot 1, the most difficult faced task was task 5, as the 

Table 6 Evaluation of Hannes’s functionality, embodiment, and user experience. 

 

 

 

PILOT 1 PILOT 2 

Ti Tf Δ  Ti Tf Δ  

 FUNCTIONALITY 

MMDT [s] 180.0 150.0 -30.0 196.0 179.0 -17.0 

SHAP IOF [%] 58.0 76.0 18.0 61.0 75.0 14.0 

BBT [n°] 18.0 24.0 6.0 16.0 21.0 5.0 

QuickDASH  11.4 11.4 0.0 13.6 11.4 -2.2 

OPUS-UEFS: usage [%] 50.0 75.0 25.0 67.9 71.4 3.5 

OPUS-UEFS: goodness [%] 71.4 79.8 8.4 69,7 75.0 5.3 

EMBODIMENT: POSTURAL BALANCE TEST  

TP length [mm] EO 477.9 411.9 -66.0 482.7 500.7 18.0 

EC 589.7 479.4 -110.3 665.7 808.2 142.5 

ML path length [mm] EO 222.1 177.2 -44.9 251.4 186,2 -65.2 

EC 270.4 177.2 -93.4 323.7 387.9 64.2 

AP path length [mm] EO 356.9 334.9 -22.0 360.3 433.5 73.2 

EC 438.6 410.9 -27.7 514.7 638.8 124.1 

EMBODIMENT & USER EXPERIENCE: AD-HOC QUESTIONNAIRE 

Embodiment 7 10 3 8 8 0 

System use 17 20 3 17 17 0 

Daily life impact  13 15 2 10 12 2 

USER EXPERIENCE  

raw NASA-TLX [%] 34.2 11.7 -22.5 40.8 25.8 -15.0 

SUS  95.0 100.0 5.0 87.5 90.0 2.5 

TAPES, part 1 [%] 80.0 93.3 13.3 83.3 89.2 5.9 
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prosthetic hand Hannes is not equipped with systems able to provide haptic feedback. Hence, a safe 

strategy capable to assure a successful result in a very short time and with the pressure of the competition 

was not found. Pilot 1 tried to recognize the texture, soft or hard, of the hidden objects by slamming the 

prosthesis on it, listening to the sound response, and sensing the mechanical resistance of the squeezed 

object. The shape was instead evaluated by slipping the back of the hand on the object’s surface, looking 

for edges or curves. However, this task’s outcome was still an uncertainty also right before the 

competition. 

2.1.3.2. Cybathlon official competition 

The final ranking of the Cybathlon 2020 competition is shown in Table 5. Only three teams over 

thirteen succeeded in all tasks, obtaining the maximum score of 100 points. Our team REHAB TECH 

placed in the sixth place with a score of 80 points due to the error occurred in task 5 (which had the 

highest scoring of 20 points), and with a total time of 416 seconds.  

Figure 13 graphically shows the time of completion of each team for each task. Precisely, the main 

light orange bars represent our team REHAB TECH’s performance, whilst other teams’ times are 

reported as coloured points. No time was reported for each team if the task was failed. Lower times 

indicate better performance. Task 1 was completed by only six teams out of thirteen, task 2 by eleven, 

task 3 by ten, task 4 by eight, task 5 by eight and finally task 6 by ten. 

Our Pilot 1 had the best time performance in task 1, which was failed by many teams (seven on 

thirteen). Same result, but on par with the winner team Maker Hand, was obtained in task 4. The sixth 

and fifth places achieved respectively in task 2 and task 3 shows anyway a good mid-table result in the 

handling of different common objects with different grasp types. Task 5, as can be appreciated by the 

 

Figure 13 Time of completion of each team for each task: 

REHAB TECH’s times are enhanced and reported with light orange bars, whilst the rest of the teams’ results are shown 

with coloured points. Each team is correlated with a colour, as explained in the legend on the right. 
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absence of REHAB TECH’s time of completion in Figure 13, was failed. Only in task 6 our team 

REHAB TECH ranked in the second half of the ranking. 

2.1.3.3. Functionality, embodiment, and user experience evaluation  

The scores of functionality, embodiment, and user experience measures of the two evaluations (Ti, 

Tf) for both pilots are shown in Table 6, together with the difference between the two values (Δ). In 

Functionality section, both pilots decreased their times in the execution of MMDT and SHAP tests 

(which accordingly increased the IOF), while increased the number of transferred cubes in BBT test and 

their questionnaires’ scores, except for the QuickDASH of Pilot 1. In the Postural balance test, which 

was employed to measure the embodiment, the body oscillations decreased in Pilot 1 in each investigated 

condition. Differently, Pilot 2’s sway increased, except in the medio-lateral direction and in the eyes-

opened condition. Pilot 1’s ad-hoc questionnaire total scores increased respectively of 3 points in 

subsections ‘Embodiment’ and ‘System use’ and 2 points in subsection ‘Daily life impact’, whilst Pilot 

2 made the same total score in the first two subsections, and slightly increased the last one (2 points 

more). Regarding the last validated questionnaires investigating User experience, both raw NASA-TLX 

scores decreased, while both SUS and TAPES ones increased. 

Figure 14 graphically shows the rate of improvement/deterioration of both pilots over the 

evaluations. Regarding the functionality, a general improvement can be observed in Figure 14 (A) for 

both pilots, however Pilot 1 exhibits overall higher percentages of improvement, especially for the 

OPUS-UEFS usage (50,0% against 5,3%). Only the QuickDASH score shows a small improvement for 

Pilot 2 and a stable result for Pilot 1.  

 

Figure 14 Rate of improvement/deterioration of the scores 

for the three investigated areas: (A) the functionality, (B) the embodiment and (C) the user experience. Positive values 

correspond to improvements, negative values to deteriorations. 
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In the postural balance test Pilot 1 improved all his parameters in each of the investigated condition, 

whilst Pilot 2 had an overall worsening. He only improved one variable (ML length) in one single 

occasion (EO), with a percentage of improvement slightly higher than Pilot 1’s, as shown in Figure 14 

(B). In the ad-hoc questionnaire Pilot 1 improved his total scoring in ‘Embodiment’ (Figure 14, B) and 

‘System use’ (Figure 14, C) subsections, whilst Pilot 2 did not show any improvement over time. 

Instead, in ‘Daily life impact’ module, the percentage of improvement was higher for Pilot 2, as shown 

in Figure 14 (C). The highest percentages of improvement in the last three validated questionnaires of 

the user experience belong to Pilot 1, as it can be seen in Figure 14 (C). 

2.1.4. Discussion 

2.1.4.1. Cybathlon training and competition 

As expected, a gradual improvement in the tasks’ completion time was observed with the advance 

of the training (Figure 12), which allowed Pilot 1 finding the most reliable and fast strategy to 

accomplish each task.  

The result trend followed the learning process of our Pilot 1, who learnt how to exploit Hannes and 

to formulate successful strategies. Some tasks and relative subtasks were performed very easily and 

quickly, whilst others, which initially seemed to be physically impossible, required a more intense 

training. No specific difficulties were found in the execution of the subtasks of task 1, since they were 

all bimanual exercises very similar to usual daily life activities, typically performed during the Home 

Use. Hence, the training was immediately focused on reducing the completion time. In contrast, the 

clothespins subtask of task 2 revealed to be challenging. Indeed, it was difficult to manipulate the 

clothespin while also having a strong-held grip in a comfortable posture. With some practice, Pilot 1 

was able to identify the right strategy, which permitted a strong and safe grasp in a natural way, with 

him in front of the clothesline and the clothespin held between index and thumb, as performed by non-

amputees. Subtasks composing task 3 were accomplished quite easily as they were performed using 

common grasp strategies. Task 4 was found tough in all subtasks, as only the prosthetic hand was 

allowed to manipulate the blue objects comprised in it: hammer, bulb and scissors. The adopted strategy 

exploited the edge of the table to insert thumb, index, middle and ring prosthetic fingers into the scissors’ 

handle to assure a firm grip and a continuous scissors’ operation for cutting the paper. The lamp subtask 

needed long training to find the optimal postural movements’ combination of legs, prosthetic side elbow 

and shoulder for the screwing of the bulb without active pronation/supination of the wrist. Instead, the 

hammer subtask was relatively easy, as the strong grasp and mechanical resistance provided by the 

prosthesis allowed nail hammering without risk of tool loosening and prosthesis rupture. As well, task 

6, where only the prosthetic hand was allowed to touch blue cups, needed an intense training to overcome 

the absence of wrist active pronation/supination, forcing compensatory movements of the prosthetic side 

shoulder and the constant bending of the legs. The most difficult task was task 5, as Hannes prosthetic 
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hand is not equipped with a haptic feedback. Hence, a safe strategy capable to assure a successful result 

in a very short time, and with the pressure of the competition, was not found. Pilot 1 tried to recognize 

the stiffness (soft or hard) of the hidden objects by slamming the prosthesis on it, listening to the sound 

response, and sensing the mechanical resistance of the squeezed object. The shape was instead evaluated 

by slipping the back of the hand on the object’s surface, looking for edges or curves.  

In the official competition (Figure 13), the peculiarity of the prosthetic hand Hannes, capable to adapt 

to the grasped object, and the flexible wrist module in flexion/extension helped Pilot 1 in succeeding in 

task 1, in which a high number of objects with different sizes and type of grasps were included. The 

same key role was played by Hannes in task 2 and task 3. However, both completion times were not 

low. This might be a consequence of Pilot 1’s approach, who gave priority to grasping precision to 

replicate natural hand strategies, rather than execution’s speed. For example, the tridigital grasp 

implemented by thumb, index and middle fingers and used for the clothespins of task 2 and the USB 

pen of task 3 resulted to be very natural. However, more time was required to manage this grip, as the 

object needed to be precisely picked with the distal phalanges. The absence of active wrist 

pronation/supination negatively influenced task 6, in which a flipping movement was required, leading 

to consistent compensatory movements and slowing down the performance. Furthermore, a small error 

occurred during the pyramid construction, as one cup slipped over another one and the pilot had to 

relocate it. The lack of active wrist pronation/supination also impacted in the bulb insertion of task 4. 

Nevertheless, the quick execution of the rest of the task, permitted by the strong and natural grasp of the 

hammer and the continuous actuation of the scissors offered by Hannes, allowed our pilot to obtain the 

best time, together with the Maker Hand team. The failure in task 5 was quite expected, considering 

Hannes is not equipped with haptic feedback system and the difficulties faced during the training to 

conceive an effective and reliable strategy. 

Eventually, the times of completion of each task was very good or in line with the average times, 

meaning that Hannes performed better or similarly compared to other prosthetic devices (Figure 13). 

The participation to the Cybathlon competition allowed Hannes to be compared with many other hand 

prostheses. Considering the position in the first half of the final ranking (6 of 13), Hannes’s performance 

can be considered above the average (Table 5). The absence of an active wrist module and a system 

capable to restore haptic feedback could be considered as limiting factors, which on our team will focus 

for future developments. 

2.1.4.2. Functionality, embodiment, and user experience evaluation  

As expected, after almost two months of Home Use, both pilots improved their performances in all 

investigated areas over time, except for Pilot 2’s embodiment domain, which worsened. Moreover, it 

can be noted that Pilot 1 had a better learning curve and better progresses, as improvements were higher 

than the ones of Pilot 2. 
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Concerning functional clinical tests, major improvements were noticed in the most complex ones: 

MMDT and SHAP. In BBT test, the easiest one, both pilots improved almost in the same manner. 

Differently, in MMDT, which required a specific fine control for the correct inserting of the disks into 

the board, and in SHAP test, where several different grasps were required, higher improvements were 

shown by Pilot 1. This difference may be related to the additional training he faced for the Cybathlon 

competition, which included tasks very similar to these clinical tests. Even if the training was focused 

on the fast and correct execution of specific exercises and tasks, the control of Pilot 1 with Hannes 

seemed to improve. Differently, Pilot 2 made use of Hannes freely, without periodic training and a 

specific goal to achieve. This could be one of the reasons his functional improvements were lower 

compared to Pilot 1’s.  

The difference obtained by Pilot 2 in the QuickDASH score is much smaller than the Minimal 

Detectable Change (MDC) (12.85) [268], implying a not relevant clinical improvement, as the stable 

score of Pilot 1. These results can depend on the low specific nature of this questionnaire in evaluating 

amputees’ dexterity, since it provides a general measure for everyone with upper limb problems. The 

OPUS-UEFS scores improved for both pilots, but more for Pilot 1. He notably improved in the 

‘Percentage of usage’ score, in which the difference between the final and initial value also overcomes 

the MDC (12.07) [256]. This parameter can be considered important because it means Pilot 1 involved 

his prosthesis Hannes in many more activities over time. This outcome could depend on the positive 

influence of the Cybathlon experience. In fact, the training and the competition seem to have improved 

maneuverability and functionality when compared to Pilot 2. This is confirmed by the functional tests’ 

outcomes reported above. Again, the training and the purpose to compete with Hannes might have 

motivated Pilot 1 in increasing the prosthetic usage. On the contrary, since Pilot 2 was extraneous to 

such experience and involvement, he may have involved Hannes in a small number of activities. 

The evaluation of the embodiment, executed with an objective (postural balance test) and a subjective 

(items 1,2 and 3 of the ad-hoc questionnaire) measure, seems to show an improved embodiment only 

for Pilot 1. Probably, the regular and increased usage of the prosthesis made by Pilot 1 due to the training 

had a positive impact on the embodiment domain. Overall, the results suggest that the engagement 

produced by the participation to the Cybathlon competition could be intertwined with the one depending 

on the embodiment processes. Thus, the daily usage of the system was promoted by the motivation to 

perform successfully during the official challenge and by the sensation that the prosthesis was part of 

one’s body scheme. The engagement [269] can constitute a factor promoting the embodiment of a 

wearable technology or can be a phase of embodiment itself thanks to the motivation to improve for the 

competition, in our case. However, these hypotheses will need further investigation to be evaluated. In 

contrast, Pilot 2 worsened the scores used to evaluate the embodiment process. Even though Pilot 1 and 

Pilot 2 spent almost the same total amount of time with Hannes (except for some additional days to 

compete the race for Pilot 1), it seems that Pilot 2 was not capable to establish a real connection with 

Hannes prosthesis. This could be a consequence of a basic domestic use, without the involvement driven 
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by the motivation to prepare for a challenge. Furthermore, the difference in their results could also 

depend on the subject’s personality and willingness in approaching a prosthetic device as a part of the 

body rather than a tool: we cannot imply that Pilot 2 had a more resistive behavior, but such an 

interpretation suggests us to adopt personality questionnaires in future studies for checking this 

hypothesis. 

TAPES questionnaire and subsection ‘System use’ of the ad-hoc questionnaire investigate similar 

situations and evaluate the perception of the subject towards the prosthesis. In our view, this represents 

a very important argument, and the highest improvements in relation to these two assessment tools 

belong to Pilot 1, as if the training and the Cybathlon competition increased such a perception. Similarly, 

the raw NASA-TLX scale, which measured the perceived workload while using the prosthesis, shows 

an improvement for Pilot 1 that is almost twice the one of Pilot 2. This may indicate that Pilot 1’s 

Cybathlon experience permitted to reduce the perceived workload. Overall, the higher improvements 

obtained by Pilot 1 suggest that the participation in the Cybathlon competition might have had a 

beneficial influence on his global user experience and the prosthesis impact on daily life situations. On 

the other hand, again, the more basic environment of Pilot 2 resulted in smaller improvements, which is 

in accordance with the other two evaluations. 

The evaluation simultaneously conducted to the Cybathlon experience, concerning functionality, 

embodiment and user experience achieved with Hannes, showed overall improved scores for both pilots 

(except for the embodiment of Pilot 2), leading to assume that the constant and prolonged Home Use of 

Hannes can improve the amputee-prosthesis relationship. However, the most interesting outcome of this 

study is the consistent greater improvement exhibited by Pilot 1 with respect to Pilot 2. We could assume 

that this outcome may depend on the training, the tasks and the speed running challenge of Cybathlon 

2020 competition performed by Pilot 1. Hypothetically, the engagement produced by the expectation to 

compete in a challenge affected the amount of daily practice of the user. Such an additional use time 

could have accelerated the prosthetic embodiment processes of Pilot 1, improved his speed 

performances, and stimulated him in finding strategies and solutions for the achievement of everyday 

actions, consequences not found in Pilot 2’s results, as a plausible effect of the non-attendance to the 

Cybathlon competition. 

The embodiment phenomena are intertwined with cognitive and affective processes as in the case of 

motivation: motivation sustains our efforts and push us to improve our skills and performance. We 

hypothesize that the motivation generated by the purpose of preparing for Cybathlon competition 

affected the engagement of Pilot 1 in - carefully and continuously - employing the device. Such an effect 

helped him to establish a connection with Hannes through a steady enhancement of his skills in 

controlling it, directly enriching the sense of agency (a component of the embodiment).  

As a limitation, only short-term benefits of the Cybathlon-based training and competition are 

analysed in this case study. Hence, it is not possible to state that these benefits could last in the long-

term period, maintaining a consistent difference between pilots’ results in the investigated areas. Further 
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analysis, comprising longer total time of usage and multiple follow-ups, may clarify long-term 

implications, evaluating if these differences persist or if both pilots reach, at some point, same level of 

improvement. 

2.1.5. Conclusion  

Considering this was our first approach toward the Cybathlon experience, we can consider our sixth 

place a very good result. Pilot 1 learnt how to take advantage of our novel prosthetic system Hannes and 

was able to accomplish 5 out of 6 tasks, with execution times on average.  Hannes demonstrated to be a 

valuable competitor, capable to perform a variety of natural grasps and to realize most of the tasks with 

human-like behaviors and biomimetic performances. 

The results of the comparison between the user who was involved in the Cybathlon experience and 

the one who was not suggest that the training of a user with a prosthesis could benefit from Cybathlon’s 

proposed tasks and structure. The inclusion of more exercises inspired by real daily life activities, 

requiring their execution within a certain amount of time, could stimulate the patient’s dexterity, 

prosthetic embodiment and UX in a short time. It seems that timed races or trainings designed as 

competitions, like Cybathlon, could facilitate and even accelerate the prosthetic learning phase, 

decreasing the perceived workload, as possible consequences of the high developed engagement 

between the user and the prosthesis. This novel methodological approach should be further investigated 

with a precise protocol and with a consistent sample size to obtain significant results, both to improve 

the ADLs amputee’s performances and to better prepare our pilot for the next competition using the 

Hannes hand. 
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2.2. Exploring the Embodiment of a Virtual Hand in a Spatially 

Augmented Respiratory Biofeedback Setting 

2.2.1. Introduction 

Artificial limbs are designed to assist and increase the manipulation capabilities of human beings in 

contexts from teleoperation to virtual rehabilitation, to bionic prosthetics [270]. In order to nurture the 

progress of this research domain, scientists considered the results of studies on topics like the 

proprioceptive illusions in people with a spinal cord injury [271] or the applications of error-related 

potentials in neuroprosthetics [272]. Through the integration between neuroscience and engineering, 

interdisciplinary research has offered inspiring strategies like, developing neurointerfaces  to control 

virtual and robotic systems [273], neuromorphic systems to bring the sense of touch to the prosthesis 

users [274].  

Artificial limbs can be perceived by certain users as tools, while others can feel them as corporeal 

structures [275]. In this second case, these robotic or virtual extensions of the user can trigger the 

phenomenon of embodiment, i.e., the psychological process occurring when subjects feel external 

objects as integrated in their own body scheme [276].  

However, the embodiment process is not limited to artificial limbs, and can involve any artifact or tool 

[277]. Initially, this process makes the device more familiar for the users who have become curious 

about it. Subsequently, the mental representations of the users start to adjust to progressive human-

artifact integration [269]. Feeling a device as embodied leads to improvements in user's engagement, 

technology acceptance, control transparency, and, consequently, human-machine system performance 

[278]. 

Typically, the investigations in this domain aim at establishing effective methods to enhance the 

embodiment through the manipulation of the stimulus-conditions [279] or the active control conditions 

of artificial limbs [280]. However, literature on interoceptive processes [281] suggests that an 

individual’s psychophysiological control potentially impacts on embodiment components like body 

ownership. It is hypothesized that respiratory entrainment techniques [282] like those used in 

contemplative mental training and biofeedback [283], may influence the embodiment process.  

This paper preliminarily investigates whether modulating one's psychophysiological state via 

respiratory biofeedback can enhance the embodiment of a virtual, computer-generated hand. Our 

research was carried out through a pilot study using common devices like a computer monitor, a 

smartphone, and a microphone. This last choice was made to explore the potential of a setup that can be 

replicated at home without the need for special equipment. Evaluating the feasibility of this setup is our 

second scope for extending the upcoming data collection (bypassing also the restrictions of the current 

pandemic) (Woolliscroft, 2020) through this innovative “embodiment training” approach. 
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2.2.2. Background and Scope 

2.2.2.1. Related Works 

As hinted above, several studies on embodiment [284] aim at improving human-machine interaction 

with special attention to artificial limbs user experience, especially to reducing  prosthetic devices 

abandonment [238] and promoting their acceptance and integration [285]. Indeed, the results of 

embodiment studies are quite helpful to guide the design of novel artificial limbs through an improved 

understanding of user experience: a survey involving 2383 limb amputees highlighted how naturalistic 

prostheses designed with sensory feedback were associated with higher feeling of prosthesis ownership 

and reduced phantom pain [286]. 

According to literature [278], the sensations of ownership (the feeling that non-bodily objects are 

body parts and sources of bodily sensations, depending on the integration of multisensory inputs), self-

location (the feeling of the body location in space, depending on the co-location of fake and real 

elements), and agency (the feeling of being the cause and the author of observed actions, depending on 

the efficiency of limb motor control) constitute the embodiment [287] process itself.  

Considering the case of artificial upper limbs, the investigation of their embodiment is usually 

entrusted to methods for evaluating a well-known phenomenon that demonstrated high potential in 

experimental and clinical neuroscience research [288]: the Rubber Hand Illusion (RHI) [239]. RHI is 

typically induced by the co-occurrence of visual stimulations on an inactive fake limb observed by the 

subjects and tactile stimulations on their real hand [289].  

In particular, RHI studies offer important pointers towards investigating the ownership component 

of embodiment. The body ownership is especially critical in the acceptance of artificial limbs - see [241] 

and [235]. This aspect of the embodiment was investigated through multiple studies, considering, for 

instance, its relationships with sensory stimulations [290] and other embodiment components - agency 

[291] and self-location [292]. Interestingly, RHI can also generate phenomena of disembodiment as the 

disownership of the hidden real hand [293]. These and other seminal studies have contributed to the 

research in this area, which embraced topics like the impact of affective processes [294], the 

psychopathological aspects [295], and the individual differences [296] in body ownership 

representations. 

These are just examples of the body ownership literature, which is rich with original methodological 

solutions to assess how this phenomenon occurs in different conditions. Overall, the body ownership is 

typically evaluated in RHI paradigms through measures like subjective evaluations (e.g., self-report 

questionnaires) [242] or physiological reactions (e.g., Galvanic Skin Response, GSR) [297]. Another 

classic measure of ownership is the proprioceptive drift [240] towards the artificial limb when the 

subjects are asked to estimate the actual position of their own hand, usually hidden and apparently 

replaced by a fake one during the experimental session. This implicit measure is performed in different 

ways according to the experimental setting -  e.g., a virtual version in [298].  
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It must be noted that the use of such body ownership measures in RHI studies is still debated: for 

instance, distinctions between subjective questionnaire scores and proprioceptive drift (Gallagher, Colzi, 

& Sedda, 2021) should be further investigated to understand different processes underlying the 

subjective evaluation and the proprioception. 

Alongside the research on the heterogenous manifestations and measures of the ownership, literature 

has also shown structured models to understand its role within the bodily representations. According to 

[299], body ownership depends on the interplay between the current multisensory input (bottom-up 

processes) and the internal models of the body (top-down modulation) that phenomenologically lead to 

conditions like the RHI [240]. Specifically, the malleability of bodily representations can depend on 

interoception [300], the perception of the internal state of the body. In particular, individuals with low 

interoceptive sensitivity (assessed through a heartbeat monitoring task) experience a stronger illusion of 

ownership in RHI [301].  

Within this research domain, typical methodologies based on purely exteroceptive visuo-tactile 

stimulations tend to be substituted by combinations of interoceptive and exteroceptive signals, like 

cardio-visual stimulations [281]. For instance, observing a virtual hand that is pulsating in synchrony 

with participant heartbeat can induce body ownership changes as  reported in RHI experiments [302]. 

Other studies investigated heartbeat-evoked electroencephalographic (EEG) potentials and their role in 

bodily self-consciousness [303]. 

The role of interoceptive sensitivity in RHI was also investigated in [304]. Specifically, authors 

studied the effects of meditation and mindfulness practices – like respiratory control or heartbeat control 

– on RHI susceptibility. Authors highlighted how meditators subjectively rated the RHI less strongly 

than non-meditators. These results are coherent with the ones of [305] on the agency perceived by 

meditators in RHI, and with [301]. However, in [304], no difference in proprioceptive drift was found 

between these meditators and non-meditators, and different interoceptive awareness factors were 

associated with RHI intensity in meditators. Thus, it can be inferred that practicing meditation could 

lead to different embodiment experiences when subjected to an interoceptive training to flexibly shift 

attention along the body; it makes the person more resistant to abnormal sensations.  

This conclusion suggests the possibility that our malleable body representations could be affected by 

meditation exercises. However, the evidence in [304] was based on a typically passive RHI procedure  

executed by people who previously practiced meditation techniques. The prior meditation experience 

had, apparently, shaped the people’s interoceptive sensitivity and body awareness before any RHI 

experience. This led us to a question: how could these exercises affect the embodiment of an artificial 

limb if they directly contribute to making an artificial limb illusion happen? A positive answer to this 

question could lead to novel approaches of embodiment training based on active self-regulation 

techniques that assist the artificial limb ownership. 

In the current study, we targeted a core component of meditation practice, i.e., the breathing [306], 

particularly slow breathing, which is commonly performed at 10 or 6 breaths per minute. Slow paced 
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breathing produces multiple psychophysiological changes (Zaccaro et al., 2018), characterized by a 

generalized relaxation across, for instance, cardiovascular and cortical domains, especially with regard 

to meditation (Yu, Hu, Funk, & Feijs, 2018). Overall, this respiratory exercise has pervasive effects on 

autonomic functions, downregulating them [307] with long-term therapeutic responses [308]. 

Furthermore, these effects can involve the interoceptive awareness [309] through a self-regulation that 

is relatively easy for a practitioner. Here, we considered respiratory biofeedback (targeting 0.1 Hz 

respiratory rate) – self-modulating the Respiratory Rate (RR) according to its visualization [310] – for 

its effectiveness in influencing the physical and mental states has been shown in literature [311]. 

In order to proceed with our investigation, we decided to adopt a promising approach for exploring 

embodiment processes like the body ownership through an interactive solution with high perceptual 

versatility: the Virtual Hand Illusion (VHI) [312]. VHIs are produced through a setup that offers a 

complete experimental control of engaging computer-generated scenarios [146] of Virtual Reality (VR 

- where the perceptual scenario is fully generated by a computer) or Augmented Reality (AR - where 

virtual items are placed within a real perceptual scene) or Mixed Reality (MR - where virtual items and 

real items co-exist, often emphasizing the possibility to interact with the first ones as physical objects, 

according to some authors) [147]. Overall, these systems can be considered as cases of Extended Reality 

(XR), which is becoming a trend in neuroscientific research as well [313]. 

Thanks to their versatility in controlling the perceptual scene [314] and to their capability to motivate 

and engage the subjects through game-based features [315], XR systems offer fertile opportunities for 

body ownership studies as demonstrated by [316] and [317] – for a review on this topic, read [318].  

Such solutions, extremely valuable in clinical applications too [319], demonstrate further potential 

through their compatibility with other technologically advanced approaches like neuromodulation [320]. 

Furthermore, AR solutions are currently explored to train the control of prosthetic systems [321]. 

Interestingly, the study in [322] adopted a VR-based RR biofeedback approach to generate and 

investigate an “embreathment” illusion by ecologically mapping the subjects’ breaths onto a virtual body 

observed from a first-person perspective, improving the embodiment of the individual on the avatar. 

The authors highlight the potential of breathing as a natural, continuous, multisensory self-stimulation. 

Furthermore, they demonstrate the opportunity of implementing such a self-regulation process through 

an engaging virtual environment.  

Summing up, XR settings can be exploited to investigate the effects of a slow respiratory biofeedback 

exercise as a method to enhance the embodiment of an artificial limb. 

2.2.2.2. Research Objectives 

Our hypothesis is that slow respiratory biofeedback, as a self-regulation strategy, can facilitate the 

embodiment of a virtual hand during a biofeedback training designed to evoke a VHI. Accordingly, this 

pilot study aimed at comparing two conditions of respiratory biofeedback – slow breathing and normal 

breathing – in terms of indices of virtual hand ownership sensation. We considered an interactive setup 
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that enables the person to control the perceptual features of a computer-generated hand without moving 

it (as in typical RHI and VHI). This allows us to focus on the body ownership component of embodiment 

as a premise for further studies.  

Through this proof of concept, we also investigated the feasibility of a protocol designed for remote 

use, which only requires a computer, a microphone, a monitor, and a smartphone. If successful, this 

would provide a portable and affordable solution to enable anyone (for example an amputee waiting to 

receive a prosthesis) to perform at home a novel biofeedback-enhanced embodiment training. This 

choice was also driven by the need of creating a remote version of this setup for upcoming studies due 

to the limitations imposed by COVID-19 (e.g., stay home orders). 

2.2.3. Materials and Methods 

2.2.3.1. Participants 

All participants were volunteers from IIT, signed the informed consent and followed the IIT ADVR 

TELE01 experimental protocol approved (on March 16th, 2020) by the Ethical Committee of Liguria 

Region in Genoa, Italy. All participants were volunteers from IIT, signed the informed consent and 

followed the IIT ADVR TELE01 experimental protocol approved (on March 16th, 2020) by the Ethical 

Committee of Liguria Region in Genoa, Italy. Before recruiting the participants, the sample size was 

calculated through G*Power v3.1.9.7 [323] according to the results of preparatory tests (involving 8 

subjects) performed to improve the user-centered design of the setup. These results were based on the 

differences between 2 conditions in mean (-2.55) and standard deviation (4.36) of proprioceptive drift 

scores (see 3.5.1) compared through paired samples t-test (more restrictive in terms of requirements than 

non-parametric tests used for other measures like questionnaire scores). Thus, with α = 0.05, power = 

0.8, G*Power estimated a sample size of 22 subjects. 

Twenty-two (six females) adults (Age, mean ± SD: 27.4 ± 2.4 years) without disabilities participated 

in the study. Twenty subjects were right-handed, one subject was left-handed, one subject was 

ambidextrous. Only two subjects declared to have had respiratory difficulties (respectively moderate 

asthma and rhinosinusitis) in past. All individuals were free from sensory and cognitive disabilities, and 

motor impairments derived from neurological conditions, and psychoactive drugs consumptions in 

previous 6 months. To avoid any potential RHI-resistance of meditators [304], all participants were 

selected as naïve about mindfulness and meditation techniques.  

To assess how prosthesis users could approach this kind of task with the proposed setup within an 

embodiment training protocol, two (66 and 33 years old) male amputees (users of transradial prostheses 

for the right upper limb) without respiratory issues were also recruited and performed the same 

procedure as the 22 participants described above, except for the biosignal data collection (simulating the 

home setting). 
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2.2.3.2. Experimental Setup 

All experimental sessions took place at Istituto Italiano di Tecnologia (IIT - Genoa, Italy). However, 

to design a setup compatible with upcoming home-based data collection, we did not use any head-

mounted display typically adopted in highly immersive VHI settings with advanced haptic feedback 

systems [324]. Thus, we considered the options offered by Spatially Augmented Reality (SAR) [325] 

environments, where the real world is enriched by displays (including projections) placed across the real 

setting instead of being worn by the user as in the most typical AR paradigms based on visors [326]. In 

our case, a computer monitor became a screen-based display for SAR. The final setting (Figure 15) was 

constituted by basic equipment available to anyone at home (monitor, smartphone, headphones) with 

the addition of professional systems for recording biosignals. 

To use the setup, the participants (Figure 15 A) were positioned in front of a monitor (21” with 16:9 

ratio, laid-out horizontally, slightly tilted towards them), wearing a headset with a microphone placed 

in front of their mouth. Black blankets covered the subjects’ arms and surrounded the monitor to make 

the subject focus on the non-immersive virtual scenario presented by the screen (Figure 15 B) – for the 

same reason, during the experimental session the environmental light was dim. A laptop (Alienware 

M15; Windows 10 Home 64 bit) was used to perform real-time processing of the audio data and extract 

breathing information used for visuo-tactile biofeedback. All participants wore photoplethysmography 

sensors to collect Blood Volume Pressure – BVP – data (providing a second estimation of breathing 

events, thus the RR in Hz, in respect to our custom microphone-based system) and skin conductance 

sensors collecting GSR data (source of potential embodiment-related reactions, expressed in µS) on left 

hand fingers. Specifically (Figure 16 A), the BVP sensor was placed on the middle finger, the GSR 

sensors – Ag/AgCl electrodes mounted without conductive gel as in [327] - were placed on the middle 

phalanges of the index finger and the ring finger as in [328]. 

These sensors constituted an acceptable compromise to record biosignals without excessively 

altering the individual experience (this reason led to exclude the use of a chest belt). All biosensors were 

 

Figure 15 Experimental settingwith 

A: participant and B: scene on the display. 

 

Figure 16 Experimental setup. 
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connected to the FlexComp Infiniti control unit (Figure 16 A), connected to the laptop enabling the SAR 

scene (Figure 15 B) and setting (Figure 16 B). A smartphone (Samsung S7) for vibratory stimulations 

was placed under their right hand (Figure 16 C).  

Coherently with the SAR concept, this setting showed a continuity between the subjects’ body and 

the virtual hand presented by the display, just like a prosthesis would replace a missing limb or a rubber 

hand would be placed in the typical RHI studies. Specifically, the screen presented an interactive 

environment developed in a Unity (https://unity.com) game project comprising 13 scenes per 

experimental condition.  

This environment represented the inside of a cardboard box containing, on the right half, the 3D 

model of the Hannes [11] prosthetic hand (Figure 15 B). The choice of using the model of an actual 

prosthesis was made to allow for upcoming comparisons with real settings including the actual Hannes 

system in RHI-like studies. The hand model was created with the 3D design program Blender 

(https://www.blender.org/) starting from single-part STL files of the Hannes prosthetic hand to preserve 

the real joint axes and related joint movements of the human hand. The Blender object was, then, 

imported in the Unity scenes, maintaining the properties of its different parts. 

Inside the virtual cardboard box, a blue sphere “made of energy” (an engaging game-like design 

imported from a Unity package: ArtStation - Glowing orbs VFX, Vladyslav Horobets) slid from left to 

right on an inclined surface, coming out from a hole on the left side of the box. In 1 minute, the sphere 

reached a black area (designed to magnify the position of the trial goal) with a hole placed under a right 

virtual hand, leant on a support that represents the presence of the smartphone under the real limb of the 

subjects. A hole through the virtual support enables the “contact” between the computer-generated hand 

and sphere. Figure 15 B depicts the scene.  

This SAR setting was then enriched by respiratory biofeedback features (based on RR data collected 

through the microphone of the earphones) within a Spatially Augmented Respiratory Biofeedback – 

SARB – paradigm. In this SARB implementation, the subjects modulated their own RR according to a 

target frequency in order to minimize the transparency (managed through a Unity package: Unity Stipple 

Transparency Shader - Alex Ocias Blog) of the virtual hand (Figure 17) according to the biofeedback 

procedure described in sub-section 3.2. If the transparency index was over a certain threshold, the hand 

was visible enough to trigger a visuo-tactile event when the sphere approached the hand. In that case the 

virtual hand on the screen showed a “shaking” animation and the smartphone under the real hand of the 

subject vibrated. Overall, the SARB is characterized by gamification features (from the challenge to the 

set of feedback) designed to engage the user in self-regulation activities [329] that will be described in 

next paragraphs. 

2.2.3.3. Respiratory Biofeedback and Data Acquisition 

The SARB was adopted to evaluate 2 experimental conditions: slow RR and normal RR. The 

following sub-sections describe how the data were collected and processed for implementing the SARB 

https://unity.com/
https://www.blender.org/
https://www.artstation.com/artwork/xzxnvX
https://ocias.com/blog/unity-stipple-transparency-shader/
https://ocias.com/blog/unity-stipple-transparency-shader/
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 and assessing the presence and the entity of the expected effects of slow RR. 

2.2.3.3.1. Breathing Data 

Breathing data was extracted by analyzing audio signal acquired during the experimental sessions. 

The procedure aims to detect the current breathing state of the subjects, and their changes: Rest, 

Inhalation, Exhalation.  

The breath states detection was based on the loudness of the signal using an automated custom 

software (based on C# within a Unity project). The values used depended on this implementation of the 

SARB system, and they were manually defined by adjusting the values in [330]. Specifically, we 

classified the breath events with respect to the maximum amplitude of the recorded breath signal. 

A headset was provided to the subjects to be used as an audio recording source. This allowed to 

comfortably keep a microphone close to the breathing sound source. The headset is a Canyon CORAX 

Gaming Headset CND-SGHS5, representative of entry level, non-professional devices which might 

prove affordable for home setups. The experimental setup is positioned in a controlled room to exclude 

major sources of noise.After acquiring the audio signal, a custom software evaluated current breath 

states of the subjects: Rest, Inhalation, Exhalation. This step was performed by computing the signal 

loudness and testing it against a set of threshold values. Starting from the signal loudness, the baseline 

noise allows to detect the Rest State: Loudness < InhaleMin. Small amplitude variations determine the 

Inhalation State: Loudness ∈ [InhaleMin, InhaleMax]. Big amplitude variations determine the 

Exhalation State: Loudness > ExhaleThresh. The thresholds chosen for the present experiment are: 0.05 

for InhaleMin, 0.1 for InhaleMax, 0.3 for ExhaleThresh. A different microphone setup might require an 

adjustment of these values, since they strictly depend on the characteristics of the analyzed signal, which 

is itself heavily influenced by the audio acquisition factors mentioned above. 

 

Figure 17 Trial examples of Spatially Augmented Respiratory Biofeedback. 

Examples of A: successful trial (the sphere reaches the virtual hand in fully visible state) and of B: failed trial (the sphere 

reaches the virtual hand in transparent state). 
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Breath frequency detection was performed over audio signal blocks of the duration of 1s each. This 

analysis was executed by design at 50Hz (every 20ms): this implies an overlap of 980ms between 

consecutive audio signal blocks. The sequential steps to detect the breathing frequency were: (i) 

acquisition of an audio signal block of the duration of 1s, (ii) calculation of the envelope of the signal 

representing the loudness (expressed as the root mean square of the raw signal) of the microphone signal 

multiplied by a scale factor of 10 and the pitch (power spectrum of the signal), (iii) detection of the 

breathing phases (Rest, Inhalation, Exhalation), (iv) removal of artifacts, (v) computation of the 

breathing frequency. 

Artifact removal (step iv) is required since, despite the controlled setup (headset microphone + 

controlled room), the recording arrangement for this experiment is still extremely sensitive to 

background sound and to speech. As a consequence, artifacts had to be removed by filtering the signals 

and excluding what had to be considered false breathing states triggers. In particular, a rejection 

procedure was implemented which excluded all the Exhalation and Inhalation state change triggers that 

were produced by a sound pitch out of the 500 – 4000 Hz band. Artifact removal was performed through 

our custom software solutions, developed in C#. 

The exhalation loudness is considerably higher than the inhalation loudness. Therefore, the 

exhalation event is easier to detect and for each of them a time stamp (Tet) is saved to finally determine 

the frequency of breath (Fbt): 

 𝐹𝑏𝑡 =
60

𝑇𝑒𝑡 − 𝑇𝑒𝑡−1
 (2) 

Where Fb is the new breath frequency at the time t+1, Tet+1 is the time stamp event of exhalation at time 

t+1 and Tet is the time stamp event of exhalation at time t (time in seconds, breathing frequency in 

breaths per minute). 

2.2.3.3.2. Respiratory Biofeedback 

The biofeedback depended on the condition of the task, asking the subjects to keep a “Slow 

Breathing” rate (about 6 breaths/minute) [331] or “Normal Breathing” rate (about 14 breaths/minute) 

[332].  

For both conditions, when a new frequency of breath was detected, it was compared with the target 

breathing rate (Fopt) to produce a value between 0 (transparent) – 1 (opaque) of transparency (Alpha): 

 𝐴𝑙𝑝ℎ𝑎𝑡 =

{
 

 
𝐹𝑜𝑝𝑡

𝐹𝑏𝑡
, 𝐹𝑏𝑡 >  𝐹𝑜𝑝𝑡

𝐹𝑜𝑝𝑡

(2 ∗ 𝐹𝑜𝑝𝑡) −  𝐹𝑏𝑡
𝐹𝑏𝑡 <  𝐹𝑜𝑝𝑡}

 

 

 (3) 

For the success of the task in each trial (fully visualizing the 3D model of the prosthesis before the 

sphere disappears), the hand transparency (Alpha) needs to be higher than 0.8 (Figure 17 A). When 

transparency was lower than 0.8 (Figure 17 B) at the end of the trial, the sphere fell down the hole and 

the task was considered failed. Each trial started with an Alpha = 0.5.  
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During preparatory tests of the initial prototypes of the setup, the quick changes in the hand visibility 

often constituted a serious obstacle to the subjects’ training to perform the task, especially when the 

sphere was approaching the hand.  

Consequently, a facilitation (f = 0.05) of the task was introduced to increase the degree of success in 

case of occasionally breathing rate far from the target during the entire task: 

 𝐴𝑙𝑝ℎ𝑎𝑡 = {
𝐴𝑙𝑝ℎ𝑎𝑡 , 𝐴𝑙𝑝ℎ𝑎𝑡 >  𝐴𝑙𝑝ℎ𝑎𝑡−1

𝐴𝑙𝑝ℎ𝑎𝑡−1 − f 𝐴𝑙𝑝ℎ𝑎𝑡 <  𝐴𝑙𝑝ℎ𝑎𝑡−1
} (4) 

If Alpha was greater than 0.8 at the end of the trial, the visuo-tactile vibration feedback was generated 

as co-occurrence of the visual shaking of the virtual hand on the screen and the vibration of the 

smartphone, placed under the real right hand, as caused by the collision of the sphere and the hand.  

To enable such a haptic event, an API was developed for allowing the control of smartphone vibration 

and to set up wireless communication (based on a local network) between the laptop and the smartphone. 

This connection was based on a Unity (Windows) desktop app sending to a Java back-end (running on 

a Tomcat server) a request for a Unity (Android) mobile app that triggers the vibration of the smartphone 

when the virtual hand-sphere collision happens. 

It must be noted that latency is expected when triggering events across a network. Even for a LAN 

network, latency is usually negatively affected by wirelessly connected components (e.g. the smartphone 

used for the experiment). Nonetheless, such latency was not noticeable (under 100 ms) when triggering 

the events required by this experiment, even more so given the slow pace of the tasks. 

2.2.3.4. In-Session Data Collection and Processing 

During the experimental sessions, both data collection programs (Unity custom program and 

BioGraph) were running on the same laptop, allowing for a data synchronization based on the laptop-

generated timestamps. The data generated by the Unity software were collected in a text file, named 

with the ID of the subject and containing the list of breathing events with their time stamps during the 

experiment. The data collected through the FlexComp Infiniti system were recorded and exported in a 

text file through the BioGraph software at 2048 Hz. Downsampling at 256 Hz was performed to allow 

data synch with the breathing data generated by the Unity software.  

The power spectrum of each BVP sequence was reconstructed through the Welch method (8 

Hamming windows with 50% overlap). Frequencies in the 0.05 to 0.5 Hz (corresponding roughly to 3 

to 30 breath per minute) have been considered as generated by respiratory activity, thus the center of the 

frequency bin with the highest power provides a good estimate of the RR. The RR value, expressed in 

breaths per minute, was then simply estimated by multiplying the obtained frequency by 60.  

GSR in each trial was compared for checking potential anticipatory responses to upcoming virtual 

stimuli (possibly related with the hypothetical different degrees of embodiment in slow and normal 

breathing conditions): each sequence was normalized as to have a mean value of 0 and a standard 

deviation of 1, then the value at time 0 was subtracted from each sequence. Normalized sequences were 
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then averaged over trials and subjects for each experimental condition. It must be added that, in RHI 

studies, skin conductance typically offers information on individual reactions to threatening events 

[333]. However, this signal increases to both aversive [334] and appetitive stimuli [4]: thus, we decided 

to adopt it to evaluate potential anticipatory reactions to the (uncertain) outcome of the trial, when the 

hand could vibrate (marking a successful trial) or not. 

2.2.3.5. Experimental Procedure 

2.2.3.5.1. Instructions and Tasks 

Session preparation 

Initially, the subjects were asked to wear the (appropriately sanitized) headset and biosensors 

comfortably. All participants were asked to sit in front of a desk and to place their hands at the sides of 

a monitor lying (slightly tilted on a foam support towards the subject) on it.  

Then, their right hand was placed on the smartphone (the amputees did not wear any prosthesis during 

the session, thus they placed the right stump on the phone). The position of the phone was marked with 

tape as a reference for the post-session estimation of the proprioceptive drift.  

After this, the subjects agreed to start the experimental session, allowing the experimenter to begin 

the acquisition of the respiratory events and the physiological data and to change the Unity scenes 

(observed through a secondary screen) according to the commands of the participants during the session 

itself. Figure 18 shows the main Unity scenes and phases of the experimental procedure.  

In the first scene (Figure 18, scene 1), the experimenter inserted the subjects’ number, set the 

connection between the laptop and the smartphone through the local network, and chose the breathing 

condition. In the second scene, the investigator filled the subjects’ personal data while reading aloud the 

different sections to properly transcribe the subjects’ answers.  

After this, the first instructions scene introduced a 3-minute video (Figure 18, scene 2). This video 

had the goal to induce a neutral mental state before initiating the actual experimental session. The 

investigator asked the subjects to stay still while fixing the cross in the middle of the screen.  

Training and testing trials 

Subsequently, the second instructions scene was read aloud by the experimenter (Figure 18, scene 

3), who explained the upcoming short training sample. This scene contained different instructions about 

the task according to the experimental condition of the ongoing session:  

• in the Slow Breathing (low RR) condition, the subjects were asked to maintain the respiratory 

rate at a slow pace (about 6 breaths/minute) to make the virtual hand “materialize” (become 

visible) enough for feeling the energy of the sphere when it approached the virtual limb,  

• in the Normal Breathing (typical RR) condition, the subjects were asked to maintain the 

respiratory rate at a normal pace (about 14 breaths/minute) to achieve the same goal.  
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In both cases, the subjects were invited to blow on the microphone when they were breathing out. This 

instruction was given to help the participants in maintaining the expected pace and to produce a sound 

correctly interpreted by the SARB system. 

As described before, by maintaining the right RR of the assigned condition (Slow Breathing or 

Normal Breathing), during the sliding of the energetic sphere from the hole on the left wall to the hole 

under the Hannes 3D model, the participants were able to decrease the transparency of the virtual hand 

to make the virtual hand solid enough to “feel” the energy of the approaching sphere as a vibration. This 

event meant that the trial was successfully accomplished (Figure 17 A). This task was expressed by 

asking the subjects to “make the hand visible and solid enough to intercept and the sphere and feel its 

energy”. The duration of each trial was 1 minute: the time spent by the sphere to move from the left hole 

to the right hole on the screen. 

Once a training session constituted by 2 trials (Figure 18, scene 4) was completed, the subjects had 

to decide to repeat the training or proceed. There was no limit in the repetition of the training trials.  

When the participants declared to be ready to start the experimental session, a series of 16 trials 

started (Figure 18, scene 5), each one based on the 1-minute animation and the respiratory biofeedback 

task described above. Each trial started after the end of the previous one within the same scene: the 

sphere disappeared into a hole under the virtual right hand and re-appeared on the left side of the screen. 

The resulting visuo-haptic events are far less frequent than the ones in typical RHI and VHI studies: this 

choice depended on the need to perform the biofeedback exercise over an appropriate time to reach the 

target respiratory pace.  

Subjective questionnaire 

After completing the experimental trials, the subjective questionnaire scenes appeared 

instantaneously (Figure 18, scene 6).  

The experimenter read aloud the questionnaire instructions, asking the subjects to rate their 

experience during the session through a score from 1 for “Total Disagreement” to 5 for “Total 

Agreement” per each statement. Through this, the participants defined how much they disagreed/agreed 

with the following 14 statements that represented different aspects of virtual hand ownership (items 2, 

3, 4) and real hand disownership (items 9, 10, 11) and individual experience – stress (item 1), emotional 

engagement (item 12), interoceptive intensity (item 13), perception of the relationship between virtual 

hand visibility and breathing rate (item 14) (Table 7). Control items (5, 6, 7, 8) were included for 

checking the subject’s compliance with the experimental instructions. 

The subjects read silently by themselves each of the 14 statements, divided in 3 scenes, and told the 

investigator the different scores. To conclude, the experimenter asked the subjects to estimate the 

duration of the experimental session (in minutes) for evaluating further potential effects of the breathing 

condition. The questionnaire was partially adapted to the case of the amputees, referring to their “limb” 

instead of their “hand”. 
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Proprioceptive drift measurement 

After collecting the questionnaire answers, the experimenter moved to another instruction scene 

concerning the final 3-minute video to induce a neutral state (Figure 18, scene 7) for restoring the neutral 

state before measuring the proprioceptive drift (Figure 18, scene 8). Once the video was over, the 

participants were asked to close their eyes, and the black blanket on the right arm was removed. The 

reference position of the phone (previously marked by tape) was checked after removing the blanket. If 

the phone had been moved during the session by more than 5 mm in any direction the following measure 

of the drift would have been considered unreliable. Otherwise, the researcher marked this position of 

the phone as final reference position, representing where the phone (thus, the right hand) was during the 

experiment. After this, the participants were asked to raise their right arm while holding the smartphone 

and to wave it around to briefly stretch.  

Thus, the participants were asked to relocate the smartphone in the perceived initial position, always 

while keeping the eyes closed. Differently, the prosthesis users only raised their right limb (always with 

closed eyes) and, after the experimenter removed the smartphone to avoid obstacles, they placed the 

stump where they felt it was during the session. The estimated position of the phone (which, in the case 

of the prosthesis users was re-placed by the experimenter under the relocated stump) was marked with 

tape to facilitate the measurement of the drift from the reference position, previously marked with tape 

too. 

The lateral distance between the reference position of the phone and the one estimated by the 

participants were measured by the experimenter, together with the direction of the deviation (Figure 19). 

To measure the drift we assumed the reference position of the phone during the session as 0 point of a 

 

Figure 18 Experimental phases. 
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continuous horizontal scale with negative values to the left (towards the virtual hand) and positive to the 

right.  

This strategy to estimate a proprioceptive drift was specifically devised for this setup, considering 

how it could facilitate this part of the experiment in home training sessions: marking with tape the 

position of a rectangular object representing the hand position is far easier than performing the same 

operation with the hand itself as a reference. 

After this, the sensors, the headphones, and the blankets were removed, and the subjects were free. 

2.2.3.5.2. Experimental Design and Statistical Analysis 

In a within-group experimental design, all participants performed the tasks under Slow Breathing 

and Normal Breathing conditions. Each condition was experienced by the participants in different days 

Table 7 Subjective questionnaire scores (median, Mdn; median absolute deviation, MAD; mean, M; standard deviation, 

SD). 

 

N Questionnaire Items 
Slow Breathing Normal Breathing 

 

Mdn MAD M SD Mdn MAD M SD  

1 
After this session I feel quite 

stressed 
2 1 2.55 1.26 3 1 3.00 0.93 

 

2 
I felt as if I was looking at my 

own hand 
2 0  2.14 0.71 2 0  1.91 0.53  

3 
I felt as if the virtual hand was 

part of my body 
3 0  2.50 0.60 2 0  2.05 0.65 * 

4 

It felt as if the contact I 

experienced was directly caused 

by the sphere that was 

approaching the virtual hand 

3 1 2.95 0.90 2 0  2.27 0.83 ** 

5 
It felt as if I had more than one 

right hand  
1.5 0.5  1.77 0.92 2 1 1.68 0.72 

 

6 
I felt as if my real hand was 

turning virtual 
2 0  1.91 0.53 2 0  1.73 0.63 

 

7 
I felt as if I could move the virtual 

hand 
2 0  1.95 0.58 2 0  1.82 0.59 

 

8 

It felt as if the contact I 

experienced came from 

somewhere between my own 

hand and the virtual hand 

2 1 1.91 0.81 2 0  1.86 0.56 

 

9 
It seemed as if my hand had 

disappeared 
2 0  2.23 0.87 2 1 2.32 0.89 

 

10 
It seemed as if I could not really 

tell where my hand was 
3 0  2.50 0.80 2 1 2.36 0.95 

 

11 
It seemed as if I was unable to 

move my hand 
3 0  2.77 0.75 2 0.5  2.36 0.73 ** 

12 
I felt emotionally involved in the 

situation 
3 1 3.05 1.00 3 1 2.95 1.09 

 

13 
I perceived intensely my bodily 

sensations 
3 1 3.14 1.21 3 1 3.18 1.01 

 

14 
I felt the relation between my 

breath and my virtual hand 
3 1 3.18 1.22 4 1 3.55 0.96 

 

*, p < 0.05; **, p < 0.01 (Wilcoxon signed-rank test between conditions of Slow Breathing and Normal Breathing). 
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with max 14 days between sessions. The order of sessions was counterbalanced, by also accounting for 

gender and age (as much as possible) to compose the resulting 2 sub-groups: eleven (3 females) subjects 

(Age, mean ± SD: 27.6 ± 2 years) who were presented the Slow Breathing condition in first session and 

the Normal Breathing condition in second session, and eleven (3 females) subjects (Age, mean ± SD: 

27.2 ± 2.8 years) who were presented the condition in the opposite order. Following the exploratory 

function of this preliminary study, we used two-tailed tests for observing potentially significant 

differences in both directions.  

The questionnaire data were analyzed via Wilcoxon signed-rank test with the breathing condition - 

Slow Breathing vs. Normal Breathing - as factor. The scores of each item were compared. Further 

comparisons were based on average scores per sub-set of questionnaire items as global indices of 

ownership, disownership, and control as in [335].  

Session time estimation and proprioceptive drift were analyzed via paired samples t-test with 

breathing condition as a factor. 

The frequency of respiratory events was analyzed to assess the feasibility of this setup by evaluating 

the participants’ capability to control their own number of breaths per trial (being each trial 1-minute 

long) according to the instructions. The breathing condition being the factor, the breaths per trial were 

analyzed via Student’s t-test. The same comparison was performed for the number of successful trials 

as a performance measure (the number of trials in which the subjects made the virtual hand vibrate).  

GSR signals have been analyzed to identify possible time segments for which responses differed 

significantly from the end-point value, implying a possible anticipatory response. Given the 

normalization described in 3.4, this analysis consisted simply in testing grand-averages across subjects 

and trials to identify time segments with median values different from zero. Specifically, a Wilcoxon 

signed-rank test for zero median has been conducted on the skin conductance signal. In order to prevent 

 

Figure 19 Proprioceptive drift measurement 

only the lateral error from the actual phone position (reference position) was considered. 
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possible false positives due to slow signal drift, this analysis has been limited to the last 10 seconds of 

recording before each visuo-tactile event. 

All analyses were performed using JASP (https://jasp-stats.org) [336], R (https://www.r-

project.org/), and Matlab (MathWorks, Inc.), and p < 0.05 was considered significant. The next section 

focuses on the significant results in all comparisons, with statistically relevant information like the effect 

size (Cohen’s d for the parametric tests, rank-biserial correlation for the Wilcoxon signed-rank test) 

[337] and the test assumption check (only Shapiro-Wilk test of normality for repeated measures 

parametric tests with one 2-level independent variable).  

2.2.4. Experimental Results 

2.2.4.1. Virtual Hand Ownership 

In the Slow Breathing condition, participants reported stronger feelings that the virtual hand was part 

of their body (item 3, with W = 106 and p = 0.035), that the contact experienced was directly caused by 

the sphere that was approaching the virtual hand (item 4, with W = 122 and p = 0.003), and that they 

were unable to move their own right hand (item 11, with W = 96 and p = 0.022), compared to the Normal 

Breathing condition (see Table 7). Rank-biserial correlation was used to estimate the effect size and the 

related confidence interval, respectively with values of: (item 3) 0.559 and 95% CI [0.074, 0.83], (item 

4) 0.794 and 95% CI [0.482, 0.927], (item 11) 0.6 and 95% CI [0.117, 0.853]. 

Significant differences were found between the control (5, 6, 7, 8) items average score and, 

respectively, the ownership (2, 3, 4) items average score (W = 220.5 and p < 0.001 in Slow Breathing, 

W= 195 and p = 0.027 in Normal Breathing) and the disownership (9, 10, 11) items average score (W= 

206.5 and p < 0.001 in Slow Breathing, W= 223.5 and p = 0.002 in Normal Breathing). Rank-biserial 

correlation was used to estimate the effect size and the related confidence interval. For the ownership-

control comparison: 0.909 and 95% CI [0.776, 0.965] in Slow Breathing, 0.542 and 95% CI [0.128, 

0.794] in Normal Breathing. For the disownership-control comparison: 0.967 and 95% CI [0.912, 0.988] 

in Slow Breathing, 0.767 and 95% CI [0.489, 0.903] in Normal Breathing. 

A significant difference (W = 153.5 and p < 0.001) was also found between the ownership average 

scores in each breathing condition (Table 8). According to rank-biserial correlation, the effect size and 

the related confidence interval are respectively 0.795 and 95% CI [0.508, 0.923]. 

Overall, the participants estimated the total duration of the task (16 minutes) as: 11.55 ± 5 minutes 

in Slow Breathing, 12.77 ± 4.03 minutes in Normal Breathing (no significant difference between 

conditions). 

Considering the proprioceptive drift, no subject moved the phone during the session (before the drift 

estimation) by more than 5 mm in any direction: thus, all measures were included in our analysis. 

According to the collected data, the breathing condition significantly affected the proprioceptive drift: 

t(21) = -3.558, p = 0.002, d = -0.759, CI [-1.23, -0.276] (Figure 20). The drift comparison between Slow 

https://jasp-stats.org/
https://www.r-project.org/
https://www.r-project.org/
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Breathing and Normal Breathing successfully passed the Shapiro-Wilk test of normality, with 0.975 (p 

= 0.824). The participants estimated the position of the smartphone, i.e., their right hand, to the left of 

its actual location (averagely by 0.91 ± 2.58 cm) and closer to the monitor i.e., the virtual hand, in the 

Slow Breathing condition. The same estimation was to the right of its actual location (averagely by 1.45 

± 2.45 cm) in Normal Breathing condition. 

The analysis of GSR (planned as in 3.5.2) shows that, in the considered time window, the measured 

values are significantly different from the end value at the 0.05 significance level only in Normal 

Breathing condition (between 1.7 s and 1.3 s before the end of the trial). 

2.2.4.2. SARB Feasibility  

Figure 21 highlights how the subjects followed the instructions for each condition according to the 

data collected through the microphone and processed by the custom Unity software. No significant 

difference can be found considering both the breathing condition and the trial repetition as factors. 

However, in the Slow Breathing condition participants maintained 5.8 ± 2.5 breaths per trial, overall. 

This value was significantly lower than the Normal Breathing condition, 10.7 ± 2.6 breaths per trial, as 

expected: t(21) = -8.382, p < 0.001, d = -1.787, CI [-1.459, -1.098]. The comparison successfully passed 

the Shapiro-Wilk test of normality, with 0.951 (p = 0.335). 

Additionally, an exploratory analysis of BVP values was performed for extracting the frequency of 

respiratory events and comparing it to the data collected by the Unity software, showing no significant 

difference between them in each breathing condition.  

Before moving on to the experimental session, 4 participants asked to repeat (1.75 ± 0.5 times, by 

average) the training session in Slow Breathing condition. 3 of these subjects needed to repeat (1.33 ± 

0.58 times, by average) the training session in Normal Breathing condition too. Then, over 16 total trials, 

the participants were able to make the virtual hand “shake” (when, at the end of each trial, the 

transparency index Alpha > 0.8) by average (without significant differences): in 10.77 ± 4.94 trials under 

Normal Breathing condition, and in 9.36 ± 3.44 trials under Slow Breathing condition. 

2.2.4.3. Preliminary Test with Users of Prostheses  

Both the users of upper limb prostheses involved in this study followed our instructions in terms of 

breath control. In Slow Breathing condition, one subject (who repeated the training session 2 times) had 

a mean 6.3 ± 2 breaths per trial and the other (1 repetition of the training) had 4.94 ± 2.5 breaths per 

trial. In Normal Breathing condition, they respectively had (after repeating 2 times and 1 time the 

training) a mean number of breaths per trial of 11.31 ± 2.5 and 13.19 ± 3.02. About task performance: 

in Slow Breathing condition they respectively achieved 8 and 12 successful trials over 16, and in Normal 

Breathing condition 15 and 11. These preliminary tests with 2 amputees suggested the potential for 

implementing home-based embodiment training systems with affordable solutions for respiratory 

biofeedback in amputees.  
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Overall, their questionnaires showed higher scores than the individuals interviewed for the main 

study, surpassing the middle value of the 5-point Likert-type scales. The scores (Table 9) demonstrate 

medium-high values of ownership and engagement with a minimal stress. The session time estimation 

reported by each subject in both conditions was lower than the actual 16 minutes of trials, respectively: 

10 minutes and 15 minutes in Slow Breathing, 5 minutes and 10 minutes in Normal Breathing.  

The proprioceptive drift of each subject tended in both conditions towards the virtual hand, 

respectively: 3 cm and 4.7 cm in Slow Breathing, 3 cm and 2.5 cm in Normal Breathing. 

2.2.5. Discussion 

This study provides preliminary evidence of how self-regulation techniques (via respiratory control) 

can increase the processes of body ownership underlying the embodiment of a virtual right hand. It also 

highlights the feasibility of the implementation of SARB within the boundary of remote studies.  

Table 8 Average scores of items on ownership, control, disownership (median, Mdn; median absolute deviation, MAD; 

mean, M; standard deviation, SD). 

 

Questionnaire Items  

Average Scores 

Slow Breathing Normal Breathing  

Mdn MAD M SD Mdn MAD M SD  

Ownership (items 2, 3, 4)  2.67 0.333 2.53 0.54 2.17 0.167 2.08 0.52 ** 

Control (items 5, 6, 7, 8)  1.88 0.375 1.89 0.45 1.75 0.25 1.77 0.42  

Disownership (items 9, 10, 11)  2.67 0.5 2.5 0.66 2.33 0.5 2.35 0.75  

**, p < 0.01 (Wilcoxon signed-rank test between conditions of Slow Breathing and Normal Breathing). 

 

Figure 20 Comparison of proprioceptive drift (cm) 

from the reference position of the hand (0) in conditions of 

Slow Breathing and Normal Breathing, with means and 

standard deviations. **, p < 0.01 (pairwise Student’s t-test 

between conditions of Slow Breathing and Normal 

Breathing). 

 

Figure 21 Means (continuous lines) and standard 

deviations (shaded areas) 

of breaths per trial in conditions of Slow Breathing and 

Normal Breathing, along the 16 trials (1 trial per minute). 
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Our results (questionnaire scores, proprioceptive drift) indicated that slow feedback-controlled 

breathing vs normal breathing may improve the ownership process, i.e. increasing the sensations that 

the virtual hand was part of the subject’s body and that the vibration experienced by the subject was 

caused by the sphere on the screen. While both aspects are directly connected to the embodiment process 

(which depends on the perceived relation between self and body), the last one could also be related to 

the feeling of presence: the experience of “being there” in a mediated environment [338]. 

Table 9 Post-trials subjective evaluation questionnaire scores reported by the two users of upper limb prostheses. 

 

N Questionnaire Items 

Slow Breathing Normal Breathing 

Subject 

A 

Subject 

B 

Subject 

A  

Subject 

B 

1 After this session I feel quite stressed 1 2 1 2 

2 I felt as if I was looking at my own limb 4 3 4 3 

3 I felt as if the virtual limb was part of my body 5 2 4 3 

4 

It felt as if the contact I experienced was directly 

caused by the sphere that was approaching the 

virtual limb 

5 4 3 4 

5 It felt as if I had more than one right limb 1 1 2 1 

6 I felt as if my real limb was turning virtual 5 1 3 1 

7 I felt as if I could move the virtual limb 3 2 2 3 

8 

It felt as if the contact I experienced came from 

somewhere between my own limb and the virtual 

limb 

1 2 1 4 

9 It seemed as if my limb had disappeared 1 1 5 2 

10 
It seemed as if I could not really tell where my 

limb was 
1 1 1 3 

11 It seemed as if I was unable to move my limb 5 3 5 2 

12 I felt emotionally involved in the situation 4 3 4 3 

13 I perceived intensely my bodily sensations 5 3 5 3 

14 
I felt the relation between my breath and my 

virtual limb 
5 3 5 3 
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Thus, we can infer that the Slow Breathing condition made the participants feel that their body was 

extended (through the artificial limb) into the digital on-screen component of the SARB environment, 

when compared to normal breathing. Such an effect needs further investigation while studying the role 

of Slow Breathing in improving presence and avatar control, also considering the relationships between 

embodiment and presence [339]. Interestingly, the assessment of the subjects’ feeling (reported through 

questionnaire responses and spontaneous remarks) of being unable to move their own right hand, unveils 

a side-effect of Slow Breathing in terms of disownership.  

The SARB setup was effective in monitoring individuals’ breathing, processing the respiratory rate 

and providing the desired feedback to the users. The subjects were able to follow the instructions 

properly, generating two different condition-specific breathing rates. However, we noticed that the 

subjects tended to have a lower respiratory rate than the target, and their performance in terms of 

successful trials was quite variable across the subjects (highlighting how maintaining an appropriate RR 

to trigger the vibration can become complex to manage). These observations point at the need of a task 

re-design for facilitating the execution of the biofeedback training, especially considering the high inter-

subject variability of the successful trials in this study (pointing at potential usability issues for certain 

participants) and the potential effects of workload on body ownership measures [10]. 

Furthermore, such a re-design should also focus on improving the user engagement, since the setup 

was just moderately able to stimulate the participants through its current gamification features. Indeed, 

most questionnaire scores did not overcome the middle point of 3 in the 5-point Likert-type scales, and 

anticipatory responses were just weakly detected in GSR patterns only under Normal Breathing 

condition. This could depend on the fact that our implementation of SARB was based on a limited 

number of tactile events: 16 occurrences (1 per minute) just in case the person performs the task correctly 

in each trial. In classic RHI studies, these stimulations are more frequent and numerous in a shorter time, 

making most people experience the illusion within the first minute of the session [340]. Furthermore, 

our SAR environment was probably less immersive than the ones used in most VHI settings. VHI studies 

typically provide a strong perceptual continuity between computer-generated body parts (hand and arm) 

of the subject within the same immersive context, with advantageous effects on the embodiment 

measures. However, our goal was to observe if these measures were significantly different in Slow 

Breathing condition and Normal Breathing condition within the same setting, and this was confirmed 

by our preliminary data. In any case, the role of the attentional effects of respiratory control needs to be 

also considered by, for example, separating focus-attention on breathing from the feedback-control 

components.  

Considering its methodological value, our SARB-based procedure can be considered an original 

addition to the heterogenous family of RHI studies [341]. Specifically, SARB can constitute an 

affordable home training system for the embodiment, but it needs further design improvements, possibly 

exploiting more game-based features to engage the users, This can be a promising strategy, especially 

if validated through long-term home experiments [232], even within wider and engaging digital health 
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protocols [342]. The opportunity of using this kind of approach for developing novel strategies to 

investigate psychopathological conditions will also be considered, especially when the interoceptive 

processes are involved, as in [343], for example. 

Being aware of the limitations of this initial study, we are anyway encouraged by the current 

preliminary results: SARB constitutes a viable approach in implementing a self-regulation of 

psychophysiological states to promote the embodiment of an artificial limb through a Slow Breathing 

condition. Furthermore, this study offered the opportunity of preliminarily testing our hypothesis and 

our setup before proceeding with further laboratory investigations and with extensive home data 

collection sessions. 

Accordingly, the dual value of the investigation presented in this paper suggests 2 possible directions 

for the next steps of this research (envisioning their subsequent convergence too).  

• Psychophysiological studies (in laboratory) would allow to investigate specifically the EEG 

correlates of the virtual hand embodiment [344] in a SARB setting (using chest belts to precisely 

monitor RR). A potential target could be the study of Slow Cortical Potentials (SCPs, 0.01–

0.1 Hz) [345] correlated with the heartbeat and the respiration cycle, thought to be also 

implicated in stimuli integration [346]. 

 

• User experience studies (in laboratory and in remote contexts) on the SARB setting would 

initially help to improve the usability of the setup, making the task easier and more engaging 

(possibly personalizing the target RR through adaptive and co-adaptive features) for the 

participants in upcoming remote online sessions (even as daily game-like training) [347]. The 

visual scene will be improved with further graphic details to achieve a more compelling 

experience (e.g., substituting the black area around the right hole with a more realistic texture). 

This would include amputees exploiting the respiratory biofeedback strategy for training the 

embodiment of artificial limbs.  

Extending the sample size will also allow for controlling factors based on the subjects’ traits and habits 

(e.g., playing videogames or sports, smoking). Importantly, their body image and interoceptive 

awareness should be assessed [348] alongside the personality features [349].  

Further investigations must also demonstrate if the effects of the SARB-based training persist over 

time, and if an actual generalization of the embodiment of the 3D model of a prosthesis can be observed 

for the actual device [11], possibly exploiting the latter in game-like XR remote trainings designed to 

engage the users. This solution (alongside with the adoption of ecologically valid settings as in 

neuroergonomics research) [350] could counter the apparent lack of RHI-susceptibility in subjects who 

feels prosthetic limbs ownership mainly when the devices are used in daily life (Zbinden & Ortiz-

Catalan, 2021).  

As discussed above, this kind of RHI-resistance was found in meditators [304]. However, differently 

from previous studies, we explored the embodiment as a process affected by an active respiratory control 

within a biofeedback protocol instead of just presenting a typically passive RHI-like test without asking 

to perform any respiratory task. Accordingly, we hypothesize that the fine control of RR matured 

through meditation practices could be advantageous in SARB procedures, possibly working as a 
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preparatory activity to our respiratory biofeedback for embodiment training – especially for patients 

attending telerehabilitation protocols and amputees waiting for their prosthesis.  

2.2.6. Conclusion 

This pilot study presented a novel, affordable strategy for empowering the feeling of owning a virtual 

hand through an individual self-regulation method based on a respiratory control aiming at slow 

breathing. The design of the setting, targeting remote studies, showed the feasibility of implementing 

such a system with common devices owned by users like a computer, a monitor, a smartphone, and a 

microphone. Thus, this proof of concept offered a preliminary (methodological and technological) 

background for developing novel user-centered strategies in research and design to facilitate the 

embodiment of artificial limbs. 
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2.3. Improvements to an under-actuated Prosthetic Hand toward a 

dexterous 2-DoF Wrist 

2.3.1. Introduction 

The human hand is the most complex and functional part of the human body [94, 244], therefore, the 

loss of the upper limb is a highly traumatic event. Engineering a replacement is, till nowadays, a 

challenge both from mechanical and control perspectives. Due to these difficulties in the correct 

development of a prosthetic device, the long-term abandonment is still high, 30-50% [226, 243].  

A forearm-level amputation does not only involve the loss of the hand but, in many cases, also the 

loss of the wrist. The human wrist is a 2 Degrees-of-Freedom (DoFs) joint, namely the ulnar-radial 

deviation (URD) and the flexion-extension (WFE). Nonetheless, with forearm-level amputation also the 

pronation-supination (WPS) is lost, even though its anatomical joint is located in the elbow. As 

consequence these three DoFs are crucial for manipulation and interaction and their loss affects greatly 

the amputees’ quality of life. It is known, from splinting studies of the wrist, that if a subject is not able 

to pose the hand in the correct orientation, even the most advanced hand struggles in performing 

prehensile tasks [351, 352]. 

As a consequence, the absence of wrist mobility limits the orientation capability of the hand hence 

leading to compensatory movements [353], adding stress on the body and causing overuse complications 

for the remaining joints [351, 354]. Bertels [355] demonstrated how even a single DoF prosthetic wrist 

coupled with a prosthetic hand can greatly reduce the amplitude of compensatory movements. 

According to the assessment of user-needs, it is crucial to mimic the native human wrist, both in 

terms of available DoFs and control capability [356]. During Activities of Daily Living (ADLs), users 

underlined the need for several improvements such as multiple and selectable wrist active movements, 

simultaneous control of wrist and grasps, wrist position feedback and others [356].  

Nonetheless, user-controllable actuated prosthetic wrists have largely been ignored in the literature, 

in comparison to the efforts devoted to hand prosthesis development [351, 357, 358]. In fact, there are 

very few commercial myoelectric wrist prostheses available on the market, chiefly the Ottobock 

pronation-supination Electric Wrist Rotator [359], the Fillauer MC Wrist Rotator [360] and Fillauer 

Powered Flexion Wrist [361], all of them offering just one active DoF. In addition, research devices 

such as the Keshen KS-Bionic Hand with an actuated pronation-supination and flexion-extension wrist 

[362], the ToMPAW modular arm [363] and DARPA Modular Prosthetic Limb [364] DEKA “Luke” 

Arm [365] have been developed, but have yet to be made commercially available for a prosthetic use 

[366]. 

This paper hence presents an innovative 2-DoFs prosthetic wrist, analysing its design and 

demonstrating its mechatronic performances according to the user’s needs. Therefore, we underline how 

the combination of the CE marked underactuated prosthetic hand Hannes [11] and this avant-garde 2-
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DoFs wrist, addresses the most demanding tasks which, usually, other devices fail to accomplish. To 

meet the assessment of users’ needs [356] we aim to control this innovative wrist by means of leading-

edge strategies such as pattern recognition (PR) [12]. This led to improved control, both in terms of 

naturalness and intuitiveness, of the multi-DoF prosthetic device. 

Moreover, we demonstrate that advanced PR techniques presented in  [13] can be successfully 

applied to the presented new system, by considering its application to real-life scenarios.  

In this paper, we present the design and the realization of such 2 DoFs wrist for prosthetic 

applications. We preliminarily identify the system requirements as highlighted in section I.2.3.2, to then 

address a detailed description of the mechanical, electrical and control design of prosthetic systems in 

section I.2.3.3. Moreover, a description of the performed testing methodology phase is disclosed to 

validate the overall design in section I.2.3.4, whereas the corresponding experimental results are 

presented in section 2.3.5. Finally, in sections I.2.3.6 and I.2.3.7 we outline the impact of this work and 

propose future applications of the system. 

2.3.2. System Requirements 

The Hannes hand was designed using a bio-inspired and holistic approach. The result was an under-

actuated hand prosthesis that nonetheless strongly exhibits biomimetic behaviour of the human hand 

[367]. Hannes is already capable of performing three main categories of grasp, using a passive, manually 

operated thumb adduction: power grasp, precision grasp and lateral grasp. The under-actuated 

differential mechanism of the Hannes hand has been already presented and discussed [367], therefore, 

we focus here on the novel design of the 2 DoFs wrist. 

With a similar design approach, our goal was to develop a 2-DoFs prosthetic wrist including flexion-

extension (WFE) and pronation-supination (WPS) characterized by biomimetic performances in terms 

of range of motions (RoMs), speed and torque hence consenting user to perform the most demanding 

ADLs. 

In the following part of this manuscript, we firstly present the biological and technical requirement 

as inspired by ADLs (Section A and B respectively), followed by the kinematic layout (Section C) and 

finally the power and safety aspects (Section C and D respectively) considered along with the 

development phases. 

2.3.2.1. User’s needs-driven requirements 

The human wrist joint has three DoFs that can be simultaneously moved. The wrist itself possesses 

two DoFs: WFE and URD. In addition, the forearm ulnar and radius bones provide WPS movement 

[368-370]. Since this rotation ability is largely lost by trans-radial amputees it can be considered integral 

to wrist functionality and a relevant characteristic for a prosthetic wrist system to fulfil. To be able to 

effectively replicate the functionalities of its biological counterpart, the hand-wrist prosthetic system, 

should possess the following features: 
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1) RoMs, torques and speed must be comparable to the ones attained by humans during ADLs [11]; 

2) Robustness – each actuator must resist peak loading forces substantially above peak torques exerted 

during ADLs, in case of a fall or improper use [11] 

3) Anthropomorphism – the system must approximate the size of the human hand and forearm [11] 

a. Low weight – Since this characteristic is strongly correlated with abandonment rates [371, 372], 

the system must weigh less than the human hand and arm, needing to be similar to commercial 

prostheses (see Table 10) 

b. Low overall length – The type of arm amputation and lost functionality is unique for each 

patient. The minimum overall length will maximise the number of patients that can benefit from 

a wrist prosthesis system. As up to 70% of amputations are distal to the elbow [373], and 

assuming that the average trans-radial amputation occurs halfway along the forearm, then the 

total length of the wrist prosthesis should not exceed 50% of the female 5th percentile of forearm 

length (around 97mm) [374]. 

4) Ease of Control and low latency – From the Assessment of user needs [356], it emerges how the 

wrist is explicitly required by the amputees, since, as already stated, the positioning of the hand is 

crucial in everyday activities. Moreover, focusing on the users’ requirements, the ease of control 

and the non-disturbing time delay in wrist movements are both crucial. To deal with these, we 

developed a low-level control strategy (section I.2.3.3.3) for the wrist and tested the device 

involving an online control through PR. 

2.3.2.2. Design Requirements from the perspective of ADLs 

Literature on RoMs, torques and speeds characterizing each joint of the human arm during 23 ADLs 

and the SHAP Test [375] was used to define the desired DoFs, kinematic layout, and desired peak torque 

and peak joint velocity of each wrist. The SHAP test is a standardized clinical protocol for estimating 

and comparing patient hand and wrist dexterity in ADLs [376]. Although simulated activities only 

approximate functional ones [377] they can estimate the minimum required prosthesis performance. 

In addition, whilst RoMs during ADLs are well defined by studies of wrist motion, with the worst-

case values found in literature used for each joint [378], there is much fewer data and much higher 

variation regarding joint speeds and torques [357]. Commercial WPS wrist devices are capable of 80 

deg/s whereas others are as high as 300 deg/s. Previously published researches on wrist WPS and WFE 

speeds have noted that 175deg/s is a suitable value to be functional [379], whereas for WFE prosthesis 

the target rotation speed is 150deg/s [380]. Information on nominal and peak wrist torques is even more 

lacking as most studies focus on maximal wrist torques, nevertheless, minimum torque requirements for 

 

Figure 22. Individual joint rotation axes and layout 

of prosthesis vs human hand and forearm. 

4 mm of misalignment among the human and the 2 

DoF wrist. 
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the WFE and WPS wrist can be estimated from the literature [381]. However, in Section 2.3.4, it was 

decided to estimate more accurate values from able-bodied volunteers using motion capture hardware. 

2.3.2.3. Kinematic Layout Required for ADLs 

F. Montagnani et al. demonstrated that the removal of the ulnar-radial deviation DoF using a custom-

designed orthosis resulted in the smallest increase of compensatory movements during the SHAP test 

Southampton [382]. In fact, a 2-DoF wrist (WPS and WFE) coupled with a 1-DoF hand (open/close), 

performed very similarly to an anatomical hand during SHAP tests. Other studies conducted on able-

bodied subjects similarly demonstrated how the URD can be regarded as the least important upper limb 

movement [383, 384]. 

Based on these findings and the limiting requirement to minimize the prosthetic wrist weight and 

overall length, a 2-DoFs device with WFE and WPS was developed, as this would offer similar 

functionalities compared to a 3-DoFs wrist prosthesis. Moreover, to increase the human-like behaviour, 

we decided to couple the 2-DoFs wrist with an underactuated prosthetic hand (Hannes) capable to 

express very high biomimetic performance as demonstrated in [385]. 

2.3.2.4. Power Consumption Requirements 

As an upper limb prosthesis must embed the power source, the aim is to minimize the motors power 

consumption, to gain a sufficient battery autonomy during daily use. As stated in [222], and confirmed 

during the clinical evaluation performed in 2017 with Hannes [386], transradial amputees perform an 

average of 150000 main grasp movements per year, resulting in 411 movements per day.  

Therefore, we set the requirement to perform at least 500 combined hand and wrist movements with 

a single battery charge, considering a 1:1 ratio between hand and wrist usage. Moreover, we designed 

the WFE drivetrain to be non-backdrivable, allowing static loads to be resisted without motor torque 

contribution, therefore greatly minimizing current consumption in static poses [357]. Non-backdrivable 

transmissions allow to choose smaller motors, since the dynamic active torque requirements during 

ADLs are low compared to the maximum passive torques that the human wrist can be subjected to [387]. 

Additionally, the joint will remain static when subjected to sudden external load changes or during a 

power loss, also resulting in a more predictable control and safer use by upper-limb prosthetic users. 

TABLE 10 BIOLOGICAL & ADL REQUIREMENTS 

 

Joint Length [mm] Mass [g] ADL RoM [deg] Peak Torque [Nm] Velocity [rad/s] 

Wrist FE 20-30 100 -70 to 50 -3.5 to 3.5 4 

Wrist PS 60 100 -65 to 77 -6.0 to 4.0 7 

Wrist URD 50 150 -18 to 20 -0.2 to 0.3 -0.2 to 0.3 
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2.3.3. Design of Prosthetic System 

In this chapter, the prosthetic system will be analyzed in all its parts. Firstly, in Sections 2.3.3.1 and 

2.3.3.2, respectively the mechanical and electrical architectures of the device will be described in their 

entirety. Subsequently, in Sections 2.3.3.3 and 2.3.3.4, the control strategies, both low and mid-level, 

applied to this system will be discussed and detailed. 

2.3.3.1. Mechanical Architecture 

The arm mechanical architecture is serial and modular by design (Figure 22): the WPS and the WFE 

wrist joints are separate, to allow the insertion of an Ottobock-style quick-disconnect (QD) Locking 

Unit [388] and electrical slip-ring namely Coaxial Plug [389] with its counterpart within the wrist in the 

socket, named Co-Axial Bushing [390]  (Figure 23B, Figure 24B and C). The slip-ring provides power 

and control signals to the hand during WPS rotation. Moreover, this architecture provides a variable 

total system length making the prosthesis adaptable to the type and severity of patient amputation (distal 

or proximal) by also maintaining the compatibility with the existing amputee socket design. This 

precluded the investigation of an integrated parallel wrist mechanism for simultaneous multiple DoFs 

motion such as Stewart-platforms or quaternion wrists, even though such systems are often more 

compact than serial chain devices [391]. 

2.3.3.1.1. WFE Wrist Design 

According to the previously presented design requirements (section 2.3.2), hereafter we describe the 

design solution to match the anthropomorphism of the WFE wrist rotation axis equipped on the Hannes 

hand. The misalignment between the mechanical and the anatomical rotation axis should not be greater 

than 5-7mm (Figure 22). Moreover, the overall mechanism should be as small and noiseless as possible 

to prevent user discomfort [392]. On the other hand, to prevent excessive battery consumption in case 

of high static loads, non-backdrivability is another crucial aspect to consider. Therefore, the WFE wrist 

powertrain presents a 3-stage gearbox directly connected to the drive motor (Faulhaber BXT22H) and 

a slow shaft encoder (Figure 23). In detail, the first stage is a [(13/3):1] planetary gearbox, that allows 

lowering the revolutions-per-minute (RPMs) of the BLDC motor while keeping high efficiency (η ≈ 

0.9) that guarantees high torque to drive the subsequent gear-stage. The second stage shifts the rotation 

 
Figure 23. 

WFE wrist: A) Simplified diagram of mechanical design, B) Placement of the mechanical components and C) the real 

WFE wrist device. 
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axis to the physiological position of the human wrist with a [1:2] spur gear to reduce still maintaining 

high efficiency (η ≈ 0.9).  

The supplementary reduction of the resultant angular velocity is fundamental to reduce the noise of 

the previous gear’s stages and to provide a sufficiently high torque to the third stage that will then waste 

a considerable amount of torque due to its low efficiency (η < 0.4, 0.25 < η < 0.4) [30:1]. Thanks to its 

precise dimensioning, this third stage allowed to achieve the correct alignment of the rotation axis. 

Moreover, it is crucial to grant the non-backdrivability of the entire mechanism, by means of its low 

efficiency. This characteristic, coupled with the correct dimensioning of the frame and the third gear 

stage, make the wrist able to hold up to 50kg in steady condition without any battery consumption and 

makes it possible for the user to lean on the wrist, for example, when standing up from a chair leveraging 

on the upper limb for stability purposes and reducing harmful compensatory movements. 

The design of the entire wrist WFE mechanism allows 82 deg of RoM in detail having 33 deg in 

extension and 49 deg in flexion, mimicking the natural conditions (40 deg in extension and 38 deg in 

flexion hence having 78 deg of RoM) of healthy subjects [384]. 

2.3.3.1.2. WPS Wrist Design 

The WPS wrist main design requirement was to be hollow shaft, to allow fitting the single slip-ring 

located in the Ottobock-style Laminating Ring [393]. The actuator unit is composed of a frameless 

PMSM motor (TQ Motors ILM25x04) [394] directly integrated with the strain-wave reducer’s wave 

generator [100:1] (Harmonic Drive HFUC 11-100-2A R), forming a hollow shaft actuator, allowing 

cable passage between the hand prosthesis and the socket electronics. The output of the strain-wave 

reducer is connected to the female output of the quick-disconnect adapter. The design permits the hand 

prosthesis and WFE wrist actuator to be quickly attached and detached by the patient, whilst ensuring a 

robust electrical connection between the two halves of the prosthesis system, namely the hand and the 

socket. 

The resultant mechanism is characterized by an overall length of 55mm (Figure 23B) and a 45mm 

diameter which offers a one-to-one replacement with the Ottobock-like Locking Unit and its related 

counterpart, the Ottobock-like Laminating Ring [395] which is also capable to accommodate the active 

component namely Electric Wrist Rotator [396] by Ottobock.  

On the mechatronic side, our custom device can exert higher angular velocity and torque on the slow 

shaft in respect to existing commercial solutions. The direct connection between the Harmonic Drive 

and the BLDC motor [394] grants a single reduction stage (Figure 24). The overall power-train 

efficiency of 80% can be achieved by aligning the bell-shaped efficiency behaviour of the reducer with 

the one described in the motor datasheet. Conversely, commercial prosthetic wrists offer a cascade of 

reduction stages that lower the device’s efficiency. As consequence, our solution aims at increasing the 

overall efficiency to design a reversible mechanism that, at the same time, allows the Ottobock-like 

Locking Unit to disconnect the wrist from the hand thanks to the breakaway torque of the powertrain. 
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2.3.3.2. Electrical Architecture 

From an electrical point of view, the system is conceived to be modular and self-contained (Figure 

25): the hand itself contains all the motor drive electronics necessary to move the main grasp motor and 

the WFE wrist motor in closed-loop. All the hand and wrist movements are controlled via a single 

microcontroller (Texas Instruments TM4C123GH6PM [397]) embedded in a single rigid-flex control 

board system (SCMM), minimizing space requirements and power consumption overhead. The onboard 

electronics include a 9-axis IMU module [398], to provide the angular orientation of the hand expressed 

in quaternions via I2C protocol to the motor control unit of WPS wrist (SCMPS) . The system includes 

two contactless absolute on-axis magnetic encoders (AMS AS5045B [399]), to provide absolute position 

feedback and diagnostics via SPI protocol. The SCMM allows to implement all the necessary safety 

features as for IEC60601-1 medical device standard, including sensor diagnostics, overcurrent, overload 

and short circuit protection on all the active joints. The overall system architecture includes a central 

processing board (EMGM) and up to 6 surface electromyography (EMG) sensors, compatible with both 

Ottobock electrode or custom circular EMG sensor Marinelli, et al. [15] developed by Rehab 

Technologies lab of Italian Institute of Tecnology. The EMGM board hosts a microcontroller (Texas 

Instruments TM4C123GH6PM), acquiring the EMG signals. The EMGM board is placed above the 

wrist joint, and acts as a master of a CAN Bus network, sending position references to the SCMM board, 

for controlling hand and wrist WFE via SCMFE, and retrieving various measurements from the SCMM 

board, such as the joints current, the measured joint position, the angular orientation, and the system 

status. Additionally, the EMGM board hosts an IMU module, to gain information about the angular 

orientation of the stump and control directly the WPS wrist control board (SCMPS) movement 

accordingly (Section 2.3.3.3). 

All the information gathered by the prosthetic systems is then provided via Bluetooth Low Energy 

to a host system graphical user interface (GUI), which can allow both therapists or researchers to 

perform tuning of the control parameters, the activation thresholds, check the system diagnostics, 

 
Figure 24. 

PS wrist: A) Simplified diagram of mechanical design, B) Placement of the mechanical components and C) the real WFE 

wrist device. 
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visualise, and log the data in real-time. All the data are available to a frequency up to 100Hz via custom 

communication protocols. 

The system is equipped with a custom battery pack, made of 3 lithium-ion certified cells in series 

(11.1V nominal, 2.5Ah capacity, 27.75Wh energy, 99900Joule) and a battery management system, 

carefully designed to fit in the gap between the residual stump and the wrist joint, hence allowing to 

directly embed the system electronics and power supply in most of the transradial amputation cases. To 

confirm that, we made a simple evaluation of the power consumption, measuring the battery current 

absorption at a fixed voltage (12.28 V) in respect of the worst-case movements of each joint (highest 

speed), using an oscilloscope (Tektronix MDO3034) and a current probe (Tektronix TCP0020). We then 

computed the net electrical power and the energy absorbed for each task. Additionally, we measured the 

overall system consumption in an idle state, with all the motors enabled but not moving with respect to 

the daily energy balance we considered a 16 hours per day duty cycle, compared to the energy available 

with a full charge. The results of this analysis are resumed in Table 11: it can be observed that the main 

energy use is due to the idle state (48%) rather than during the movements. 

However, is shown that the system can be easily operated, in an average use, for 16 hours 

consecutively with a single charge, having a good residual charge (43.8%). 

2.3.3.3. Low-Level Control Design 

We developed a control strategy that allows both intuitiveness and non-disturbing time delay ,in 

agreement with the assessment of user needs [356]. For the WFE wrist joint we implemented a position 

Proportional-Integral-Derivative (PID) controller by using the custom encoder as feedback (see Figure 

23C). Conversely, due to the lack of space, no embedded encoder was possible to fit in the WPS joint. 

Therefore, a virtual encoder was used as feedback to the WPS position loop. In particular, the virtual 

encoder is obtained by using two IMU (Bosch Sensortech BNO055 [398]) located on the two links, 

respectively the hand and the socket. These sensors extract quaternions used to compute the angular 

WPS position via a custom algorithm. The “Relative Angle and Orientation” (RAO) algorithm computes 

the angle between the hand and the forearm, avoiding singularities. The procedure is presented hereafter. 

TABLE 11 DAILY POWER CONSUMPTION 

 

Joint 
Average  

Current 

[A] 

Average  

Power [W] 

Energy per 

Movement 

[J] 

Movement  

Time [s] 

Number of 

Movements 

Overall day 

energy 

consumption 

[J] 

Percentage 

on battery 

charge [%] 

Hand 0.75 9.2 7.4 0.8 500 3700 3.7 

Wrist PS 0.2 2.4 3.5 1.5 500 1750 1.75 

Wrist FE 0.16 2 5 2.5 500 2500 2.5 

Idle state 0.07 0.86 - - - 48240 48 

Total - 56209 56.2 
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Knowing the standard definition of a quaternion (Q) and its conjugate (Q*): 

 
𝑄 =  [𝑞𝑤, 𝑞𝑥 , 𝑞𝑦 , 𝑞𝑧] 

𝑄∗ = [𝑞𝑤, −𝑞𝑥 , −𝑞𝑦 , −𝑞𝑧] 
(5) 

setting Qpre and Qpost as quaternion relative respectively to pre-joint and post-joint link, it is possible to 

define the rotation quaternion of the joint as follows: 

 𝑄𝑅 = [𝑄𝑝𝑟𝑒
∗ ∙ (𝑄𝑝𝑜𝑠𝑡 ∙ 𝑄𝑝𝑟𝑒

∗ )] ∙ 𝑄𝑝𝑟𝑒 (6) 

Once QR is evaluated by knowing the actual possible DoFs of the joint, the angles along the principal 

axis (αx, αy, αz) can be computed. Knowing the structure of the quaternion from Eq.1, the angles can be 

calculated as follows: 

 𝛼𝑖 = 2 ∙ 𝑎𝑡𝑎𝑛 (
𝑄𝑅𝑖
𝑄𝑅𝑤

)     , with 𝑖 ∈ [𝑥, 𝑦, 𝑧] (7) 

Calculations run in a built-in routine on the EMGM board, retrieving link quaternions from the 

peripheral sensors and computing the RAO algorithm. This computation efficient routine can run in real-

time, as it computes the angles in 0.172 ms (13760 clock cycles) on an ARM Cortex M4F running at 

80MHz. 

2.3.3.4. Mid-level Control Design  

Furthermore, we implemented PR to control the Hannes system. To this aim, Nonlinear-Logistic 

Regression (NLR) algorithm was embedded into the EMGM’s microcontroller as presented in two our 

previous works of Marinelli, et al. [13] and Di Domenico, et al. [12]. After the algorithm training phase, 

the users were able to operate the prosthesis in real-time by controlling 2 and 3 DoFs respectively.  

The software architecture presents two main layers: the joint selection layer, which selects the joints 

to be controlled and the joint control layer, which computes the position references according to the 

EMG signal intensity. 

Therefore, PR algorithm decodes the user intention and translates it into motor activation patterns by 

using up to 6 EMG electrodes, as shown in Figure 27 Each joint reference position is modulated 

 
Figure 25. Electronic architecture of the full Prosthetics system. 
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according to the RMS of the 6 EMG signals, which is compared with two thresholds and amplified via 

a gain according to the formula: 

 𝐽𝑜𝑖𝑛𝑡𝑝𝑜𝑠 +=
(𝑅𝑀𝑆(𝑠𝐸𝑀𝐺) − 𝐿𝑇ℎ)

𝐻
∗ 𝐺𝑎𝑖𝑛 (8) 

where, RMS is the root mean square of the EMG signals, LTh is the activation threshold optimized 

according to the validation set, H is a coefficient used to normalize the EMG amplitude according to the 

recorded signals during the calibration phase and Gain is a parameter to tune the joint speed according 

to the user needs. 

2.3.4. Test Methodology 

We developed a 3-phases testing methodology to gradually characterize and validate the performance 

of the device. A preliminary analysis in the frequency domain was performed to identify the dynamic 

behavior of the single joints’ movements as presented in Section 2.3.4.1. Subsequently, in Section 

2.3.4.2 we acquired the kinematics of able-body subjects performing ADLs and then used this 

information to validate the prosthesis’ performances in mimicking these movements. Finally, a speed-

torque analysis was conducted to outline the mechatronics performances achieved during ADLs as 

presented in Section 2.3.4.3. Moreover, to examine the control capabilities, an EMG-based PR algorithm 

was developed and tested on amputee as presented in Section 2.3.4.4. 

2.3.4.1. Dynamic tests 

We aimed at estimating the bandwidth of the wrist actuation unit in both WPS and WFE joints. To 

this end, we imposed a sequence of sinusoidal speed references, by increasing the frequency with step 

increments of 0.25Hz from 0.25 to 4.5Hz. Moreover, we chose the reference amplitude according to the 

mechanical RoMs of the system not to impact with the end of travels. We supplied the motor drive with 

fixed voltage and measured the joint speed output response comparing them with the imposed 

references. We then interpolated the voltage-speed transfer function to estimate the closed-loop 

mechanical bandwidth. 

2.3.4.2. Able-Body Kinematics Recording 

To the best of the authors’ knowledge, there is a lack of accurate velocity (and torque) profiles of the 

human wrist joint during typical ADLs in literature. Therefore, we built a dataset of healthy subjects’ 

wrist speed profiles performing multiple tasks. We then obtained reference kinematic trajectories to be 

applied to the 2-DoF wrist [377] to test its dynamic performance under load. The considered tasks were 

divided into two sections, namely the basic functional tests and fully functional tests. In the former, the 

subject separately performed simple movements (i.e., wrist flexion, wrist supination) and their 

combination (i.e., infinite trajectory). In the latter, we selected ADLs activities where the wrist 

movements play an essential role and recorded the joint angles via a Motion Capture (MoCap) system 
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described below. Eventually, each subject was asked to perform 5 tasks divided as presented in Table 

12. 

In detail, during the trials, the subjects were asked to perform each one of the tasks three times. Using 

a metronome, a rhythm was prescribed to impose three different speeds, namely “slow” (30bpm), 

“normal” (45bpm) and “fast” (60bpm). The subjects were asked to perform the task in the most natural 

way while following these rhythms to start each movement. Imposing a defined time frame to execute 

the task prevented unnecessary interruptions which could bias the acquired speed distribution. 

Therefore, a distribution of natural speeds was acquired and compared with the speed performances of 

the two wrist motors. 

As shown in Figure 26, the setup consisted of a Vicon Nexus MoCap system, based on 10 Infra-Red 

(IR) cameras that record the movement of 12 IR-reflecting markers. This MoCap system, can guarantee 

a 0.01mm precision over a 48 m3 of total volume of acquisition. This setup with the 12 IR markers 

allows the tracking of the whole arm, and, for this case, the detailed movement of wrist WPS and WFE. 

The VICON system has a fixed frame rate of 100Hz. This is consistent to Khusainov et al.  [400], as 

90% of human movements are under the 5Hz threshold. Therefore, we asked 8 able-bodied volunteers 

(age range: 25-32 years, 5 males and 3 females with self-reported hand and wrist dominance) to sit on a 

chair with their elbows fixed and close to their torso to minimize elbow and shoulder contribution. After 

the participants were marked with the 12 IR markers (according to the marker placement depicted in 

Figure 26C) they were asked to perform the 9 tasks. During each task, the movement was repeated 10 

 
Figure 26. 

Human-Prosthetic validation setup. (A-B) VICON Mo-Cap room, in yellow squares the IR VERO Cameras for marker 

tracking while in blue square the subject wearing the 12 markers. (C) Marker positioning scheme according to VICON 

user’s manual.  
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times. Each subject performed each task with a 30s pause between them to prevent muscular fatigue. 

The test duration was approximately 20 minutes per participant. 

2.3.4.3. Prosthesis Kinematic and Dynamic Test 

We tested the speed and torque performances of the novel prosthetic wrist with the aim of assessing 

its reliability and its consistency in comparison with the natural equivalent. Therefore, we computed the 

joints speed Probability Density Function (PDF) of healthy subjects examined to obtain a reference 

distribution curve. The percentiles distribution (DST) of angular velocities were compared with respect 

to the speed performances for both WPS and WFE mechanisms. To this end, we chose the two most 

demanding basic functional tasks mentioned before for each DoF, executed at maximum achievable 

rotational speed. To stress the overall system in a realistic scenario, we loaded the prosthetic hand with 

a glass jug (300 gr) with 500 ml of water for the jug pouring task (WPS), and a heavy aluminium sphere 

(532 gr) for the lifting task (WFE). We recorded the joint position and the motor current to compute 

both speed and torque achieved. From this data we extracted the speed-torque required by the two 

powertrains while executing the tasks. 

2.3.4.4. High-level Control Design  

With the goal of validating the full system on a real application scenario, we tested advanced control 

strategies on the Hannes system [176, 356], first on healthy subjects and then on amputees.  An EMG-

based PR algorithm including proportional and simultaneous control of three active DoFs was developed 

by Di Domenico, et al. [12]: the Hannes hand’s main motor, the WPS and WFE wrist. In this algorithm, 

the speed amplitude is proportional to the RMS value computed on the EMG signals, while the 

simultaneity is achieved by activating multiple movements of different joints. Both the setup and the 

classification algorithm were tested on 10 healthy subjects and 3 mono-lateral amputees (transradial 

amputation of the dominant limb). Each subject was asked to perform 10 repetitions of each gesture to 

be decoded (i.e., hand opening, hand closing, wrist pronation, wrist supination, wrist flexion and wrist 

extension) and to maintain the contraction for 2s. The acquisition of the muscular activity was performed 

by using 6 MyoBock (Ottobock) electrodes placed on the forearm (Figure 27) as described in [12]. The 

data collection was performed by using an ad-hoc software, EMG-Data Acquisition and Training 

Software [12], to associate the muscle contraction to the prosthetic movements. For each movement and 

TABLE 12 PERFORMED TASKS. 
 

Basic functional Fully functional 

Wrist Flexion-Extension Stirring 

Wrist Pronation-Supination Jar Pouring 

Infinite shape (combo WFE and PS) - 
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DoF the activation of the six EMGs generate a different pattern associated to the movement intention, 

Figure 27A. 

Non-Linear Logistic Regression [12, 13] was used as PR algorithm to select the joint to move, as 

already offline tested by our group in different configurations. Moreover, we mapped muscle activation 

amplitude to selected joints’ reference position Figure 27C), as described in formula (9): 

 

{
 
 

 
 

𝑃𝑡 = 𝑃𝑡−1 + ∆𝑆 

∆𝑆 =

||√
1
𝑁
∑ |𝐸𝑀𝐺𝑛|

2𝑁
𝑛=1 ||

𝐹𝑐

   (9) 

where P indicates the position, the sum of the previous position and the increment (∆𝑆). ∆𝑆 is calculated 

with the normalized RMS of the N = 6 EMGs divided by the loop frequency of the microcontroller 

(300Hz) to limit the maximum increment to a value that controls the prosthesis full-RoM movement in 

1s. 

2.3.5. Results 

Correspondingly with the methods presented in Sec. IV, we computed the open-loop Bode diagram 

(Section A), the able-body kinematics analysis (Section B) and the joint’s speed-torque dynamic 

performances (Section C). Finally, in Section D we present the results obtained in a real scenario, in 

which machine learning techniques were used to offer an intuitive control strategy for the multi-DoFs 

Hannes system via EMG. 

2.3.5.1. Dynamic test results 

This analysis (Figure 28A) shows the speed closed-loop mechanical bandwidth of the prosthetic wrist 

drive at the maximum battery voltage (12.6V), defined as the intercept of the magnitude system response 

with the -3dB attenuation red line. The measured dynamic is around 1Hz for wrist WPS joint and 2Hz 

for WFE joint in their complete RoMs. 

2.3.5.2. Able-Body Kinematic recordings results 

Throughout the trials, the participants were instructed to perform movements without any specific 

guidance, ensuring that the angles measured were not influenced by any bias. Despite this, as depicted 

in Figure 28B boxplot, the healthy subjects' executed movements were contained within the mechanical 

Range of Motion (RoM) of the Hannes system. The prosthesis minimum and maximum RoM are 

indicated by the dotted lines. Specifically, the End-of-Travels (EoT) for the WFE wrist were designed 

to span from -49 deg to +33 deg, while the Wrist WPS could move freely without any restrictions; 

however, the EoTs were set to span from -90deg to +90deg. Therefore, these EoTs could be adjusted 

according to the subject's natural contralateral anatomy. In the boxplots, the squared regions represent 

the population from the 25th to the 75th percentile, the grey dashed lines indicate the entire population 

span and the red crossed indicates the outliers outside the Tukey fence.  
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2.3.5.3. Performance Characteristics during ADLs 

Figure 29A presents the human wrist’s speeds distribution compared to the prosthetic wrist speed 

performance. The Probability Density Function (PDF) of healthy speeds, as well as the Distribution of 

the speed population (DST) in the form of a boxplot can be appreciated for both WPS and WFE wrist. 

These results are compared to the Hannes wrist's performance, represented by the grey shaded area. For 

the WPS joint, we observed a median value of 5.82 rpm (34.95deg/s), a 25th percentile of 1.51 rpm 

(9.06deg/s) a 75th percentile of 16.39 rpm (98.34 deg/s) and a maximum of about 38.7 rpm (232.2 deg/s). 

For the WFE joint, we observed a median value of 4.77 rpm (28.62 deg/s), a 25th percentile of 1.25 rpm 

(7.5deg/s) a 75th percentile of 10.12 rpm (60.72 deg/s) and a maximum of about 23.43 rpm (140.58 

deg/s). The red crossed indicates the outliers outside the Tukey fence. Moreover, we observed that the 

data are substantially symmetric in respect of the sense of rotation. 

Figure 7A depicts the torque-speed behaviour of the WPS and WFE wrist respectively performing 

the two most demanding selected tasks.  The maximum rotational speed achieved by WPS wrist joint 

was around 360 deg/s (60 rpm) during glass jug pouring task whilst was around 180 deg/s (30 rpm) for 

WFE wrist while lifting a heavy sphere. The maximum torque exerted by WPS wrist joint was around 

5.27 N during glass jug pouring task whilst was around 2.38 Nm for WFE wrist while lifting a heavy 

sphere. The dashed grey lines represent the power rating under load and no load, respectively 20 W and 

10 W for the WPS and 4 W and 2 W for WFE wrist. We measured and RMS torque of 1.55 Nm for 

WPS and 0.88 Nm for WFE.  

 
Figure 27. 

(A) Radar plots of EMG signals amplitude for the various voluntary movements: Hand Open and Closure (left), Wrist 

Pronation and Supination (center), Wrist Flexion and Extension (right). (B) Fully integrated, wearable system fitted on a 

transradial amputee while operating the prosthetic arm. (C) Plot of 6 EMG signals amplitude (top) compared to the 

normalized position measurements of the controlled joints (bottom). 
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2.3.5.4. Control Design Test  

Once the NLR classifier was trained, each subject was able to intuitively control the 3 different joints. 

The implemented control strategy (NLR) was able to suitably discriminate the patterns for the 6 different 

gestures as presented in Figure 8A. The radar plots show the6t EMG signals contribution among the 

classified movements. As consequence, the trained algorithm was able to decode the user intention and 

translate them into prosthesis actions. In Figure 27C, it is possible to appreciate the synthesis of the 

position references according to the EMG signals: in the upper side of the graph, EMG rectified signals 

are grouped together, in the lower side, we show the respective reference positions after the regression. 

Figure 27B shows the fully integrated system controlled by a transradial amputee. Since the NLR 

algorithm runs directly embedded in the EMGM control electronics, the system is wearable and usable 

in a realistic clinical scenario. As a result, the subjects were able to control the prosthesis’ ROMs by 

combining each movement as for ADLs. 

 
Figure 28. (A) Bandwidth diagram of prosthetic wrist motors, and (B) Ranges of motion of healthy subjects during trials. 
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2.3.6. Discussion 

The objective of this study was to propose a novel 2-DoFs prosthetic wrist combined with a poly-

articulated prosthetic hand. We assessed its reliability as a viable replacement for its natural counterpart 

via a multi-level validation. With the aim of meeting the requirements explained in Section 2.3.2 we 

developed a fully integrated solution, comprehending a very compact mechanical assembly, a modular, 

wearable and battery-operated electronic structure and an advanced software to control the prosthesis in 

the most natural way. 

We firstly performed a mechanical bandwidth analysis with the purpose of investigating the frequency 

response of the two powertrains. The results of this analysis can be used as a reference for further 

improving the drivetrain structure.  It is worth noticing that even if the Hannes system has been designed 

 
Figure 29. (A) Speed Probability Density Function (PDF) and (B) Distribution (DST) for WFE and WPS extracted from 

humans. 
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to mimic human motion, the performances are limited due to the anthropomorphism and low-noise 

requirements. This implies a trade-off between performances and user-needs: with this purpose, we 

performed an acquisition campaign on healthy subjects, recording the wrist movements in common 

ADLs to extract realistic dynamic requirements for wrist in daily life. During the trials, the participants 

were not instructed to restrict their movements in any way. We then compared the performances of 

healthy wrists to the prosthetic equivalent, to examine the biomimicry of the proposed mechatronic 

system, both from a range of motion point of view and speed performance under maximum load. As 

shown in Figure 28B diagrams, the RoMs achieved by Hannes wrist are suitable for executing all the 

tasks examined. From the dynamic performance point of view, the speed was statistically analysed to 

determine a reasonable performance which could represent a natural healthy wrist behaviour in the 

selected tasks. From Figure 29A, it can be appreciated that the Hannes wrist speed performance exceeds 

the maximum statistical speed required for the natural tasks, excluding the outliers. This is coherent with 

the torque-speed performance graphs (Figure 29B), which shows that the worst-case load speed-torque 

trajectory examined falls inside the limits of the mechatronic system. 

Furthermore, the human-like dexterity was confirmed via a final validation, using a ML-based multi-

DoFs control strategy, first on healthy subject and then on amputees. At this point, the requirements of 

low control latency and anthropomorphism are fundamental to correctly map the residual muscular 

contractions to the prosthesis movements, to give a natural and embodied control experience. To this 

extent, the proposed ML approach offers a possible strategy to suitably control the system: the patient 

was able to perform the wrist movements in a repeatable and predictable way since, as shown, in Figure 

27A, each movement intention is well separable using 6 EMG sensors. Figure 27B shows the amputee 

wearing the prosthesis: it can be appreciated how a compact wrist mechatronic solution can help in 

achieving a good overall anthropomorphism. Figure 27C shows the effect of the joint position control 

strategy: according to the joint selection as output of the NLR, the user was able to control each joint 

separately, by proportionally regulating the movement speed by increasing the amount of contraction. 

This allows to stop the movement and remain in a fixed joint configuration by relaxing the muscles, 

with the advantage, for instance, of promoting the grasp robustness while controlling the wrist to change 

the orientation of an object by maintaining a certain wrist configuration while controlling the hand to 

grasp an object. 

2.3.7. Conclusion 

The Hannes System is a prosthetic device for trans-radial amputees whose aim is to mimic the human 

capabilities therefore restoring most of the lost functions.  The two power trains for wrist motion allow 

an overall satisfactory RoM, that, after the analysis of human movements performed for validation 

purposes, was found to be coherent with the natural equivalent.  

To validate the performances of this prosthetic device, a set of functional tasks was conceived due to 

the lack of information about the human wrist capabilities in literature. Therefore, we conducted a 
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measurement campaign, providing a statistical analysis of the RoMs and velocities of healthy subjects 

during ADLs. The Hannes system demonstrated to mimick human movements according to the 

presented analysis. In addition, we estimated the motors’ torque and power effort in worst-case load and 

speed scenarios, validating the mechatronic design of the wrist. The obtained results proved the Hannes 

system to be a promising prosthetic device for promoting wrist dexterity for trans-radial amputees. The 

2-DoFs wrist motors combination achieves both fast and slow motions hence restoring the ability of the 

final user to move freely in the three-dimensional world. Thanks to the non-backdrivability of the wrist 

in flexion-extension, amputees can rely on the wrist for holding weights, or leaning on it to stand up 

from a chair therefore restoring not only the functionality, but also self-confidence during daily activities 

while operating their prosthesis. 

The resulting findings serve as evidence of a favorable balance between performance and the 

necessary requirements for a medical wearable device. Further developments will include an increased 

number of inspected subjects in a long-term scenario along with a clinical trial. This will enable a long-

term investigation for receiving user feedbacks and iterate the design assessing the device efficacy. 

Moreover, the mechatronic system can be used as a mean for developing novel AI control strategies, 

both in the invasive and non-invasive domain, bridging the gap towards a realistic neuroprosthetic 

device. Finally, the proposed development approach could also be applied to the design of a novel trans-

humeral prosthetic solution. 
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2.4. Chapter Discussion and Remarks 

Advancements in prosthetic technology have paved the way for innovative designs that can mimic 

natural human capabilities, promoting greater functionality and ease of use. In this context, three 

fascinating aspects have been uncovered in recent research. Firstly, the Hannes system has proven to be 

a promising solution, boasting adaptive grasping capability and a flexible wrist module that has enabled 

prosthetic users to complete tasks successfully. Secondly, self-regulation techniques via respiratory 

control have been found to increase the embodiment of virtual limbs, but further development is required 

to improve user engagement. Lastly, a novel 2-DoFs prosthetic wrist has been developed, offering 

human-like dexterity and control via a machine learning-based multi-DoFs control strategy, bringing us 

one step closer to achieving the ultimate goal of prosthetic devices that can mimic natural human 

movements. These advancements are promising and demonstrate the exciting possibilities that lie ahead 

for prosthetic technology. 

In summary, the following outcomes were achieved: 

1. A case study on the Hannes system showed gradual improvement in completion time as training 

progressed, with successful strategies developed for each task. The Hannes prosthetic hand was 

helpful in some tasks, but the absence of active wrist pronation/supination negatively impacted 

others. Despite some limitations, Hannes performed well in the Cybathlon competition, ranking 

6 out of 13. The team will focus on developing an active wrist module and a system capable of 

restoring haptic feedback for future developments. 

2. Self-regulation techniques via respiratory control can increase body ownership processes and 

the embodiment of a virtual right hand. Slow feedback-controlled breathing may improve 

ownership processes, while normal breathing may cause disownership of the right hand. The 

SARB setup was effective in monitoring individuals' breathing and providing feedback, but a 

task redesign is needed to improve biofeedback training and user engagement. SARB is a viable 

approach in implementing self-regulation of psychophysiological states to promote the 

embodiment of an artificial limb through a Slow Breathing condition. 

3. A study proposed a novel 2-DoFs prosthetic wrist combined with a poly-articulated prosthetic 

hand and developed a fully integrated solution for it. The prosthetic wrist was found to have 

suitable range of motion and speed performance under maximum load, and human-like dexterity 

via a final validation using a ML-based multi-DoFs control strategy. The proposed ML approach 

offered a possible strategy to suitably control the system. 
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Chapter 3. Body – Machine Interface 

The translation from user intention to prosthetic action is a crucial aspect of the effective usability of 

the device. The PR algorithms developed in this project included a Joint-Oriented control strategy that 

resulted in a more robust and efficient approach with respect to the commercial solutions (MyoPlus [78] 

and Coapt [76]) in terms of robustness and speed. The other goal is to guarantee the simultaneity and 

naturalness of multi-DoF control. Movement robustness and naturalness are fundamental aspects of 

control that improve the system when embedded in a microcontroller inside a prosthesis. This activity 

aimed at realizing a control algorithm with a high classification rate to guarantee robustness for the user 

and, at the same time, a low computational burden to be fast executable. Finally, the simultaneity of 

movements ensured a natural control of the device tanks to the combination of joint movements. 

The literature analysis allowed me to identify the more promising algorithms for a 2 DoF prosthetic 

application that satisfied the needs described. Consequently, the performance analysis of each algorithm 

allowed me to select the most promising one. The best algorithm was optimized in terms of accuracy 

and speed. I realized an embedded version on a microcontroller to test the online performance of the 

prosthetic system. Finally, a validation framework was developed, based on a virtual environment 

(Unity), to systematically test the prosthetic performance for both algorithms during the development 

phases using a clinical protocol dedicated (e.s., Target Achievement Control Test - TAC). 

In this section, the results for each activity are described, presenting the relative scientific papers: 

• Marinelli, et al. “Performance Evaluation of Pattern Recognition Algorithms for Upper Limb 

Prosthetic Applications.” BioRob 2020. [13] 

• Marinelli, et al. “Miniature EMG Sensors for Prosthetic Applications.” NER 2021. [15] 

• Marinelli, et al. “A Comparative Optimization Procedure to Evaluate Pattern Recognition 

Algorithms on Hannes Prosthesis.” Neurocomputing, 2023. (submitted) 

• Marinelli, et al. “Improved Pattern Recognition Control of Hannes.” IRIM 2021. [14] 

• Di Domenico, et al. “Hannes Prosthesis Control Based on Regression Machine Learning 

Algorithms.” IROS 2021. [12] 
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3.1. Miniature EMG Sensors for Prosthetic Applications 

3.1.1. Introduction 

A crucial feature for the functionality and usability of a poly-articulated myoelectric hand prosthesis 

is its controllability. Indeed, poor controllability is one of the major causes of prosthetic system 

abandonment. Traditionally, myoelectric hand prosthesis control relies on the use of two 

electromyographic (EMG) sensors, respectively placed on flexor and extensor muscles. The muscle 

contraction was detected by EMG sensors, and the control policy regulates prosthesis velocity [401]. 

However, this solution does not allow simultaneous multi-DOF control and this prevents users from 

perceiving the prosthesis as a true substitute of the missing limb [402]. Recently, many groups focused 

on investigating solutions to improve the control of multi-DoF myoelectric hand prostheses [80, 165, 

403]. One possible strategy consists in increasing the number of EMG sensors in order to provide the 

pattern recognition algorithm with more data for decoding hand posture [165]. However, one of the 

major drawbacks of current systems is that the gold standard Ottobock has a rectangular shape that badly 

adapts to the limited amount of space available within the socket, which also has unpredictable shape 

due to the residual limb. Moreover, the mechanical integration of EMG electrodes within the socket, 

strongly affects the physical robustness of the entire prosthetic system. This design is developed with 

an Inter Electrode Distance (IED) of 12 mm accordingly with the Nyquist theorem that suggests 8-10mm 

minimum [41]. To address these issues, we designed circular EMG sensors with a smaller design and a 

IED of 8 mm that is the minimum dimension for EMG application following the Nyquist theorem [41] 

and compared their performance versus the gold standard, while training a pattern recognition algorithm 

based on Non-Linear Regression (NLR) for decoding multi-joint hand posture. The NLR algorithm was 

chosen, instead of the gold standard Linear Discriminant Analysis,  following on from the results showed 

on [13]. We tested both sensors on a group of healthy volunteers and on three trans-radial amputees 

using the Hannes hand [11] to understand the feasibility of this sensors on a prosthetic scenario. 

3.1.2. Material and Methods 

3.1.2.1. Subjects and Experimental Protocol 

We recruited 10 right-handed able-bodied (6 males, age 36 ± 9 years) and 3 amputated subjects 

(mono-lateral, right trans-radial amputation of the dominant limb; all males; aged 72, 43 and 39, 

respectively). All subjects provided written informed consent. The study conformed to the standard of 

the Declaration of Helsinki and was approved by the ethical committees of Bologna-Imola (CP-

PPRAS1/1-01). 

Six standard EMG sensors (OTTOBOCK), and six custom-made (IIT) sensors (see section 3.1.2.2) 

were used. Each set of sensors was embedded into a custom-made elastic brace placed around the 

forearm for collecting electrical activity from 6 relevant muscle groups involved in grasping and 
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pronation/supination of the wrist (Figure 30 A). The muscles groups were: Extensor Carpi Radialis 

Longus Muscle (EMG0), Palmaris Longus Muscle and Flexor Carpi Ulnaris Muscle (EMG1), Extensor 

Digitorum Muscle (EMG2), Flexor Carpi Radialis Muscle (EMG3), Extensor Carpi Ulnaris Muscle 

(EMG4), and Brachio-Radial Muscle (EMG5). Subjects performed the experimental protocol twice: 

first with one set of EMG sensors (i.e. OTTOBOCK or IIT) and then with the other set. The order of 

EMG set placement was randomly assigned and 30 minutes of rest were allowed between sessions. 

After sensors placement, subjects were positioned in front of a monitor displaying a virtual hand 

(VH) emulating the controlled prosthesis (see section 3.1.2.3). We asked subjects to sequentially 

perform hand opening/closing and wrist pronation/supination for 10 times, then we collected 16 

repetitions of resting state (duration 2 s, Fs 1 kHz). 

3.1.2.2. EMG Sensors 

In this study, two different set of EMG sensors were compared: the commercially available 13E200 

MyoBock (OTTOBOCK, Figure 31 A) and the custom-made circular sensors (IIT) newly developed. 

IIT sensors were created to minimize the occupied surface of the internal lamination of the socket: this 

feature allows to fit a higher number of sensors around the residual limb, without compromising the 

mechanical strength of the prosthesis. Moreover, to facilitate the socket manufacturing process, we 

designed a custom PCB assembly composed by two boards fitting within a circular shape enclosure with 

a final diameter of 18 mm and a thickness of 9.5 mm, (Figure 31 B). According to the identified shape, 

three custom titanium electrodes were designed a connected directly to the lower side PCB via epoxy 

conductive glue. Consistently with the OTTOBOCK devices, the IIT sensor employs a bipolar 

configuration with differential sensing electrodes placed on the side with IED of 8 mm with a central 

reference electrode. The output amplified signal range is compatible with the 0 ÷ 5 V signal commonly 

needed by the standard prosthetic systems. The filtering stages consist in a cascade of a band-pass filter 

(from 90 to 450 Hz), a notch filter (to reject the mains common mode noise), and an envelope detector 

 

Figure 30 EMG activity associated to related joint movement. 

A: EMG activations and Hannes system speed during different hand and wrist movements. B: DoFs of the Hannes system. 
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circuit with adjustable gain via a trimmer. Thanks to the input instrumentation amplifier configuration 

used in the very first stage, supplied by a very low noise voltage reference, a CMRR (Common Mode 

Rejection Ratio) of 100 dB was achieved. The output contacts can provide enveloped and raw EMG 

signal, both after the common mode rejection stage. Currently, on our pattern recognition application, 

the enveloped signal has been used: we are considering to use the raw EMG signal for further 

investigations. 

3.1.2.3. EMG Signal Processing 

Regardless of the sensors used, all EMG signals were sampled (12bit resolution) by a custom EMG 

processing board based on an ARM Cortex M4 microcontroller, performing A/D conversion and then 

Bluetooth streaming of real-time data to a host PC.  

NLR classifier (see section 3.1.2.4) were then off-line trained using single samples of EMG signals 

recorded both during movement and rest. EMG signals were collected by a customized version of the 

EMG Data Acquisition & Training Software (EDATS), developed by Centro Protesi INAIL [13, 77] 

(Figure 32 A), implemented in MATLAB (MathWorks). 

Following NLR calibration, subjects were allowed to freely explore its control by performing any of 

the 4 movements, which were real-time decoded and replicated onto the VH, whose joint velocity was 

linearly dependent with EMGs RMS. 

3.1.2.4. Training, Optimizing and testing of the NLR model 

We used NLR classifier because in a previous study we found that it produces comparable or better 

results than the gold standard Linear Discriminant Analysis [13]. NLR is a supervised algorithm and 

thus needs a specific calibration procedure to estimate the best set of internal parameters for its further 

on-line use. The Dataset is acquired at a sample frequency of 1 kHz and divided into test set (TS), 

training set (TR) and validation set (VS). The TS was obtained after a down-sampling operation from 1 

kHz to 40 Hz according with the optimal down-sampling found in [77]. The TR was composed by 70% 

 

Figure 31 EMG sensors. 

A: Ottobock (rectangular shape) and IIT (circular shape) sensors. B: Mock-app IIT sensor. 
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of the remaining data, while the VS was finally composed by 30% of the remaining data. 

Through a custom MATLAB API, the parameters of NLR were off-line tuned on the TR and 

validated on the VS to prevent overfitting (step 1 in Figure 33). It followed an evaluation phase in which 

the calibrated algorithm was used to on-line decode hand motion using a real-time PC based PR 

simulator (step 2 in Figure 33). The resulting outcomes were finally uploaded (step 3 in Figure 33) to 

the EMG processing board for the final on-line classification (step 4 in Figure 33), during which the 

user was able to freely control the VH or the Hannes prosthesis. For online use the NLR receives input 

data composed by a single sample of EMG array at 300 Hz, fast enough to detect variation of human 

movements and to guaranty the control loop execution. 

We aimed at estimating the minimum number of EMG sensors able to provide top performance of 

the NLR algorithm, in terms of F1Score [404]. Further, we also considered the role of the degree (D) of 

complexity able to provide top performance in terms of Embedding Optimization factor (EOF), as in 

[13]. We also introduced a “truth index”, based on Likelihood threshold [405]. The Likelihood 

maximizes the efficiency of algorithms: we set the threshold of likelihood around 70-80% in order to 

 

Figure 32 Experimental Setup. 

A: EMG processing board, power supply, sEMG armband, EDATS software, VH and Hannes system. B: VH control 

performed in Real-Time by a healthy subject. C: VH control performed in Real-Time by an amputee. 

A C

B

 

Figure 33 Experimental Setup block diagram. 
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guarantee the classification of the voluntary movements only. Movements discarded from classification 

were considered as “abstentions” and did not produce any movement. 

A comparison of NLR performance with different EMG sensors was evaluated in terms of 

classification (% of correctly decoded movements), F1Score, and abstention (% of non-assigned 

movements). The best NLR configuration (optimal number of sensors and degree of complexity) was 

then used for training the algorithm on the amputees’ dataset, with both types of sensors. We assessed 

whether the obtained scores were comparable with those of the healthy population. Statistical analysis 

was performed with Wilcoxon signed rank test and Bonferroni correction for multiple comparisons 

[406]. 

3.1.2.5. The Hannes system 

The Hannes hand prosthesis was jointly developed by INAIL and IIT. It allows to restore around 

90% of motor capacity in trans-radial amputees [11]. 

The Hannes system (Figure 32 A) consists of: (i) a set of six EMG electrodes, (ii) a custom EMG 

processing unit, (iii) a myoelectric poly-articulated prosthetic hand, (iv) an active wrist 

pronation/supination (WPS), and (v) a battery pack. The EMG processing unit (“EMG-Master”) 

acquires the analog sensor output and synthesizes the control signals for each active joint. The extent of 

the activation is proportional to the RMS of the six EMG signals, normalized in the range 0 to 100% for 

the hand control, while WPS is always controlled at the maximum velocity. The control signals are then 

sent to the respective motor control boards within the prosthetic system. Each motor driver is equipped 

with an on-board control loop to ensure the correct joint movement: closed-loop speed control for the 

hand and open loop for WPS. The WPS consists in a standard motor-gearbox actuation and can provide 

360° rotation. The description of the mechanical design of the Hannes prosthetic hand is provided in 

[11]. 

3.1.3. Results 

3.1.3.1. Effect of EMG sensors number on performance 

We first explored the minimum number of sensors required to achieve the saturation of performances, 

expressed as non-statistical difference between F1Score. Starting from the full configuration including 

6 EMG sensors, we progressively reduced the number of EMG sensors by removing those placed on 

smaller muscles, according to the following order: EMG5, EMG2, EMG3, EMG4. We found that three 

OTTOBOCK sensors were enough to reach the same performance as with maximum number of sensors 

and that four IIT sensors reached the same performance as with maximum number of sensors (Table 13 

and Figure 34). 

3.1.3.2. Effect of D parameter on performance 

We assessed performance in terms of EOF with different values (from 1 to 7) of the parameter D, 
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which regulates the maximum polynomial degree. As shown in Figure 35, we found that both for 

Ottobock and IIT sensors D = 3 maximized the performance. 

3.1.3.3. Sensors comparison 

We compared F1Score obtained by both sensors’ type through a Wilcoxon Signed-Rank test and 

found no statistical difference. Table 13 summarizes classification, F1Score, and abstention for both 

sensors type with the optimized number of sensors, as determined by the previous analysis.  

We observed no significant difference, but IIT sensors led to more consistent results, as indicated by 

smaller standard deviation.  

 

Figure 34 F1Score obtained for both sensors typology using different number of electrodes. 

The value of D is fixed to 7. NS: not significant. 

 

Figure 35 EOF obtained by NLR using different maximum value of parameter D 

and fixing number of electrodes to 3 for Ottobock sensors and 4 for IIT sensors, respectively. NS: not significant 
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We also ran tests on three trans-radial amputees, using optimized number of sensors. Table 14 shows 

the values of classification, F1Score, and abstention obtained by amputees with both EMG sensors. 

Scores match those obtained by healthy subjects, with highest scores for IIT sensors. 

3.1.4. Discussion and Conclusion 

We developed miniaturized circular EMG sensors for prosthetic applications and compared their 

performance in decoding hand movements using the NLR algorithm, with the commercially available 

gold standard. We performed tests on healthy subjects and found that IIT sensors led to similar or better 

performance. OTTOBOCK sensors reached highest classification performance with only three EMG 

sensors, while IIT sensors with four. However, IIT sensors are smaller and the overall areas occupied is 

254 mm2, while three OTTOBOCK sensors occupy a total of 486 mm2. This is a clear advantage for 

prosthetics applications, because placing each sensor requires the opening of a hole in the socket. 

Therefore, the smaller the area occupied by sensors, the smaller the possibility of undermining socket 

Table 13 NLR performances obtained for OTTOBOCK and IIT with different number of sensors on Healthy. 

In bold are indicated the number of sensors which saturated the F1Score. 

 

Sensors 
EMG 

(#) 

Classification 

accuracy (%) 

F1Score 

(%) 

Abstention 

(%) 

OTTOBOCK 

2 98.2 ± 2.8 82.2 ± 12.3 82.4 ± 6.9 

3 99.8 ± 0.2 94.1 ± 11.2 69.8 ± 9.6 

4 99.9 ± 0.1 97.2 ± 5.6 60.7 ± 9.1 

5 99.9 ± 0.1 99.8 ± 0.4 60.0 ± 8.2 

6 99.9 ± 0.2 97.3 ± 8.1 55.1 ± 9.0 

IIT 

2 99.1 ± 0.8 82.7 ± 19.7 82.0 ± 7.8 

3 99.8 ± 0.2 95.0 ± 10.2 64.2 ± 8.4 

4 99.9 ± 0.1 98.1 ± 5.0 57.2 ± 8.8 

5 99.9 ± 0.1 99.9 ± 0.2 54.3 ± 8.1 

6 99.8 ± 0.2 99.9 ± 0.2 53.6 ± 7.8 

 

Table 14 NLR PERFORMANCE SCORES OBTAINED BY AMPUTEES. 

In bold are reported the best scores according to each indicator (classification, F1Score, and abstention). 

 

P. Sensors 

Classification 

accuracy (%) 

F1Score 

(%) 

Abstention 

(%) 

1 
OTTOBOCK 99.8 98.4 83.4 

IIT 99.4 89.6 79.5 

2 
OTTOBOCK 99.8 90.9 76.4 

IIT 99.9 99.9 53.3 

3 
OTTOBOCK 100 99.9 69.4 

IIT 100 100 51.5 
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robustness and system stability. This is crucial with proximal residual arm and reduced socket internal 

lamination. We also found that keeping a small degree of polynomial complexity (D = 3), maintained 

the same level of performance as with higher degrees in both Ottobock and IIT sensors. Therefore, the 

computational burden was still kept at a minimum. 

Overall, we found that IIT sensors are promising for prosthetic applications, as indicated by upper 

limb amputees, who were able to move a VH by controlling residual muscles of the stump. More studies 

are needed to evaluate IIT sensors for prosthetic control in activities daily life and to validate them by 

testing frequency and time response. 
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3.2. A Comparative Optimization Procedure to Evaluate Pattern 

Recognition Algorithms on Hannes 2DoFs Prosthesis 

3.2.1. Introduction 

Nowadays, the field of multi-functional upper limb prostheses is marked by important technological 

and scientific developments aimed to satisfy the users’ needs. The loss of a hand is a crucial impairment 

due to the limitation on the activity of daily living [407] and the development of high advanced 

prostheses is a real opportunity to compensate the lack of a limb. However, anthropomorphism and the 

human-like performances are not aligned with the controllability that such devices can offer [19]. 

Indeed, an important drawback on modern prostheses is the lack of control robustness [177]. Moreover, 

the dimensions of the advanced electronics systems needed to operate complex devices, result in a 

difficult integration within the custom socket [7-9]. 

A myoelectric prosthesis is commonly controlled using electromyographic signals (EMG) coming 

from the remaining muscles after the amputation. EMG signals are first collected using sensors, and 

then translated into prosthesis commands [74]. However, the stochastic nature of EMG makes the search 

for repeatable and reliable characteristics of the signals very challenging [133, 177, 408].. 

Multi-DoF pattern recognition algorithms improve the controllability of the system, but they are affected 

by different problems [3] such as: electrode shift, sweating, fatigue, and the stochastic nature of the 

signal that eventually lead to an overall performance degradation [1, 3, 177]. 

Unfortunately, most of the algorithms applied in the literature are tested on healthy subjects [3] rather 

than on amputees [77].So far, the most promising result has been obtained by Nguyen, et al. [409], but 

with significant drawbacks in term of computational burdening, invasive signals acquisition, overall 

encumbrance and overheating of the computation unit. 

In this context, researchers attempted to increase algorithms performances via parameters 

optimization only. However, the obtained results are not one-to-one reflecting to the final application in 

term of both control and mechatronics device [2, 4, 8, 9, 21, 74]. As a consequence, we here address 

this challenge by implementing a fully optimized pattern recognition control for the Hannes prosthetic 

system [11]. To achieve this objective, we first identified the mostly used pattern recognition algorithms 

for prosthesis application. Then, we opportunely adapted all the algorithms for controlling the Hannes 

hand. The study compared several approaches (i.e. Non-Linear Logistic Regression (NLR) [77], 

Regularized Least Squares (RLS) [410], Artificial Neural Network (ANN) [411], and Support Vector 

Machine (SVM) [412]) with the gold standard for prosthetic application, the Linear Discriminant 

Analysis (LDA) [77]. Additionally, we combined NLR, RLS and LDA methods, with an “abstention” 

criterion by evaluating the likelihood of each decoded class and enabling the “abstention” criterion (i.e., 

confidence-based rejection). 



Body – Machine Interface  

 

108 

C
h

a
p

te
r 

3
 

As the aim of this study was to reduce the encumbrance of the system, several interventions were 

performed. The maximum number of EMG sensors (E) that saturated performances of each algorithm 

were first investigated. Moreover, the parameters of algorithms that saturated performances were also 

optimized to reduce both complexity and computational burdening. Additionally, custom made EMG 

sensors (i.e. IIT sensors) validation was performed by comparing their performance with commercial 

gold-standard ones, i.e. the Ottobock sensors. The main goal of this novel design was to preserve space 

on the socket [15]. Finally, we then implemented the resulting ‘best performing’ algorithm for the online 

control of the Hannes system joints. Our group already tested a set of pattern recognition algorithms on 

healthy subjects for translating muscular activity into Hannes movements (rest, hand opening/closing 

(HOC), wrist pronation/supination (WPS)) [13]. We here extend that work by including a population of 

amputees to detect and generalize the right combination of parameters to be applied for the real-time 

control of the Hannes prosthesis. 

3.2.2. Materials and Methods 

3.2.2.1. Subjects 

Eleven trans-radial amputees (45.3 ± 2.6, 8 right-handed), with no prior experience in controlling 

multi-DoFs prostheses via Pattern Recognition algorithms, participated in this study. Before starting the 

experiment, the subjects were informed about the protocol, and they signed the informed consent form. 

The experimental protocol was approved by the AVEC (Area Vasta Emilia Centro) Ethics Committee 

(Protocol Code: CP-PPRAS1/1-03). 

 

Figure 36 Experimental setup. 

A) the system used to perform data acquisition and training of algorithms: 1) the emg-master; 2) the six EMG sensors; 3) 

the Hannes hand; 4) the EMG-data acquisition and training system (E-DATS) user interface; 5) the Hannes virtual reality 

hand. B) The Ottobock sensors. C) the IIT sensors  
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3.2.2.2. Experimental Setup 

The experimental setup (Figure 36) was composed by: (A) a standard laptop (DELL XPS 15, Intel 

Core i9 @2.60GHz, 32GB RAM) running Windows 10, to collect the EMG data, train the algorithms 

and perform the experiment; (B) a 18’’ computer monitor to show the movement to be performed; (C) 

a custom made master PCB (EMGM) to communicate via Bluetooth with the PC for sending EMG data, 

running the Pattern Recognition algorithm and operating the prosthesis; (D) a 12V, 3000mAh battery 

pack; (E) two arrays of six EMG sensors (Ottobock, Duderstadt, Germany, 13E200=50 AC and IIT, 

custom made circular electrodes [15]) to acquire and amplify the muscular activity; (F) the Hannes 

prosthetic hand [11-13, 15]. The EMGM board collected the EMG signals from two types of sensors 

(see later in this paragraph). Data could be transmitted first to the laptop (to train the algorithm) and then 

to the EMGM (to translate them into control movements for the Hannes hand). The User Interface (UI) 

was designed by using Labview (National Instruments Corp., Austin, TX, USA) development suite, 

while Matlab (MathWorks, Natick, MA, USA) to collect data and train the algorithm. This framework 

acquired the EMG data from EMGM and sent the model parameters back to EMGM for real-time 

movement decoding and therefore to control the prothesis. The virtual reality (VR) framework was 

developed by using the Unity development suite (Unity Technologies, San Francisco, CA, USA). 

As explained below (section 3.2.2.3, 2 types of EMG sensors were tested during each experimental 

session and were used in a random order to offline compare the classifier performances. Both sets were 

placed circumferentially and equidistantly around the subject’s stump, approximately 10 cm distal to 

the elbow, and strapped using an elastic band. The amplification gain of each EMG was individually 

adjusted to cover the range of values during maximum muscle contraction for every subject, avoiding 

electrodes saturation. 

The subjects sat comfortably in front of the monitor, with their amputee arm placed towards the 

desktop, taking care to avoid the contact between the EMG sensors and the table. The computer monitor 

was placed approximately 50 cm from the subject. The UI environment displayed the movements to be 

performed by subjects to create the dataset and tuning the models to control the prosthesis. Afterwards, 

the subjects proportionally controlled the Hannes prosthesis movements with their muscle contraction, 

in opening and closing the hand or rotating the wrist. 

3.2.2.3. EMG sensors 

In this study, two different sets of EMG sensors were compared: the commercially available 13E200 

MyoBock (Ottobock, Figure 36 B) and the custom-made circular sensors (IIT) newly developed. We 

designed the IIT sensors to minimize the space occupancy within the socket therefore permitting to fit 

a higher number of sensors around the residual limb, without compromising the mechanical strength of 

the prosthesis. Moreover, to facilitate the socket manufacturing process, we designed a custom PCB 

assembly composed by two boards fitting within a circular shape enclosure with a final diameter of 18 

mm and a thickness of 9.5 mm, (Figure 36 C). According to the identified shape, three custom titanium 
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plates were designed and directly connected to the lower side PCB via epoxy conductive glue. 

Consistently with the Ottobock devices, the IIT sensor employs a bipolar configuration with differential 

sensing electrodes placed on the side with an interelectrode distance of 8 mm. The amplification range 

of the output signal is compatible with the 0 ÷ 5 V signal commonly needed by the standard prosthetic 

systems. The filtering stages consist of a cascade of a band-pass filter (from 90 to 450 Hz), a notch filter 

(to reject the main common mode noise), and an envelope detector circuit with adjustable gain via a 

trimmer. Thanks to the input instrumentation amplifier configuration used in the very first stage, 

supplied by a very low noise voltage reference, a CMRR (Common Mode Rejection Ratio) of 100 dB 

was achieved. The output contacts could provide enveloped and raw EMG signal, both after the common 

mode rejection stage. For our pattern recognition application, we used the enveloped signal. 

3.2.2.4. The Hannes system 

Hannes is an anthropomorphic, poli-articulated upper limb system comprising a prosthetic hand and 

wrist that allows patients to naturally recover most of the lost functionalities [11]. The underlying 

mechanism of the hand is a mechanical differential system that allow Hannes to adapt to the grasped 

object. This results in a grasp that is efficient, robust against external conditions and natural. The system 

also permits to actively pronate and supinate the wrist (‘key turning movement’), allowing grasps in 

different orientation without relying on harmful patient compensation. 

The Hannes prosthetic system is myoelectric as it relies on biopotentials to be controlled. An array of 

up to six surface electromyographic sensors [15], placed within a custom socket, records the muscle 

activity in the residual limb. The system has been developed to record the intensity of the muscular 

activity. As a consequence, the Root Mean Square (RMS) values acquired by each sensor are computed, 

to run PR algorithm and to identify the Sought-after movements to be reproduced by the prosthetic 

system [13]. In particular, opening and closing of the hand can be proportionally controlled whilst the 

pronation and supination of the wrist are commanded in open loop at its maximum speed. 

3.2.2.5. Pattern Recognition algorithms 

A wide range of supervised machine learning algorithms were tested to perform EMG Pattern 

Recognition online: Non-NLR [77], RLS [410], ANN [411], SVM [412], and LDA [77]. Both model 

and optimization criteria were defined according to the cited references. ANN and SVM are classifiers, 

therefore the related output is the decoded movement (class). Oppositely, the other algorithms are 

regressors and their output is a classes’ likelihood estimation. In the following, all the algorithms 

involved in this study are described, and the related model training and parameters optimization are 

presented. 

3.2.2.5.1. NLR 

The NLR [413] calculates the class membership probability using the following logistic function: 
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 𝑃(1|𝑥, 𝜃) =  {
𝑔(𝜃𝑇 ∗ 𝑥) =

1

1 + 𝑒−(𝜃
𝑇∗𝑥+𝜃0)

1 − 𝑃(𝑦 = 0|𝑥, 𝜃)
 (10) 

where θ and θ0 are the classification parameters vector and the bias term, and g(·) is the sigmoid (logistic) 

function. The level of non-linearity (D) is achievable thanks to the interaction terms as described in 

Table 15. The NLR algorithm is characterized by polynomial input features which are obtained from 

the combination product of the starting input features (i.e., x1; x2; x1*x2; x1
2; x2

2; …, see Table 15) [77]. 

The complexity of the NLR classifier is determined by the internal parameter 𝐷 (ranging from 1 to 7, in 

this case), which encodes a structure of polynomial features as reported in Table 15: from the linear 

terms up to the 𝐷-power elevation and all the possible permutations without repetitions of a maximum 

number of elements corresponding to the indicated degree (𝐷). 

3.2.2.5.2. RLS 

The RLS evaluates the class membership probability using the following linear relation: 

 𝑓(𝑥) = 𝑊𝑇𝑥 (11) 

where W is the weight vector of angular coefficient and x is the EMGs input vector. In addition, several 

features (𝑋) in the time domain are extracted from the EMG signals for enhancing the classification 

performances: Variance (σ2), Sum, Standard Deviation (STD), Mean Absolute Value (MAV) and RMS. 

Once the features (X) have been extracted, a gaussian kernel (K), symmetric and positive defined, was 

introduced: 

 
𝐾(𝑋, 𝑋′) = 𝑒

−
‖𝑋−𝑋′‖

2

2𝜎2  
(12) 

where the standard deviation σ (set between 20 monospaced values from 10-3 to 5) of the non-linear 

Gaussian kernel has to be tuned. So, the solution of the problem is: 

Table 15 Polynomial features extraction varying the parameter D of NLR 

 

D Description Example 

1 Linear case (LR) x1, x2, x3, x4, x5, x6 

2 max 2nd degree 
x1, …, x6, x1x2, x1x3, …, x5x6, x1

2, x2
2, …, 

x6
2 

3 max 3rd degree x1, …, x6
2, x1x2x3, …, x4x5x6, x1

3, …, x6
3 

4 max 4th degree 
x1, …, x6

3, x1x2x3x4, …, x3x4x5x6, x1
4, …, 

x6
4 

5 max 5th degree 
x1, …, x6

4, x1x2x3x4x5, …, x2x3x4x5x6, x1
5, 

…, x6
5 

6 max 6th degree x1, …, x6
5, x1x2x3x4x5x6, x1

6, …, x6
6 

7 max 7th degree x1, …, x6
6, x1

7, x2
7, x3

7, x4
7, x5

7, x6
7 
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 𝑓(𝐾(𝑋, 𝑋′)) = 𝐾(𝑋, 𝑋′)𝑇𝐶 (13) 

where the term C is obtained by using a root mean square technique: 

 𝐶 = (𝐾(𝑋, 𝑋) + 𝜆𝐼)−1𝑌 (14) 

The regularization term λ (set to be around 20 values monospaced from 10-4 to 10) was properly 

chosen through CrossValidation, 𝑌 is a vector containing the output classes as entries and 𝐼 is the identity 

matrix. Known C, it is possible to classify the new data as input through the function (13). 

3.2.2.5.3. ANN 

The ANN [411, 413] is a supervised classification algorithm where each neuron inside the architecture 

implements a logistic function. The net architecture is composed by a first input layer, one or more 

hidden layers (L, with the same number of neurons), and an output layer with a neuron for each class. 

The output vector of l-th layer (a(l)) of this classifier is obtained through a forward propagation: 

𝑎(𝑙) = {
𝑥 , 𝑙 = 1

𝑔(𝜃(𝑙−1) ∗ 𝑎(𝑙−1) + 𝜃0(𝑙−1)) , 𝑙 = 2, 3, … , 𝐿
 (15) 

where θ(l-1), θ0
(l) are respectively the matrix of classifier parameters and the bias vector associated to l-th 

layer and L indicates the output layer. The output of the net is a vector, Pv(y| x), whose elements 

represents the probability to belong to a given class expressed in the following way: 

 𝑃𝑣 (𝑦|𝑥, 𝜃(𝑙), 𝜃0
(𝑙)
) = 𝑎(𝐿) , 𝑙 = 1, 2, … , 𝐿 (16) 

It is important to consider that the ANN classifier’s complexity is defined by the maximum number 

of layers (ranging from 1 to 10) and the maximum number of neurons (N) for each L (ranging from 1 to 

30). 

3.2.2.5.4. SVM 

The SVM [414] is a supervised classifier with a One vs All approach to obtain a multiclass 

classification. The corresponding formulation is: 

 ℎ𝜃(𝑥) =  {
1 , (𝜃𝑇 ∗ 𝑥 + 𝜃0) ≥ +1

0 , (𝜃𝑇 ∗ 𝑥 + 𝜃0) ≤ −1
 (17) 

where, θ and θ0 are the parameters vector and the bias term of classifier. 

To achieve high classification performances, a non-linearity has been introduced. For this reason, a 

kernel function (f) was used to solve the Mercer theorem. This theorem describes the similarity between 

a generic input vector x and a support vector, landmark (s), which represents one of the two classes. A 

subvector of the all-vectors x recorded to train the SVM algorithm is typically chosen as landmark, so 

that the j-th element of f, for a Radial Basis Function (RBF) kernel can be expressed as follow: 

 𝑓𝑗 = exp(−
|𝑥 − 𝑠(𝑗)|

2

2𝛾
) , 𝑗 = 1, 2, … , 𝑛. (18) 

where n is the number of support vector chosen as representative vector of class 0 and 1, and y is the 

internal parameter of RBF (variable from 0 to 50 with sequence step of 0.1). The algorithm, developed 

by using the library libsvm3.20 [412], allows to set the regularized parameters value C (varying from 0 

to 104 with sequence step of 0.01) which appears within the loss function and the value of internal RBF 

kernel parameter γ. In this specific case, a One vs. One method can be adopted to solve the multi-class 
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classification problem as suggested by the library developer [412, 415, 416]. The Limited memory 

Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [417] was chosen for minimizing the algorithm. The 

SVM was iteratively trained with all the possible configurations of internal parameters C and γ, by 

varying each of those within a proper range of values. Hence the best combination of hyperparameters 

was selected for evaluating the classifier performances. 

3.2.2.5.5. LDA 

The LDA algorithm is a linear supervised classifier where the class index (c) is predicted as follow: 

 

{
 
 

 
 ℎ𝜃(𝑥) = max𝑐

(𝑐𝜃
𝑇 ∗ 𝑥+𝑐𝜃0)

|𝑐𝜃 = 𝛴
−1 ∗ 𝜇𝑐

|𝑐𝜃0 = −𝑐𝜃
𝑇 ∗ (

𝜇𝑐
2
) + 𝑙𝑛(𝛱𝑐)

 (19) 

where cθ e cθ0 respectively are the vectors of parameters and the bias term of c class. This type of 

classifier, thanks to its intrinsic formulation, does not have internal parameters to be optimized, thus it 

does not need a Cross Validation approach to be validated. A One vs. All approach can be adopted to 

solve the multi-class problem. Moreover, in order to improve the classifier’s percentage, five features 

in the time domain are considered: MAV, RMS, Slope Sign Change (SSC), Waveform Length (WL) 

and Variance (σ2). The MAV formula is: 

 𝑀𝐴𝑉(𝑡) =
1

∆𝑡 + ∆0𝑡
∑ |𝑥𝑖|

𝑡+∆𝑡

𝑖=𝑡−∆0𝑡

 (20) 

The SSC is the number of time that the signal changes sign: 

𝑆𝑆𝐶(𝑡) = ∑ ((𝑥𝑖+1 − 𝑠𝑖𝑔𝑛(𝑥𝑖 − 𝑥𝑖−1))~0)

𝑡+∆𝑡−1

𝑖=𝑡−∆0𝑡+1

 (21) 

given the EMG signal in three subsequent time instant x(i-1), x(i), x(i+1), with i that varies from t-∆0t+1 

to t+∆t-1, it is possible to calculate the number of times where a variation trend occurs.  

Finally, the Waveform Length (WL) can be expressed as follow:  

 𝑊𝐿(𝑡) = ∑ |∆𝑥𝑖|

𝑡+∆𝑡

𝑖=𝑡−∆0𝑡+1

 (22) 

where ∆xi is defined as ∆xi = xi-xi-1. In all the cases, the features were extracted in a temporal window of 

250 ms (∆t) with an overlap with the previous window of 200 ms (∆0t) [418]. 

3.2.2.5.6. Training and testing of the classifiers model 

As all the algorithms (see section 3.2.2.5) were supervised, they needed a specific calibration 

procedure to estimate the best set of internal parameters for their online usage. It is important to highlight 

that the calibration regarded the optimization of internal parameters of each classifier, therefore it should 

not be confused with the optimization procedure related to the other hyperparameters (see section 

3.2.2.5.7. 

As a consequence, the input dataset was composed by single samples of EMG data for NLR, ANN, 

and SVM, while for RLS and LDA some features (see paragraph 3.2.2.5.5 were extracted, by using a 

sliding window of 200ms with an overlap of 200ms. The algorithms were first calibrated to optimize the 
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internal parameters that achieve high performances with the lowest computational effort during the 

online control (see details in [13]). For what concerns LDA algorithm, we split the dataset into a training 

set (70% of the data) and a test set (30% of the data). The other algorithms were used after downsampling 

the data from 1kHz to 40Hz thus obtaining a training group (4% of the data) and a test set (TS, 96% of 

the data). The training group was in turn divided into a training set (TR, 2.4% of the data for offline 

tuning of the internal parameters), validation set (VS, 0.8% of the data for tuning the hyperparameters 

to prevent overfitting), and a threshold optimization set (TH, 0.8% of the data for tuning the likelihood 

threshold for the abstention criterion).  

Through a custom Matlab API, the parameters of the selected model were offline tuned on TR. 

Afterwards, a validation phase on the VS for tuning the internal parameters to prevent overfitting was 

performed. Then, the likelihood threshold was optimized using the TH set to improve the accuracy of 

the model. Lastly, the performance of the model was assessed on the TS. Each classifier was optimized 

according to its model parameters with a computational time ranging from few seconds to few minutes, 

depending on the algorithm.  

Abstention criteria 

In NLR, RLS and LDA regression algorithms, the maximization of the voluntary gestures recognition 

was implemented through the introduction of a “truth index”, based on Likelihood threshold [405]. The 

threshold, ranging between 0.7 and 1, was optimized for each subject and each algorithm in terms of 

F1Score [404]. During offline optimization, in the cases of movements under threshold or simultaneous 

above-threshold movements, the classifier abstained without classifying. During online classification, 

above-threshold movements belonging to the same DoF were considered as “abstentions”, while above-

threshold movements belonging to different DoFs produced simultaneous movements. 

Voting criteria 

The voting criteria was introduced to make the classification more robust to misclassifications due to 

the high sampling rate of the signal. In particular, the output class (calculated each 3.3ms) was 

considered valid if it was predicted more than 70% of the time within the decoding window (160ms). 

This criterion is a sort of a low pass filter that allows to mitigate the artefacts due to rapid variation of 

EMG signals during muscle contraction. 

3.2.2.5.7. Optimization and testing of the best configuration of hyperparameters 

We first optimized the number of EMG electrodes (E) for each classifier by computing the F1Score 

for every single configuration of EMG sensors. For each number of E, the best configuration was chosen 

by exploiting the Non-negative Matrix Factorization (NMF) on the training dataset [419]. The NMF 

allowed to select the most significant sensors to better discriminate the classes to be detected. This 

method associated each sensor to a certain weight representing the information carried out by such 

electrode. The greater the weight the higher the information. Therefore, we selected the desired number 

of E starting from those having higher weights. 
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Subsequently, for every implemented algorithm we focused on the optimization of the 

hyperparameters. Concerning the NLR classifier, we optimized the polynomial degree (D), which plays 

an important role since it represents the complexity of the algorithm, as described in [13]. The higher 

the complexity, the greater the computational burden required to the processing board. Regarding the 

ANN, we investigated the importance of the number of L by fixing the number of N to the highest value 

(30) and then we optimized the number of N, considering the previously obtained optimal number of L. 

Those analyses were performed using the Embedding Optimization Factor (EOF) as parameter to 

analyze the role of computational burden on saturation of performances. The EOF explains the trade-

off between performance accuracy and complexity of the algorithm, which is strongly related to the 

computational burden on the EMG processing board [77]. This index is strongly related to the available 

memory on the EMG-Master. Therefore, it may happen that in some cases (e.g., full configuration of 

EMG sensors), the model has too many parameters for the available flash memory, resulting in EOF 

obtaining negative scores (see [77] for EOF calculation). 

3.2.2.6. Experimental Protocol 

First, the amplitude gain for each EMG sensor (Figure 37.2 a or b) was determined to let the signal 

cover the whole range of values during contractions. To this aim, the subject (Figure 37.1) was asked to 

 

Figure 37 Experimental protocol. 

1) the user wears the 6 EMG sensors with wristband; 2) the EMG-master acquires data from EMGs (either collected with 

commercial – 2a, or custom – 2b, electrodes) and send them to 3) the Host PC via Bluetooth and it controls 4) the Hannes 

hand sending the references via CAN, after model calibration. 3) The Host PC creates the dataset, calibrates the models 

and controls the virtual Hannes hand. 5) Available movements on Hannes and the relative EMG pattern activation to 

discriminate among them. 
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contract at the maximum power the muscle and the gain was manually set to amplify the visualized 

signal. 

After the calibration, the subject was asked to repeat the 4 movements (hand open/close, wrist 

pronation/supination) and the rest for 10 times to create the training dataset for the algorithms (Figure 

37.5). After the calibration, the model of the best algorithm was uploaded to the EMGM for the online 

control of both the VR (Figure 37.3) and the Hannes hand (Figure 37.4) to verify the effectiveness of 

the control. 

Then the subject was asked to perform again the calibration with the second set of EMG sensors 

(Figure 37.2 b or a), and control in real-time the prosthesis and the VR. 

After each calibration, the subject was free to move the prosthesis using the resulting best performing 

algorithm embedded on the microcontroller to see the ability of that approach to decode and control in 

real-time the prosthesis (Figure 37.3 and Figure 37.4). 

3.2.2.7. Data Analysis 

The primary outcome measure analyzed was the minimum number of EMG sensors (E) that produced 

a saturation of performances in term of F1score. Those results were computed for each algorithm by 

setting the hyperparameters to maximum complexity (i.e., D=7, L = 10, N = 30). When the number of 

E was decreased, the choice of active EMG was done using the Non-Negative-Matrix-Factorization 

(NMF) to detect the most significant sensors. The second outcome was the minimum level of complexity 

that produced a saturation of performances in term of EOF. This parameter considered both the accuracy 

of the classifier and its computational burden. For this analysis the number of E was set to the result 

obtained in the previous analysis, while for ANN the L parameters was optimized putting the N to 

maximum complexity and then the N was optimized putting L to the level of complexity found at the 

previous optimization phase. 

After this analysis, the performances of the algorithms were compared to each other to find the best 

solution that produced the best results with the lower computational cost. In this case the algorithms 

were compared with all the internal and external parameters optimized. 

Finally, a comparison between electrodes (Commercial vs Custom was performed to find possible 

differences in their working performance. 

For each type of comparison, a Wilcoxon sign-rank test was performed to verify the statistical 

differences. The multiple comparison test was Bonferroni corrected. Matlab 2020b were used for the 

statistical analysis. The F1score, the EOF, the classification, and the Abstention were computed for each 

subject and condition and compared across conditions. The threshold for statistical significance was set 

at p<0.05. Outliers were excluded from the statistical comparisons. The results in the text are reported 

as median (interquartile range). 
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3.2.3. Results 

The following results present the offline analysis performed both using commercial Ottobock EMG 

sensors and custom made IIT EMG sensors. 

 

Figure 38 Electrodes’ number optimization based on F1Score. 

We reported data acquired using the Ottobock sensors in the upper panel, and data acquired using the IIT sensors in the 

lower panel. The 5 PR algorithms were optimized varying the number of E using NMF to select the optimal set, by keeping 

fixed the hyperparameters of each algorithm to the maximum complexity. In the boxplots, the small icons are the means 

for each algorithm. The lower and upper quartiles are shown as the bottom and top edges of the box, respectively. The line 

inside the boxes indicates the median, whiskers represent min/max values and crosses are outliers. The horizontal lines 

denote not-statistically significant differences for the comparisons across the values of number of electrodes for each 

algorithm (NS, p > 0.05 with Bonferroni correction). 
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3.2.3.1. Effect of EMG electrodes number on performance 

Figure 38 reports the analysis performed for each algorithm varying E, the number of EMG sensors. 

The results show that using Commercial EMG, only NLR and RLS had a saturation of performances 

with 4 electrodes (p > 0.0674 and p > 0.1016 respectively) while the other algorithms need the full E to 

reach the maximum performances in term of F1Score, as shown in Figure 38 upper graph. By using 

custom EMG, NLR and RLS had again a saturation of F1Score with 4 electrodes (p > 0.2061 and p > 

0.3203 respectively), while ANN, SVM, and LDA had a saturation of F1Score with 5 electrodes (p > 

0.3203, p > 0.1016, and p > 0.1934 respectively), as shown in Figure 38 lower graph. For each algorithm 

and each type of sensors the number of electrodes is summarized in Table 16. 

3.2.3.2. Effect of D parameter on NLR performance 

For NLR algorithm, the role of D parameter was analyzed fixing E on the basis of previous analysis, 

see Table 16. Figure 39 shows that using both commercial and custom sensors, the performance in term 

of EOF saturated with a D = 2 (p > 0.0537 for commercial sensors, and p > 0.7002 for custom sensors). 

 

Figure 39 NLR degree (D) optimization based on 
EOF. 
The upper panel reports the data acquired using the 
commercial sensors, the lower panel that acquired 
using the custom sensors. The NLR algorithm was 
optimized varying the polynomial D complexity, by 
using the previously optimized E (E=4 for both 
commercial and custom sensors). In the boxplots, the 
small triangles are the means for each D. The lower 
and upper quartiles are shown as the bottom and top 
edges of the box, respectively. The line inside the 
boxes indicates the median, whiskers represent 
min/max values and crosses are outliers. The 
horizontal lines denote not-statistically significant 
differences for the comparisons across the values of 
D for NLR algorithm (NS, p > 0.05 with Bonferroni 
correction). 

 

Table 16 Number of optimized sensors for each algorithm using both Commercial and Custom. 

Algorithm 
EMG [#] 

Commercial Custom 

NLR(D=7) 4 4 

RLS 4 4 

ANN(L=10, N=30) 6 5 

SVM 6 5 

LDA 6 5 
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3.2.3.3. Effect of network architecture on ANN performance 

For ANN, two hyperparameters were tested: number of L and number of N. In the first case, E was 

fixed to the obtained results in section 3.2.3.1 and the number of N to the maximum complexity of 30. 

In this case, using the commercial and custom electrodes, we found a saturation of EOF with L = 5 (p > 

0.1474 for commercial sensors, and p > 0.2061 for custom sensors) as shown in Figure 40 top panels.  

The optimization of N was done fixing E according to the results of section 3.2.3.1 and then fixing L, 

as described above. Figure 40 bottom panels show that also in this case the saturation of performance in 

term of EOF was with N = 10 both for commercial and custom sensors (p > 0.083 for commercial 

sensors, and p > 0.3203 for custom sensors). 

3.2.3.4. Comparison of algorithms performances 

The comparison among the algorithms was done with all the parameters optimized as detailed in 

sections 3.2.3.1, 3.2.3.2, 3.2.3.3. Figure 41 shows the comparison between the different algorithms for 

all type of performances, upper panels for commercial sensors and lower panels for custom sensors. 

 

Figure 40 ANN hyperparameters optimization, layers (L) and neurons (N), based on EOF. 

In upper panels is present the data acquired using the Ottobock sensors, in the lower panels is present the data acquired 

using the IIT sensors. The ANN algorithm was optimized, firstly, varying the L complexity, by keeping fixed the N to the 

maximum value (30). Secondly, the N was optimized by keeping fixed the L previously minimized (5 for both Ottobock 

and IIT sensors). The number of E in both the optimization phases was keeping fixed to the previously optimized value 

(E=6 for Ottobock and E=5 for IIT sensors). In the boxplots, the small squares are the means for each L and N. The lower 

and upper quartiles are shown as the bottom and top edges of the box, respectively. The line inside the boxes indicates the 

median, whiskers represent min/max values and crosses are outliers. The horizontal lines denote not-statistically 

significant differences for the comparisons across the values of hyperparameters (L and N) for ANN algorithm (NS, p > 

0.05 with Bonferroni correction). 
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As regard commercial sensors, we found a non-statistical difference between NLR and LDA in term 

of F1Score (p = 0.6377), EOF (p = 1), and Classification (p = 0.0674); while for custom sensors, the 

F1Score presented a non-statistical difference between NLR and LDA (p = 0.0068); while the abstention 

criterion had no statistical difference between RLS and LDA (p = 0.0186). All the other parameters 

presented statistical differences between algorithms. 

3.2.3.5. Comparison of custom vs commercial electrodes 

The comparisons between commercial electrodes and custom electrodes demonstrated that there was 

no-statistical difference for all algorithms except for RLS, Table 17. The performances were consistent 

and similar using both type of sensors. 

3.2.4. Discussion 

In this study, an in-depth analysis on four of the most adopted classifiers for EMG signals has been 

carried out, using LDA with time domain features extraction as ground truth for the final validation of 

the performed analysis. Furthermore, a comparison between commercial and custom electrodes was 

conducted to determine if it was possible to reduce the dimension of EMG sensors and consequently the 

interelectrode distance, without affecting the performances. 

The different number of classification parameters extremely affected the computational burdening of 

the system. Therefore, we evaluated both parameters and performances to develop a fully custom 

embedded classifier. We conducted an intensive analysis on data acquired from 11 people with trans-

radial amputation. This study provides a reflection upon the trade-off between performance and 

computational burdening of these classifiers, with particular attention on the final integration of the 

entire system. 

Table 17 Summarization results calculated on amputees. In table are reported the mean and standard deviation over 

subjects for each parameter of performances with all the hyperparameters of PR algorithms optimized. 

 

Algorithm 
F1Score 

[%] 

Classification 

[%] 

EOF 

[%] 

Abstention 

[%] 

 
Algorithm 

F1Score 

[%] 

Classification 

[%] 

EOF 

[%] 

Abstention 

[%] 

NLR(E=4, 

D=2) 

95.98 ± 

8.0 
99.3 ± 1.7 

97.7 

± 4.5 
65.8 ± 16.8 

 NLR(E=4, 

D=2) 

98.5 ± 

2.5 
99.8 ± 0.3 

99.2 

± 1.3 
68.2 ± 15.5 

RLS 
51.8 ± 

22.7 
55.2 ± 22.4 

61.9 

± 

20.6 

48.2 ± 10.2 

 

RLS 
46.9 ± 

19.1 
49.7 ± 18.5 

58.7 

± 

17.1 

43.3 ± 7.1 

ANN(E=6, 

L=5, N=10) 

73.7 ± 

4.9 
73.0 ± 4.8 

84.6 

± 3.3 
- 

 ANN(E=5, 

L=5, N=10) 

73.4 ± 

5.2 
73.2 ± 5.3 

84.4 

± 3.5 
- 

SVM 
76.1 ± 

5.7 
75.1 ± 5.8 

81.5 

± 4.1 
- 

 
SVM 

75.9 ± 

3.9 
75.7 ± 4.1 

81.5 

± 2.9 
- 

LDA 
98.1 ± 

2.1 
98.2 ± 1.9 

99.0 

± 1.1 
38.8 ± 7.7 

 
LDA 

96.7 ± 

3.6 
96.8 ± 3.5 

98.2 

± 1.9 
38.1 ± 7.0 
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The performances were first evaluated by varying the number of sensors and then analyzed with the 

Wilcoxon Signed-Rank test on the TS. The results showed that for NLR and RLS no significant 

improvement of performance can be obtained with more than 4 EMG sensors, either commercial or 

 

Figure 41 Algorithm comparisons with all hyperparameters (E, D, L, N) optimized. 

In upper panels is present the data acquired using the Ottobock sensors, in the lower panels is present the data acquired 

using the IIT sensors. In the boxplots, the small icons are the means for each PR algorithm. The lower and upper quartiles 

are shown as the bottom and top edges of the box, respectively. The line inside the boxes indicates the median, whiskers 

represent min/max values and crosses are outliers. The horizontal lines denote not-statistically significant differences for 

the comparisons across the PR algorithms (NS, p > 0.05 with Bonferroni correction). 
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custom. While for the other algorithms there was no significant improvement in performance with more 

than 5 sensors only for the custom sensors, Figure 38. This result sets a benchmark on the necessary 

amount of space for sensors depending on the type of algorithm used. The commercial sensors, with 6 

EMG electrodes fitting within the socket occupy 27 cm2, while our optimization in term of number of 

electrodes can reduce to 4 sensors (18 cm2). This permits to save about 9 cm2. Oppositely, when the 

custom sensors are used in their full configuration, the amount of space occupied by 6 sensors is 15.3 

cm2. This means around 11.7 cm2 less compared to the one occupied by the commercial ones. Moreover, 

by optimizing the number of custom sensors up to 4 EMGs (10.2 cm2) it is possible to save ~16.8 cm2 

respect to commercial ones, and 5.1 cm2 with respect to the custom full configuration. Overall, in the 

ideal case, custom sensors can reduce up to 27-10.2 = 16.8 cm2 of the overall encumbrance which is 

fundamental in case of very proximal amputations. Furthermore, it is worth underling that decreasing 

the number of inputs for the algorithms also reduces the time to compute the trained model and, 

therefore, the output during an online classification. 

Following optimization of E, we tuned the parameters of those algorithms needing optimization. The 

performance of NLR and ANN algorithms were then evaluated and analyzed by varying the complexity 

in term of both maximum polynomial features D and maximum number of L and N. The results showed 

that for NLR no significant improvement of performance could be obtained for a D greater than 2 for 

both commercial and custom sensors (Figure 39), and for ANN no significant improvements could be 

achieved by increasing the complexity of the network up to 5 L and 10 neurons for both commercial 

and custom sensors (Figure 40). 

These results set a boundary on the complexity of the classifier, allowing to reduce the training and 

cross-validating times and the output generation during an online classification of amputees’ gestures. 

It is also relevant to observe that NLR, in the linear case analysis (D = 1), obtained the lowest F1Score 

value with respect to the other higher grade of polynomial features, suggesting the use of a non-linear 

classifier when as inputs were used directly the EMG data of commercial or custom sensors. 

Finally, the comparison between the two types of sensors demonstrated no statistical difference in 

performances. This means that if there is a need to decrease the number of motors in the array and reduce 

the amount of occupied space, the custom sensors could be used maintaining the same level of 

performances. 

The next step in this research will be to expand the proposed approach using the best algorithm and 

the best configuration of parameters to online test the performance of that control. As explained above, 

the limit space of the socket reduces the possibility to use a large number of EMG electrodes, for this 

reason when a NLR is applied the number of EMGs can be safely reduce to 4 without any significant 

impact on performances. 

The present experiment was performed by collecting EMG data from 11 trans-radial amputees 

performing 4 different movements, then an offline analysis was executed to determine the best parameter 

and configuration of algorithms to determine the best solution for online application. However, in the 
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envisioned practical application, the analysis was performed offline, and this can affect the final online 

control, but the controllability of the Hannes system performed by subjects confirmed the results we 

achieved. Therefore, the next step in this research will be to test the NLR that results as the best algorithm 

in an online scenario produce a target achievement control test (TAC) to obtain a complete evaluation 

on the usability of this solution. The aim of the present study was not a direct clinical translation but a 

systematic investigation of the effect of algorithm parameter on performances. Further, the results 

obtained confirmed our hypothesis that the number of sensors in specific configuration can be reduced 

without any significant impact on performances. In the case of a reduce amount of space available, that 

could give a guideline for the future clinical application on upper limb prosthetic use. 

3.2.5. Conclusion 

The present study aims at comparing different algorithms for pattern recognition, by optimizing the 

external and internal parameters and analyzing the role of the EMG sensor type of performances. The 

quality of the produced accuracy, namely, the F1Score and EOF, depends on the number of EMG 

sensors, the algorithm chosen, and the level of complexity used. Overall, the present study provides a 

clear scenario to better choose the algorithm and its parameter to decode muscle activity for prosthetic 

application. Nevertheless, there was a clear outperform towards the choice of the algorithm and the 

number of sensors. A higher number of sensors was more robust with respect to a lower number when 

using specific algorithms, indeed in other cases the number of sensors could be safely reduced, up to 4. 

This is an important outcome for the application of pattern recognition algorithms, as it points out that 

the encumbrance of the system for a general purpose multi-DoF prosthetic use, can be reduced in a more 

compact solution without any loss in performance. 
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3.3. Improved Pattern Recognition Control of Hannes 2 DoF: Hand 

Aperture and Wrist Flexion Extension 

3.3.1. Introduction 

Poly-articulated myoelectric hand prostheses are characterized by a high number of degrees of 

freedom (DoF). A crucial feature for their functionality and usability is their controllability. Indeed, low 

usage intuitiveness, often due to the poor ergonomics of the control system [420], lies among the main 

causes for prosthesis abandonment.  

To promote a natural usage of a multi-DoF prosthetic hand in daily life scenario, here we propose an 

ergonomic decoder that is characterized by high accuracy, it does not rely on additional sources of input 

and it does not require the rearrangement of the natural contraction schemes. We also aimed at reducing 

the number of EMG sensors. We tested and optimized Linear Discriminant Analysis (LDA), gold 

standard in EMG pattern recognition application, and Non-Linear Logistic Regression (NLR) to decode 

hand and wrist movements, from up to 6 EMG electrodes, and to online control the Hannes system [11]. 

The performances improvement was observed not only on healthy subject data, but also on upper limb 

amputees when Hannes movements (rest, hand opening/closing – HOC) and wrist (flexion/extension - 

WFE) [13] were controlled. 

3.3.2. Material and Methods 

3.3.2.1. Subjects and Experimental Protocol 

We recruited 10 able-bodied, right-handed subjects (6 males, age 36 ± 9 years) and 4 trans-radial 

amputated subjects. Six commercial EMG electrodes (13E200 AC, Ottobock) were embedded into a 

custom-made elastic brace placed around forearm or stump to collect electrical activity from 6 relevant 

muscle groups involved in grasping and wrist’s flexion/extension movements (Figure 42 B). 

We asked subjects to sequentially perform HOC and WFE 10 times (Figure 42 A). We also collected 

16 repetitions of hand at rest (duration 2s, sampling frequency 1kHz). 

3.3.2.2. Training and testing of the classifiers model 

The analysed classifiers first underwent a calibration procedure to estimate the best set of internal 

parameters for further on-line use, as detailed in [13]. For the LDA algorithm, we split the dataset into 

a training set (70% of the data) and test set (30% of the data). For the NLR algorithm, we first down-

sampled the data from 1kHz to 40Hz, obtaining a training group (4% of the data) and a test set (96% of 

the data). The training group was in turn divided into a training set (2.4% of the data for off-line tuning 

of the internal parameters), validation set (0.8% of the data for tuning the hyperparameters to prevent 

overfitting), and  threshold optimization set (0.8% of the data for tuning the likelihood threshold for the 
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abstention criteria [421]). During validation, we tested the F1Score, calculated on the test set, with 

respect to the number of EMG electrodes. This analysis was used to estimate the minimum number of 

electrodes. Then, we compared algorithms performance, evaluated in terms of F1Score and abstention 

(% of non-assigned movements). The best configuration of classifiers was then used for testing the 

algorithms on amputees’ dataset. 

Finally, we used the resulting best algorithm, already calibrated, for on-line decoding of hand 

motions and control the Hannes system with sampling frequency set to 300Hz. Statistical analysis was 

performed with the Wilcoxon-Signed-Rank test using a Bonferroni correction [406]. 

 

Figure 42 Surface EMG activities related to the single joint movement. 

A: EMG signals and Hannes system speed during different hand and wrist movements. B: available DoFs of the Hannes 

system. 

 

Figure 43 Experimental Setup. 

A: EMG electrodes, B: power supply, C: EMG processing board, D: Hannes system, E: E-DATS software, F: Hannes 

system in a non-immersive virtual-reality on Unity. 

F

B
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3.3.2.3. Hannes System 

The Hannes prosthetic system consists of: (i) a set of six EMG electrodes, (ii) a custom EMG 

processing unit, (iii) a myoelectric poly-articulated prosthetic hand, (iv) an active WFE, and (v) a battery 

pack (Figure 43). The EMG processing unit (“EMG-Master”) acquires the analog sensor output and 

synthesizes the control signals for each active joint. The movements of the hand and wrist are 

proportional to the RMS of the six EMG signals, normalized in the range 0 to 100%.  

3.3.3. Results 

3.3.3.1. Effect of EMG electrodes number on performance 

We first established the minimum number of EMG electrodes needed to maximize performance of 

algorithms, expressed as the non-statistical difference between the distributions of F1Score obtained 

from the test set (Figure 44).  

For the NLR, we found that a configuration of five electrodes was enough to reach the same 

performance as with six electrodes. For LDA algorithms, the full configuration with 6 EMG sensors 

saturated its performance. 

3.3.3.2. Comparison of algorithms performances 

Figure 45 summarizes the performance scores in terms of F1Score and abstention obtained by the 

algorithms in their optimized configurations (i.e., with the optimized number of electrodes and 

hyperparameters). 

With respect to F1Score (Figure 45 A) NLR always obtained the highest value. Although NLR has 

no statistical difference with LDA (gold standard). However, NLR also obtained highest percentage of 

abstention (Figure 45 B). 

 

Figure 44 F1Score obtained by the classifiers using 

different number of electrodes. 

For NLR the value of D is fixed to 7. NS: not significant 

 

Figure 45 Algorithm comparison. 

A: F1Score. B: Fraction of abstention. NS: not 

significant 
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3.3.3.3. Algorithms evaluation on the amputees’ dataset 

We tested the classifiers on four trans-radial amputees, using an optimized configuration, as obtained 

from the analysis of the healthy dataset. Table 18 shows the values of F1Score, classification, and 

abstention obtained from patients. Scores of the amputees matched those obtained by healthy subjects: 

NLR obtained the highest F1Scores, classification, and abstention score. 

3.3.4. Discussion and Conclusion 

We tested two pattern recognition algorithms to decode hand movements and we identified NRL is 

the one producing the best performances. Indeed, our results demonstrate that NLR is the only algorithm 

which reached the highest classification performance with five EMG electrodes. This is crucial for 

amputees whose residual arm is proximal, the smaller the number of electrodes, the smaller the 

possibility of undermining the socket robustness as well as the stability and costs of the entire prosthetic 

system. 

When comparing classifiers in their optimized form, we found that, also in this case, the NLR 

outperform LDA in term of F1Score. NLR also obtained a greater number of abstentions. However, this 

apparent weakness is counterbalanced by the high classification frequency set. 

We confirmed these results with upper limb trans-radial amputees, who were able to successfully 

control the Hannes system by activating the residual muscles of the stump in a natural way. Clearly, we 

need to extend the study to a wider population of amputees and we also need to confirm these promising 

results with clinical trials. However, as verbally described by the amputees, NLR algorithm allows them 

to reliably translate real-time movement intentions into actions. 
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3.4. Hannes 3DoFs Prosthesis Control Based on Regression 

Machine Learning Algorithms 

3.4.1. Introduction 
 

Myoelectric prosthetic devices represent a real opportunity for enabling upper limb amputees to 

perform various activities of daily living (ADLs). These prostheses typically exploit flexor and extensor 

muscles of the wrist through surface electromyographic (EMG) electrodes [82]. Additionally, the level 

of recorded muscular contraction modulates the speed of the prosthesis, implementing a proportional 

control [401]. Due to the high complexity of the muscular system, the relationship between EMG signals 

and upper limb movements is remarkably nonlinear and generally only dual-site control has been 

employed [422]. Moreover, the prosthesis control is narrowed to the single articulation preventing the 

simultaneous movement of multiple joints. Indeed, when two or more DoFs are considered, only one 

joint is controlled at a time, and co-contraction strategies are used to switch between DoFs [423]. Other 

groups have attempted the direct control of multi-DoF prostheses by implementing a multi amplitude 

strategy using dual-site electrodes, by thresholding the muscle contraction intensity [131]. However, 

this strategy is not intuitive, with movements appearing to be clumsy and unnatural, therefore preventing 

users from feeling the prosthesis as part of their body [402]. In order to overcome these limits, pattern 

recognition algorithms were adopted by many groups to decode the intended movement, with the final 

goal of increasing the controllability of multi-DoF prosthetic devices [80, 165, 403]. However, current 

pattern recognition approaches demonstrated poor performance with DoFs higher than 2 [187]. Another 

limitation of these studies is that the outcomes achieved during laboratory experiments are poorly 

assessed in real ADL applications [401]. 

Therefore, there is an urgent need of a reliable and stable classifier able to deal with unknown 

situations typical of ADLs [405, 424-426]. We addressed this challenge by implementing a pattern 

recognition control specifically optimized for the Hannes system, a novel poly-articulated hand 

prosthesis [11], to generate a robust, intuitive and human-like simultaneous DoFs control. Concerning 

the previous work where only hand opening and closing were actively controlled [11], we here include 

the classification of other two DoFs of the wrist. We optimized and tested several pattern recognition 

algorithms that process information coming solely from the EMG electrodes embedded in the prosthetic 

device. We then implemented the resulting best performing algorithm for simultaneous online control 

of the Hannes system joints. Our group already tested pattern recognition algorithms for translating 

muscular activity into virtual hand movements in 2 DoFs only (rest, hand opening-closing (HOC), wrist 

pronation-supination (WPS)) [13]. We here extend this work by including the detection of wrist flexion-

extension (WFE) for the real-time control of the Hannes prosthesis [13]. We assessed the performance 

of the detection algorithms for the control of the Hannes prosthetic hand both with 10 healthy subjects 

and with 3 trans-radial amputees. The examined classifiers were: Non-Linear Logistic Regression 
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(NLR) [77], Regularized Least-Square (RLS) [410], Artificial Neural Network (ANN) [411], Support 

Vector Machine (SVM) [412], and Linear Discriminant Analysis (LDA) [77]. For NLR, RLS and LDA 

methods, we combined pattern recognition with an “abstention” criterion. This consists in evaluating 

the likelihood of the decoded joint movement and enabling an “abstention” criterion (i.e. confidence-

based rejection) [421]. The hyperparameters calibration and the integration of abstention inside each 

algorithm greatly improved the classifier accuracy. The increased number of DoFs to be simultaneously 

classified could lead to lower algorithms accuracy with respect to simpler settings [11, 13], nevertheless 

we here show that performances were still suitable for prosthetic control. We also found that both for 

amputees and able-bodied subjects, the NLR outperformed the other classifiers.  

3.4.2. Materials and Methods 

3.4.2.1. Subjects 

We involved ten healthy subjects aged between 22 and 33 years (27.1 ± 3.2) and three mono-lateral 

amputees (trans-radial amputation of the dominant limb, already users of active prostheses). Written 

informed consent was obtained from all subjects. The study adhered to the standard of the Declaration 

of Helsinki and was approved by the Bologna-Imola ethical committees (CP-PPRAS1/1-01). 

3.4.2.2. Experimental Protocol 

Six Ottobock EMG electrodes (13E200=50 AC) were attached to an elastic band (Figure 47 A) 

wrapped around the forearm or stump approximately 5cm distal to the olecranon. These electrodes 

measured muscular electrical activities during grasping, WPS and WFE movements (Figure 46 A). 

Muscles involved were identified by manual inspection and they were: Extensor Carpi Radialis Longus 

(EMG0), Extensor Digitorum (EMG2), Extensor Carpi Ulnaris (EMG4), Palmaris Longus and Flexor 

 

Figure 46 sEMG activities related to each gesture. 

A: EMG signals and Hannes system speed during different gestures. B: available degrees of freedom of the Hannes system. 

C: Amputee performing Real-Time control of Hannes and VR. 
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Carpi Ulnaris (EMG1), Flexor Carpi Radialis (EMG3) and the Brachioradialis Muscle (EMG5). 

After electrodes positioning, users were placed in front of a display showing the virtual Hannes 

system (Figure 47 E). We required subjects to sequentially execute HOC, WPS and WFE 10 times. 

Then, we also recorded 16 repetitions of resting position (2s time-window and 1kHz sampling 

frequency) and combined their samples into a random distribution, obtaining a total of 24 repetitions (4 

repetitions x 6 gestures). This resting data was then randomly arranged for each gesture to create an 

indecision region. 

3.4.2.3. Processing of EMG signals 

EMG signals followed the same processing already described in [13]. Briefly, a custom EMG-master 

board implements the A/D conversion of the input data, which are subsequently sent to the PC via 

Bluetooth. We then used a customized version of the EMG - Data Acquisition & Training Software (E-

DATS [13, 77], Figure 47 E) to both collect data and offline train the algorithms. The model generation 

was realized through a MATLAB script (MathWorks). 

Following classifier training, real-time recognition of the available gestures was performed. 

Afterward, the Hannes system, equipped with the resulting best classifier, was controlled in real-time 

by each subject. 

3.4.2.4. Train and test the algorithms 

Algorithms (see paragraph 3.4.2.6) were first calibrated, in order to obtain internal parameters able 

to satisfy high performances with the lowest computational effort during the online control, as detailed 

in [13]. For the LDA algorithm, we split the dataset into a training set (70% of the data) and a test set 

(30% of the data). The other algorithms were used after down-sampling the data from 1kHz to 40Hz, 

obtaining a training group (4% of the data) and a test set (96% of the data). The training group was in 

turn divided into a training set (2.4% of the data for offline tuning of the internal parameters), validation 

set (0.8% of the data for tuning the hyperparameters to prevent overfitting), and threshold optimization 

set (0.8% of the data for tuning the likelihood threshold for the abstention criterion). Afterward, we used 

the resulting best algorithm, already calibrated, for online decoding of hand motion using a real-time PC 

 

Figure 47 Experimental Setup. 

A: EMG electrodes, B: power supply, C: EMG processing 

board, D: Hannes system, E: E-DATS software, F: Hannes 

system in a non-immersive virtual-reality on Unity. 

 

Figure 48 Diagram of the model generation and Hannes 

control. 
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simulation based on pattern recognition (Model evaluation in Figure 48). The optimized model was then 

uploaded (Model upload in Figure 48) to the EMG processing board (TiVa Cortex-M4) for final online 

classification (Hannes in Figure 48), used to freely control the Hannes with sampling frequency set to 

300Hz. 

3.4.2.5. Hannes hand 

The Hannes prosthetic system consists of: (i) a set of six EMG electrodes, (ii) a custom EMG 

processing unit, (iii) a myoelectric poly-articulated prosthetic hand (Figure 47 D), (iv) an active WFE, 

(v) an active WPS, and (vi) a battery pack (Figure 47 B). The EMG processing unit (“EMG-Master” 

Figure 47 C) acquires the analog sensor output and synthesizes the control signals for each active joint. 

The extent of the activation is proportional to the RMS of the six EMG signals, normalized in the range 

0 to 100%. An exception is the WPS, which is always controlled at the maximum velocity. The 

references are then sent to the respective motor control boards within the prosthetic system. Each motor 

driver has an on-board control loop to ensure the correct joint movement: closed-loop speed control for 

the hand and WFE, and open-loop for the WPS. A detailed description of the mechanical design of the 

prosthetic hand is provided in [11]. To the architecture described in [11], the current system adds the 

two active DoFs for the wrist. The WFE consists of a custom drivetrain based on a worm gear, ideal to 

withstand the high external loads. The overall range of motion achieved is ±65°. Similarly, the WPS 

consists of a standard motor-gearbox actuation, and it can provide 360° rotation. The “de-facto” standard 

quick disconnect system by Ottobock was replicated, as described in [11]. 

3.4.2.6. Algorithms and hyperparameters optimization 

Following previous work on prosthetic control [405], we compared supervised machine learning 

algorithms: NLR [77], RLS [410], ANN [411], SVM [412], and LDA [77]. We first estimated the 

minimum number of EMG electrodes for each classifier by computing, for each configuration of EMG 

sensors, the F1Score performance. For the NLR classifier, we optimized the polynomial degree (D), 

which plays an important role since it represents the complexity of the algorithm, as described in [13]. 

The higher the complexity, the greater the computational burden required to the processing board. 

Regarding the ANN, we investigated the importance of the number of hidden layers by fixing the 

number of neurons to the highest value (30) and then we optimized the number of neurons, considering 

the previously obtained optimal number of hidden layers. Furthermore, in RLS, LDA and NLR, the 

maximization of the voluntary gestures recognition was implemented through the addition of a 

Likelihood threshold [405]. The threshold, ranging between 0.7 and 1, was optimized for each subject 

and each algorithm in terms of F1Score [404]. During offline optimization, in the cases of movements 

under threshold or simultaneous supra-threshold movements, the classifier abstained without 

classifying. During online classification, supra-threshold movements belonging to the same DoF were 

considered as “abstentions”, while supra-threshold movements belonging to different DoFs produced 
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simultaneous movements. We used the test set (paragraph 3.3.2.2) to assess the performance of each 

algorithm in terms of F1Score and Embedding Optimization Factor (EOF), considering different 

configurations of hyperparameters. The EOF explains the trade-off between performance accuracy and 

complexity of the algorithm, which is strongly related to the computational burden on the EMG 

processing board [77]. This index is associated to the available memory on the EMG-Master. Therefore, 

it may happen that in some cases (e.g. full configuration of EMG sensors), the model has too many 

parameters for the available flash memory, resulting in EOF obtaining negative scores (see [77] for EOF 

calculation). We compared the performance of each algorithm in terms of F1Score, EOF, classification 

(percentage of correctly decoded movements, i.e. accuracy), and abstention (percentage of not assigned 

movements). Afterward, the optimized hyperparameters were exploited to build optimal classifiers on 

the amputees dataset. We used Wilcoxon-Signed-Rank test and Bonferroni correction [406] for 

statistical analysis.  

3.4.3. Results 

3.4.3.1. Variation of EMG electrodes number  

The minimum number of EMG electrodes was first determined to optimize the performance of each 

algorithm, highlighted by the absence of statistical difference in the F1Score (NS in Figure 49). Then, 

starting from the setup with 6 EMG electrodes, we successively decreased the number of sensors by 

ignoring EMG signals coming from muscles with lower activity, according to the following order: 

EMG5, EMG2, EMG3, EMG4. Regarding the LDA and the NLR classifier, the best configuration was 

obtained either with five or six electrodes. For SVM and ANN, only four electrodes were required to 

maximize the performance, while for RLS the full configuration with 6 EMG sensors saturated the 

 

Figure 49 Performance of F1Score when varying the number of electrodes for each classifier. 

In the NLR the D-value is fixed to 7, while for ANN the number of hidden layers is 10 and the number of neurons is 30. 

NS: not significant. 
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performance. However, F1score was highest for NRL and LDA with any configuration of electrodes, 

while in other cases, it was always lower than 65%. 

3.4.3.2. NLR: variation of polynomial degree D 

Regarding the NLR classifier, we swept the polynomial degree (D-value) in the range 1-7 to assess 

the performance in terms of EOF. As represented in Figure 50, we obtained the optimal behavior for D 

= 2. 

3.4.3.3. ANN: variation of network architecture 

Concerning the ANN classifier, we evaluated how the number of hidden layers affects performance 

using a configuration of 4 EMG electrodes. We tested the EOF performance when varying the number 

of hidden layers (L) from 1 to 10 (according to [77]) and keeping fixed to 30 the number of neurons. 

We found optimal EOF values with L=5 or greater (Figure 51 A). Subsequently, we considered as the 

optimal choice L = 5 and we varied the maximum number of neurons (N) between: [1, 5, 10, 15, 20, 23, 

24, 25, 26, 27, 28, 29, 30]. We compared the performance of the different configurations to establish the 

best hyperparameters setup. We set N=1 since we found that performances do not degrade when 

considering more neurons (Figure 51 B). 

3.4.3.4. Analysis of algorithms performance 

Figure 52 highlights the behavior of the classifiers in terms of F1Score, EOF, classification, and 

abstention obtained by the various algorithms in their optimized configurations (i.e. optimal values of 

hyperparameters). With respect to F1Score, EOF and classification (Figure 52 A, B and C), NLR always 

 

Figure 50 NLR optimization with 5 electrodes: EOF 

performance when varying the maximum D-value. 

NS: not significant.NS: not significant 

 

 
Figure 51 ANN optimization with 4 EMG sensors. 

A: EOF performance when the maximum number of hidden 

layers varies and the maximum number of neurons is fixed 

to 30. B: EOF performance when the maximum number of 

neurons varies and the maximum number of hidden layers is 

fixed to 5. NS: not significant. 
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reached the highest value. Although the F1Score has no statistical difference between NLR and LDA 

(gold standard), the former obtained less dispersed results, as indicated by small standard deviation. 

However, the highest abstention was reached by NLR (Figure 52 D). 

3.4.3.5. Tests on amputees 

With trans-radial amputees, we used the optimal configurations of the classifiers obtained from the 

analysis on able-bodied subjects. Moreover, we compared the performance obtained by amputees with 

those of the healthy subjects to assess whether the algorithms perform differently in the two cases. Table 

 

Figure 52 Algorithms comparison. 

A: Performance of F1Score. B: EOF 

index. C: Percentage of correctly 

classified outputs. D: Percentage of 

abstention. NS: not significant. 
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18 highlights the values of F1Score, EOF, classification, and abstention achieved by amputees. Scores 

of the patients matched those obtained by able-bodied subjects: NLR had the highest classification score, 

followed by LDA. F1Scores and EOF were highest for NLR, followed by LDA for patients #1 and #3, 

vice versa for the other subject. NLR obtained greater abstentions. During the experiments, the amputees 

verbally expressed their satisfaction towards the improved controllability of the tested system with 

respect to their usual prosthesis. 

3.4.4. Discussion 

We tested multiple supervised machine learning algorithms to decode prosthesis movements. We 

found NLR and LDA algorithms as top performers, with respect to EOF, with a configuration of 5 EMG 

electrodes. In a previous study including only 1 DoF for the wrist [13], our group found that 3 EMG 

electrodes were enough for NLR to reach top performance. We here show that the successful decoding 

of 3 DoFs movements came at the cost of increasing the number of EMG electrodes needed (from 3 to 

5). NLR maintained the same performance when the degree of polynomial complexity is higher or equal 

than 2. This guarantees that the computational burden is still kept at a minimum, even with a greater 

number of decoded classes, with respect to [13].  Regarding the ANN algorithm, we optimized the 

architecture of the network with respect to our previous study [13]. Indeed, the optimal maximum 

number of hidden layers decreased to 5 (6 in [13]) and that of neurons decreased to 1 (24 in [13]). 

However, the performances dramatically dropped as both classification and F1scores decreased to 

51.3% and 56.1%, respectively (80.3% and 80.2%, respectively, in [13]), presumably as an effect due 

to the increased number of decoded classes that causes less separation of gestures into the parameter 

hyperspace. Differently from [187], where they achieved degraded performance  for the 3-DoFs control, 

we here  discovered that, with the same number of DoFs, the NLR algorithm is the most suitable for a 

prosthesis control based on pattern recognition. Although no statistical difference was found between 

NRL and LDA algorithms, NRL showed smaller standard deviations (see Figure 52 A). NLR and LDA 

were also the best performing algorithms for amputees, who succeeded in the control of the Hannes 

system through the residual muscular activity of the stump. With respect to other classifiers, NLR also 

reached a higher percentage of abstentions. Nonetheless, due to the high classification frequency, set to 

300Hz, 300 movements per second were decoded. Consequently, latency between movement intentions 

and resulting action was not perceived by users even in case of high abstention rate. The abstention 

criterion reduced the number of classification artifacts, leading to more robust and consistent 

classification with respect to the state of the art systems in a similar context [3, 427]. The NLR algorithm 

was therefore implemented on the microcontroller board for online control of Hannes. Subjects could 

then freely explore the human-like behavior of the system, which was able to achieve simultaneous and 

intuitive control of multi-DoFs, a fundamental feature for bioinspired prosthetic use, not yet achieved 

by current state-of-the-art systems [3, 401]. Indeed, as reported by amputees, the NLR classifier allows 

the reliable translation of the gesture intentions into actual movements (Figure 46 C). However, online 
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control was not systematically tested as for the offline phase, leaving online control to be further 

assessed in future experiments. Moreover, we need to increase the number of amputated subjects in 

order to properly perform statistical analysis. Finally, to truly assess the validity of NLR for 

simultaneous multi-joint prosthetic control, it will be fundamental to perform tests outside the lab and 

in the context of ADLs. 

3.4.5. Conclusion 

We here assessed the ability of multiple supervised machine learning algorithms to simultaneously 

control upper limb prosthesis through EMG signals detected at the forearm level of healthy subjects. 

NLR turns out to be the best operating algorithm and we further supported this result by tests on trans-

radial amputees controlling the Hannes system (see the attached VIDEO). We will now extend this study 

to a wider amputees population in the context of ADLs, in order to truly test NLR control of prosthetic 

devices in real life context. 

 

  

Table 18 AMPUTEES RESULTS. 

In bold are highlighted the best performances of each index (F1Score, EOF, classification, and abstention) for each 

amputee. The number of electrodes is fixed from the results on the able-bodied subjects. 

 

S. Alg. 
EMG 

sensors 

F1Score 

[%] 

EOF  

[%] 

Classification 

[%] 

Abstention 

[%] 

1 

NLR 5 99.73 99.77 99.96 82.21 

RLS 6 38.22 -2.62 42.27 52.99 

ANN 4 54.63 70.64 49.21 - 

SVM 4 59.37 61.86 55.06 - 

LDA 5 97.86 98.80 98.51 57.88 

2 

NLR 5 93.81 96.71 98.91 77.95 

RLS 6 35.09 -2.63 37.47 56.04 

ANN 4 44.45 61.54 41.70 - 

SVM 4 50.88 54.23 47.54 - 

LDA 5 94.73 97.18 94.59 54.88 

3 

NLR 5 99.91 99.86 99.99 77.08 

RLS 6 44.75 -2.61 48.12 56.82 

ANN 4 49.29 66.02 44.61 - 

SVM 4 55.31 59.28 51.64 - 

LDA 5 96.46 98.08 96.69 53.63 
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3.5. Chapter Discussion and Remarks 

The promising capabilities of prosthetic devices can be enhanced significantly by leveraging the 

recent developments in electromyography (EMG) sensors and algorithms. In recent research, miniature 

EMG sensors were developed and compared to the gold standard, with impressive results. The sensors 

led to similar or better performance than the gold standard. An in-depth analysis was also conducted on 

the most commonly used classifiers for EMG signals, revealing that no significant improvement in 

performance could be obtained with more than 4-5 EMG sensors for the algorithms tested. Such 

preliminary result allows a reduction of occupied space in the socket up to 16.8 cm2 guaranteeing an 

easiest integration with the final device for A3 of Chapter 4. Furthermore, NRL was found to be the best 

algorithm for decoding hand movements with the highest classification performance enabling successful 

control of the Hannes system by upper limb trans-radial amputees. Finally, NLR algorithm achieving 

simultaneous and intuitive control of multi-DoFs, a fundamental feature for bioinspired prosthetic use. 

These developments are significant for improving the functionality and usability of prosthetic devices, 

potentially enabling greater independence and mobility for those with limb loss. 

In summary, the following outcomes were achieved: 

1. Miniature EMG sensors for prosthetic applications were developed and compared to the gold 

standard. IIT sensors led to similar or better performance than the gold standard, and Ottobock 

sensors reached the highest classification performance with only three EMG sensors. IIT sensors 

required four sensors but were smaller in overall area, which is an advantage for prosthetic 

applications. 

2. An in-depth analysis was conducted on four of the most adopted classifiers for EMG signals, 

and it was found that no significant improvement of performance could be obtained with more 

than 4 EMG sensors for NLR and RLS, and no significant improvement in performance with 

more than 5 sensors for the other algorithms. The performance of NLR and ANN algorithms 

were evaluated, and it was found that no significant improvement of performance could be 

obtained for a D greater than 2 for both commercial and custom sensors. 

3. NRL is the best algorithm for decoding hand movements with the highest classification 

performance using five EMG electrodes, which is important for amputees with a residual arm. 

Upper limb trans-radial amputees were able to successfully control the Hannes system using the 

NRL algorithm and translate real-time movement intentions into actions. 

4. NLR and LDA algorithms were found to be the top performers for decoding prosthesis 

movements with 5 EMG electrodes. NLR maintained the same performance with a greater 

number of decoded classes and polynomial complexity, keeping the computational burden at a 

minimum. The NLR algorithm was implemented on the microcontroller board for online control 

of Hannes, achieving simultaneous and intuitive control of multi-DoFs, a fundamental feature 

for bioinspired prosthetic use, not yet achieved by current state-of-the-art systems. 
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Chapter 4. Bidirectional Body – Machine Interface 

The bidirectional communication between the user and the external word is crucial for an effective 

acceptance and reintegration of the device into the body scheme. The haptic feedback methods 

developed in this project included proprioceptive and tactile feedback strategies that result intuitive, 

compact, and non-invasive respect to the literature solutions [136, 428]. Providing subjects information 

on how the prosthesis moves is a fundamental aspect to remove the continuous visual attention on the 

prosthesis during tasks [429], reducing the mental demand while using multi-DoF systems [1, 430]. This 

activity aimed at realizing a feedback system able to restore the bidirectional communication between 

the user and the prosthesis in a compact solution for its integration on a prosthetic socket. 

During the six months at Aalborg University, I was able to deeply investigate and implement methos 

to provide proprioceptive feedback. The literature analysis allowed me to identify non-invasive methods 

to provide proprioceptive feedback. Consequently, I developed a novel method to restore a continuous 

wrist rotation proprioception. Then, the approach was extended to include the hand aperture 

proprioception in a compact solution without increasing that solution's cumbersome. I integrated such 

methods into the prosthesis and implemented a closed-loop control to EMG drive the prosthesis and 

receive back the proprioception information in both able body and amputees. Finally, a validation 

framework was developed, based on a virtual environment (Unity), to systematically test the user 

performance on perceiving and recognizing the feedback information received using a clinical protocol 

dedicated (e.s., Target Achievement Control Test - TAC). 

In this section, the results for each activity were described, presenting the relative scientific papers: 

• Marinelli, et al. “A Novel Method for Vibrotactile Proprioceptive Feedback Using Spatial 

Encoding and Gaussian Interpolation.” IEEE Transactions on Biomedical Engineering, 2023. 

(submitted) 

• Marinelli, et al. “A Compact Solution for Vibrotactile Proprioceptive Feedback of Wrist 

Rotation and Hand Aperture.” Journal of Neural Engineering, 2023. (submitted) 

• Marinelli, et al. “Object Stiffness Recognition and Vibratory Feedback without Ad-hoc sensing 

on the Hannes Prosthesis: a Machine Learning Approach.” Frontiers in Neuroscience, 2023. 

[16] 
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4.1. A Novel Method for Vibrotactile Proprioceptive Feedback 

Using Spatial Encoding and Gaussian Interpolation 

4.1.1. Introduction 

Over the past twenty years, the field of multi-functional upper limb prostheses was marked with 

important technological and scientific developments aiming to better satisfy the needs of prosthesis 

users. The loss of an upper limb is a traumatic event with a strong impact on the ability to participate in 

the activities of daily living [6, 407], thereby leading to a substantial decrease in the quality of life [9]. 

Despite the aforementioned developments, in a recent study, Salminger, et al. [19] reported overall 

abandonment rates of about 44% for the users of upper limb myoelectric prostheses. An important 

drawback of modern prostheses is that they lack explicit somatosensory feedback. Without the feedback, 

the user can still estimate the state of the device using incidental cues, such as visual observation and 

motor sound [39, 145], but this requires constant attention to the prosthesis. Providing explicit feedback 

can reduce the cognitive load and fatigue when using prostheses [5, 6]. 

To mitigate this drawback, methods to restore the missing sensory information were proposed in the 

literature, and the results demonstrated that the haptic feedback can enrich the prosthesis-user interaction 

by improving performance [156, 428, 431] and subjective experience [432, 433] as well as by facilitating 

the feeling of embodiment [88, 126, 127]. Reestablishing the closed-loop control, characteristic of sound 

limbs, can trigger somatosensory plasticity and promote long-term learning and adaptation processes 

for artificial sensations [129]. 

To provide haptic feedback, the information about the prosthesis state can be conveyed to the subject 

invasively [88, 106, 155, 434, 435], by electrically stimulating peripheral nerves that innervated the lost 

hand, or non-invasively [5, 100, 220, 436, 437], by delivering mechanical or electrical stimulation to the 

skin of the residual limb. Despite the invasive methods needing a surgical procedure to implant the 

electrodes, they allow providing somatotopic feedback, where the tactile sensation is experienced as 

coming from the missing limb (phantom sensation) [434]. Such invasive feedback was used to convey 

pressure [120], textures [155], slippage [438], pain [106], and proprioception [5, 88]. However, this 

approach has several drawbacks including the risks of surgery, subject reluctance to undergo additional 

surgical operations, high cost, lack of access, and limitations in perceptual performance due to the 

difficulty in selective activation of target nerves. Non-invasive methods are simpler to implement and 

can be particularly relevant in those subjects that are reluctant to undergo further surgical procedures 

[1]. Although the non-invasive stimulation results in a less natural sensation (e.g., non-somatotopic), the 

subjects can quickly learn to interpret the feedback and integrate it into the body scheme [401]. In most 

studies, prosthesis grasping force was selected as the variable to be transmitted to the user [5, 100, 217, 

220, 428, 437, 439-442], while the artificial proprioceptive feedback, conveying the position of the 
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prosthesis joints (e.g., wrist rotation and hand aperture), was seldom considered [136, 408, 436, 443-

446].  

Different methods have been presented in the literature to provide artificial proprioceptive feedback. 

The most natural approach is to induce a realistic kinesthetic illusion [161, 408, 444, 447], where a 

phantom sensation of the movement of the missing limb is created, for instance, by vibrating muscles 

to activate muscle afferents [448-450]. This is modality-matched feedback and hence likely most 

intuitive for the subject but the setup can be cumbersome. Another approach that can be implemented 

using a more compact setup is the sensory substitution feedback, where proprioceptive information (e.g., 

wrist angle) is provided indirectly, using tactile stimulation [5]. In this approach, at least a brief training 

is required to teach the subject to associate the tactile sensation with the provided information. Tactile 

stimulation can be delivered mechanically (e.g., using vibration motors) or electrically, but regardless 

of the stimulation interface one of the critical questions when designing such feedback is the choice of 

the encoding scheme, which defines the mapping between the feedback variable and stimulation profile 

[5]. 

When a single-channel stimulation is used, the feedback information can be encoded by modulating 

stimulation parameters, such as intensity. A conventional approach would be to modulate the intensity 

or frequency of electro or mechanotactile stimulation [439, 451, 452]. Recently, Battaglia, et al. [444] 

and Kayhan, et al. [443] presented a novel solution to convey wrist rotation and/or hand aperture by 

stretching the skin. When multiple stimulation channels are available, feedback information can be 

conveyed also by changing the location of stimulation (active channel), the approach known as spatial 

encoding. Witteveen, et al. [453] used arrays of vibromotors or electrotactile stimulators to convey hand 

aperture feedback. In Garenfeld, et al. [454] wrist orientation and hand aperture information were 

provided using electrotactile stimulation delivered through a 16-pad electrode array. Finally, the most 

flexible scheme is to combine spatial encoding and parameter modulation, which is a so-called mixed 

encoding approach. For instance, Erwin and Sup IV [455] combined the spatial activation of three 

vibration motors with the modulation of vibration frequency to convey the position of a virtual wrist. 

Despite different methods have been used to encode the proprioceptive information, they are rarely 

compared against each other (see [136] for the comparison between spatial and amplitude schemes). In 

addition, the methods are usually implemented by heuristically predefining the configuration parameters 

(e.g., number of motors, intensity) instead of systematically investigating the performance across the 

parameter space. However, such comparisons are important as they can help making informed choices 

when designing feedback interfaces. 

The present study describes a novel approach to providing wrist rotation feedback using an array of 

vibromotors and a mixed encoding paradigm. Multiple vibrators were activated simultaneously to 

produce the moving phantom sensation, while the vibration intensity was interpolated across the array 

following the Gaussian profile. This approach provided a continuous sensation of motion around the 

forearm that was congruent with the motion of the prosthesis. In this scheme, the quality of the elicited 
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sensations critically depends on the number of motors in the array as well as the “width” of the Gaussian. 

For instance, increasing the width makes the change in sensation around the forearm more smooth and 

hence continuous. In addition, decreasing the number of motors can simplify the integration of the 

feedback interface into the prosthetic socket. Such continuous feedback that directly follows the motion 

of a prosthesis would be intuitive and thereby easy to interpret (direct relation between sensation and 

feedback variable), could enable higher spatial resolution, and improve user experience by generating 

smooth and pleasant sensations [456]. These factors could in turn lead to more effective control and a 

decrease in the cognitive load and fatigue required to use a prosthesis. However, a “wider” Gaussian 

could also jeopardize the identification of the current wrist orientation conveyed by the momentary 

location of the peak of the Gaussian profile. In the present study, we have therefore investigated the 

impact of both of these factors on the effectiveness of haptic feedback during the closed-loop control of 

a hand prosthesis. To this aim, the subjects performed a virtual target achievement control test (TAC) 

[457], using a novel framework that simulates the behaviour of the Hannes prosthesis [11] while 

providing vibrotactile feedback to control the rotation of the virtual hand. The subjects performed the 

task with different combinations of the number of motors and Gaussian width, thereby systematically 

exploring the parameter space of the novel feedback approach. With the small width of the Gaussian, 

our method “reduces” to discrete spatial feedback used previously in the literature [450], where a single 

vibromotor is activated at a time (hence, localized stimulation which "jumps" around the forearm). 

Therefore, in addition to exploring the parameters, the present study also compares the conventional 

approach (discrete feedback) to the novel method that produces smooth sensations congruent to the 

orientation of the prosthesis. 

4.1.2. Materials and Methods 

4.1.2.1. Subjects 

Fifteen healthy able-bodied subjects (aged 26.7 ± 3.2, 8 males), and an individual with congenital 

limb deficiency subject (aged 25, female) with no prior experience with proprioceptive tactile feedback, 

participated in this study. Before starting the experiment, the subjects were informed about the protocol, 

and they signed the informed consent form. The experimental protocol was approved by the Research 

Ethics Committee of the Nordjylland Region (approval number N-20 190 036). 

4.1.2.2. Experimental Setup 

The experimental setup (Figure 53) comprised the following components: (i) a virtual reality (VR) 

environment simulating the Hannes prosthetic hand [11-13, 15] with 3 active DoFs (hand open/close, 

wrist pronation/supination, and wrist flexion/extension), (ii) fourteen eccentric rotating mass 

vibromotors (Vybronics, VC0625B001L) with a custom-made control unit to provide tactile feedback, 

(iii) a custom-made master board to establish the communication between a host PC and feedback 
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control unit, (iv) a battery pack, and (v) a standard laptop (DELL XPS 15, Intel Core i9 @2.60GHz, 

32GB RAM) running Windows 10, an 18’’ computer monitor and a keyboard. The master board 

communicated with the feedback controller using CAN Bus protocol, while it was connected to the 

laptop via Bluetooth. The VR framework was developed using the Unity development suite and C# 

language. The framework acquired the data from the master board and sent control commands to the 

feedback controller to generate desired vibrotactile stimulation. 

As explained later (see section 4.1.2.4), up to eight vibromotors were placed circumferentially and 

equidistantly around the subject’s right forearm (see Figure 53 a and c), approximately 15 cm distal to 

the elbow, and strapped using an elastic band (Figure 53 c). Regardless of the number of motors used 

(i.e., 8, 6, 4), the first vibromotor was always placed in the middle at the volar side while the last was 

positioned in the middle of the dorsal side, covering thereby the half of the forearm (its internal portion). 

The rest of the motors were then placed equidistantly between the first and the last motor. This placement 

was selected because the spatial extent of the vibrotactile interface matched the range of motion of the 

virtual prosthesis and the elicited sensations were thereby congruent to the prosthesis motion. More 

specifically, the generated sensation indicated the position of the dorsal side of the prosthetic hand, as 

shown in Figure 54. Alternatively, the vibromotors could have been placed to cover the full 

circumference of the forearm. This would increase the spatial separation between the neighboring 

 

Figure 53 Experimental Setup. 
a: The subjects were seated in front of the monitor (2) wearing the armband with the vibromotors (8) placed equidistantly 
around the interior aspect of the right forearm. The virtual reality scenario showed the orientation of the target and the 
controlled hand (3). The graphical controls (4) allow setting the parameters of the feedback scheme. The keyboard (5) was 
used to move the controlled prosthesis while its state (wrist angle) was conveyed through vibrotactile feedback. The setup 
also included a laptop (1), a master board with a battery pack (6), and a feedback control board (7). b: The elastic band with 
vibromotors placed around the medial part of the right forearm of an amputee participant. c: a detailed photo of the wrist 
band with vibromotors with indicated dimensions. 
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motors, potentially facilitating their discrimination, but the exact correspondence between the spatial 

configuration of the prosthesis and the forearm sensation would have been lost. Only up to eight 

vibromotors, out of fourteen available, were used in the present study. 

As noted in the introduction, the proposed approach provides feedback to the user by generating a 

specific intensity profile (Gaussian interpolation) that moves across multiple vibromotors. To be able to 

generate a well-controlled complex sensation, the elementary sensations elicited by a single motor need 

to be localized below the motor. Therefore, the vibromotors were covered with a soft silicone case to 

absorb the stimulation radiating from each motor. The case was thicker laterally (10mm) to separate two 

consecutive vibromotors while the side in contact with the skin was thin (1mm) to enable vibrations to 

be delivered effectively while avoiding the heating of the skin during prolonged motor activity. Finally, 

the silicon case allowed placing the vibromotors vertically to further spatially separate the consecutive 

motors and thereby allow the subjects to better detect the transitions between active motors. Vertical 

placement also provides a stronger sensation as shown in the pilot test that we conducted. The center-

to-center distance between the consecutive motors is 20 mm, which is within the ranges of the two-point 

discrimination (2PD) thresholds reported in the literature [458]. However, for our encoding approach, it 

is not critical that the motors are separated by the 2PD. This is because the subjects do not need to 

recognize the activation of a random motor (absolute recognition); instead, they can rely on detecting 

the smooth transitions between active motors (relative recognition), as explained in section 4.1.2.3.  

 

Figure 54 Illustration of the novel feedback encoding approach. 
The left panel displays three wrist positions and the corresponding stimulation profiles (vibration intensity across motors) 
generated for the different numbers of motors (8 or 4) and values of standard deviation (σ) of the Gaussian profile. The 
representation on the right shows the concept: a Gaussian profile with variable width (standard deviation parameter) that 
“rotates” around the forearm.  
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The silicone case had a Velcro on top to be fixed to the elastic band, to prevent slips. The elastic band 

was strapped to the subject forearm with Velcro by applying the level of pressure which was enough to 

hold the motors securely in place, without masking the vibration sensation and/or constricting blood 

flow. To check the tightness, the subject was asked to rotate the forearm, and if the elastic band moved 

accordingly without slipping, the band was deemed tight enough. The appropriate level of tightness was 

additionally confirmed during the calibration phase by checking that the sensation thresholds were not 

excessively high (compared to those obtained during pilot tests). 

For each vibromotor, the vibration frequency was set to 200Hz using a supply voltage of 2.5V [459], 

which lay within the range of maximum sensitivity of the Pacinian corpuscles [460]. The gain of each 

vibromotor was individually adjusted for every subject (see section 4.1.2.4). 

Despite the virtual hand implementing 3 DoFs, only wrist rotation was controlled in the present study. 

The subject controlled the prosthesis movements using the keyboard and contralateral hand (“3” key for 

pronation, “4” key for supination). Such a setup provided reliable control and focused the subjects’ 

attention on the feedback, ensuring thereby that the results reflected the changes in the feedback 

parameters (σ and the number of motors) rather than the influence of control strategy (e.g., changes in 

sensation due to movement of the forearm). The subjects sat comfortably in front of the monitor, with 

their right arm relaxed over the desk, taking care to avoid contact between the vibromotors and the table. 

The computer monitor was placed approximately 50 cm from the subject. The VR environment 

displayed two prosthetic hands, where one showed the target position (Figure 55.1b, transparent) while 

the other was controlled by the subject (Figure 55.1b, solid). 

4.1.2.3. Vibrotactile feedback encoding 

A novel encoding scheme was implemented to provide proprioceptive feedback (Figure 54). The 

rotation angle of the prosthesis wrist was conveyed to the subject by modulating both vibration intensity 

and location. To convey feedback that is spatially congruent to the prosthesis movement, a Gaussian 

profile of vibration intensity was “rotated” around the forearm in synchrony with the rotation of the hand 

(Figure 54, right). More specifically, the location of the profile peak always matched the orientation of 

 

Figure 55 Closed-loop control of a virtual 

prosthesis. 

The subject controlled the rotation of the virtual 

hand by pressing on the keyboard (1a) with the left 

hand (4a). The Unity virtual environment (1b) 

visualized the target hand and recorded the 

trajectory performed by the controlled hand. The 

laptop (1) communicated via Bluetooth with the 

master board (2a) sending the feedback shape, 

while the master board in turn sent the commands 

to the feedback control unit (2b), which activated 

the vibromotors (3) to provide the feedback to the 

subject’s right forearm (4b). 
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the wrist, i.e., the Gaussian was centered at the first vibromotor (volar side) when the wrist angle was 

0° (wrist starting orientation, completely pronated), then gradually moved across the vibromotors, to 

reach the last vibromotor (dorsal side) for the wrist angle of 180° (wrist end orientation, completely 

supinated). Interpolating the intensity using a “rotating” Gaussian function elicited a smooth sensation 

that was gradually moving around the forearm, thereby replicating a smooth movement of the prosthetic 

hand.  

The following equation was used to define the Gaussian mapping between wrist orientation and 

vibration intensity: 

 {𝑦 = 𝑒
−
(𝑘−𝑚)2

𝑔∗𝜎2

𝑚 = 𝑝 ∗ 𝑁
 (23) 

where y is the normalized vibration amplitude of the motor k, m is the mean of the Gaussian computed 

as the normalized position (𝑝) of the virtual hand multiplied by the number of motors (N) in the array, 

g is a parameter set to 2.25, and σ is the standard deviation of the Gaussian. Effectively, m determines 

the location of the peak of intensity within the array of vibration motors while σ adjusts the spread of 

intensity across the motors. The interpolation function (23) can be used to define the mapping for 

different numbers of motors in the array, as determined by the parameter (N). The effect of the different 

number of vibromotors and the values of σ is visualized in Figure 54. In general, the σ adjusts the level 

of interpolation across the given number of motors thereby generating a more discrete or continuous 

sensation of movement around the forearm. 

4.1.2.4. Experimental protocol 

First, the minimum and maximum amplitude for each vibromotor were determined using the method 

of limits [461]. To this aim, the vibration intensity was increased in small steps (i.e., 4-5% in the 

normalized scale of pulse width modulation (PWM)). When the subject reported a sensation or 

discomfort felt for the first time, the momentary PWM was adopted as the sensation and discomfort 

threshold, respectively. This procedure is standardly performed to compensate for the individual 

perceptual abilities, and in this case, the possible differences in the tightness of the band holding the 

motors against the forearm. During the rest of the experiment, the vibration intensity was then modulated 

between these two thresholds, to generate clearly perceivable and localized vibrations that were not 

intrusive to the subject.  

The subjects then performed the main experimental task, namely the target achievement control test 

(TAC) [457]. They used the keyboard to rotate the virtual prosthesis to bring it into the target orientation 

(desired rotation angle). Importantly, the hand indicating the target position was always shown on the 

screen, whereas the hand controlled by the subject was not visible while the subject performed the task. 

At the beginning of each trial, both hands were visible thereby showing the target orientation and the 

starting position of the controlled hand. When the trial started, the controlled hand disappeared and its 

momentary wrist angle was then conveyed to the subject through the vibrotactile feedback. To ensure 
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minimally intrusive feedback and avoid adaptation to stimulation, the vibration was provided only while 

subjects pressed the control keys, otherwise, the vibration was deactivated. The subjects were asked to 

press the space bar key when they thought to have reached the correct position. At that moment, the 

controlled hand was revealed to the subjects (however, the vibration was deactivated) so that they could 

see the deviation from the target rotation angle. This was done to increase the subjects’ motivation 

during the experiment. 

Each subject performed the task in 21 conditions, i.e., using 8, 6, and 4 vibromotors × 7 values of σ 

(0.1 – 3, in steps of 0.5). These values were determined heuristically and via pilot tests. For instance, 

the maximum number of vibromotors was set to 8 as this was the highest number that could be 

reasonably fitted around half of the forearm in most people. The minimum standard deviation was set 

to the value (0.1) that elicited discrete motor activation (hence discrete feedback). The other values were 

selected so that the parameter space was well explored while still maintaining a reasonable overall 

duration of the experimental session. In each condition, the subjects first received a short training to 

associate the new sensation scheme to the hand orientation. We also asked the subjects if the sensations 

were clear, to further check that they received the correct feedback and that the sensation was not 

affected by adaptation during the experiment. Although the adaption was not explicitly measured, it is 

highly unlikely that it had an impact on the results of the present study, as the stimulation profiles were 

dynamic (varying in both intensity and position) and they were delivered intermittently [462]. Indeed, 

none of the subjects complained about the loss of sensations during the experiment. The virtual 

prosthesis was programmed to rotate back and forth, 5 times through the full range of motion. On this 

occasion, the controlled hand was visible to allow the subjects to associate the visual feedback of hand 

orientation with the feedback sensation. Afterward, they performed an assessment block comprising 21 

trials. Seven orientations, equally distributed between 0° and 180° excluding the extremities (Figure 56), 

were used as targets and each target was repeated 3 times. The sequence of target positions was 

randomized while ensuring that the same position was not repeated in succession. Furthermore, the order 

of target positions was different across conditions. At the beginning of each trial, the controlled hand 

was placed at the opposite end of the range of motion (0° or 180°) furthest from the target orientation, 

as shown in Figure 56. In addition, to prevent the subjects from using feedforward control and motivate 

them to rely on the feedback, the velocity of the prosthesis was changed across trials by multiplying the 

maximum speed (1.26 rad/s) with a gain randomly selected from the interval 0.4 – 1. The order of 

conditions was obtained by randomizing the tests with the different number of vibromotors. For the 

given number of motors (4, 6 or 8), the subjects then tested all σ values in random order. Before 

switching to the next number of motors, the subject was asked to choose which σ produced the best 

sensation. Similarly, when all the numbers of motors were tested, the subjects chose the preferred 

number of vibromotors. 
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4.1.2.5. Data Analysis 

Two outcome measures were used for this study: error and efficiency (Figure 56). The end-point error 

in orienting the hand (Figure 56, top) was computed as the difference between the final position of the 

controlled hand and the target position, expressed as the percentage of the range of motion. The end-

point error measures how accurately (close to the target) the subject can orient the hand using vibrotactile 

proprioceptive feedback. In addition, for the given motion speed of the controlled hand in each trial, the 

path efficiency was calculated as the ratio between the area associated with the optimal trajectory (Figure 

56 bottom plot, yellow area, optimal path) and the area associated with the trajectory generated by the 

subject (Figure 56 bottom plot, green plus yellow area, generated path). The optimal path corresponded 

to reaching the target orientation from the initial position in one uninterrupted motion at a fixed speed 

imposed by the TAC test at the beginning of each trial. Therefore, while the literature normally uses 

only the length of the trajectory [457], the efficacy in the present study was a function of both trajectory 

and time and was thus computed as the ratio of the respective areas. This parameter is always less or 

equal to 100% and indicates how much the subject deviated from the optimal path in each feedback 

condition. These values were calculated for each condition varying the number of vibromotors and the 

Gaussian σ. 

The data were tested for normality using the Shapiro-Wilk test. As the test showed that the data were 

not normally distributed, the Friedman test was performed, while the post-hoc pairwise comparisons 

were performed using Wilcoxon signed rank test with Bonferroni correction. OriginPro 2020 Graphic 

& Analysis (OriginLab Corporation, Northampton, MA, USA) and MATLAB 2020b (The MathWorks, 

Inc., Natick, MA, USA) were used for the statistical analysis. The average of the outcome measures 

(error and efficiency) was computed for each subject and condition and compared across conditions. 

 

Figure 56 Target positions and outcome measures. 
The top panel is the error between target and 
reached position (control accuracy) and the bottom 
panel shows the ratio between the area enclosed by 
the optimal trajectory and the trajectory generated 
by the subject (control efficiency). 
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More specifically, the performance achieved with different σ values was compared for the given 

number of vibromotors, to test how sensitive were the different number of vibromotors to the modulation 

of σ. In addition, the performance achieved with different numbers of vibromotors was compared for 

the given value of σ, to assess whether the number of motors could be reduced without sacrificing the 

performance. 

In addition, the error and efficiency were calculated individually for each target angle. In this case, the 

angle error and efficiency were calculated by varying the number of vibromotors (averaging across σ), 

and by varying σ (averaging across the number of vibromotors). 

The threshold for statistical significance was set at p < 0.05, and outliers were excluded from the 

statistical comparisons. The results in the text are reported as mean ± standard deviation. 

4.1.3. Results 

The overall results for error and efficiency are summarized in Figure 57, Figure 58, and Figure 59. 

 

Figure 58 Summary results for efficiency in the form of: a) bar plot; b) heatmap; and c) boxplot. 

In the heatmap, the darker color indicates higher efficiency (higher performace). In the boxplots, V indicates the number of 

vibromotors, the small circles and green triangles are the means for the able-bodied subjects and the amputee paticipant, 

respectively, the red lines indicate the medians, boxes are interquartile ranges, whiskers represent min/max values and crosses 

are outliers. The horizontal lines denote statistically significant differences for the comparisons across the values of σ for the 

given number of motors (8, 6 and 4) (*, p < 0.05 with Bonferroni correction) while the numbers in parentheses denote 

statistically significant differences between the number of motors for the given σ. 

 

Figure 57 Summary results for the error in the form of: a) bar plot; b) heatmap; and c) boxplots. 

In the heatmap, darker color indicates larger error (lower performace). In the boxplots, V indicates the number of vibromotors, 

the small circles and green triangles are the means for the able-bodied subjects and amputee participant, respectively, the red 

lines indicate the medians, boxes are interquartile ranges, whiskers represent min/max values and crosses are outliers. The 

horizontal lines denote statistically significant differences for the comparisons across the values of σ for the given number of 

motors (8, 6 and 4) (*, p < 0.05 with Bonferroni correction) while the numbers in parentheses denote statistically significant 

differences across the number of motors for the given σ. 
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Figure 57 shows that, in general, an increase in σ leads to a decrease in performance (i.e., an increase in 

error); however, the impact of σ is less pronounced when the feedback is provided using more motors 

in the array. This is clearly visible from the 3D bars (Figure 57 a) and heatmap (Figure 57 b). For 

instance, the heatmap has a characteristic diagonal structure, where the area above the diagonal has 

darker colors (higher errors). As shown in Figure 57 c, the performance with 8 and 6 vibromotors was 

rather resilient to the changes in σ. For 8 motors, the error increased significantly only for the highest 

value of σ. Specifically, the error for σ = 3.0 (~15.04 ± 2.9%) was significantly higher than that achieved 

with all other σ values (~10.7 ± 3.6%) except σ = 2.5 (~12.4 ± 3.4%). Similar results were obtained with 

6 vibromotors where the σ of 2.5 (~15.6 ± 2.9%) was the first value to produce a significant change in 

performance (~11.5 ± 3.4% for σ of 0.1-2.0). On the contrary, the performance with 4 vibromotors was 

rather sensitive to the change in σ, and the significant increase in error was registered already for σ = 1.0 

(~14.01 ± 2.6% vs ~11.6 ± 3.3% for σ of 0.1 and 0.5, respectively). When comparing the performance 

across the number of vibromotors for the given σ, there was no significant difference between 8 and 6 

motors for any value of σ, while there was a significant drop in performance for 4 motors. More 

specifically, the difference arose in the medium range (σ between 1 and 2.5), while in the case of low 

(0.1 and 0.5) and high (3.0) σ, the error was not significantly different.  

Differently from the error, the efficiency (Figure 58) was not significantly affected by σ regardless of 

the number of motors (~27.4 ± 6.1%, Figure 58 c). When comparing across the number of motors, the 

efficiency with 8 vibromotors was in a few cases significantly higher (~29.2 ± 5.7%) compared to that 

obtained with 4 vibromotors (~25.7 ± 6.9%), as indicated by the numbers between parentheses in Figure 

58 c. Again, the trends are particularly visible in the heatmap (Figure 58 b). For the efficiency, the 

heatmap is diagonal but the colour is mirrored compared to that of the errors, indicating that efficiency 

decreased with fewer motors and higher σ (however, as explained, the effect was significant only across 

the number of motors).  

Regarding the amputee subject, the results in both performance measures were within the ranges, and 

mostly below the mean performance, obtained in able-bodied subjects, as indicated by the green 

triangles in Figure 57 c and Figure 58 c. This is an encouraging preliminary result showing that the 

developed method can be successfully interpreted and exploited for control by a prospective prosthesis 

user. 

Finally, the performance was analyzed for each target angle individually. Figure 59 shows the error 

(panels a and b) and efficiency (panels c and d) for different target angles grouped by the number of 

vibromotors (panels a and c) and Gaussian σ (panels b and d). The trends in the heatmaps further support 

the results presented in Figure 57 and Figure 58, showing that the error generally increased with fewer 

vibromotors and for higher σ values, while the efficiency was not impacted by those factors. However, 

Figure 59 reveals that performance depends on the angle. Specifically, for the angles in the middle of 

the range of motion, the error slightly increased (dark heatmap) while the efficiency decreased (lighted 

heatmap). We computed the overall error and efficiency averaged over the number of motors and σ and 
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we found that they were 11 ± 7% (error) and 32.3 ± 5% (efficiency) for the extreme positions whereas 

for the angle of 90° they were 14 ± 6% (error) and 21 ± 8% (efficiency), respectively, and the difference 

was statistically significant (p < 0.001) only for the efficiency.  

Regarding subjective preference, most subjects (11) selected 8 vibromotors. Five of them chose σ = 

1.0, three selected σ = 0.5, two preferred σ = 0.1 (discrete feedback), and one preferred σ = 1.5. The 

remaining subjects chose 4 (2 subjects, σ = 0.5) and 6 motors (2 subjects, σ of 1 and 1.5, respectively). 

The amputee participant preferred 8 vibromotors with a σ of 1.0. 

4.1.4. Discussion 

The present study proposed a novel approach to convey proprioceptive information that can be 

flexibly configured by adjusting the smoothness of the moving sensation (σ) and the number of 

 

Figure 59 Average peformance across the target orientation angles. 

a) Error and c) efficiency for different number of vibromotors; b) Error and d) efficiency for different values of σ. 
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vibromotors used. Most of the methods in the literature assume a single configuration based on 

heuristically selected parameters, while the present study systematically explored the parameter space 

of the proposed method and provides important insights for its successful application. The main 

conclusions of the experimental assessment are: 1) discrete feedback consistently showed high 

performance regardless of the number of motors; 2) nevertheless, with enough motors, the smoothness 

of feedback can be increased over a broad range without impacting the localization of sensation; 3) the 

subjects prefer smooth rather than discrete feedback; and 4) the number of motors can be safely 

decreased from 8 to 6 and, if smoothness is not the priority, even to 4. Importantly, the second point 

additionally reveals that σ might be used not only to adjust the smoothness but possibly as an extra 

"degree of freedom" to convey another feedback variable, as discussed later. Overall, the novel method 

allowed an effective closed-loop control (average error < 10% for some parameter combinations) in 

able-bodied as well as in an amputee subject. Although the method was used to convey wrist rotation, 

other variables could be transmitted using identical mapping via a circular or linear array (e.g., aperture 

and grasping force). Therefore, the key contribution of the present study is an effective feedback 

approach that can be flexibly customized in terms of sensation quality and potentially the nature and the 

number of feedback variables, according to the requirements of an application and/or user preference. 

The aforementioned outcomes are further discussed below in dedicated paragraphs. 

The results demonstrated that the Gaussian interpolation of intensity is an effective method to generate 

smoothly moving sensations around the forearm. When enough motors were available in the array (8 

and 6), the amount of smoothing set by the value of σ could be modulated substantially without 

significant impact on performance (Figure 57 b and d). Therefore, the spread of sensation did not 

negatively affect the subject’s ability to locate the peak of intensity and thereby determine the associated 

wrist orientation.  

The possibility of modulating σ without significant impact on the ability to locate the peak of sensation 

is an important result for the application of this feedback approach. First, this means that the value of σ 

can be selected based on the subject’s preference. The subject can choose the feedback configuration 

with more or less spreading and/or continuity in transition. Indeed, when asked to indicate their 

preference, in most cases, the subjects indicated that they prefer smooth rather than discrete feedback, 

selecting different values of σ in the low to medium range, namely, from 0.5 to 1.5. Second, since σ does 

not affect the perception of rotation, this parameter could be used to encode an additional variable, for 

instance, hand aperture. Increasing σ spreads the sensation around the forearm, resembling thereby the 

movement of the hand enclosing an object. Such encoding would therefore allow for a compact solution, 

where the same interface could be used to provide the simultaneous feedback of wrist rotation and hand 

aperture. However, the results also show that this approach would work only with enough motors in the 

array. With 4 motors, for instance, the range in which σ can be modulated without affecting the 

performance is narrow. Hence, in the case of a small number of vibromotors, it could be challenging for 

the subject to clearly perceive the change in the feedback variable associated with σ.  
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Decreasing the number of motors required to provide feedback is an important advantage for the 

envisioned clinical application. Our experimental results showed that the number of motors can be 

decreased from 8 to 6 while still maintaining both the smoothness of the feedback (higher σ) and the 

performance. The number of vibromotors can be reduced even to 4 if the participant can “tolerate” 

discrete sensations (smaller σ). Fewer motors reduce the complexity of the interface, which can improve 

robustness and simplify the integration of the feedback into the socket. The present results demonstrate 

that there is a tradeoff between the value of σ and the number of motors, where the former parameter 

puts a limit on how many vibromotors can be decreased without incurring a significant loss of 

performance. For low values of σ (0.1 and 0.5), the number of vibromotors (i.e., feedback interface) can 

be halved, from 8 to 4, while σ > 0.5 allows only a smaller reduction (from 8 to 6). 

Our initial assumption was that the small σ would be more sensitive to the decrease in the number of 

motors. Small σ (0.1) produced discrete feedback that jumps from motor to motor (no interpolation 

across motors), and hence, with fewer motors, the feedback resolution is presumably lower. Contrary to 

our assumption, the subjects achieved good results with small σ even when using only 4 motors. The 

expression (1) that was used to generate the intensity introduced a brief period of no stimulation when 

changing between the neighboring motors, and we believe that this cue allowed the subjects to 

effectively increase the feedback resolution. Nevertheless, such a stimulation pattern was not intuitively 

related to the prosthesis movements (discrete feedback vs. continuous rotation). This was confirmed by 

the qualitative, subjective outcomes, as most subjects selected at least some level of interpolation, even 

when using 8 motors. The interpolation produced continuous sensation around the forearm by generating 

virtual tactile points between the motors. However, it seemed that this approach needed a certain 

minimal number of motors to be effective (8 and 6 vs. 4). Finally, the amount of interpolation can be 

also excessive, as the highest values of σ (2.5 and 3) produced a blurred sensation that confused the 

perception of the continuous movement around the forearm. Indeed, the highest values of σ decreased 

the performance regardless of the number of motors.  

The overall recommendation for the configuration of the proposed feedback interface, therefore, 

depends on the weighing of the subjective versus objective factors. If priority is given to the subjects’ 

preference, 8 motors should be used with a medium level of interpolation (smooth sensation). However, 

if there is a need to decrease the number of motors in the array, 6 motors could be used with a similar 

amount of interpolation to maintain both the continuity of sensation and closed-loop performance. 

The results obtained for each target angle (Figure 59) show that it was more difficult for the subjects 

to adjust the wrist orientation for the positions towards the middle of the range of motion (RoM). This 

is an intuitive result because the subjects could use the positions at the end of RoM as the well-defined 

anchors since the stimulation stopped changing when the subject reached the RoM end.  

The next step in this research will be to expand the proposed approach to implement the proprioceptive 

feedback for all DoFs of a multifunctional prosthetic hand. As explained above, the second DoF can be 

added by exploiting the presumed “independence” of the two parameters (Gaussian profile peak and σ), 
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i.e., using σ to encode the hand aperture simultaneously with the rotation of the wrist. To accommodate 

more DoFs (e.g., wrist flexion/extension and force), however, additional motors need to be added.  

The proprioceptive feedback was already employed for prosthesis control [136, 443, 463], but not in 

the form presented in this study, where Gaussian interpolation was combined with spatial encoding to 

produce the sensation of continuous movement around the forearm. A previous study used the principle 

of generating phantom sensations [450] and also reported good results with 6 motors. However, they 

employed a fixed number of motors, discrete activation (instead of Gaussian interpolation) thereby 

producing discrete sensations, and the application was wrist guidance and not prosthesis control. 

The present experiment was performed by controlling a virtual prosthesis via keyboard using the 

contralateral hand, as the focus was on comparing the feedback parameters. However, in the envisioned 

practical application, both control and feedback will be performed ipsilaterally, and this could affect the 

effectiveness of feedback (e.g., forearm movements and muscle activation can impact the perception of 

sensations). The placement of a feedback interface was investigated in a recent study, albeit in a different 

context (control of balance), and the results demonstrated that the placement can be indeed an important 

factor [464]. Therefore, the next step in this research will be to test the interaction between feedback 

and pattern classification control in both able-bodied and amputee subjects. Importantly, the results of 

the present study will inform the design of the feedback (parameter selection) for this future assessment. 

The aim of the present study was not a direct clinical translation but a systematic investigation of the 

novel feedback scheme and the effect of its parameters on the performance of closed-loop control, i.e., 

wrist rotation using an ideal command interface and the novel feedback method. Nevertheless, the results 

obtained in an amputee who could use the feedback as effectively as able-bodied subjects are 

encouraging from the viewpoint of future clinical translation. 

4.1.5. Conclusion 

The present study is the first effort to investigate the application of a novel feedback scheme that 

combines spatial encoding with Gaussian interpolation to provide continuous proprioceptive sensation 

for wrist rotation in prosthetic applications. The quality of the produced sensation, namely, the location 

of the peak intensity and the amount of spreading, depends on the number of vibromotors used in the 

array and the value of the parameter σ of the Gaussian interpolation profile. Overall, the present study 

has shown that the novel approach provided clear rotational feedback that was easy to interpret and use 

for closed-loop control. Nevertheless, there was a clear preference for a higher number of vibromotors 

(8 and 6). An increased number of vibromotors was also more robust with respect to the change in σ, 

i.e., the amount of spreading of sensation (continuity of the feedback) could be increased to higher values 

without the decrease in performance. This is an important outcome for the application of proprioceptive 

feedback, as it points out that the spatial modulation and σ could be used to simultaneously encode two 

feedback variables using a compact solution (i.e., an array of vibromotors). 
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4.2. Closed-loop Control of 2DoF Hannes Arm Prosthesis using 

Pattern Recognition and Spatial Encoding for Proprioceptive 

Feedback 

4.2.1. Introduction 

An amputation is a debilitating event with substantial physical, social and psychological 

consequences [6], but the lost motor functions can be partially restored using myoelectric prostheses [1, 

2, 6, 8, 9]. Modern devices include advanced robotic hands with several degrees of freedom capable of 

performing multiple grasp types [2, 7, 8, 423, 465-467], but they do not provide somatosensory feedback 

and, hence, the reconstruction of the lost limb is not complete. Only two commercial hands provide 

simple feedback to the user (e.g., Ability hand [30] and Vincent hand [27]) but the feedback conveys 

only the grasping force, while the natural feedback from biological hands include both exteroception 

and proprioception. The artificial proprioceptive feedback is important as it allows amputees to perceive 

the configuration of the bionic limb without looking at it. The ability to “feel” the prosthesis movements 

can facilitate the embodiment, thus promoting the acceptance and the usability of the system [9, 468]. 

The methods and technologies for restoring the missing sensory information and consequently enrich 

the prosthesis-user interaction were the focus of recent research efforts [5, 6, 103, 126, 127, 469, 470]. 

Artificial feedback can be conveyed to the subject either invasively [88, 106, 155, 434, 435], by 

activating peripheral nerves using electrical stimulation, or non-invasively [5, 100, 220, 436, 437, 471], 

by delivering mechanical or electrical stimulation to the skin of the residual limb. Both methods can 

provide different kinds of information (e.g., pressure [120], textures [155], slippage [438], pain [106]), 

but grasping force is still the most common choice of the feedback variable [5, 100, 217, 220, 428, 437, 

439-442]. The artificial proprioceptive feedback, conveying the position of the prosthesis joints (e.g., 

wrist rotation and hand aperture), was rarely considered [408, 436, 443-446] and it was typically limited 

to hand aperture [5, 88, 472] while fewer studies investigated wrist rotation feedback [443, 450, 455]. 

Non-invasive methods to provide feedback typically rely on sensory substitution. In this approach, 

the prosthesis variables are translated into stimulation profiles, according to a predefined encoding 

scheme, and the stimulation is delivered to the participant. Hand aperture and wrist rotation were 

conveyed more often using parameter modulation, which means that the value of the feedback variable 

was associated to the stimulation intensity or frequency [473, 474]. An alternative approach is to employ 

spatial encoding, where the movement of the prosthesis is intuitively represented as a tactile sensation 

moving across the residual limb [454, 475-478].  

Nowadays, modern prostheses integrate several active DoFs [4, 6, 7], usually combining hand 

opening and closing with active wrist rotation. Therefore, to convey the full state of the prosthesis to the 

user, the artificial feedback needs to transmit two feedback variables, one encoding hand aperture and 
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one for wrist rotation. However, only few studies have so far proposed feedback methods that can 

convey both variables [80, 454]. In addition, although the two DoFs can be controlled using a simple 2-

channel myoelectric interface, this approach is slow and cognitively taxing, as the user needs to 

manually switch between the active functions [6]. Therefore, pattern classification is the preferred 

method in this case, because it eliminates the tedious switching by directly translating the user motion 

intention into prosthesis movements [7, 9, 41, 73, 74, 87, 94, 177, 411, 479-481]. However, only a few 

studies have tested the integration of feedback on multiple DoFs [131] with pattern classification [136, 

436, 454, 482, 483]. For example, Shehata, et al. [482] proposed an augmented audio feedback to 

provide 2-DoFs movements of a cursor using different sound frequencies. The audio feedback was then 

applied to control a real prosthesis by adjusting the hand aperture and the thumb abduction/adduction 

during a Virtual Egg Test [67]. Patel, et al. [436] assessed multichannel electrotactile feedback to 

provide fingers position when controlling a dexterous robotic hand. Similarly, Garenfeld, et al. [454] 

proposed discrete proprioceptive feedback to encode 2-DoF movements of a cursor simulating a 

prosthesis in a target-reaching task, using multi-pad electrodes.  

In a recent study, it was proposed an approach to convey wrist rotation via an array of vibration motors 

placed around the forearm. The feedback variable was transmitted through spatial encoding and 

Gaussian interpolation of intensity to generate a sensation that smoothly moves around the forearm, 

congruently to the rotation of the prosthesis. Importantly, our tests showed that the smoothness of the 

tactile sensation, determined by the standard deviation (σ) of the Gaussian can be modulated without 

affecting the subjects’ ability to localize the sensation, determined by the mean (µ) of the Gaussian (see 

section 4.1). Based on those results, our assumption was that the two parameters of Gaussian 

interpolation can be used to provide two proprioceptive feedback variables independently and 

simultaneously. In the present study, we therefore propose a novel 2-DoF encoding scheme in which the 

hand aperture and the wrist rotation are respectively mapped to the parameters σ and µ. This produces 

intuitive feedback because the parameter µ moves the peak of sensation around the forearm congruently 

with the wrist rotation, while σ maps the hand aperture to the spread of sensation (i.e., larger hand 

opening, more spread sensation). The advantage of the novel method is that it can lead to a Compact 

feedback interface that can convey the full kinematic state of the prosthetic hand through a single array 

of eight vibromotors (Compact feedback).  

To assess the validity of this approach, we implemented the novel feedback method together with 

pattern classification into an embedded platform and used it for the closed-loop control of the Hannes 

prosthesis [11, 13]. The novel feedback was compared to the Conventional approach where the feedback 

was provided using two vibromotor arrays (with eight and four motors, respectively), each dedicated to 

conveying a single DoF (Conventional feedback). Reducing the number of vibromotors in the feedback 

array is an important step to facilitate the integration of the feedback interface into the prosthesis socket. 

The experimental assessment included ten able-bodied subjects and four transradial amputees, who 

performed a Target Achievement Control Test (TAC) [457] using pattern classification to control 
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rotation and hand aperture, while the state of the prosthesis was provided to the subject through the 

vibrotactile feedback using either the Compact or the Conventional interface. 

4.2.2. Materials and Methods 

4.2.2.1. Subjects 

Ten heathy able-bodied subjects (aged 27.3 ± 3.1, 5 males), and four transradial amputees (aged 53.3 

± 14.7, all males), with no prior experience with proprioceptive tactile feedback, participated in this 

study. The amputees were expert users of hand prosthesis with single active DoF (see Table 19). Before 

starting the experiment, the subjects were informed about the protocol, and they signed the informed 

consent form. The healthy subjects performed the experiment at the Center for Sensory-Motor 

Interaction in Aalborg (Denmark) following the experimental protocol approved by the Research Ethics 

Committee of the Nordjylland Region (approval number N-20 190 036). The amputees performed the 

experiment at Istituto Italiano di Tecnologia (IIT) in Genova (Italy) following the experimental protocol 

approved by the Ethical Committee of Liguria Region (approval number 363/2022 - DB id 12494). 

4.2.2.2. Experimental Setup 

The experimental setup (Figure 60 A) comprised the following components: (1) a standard laptop 

(DELL XPS 15, Intel Core i9 @2.60GHz, 32GB RAM) running Windows 10, a keyboard, and a 24’’ 

computer monitor, showing a user interface to collect EMG data and to train the pattern recognition 

algorithm to decode the user movements (E-DATS, EMG - Data Acquisition & Training Software [12, 

13]); (2) a virtual reality (VR) environment simulating the Hannes prosthetic hand (Hannes) [11-13, 15] 

with three active DoFs (hand open/close, wrist pronation/supination, and wrist flexion/extension); (3) 

the interface to select the type of feedback (Compact vs. Conventional), configure the feedback 

parameters and select the number of vibromotors used; (4) Hannes prosthetic hand [11] with three active 

DoFs (hand open/close, wrist pronation/supination, and wrist flexion/extension); (5) twelve eccentric 

rotating mass (ERM) vibromotors (Vybronics, VC0625B001L) with a custom-made control unit to 

provide tactile feedback; (6) six EMG electrodes (Otto Bock, 13E200=50 AC) with a custom-made 

Table 19 population of amputees 

 

Amputees Age 
Time from 

amputation 

Dominant Limb 

(before amputation) 

Amputated 

Limb 
Etiology 

Level of 

Amputation 

Type of 

Prosthesis 

P1 32 7 years Right Right 
Work 

accident 

Unilateral 

Proximal 
BeBionic Hand 

P2 68 53 years Right Right 
Work 

accident 
Unilateral Distal 

Michelangelo 

Hand 

P3 54 22 years Right Right 
Work 

accident 

Unilateral 

Medial 
Variplus Hand 

P4 58 37 years Right Right 
Work 

accident 
Unilateral Distal 

Michelangelo 

Hand 
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master board to record the data, establish the communication between a host PC, Hannes hand and the 

feedback control unit; (7) and headphones to cancel the noise of the Hannes’s motors during movements.  

The master board (Figure 60 C-1b) communicates with Hannes hand (Figure 60 C-4) and with the 

feedback controller (Figure 60 C-1a) using a CAN Bus protocol, it collects data from EMG sensors 

(Figure 60 C-3b) using an onboard ADC unit, and connects to the laptop via Bluetooth (Figure 60 C-2). 

The master board implements a Non-Linear Regression (NLR) to decode the subject’s motion intention 

and generate control commands for Hannes and VR hands, after an offline calibration [12, 13]. The 

algorithm was trained to recognize wrist pronation/supination and hand opening/closing and activate the 

prosthesis motion accordingly. The prosthesis velocity was proportional to the strength of muscle 

contraction estimated by averaging the mean absolute value of the EMG recorded over the six electrodes. 

The E-DATS software responsible of collecting EMG data and calibrating the NLR algorithm, was 

developed using Labview and MATLAB 2020b (The MathWorks, Inc., Natick, MA, USA) [12, 13]. 

The VR framework was developed using the Unity development suite and C# language. 

Another master board collected the data from the Hannes hand (joint references, encoders, currents, 

EMGs) and sent that information to the VR framework. The framework computed the control commands 

for the vibromotors, depending on the selected encoding and transmitted the commands to the master 

board, which activated the feedback controller to generate the desired vibrotactile stimulation. 

Therefore, the real hand performed the movements decoded by the master board through the pattern 

recognition algorithm, while the virtual hand replicated the position of the real hand. 

Six EMG sensors were placed circumferentially and equidistantly around the subject’s forearm, 

approximately 5cm distal to the elbow (Figure 1C-3a,3b). Each electrode was enclosed in a plastic block 

 

Figure 60 Experimental setup and the scheme of closed-loop control. 

A: experimental equipment used. B: testing session with an amputee. C: The closed-loop control of Hannes Arm and its 

virtual representation . The subject (3) was seated in front of a monitor wearing the armband with EMG sensors (3b) 

placed equidistantly around the right forearm, and vibromotors (3a) distributed equidistantly around the interior aspect of 

the right forearm. The virtual reality interface (2) showed the orientation of the target (2b) and the controlled hand (2c) to 

implement target achievement test. Importantly, during the test, the subjects controlled a real prosthesis (4). The graphical 

controls (2a) allowed setting the paramenters of the feedback scheme (5). A PC application (6) governed the training of 

the pattern recognition model and later the controlled real prosthesis, while prosthesis state (wrist angle and hand aperture) 

was conveyed to the subject through vibrotactile feedback. The subject wore headphones (7) to block the incidental noise 

coming from the Hannes prosthesis (4). In the text more details of the setup and the experimental protocol were provided. 
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with the conductive pads in contact with the skin. The blocks were equidistantly fixed with Velcro to an 

elastic band and the band was strapped around the forearm by applying a level of pressure which was 

enough to hold the electrodes securely in place, while avoiding discomfort during a prolonged use. The 

EMG data was recorded at a sampling frequency of 1 kHz with 16 bits of resolution, and the signals 

were hardware rectified.  

For feedback delivery, two configurations of vibromotors were used. In one condition (Conventional 

interface), twelve vibromotors were arranged in two arrays (first array of eight vibromotors and second 

array of four vibromotors), and in the other condition (Compact solution), only one array of eight 

vibromotors was used. The arrays were placed semi circumferentially and equidistantly around the 

internal aspect of the subject’s forearm, approximately 15cm distal to the elbow (first array) and 20cm 

distal to the elbow (second array) (Figure 60 B). The diameter of each vibromotor was 6.3mm with a 

thickness of 2.5mm. Each vibromotor was covered with a soft silicon case (size 14.2x14.2x6.8mm) to 

localize and absorb the radiating stimulation and avoid heating the skin during prolonged continuous 

vibration. The silicone case was fixed to the elastic band using Velcro, to prevent slips. The case had a 

housing to place the vibromotor vertically, thereby bringing the side of a coin motor in contact with the 

skin, as a pilot test showed that this produced stronger and more focused sensations. The motors were 

placed at a minimum distance of 20mm between them to facilitate the localization of vibrations. The 

elastic band was strapped to the subject with Velcro by applying a level of pressure which was enough 

to hold the motors securely in place, but without masking the vibration sensation and/or constricting the 

blood flow. To check the tightness, the subject was asked to rotate the forearm, and if the elastic band 

moved accordingly without slipping, the band was deemed tight enough. The first vibromotor in each 

array was placed at the volar side while the last was positioned at the dorsal side, covering thereby only 

half of the forearm (its internal portion). This placement was selected because the spatial extent of the 

vibrotactile interface matched the range of motion of the prosthesis wrist. For each vibromotor, the 

vibration frequency was set to 200 Hz [459], which is within the range of maximum sensitivity of the 

Pacinian corpuscles [460]. The gain of each vibromotor was individually adjusted for every subject (see 

section I.4.2.2.4). 

The subject sat comfortably in front of the monitor, with their right arm (residual limb) relaxed and 

placed on a desk, ensuring that the vibromotors did not contact the table. The computer monitor was 

placed approximately 50cm from the subject, and the Hannes hand was placed behind the screen so that 

the subject could not see it while he/she also wore noise-cancelling headphones to block the sound from 

the prosthesis motors. The VR environment displayed two virtual Hannes hands, where one showed the 

target position (Figure 60 C-2b, transparent Hannes) while the other was controlled by the subject 

(Figure 60 C-2c, solid Hannes). As explained above, the subject controlled the movements of the real 

prostheses through pattern recognition by moving their hand (able-bodied subjects) or phantom limb 

(amputee participants). The VR environment was therefore employed to present the task to the subjects 
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(target configuration) while the real hand ensured that they actually controlled the real dynamics of a 

physical prosthesis.  

4.2.2.3. Vibrotactile feedback encoding 

A novel encoding scheme was implemented to provide the proprioceptive feedback (Figure 61, 

Compact feedback) and compared to the standard spatial encoding [450] (Figure 61, Conventional 

feedback). With the latter, the information about wrist rotation and the hand aperture was provided using 

two arrays of vibromotors. In particular, eight vibromotors were used to convey wrist rotation while a 

separate array of four vibromotors provided hand aperture, reflecting larger range of motion in the wrist 

compared to that of the hand. The range of motion of each DoF was divided into equisized intervals and 

the intervals were then sequentially associated to the vibromotors. Therefore, as the wrist rotation 

changed from 180° to 0°, the vibromotors were activated sequentially from the motor on the dorsal side 

to the motor on the volar side of the forearm, and similarly for the hand aperture. For instance, 

vibromotor 5 was activated when the wrist angle was 120° (Figure 61 B), and then as the wrist continued 

 

Figure 61 Illustration of the two feedback encoding approaches. 

A1: Representation of Hand aperture range of motion. A2: Representation of the wrist rotation range of motion. B, C and 

D: Vibromotor activations determined by the two encoding approaches for three different hand configurations (top). The 

Conventional Feedback (middle) used two arrays of vibromotors to separately convey wrist rotation and hand aperture. 

The Compact Feedback (bottom) employs a single array of vibromotors and transmits the feedback information by 

modulating the Gaussian mean (µ) for wrist orientation and standard deviation (σ) for hand aperture.  
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rotating, motor 4 and motor 3 were activated in succession when the wrist angle reached 100° and 80° 

(Figure 61 C), respectively, and analogously for the hand aperture (Figure 61 A, Figure 61 D).  

The novel encoding scheme conveyed two feedback variables using a single array of 8 vibromotors, 

and hence, represented a more Compact solution (4 vibromotors less). This approach was based on a 

recent work (see section 4.1), where they investigated Gaussian interpolation of vibrotactile stimulation 

and showed that the location and spread of the Gaussian profile could be perceived independently by 

the subjects. Therefore, the rotation angle of the prosthesis wrist was conveyed to the subject by 

modulating vibration location (i.e., the location of the peak intensity, µ in equation (24)), while the hand 

aperture was transmitted by varying the spread of sensations (i.e., the number of active motors, σ in 

equation (24)), as shown in Figure 61 (Compact feedback, see also below). The feedback was therefore 

intuitively related to prosthesis motion, as the rotation of the wrist produced a sensation that rotated 

around the forearm, while with the hand opening, the elicited sensation spread spatially in both 

directions from the current location.  

The following equation was used to define the Gaussian mapping between wrist position and hand 

aperture: 

 

{
 
 

 
 𝑦 = 𝑒

−
(𝑘−µ)2

𝑔∗𝜎2

µ = 𝑝 ∗ 𝑁

𝜎 = (
ℎ

100
∗ (2.0 − 0.1)) + 0.1

 (24) 

where y is the normalized vibration amplitude of the motor k, µ is the mean of the Gaussian computed 

as the normalized position (p) of the wrist multiplied by the number of motors (N = 8) in the array, g is 

a parameter set to 2.25, and σ is the standard deviation of Gaussian ranging from 0.1 for fully closed 

hand (0%) and 2.0 for fully open hand (100%), calculated as the normalized position of the hand (h) 

multiplied by the range of σ ([0.1 2.0]). The values and ranges of the parameters were selected based on 

the outcomes of a recent study (see section 4.1). The parameter µ, which was mapped to wrist position, 

determined the location of the peak of intensity within the array of vibration motors (increasing µ means 

that the prosthesis is supinating), while σ was mapped to hand aperture and adjusted the spread of 

intensity across the motors (increasing σ means that the prosthesis is opening).  

An example of the Compact encoding is provided in Figure 61. The peak of intensity was centered at 

the vibromotor 5 when the wrist angle was 120° (Figure 61 B), then gradually moved across the 

vibromotors as the wrist continued rotating, to reach the third vibromotor when the wrist angle was 80° 

(Figure 61 C). Regarding the hand aperture, three vibromotors were simultaneously active (with 

different intensities) when the hand aperture was at 35% (Figure 61 B), and then further motors were 

added so that five vibromotors were active when the hand aperture was 75% (Figure 61 C). Figure 61 

also provides the feedback pattern for the Conventional approach (middle row with two arrays), which 

is based on discrete activation of individual motors, so that the two methods can be directly compared. 
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4.2.2.4. Experimental protocol 

Subjects were seated comfortably in front of a monitor placed at a distance of approx. 50cm. The 

band with EMG electrodes and vibromotors was mounted on the forearm of the dominant hand (able-

bodied subjects) and/or residual limb (amputee participants). The minimum and maximum amplitude 

for each vibromotor was determined using the method of limits [461] as described in a recent work (see 

section 4.1). Briefly, vibration intensity was increased in small steps (i.e., 4-5% of maximum activation) 

until the subjects reported a sensation or discomfort. During the experiment, the vibration intensity was 

modulated between the sensation and discomfort thresholds, to generate clearly perceivable and 

localized, but still not intrusive sensations. 

Subsequently, the gain of the EMG electrodes was adjusted by visualizing the signals to ensure that 

the maximum contraction did not saturate the recording. After this, EMG data to be used for classifier 

training was collected. To this aim, the subject was asked to perform four different movements (hand 

close and open, wrist pronation and supination) at three different contraction levels (weak, medium and 

strong). Each movement was maintained for 2s with 5s rest between the repetitions. After the data 

collection, the NLR classifier was trained, and its parameters were sent to the master control board for 

real-time decoding of subject movements and prosthesis control. The detected movement class activated 

the corresponding DoF of the prosthesis, while the average magnitude of the myoelectric signal 

determined movement speed. The latter was additionally finetuned for each subject until he/she was 

satisfied how the prosthesis reacted to his/her commands. 

Subjects then practiced prosthesis control and when confident, they proceeded to the feedback 

familiarization phase. In this phase, they were trained to associate prosthesis movements to the activation 

of vibromotors. The order of the feedback schemes (e.g., Conventional vs Compact) was chosen pseudo-

randomly so that half of the subjects started with the Conventional and half with the Compact 

configuration. The subjects were asked to move the prosthesis one joint at a time for five times across 

the full range of motion, while they watched the prosthesis moving with haptic feedback active. Then, 

they commanded sequential movements around 2-DoFs to experience the vibration patterns related to 

such combined activations.  

After the control and feedback familiarization, the subjects performed the experiment. The 

experiment was based on a target achievement control test (TAC) in which they adjusted the 

configuration of the controlled hand to match that of the visual target shown on the computer screen. 

Importantly, the subjects controlled a real prosthesis, while the incidental feedback from the device 

(sound and vision) was blocked, as described before. A sequence of 21 pseudo random trials, hereafter 

named “block”, was generated by pairing 21 pseudo random wrist targets (3 repetitions x 7 orientations) 

with 21 pseudo random hand targets (5 repetition x 4 level of aperture +1). The seven target orientations 

of the wrist and four target positions of the hand aperture were equally distributed between 0°-180° and 

0-100% excluding the extremities, respectively (see Figure 62). In addition, to prevent the subjects from 

using feedforward control and motivate them to rely on the feedback, the prosthesis velocity was 
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changed across trials by multiplying the maximum speed (1.26 rad/s) with a gain randomly selected 

from the interval 0.4 – 1. At the beginning of each trial, the subject could see the starting configuration 

of the controlled hand, visualized on the computer screen. Its position was selected to be at the end of 

the range of motion furthest  from the target configuration (Figure 62 A green dashed line), i.e., if the 

target wrist orientation was over 90°, the wrist of the controlled hand would start at 0°, and similarly, if 

the target hand aperture was over 50%, the controlled hand would start fully closed (hand aperture of 

0%). 

After a sound notification indicated the trial start, the subjects were asked to adjust the controlled 

hand using pattern classification control while the state of the hand was provided only by the tactile 

feedback. The subjects could control different DoFs as they wished, and once they judged that the 

desired target configuration was reached, they pushed the space bar. The reached position was then 

revealed to them by showing the controlled hand on the screen, and after a short break (5s), the next trial 

started. After finishing the block of 21 trials, a 5min resting phase was provided, and then another block 

of trials was performed (three blocks in total). After ten minutes of rest, the second feedback scheme 

was tested following the same protocol. At the conclusion of the experiment, subjects were asked to 

choose the feedback scheme that they preferred.  

 

Figure 62 Target positions and outcome measures. 

A: error between target and reached position 

(control accuracy) when adjusting the wrist. B/C: 

path efficiency, optimal and genearted paths for 

hand/wrist. Trial time as well as optimal times (topt1 

and topt2) to adjust each DoF are annotated as well. 
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4.2.2.5. Data Analysis 

The primary outcome measure was the end-point error between the target configuration and the 

controlled hand. This measure was computed for each DoF as the difference between the target position 

and the position of the hand at the moment the subject pressed the space bar to indicate the end of the 

trial (Figure 62 B and C). The position errors were expressed as the percentage of the range of motion. 

In addition, for the given motion speed of the controlled hand in each trial, the path efficiency was 

calculated for each DoF as the ratio between the length of the optimal trajectory (Figure 62 B and C, 

yellow line) and the trajectory generated by the subject (Figure 62 B and C, green line). The optimal 

trajectory was the shortest path from the initial to the target configuration. The generated trajectory, 

instead, was calculated as the sum of the length of the slope segments (Figure 62 B and C, green full 

lines). The horizontal segments (Figure 62 B and C, green dashed line) were not counted into the length 

because they correspond to the phases in which the subject did not move the prosthesis.  

Another parameter used to assess performance was the DoF time, i.e. the amount of time that the DoF 

was activated during the trial expressed as the percent of the total trial time. The time efficiency was 

also calculated as the ratio between the optimal time to perform the trial for the given motion speed, and 

the time that the subject took to perform the trial (Figure 62 B and C, trial time). The optimal time was 

computed as the sum of the time to adjust the two DoF (topt1 + topt2) following the respective optimal 

paths because the subject was able to adjust them sequentially and not simultaneously. Note that, 

contrary to path efficiency, which was computed for each DoF separately, the time efficiency was 

estimated per trial (because the rest time could not be separated to individual DoFs). Importantly, the 

path and time efficiency were calculated only in the trials where the positioning error was less then ± 

15%, which was achieved in the 40% of all trials. This threshold was chosen to ensure that we consider 

only those trials in which the subjects reasonably completed the assignment (e.g., if the subjects finished 

the trial quickly, without even attempting to reach the target, the time and path efficiency would be high 

but essentially meaningless). 

For able-bodied subjects, the average of the outcome measures (error, path efficiency, DoF time and 

trial time) was computed for each subject and feedback condition and statistically compared between 

the conditions for each DoF. Data was tested for normality using the Shapiro-Wilk test. A 1-way 

ANOVA or Friedman test was conducted depending on the outcome of the normality test, while post-

hoc pairwise comparisons were performed using paired t-test or Wilcoxon signed rank test with 

Bonferroni correction. OriginPro 2020 Graphic & Analysis (OriginLab Corporation, Northampton, MA, 

USA) and MATLAB 2020b (The MathWorks, Inc., Natick, MA, USA) were used for the statistical 

analysis. The threshold for statistical significance was set at p<0.05, and the outliers were excluded from 

the statistical comparisons. 

In four transradial amputees, the average of the outcome measures was computed for each DoF, each 

feedback scheme, and each subject, and reported overall and separately across three blocks to assess 

potential learning. Furthermore, for each DoF and condition, the mean of the three blocks was reported 
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to assess and compare the two feedback schemes. For consistency, the results in the text are reported as 

mean ± standard deviation in all cases. 

4.2.3. Results 

The overall results for able-bodied subjects for error, path and time efficiency are summarized in 

Figure 63. Importantly, no statistically significant differences were detected between the two feedback 

schemes in either of the performance measures. Nevertheless, it seems that the accuracy of positioning 

was somewhat more consistent (lower inter-subject variability) when using the Compact approach to 

adjust the hand aperture (Figure 63 A) and vice versa for the DoF time (Figure 63 C). Both feedback 

schemes were characterized with low time efficiency of approximately 40 ± 18.6% (Figure 63 D). 

Regarding the individual DoFs, the end-point error (Figure 63 A) and path efficiency (Figure 63 B) were 

 

Figure 63 

Summary results for the positioning error (A), path 

(B) and time efficiency (D), and time per DoF (C) 

in the form of boxplots for able-bodied subjects. 

HA indicates the aperture and WR indicates the 

prono/supination DoF. The small circles are the 

means, the red lines indicate the medians, boxes are 

interquartile ranges, whiskers represent min/max 

values and the crosses are outliers. There were no-

statistically significant differences between the two 

feedback types. 
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similar for the two DOFs with an overall average (mean and STD) around 20 ± 5.4% and 65 ± 17.4%, 

respectively. The only difference between the hand and wrist was in the DoF time (Figure 63 C), where 

the active time for the hand (overall average 16.5 ± 5.5) was lower compared to that of the wrist (21.7 

± 4.4) but also in this case the difference was not significant (p = 0.24). Finally, regarding the subjective 

preference, six out of 10 able-bodied subjects chose the Conventional encoding as the preferred 

approach. 

Figure 64 shows representative trajectories (green line) generated by an amputee subject when 

adjusting the configuration of the prosthesis using the two vibrotactile feedback encoding schemes 

(Figure 64 A for the Conventional and Figure 64 B for the Compact feedback). The target positions for 

the wrist rotation and hand aperture are shown using red lines. In both cases, the subject first adjusted 

one DoF fully and then proceeded to the next one, namely, wrist rotation and then hand aperture. 

However, in the trial with the Conventional feedback (Figure 64 A), the subject came back to readjust 

the wrist as he did not consider it to be completely correct. The control of wrist rotation took longer time 

and included more feedback-driven corrections (flat segments) compared to the hand aperture, which 

was adjusted in one (Figure 64 A) and two (Figure 64 B) continuous motions. This observation was the 

same in both feedback conditions. In two cases (wrist in Figure 64 A and hand in Figure 64 B), the 

subject reached the end of the range of motion and used this as a well-defined and easy to recognize 

“anchor” point, from which to then readjust to the desired position. Finally, with both feedback schemes, 

the end positions achieved in both DoFs matched closely the target values. Figure 64 also reports the 

outcome measures for these specific trials to illustrate their range and meaning. 

The results for the amputees are shown individually for each subject and block of trials in Figure 65. 

In general, the amputee performance (Figure 65) was comparable to that obtained in the able-bodied 

subjects, except for P1 that obtained better accuracy but worst results in all the efficiency parameters. 

When comparing the two conditions, Conventional and Compact, neither of them showed a clear 

advantage, reflecting thereby the overall results obtained in able-bodied participants. Overall, the 

 

Figure 64 

Two example trials performed by an amputee participant using the two feedback methods compared in the manuscript, 

namely, Conventional (A), and  Compact Feedback (B). The plots show the trajectories generated by the participant when 

adjusting the wrist rotation and hand aperture. Err, PathEff, TimeEff and DoFTime denote positioning error, path and time 

efficiency, and time per DoF, while the subscripts HA and WR denote hand and wrist, respectively. 
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difference in performance ([min, max]) between the encoding schemes was not large in any case, 

specifically, [0.2%, 9.7%] for error, [0.5%, 18.6%] for path efficiency, [0.6%, 17.0%] for DoF time, and 

[2%, 9.3%] for time efficiency. The condition with the lower error depended on the subject and even on 

the degree of freedom. There seem to be a slight trend for better efficiency of the Compact solution, as 

it is higher in most cases with that approach. For instance, P1 was the least efficient but he also made 

 

Figure 65 The results obtained by 4 amputee participants using Compact and Conventional feedback. 

Left panels show the performance for each block of trials, to assess the potential learning effect, while the right panels 

representthe average across blocks. HA indicates aperture, and WR represents prono/supination DoF. Plot colours are 

associated to different  amputated participants (P1-P4). The horizontal dashed lines in the right pannels indicate the mean 

performance of able-bodied subjects. Bn in the left plots denotes different testing blocks. 
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smallest errors in most cases, whereas P3 was most efficient while maintaining good accuracy. Across 

blocks, there is no consistent learning across subjects and conditions, but only sporadic tendencies. For 

instance, P3 and P2 decreased while P4 somewhat increased the error from the first to the third block.  

Finally, P1 and P3 preferred the Compact condition while P2 and P4 preferred the Conventional 

condition, and therefore, the subjects preferred the interface with which they achieved better accuracy. 

4.2.4. Discussion 

The present study proposed a novel approach to convey proprioceptive information simultaneously 

for two feedback variables, namely, hand aperture and wrist rotation, by using a single array of vibration 

motors. The approach employs spatial encoding with Gaussian interpolation, in which the location of 

the peak intensity was modulated to convey wrist orientation (µ in equation (24)), while the spread of 

sensation (σ in equation (24)) was associated to the hand aperture. Most methods in the literature use 

multiple arrays of stimulators to provide information from different DoFs [484, 485], while the encoding 

proposed in the present study enables conveying multiple information through a single array. The latter 

is an important strategy as it allows making the feedback interfaces more compact and therefore easier 

to be integrated in the prosthetic socket. The approaches to establish parallel feedback channels through 

the same interface were investigated in the literature using multimodal (hybrid vibro- and electrotactile 

stimulation) [475-478] and multiparameter (amplitude and frequency) [5, 126, 473, 474, 486] 

modulations. Our approach is based on spatial encoding, which enables superimposing two feedback 

variables using an intuitive mapping, i.e., rotating sensation to convey rotation and spreading sensation 

to indicate hand opening. 

Importantly, the novel approach based on Compact encoding was compared to the Conventional 

mapping that used two independent arrays and the results demonstrated that the two approaches were 

similarly effective in conveying two-DoF proprioceptive information. There was no significant 

difference in either the accuracy or efficiency when using the two encoding schemes for the closed-loop 

prosthesis control. Our initial assumption was that the subjects would perform better with the 

Conventional scheme, as the interpretation was in this case simple (identifying a single active motor). 

In addition to similar accuracy, the subjective preference was also similarly distributed between the two 

encoding schemes (6 vs. 4 in able bodied and 2 vs. 2 in amputee participants). In able bodied subjects, 

the preference was slightly in favor of Conventional feedback scheme. Nevertheless, our results 

demonstrated that Compact solution can still be used in the case that there is not enough space to fit all 

vibromotors. In some subjects, this could decrease user experience (lower preference) but will not 

jeopardize the performance.  

The present study has therefore proven the hypothesis inspired by a recent work that the two 

parameters defining the Gaussian interpolation strategy can be independently modulated and recognized 

by the participants (see section 4.1). In that study, the subjects controlled only the wrist rotation of a 

virtual prosthesis, whereas the parameter σ was imposed externally as “noise”. In the present 
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experiment, however, they actively adjusted the configuration (both wrist and hand) of a real prosthesis. 

Note that the feedback encoding in the Compact interface is intrinsically coupled. For instance, the same 

target hand aperture will lead to different sensations depending on the target wrist rotation. This effect 

does not exist in the Conventional approach, and the coupling therefore did not negatively affect the 

control. 

This is an important result as it shows that the number of vibromotors can be safely decreased from 

twelve to eight without loss of performance. Therefore, the excess vibromotors can be removed to make 

the interface easier to be integrated or they can be used to encode additional information, such as wrist 

flexion/extension or grasping force. Such an interface could be used to provide the simultaneous 

feedback of three different DoFs: hand aperture, wrist rotation, and wrist flexion and extension, hence 

full kinematic state of a prosthetic hand (complete proprioceptive feedback).  

In line with the previous goals, note that the setup for closed-loop control used in the present study 

was realized using an embedded platform, which is therefore ready to be integrated into a prosthesis for 

rapid clinical use. The embedded platform includes recording of EMG signals, pattern classification and 

control of vibromotor as well as bidirectional communication with the real prosthesis. In general, tactile 

feedback was rarely demonstrated in combination with pattern classification and multiple DoF control 

[454], especially when using an embedded setup [409]. 

Recently, multichannel electrotactile stimulation was used to convey two degrees of freedom [454]. 

The authors exploited the compactness of electrotactile stimulation to provide feedback through a 

flexible electrode integrating an array of 16 pads. Nevertheless, the encoding scheme utilized a 

Conventional approach where the array was segmented into non-overlapping sectors allocated to 

different DoFs, which is equivalent to the multi-array feedback of the present study. An additional 

advantage of vibrotactile interface is that it does not interfere with the recording of EMG and hence does 

not require a specialized hardware and software.  

Importantly, the amputee participants have achieved the performance that was subject specific but 

coherent with the able-bodied population (Figure 65). This is an important outcome for the prospective 

clinical application of the proposed closed-loop control, especially considering that the amputee subjects 

employed pattern classification control and feedback interface, which were mounted on the same 

forearm. This is the same setup that will be used in the clinical system.   

Overall, the novel method allowed an effective closed-loop control (average error < 20%) in able-

bodied as well as in amputee subjects. However, the average error is higher than that obtained in a recent 

study where Gaussian interpolation was used to adjust wrist orientation (see section 4.1). Nevertheless, 

in that study, the subjects controlled a virtual prosthesis using keyboard, hence, both the system and the 

control interface were ideal. We also assume that in the clinical application a precise control of wrist 

orientation and hand aperture will not be critical. Both wrist rotation and hand opening can be adjusted 

with a margin of error without jeopardizing the successful grasp. In addition, with prolonged training 

the closed-loop control is expected to improve due to both better use of pattern classification and more 
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reliable interpretation of the feedback. Similarly, the prolonged use could also change the subjective 

preference, but these remain to be tested.  

The subjects in general spent more time adjusting the wrist compared to the hand. This is not 

unexpected, as the wrist has larger range of motion, more target and feedback levels, and adjusting the 

wrist was, therefore, a more complicated task. However, it is still an encouraging result that, despite this 

difference, both DoFs could be controlled with similar relative accuracy. In general, the time efficiency 

was overall not high, and this is likely due to the cognitive demands related to interpreting the feedback 

but also generating commands using pattern classification. Nevertheless, it is overall promising that the 

subject could successfully exploit the closed-loop control of multiple DoFs, after only a brief training. 

A prolonged training is likely to have a stronger effect particularly on the time efficiency. Finally, 

despite in the present work the participants used to control DoFs sequentially via pattern classification, 

the same feedback scheme can be used in combination with regression to allow simultaneous control. 

In this case, the elicited tactile sensation would change both in the location and the extent of spreading 

concomitantly. It remains to be tested how well and how fast the participants can accommodate such 

dynamically changing feedback.   

Following the encouraging results of the present study, especially regarding amputee subjects, the 

next step in our research will be to integrate the system into a prosthesis socket and test the closed-loop 

control during functional prosthesis use. The final aim is to accommodate all DoFs of the Hannes 

prosthesis both in control (pattern classification) and feedback (full proprioceptive and exteroceptive 

substitution).  

4.2.5. Conclusion 

The present study proposed a novel Compact approach to provide artificial vibrotactile feedback 

about two DoFs using a single array of vibromotors. In the proposed approach, the wrist rotation was 

conveyed by moving the peak of sensation around the forearm, while the hand aperture was transmitted 

by increasing the spread of sensations from the peak location as the hand was opening. Hence, the two 

variables were conveyed using an intuitive mapping. The tests demonstrated that the novel approach 

performs similarly to the Conventional feedback scheme, where separate arrays were used to covey 

individual DoFs. Our study therefore indicates that, by using the proposed method, the number of 

vibration motors required to provide feedback can be decreased without any significant loss of 

performance. This, in combination with the fact that the feedback was integrated with pattern 

recognition, represents an important step towards the development of clinical applications embedding 

both feedback and control into a single prosthesis socket. 
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4.3. Object Stiffness Recognition and Vibratory Feedback without 

Ad-hoc sensing on the Hannes Prosthesis: a Machine Learning 

Approach 

4.3.1. Introduction 

Upper limb loss is a serious impairment due to its explicit and direct interaction with the external 

world. To compensate this loss, prostheses have been introduced to restore the functionality of human 

limbs during Activities of Daily Living (ADLs). This necessity led to the development of high-tech 

devices with multiple degrees of freedom [487, 488], capable to perform a variety of gestures and grasps. 

However, the embodiment of these devices into human body scheme and their acceptance are also 

essential elements for the reconnection with the outside world [129, 243]. With the term “Embodiment” 

is meant the integration of an external object in the internal corporal scheme, as if it was part of the body 

itself. In this specific context, the external object is, precisely, the prosthesis [257]. Embodiment 

comprises three correlated factors: ownership, localization, and agency [489], and it has been suggested 

to promote intuitive control, learning and comfort when using new tools, thus providing the opportunity 

to improve the user interface for devices such as artificial limbs. The introduction of direct feedback 

modalities can prevent amputees to rely exclusively on sight [371, 490], reducing the mental effort and, 

therefore, facilitating the communication between user intention and prosthesis action [156, 428, 431]. 

In fact, it has been demonstrated that the introduction of haptic feedback improves the control of the 

prosthesis [5, 442, 470, 491] due to its fundamental role during human-objects interactions [88, 156, 

432, 433, 449, 486], allowing subjects to embody the device [88, 127, 132], hence improving the 

compliancy among the user, the prosthesis and the grasped objects [492]. In literature, this interaction 

is mainly assessed providing grasp force or proprioceptive information [493]. Contrarily, it is our aim 

to deliver information about the grasped object’s stiffness that in normal conditions, occurs thanks to 

the combination of visual sensory information, proprioceptive sensations related to shape and size, and 

tactile sensations related to stiffness [494]. Therefore, the current research activity wants to offer an 

intuitive, non-invasive and easy-to-use prosthetic system capable to identify simple grasped object 

proprieties when visual sensory information of the user is not available or limited [5]. For instance, when 

the user is taking an object from a bag without looking at it or when the light in the environment is off.  

This situation was also treated by Cybathlon 2020 competition, which introduced the Haptic Box task, 

considering it as a common Activity of Daily Living (ADL) [17].   

Focusing on tactile sensations, several studies tried to reproduce the properties of human skin endow 

the device with tactile sensing technologies that typically requires cumbersome ad-on like sensing skin 

with different kind of sensors such as piezoresistive [120], capacitive [495], piezoelectric [496] and also 

optical [497].  The measurements acquired by these tactile sensors are often given as input to machine 
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learning algorithms, which extract useful information that may be conveyed to the prostheses users as 

described in Jamali and Sammut [498], Liarokapis, et al. [499], Konstantinova, et al. [500], Devaraja, et 

al. [501], Huang and Rosendo [502]. 

Once the tactile information has been extracted, it is necessary to effectively provide it to the subject. 

The sensory substitution process can be exploited non-invasively, involving the connection of a certain 

event with specific feedback that is not the natural one, such as tactile sensory feedback [5, 100, 220, 

436, 437]. For example, the subject can be taught to associate a certain vibratory stimulus to the contact 

of the prosthesis with an object [100, 217, 220, 428, 437, 439-441]. On the other hand, superficial 

stimulation could target portions of missing limb’s skin that are innervated by afferent neurons after the 

amputation, the so called referred touch, to stimulate the phantom limb and improve the embodiment 

[132, 503], such as kinesthetic sensory feedback. 

The most common feedback restoration method is through vibration [503], given its compatibility 

with EMG control and better acceptance by the subjects with respect to electrostimulation, capable to 

stimulate phantom limb sensation with electric surface charge [504-506]. It is possible to provide 

different type of information acting on the amplitude and frequency of the vibration, as exploited in the 

study of Witteveen, et al. [507], in which the magnitude of the grasp force was transmitted using 

different levels of amplitude. An alternative to this feedback is the mechanotactile, which can be exerted, 

for example, with a tactor, as in Meek, et al. [508] hence producing a one-to-one correspondence of 

touch sensation to user stimulation, or with a cuff, as proposed by Casini, et al. [509]. 

However, despite the high potentiality offered by these solutions, they mainly result bulky, heavy, 

and difficult to integrate, along with high power consumption due to high computational burden. An 

example is proposed by Antfolk, et al. [407], which designed a touch sensory feedback via air mediated 

pressure from the hand to the forearm skin. This is a no-power solution which has no impact on power 

consumption nor on computational burdening. However, the final integration within the prosthesis does 

not guarantee the anthropomorphism of the hand device. It is also important to point out that the quick 

disconnection among the socket and the hand prosthesis is lost due to the mechanical connections 

running from the fingers’ hand to the on-socket actuators. Standard devices use electronic slipring 

combined with a quick disconnect mechanism integrated in the prono-supinator wrist to guarantee the 

overall disconnection of the hand prosthesis from the socket in case of emergency. However, in the 

proposed design this feature is compromised. Other examples are Oddo, et al. [155], Shehata, et al. [483] 

which proposed an artificial fingertip to improve performance of prosthetic hands by using intraneural 

stimulation. That solution can be nicely integrated into a fingertip by maintaining the anthropomorphic. 

However, the on-board electronics which record, process the tactile information and encode the 

stimulation is cumbersome. Moreover, the high-power consumption of the FPGA-based solution does 

not permit the entire system to last for an entire day and to fit into a standard socket. Similarly, Clemente, 

et al. [428] purpose a solution whose electronic skin offers high sensitivity ranging from light touch and 

heavy touch. However, similar integration problem of the dedicated board occurs. On the other hand, 
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Vargas, et al. [445], finally,  proposed force and position sensors on the fingers to provide object stiffness 

recognition on amputees through vibrotactile feedback. That solution can be easily integrated; however, 

the performances of such solution are limited in comparison to our results. Due to these issues, the lack 

of a suitable feedback restitution method in the prosthetic field is still far from being solved. Two other 

solutions for object stiffness recognition, without dedicated sensors, were implemented by [510] as well 

as by [511]. Their works demonstrated the feasibility of these approaches in a robotic scenario using an 

actuated mechanical gripper. 

Considering the advantages of providing feedback to amputees to improve the comfort between the 

user and the device, in this study we first investigated the possibility of detecting void grasp and object 

grasp. Then, we identify softness and hardness of the objects therefore permitting the user to 

discriminate among “void grasp”, “rigid object” and “soft object” without visual sensory information. 

In a first preliminary study [512], a virtual multi-body model of Hannes was developed to offline 

demonstrate, with a virtual simulation, how the motor-side current absorption and the position 

measurement could be correlated with the hand grasp force and the grasped object’s stiffness. 

Subsequently, in a following study [513] an Ensemble Bagged Trees classifier was implemented and 

offline tested with simulated data to validate an approach to distinguish two different objects’ stiffnesses. 

Consequently, in the presented paper we exploited the previously preliminary validated approach to 

develop an online (real-time) solution to perform object stiffness recognition and sensory feedback. The 

performance of this solution was assessed on end-users, both able-bodied and amputees. A Non-Linear 

Logistic regression classifier was used to recognize rigid or soft objects and void grasps. We excluded 

embedded force sensors, whose introduction would require facing many challenges, starting from the 

choice of the right sensor with basic requirements like high resolution, high sensitivity and robustness, 

to the difficulties of managing the wiring [514]. Instead, we propose a methodology that uses intrinsic 

sensors (sensors and parameters already available on the prosthesis) for the normal functionality of the 

prosthesis which does not increase cost and complexity of the device. In particular, we exploited the 

following intrinsic sensors: the motor-side current, whose relationship with the contact stiffness has 

been analytically demonstrated by Deng, et al. [515], the reference position, given as input to control 

the device closure, and the position effectively measured by the encoder (encoder position). We 

implemented a close-loop vibratory feedback, using a single vibromotor embedded in the Hannes 

system, closely related to the predictions made by the classifier. In details we applied the strategy of 

strong vibration for rigid objects and small vibration for soft objects, identified in this work as ‘Two 

Feedback (2FB) condition’ [516, 517]. In a first phase, the classifier performance and the 2FB 

effectiveness were evaluated with 18 able-bodied subjects by measuring the classification accuracy 

through F1Score. In a second phase, a comparison between our proposed feedback method (2FB) and 

three other control feedback conditions was carried out on 5 amputees. This comparison was performed 

both objectively by measuring F1Score, users’ response time and proprioceptive drift, and subjectively 
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through questionnaire to investigate the users’ appreciation of the feedback strategies and to identify the 

most intuitive and effective one. 

4.3.2. Material & Methods 

4.3.2.1. Subjects 

Eighteen able-bodied subjects aged between 24 and 50 years (28.8 ± 6.2) and 5 mono-lateral 

amputees (right trans-radial amputees, users of active prostheses) were recruited for this study, Table 

20. Written informed consent was obtained from all subjects. Experimental protocol was approved by 

the AVEC (Area Vasta Emilia Centro) Ethics Committee (Protocol Code: CP-PPRAS1/1-03) and 

performed in accordance with the guideline of the Declaration of Helsinki. 

4.3.2.2. Experimental setup 

The experimental setup used for performing the entire experiment, Figure 66, was composed by: (A) 

the myoelectric prosthesis Hannes, fixed on a rigid cone; (B) a custom master-board to control the hand, 

decode the stiffness of the grasped object, and communicate with the PC via Bluetooth; (C) two EMG 

sensors (standard Ottobock, 13E200=50 AC) to close or open the hand; (D) an eccentric rotating mass 

(ERM) vibromotor to convey the feedback; (E) a power supply for the prosthetic system; (F) two 

wristbands to attach the EMG sensors and the vibromotor to the subject’s forearm; (G) three rigid objects 

and three soft objects with spherical, cubic and cylindrical shape used during the Cybathlon 2020 edition 

(Caserta et al., 2022, ETH-Zurich, 2020); (H) a laptop  to choose the feedback condition and to collect 

the data; (I) a keyboard, placed in front of the subject, to press the left (rigid object) and right (soft 

object) arrows to indicate the guessed stiffness of the grasped object; (J) headphones reproducing white 

noise to prevent the users from hearing the prosthesis motor. 

Table 20 Population of amputees. 

Amputees Age 
Time from 

amputation 

Dominant Limb 

(before 

amputation) 

Amputated 

Limb 
Etiology 

Level of 

Amputation 

Type of 

Prosthesis 

A1 53 32 years Right Right 
Work 

accident 

Unilateral 

medial 

Michelangelo 

Hand 

A2 42 18 years Right Right 
Car 

accident 

Unilateral 

proximal 
Variplus Hand 

A3 58 37 years Right Right 
Work 

accident 

Unilateral 

distal 

Michelangelo 

Hand 

A4 35 12 years Right Right 
Work 

accident 

Unilateral 

distal 
Variplus Hand 

A5 68 53 years Right Right 
Work 

accident 

Unilateral 

distal 

Michelangelo 

Hand 
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The vibromotor was inserted in a custom silicone holder to localize and absorb the radiating 

stimulation and to avoid the possible heating of the skin due to prolonged vibration. The vibromotor was 

placed vertically with respect to the skin to produce a stronger and focused sensation. The vibration 

frequency was set to 200 Hz, using a supply voltage of 2.5 V [459], and the amplitude was varied through 

the Pulse Width Modulation (PWM). 

4.3.2.2.1. The Hannes hand 

Hannes is an under-actuated poly-articulated prosthetic hand characterized by a leader-follower wire 

configuration used to control the movements of fingers [11]. The hand powertrain consists of a single 

DC motor coupled with a custom planetary gearhead, which drives the grasping movement (see 

Supplementary Materials). The actuation system is controlled by a position reference (ϑref) synthetized 

from the user’s electromyography (EMG) signals. A magnetic encoder measures the slow shaft position 

(ϑout) of the hand drive train, therefore controlling the desired grasp configuration. The low-level control 

system is based on a series of Proportional-Integrative-Derivative (PID) controllers. The outer loop is 

position based (where only Proportional and Derivative – PD terms are deployed) whilst the inner loop 

is current based and concerns Proportional and Integrative – PI terms only. In particular, the error (εpos) 

between the ϑref (hand control command) and the ϑout (outer feedback) is fed to the outer PD loop. The 

related output is then multiplied by a proportional gain resulting in a current reference (iref) which is 

subtracted with the measured one (iout, inner secondary feedback which is the current absorbed by the 

DC motor during hand movement and grasp). As consequence, the related error (εi) is then fed to the 

 

Figure 66 Experimental setup used to perform the task on healthy subjects and amputees. 

It consists of: A) socket with the Hannes prosthesis; B) the EMGM to control the Hannes hand, recognize the grasped 

object and provide feedback; C) EMG sensors; D) vibromotors; E) power supply; F) elastic band to attach the EMGs and 

vibromotors to the forearm; G) the objects used to perform the task; H) laptop with the virtual reality; I) keyboard to choose 

between rigid, soft or void; J) headphones to isolate the participants during the experiment. 
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inner PI controller hence generating the control command (V) to be delivered to the motor driver. As 

many under-actuated prostheses, Hannes is under-sensorized. Indeed, the only available measurements 

are motor-side current and position. 

4.3.2.2.2. Feedback conditions 

Four different feedback conditions were assessed in this study: (i) no FB condition (NoFB); (ii) audio 

FB condition (AFB); (iii) one FB condition (1FB); (iv) two FB condition (2FB). The NoFB condition 

was characterized by the absence of any possible feedback. Subjects were visibly (with closed eyes) and 

auditory (headphones with white noise) blind and without any vibratory feedback. In the AFB condition 

no vibratory feedback was supplied to the user, but the absence of the headphones permitted accidental 

auditory feedback of the moving prosthesis. In the 1FB condition the vibratory feedback was provided, 

but the same vibration intensity (30% of PWM) was associated to both rigid and soft objects, while no 

vibration was given during void closures, see Figure 67 table. The 2FB condition provided a strong 

vibration for rigid objects (100% of PWM) and a light vibration for soft objects (30% of PWM, value 

found during some previous pilot tests to be perceived sufficiently different from the 100% used for 

rigid objects), see Figure 67 table. As in the 1FB condition, void closures did not provide any kind of 

vibration. The no FB condition was implemented as a baseline for validation and comparison of subjects’ 

performance. In fact, in total absence of feedback, subjects’ performance should be close to a random 

guess. The audio FB condition was introduced, since it represents a reasonable scenario of use of the 

prosthetic hand by amputees, namely with no direct vision of the prosthesis but accidental auditory 

information from the prosthesis motion. Therefore, this second condition works as a real-case scenario 

ground-truth for the user. The other two conditions - 1FB and 2FB - were implemented to observe, 

respectively, if an additional vibratory feedback could improve the stiffness estimation performance, 

and if a different degree of vibration could further help amputees in discerning between harder and softer 

objects. 

4.3.2.3. Non-Linear Logistic Regression 

4.3.2.3.1. Algorithm Model 

The algorithm chosen for the object stiffness discrimination task is the Non-Linear Logistic 

Regression (NLR) classifier. This machine learning algorithm was selected given the good performance 

shown for multiclass classification problems, and for simplicity reasons, since the NLR is already 

employed for Hannes pattern recognition control strategy [12, 13]. It is based on the calculation of the 

class membership probability through the following formulation: 

 𝑃(1|𝑥, 𝜗) =  {
𝑔(𝜗𝑇 ⋅ 𝑥) =

1

1 + 𝑒−(𝜗
𝑇⋅𝑥+𝜗0)

1 − 𝑃(𝑦 = 0|𝑥, 𝜗)
 (25) 
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Where ϑ and ϑ0 are the internal parameters vector of the classifier and the bias term respectively, x is 

the input feature vector while g(·) is the sigmoid logistic function. The class prediction is obtained from 

the comparison between the distribution P(y|x) with a decision threshold (TH) as: 

 ℎ𝜗(𝑥) = {
𝑃(1|𝑥, ϑ ) ≥ TH → 1
𝑃(1|𝑥, ϑ ) ≤ TH → 0

 (26) 

The TH value was obtained after an optimization phase on the validation set. Since the NLR is a 

binary classifier, a One-vs-All approach was implemented to address the multiclass classification 

problem for the discrimination between rigid, soft and void closures. This involves the use of as many 

binary classifiers as the classes to predict, and each of them is trained to recognize the specific class. 

The model parameters (ϑ) are the result of an optimization process which involves the minimization of 

a cost function called cross-entropy error J: 

𝐽(ϑ, ϑ0) =  −
1

𝑚
⋅ [∑𝑦(𝑖) ⋅ ln (𝑔(

𝑚

𝑖=1

𝜗𝑇 ⋅ 𝑥 + ϑ0))] −
1

𝑚
⋅ [∑(1 − 𝑦(𝑖)) ⋅ ln (1 − 𝑔(

𝑚

𝑖=1

𝜗𝑇 ⋅ 𝑥 + ϑ0))] (27) 

Where m is the number of samples used to train the algorithm and y(i) is the known class membership 

of the ith sample [13, 77]. 

4.3.2.3.2. Algorithm Training 

To adapt the model to distinguish multiple rigidities, the classifier required a training phase involving 

the repetitive closure of the prosthesis on objects of different stiffness. To simplify this work and to 

create a reproducible acquisition set up, a custom-made object was 3D printed. This device, shown in 

Figure 68, was designed to reproduce the same shape and dimension of the Go Direct ® Hand 

Dynamometer [518], used in the previous study [512], which offers the possibility to insert springs of 

different stiffness, simulating the grasping of soft and rigid objects as shown in Figure 68 table. 

Table 21 Dataset realization for training the NLR for object stiffness recognition algorithm. 

# closures Grasped object Stiffness Control signal 

10 Void Void Sinusoidal 

10 Hand Dynam Rigid Sinusoidal 

10 Hand Dynam Rigid EMG 

5 4xS1 Soft Sinusoidal 

5 4xS1 Soft EMG 

5 2xS1 Soft Sinusoidal 

5 2xS1 Soft EMG 

5 4xS2 Rigid Sinusoidal 

5 4xS2 Rigid EMG 

5 4xS3 Rigid Sinusoidal 

5 4xS3 Rigid EMG 

5 2xS1-2xS4 Soft Sinusoidal 

5 2xS1-2xS4 Soft EMG 
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The device was mounted in an ad-hoc designed test bench. It is composed by movable parallel arms and 

a two-cuffs system acting as holder. The prosthesis was fixed at the base of this test bench, as shown in 

Figure 68, in such a way that only the distal phalanges of the four fingers had impact on the upper plate 

of the device when performing a closure. 

Hannes was controlled through a USB GUI, which allowed the data acquisition (motor-side current 

and encoder position) as well. 

The NLR model generation was performed offline through Matlab and it required a training and a 

test dataset, both characterized by the following four-columns structure: (i) the motor-side current, (ii) 

the reference position sent as input, (iii) the encoder position measured, and (iv) the labels of the objects 

(rigid, soft, void), as it is a supervised learning algorithm. All these measurements are fed to the classifier 

as analog signals, thus they are directly used as input dataset. Moreover, the label zero was associated 

to void closures (for motor-side currents below 300 mA), one to the rigid objects and two to the soft 

objects. The dataset was created using the test bench described in Figure 68. 

The choice of relying on only the motor current and the reference and measured motor encoder 

position was based on the immediate and relevant available sensor information on the prosthesis. 

Specifically, the motor current is proportional to the motor torque, and, thus, to the grasp force, while 

the encoder position is related to grasping motion of the fingers. Additionally, the difference between 

reference and measured encoder position provides good information regarding the distinction between 

a void closure and the actual grasping of an object (this is due to the variation between the reference 

encoder position that continues to grow due to EMG residuals, while the actual measured encoder 

 

Figure 67 Scheme representing the object stiffness classification process. 

The motor-side current, the reference and the encoder positions are acquired from Hannes and sent as input to the classifier, 

which gives as output the resulting stiffness. 
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position stops when encountering an object during grasp). These three quantities (current, reference and 

measured position) represent – to the authors – the minimum set of variables to properly classify the 

different types of grasping (see Results Section for details on the performances). Nonetheless, it is worth 

mentioning that additional sensors or derived quantities could be beneficial for more complex classifier 

structure. For example, motor speed – if not particularly noisy or delayed – could help in more advanced 

classification algorithms. 

To generate variability of the data, multiple grasps with various stiffness were performed by the 

prosthesis, which was controlled by both EMG and sinusoidal references. The hand dynamometer was 

used to simulate rigid objects, whilst four type of springs with distinct stiffness were used to reproduce 

 

Figure 68 Custom-made hand dynamometer mounted on test bench used for the classifier training. 

The device is composed of a base where at maximum four strings can be inserted, and a cover which can slide along the 

base when compressed by the prosthesis fingers. The test bench consists of a custom -made system composed by movable 

parallel arms and a two-cuffs system acting as holder. The table represents the different spring force and levels to 

characterize the stiffness of the dynamometer. 



Bidirectional Body – Machine Interface  

 

184 

C
h

a
p

te
r 

4
 

a range of softness/soft objects, as shown in the table of Figure 68. The springs are placed under a bar 

to distribute the stiffness of their combination to the entire grasp. The chosen combination of springs is 

different for each case because the total stiffness of parallel springs varies according with their sum, 

thus affecting the total grasp behavior. In particular, several closures were performed for each case, as 

described in Table 21, to collect data for the training and validation of the NLR model. The training 

dataset was split in training set (80%), used for the model generation (selection of the best model 

parameters (ϑ) by minimizing the cost function J) and validation set (20%) to find the best threshold 

(TH). Lastly, the classifier was evaluated on the test dataset. 

4.3.2.4. Experimental protocol 

Subjects were seated comfortably in front of a table (see Figure 69) with EMG sensors positioned on 

the forearm or stump using an elastic band. The electrodes measured the activity of the forearm muscles 

involved in the opening and closing of the hand (Flexor Carpi Ulnaris and Extensor Carpi Ulnaris 

respectively), which were selected by manual inspection. The Hannes system was detached from the 

users’ body (except for the two EMGs) and fixed on the table, lying between the subjects’ arms with the 

palm up, to let the experimenter place the objects to be grasped within the prosthetic hand. Hence, 

subjects were only asked to close and open the hand, not to approach or grasp the objects. The prosthesis 

was commanded in proportional-speed-control mode through the EMG signals. To convey the vibratory 

feedback, the vibromotor was positioned on the pisiform bone for able-bodied subjects and on the lateral 

epicondyle for the amputees by means of a second elastic band. 

First, the minimum and maximum amplitude for the vibromotor was determined using the method 

of limits [461], to determine the minimum level of perception and avoid discomfort. To this aim, the 

vibration intensity was increased in small steps (4-5% in the normalized scale of PWM). When the 

subject warned, as soon as it was perceptible, the sensing of a small and then of a strong sensation, the 

respective PWM was saved.  Subsequently, the 30% of the PWM range was adopted for Soft objects 

and the 100% was adopted for Rigid objects. The vibration intensity was then modulated between these 

two values to generate clearly perceivable and localized vibrations that were not intrusive to the subject 

but intuitive for the encoding of the object stiffness.  

Six objects (Figure 66) were randomly presented three times to the user by the experimenter and 

three void closures were also inserted along the test, to have a total number of 21 trials. Before the test 

phase, a training phase was performed to let the user become familiar with the feedback. A total of 6 

closures were performed, alternating between rigid and soft objects without headphones and with open 

eyes, so that the user could learn to associate the proper feedback to the right stiffness. Furthermore, the 

involved upper limb side was covered with a black blanket to strengthen a possible embodiment effect. 

In a first phase to evaluate the classifier performance and the feedback effectiveness, the able-bodied 

subjects underwent a single test with a single condition. They performed the test with the 2FB condition. 

The participant was asked to wear the headphones with white noise and to close the eyes (avoiding the 
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sight of the prosthesis and the grasped object). The subject was not required to reach out to the object. 

Instead, the experimenter proceeded to insert it directly into the prosthesis, asking the subject to perform 

a full closure, and then to identify the stiffness of the squeezed object. The answer was provided by 

subject’s left hand pressing the keyboard arrows, left for rigid objects and right for soft objects. No 

button needed to be pressed when the prosthesis performed a void closure. Finally, the subject could 

reopen the eyes to check if the answer was correct. 

In a second phase, a comparison between the 4 different feedback conditions, discussed in section 

4.3.2.2.2, was carried out by 5 transradial amputees. The order of these 4 sessions was randomly 

presented to the amputees. Each condition had the same test protocol already described in the first phase 

with able-bodied subjects, in which the experimenter places the object inside the prosthetic hand, the 

amputee performs a grasp with closed eyes and gives the answer using the keyboard. At the end of each 

session the proprioceptive drift was detected with respect to the initial arm position (see section 

4.3.2.5.2) and an ad-hoc questionnaire was administered (see supplementary materials). 

4.3.2.5. Data Analysis 

All the outcomes and the evaluation methods used in this study were tested for normality using the 

Shapiro-Wilk test. A repeated measure 1-way ANOVA or Friedman test was conducted depending on 

the outcome of the normality test (for the analysis of dataset with missing data the Skilling’s Mack was 

applied in substitution of Friedman test), while the multiple comparison test with Bonferroni correction 

was used for post-hoc analysis. Mathworks Matlab 2020b were used for the statistical analysis. The 

average of the measures used (error and efficiency) was computed for each subject and condition and 

 

Figure 69 Example of trial involving an amputee. 

Two EMGs are attached to the stump for the dual side control of the prosthesis with an elastic band. The vibromotor is 

fixed to the upper side of the stump with a second elastic band for the feedback restitution. The objects are placed within 

Hannes hand by the experimenter while the participant has closed eyes. The keyboard, placed in front of the participant, is 

used to indicate the grasped object stiffness by the user using the left hand. 
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compared across conditions. The threshold for statistical significance was set at p<0.05. The results in 

the text are reported as mean and standard deviation. 

4.3.2.5.1. Able-bodied subjects 

The primary outcome measure was the F1score of classifier on detecting the grasped object’s 

stiffness expressed as percentage, which takes into account the rate of false and true positives and of 

false negatives [404]. This result allowed to demonstrate that our approach of intrinsic sensor stiffness 

detection works properly. In addition, the F1score was calculated on users’ performance on recognizing 

objects’ stiffness using the 2FB approach described in section 4.3.2.2.2. This latter was used to verify 

the usability and clarity of our feedback method. 

4.3.2.5.2. Amputees 

The second phase involving 5 amputees was carried out to compare the four feedback conditions. To 

validate and demonstrate that the 2FB condition was effective and the best feedback restoration for the 

recognition of objects’ stiffness, our hypothesis, four evaluation methods were used: (i) F1score of 

performance; (ii) reaction time to recognize the stiffness of the objects; (iii) proprioceptive drift; (iv) ad-

hoc questionnaire. 

The F1score of amputees’ performance was calculated in all feedback conditions. Furthermore, the 

response time of each trial was also recorded for the four conditions. Low response times were 

considered positive results. For each amputee, the mean response time of each feedback condition was 

calculated to allow comparison. 

As a quantitative measure of the embodiment, the proprioceptive drift toward the artificial limb was 

detected [240]. Before covering the involved upper limb side with a black blanket, the initial position of 

the hand was marked with white tape. Immediately after the experiment, the blanket was removed and 

the amputees were asked to close their eyes, raise their stump and to replace it in the perceived initial 

position. The lateral distance between the initial position and the one estimated after the trials was 

measured by the experimenter with a ruler in centimeter, together with the direction of the deviation 

[18]. Deviations towards the prosthesis were considered an effect of the embodiment process. 

At the end of each session, amputees also had to complete a Likert-type 5-point questionnaire, 

providing a subjective evaluation. The questionnaire (see supplementary materials) aimed to assess 

subjectively the intuitiveness and comfortability of the feedback (7 questions), its utility for ADLs (3 

questions) and the embodiment (4 questions). The possible answers ranged between 1 (strongly 

disagree) and 5 (strongly agree). Since all amputees performed the test in all condition, the experimental 

design is within-subject. 

4.3.3. Results 

4.3.3.1. Able-bodied subjects  

The classifier average accuracy in identifying the objects stiffness was tested on a total of 378 grasps 
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(21 grasps X 18 subjects). Its average F1Score resulted to be 94.93% ± 3.94. The able-bodied subjects 

instead, thanks to the 2FB condition, reached an average F1Score of 94.08% ± 4.0 for the object’s 

stiffness discrimination task. 

Figure 70 A shows the F1Score obtained by able-bodied subjects during the 2FB condition compared 

to the F1Score of the classifier performance. Since these data did not present a normal distribution, the 

Friedman test was applied to demonstrate that no statistical difference was detected between the two 

populations (p = 0.1). 

4.3.3.2. Amputees 

Figure 70 B shows the boxplot of F1Score obtained by amputees for each of the four feedback 

conditions. It is possible to observe an ascending trend in the scores from the NoFB condition to the 

2FB condition. In the NoFB condition, Amputee A3 data is missing because he found impossible to 

accomplish the task without any feedback, stating that it was not possible to understand neither if the 

prosthesis was opened or closed. In the 1FB condition, Amputee A5 data is missing due to a recording 

problem. 

The F1Score among amputees for the NoFB condition is 31.41% ± 8.57, indicated in Figure 70 B 

with points, which is below the random chance probability of 33%. The statistically significant 

difference is indicated by “*” (p < 0.05). Only Amputee A1 achieved a higher F1Score with respect to 

random chance (F1Score = 44.03%). The distributions resulted to be normal, so the statistical analysis 

applied was the ANOVA. As shown in Figure 70 B, the 2FB condition presents a statistically significant 

difference with respect to the NoFB condition (p < 0.001) and AFB (p < 0.001) conditions. Furthermore, 

1FB condition is statistically different from the NoFB condition (p = 0.0031). The average F1Score 

calculated from the 5 amputees’ responses during the 2FB experimental session is 86.41% ± 11.6. 

Figure 70 C shows the average response time for amputees in each feedback condition, in which the 

statistically significant difference is indicated by “*” (p < 0.05). All amputees, except A1, achieved the 

lowest response time during the 2FB condition (2.82 s ± 1.2), which also produced the best results in 

terms of F1Scores. A statistical analysis was performed between the different conditions. The 

distribution resulted to be not normal and, given the presence of some missing data, the Skillings Mack 

test was applied. As shown in Figure 70 C, there is statistically significant difference between AFB and 

1FB condition (p = 0.02) and between 1FB condition and 2FB condition (p = 0.04). 

The mean proprioceptive drift for each feedback condition was calculated and it is reported in Figure 

70 D as barplots with standard deviations. On average, the 5 amputees estimated the position of their 

right arm after the experiment 1.8 cm ± 1.17 right (in the opposite side of the prosthesis) during the 

NoFB condition, whilst 0.4 cm ± 0.58, 0.3 cm ± 0.4 and 0.7 cm ± 1.17 towards left and hence Hannes 

during the AFB, 1FB and 2FB conditions respectively. The only significant difference was found 

between the NoFB and 2FB condition (p = 0.017) with the Nemenyi test for a post-hoc comparison. 
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According to comparisons performed through the Friedman test (because the scales are discrete and 

the actual data does not match the assumptions for other inferential techniques), 3 scales of the 

questionnaire showed significant effects of the feedback conditions. The subjective evaluations 

collected about the sessions show that in the 2FB condition: 

- Scale 1) made significantly easier to perceive the difference between soft and hard objects (p = 

0.027); 

- Scale 2) was significantly more intuitive for soft objects (p = 0.015); 

- Scale 3) was significantly intuitive for rigid objects (p = 0.005).  

 

Figure 70 Stiffness Recognition results. 

A: F1Scores results of classifier with respect to able-bodied subjects. First the F1Score of the classifier is calculated (blue 

box). Then the F1Score of 18 able-bodied subjects is evaluated, based on the answer of classifier, in recognizing the objects’ 

stiffness while receiving the 2FB condition (red box). A comparison between classifier’s and subjects’ F1Score was 

assessed and no significant difference was found between the two populations. B: F1Scores results for amputees. F1Score 

obtained by amputees for each feedback condition. The Box chart shows the comparison between the distributions of the 

F1Scores obtained in each condition. The statistically significant difference is indicated by “*” (p < 0.05). C: Response 

Time results for amputees. Response Time obtained by amputees for each experimental condition. The Box chart shows 

the comparison between the distributions of the Response Time obtained in each condition. The statistically significant 

difference is indicated by “*” (p < 0.05). D: Proprioceptive drift of amputees for the different feedback conditions as a 

quantitative embodiment measure. The barplot shows the mean and standard deviation of the drift over amputees for each 

condition, the left direction is toward Hannes hand, whilst the right direction indicates a movement on the opposite side of 

Hannes hand. Deviations towards the prosthesis were considered an effect of the embodiment process. 
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According to Scale 3 scores, post-hoc comparisons performed through the Nemenyi Test show how the 

proposed feedback condition was significantly more intuitive for rigid objects than the NoFB condition 

(p = 0.025) and 1FB condition (p = 0.017). Furthermore, the Friedman test showed a significant effect 

of the 2FB condition (p = 0.019), especially considering the results of the Nemenyi test for the post-hoc 

comparison between 2FB and NoFB conditions (p = 0.017).  

4.3.4. Discussion 

The present study explored the possibility to recognize objects’ stiffness with an under-sensorized 

prosthesis. The reference position, the encoder position, and the motor-side current available on Hannes 

were used to feed a pattern recognition algorithm, capable to generate different vibratory feedbacks to 

allow the subject to decode the relative objects’ stiffness. 

The F1Score of the classifier during the 2FB condition tested with able-bodied subjects (Figure 70 

A) was very high (94.93% ± 3.94), demonstrating that the only sensors available on Hannes (motor-side 

current and encoder position) provide sufficient information for an object stiffness discrimination task 

using a Non-Linear Logistic Regression algorithm. However, it is necessary to consider that the 

classifier, during this experiment, was only tested on 6 objects of different shapes, but with almost the 

same dimensions (chosen to replicate the objects used during the Cybathlon race [17]). Further, also the 

F1Score obtained by able-bodied subjects (Figure 70 A) on discriminating the object stiffness was very 

good, proving the usability and efficacy of this feedback approach on a user case. 

The positive results of the first phase allowed to evaluate the object stiffness recognition approach 

on 5 transradial amputees. In this second phase, we tested four approaches of feedback scheme (Figure 

70 B). In the NoFB condition we expected a correct identification of the right stiffness around the 

random chance probability (33%). Actually, the F1Score for NoFB condition was even lower than this 

percentage (F1Score = 31.41% ± 8.57), as amputees stated they were forced to guess since being 

deprived of any possible clue. The AFB condition presents a higher average F1Score (48.62% ± 12.56) 

with respect to the NoFB one, indicating that the motor noise provides a little help in this kind of task. 

This is true for expert users like Amputee A1, who reached the highest score (62.78%), while it is less 

evident from others like Amputee A3 (34.85%) and A5 (36.11%), who scored almost as random chance. 

Differently, in the 1FB condition almost everyone improved their performance (F1Score = 65.67% ± 

10.34) respect to NoFB and AFB. In this condition the users were clearly helped in recognizing the void 

closures, since those were the only ones without vibratory feedback. Moreover, most of the amputees 

declared that even if the intensity of the vibration was the same for rigid and soft objects, they were able 

to perceive a difference based on the vibration onset. Since soft objects are more compliant, the motor-

side current takes more time to rise with respect to a rigid object. Hence, the vibration is slightly late. 

For this reason, the 1FB condition resulted statistically better than the NoFB one, unlike the AFB 

condition which has no significant difference with respect to the NoFB. Overall, the 2FB condition 

provided the best results (F1score 86.41% ± 11.6), demonstrating to be significantly more helpful with 
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respect to the other conditions and indicating that the difference in vibration, correspondent to the rigid 

and soft objects, was sufficiently distinguishable by the users, as we expected.  This proves the 

advantages that this type of feedback can provide to prosthesis users as additional information to the 

incidental feedback (i.e., auditory feedback). 

The reduction in the response time (Figure 70 C) in the 2FB condition (2.82 s ± 1.2) is another proof 

of the efficiency of the implemented distinct vibratory feedback, meaning the amputees needed a short 

time to understand object’s stiffness and enhancing the intuitiveness of the method. This parameter is 

significantly lower in 2FB (2.82 s ± 1.2) condition with respect to the NoFB (3.52 s ± 0.8), AFB (3.7 s 

± 0.83) and 1FB (4.35 s ± 1.28) ones, suggesting that in these latter the amputees needed to put quite 

effort in discriminating between the objects instead.  

The proprioceptive drift (Figure 70 D) shows an effect of the feedback on the embodiment, especially 

according to the comparison between 2FB (0.7 cm ± 1.17 towards Hannes hand) and NoFB (1.8 cm ± 

1.17 opposite to Hannes hand) condition. Interestingly, the results could indicate that the presence of a 

source of feedback is important for summoning the embodiment process. Precisely, the highest impact 

on the proprioceptive drift was found with the 2FB condition, suggesting that this specific vibratory 

feedback was the most effective one during the embodiment process. However, a larger sample size is 

necessary to check potentially higher effects caused by the 2FB condition.  

Three scales in the subjective questionnaire significantly highlight the benefits offered by the 

stimulations provided in the 2FB condition as intuitive feedback, especially for rigid objects. This 

indicates a possible effect of the feedback on the embodiment (see Figure 70 D). However, a larger 

sample is necessary to deepen our understanding of potential effects of 2FB condition on embodiment 

measures in dedicated experiments. Overall, and regardless of the statistical significance, the results 

seem pointing at the superiority of the 2FB condition over all aspects of user experience considered in 

this study. The qualitative observations provided by the amputees need a larger sample to extract 

potential user requirements. 

4.3.5. Conclusion 

This study presents the implementation of an online i.e., real-time, dedicated stiffness detection 

strategy to provide grasp oriented vibratory feedback using the Hannes prosthetic hand in a close-loop 

scenario. As a further progression of our previous studies, in which we exploited a virtual simulation to 

find the intrinsic variables correlated to the grasped object’s stiffness, this work builds upon those 

preliminary findings and presents a refined and improved methodology, its implementation and its 

clinical validation. The main aim was to implement an online strategy exploiting such measurements 

(motor-side current, encoder position, and reference position) to detect the stiffness of real objects 

(without increasing the system complexity with ad-hoc force sensing) and to validate such strategy with 

a first preliminary study with end-users. 
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The classifier was tested by 18 able-bodied subjects on 6 objects and resulted to be sufficiently 

accurate in discriminating between void, soft and rigid grasps. The stiffness information was conveyed 

to the users through a single vibromotor, whose intensity changed based on the grasp type, high intensity 

for rigid objects and low intensity for soft objects in our proposed feedback condition (2FB condition). 

This feedback modality was compared to other three control conditions (NoFB, AFB, 1FB) in a user 

study involving 5 mono-lateral amputees. Results showed a statistically significant improvement in 

users’ performances both in terms of F1Score and response time for the 2FB condition. Moreover, this 

condition was appreciated by the users, as demonstrated from the subjective questionnaires, which 

highlighted its intuitiveness, comfortability, and usefulness. This result was also confirmed by the 

analysis of the proprioceptive drift, which showed an improvement in the prosthesis embodiment. 

Hence, we can state our proposed feedback modality was the best among those tested.  

In the future, the classifier should be tested on a higher variety of objects with different dimensions 

and stiffness, especially to investigate the influence of the dimension on the algorithm’s performance. 

Reach and grasp tasks, with active usage of prosthesis, will be implemented to provide a more realistic 

validation of the usability and effectiveness of our solution within ADL and real scenarios. A higher 

number of prosthesis users will be involved to better assess the effect of the feedback on the embodiment 

and its appreciation. 

The presented work can have a relevant impact for the application of intrinsic sensor detection of 

object stiffness, as it points out that this object recognition strategy and vibrotactile feedback restitution 

on upper limb prosthesis could be effectively used as an intuitive and effective close-loop daily living 

solution. Such solution could facilitate the identification of a precise and delicate grasp rather than a 

strength and power one during different object manipulation. 
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4.4. Chapter Discussion and Remarks 

The three studies presented innovative approaches for improving the effectiveness and efficiency of 

vibrotactile feedback in conveying proprioceptive information and recognizing object stiffness on the 

Hannes prosthesis. Despite these methods are far from being biomimetic, the studies showed promising 

results in developing flexible customization options and improving the interface's robustness, making it 

easier to integrate into a prosthetic socket. The novel feedback approaches proved to be effective and 

usable in user cases with significant improvements in performance and user experience. These outcomes 

contribute to the development of advanced prosthetic technologies that aim to enhance the quality of 

life for amputees. 

In summary, the following outcomes were achieved in the three studies: 

1. A new method for conveying proprioceptive information using vibrotactile feedback was 

developed and found to be effective in conveying information with flexible customization 

options. The use of Gaussian interpolation for intensity and modulation of sigma were effective 

in generating smoothly moving sensations with fewer motors, improving the interface's 

robustness. The results we obtained showed minimal differences across settings with difference 

in the error of 5-10% demonstrating that the number of vibromotors can be safely decreased 

without loss of performance. In this way subjects can decide to have smoot sensations based on 

their preferences and the excess vibromotors can be removed to make the interface easier to 

integrate or encode additional information. 

2. A novel approach for providing proprioceptive feedback for two variables using a single array 

of vibration motors was proposed and found to be similarly effective to the conventional 

mapping method using two independent arrays. The study also demonstrated that a single array 

of vibration motors could convey multiple information, making the feedback interfaces more 

compact and easier to integrate into a prosthetic socket. The study used an embedded platform 

ready for integration into a prosthesis and demonstrated an effective closed-loop control in both 

able-bodied and amputee participants. 

3. A study explored the possibility of recognizing object stiffness without ad-hoc sensing on the 

Hannes prosthesis using a machine learning approach. The study found that, although the 

approach for object stiffness recognition is far from being biomimetic, it was effective and 

usable on a user case. The algorithm based on intrinsic prosthetic sensors, in combination with 

the 2FB condition had a very high F1Score with able-bodied subjects, and this was also 

confirmed in amputees. Such result was also confirmed by the embodiment process and user 

experience promoted by 2FB condition. 
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General Conclusions 

The primary objective of this thesis was to develop a Bidirectional Body - Machine Interface, which 

is crucial for restoring lost functionality after amputation. This two-way communication between the 

user and prosthesis plays a significant role in determining the level of acceptance, as the lack of it often 

leads to abandonment of the prosthetic hand, eliminating any chance of improvement in the control skills 

of the user [243]. The integration of a control component with a suitable feedback mechanism aims to 

create artificial limbs that can be used by amputees as naturally as their own, promoting the process of 

embodiment. This technology enhances intuitive control, resulting in an improved user experience and 

acceptance [269, 278, 519]. While an invasive approach may offer a more natural and biomimetic 

feedback experience, as highlighted in paragraph 1.2.3.2, it also brings with it certain limitations that 

hinder its suitability for long-term and widespread commercial use. Consequently, the exploration of 

artificial feedback through non-invasive approaches emerges as the most promising solution for the 

immediate translation of this technology into a commercial setting. 

Through a meticulous three-year journey, the ultimate goal was achieved by systematically 

progressing through three primary Aims (A). The first aim (A1) involved the construction of a modular 

multi-DoF prosthesis, named Hannes, which could be configured to meet the unique needs and 

capabilities of the user (section 2.3). This accomplishment marked a significant advancement compared 

to commercially available alternatives, which only incorporate one additional active DoF, such as wrist 

rotation [359, 360].  

The second aim (A2) focused on developing pattern recognition algorithms capable of efficiently 

and robustly controlling up to three DoFs (i.e., hand aperture, wrist rotation, and wrist flexion) in a 

simultaneous manner. The limitation of linear commercial systems, which experience performance and 

accuracy degradation when managing more than two DoFs [76, 78], was overcome by introducing non-

linearity into the classification algorithm. The optimization of the entire system in terms of robustness, 

efficiency, computational load, and encumbrance ensured its whole integration into a practical device 

for direct clinical translation. These outcomes provided valuable insights for future research to explore 

the application of non-linear classification, optimization methods, and encumbrance level integration 

into a real prosthesis. 

By combining the first two aims (A1 and A2), a realistic BMI was achieved, by narrowing the gap 

between technology and controllability. However, the inclusion of multimodal sensory feedback was 

deemed essential for next-generation prostheses. The bidirectional communication provided by such a 

feedback approximates the user experience of a natural limb and it affects the spontaneous and effective 

user capabilities. To this end, the role of haptic feedback was analyzed in Aim three (A3), demonstrating 

successful methods for restoring proprioceptive information (section 4.1), its interaction with the control 

component (sections 4.2), and touch information (section 4.3), thereby restoring interaction of soft or 
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rigid objects [16]. The results provided guidelines for realizing vibrotactile feedback solutions, which 

could potentially reduce device bulk for direct integration into a prosthetic socket. This overcomes the 

limitations of commercial devices that lack of feedback solutions, thereby precluding bidirectional 

communication. 

In summary, this research made a significant impact on the field of Bidirectional BMI by 

demonstrating the effectiveness of pattern recognition strategies and vibrotactile feedback in upper limb 

prostheses, as an intuitive and efficient close-loop daily living solution (section 4.2 and 4.3). 

Bidirectional BMI has several advantages, including improved usability of prostheses through improved 

user-system interaction (section 4.1), promoting embodiment of the device (section 2.2), and potentially 

reducing abandonment rates. This enhances engagement and prosthesis ownership, thereby bridging the 

gap between technology (section 2.3) and controllability (section 3.3 and 3.4). Overall, this solution has 

facilitated the use of prostheses, enabling the users to have greater control and improved interaction with 

the external world. 
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