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Abstract 

The recent years saw a growing usage of remote sensing platforms, such as satellites and unmanned 

aircraft vehicles (UAVs). The Copernicus observation programme is an example of a new satellite 

constellation improving and promoting easy free access dataset, timely updated. The high 

popularity of UAVs is related to the obtaining high-resolution data, quickly at a relatively low cost. 

As result, sensors with high spatial and temporal resolution produce a great number of data, and 

these data increase exponentially. 

Consequently, the software for image processing play a key role in the diffusion of this 

technology. The satellites take advantage of dedicated software for imagery analysis. The UAVs use 

structure from motion techniques for photogrammetric processing. However, the data analysis for 

both sensors is based on the classic pixel-based and object-based remote sensing techniques.  

Moreover, there is a growing demand for innovative tools to analyse huge dataset and to integrate 

the information for environmental analyses, monitor geomorphological aspects and land use 

studies, in particular in rural areas. 

This thesis aims to study how GIS software using open source libraries can integrate information 

extracted from the satellite and the UAVs imagery, using a machine learning approach in a multi-

level remote sensing framework. The main research questions are: (1) Can the classic techniques of 

remote sensing be used to extract suitable land use/land cover (LULC) maps – suitable in terms of 

classification accuracy – for the very high-resolution imagery of UAVs? (2) Can information from 

images of UAVs be merged with data from satellite images in the same area to achieve better 

results? (3) Which methods are optimal to analyse imagery of UAVs, and which benefits can be 

achieved through the use of more sophisticated techniques, such as the integration of multisource 

spatial information? 

To answer the research questions, a multi-level framework has been developed to integrate the 

information derived from remote sensing techniques. The framework has been implemented using 

R cran libraries, and it includes a machine learning benchmark as an alternative to pixel-based and 

object-based approach. The benchmark allows for testing several algorithms, in terms of accuracy 

and processing time for classifying LULC maps.  

The thesis presents the result of five papers, and the main findings relating to the major 

research questions can be summarized as follows: (1) The classic remote sensing techniques can be 

applied to UAVs high-resolution imagery to obtain a fast image classification. The maximum 

likelihood algorithm has a better result than the minimum distance algorithm in terms of accuracy. 
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(2) It is possible to integrate the satellite and UAVs temporal series. The scale affects the size of the 

training areas. Thus, to integrate the satellite and UAV information, the size of the regions of interest 

(ROIs) shall be larger than the ground sample distance (GSD) of the satellite. The use of large ROIs 

can avoid the noise from nearby areas. In addition, to limit the noise due to high-resolution images, 

the value of the digital number (DN) inside the ROIs should be homogenous. (3) The machine 

learning can be applied to both satellite and UAVs imagery and integrate spatial information. The 

dataset derived from high-resolution imagery can be considered as big data paradigm, in terms of 

data size and the processing time. Using a subset greater than the 8% of the total is possible to have 

a good results (kappa score ranges between 80% and 90%) and fast processing time. In addition, 

sensitivity analysis can help to define the contribution of each layer of the multi-level framework. 
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Riassunto 

Negli ultimi anni vi è stato un crescente utilizzo di piattaforme di telerilevamento, come i satelliti e 

i velivoli senza pilota (UAVs). Il programma di osservazione Copernicus è un esempio di come una 

nuova costellazione di satelliti fornisca un dataset aggiornato e di facile accesso, mentre l'elevata 

popolarità degli UAVs è legata alla possibilità di ottenere rapidamente dati ad alta risoluzione a 

basso costo. I sensori con un'elevata risoluzione spaziale e temporale generano un gran numero di 

dati che aumentano esponenzialmente, di conseguenza il software per l'elaborazione delle 

immagini gioca un ruolo fondamentale nella diffusione della tecnologia;  alcuni esempi sono 

l’utilizzo della structure for motion per l’elaborazione fotogrammetrica applicato alle immagini 

ottenute da UAVs e lo sviluppo di software basati sulle metodologie pixel-based e object-based 

specifici per il telerilevamento. Infine, considerando l’elevato volume di dati prodotti, vi è una 

crescente domanda di strumenti innovativi per analizzare, integrare ed estrarre informazioni da 

grandi dataset al fine di eseguire monitoraggi ambientali, analisi geomorfologiche e studi sull'uso 

del suolo, in particolare nelle zone rurali.  

Questa tesi ha l’obbiettivo di studiare come i software GIS che utilizzano le librerie open source, 

possano integrare le informazioni derivate da immagini satellitari e da UAVs applicando le tecniche 

del machine learning in un framework di telerilevamento multi-livello. Le principali domande di 

ricerca sono: (1) Le classiche tecniche di telerilevamento potrebbero essere utilizzate per estrarre 

mappe di copertura del suolo / uso del suolo (LULC) adeguate - adatte in termini di precisione di 

classificazione - per le immagini ad altissima risoluzione degli UAVs? (2) Le informazioni provenienti 

dalle immagini degli UAVs potrebbero essere unite alle informazioni provenienti dalle immagini 

satellitari nella stessa area per ottenere risultati migliori? (3) Quali metodi sono ottimali per 

analizzare le immagini degli UAVs e quali benefici potrebbero essere ottenuti attraverso l'uso di 

tecniche più sofisticate, come l'integrazione di informazioni spaziali multi-source? 

Per rispondere alle domande di ricerca è stata sviluppato un framework multi-livello per 

integrare le informazioni derivate dal telerilevamento. Il framework è stato implementato usando 

le librerie R cran e sviluppando un benchmark di machine learning come alternativa alle tecniche 

pixel-based e object-based. Il benchmark consente di testare diversi algoritmi in termini di 

precisione e tempo di elaborazione e di produrre mappe di LULC.  

I risultati che rispondono alle domande di ricerca precedentemente formulate sono presentati 

nei cinque paper che compongono la tesi e possono essere così riassunti: (1) Le tecniche di 

telerilevamento classiche possono essere applicate alle immagini ad alta risoluzione degli UAVs per 
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ottenere una classificazione rapida delle immagini. L’algoritmo maximum likelihood ha ottenuto un 

risultato migliore rispetto al minimum distance in termini di precisione. (2) La scala influisce sulle 

dimensioni delle aree di training. Di conseguenza, per integrare le informazioni satellitari e da UAVs, 

le dimensioni delle regioni di interesse (ROIs) devono essere maggiori della risoluzione spaziale 

(GSD) dell’immagine satellitare. L'uso di ampie ROIs permette di ridurre il rumore prodotto dalle 

zone vicine. Inoltre, per limitare il rumore prodotto dalle immagini ad alta risoluzione, i valori dei 

digital number (DN) all’interno delle ROIs devono essere omogenei. (3) Il machine learning può 

essere applicato alle immagini satellitari, alle immagini prodotte con l’utilizzo di UAVs e può trarre 

beneficio dall’integrazione delle informazioni spaziali. Il dataset derivato da immagini ad alta 

risoluzione può essere considerato, in termini di dimensioni e tempo di elaborazione, un big data. 

Utilizzando un sottoinsieme superiore all'8% del totale, è possibile ottenere una buona precisione 

(kappa tra 80% e 90%) e buoni tempi di elaborazione. Inoltre, l'analisi della sensibilità può aiutare a 

definire il contributo di ogni layer in una struttura a più livelli. 
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1. Research synopsis 

1.1. Research background and justification 

The past years saw a wide use of remote sensing platforms, such as satellites, airborne and 

unmanned aircraft vehicles (UAVs), and a growing demand for innovative tools for remote sensing 

analysis. The Copernicus observation programme, directed by the European Space Agency, is an 

example of a new satellite constellation improving and promoting an easy free access dataset, 

timely updated. The satellites orbit around the Earth from hundreds to thousands of kilometres in 

height, so the temporal resolution is fixed. Consequently, the monitoring plan cannot continue and 

be personalized. The satellites carry on board many kinds of sensors with various characteristics in 

terms of spatial and radiometric resolution. The spatial resolution ranges from the metre to 

decimetre scales, and it depends on sensors. The sensors register the electromagnetic energy 

reflected from objects as a digital number (DN). Consequently, the DN is affected by the atmospheric 

path and cloud coverage. In addition to the satellite platforms, the airborne acquisition, which is 

done at a lower altitude than that of satellites, can overstep these problems. The airborne imagery 

has better resolution than those from satellites, but the imagery suffers from great geometric and 

radiometric distortion. These errors are due to instability and turbulence during the flight. 

Nevertheless, the advantage of the airborne campaign is to set the area of interest and the temporal 

and spatial resolution, which are related to the altitude of flight. In contrast, a flight campaign is 

more expensive than satellite acquisition, limited by meteorological conditions, and it requires good 

planning. Finally, in recent years, the UAVs have seen great attention from the scientific community. 

Technically, the reasons are the continuous and rapid technology improvement in hardware Global 

Position System and Global Navigation Satellite System (GPS-GNSS), power pack, sensors and in the 

software. These reasons follow the typical development of technology: the prices and weight of the 

components have decreased, and the precision has increased. Therefore, new technologies have 

been developed to limit manual operation, reduce risk, and simplify flight operations, prospecting 

to obtain high-resolution data “on demand” quickly at a relatively low cost. The remote control from 

a ground station is a key point to improve the quality of a survey with high flexibility of usage. On 

one hand, the campaign of UAVs for imagery acquisition is low cost, and it grants high temporal and 

spatial resolution (centimetre or decimetre). On the other hand, the disadvantages are due to the 

limited power supply that influences the size of the covered area and the carry load. Furthermore, 

the ground control points (GCPs) are necessary to have a good precision survey to achieve a spatial 

accuracy of 10–15 cm (Turner et al., 2012). Otherwise, directly georeferenced mosaics with 1 
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cm/pixel of spatial resolution have a spatial absolute accuracy of 65–120 cm. Hence, the high 

flexibility of usage, the low cost, the high spatial and temporal resolution, compared to satellite or 

airborne platforms, are making UAVs a widespread remote sensing platform, accessible to an 

increasing number of users. UAVs have been used in numerous applications such as homeland 

security, dangerous operations, and research. Research fields include cultural heritage, archaeology, 

3D surveys, environmental studies, forestry, land use and risk management, and precision 

agriculture (Berni et al., 2009b; Herwitz et al., 2004; Hunt et al., 2010; Jensen et al., 2009; Lelong et 

al., 2008; R.B Haarbrink, 2006; Remondino et al., 2011) 

Software for image processing plays a key role in the spread of remote sensing technology. 

Sentinel satellites take advantage of dedicated software for imagery analysis, i.e., Sentinel 

Application Platform. UAVs use structure from motion techniques to compensate for the low 

accuracy of the positioning systems. These techniques, coupled with algorithms of computer vision, 

have led to the development of various software for photogrammetric processing available with 

commercial licenses and open source licenses (Remondino, Del Pizzo, 2012).  

The technology of UAVs has been reviewed from (Grenzdörffer et al., 2008; Sona et al., 2014), 

highlighting the following points regarding photogrammetric, radiometric and data size aspects and 

the analysis framework. 

The photogrammetric problems concern the limited dimension of the camera, such as lack of 

knowledge of the internal orientation angle, distortion of frames, overlapping frames, low precision 

of GPS-GNSS, and a high number of GCPs. 

The radiometric problems are related to image interpretation, correct use of radiometric 

information, new techniques for the processing of multispectral data and calculation of the derived 

(Honkavaara et al., 2012; Torres-Sánchez et al., 2014). The sensors with high spatial and temporal 

resolution produce a great number of data, and these data increase exponentially (Zaslavsky et al., 

2013). 

The data analysis is based on classic remote sensing techniques, pixel-based and object-based, 

but the size and processing time can be related to the Big Data paradigm: Big Data is not only a 

physical storage but also a number of files, tables, records and processing time (Singh and Singh, 

2012). To solve problems of size and scalability of the dataset, many authors have proposed new 

frameworks, the GIS environment, and objects algorithms (Lin et al., 2013; Peña et al., 2013; Zhao 

et al., 2009).  
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Hence, there is a growing demand for innovative information extraction and analysis tools to 

monitor geomorphological aspects for environmental analyses, land use, fragmentation of habitats 

and risk assessment (Van Asselen and Verburg, 2013). In the literature, many authors have proposed 

new frameworks, the GIS environment, and objects algorithms to solve problems of size and 

scalability of the dataset (Baumann et al., 1997; Zhao et al., 2009), new approaches for data fusion 

(Weih and Riggan, 2010), and imagery analysis, i.e., machine learning (D Anthony et al., 2015; Guo 

et al., 2014; Papageorgiou et al., 2011). 
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1.2. State of knowledge on the research topic 

In recent years, remote sensing analysis has been popular in numerous civilian and research 

applications such as cultural heritage, ecology, forestry and land use mapping with a wide 

availability of remote sensing data, which are collected using different kinds of sensors, platforms, 

and spatial and temporal resolution. Nonetheless, the erogeneity of the platforms and the sensor 

have a common remote sensing background, but it requires different approaches and software for 

extracting information. In this paragraph, we recount some basic remote sensing concepts and 

summarize the commonly used satellites and UAVs application. The band ratio and the vegetation 

indices (VI) used in this work are described in Annex I, and the machine learning algorithms are 

described in Annex II. 

The remote sensing analysis consists of the pre-processing, the image enhancement, the image 

transformation, the image analysis, and the classification. The pre-processing techniques correct 

geometric and radiometric errors of imagery, whereas the geometric correction eliminates 

distortion due to surface curvature and atmospheric interaction. Airborne imagery and UAV imagery 

have high geometric distortion due to not having the nadiral direction of the camera, the rotation 

around three axes, and the low precision of GPS-GNSS. Thus, images can be georeferenced and 

registered after geometric correction. The different sun elevations, sun azimuth, aerosol particles, 

atmospheric conditions, and sensor calibrations produce radiometric errors. These errors affect the 

object observations, and a radiometric correction eliminates radiometric errors. The quantity of 

electromagnetic energy collected by the sensor is described using DN. The DN is related to spectral 

resolution, but it has not a physical meaning. Indeed, the DN can be converted in physical units as 

radiance or reflectance. Irradiance is the electromagnetic energy that comes from the sun and 

illuminates a specific area. Radiance is the quantity of energy observed by the sensor from the top 

of the atmosphere. Reflectance is the quantity of energy reflected by an area, and it is a specific 

characteristic of materials. Therefore, radiance and reflectance are obtained from DN using specific 

formulas and sensor parameters (1) (Using the USGS Landsat 8 Product 01-08-

206http://landsat.usgs.gov/Landsat8_Using_Product.php). 

 

 𝐿𝜆 = 𝑀𝑙𝑄𝑐𝑎𝑙 + 𝐴𝑙 (1) 

where: 

 

𝐿𝜆 = TOA spectral radiance (Watts/ (m2 * srad * μm)) 
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𝑀𝑙 = Band-specific multiplicative rescaling factor from the metadata 

𝐴𝑙 = Band-specific additive rescaling factor from the metadata 

𝑄𝑐𝑎𝑙 = Quantized and calibrated standard product pixel values (DN) 

 

To calculate reflectance the formula is (2): 

 

 𝜌𝜆′ = 𝑀𝜌𝑄𝑐𝑎𝑙 + 𝐴𝜌 

 

(2) 

where: 

𝜌𝜆′ = TOA planetary reflectance, without correction for solar angle 

𝑀𝜌 = Band-specific multiplicative rescaling factor from the metadata 

𝐴𝜌 = Band-specific additive rescaling factor from the metadata 

𝑄𝑐𝑎𝑙 = Quantized and calibrated standard product pixel values (DN) 

 

TOA planetary reflectance with a correction for the sun angle is (3): 

 

 
𝜌𝜆 =

𝜌𝜆′

𝑐𝑜𝑠 (𝜃𝑠𝑧) 
=

𝜌𝜆′

𝑐𝑜𝑠 (𝜃𝑠𝑒) 
 

 

(3) 

where: 

𝜌𝜆 = TOA planetary reflectance 

𝜃𝑠𝑒 = Local sun elevation angle 

𝜃𝑠𝑧 = Local solar zenith angle. 𝜃𝑠𝑧 = 90° - 𝜃𝑠𝑒 

 

Then, TOA planetary reflectance is (4): 

 

 
𝜌𝜆 =

𝑀𝜌𝑄𝑐𝑎𝑙 + 𝐴𝜌

𝑐𝑜𝑠 (𝜃𝑠𝑧) 
 

 

(4) 

The radiometric correction is done using different approaches such as empirical line correlation 

(Johnson et al., 2003; Smith and Milton, 1999), MODTRAN atmospheric (Zarco-Tejada et al., 2013a, 

2012, 2009), SMARTS atmospheric correction (Zarco-Tejada et al., 2013b) and the band ratio. 

Moreover, radiometric calibration methods developed for satellite imagery improved significantly 



18 
 

the quality of the imagery (Haghighattalab et al., 2016). The visual interpretation can be enhanced 

through the application of filters, manipulating DN to adjust brightness, contrast, and edge and 

using the band ratio and VI. The band ratio and the VI are image transformations based on a 

mathematical operation such as sum, difference, spectral rationing, principal component analysis, 

and index calculation, which creates new images. The band ratio and VI helps the classification 

process and reduces error in orthomosaics due to different illumination of individual frames, and 

they allow correcting the flaws in brightness caused by the zenith angle of the sun in the individual 

frames (Herwitz et al., 2004). The advantage of image transformations is to highlight information 

not clearly visible in multispectral images. Consequently, the indices calculation is widely used in 

agricultural and forestry applications, where data fusion can involve different sources, e.g., satellite 

and airborne platforms and merge contextual information (Weih and Riggan, 2010). In the 

literature, these techniques are applied in numerous precision agriculture, ecology, forestry, land 

use and risk management studies using classification techniques. The image classification is a 

process of assigning labelled classes to pixels. The main classification methods are unsupervised 

pixel-based, supervised pixel-based and object-based methods. 

The precision agriculture (PA) allows adapting the techniques of fertilization, irrigation, and 

weeds treatment on the specific needs of the field, reducing crops risk and damage. To reach this 

goal, updated data on health crops status are necessary. An example is a study of the aerobiological 

quality of potato and tomato crops (Techy et al., 2008) that used two UAVs for extracting time data. 

The red, green, blue camera (RGB), multispectral camera, and thermal camera have been used for 

effectiveness monitoring on a wide range of crops, e.g., vines, olives, peach, mandarin, oranges, 

sugar cane, corn, sunflower and to produce vigour maps (Berni et al., 2009a). The research has 

highlighted significant errors in temperature estimation with a thermal camera due to flight 

elevation and to atmosphere interaction. The water stress and the vigour map of vineyards can be 

studied using the normalised difference vegetation index (NDVI) and the crop water stress index 

(CWSI) to show the water stress (Baluja et al., 2012). Similar studies have found a correlation 

between the water stress and the pathogenic agents in sugar beet plantation (Bendig et al., 2012) 

and the water stress and the fluorescence in olive, peach, and orange orchard using multispectral 

cameras (Zarco-Tejada et al., 2009). The water stress using the photochemical reflectance index 

(PRI) has been studied in orange and mandarin trees in a commercial orchard. Indeed, a PRI object-

based classification has identified a correlation to leaf-level (Zarco-Tejada et al., 2012). In olives 

crops, (Calderón Madrid et al., 2014) have studied the relation between PRI and infection caused by 
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Verticillium. In coffee plantations, anomalies caused by water stress, invasive species, and errors in 

fertilization were identified using a red, green, near infrared (NIR) camera (Herwitz et al., 2004). It 

is well-known that a UAV flight requires normally some GCPs for the correct positioning of the 

multicopter, and the fieldwork is expensive and time-consuming. In addition, the information 

cannot be used in real-time. Therefore, the real-time kinematic GPS correction (RTK), without GCP, 

can solve the issue, and it has been applied for the fertilization and the nitrogen studies, measuring 

distortions from 0.18 to 0.29 cm. On one hand, this type of survey is only suitable for areas with few 

variations in height (Sugiura et al., 2005). On the other hand, the ability to process maps of 

fertilization in real time allows minimizing the consumption of fertilizers. The fertilizers can be 

applied at the right time and in optimum quantity, but this type of survey is power consuming. 

Hence, good flight efficiency requires the development of software solutions to optimize the routes 

of the drone (Tokekar et al., 2013). 

The vegetation monitoring is an important indicator of local climate change. In Antarctica, the 

moss bed habitats were studied using the UAVs (Lucieer et al., 2010). The comparison of UAVs 

imagery and the moisture indices allows identifying the moss habitat. The indices were calculated 

from a digital elevation model (DEM).  

Ecological studies have been conducted using the visual interpretation and the classification 

software. The stereoscopic vision and three-dimensional images were used to map small habitats, 

to identify trees, to estimate biomass and to manage natural environments (Gademer et al., 2010). 

In addition, biomass, dead wood, and riparian vegetation have been studied trough the object-

based classification and the pixel-based classification (Dunford et al., 2009). The object-based 

technique produces good results when it is applied to single high-resolution images, but it is more 

time consuming than the pixel-based approach. Moreover, the object-based technique applied to 

an orthomosaic is less useful than an object-based technique applied to the single image. Indeed, 

the process is more difficult because illumination of each frame is not homogeneous. Likewise, a 

statistical approach based on a linear regression model was used to identify the biomass with RGB 

images without radiometric correction but considering contextual information such as the height of 

trees. Indeed, the plant height and VI can be used for biomass modelling. The indices, such as the 

GnyLi (from the name of the creators), which uses the absorbance in the near infrared and short 

range infrared reflectance, the modified green red vegetation Index (MGRVI), and the red green 

blue Vegetation Index (RGBVI), have shown a positive performance in the early growth stages, 
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compared to the late growth stages. In contrast to expectations, the combination of vegetation 

indices and plant height did not significantly improve the model performance (Bendig et al., 2015). 

Related to vegetation studies, the canopy identification is an important topic that has a great 

interest in forestry applications. However, the high number of variables makes the canopy 

identification difficult task, so the pixel and object-based algorithms do not always work efficiently, 

and sometimes they cannot identify correctly the canopy features. Therefore, a machine learning 

approach and the object-based approach were compared (Hung et al., 2012). The support vector 

machine (SVM) classification method works recursively and learns from the data for building a 

decision hyperplane. Likewise, as a supervised classification method, given training data, the SVM 

divides the dataset groups or classes. The classification results, using only the SVM algorithm or only 

an object-based algorithm produces some lacunae. The combination of the two algorithms improves 

the result. To overcome the issue, another strategy is to use LIDAR sensors for the canopy 

monitoring (Korhonen et al., 2011; Solberg et al., 2009; Wallace, 2013).  

Studies about land use/land cover (LULC) use a LIDAR sensor, pixel-based and object-based 

algorithms and machine learning for data fusion and multi-temporal analysis. Thus, the comparison 

of the algorithms is needed for identifying the correct approach based on the dataset. Indeed, the 

LIDAR dataset composed of a 1 metre resolution acquisition merged with 0.5 - 2 metre satellite 

images was classified with the supervised maximum likelihood algorithm and the object-based 

algorithm. The results highlighted that the object-based classification was less precise than the 

supervised maximum likelihood classification because it is not able to evaluate variability inside 

classes (Walter, 2004). A second discussion point is the integration of the multi-temporal analysis. 

This research has been conducted with the unsupervised, the supervised and object-based (Weih 

and Riggan, 2010) approaches and to compare the algorithms using different imagery resolutions of 

the mean resolution of 10 metres and high resolution of 1 metre. On one hand, the results show the 

unsupervised method had an advantage using the multi-temporal data, but no quality improvement 

has been found using the high-resolution dataset. On the other hand, the supervised method had 

an improvement using the high resolution data, but no quality improvement has been found using 

multi-temporal dataset. In addition, the object-based method had an improvement from the merger 

of high-resolution data and the normal resolution images. Finally, the multi-temporal data provide 

no improvement to the classification. In particular, using a mean resolution dataset, object-based, 

unsupervised and supervised methods had similar performances.  
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Recently, LULC has been studied using the machine learning method. This new approach has 

been applied in the studies about the cotton crop (Papageorgiou et al., 2011), variable-rate 

fertilization (Zheng et al., 2013), classification of invasive weed species (Hung et al., 2014) an 

ecological study on habitat (Gonçalves et al., 2016) and for the automatic detection of the UAVs' 

landing site (D Anthony et al., 2015; Guo et al., 2014). 

The previous sensors and technologies have also been applied to geomorphology and landscape 

fields. For example, LIDAR and high resolution UAVs imagery can be used to identify the ephemeral 

gullies. Indeed, a 5 centimetres high resolution DEM has been used for analysing of the gullies that 

range from 10 to 30 cm deep and 30 to 100 cm wide (Frankenberger et al., 2008). A similar scale of 

problems were found on rangeland and vegetation studies, quantification of plant cover (Rango et 

al., 2009), and terracing identification (Diaz-Varela et al., 2014). Applying a decision tree and a fuzzy 

algorithm on dry rangeland imagery, the result showed more separable classes on coarse scale 

segmentation than on fine scale (Laliberte and Rango, 2009). Similar results were found in a sub-

decimetre classification of rangelands, where the classification at group level was more efficient 

than a classification at the species level (Laliberte and Rango, 2011). Then, the classification is 

affected by the features of the object, such as size, but the identification of the correct scale of 

analysis is a difficult task. When a small scale is set, wide objects are produced. Indeed, this approach 

can reduce the errors until a threshold is reached, but exceeding the threshold produces 

overestimation errors (Torres-Sánchez et al., 2015). Thus, the relation between training areas 

dimension and segmentation dimension suggested a correlation with real world objects (Ma et al., 

2015). Accordingly, the spatial information is important for landscape application and for PA, e.g., 

for studying crop plants in their first stages or for weed plant identification (Pérez-Ortiz et al., 2015). 

Finally, scale depends on the altitude of flight. Hence, flights executed at different altitudes have 

been analysed with the purposes to identify the best parameter to identify the weeds in maize and 

sunflower crops using the unsupervised algorithm (k-means and repeated k-means or Rk-means), 

and semi-supervised (KNN, linear SVM version or LinSVM and kernel SVM) methods. The SVM 

achieved the best performance and was easy to automate with less interaction of the user (Pérez-

Ortiz et al., 2016). 

The UAVs are also employed in the management plan, traffic control (Lei et al., 2014; Meuel et 

al., 2013), prevention of risk, specialised operations such mine operations (Lee and Choi, 2016) and 

wildfire monitoring. For example, the wildfire management is a dangerous operation, and it needs 

real-time information about the dimension and the wildfire characteristic. Consequently, a specific 



22 
 

framework and a decision support system have been developed for monitoring and predicting the 

wildfire propagation (Ambrosia et al., 2011; Merino et al., 2012). 

Table 1 and Figure 1 report the information based on the literature review about the topic, the 

classification technique, the algorithm applied, the software, dataset resolution and the index 

applied. At first, it is necessary to distinguish between the photogrammetric software, the GIS 

software, and the remote sensing software. Second, it is necessary to distinguish between the 

commercial software and open-the source software. Regarding commercial photogrammetric 

software, Agisoft Photoscan® has been used in four works, and it is the most popular software. Two 

works used Leica Photogrammetric Suite® and one work used Pix4UAV®. Concerning the open-

source photogrammetric software, Bundler has been used only in two works. Thus, for 

photogrammetric purposes, the commercial licence software is mostly used. Analysing the GIS 

platforms, three studies used ArcGIS® commercial software, and three studies used unspecified GIS 

software. Only one study used the open-source Grass GIS. Some open libraries such as R software 

statistical computing and graphics, computer vision library OpenCv, and Gaussian process 

regression and classification toolbox (GpmlTolobox) have been used in three works. Thus, when the 

focus is on GIS analysis, the commercial licence seems the best ranked. In contrast, it is not possible 

to identify the number of open source GIS installation. Considering remote sensing software, 

eCognition® is the common object-based platform. It has been used in five works, but if we count 

the two works with Definiens® (eCognition renamed), there are seven works that used this object-

based software. Other commercial software is Erdas Image 9.3®, Envi 4.4®, and PARGE®. Finally, one 

work combined the Kodak DCS Camera Manager®, Kodak Photodesk® software, and Adobe 

Photoshop®. In conclusion, the commercial software is preferred to the open-source solutions for 

photogrammetric application and analysis applications. This preference is an important point 

because it leaves interesting opportunities to develop new tool and open-source solutions. 
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Table 1 Summary table of literature review 
Author Topic Technique Algorithm Software Dataset Resolution Index 
Ambrosia et 
al. 2011 

 

Fire 
monitoring 

short-wave-, mid- 
and thermal-
infrared (VIS-IR-
TIR) 

Multi-band 
temperature 
threshold 
algorithm  

- UAV - NBR  

Baluja et al. 
2012 

Precision 
agriculture, 
water stress, 
grapevine 

Thermal 

multispectral 

watershed Grass GIS UAV 10 - 30 cm NDVI 

TCARI/OSAVI 

Bendig et al. 
2012 

Precision 
agriculture, 
water stress, 
infectious 
agent sugar 
beet 

RGB+NIR images Histogram 
analysis 

ArcGIS® UAV 1.4 - 17 cm NDVI 

 

Bendig et al. 
2015 
 

Precision 
agriculture, 
biomass 
estimation 

RGB imagery Regression model Agisoft 
PhotoScan 
Professional 

Esri 

ArcGIS® 10.2.1 

UAV 1 cm NDVI  

GnyLi  

near infrared 

GRVI 

MGRV 

RGBVI 
Berni et al. 
2009a 

Precision 
agriculture, 
crop status, 
corn olive 
peach  

Thermal and 
multispectral 

- Leica  

Photogrammetri
c Suite® 

UAV 20 - 40 cm PRI 

LAI 

NDVI 

TCARI/OSAVI  
Berni et al. 
2009b 

Precision 
agriculture, 
crop status 
olive orchard  

Thermal - - UAV 40 CSWI 

Calderón 
Madrid et al. 
2014 

Precision 
agriculture, 
infection 
monitoring 
olive orchard 

Hyperspectral and 
Thermal Camera 

- - UAV 20 - 40 cm 

 

PRI 

CWSI 

TCARI 

TCARI/OSAVI 
Diaz-Varela 
et al. 2014 

Precision 
agriculture, 
agricultural 
terraces 

Object-based  Multiresolution 
segmentation 

eCognition® 8 UAV 11 cm NDVI 

DifMin  

TopIndex 

Terrain Shape 
Index 

Dunford et 
al. 2009 

Forestry, 
vegetation 
and dead 
wood  

Pixel-based 
Object-based 

Decision tree 

Segmentation 

- UAV 6.8 - 21.8 
cm 

- 

Frankenberg
er et al. 2008 

Landscape 
erosion, 
gullies 
channel 

Lidar - OpenCV image 
processing 
library 

UAV 10 cm - 

Gademer et 
al. 2010 

Ecology, 
natural 
habitat 

Stereoscopic view - - UAV 5 - 11 cm  
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Gonçalves et 
al. 2016 

Ecology, 
natural 
habitat 

Machine learning 

Pixel-based 

Random Forest Agisoft 
PhotoScan 
Professional® 

Gis software  

R software 
package 

UAV 6 cm Band ratio 

Herwitz et 
al. 2004 
 

Precision 
agriculture, 
coffee 
production 

RGB 

 

Masking routine Kodak DCS 
Camera 
Manager® 

Kodak 
Photodesk 
software® 

Adobe 
Photoshop® 

UAV 50 cm - 1m  NDVI 

G/R brightness 
correction index 

Hung et al. 
2012 

Forestry, 
canopy 
structure 

SVM 

Object-based 

Mean shift 
clustering 

- UAV 20 cm - 

Jensen et al. 
2009 

Process 
analysis 

- - - UAV 5 cm - 

Johnson et 
al. 2003 

Precision 
agriculture, 
grapevine 

RGB - GIS UAV 20 cm 

 

- 

Laliberte & 
Rango 2009 

Landscape, 
rangeland 
vegetation 

Object-based Decision tree 

Fuzzy 

Leica 
Photogrammetri
c Suite® 9.0  

Definiens 
Professional® 5 

UAV 5 cm - 

Laliberte & 
Rango 2011 

Landscape, 
rangeland 
vegetation 

Object-based Decision tree eCognition® 8  UAV 5 cm - 

Laliberte & 
Rango 2011 

Process 
analysis 

Object-based  Decision tree eCognition® 8 UAV 5 cm - 

Lei et al. 
2014 

Process 
analysis 

Feature extraction Harris  

SIFT 

SURF 

- UAV - - 

Lucieer et al. 
2010 

Ecology, 
moss beds  

- - ArcGIS® UAV 1.5 cm  WI  

Ma et al. 
2015 

Process 
analysis 

Object-based Random Forest 

Correlation based 
Feature Selection 
(CFS) 

eCognition® 8.7  UAV 20 cm - 

Merino et al. 
2012 

 

Fire 
monitoring 

RGB and non-
thermal OEM 
infrared micro-
camera 

training-based 
thresholding 
method 

pixel similarity 

- UAV - - 

Meuel et al. 
2013 

Process 
analysis 

Super-Pixel-based Super Pixel 
segmentation 

- UAV - - 

Pérez-Ortiz 
et al. 2015 
 

Precision 
agriculture, 
weed 
mapping in 
sunflower  

RGB+NIR 

Machine learning 

Unsupervised,  

semi-supervised, 

supervised 

Agisoft 
Photoscan 
Professional 
Edition® 

UAV - NDVI 

ExG 

 
Pérez-Ortiz 
et al. 2016) 
 

Precision 
agriculture, 

Object-based k-mean clustering 

 

Agisoft 
Photoscan 
Professional 
Edition® 

UAV 1.4 cm ExG 
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weed 
mapping 

Maize, 
sunflower 

SVM 

Rango et al. 
2009 

Landscape, 
rangeland 
vegetation 

Object-based - Definiens 
Professional® 

UAV 5 - 6 cm - 

Sugiura et al. 
2005 

Precision 
agriculture, 
crop status 
nitrogen 

R-G-NIR - GIS UAV 1 - 7 cm LAI 

NDVI 

Techy et al. 
2008 

Precision 
agriculture, 
aerobiol. 
sampling 
crops 

- Path planning  - UAV - - 

Tokekar et 
al. 2013 

Precision 
agriculture 
nitrogen 

RGB NIR 

 

TSPN algorithm 
implementation 

GPML Toolbox UAV 1 m NDVI 

Torres-
Sánchez et 
al. 2015 

Precision 
agriculture, 
weed 
mapping 

maize, 
sunflower, 
wheat 

Object-based Multiresolution 
segmentation 

ENVI® 4.4.,  

eCognition® 

UAV 1.14 - 1.62 
cm 

ExG 

NDVI 

Turner et al. 
2010 

grapevine Thermal 
multispectral 

Orthoectification Bundler 
software  

PMVS2 

- 1 cm PRI 

Turner et al. 
2012 

Geometric 
correction 

Structure for 
motion 

Computer vision 

- Bundler 
software 

UAV 1 cm  

Wallace 
2013 
 

Forestry, 
Canopy 
structure 

Lidar - - UAV - FCI 

LCI 

GCI 

ACI 
Walter 2004 Land 

Use/Land 
Cover 

Object-based Supervised  

Maximum 
likelihood 

GIS Airborne  

Optical 

LIDAR 

50 cm 

2 m 

1 m 

 NDVI 

Weih & 
Riggan 2010 

Land 
Use/Land 
Cover 

Unsupervised 

Supervised 

Object-based 

- Feature Analyst 

Erdas Image® 9.3 

SPOT-5 

Aerial 
imagery 

5 m 

30 cm - 1m 

- 

Zarco-Tejada 
et al. 2009 

Precision 
agriculture, 
water stress 
olive, peach, 
and orange  

Thermal and 
multispectral 

FluorMOd model 

MODTRAN 
atmospheric 
correction 

- UAV 15-40 cm Cab 

Zarco-Tejada 
et al. 2012 

Precision 
agriculture, 
water stress, 
orange 
mandarin  

Hyperspectral 
image 

FluorMOd model 

MODTRAN 
atmospheric 
correction 

- UAV 40 cm PRI 
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Zarco-Tejada 
et al. 2013b 

Precision 
agriculture, 
water stress 
grapevine 

Thermal and 
multispectral 

Micro 
hyperspectral 

MODTRAN 
atmospheric 
correction 

PARGE (ReSe 
Applications)® 

- 2.5-15-40 R515/R570 

TCARI/OSSAVI 

Zarco-Tejada 
et al. 2013a 

water stress 
grapevine 

Narrow band 
multispectral 

SMARTS 
atmospheric 
correction 

MODTRAN 
atmospheric 
correction 

Object-based 

- - 10-20 PRI 
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Figure 1 The figure summarizes the main gaps identified from the literature review and the research focus of the thesis
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1.3. Research questions and objectives 

Chapter 1 introduces the scientific motivation of this work, defines the study object and provides 

the research topic of this PhD and considering the state of knowledge on the topic, GIS software can 

integrate information obtained through UAV imagery, satellite imagery, radiometric analysis, and 

spatial information in order to create LULC maps. The goal is the answer to the following questions:  

 

1. can the classic techniques of remote sensing be used to extract suitable land use/land cover 

maps – suitable in terms of classification accuracy – from the very high-resolution imagery 

of UAVs? 

 

2. can information from images of UAVs be merged with data from satellite images in the same 

area to achieve better results? 

 

3. which methods are optimal to analyse imagery of UAVs, and which benefits can be achieved 

through the use of more sophisticated techniques, such as the integration of multisource 

spatial information? 

 

Seen from the above research questions, the specific objectives of this project are: 

 

1. to test standard classification methods of remote sensing. 

 

2. to test advanced classifiers to UAVs only and to UAVs and satellite data integrated 

together. 

 
3. to integrate spatial and morphological information of objects to the machine learning 

methods applied for classification. 
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Paper I presents the conceptual multilevel remote sensing framework to integrate information 

obtained through UAVs imagery, satellite imagery, radiometric analysis, and spatial 

information. Moreover, the paper provides a preliminary classification of land use map 

using open source GIS software. 

Piragnolo, M. and Pirotti, F. (2016) ‘UAV Technology Integration for Remote Sensing 

Image Analysis’, in Doctoral Consortium, pp. 12–19. Available at: 

http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=Za27VqkeJrw%3D&t

=1. 

Paper II focuses on the integration of temporal series collected from Sentinel II and UAVs imagery 

for monitoring the permanent pastures. The analysis is conducted using VI. The overall 

objective is to define for each index a set of thresholds to define if a pasture can be 

classified as permanent pastures and to detect mowed permanent pastures. 

 

Piragnolo, M., Lusiani, G. and Pirotti, F. (2018) ‘Comparison of vegetation indices from RPAS 

and Sentinel-2 imagery for detecting permanent pastures’, in International Archives of the 

Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, pp. 

1381–1387. doi: 10.5194/isprs-archives-XLII-3-1381-2018. 

 

Paper III presents a benchmarking of 9 different machine learning algorithms for land-cover 

mapping using Sentinel-2 imagery. The supervised classification based on regions of 

interest has been executed on 4% and 50% of dataset pixels. The validation is carried out 

using a control dataset which consists of an independent classification in 11 land-cover 

classes, obtained by manual visual interpretation of high resolution images (20 cm ground 

sampling distance) by experts. The results highlight the performance should be evaluated 

in terms of accuracy metrics and in terms of computational speed, where using a high 

number of the pixels can require longer processing times for both classification and 

training. 
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Pirotti, F., Sunar, F. and Piragnolo, M. (2016) ‘Benchmark of machine learning methods 

for classification of a Sentinel-2 image’, ISPRS - International Archives of the 

Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B7, pp. 335–340. 

doi: 10.5194/isprsarchives-XLI-B7-335-2016. 

 

Paper IV presents a benchmarking for studying the behaviour of two popular machine learning 

algorithms Random Forest (RF) and Support Vector Machine (SVM) for LULC classification 

using UAV imagery. The training sets have been randomly obtained as a subset of 2 to 

20% of the total number of raster cells, with stratified sampling according to the land-use 

classes. The results identify the best result for training size larger than 7–8% of the total.  

 

Piragnolo, M., Masiero, A. and Pirotti, F. (2017) ‘Open source R for applying machine 

learning to RPAS remote sensing images’, Open Geospatial Data, Software and Standards. 

Open Geospatial Data, Software and Standards, 2(16), p. 7. doi: 10.1186/s40965-017-

0033-4. 

 

Paper V presents the optimization of the machine learning benchmark of 9 different machines 

learning the integration of spatial and morphological information. The spatial and 

morphological information are: the DTM, the canopy height model (CHM), the slope, the 

aspect, the roughness, the distance from an arbitrary point from the roads, and the 

elevation differences from an arbitrary point to the nearest road. The goal is to identify 

the suitable areas for two classes of forestry machines, which are the skyline and the 

forwarder. The results highlight the three best performance algorithms in terms of 

metrics and timing. Finally, a sensitivity analysis identifies the importance of the layers in 

the classification process.  

(In preparation) 
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2. Paper I: UAV Technology Integration for Remote Sensing Image Analysis 



 

This chapter is an edited version of: Piragnolo, M. and Pirotti, F. UAV Technology Integration for Remote Sensing Image Analysis. In 
Doctoral Consortium (DCGISTAM 2016), pages 12-19. http://www.scitepress.org/Papers/2016/59432/59432.pdf 
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UAV Technology Integration for Remote Sensing Image Analysis 

Marco Piragnolo and Francesco Pirotti  
CIRGEO, Interdepartmental Research Center of Geomatics, University of Padua, Viale dell'Università, 16 

35020 Legnaro, Italy 

 

1. RESEARCH PROBLEM  

In this paper, we focus on a multilevel remote 

sensing framework to integrate information obtained 

through UAV images, satellite images from Sentinel I 

and II, radiometric analysis, and  spatial information 

in order to derive informative maps to be used for 

educated decision support. The goal is the answer to the 

following questions:  

1. Could the classic techniques of remote sensing 

be used to extract suitable land use maps – 

suitable in terms of classification accuracy – also 

for the very high resolution UAV images?  

2. Which methods are optimal to analyze UAV 

images and which benefits could be achieved 

through the use of more sophisticated 

techniques, such as the integration of 

multisource spatial data to add to the feature 

vector?  

3. Could information from UAV images be merged 

with data from satellite images in the same area, 

in order to achieve better results?  

 

2. OUTLINE OF OBJECTIVES  

Based on the above research questions, the specific 

objectives of this project are:  

1. To test standard classification methods of remote 

sensing to UAV multispectral images.  

2. To integrate spatial and morphological 

information of objects to the machine learning 

methods applied for classification  

3. To test advanced classifiers to UAV only and to 

UAV and satellite data integrated together.  

 

3. STATE OF THE ART  

In the last years there was a growing demand for 

innovative tools to monitor geomorphological aspects 

for environmental analyses, land use, fragmentation of 

habitats and risk assessment (Piragnolo et al., 2014a; 

Piragnolo et al., 2014b; Van Asselen et al., 2013) in 

particular in rural areas which, in many cases, have 

proved to be of strategic importance to national and 

regional economy (Marsden, 2010; van Eupen et al., 

2012).  

Recently, unmanned aircraft vehicles (UAVs) have 

seen great attention from the scientific community. 

There are many aspects regarding this attention, the 

main one is the prospect to get highresolution data “on 

demand” quickly at a relatively low cost. The 

technology in terms of cost and availability follows the 

typical development curve: the prices and weight of the 

components have decreased, data accuracy has 

increased, and all with a lower power demand, or a 

constant power and greater durability of the apparatus 

as a whole. The market has come at a point where the 

cost for the apparatus, with RGB or multispectral 

sensors, becomes accessible to amateur users and to a 

large audience. Research fields are cultural heritage, 

archaeology, 3D survey, environmental, forestry and 

precision agriculture (Berni, 2009; Haarbrink and 

Koers, 2006; Herwitz, 2004; Hunt, 2010; Lelong, 2008; 

Remondino et al., 2011). Software for image processing 

is playing a key role in the diffusion of UAV 

technology. Since the accuracy of the positioning 

systems and orientation is not comparable to the 

classical systems of aerial photogrammetry, the 

software would compensate this limit with a massive 



UAV Technology Integration for Remote Sensing Image Analysis 
 

This chapter is an edited version of: Piragnolo, M. and Pirotti, F. UAV Technology Integration for Remote Sensing Image Analysis. In 
Doctoral Consortium (DCGISTAM 2016), pages 12-19. http://www.scitepress.org/Papers/2016/59432/59432.pdf 

 34 

use of  

 

image matching and structurefrom motion (SfM) 

techniques. These techniques, coupled with computer 

vision algorithms, have led to the development of 

various software for photogrammetric processing 

available with commercial licenses and Open Source 

licenses (Remondino et al. 2012). Several authors 

(Grenzdörffer et al., 2008; Sona et al., 2014) have 

reviewed this new technology and they have reported 

some problems in photogrammetric, radiometric aspects 

and data size:  

1. Photogrammetric problems concern the limited 

size and quality of the sensor in the camera 

mounted on the UAV; i.e. missing information 

regarding the internal orientation, distortion of 

frames, overlapping of frames, low precision of 

GPS-INS, a high number of the ground control 

point (GCP) required.  

2. Radiometric problems are related to image 

interpretation, correct use of radiometric 

information, new techniques for the processing 

of Multispectral Data and calculation of derived 

index (Honkavaara et al., 2012, Torres-Sanchez 

et al., 2014).  

3. Sensors with high spatial and temporal 

resolution produce massive data size which 

increases exponentially (Zaslavsky, 2013). Data 

size and processing time can be related to the Big 

Data paradigm: Big Data not only relates to 

physical storage, but also to the velocity of 

acquisition and variability of a number of files, 

tables, records and processing time (Singh, 

2012).  

Photogrammetric techniques will be used to obtain 

the basic data. The evaluation and improvement of the 

accuracy of the photogrammetric survey will be studied 

marginally as it has to be taken into account to provide 

the spatial error budget. In literature, many authors have 

proposed new frameworks, GIS environments and 

objects algorithms in order to solve problems of size and 

scalability of the dataset (Baumann, 2014; Lin et al., 

2013; Peña et al., 2013; Zhao and He, 2009). 

Radiometric analyses for segmentation and 

classification for GIS environment are the issues that 

will be considered in this study.  

 

4. METHODOLOGY  

The issues that will be considered are related to analysis 

in GIS environment thus with full spatial support like 

image interpretation, spectral information, the 

calculation of derived indices and the integration of 

other spatial data (data fusion). UAV data will be 

collected in test areas where ground information is 

acquired from experts assigning agricultural classes 

depending on crop type and yield. These data will be 

analysed in order to understand whether the classic 

techniques of remote sensing could be applied - i.e. 

minimum distance, maximum likelihood algorithms 

(Richards, 2006) and spectral angle mapping SAM 

(Kruse, 1993) – to correctly return the class of the area. 

Whether new techniques are necessary and which 

benefits could be achieved through the use of more 

advanced techniques, such as the integration of spatial 

data to increase the number of features describing 

significantly the phenomena, which we want to model. 

The integration of information obtained through 

photogrammetric methods and remote sensing, such as 

Sentinel-2 data, might improve the quality of derived 

products such as land use maps. The accuracies of the 

classification methods will be evaluated by weighing 

both the feature information from the reflectance from 

the spectral bands (optical information), and the 

information on the spatial proximity between classes or 

morphological information of the objects; spatial and 

morphological information is the third dimension 

obtained by photogrammetric technique (Dalponte et 

al., 2008). The first example of the feature vector with 

elements that will be tested is [b1, b2, b3, b4, b5, H, P] 

where bx are the bands of wavelength increasing from 
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blue to near infrared, H refers to height from the ground, 

and P refers to the slope. Standard classifiers and 

sophisticated classifiers such as support vector 

machines (SVM) (Melgani and Bruzzone, 2004) and 

Random Forest (Brieman 2001) will be tested.  

Considering the continuous use of multiband UAV 

digital images, it is necessary to structure data and to 

apply a harmonious management. It is important to 

manage the "raw" data, and information obtained from 

the various stages of the processing, to define the 

standard products; these data must be kept for further 

analysis.  

 
5. EXPECTED OUTCOME  

5.1. Multilevel Remote Sensing 
Framework  

The expected outcome is to set a procedure for 

classification and relative algorithms for integrating 

satellite and UAV data with other spatial information. 

The best algorithms in term of performance could be 

integrated into a multilevel remote sensing framework. 

The framework could integrate the information obtained 

through photogrammetric methods and remote sensing 

techniques (Figure 1). The first classification at a 

smaller scale will be executed on satellite images. 

Classification results and accuracies will be evaluated 

using a control dataset, which consists of an 

independent classification. In case of errors, a deeper 

analysis at a larger scale will be necessary, e.g. using 

aerial or drones orthopotos. In Figure 2 we present an 

initial classification of a test area. It is located at the 

south-east of the city of Padova, in Italian Veneto 

Region. The classification is based on Sentinel II 

images using random Random Forest algorithm. Figure 

3 shows the UAV image of the test area flown with a 

drone. The overlap shows a disagreement between the 

urban class of classification (red pixels) and crops that 

can be recognized in UAV orthomosaic. The final 

classification will be cross validated using a ground-

truth dataset acquired by a team of professionals 

working in the field of land-use maps.  

 

  
Figure 1: The multilevel framework.  

 

 
Figure 2: Classification map of land use produced by the 
random forest algorithm.  
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The expected outcome is a robust procedure to integrate 

UAV and satellite data to support decision procedures 

mainly, but not limited to, the field of agricultural crop 

administration. 

 

  
Figure 3: The testing area was flown by drone.  

 

 
5.2. UAV Fly Test  

Testing area is located in Legnaro inside Campus of 

Agripolis of the University of Padova, at south-east of 

the city of Padova, in Italian Veneto Region. It measures 

242 meters width, 508 meters height extension, and the 

area is twelve hectares. It was chosen because it 

contains heterogeneous crops, not flat geomorphology, 

and ground truth is well known. In November 2015 

eighteen ground control points (GCP) were put in the 

area, and the coordinates were collected with GPS in 

Real Time Kinematic. The root mean square error of 

measures is between 0.008 and 0.011 centimetres. Then 

the area was flown by Agency of Veneto Region for 

payment in Agriculture (AVEPA), with eBee UAV, 

Figure 4.  

 

  
Figure 4: Position of the GCP in the testing area.  

 

Ebee UAV was equipped with three Sensefly 

cameras, Red Green Blue (RGB), Near Infrared (NIR) 

and multispectral. RGB camera model was WX. NIR 

camera model was S110 NIR with three bands, green 

with central wavelength at 550 nm, red with central 

wavelength at 625 nm, near infrared with central 

wavelength at 850 nm. Multispectral camera model was 

multiSPEC 4C with four bands, green with central 

wavelength at 550 nm, red with central wavelength at 

660 nm, Red edge with central wavelength at 735 nm, 

near infrared with central wavelength at 790 nm. RGB 

and NIR camera images had a pixel size of 4.5 

centimetres. Multispectral camera images had a pixel 
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size of 18 centimetres. All images were processed with 

photogrammetric software Agisoft Photoscan and then 

orthorectified. The root mean square error for X, Y 

coordinates for a GCP averaged over all images is 

reported in Table 1. The error averaged by Photoscan 

over all the GCP locations is 0.396 pixel. Single band 

orthomosaic were exported as GeoTIFF file.  

 

Table 1: GCP errors calculated with Photoscan. The error (m) 
is the root mean square error for X, Y and Z for a GCP point. 
The proj. is the number of projections for a GCP over all the 
images. 

GCP  XY  
error 
(m)  

Z error 
(m)  

Error 
(m)  

Proj.  Error 
(pix)  

1  0.0198  0.0002  0.0198  86  0.3340  

2  0.0291  -0.0089  0.0304  83  0.3630  

3  0.0286  0.0074  0.0295  75  0.3180  

4  0.0260  -0.0109  0.0281  92  0.4170  

5  0.0156  0.0233  0.0280  106  0.3440  

6  0.0331  -0.0307  0.0452  102  0.3180  

7  0.0498  -0.0051  0.0500  91  0.4220  

8  0.0237  -0.0394  0.0460  109  0.3430  

9  0.0193  -0.0069  0.0205  91  0.5160  

10  0.0324  0.0783  0.0848  81  0.3980  

11  0.0115  -0.0082  0.0141  85  0.4350  

12  0.0316  0.0116  0.0336  88  0.3780  

13  0.0111  -0.0116  0.0160  116  0.4260  

14  0.0480  0.0392  0.0620  84  0.3470  

15  0.0267  -0.0550  0.0611  100  0.4100  

16  0.0562  0.0613  0.0832  89  0.4590  

17  0.0467  -0.0005  0.0467  78  0.3540  

18  0.0300  -0.0135  0.0329  45  0.5410  

Tot  0.0198  0.0002  0.0456    0.3960  

 

 
 

5.3. Classification  

In the previous step, we have orthorectified nine bands. 

Then we have selected seven bands in order to have 

continuous spectrum coverage without overlaps (Table 

2), and we uploaded the images in QGis.  

 

 

 

Table 2: Bands selected for the classification test. 

Band  Camera  Wavelength nm  

Blue  RGB  450  

Green  multiSPEC 4C  550  

Red  NIR  625  

Red  multiSPEC 4C  660  

Red  
Edge  

multiSPEC 4C  735  

Nir  multiSPEC 4C  790  

Nir  NIR  850  

 
We used Semi-Automatic Classification Plugin 

Version 4.9. To test two algorithms, Minimum distance 

and Maximum likelihood, we chose four classes that 

are, 1 - urban, 2 - ploughed land, 3- crops and 4- 

vegetation, and we identified regions of interest (ROI) 

using the specific tool. Minimum distance classification 

is shown in Figure 5.  
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Figure  5:  Classification  with  Minimum 
 Distance algorithm. 

In order to assess the classification accuracy a 

comparison ROI was created and it was used to 

calculate error matrix (Table 3) and Kappa index. Kappa 

index for Minimum distance classification is 0.64. Then 

we applied the same procedure for Maximum likelihood 

algorithm. Figure 6 shows the classification map, and 

Table 4 shows the error matrix. Kappa index for 

Maximum likelihood is 0.92. 

 

 

Figure 6: Classification with Maximum likelihood algorithm.  
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Table  3: Error  matrix  for Minimum distance 
classification. 

    Reference   

Class  1  2  3  4  Tot.  

1  32718  4313  0  479  37510  

2  10779  389257  2276  0  402312  

3  877  53722  32506  29239  116344  

4  0  0  6793  50438  57231  

Tot.  44374  447292  41575  80156  613397  
 
 
Table  4: Error  matrix for Maximum likelihood 
classification.  

    Reference   

Class  1  2  3  4  Tot.  

1  42746  306  0  0  43052  

2  1438  442206  6342  0  449986  

3  0  4610  27994  842  33446  

4  190  170  7239  79314  86913  

Tot.  44374  447292  41575  80156  613397  
 

5.4. Conclusion  

This work is a preliminary analysis to explore the 

potentiality of Satellite images coupled with UAV 

images. We have defined a procedure for integrating 

satellite and UAV data, and we have tested two classic 

remote sensing algorithms, Minimum distance and 

Maximum likelihood with UAV data. Images were 

collected with eBee drone, using different sensors. Then 

they were orthorectified and classified in four classes, 

urban, ploughed land, crops and vegetation. The 

accuracy of classification was estimated with the K 

index. Maximum likelihood got 0.91, while Minimum 

distance got 0.64. In literature, Maximum likelihood 

algorithm is one of the most popular classifiers used in 

remote sensing from the satellite. In this preliminary test 

with images from a drone, Maximum likelihood 

algorithm gives a better result than Minimum distance 

classifier. In Figure 7 we can see two comparisons 

between the algorithms and ground truth. On left 

images, Minimum distance algorithm classifies trees as 

buildings, while Maximum likelihood assigns trees to 

vegetation class. On right images, Minimum distance 

Algorithm produces confused classification. Maximum 

likelihood is more precise, but it mixes crops and 

vegetation.  

 

6. STAGE OF THE RESEARCH  

At the moment the research is at the initial phase as the 

project started a few months ago. In this contribution, 

we want to present the research question and the 

methods, which will be tested in the project.  

 
Figure 7: Comparison between classifications obtained two 
Minimum distance and Maximum likelihood algorithms.  
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3. Paper II: Comparison of vegetation indices from RPAS and Sentinel-2 imagery for detecting 

permanent pastures 
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ABSTRACT:  
  
Permanent pastures (PP) are defined as grasslands, which are not subjected to any tillage, but only to natural growth. They are important 
for local economies in the production of fodder and pastures (Ali et al. 2016). Under these definitions, a pasture is permanent when it 
is not under any crop-rotation, and its production is related to only irrigation, fertilization and mowing. Subsidy payments to landowners 
require monitoring activities to determine which sites can be considered PP. These activities are mainly done with visual field surveys 
by experienced personnel or lately also using remote sensing techniques. The regional agency for SPS subsidies, the Agenzia Veneta 
per i Pagamenti in Agricoltura (AVEPA) takes care of monitoring and control on behalf of the Veneto Region using remote sensing 
techniques. The investigation integrates temporal series of Sentinel-2 imagery with RPAS. Indeed, the testing area is a specific region 
were the agricultural land is intensively cultivated for the production of hay harvesting four times every year between May and October. 
The study goal of this study is to monitor vegetation presence and amount using the Normalized Difference Vegetation Index (NDVI), 
the Soil-adjusted Vegetation Index (SAVI), the Normalized Difference Water Index (NDWI), and the Normalized Difference Built 
Index (NDBI). The overall objective is to define for each index a set of thresholds to define if a pasture can be classified as PP or not  
and recognize the mowing.  
  
  

INTRODUCTION  

Permanent pastures (PP) are defined as grasslands, which are not 
subjected to any tillage, but only to natural growth, (self-seeded).  
There is more precisely defined by European Union’s 
fundamental reform of the Common Agricultural Policy (CAP), 
which introduced the new Single Payment Scheme (or Single 
Farm Payment, SPS) for direct subsidy payments to landowners. 
The SPS definition of permanent pastures is as follows: “land used 
to grow grasses or other herbaceous forage naturally (self-seeded) 
or through cultivation (sown) and that is not included in the crop 
rotation of the holding for five years or longer”. PP are a major 
source of nutrients for livestock and are of major importance from 
an ecological point of view and as carbon sinks in the carbon 
cycle. They are also important for local economies in the 
production of fodder and pastures (Ali et al. 2016). Under these 
definitions, a pasture is permanent when it is not under any crop-
rotation, and its production is related to only irrigation, 
fertilization and mowing. The production capacity is therefore 
mostly associated with environmental factors and a certain type 
of human activity (Xu et al. 2008). Managing PP requires some 
activities of monitoring and control. In literature, investigations 
over PP have been carried out to determine the amount of 
vegetation cover under a certain type of actions (Schmidt et al., 
2010), to evaluate the effects of grazing from livestock (Bastin et 
al. 2012, Blanco et al. 2009, Li et al. 2016), the impact of climate 
change over PP and ecological aspects thereof (Saornil et al., 
2008, Förster et al., 2012).  

  
 
 
Subsidy payments to landowners require monitoring activities to 
determine which sites can be considered PP. These activities are 
mainly done with visual field surveys by experienced personnel 
or lately also using remote sensing techniques. To monitor large 
areas with remote sensing, high-density temporal series are 
necessary, at least one image every ten days (Morel et al. 2014, 
O’Connor et al. 2012). In Italy, the Parmigiano-Reggiano area 
was subjected to investigation, using a persistency index of the 
Normalized Difference Vegetation Index (NDVI) from Landsat 
scenes over 10 years; PP has a persistency index value of >0.04, 
whereas pastures that are not permanent cycle through a range 
between -0.02 e -0.04 (Bocci et al., 2011). High-density temporal 
images are often not always available: for example because of 
cloud-cover, which is common in some areas. In addition, a delay 
between the tillage of a site and a cloudless image from a satellite 
might cause an incorrect false negative due to young vegetation 
growth happening between the tillage and the satellite visit.  
  
Lately, remotely piloted aircraft systems (RPAS) have gained a 
strong momentum in terms of usage. This is due mainly to lower 
costs, lighter apparatus and longer lasting batteries, which allow 
longer flights and lower costs. In addition, improvements in 
software development have contributed to a growth in popularity 
of close-range remote sensing with RPAS (Rutzinger et al., 2016). 
Multispectral cameras mounted on RPAS allow custom 
deployment for multi-band imagery over areas of interest. RPAS 
is, therefore, a suitable candidate to fill the gaps in the timeline 
where satellite imagery is not available (Pirotti et al., 2015), be it 
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Figure 3. Timeline of data acquisition   
  

  
2.2 Tested vegetation indices  

for long revisit times, for cloud cover or for a combination of both 
(Pirotti et al., 2017).  
 In the following note a specific region is considered were the 
agricultural land is intensively cultivated for the production of hay 
harvesting four times every year between May and October. The 
regional agency for SPS subsidies, the Agenzia Veneta per i 
Pagamenti in Agricoltura (AVEPA) takes care of monitoring and 
control on behalf of the Veneto Region. Usually, the controls are 
made manually with trained personnel moving physically to the 
area that must be assessed. Latest developments in remote sensing 
technologies have pushed AVEPA to investigate over using such 
technologies for decision support. The objectives of the presented 
investigation are to integrate temporal series of Sentinel-2 
imagery with RPAS imagery for monitoring candidates to PP. The 
analysis uses existing vegetation indices to relate reflectivity of 
different amounts of grass cover, which indicates how the pasture 
is managed and if it can be considered PP. The indices that will 
be used are the following: NDVI, to monitor vegetation presence 
and amount, the Soil-adjusted Vegetation Index (SAVI) to take 
into consideration the effect of soil, the Normalized Difference 
Water Index (NDWI) to test if information on wetness improves 
results, and the Normalized Difference Built Index (NDBI) to see 
if such information also provides significant information to define 
a pasture.  
  
The overall objective is to define for each index a set of thresholds 
to define if a pasture can be classified as PP or not and to detect 
mowed PP.  
  
  

MATERIALS AND METHOD  

2.1 Study area and dataset  

The study area is located in the north of Italy, in the Veneto  
Region; five sites in the area were investigated (Figure 1)  
  

 
 
 
The five sites are distributed in different municipalities, where 
land use and the cultural calendar is known; cultural calendar 
means that the type of crop present at a time of the year is known. 
The areas are defined as Piciacio, Albereria, Palmirona, Rossano 
and Dussin (see Figure 2).  
  
The five test areas were surveyed with a remotely piloted aircraft 
system, the “eBee Sensfly” equipped with a multispectral 

multiSPEC 4C camera. Flights were carried out between April 
and October 2016 for five flights over each site. The sensor 
records incoming radiation in four bands, respectively Green (G) 
- 550 nm, Red (R) - 660 nm, Red Edge (RE) - 735 nm and Near 
Infrared NIR - 790 nm). A number of targets were used as Ground 
Control Points (GCPs) whose coordinates were measured with a 
GNSS receiver in RTK mode. The images were processed with 
Pix4D© creating an orthomosaic with ground sampling distance 
of 0.2 m.  
  

  
Figure 2. Land-use maps of the five sites: 1 Piciacio, 2 Albereria,  

3 Palmirona, 4 Rossano, 5 Dussin  
  
  
Satellite imagery of the area was downloaded for dates as close as 
possible to the dates of the RPAS flights (Figure 3. Sentinel-2 
images, freely available from the European Space Agency (ESA), 
where used. The following vegetation indices were extracted: 
NDVI, SAVI, NDWI, and NDBI. For each of these indices, local 
statistics, i.e. average and standard deviation, have been extracted 
for three different groups: urban, PP and mowing on PP. The 
urban class is related to rooftops, which should have more stable 
values of these indices, and can, therefore, be used to monitor 
small differences which can be caused by factors other than the 
surface composition – e.g. atmospheric effects.  
  

  

2.2.1 NDVI: is the well-known normalized ratio between red (R) 
and near infrared (NIR) (Rouse et al. 1973) and it is one of the 
most used vegetation indices (Baluja et al. 2012, Bendig et al. 
2015, Diaz-Varela et al. 2014, Herwitz et al, 2004, Pérez-Ortiz et 
al. 2015, Sugiura et al. 2005, Tokekar et al. 2013, Torres-
Sánchez et al. 2015, Tucker 1979, Turner et al. 2010 ). The 
formula is the following:  

  𝑁𝐷𝑉𝐼 = 
ேூோିோ

ேூோାோ
   (1)  

 
The anatomy and physiology of the leaf absorbs radiation from 
wavelengths around the red area of the spectrum and reflects the 

Figure 1. Study area with five sites: 1 Piciacio, 2 Albereria, 
3 Palmirona, 4 Rossano, 5 Dussin  
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 near infrared. The index varies between -1 and 1. Higher values 
are related to healthy photosynthetic vegetation, lower values are 
related to stressed vegetation or no vegetation (bare soil). In 
literature, NDVI is used to study monitor vegetation health, 
hydrologic stress and the amount of biomass. In this study, NDVI 
has been extracted from RPAS and satellite imagery. In RPAS 
imagery, the NIR band that is available from the MultiSPEC 4C 
sensor is related to a wavelength of 790 nm. Therefore, NDVI was 
calculated using this wavelength as NIR band. Sentinel-2 has 
different bands in the NIR area of the spectrum. Usually, band 
number 8 is used for NDVI extracting, having information from 
radiation in the 842 nm and 10 m ground sampling distance 
(GSD). In our case, we used also band 7, which has a GSD of 20 
m, but represents reflectance from radiation at 783 nm, very close 
to the recorded wavelength of the MultiSPEC 4C NIR band.  
  
2.2.2 SAVI originates from the NDVI index (Huete et al. 1988) 
and uses a constant factor, L, for correcting for luminance. L 
varies depending on terrain conditions and vegetation cover. An 
L value of 0 indicates areas with dense vegetation cover, whereas 
1 indicates areas without or with very little vegetation.  
The formula is the following:  
  

   𝑆𝐴𝑉𝐼 = 
୍ୖିୖ 

୍ୖାୖ
   (2)  

 
In this investigation, we empirically applied an L value equal to 
0.5. The hypothesis is that upon mowing, the pasture there will be 
a significant radiometric contribution by bare soil. Therefore, 
SAVI can give an improved description of the situation of the 
pasture cover.  
  
2.2.3 NDWI is a normalized ratio between a NIR band and a 
Short-Wave Infrared (SWIR) band, respectively around 860 nm 
and 1240 nm wavelengths. It is an index is correlated with the 
water content of vegetation. It is widely used in precision 
agriculture, forest health monitoring and other applications were 
the status of vegetation is sensible to its modification in terms of 
water content. It varies between -1 e 1, where green healthy 
vegetation has values between 0.02 and 0.6 (Sentinel-Hub, 2018, 
Quadratic 2018). In literature, NDWI is calculated using SWIR at 
1240 nm because in this region there is high reflectance by water 
and low absorbance by cellulose. Other areas in the wavelength 
spectrum, which have a strong reflectivity by water, are in the 
interval between 1500-2500 nm. In case of dense vegetation, these 
are less efficient. Nevertheless, Sentinel 2 does not have a band a 
wavelength of 1240 nm. The bands 11 and 12 have a wavelength 
of 1610 and 2190 nm can be used for this purpose. Using the band 
11, the dry vegetation reflectivity is 0.3 and the green vegetation 
reflectivity is 0.6. Using the band 12 the dry vegetation reflectivity 
is 0.15 and the green vegetation reflectivity is 0.4 (Gao, 1996). 
Band 11 has been used to calculate the NDBI index. To avoid 
overlapping with band 11, and considering the sparse vegetation 
cover of mowing and the summer hydric stress, NDWI index has 
been calculated to using the band 12.  
  

   𝑁𝑊𝐼 =  
୍ୖ .଼ସଶି୍ୖ ଶ.ଵଽ

୍ୖ .଼ସଶା  ଶ.ଵଽ
 (3)  

  
2.2.4 NDBI is a normalized ratio between a SWIR and NIR bands, 
and it varies between -1 e 1. It is useful to recognize urban areas  
from vegetated areas, o water bodies. The vegetated areas and 
agricultural lands have negative or zero values, whereas barren 
lands or buildings have positive values (Zha et al. 2003). In this 

study, the NDBI ratio has been calculated using the band number 
8 and 11 of Sentinel 2 around 842 nm and 1610 nm wavelengths. 
The aim is to recognize bare soil and the not vegetated areas due 
to harvesting in agricultural land.  
    

   𝑁𝐵𝐼 = 
୍ୖ ଵ.ଵି୍ୖ .଼ସଶ

୍ୖ ଵ.ଵା୍ୖ .଼ସଶ
  (4)  

 
  

RESULTS AND DISCUSSION  

Results report on average and standard deviation of values of 
indices mentioned in the previous section, for three classes, PP, 
mowed PP and urban elements (i.e. rooftops). Discussion of these 
values refers to Figure 5, which is available in the next page.  
  
NDVI value was first calculated for urban areas as reported in 
Figure 4. These areas should have a stable trend during the year. 
The value is the mean of pixels falling completely inside the area 
of the urban element (i.e. rooftop) as depicted in Figure 4.  
  

  
Figure 4. Comparison between NDVI calculated using RPAS 

images with a resolution of 20 cm/pixel (left) and Sentinel 
2 images with a resolution of 10 m/pixel (right) 

  
NDVI values calculated with band 7 of Sentinel 2 are higher than 
NDVI values obtained with using the band 8 (Figure 5).  
Furthermore, the NDVI from the Satellite imagery exceed the 
NDVI from RPAS. The spatial resolution of 10 meters is 
sufficient to recognize the buildings, but it is affected by the noise 
of neighbour green areas, in particular using the band 7 with a 
resolution of 20 meters. The images were acquired at different 
time, so it is not possible to calculate the differences. The graphic 
comparison between satellite and RPAS highlight a difference of 
0.15.  
  
Regarding PP, only two areas in Piciacio site (355 and 360) have 
NDVI values higher than 0.70 as shown in Figure 5. The NDVI, 
which has been calculated in the area 355 using the band 8 of 
Sentinel 2, ranges between 0.66 and 0.80 (Figure 5). The 
minimum value is reached during the summer season in July and 
August. The NDVI trend, which has been calculated using RPAS, 
is similar to satellite ones. Nevertheless, since 19th July the RPAS 
NDVI exceeds the Satellite NDVI. The NDWI and SAVI trend  
are similar to the NDVI ones. NDWI maximum value, reached in 
July, is 0.65. The minimum NDWI value, reached in August, is 
0.42. The NDBI has a different behaviour reaching the maximum  
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of -0.13 during the summer. In the springs and autumn, the 
minimum values are stable around -0.38.  
 

 

The NDVI, calculated in Piciacio site at area 360 with Sentinel 2 
band 8, ranges between 0.74 and 0.83 in Figure 5, and the 
minimum value is reached in July. The NDVI, which has been 

calculated using RPAS, exceed the NDVI calculated using 
Satellite. RPAS shows a stable trend around 0.82, whereas the 
satellite has values around 0.74. The NDWI trend is similar to 
NDVI. The minimum value is 0.42, and it was registered in July 
and August. The SAVI is similar to NDWI trend, and the 
minimum value is 0.50. The NDBI ranges between -0.40 in spring 
and 0 in autumn. In summer the average values are -0.20. The 
mowed PP class has been recognized in each testing areas as 
shown in Figure 5. 
 

 
The NDVI has been calculated using Sentinel-2 in the Piciacio 
study site in area 371. It reaches a negative peak of 0.42 as shown 
in Figure 5. The SAVI and NDWI are 0.15 and 0.28, whereas 
NDBI is positive. In the literature, positive values indicate urban 
areas or barren land. Considering, the low values of NDVI and 
SAVI and positive values for NDBI the cover is thin, and probably 
the imagery were acquired in the same period of the mowing 
Instead, the peak can not be recognized using the RPAS. Indeed, 
there is not a temporal overlap between the peak and the RPAS 
imagery. 
 
The NDVI calculated in Albereria site has two negative peaks. 
The first one is at the end of June, and NDVI is 0.46. The second 
one is at the end of August, and NDVI is 0.62 as shown in Figure 
5. In June, the SAVI is around than 0.3, and NDWI is around 0.2. 
NDBI assumes positive values, which confirms the mowing. In 
August cutting of the pasture (i.e. mowed PP class) is related to a 
negative peak, where NDVI is 0.62, SAVI 0.41, NDWI 0.29, and 
NDBI -0.02. NDBI values near zero has been interpreted as 
vegetation growth. 
 
RPAS imagery in two cases does not recognize the mowing of 
pasture grass because the two flights were done one month before 
and one month later, as Figure 5 – Albereira area and Piciacio 371 
area. 
 
In the area Palmirona, between June and September, the NDVI 
trend is not stable as shown in Figure 5. In the middle of June the 
NDVI value is 0.59. NDWI and SAVI range between 0.5 and 0.5, 
whereas NDBI is -0.23. Probably, mowing has occurred between 
10th and 18th of June.  

Figure 5. Mean values of indices inside areas with different 
classes – standard deviation is reported in error bars 

Figure 6.  Mowed PP class in each testing area 
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In July, NDVI is decreasing from 0.78 to 0.71. Then, it increases 
to 0.80. SAVI and NDWI range between 0.48 and 0.61, and 
NDBI reachs the peak at -0.18. The High NDVI values, which 
are above 0.70, but instable, coupled with the other indices 
suggests it can be a stress of vegetation. Nevertheless, between 
28th of June and 18th of July, there are no data to exclude 
mowing activity.  
  
In August, the absence of vegetation is clear as shown by low 
NDVI, NDWI and SAVI and NDWI values. NDVI is 0.50, NDWI 
is 0.17, and NDBI is positive. This highlights the presence of dry 
vegetation or barren land. RPAS NDVI is stable, and in 
September, it is decreasing.  
  
In Rossano area, the average value for NDVI calculated using 
Satellite is 0.8 as shown in Figure 5. In July and August, the 
NDVI reaches the minimum of 0.58 and 0.64. The other indices 
have the same trend, and NDBI ranges between -0.04 and -0.06. 
Consequently, considering indices values, the PP has been 
probably mowed. Instead, in the same period, NDVI derived 
from RPAS imagery showed a decrease in September. The 
NDVI in September is 0.61 and it is similar to satellite values 
registered in July and August. On one hand, it can suggest that 
pasture grass was cut, on the other hand, there are no satellite 
data to confirm this hypothesis.  
  
In the Dussin area, the indices fall in July and August. In both 
dates, it is clear that the steep decrease of NDVI going to values 
of 0.52 and 0.57. A similar trend has been found for NDWI, 
SAVI and NDBI. In July and August, NDWI values are 0.24 and 
0.16, SAVI values are 0.33 and 0.29, and NDBI values are 0.05 
and 0.09 as shown in Figure 5. This trend has been detected by 
both Sentinel-2 and RPAS data.  
  
The minimum values for the indices have been summarized in the 
following tables Table 1 and Table 2.  
  
 
  

PP   Piciacio 355  Piciacio 360    

  min peak  min peak  Average  

RPAS NDVI   0.73  0.76  0.75  

SAT.  NDVI  0.66  0.74  0.70  

SAT.  NDWI  0.42  0.50  0.46  

SAT.  SAVI  0.44  0.50  0.47  

SAT.  NDBI  -0.13  -0.20  -0.17  

Table 1. Minimum and average values used to set the PP threshold  
 
 
 
 
 
 
 
 
 
  

 

Table 2. Minimum and average values used to set the threshold 
for the Mowed PP class 

 
Then, the PP class average has been compared with an average 
of the Mowed PP class (Table 1 and Table 2) to set classification 
threshold as shown in the table below.  
  
  
 Mowed  Probably  

Mowed  
PP  

NDVI SAPR  < -0.57  0.57 - 0.75  > 0.75  

NDVI  < 0.53  0.53 - 0.70  > 0.70  

NDWI  < -0.26  0.26 - 0.46  > 0.46  

SAVI  < -0.35  0.35 - 0.47  > 0.47  

NDBI  > 0  -0.25 - 0  < -0.25  

Table 3. Threshold defined according to tables above  
 

CONCLUSION  

In this paper, we report results on a comparison of NDVI, NDWI, 
SAVI and NDBI in urban areas, PP and mowed PP. NDVI has 
been calculated using RPAS imagery and Sentinel 2 imagery. 
NDWI, SAVI and NDBI have been calculated using Satellite 
imagery.  
 
In the urban areas, NDVI has been calculated using 20 centimetre 
GSD RPAS imagery and band 7 and 8 of Sentinel 2. Band 7 has 
20 meters of GSD, and 8 has 10 of GSD. The NDVI calculated 
using RPAS imagery is slightly higher than Sentinel 2. The two 
dataset do not overlap perfectly in terms of timeline, so we can 
not calculate the difference analytically. Nevertheless, the 
difference derived from the graph is 0.15. Finally, the band 8 of 
Sentinel 2 is more suitable than the 7 because the spatial resolution 
is higher. 
 
In this study, two PP have been recognized. NDVI values exceed 
0.65 also during the summer when water stress can occur. The 
values in the mowed PP range between 0.4 and 0.60. Therefore, 
using Sentinel 2 a conservative threshold has been set at 0.70.  
Using RPAS imagery, the threshold is 0.75.  
  
The information derived from satellite's NDVI and from RPAS's 
NDVI can be temporally integrated, such as in the parcel Dussin 
13 and Rossano 503. In Dussin 13 there is a steep decrease in 
NDVI recorded using both sensors. In Rossano 503 NDVI from 
RPAS's imagery detects a probably mowed PP.  
  
The NDWI has been calculated with the band 12 of Sentinel 2 for 
assessing water stress. The PP has a minimum value of 0.42, 
whereas the value in mowed PP ranges between 0.15 and 0.47. 
These values are comparable with 0.4 green vegetation and 0.15 

  Average all areas  

RPAS NDVI   0.57  

SAT.  NDVI   0.53  

SAT.  NDWI   0.26  

SAT.  SAVI   0.35  

SAT.  NDBI   0.02  
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for the dry vegetation found by Gao, 1996. SAVI does not add 
information as it is highly correlated to NDWI.  
 
The NDBI has negative values for green vegetation. According to 
the growing rate, the values for mowed PP ranges between -0.23 
and 0.0. In absence of vegetation or sparse vegetation, the index 
has positive values. The threshold that separates PP and mowed 
PP has been set at -0.25. 
 
This information has several applications that are important in 
land monitoring. The immediate application is to detect mowing 
in PP, which is a delicate matter as variance of NDVI can be from 
low synthetic activity and thus be low, and pastures with mowed 
grass will have low values of NDVI for a short time, as renovation 
of vegetation will not take more than some weeks, depending on 
season of course. Other applications, which are important, an area 
related to anthropic impact (Piragnolo et al., 2014) which is the 
focus of creating permanent pastures, to limit anthropic impact in 
ecological aspects. 
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4. Paper III: Benchmark of machine learning methods for classification of a Sentinel-2 image 
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 ABSTRACT:  
 Thanks to mainly ESA and USGS, a large bulk of free images of the Earth is readily available nowadays. One of the main goals of 
remote sensing is to label images according to a set of semantic categories, i.e. image classification. This is a very challenging issue 
since land cover of a specific class may present a large spatial and spectral variability and objects may appear at different scales and 
orientations.  
In this study, we report the results of benchmarking 9 machine learning algorithms tested for accuracy and speed in training and 
classification of land-cover classes in a Sentinel-2 dataset. The following machine learning methods (MLM) have been tested: linear 
discriminant analysis, k-nearest neighbour, random forests, support vector machines, multi layered perceptron, multi layered perceptron 
ensemble, ctree, boosting, logarithmic regression. The validation is carried out using a control dataset which consists of an independent 
classification in 11 land-cover classes of an area about 60 km2, obtained by manual visual interpretation of high resolution images (20 
cm ground sampling distance) by experts. In this study five out of the eleven classes are used since the others have too few samples 
(pixels) for testing and validating subsets. The classes used are the following: (i) urban (ii) sowable areas (iii) water (iv) tree plantations 
(v) grasslands.  
Validation is carried out using three different approaches: (i) using pixels from the training dataset (train), (ii) using pixels from the 
training dataset and applying cross-validation with the k-fold method (kfold) and (iii) using all pixels from the control dataset. Five 
accuracy indices are calculated for the comparison between the values predicted with each model and control values over three sets of 
data: the training dataset (train), the whole control dataset (full) and with k-fold cross-validation (kfold) with ten folds. Results from 
validation of predictions of the whole dataset (full) show the random forests method with the highest values; kappa index ranging from 
0.55 to 0.42 respectively with the most and least number pixels for training. The two neural networks (multi layered perceptron and its 
ensemble) and the support vector machines - with default radial basis function kernel - methods follow closely with comparable 
performance.  
  

1. INTRODUCTION  

Thanks to space agencies, e.g. ESA and USGS, a large bulk of 
free digital images of the Earth surface is readily available 
nowadays for download by anyone with internet access. As a 
part of the European Copernicus program, the recently 
launched Sentinel-2 satellite provides remotely sensed data of 
the Earth features for the key operational services related to 
environment and security on a regional to global scale; and is 
now available/ready for its scientific and commercial 
exploitation.  
One of the main goals of remote sensing is to label images 
according to a set of semantic categories, i.e. image 
classification. This is a very challenging issue since land cover 
of a specific class may present a large spatial and spectral 
variability and objects may appear at different scales and 
orientations. However, the increased availability, not only 
from satellite sensors, but also from distributed participatory 
sensors (Chen et al., 2015), has pushed for faster and better 
algorithms for classification of the available images. Within 
this context, the machine learning methods have developed at 
fast pace in the past years due to the growing amount of data 
available and the bigger size of the data itself. Doubtless, 
successful development of machine learning methods and 
their correct application for the data obtained from the new 

advanced sensors will benefit all fields where land-cover is a 
necessary information in planning and decision making. In the 
urban context, fitting models can help to contribute to the 
“smart-city” paradigm, e.g. by monitoring land-surface 
temperature (Scarano, 2015) or providing data for anthropic 
impact assessment in urban areas and outside urban areas 
(Akın et.al., 2015; Piragnolo et al., 2014). In environmental 
context, remote sensing provides a global view of the Earth’s 
phenomena and all the variables which are necessary to assess 
and predict its dynamics. One important example is the 
estimation of the biomass for carbon source/sink (Pirotti et al., 
2014) that uses various remote sensing data due to the 
necessary global scale of monitoring (Pirotti, 2010). Another 
critical aspect is the risk monitoring at various scales, ranging 
from subsidence of the Earth crust to fire and landslides 
(Scaioni et al., 2014). However, for a range of products 
dedicated to accurate thematic mapping in these applications 
such as mentioned above, the development and benchmarking 
of the machine learning algorithms for the new satellite 
missions such as Sentinel-2 satellite need to be validated and 
demonstrated in collaboration with national and international 
users. The goal of this paper is to analyse the performance of 
the different machine learning algorithms for land-cover 
mapping using a Sentinel-2 image. The novelty resides in 
discussing not only a typical assessment of accuracy from a 
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classification step, but a comparison of three typical methods 
for accuracy assessment: (i) comparing against training areas 
without cross validation, (ii) comparing against training areas 
using K-fold cross validation and (iii) comparing against a 
much bigger independent dataset. Several accuracy metrics 
are extracted and all results are cross-compared to investigate 
on common pitfalls in the evaluation of the classification 
results. Therefore, our study performs a benchmarking of 
different classification algorithms highlighting the adequacy 
and efficiency of the Sentinel-2 data for land cover mapping. 
  

2. STUDY AREA  

The study area is located at south-east of city of Padova, in the 
Italian Veneto Region (Figure 1). The area is approximately 
11 km in the East-West axis and 16 km in the North-South. 
The extension of the data polygons is approximately 60 km2. 
The area is roughly composed of urban areas, grassland, and 
crop sowable area.  

  
  

Figure 1. The satellite image (above) and land use map 
(below) of the study area.  

  
3. MATERIALS AND METHODS  

3.1. Satellite images – Sentinel-2  

The Sentinel-2A satellite successfully launched on 23 June 
2015, is becoming an important image data source for a wide 
spectrum of applications reaching from agriculture to forestry, 
environmental monitoring to urban planning. The reason is to 
be found in the following sensor features. A combination of 
different spatial resolutions (10 to 60m) with novel spectral 
capabilities (e.g., three bands in the ‘red-edge’ which provide 
key information on the state of vegetation plus two bands in 
the SWIR) – see Table 1. Wide coverage (swath width of 290 
km) and minimum five-day global revisit time (with its twin, 
Sentinel2B, to be launched in 2016) (Malenovský et. al., 
2012). The satellite's orbit is Sun-synchronous, at 786 km 
altitude, 98.5° inclination. Temporal resolution is 10 days with 
one satellite and 5 days with 2 satellites. In this study, the 

Sentinel-2 satellite data dated on 13th August 2015, is used to 
assess the three methods for accuracy assessment proposed.  

Band   
Central  
Wavelength 
(nm)  

Bandwidth 
(nm)  

Spatial 
resolution 
(m)  

Band 1   443  20  60  
Band 2   490  65  10  
Band 3   560  35  10  
Band 4  665  30  10  
Band 5   705  15  20  
Band 6   740  15  20  
Band 7   783  20  20  
Band 7   783  20  20  
Band 8   842  115  10  
Band 8A   865  20  20  
Band 9   945  20  60  
Band 10   1375  30  60  
Band 11   1610  90  20  
Band 12   2190  180  20  

 Table 1. Band description of Sentinel-2 sensor.  

  
3.2. Classification methods  

Supervised classification considers a set of observations S = 
{x1, x2, …, xn} - sometimes referred to as features, attributes, 
variables or measurements - for each sample of an area with 
known class C. This set is called the training set and is usually 
determined manually by setting regions of interest (ROI). The 
classification problem is then to find a good predictor for the 
class C of any sample of the same distribution (not necessarily 
from the training set) given observation S (Venables and 
Ripley, 2002). To find good predictors, various machine 
learning methods are used. The machine learning methods 
(MLM) tested in this study are given below:  
  

1. Linear Discriminant Analysis (lda),  
2. K-nearest Neighbour (kknn),  
3. Random Forests (randomForest),  
4. Support Vector Machines (svm),  
5. Multi Layered Perceptron (mlp),  
6. Multi Layered Perceptron Ensemble (mlpe),  
7. Ctree (ct),  
8. Boosting (b), 9. Logistic Regression (lr).  

  
A brief explanation of each method is given below together 
with some references for further reading:  
- Linear discriminant analysis is similar to principal 

component analysis, where finding the best linear 
combination of variables to best explain the data is the goal 
of the process (Venables and Ripley, 2002).  

- K-nearest neighbour is a popular technique which uses 
kernel functions to weight the neighbours according to their 
distances. As a matter of fact, not only kernel functions, but 
every monotonic decreasing function will work. The 
number of neighbours used for the "optimal" kernel should 
be:  

  

       (1)  
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where: d is the distance and k is the number that would be 
used for unweighted classification, a rectangular kernel. See 
(Samworth, 2012) for more details. 

- Random forests is a very well-performing algorithm which 
grows many classification trees. To classify a new object 
from an input dataset, put the set of observations (S) down 
each of the trees in the forest. Each tree gives a 
classification, and we say the tree "votes" for that class. The 
forest chooses the classification having the most votes (over 
all the trees in the forest). Each tree is grown with specific 
criteria, which are thoroughly reported in (Breiman and 
Cutler, 2015). The main features of the random forests 
method that makes it particularly interesting for digital 
image analysis are that it is unexcelled in accuracy among 
current algorithms, it runs efficiently on large data sets 
(typical among digital images to have a large number of 
observations), it can handle thousands of input variables 
without variable deletion and it gives estimates of what 
variables are important in the classification. Also generated 
forests can be saved for future use on other datasets. For 
more reading (Breiman, 2001; Yu et al., 2011).  

- Support vector machines is another popular MLM which 
has been particularly applied in remote sensing by several 
investigators (Plaza et al., 2009). It uses hyper-planes to 
separate data which have been mapped to higher dimensions  
(Cortes and Vapnik, 1995). A kernel is used to map the data. 
Different kernels are used depending on the data. In this 
study, the radial basis function kernel is applied.  

- Multi layered perceptron and multi layered perceptron 
ensemble are two neural networks, differing on the fact that 
the latter method uses average and voting techniques to 
overcome the difficulty to define the proper network due to 
sensitivity, overfitting and underfitting problems which 
limit generalization capability. A multi layered perceptron 
is a feedforward artificial neural network model that maps 
sets of input data onto a set of appropriate outputs. It consists 
of multiple layers of nodes in a directed graph, where each 
layer is fully connected to the next. Each node is a 
processing element with a nonlinear activation function. It 
utilizes supervised learning called backpropagation for 
training the network. This method can distinguish data that 
are not linearly separable (Cybenko, 1989; Atkinson and 
Tatnall, 1997; Benz et al., 2004).  

- Ctree uses conditional inference trees. The trees estimate a 
regression relationship by binary recursive partitioning in a 
conditional inference framework. The algorithm works as 
follows: 1) Test the global null hypothesis of independence 
between any of the input variables and the response (which 
may be multivariate as well). Stop if this hypothesis cannot 
be rejected. Otherwise select the input variable with 
strongest association to the response. This association is 
measured by a p-value corresponding to a test for the partial 
null hypothesis of a single input variable and the response. 
2). Implement a binary split in the selected input variable. 
These steps are repeated recursively (Hothorn et al., 2006).  

- Boosting consists of algorithms which iteratively finding 
learning weak classifiers with respect to a distribution and 
adding them to a final strong classifier. When they are 
added, they are typically weighted in some way that is 
usually related to the weak learners' accuracy. In this study, 
the AdaBoost.M1 algorithm is used (Freund and Schapire, 
1996).  

- Logistic regression method is also being applied in remote 
sensing data classification (Cheng et al., 2006). It fits 
multinomial log-linear models via neural networks.  

  
3.3. Classification  

Our total dataset consists in approximately 60 km2 therefore, 
taking as measuring unit the pixel size 10 x 10 m, 6x105 pixels. 
For each pixel we have information on its land-cover class due 
to manual interpretation which was provided as polygons with 
landcover classes (Figure 1 – bottom left). Because the study 
requires numerous runs with different combinations of MLM 
and size of training data, to limit computation time while 
keeping statistic robustness, we took a smaller subset of the 
total number of pixels. Pseudo-random stratified sampling 
was used to choose 20% of the pixels, which gave us 1.2x105 
pixels with known classes to work with, hereafter defined as 
 our control dataset. The sampling is “pseudo-random 
stratified” because two criteria were used to pick “cleaner” 
pixels. The first criterion consists in choosing only pixels 
falling completely in a polygon, i.e. no pixels are shared 
between polygons, thus theoretically decreasing spectral 
mixing in our control. The second criterion consists in 
balancing numerosity of pixels per class to avoid having 
under-represented classes. 
The training is then done automatically for each MLM also 
with stratified random sampling of the control dataset 
obtained with the aforementioned procedure. Thirty training 
subsets are picked for each MLM subsetting from 1% to 50% 
(1200 to 6x104 pixels). The same procedure described above 
is also carried out over a much smaller subset consisting of 4% 
of the total dataset pixels. This further processing was done to 
see the impact of a smaller dataset on results, and results are 
reported as blue points and red points, on figures 2 and 3, for 
4% and 20% respectively.  
 
3.4. Validation  

The control dataset consists of an independent classification 
with 11 land-cover classes in the total area (see Figure 1). The 
class attribution was done by manual visual interpretation of 
high resolution images (20 cm ground sampling distance) by 
experts. In this study, only five out of the eleven classes are 
used since the other classes cover very small areas with the 
consequence that the samples (pixels) for testing and 
validating subsets are not frequent enough to be tested 
significantly. The classes used are the following: (i) urban, (ii) 
sowable areas, (iii) water, (iv) tree plantations, and (v) 
grasslands. Five accuracy indices are calculated:  
 
- Classification accuracy rate (ACC) [0-100]  
- Classification error (CE) [0-100]  
- Balanced error rate (BER) [0-100] -  Kappa index 

(KAPPA) [0-100]  
- Cramer's V (CRAMERV) [0-1]  

 
Validation is carried out using three different approaches: (i) 
using pixels from the training dataset (train), (ii) using pixels 
from the training dataset and cross-validated via k-fold cross 
validation with ten folds of the training set (kfold) and (iii) 
using all pixels from the control dataset (all). The former will 
give the least independent validation whereas the latter will 
provide the most independent validation. As described in the 
previous section, since multiple trials were tested for the 
benchmarking speed and accuracy depending on the size of 
the training samples, the number of pixels used in the first two 
methods range from 1200 to 6x104 pixels; whereas in the last 
method whole control dataset was used, i.e. 1.2x105 pixels.  
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4. RESULTS AND DISCUSSION  

As reported in the previous section, validation has been done 
using three sets of data. The validation against the training set 
(train) is not reported in a figure, because it is not cross-
validated in any way and not independent. As a matter of fact, 
as expected, the accuracies from train validation were much 
over-estimated when compared to the other methods; i.e. for 
one of the MLM method, RF, the accuracy was 100%, as the 
decision trees model the training data perfectly (with 
decisions) and thus validation against training does not have 
any sense.  
The k-fold cross-validation and the validation against the full 
dataset are reported in Figure 2 and Figure 3, respectively.  
 

  
Figure 2. Accuracy metrics of k-fold cross validation over 

the training set. 
 

4.1. Best performing classifier  

The first question that needs to be asked is: what is the best 
classifier? As can be seen in Figure 2, the random forests (RF) 

performs better than the others, however there are several 
points that should be made. First of all, RF keeps the title of 
“best performer” when there are enough training variables. As 
can be seen in both plots, below 20 x103 pixels for training 
RF tends to be as accurate, if not less, than other MLM.  
The two MLM based on neural networks (MLP and MLPE) 
seem to perform better than RF when considering smaller 
number of pixels for training. This is particularly clear from 
the validation results from the full independent dataset (Figure 
3), where RF drops. RF also gets the title of best performer 
when comparing accuracies with the k-fold cross validation, 
keeping the title also at lower number of training pixels. A 
final remark is that the neural networks seem the most robust 
performers also with little training data. This can be inferred 
from observing how the accuracy (ACC) and kappa index 
(KAPPA) are more constant than the other classifiers, both for 
the full validation and for the k-fold validation. This is an 
important characteristic since more training data means more 
computation time and more manual work for determining the 
training areas over the image.  
 
  

  
Figure 3. Accuracy metrics of results over the full 

independent dataset.  
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4.2. K-fold versus full validation  

K-fold does have a small drawback when compared against 
validation from the full dataset. It overestimates accuracy 
when using the 2% of total polygons (blue dots) as opposed to 
the 10% of total polygons (red dots). This is explained by the 
smaller set used for training when using 2% of the available 
pixels as opposed to 10%. K-fold cross-validation uses 
available training data to assess accuracy, simulating 
independent sets of data by sampling from the training data 
and applying the model to it. Therefore, a smaller set will 
overestimate accuracy as opposed to a larger training set, 
which has more variance. It is trivial to state that validation 
against the full dataset is more robust. This type of 
overestimation of accuracy is observed in RF and KKNN, but 
not in the other classifiers. 

  
4.3. Processing speed  

Each combination of MLM and number of pixels used for 
training were also benchmarked for its speed in processing 
(Figure 4). This benchmark was performed by running the 
MLMs with R cran rminer package (Cortez, 2010) on a 
workstation with 1 Intel® Xeon® Six-Core Processor X5660 
(2.80 GHz, 12 MB cache, 1333 MHz memory), 12 Gb RAM 
running Windows©7  
64 bits.  

  
  

 
Figure 4. Benchmark results of processing speeds for each 
MLM with different number of pixels used in the training 
phase.  

  
  

  
Figure 5. Processing speed of different MLMs for training 
and classification using the highest number of pixels for 
training (6x104).  
 
This type of benchmark is to be considered for testing relative 
performance issues between MLMs in this particular case, and 
not an indicator for a final conclusion on speed of the 
algorithms as they are influenced by many factors which have 
not been monitored in this study.  
As shown n Figure 5, a group of classifiers are much faster in 
the training phase, especially when the highest number of 
training pixels – i.e. 6x104 pixels, are used. In training, the 
faster MLMs are lda, lr, ctree, and mlp. In the classification 
phase only boosting and kknn, followed by ctree, are 
significantly faster. The more complex methods, 
randomForest and svm, require longer processing times for 
both classification and training.  

  
5. CONCLUSIONS  

In this study, the benchmarking of 9 machine learning 
algorithms is carried out for accuracy and speed in training 
and classification of a Sentinel-2 dataset for land-cover 
mapping. Some interesting points which are worth reporting 
are outlined as below:  
- Overall, the RF is among the best performing method for the 

classification, i.e., Kappa index ranging from 0.55 to 0.42 
respectively with the most and least number pixels for 
training. - Next, the neural networks (mlp and mlpe) follow 
closely to randomForest and also have an important added 
value of keeping a high accuracy with smaller training 
datasets, as opposed to randomForest, i.e., drops in accuracy 
with a smaller number of training data.  

- The support vector machines also follow close, and it can be 
said that there are various methods to improve performance 
of SVM which have not been investigated in this study.  

- Although many factors which have not been monitored in 
this study, affect the speed of the algorithms used, in 
general, the more complex methods, such as randomForest 
and svm, showed that they require longer processing times 
for both classification and training phases.  

  
As a final remark, it might be the case that an optimized SVM 
over the same Sentinel 2 data used might lead to have an 
improved result; hence, it is thought that it will be an 
interesting topic for future investigations.  
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Open source R for applying machine 
learning to RPAS remote sensing images 
Marco Piragnolo*, Andrea Masiero and Francesco Pirotti 

Abstract 

The increase in the number of remote sensing platforms, ranging from satellites to close-range Remotely Piloted Aircraft System 
(RPAS), is leading to a growing demand for new image processing and classification tools. This article presents a comparison of the 
Random Forest (RF) and Support Vector Machine (SVM) machine-learning algorithms for extracting land-use classes in RPAS-
derived orthomosaic using open source R packages. The camera used in this work captures the reflectance of the Red, Blue, 
Green and Near Infrared channels of a target. The full dataset is therefore a 4-channel raster image. The classification 
performance of the two methods is tested at varying sizes of training sets. The SVM and RF are evaluated using Kappa index, 
classification accuracy and classification error as accuracy metrics. The training sets are randomly obtained as subset of 2 to 20% 
of the total number of raster cells, with stratified sampling according to the land-use classes. Ten runs are done for each training 
set to calculate the variance in results. The control dataset consists of an independent classification obtained by 
photointerpretation. The validation is carried out(i) using the K-Fold cross validation, (ii) using the pixels from the validation test 
set, and (iii) using the pixels from the full test set. 
Validation with K-fold and with the validation dataset show SVM give better results, but RF prove to be more performing when 
training size is larger. Classification error and classification accuracy follow the trend of Kappa index. 
Keywords: Remote sensing, R software, Machine learning, Random forest, Support vector machine, RPAS, Land use classification 

 
Background 

The increase in the number of remote sensing platforms, 
ranging from satellites to close-range Remotely Piloted 
Aircraft System (RPAS), is causing a growing demand for 
new tools for image processing and classification. 
Classification is applied in many research fields such as 
geomorphology, environmental analyses, land use, 
fragmentation of habitats and risk assessment [1, 2] just 
to name a few. In particular, RPAS are applied to fields that 
benefit from close-range sensing, such as 3D modelling of 
cultural heritage and archaeology, environmental 
sciences, precision forestry and precision agriculture [3–
7]. Imagery collected from remote sensing platforms is 
commonly classified using conventional remote sensing 
techniques supplied by available software in the market. 
In remote sensing literature, there are two main 
classification approaches, pixel-based and object-

 

 

based. The pixel-based methods can be divided into 
unsupervised and supervised. The unsupervised classifiers 
cluster pixels in a number of classes based on statistical 
information from the image. The process is automatic and 
the user can only set the number of clusters. The 
supervised classifiers are based on training areas inserted 
by an operator, which define a spectral signature for each 
class. The object-based classifiers defined an object using 
geometric information, contextual information and 
texture information. Machine learning techniques are 
classification/regression methods for analysing data. They 
can be used for supervised and unsupervised 
classification. They use algorithms that learn from 
previous computation, and they were recently applied in 
investigations regarding cotton crop [8], variable-rate 
fertilization [9], classification of invasive weed species 
[10], detecting landing sites [11, 12], geological mapping 
[13], Land Use/Land Cover (LULC) classification [14–18]. 
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Recent developments in technology have pushed for a 
fast increase in using RPAS – commonly referred to as 
“drones” for observation of the earth surface. The 
challenge of processing imagery obtained from RPAS 
resides in the increase of the size of datasets, which is due 
to increasing resolution of images and the ability of RPASs 
to collect hundreds of images in each flight. A novel 
approach using machine learning might provide faster and 
more accurate results than typical supervised 
classification of such images. The goal of this work is to 
benchmark the performance of two machine learning 
algorithms for classifying an RPAS-derived orthomosaic 
using open source R packages. The algorithms are Random 
Forest (RF) and Support Vector Machine (SVM). They are 
evaluated using three accuracy metrics, Kappa index, 
classification accuracy and classification error. 

Material and methods 
The RPAS images have been acquired in a testing area 
inside the Campus of Agripolis at University of Padova in 
the city of Legnaro (Italy). The size of the area is 241 m × 
508 m. It contains heterogeneous land-cover, including 
bare ground, vegetation and urban features. The ground-
truth is defined by direct observation. Eighteen ground 
control points (GCP) were defined in the area for 
orientation of the photogrammetric image block. The 
coordinates were collected with GNSS in Real Time 
Kinematic mode; the root mean square error (RMSE) of 
measures resulted between 0.008 and 0.011.  
The RPAS flight was performed in November 2015 using a 
camera with Red, Blue, Green and Near Infrared camera 
(RGBI) carried by the SenseFly EBee fixed wing platform. 
The average ground sampling distance (GSD) was 4.5 cm 
on the ground at a flight altitude of 150 m. The images 
have been processed using Agisoft Photoscan. The result 
is an ortho-rectified mosaic of images, with an RMSE of 

0.393 pixel. The final GSD, or spatial resolution, is 6 cm, so 
the final dimensions are 4020 X 8466 pixels, and the 
storage size is 48.9 MB. To reduce the computation time, 
the full dataset was resampled using the nearest 
neighbour algorithm to a cell size of 30 cm. The nearest 
neighbour algorithm preserves the radiometric values of 
cells. Then, the orthomosaic is clipped to a final dimension 
of 801 × 529 pixels, storage size of 1.21 MB (Fig 1). The RF 
and SVM machine learning methods were tested on the 
clipped image, using the R/rminer package [19] available 
in The Comprehensive R Archive Network repository [20].  

The R/rminer package, version 1.4.1 for R is an 
aggregator of 14 classification and 15 regression methods. 
It also includes methods for determining common 
accuracy metrics over results [21, 22]. Two algorithms, 
Support Vector Machine (SVM) and Random Forest (RF) 
have been compared in this study. The SVM uses a 
separating hyperplane as a predictor. A decision plane 
divides dataset into two groups. Hence, the set of objects 
has different class memberships, and data are 
transformed in classes by using a mathematical function 
called kernel [23]. The RF classifier consists of a collection 
of trees. It samples randomly the original dataset, and 
defines decision trees using bootstrap aggregating. 
Bootstrap is a statistical technique that allows 
approximating statistics (e.g. average, variance, 
confidence interval) of data from the data itself. It is used 
when the distribution of the original dataset is not known 
before-hand. A complete tree with all branches is grown 
for each sample, and the predictors are applied to each 
branch [24]. Finally, the best variable obtained from the 
predictor is chosen, and predictions are aggregated in a 
new sample. Consequently, a new sample is predicted, 
and the estimation of errors can be calculated at the level 
of iteration and aggregation [25, 26]. In this study, RF and 
SVM have been trained using a subset of 2 to 20% of the 

 Clipped testing area: true colour image (left), false colour infrared image (right)   
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total number of raster cells. For each percentage, ten 
training sets were extracted using stratified random 
sampling. This allowed to assess the variance from 
accuracy results for each size of training set. The control 
dataset is an independent classification based on photo 
interpretation as shown in Fig. 2. The classes for LULC are: 
(i) broadleaf, (ii) building, (iii) grass, (iv) headland access 
path, (v) road, (vi) sowed land, (vii) vegetable.  

The framework of the benchmarking process is 
illustrated in Fig. 3. Each class in the area is represented 
differently in terms of number of pixels (i.e. area). 
Therefore, the number of pixels we sampled for training 
was proportional to the class area (i.e. stratified sampling). 
Pixels falling across two polygons, thus mixing two 
different classes, were discarded to limit using pixels with 
mixed spectral signature. For each set of stratified 
samples, ten different training sets and ten validation sets 
have been created. The training set is used to fit the model 
and to apply it for classification of the image. The 
validation dataset is the difference between the full set 
and the training set. 
The framework trains and tests each of the two methods 
(RF and SVM) fitting the model and applying K-fold cross-
validation. The K-fold cross-validation technique splits the 
data in K (10) sets (folds) of equal size. K − 1 subsamples 
are used as training test set, and a single subsample is used 
for validation. The procedure is repeated K times, but each 
subset is used only once for the validation. 

  

Fig. 3 The schema of the framework for benchmarking. Models (RF
and SVM) have been applied to stratified samples ranging from 2 to 
20% of the total population (n. of pixels). For each set of stratified
samples, ten different training sets and ten validation sets have
been extracted 
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The accuracy metrics used for comparing results are the 
Kappa index, the classification accuracy and the 
classification error. Their values range from 0 to 100, and 
they are estimated with three different approaches, (i) 
using pixels from the training test set and applying KFold 
cross validation, (ii) using pixels from the validation test 
set, and (iii) using pixels from the full test set.  

 

Results and discussion 
The accuracy metrics are reported in three boxplots 
(Figs. 4, 5, 6) which represent respectively the Kappa 
index (K), the classification accuracy rate (Acc) and the 
classification error rate (CE). The last two are the inverse 
of each other. All metrics range from 0 to 100.The boxplots 
show the variance calculated from the ten runs for each 

 

 Boxplot of Kappa index (percentage value) calculated for K-fold cross-validation, full test set and validation dataset ranging from 2 to 20% 
of the total population (n. of pixels) 
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training size. Figure 4 reports Kappa index calculated for 
K-fold test set, validation test set and full test sets. 
Comparing the boxplots of the three validation methods, 
it is clear how their values grow proportionally with the 
training subset size from 2% to 20%. The variance 
decreases with the increase of the training subset size. In 
the K-fold cross validation test set, the results range from 
80 to 84, and the SVM performs better than RF. Using the 
validation test set, the results are similar, but values are, 

as expected, lower, ranging from 48 to 49.5. In addition, 
in this case the SVM is better in comparison with RF. When 
validating against the full test set, the RF returns a better 
result than SVM when training with more than 10% of the 
full test set. The Kappa values range from 48 to 51. RF rises 
gradually from 48.5 to 50.5, whereas the SVM remains 
stable around 49.5. 

Figure 5 shows the classification accuracy for K-fold test 
set, validation test set and full test sets. Likewise, the 
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accuracy trend is similar the K index trend, and a gradual 
improvement in accuracy is related to an increasing 
training percentage. Indeed, using K-fold cross validation 
test set, the SVM gets a better result than RF. In this case, 
the score is over 88 whereas using a validation test the 
score ranges from 56 to 58. Using a full test set, the RF has 
better results than SVM, and the score ranges from 56 to 
58. The RF rises gradually from 56 to 58, whereas SVM 
remains stable between 57 and 57.5. 

Figure 6 illustrates a decreasing trend for classification 
error in the three dataset. In the K-fold cross validation 
test set, the SVM has less error that RF with variations of 

0.5. Likewise, the validation test set has a decreasing 
trend, and the score ranges between 42 and 44. Using the 
full test set, errors range from 42 to 43.5, but the RF and 
SVM have a similar score using less than 5% of the pixels 
as training. Using a set for training of more than 5% of the 
total pixels, the RF and SVM results have some 
differences. The RF has a decreasing trend, and it reaches 
the minimum around 42, whereas SVM remains steady at 
42.7. 

Results by no means intend to prove one classifier better 
than another. Classifiers behave differently depending on 
several factors, and results prove exactly this point. Figure 
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4 is the most informative, where the first two validation 
methods show a better performance by SVM, but 
validation against the full test set provides a different 
result. The comparison of results from three different 
validation methods provides added insights on the 
behaviour that operators can expect from the two 
classifiers. Also, another informative aspect from the plots 
is the added value from using larger training sets. This is 
an important aspect, as bigger training sets require more 
computing time, and relative expenditure in terms of 
energy. Knowing the range of improvement over a 
growing training size can support decision in future 
classification procedures. 

Another source for discussion is the definition of classes 
and their identification over the image. This, of course, has 
a certain degree of subjectivity depending on the operator 
who manually defines these areas with polygons. Also, the 
inevitable aspect of inter-class and intra-class spectral 
mixtures has to be accounted for. 

Border pixels were removed in this study to limit mixing, 
but this operation does not remove the problem 
completely. Nevertheless, the results show significant 
relative differences correlated to the size of training sets. 
This is something to consider as supportive information 
when using such methods. 
 
Conclusions 
This paper compared accuracy metrics of two machine 
learning algorithms, SVM and RF, using three validation 
methods and testing different sizes of training sets. As 
expected, accuracy was better when a bigger training size 
is used, but this trend is not linear. This is particularly 
evident when the validation is done against the full test 
set. SVM gets better results with smaller training sets, 
whereas RF becomes better at training sizes larger than 7–
8% of the total. Validation with K-fold and with the 
validation dataset showed SVM give better results, but RF 
proved to be more performing when training size is larger. 
Classification error and classification accuracy followed 
the trend of Kappa index. 
Future investigations will limit mixing by careful selection 
of single pixels for both training and validation. This will 
decrease the size of the sets, but will increase the purity of 
pixel class and provide better insight on the behaviour of 
the machine learning methods. Available multi-spectral 
imagery benchmarking datasets will be considered also for 
further testing, for example the MUULF Gulfport dataset 
[27]. The focus of future studies will test more machine 
learning methods including multiple runs with different 
combinations of training and test sets, to improve on 
results from this study and from [16]. 
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Abstract 

 
In the last decades, the interest in forest planning has been renewed with the use of high-resolution 

data and with the use of advanced spatial analysis techniques (Baskent and Keles, 2005; Li et al., 

2007). The spatial analysis has also been applied successfully to wood harvesting and wood 

transportation both at the tactical and operational level. However, planning wood harvesting 

operations in complex situations, such as steep terrain, and low density of forest road network is 

challenging. To study, biomass and morphological aspect of harvesting site, the laser identification 

detection and ranging (LIDAR) is a common technology applied in forestry. Moreover, the usage of 

LIDAR and sophisticated classification methods, such as machine learning, can take advantage of a 

rich data set. Indeed, the machine learning is increasing in forestry, geomorphology. It can be 

effective using spatial data, such digital elevation model (DEM), altitude, slope, and the distance 

from the roads. For these reasons, the goal of the work is to support a decision-maker, using the 

machine learning approach based on morphological information, to identify the suitable areas for 

two classes of forestry machines, the skyline and the forwarder. Moreover, the innovation consists 

of simulating the choices of a worker during the forestry operations considering the accessibility of 

the area rather than estimate the morphological aspects, such as slope or roughness. The algorithms 

tested are conditional inference trees (Ctree), k-nearest neighbors (KNN), linear discriminant 

analysis (LDA), logistic regression (LR), multi-layered perceptron (MLP), multi-layered perceptron 

ensemble (MLPE), naive, naivebayes (NB), and random forest (RF). The metrics assessed through k-

fold cross-validation are kappa (K), accuracy (ACC) and classification error (CE), and the execution 

time. Finally, a sensitivity analysis (SA) has been done to study the contribution of each input for the 

classification. The benchmark shows the RF has the best performance in terms of K 91.85%, but it is 

the slower in comparison to the KNN and the Ctree. However, the KNN process has a high accuracy 
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of 87.07%, and the processing is very fast. Finally, the Ctree is fastest, but it has the lower accuracy 

of 77.93%. The SA evidences the input relative importance for the RF, the KNN and the Ctree, where

the accessibility of the harvesting site, have higher relative importance rather than the 

morphological aspect. Indeed, the slope and the roughness are less important for the classification. 

 
1. Introduction 

 
In the last decades, the interest in forest planning has been renewed with the use of high-resolution 

data and with the use of advanced spatial analysis techniques (Baskent and Keles, 2005; Li et al., 

2007). Spatial analysis has also been applied successfully to wood harvesting and wood 

transportation both at the tactical and operational level (Grigolato et al., 2017). However, planning 

wood harvesting operations in complex situations, such as in wet-area (Murphy et al., 2007), 

roughness terrain (Duka et al., 2017), steep terrain (Bont et al., 2012; Kuhmaier and Stampfer, 2010) 

and low density of forest road network (Cavalli and Grigolato, 2010; Najafi and Richards, 2013) is 

challenging. Considering the wood harvesting operations, the main working phases are felling, tree 

processing, yarding, loading and hauling. Generally, in term of transportation, wood harvesting can 

be split into primary transportation and haul (or secondary transportation) (Owende, 2004). The 

primary transportation consists of extract log from the stump site to the first road along which logs 

are loaded into a truck for long transportation to the final wood processing sites. In the context of 

primary transportation, steep slope terrain together with a widespread terrain roughness force the 

choice of forest utilization systems based on highly specialized machines (Mologni et al., 2016). The 

main forest machines used in very steep slope terrain are an overhead system of the cinch-driven 

cable such as cable cranes (Proto et al., 2016) and articulated chassis tractors such as forwarders 

(Strandgard and Mitchell, 2015). The latter present with respect to the first operating limits 

depending on the slope (usually less than 40%) and the accidentally of the terrain (in particular with 

the spread of obstacles with a height greater than 50 cm) (Pentek et al., 2008). Recently, the 

introduction of winch assisted machine systems lets also forwarders to expand to work also in 

steeper terrain up to 70-80% (Holzleitner et al., 2018; Mologni et al., 2018; Visser and Stampfer, 

2015). The usefulness of setting up spatial analysis models able to support forest technicians in the 

medium-term planning of wood harvesting. The current availability of high-resolution data such as 

data derived from laser identification detection and ranging (LIDAR) can give an advantage in terms 
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of awareness. Certainly, the complexity of the spatial analysis (Grigolato et al., 2017) depends on a 

large number of variables, data sets and software. In fact, in addition to the slope and accidentally, 

other variables are the forest growing stock distribution, stand parameters and distance from the 

forest roads.  

Consequently, the geographic information plays an important role in the planner of the forestry 

operation, and the GIS software can help the decision-maker for the data analysis (Matwin et al., 

1995). The information derived from LIDAR and remote sensing data are used for estimate the 

model vegetation, the canopy, and the biomass estimation (Gleason and Im, 2012; Stojanova et al., 

2010). In addition, the combination of LIDAR and machine learning can obtain positive results that 

exceed the traditional approaches such as the maximum likelihood classifier and linear regression 

models (Zhao et al., 2011). The machine learning is an automatic method for analysing data that 

iterates and learns from previous computation taking advantage of a rich data set. For these 

reasons, the machine learning have been applied in several studies, such as the precision agriculture 

(Papageorgiou et al., 2011; Zheng et al., 2013), land use / land cover (Pirotti et al., 2016), landslide 

assessment (Cracknell and Reading, 2014), surface classification (David Anthony et al., 2015). It and 

it can be effective using spatial data, such as geological maps, lithology, digital elevation model 

(DEM) (Marjanović et al., 2011), and morphological information e.g. altitude, slope, distance from 

road (Pradhan, 2013). Finally, studies of machine learning have been conducted with positive results 

in the different field of research related to marketing, psicology, e.g. for investigating the wine taste 

preferences, the preferences of the consumer, the marketing areas, and the contraceptive method 

choice (Cortez et al., 2009; Cortez and Embrechts, 2013).  

The goal of the work is to support a decision-maker, using the machine learning approach based 

on morphological information, to identify the suitable areas for two classes of forestry machines, 

the skyline and the forwarder. Moreover, the innovation consists of simulating the choices of a 

worker during the forestry operations. We assume that it is more natural for a worker to focus the 

attention on the accessibility of the harvesting site rather than estimate the operation limits based 

on the morphological aspects, such as the slope or the roughness. 

 
2. Materials and methods 

 
The case study area is in the southern part of the Altopiano dei Sette Comuni in the Veneto region 

in Northern Italy, (Figure 2). The study area is 34.32 km2, and the perimeter is 34.4 km. The Pre-Alps 
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area is covered by forestry and two types of forestry machine, the forwarder and the skyline, are 

used in the harvesting sites, which are accessible through a roads network, as shown in Figure 3.  

 
Figure 2 Location of the area of study 
 
 

 
Figure 3 Location of the harvesting sites 
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The dataset has been built in the R environment, using the digital elevation model (DMT), the 

canopy height model (CHM), the roads network and the by-products calculated from the previous 

ones. The DTM and the CHM raster maps have a ground sample distance (GSD) of 1 metre. Based 

on the DTM, the slope and the roughness map have been calculated. The forestry machines can 

work only in a specific condition e.g. the forwarder can work with slope lower than 40% and 

maximum roughness of 70 centimetres. Otherwise, the skyline is preferable. Indeed, it is 

theoretically possible to classify a land use map using this information. Nevertheless, we have added 

two layers that are the elevation difference between an arbitrary point and the nearest road, and 

the distance between the roads. The reason is to simulate the choices of a worker during the forestry 

operations. In our simulation, a worker is inside the harvesting site. We assume that it is more 

natural to focus the attention on the accessibility of the area rather than estimate the morphological 

aspect, such as slope or roughness. Therefore, the worker will try to move easily and fast identifying 

the minimum elevation difference between two points e.g. the place where he is and the nearest 

road. Consequently, the nearest road has been recognized starting from an arbitrary DTM cell, 

which represents the worker position. Then, the road elevation has been extracted, and the 

elevation difference has been calculated. Concerning the roads distance, it has been calculated by 

rasterizing the road network using the GSD of the DTM. Finally, the dataset raster stack counts 

2150215 pixels, and it is composed of six layers: the DTM, the CHM, the slope, the roughness, the 

distance from between the roads, and the elevation difference between the cell of the DTM and the 

nearest cell of the road Table 2. To clarify the terminology, in this work we use "layer" to identify 

the single raster of the stack, whereas use "input" to identify the raster layer used as input in the 

sensitivity analysis. 

 
Raster base layer Vector base layer Derived raster layer Raster stack layer 

DTM 1 m/pixel 

 
- 

- DTM 1 m m/pixel 
Slope Slope 
Roughness Roughness 
Elevation difference 
from DTM and the 
nearest road 

Elevation difference 
from DTM and the 
nearest road 

CHM 1 m/pixel - - CHM 1 m m/pixel 

- 
Road’s network Distance among the 

roads 
Distance among the 
roads 

Table 2 Summary of the layers that compose the raster stack 
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A prior statistical analysis of the correlation between the layers derived from DTM has been done 

for assessing potential effect in the classification process. In addition, the big number of the pixel 

can be time-consuming for the training, the test and the classification phase. Then, to obtain a good 

result that balance the accuracy and the processing time, a stratified sample of 10% has been done. 

On one hand, using a number of pixels lower than this threshold the performance is poorly. On the 

other and, using threshold the accuracy trend is stable. Using more than 10% there is no significant 

improvement (Piragnolo et al., 2017). The machine learning framework has been tested using a 

similar approach to the framework described in (Pirotti et al., 2016). Moreover, the subsample has 

been split into a training set (60%), a validation set (20%) and test set (20%). The training phase uses 

regions of interest (ROIs) that correspond to two types of harvesting site where forwarder and 

skyline machines have been used. During the training and the testing phase, the accuracy has been 

evaluated using three metrics applying the k-fold cross-validation. The metrics are: are kappa (K), 

accuracy (ACC) and classification error (CE), and the execution time. The k-fold cross-validation split 

the subset in 10 k-fold, and using k-1 for the training and 1 for the testing, and helps to reduce 

overfitting problems. Finally, the algorithms tested are conditional inference trees (Ctree), k-nearest 

neighbors (KNN), linear discriminant analysis (LDA), logistic regression (LR), multi-layered 

perceptron (MLP), multi-layered perceptron ensemble (MLPE), naive, naivebayes (NB), and random 

forest (RF). 

 

The Ctree uses a tree to partition recursively the covariate M that influence the variable Y. M is an 

m-dimensional covariate vector X=(X1…., Xm). The algorithm fits a learning sample, where the 

learning sample is a random sample composed of n observations vector. Consequently, the 

algorithm works recursively on the vector. The steps of binary partitioning are: testing the null 

hypothesis between the m covariate and Y and selecting the covariate Xi with the strongest 

association with Y. Measuring the associated P-values. Running the algorithm until the hypothesis 

is accepted. Splitting the variable into two subgroups, and repeating the previous steps. In case of 

the covariate Xi is missing, a new split can be calculated leading the same division of original split. 

When the null hypothesis is accepted, the algorithm stops (Hothorn et al., 2015). 

The KNN is based on a distance metric. Then, it finds the k nearest neighbours of the sample, 

and it assigns the sample with a majority vote among the K-nearest Neighbors. The method 

advantage is to adapt to a new training data set, but the computational request and storage space 

is significant. The key to avoiding overfitting and the underfitting problem is the right choice of k, 
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for example, using the standardized Euclidean distance. The steps are: choose the number of k 

nearest neighbours and a distance metric. Determine the k nearest neighbours. Count the majority 

vote and assign the class label (Raschka, 2015). 

The LDA is an algorithm for solving multi-class classification problems. The LDA is based on the 

dataset normality assumption and the independence feature assumption. The goal is to find the 

best variable combination for dividing the space into regions using a linear boundary. (Venables and 

Ripley, 2002). 

The LR is an algorithm for linear and binary classification based on neural network, where the 

classes are linearly separable. The binary classification is extended to multiclass classification using 

the One-vs-Rest (OvR) method. The OvR trains one classifier for a class. Then, it assigns a positive 

value to the class membership, and all other classes are considered as negative values. Iterating n 

times, where n is the number of classes a specific sample is assigned to a class considering the 

probability of membership. Logistic regression tries to maximize the likelihoods of the training data 

(Cheng et al., 2006). 

The MLP and the MLPE are neural networks composed of two perceptron layers. The 

perceptron algorithm has been developed in the 50s, and it is a single layer neural network with a 

threshold activation function, where the inputs are connected directly output using connected with 

adaptive weights. The advantage of the perceptron is to find a solution in a finite number of steps 

as studied by several authors (Arbib, 1987)(Duda and Hart, 1973) (Hand, 1985) (Hertz et al., 

1991)(Minsky and Papert, 1988)(Van Der Malsburg, 1986). However, when the dataset is not linearly 

separable data the learning algorithm cycle to infinite and never terminate. The multi-layer 

perceptron is a perceptron network composed of layers with adaptive weights. Thus, the input units 

of the first layer are connected to the output layer through intermediate layers (Atkinson and 

Tatnall, 1997) (Benz et al., 2004).  

The naive and NB algorithm tries to solve the classification problem using a simple and direct 

way. It could be described as a query that starts from the source to the end of the dataset. The NB 

uses the probability theorem to classify a normally distributed dataset, where the class feature is 

independent. Nevertheless, in the case of weak violation of independence assumptions in a small 

sample, the NB still tend to perform well. In case of strong violation of independence assumptions 

or non-linear classification, very poor performance is obtained (Raschka, 2014). 

The RF is a decision tree based on a bootstrap technique that creates a large number of training 

sets to compute the statistics. Hence, it draws randomly a sample of size n with no replacement, 
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and the value of n controls the bias and the variance. Replacement means an element can appear 

multiple times in the sample. On one hand, large values of n reduce randomness and increase the 

overfitting risk, on the other hand, small values of n reduce risk and model performance. Then, a 

decision tree grows, selecting d feature without replacement, so an element can appear only once 

in the sample. The tree nodes are split and the procedure is repeated k times. Consequently, the 

class label is assigned by majority vote to the aggregated classification (Breiman, 2001). 

Finally, the trained model has been studied with the sensitivity analysis (SA). The SA is a 

technique to interpret a black box model, studying the input layers. Indeed, a black box model 

produces one output (𝑦) using M inputs. Applying the sensitivity samples to the fitted model, the 

model responses are obtained as stated in the (1) : 

 ŷୀ 𝑃(𝑥) (1) 

 

ŷ  is the value predicted by the model 

𝑃()  is the function used to build the predicted value 

𝑥 is the data sample 

 

Consequently, the input variable {𝑥: a ϵ {1, M}} ranges through minimum to maximum with L levels. 

hen, calculating the input sensitivity for each input variable, the relevant input can be identified 

through the variation of the input level. Indeed, all inputs held at their average value, and one input 

changes assuming the L value (Kewley et al., 2000). For example, using a One-dimensional SA (1D-

SA) with 7 levels, the 𝑥 ranges [0, 1], and the values are 𝑥 ∈ (0.0, 0.14, 0.29, 0.57, 0.71, 0.86, 1.0). 

The following formula describes the model (2): 

 

 ŷୀ{ŷ  
: j ϵ {1, … , 𝐿} (2) 

where:  

ŷis the 𝑥 response. 

The input importance can be calculated using the input sensitivity. The sensitivity measure is 

calculated using the Average Absolute Distance (AAD) from the median (𝑠ௗ) proposed by (Cortez 

and Embrechts, 2013). A relevant input can be identified through the variation of the input level, 

and a variation of input levels produce output changes. The AAD is a robust method few sensitive 

to out layers, where a high value indicates high input relevance, as stated in the (3):  
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𝑠ௗ =    | ŷ −  𝑦෦|



ୀଵ

/𝐿 
(3) 

 

The sensitivity measure is calculated from the responses of𝑥 , and a high value indicates high 

relevance. The relative importance (4) is: 

 
𝑟 =  𝜍/  𝜍

ெ

ୀଵ

 
(4) 

 

𝑟 = relative importance 

𝜍= sensitivity for input 𝑥 

 

The sensitivity values have been plotted using Variable Effect Curve (VEC) that plot input 𝑥aj versus 

the ŷ  responses. In the paper, the input variables are the layers of the raster stack previous 

described. Consequently, I1 is the DTM layer, I2 is the CHM, I3 is the slope, I4 is the roughness, I5 is 

the distance from DTM and the roads and I6 is elevation difference between a DTM cell and nearest 

roads cell. 

 
3. Results 

 
A statistical analysis has been done to assess the normality and the correlation among the raster 

layers, in particular among the DTM and DTM-derived layers. The dataset is not normally distributed 

as reported in Figure 3 and Table 1. Therefore, we have been applied a not parametric test to study 

the homogeneity of variance and correlation. The results of Figner-Killeen show all input layers have 

not homogeneous variance as reported in Table 4. The correlation has been calculated using the 

Kendall Rank correlation, which is a robust, not parametric test (Croux and Dehon, 2010). The 

correlations among DTM and respectively the slope, the distance from roads, the elevation 

difference between the DTM and the roads, and the roughness are reported in Figure 4 and Table 

4. A weak correlation has been found between the DTM and the distance from roads. In the other 

cases, a very weak correlation has been found. 



  

(In preparation) 

79 
 

 
Figure 4 Normality and density distribution for the raster stack 
 
 

Normality DTM Slope Distance DTM-roads DTM, 
roguhness 

Shapiro-
wilk  

p-value <2.2e-
16 

p-value <3.288e-
10 

p-value <2.2e-
16 

p-value <2.2e-
16 

p-value < 
2.2e-16 

 Not normal Not normal Not normal Not normal Not Normal 
      
Skewness -0.3108419 0.1355057 0.5314014 0.3801503 0.9623484 
 to the left to the right to the right to the right to the right 
      
Kurtosis 0.7861781 -0.3649288 -0.3125651 0.3053029 5.141353 
 platykurtic platykurtic platykurtic platykurtic leptokurtic 

Table 3 Test for the normality 
 
 

Homogeneity 
of Variances 

DTM, slope DTM, distance 
from roads 

DTM, DTM-roads DTM, roguhness 

Figner-
Killeen  

p-value = 1.644e-08 p-value < 2.2e-16 p-value 0.000797 p-value < 2.2e-16 

 Variances not 
homogenous 

Variances not 
homogenous 

Variances not 
homogenous 

Variances not 
homogenous 

Table 4 Homogeneity of variance has been studied with the not parametric test. 
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Figure 5 Scatterplot with hexagon cell to visualize large dataset. The scatterplot shows the very low correlation between DTM and  
stack's layers. 
 
 

Correlation DTM, slope DTM, distance 
from roads 

DTM, DTM-roads DTM, roughness 

Kendall's 
rank 
correlation 

p-value < 2.2e-16 p-value < 2.2e-16 p-value < 2.2e-16 p-value < 2.2e-16 

 tau 0.06062991 tau 0.3243403 tau 0.1580749 tau 0.06139136 
 Very weak 

correlation 
Weak correlation Very weak 

correlation 
Very weak 
correlation 

Table 5 Correlation between DTM and the levels of the stack has been calculated with two not parametric test. 
 
 
The correlation has been calculated between the layer of the difference of elevation and the layer 

of the distance from the roads. The Kendall's rank correlation tau is 0.33 that indicate a weak 

correlation as reported in Figure 6. 



  

(In preparation) 

81 
 

 
Figure 6 Correlation between the level of the elevation difference (DTM - roads) and the layer of the distance from roads 
 
 
The statistical analysis evidences weak and very weak correlation, so it reasonable think to a limited 

effect in the classification process. Consequently, the machine learning has been performed 

calculating the probability of each pixel to be classified as a forwarder or a skyline. The accuracy 

metrics of the training ranges between0-100, and they are reported in Table 6 and Figure 7. The 

three best algorithms in terms of K and process time are the RF, the KNN, and the Ctree, and they 

have been used for the testing. The K value for RF is 95.49, for KNN is 95.23, and for the Ctree is 

84.36. In contrast, the faster algorithm is the KNN, whereas the slower algorithm is the RF. 

 

Model Task Time  
Sec. K ACC CE 

Estim. 
Sec. 

RF prob 292,35 95,49 97,6 2,4 9690,19 
KNN prob 0,01 91,04 95,23 4,77 0,33 
Ctree prob 34,87 84,36 91,7 8,3 1155,8 
Mlpe prob 136,64 63,56 80,6 19,4 4529,05 
Mlp prob 136,76 62,8 80,2 19,8 4533,03 
Lr prob 9,59 54,99 75,95 24,05 317,87 
NaiveBayes prob 0,36 54,65 75,61 24,39 11,93 
Lda prob 0,37 52,04 73,67 26,33 12,26 
Naive prob 0,01 0 52,64 47,36 0,33 

Table 6 Accuracy metric for the training set. The table reports also the time estimation for the classification for the full dataset. 
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Figure 7 Plot of the time vs K. Random Forest has the best K score, but it is very slow. In contrast, KNN and Ctree are faster than RF. 

 
 
The result of machine learning using the test set is reported in the following Table 7 and Figure 8. 

Likewise, in the training phase, the RF has the higher k, and the Ctree has the lowest k. In comparison 

to the training phase, the values have has been decreased. 

 
Model Task Time K ACC CE 
RF prob 770,2 91,85 95,67 4,33 
KKN prob 57,45 87,07 93,13 6,87 
Ctree prob 50,52 77,93 88,33 11,67 

Table 7 Accuracy metric for the test set 
 
 

 
Figure 8 Time vs K for the test set 
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Specifically, the RF is the slower algorithm, but it has a high K score of 91.85. KNN has K of 87.07. In 

contrast to the training set result, the KNN is slower than the Ctree. The Ctree is the fastest algorithm 

with a K of 77.93. Finally, the sensitivity analysis has been conducted for the three algorithms using 

the AAD metric. The AAD metric measures the relative importance of RF inputs as reported in Figure 

9. The most important inputs are the elevation difference between the DTM and the roads, then 

the DTM, and the distance between roads. In contrast, the CHM, the slope and the roughness have 

less importance.  

 
Figure 9 Random Forest relative importance of the input variables. The x-axis reports the AAD metric 
 
 

To understand the contribution of each input in the classification process, a detailed analysis of the 

inputs has been done using the VEC plot as a report in Figure 10. The values are summarized in Table 

8. The elevation difference, which ranges between negative values and 50 metres, has a high 

sensitivity in the forwarder class. In contrast, the skyline label is assigned when the elevation 

difference is greater than 100 metres. Between 0 and 50 metres, the sensitivity is 0.5 for both 

classes. The DTM has a threshold of 1300 metres that clearly discriminates the forwarder and the 

skyline classes. The distance from roads affects the forwarder class for values lower than 100 

metres. In contrast, the skyline is recognized for values greater than 200 metres. Between 100 and 

200 metres, there classification is not clear, and both classes have a value of 0.5. The CHM sets a 

threshold of 6 metres that discriminates well the forwarder and the skyline classes. The slope of 20 

degrees is the threshold that discriminates the forwarder and the skyline. Indeed, the forwarder 

sensitivity ranges between 0 and 20 degrees, whereas the skyline ranges from 20 degrees to 40 
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degrees. The roughness sensitivity can be found for values lower than 1 metre, but the flat trend 

suggests a low importance of this input for the classification. 

 

 
Figure 10 Inputs sensitivity analysis for the two classes of the RF classification. The X-axis reports the input level, and the Y-axis reports 
the sensitivity value. High input sensitivity occurred when the trend is varying, whereas a flat trend suggests low sensitivity. 
 
 

Input Forwarder Sensitivity Skyline Sensitivity 
Elevation difference < 50 m > 100 m  
DTM < 1300 m > 1300 m 
Distance from roads < 100 m > 200 m 
CHM < 6 m > 6 m 
Slope < 20° 20° - 40° 
Roughness - - 

Table 8 Class sensitivity for the input layers using RF 
 
 
The KKN has a K score of 87.07, and it is faster than RF. The inputs relative importance for the KNN 

is reported in Figure 11. The most important input is the elevation difference between the DTM and 
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the roads. Then, the distance between roads and CHM. The slope, the roughness and the DTM are 

fewer important for the classification process. The specific VEC plots are reported in Figure 12, and 

the values are summarized in Table 9. The sensitivity of the elevation difference is similar to the RF. 

The forwarder label is assigned for values lower than 50 metres, whereas the skyline is assigned for 

values greater than 50 metres. The distance from the roads shows a saw shape curve. The forwarder 

sensitivity ranges between 0.2 and 1, and the skyline sensitivity ranges between 0.1 and 0.7. Still, 

the peak of one class corresponds to the minimum of the other class. Consequently, in this range, 

there is a high sensitivity for all the classes, but the forwarder has slight higher values. However, the 

skyline sensitivity reaches the top when the distance is greater than 300 metres. The CHM trend 

highlight the value of 6 metres is significant to define the two classes. Below 6 metres of the tree 

height, the forwarder has the maximum sensitivity. Above 6 metres, the skyline is defined. The slope 

has a clear peak at 40 degrees. The sensitivity for the forwarder reaches the maximum below the 

threshold of 40 degrees. In addition, above 60 degrees, forwarder gets a high score, but the result 

is not is not significant. Indeed, the limit operation of the forestry machine is 40 degrees. Instead, 

the skyline has a high value between 20 degrees and 60 degrees, where the maximum is 40 degrees. 

The roughness shows a saw shape trend, where the minimum and the maximum are alternated. The 

sensitivity is high, but the roughness values do not match with the real operation limits. Finally, the 

DTM has high sensitivity without variation for both classes, which implicates a low relative 

importance.  

 
Figure 11 KNN relative importance of the input variables. The x-axis reports the AAD metric 
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Figure 12 Inputs sensitivity analysis for the two classes of the KNN classification. The X-axis reports the input level, and the Y-axis 
reports the sensitivity value. High input sensitivity occurred when the trend is varying, whereas a flat trend suggests low sensitivity. 
 
 

Input Forwarder Sensitivity Skyline Sensitivity 
Elevation difference < 50 m > 50 m  
Distance from roads < 300 m > 300 m 
CHM < 6 m > 6 m 
Slope < 40° > 40° 
Roughness < 1 > 1 
DTM - - 

Table 9 Class sensitivity for the input layers using KNN 
 

The Cree classifier has a K score of 77.93, and it is the fastest algorithms used in the test. The AAD 

metric and the relative importance are reported in Figure 13. The VEC plots for the two classes, 

forwarder and skyline, are reported in the Figure 14, and the values are summarized in Table 10 . A 

high sensitivity has been found for the distance from roads. Both classes range between 0.2 and 1. 
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Thus, the threshold can be set at 300 metres distance. The forwarder is defined below the 300 

metres and the skyline above the 300 metres distance. 

Regarding the elevation difference input, the forwarder has high sensitivity when the elevation 

difference ranges between -100 metres and 50 metres. In contrast, the skyline gets a high score only 

when the elevation difference is greater than 50 metres. Analysing the DTM, forwarder has high 

sensitivity when the elevation is lower than 1300 metres, whereas the skyline above the 1300 

metres of elevation. The slope threshold for the two classes is defined at 20 degrees. Indeed, below 

20 degrees forwarder has a score of 1, whereas above 20 degrees the skyline sensitivity increases. 

The sensitivity of tree height is high until 2 metres, where forwarder sensitivity is high at 0 metres 

and forwarder at 2 metres. Two metres is a low height for a for a coppice, and it suggests that CHM 

can be omitted from the dataset. Finally, roughness does not produce relative important output. 

 
Figure 13 Relative Importance of the input variables using Ctree. The x-axis reports the AAD metric 
 
 
 

Input Forwarder Sensitivity Skyline Sensitivity 
Distance from roads < 300 m > 300 m  
Elevation difference < 50 m > 50 m 
DTM < 1300 m > 1300 m 
Slope < 10° m 10° - 40° 
CHM - °- 
Roughness - - 

Table 10 Class sensitivity for the input layers using Ctree 
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Figure 14 Inputs sensitivity analysis for the two classes of the Ctree classification. The X-axis reports the input level, and the Y-axis 
reports the sensitivity value. High input sensitivity occurred when the trend is varying, whereas a flat trend suggests low sensitivity 
 

 
 

4. Conclusions 
 
In this paper, we propose to use spatial and morphological information, such as the DTM, the CHM, 

the slope, the roughness, the elevation difference and the distance from roads using machine 

learning for testing several algorithms and classifying a suitability map for two forestry machine 

types: forwarder and skyline. Forestry machine operates in a defined range of technical 

specifications and parameters, and the parameters are considered by the decision maker for 

defining the harvesting area. The novel approach consists to integrate the information on the 

accessibility of the area for simulating the worker choices. The benchmark shows the RF has the 

best performance in terms of K, but it is the slower in comparison to the KNN and the Ctree. 

However, the KNN process has a high accuracy, and the processing is very fast. Finally, Ctree is 
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fastest, but it has the lower accuracy. To support a decision-maker, understanding and 

interpretability of the data model is a key issue. For this purpose, the SA analysis has been 

conducted. The SA evidences the inputs relative importance for the RF, the KNN and the Ctree, 

where the accessibility have higher relative importance rather than the morphological aspect. The 

accessibility is described through of the harvesting site describes through the distance from the 

roads, and the elevation difference between the roads. Consequently, the slope and the roughness 

are less important for the classification. The forestry machine has some operation limits, specified 

in terms of maximum slope or roughness of the harvesting site. However, the choice of the route 

based on the accessibility of the area is a human decision. In addition, the VEC plots report the 

sensitivity of each input. Then, the RF uses the elevation and the distance from the roads network 

for making the prediction, and all inputs can give a contribution to the classification. The KNN is 

similar to the RF, and it considers the CHM as an important input. On the other hand, the roughness 

and the DTM do not add significant information. 

Finally, the Ctree takes into consideration the accessibility of the harvesting site, but the CHM 

provides an information that has no evidence in the real domain. Moreover, the roughness does not 

influence the classification. Considering the low relative importance of some inputs, more studies 

can be conducted using only the important inputs as a strategy to improve the performance and 

reducing the computing time. 
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7. Discussion 

The paper I (Piragnolo et. Al. 2014) describe a procedure for classifying and integrate multi-source 

information based on smulti-level framework for LULC purposes. The framework integrates 

information extracted using remote sensing techniques and time series. The advantage of multi-

level is to move from small scale to high scale, where small scale is represented by satellites and 

high scale is represented by UAVs. Consequently, the information obtained form the first 

classification at low scale can be integrated using the high resolution imagery. For example, a 

classification obtained from Sensintel-2 imagery has been integrated using high resolution imagery, 

which was acquired using a 7 band multispectral camera with GSD of 18 cm/pixel. Then, 

classification has been done using popular supervised pixel-based algorithms: the minimum 

distance and the maximum likelihood. The result indicates the maximum likelihood has higher 

accuracy in comparison to the minimum distance, but some errors occurred as mixing the crops and 

the vegetation spectral signature. Thus, maximum likelihood can be used for a fast integration of 

the satellite and UAVs dataset, but the complex spectral signature can produce a misclassification. 

However, the integration of the information between satellite and UAVs can be done in an 

efficient way in using the time series and the VI. In particular, the integration of temporal series 

collected from Sentinel-2 satellite and UAVs imagery for monitoring the permanent pastures and 

been done in the Paper II. A set of vegetation indices, which are NDVI, SAVI, NDWI, and NDBI, has 

been calculated between May and October to detect permanent pastures and mowed permanent 

pastures. The first issue studied is the radiometric similarities between the satellite and the sensor 

of the UAVs. The band 7 and the band 8 of Sentinel-2 have 10 and 20 metres of GSD. In contrast, 

band 8 radiometric response is very close to UVAs NIR sensor. The comparison between satellite 

NDVI and UAVs NDVI shows the band 8 is more suitable than 7 because the spatial resolution is 

higher. However, the identification of the medium size object as e.g. a building is affected by noise 

due to neighbour areas and obtaining a difference of 0.15. In contrast, the permanent pastures, 

which are big and homogeneous areas, do not suffer from neighbour noises. Consequently, 

discarding the marginal pixels, the mean of the DN using UAVs and satellite imagery is similar. Thus, 

when a mowing occurs it is possible to recognize a negative peak in the NDVI trend. Specifically, 

when the UAVs campaign overlaps the satellite observation, the NDVI negative peak has a 

difference of 0.7 between the two sensors. In accordance, the SAVI, NDWI, and NDBI confirm this 

trend. Therefore, the sensors can be temporally integrated, and UAVs can give useful information 

on the revisit time.  
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The results obtained using the classic remote sensing techniques can be applied to UAVs and can 

be improved using the advanced classification techniques such as machine learning. The Machine 

learning is a field of data analysis where an algorithm iterates and learns from the dataset, and using 

a rich dataset the of result the classification can improve. Consequently, a benchmark implemented 

in R has been integrated into the framework previously described (Paper II) to test multiple 

algorithms as shown in Figure 15.  

 
Figure 15 The framework for integrating satellite and UAVs imagery (Paper I) has been  integrated with the benchmark for the machine 
learning studied in the Paper III, Paper IV and Paper V  
 

The benchmark has been applied to satellite imagery, and an increasing number of the pixel from 

1% to 20% of the total has been extracted. Varying the dataset, the comparison of different 
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algorithms evidences that the performance can be expressed both in terms of accuracy and timing. 

The accuracy is correlated to the size of the training, and the time consumption is influenced both 

the training size and the complexity of algorithms. On one hand, the subset of the 2% of the total 

pixel overestimates the accuracy, whereas using the 20% require more time. On the other hand, 

the complex model such as RF and SVM, require longer processing times for both classification and 

training. The simpler models are faster in the training phase or in the classification phase. In 

contrast, the accuracy can not be good. Next, the code of the benchmark has been optimized to 

increment the number of the test to have a robust result.  

Based on previous results, the UAVs imagery has been tested using the RF and the SVM 

algorithm (paper III). One point of discussion is the dimension of the training area using the high 

resolution imagery. In fact, if we consider the same training area for satellite and UAVs imagery, the 

dimension of the dataset is correlated to the resolution. As result, to study the behaviour of the 

algorithms an increasing number of the pixel from 2% to 20% has been extracted. As expected, the 

accuracy was higher using a large training dataset, but this trend is not linear, in particular, the trend 

became stable using a training size larger than 8%.  

Finally, the integration of spatial and morphological information has been tested in the paper 

V (chapter). The dataset consists of six input layers, which have been obtained from a DEM of 1 

metre of resolution on an area of 34.32 km2 of size. Using the morphological information, the 

framework can support the forest technicians classifying a suitability map for two types of forestry 

machine: forwarder and skyline. An innovative approach is to simulate the worker behaviour in the 

site. The hypothesis is the worker focus his attention on the accessibility of the site rather than 

other technical parameters. Thus, the technical parameter such as the slope, the roughness, the 

height of the trees has been integrated with the accessibility parameter such as the distance and 

the elevation difference from roads. Considering the issue of big data, and in accordance with the 

results described in the Paper IV, a subset of 10% of the total pixel has been tested in the 

benchmark. The three best algorithms are RF, KNN, and Ctree. Likewise, the result presented in 

Paper III, the RF has the best score, with a result of 91.85, but is very slow. In contrast, Ctree is the 

faster algorithm, but it is less accurate, and KNN is in an intermediate position. Moreover, a 

sensitivity analysis shows the accessibility has high relative importance rather than slope, and 

roughness. The CHM and elevation have medium importance. Finally, some layers do not add 

significant information, and they can be eliminated in the future implementation if a decision 

support system. 
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8. Conclusion 

The main objective of this thesis was to investigate the role of the open source GIS software for 

integrating the information obtained through the UAVs imagery, the satellite imagery, the 

radiometric analysis, and the spatial information to create LULC maps. The main findings of this 

thesis relating to the major research question (1) can be summarized as follows: the classic remote 

sensing techniques can be applied to UAVs high resolution imagery to obtaining fast image 

classification. The maximum likelihood algorithm has a better result than the minimum distance 

algorithm in terms of accuracy, but there are some limits for detecting and managing of a spectral 

signature using multi band information, as e.g. the crops and the vegetation. The issue is related to 

high variability inside not homogeneous training areas. 

 

The main conclusions of these studies to answer the main research question (2) can be summarized 

as follows: the information obtained from UAVs can be effectively integrated with the information 

obtained from the satellite considering two aspects: the spatial scale and the time series. The scale 

affects the size of the training areas. Thus, to integrate the satellite and UAV information, the size 

of the analysis object shall be larger than the GSD satellite to avoid noise from nearby areas. 

Furthermore, the high resolution images shall do not contain many details, because the presence of 

small details could influence the spectral signature. In accordance, when the areas are 

homogeneous in terms of DN, the mean value of VI calculated using the spatial statistics is similar 

between UAVs and satellite. Therefore, the information extracted from high resolution images can 

be integrated with satellite platforms. Finally, using VI is possible to extract information from UAVs 

imagery for confirming the satellite analysis or integrating during the satellite review period. 

 

The main conclusions of this study to answer the main research question (3) can be summarized as 

follows: the pixel-based and object-based classification approaches are common in remote sensing 

studies, whereas the machine learning is a new approach useful for classifying LULC map. Thus, a 

benchmark for testing several machine learning implementation has been implemented using R 

open-source libraries. The result shows the machine learning can be applied to both satellite and 

UAVs imagery. The dataset derived from high resolution imagery can be considered as a big data 

paradigm, in terms of data size and the processing time. Therefore, to manage and process a multi-

layer dataset the definition of the size of the trained dataset is a critical issue. The analysis has 

evidenced a limited percentage of the dataset of ten percent is sufficient to train the model and 
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obtain a good result. Moreover, the comparison of the performances of the algorithms during the 

training phase, allows identifying the suitable algorithms in terms of accuracy and processing time. 

In addition, the method can be applied to spatial and morphological information derived from DTM. 

The machine learning black box produces accurate results, but the interpretation of a trained model 

is a complex issue. However, the contribution of the inputs in the multi-layer framework can be 

studied using the sensitivity analysis and visualization techniques.  

 

Future implementations can lead to create a tool to download and clip automatically the satellite 

imagery, such as Sentinel-2 over a specific area. This implementation allows monitoring the testing 

area on the time. Moreover, more studies can define an automatic procedure for the data fusion of 

UAVs and satellite considering the spatial scale. Regarding the spatial information, in this study the 

morphological information has been studied alone in the benchmark. Consequently, a new 

investigation can be done to understand which benefit can be achieved form the integration of 

spectral and the spatial information. Finally, in this study cross validation and confusion matrix has 

been used. Therefore, other validation methodology, such as the quantity disagreement and the 

allocation disagreement, can improve accuracy assessment. 
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10. Annex I. Band ratio and vegetation index (VI) 

The band ratio and indices are common techniques for the spectral enhancement. They are 

calculated as combinations of bands applying mathematical operations such as sum and division to 

a raster image. The popular indices reported in the literature review are described in the next 

section. 

 

10.1. NDVI 

The Normalized Difference Vegetation Index NDVI (Tucker, 1979), is a common widely used for 

vegetation monitoring (Baluja et al., 2012; Bendig et al., 2015, 2012; Berni et al., 2009a; Diaz-Varela 

et al., 2014; Herwitz et al., 2004; Pérez-Ortiz et al., 2015; Sugiura et al., 2005; Tokekar et al., 2013; 

Torres-Sánchez et al., 2015; Turner et al., 2010). Indeed, the leaf structure adsorbs the red 

wavelength, and it reflects NIR bands to avoid overheating. It is calculated as the ratio of red band 

(R) and near-infrared (NIR) (Rouse et al., 1973). The formula is (5):  

 

 
NDVI =

NIR − R

NIR + R
 (5) 

 

NDVI ranges between -1 to 1 and is used to monitor vegetation. The value of -1 indicates no 

vegetated area and the value of 1 indicates full-vegetated area. NDVI was widely used in the 

literature coupled with other indices for study crop vigour and biomass and water stress (Herwitz 

et al., 2004). A relation between NDVI and TCARI/OSAVI has been found in grapevine (Baluja et al., 

2012), and a good correlation between NDVI, Photochemical Reflectance Index (PRI) and canopy 

temperature (r2 = 0.69) have been found on corn and olive trees (Berni et al., 2009a). The NDVI can 

be used combined with topographic indices or to model real data in UAV simulation sampling 

(Tokekar et al., 2013) or for threshold images in object-based classification (Torres-Sánchez et al., 

2015). Some indices were developed from NDVI such as Modified GRVI (MGRVI) and red green blue 

vegetation index (RGBVI). Both GRVI and RGBVI were introduced by (Bendig et al., 2015). In addition, 

MGRVI has been defined as the normalised difference of the squared green reflectance and the 

squared red reflectance. The RGBVI has been defined as the normalised difference of the squared 

green. These indices have a better ability to model biomass in early growth stages in comparison to 

late growth stages.  
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10.2. SAVI 

The Soil-adjusted Vegetation Index (SAVI) (Huete, 1988) and the Optimized Soil-adjusted Vegetation 

Index (OSAVI) (Rondeaux et al., 1996) are based on the NDVI index. Thus, to discriminate better the 

soil contribution, the SAVI adds a soil brightness correction factor L to NDVI (6). L is related to soil 

and vegetation coverage, and it ranges from 0 to 1. The value of 0 indicates the high vegetated area, 

and a value of 1 indicates a very low vegetated area. Intermediate vegetation cover is 0.5.  

 

 
SAVI =

NIR − R

NIR + R + L
∗ (1 + L) 

 

 (6) 

The OSAVI has the same formula of SAVI, but the correction factor L is equal to 0.16 in order to 

minimize the soil effect. 

 

10.3. MCARI 

The Modified Chlorophyll Absorption Ratio Index (MCARI) (7) indicates a relative abundance of the 

chlorophyll (Daughtry, 2000). The chlorophyll has the maximum absorption peak at 680 nm, and it 

reaches minimum pick at 550 nm. Indeed, MCARI was centred in the region of maximum absorption 

between 550 and 700 nm. Consequently, the ratio R700/R670 was introduced to minimize the 

combined effects of the underlying soil reflectance and the canopy non-photosynthetic materials.  

 

 
MCARI =   (R700 − R670) − 0.2 ∗ (R700 − R550) ∗ (

R700

R670
) 

 

 (7) 

where: 

 

R700 = reflectance at 700 nm  

R550 = reflectance at 550 nm 

R670 = reflectance at 670 nm 
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10.4. TCARI 

The leaf area indices (LAI), the chlorophyll and the soil reflectance influence MCARI (8). Therefore, 

MCARI is affected by low chlorophyll level. Hence, to reduce this effect MCARI was modified as 

Transformed Chlorophyll Absorption in Reflectance (TCARI). 

 

 
TCARI =   3 ∗ [(R700 − R670) − 0.2 ∗ (R700 − R550 ∗ (

R700

R670
) 

 

 (8) 

The TCARI is influenced to soil reflectance in particular in poor leaf coverage. Hence, the ratio 

TCARI/OSAVI overcomes this problem. The advantage is high sensibility to chlorophyll variation and 

low sensibility to LAI, solar zenith angle and soil reflectance (Haboudane et al., 2002).  

 

10.5. TCARI/OSAVI 

The TCARI/OSAVI was used to calculate the concentration of chlorophyll at the crown. A strong 

positive correlation was found on corn, olive, and peach trees between chlorophyll estimated from 

the multispectral camera and chlorophyll measured in the field (R2 = 0.89) (Berni et al., 2009a). An 

airborne campaign over the vineyard found a positive correlation between spectral indices derived 

from aerial images with stem water potential, and stomatal conductance for NDVI has (R2 =0.68) 

(R2=0.75) and for TCARI/OSAVI (R2 =0.58), (R2=0.84) (Baluja et al., 2012). Likewise, TCARI/OSAVI 

has been applied to study the chlorophyll content and physiological condition in grapevine. The 

index has been calculated from thermal and multispectral imagery (Zarco-Tejada et al., 2013a). A 

study on olive trees using TCARI and TCARI/OSAVI highlights a decrease in chlorophyll content. 

TCARI and TCARI/OSAVI showed an upward trend at early stages of the disease, reaching a 

maximum at the low disease severity level (Calderón Madrid et al., 2014). 

 

10.6. PRI 

The Photochemical Reflectance Index (PRI) (Fuentes et al., 2001; Gamon and Surfus, 1999) has been 

used in studies of vegetation health and productivity for monitoring the stress responses. The PRI 

ranges from –1 to 1 and it is calculated as follows (9): 
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PRI =   

R531 − R570

R531 + R570
 

 

(9) 

where: 

 

R531 = reflectance at 531 nm  

R570 = reflectance at 570 nm  

 

The PRI has been used successfully as an indicator of water stress at the leaf level in the orange and 

mandarin orchard (Turner et al., 2010). Indeed, the result has demonstrated a correlation between 

seasonal PRI and crown temperature, where NDVI had a low sensibility to water potential and 

stomatal conductance (Zarco-Tejada et al., 2012). Then, a new formulation of the normalised PRI 

(PRInorm), was proposed, because it was more stable against change background of altered 

pigments and structure (Zarco-Tejada et al., 2013a)(Zarco-Tejada et al., 2013a). In addition, PRI was 

also used as an indicator of possible diseases and moderate to severe damage in olive crops 

(Calderón Madrid et al., 2014). 

 

10.7. CWSI  

The Crop Water Stress Index (CWSI) estimates crop water status using thermal data (Idso et al., 

1981; Jackson et al., 1981). The CWSI equation is (10): 

 

 CSWI =   (T°canopy − T°wet) − (T°dry − T°wet) (10) 

where: 

T° canopy = was the canopy temperature obtained from the thermal images  

T° dry = lower boundary temperatures corresponding to a fully transpiring leaf with open stomata 

T° wet = upper boundary temperatures, corresponding to not- transpiring leaf with closed stomata 

 

The CWSI derived from UAVs thermal has been used to study the water stress in an olive orchard, 

where a strong correlation between CWSI and leaf water potential (R2=0.82), and CWSI and canopy 

conductance (R2=0.91) has been found. Consequently, the result suggests that CWSI can be used as 
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a good indicator to map water stress in open tree canopies (Berni et al., 2009b, 2009a) and disease 

(Calderón Madrid et al., 2014). 

 

10.8. ExG 

The Excess green index (ExG) (M. Woebbecke et al., 1995) can be used for set imagery threshold to 

discriminate if a pixel corresponds to vegetation or soil (Pérez-Ortiz et al., 2016, 2015; Torres-

Sánchez et al., 2015). It is computed as (11): 

 

 ExG =   2G ∗ −R ∗ +B  (11) 

where: 

R= R/(R + G + B) 

G= G/(R + G + B) 

B= B/(R + G + B) 

The R, G and B are the matrices associated with the green, red and blue spectral channels.  

 

10.9. DEM/DSM derived indices 

Some indices can be computed from DEM and DSM. For this reason, the digital model accuracy is 

very important, especially in height, where there are more errors. Consequently, the model accuracy 

affects the index value. Examples of these indices are the minimum value (DifMin), the position 

index (TopIndex), the Terrain Shape Index (Diaz-Varela et al., 2014), and the Topographic Wetness 

index (WI) (Lucieer et al., 2010). They have been used to identify terraces and anomalies in the 

landscape or spatial distribution of potential surface wetness caused by snow melt.  

 

10.10. NBR 

The post-fire normalised burn ratio (NBR) algorithm was designed originally for Landsat TM analysis. 

Next, it has been tested to highlight the burned area using UAVs imagery (Ambrosia et al., 2011; 

Howard et al., 2002). The formula (12) is similar to the NDVI, but it uses near-infrared (NIR) and 

shortwave-infrared (SWIR). Before the fire event, vegetation has high reflectance in NIR, but low 

reflectance in SWIR. After a fire event, vegetation has a low reflectance in NIR, and high reflectance 

in SWIR, so burned areas can be highlighted. 
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NBR =

NIR − SWIR

NIR + SWIR
 

 

 

(12) 

11. Annex II. Machine learning techniques 

11.1. Machine learning introduction 

 
This section illustrates the machine learning algorithm applied in this PhD. 

The machine learning is a field of study that gives computers the ability to learn from experience 

without being explicitly programmed (Samuel, 1959), and this ability can be applied for image 

classification. Considering a binary classification, two classes exist, (1) and (-1). The membership to 

a specific class is determined using an algorithm called an activation function ø (z) stated as (13): 

 

 ∅(x) = ቄ
1 if z ≥ 0

−1 otherwise
  (13) 

The activation function combines the input values x and the weight w, and when the function is 

greater than a threshold, the classification is positive. The weights and the prediction error are 

calculated during the learning process, whereas a quantizer function can be used to predict the class 

label, as in Figure 16. 

 

 

Figure 16 Description of the activation function, which combines input and weights, and the quantizer, which is used for class 
prediction (Raschka, 2015). 

 



  

113 
 

The squared error between the prediction and true class label is described with the cost function. 

During the iterations of the learning process, the important point is to minimize the cost function, 

e.g., using a gradient algorithm to reach the minimum, as shown in Figure 17. 

 

 

Figure 17 The minimum of cost function J (w) and weights (w) is defined as the slope of the gradient (Raschka, 2015). 

 
 

The machine learning techniques applied to image classification can be grouped into supervised and 

unsupervised methods. The supervised learning uses an example set or ROIs for algorithm training, 

whereas the unsupervised learning finds patterns and relationships among the data without 

training. Furthermore, the dataset is split between a subset training set, a validation set, and a test 

set. The training set is a subset of the dataset used for the machine learning training. In applying a 

predictive model, a class label that was in the test set can be assigned to an unlabelled instance. For 

assessing the fit performance of the classifier to the training set without using the test data, the 

validation subset is used, and the best predictive algorithm is chosen. Likewise, the test set is a 

subset of the dataset used to assess the performance of the trained model. The machine learning 

algorithms can be grouped into parametric and nonparametric. Parametric models estimate the 

learning function and a fixed number of parameters from the training set without requiring the 

original dataset. In contrast, the parameters number of the nonparametric methods is not fixed, but 

it grows during the training. Nevertheless, the training process can suffer from the overfitting and 

the underfitting problems. The overfitting means the model has high variance. On one hand, the 

performance of the model is good with the training set; on the other hand, the model and the 

performance are not good with test data. The reason is the model complexity due to too many 

parameters. In contrast, the underfitting means the model has a low performance with the test set, 

and the simplicity of the model is not adequate to recognize the training data. To limit this problem, 
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the regularization technique and validation on an independent data set of the set shall be used. 

Regularization helps to reduce extreme values of weight parameters by applying a bias (14). 

Consequently, the regularization parameter maintains low weights, and it controls how the model 

fits the training data. 

 

 λ 
2 

∥w∥2 = 
λ 
2 

 w୨
ଶ

୫

୨ୀଵ

 
 (14) 

where: 

 

λ is the regularization parameter.  

 

Finally, the validation shall be done on the independent dataset using different metrics and 

techniques such as the Kappa index (K), classification error (CE), accuracy index (ACC). The 

independence means to split the dataset into two subsets, the training set, and the validation set. 

This holdout method is fast, but it can suffer from high variance. Consequently, the output depends 

on how the division between the two set is made. A more sophisticated technique is the K-fold 

cross-validation. The K-fold cross-validation is an improvement of the holdout method, because It 

splits the data K (10) into sets (folds) of equal size. K − 1 subsamples are used as the training test 

set, and a single subsample is used for validation. The procedure is repeated K times, but each subset 

is used only once for the validation.  

The machine learning algorithms tested in this research, and described in the following 

paragraph, are:  

 

- Logistic Regression (LR) 

- Support Vector Machines (SVM) 

- Random Forests (RF) 

- K-nearest Neighbour (KNN) 

- Linear Discriminant Analysis (LDA) 

- Multi Layered Perceptron (MLP) 

- Multi Layered Perceptron Ensemble (MLPE) 

- Boosting (B) 
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- Conditional inference trees (Ctree) 

- Naive Bayes (NB) 

 

 

11.2. Logistic regression (LR) 

The Logistic regression (LR) is an algorithm for linear and binary classification based on a neural 

network, where the classes are linearly separable. Accordingly, the binary classification is extended 

to multiclass classification using the One-vs-Rest (OvR) method. Indeed, the OvR trains one classifier 

for a class. Then, it assigns a positive value to the class membership, and all the other classes are 

considered as negative values. Consequently, the logistic regression approach tries to maximize the 

likelihoods of the training data. Indeed, iterating n times, where n is the number of classes, the 

specific sample is assigned to a class considering the highest probability of membership. The 

activation function for logistic regression is the sigmoid function Figure 18. The sigmoid function is 

the logarithm of the odds ratio, and it transforms real numbers into values in the range of [0,1]. 

Indeed, the threshold is set to 0.5. 

 

 
Figure 18. Net function combine inputs x and weights w. Sigmoid function transform real numbers into the 0-1 interval. The Quantizer 
is used to predict a class (Raschka, 2015.) 

 

The regularization is performed through the λ parameter, where increasing λ means increasing the 

strength of regularization (15). In contrast, the C parameter is the inverse of the regularization 

parameter λ, and it is applied to the logistic regression algorithm. 

 
C =

1

λ
 

 (15) 
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11.3. Support Vector Machine (SVM) 

The support vector machine (SVM) is a well-known and widely used algorithm. The SVM is based on 

a hyperplane that divides the training set into two classes. The positive and negative hyperplanes, 

which are parallel to the hyperplane, are stated as in (16) and (17): 

 w୭ାwx୮୭ୱ = 1  (16) 

 

 w୭ାwx୮୭ୱ = − 1  (17) 

 

Subtracting (16) and (17) 

 w(x୮୭ୱ − x୬ୣ ) = 2   (18) 

 

The margin is the normalized by the vector w (19) 

 

 

∥w∥ =ඩ w୨
ଶ

୫

୨ୀଵ

  

 (19) 

Thus, the margin is defined as the distance between the positive and negative classes that are 

defined by a hyperplane, and it is stated as follows (20): 

 

 w(xpos − xneg)

∥w∥
=

2

∥w∥
  

 (20) 

 

The samples closest to the hyperplane are called support vectors, as seen in Figure 19. Taking into 

consideration the support vectors, the goal of the algorithm is to maximize the margin in order to 

reduce the distance between support vectors. Maximize the margin is equal to minimizing the 

reciprocal term stated as ଵ
ଶ

∥wଶ∥ (Burges, 1998). 
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Figure 19 Illustration of the decision boundary of the SVM algorithm and the margin 

 
The regularization in SVM is done using two parameters, the C parameter and slack variable ξ (21). 

 

  

In case of non-linearly separable data, the penalization is applied as a cost function. The C parameter 

is the inverse of the regularization parameter λ, so large C values introduce large errors. 

Consequently, large errors decrease the variance of the model and increase misclassification error. 

 

11.4. Random Forest (RF) 

 Decision tree classifiers treat the analysis as a binary decision splitting the dataset at child nodes 

(Dleft and Dright). Therefore, iterating the process, a complete decision tree grows from branches 

to leaves, but it can easily introduce the overfitting problem. The objective of the algorithm is to 

maximize the information gain (IG) at each node through a function (22): 

 

 
IG൫D୮,f൯ = I ൫D୮൯ −

Nleft

Np
I(D୪ୣ୲) −

Nright

Np
I(D୰୧୦୲) 

  (22) 

where: 

 

 1

2
∥wଶ∥+C(  ξ(୧)

୧
) 

     (21) 
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I is the impurity measure 

Np is the total number of samples at the parent node 

Dp is the dataset at the parent node 

Nleft and Nright are the number of samples at the child node 

Dp is the dataset at the parent node 

Dleft and Dright are the datasets at the child node 

 

The Random forest is decision tree derived a by method that overcomes the overfitting problem. 

It is based on a bootstrap technique that creates a large number of training sets to compute the 

statistic. Hence, it draws randomly a sample of size n with no replacement, and the value of n 

controls the bias and variance. Replacement means an element can appear multiple times in the 

sample. On one hand, large values of n reduce the randomness and increase the overfitting risk. On 

the other hand, small values of n reduce the risk and the model performance. Then, a decision tree 

grows, selecting d features without replacement, so an element can appear only once in the sample. 

The nodes are split using the function (22). The D parameter should be smaller than the number of 

features (m) in the training set as follows (23): 

 

 d = √m   (23) 

 

The procedure is repeated k times. Finally, the class label is assigned by majority vote to the 

aggregated prediction (Figure 20). 
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Figure 20 Example of random forest classification 
 
 

11.5. K-nearest neighbors (KNN) 

The K-nearest neighbors (KNN) classifier is based on a distance metric. Indeed, it finds the k nearest 

neighbors of the sample, and it assigns the sample with a majority vote. This method has the 

advantage of adapting to a new training data set but the computational requirement and storage 

space is significant. Moreover, the key to avoiding the overfitting and the underfitting problem is 

the right choice of k, for example, using the standardized Euclidean distance (24). 

The steps of the methods are: 

Choose the number of k nearest neighbors and a distance metric. 

Determine the k nearest neighbors  

Count the majority vote and assign the class label  

 

 
d ൫x(୧), x(୨)൯  =  ඨ ቔx୩

(୧)
−  x୩

(୨)
ቕ

୮

୩

౦
 

   (24) 
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11.6. Multi Layered Perceptron (MLP) 

The multi layered perceptron (MLP) is a neural network composed of two perceptron layers. The 

perceptron algorithm was developed in the 50s, and it is a single neural network layer with a 

threshold activation function g(∙), where the inputs ∅୨ are connected directly to the output using 

adaptive weights w୨, as stated in (25) and Figure 21. 

 
Figure 21 Schema of the perceptron algorithm (Bishop, 1995). 

 

 

 
y = g ቌ w୨∅୨(x)



୨ୀ

ቍ = g(w∅)  
  (25) 

where:  

 

∅ is the feature vector composed of the activations ∅,…, ∅୫ 

w is the weight vector composed of the activations w,…, w୫ 

 

The output is chosen in accordance with (26): 

 

  g(a) =  ቄ
−1 when a < 0
+1 when a > 0

    (26) 

 

Considering misclassified elements on the training set the error function, also called the perceptron 

criterion, can be stated as (27): 
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 E୮ୣ୰ୡ(w) =  −  w(∅୬t୬)

∅∈

    (27) 

where: 

 

M is the set of vector misclassified by ∅୬ 

t୬ is the desired output -1 or +1 

 

The error function is the sum of positive terms, so when all points are classified correctly the error 

function is equal to 0. Therefore, the error function is proportional to the misclassified input and to 

the sum of distances from the decision boundary. Hence, during the training, the decision boundary 

moves. When the pattern is correctly classified, nothing happens. In case the pattern is misclassified, 

the boundary is adjusted by adding or subtracting the feature vector to the weight vector. Thus, a 

new decision boundary is created. Cycling through the pattern of the training set, the sequence of 

weight vectors can be expressed as a gradient (28):  

 

 w୨
(୰ାଵ)

=  w୨
୰ + ηθ୨

୬ t୬   (28) 

where: 

w୰  is the sequence of weight vectors 

η is the learning rate parameter, and a small value the error reduction is slow. Large values can 

produce divergent output.  

 

The advantage of the perceptron applied to the linear dataset is to find a solution in a finite number 

of steps, as studied by several authors (Arbib, 1987; Duda and Hart, 1973; Hand, 1985; Hertz et al., 

1991; Minsky and Papert, 1988; Van Der Malsburg, 1986). However, when the dataset is not linearly 

separable, the learning algorithm cycles infinitely and never terminates. 

Derived from the perceptron, the multi layer perceptron is a network composed of layers of 

adaptive weights. Thus, the input units of the first layer are connected to the output layer through 

intermediate layers. Intermediate layers are composed of units called hidden units. The output a is 

the combination of input weight d and adding a bias (29): 

 



  

122 
 

 
a୨ =  w୨୧

(ଵ)x୧ + w୨
(ଵ)

ୢ

୧ୀଵ

 
   (29) 

where: 

 

w୨୧ 
(ଵ) is the weight of the first layer, going from input i to hidden unit j 

w୨
(ଵ) is the bias of the hidden unit j 

 

Using the second layer of units and transforming the input layer in agreement with a non-linear 

function g(∙), the output is obtained. The function is (30): 

 

 

The value of the weight parameter is adaptive, so it changes during the training process. The non-

linear activation function can be a threshold or sigmoidal. Considering an input of 0 and 1, the 

threshold units have a binary value, so the hidden unit responds to values of one specific pattern. 

In the case of a continuous variable, the hidden units divide the space using and hyperplane. 

Consequently, the output of 1 is created through the logical operator AND, which means all hidden 

units shall have a value of 1. The sigmoidal units use the logistic sigmoid activation or the tanh 

function, as seen in Figure 22. The logistic sigmoid activation function is (31): 

 

 
g(a) ≡

1

1 + exp (−a)
  

  (31) 

The tanh activation function is (32): 

 

 
g(a) ≡ tanh (a) ≡

eୟ − eିୟ

eୟ + eିୟ
 

   (32) 

 

 
y୩ = g ቌ w୨୧

(ଶ)g ቌ w୨୧
(ଵ)x୧

ୢ

୧ୀ

ቍ



୨ୀ

ቍ  
  (30) 
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Applying a linear transformation to the input a = a/2 and the output g = 2g − 1, the tanh function 

is equivalent to the logistic function, but the advantage is the faster convergence in the training 

process. 

 

 
Figure 22 The tanh activation function (Bishop, 1995) 

 
 

11.7. Linear Discriminant Analysis (LDA)  

The linear discriminant analysis (LDA) is an algorithm based on multiple predictors and multivariate 

normal distribution. LDA assumptions are the dataset normality and the feature independence. 

Thus, each individual predictor follows a one-dimension normal distribution, so there is a correlation 

between each pair of predictors, as shown in Figure 23. 

 

 
Figure 23 Example of two normal distributed on the x-axis. The y-axis recognizes high variance, but it does not discriminate between 

the two classes (Raschka, 2015).  
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The normal distribution is (33): 

 N(μ୩ , Σ)    (33) 

where: 

μ୩ is the kth class mean vector  

Σ is the covariance matrix common to all classes 

 

μ୩  can be written as (34): 

 

 
μ୩ୀ

1

n୩
  (x୧ − μ୩)ଶ

୧:୷ୀ୩



୩ୀଵ

 
   (34) 

 

where: 

 

n is the total number of observations 

n୩ is the number of training observation in the kth class 

μ୩ is the mean of all training observations from the kth class 

 

Then, the discriminant functionδ୩ is (35): 

 

 
δ୩(x) = x Σିଵμ୩ −

1

2
μ୩

Σିଵμ୩ + logπ୩ 
   (35) 

where: 

 

π୩ is the class membership probability, and it is calculated as (36): 

 

 π୩ =
n୩

nൗ    (36) 

 

where: 

 

n is the number of training observation 
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The LDA has better performance than logistic regression when it identifies more than two classes 

because it is more stable, reduces the risk of overfitting and the dimension of the dataset. The steps 

are: 

- To standardize of the d-dimensional dataset, where d is the number of features. 

- To compute the mean vector for the d-dimensional dataset. The mean vector is the mean of 

each variable. 

- To compute the class scatter matrix Sb between classes 

- To compute the scatter matrix Sw within the classes 

- To compute the eigenvectors and corresponding eigenvalues of the matrix Sw-1 and Sb 

- The W matrix is d x k –dimensional transformation matrix computed from the k largest 

eigenvalues. 

- To project the samples using matrix W 

 

11.8. Boosting (B) 

The boosting (B) technique uses weak learners to randomly subdivide the training set without 

replacement. Without replacement means no element can be selected more than once in the first 

training. Then, a second training sample is aggregated mixing random training samples and 

misclassified training samples. Consequently, a new training set that differs from the previous two 

is created. Finally, the algorithm counts majority votes among the tree dataset. The boosting 

technique has the tendency to overfit, and some implementations, e.g., AdaBoost, use the re-

weighted sample in each iteration to overcome the overfitting. The AdaBoost steps are the 

following: 

- Set the weight vector of two uniform weights.  

Then, for j in m boosting cycle, do the following: 

- Train a weighted weak learner 

- Predict class labels 

- Compute weighted error rate 

- Compute coefficient 

- Update weights 

- Normalize weights to sum to 1 

- Compute final prediction 
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11.9. Conditional inference trees (Ctree) 

The Ctree uses a tree to partition recursively the covariate M that influence the variable Y. M is an 

m-dimensional covariate vector X=(X1…., Xm) as stated in (37). The algorithm fits a learning sample, 

where the learning sample is a random sample composed of an n observations vector. 

Consequently, the algorithm works recursively on the vector. The steps of binary partitioning are: 

testing the null hypothesis between the m covariate and Y and selecting the covariate Xi with the 

strongest association with Y. Measuring the associated P-values. Running the algorithm until the 

hypothesis is accepted. Splitting the variable into two subgroups, and repeating the previous steps. 

In case the covariate Xi is missing, a new split can be calculated leading to the same division of the 

original split. When the null hypothesis is accepted, the algorithm stops (Hothorn et al., 2015). The 

variable is split into two subgroups, repeating the two steps. In case of the covariate Xi is missing, a 

new split can be calculated leading to the same division of the original split, as shown in Figure 24. 

 

 D(Y│X) = D(Y|X_(1,)…,X_m) = D(Y|f(X_(1,)…,X_m))   (37) 

 

 
Figure 24 Binary partitioning using Ctree with the p-value (Hothorn et al., 2015). 
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11.10. Naive 

The Naive algorithm tries to solve the classification problem using a simple and direct way. It could 

be described as a query that searches from the beginning to the end of the dataset. Derived from 

Naive, the Naive Bayes (NB) uses the probability theorem to classify a dataset. The assumptions are 

the independence of the feature classes and the normality of the dataset distribution. The 

probability model was formulated by Thomas. The probability model formulated by Thomas Bayes 

(1701-1761) is (38): 

 

poster probability = (conditional probability ∙ prior probability) / evidence   (38) 

 

The posterior probability is the likelihood that an object fit the class j given its observed feature x 

(predictor). Therefore, posterior probability depends on conditional probability and prior probability 

divided by model evidence. Conditional probability is the likelihood that an event occurs given 

another event has occurred. Prior probability is the original probability of an outcome of the class j 

stated as (39): 

 

P (C_j│x_i) = (P (C_i│C_j ) = P(C)) / (P(C_i))   (39) 

where: 

 

P (C_j│x_i ) is the posterior probability of class j given the observed feature x_i (predictor). 

P(C_j) is the prior probability for the class C_j. 

P((x_i│C_j ) is the likelihood of observed sample x_i fit in the class C_j. 

P(C_i) is the prior probability of feature. 

 

Assuming to have only two classes, ω 1 and ω 2, a decision rule is necessary to assign x_i the correct 

class ω_j. Therefore, the decision rule divides the space into two regions. The boundaries between 

the regions are called decision boundaries. Considering two classes and two regions R, an error 

occurs when an input for the class C_1 is assigned to class C_2 (40): 
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p(mistake) = p(x ∈R_2 C_1 ) + p(x ∈R_1 C_2 ) 

                 = ∫ p(x, Cଵ) dx
 

ୖభ
+ ∫ p(x, Cଶ) dx

 

ୖమ
 

  (40) 

 

To minimize the error, the decision rule has to assign the classes minimizing the integrals in the 

previous equation. Therefore, the class ω has the highest P((x_ │ω_ ) as reported in Figure 25. 

 

  
Figure 25 The decion boundary is set 𝑥ො, the classification error are the sum of green and red areas. When the decision boundary 

moves from x to x0 the mistake probability is minimized, and the red area disappears (Bishop, 2006). 
 

Given a training data and assuming that the data are independent of the model, to minimize the 

wrong class assignment of x the naive Bayes build a decision rule maximizing posterior probability. 

For each class of the model, labelled data are obtained by fitting model. The naive Bayes is useful in 

the case of the high dimensionality of input, and the density estimation is difficult. When the 

assumptions are violated, naive Bayes can give a good performance because the decision 

boundaries does not influenced by class (Bishop, 2006). 
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