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Introduction

An irreducible holomorphic symplectic (IHS) manifold is a compact, simply connected
complex manifold X whose space of holomorphic 2-forms has complex dimension one,
being generated by a symplectic (nowhere degenerate) form ωX ; IHS manifolds have
been introduced by Beauville [6] as one of the blocks appearing in the decomposition
theorem of Kähler manifolds with trivial canonical bundle. The smallest IHS manifolds
are K3 surfaces, whose rich geometry has been studied for more than a century. On the
second integral cohomology of K3 surfaces there is an interplay of two structures: the cup
product, which is bilinear and nondegenerate, gives a lattice structureH2(X,Z) ≃ Λ, the
same for any K3 surface up to isometries; on the other hand, the Hodge decomposition on
H2(X,C) givesH2(X,Z) a pure weight 2 Hodge structure. The geometry ofX is encoded
in the relation between these two structures: once we fix a marking φ : H2(X,Z) ≃ Λ we
can parametrize K3 surfaces through the period map which, roughly speaking, maps each
X to the image of its symplectic form ωX via the marking in the lattice Λ; the Torelli
theorem for K3 surfaces states that X and Y are isomorphic if and only if H2(X,Z) and
H2(Y,Z) are Hodge isometric, i.e. they are isomorphic both as lattices and as Hodge
structures; moreover, it allows us to tell if an isometry of the lattice Λ comes from an
automorphism on X just by looking at its action on the Hodge structure.

All of this can be generalized to higher dimensions: if X is an IHS manifold of dimension
2n > 2, the role of the cup product is taken by the Beauville-Bogomolov-Fujiki form,
which gives again to H2(X,Z) a lattice structure invariant by deformation [6], [25]; there
is a period map, and a Torelli theorem holds [93], [42], [47]. Moreover, in recent years it
has been found that these results can be generalized if we allow some mild singularities
[50] [4]; many definitions of singular analogues to IHS manifolds have been proposed
[79], and the theory of symplectic varieties has become its own research subject.
Indeed, one particular issue with IHS manifolds is that there are very few examples: in
every dimension, one has two deformation classes, K3[n] and Kmn, already described in
the same paper by Beauville in which the concept of IHS manifold was introduced; other
than these, there are only two known examples, of dimension 6 and 10, discovered by
O’Grady [76], [75]. It is unknown if this list is complete, but no other smooth example has
been found yet, despite the numerous attempts: to extend the theory of IHS manifolds
to singular examples seems therefore a logical step forward.
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One way to obtain new symplectic varieties is to take quotients by symplectic auto-
morphisms: an automorphism α of X is symplectic if α∗ωX = ωX . On K3 surfaces,
symplectic automorphisms fix only points: therefore, if a finite group G acts symplect-
ically on X, the quotient X/G is a singular surface that always admits a K3 surface as
resolution of the singularities; the moduli spaces of K3 surfaces with a given symplectic
action of G, and K3 surfaces which arise as a quotient by such action, are in bijection
[71]. If X is an IHS manifold of higher dimension, the codimension of the fixed locus of
a symplectic action can vary, and the quotient X/G does not always admit a symplectic
resolution of the singularities: the terminalization Ỹ → X/G produces, in general, a
symplectic variety [24].
Using quotients, one can also define symplectic automorphisms on some symplectic vari-
eties: indeed, if H ⊂ G is a normal subgroup, the terminalization of X/H admits a
symplectic action of G/H. However, this obviously requires G be non simple, and in the
literature we find the description of the induced action of G on the cohomology of an
IHS manifold only if G has prime order (see for instance [32], [26] for K3 surfaces; [56],
[49], [43] for higher dimensions).

In this thesis, we study the first cases of non simple symplectic actions on IHS manifolds:
we describe the action of a group G of order 4, both Z/4Z and (Z/2Z)2, on K3[2]-type
manifolds. This action is always standard, i.e. it behaves in cohomology as the induced
action of G on S[2], the Hilbert scheme of two points on a K3 surface S that also admits
a symplectic action of G [39]. Therefore we begin by providing, in the first chapters,
a complete account of the symplectic action of G on a K3 surface S: in particular, we
give a lattice-theoretic characterization of the intermediate quotient surface Z̃, i.e. the
resolution of the singularities of S/i, with i ∈ G an element of order 2, and compare
its moduli space to that of S and the resolution of the singularities of S/G. In the
projective case, these moduli spaces are not irreducible: the many different irreducible
components of the moduli spaces of S and the resolution of the singularities of S/G are
still in bijection, but this does not extend to Z̃.
We then apply our knowledge of the action of G on K3 surfaces to K3[2]-type manifolds.
If X is a K3[2]-type manifold with a symplectic action of G the role of the intermediate
quotient surface is taken by the Nikulin orbifold Y , the symplectic variety that arises as
partial resolution of the quotient X/i, whose BBF-form was first described in [48]: we
establish the correspondence between the moduli spaces of X with a symplectic action of
G and Y in the projective case, and we describe the two induced involutions on Nikulin
orbifolds. Moreover, we give lattice theoretic conditions under which each of these
involutions persist under deformations Ỹ of Y : unlike what happens with IHS manifolds,
the co-invariant lattice Ω admits more than one primitive embedding in H2(Ỹ ,Z) with
the same orthogonal complement, and the involution exists on Ỹ only for a specific one
of them.

What has been described above is the core material of the thesis. Moreover, the reader
will find two chapters in which we explore the relation between manifolds with the
same transcendental sublattice T (X) ⊂ H2(X,Z). The interest in this topic stems from
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the fact that, by Lefschetz’s theorem, algebraic classes are identified with H1,1(X) ∩
H2(X,Z): therefore, the Hodge structure on H2(X,Z) which, as we already alluded to,
is what encodes most of the geometric information, is always trivial on the algebraic
sublattice, but not on the transcendental T (X) := (H1,1(X) ∩H2(X,Z))⊥.
In chapter four we study how to define an analogue to Shioda-Inose structures for sym-
plectic automorphisms of order 4: given any abelian surface A, if X is a K3 surface such
that T (X) and T (A) are Hodge isometric then X has a symplectic involution ι such that
the resolution of the singularities of X/ι is isomorphic to Kum(A) (and the converse
also holds) [63]. We prove that, if A has a symplectic automorphism of order 4, the same
condition on transcendental lattices is not enough to get a symplectic action of a group
of order 4 on a K3 surface X: finding that it is not possible to fully extend the classical
construction, we propose some partial generalizations. The last chapter presents a joint
work with Ángel David Ŕıos Ortiz, about IHS manifolds whose transcendental lattice is
Hodge isometric to that of a K3 or an abelian surface, and whether they are biration-
ally equivalent to moduli spaces over said surfaces or not. We find that this holds if X
is an IHS manifold of K3[n]-type or Kmn-type, but not always if X is of OG6-type or
OG10-type: in these cases, we give some partial results using lattice theory.

∗ ∗ ∗

Chapter 1 is devoted to preliminaries: we introduce irreducible holomorphic symplectic
manifolds and recall the results on lattice theory, moduli spaces and symplectic auto-
morphisms that are needed in the rest of the thesis.

In Chapters 2 and 3 we study the symplectic action of a group of order four G on
a K3 surface X, Z/4Z and (Z/2Z)2 respectively, following the same steps employed for
symplectic actions of order 2 and 3 in [32], [26]. The main results of these two chapters
are the lattice-theoretic characterization of Z̃, the resolution of the singularities of the
intermediate quotient surface X/i, and the comparison between its moduli space and
those of X and Ỹ , the minimal resolution of X/τ . In particular, we know from [71] that
Z̃, admitting a symplectic involution and being itself the resolution of a quotient by a
symplectic involution, has to admit a primitive embedding in its Néron-Severi lattice of
both the lattices ΩZ/2Z and MZ/2Z (the first characterizes K3 surfaces with a symplectic
involution, the second those that are the quotient of one); however, they cannot be in
direct sum in NS(Z̃) because of their rank: we find the lattices that characterize Z̃,
which are negative definite of rank 14 and 12, the same as the lattices that characterize
X with a symplectic action of Z/4Z and (Z/2Z)2 respectively.
To describe the action of G on the second integral cohomology of a K3 surface, we use
a K3 surface X with high Picard rank and a Jacobian fibration π : X → P1 such that
MW (π) ≃ G: the resulting description on H2(X,Z) holds actually true for any K3
surface thanks to [71, Thm. 4.7]. We then study the maps induced in cohomology by
the rational quotient maps X 99K Z̃, X 99K Ỹ , Z̃ 99K Ỹ , and give our lattice-theoretic
characterization of Z̃.
The moduli space of projective K3 surfaces with a symplectic action of G splits in
irreducible components (here called projective families), and there is a bijection between
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projective families of X and Ỹ . However, this bijection does not extend to projective
families of Z̃, and we find different phenomena: either two families of X and Ỹ collide
on the same family of Z̃, or (only if G is not cyclic) there can be up to three different
families of Z̃ associated to the same family of X and Ỹ .
The correspondence between projective families and the knowledge of the maps induced
by the rational quotients also allows us to find explicit examples of X and its quotients
in projective spaces of small dimension.

Chapter 4 represents the first detour from the main stream of the thesis.
Shioda-Inose structures relate Abelian and K3 surfaces admitting a symplectic involu-
tion: by [63, Thm. 6.3], for every abelian surface A, if X is a K3 surface such that there
is a Hodge isometry T (A) ≃ T (X), then X is a (rational) double cover of Kum(A). In
this chapter, we study the action of a symplectic automorphism of order 4 α on H2(A,Z)
and explore possible generalizations of Shioda-Inose structures.
We find however that if A has a symplectic automorphism of order four and T (A) ≃
T (X), X does not in general admit a symplectic action of a group of order four G, such
that X/G is birational to Kum4(A): we therefore propose two different generalizations
of Shioda-Inose structures. Strong structures are triples (X,A, τ), with A as above and
τ a symplectic automorphism of order four on X that acts as a cycle on four copies of
the lattice D4 in NS(X), such that the resolution of the singularities of X/τ2, X/τ are
Kum(A),Kum4(A) respectively: they are a true generalization of Shioda-Inose struc-
ture, because T (A) ≃ T (X), but they do not exist for any A (it depends on the lattice
structure of T (A)). Weak structures are triples (X,A, τ), with τ a symplectic auto-
morphism of order four on X that acts as a cycle on four copies of the lattice D4 in
NS(X), such that the resolution of the singularities of X/τ is Kum4(A): these exist
for any choice of A with a symplectic automorphism of order 4, but T (A) does not
uniquely determine T (X). However, we’re still able to give a correspondence between
the transcendental lattices.

In Chapter 5 we move from K3 surfaces to K3[2]-type manifolds. Thanks to the classi-
fication of finite symplectic actions of [39], we know that a symplectic action of a group
of order 4 G on a K3[2]-type manifold X is always standard, meaning that a pair (X,G)
can be deformed to a natural pair (S[2], G), where the action of G is induced from that
on S. This means not only that the action on H2(X,Z) depends only on G, but also
that the locus of points of X with non-trivial stabilizer is homeomorphic to that of the
natural pair.
We start with the classification of the projective families: thanks to the standardness of
the action, for every K3[2]-type manifold X with a symplectic action of G there exists
a K3 surface S with the same action such that NS(X) ≃ NS(S); however, unlike what
happens for S, T (X) is not (in general) uniquely determined by NS(X). For some of
the families we found we are also able to describe the general member (that the cor-
responds to a general point in the moduli space): either as Fano manifold over a cubic
fourfold, or as Hilbert scheme of two points of a quartic surface with a mixed (partially
non-symplectic) action of G, or as double cover of a cone over P2 × P2.
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We then turn our attention to Nikulin orbifolds and their deformation class: if X ad-
mits a symplectic action of G, and i ∈ G is an element of order 2, then the Nikulin
orbifold Y obtained as terminalization of X/i admits a symplectic involution induced
by the quotient G/i. The two groups of order four induce two very different involutions
on Y : indeed, we can see from the action on X that the one induced by Z/4Z fixes
only points on Y , while the locus of the one induced by (Z/2Z)2 has codimension 2.
We describe the action of these involutions on H2(Y,Z), using the quotient maps in-
troduced in the second and third chapters. We then prove that our involutions extend
to any Nikulin-type orbifold that satisfy a given lattice-theoretic condition: differently
than what happens on the known irreducible holomorphic symplectic manifolds, it is not
enough that a Nikulin-type orbifold Y be polarized with the correct anti-invariant lat-
tice Ωι for it to admit a standard involution ι, but there is also a gluing datum between
invariant and co-invariant lattices that has to be respected, i.e. a condition on the em-
bedding Ωι ↪→ H2(Y,Z).
We conclude with the lattice-theoretic classification of projective Nikulin orbifolds Y
that are terminalization of X/i, where X is a K3[2]-type manifold with a symplectic
action of a group of order 4 G, and i ∈ G is an element of order 2, therefore completely
describing the correspondence between the moduli spaces of X and Y . After noticing
that standard involutions on Nikulin-type orbifolds commute with the non-standard in-
volution described in [52], we classify also projective Nikulin-type orbifolds that admit
a mixed action of (Z/2Z)2, where one of the generators is standard, and the other is
not.

Chapter 6 presents a joint work with Ángel David Ŕıos Ortiz: in Chapter 4 we discussed
K3 surfaces whose transcendental lattice is isometric to that of an abelian surface. In
this chapter, we discuss irreducible holomorphic symplectic manifolds that share the
transcendental lattice of an abelian or K3 surface: in particular, we’re interested to find
whether or not such a manifold X is birationally equivalent to a moduli space over the
corresponding surface.
We prove that if X is a manifold of Kmn-type, T (X) ≃ T (A) if and only if X is
birationaly equivalent to a moduli space on an abelian surface A, and an analogous result
holds with X is a K3[n]-type manifold and S a K3 surface such that T (X) ≃ T (S). If
X is of OG6-type or OG10-type however, the condition on the transcendental lattices is
not enough, and lattice theory is needed. We give lattice-theoretic criteria and construct
many examples of Hodge structures of manifolds in O’Grady’s families which have the
same transcendental lattice of symplectic surfaces but do not arise as resolution of the
singularities of a moduli space. We highlight the very different behavior of those that
which are or aren’t moduli spaces, and we point out connections with the non-modular
construction of O’Grady’s 10 dimensional example due to Laza-Saccà-Voisin [44].
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Chapter 1

Preliminaries

1.1 An overview on IHS manifolds

Irreducible holomorphic symplectic (IHS) manifolds appear as building blocks of com-
pact complex Kähler manifolds with trivial canonical bundle, which by Yau’s solution
to Calabi conjecture are exactly those that admit a Kähler metric with trivial Ricci
curvature: the scope of the interest in this class of manifolds therefore extends not only
to algebraic geometry, but also to differential geometry and theoretical physics.

Theorem 1.1.0.1 ([6, §5]). Let X be a compact Kähler manifold with vanishing first
Chern class: then there exists a finite étale covering of X isomorphic to the product
T ×

∏
Vi ×

∏
Xj, where T is a complex torus, Vi are irreducible Calabi-Yau manifolds,

and Xj are IHS manifolds.

Definition 1.1.0.2. A Calabi-Yau manifold is a smooth Kähler manifold Y that is compact
and simply-connected and whose canonical bundle is trivial, such that hi,0(Y ) = 1 only
for i ∈ {0, dimC(Y )}, and 0 otherwise.

Definition 1.1.0.3 ([34, Def. 21.1]). An IHS manifold is a Kähler manifold X that is
compact and simply connected, such that H2,0(X) is generated by a symplectic form,
i.e. a nowhere degenerate holomorphic 2-form ωX .

Definition 1.1.0.4. A deformation of X is a smooth proper morphism X → B where X
is smooth and B is connected, and a distinguished point 0 ∈ B such that X0 ≃ X.
A deformation X → B of X is called universal if any other deformation X ′ → B′ is
isomorphic to the pull-back under a uniquely determined morphism β : B′ → B with
β(0) = 0. The universal deformation family is unique up to isomorphisms, if it exists,
and it will be denoted by X → Def(X).

Theorem 1.1.0.5 ([34, Prop. 23.14]). Let X be an IHS manifold of dimension 2n.
There exists a quadratic form qX on H2(X,C) and a unique constant cX ∈ Q>0 such
that
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1. for all α ∈ H2(X,C), it holds
∫
X α

2n = cXqX(α)
n;

2. the form qX is a primitive integral quadratic form on H2(X,Z).

Proposition 1.1.0.6 ([34, Lemma 22.9, Cor. 23.11]). Some properties of qX :

1. it is invariant under deformations;

2. it holds qX(ωX) = 0, qX(ωX + ωX) > 0;

3. it has signature (3, b2(X)− 3) on H2(X,R);

4. it is positive definite on Kähler classes and on (H2,0(X)⊕H0,2(X))⊗ R.

Few examples of IHS manifolds are known. There are two classes for each dimension
2n, n ∈ N, already described by Beauville [6, §6-7]: K3[n]-type manifolds, deformation
equivalent to the Hilbert scheme of n points on a K3 surface, and Kmn-type manifolds,
deformations of the n-th generalized Kummer variety of an abelian surface. Every at-
tempt to find new examples of IHS manifolds has produced elements in these two classes,
with the exception of two examples, of dimension 6 and 10 respectively, constructed by
O’Grady as a symplectic resolution of some singular moduli spaces of semistable sheaves
on an abelian surface or on a projective K3 surface ([76], [75] respectively): their de-
formations are called OG6-type and OG10-type manifolds.

Example 1.1.0.7. Let S be a K3 surface. The Hilbert scheme of n points S[n] is the
moduli space of subschemes of S of dimension 0 and length n. We can construct it as
resolution of the singularities of the symmetric product Symn(S) via the Hilbert-Chow
morphism [22, Cor. 2.6]. Indeed the number of times a point p ∈ S appears in a given
Z ∈ S[n] is determined by dimCOZ,p, so we can define the cycle

|Z| :=
∑
p∈S

dimCOZ,p · p ∈ Symn(S) :=

n times︷ ︸︸ ︷
S × S × · · · × S

Sym(n)

and the Hilbert-Chow morphism S[n] → Symn(S), Z 7→ |Z|. If X is an IHS manifolds,
and there exists a K3 surface S such that X is deformation equivalent to S[n], we call
X a K3[n]-type manifold.

Example 1.1.0.8. Let A be an abelian surface: if we compose the Hilbert-Chow morphism
with the sum operation s in A, we get the map

ϕ : A[n+1] −→ Symn+1(A) −→ A
Z 7−→ |Z| 7−→

∑
p∈A dimCOZ,p .

The fiber over 0 of the map ϕ defined above is the n-th generalized Kummer variety
Kmn(A). If X is an IHS manifolds, and there exists an abelian surface A such that X
is deformation equivalent to Kmn(A), we call X a Kmn-type manifold.
The manifold Kmn(A) is birational to the quotient variety An/Sym(n + 1): indeed,
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points (a1, . . . , an+1) ∈ s−1(0) satisfy the relation an+1 = −
∑n

i=1 ai, so s
−1(0) ≃ An;

the action of Sym(n+1) is naturally induced by the one on An+1. If n = 2, the quotient
A2/Sym(3) is singular along a surface ∆ isomorphic to A, which contains 81 “more
singular” points, image in the quotient variety of the set ∆3 = {(a, a) ∈ A×A | 3a = 0};
the singularity of A2/Sym(3) are resolved by a P1-bundle over ∆ \ ∆3, and over each
point of ∆3 a surface isomorphic to the cone in P4 described by the equations {w0w2 =
w2
1, w0w3 = w1w2, w1w3 = w2

2}.

1.2 Lattice theory

In this section, we’re going to recall some fundamental results on lattices and discrimi-
nant forms; most of them are due to Nikulin, and are exposed in [72, §1].

Definition 1.2.0.1. An even lattice is a free Z-module S of finite rank, equipped with a
nondegenerate quadratic form q : S → 2Z. Working in characteristic different than two,
this is equivalent to an integral nondegenerate bilinear symmetric even form b : S×S →
Z; we will refer to b as intersection form of S. The discriminant d(S) is defined as
|det(B)|, where B is any matrix that represents b.
An isomorphism between lattices (or isometry) is an isomorphism of Z-modules that
preserves the intersection form. Denote O(S) the group of isometries of S into itself.

Example 1.2.0.2. The lattice U is the unique even unimodular lattice of rank 2. The
ADE lattices are the negative definite even lattices whose Gram matrix is the Cartan
matrix of the Dynkin ADE diagrams: each vertex has self-intersection −2, and two
verteces have intersection 1 if they are adjacent, 0 otherwise.

An : a1 a2 . . . an Dn : d2 d3 . . . dn

d1

En : e2 e3 e4 e5 e6 . . . en,

e1

Example 1.2.0.3. The quadratic form qX in Theorem 1.1.0.5 is known as the Beauville-
Bogomolov-Fujiki form on X. The integrality of qX gives to H2(X,Z) a lattice structure
that depends only on the deformation type, and that has been determined in [6], [84],
[85]: the results are summarized in the following table.
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X dim(X) b2(X) (H2(X,Z), qX)

K3[n] 2n 23 ΛK3[n] := U⊕3 ⊕ E⊕2
8 ⊕ ⟨−2(n− 1)⟩

Kmn 2n 7 ΛKmn := U⊕3 ⊕ ⟨−2(n+ 1)⟩

OG6 6 8 ΛOG6 := U⊕3 ⊕ ⟨−2⟩⊕2

OG10 10 24 ΛOG10 := U⊕3 ⊕ E⊕2
8 ⊕A2

Definition 1.2.0.4. Define in particular the K3 lattice ΛK3 = U⊕3 ⊕ E⊕2
8 . For any

K3 surface X, the second integral cohomology group H2(X,Z) equipped with the cup
product H2(X,Z)×H2(X,Z) → H4(X,Z) ≃ Z is isometric to the K3 lattice.

Definition 1.2.0.5. Let X be an IHS manifold. Define the Néron-Severi lattice NS(X) =
H1,1(X)∩H2(X,Z). Define the transcendental lattice T (X) its orthogonal complement
in H2(X,Z).

Remark 1.2.0.6. 1. The Néron-Severi lattice is the image of the first Chern class c1 :
Pic(X) → H2(X,Z): therefore it holds rk(NS(X)) = ρ the Picard rank of X.

2. Since H1,1(X) is orthogonal to H2,0(X)⊕H0,2(X) with respect to the cup product
of H2(X,C), T (X) is the smallest sublattice of H2(X,Z) containing ωX .

Remark 1.2.0.7 ([71, §3.2]). Let X be an IHS manifold, Λ ≃ H2(X,Z). The following
cases are possible:

1. NS(X) is nondegenerate of signature (1, ρ − 1) and T (X) is nondegenerate of
signature (2, rk(Λ)− 2− ρ): in this case, X is projective.

2. NS(X) has a one-dimensional kernel K1, and NS(X)/K1 is negative definite of
rank ρ − 1; then, also T (X) has a one-dimensional kernel K2, and T (X)/K2 has
signature (2, rk(Λ)− 3− ρ).

3. NS(X) is nondegenerate and negative definite and T (X) is nondegenerate of si-
gnature (3, rk(Λ)− 3− ρ).

Definition 1.2.0.8. Let S be an even lattice: define the dual lattice S∗ = { x ∈ S ⊗Q |
∀s ∈ S, bQ(x, s) ∈ Z } where bQ denotes the Q-linear extension of b.
Denote discriminant group of S AS := S∗/S, where S ↪→ S∗ via s 7→ b(s,−): it is a
finite group of cardinality d(S). An invariant of the discriminant group is its length ℓ,
that is defined as the minimum number of generators of AS ; we are going to write

λ(S) = λ(AS) = (n1, n2, . . . , nℓ)

if the first of the generators in a set that satisfies the minimum has order n1, the second
n2 and so on, with n1 ≤ n2 ≤, . . . ,≤ nℓ.
Define the discriminant (quadratic) form qS : AS → Q/2Z, induced on AS by the
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quadratic form q of S. A subgroup H ⊂ AS is said to be isotropic if it is annihilated by
the discriminant form qS .

Definition 1.2.0.9. Two torsion quadratic forms q, q̃ defined on a finite abelian group
G are isomorphic (or equivalent) if there is an automorphism γ of G such that q̃(x) =
q(γ(x)) for every x ∈ G.

Proposition 1.2.0.10. Two torsion quadratic forms defined on a finite abelian group
G are isomorphic if and only if for every prime p they are p-equivalent, i.e. equivalent
when restricted to the maximal p group Ap contained in G.

The criteria for p-equivalence of torsion quadratic forms are given in [72, §1.7-9] and in
[54, §IV]. In particular, we refer the reader to Lemma 1.4, Cor. 2.5, Prop. 3.2 of the
latter. Moreover, one can compare two torsion quadratic form by their normal form
decomposition.

Proposition 1.2.0.11 ([54, Prop. IV.2.4, Prop. IV.4.8]). If p is odd, any nondegenerate
torsion quadratic form on a finite abelian p-group has a unique normal form decompo-
sition. On a finite abelian 2-group, every torsion quadratic form has a unique normal
form decomposition. Two torsion quadratic forms are equivalent if and only if they share
the same normal form.

Definition 1.2.0.12. The genus of a lattice S is the set of all lattices with the same
signature of S and discriminant form equivalent to qS .

Remark 1.2.0.13. Lattices in the same genus may not be isomorphic: for instance, this
applies to the (negative definite) lattices N ⊕ E8 and K2 (see Proposition 4.2.1.2).

1.2.1 Overlattices and primitive embeddings

Definition 1.2.1.1. An embedding of (even) lattices (S, q)
ι
↪−→ (M, q̃) is an injective homo-

morphism of Z-modules such that q̃(ι(s)) = q(s) for all s ∈ S. In this case, we say that
M is an overlattice of S. An embedding is primitive if M/ι(S) is free; an overlattice
is of index n if M/ι(S) is a (abelian) group of order n, and it is a cyclic overlattice if

M/ι(S) is cyclic. Given an embedding (S, q)
ι
↪−→ (M, q̃), the primitive saturation of S is

the smallest overlattice of ι(S) that is primitive in M .

Remark 1.2.1.2. Let M be an overlattice of index n of S. The discriminant of M is
related to that of S by

d(S)/d(M) = n2.

Theorem 1.2.1.3 ([72, Prop. 1.4.1.a)]). Let S be an even lattice, letM be an overlattice
of finite index of S, let HM = M/S. The correspondence M → HM determines a
bijection between overlattices of finite index of S and isotropic subgroups of AS.

Definition 1.2.1.4. Two embeddings S ↪→ M , S ↪→ M ′ are isomorphic if there is an
isometry between M and M ′ that restricted to S is the identity.
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Two overlattices of finite index of S, Q and Q′ are isomorphic if there is an isometry
α ∈ O(S) that extends Q-linearly to an isometry between Q and Q′.

Theorem 1.2.1.5 ([72, Prop. 1.6.1]). A primitive embedding of an even lattice S into
an even unimodular lattice L, in which the orthogonal complement of S is isomorphic
to K, is determined by an isomorphism γ : AS

∼−→ AK for which the discriminant forms
satisfy qK ◦ γ = −qS. Two such isomorphisms γ and γ′ determine isomorphic primitive
embeddings if and only if they are conjugate via an automorphism of K.

Corollary 1.2.1.6. Let L, S and K be as in Theorem 1.2.1.5. The isomorphism classes
of overlattices Q of S ⊕K in L, such that Q/(S ⊕K) is cyclic, are in bijection with the
isometry classes for the action of O(S) induced on AS (equivalently on AK via γ).

Proof. Using the notation of the previous theorem, fix the isomorphism γ : AS ≃ AK ;
let s ∈ AS such that qS(s) = d ∈ Q/2Z, let k = γ(s): then qK(k) = −d, and the cyclic
subgroup generated by s+ k is isotropic in AS ⊕ AK , so it determines an overlattice of
finite index Q of S ⊕K that is by construction a sublattice of L. Consider an isometry
α ∈ O(S), denote α the induced isometry on AS , and call s′ = α(s): then qS(s

′) = d,
and β := γ ◦ α ◦ γ−1 ∈ O(AK), hence the subgroup generated by s′ + β(k) determines
an overlattice of S ⊕K isomorphic to Q thanks to the previous theorem.
On the other hand, consider Q such that S ⊕ K ↪→ Q ↪→ L and Q/(S ⊕ K) is cyclic:
then Q/(S ⊕K) is generated by an isotropic element in AS⊕K = AS ⊕ AK , that is by
construction of the form s+ k, with qS(s) = d = −qK(k).

Remark 1.2.1.7. With S,K,L as above, consider a primitive sublatticeH ⊂ K, withH =
⟨h⟩, and suppose that h/n ∈ K∗ for some integer n: then, L contains a cyclic overlattice
Q of S ⊕K, corresponding to the isotropic subgroup ⟨γ−1(h/n) + h/n⟩ ⊂ AS⊕K , as in
Corollary 1.2.1.6. It contains also an overlattice R of S ⊕ H, R ⊆ Q, generated over
Z by a Z-basis of S and the element (s + h)/n, where s/n is a representative in S∗

of γ−1(h/n) ∈ AS . Consider now an isometry ψ ∈ O(K), and let H̃ = ψ(H). Let
H̃ = ⟨h̃⟩: then h̃/n = ψ(h)/n belongs to the same isometry class of h/n in AK , and
⟨γ−1(h̃/n)+ h̃/n⟩ is isotropic in AK , so it defines an overlattice R̃ of S⊕H̃ as above: the
relation between H and R̃ consists in the fact that R̃ is isomorphic to R as a sublattice
of L.

Theorem 1.2.1.8 ([72, Prop. 1.14.1]). For an even lattice S of signature (s+, s−) and
discriminant form qS, and an even unimodular indefinite lattice L of signature (l+, l−),
all primitive embeddings of S into L are isomorphic if and only if the lattice T with
signature (l+ − s+, l− − s−) and discriminant form qT = −qS is unique in its genus and
the homomorphism O(T ) → O(qT ) is surjective.

Remark 1.2.1.9. Using the notation of the theorem, if ℓ(S) > rk(L)−rk(S), no primitive
embedding of S in L exists: indeed, if it existed, then T would satisfy rk(T ) < ℓ(T ),
which is impossible.
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We are going to give some conditions on the invariants of S, L and T under which it is
possible to apply Theorem 1.2.1.8.

Theorem 1.2.1.10 ([72, Thm. 1.14.2]). Let T be an even, indefinite lattice; for any
prime number p, define ℓp the minimum number of generators of (AT )p. Suppose the
following conditions hold:

1. for all primes p ̸= 2, rk(T ) ≥ ℓp + 2;

2. if rk(T ) = ℓ2, then (AT )2 has discriminant form isomorphic to one of the following,
for some torsion quadratic form q′:[

0 1/2
1/2 0

]
⊕ q′, or

[
1 1/2

1/2 1

]
⊕ q′.

Then T is unique in its genus, and the map O(T ) → O(qT ) is surjective.

Proposition 1.2.1.11 ([54, Cor. VIII.7.8]). Let T be an indefinite lattice such that
rk(T ) ≥ 3. Write AT = Z/d1Z⊕, . . . ,⊕Z/drZ with di ≥ 1 and di | di+1. Suppose that
one of the following holds:

1. d1 = d2 = 2;

2. d1 = 2, d2 = 4 and d3 =8 4;

3. d1 = d2 = 4.

Then T is unique in its genus, and the map O(T ) → O(qT ) is surjective.

Theorem 1.2.1.12 ([63, Thm. 2.8], after [72, Thm. 1.14.4]). Let S be an even lattice
of signature (s+, s−) and discriminant form qS, and L an even unimodular lattice of
signature (l+, l−). Suppose that s+ < l+, s− < l−, ℓ(S) ≤ rk(L) − rk(S) − 2. Then
there exists a unique primitive embedding of S into L.

Corollary 1.2.1.13 ([72, Rem. 1.14.5]). If AS ≃ (Z/2Z)3 ⊕ A′, the conditions of the
previous theorem are satisfied.

The following theorem describes primitive embeddings when the ambient lattice is not
unimodular.

Theorem 1.2.1.14 ([72, Prop. 1.15.1]). The primitive embeddings of a lattice S with
signature (s+, s−) and discriminant form qS into an even lattice M with signature
(m+,m−) and discriminant form qM are determined by the sets (HS , HM , γ, T, γT ),
where:

1. HS ⊂ AS and HM ⊂ AM are subgroups and γ : qS |HS
→ qM |HM

is an isomorphism
of the subgroups, preserving the restrictions of the forms;

2. T , which will be the orthogonal complement to S in M , is an even lattice with
signature (m+ − s+,m− − s−) and discriminant form qT ;
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3. γT : qT → −δ is an isomorphism of discriminant forms, where δ ≃ ((qS ⊕
−qM )|Γ⊥)/Γ, Γ = HS ⊕HM (notice that (qS ⊕−qM )|Γ = 0 by choice of γ).

Two such sets, (HS , HM , γ, T, γT ) and (H ′
S , H

′
M , γ

′, T ′, γT ′) determine isomorphic pri-
mitive embeddings if and only if HS ≃ H ′

S and there exist ξ ∈ O(AM ) and ψ : T → T ′

isometries for which γ′ = ξ ◦ γ and ξ̄ ◦ γT = γT ′ ◦ ψ̄, where ξ̄ is the isomorphism of
discriminant forms δ and δ′ induced by id⊕ξ, and ψ̄ is the isomorphism of discriminant
forms qT and qT ′ induced by ψ.

1.3 Moduli spaces and Torelli theorems

As the lattice structure on the second cohomology group of an IHS manifold is invariant
under deformation, to distinguish between non-isomorphic manifolds of the same defor-
mation type we have to compare their Hodge structure: to parametrize IHS manifolds
deformation equivalent to X we use their period, which is ultimately determined by ωX .
Indeed, recall from Remark 1.2.0.6 that the Hodge structure on NS(X) is trivial, while
that on T (X) is determined by ωX , the generator of H2,0(X).

Definition 1.3.0.1 (see [41, Def. 3.2.3], [18, Def. 4.1]). A pure integral Hodge structure
V is said to be of K3-type if V has weight two and

dimC(V
2,0) = 1 and V p,q = 0 for |p− q| > 2.

A Beauville-Bogomolov form on V is a non-degenerate quadratic form q on V that
induces a morphism of integral Hodge structures q : V ⊗ V → Z and is positive definite
on the real part of V 2,0 ⊕ V 0,2.
A Hodge isometry is an isomorphism of Hodge structures of K3-type which is an isometry
with respect to their Beauville-Bogomolov forms.

Example 1.3.0.2. - If X is a IHS manifold, then H2(X,Z) endowed with its Beauville-
Bogomolov form is a Hodge structure of K3-type. The transcendental lattice T (X)
with the restriction of the Beauville-Bogomolov form is also a Hodge structure of
K3-type.

- Let A be an abelian surface, then H2(A,Z) endowed with the cup product is a Hodge
structure of K3-type whose lattice structure is H2(A,Z) = U⊕3. The transcendental
lattice T (A) = NS(A)⊥ with the restriction of the cup product is also a Hodge struc-
ture of K3-type.

- Let Y ⊆ P5 be a cubic fourfold, h ∈ H2(Y,Z) the hyperplane class. ThenH4
prim(Y,Z) =

(h2)
⊥H4(Y,Z) endowed with the cup product is a Hodge structure of K3-type: its lattice

structure is H4
prim(Y,Z) = U⊕2 ⊕ E⊕2

8 ⊕ A2. The transcendental lattice H4
tr(Y,Z) :=

(H2,2(Y )∩H4
prim(Y,Z))⊥ with the restriction of the cup product is also a Hodge struc-

ture of K3-type.

Definition 1.3.0.3 ([34, Def. 25.4]). A marked IHS manifold is a pair (X,φ) where φ is
an isometry between H2(X,Z) and a given lattice Λ. Define MΛ the set {(X,φ)}/ ∼ of
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marked IHS manifolds, where (X,φ) ∼ (X ′, φ′) if and only if there exists an isomorphism
f : X → X ′ such that f∗ = φ−1 ◦ φ′.

Remark 1.3.0.4. Given X → B a flat deformation of the marked IHS (X,φ), there exists
a neighborhood of 0 and a family of markings Φt : Xt → Λ such that φ = Φ0. In
particular, this holds for the universal deformation X → Def(X) (see Definition 1.1.0.4).

Definition 1.3.0.5 ([34, Def. 25.3]). Let Λ be a given lattice of signature (3, rkΛ − 3).
Define the period domain

ΩΛ = {x ∈ P(Λ⊗ C) | ⟨x, x⟩ = 0, ⟨x, x⟩ > 0},

so it is an open subset of a smooth quadric hypersurface in P(Λ ⊗ C). By Theorem
1.1.0.5, given X and IHS manifold and φ : H2(X,Z) → Λ a marking, we can define the
period map

P : (X,φ) 7→ φ(H2,0(X)) = φ(CωX).

Theorem 1.3.0.6 ([6, Thm. 5]). Let (X,φ) be a marked IHS manifold. The period
map P : Def(X) → ΩΛ is a local isomorphism.

Remark 1.3.0.7. Notice that ΩΛ has complex dimension rk(Λ) − 2 = h1,1(X): by the
Theorem above, MΛ has the same dimension.

Theorem 1.3.0.6 is known as the local Torelli theorem for IHS manifolds. A global
Torelli theorem holds for K3 surfaces, and a weaker version also holds for IHS manifolds;
moreover, similar statements hold for complex tori of dimension 2 (abelian surfaces if
projective) and cubic hypersurfaces in P5. We collect here the Torelli theorems for
smooth manifolds we’re going to refer to in this work.

Theorem 1.3.0.8 (Torelli theorem for K3 surfaces, [41, Thm. 5.3]). Two complex
K3 surfaces X and Y are isomorphic if and only if there exists a Hodge isometry f :
H2(X,Z) → H2(Y,Z). Moreover, for any Hodge isometry f : H2(X,Z) → H2(Y,Z)
that maps some Kähler class on X to a Kähler class on Y , there exists a (unique)
isomorphism f̃ : Y → X, such that f = f̃∗.

Lemma 1.3.0.9 ([74, Prop. I.6.2]). If two IHS manifolds X and Y are bimeromorphic,
then there exists a Hodge isometry H2(X,Z) ∼=Hdg H

2(Y,Z). In particular their tran-
scendental lattices are Hodge isometric.

Definition 1.3.0.10 ([47, Def. 1.1]). Let X and Y be IHS manifolds, which are defor-
mation equivalent. A lattice isometry f : H2(X,Z) → H2(Y,Z) is a parallel trans-
port operator if there exists a smooth and proper family π : X → B and a continu-
ous path γ : [0, 1] → B such that X ≃ Xγ(0) and Y ≃ Xγ(1) and f is induced by
parallel transport in the local system R2π∗Z along γ. A parallel transport operator
f : H2(X,Z) → H2(X,Z) is called a monodromy operator of X.

Theorem 1.3.0.11 (Torelli theorem for IHS manifolds, [47, Thm. 1.3]). Let X and Y
be IHS manifolds which are deformation equivalent.
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1. X and Y are bimeromorphic if and only if there exists a parallel transport operator
f : H2(X,Z) → H2(Y,Z), which is an isomorphism of integral Hodge structures.

2. Let f : H2(X,Z) → H2(Y,Z) be a parallel transport operator, which is an iso-
morphism of integral Hodge structures. There exists an isomorphism f̃ : Y → X,
such that f = f̃∗, if and only if f maps some Kähler class on X to a Kähler class
on Y .

Remark 1.3.0.12. Monodromy operators have been characterized for all known deforma-
tion types of IHS manifolds: see [47] for K3[n]-type and [59] for Kmn-type manifolds,
[60] for OG6-type and [77] for OG10-type manifolds.

Remark 1.3.0.13. Consider the map ψ : Aut(X) → O(H2(X,Z)), f 7→ f∗. Thanks
to [38, Thm. 2.1], the kernel of this map is invariant by deformation, so the following
results extend to the respective deformation type.

- if X = S[n] with S a K3 surface, then then ker(ψ) = idX [7, Prop. 10];

- ifX = Kmn(A), ker(ψ) = A[n]⋊⟨−id⟩, where A[n] ≃ (Z/nZ)4 is the group of n-torsion
points of A [14, Cor. 5];

- if X = K̃2v(A,H) (OG6-type), ker(ψ) = ⟨A[2], A∨[2]⟩ ≃ (Z/2Z)8, the group generated
by two-torsion points in A×A∨ [62, Thm. 5.2];

- if X = M̃2v(S,H) (OG10-type), ker(ψ) = idX [62, Thm. 3.1].

Theorem 1.3.0.14 (Torelli theorem for abelian surfaces, [91, Thm. 1]). Let X,Y be
complex tori of dimension 2 such that there exists an isometry φ : H2(X,Z) → H2(Y,Z)
of determinant 1, such that ωX ◦ φ = cωX (i.e. φ preserves the periods) for some
constant c. Then φ is induced by an isomorphism f : Y → X. If det(φ) = −1 instead,
then f : Y → X∨.

Theorem 1.3.0.15 (Torelli theorem for cubic fourfolds, [95]). Let X,Y ⊂ P5 be smooth
cubic fourfolds such that there exists a Hodge isometry φ : H4(X,Z) → H4(Y,Z) pre-
serving h2, where h ∈ H2(Y,Z) is the hyperplane class: then φ is induced by an iso-
morphism f : Y → X.

1.4 Symplectic automorphisms

Definition 1.4.0.1. An automorphism α of an IHS manifold X is symplectic if it preserves
its symplectic form, i.e. if α∗ωX = ωX . Define Auts(X) ⊂ Aut(X) the group of
symplectic automorphisms of X.

Consider G ⊂ O(H2(X,Z)) be the group of isometries induced by a finite group G ⊂
Auts(X) via g 7→ g∗. Fix a marking φ : H2(X,Z) ∼−→ Λ: then we can define the invariant

lattice ΛG ⊆ Λ and the co-invariant lattice ΩG = (ΛG)
⊥Λ . Notice that G does not, in

general, act uniquely in cohomology: to the same G may correspond more than one pair
(ΛG,ΩG).
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Proposition 1.4.0.2 (see [71, Thm. 3.1.b)]). A finite group G acts symplectically on
an IHS manifold X if and only if ΩG ⊆ φ(NS(X)) or, equivalently, φ(T (X)) ⊆ ΛG.

There are constraints on the invariant and co-invariant lattices for the symplectic action
of G on IHS manifolds: for K3[n]-type manifolds these are contained in [58]. All sym-
plectic actions on K3[2]-type manifolds have been subsequently classified in [39]. Sym-
plectic automorphisms of Kmn-type manifolds and their invariant and co-invariant lat-
tices are explored in [61]. On OG6-type and OG10-type manifolds all symplectic auto-
morphisms act trivially in cohomology [36], [33].

We can describe the moduli space of marked IHS manifolds of a given deformation type
with a symplectic action of G via the notion of lattice polarized manifolds.

Definition 1.4.0.3 ([20, §1]). LetM be an even lattice. An IHS manifoldX isM-polarized
if there is a primitive embedding M ↪→ NS(X).

Remark 1.4.0.4. Let X be an IHS manifold and fix the marking Λ ≃ (H2(X,Z), qX).
Let M be an even lattice: the moduli space of M -polarized IHS manifolds deformation
equivalent to X has dimension rk(Λ)− 2− rk(M).

Remark 1.4.0.5. The moduli space of marked IHS manifolds of a given deformation type
admitting a symplectic action of a finite abelian group G and a polarization of degree
2d can split in irreducible components, that we’ll usually refer to as projective families
with a symplectic action of G. Each of them is determined by the Néron-Severi lattice of
its general member X, and the isomorphism class of the primitive embedding of NS(X)
in Λ (see Theorem 1.2.1.14). Since NS(X) is an overlattice of finite index of ΩG⊕ ⟨2d⟩,
for each d one always finds a finite number of projective families.

1.4.1 On K3 surfaces

LetX be a K3 surface, andG ⊆ Auts(X) a finite group. Since symplectic automorphisms
of K3 surfaces only fix a finite number of points [71, §5], the surface Y = X/G has only
ADE singularities, and its resolution Ỹ is again a K3 surface.

The main result of Nikulin’s paper [71] is that there are 14 finite abelian groups which
can act symplectically on K3 surfaces, and the action of each one of these groups on ΛK3

is unique up to isometries [71, Thm. 4.7]. The lattices ΩG are known for all groups G
acting symplectically on a K3 surface: see [63] and [32] for G = Z/2Z, [28] for G = Z/pZ,
p = 3, 5, 7, [30] for the remaining abelian cases.
The classification of finite group actions on K3 surfaces has been completed in works
of Mukai and Xiao [66], [98]. A list of all the invariant and co-invariant lattices for G
finite is provided in [37]: there are exactly five (non abelian) groups which can act in
two different ways, for all the other groups the uniqueness result still holds.

Nikulin also characterized K3 surfaces Ỹ which are resolution of X/G, G finite abelian,
by the existence of a primitive embedding of another lattice MG in NS(Ỹ ) [71]. The
first explicit description of the map that relates the lattices H2(X,Z) and H2(Ỹ ,Z) was
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given by Morrison [63] for a symplectic involution, and subsequent works by Garbagnati,
van Geemen and Sarti [32], [29] produced a complete description of the correspondence
between families of projective K3 surfaces that admit a symplectic involution, and those
that arise as resolution of the singularities of their quotient. Garbagnati and Prieto in
[26] obtained a similar result for symplectic automorphisms of order 3.

1.4.2 On K3[n]-type manifolds

Let S be a K3 surface with a symplectic action of a finite group G, let X = S[n] the
Hilbert scheme of n points on S. The action of G lifts to X via the Hilbert-Chow
morphism, so we can give the following definition.

Definition 1.4.2.1. Let S be a K3 surface and X = S[n], let G act symplectically on X.
If this action is induced by an action of G on S we call it natural. A similar definition
applies when X = Kmn(A).

Definition 1.4.2.2 ([57, Def. 2.1]). Let X be a manifold and let G ⊆ Aut(X) a finite
group. A deformation of the pair (X,G) consists of the following data:

� A flat family X → B, B connected and X smooth, and a distinguished point 0 ∈ B
such that X0 ≃ X.

� A faithful action of the group G on X inducing fiberwise faithful actions, restricting
to the given action of G on X0.

Definition 1.4.2.3. Let X be a K3[n]-type (or Kmn-type) manifold with a symplectic
action of a finite group G. We call (X,G) a standard pair when (X,G) can be deformed
to a pair (S[n], H) (or (Kmn(A), H)) where H ≃ G and the action of H is natural.

Remark 1.4.2.4. If (X,G) is a standard pair its fixed locus (and, more generally, the
locus of points with non-trivial stabilizer) will be diffeomorphic to that of the natural
action of H on S[n] (or Kmn(A)). Indeed for any symplectic action of a group G, the
fixed locus for any element of G is smooth and consists of points, abelian and K3 surfaces
[24, Prop. 2.6], but smooth deformations of a K3 (resp. abelian) surface are still K3
(resp. abelian) surfaces, and smooth deformations of points are points. The number of
points, K3 and abelian surfaces in the locus with non-trivial stabilizer under the action
of H, and their intersections, are therefore preserved under deformations.

When X is a manifold of K3[n]-type and G acts symplectically, sometimes (depending
on n) we can say whether the action of G is standard or not just by looking at the
cohomological action.

Definition 1.4.2.5 ([57, Def. 2.4]). Let X be a manifold of K3[n]-type and let G ⊆
Auts(X). The group G is numerically standard if there exists a K3 surface S and some
H ⊆ Auts(S) such that H ≃ G such that the following conditions hold:

� the co-invariant lattices for the actions of G and H are isometric;
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� the invariant lattices for the two actions satisfy ΛG
K3[n] ≃ ΛHK3 ⊕ ⟨δ⟩, with δ2 =

−2(n− 1) and (δ,H2(X,Z)) = 2(n− 1)Z.

Remark 1.4.2.6. Notice that for any standard pair (X,G), G is numerically standard:
indeed, (X,G) can be deformed to a natural pair (S[n], H), and by construction the
natural action of H on S[n] fixes the class δ of the exceptional divisor of the Hilbert-
Chow morphism, and acts on ⟨δ⟩⊥ ≃ H2(S,Z) as expected.

Theorem 1.4.2.7 ([57, Thm. 2.5]). Let X be a manifold of K3[n]-type and let n−1 be a
prime power. Let G ⊆ Auts(X) be a finite group of numerically standard automorphisms.
Then (X,G) is a standard pair.

Remark 1.4.2.8. Symplectic automorphisms of K3[2]-type manifolds have been classified
in [39]. In chapter 5 of this thesis, we’re going to study symplectic actions of groups G
of order four: from the classification we know that in this case the action of G is always
numerically standard, and therefore standard.

1.5 Symplectic varieties and quotients of IHS manifolds

Unlike the case of K3 surfaces, ifG acts symplectically on an IHS manifoldX the quotient
X/G may not admit a symplectic resolution of the singularities. However, there is not
just one way to define singular varieties that generalize the concept of IHS manifolds
(see for instance Perego’s account [79]).

The first definition we are going to give applies to singular varieties which arise in a
broader context, and cannot always be obtained from quotients of IHS manifolds: the
theory of singularities and teminalizations is indeed used more in general for the purposes
of the minimal model program.

Definition 1.5.0.1 ([3, Def. 3.1]). A symplectic variety is a pair (X,σ) consisting of a
normal variety X and a closed holomorphic symplectic form σ ∈ H2,0(Xreg) such that
there is a resolution of the singularities π : Y → X for which π∗σ extends to a holo-
morphic form on Y . A primitive symplectic variety is a normal compact Kähler variety
X such that H1(X,OX) = 0 and H2,0(Xreg) = Cσ, such that (X,σ) is a symplectic
variety.

Remark 1.5.0.2. If X is an IHS manifold and G is a finite group acting symplectically
on X, then the quotient X/G is a primitive symplectic variety.

Definition 1.5.0.3 ([68, Cor. 1]). LetX be a symplectic variety, Σ := X\Xreg its singular
locus. Then X has terminal singularities if and only if codim(Σ) ≥ 4.

Definition 1.5.0.4. Let X be an IHS manifold, G a finite group acting symplectically
on X. We call ϕ : Y → X/G a terminalization if Y is a Q-factorial symplectic variety
with terminal singularities and ϕ is a crepant proper birational morphism. Recall that
Q-factorial means that for every Weil divisor D on Y there is an m ∈ N such that mD
is Cartier, and crepant means that KY = ϕ∗KX .
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Theorem 1.5.0.5 ([3, Thm. 9.1]). Let Z be a primitive symplectic variety with second
Betti number at least 5. Then there exist a primitive symplectic variety Z ′ which is
inseparable from Z in (locally trivial) moduli and a terminalization Y → Z ′.

We will now introduce another definition, more appropriate in the context of quotients
of IHS manifolds (see Section 1.5.1).

Definition 1.5.0.6 ([49], after [24]). An orbifold is a compact analytic complex space with
at worst finite quotient singularities. A compact Kähler orbifold is called symplectic if its
singularities are in codimension 4 and its smooth locus is endowed with an everywhere
non-degenerate holomorphic 2-form. In addition, a symplectic orbifold is said primitively
symplectic if the holomorphic 2-form is unique up to scaling, and irreducible holomorphic
symplectic (IHSO) if moreover its smooth locus is simply connected.

Remark 1.5.0.7. Irreducible symplectic orbifolds appear as building blocks of compact
Kähler orbifolds with trivial canonical class [17] and a Torelli theorem holds for them
[50], [51].

To deal with O’Grady’s examples in Section 6.4, we need yet another definition: indeed,
they are obtained as resolution of the singularities of some moduli spaces of sheaves on
an abelian or K3 surface (see Theorem 6.4.1.1).

Definition 1.5.0.8 ([79, Def. 2.16]). A resolvable symplectic variety is a normal, compact
Kähler space X whose smooth locus has a holomorphic symplectic form σ, and which
has a symplectic resolution of the singularities π : X̃ → X, where X̃ is a IHS manifold.

Remark 1.5.0.9. The singularities of resolvable symplectic varieties are, by definition,
not terminal: terminalizations of resolvable symplectic varietes are smooth. If X is an
IHS manifold with a symplectic action of a group G, the quotient X/G is a resolvable
symplectic variety if and only if it admits a smooth terminalization: the known cases of
this particular phenomenon happening are collected in Example 1.5.1.5. We remark that
new cases can only be obtained by considering non-natural actions, as natural actions
are classified in [10].

Lemma 1.5.0.10 ([4, Lemma 3.5]). Let π : X̃ → X be a symplectic resolution of a
resolvable symplectic variety: then the pull-back map π∗ : H2(X,Z) → H2(X̃,Z) is
injective. The restriction of the BBF form q

X̃
to π∗(H2(X,Z)) is non-degenerate, and it

induces an equality of the transcendental lattices (i.e. the exceptional classes introduced
with the resolution are algebraic).

A Torelli theorem also holds for resolvable symplectic varieties [4, Thm. 1.3].

1.5.1 Nikulin orbifolds and other quotients of IHS manifolds

If X is an IHS manifold and G is a finite group acting symplectically on X, then the
terminalization Y of the quotient X/G is a primitively symplectic orbifold (see Definition
1.5.0.6). In [10] a classification of orbifolds obtained this way is provided, under the
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assumption that (X,G) be a natural pair: for each Y the authors give the second Betti
number and the group π1(Yreg). Moreover, they prove the following result.

Proposition 1.5.1.1 ([10, Prop. 7.1]). Let X be an IHS manifold, let G be a finite
group acting symplectically on X, let Y → X/G be a terminalization of X/G. Then
π1(Yreg) = G/N , where N is the normal subgroup of G generated by elements with fixed
locus of codimension 2.

Example 1.5.1.2. Nikulin orbifolds: Let X be a K3[2]-type manifold with a symplectic
involution ι: the pair (X, ι) is always standard [56], so by Remark 1.4.2.4 its fixed locus
is diffeomorphic to that of the natural involution, that is, a K3 surface Σ and 28 isolated
points. Let π : X → X/ι be the quotient map: X/ι is singular in codimension 2. Blowing
up π(Σ) we obtain an IHSO Y with 28 isolated singularities, which in [16] is called a
Nikulin orbifold in analogy with Nikulin surfaces.

Nikulin-type orbifolds (which are IHSOs deformation equivalent to Nikulin orbifolds)
are one of the most studied examples of quotients of IHS manifold: their second integral
cohomology group (i.e. that of their smooth locus) is endowed with a symplectic form,
which gives it a lattice structure [48]

H2(Y,Z) ≃ ΛN := E8 ⊕ U(2)⊕3 ⊕ ⟨−2⟩⊕2.

Moreover, there are results about their Kähler cone in [52], and projective families of
Nikulin orbifolds have been classified in [16].

Remark 1.5.1.3 ([48]). Let Y be a Nikulin orbifold: then its Néron-Severi lattice will
always contain the class of the divisor Σ̃ obtained by blowing up π(Σ); it holds Σ̃2 = −4,
so NS(Y ) is polarized with the lattice ⟨−4⟩.
Moreover, suppose that Y is obtained from a natural pair (S[2], ι): then, NS(S[2]) con-
tains half the class of the exceptional divisor (the blow-up of the diagonal of Sym2(S))
δ = ∆/2, that satisfies δ2 = −2, δH2(S[2]) = 2Z. Let now δ̃ = π∗δ: then δ̃2 = −4,
and (δ̃ + Σ̃)/2 ∈ NS(Y ) because Y admits a 2:1 cover branched over δ̃ ∪ Σ̃, given by
(S × S)/⟨σ ◦ (ι× ι)⟩, where σ switches the two copies of S. In this case, we see that the
orthogonal component ⟨−2⟩⊕2 of H2(Y,Z) is generated by (δ̃ ± Σ̃)/2.
Since the second integral cohomology is invariant by deformation, and symplectic in-
volutions on K3[2]-type manifolds are standard, we conclude that even for a general
K3[2]-type manifold X admitting a symplectic involution, where the class µ ∈ ΛK3[2] of

square −2 such that µ⊥ ≃ ΛK3 does not have a geometric meaning, still (π∗µ± Σ̃)/2 is
integral in H2(Y,Z).

Let X be an IHS manifold, G a finite group acting symplectically on X and Y be the
terminalization of X/G. Assume that Y has terminal singularities: we know the lattice
structure of H2(Y,Z) for a very short list of cases, all of them obtained terminalizing
quotients of IHS fourfolds.

Example 1.5.1.4. 1. if X is a K3[2]-type manifold and G = Z/2Z then Y is a Nikulin
orbifold, and H2(Y,Z) ≃ E8 ⊕ U(2)⊕3 ⊕ ⟨−2⟩⊕2;
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2. if X is a K3[2]-type manifold, G = Z/3Z and (X,G) is standard, then Y has 27
isolated singularities, and H2(Y,Z) ≃ U(3)⊕ U2 ⊕A2

2 ⊕ ⟨−6⟩ [49];

3. if X is a Km2-type manifold and G = Z/2Z, then Y is an IHSO with 36 isolated

singularities and H2(Y,Z) ≃ U(3)3 ⊕
[
−5 −4
−4 −5

]
[43];

4. if X is a K3[2]-type manifold and G = Z/11Z there are two different actions of
G on H2(X,Z) that share the same co-invariant lattice ΩG, but with different
invariant lattices [55, §7.4.4]. The orbifolds Y1 and Y2 have 5 isolated singularities,

and H2(Y1,Z) ≃

 2 −1 3
−1 8 −1
3 −1 6

 while H2(Y2,Z) ≃

2 1 0
1 6 0
0 0 2

[49].
We can add to this list that of the known cases in which Y is smooth:

Example 1.5.1.5. 1. if X is a K3[2]-type manifold, G = Z/3Z and (X,G) is not stand-
ard, then Y is a Km2-type manifold [67, Ex. 1.7.iv];

2. if X is a K3[2]-type manifold, G = (Z/2Z)4 and (X,G) is standard, then Y is a
K3[2]-type manifold [10, Prop. 8.1];

3. if X is a Km2-type manifold and G = (Z/3Z)3 is such that each nontrivial element
fixes a surface [10, Lemma 4.6], then Y is a K3[2]-type manifold [10, Rem. 9.2];

4. if X is a Km3-type manifold, the action of G = (Z/2Z)5 is such that each non
trivial element fixes a surface [10, Lemma 4.6], then Y is a K3[3]-type manifold [10,
Rem. 9.2].

In this thesis, we study the action of groups of order 4 on K3[2]-type manifolds: this
allows us to describe in Chapter 5 the two different involutions induced on Nikulin
orbifolds. Moreover, we can state the following results about their quotients.

Proposition 1.5.1.6. 1. Let G = Z/4Z act symplectically on a K3[2]-type manifold
X. The terminalization Y4 of the quotient X/G is a primitively symplectic orbifold,
π1(Y4)reg = Z/2Z and H2(Y4,Z) is an overlattice of finite index of the lattice

U(4)⊕ U⊕2 ⊕ ⟨−2⟩⊕2 ⊕ ⟨−4⟩⊕2.

2. Let G = (Z/2Z)2 act symplectically on a K3[2]-type manifold X. The terminaliza-
tion Y2,2 of the quotient X/G is an IHSO, and H2(Y2,2,Z) has rank 14.
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Chapter 2

Action of Z/4Z on a K3 surface

2.1 Introduction

In this chapter we study K3 surfaces X with a symplectic automorphism of order four
τ ; most of the material here presented can be also found in [82].
The order of τ being non-prime allows us to analyze a new type of surfaces: those that
are minimal resolution of an intermediate quotient, as is in our case the K3 surface Z̃,
the minimal resolution of X/τ2. The main results of this chapter are the lattice-theoretic
characterization of Z̃, and the comparison between its moduli space and those of X and
Ỹ , the minimal resolution of X/τ .
From Section 1.4.1 we expect that Z̃, admitting a symplectic involution and being itself
the resolution of a quotient by a symplectic involution, be polarized with both lattices
Ω2 := ΩZ/2Z, and N :=MZ/2Z. However, these lattices are not in direct sum in NS(Z̃):

the negative definite, rank 14 lattice Γ4 that characterizes Z̃ is introduced in Defini-
tion 2.4.2.3, where the primitive embedding N ↪→ Γ4 is also described; the primitive
embedding Ω2 ↪→ Γ4 can be found in Remark 2.4.3.1.

Theorem 2.1.0.1 (see Thm. 2.4.5.1). A K3 surface Z̃ is the minimal resolution of
X/τ2, for some K3 surface X with a symplectic automorphism of order 4 τ , if and only
if Z̃ is Γ4-polarized.

Corollary 2.1.0.2. Let X be a general K3 surface with a symplectic automorphism of
order four τ , let Z̃ and Ỹ be respectively the minimal resolution of X/τ2 and X/τ . The
moduli spaces of X, Z̃ and Ỹ are all irreducible of dimension 6: more precisely, it holds
NS(X) = Ω4, NS(Z̃) = Γ4, NS(Ỹ ) =M4.

Theorem 2.1.0.3 (see Thm. 2.5.2.3, 2.5.3.3). Let X be a general projective K3 surface
with a symplectic automorphism of order four τ ; let Z̃ and Ỹ be respectively the minimal
resolution of X/τ2 and X/τ . Then, using the notation introduced for overlattices in
Remark 2.5.0.5, we have the following correspondence between NS(X), NS(Z̃) and
NS(Ỹ ) depending on the value of d modulo 4. For d ≡ 2 (mod 4) the two possible
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NS(X) are not isomorphic, and the same holds for NS(Ỹ ).

NS(X) NS(Z̃) NS(Ỹ )

∀d Ω4 ⊕ ⟨2d⟩ (Γ4 ⊕ ⟨4d⟩)′ (M4 ⊕ ⟨8d⟩)⋆

d =4 2
(Ω4 ⊕ ⟨2d⟩)′(1)

(Γ4 ⊕ ⟨4d⟩)⋆
(M4 ⊕ ⟨2d⟩)′(1)

(Ω4 ⊕ ⟨2d⟩)′(2) (M4 ⊕ ⟨2d⟩)′(2)

d =4 3 (Ω4 ⊕ ⟨2d⟩)′ (Γ4 ⊕ ⟨4d⟩)⋆ (M4 ⊕ ⟨2d⟩)′

d =4 0
(Ω4 ⊕ ⟨2d⟩)′

(Γ4 ⊕ ⟨d⟩)′
(M4 ⊕ ⟨2d⟩)′

(Ω4 ⊕ ⟨2d⟩)⋆ M4 ⊕ ⟨d/2⟩

Notice that there is a 1:1 correspondence between families of projective surfaces X and
Ỹ , as it happens for automorphisms of order 2 and 3; however, when d is even two
different families of X (or Ỹ ) can correspond to the same family of Z̃.

The correspondence above is given by the maps induced in cohomology by the quotient
maps from X to X/τ2, X/τ : to define these maps one needs firstly to understand the
isometry τ∗ induced by τ on H2(X,Z). By [71, Thm. 4.7] this depends neither on X,
nor on τ , but only on its order: therefore, we can use as a starting point a projective K3
surface on which τ∗ is easy to describe.

2.2 A symplectic automorphism τ of order 4 on the surface X4

In this section, we introduce the surface X4 (see [94]), which has Picard rank 20, and
admits a Jacobian fibration that provides us with a presentation of τ∗ as permutation
action on a certain sublattice W ⊂ H2(X,Z) of finite index: this action can be then
extended uniquely to the whole lattice H2(X,Z).

2.2.1 Jacobian fibrations

Definition 2.2.1.1. Define Jacobian fibration a fibration p : X → P1 whose generic fiber
is a genus 1 curve, and that admits a global section s : P1 → X (it holds p ◦ s = idX),
denoted zero section: the fiber over a generic point F = p−1(x) is an elliptic curve with
the zero for the group law defined as s(x).
The Mordell-Weil group MW (p) of a Jacobian fibration is the group generated by all
the sections, with the group law induced by that of the generic fiber.

Remark 2.2.1.2. The group MW (p) acts on X by translation on each fiber, therefore it
acts as the identity on the symplectic form ωX .
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Given a Jacobian fibration, the Mordell-Weil group is linked to the Néron-Severi group
of the surface by the following isomorphism [89, Thm. 6.3]:

MW (p) ≃ NS(X)/T (p) (2.2.1.1)

where the trivial lattice T (p) is the sublattice of NS(X) generated by the generic fiber,
the image of the zero section s = s(P1) and the irreducible components of the reducible
fibers which do not intersect the curve s.

The Mordell-Weil group is endowed with the height pairing [89, §11.6 et seq.], a symmet-
ric Q-valued bilinear form induced by the projection of the intersection form of NS(X)
onto NS(X)/T (p). In particular, for any t ∈MW (p) one gets h(t) = 2χ(X)− 2ts−K,
where K depends on the intersection of t whith the reducible fibers of p according to
[89, §11.8, Table 4], and ts is the usual intersection product of t and s in NS(X). The
height of t is 0 if and only if t is a torsion section.

2.2.2 The surface X4

The surface X4 is the unique K3 surface with transcendental lattice T (X4) =

[
2 0
0 2

]
:

it arises as resolution of the singularities of the quotient surface A/⟨σ⟩, where A is the
abelian surface Ei×Ei, Ei is the elliptic curve of lattice ⟨1, i⟩, and σ is the automorphism
of A defined by σ(e1, e2) = (ie1,−ie2); this surface is well known, see for instance [92],
[94].

A description of all the possible Jacobian fibrations on X4 is given by Nishiyama [73,
Table 1.2]: in particular there exists a fibration

π : X4 → P1 s.t. MW (π) ≃ Z/4Z

which provides a symplectic automorphism τ of order four on X4 by means of a section
t1 that generates MW (π). Moreover, by (2.2.1.1) the curves of the trivial lattice form a
Q-basis for NS(X4).
The reducible fibers of π are one of type I4 and one of type I16 [53, Table IV.3.1]. Call
B0 (respectively C0) the component of I4 (resp. I16) intersected by s, and number the
other components so that B[i]4 intersects only B[i+1]4 and B[i−1]4 , and C[j]16 intersects
only C[j+1]16 and C[j−1]16 where [a]n is the class of a modulo n. Thus T (π) is generated
by the class F of the generic fiber of π, the curve s and the components Bi, Cj , i =
1, 2, 3, j = 1, . . . , 15 of the reducible fibers: except for F , these curves are rational, so
they have self-intersection −2; F satisfies F 2 = 0. The curves B1, B2, B3 span the lattice
A3 [89, §6.5], and C1, . . . , C15 span the lattice A15.
Using the height pairing we can determine the components Bi, Cj of the reducible fibers
that have non-trivial intersection with a non-zero section t ∈MW (π). It holds χ(X4) = 2
because X4 is a K3 surface, and since t is a torsion section it holds ts = 0: therefore i, j
satisfy the equation

0 = h(t) = 4−
(
i(4− i)

4
+
j(16− j)

16

)
(height formula).
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We will choose the following notation for the elements of MW (π): the zero section s
intersects the components B0 and C0; the section t1 intersects the components B2 and
C4; the section t2 intersects the components B0 and C8; the section t3 intersects the
components B2 and C12. Notice that each of t1 and t3 generates MW (π), whereas t2
has order 2.
We can write t1, t2, t3 in function of the basis of the trivial lattice T (π) using the in-
formation about their intersections:

t1 = 2F + s− B1 + 2B2 +B3

2
−

3C1 + 6C2 + 9C3 +
∑12

j=1 jC16−j

4

t2 = 2F + s−
∑7

j=1 j(Cj + C16−j) + 8C8

2

t3 = 2F + s− B1 + 2B2 +B3

2
−

∑12
j=1 jCj + 9C13 + 6C14 + 3C15

4
.

Since the discriminant group of NS(X4) is (Z/2Z)2 (it is indeed the orthogonal comple-
ment to T (X4) in ΛK3), from (2.2.1.1) and the equations above it can be readily seen
that NS(X4) admits as a Z-basis B = {F, s, t1, B1, B2, B3, C1, . . . , C14}.

2.2.3 The action of τ ∗ on the second cohomology of X4

The symplectic automorphism τ induces an isometry τ∗ on NS(X4) such that

F
τ∗7−→ F s

τ∗7−→ t1
τ∗7−→ t2

τ∗7−→ t3
τ∗7−→ s

τ∗(Cj) = C[j+4]16 τ∗(Bi) = B[i+2]4 .

where [a]n is the class of a modulo n. Therefore, we can easily identify two copies of
A1, ⟨B1⟩ and ⟨B3⟩, exchanged by the action of τ∗, and a set of four copies of D4 on
which τ∗ acts as a cycle of order 4: {⟨s, C15, C0, C1⟩, ⟨t1, C3, C4, C5⟩, ⟨t2, C7, C8, C9⟩,
⟨t3, C11, C12, C13⟩}. All these lattices are pairwise orthogonal, and the orthogonal com-
plement in NS(X) of the direct sum D⊕4

4 ⊕A⊕2
1 is generated over Q by the vectors

R1 =− 8F − 4s+ 8t1 + 4C1 + 8C2 + 13C3 + 18C4 + 15C5 + 12C6 + 10C7 + 8C8+

+ 6C9 + 4C10 + 3C11 + 2C12 + C13 + 3B1 + 6B2 + 3B3,

R2 =− 4F − 2s+ 2t1 + 2C1 + 4C2 + 5C3 + 6C4 + 5C5 + 4C6 + 4C7 + 4C8+

+ 4C9 + 4C10 + 3C11 + 2C12 + C13 +B1 + 2B2 +B3,

whose intersection form satisfies R2
1 = 4, R2

2 = −4, R1R2 = 0. It can be also verified
that τ∗R1 = R1, while τ

∗R2 = −R2. Therefore, we have the following description:

Proposition 2.2.3.1. Consider the sublattice D⊕4
4 ⊕A⊕2

1 ⊕ ⟨4⟩ ⊕ ⟨−4⟩ of NS(X4) gen-
erated as above. The isometry τ∗ acts on this sublattice as the cyclic permutation of
order 4 on D4 ⊕D4 ⊕D4 ⊕D4, as the cyclic permutation of order 2 on A1 ⊕A1, as id
(the identity) on ⟨4⟩ and as −id on ⟨−4⟩.
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The lattice D⊕4
4 ⊕A⊕2

1 ⊕ ⟨4⟩ ⊕ ⟨−4⟩ has discriminant group

(Z/2Z× Z/2Z)4 × (Z/2Z)2 × Z/4Z× Z/4Z

so it has index 26 in NS(X4); the latter can be obtained by adding the following gene-
rators to the generators of D⊕4

4 ⊕A⊕2
1 ⊕ ⟨4⟩ ⊕ ⟨−4⟩:

R := (R1 +R2)/2;

a := R1/4 +R2/4− (s+ C15)/2− (t1 + C5)/2 = C0 + C1 + C2 + C3 + C4;

b := R1/4−R2/4− (t1 + C3)/2− (t2 + C9)/2 = C4 + C5 + C6 + C7 + C8;

c := R1/4 +R2/4− (t2 + C7)/2− (t3 + C13)/2 = C8 + C9 + C10 + C11 + C12;
(2.2.3.1)

d := R1/4−R2/4− (t3 + C11)/2− (s+ C1)/2 = C12 + C13 + C14 + C15 + C0;

e := R1/2− (C3 + C5)/2− (C11 + C13)/2−B1/2−B3/2 = t1 + t3 + C4 + C12 +B2.

Now, H2(X4,Z) is an overlattice of index 22 of the lattice NS(X4) ⊕ T (X4). Since
H2(X4,Z) is unimodular, following Theorem 1.2.1.3 we have to find an isotropic sub-
group of ANS(X4)⊕T (X4) isomorphic to (Z/2Z)2.

Denoting {ω1, ω2} the Z-basis of T (X4) for which the intersection matrix is

[
2 0
0 2

]
, the

elements we have to add are:

f = (s+ t1 + C1 + C3 +B1 + ω1)/2, (2.2.3.2)

g = (s+ t1 + C1 + C3 +B3 + ω2)/2.

2.3 The action of τ ∗ and (τ 2)∗ on the K3 lattice

Nikulin’s uniqueness result [71, Thm. 4.7] enables us to deduce the action of any sym-
plectic automorphism of order 4 (and of its square) on the second cohomology group of
any K3 surface X by looking at the surface X4 with the action of the automorphism τ
introduced in the previous section.

2.3.1 A convenient description of the K3 lattice

The isometry τ∗ induced on ΛK3 by an automorphism τ of order 4 acts on the sublattice
of finite index of ΛK3 W := D⊕4

4 ⊕ A⊕2
1 ⊕ ⟨−4⟩ ⊕ ⟨4⟩ ⊕ ⟨2⟩ ⊕ ⟨2⟩ as the cycle (1, 2, 3, 4)

on the four copies of D4, as (1, 2) on the two copies of A1, as −id on ⟨−4⟩ and as id
on the remaining orthogonal components. The following diagram describes the situation:

W := D4 ⊕
!!

D4 ⊕
!!

D4 ⊕
!!

D4 ⊕gg A1 ⊕
  

A1``
⊕ ⟨−4⟩

−id

��

⊕

4 0 0
0 2 0
0 0 2

 iddd

(2.3.1.1)
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Denote e1, . . . , e4, f1, . . . , f4, g1, . . . , g4, h1, . . . , h4 the generators of the four copies of
D4, such that e3e1 = e3e2 = e3e4 = 1, and τ∗ : ei 7→ fi 7→ gi 7→ hi 7→ ei for i = 1, . . . , 4;
a1 and a2 the generators of the two copies of A1; σ the generator of ⟨−4⟩, ρ the generator

of ⟨4⟩, ω1 and ω2 the generators of

[
2 0
0 2

]
. Then, ΛK3 is obtained by adding to W the

elements (cf. (3.2.2.1) and (3.2.2.2))

χ = (ρ+ σ)/2;

α = (ρ+ σ)/4 + (e1 + e2 + f1 + f4)/2;

β = (ρ− σ)/4 + (f1 + f2 + g1 + g4)/2;

γ = (ρ+ σ)/4 + (g1 + g2 + h1 + h4)/2;

δ = (ρ− σ)/4 + (h1 + h2 + e1 + e4)/2; (2.3.1.2)

ε = (ρ+ f2 + f4 + h2 + h4 + a1 + a2)/2;

ζ = (e1 + f1 + e4 + f2 + a1 + ω1)/2;

η = (e1 + f1 + e4 + f2 + a2 + ω2)/2;

the action of τ∗ and (τ2)∗ on these elements is deduced by the one on the sublattice W
described above by Q-linear extension: notice that τ∗ : α 7→ β 7→ γ 7→ δ 7→ α, and that
(τ2)∗ fixes ε and χ.

A note on the action of τ and τ2 on the K3 lattice

Any symplectic involution on a K3 surface acts on ΛK3 exchanging two copies of E8, as
was first observed by Morrison [63, proof of Thm. 5.7]; on the other hand, the lattice E8

can be abstractly described as an overlattice of finite index of D4 ⊕D4 (Nishiyama, see
[73, Lemma 4.3] and the discussion in §5.4): given the Z-bases of the lattices involved

(with the elements numbered as in Example 1.2.0.2) {d(i)1 , . . . , d
(i)
4 } {e1, . . . , e8}, we can

define

e1 = d
(1)
1 , e2 = (d

(2)
1 − d

(2)
2 − d

(1)
1 − d

(1)
4 )/2− d

(1)
2 − d

(1)
3 , e3 = d

(1)
2 , e4 = d

(1)
3 ,

e5 = d
(1)
4 , e6 = (d

(2)
2 − d

(2)
4 − d

(1)
1 − d

(1)
2 )/2− d

(1)
3 − d

(1)
4 , e7 = d

(2)
4 , e8 = d

(2)
3 .

Moreover, we could construct the lattice ΛK3 as overlattice of W by gluing pairwise
the four copies of D4 as above, and then adding as generators also the elements (a1 +
ω1)/2, (a2 + ω2)/2, (σ + ρ)/4. However, doing so the action of τ2∗ on W described in
(2.3.1.1) does not extend to an action on the lattice ΛK3 that exchanges the two copies
of E8 we built.

Proposition 2.3.1.1. The gluing of the four copies of D4 in W to two copies of E8

does not extend the action of τ∗ on W to an action on ΛK3 such that (τ2)
∗
exchanges

the two copies of E8.
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Proof. We follow Nishiyama’s construction above (using the same notation) to glue pair-

wise four copies of D4 to two copies of E8: denote D
(k)
4 the k-th copy of D4, and similarly

E
(j)
8 . The isometry τ∗ acts on the four copies of D4 as the permutation (1, 2, 3, 4) of

the apices, and its action on the elements can be written as d
(1)
i 7→ d

(2)
i 7→ d

(3)
i 7→ d

(4)
i

without loss of generality. To have (τ2)
∗
exchange the two copies of E8 we construct,

we have to glue either D
(1)
4 to D

(2)
4 and D

(3)
4 to D

(4)
4 , or D

(1)
4 to D

(3)
4 and D

(2)
4 to D

(4)
4 :

suppose the gluing be

D
(1)
4 ⊕D

(2)
4 ⇝ E

(1)
8 ,

D
(3)
4 ⊕D

(4)
4 ⇝ E

(2)
8 .

Consider the element e
(1)
2 : if τ∗ were an isometry of ΛK3, then also τ∗e

(1)
2 would belong

to ΛK3, and their intersection would be integer: however, we get

e
(1)
2 = (d

(2)
1 − d

(2)
2 − d

(1)
1 − d

(1)
4 )/2− d

(1)
2 − d

(1)
3 ,

τ∗e
(1)
2 = (d

(3)
1 − d

(3)
2 − d

(2)
1 − d

(2)
4 )/2− d

(2)
2 − d

(2)
3 ;

therefore e
(1)
2 · τ∗e(1)2 = −1/2. The other choice of gluing gives a similar result.

Remark 2.3.1.2. The isometry (τ2)
∗
does indeed exchange two copies of E8 in ΛK3, it

being a symplectic involution: we can easily see this in NS(X4) (see Section 2.2.2), for
instance using the two copies of E8 ⟨s, C14, C15, C0, C1, C2, C3, C4⟩ and ⟨t2, C6, C7, C8, C9,
C10, C11, C12⟩. However, the elements a, b, c, d that actually glue the four copies of D4 in
NS(X4) all require a contribution of R1 and R2, which is lost in the abstract construc-
tion.

2.3.2 Invariant and co-invariant lattices for the action of τ and τ 2

From now on, denote Λ
⟨τ⟩
K3 the invariant lattice, and Ω4 the co-invariant lattice for the

action on ΛK3 induced by the automorphism of order four τ . The lattice Ω4 is a negative
definite lattice of rank 14 and discriminant group (Z/4Z)4 × (Z/2Z)2 [71, §10].

The following elements are invariant for the action of τ∗ on W (see (2.3.1.1)): for i =
1, . . . , 4, κi = ei + fi + gi + hi; κ5 = a1 + a2, κ6 = ρ, κ7 = ω1, κ8 = ω2. These elements

span a sublattice of Λ
⟨τ⟩
K3 of index 23: to obtain Λ

⟨τ⟩
K3 , add the generators (κ2+κ4)/2 (that

is, α+ β + γ + δ − κ1 − κ6), (κ5 + κ7 + κ8)/2 and (κ1 + κ4 + κ6 + κ7 + κ8)/2 (these are
easily verified to be, in fact, integral elements in ΛK3).
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Its orthogonal complement Ω4 is an overlattice of index 24 of the lattice

∆ =



D4(2) D4 D4 0

D4 D4(2) D4 0

D4 D4 D4(2) 0

0 0 0
−4 0
0 −4


spanned by the elements ei− fi, ei− gi, ei−hi for i = 1, . . . , 4, a1−a2 and σ: to obtain
Ω4, we shall add to this lattice α − β, α − γ, α − δ and one more class in 1

2∆ integral
in ΛK3, that we can choose to be (e2 − g2 + e4 − g4 + a1 − a2 + σ)/2.

The discriminant groups of Λ
⟨τ⟩
K3 and Ω4 satisfy AΛ

⟨τ⟩
K3

≃ (Z/4Z)4×(Z/2Z)2 ≃ AΩ4 .

The co-invariant lattice for a symplectic involution Ω2 := ΩZ/2Z is isometric to the lattice
E8(2) (see [32, §1.3] and the proof of [63, Thm. 5.7]). Considering the involution τ2, Ω2

is obviously contained in the co-invariant lattice for τ , Ω4: in the basis of Ω4 described
above, Ω2 is generated by the elements α − γ, β − δ, e1 − g1, e3 − g3, f1 − h1, f2 −
h2, f3 − h3, f4 − h4.
Denote R the orthogonal complement to Ω2 in Ω4: then Ω4 is an overlattice of Ω2 ⊕ R
such that Ω4/(Ω2 ⊕R) = (Z/2Z)4.

2.4 Quotients

For each of the abelian groups G that act symplectically on a K3 surface X, Nikulin
provides in [71, §5-7] a description of the singular locus of the quotient surface X/G, and
of the exceptional lattice MG: this is the minimal primitive sublattice of ΛK3 containing

all the exceptional curves of the minimal resolution X̃/G ofX/G. Denoting q : X → X/G

the quotient map, H2(X̃/G,Z) is an overlattice of finite index of q∗H
2(X,Z)⊕MG.

Remark 2.4.0.1. The lattices ΩG and MG are closely related via the quotient map:
this fact allowed Nikulin to compute the rank and the discriminant group of ΩG starting
from the (simpler) exceptional lattice [71, Lemma 10.2]. When G is non-cyclic, Nikulin’s
results have been corrected by Garbagnati and Sarti in [30]; for a complete account of
the relation between ΩG and MG, see Whitcher’s paper [96].

Consider a K3 surface X that admits a symplectic automorphism τ of order 4, and the
(singular) quotient surfaces Y = X/τ, Z = X/τ2; resolve the singularities of Y and Z to
obtain the K3 surfaces Ỹ , Z̃: then τ induces an involution τ̂ on Z such that Z/τ̂ ≃ Y ,
and this involution can be extended to Z̃, as we’re going to show in the following sections.
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Denote the maps between these surfaces as in the following diagram:

X

q4

��

π4

��

X

q2
��

π2

||
Z̃

q̂2
��

π̂2

}}

// Z

q2
��

Y Ỹoo oo ≃ // ˜̃Z/τ̂ // Z̃/τ̂ // Z/τ̂

(2.4.0.1)

Remark 2.4.0.2. The surfaces Ỹ and ˜̃Z/τ̂ are isomorphic, because they are birationally
equivalent K3 surfaces.

We can describe the maps

π4∗ : ΛK3 ≃ H2(X,Z) q4∗−−→ q4∗H
2(X,Z) ↪→ H2(Ỹ ,Z) ≃ ΛK3

π2∗ : ΛK3 ≃ H2(X,Z) q2∗−−→ q2∗H
2(X,Z) ↪→ H2(Z̃,Z) ≃ ΛK3

by defining them on the sublattice W (see (2.3.1.1)) in the first place, and subsequently
on all of ΛK3 by Q-linear extension to the elements presented in (2.3.1.2).

The description of
π̂2∗ : H

2(Z̃,Z) → H2(Ỹ ,Z)

will require some more effort: in fact, H2(Z̃,Z) is an overlattice of finite index of
q2∗H

2(X,Z)⊕MZ/2Z, while H
2(Ỹ ,Z) is an overlattice of finite index of q4∗H

2(X,Z)⊕
MZ/4Z = (q2 ◦ q2)∗H2(X,Z)⊕MZ/4Z; for now, notice that

π̂2∗|MZ/2Z :MZ/2Z →MZ/4Z,

π̂2∗|q2∗H2(X,Z) : q2∗H
2(X,Z) → q4∗H

2(X,Z). (2.4.0.2)

2.4.1 The image of H2(X,Z) via the maps π4∗ and π2∗

Proposition 2.4.1.1. The maps π2∗, π̂2∗ and π4∗ = π̂2∗ ◦ π2∗ act in the following way
on W and its image in π2∗H

2(X,Z):
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D4

e1 . . . e4

π2∗

��

⊕ D4

f1 . . . f4

��

⊕ D4

g1 . . . g4

��

⊕ D4

h1 . . . h4

π2∗

��

⊕ A1

a1

π2∗

��

⊕ A1

a2

π2∗

��

⊕⟨−4⟩
σ

π2∗

��

⊕

4 0 0
0 2 0
0 0 2


ρ, ω1, ω2

π2∗
��

D4

ê1 . . . ê4

π̂2∗

��

⊕ D4

f̂1 . . . f̂4

π̂2∗

��

⊕ A1(2)
â1

π̂2∗

��

⊕ A1(2)
â2

π̂2∗

		

⊕⟨−8⟩
σ̂

⊕

8 0 0
0 4 0
0 0 4


ρ̂, ω̂1, ω̂2

π̂2∗
��

D4

e1 . . . e4

⊕ A1(2)
a

⊕

16 0 0
0 8 0
0 0 8


ρ, ω1, ω2

Proof. The action of τ∗ on W is given in (2.3.1.1): we can use it to compute the inter-
section form of π4∗W via the push-pull formula. Since π4 is a finite morphism of degree
4, we get

π4∗x · π4∗y =
1

4
(π∗4π4∗x · π∗4π4∗y)

where π∗4π4∗x =
∑3

k=0(τ
k)∗(x). The intersection form of π2∗W can be similarly deter-

mined.

Corollary 2.4.1.2. The embedding q4∗H
2(X,Z) ↪→ H2(Ỹ ,Z) is unique up to isometries

of the latter, and the same holds for q2∗H
2(X,Z) ↪→ H2(Z̃,Z).

Proof. Computing q4∗H
2(X,Z) and q2∗H2(X,Z) byQ-linear extension of the maps in the

proposition above to the elements in (2.3.1.2), it can be seen that the lattice q4∗H
2(X,Z)

is even, indefinite, and it has rk = 8 and ℓ = 4, so it satisfies the conditions of Theorem
1.2.1.10; similarly, q2∗H

2(X,Z) is even, indefinite, it has rk = 14 and ℓ = 6, and the
same result can be applied.

2.4.2 The resolution of Z = X/τ 2, and the lattice Γ4

For any symplectic involution ι on a K3 surfaceX, the quotient surfaceX/ι has 8 isolated
singularities, that are ordinary double points [71, §5]: to resolve it, it is sufficient to blow
up these points once.

Definition 2.4.2.1 ([71, Def. 6.2, case 1a]). Denote Nikulin lattice the latticeN :=MZ/2Z:

if {n1, . . . , n8} is a Z-basis of A⊕8
1 , then a set of generators over Z for N can be obtained

by adding to this list the element ν = (n1 + · · ·+ n8)/2.
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The second integral cohomology of the K3 surface Z̃, the minimal resolution of the
quotient Z = X/τ2, can be described as an overlattice of index 26 of π2∗H

2(X,Z)⊕NZ ,
where NZ is a copy of the Nikulin lattice: this is done via an isomorphism of the
discriminant groups of π2∗H

2(X,Z) and NZ , as described in Theorem 1.2.1.5. The
generators that we need to add are the following:

z1 = (β̂ + f̂1 + f̂2 + â2 + η̂)/2 + (n2 + n8)/2

z2 = ε̂/2 + (n3 + n8)/2

z3 = â2/2 + (n4 + n8)/2 (2.4.2.1)

z4 = (ε̂+ â2 + ρ̂)/2 + (n5 + n8)/2

z5 = (β̂ + f̂1 + f̂2 + ρ̂+ χ̂+ η̂)/2 + (n6 + n8)/2

z6 = (β̂ + f̂1 + f̂2 + ε̂+ â2 + ρ̂+ ζ̂)/2 + (n7 + n8)/2,

where β̂ = π2∗β (= π2∗δ), and similarly the cap over the other elements of ΛK3 denotes
their image via π2∗. These generators were already known in the general case of a
symplectic involution [32, Lemma 1.10].

Remark 2.4.2.2. The lattice π2∗Ω4 is isomorphic to D6(2) with the following generators:
d1 = −(â1− â2+ σ̂)/2, d2 = (â1− â2− σ̂)/2, d3 = α̂− β̂, d4 = ê4− f̂4, d5 = ê3− f̂3, d6 =
ê1 − f̂1.

Definition 2.4.2.3. Define Γ4 the lattice, of rank 14 and discriminant group (Z/2Z)6 ×
(Z/4Z)2, obtained as an overlattice of π2∗Ω4 ⊕ NZ by adding to the list of generators
the elements

x1 =
n3 + n4 + n5 + n8 + d1 + d2

2
, x2 =

n3 + n4 + d1 + d4 + d6
2

. (2.4.2.2)

The lattice Γ4 can be primitively embedded inH2(Z̃,Z) with the lattice S = ⟨ê1+f̂1, α̂+
β̂, ê3 + f̂3, ê2 + f̂2, ρ̂, (â1 + â2 + ρ̂)/2, (ρ̂+ ω̂1 + ω̂2)/2, ω̂2⟩ as orthogonal complement;
indeed, we can obtain H2(Z̃,Z) as overlattice of finite index of S ⊕ Γ4 by adding the
generators:

z′1 = (α̂+ β̂)/2 + (α̂− β̂)/2,

z′2 = (ê3 + f̂3)/2 + (ê3 − f̂3)/2,

z′3 = (ê2 + f̂2)/2 + (ê4 − f̂4)/2 + (n3 + n4 + n5 + n8)/2,

z′4 = (â1 + â2 + ρ̂)/4 + (n2 + n3 + n4 + n6)/2 + (ê1 − f̂1 + ê4 − f̂4)/2, (2.4.2.3)

z′5 = (ρ̂+ ω̂1 + ω̂2)/4 + (n2 + n7)/2 + (ê1 − f̂1 + ê4 − f̂4)/2,

z′6 = ω̂2/2 + (n2 + n6)/2,

z′7 = (ê1 + f̂1 + ê2 + f̂2 + (â1 + â2 + ρ̂)/2 + ω̂2)/4+

+ (α̂− β̂)/2 + (3n5 + 2n6 + n8)/4 + (x1 + x2)/2,

z′8 = ρ̂/4 + (2n2 + n3 + 3n4 + n5 + 2n6 + 3n8)/4 + x1/2.
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Remark 2.4.2.4. The primitive embedding Γ4 ↪→ ΛK3 is unique up to isometries of ΛK3,
because Theorem 1.2.1.8 holds: in fact the orthogonal complement S of Γ4 satisfies the
first condition of Proposition 1.2.1.11.

2.4.3 The map π̂2∗ and the resolution of Y = X/τ

The action of a symplectic automorphism of order 4 τ on a K3 surface X has always
exactly eight isolated points on X with non trivial stabilizer: four of them are fixed by
τ , and four more exchanged by τ (so they are fixed by τ2) [71, §5, case 2]; therefore the
singular locus of the quotientX/τ consists of six isolated points, two of which are resolved
by blowing up once (thus introducing two rational curves in the quotient surface), and
each of the other four introducing three curves in A3 configuration.
The exceptional lattice M4 := MZ/4Z therefore satisfies M4 ⊗ Q = (A⊕4

3 ⊕ A⊕2
1 ) ⊗ Q;

calling m̃1, m̃2 the generators of the two copies of A1, and m
i
1, m

i
2, m

i
3 the generators

of the i-th copy of A3 numbered as in Example 1.2.0.2, then a set of Z-generators for
M4 consists of all these elements, and (see [71, §6, Def. 6.2, case 1b]) the class

µ =

∑4
i=1(m

i
1 + 2mi

2 + 3mi
3)

4
+
m̃1 + m̃2

2
. (2.4.3.1)

We can now describe the second integral cohomology of the K3 surface Ỹ , the minimal
resolution of the quotient Y = X/τ : the discriminant group of each of the orthogonal
summands M4 and π4∗H

2(X,Z) is isomorphic to (Z/4Z)2 × (Z/2Z)2, and the elements
that define ΛK3 as an overlattice of M4 ⊕ π4∗H

2(X,Z) are:

y1 =
(
m2

1 + 2m2
2 + 3m2

3 +m3
1 + 2m3

2 + 3m3
3

)
/4 + m̃2/2 + (e1 + e4 + ζ + η)/2 + (a+ χ)/4

y2 = (m3
1 + 2m3

2 + 3m3
3 +m4

1 + 2m4
2 + 3m4

3)/4 + m̃2/2 + (a+ ζ + 3η)/4

y3 = (m4
1 +m4

3 + m̃2)/2 + (e1 + e4 + α+ χ+ ζ)/2 (2.4.3.2)

y4 = (m̃1 + m̃2)/2 + a/2,

where ei = π4∗ei = π4∗fi = π4∗gi = π4∗hi, a = π4∗a1 = π4∗a2, and similarly ⋆ =
π4∗(⋆).

The exceptional lattice M4 can be also computed from the image of NZ via π̂2∗ (see
Rmk. 2.4.0.2) with the resolution of the singularities that arise from the quotient: in
fact, the involution τ̂ (that is induced on Z̃ by the action of τ on X) acts by fixing two
points on each of the the four exceptional curves of Z̃ corresponding to the four points of
X fixed by τ , and by exchanging pairwise the remaining four exceptional curves (these
correspond to the four points fixed only by τ2). Therefore, the invariant lattice for the
action of τ̂∗ on NZ is the sublattice spanned by the four invariant curves, and the sum
of the pairs of exchanged curves.

Remark 2.4.3.1. In the lattice Γ4 (see Def. 2.4.2.3) the orthogonal complement of the
invariant lattice for the action of τ̂∗ is a copy of Ω2: this is indicative of the fact that
the surface Z̃ admits a symplectic involution, which is indeed τ̂ . The curves of NZ
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were numbered such that the gluing between NZ and π2∗H
2(X,Z) be described by the

elements in (2.4.2.1): since the action of τ̂∗ on π2∗H
2(X,Z) determines the action of τ̂∗

on NZ via this gluing, we find accordingly that τ̂∗ fixes n1, n2, n6, n7 and exchanges n3
with n4, n5 with n8.

Proposition 2.4.3.2. It holds π̂2∗(Γ4) ⊂M4: more precisely, π̂2∗ annihilates R̂, because
π̂2∗R̂ = π̂2∗π2∗Ω4 = π4∗Ω4 = 0, and is defined on the Q-generators of NZ as follows:

n1 := π̂2∗n1 = m1
1 + 2m1

2 +m1
3, n2 := π̂2∗n2 = m3

1 + 2m3
2 +m3

3,

n6 := π̂2∗n6 = m2
1 + 2m2

2 +m2
3, n7 := π̂2∗n7 = m4

1 + 2m4
2 +m4

3,

n3 := π̂2∗n3 = π̂2∗n4 = m̃1, n5 := π̂2∗n5 = π̂2∗n8 = m̃2,

so that π̂2∗A
⊕8
1 = A1(2)

⊕4 ⊕A⊕2
1 .

Proof. Let k = 1, 2, 6, 7, j = 1, . . . , 8. The surface Z̃/τ̂ is singular in eight points, two
on each of the curves q̂2∗nk; consider the blow-up β : Ỹ → Z̃/τ̂ of the singular points:
then, the curve nj := π̂2∗nj is the pullback of q̂2∗nj . By push-pull we have n2k = −4,
n23 = −2 = n25. Consider the following diagram:

n1 n2 n6 n7 n3 n4 n5 n8

Z̃

q̂2

Z̃/τ̂Ỹ ≃ ˜̃Z/τ̂ β

Firstly, notice that either (n3, n5) = (m̃1, m̃2) or (n3, n5) = (m̃2, m̃1).
The eight exceptional curves {mi

1, m
i
3}4i=1 introduced with the blow-up β, together with

the element

νY =

∑4
i=1(m

i
1 +mi

3)

2
,

span a new copy of the Nikulin lattice NY ⊂M4; the class nk is by definition orthogonal
to the exceptional curves: thus we find that nk = mi

1 + 2mi
2 + mi

3 for some i. To
determine which copy of A3, A1 in M4 each nj corresponds to, we still have to require
that the image of the elements zi defined in (2.4.2.1) be integral in H2(Ỹ ,Z); this forces
the definition of π̂2∗ as stated.

Corollary 2.4.3.3. The latticeM4 is an overlattice of index 25 of the lattice π̂2∗NZ⊕NY ,
obtained by adding as generators the elements m1

2 = (n1−m1
1−m1

3)/2, m
2
2 = (n6−m2

1−
m2

3)/2, m
3
2 = (n2 −m3

1 −m3
3)/2, m

4
2 = (n7 −m4

1 −m4
3)/2 and µ (see (4.1.2.1)).
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Proof. The element µ defined in (4.1.2.1) is

µ =
νY +m1

2 +m2
2 +m3

2 +m4
2 +m1

3 +m2
3 +m3

3 +m4
3 + m̃1 + m̃2

2
,

so it gives an overlattice (of index 2) of the overlattice (of index 24) of π̂2∗NZ ⊕ NY

generated by the mi
2, i = 1, . . . , 4.

Notice that we have the following equalities:

H2(Ỹ ,Q) = (π4∗H
2(X,Z)⊕M4)⊗Q = (π4∗H

2(X,Z)⊕ π̂2∗NZ ⊕NY )⊗Q =

= (π̂2∗(π2∗H
2(X,Z)⊕NZ)⊕NY )⊗Q = (π̂2∗H

2(Z̃,Z)⊕NY )⊗Q.

Working on Z, we recover the first equality using the yi’s in (2.4.3.2), and the second
one as in Proposition 2.4.3.3; the next one is trivial, and for the last one we use
the zi’s in (2.4.2.1). Thus, the lattice H2(Ỹ ,Z) can be also described directly as
an overlattice of finite index of π̂2∗H

2(Z̃,Z) ⊕ NY , allowing for an easier computa-
tion of the map π̂2

∗ in Section 2.4.4: to do this, use for π̂2∗H
2(Z̃,Z) the Z-basis

{e1, α, e3, e4, a, χ, ζ, η, π̂2∗n6, π̂2∗ν, π̂2∗z1, π̂2∗z2, π̂2∗z5, π̂2∗z6}, with the zi’s defined in
(2.4.2.1), and for NY the Z-basis {νY ,m1

3,m
2
1,m

2
3,m

3
1, m

3
3,m

4
1,m

4
3}; then, the gluing

elements are

y′1 = (a+ χ+ π̂2∗ν +m1
3 +m2

1 +m3
1 +m4

3)/2

y′2 = (α+ ζ + π̂2∗z1 + π̂2∗z5 +m2
3 +m3

3)/2

y′3 = (χ+ ζ + η + π̂2∗n6 +m4
1 +m4

3)/2 (2.4.3.3)

y′4 = (e4 + a+ η + π̂2∗z1 + π̂2∗z6 +m3
3 +m4

3)/2

y′5 = (α+ a+ η + π̂2∗z1 + π̂2∗z5 +m2
3 +m3

1 +m4
1 +m4

3)/2

y′6 = (π̂2∗n6 +m2
1 +m2

3)/2.

2.4.4 The dual maps

We’re now going to define the dual maps

π∗4 : H2(Ỹ ,Z) → H2(X,Z)
π̂2

∗ : H2(Ỹ ,Z) → H2(Z̃,Z)
π∗2 : H2(Z̃,Z) → H2(X,Z)

using the descriptions of H2(Ỹ ,Z) as an overlattice respectively of π4∗ΛK3 ⊕M4 and
π̂2∗ΛK3 ⊕NY , and of H2(Z̃,Z) as an overlattice of π2∗ΛK3 ⊕NZ . These maps are used
in Section 2.6 to find the dimension of the eigenspaces for the action induced by the
automorphism τ on H0(X,L) for any possible choice of polarization L on X, and they
are given here explicitly for completeness of our exposition.
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Proposition 2.4.4.1. 1. The map π∗4 annihilates M4, and acts on π4∗W ⊂ π4∗ΛK3

as

π4
∗ : D4 ⊕ A1(2) ⊕

16 0 0
0 8 0
0 0 8

 // D⊕4
4 ⊕ A⊕2

1 ⊕

4 0 0
0 2 0
0 0 2



e1
e2
e3
e4

, a, ρ, ω1, ω2

 � //


e1 + f1 + g1 + h1
e2 + f2 + g2 + h2
e3 + f3 + g3 + h3
e4 + f4 + g4 + h4

, 2a1 + 2a2, 4ρ, 4ω1, 4ω2


Its action can be extended to π4∗ΛK3 adding these elements (and their respective
images to the image lattice): α = ρ/4 + e1 + (e2 + e4)/2, χ = ρ/2, ζ = e1 + (e2 +
e4 + a + ω1)/2, η = e1 + (e2 + e4 + a + ω2)/2; to extend the action to H2(Ỹ ,Z),
add also y1, . . . , y4 (see (2.4.3.2)).

2. The map π∗2 annihilates N , and acts on π2∗W ⊂ π2∗ΛK3 as

π2
∗ : D⊕2

4 ⊕ A1(2)
⊕2⊕⟨−8⟩⊕

8 0 0
0 4 0
0 0 4

 // D⊕4
4 ⊕ A⊕2

1 ⊕ ⟨−4⟩ ⊕

4 0 0
0 2 0
0 0 2



ê1, f̂1
ê2, f̂2
ê3, f̂3
ê4, f̂4

, â1, â2, σ̂, ρ̂, ω̂1, ω̂2

 � //


e1 + g1, f1 + h1
e2 + g2, f2 + h2
e3 + g3, f3 + h3
e4 + g4, f4 + h4

, 2a1, 2a2, 2σ, 2ρ, 2ω1, 2ω2


Its action can be extended to π2∗ΛK3 adding the following elements (and their
respective image to the image lattice): α̂ = (ρ̂+ σ̂)/4 + (ê1 + ê2 + f̂1 + f̂4)/2, β̂ =
(ρ̂− σ̂)/4+(ê1+ ê4+ f̂1+ f̂2)/2, ε̂ = ρ̂/2+ f̂2+ f̂4+(â1+ â2)/2, χ̂ = (ρ̂+ σ̂)/2, ζ̂ =
(ê1 + f̂1 + ê4 + f̂2 + â1 + ω̂1)/2, η̂ = (ê1 + f̂1 + ê4 + f̂2 + â2 + ω̂2)/2; to extend the
action to H2(Z̃,Z), add also z1, . . . , z6 (see (2.4.2.1)).

3. Recall from Corollary 2.4.3.3 that H2(Ỹ ,Z) is an overlattice of finite index of
π̂2∗H

2(Z̃,Z)⊕NY . The lattice NY ⊆ H2(Ỹ ,Z) is annihilated by π̂2
∗, and for the

generators of π̂2∗H
2(Z̃,Z) the map π̂2

∗ is defined as follows:

π̂2
∗ei = êi + f̂i (for i = 1, . . . , 4, but e2 is not needed as generator),

π̂2
∗ζ = ê1 + f̂1 + (ê2 + f̂2 + ê4 + f̂4 + â1 + â2 + 2ω̂1)/2,

π̂2
∗η = ê1 + f̂1 + (ê2 + f̂2 + ê4 + f̂4 + â1 + â2 + 2ω̂2)/2,

π̂2
∗α = α̂+ β̂, π̂2

∗a = â1 + â2, π̂2
∗χ = π̂2

∗ρ/2 = ρ̂,

π̂2
∗π̂2∗n6 = 2n6, π̂2

∗π̂2∗ν = 2ν,

π̂2
∗π̂2∗z1 = (α̂+ β̂ + ê1 + f̂1 + ê2 + f̂2 + â1 + â2 + π̂2

∗η + 2n2 + n5 + n8)/2,

π̂2
∗π̂2∗z2 = (ρ̂+ ê2 + f̂2 + ê4 + f̂4 + â1 + â2 + n3 + n4 + n5 + n8)/2,

π̂2
∗π̂2∗z5 = (α̂+ β̂ + ê1 + f̂1 + ê2 + f̂2 + ρ̂+ π̂2

∗η + 2n6 + n5 + n8)/2 + ρ̂,
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π̂2
∗π̂2∗z6 = (α̂+ β̂ + ê1 + f̂1 + ê4 + f̂4 + ρ̂+ π̂2

∗ζ + 2n7 + n5 + n8)/2+

+ â1 + â2 + ê2 + f̂2 + ρ̂.

Notice that π̂2
∗π̂2∗zi = zi + τ̂∗zi, and that to obtain the whole image of π̂2

∗ the
images of the elements y′i of (2.4.3.3) are also to be considered.

Proof. We are going to prove only that the map π∗4 acts on π4∗W as stated above; the
other cases are similar.
Since π∗4 and π4∗ are dual maps, π∗4a = b if and only if (b · c)X = (a · π4∗c)Y for
every a ∈ π4∗W, c ∈W : hence π∗4a · c = a · π4∗c. Take ej = (ej , 0, 0, 0) ∈ D⊕4

4 : then
π∗4ei · ej = ei · π4∗ej = ei · ej , but it holds also ei · ej = ei · π4∗fj = ei · π4∗gj = ei · π4∗hj ;
therefore π∗4ei = ei+fi+gi+hi. Take a1 = (a1, 0) ∈ A⊕2

1 : then π∗4a·a1 = a·π4∗a1 = 2(a·a)
because π4∗ doubles the intersection form on A1 ⊕ A1; moreover, π4∗a1 = a = π4∗a2,
therefore we get π∗4a = 2a1 + 2a2. Similarly, since π4∗ multiplies by 4 the intersection
form of the sublattice of W invariant for the action of τ , we can conclude that π∗4ρ =
4ρ1, π

∗
4ω1 = 4ω1, π

∗
4ω2 = 4ω2.

Corollary 2.4.4.2. The image of H2(Ỹ ,Z) via the map π∗4 coincides with the invariant

lattice Λ
⟨τ⟩
K3 described in Section 2.3.2. In other words, it holds

π∗4H
2(Ỹ ,Z) = Ω

⊥ΛK3
4 .

Similarly, we obtain:

π∗2H
2(Z̃,Z) = Ω

⊥H2(X,Z)
2 = Ω

⊥ΛK3
2 ,

π̂2
∗H2(Ỹ ,Z) = Ω

⊥H2(Z̃,Z)
2 = Ω

⊥ΛK3
2 .

Proof. It holds π∗4ei = ei + fi + gi + hi for i = 1, . . . , 4, π∗4a = 2(a1 + a2), π
∗
4ρ = 4ρ,

π∗4ω1 = 4ω1, π
∗
4ω2 = 4ω2; however, these elements generate only a sublattice of finite

index of π∗4H
2(Ỹ ,Z): adding as generators the images via π∗4 of the elements α, χ, ζ, η

and y1, . . . , y4, we obtain the whole invariant lattice for the action of τ on ΛK3.

2.4.5 Characterization of the surface Z̃: the non-projective case

Nikulin’s seminal work [71] provides a lattice theoretic characterization of K3 surfaces
X that admit a symplectic action of a cyclic group G = Z/nZ (for n = 2, . . . , 8), and of
surfaces Ỹ that are the resolution of the quotient X/G, by providing a relation between
the lattices ΩG and MG that have to be primitively embedded in their respective Néron-
Severi lattices; we want to show that similarly, in the case G = Z/4Z (generated by an
automorphism τ of X), the lattice Γ4 characterizes the surface Z̃ that is the resolution
of Z := X/τ2. For simplicity, we are going to state our result for the most general K3
surface X: in this case, both NS(X) = Ω4 and NS(Ỹ ) =M4 have rank 14.
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Theorem 2.4.5.1. Let Z̃ be a K3 surface such that rk(NS(Z̃)) = 14. There exists a
pair (X, τ) where X is a K3 surface and τ is a symplectic automorphism of order 4 such
that Z̃ is birationally equivalent to the quotient X/τ2 if and only if NS(Z̃) = Γ4 (see
Def. 2.4.2.3).

Proof. The “only if” is true by construction (see Section 2.4.2). Conversely, suppose
NS(Z̃) = Γ4. The embedding Ω2 ⊂ Γ4 described in Remark 2.4.3.1 defines a symplectic

involution τ̂ on Z̃, and the Néron-Severi lattice of the resolution ˜̃Z/τ̂ is naturally a copy
of M4, as proved in Corollary 2.4.3.3; therefore, by the results of Nikulin the surface˜̃Z/τ̂ is the resolution of the quotient of a K3 surface X for a symplectic automorphism
τ of order 4, and it holds NS(X) = Ω4. The action of τ on Ω4 naturally defines a copy
of Ω2 ⊂ Ω4 by Ω2 = (Ωτ

2

4 )⊥Ω4 , as described in Section 2.3.2; taking the quotient map

π2 : X → X/τ2 and the resolution X̃/τ2, it holds NS(X̃/τ2) ≃ NS(Z̃).

2.5 Projective families of K3 surfaces with a symplectic automorphism
of order 4 and their quotients

It was already known by Nikulin that the correspondence between surfaces X that
admit a symplectic action of an abelian group G, and surfaces Ỹ that are the resolution
of X/G, is actually a moduli spaces correspondence [71, Prop. 2.9]; the same idea was
later generalized to the non-abelian case by Whitcher [96, §3].
We can therefore refine the characterization of X, Z̃ and Ỹ by their Néron-Severi to the
projective case. The approach we follow mimics the one used in [32],[29] for symplectic
involutions, and in [26] for symplectic automorphisms of order 3.

Proposition 2.5.0.1 (see [71, Prop. 2.9]; also [32, Prop. 2.2]). Projective K3 surfaces
X that admit a symplectic action of an abelian group G are polarized with a lattice of
rank 1+ rk(ΩG) that contains primitively both the lattice ΩG and a class L of square 2d;
projective K3 surfaces that are the resolution of X/G are polarized with a lattice of rank
1 + rk(MG) that contains primitively both the lattice MG and a class H of square 2e.
Moreover, from Theorem 2.4.5.1 we deduce that in the projective case Z̃ is polarized with
a lattice of rank 15 that contains primitively both the lattice Γ4 and a class K of square
2f .

Lemma 2.5.0.2. Let X be a general projective K3 surface admitting a symplectic action

of G, so NS(X) has signature (1, rk(ΩG)). Then we may assume that L = Ω
⊥NS(X)

G is
ample.

Proof. We may assume that L is effective up to a sign change, because L2 > 0. Then,
since there are no (−2)-classes in L⊥ = ΩG [71, Thm. 4.3], any (−2)-curve has class of
the form nL+w with n ∈ N and w ∈ ΩG: classes of this form have positive intersection
with L, so L is ample by the Nakai-Moishezon criterion.
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Remark 2.5.0.3. Let S be either ΩG orMG: the only lattices that satisfy the proposition
above are S ⊕ ⟨2d⟩ and its cyclic overlattices of finite index [30, Prop. 6.1]. Each
non-isomorphic primitive embedding of any of these lattices in ΛK3 gives a different
irreducible component of a moduli space of projective K3 surfaces: either of surfaces X
that admit a symplectic action of G (if S = ΩG), or of surfaces Ỹ that are the minimal
resolution of X/G (if S =MG).
For G = Z/2Z,Z/3Z it is already known that there exists a bijection between the
irreducible components of the moduli spaces of X and Ỹ ([32], [26]). We are going to
show that this also holds for Z/4Z, but not when considering irreducible components of
the moduli spaces of X (or Ỹ ) and of intermediate quotient surfaces Z̃.

Remark 2.5.0.4. If G = Z/4Z, we have to study S = Ω4, M4, Γ4 (see Sections 2.3.2,
2.4.3, 2.4.2). The moduli spaces of projective K3 surfaces X that admit a symplectic
automorphism τ of order 4, and projective K3 surfaces are the resolution of X/τ2 or
X/τ all have dimension 5.

Remark 2.5.0.5. Notation. Consider the lattice S ⊕ ⟨k⟩, where S is a negative definite
even lattice and ⟨k⟩ is an even positive definite lattice with intersection matrix [k].
Denote (S ⊕ ⟨k⟩)′ and (S ⊕ ⟨k⟩)⋆ any cyclic overlattices of S ⊕ ⟨k⟩ obtained by adding
to the list of generators a class of the form (s+ κ)/2, (s+ κ)/4 respectively, with s ∈ S
and κ the generator of ⟨k⟩. When two overlattices of index 2 of S⊕⟨k⟩ as above are not
isomorphic as abstract lattices, they will be denoted as (S ⊕ ⟨k⟩)′(i), i = 1, 2.

2.5.1 Projective families of K3 surfaces with a symplectic automorphism τ
of order 4

We are going to find all the non isomorphic overlattices of finite index of Ω4 ⊕ ⟨2d⟩ as
follows.
In Proposition 2.5.1.2 we look at the orbits for the induced action of O(Ω4) on AΩ4 ,
and we fix a representative s ∈ AΩ4 for each of them in Corollary 2.5.1.3, using the
embedding of Ω4 in ΛK3 defined in Section 2.3.2. In Theorems 2.5.1.4 and 2.5.1.5 we
find all the overlattices of Ω4 ⊕ ⟨2d⟩, and prove that each one admits a unique primitive
embedding in ΛK3. In Example 2.5.1.6 we then give for each s defined in Corollary
2.5.1.3 a primitive classe L ∈ ΛτK3 of square 2d, d ∈ Z>0 such that L/m+ s is an integral
class in ΛK3: the maximum m for which this happens is the index of the overlattice of
Ω4⊕⟨2d⟩ that we obtain choosing L as generator of ⟨2d⟩. According to Corollary 1.2.1.6
and Remark 1.2.1.7, elements s̃ in the same orbit of s for the action of O(S), and the
corresponding L̃, will give the same irreducible component of the moduli space.

Definition 2.5.1.1. Consider an even lattice S, its group of isometries O(S) and its
discriminant group AS with discriminant form qS . We define two equivalence relations
on AS :

� by order and square: two elements r, s ∈ AS are in relation (r ∼S s) if they have the
same order and square, i.e. ⟨r⟩ = ⟨s⟩ = Z/kZ ⊂ AS and qS(r) = qS(s) = g ∈ Q/2Z;
we will denote the equivalence classes for this relation with the pair (k, g);
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� by (induced) isometry : two elements r, s ∈ AS are in relation (r ≈S s) if there exists
an isometry φ ∈ O(AS) induced by an isometry φ ∈ O(S) such that φ(r) = s; we
will denote the equivalence classes for this relation with the triple (k, g, n), where
k, g are as above, and n is the cardinality of the class (in our case, this is sufficient
to uniquely identify each of them).

Proposition 2.5.1.2. The relation ∼Ω4 divides AΩ4 in 7 non-trivial equivalence classes
(plus the trivial one {0}), whose cardinality is displayed below. Each of them corresponds
to an equivalence class for ≈Ω4, except for (2, 1) which is the union of two classes: (2, 1, 6)
e (2, 1, 10).

k
g

0 1/2 1 3/2

2 15 32 16 0
4 240 240 240 240

Proof. The equivalence classes for ∼Ω4 can be computed from a basis of AΩ4 and its
discriminant form. The generators of O(Ω4) can be computed using the Integral Lattices
package in SAGE [87]: then, choosing for each of the classes (k, g) of ∼Ω4 a representative
element x(k,g), their orbit for the induced action of O(Ω4) on AΩ4 is computed recursively
[40, Algorithm I.4].

Corollary 2.5.1.3. We give a representative element x(k,g,n) for each non-trivial equi-
valence class (k, g, n) for the relation ≈Ω4, in terms of the generators of Ω4 introduced
in Section 2.3.2.

class (k, g, n) representative x(k,g,n)

(2, 0, 15) 3e3−f3−g3−h3
2

(2, 1/2, 32) 2e1−f1−g1+e4−f4+α−γ+σ+(e2−g2+e4−g4+a1−a2+σ)/2
2

(2, 1, 6) σ
2

(2, 1, 10) σ+3e3−f3−g3−h3
2

(4, 0, 240) 3(3e3−f3−g3−h3)+2(2e1−f1−g1+e4−f4+α−γ)+e2−g2+e4−g4+a1−a2+σ
4

(4, 1/2, 240) 2(e1−g1+e2−g2)+a1−a2+σ
4

(4, 1, 240) 3(3e1−f1−g1−h1+3α−β−γ−δ)+2(e2−g2+e4−g4+σ)
4

(4, 3/2, 240) 3(3e1−f1−g1−h1)
4

Theorem 2.5.1.4. Let X be a projective K3 surface that admits a symplectic automor-
phism of order 4, such that rk(NS(X)) = 15. Then, using the notation introduced in
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Remark 2.5.0.5, NS(X) is one of the following lattices:

1. for every d ∈ N, NS(X) = Ω4 ⊕ ⟨2d⟩;

2. for d ̸=4 1, NS(X) = (Ω4⊕⟨2d⟩)′; this is uniquely determined by d and the index of
the overlattice for d ̸=4 2, while for d =4 2 there are two non isometric possibilities.

3. For d =4 0, NS(X) = (Ω4 ⊕ ⟨2d⟩)⋆, uniquely determined by d and the index of the
overlattice.

Proof. By Corollary 1.2.1.6 overlattices of index 2 of Ω4 ⊕ ⟨2d⟩ correspond to isotropic
elements in AΩ4⊕⟨2d⟩ of the form (L+ v)/2, where L generates ⟨2d⟩ and v ∈ Ω4 is chosen
up to the action of O(Ω4) on AΩ4 . Requiring(

L+ v

2

)2

=
d

2
+

(
v

2

)2

= 0 in
Q
2Z

we see that for each value of d modulo 4, v/2 belongs to one of the classes of ≈Ω4

described in Proposition 2.5.1.2 containing elements of order 2. Therefore, for d = 4h+1
no overlattice of index 2 of Ω4 ⊕ ⟨2d⟩ exists; for d = 4h or d = 4h + 3 there exists one
overlattice of index 2 of Ω4 ⊕ ⟨2d⟩; for d = 4h + 2 there are two equivalence classes for
≈Ω4 , and the corresponding overlattices of Ω4 ⊕ ⟨2d⟩ are not in the same genus. This
can be proved using [72, Prop. 1.15.1]: the overlattices corresponding to (2, 1, 10) and
(2, 1, 6) have discriminant group (Z/4Z)4 × Z/2dZ and discriminant form respectively[

0 1/4
1/4 0

]
⊕
[
1/2 1/4
1/4 1/2

]
⊕

[
d+ 1

2d

]
,

[
0 1/4

1/4 0

]
⊕
[

0 1/4
1/4 0

]
⊕
[
d+ 1

2d

]
.

By a similar argument, overlattices of type (Ω4 ⊕ ⟨2d⟩)⋆ exist only for d ≡ 0 (mod 4); to
each value of d modulo 16 corresponds one equivalence class of ≈Ω4 of those containing
elements of order 4.

Theorem 2.5.1.5. Each of the lattices presented in Theorem 2.5.1.4 admits a unique
primitive embedding in ΛK3 up to isometries of ΛK3.

Proof. LetNS(X) = Ω4⊕⟨2d⟩, let T (X) = NS(X)⊥ΛK3 ; it holds λ(AT (X)) = λ(ANS(X)) =
(2, 2, 4, 4, 4, 4, 2d) ((2, 2, 2, 4, 4, 4, 4) for d = 1); if d is odd, then Z/2dZ = Z/2Z× Z/dZ,
so we have ANS(X) = (Z/2Z)3 × A′ and NS(X) satisfies Corollary 1.2.1.13; if d = 2d′,
then λ(AT (X)) = (2, 2, 4, 4, 4, 4, 4d′), so T (X) satisfies Proposition 1.2.1.11, and therefore
NS(X) satisfies Theorem 1.2.1.8.
LetNS(X) = (Ω4⊕⟨2d⟩)′, let T (X) = NS(X)⊥ΛK3 : for d =4 2, 3 ANS(X) has length 5, so
there exists a unique primitive embedding of NS(X) in ΛK3 thanks to Theorem 1.2.1.12;
for d = 4d′, T (X) satisfies Proposition 1.2.1.11, for λ(AT (X)) = (2, 2, 2, 2, 4, 4, 8d′); there-
fore NS(X) satisfies Theorem 1.2.1.8.
Let NS(X) = (Ω4 ⊕ ⟨2d⟩)⋆: then ANS(X) has length 5, so it satisfies Theorem 1.2.1.12.
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Example 2.5.1.6. We now use Remark 1.2.1.7 (and the notation of Section 3.3.1) to

provide for each x(k,g,n) in Corollary 2.5.1.3 primitive classes L ∈ Ω
⊥H2(X,Z)
4 such that

L2 = 2d and L/k + x(k,g,n) is an integral class in H2(X,Z). By Theorems 2.5.1.4
and 2.5.1.5 the general member of each irreducible compoment of the moduli space of
projective K3 surfaces with a symplectic automorphism of order four is obtained as one
of these examples.

1. For every d ∈ N \ {0}, the class

L0 = L0(d) =
a1 + a2 + ω1 + ω2

2
+ d

(
−a1 − a2 + ω1 − ω2

2

)
generates the lattice ⟨2d⟩ such that Ω4⊕⟨2d⟩ is primitively embedded in H2(X,Z).

2. For d = 4(h− 1), h ∈ N \ {0, 1} the class

L2,0(h) = 2L0(h) + e3 + f3 + g3 + h3

generates the lattice ⟨2d⟩ such that (Ω4⊕⟨2d⟩)′ is primitively embedded inH2(X,Z);
L2,0/2 + x(2,0,15) is in fact an integral class in H2(X,Z).

3. For d = 4h+ 2, h ∈ N, the class

L
(1)
2,2(h) = 2L0(h) + ρ

generates the lattice ⟨2d⟩ such that (Ω4⊕⟨2d⟩)′ is primitively embedded inH2(X,Z);
L
(1)
2,2/2 + x(2,1,6) is in fact an integral class in H2(X,Z).

4. For d = 4(h− 1) + 2, h ∈ N \ {0}, the class

L
(2)
2,2(h) = 2L0(h) + ρ+ e3 + f3 + g3 + h3

generates the lattice ⟨2d⟩ such that (Ω4⊕⟨2d⟩)′ is primitively embedded inH2(X,Z);
L
(2)
2,2/2 + x(2,1,10) is in fact an integral class in H2(X,Z).

5. For d = 4h+ 3, h ∈ N, the class

L2,3(h) = 2L0(h) + ω2 +
e1 + f1 + g1 + h1 + e4 + f4 + g4 + h4 + a1 + a2 + 3ρ

2

generates the lattice ⟨2d⟩ such that (Ω4⊕⟨2d⟩)′ is primitively embedded inH2(X,Z);
L2,3/2 + x(2,1/2,32) is in fact an integral class in H2(X,Z).

6. For d = 16(h− 1), h ∈ N \ {0, 1}, the class

L4,0(h) = 4L0(h)+e1+f1+g1+h1+3(e3+f3+g3+h3)+e4+f4+g4+h4+a1+a2+ρ+2ω2

generates the lattice ⟨2d⟩ such that (Ω4⊕⟨2d⟩)⋆ is primitively embedded inH2(X,Z);
L4,0/4 + x(4,0,240) is in fact an integral class in H2(X,Z).
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7. For d = 16h+ 4, h ∈ N, the class

L4,4(h) = 4L0(h) + a1 + a2 + ρ+ 2ω2

generates the lattice ⟨2d⟩ such that (Ω4⊕⟨2d⟩)⋆ is primitively embedded inH2(X,Z);
L4,4/4 + x(4,3/2,240) is in fact an integral class in H2(X,Z).

8. For d = 16(h− 4) + 8, h ∈ N \ {0, 1, 2, 3}, the class

L4,8(h) = 4L0(h) + ρ+
3(e2 + f2 + g2 + h2) + 7(e4 + f4 + g4 + h4)

2

generates the lattice ⟨2d⟩ such that (Ω4⊕⟨2d⟩)⋆ is primitively embedded inH2(X,Z);
L4,8/4 + x(4,1,240) is in fact an integral class in H2(X,Z).

9. For d = 16h+ 12, h ∈ N, the class

L4,12(h) = 4L0(h) + e1 + f1 + g1 + h1 + 2(e4 + f4 + g4 + h4 + ρ+ ω1 + ω2)

generates the lattice ⟨2d⟩ such that (Ω4⊕⟨2d⟩)⋆ is primitively embedded inH2(X,Z);
L4,12/4 + x(4,1/2,240) is in fact an integral class in H2(X,Z).

Projective families with the action of τ2 compared to projective families with a general
symplectic involution

Let X be a general projective K3 surface which admits a symplectic automorphism of
order 4 τ : then X, having Picard number 15, is a special member of one of the families
of projective K3 surfaces that admit a symplectic involution, whose general element has
Picard number 9. Indeed, each of the NS(X) presented in Theorem 2.5.1.4 admits a
primitive embedding of Ω2 ⊕ ⟨2d⟩ or some overlattice of it: to compare the families,
we need to see how each of the ample classes L of Example 2.5.1.6 glues to the lattice
Ω2 ⊂ Ω4 associated to the action of τ2 on X (see Section 2.3.2).

Theorem 2.5.1.7 (see [32, Prop. 2.2]). Let X be a projective K3 surface with a sym-
plectic involution ι, such that rk(NS(X)) = 9. Then we have the following possible cases
for NS(X):

(a) for every d, NS(X) = Ω2 ⊕ ⟨2d⟩;

(b) for d even, NS(X) = (Ω2 ⊕ ⟨2d⟩)′.

Remark 2.5.1.8. The action of O(Ω2) on AΩ2 has two non-trivial orbits, that consist of
elements of order 2 and square respectively 0 or 1. Depending on the value of d (mod
4), the overlattice (Ω2 ⊕ ⟨2d⟩)′ is obtained using one or the other (compare to the proof
of Theorem 2.5.1.4).

To determine which of these families our Néron-Severi groups belong to, we fix the
embedding of Ω2 in Ω4 as in Section 2.3.2, so that the symplectic involution we’re
considering is indeed τ2; as class L of square 2d, we take again those defined in Example
2.5.1.6. We recall that, denoting R the orthogonal complement of Ω2 in Ω4, the latter
is an overlattice of index 24 of Ω2 ⊕R.
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Theorem 2.5.1.9. 1. For every d ∈ N, NS(X) = Ω4 ⊕ ⟨2d⟩ corresponds to case (a)
of Thm 2.5.1.7.

2. For d =4 2, 3, NS(X) = (Ω4 ⊕ ⟨2d⟩)′ corresponds to case (a) of Thm 2.5.1.7.

3. For d =4 0, NS(X) = (Ω4 ⊕ ⟨2d⟩)′ corresponds to case (b) of Thm 2.5.1.7.

4. For d =4 0, NS(X) = (Ω4 ⊕ ⟨2d⟩)⋆ corresponds to case (b) of Thm 2.5.1.7

The following table describes the situation: saying that L glues to Ω2 (and similarly for
R) we mean there exists an element in NS(X) of the form (L+ v)/2, v ∈ Ω2.

NS(X) L glues to Ω2 L glues to R NS(X)/(Ω2 ⊕R⊕ ⟨2d⟩)

∀d Ω4 ⊕ ⟨2d⟩ No No (Z/2Z)4

d =4 2, 3 (Ω4 ⊕ ⟨2d⟩)′ No Yes (Z/2Z)5

d =4 0
(Ω4 ⊕ ⟨2d⟩)′ Yes Yes (Z/2Z)5

(Ω4 ⊕ ⟨2d⟩)⋆ Yes Yes (Z/2Z)4 × Z/4Z

Proof. The class L0 doesn’t glue to Ω4, so it cannot glue neither to Ω2 nor to R. Since
L2
2,3 = 2d with d =4 3, this case corresponds necessarily to case (a) of Thm 2.5.1.7;

Ω2⊕R⊕⟨2d⟩ has index 25 in NS(X), because there exists r ∈ R such that (L2,3+r)/2 ∈
NS(X): r = σ+ g1− f1+ e4− f4+α−γ− (e2− g2+ e4− g4+a1−a2+σ)/2. There are
no elements in Ω2 that glue to L

(1)
2,2 or L

(2)
2,2, so we are again in case (a): this means that

a symplectic involution that satisfies case (b) of Theorem 2.5.1.7, with L2 =8 4, cannot
be the square of a symplectic automorphism of order 4.
The gluings for the cases in which d = 4k are described as follows: (L2,0 + ṽ)/2, (L2,0 +
r)/2 ∈ NS(X) for ṽ = e3 − g3 + f3 − h3 ∈ Ω2, r = e3 − f3 + g3 − h3 ∈ R; since
(ṽ+ r)/2 is one of the elements that glue Ω2 to R, the index of Ω2⊕R⊕⟨2d⟩ in NS(X)
is still 25; (L4,0 + ṽ)/2, (L4,0 + r)/2 ∈ NS(X) for the same ṽ ∈ Ω2, r ∈ R as L2,0;
(L4,4 + ṽ)/2, (L4,4 + r)/2 ∈ NS(X) for ṽ = f2 −h2 + f4 −h4 ∈ Ω2, r = a1 − a2 + σ ∈ R;
(L4,8 + ṽ)/2, (L4,8 + r)/2 ∈ NS(X) for ṽ = α − γ + β − δ + e1 − g1 + f1 − h1 ∈ Ω2,
r = e1 − f1 + g1 − h1 + α − β + γ − δ ∈ R; (L4,12 + ṽ)/2, (L4,12 + r)/2 ∈ NS(X) for
ṽ = e1 − g1 + f1 − h1 ∈ Ω2, r = e1 − f1 + g1 − h1 ∈ R. Thus, these cases correspond
to case (b) of Theorem 2.5.1.7; NS(X) is obtained as overlattice of Ω2 ⊕ R ⊕ ⟨2d⟩ by
gluing firstly Ω2 with R to get Ω4, and then L4,k with Ω4 as in Example 2.5.1.6.

2.5.2 Projective families of K3 surfaces which arise as resolution of the singularities
of X/τ

Projective K3 surfaces Ỹ that are the resolution of X/τ have to primitively contain in
their Néron-Severi both the exceptional lattice M4 described in Section 2.4.3 [71, §5-7],
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and a positive class H of square 2e that generates M
⊥NS(Ỹ )

4 : therefore, Ỹ is polarized
with the lattice M4 ⊕ ⟨2e⟩ or one of its cyclic overlattices.

Theorem 2.5.2.1. The relation ∼M4 (see Def. 2.5.1.1) divides AM4 in 7 non-trivial
equivalence classes (plus the trivial one {0}):

k
g

0 1/2 1 3/2

2 3 8 4 0
4 12 12 12 12

Each of them corresponds to an equivalence class for ≈M4, except for (2, 1) which is the
union of two classes: (2, 1, 1) and (2, 1, 3). We give a representative element x(k,g,n) for
each non-trivial equivalence class (k, g, n) in terms of the generators of M4 introduced
in Section 2.4.3.

class (k, g, n) representative x(k,g,n)

(2, 0, 3)
m2

1+2m2
2+3m2

3+m
3
1+2m3

2+3m3
3

2

(2, 1/2, 8)
m4

1+m
4
3+m̃

2

2

(2, 1, 1) m̃1+m̃2

2

(2, 1, 3)
m2

1+2m2
2+3m2

3+m
3
1+2m3

2+3m3
3+m̃

1+m̃2

2

(4, 0, 12)
m2

1+2m2
2+3m2

3+m
3
1+2m3

2+3m3
3

4 + m̃2

2

(4, 1/2, 12)
m3

1+2m3
2+3m3

3+m
4
1+2m4

2+3m4
3

4 +
m4

1+m
4
3

2

(4, 1, 12)
m2

1+2m2
2+3m2

3+m
4
1+2m4

2+3m4
3

4 +
m3

1+m
3
3+m

4
1+m

4
3+m̃

1

2

(4, 3/2, 12)
m2

1+2m2
2+3m2

3+m
4
1+2m4

2+3m4
3

4 +
m3

1+m
3
3

2

Theorem 2.5.2.2. Let Ỹ be a projective K3 surface such that rk(NS(Ỹ )) = 15 and
NS(Ỹ ) contains primitively M4 and ⟨2e⟩, e ∈ N \ {0}. Then, using the notation intro-
duced in Remark 2.5.0.5, NS(Ỹ ) is one of the following:

1. for every e, NS(Ỹ ) =M4 ⊕ ⟨2e⟩;

2. for e ̸=4 1, NS(Ỹ ) = (M4⊕⟨2e⟩)′; this is uniquely determined by e and the index of
the overlattice for e ̸=4 2, while for e =4 2 there are two non isometric possibilities.

3. For e =4 0, NS(Ỹ ) = (M4 ⊕ ⟨2e⟩)⋆, uniquely determined by e and the index of the
overlattice.

Each of these lattices admits a unique primitive embedding in ΛK3.
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Proof. The overlattices of M4 ⊕ ⟨2e⟩ are in bijection with the equivalence classes for
≈M4 . Fix the primitive embedding M4 ↪→ ΛK3 as in Section 2.4.3: since the orthogonal
complement of M4 is the lattice π4∗H

2(X,Z), we can use as generators of the lattice
⟨2e⟩ the primitive classes L in H2(Ỹ ,Z) obtained from π4∗L (with L as in Example
2.5.1.6) as follows. Refer to Section 2.4.1 for the computation of π4∗L, and see also the
corresponding classes D1 in Section 2.6.1 for the explicit gluing element (L+m)/k, m ∈
AM4 , k = 2, 4:

NS(Ỹ ) e L

M4 ⊕ ⟨2e⟩

4(h− 1) π4∗L4,0(h)/4

4h+ 1 π4∗L4,4(h)/4

4(h− 4) + 2 π4∗L4,8(h)/4

4h+ 3 π4∗L4,0(h)/4

(M4 ⊕ ⟨2e⟩)′

4(h− 1) π4∗L2,0(h)/2

4h+ 2 π4∗L
(1)
2,2(h)/2

4(h− 1) + 2 π4∗L
(2)
2,2(h)/2

4h+ 3 π4∗L2,3(h)/2

(M4 ⊕ ⟨2e⟩)⋆ 4h π4∗L0(h)

Notice that for every choice of e =4 2 there are two non isomorphic realizations of

(M4 ⊕ ⟨2e⟩)′, using alternatively π4∗L
(i)
2,2(h)/2, i = 1, 2: indeed, for h odd both of them

glue to the class (2, 1, 1), while for h even they both glue to (2, 1, 3). The resulting
lattices belong to different genera.
Each of the possible lattices NS(Ỹ ) admits a unique primitive embedding in H2(X,Z),
because ℓ(ANS(Ỹ )) ≤ 5, so Theorem 1.2.1.12 holds.

Theorem 2.5.2.3. There is a 1-1 correspondence between families of K3 surfaces X
with NS(X) as in 2.5.1.4, and families of K3 surfaces Ỹ with NS(Ỹ ) as in Theorem
3.5.2.2. The primitive classes L ∈ NS(Ỹ ) that generate the sublattices ⟨nd⟩ as stated
are indicated in curly brackets. For d =4 2 the lattices S(1), S(2) ar not isometric.
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NS(X) NS(Ỹ )

∀d Ω4 ⊕ ⟨2d⟩ (M4 ⊕ ⟨8d⟩)⋆ {L = π4∗L}

d =4 2
(Ω4 ⊕ ⟨2d⟩)′(1) (M4 ⊕ ⟨2d⟩)′(1)

{
L = π4∗L

2

}
(Ω4 ⊕ ⟨2d⟩)′(2) (M4 ⊕ ⟨2d⟩)′(2)

{
L = π4∗L

2

}
d =4 3 (Ω4 ⊕ ⟨2d⟩)′ (M4 ⊕ ⟨2d⟩)′

{
L = π4∗L

2

}
d =4 0

(Ω4 ⊕ ⟨2d⟩)′ (M4 ⊕ ⟨2d⟩)′
{
L = π4∗L

2

}
(Ω4 ⊕ ⟨2d⟩)⋆ M4 ⊕ ⟨d/2⟩

{
L = π4∗L

4

}
Proof. The map π4∗ kills Ω4, so the possible Néron-Severi groups for the general smooth

quotient surface Ỹ = X̃/τ are determined by how the image of the ample class L glues
to the exceptional lattice M4. For each of the L in Example 2.5.1.6 we compute π4∗L
using the description of the image lattice π4∗H

2(X,Z) given in Section 2.4.1; we find the
unique integral and primitive L = π4∗L/k, where k can be 1, 2 or 4 depending on the

case, and we then compare L
2
to L2.

2.5.3 Projective families of K3 surfaces which arise as resolution of the singularities
of X/τ 2

The process used in the previous section can be also applied to describe the K3 surfaces
Z̃ that are resolution of X/τ2, and the relations between NS(X) and NS(Z̃); for the
general symplectic involution, this was already done by Garbagnati and Sarti:

Theorem 2.5.3.1 (see [29, Cor. 2.2]). Let X be an algebraic K3 surface with rk(NS(X)) =
9 admitting a Nikulin involution ι, and let Z̃ be the resolution of the singularities of the
quotient X/ι. Then:

(a) NS(X) = Ω2 ⊕ ⟨2d⟩ if and only if NS(Z̃) = (N ⊕ ⟨4d⟩)′;

(b) NS(X) = (Ω2 ⊕ ⟨2d⟩)′ if and only if NS(Z̃) = N ⊕ ⟨d⟩.

When ι = τ2, we have the following theorem.

Theorem 2.5.3.2. Let Z̃ be a K3 surface such that rk(NS(Z̃)) = 15; suppose NS(Z̃)
admits a primitive embedding of Γ4 (see Def. 2.4.2.3), and contains a class of positive

square 2d that generates Γ
⊥NS(Z̃)

4 . Then d = 2x, and NS(Z̃) is one of the following:

1. for every x, NS(Z̃) = (Γ4 ⊕ ⟨4x⟩)′, uniquely determined by x and the index of the
overlattice.
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2. for x =4 2, 3, NS(Z̃) = (Γ4 ⊕ ⟨4x⟩)⋆, uniquely determined by x and the index of
the overlattice.

Moreover, there exists a unique primitive embedding of these lattices in H2(Z̃,Z) up to
isometries of the latter.

Proof. The lattice Γ4⊕⟨2d⟩ cannot be the Néron-Severi of a K3 surface, since λ(AΓ4⊕⟨2d⟩) =
(2, 2, 2, 2, 2, 2, 4, 4, 2d)), so its length is 9 > 22− rk(Γ4 ⊕ ⟨2d⟩) (see Rem. 1.2.1.9).
Consider the table of non-trivial equivalence classes for ∼Γ4 :

k
g

0 1/4 1/2 3/4 1 7/4 3/2 9/4

2 127 0 0 0 128 0 0 0
4 0 256 144 0 0 256 112 0

an element of the form (E + γ)/2, with E2 = 2d and γ ∈ Γ4, has integer, even self-
intersection only if d is even, and an element of the form (E + γ)/4 only if d = 2x with
x =4 2, 3. The non-trivial equivalence classes for ≈Γ4 are presented in the following table;
the corresponding overlattice of Γ4⊕⟨4x⟩ can be realized having fixed the embedding Γ4 ∈
H2(Z̃,Z) as in Def. 2.4.2.3, using as positive class L̂ = π2∗L for L ∈ {L0, L

(1)
2,2, L

(2)
2,2, L2,3},

and L̂ = π2∗L/2 for L ∈ {L2,0, L4,0, L4,4, L4,8, L4,12}.

class (k, g, n) representative x(k,g,n) glues to:

(2, 0, 1) (n3 + n4 + n5 + n8)/2 L̂
(i)
2,2/2 for i = 1, 2

(2, 0, 6) (n5 + n6 + n7 + n8)/2 L̂0(h)/2, h =2 0

(2, 0, 30)
(ê3−f̂3)+n3+n4

2
(α̂−β̂)+(ê1−f̂1)+n3+n4+n5+n8

2

L̂4,0/2

L̂4,8/2

(2, 0, 90) (ê3−f̂3)+n2+n3+n4+n5+n6+n8

2 L̂2,0(h)/2, h =2 1

(2, 1, 2) (n5 + n8)/2 L̂2,3/2

(2, 1, 6) (n2 + n3 + n4 + n5 + n6 + n8)/2 L̂0(h)/2, h =2 1

(2, 1, 30)
(ê1−f̂1)+(ê4−f̂4)+n3+n4

2

(ê1 − f̂1)/2

L̂4,4

L̂4,12

(2, 1, 90) (ê3−f̂3)+n5+n6+n7+n8

2 L̂2,0(h)/2, h =2 0

(4, 1/4, 256) (ê1−f̂1)+(ê4−f̂4)+x1+x2+n2

2 + 3n5+n8
4 L̂2,3(h)/4, h =2 1

(4, 1/2, 24) x1
2 + 3n3+n4+3n5+n8

4 L̂
(1)
2,2(h)/4, h =2 1
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(4, 1/2, 120) (ê3−f̂3)+x1+n2+n7

2 + n3+3n4+3n5+n8
4 L̂

(2)
2,2(h)/4, h =2 0

(4, 5/4, 256) x1+x2+n3+n4+n7+(ê1−f̂1)+(ê4−f̂4)
2 + 3n5+n8

4 L̂2,3(h)/4, h =2 0

(4, 3/2, 40) (ê3−f̂3)+x1
2 + 3n3+n4+3n5+n8

4 L̂
(2)
2,2(h)/4, h =2 1

(4, 3/2, 72) x1+n2+n7
2 + n3+3n4+3n5+n8

4 L̂
(1)
2,2(h)/4, h =2 0

Now, the classes (2, 0, 1) and (2, 1, 2) produce overlattices of Γ4⊕⟨4x⟩ that are not admis-
sible as Néron-Severi of a K3 surfaces, because they have ℓ = 9 (see Rem. 1.2.1.9). For
the remaining classes (k, g, n), those contained in the same equivalence class (k, g) for the
relation ∼Γ4 give rise to isomorphic lattices: indeed, having fixed x, it can be proved that
all the lattices of the form (Γ4⊕⟨4x⟩)′ are in the same genus, and the same holds for all
the lattices of the form (Γ4 ⊕ ⟨4x⟩)⋆; however, since λ(A(Γ4⊕⟨4x⟩)′) = (2, 2, 2, 2, 4, 4, 4x),
and λ(A(Γ4⊕⟨4x⟩)⋆) = (2, 2, 2, 2, 2, 2, 4x), actually (Γ4⊕⟨4x⟩)′ and (Γ4⊕⟨4x⟩)⋆ are unique
in their genus by Proposition 1.2.1.11. Furthermore, they admit a unique primitive em-
bedding in ΛK3, as we can apply Proposition 1.2.1.11 to the corresponding trascendental
lattices, both of signature (2, 5) and length 7, T ′ = ((Γ4⊕⟨4x⟩)′)⊥, T ⋆ = ((Γ4⊕⟨4x⟩)⋆)⊥:
indeed λ(AT ′) = λ(A(Γ4⊕⟨4x⟩)′), and λ(AT ⋆) = λ(A(Γ4⊕⟨4x⟩)⋆).

We are now ready to describe the correspondence between irreducible components of
the moduli space of X and of Z̃ in the projective case. Moreover, similarly to Theorem
2.5.1.9, we check whether the positive class orthogonal to Γ4 in NS(Z̃) glues to the
lattices NZ ,Ω2 embedded in Γ4 as described in Definition 2.4.2.3 and Remark 2.4.3.1
respectively. This will be used in Corollary 2.5.3.4 to find the irreducible component of
the moduli space of (respectively) projective K3 surfaces S with a symplectic involution ι,
and projective K3 surfaces that are resolution of a quotient S/ι, that Z̃ belongs to.

Theorem 2.5.3.3. Let τ be a symplectic automorphism of order 4 on a projective K3
surface X such that rk(NS(X)) = 15, and consider Z̃ that is the resolution of the sin-
gularities of the quotient X/τ2: the following table describes the correspondence between
NS(X) and NS(Z̃). The primitive classes L̂ in NS(Z̃) that generate the sublattices
⟨nd⟩ as stated are indicated in curly brackets.

NS(X) NS(Z̃) L̂ glues to NZ L̂ glues to Ω2

∀d Ω4 ⊕ ⟨2d⟩ (⟨4d⟩ ⊕ Γ4)
′ {L̂ = π2∗L} Yes No

d =4 2
(Ω4 ⊕ ⟨2d⟩)′(1)

(⟨4d⟩ ⊕ Γ4)
⋆

{
L̂ = π2∗L

}
Yes Yes

(Ω4 ⊕ ⟨2d⟩)′(2)
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d =4 3 (Ω4 ⊕ ⟨2d⟩)′ (⟨4d⟩ ⊕ Γ4)
⋆ {L̂ = π2∗L} Yes Yes

d =4 0
(Ω4 ⊕ ⟨2d⟩)′

(⟨d⟩ ⊕ Γ4)
′ {

L̂ = π2∗L
2

}
No

No

(Ω4 ⊕ ⟨2d⟩)⋆ Yes

Proof. Recall from Theorem 2.5.1.9 the possible Néron-Severi groups of X. We use the
map π2∗ (see Section 2.4.1) to compute L̂ for each of the L in Example 2.5.1.6, and we
check their eventual gluing to N following Section 2.4.2.

Fix d = 4h + 2 = 4(k − 1) + 2, and consider the ample classes L
(1)
2,2(h), L

(2)
2,2(k) of X

that generate the two non isomorphic overlattices of index 2 of Ω4 ⊕ ⟨2d⟩: denote these
lattices NS(X)(1) and NS(X)(2). Now take Z̃ the resolution of X/τ2: from the previous

theorem, we have NS(Z̃)(1) = ⟨Γ4, L̂
(1)
2,2(h)⟩ ≃ NS(Z̃)(2) = ⟨Γ4, L̂

(2)
2,2(k)⟩. Therefore, for

d =4 2 there is a 2-1 correspondence between (Ω4 ⊕ ⟨2d⟩)′-polarized families of X and
(Γ4 ⊕ ⟨4d⟩)⋆-polarized families of Z̃. Similar considerations apply to d =4 0.

Projective families of Z̃ and Ỹ compared to projective families of K3 surfaces with a sym-
plectic involution, or that are a quotient of one

From Theorem 2.5.3.3 we can see whether L̂ glues to Ω2 and N , or not: this determines
the general member of the projective family Z̃ belongs to respectively as a surface S
admitting a symplectic involution ι, and as resolution of a quotient S/ι, according to
Theorems 2.5.1.7, 2.5.3.1. However, if we remove the information about X and we only
consider NS(Z̃) abstractly, we see that Z̃ can belong to the intersection of two families
of S (or two families of quotients).

Corollary 2.5.3.4. Consider Z̃ as a projective K3 surface with a symplectic involution:

1. if NS(Z̃) = (Γ4 ⊕ ⟨4x⟩)∗, then Z̃ belongs to the deformation family whose general
member has Néron-Severi (Ω2 ⊕ ⟨2d⟩)′;

2. if NS(Z̃) = (Γ4⊕⟨4x⟩)′ then Z̃ belongs to the intersection between the two families
of Theorem 2.5.1.7.

Consider Z̃ as the resolution of a quotient of a K3 surface by a symplectic involution:

1. if NS(Z̃) = (Γ4 ⊕ ⟨4x⟩)∗, then Z̃ belongs to the deformation family whose general
member has Néron-Severi (N ⊕ ⟨4d⟩)′.

2. if NS(Z̃) = (Γ4⊕⟨4x⟩)′ then Z̃ belongs to the intersection between the two quotient
families of Theorem 2.5.3.1.

Proof. If NS(Z̃) = (Γ4 ⊕ ⟨4x⟩)∗, from the previous theorem we see that Z̃ belongs to
the intersection of the deformation families whose general members have Néron-Severi
(Ω2 ⊕ ⟨2d⟩)′ and (N ⊕ ⟨4d⟩)′.

54



If NS(Z̃) = (Γ4 ⊕ ⟨4x⟩)′, for the same x we can choose the embedding of Γ4 in NS(Z̃)
that has orthogonal complement generated respectively by π2∗L0 or {π2∗L2,0/2, that
don’t glue to Ω2, or by one among {π2∗L4,i/2}i=0,4,8,12, that do. Similarly, considering
Z̃ as a quotient surface we can choose the embedding of Γ4 in NS(Z̃) that has ortho-
gonal complement generated respectively by π2∗L0, that glues to N , or by one among
{π2∗L2,0/2, π2∗L4,i/2}, i = 0, 4, 8, 12, that don’t.

The surface Ỹ is also a special member of one of the projective families of K3 surfaces
that arise as resolution of the singularities of a quotient S/ι, and we have the following
result.

Corollary 2.5.3.5. Let Ỹ be a general projective K3 surface polarized with M4 ⊕ ⟨2e⟩
or one of its overlattice, according to Theorem 3.5.2.2, and define H = M⊥

4 . Consider
the primitive embedding NY ⊂M4 described in the proof of Proposition 2.4.3.2, and the
double cover Z̃ 99K Ỹ with ramification divisor νY . Then:

1. If H glues to NY , then e =4 0 and NS(Ỹ ) is an overlattice of index 2 or 4 of
M4 ⊕ ⟨2e⟩; moreover, NS(Z̃) = (Γ4 ⊕ ⟨e⟩)′.

2. If H does not glue to NY , then we distinguish two cases: either NS(Ỹ ) =M4⊕⟨2e⟩,
or, only if e =4 2, 3, NS(Ỹ ) = (M4 ⊕ ⟨2e⟩)′; in the former case, NS(Z̃) = (Γ4 ⊕
⟨4e⟩)′; in the latter, NS(Z̃) = (Γ4 ⊕ ⟨4e⟩)∗.

2.6 Projective models

Given a nef and big divisor L on X, there is a natural map ϕ|L| : X → P(H0(X,L)∗) ≃
Pn, with n = L2/2+1. Any automorphism σ of X that preserves L induces an action on
H0(X,L): in particular, if σ is finite of order m, we can split H0(X,L) in eigenspaces
corresponding to the m-roots of unity.

Remark 2.6.0.1. Notice that the action of σ on H0(X,L) could have order km for some
integer k > 1: indeed, if

σm : (x0, . . . , xn) 7→ ξk(x0, . . . , xn)

for ξk a root of unity, then on P(H0(X,L)∗) it will hold σm = id; but this is irrelevant
when we study the action of the cyclic group ⟨σ⟩ on the projective surface X, as we can
just take the action of σk on H0(X,L) without loss of generality.

Thus, considering a symplectic automorphism τ of order 4 on a K3 surface X, we
have

H0(X,L) = V1 ⊕ Vi ⊕ V−1 ⊕ V−i =W+ ⊕W−

where V• are the eigenspaces relative to the action of τ∗, and W• are relative to (τ2)∗,
so that W+ = V1 ⊕ V−1, and W− = Vi ⊕ V−i.

55



2.6.1 Eigenspaces of τ ∗ and classes in NS(Ỹ )

The purpose of this section is to prove the following proposition:

Proposition 2.6.1.1 (see [32, Prop. 2.7] and [26, Thm. 5.6]). There exist divisors
D1, . . . , D4 ∈ NS(Ỹ ) such that

H0(X,L) = π∗4H
0(Ỹ , D1)⊕ π∗4H

0(Ỹ , D2)⊕ π∗4H
0(Ỹ , D3)⊕ π∗4H

0(Ỹ , D4)

and every π∗4H
0(Ỹ , Di) corresponds to one of the eigenspaces for the action of τ∗ on

H0(X,L).

We start by defining some divisors D1, . . . , D4 associated to each L of Example 2.5.1.6.
The proof of the proposition can be found below, and amounts to show that these divisors
are indeed the ones in the statement.

Consider the following elements inM∗
4 , for i = 1, . . . , 4, j = 1, 2 (see also Section 2.4.3):

αi =
3mi

1 + 2mi
2 +mi

3

4
, βi =

mi
1 + 2mi

2 +mi
3

2
, γi =

mi
1 + 2mi

2 + 3mi
3

4
, δj =

m̃j

2
;

notice that (αi)2 = (γi)2 = −3/4, (βi)2 = −1, (δj)2 = −1/2 with respect to the
intersection form of M4 extended Q-linearly to M∗

4 .

– Consider L0(d); depending on the value of d mod 4, we define D1, . . . , D4 as follows:

L0(d) d =4 0 d =4 1

D1 π4∗L0/4− γ2 − γ4 − δ2 π4∗L0/4− γ2 − α3 − δ1 − δ2

D2 π4∗L0/4− α1 − α3 − δ1 π4∗L0/4− α1 − β3 − α4

D3 π4∗L0/4− β1 − α2 − β3 − α4 − δ2 π4∗L0/4−β1−α2−γ3−β4−δ1−δ2

D4 π4∗L0/4− γ1 − β2 − γ3 − β4 − δ1 π4∗L0/4− γ1 − β2 − γ4

L0(d) d =4 2 d =4 3

D1 π4∗L0/4− γ2 − β3 − α4 − δ2 π4∗L0/4− γ2 − γ3 − β4 − δ1 − δ2

D2 π4∗L0/4− α1 − γ3 − β4 − δ1 π4∗L0/4− α1 − γ4

D3 π4∗L0/4− β1 − α2 − γ4 − δ2 π4∗L0/4− β1 − α2 − α3 − δ1 − δ2

D4 π4∗L0/4− γ1 − β2 − α3 − δ1 π4∗L0/4− γ1 − β2 − β3 − α4

– Consider L2,0(h), whose square is 2d = 8(h− 1); depending on the value of h mod 2,
we define D1, . . . , D4 as follows.
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L2,0(h) h =2 0 h =2 1

D1 π4∗L2,0/4− β2 − β4 π4∗L2,0/4− β2 − β3

D2 π4∗L2,0/4−α1−γ2−α3−γ4−δ1−δ2 π4∗L2,0/4−α1−γ2−γ3−α4−δ1−δ2

D3 π4∗L2,0/4− β1 − β3 π4∗L2,0/4− β1 − β4

D4 π4∗L2,0/4−γ1−α2−γ3−α4−δ1−δ2 π4∗L2,0/4−γ1−α2−α3−γ4−δ1−δ2

– Consider L
(j)
2,2(h), j = 1, 2; recall that L

(1)
2,2(h)

2 = 8h+4, while L
(2)
2,2(h)

2 = 8h−4: thus,
any value of d =4 2 can be realized both with h even and h odd, using one between

L
(1)
2,2, L

(2)
2,2 alternatively, giving two non-isomorphic cases.

L
(j)
2,2(h) h =2 0 h =2 1

D1 π4∗L
(j)
2,2/4− β3 − β4 − δ1 − δ2 π4∗L

(j)
2,2/4− δ1 − δ2

D2 π4∗L
(j)
2,2/4− α1 − α2 − γ3 − γ4 π4∗L

(j)
2,2/4− α1 − α2 − α3 − α4

D3 π4∗L
(j)
2,2/4− β1 − β2 − δ1 − δ2 π4∗L

(j)
2,2/4−β1−β2−β3−β4−δ1−δ2

D4 π4∗L
(j)
2,2/4− γ1 − γ2 − α3 − α4 π4∗L

(j)
2,2/4− γ1 − γ2 − γ3 − γ4

– Consider L2,3(h), whose square is 2d = 2(4h+3); depending on the value of h mod 2,
we define D1, . . . , D4 as follows.

L2,3(h) h =2 0 h =2 1

D1 π4∗L2,3/4− β4 − δ2 π4∗L2,3/4− β3 − δ2

D2 π4∗L2,3/4− α1 − α2 − α3 − γ4 − δ1 π4∗L2,3/4− α1 − α2 − γ3 − α4 − δ1

D3 π4∗L2,3/4− β1 − β2 − β3 − δ2 π4∗L2,3/4− β1 − β2 − β4 − δ2

D4 π4∗L2,3/4− γ1 − γ2 − γ3 − α4 − δ1 π4∗L2,3/4− γ1 − γ2 − α3 − γ4 − δ1

– Consider L4,j for j = 0, 4, 8, 12; in this case π4∗L4,j/4 is primitive in NS(Ỹ ), and we
can define D1, . . . , D4 simultaneously for any j and any value of h, as follows:

L4,j(h) any h

D1
π4∗L4,j/4

D2 π4∗L4,j/4−α1−α2−α3−α4−δ1−δ2

D3 π4∗L4,j/4− β1 − β2 − β3 − β4

D4 π4∗L4,j/4−γ1−γ2−γ3−γ4−δ1−δ2
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Proof of Proposition 2.6.1.1. Consider L any of the ample divisors of X presented in
Example 2.5.1.6, and the corresponding D1, . . . , D4 as in the tables above. Notice that
for every i the relation π∗4(Di) = L is satisfied (since π∗4M = 0): therefore we always
have π∗4H

0(Ỹ , Di) ⊂ H0(X,L). Moreover, π∗4H
0(Ỹ , Di) is all contained in one of the

eigenspaces V•(L) (the sections of Di are in fact well defined on the quotient surface Ỹ )
and, for i ̸= j, π∗4H

0(Ỹ , Di) and π
∗
4H

0(Ỹ , Dj) are in different eigenspaces, since Di and
Dj intersect differently the exceptional lattice for i ̸= j: this proves that H0(X,L) ⊇⊕4

i=1 π
∗
4H

0(Ỹ , Di).
To show the other inclusion, it is enough to chech the dimensions, and we can actually
work with the Euler characteristics: h0(L) = χ(L) because L is ample, and on the
other hand we get that h0(Di) ≥ χ(Di). Indeed, since D2

i ≥ −2, either H0(Ỹ , Di) or
H0(Ỹ , D∗

i ) is trivial [41, §1.4], and the fact that Di intersects positively π4∗L excludes
the former case; moreover, by Serre’s duality we get H2(Ỹ , Di) ≃ H0(Ỹ , D∗

i ) = 0.
So we only need to check that

χ(L) =
∑
i

χ(Di) :

by Riemann-Roch, for any divisor C on a K3 surface we have χ(C) = C2/2 + 2, so in
particular for any L of square 2d, χ(L) = d+2. The values for each χ(Di) are displayed
in the following table, thus proving the statement.

Table 2.7: Euler characteristics

no. L χ(D1) χ(D2) χ(D3) χ(D4)

d =4 1 1 L0 (d+ 3)/4 (d+ 3)/4 (d− 1)/4 (d+ 3)/4

d =4 2

2 L0 (d+ 2)/4 (d+ 2)/4 (d+ 2)/4 (d+ 2)/4

3 L
(i)
2,2 (d+ 2)/4 (d+ 2)/4 (d+ 2)/4 (d+ 2)/4

4 L
(j)
2,2 (d+ 6)/4 (d+ 2)/4 (d− 2)/4 (d+ 2)/4

d =4 3
5 L0 (d+ 1)/4 (d+ 5)/4 (d+ 1)/4 (d+ 1)/4

6 L2,3 (d+ 5)/4 (d+ 1)/4 (d+ 1)/4 (d+ 1)/4

d =4 0

7 L0 d/4 + 1 d/4 + 1 d/4 d/4

8 L2,0 d/4 + 1 d/4 d/4 + 1 d/4

9 L4,j d/4 + 2 d/4 d/4 d/4
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2.6.2 Eigenspaces of τ 2∗

The automorphism τ2 is a symplectic involution on X: the following proposition de-
scribes the eigenspaces of a general symplectic involution.

Proposition 2.6.2.1 ([32, Prop. 2.7]). Let ι be a symplectic involution on a K3 surface

X such that rk(NS(X)) = 9, let Z = X̃/ι the resolution of the quotient surface, and
let π : X 99K Z the induced rational map. Let L be an ample divisor on X, such that

L2 = 2d, that generates Ω
⊥NS(X)

2 . Then H0(X,L) ≃ π∗H0(Z,E1) ⊕ π∗H0(Z,E2), with
E1, E2 described as follows, for suitable numbering n1, . . . , n8 of the exceptional curves
of Z:

1. if NS(X) = Ω2 ⊕ ⟨L⟩, and d =2 0, then E1 = π∗L/2 − (n1 + n2 + n3 + n4)/2,
E2 = π∗L/2− (n5 + n6 + n7 + n8)/2;

2. if NS(X) = Ω2 ⊕ ⟨L⟩, and d =2 1, then E1 = π∗L/2 − (n1 + n2)/2, E2 =
π∗L/2− (n3 + n4 + n5 + n6 + n7 + n8)/2;

3. if NS(X) = (Ω2 ⊕ ⟨L⟩)′ (this case occurs only if d =2 0), then E1 = π∗L/2,
E2 = π∗L/2−

∑8
i=1 ni/2.

If X admits an automorphism τ of order 4 and Z̃ is the minimal resolution of X/τ2,

taking L ample that generates Ω
⊥NS(X)

4 we have the following relation between the ei-
genspaces of τ∗ and τ2∗:

H0(X,L) =
4⊕
i=1

π∗4H
0(Ỹ , Di) = π∗2H

0(Z̃, E1)⊕ π∗2H
0(Z̃, E2);

the Nef divisors E1, E2 ∈ NS(Z̃) that satisfy this equality for the examples of ample
classes introduced in Example 2.5.1.6 are defined in the following tables, with the ex-
ceptional curves numbered as in Sections 2.4.2, 2.4.3:

L0(d) d =2 0 d =2 1

E1 π2∗L0/2− (n5 + n6 + n7 + n8)/2 π2∗L0/2−(n2+n3+n4+n5+n6+n8)/2

E2 π2∗L0/2− (n1 + n2 + n3 + n4)/2 π2∗L0/2− (n1 + n7)/2

L2,0(h) any h

E1 π2∗L2,0/2

E2 π2∗L2,0/2−
∑8

i=1 ni/2

L
(j)
2,2(h) any h, j = 1, 2

E1 π2∗L
(j)
2,2/2− (n3 + n4 + n5 + n8)/2

E2 π2∗L
(j)
2,2/2− (n1 + n2 + n6 + n7)/2
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L2,3(h) any h

E1 π2∗L2,3/2− (n5 + n8)/2

E2 π2∗L2,3/2−(n1+n2+n3+n4+n6+n7)/2

L4,j(h) any h, j = 0, 4, 8, 12

E1 π2∗L4,j/2

E2 π2∗L4,j/2−
∑8

i=1 ni/2

Proposition 2.6.2.2. It holds π∗2H
0(Z̃, E1) = π∗4H

0(Ỹ , D1)⊕ π∗4H
0(Ỹ , D3), while

π∗2H
0(Z̃, E2) = π∗4H

0(Ỹ , D2)⊕ π∗4H
0(Ỹ , D4).

Proof. It’s easy to see that the dimensions agree using Euler’s characteristic (compare
to the proof of Proposition 2.6.1.1). Moreover, notice that if E1 intersects positively
ni ∈ {n1, n2, n6, n7} (classes fixed by τ̂∗), then ϕ|E1|(ni) is a curve C in ϕ|E1|(Z̃); consider

now the induced automorphism τ̂ on ϕ|E1|(Z̃): it fixes two points p1, p2 on C, each

belonging to one (or the other) of the eigenspaces for the action of τ̂∗ on H0(Z̃, E1),
that are

H0(Z̃, E1) = π̂2
∗H0(˜̃Z/τ̂ , F1)⊕ π̂2

∗H0(˜̃Z/τ̂ , F2)

for some divisors F1, F2 of ˜̃Z/τ̂ . Therefore, F1 + F2 intersects positively the two curves
C1, C2, that resolve the singular points image of p1, p2 in Z̃/τ̂ . If E1 intersects trivially ni,
then ϕ|E1|(ni) is a point p in ϕ|E1|Z̃, which is fixed by τ̂ and thus belongs to an eigenspace:

its image in Z̃/τ̂ is resolved by a curve Cp, that is intersected positively by either F1 or
F2, and so by their sum. A similar argument can be applied for ni ∈ {n3, n4, n5, n8}: if
E1 intersects two curves exchanged by τ̂ , then F1+F2 intersects with multeplicity 2 the
curve which is their image in the resolved quotient; if E1 does not intersect them, then
neither F1 + F2 intersects their image.

Therefore, we’ve proved that how F
(i)
1 + F

(i)
2 intersects the exceptional lattice of the

resolution of Z̃/τ̂ depends on how Ei intersects that of Z̃.

Since the surfaces ˜̃Z/τ̂ and Ỹ are isomorphic (see Rem. 3.4.0.1), we have

H0(X,L) =
⊕
i=1,2

π∗4H
0(˜̃Z/τ̂ , F (i)

1 )⊕ π∗4H
0(˜̃Z/τ̂ , F (i)

2 )

and a correspondence between each H0(Ỹ , Dj) and one of the H0(˜̃Z/τ̂ , F (i)
k ).

The fact that this correspondence is exactly as stated comes from a comparison between
how the Ei and the Dj intersect the exceptional lattices of Z̃ and Ỹ respectively.

2.6.3 Examples with L2 = 4

There are three families of K3 surfaces X polarized with an ample class L such that
L2 = 4, corresponding to no. 2, no. 3, no. 4 of Table 2.7: since it holds χ(Di) =
h0(Di), as we proved in Proposition 2.6.1.1, we can read from Table 2.7 the dimension
of the eigenspaces of the action induced by τ . Moreover, by the correspondence between
projective families of X and its quotients, and in particular by the degree of L̂ and L (the
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pseudo-ample classes on Z̃, Ỹ respectively), we expect the dimension of the projective
space in which the quotients are naturally embedded.

We proceed by firstly defining for each L an automorphism ψ on P3 with eigenspaces
of the correct dimension according to Table 2.7, and then finding equations for the
K3 surfaces which are invariant for ψ. Recall from Remark 1.4.0.4 that the projective
dimension of each of the families of X is 5 = 20− (rk(Ω4) + 1), so the equations for the
general member of the family depend on 5 parameters.
We check the simplecticity of ψ a posteriori, as we find that the quotient surfaces are
birational to K3 surfaces.

Remark 2.6.3.1. A symplectic automorphism τ of order four on a K3 surface X always
fixes four points and exchanges two pairs of points; however, an automorphism α of order
four with this property is not necessarily symplectic, as it can also hold α∗ωX = −ωX
[2, Prop. 2]. Therefore, unlike involutions, to determine if an automorphism of order 4
on a K3 surface is symplectic it is not enough to check its fixed locus.

The projective models of X and its quotients are summarized in the following table:

no. X X/τ2 X/τ

2 quartic in P3 complete intersection of 3 quadrics in P5 (2, 2) ∩ (1, 1) in P2 × P2

3 double cover of a quadric complete intersection of 3 quadrics in P5 quartic in P3

4 quartic in P3 complete intersection of 3 quadrics in P5 double cover of a quadric

no. 2: The divisor L0(2) has square 4, and in NS(X) = Ω4 ⊕ ZL there exists no class
E such that E2 = 0 and EL0(2) = 2: therefore by [88, Thm. 5.2] ϕ|L0(2)| : X ↪→ P3 is
an embedding of X in P3 as a quartic surface. Consider the automorphism of P3:

ψ2 : (x0 : x1 : x2 : x3) 7→ (x0 : ix1 : −x2 : −ix3);

quartic surfaces of the form

Q2 : x
3
0x2 + x20(αx

2
1 + βx23) + x0(γx

3
2 + δx1x2x3) + x22(εx

2
1 + ζx23) + ηx31x3 + θx1x

3
3 = 0

are invariant under the action of ψ2, and they depend on 5 projective parameters up to
projectivities of the form (x0 : x1 : x2 : x3) 7→ (x0 : ax1 : bx2 : cx3), which commute with
ψ2. Moreover, Q2 contains exactly 8 points fixed by ψ2

2, of wich 4 are fixed also by ψ2;
we have therefore

ϕ|L0(2)| : X
≃−→ Q2 ⊂ P3.

To find models for the quotient surfaces, as in [32, §3.4] we consider the map given by
the degree 2 invariants under the action of ψ2

2

(x0 : x1 : x2 : x3) 7→ (x20 : x
2
1 : x

2
2 : x

2
3 : x0x2 : x1x3) = (z0 : z1 : z2 : z3 : z4 : z5);
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then the surface Q2 maps to the complete intersection of quadrics in P5

R2 :


z0z2 − z24 = 0

z25 − z1z3 = 0

z0z4 + z0(αz1 + βz3) + z4(γz2 + δz5) + z2(εz1 + ζz3) + z5(ηz1 + θz3) = 0

which is a projective model for Q2/ψ
2
2. Since L̂0(2) = π2∗L0(2) has self-intersection 8,

it holds
ϕ|L̂0(2)| : Z

≃−→ R2 ⊂ P5.

Now, the automorphism induced by ψ2 on P5 is

ψ̂2 : (z0 : z1 : z2 : z3 : z4 : z5) 7→ (z0 : −z1 : z2 : −z3 : −z4 : z5) :

since the surface R2 has the same form as in [32, §3.6], then the quotient of R2 under
the action of ψ̂2 is described by a complete intersection in P2

(z0:z2:z5)
× P2

(z1:z3:z4)
of two

polynomials of bidegree respectively (2, 2), (1, 1), that is

S2 :

{
z0z2z1z3 − z24z

2
5 = 0

z0z4 + z0(αz1 + βz3) + z4(γz2 + δz5) + z2(εz1 + ζz3) + z5(ηz1 + θz3) = 0.

no. 3: The divisor L
(1)
2,2(0) is ample but not very ample: indeed (see [88, Thm. 5.2]) we

have L
(1)
2,2(0) = H1 +H2 with

H1 =
L0(0) + ρ+ σ

2
, H2 =

L0(0) + ρ− σ

2
; ⟨H1, H2⟩ =

[
0 2
2 0

]
; τ∗(H1) = H2.

Hence
ϕ|L(1)

2,2(0)|
= ϕ|H1+H2| : X

2:1−−→ P1 × P1

is a double cover ramified along a curve C of bidegree (4, 4) invariant for the automor-
phism of P1 × P1

ψ3 : (x0 : x1)(y0 : y1) 7→ (y0 : iy1)(x0 : ix1);

which switches the two copies of P1 (as prescribed by τ∗H1 = H2). The curve C depends
on 5 projective parameters when taking into account the action of the group of pro-
jectivities of the form (x0 : x1)(y0 : y1) 7→ (x0 : ax1)(y0 : ay1), which are the only ones
that commute with ψ3. We embed P1 × P1 in P3 via the Segre map

(x0 : x1)(y0 : y1) 7→ (x0y0 : x0y1 : x1y0 : x1y1) = (z0 : z1 : z2 : z3) :

now X is a double cover of the quadric surface z0z3 = z1z2 ramified along a curve of
degree 4 invariant for the automorphism ψ3 of P3 induced by ψ3 via the Segre map,

ψ3 : (z0 : z1 : z2 : z3) 7→ (z0 : iz2 : iz1 : −z3);
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notice that ψ3 has eigenspaces of the same dimension, accordingly to Table 2.7. The
surface X is therefore described in P(2, 1, 1, 1, 1) by

Q3 :

{
z0z3 = z1z2

w2 = αz40 + βz20z
2
3 + γz43 + z0z3(δz

2
1 + εz1z2 + δz22) + ζz41 + ηz21z

2
2 + ζz42 .

The fixed locus of ψ3 on P3 is {(1 : 0 : 0 : 0), (0 : 0 : 0 : 1), (0 : 1 : 1 : 0)}: only the first
two of these points belong to the branch curve, so to have 4 points fixed by ψ3 on Q3,
the action induced by ψ3 on P(2, 1, 1, 1, 1) has to be

(w; z0 : z1 : z2 : z3) 7→ (w; z0 : iz2 : iz1 : −z3).

To find a projective model of the quotient surface Z, we consider the degree 2 invariants
for the action of ψ2

3, that form a projective space of dimension 6:

(w; z0 : z1 : z2 : z3) 7→ (w : z20 : z21 : z22 : z23 : z0z3 : z1z2) = (w : a0 : a1 : a2 : a3 : a4 : a5);

the surface Q3 maps to

R3 :


a0a3 = a24
a1a2 = a25
a4 = a5

w2 = αa20 + βa0a3 + γa23 + δa4(a1 + a2) + εa24 + ζa21 + ηa1a2 + ζa22,

the complete intersection of 3 quadrics in the hyperplane defined by a4 = a5 in P6.
Eliminate a5, and change coordinates to

b0 = a0, b1 = a1 + a2, b2 = a1 − a2, b3 = a3, b4 = a4;

then the automorphism induced by ψ3 on P5 is

ψ̂3 : (w : b0 : b1 : b2 : b3 : b4) 7→ (w : b0 : −b1 : b2 : b3 : −b4).

In the new coordinates we can write R3 as follows: denote ρ1(w, b0, b2, b3) = b0b3,
ρ2(w, b0, b2, b3) = b22 + 4b0b3, and rewrite the last equation as b24 = ρ3(w, b0, b2, b3).
Then

R3 :


b21 = ρ1(w, b0, b2, b3)

b1b4 = ρ2(w, b0, b2, b3)

b24 = ρ3(w, b0, b2, b3),

The expression of R3 is now similar to [32, §3.7], therefore the quotient surface S3 =
R3/ψ̂3 is the quartic surface ρ1ρ3 − ρ22 = 0 in P3.

no. 4: The eigenspaces associated to the action of τ on H0(X,L
(2)
2,2(1)) have dimensions

2, 1, 0, 1, and there is no E ∈ NS(X) such that E2 = 0 and EL
(2)
2,2(1) = 2, so L

(2)
2,2(1) is

very ample. Consider the automorphism of P3:

ψ4 : (x0 : x1 : x2 : x3) 7→ (x0 : x1 : ix2 : −ix3);
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quartic surfaces of the form

Q4 : f4(x0, x1) + x2x3f2(x0, x1) + αx42 + βx22x
2
3 + γx43 = 0,

where f4, f2 are respectively homogeneous quartic and quadric polynomials, are invariant
under the action of ψ4, and they form a family of projective dimension 5 when taking into
account the action of the group of projectivities of the form (x0 : x1 : x2 : x3) 7→(ax0 +
bx1 : cx0 + dx1 : ex2 : x3), that commute with ψ4. Moreover, Q4 contains exactly 4
points fixed by ψ4, and 4 more fixed only by ψ2

4. Therefore

ϕ|L(2)
2,2(1)|

: X
≃−→ Q4 ⊂ P3.

Proceeding as in no. 2, we consider the map given by the degree 2 invariants under the
action of ψ2

4

(x0 : x1 : x2 : x3) 7→ (x20 : x
2
1 : x

2
2 : x

2
3 : x0x1 : x2x3) = (z0 : z1 : z2 : z3 : z4 : z5);

then the quotient Q4/ψ
2|Q4 is the complete intersection of quadrics in P5

R4 :


ρ1 : z0z1 − z24 = 0

ρ2 : z
2
5 − z2z3 = 0

ρ3 : f̃4(z0, z1, z4) + z5f̃2(z0, z1, z4) + αz22 + βz25 + γz23 = 0,

where f̃4, f̃2 are respectively homogeneous quadric and linear polynomials such that
f̃4(x

2
0, x

2
1, x0x1) = f4(x0, x1) (similarly f̃2 and f2). The automorphism induced by ψ4 on

P5 is
ψ̂4 : (z0 : z1 : z2 : z3 : z4 : z5) 7→ (z0 : z1 : −z2 : −z3 : z4 : z5).

The surface R4 is singular in 8 points, 4 obtained as R4 ∩ {z0 = z1 = z4 = 0}, which are
not fixed by ψ̂4, and 4 obtained as R4 ∩ {z2 = z3 = z5 = 0}, which are fixed by ψ̂4.
To find the quotient R4/ψ̂4|R4 , we can consider the projection P5 → P3

π : (z0 : z1 : z2 : z3 : z4 : z5) 7→ (z0 : z1 : z4 : z5)

from the line ℓ = (0 : 0 : s : t : 0 : 0). Notice that π(ρ1) = ρ1, and that for every
(z0 : z1 : z4 : z5) ∈ P3 we can compute its pre-image as{

z25 = st

f̃4(z0, z1, z4) + z5f̃2(z0, z1, z4) + αs2 + βst+ γt2 = 0;

setting B = βz25 + z5f̃2 + f̃4, this gives{
s = z25/t

t2 =
−B±

√
B2−4αγz45
2γ .
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There are generally 4 solutions, pairwise identified by the action of ψ̂4: we can therefore
define a surface S4 that completes the diagram

R4

2:1

/ψ̂4

  

4:1
π

// ρ1

S4

2:1

>>

that is, the quotient S4 = R4/ψ̂4|R4 is a double cover of the quadric ρ1 ⊂ P3 ramified
over the curve defined by B2 − 4αγz45 = 0, and thus is a K3 surface.

2.6.4 Other examples

Again, the following examples are numbered accordingly to the table presented in the
proof of Prop. 2.6.1.1.

no. 1: the divisor L0(1) has self-intersection 2: it holds

ϕ|L0(1)| : X
2:1−−→ P2,

ramified along a sextic curve C, invariant for the automorphism of P2

ψ1 : (x0 : x1 : x2) 7→ (x0 : ix1 : −x2);

moreover, since ψ1 fixes three points, C has to contain exactly two of them, to have four
fixed points on the double cover; thus

C : αx50x2 + βx40x
2
1 + γx30x

3
2 + δx20x

2
1x

2
2 + εx0x

4
1x2 + ζx0x

5
2 + ηx61 + θx21x

4
2 = 0.

The moduli space of C has projective dimension 5, as we have to take into account the
action of the projectivities of P2 that preserve the eigenspaces of ψ, that is, those of the
form (x0 : x1 : x2) 7→ (x0 : ax1 : bx2).
Following [32, §3.2], to find a projective model of the quotient surface Z̃ we consider the
embedding of P2 into the projective space defined by the degree 2 monomials that are
invariant for ψ2

1

χ : (x0 : x1 : x2) 7→ (x20 : x
2
1 : x

2
2 : x0x2) = (y0 : y1 : y2 : y3) ∈ P3

as the quadric cone Q : y0y2 − y23 = 0. Then, recalling L̂0(1) = π2∗L0(1), we have
that

ϕ|L̂0(1)| : Z
2:1−−→ Q

is the double cover ramified along the union of the curve Ĉ = χ(C) and the hyperplane
y1 = 0; the branch curve of this double cover is therefore

CZ : y1(αy
2
0y3 + βy20y1 + γy0y2y3 + δy0y1y2 + εy21y3 + ζy22y3 + ηy31 + θy1y

2
2) = 0.
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Now, the automorphism ψ̂1 induced by ψ1 on P3 is

ψ̂1 : (y0 : y1 : y2 : y3) 7→ (y0 : −y1 : y2 : −y3);

again, to find the quotient surface we consider the immersion of P3 in the space defined
by the invariant monomials of degree 2

(y0 : y1 : y2 : y3) 7→ (y20 : y21 : y22 : y23 : y0y2 : y1y3) = (v0 : v1 : v2 : v3 : v4 : v5)

as the complete intersection of quadrics{
v0v2 = v24
v1v3 = v25;

the quotient surface Y is the image of Z via this map, that is

Y :


v0v2 = v24
v1v3 = v25
v3 = v4

w2 = αv0v5 + βv0v1 + γv4v5 + δv1v4 + εv1v5 + ζv2v5 + ηv21 + θv1v2 :

this is the intersection of three quadrics in the projective space cut by v3 = v4 in P6 with
coordinates (w : v0 : v1 : v2 : v3 : v4 : v5), so it is indeed a K3 surface.

no. 8: Consider the automorphism of P5

ψ8 : (x0 : x1 : x2 : x3 : x4 : x5) 7→ (x0 : x1 : ix2 : −x3 : −x4 : −ix5),

and the invariant surface

Q8 :


x2x5 = q1(x0, x1) + q2(x3, x4)

x22 = ℓ1(x0, x1)m1(x3, x4)

x25 = ℓ2(x0, x1)m2(x3, x4);

the fixed locus of ψ8 comprises 3 isolated points (that are not contained in Q8) and two
lines, (s : t : 0 : 0 : 0 : 0) and (0 : 0 : 0 : u : v : 0), each intersecting Q8 in two points; the
fixed locus of ψ2

8 comprises the line (0 : 0 : z : 0 : 0 : w), which doesn’t intersect Q8, and
the P3 space π : x2 = x5 = 0, which intersected with Q8 gives 8 points, of which the 4
already considered. Moreover, the family of projectivities that preserve the eigenspaces
of ψ8 has projective dimension 9, so that the quotient of the moduli space of Q8 by its
action has dimension 5.
The automorphism ψ2

8 on Q8 is the same as the one described in [32, §3.7], so the quotient
R8 = Q8/ψ

2
8|Q8 is the quartic surface

R8 : ℓ1ℓ2m1m2 − (q1 + q2)
2 = 0
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in the projective space P3
(x0:x1:x3:x4)

.
The automorphism induced by ψ8 on this space is

ψ̂8 : (x0 : x1 : x3 : x4) 7→ (x0 : x1 : −x3 : −x4)

which is the same as [32, §3.4]: thus, to find the quotient surface S8 = R8/ψ̂8|R8 we
consider the space of invariants of degree 2 for ψ̂8:

(x0 : x1 : x3 : x4) 7→ (x20 : x
2
1 : x

2
3 : x

2
4 : x0x1 : x3x4) = (z0 : z1 : z2 : z3 : z4 : z5);

write the equation that defines R8 in the new coordinates: the product ℓ1ℓ2 is a quadric in
x0, x1, and therefore it becomes a linear expression ℓ(z0, z1, z4); similarly, m1m2 becomes
m(z2, z3, z5), and q1 + q2 becomes λ(z0, . . . , z5), both m and λ linear. Therefore, S8 is
described in P5 by the complete intersection of three quadrics:

S8 :


ℓm = L2

z0z1 = z24
z2z3 = z25 .

no. 9: Consider the automorphism of P5

ψ9 : (x0 : x1 : x2 : x3 : x4 : x5) 7→ (x0 : x1 : x2 : ix3 : −x4 : −ix5),

and the invariant surface

Q9 :


x3x5 + q1(x0, x1, x2) = 0

x24 + q2(x0, x1, x2) = 0

x23 + x25 + x4ℓ(x0, x1, x2) = 0,

where q1, q2 are quadrics, and ℓ is linear. The fixed locus of ψ9 comprises three isolated
points that are not contained in Q9, and the plane x3 = x4 = x5 = 0, which intersected
with Q9 gives q1 ∩ q2 = {4 points}; the fixed locus of ψ2

9 gives 4 more points on Q9.
Moreover, considering the action of the projectivities that preserve the eigenspaces, that
have the form (x0 : x1 : x2 : x3 : x4 : x5) 7→ (ax0 + bx1 + cx2 : dx0 + ex1 + fx2 :
gx0 + hx1 + kx2 : mx3 : nx4 : mx5), we find that surfaces of this type form a moduli
space of projective dimension 5, as expected. We have

ϕ|L4,4(0)| : X
≃−→ Q9.

The divisor L̂4,4(0) on Z̃ can be written as L̂4,4(0) = E1 +E2, with (using the notation
of Def. 2.4.2.3)

E1 =
L̂4,4(0) + ê1 − f̂1 + ê4 − f̂4 + n3 + n4

2
− x2 =

L̂4,4(0)

2
+

(â1 − â2 + σ̂)

4
,

E2 =
L̂4,4(0)

2
− (â1 − â2 + σ̂)

4
; ⟨E1, E2⟩ =

[
0 2
2 0

]
.
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Thus ϕ|L̂4,4(0)|(Z̃) is a double cover of P1 × P1 (see [88, Thm. 5.2]). To find R9 =

Q9/ψ
2
9|Q9 , we proceed as in no. 4: consider the projection

π : (x0 : x1 : x2 : x3 : x4 : x5) 7→ (x0 : x1 : x2 : x4)

from the line r = (0 : 0 : 0 : s : 0 : t); then we have

Q9

2:1

/ψ2
9

  

4:1
π

// ρ

R9

2:1

??

and R9 can be described as a double cover of ρ : x24 + q2(x0, x1, x2) = 0 ramified along
the quartic curve x24ℓ

2(x0, x1, x2) − 4q21(x0, x1, x2) = 0. To prove R9 is a K3 surface,
we show that the branch curve intersects in 4 points each of the rulings of ρ: choose
q2 = x0x1 − x22, in order to write the two lines through the point (0 : 1 : 0 : 0),{

x4 + x2 = 0

x0 = 0,

{
x4 − x2 = 0

x0 = 0;

intersecting each of these lines with the branch curve, we obtain a polynomial of degree
4 in one variable.
Now, since L4,4(0)

2 = 2, ϕ|L4,4(0)|(Ỹ ) is a double cover of P2. This is coherent with the

fact that, as the double cover P1 × P1 → P2 is induced by an involution that exchanges
the two copies of P1, the automorphism induced by ψ9 on P3

ψ̂9 : (x0 : x1 : x2 : x4) 7→ (x0 : x1 : x2 : −x4)

exchanges the two rulings of ρ, giving a double cover ρ → P2; this can also be seen by
looking at the divisors on Z̃, as τ̂∗(E1) = E2.
The quotient Q9/ψ9 is the double cover of P2

(x0:x1:x2)
ramified along the sextic curve

q22ℓ
2 + 4q21q2: indeed, projecting from the space P2

(x3:x4:x5)
onto P2

(x0:x1:x2)
we get generi-

cally 8 points on Q9, that satisfy

x45 =
−(2q21 + q2ℓ

2)± ℓ
√

(q22ℓ
2 + 4q21q2)

2
;

we can distinguish them in two orbits of four points permuted cyclically by the action of
ψ9: the identification of the points in the same orbit gives the quotient surface S9, that
completes the diagram.

Q9

4:1

/ψ9

  

8:1 // P2

S9

2:1

??
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Chapter 3

Action of (Z/2Z)2 on a K3 surface

3.1 Introduction

In this chapter, proceeding similarly to the previous one, we study the symplectic action
of the group (Z/2Z)2 = ⟨τ, φ⟩ on a K3 surface.
There are two main differences that set apart this action from that of Z/4Z: firstly,
the image of the maps π2,2∗, π

∗
2,2 induced in cohomology by the rational quotient map

π2,2 : X 99K X/(Z/2Z)2 is not primitive in ΛK3 (see Remark 3.4.3.2 and Corollary
3.4.8.2). Moreover, if X is projective then the surfaces Z̃τ , Z̃φ, which are the resolution
of the singularities of the quotient surfaces X/τ, X/φ respectively, may not belong to
the same deformation families. Indeed, the involutions τ∗, φ∗ may act differently on the
polarization L of X, because they act differently on (some of) the orbits for the action
of O(Ω2,2) on the discriminant group of the co-invariant lattice Ω2,2. The involution

ρ∗ := τ∗ ◦ φ∗ however acts similarly to τ∗, and so the surface Z̃ρ = X̃/ρ always belongs
to the same deformation family as Z̃τ . We also remark that, in any case, the projective
family of the surface Ỹ , the resolution of the singularities of the quotient X/(Z/2Z)2, is
completely determined by that of X.

The main results of this chapter are the following: the lattice-theoretic characterization
of the intermediate quotient surface Z̃ι, that is the resolution of the singularities of the
surface X/ι, where ι is any of the involutions in (Z/2Z)2; the comparison between its
moduli space and those of X, Ỹ .
The negative definite, rank 12 lattice Γ2,2 that characterizes the intermediate quotient
surface is introduced in Definition 3.4.1.5. Similarly to the lattice Γ4 for the cyclic case,
also Γ2,2 contains primitively a copy of the Nikulin lattice N and of the co-invariant
lattice for a symplectic involution Ω2: the latter embedding is described in Remark
3.4.3.3.

Theorem 3.1.0.1 (see Thm. 3.4.7.1). A K3 surface Z̃ is the resolution of the singular-
ities of X/ι, for some K3 surface X with a symplectic action of (Z/2Z)2 and ι ∈ (Z/2Z)2
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an involution, if and only if Z̃ is Γ2,2-polarized.

Theorem 3.1.0.2 (see Thm. 3.5.2.3, 3.5.3.3). Let X be a general projective K3 surface
with a symplectic action of (Z/2Z)2, let Z̃ and Ỹ be the resolution of the singularities
of X/ι and X/(Z/2Z)2 respectively. The following table describes the correspondence
between the Néron-Severi lattices of X and its quotients. The lattices NS(X) are as
in Theorem 3.5.1.2, NS(Z̃) are as in Theorem 3.5.3.2 and NS(Ỹ ) are as in Theorem
3.5.2.2. Be aware that the lattices (S ⊕ ⟨k⟩)′(i), i = 1, 2 are not isometric.

NS(X) NS(Z̃) NS(Ỹ )

d =2 1 Ω2,2 ⊕ ⟨2d⟩ (Γ2,2 ⊕ ⟨4d⟩)′ (M2,2 ⊕ ⟨2d⟩)′

d =4 2

Ω2,2 ⊕ ⟨2d⟩ (Γ2,2 ⊕ ⟨4d⟩)′(1) (M2,2 ⊕ ⟨8d⟩)′

(Ω2,2 ⊕ ⟨2d⟩)′
(Γ2,2 ⊕ ⟨4d⟩)′(2)

(M2,2 ⊕ ⟨2d⟩)′Γ2,2 ⊕ ⟨d⟩

(Γ2,2 ⊕ ⟨4d⟩)⋆

d =8 0

Ω2,2 ⊕ ⟨2d⟩ (Γ2,2 ⊕ ⟨4d⟩)′(1) (M2,2 ⊕ ⟨8d⟩)′

(Ω2,2 ⊕ ⟨2d⟩)′(1)
Γ2,2 ⊕ ⟨d⟩

(M2,2 ⊕ ⟨2d⟩)′
(Γ2,2 ⊕ ⟨4d⟩)′(2)

(Ω2,2 ⊕ ⟨2d⟩)′(2) (Γ2,2 ⊕ ⟨d⟩)′ M2,2 ⊕ ⟨d/2⟩

d =8 4

Ω2,2 ⊕ ⟨2d⟩ (Γ2,2 ⊕ ⟨4d⟩)′(1) (M2,2 ⊕ ⟨8d⟩)′

(Ω2,2 ⊕ ⟨2d⟩)′(1)
Γ2,2 ⊕ ⟨d⟩

(M2,2 ⊕ ⟨2d⟩)′(1)
(Γ2,2 ⊕ ⟨4d⟩)′(2)

(Ω2,2 ⊕ ⟨2d⟩)′(2)
(Γ2,2 ⊕ ⟨d⟩)′

(M2,2 ⊕ ⟨2d⟩)′(2)

(Ω2,2 ⊕ ⟨2d⟩)⋆ M2,2 ⊕ ⟨d/2⟩

3.2 A symplectic action of (Z/2Z)2 on the surface Xω

By Nikulin’s uniqueness result [71, Thm. 4.7] we can describe the action of (Z/2Z)2 on
ΛK3 using a projective model. Again, as we did for the symplectic action of the cyclic
group of order four, we choose an elliptic K3 surface X

π−→ P1 such that MW (π) =
(Z/2Z)2.
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3.2.1 The surface Xω

Let ω = eiπ/3, consider the elliptic curve Eω = C/(Z ⊕ Zω) and define the K3 surface
Xω = Kum(Eω × Eω): its transcendental lattice is

T (Xω) =

[
4 2
2 4

]
,

and its Néron-Severi has therefore rk = 20 and d = 12.

A description of all the possible Jacobian fibrations on Xω is provided by Nishiyama [73,
Table 1.3]: in particular there exists a fibration

π : Xω → P1 s.t. MW (π) ≃ Z/2Z× Z/2Z

which provides a symplectic action of the group (Z/2Z)2 on Xω by means of sections t, r
that generate MW (π).
The reducible fibers of π are one of type I∗6 , one of type I6 and three of type I2
that we’ll denote Ij2 , j = 1, 2, 3. Call C0 (respectively D0, E

j
0) the component of I∗6

(resp. I6, I
j
2) intersected by the curve s, and number the other components so that,

for every k ∈ Z/6Z, Di intersects only D(k+1) and D(k−1); C0, C1 intersect only C2;
C9, C10 intersect only C8 and, for i = 2, . . . , 8, Ci intersects both C(i+1) and C(i−1);

moreover, it holds Ej0E
j
1 = 2, j = 1, 2, 3. Thus the trivial lattice T (π) is gener-

ated by the classes of the generic fiber F of π, of the curve s and of the components
Ci, Dk, E

j
1 i = 1 . . . , 10, k = 1, . . . , 5, j = 1, 2, 3 of the reducible fibers: these curves

are rational, so they have self-intersection −2, the only exception being the class of the
generic fiber F , which satisfies F 2 = 0. The curves Dk, k = 1, . . . , 5 generate the lattice
A5, and C1, . . . , C10 generate the lattice D10.
Using the height pairing formula [89, §11.8] we can determine the components of the re-
ducible fibers Ci, Dk, E

j
m that have non-trivial intersection with the elements ofMW (π).

We will choose the following notation for the elements of MW (π): the zero section s
intersects the components C0, D0 and E

j
0; the section t intersects the components C1, D3

and Ej1; the section r intersects the components C10, D0 and Ej1; the section q = t + r

(where + is the sum inMW (π)) intersects the components C9, D3 and E
j
0. We can write

t, r, q in function of the basis of the trivial lattice T (π) using the information about their
intersections:

t = 2F + s− (

8∑
i=1

Ci +D2 +D3 +D4)− (C9 + C10 +D1 +D3 +D5 +

3∑
j=1

Ej1)/2;

r = 2F + s− (
8∑
i=1

iCi + 4C9 + 5C10 +
3∑
j=1

Ej1)/2;

q = 2F + s− (

8∑
i=1

iCi + 5C9 + 4C10 +D1 + 2D2 + 3D3 + 2D4 +D5)/2.
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From (2.2.1.1) and the equations above it can be readily seen that NS(Xω) admits as a
Z-basis B = {F, s, t, r, C2, . . . , C10, D1, . . . , D5, E

1
1 , E

2
1}: indeed the intersection form on

the sublattice L ⊂ NS(X) generated by B has discriminant −12, which is the opposite
to that of T (Xω), so L = NS(X).

3.2.2 The action of ⟨τ ∗, ρ∗⟩ on the second cohomology of Xω

The symplectic involutions τ, ρ and φ = ρ ◦ τ on Xω (corresponding respectively to the
translation by the sections t, r, q ∈MW (π)) induce isometries τ∗, ρ∗ and φ∗: since they
are symplectic, they act as the identity on the transcendental lattice T (Xω); on NS(Xω)
we have

τ∗ : C0 ↔ C1, C9 ↔ C10, D[k]6 ↔ D[k+3]6 , Ej0 ↔ Ej1, s↔ t, r ↔ q,

ρ∗ : Ci ↔ C10−i, Ej0 ↔ Ej1, s↔ r, t↔ q,

and τ∗ acts as the identity on F,C2, . . . , C8, while ρ
∗ on F,D0, . . . , D5. Therefore, we

can identify 8 orthogonal copies of A2 in NS(Xω) that are either fixed or exchanged in
pairs by τ∗, ρ∗, as follows:

(s, C0) oo
τ∗ //

OO

ρ∗

��

(t, C1)
OO

ρ∗

��

(r, C10) oo
τ∗ // (q, C9)

(C3, C4)

τ∗=id

��

OO

ρ∗

��

(C7, C6)

τ∗=id

VV

(D1, D2) oo
τ∗ //

ρ∗=id

VV
(D4, D5)

ρ∗=id

VV
.

The orthogonal complement in NS(Xω) of the direct sum A⊕8
2 is generated over Q by

the vectors

S1 = C3 + 2C4 + 3C5 + 2C6 + C7,

S2 = 4F + 2t+ 2s− (

8∑
i=2

iCi + 4C9 + 4C10),

S3 = E1
1 − E2

1 ,

S4 = −3(E1
1 + E2

1)− 4(2r − 2F − t− s+
8∑
i=2

(i− 1)Ci)+

+ 2(−7C9 − 9C10 +D1 + 2D2 + 3D3 + 2D4 +D5),

that are pairwise orthogonal, and whose self-intersection is as follows: S2
1 = −6, S2

2 =
6, S2

3 = −4, S2
4 = −12. It can be also verified that both τ∗ and ρ∗ act as the identity

id on S1, S2 and as −id on S3, S4.
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The lattice A⊕8
2 ⊕ ⟨−6⟩ ⊕ ⟨6⟩ ⊕ ⟨−4⟩ ⊕ ⟨−12⟩ has discriminant group

(Z/2Z)2 × (Z/4Z)2 × (Z/3Z)11,

so it has index 2235 in NS(Xω) (see Remark 1.2.1.2); the latter can be obtained by
adding the following generators:

u1 = (S1 + S2)/2,

u2 = (S3 + S4)/2,

u3 = (q − s+ C0 − C3 + C4 − C6 + C7 − C9 −D1 +D2 +D4 −D5)/3,

u4 = (r − t+ C1 − C3 + C4 − C6 + C7 − C10 +D1 −D2 −D4 +D5)/3, (3.2.2.1)

u5 = (S1 − C3 + C4 + C6 − C7)/3,

u6 = (u2 − q − r − C3 + C4 + C9 + C10)/3,

u7 = (u1 + u2 + r − C3 + C4 − C10 −D1 +D2 +D4 −D5 + S3)/3.

Remark 3.2.2.1. Notice that the lattice U(3) = ⟨u1, S2−u1⟩ is an overlattice of index 2 of
⟨−6⟩⊕ ⟨6⟩ on which τ∗, ρ∗ act as the identity; similarly the lattice A2(2) = ⟨u2, S3−u2⟩
is an overlattice of index 2 of ⟨−4⟩ ⊕ ⟨−12⟩ on which τ∗, ρ∗ act as −id.

Now, H2(Xω,Z) is an overlattice of index 12 of the lattice NS(Xω)⊕T (Xω) (see Remark
1.2.1.2). Denoting {ω1, ω2} the Z-basis of T (Xω) for which the intersection matrix is[
4 2
2 4

]
, the discriminant form of ANS(Xω)⊕T (Xω), in the basis given by

n1 = (r + C10 + C3 + C4 +D1 +D2 +D4 +D5 + u7 + u1 + u2)/2,

n2 = (r + C10 + C3 + C4 + u7 + u1)/2 + (D1 −D2 +D4 −D5)/6, (3.2.2.2)

t1 = ω2/2,

t2 = ω1/6− ω2/3,

is 
1 1/2 0 0

1/2 −1/3 0 0
0 0 1 1/2
0 0 1/2 1/3

 .
Therefore, in order to generateH2(Xω,Z) as an overlattice ofNS(Xω)⊕T (Xω), following
[72, Prop. 1.4.1.a] we can add to a Z-basis of the latter the isotropic elements n1+t1, n2+
t2.

3.3 The action of (Z/2Z)2 on the K3 lattice

3.3.1 A convenient description of the K3 lattice

We can now describe abstractly the isometries τ∗, ρ∗, φ∗ induced on ΛK3 by the sym-
plectic involutions τ, ρ, φ in (Z/2Z)2 ⊂ Aut(X). We fix a marking ΛK3 ≃ H2(X,Z) as
follows.
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Proposition 3.3.1.1. The isometries τ∗, ρ∗ and φ∗ act on the sublattice of finite index

of ΛK3 W := A⊕8
2 ⊕A2(2)⊕

[
0 6
6 0

]
⊕
[
4 2
2 4

]
as follows:

A2 A2 A2 A2 A2 A2 A2 A2 A2(2) U(3)

[
4 2
2 4

]
⊕
τ∗

ρ∗

⊕
ρ∗

⊕
τ∗

⊕ ⊕
ρ∗

⊕
τ∗=id

⊕
τ∗

ρ∗=id

⊕
τ∗=−id

ρ∗=−id

⊕ ⊕

τ∗=ρ∗=id

The isometry φ∗ := (ρ ◦ τ)∗ exchanges pairwise the eight copies of A2, and acts as the

identity on A2(2)⊕ U(3)⊕
[
4 2
2 4

]
.

Remark 3.3.1.2. Notice that τ∗ and ρ∗ act in similar ways on W up to reordering the
A2 components, while the action of φ∗ is different. The consequences become apparent
only when dealing with projective surfaces: indeed, there are some projective models
X ⊂ Pn such that the resolution of the singularities of X/τ, X/φ belong to different
deformation families (see Corollary 3.5.3.3): this is due to the different action of τ∗, φ∗

on the polarization of X; on the other hand, the the resolution of the singularities of
X/τ, X/ρ always belong to the same deformation family.
Therefore, from now on we will use τ and φ as generators of (Z/2Z)2.

For i = 1, 2, denote ai, bi, ci, di, ei, fi, gi, hi the generators of the eight copies of A2,
such that

τ∗ : ai ↔ bi, ci ↔ di, gi ↔ hi;

φ∗ : ai ↔ di, bi ↔ ci, ei ↔ fi; gi ↔ hi;

denote w, z the generators of A2(2) (on which τ∗ acts as −id and φ∗ as id), x, y the

generators of U(3), and v1, v2 the generators of

[
4 2
2 4

]
. Then the lattice ΛK3 is iso-

morphic to the overlattice H2(X,Z) of W obtained by adding the following generators
(cf. (3.2.2.1),(3.2.2.2)):

α = (−a1 + a2 + d1 − d2 − e1 + e2 + f1 − f2 − g1 + g2 + h1 − h2)/3,

β = (−b1 + b2 + c1 − c2 − e1 + e2 + f1 − f2 + g1 − g2 − h1 + h2)/3,

γ = (x− y − e1 + e2 − f1 + f2)/3,

δ = (x− c1 + c2 − d1 + d2 − e1 + e2)/3, (3.3.1.1)

ε = (x− z + w + c1 − c2 − e1 + e2 − g1 + g2 + h1 − h2)/3,

ζ = (x+ z + c1 + c2 + e1 + e2 + g1 + g2 + h1 + h2 + ε)/2 + v2/2,

η = (x+ c1 + c2 + e1 + e2 + ε)/2 + (g1 − g2 + h1 − h2)/6 + v1/6− v2/3;

The action of τ∗ and φ∗ on these elements is deduced by the one on the sublattice W
described above by Q-linear extension:
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3.3.2 Invariant and co-invariant lattices

The group (Z/2Z)2 acts symplectically in a unique way on the second integral cohomo-
logy lattice of a K3 surface [71, Thm. 4.7]: the invariant and co-invariant lattices for this
action can be found in [30, Prop. 4.3]. Here we want to provide an explicit embedding
of them in H2(X,Z) with the description of it given in Section 3.3.1.

The invariant lattice Λ
⟨τ,φ⟩
K3 is an overlattice of the lattice I = A2(4)⊕A2(2)

⊕2 ⊕U(3)⊕[
4 2
2 4

]
= ⟨a1+b1+c1+d1, a2+b2+c2+d2, e1+f1, e2+f2, g1+h1, g2+h2, x, y, v1, v2⟩

obtained by adding as generators the elements

ι1 = (v1 + v2 + g1 + h1 − g2 − h2)/3,

ι2 = (a1 + b1 + c1 + d1 − (a2 + b2 + c2 + d2) + e1 + f1 − e2 − f2 + x)/3,

ι3 = γ;

the co-invariant lattice Ω2,2 is an overlattice of the lattice

∆ =


A2(2)

⊕3 0 0

0 A3(2) A3

0 A3 A3(2)


spanned over Z by {z, w, f1 − e1, f2 − e2, h1 − g1, h2 − g2, b1 − a1, a1 − c1, c1 −
d1, a2 − b2, c2 − a2, d2 − c2} obtained by adding as generators the elements

ω1 = (a1 − b1 − c1 + d1 − a2 + b2 + c2 − d2 + z − w)/3,

ω2 = (−a1 + d1 + a2 − d2 − e1 + f1 + e2 − f2 − g1 + h1 + g2 − h2)/3,

ω3 = (a1 + b1 − c1 − d1 − a2 − b2 + c2 + d2 − e1 + f1 + e2 − f2)/3.

The discriminant group of Ω2,2 is (Z/2Z)6×(Z/4Z)2. We can describe ΛK3 as overlattice

of Λ
⟨τ,φ⟩
K3 ⊕ Ω2,2 by adding the elements

r1 =(v2 + w)/2,

r2 =(v1 + e2 + f2 + f1 − e1 + ω1 + ω3)/2,

r3 =(ι2 + ι3 + y + e2 + f2 + f1 − e1 + ω3)/2,

r4 =(e1 + f1 + f1 − e1)/2,

r5 =(g2 + h2 + h1 − g1 + b1 + c1 − 2a1 + b2 + c2 − 2a2 + ω2 + ω3)/2,

r6 =(ι1 + v1 + g2 + h2 + w + h1 − g1)/2,

r7 =(a2 + b2 + c2 + d2)/4 + 3(b2 + c2 + d2 − 3a2)/4,

r8 =(ι2 + 3ι3 + y − 3a1 + b1 + c1 + d1 − a2 − b2 + 3c2 + 3d2)/4+

+ (e2 + f2 + f1 − e1)/2− a2 + ω3;
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the elements ιi, ωi, rk (for i = 1, 2, 3, k = 1, . . . , 8) are all integral in the latticeH2(X,Z)
described in Section 3.3.1.

Remark 3.3.2.1. The lattice Ω2,2 contains three different copies of the lattice Ω2 ≃ E8(2),
co-invarant for τ, φ and ρ.

3.4 Quotients

The symplectic action of (Z/2Z)2 = {1, τ, φ, ρ} on a K3 surface X gives 24 isolated
points with nontrivial stabilizer. Call Fixτ = {t1, . . . , t8}, F ixφ = {q1, . . . , q8}, F ixρ =
{r1, . . . , r8}: then τ and φ act on Fixρ as the same permutation (r1, r2)(r3, r4)(r5, r6)
(r7, r8); τ and ρ act on Fixφ as (q1, q2)(q3, q4)(q5, q6)(q7, q8), ρ and φ act on Fixτ as
(t1, t2)(t3, t4)(t5, t6)(t7, t8).
Consider the (singular) quotient surfaces Y = X/(Z/2Z)2, Zτ = X/τ, Zφ = X/φ, Zρ =
X/ρ; resolve the singularities to obtain the K3 surfaces Ỹ , Z̃τ , Z̃φ, Z̃ρ: then φ induces
an involution φ̂ on Zτ such that Zτ/φ̂ ≃ Y , and this involution can be extended to
Z̃τ (similarly for the other quotients). Denote the maps between these surfaces as in
the following diagram (and similarly exchanging τ and φ, or considering other pairs
including one of them and ρ):

X

q2,2

��

π2,2

��

X

qτ

��

πτ

zz

Z̃τ

q̂φ
��

π̂φ

||

// Zτ

qφ

��

Y Ỹoo oo ≃ // ˜̃Zτ/φ̂ // Z̃τ/φ̂ // Zτ/φ̂

(3.4.0.1)

Remark 3.4.0.1. The surfaces Ỹ and ˜̃Zτ/φ̂ are isomorphic, because they are birationally
equivalent K3 surfaces.

In the following sections, we are going to describe the maps

πτ∗ : ΛK3 ≃ H2(X,Z) qτ∗−−→ qτ∗H
2(X,Z) ↪→ H2(Z̃τ ,Z) ≃ ΛK3

π̂φ∗ : ΛK3 ≃ H2(Z̃τ ,Z)
π̂φ∗−−→ π̂φ∗H

2(Z̃τ ,Z) ↪→ H2(Ỹ ,Z) ≃ ΛK3

πφ∗ : ΛK3 ≃ H2(X,Z)
qφ∗−−→ qφ∗H

2(X,Z) ↪→ H2(Z̃φ,Z) ≃ ΛK3

π̂τ ∗ : ΛK3 ≃ H2(Z̃φ,Z)
π̂τ ∗−−→ π̂τ ∗H

2(Z̃φ,Z) ↪→ H2(Ỹ ,Z) ≃ ΛK3

π2,2∗ : ΛK3 ≃ H2(X,Z)
q2,2∗−−−→ q2,2∗H

2(X,Z) ↪→ H2(Ỹ ,Z) ≃ ΛK3;

3.4.1 The map πτ∗ and the surface Z̃τ

Proposition 3.4.1.1. The map πτ∗ acts in the following way on the sublattice W of
H2(X,Z):
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A2

a1, a2

⊕ A2

b1, b2

⊕ A2

c1, c2

⊕ A2

d1, d2

⊕ A2

e1, e2

⊕ A2

f1, f2

⊕ A2

g1, g2

⊕ A2

h1, h2

⊕ A2(2)
z, w

⊕ U(3)
x, y

⊕
[
4 2
2 4

]
v1, v2

A2

â1, â2

A2

ĉ1, ĉ2

A2(2)
ê1, ê2

A2(2)

f̂1, f̂2

A2

ĝ1, ĝ2

0 U(6)
x̂, ŷ

[
8 4
4 8

]
v̂1, v̂2

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Proof. The action of τ∗ on W is described in Proposition 3.3.1.1: we can use it to
compute the intersection form of πτ∗W via the push-pull formula. Since πτ is a finite
morphism of degree 2, for any x1, x2 ∈W we get

πτ∗x1 · πτ∗x2 =
1

2
(π∗τπτ∗x1 · π∗τπτ∗x2)

where π∗τπτ∗x1 = x1+τ
∗x1. Therefore, if τ

∗ exchanges two copies of A2, πτ∗(A2⊕A2) =
A2; if τ

∗ acts as the identity on a lattice L, then πτ∗L = L(2); if τ∗ acts as −id on a
lattice L, then πτ∗L = 0.

Corollary 3.4.1.2. The embedding πτ∗H
2(X,Z) ↪→ H2(Z̃τ ,Z) is unique up to isomet-

ries of the latter; its orthogonal complement is the Nikulin lattice N .

Proof. The lattice πτ∗H
2(X,Z) can be obtained by Q-linear extension of πτ∗ applied to

the elements (3.3.1.1). The lattice πτ∗H
2(X,Z) is an even lattice of signature (3, 11)

and ℓ = 6, so it satisfies the conditions of Theorem 1.2.1.10;. Since Z̃τ is obtained as
blow up of X/τ in its eight singular points, the exceptional lattice is the Nikulin lattice
N .

Remark 3.4.1.3. Calling n1, . . . , n8 the (−2)-curves that generate N over Q, the elements
that glue together N and πτ∗H

2(X,Z) to ΛK3 can be then chosen to be:

s1 = (ĉ1 − ĉ2 + ê2 + f̂2 + γ̂ − ε̂+ n5 − n8 + n3 + n2)/2− n8,

s2 = (â1 − â2 − α̂+ f̂1 + f̂2 − ε̂+ n4 − n8 + n3 + n2)/2− n8,

s3 = (ê2 + f̂1 + n7 + n5 + n4 + n3)/2− 2n8,

s4 = (ĉ1 − ĉ2 + ê2 + f̂1 − ε̂+ n7 − n8 + n5 + n4)/2− n8,

s5 = (â1 − â2 + ĉ1 − ĉ2 − α̂+ n6 + n5 + n4 + n2)/2− 2n8,

s6 = (â1 − â2 + ĉ1 − ĉ2 − α̂+ f̂1 + n7 − n8 + n6 + n3)/2− n8.

Remark 3.4.1.4. The lattice πτ∗Ω2,2 is isomorphic toD4(2) with the following generators:

d1 = (ê2 − f̂2 + f̂1 − ê1 + ĉ1 − â1 − ĉ2 + â2)/3− f̂1 + ê1, d2 = (ê2 − f̂2 + f̂1 − ê1 + ĉ1 −
â1 − ĉ2 + â2)/3, d3 = â1 − ĉ1, d4 = ĉ1 − â1 + ĉ2 − â2.
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Definition 3.4.1.5. We define the lattice Γ2,2 as the lattice of rank 12 obtained as over-
lattice of πτ∗Ω2,2 ⊕N by adding as generators the elements

x1 =(d4 − d2 + n2 + n4 + n5 + n6)/2;

x2 =(d1 − d2 + n3 + n7 + n2 + n5)/2.

The lattice Γ2,2 is primitively embedded in H2(Z̃τ ,Z); an integral basis of its orthogonal
complement is given by

s′1 =â1 + ĉ1,

s′2 =â2 + 2(ê2 − s5 + s6 + s2) + 4(s4 − s3) + ζ̂ + n5 − n7,

s′3 =2(ĉ1 + ê2)− f̂1 − â2 − 3ζ̂,

s′4 =ĉ2 − 8α̂+ ê2 + 4(f̂1 + s1 − s6) + 2(s4 − s5 − s2 + s3)− ζ̂ + 3(n6 − n5),

s′5 =α̂− â2 − f̂1 − ζ̂,

s′6 =â2 + ĉ2, s′7 = ĝ1, s′8 = ĝ2, s′9 = γ̂, s′10 = η̂ − ζ̂.

3.4.2 The map πφ∗ and the surface Z̃φ

The action of φ∗ on the sublattice W of H2(X,Z) is different that that of τ∗, so the
quotient map πφ∗ will be different as well: in particular, φ∗ does not preserve any of the
orthogonal copies of A2 ⊂W . The analogue to Proposition 3.4.1.1 is as follows, and the
proof is similar.

Proposition 3.4.2.1. The map πφ∗ acts in the following way on the sublattice W of
H2(X,Z):

A2

a1, a2

⊕ A2

d1, d2

⊕ A2

b1, b2

⊕ A2

c1, c2

⊕ A2

e1, e2

⊕ A2

f1, f2

⊕ A2

g1, g2

⊕ A2

h1, h2

⊕ A2(2)
z, w

⊕ U(3)
x, y

⊕
[
4 2
2 4

]
v1, v2

A2

ã1, ã2

A2

b̃1, b̃2

A2

ẽ1, ẽ2

A2

g̃1, g̃2

A2(4)
z̃, w̃

U(6)
x̃, ỹ

[
8 4
4 8

]
ṽ1, ṽ2

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Remark 3.4.2.2. The elements that glue together N and πφ∗H
2(X,Z) to form ΛK3 can

be then chosen as:

t1 = (b̃1 + ẽ2 + g̃1 + g̃2 − ε̃+ γ̃ + ỹ + η̃)/2 + (n2 + n3 + n5 + n8)/2;

t2 = (ã1 + ã2 + δ̃ + z̃ − ε̃)/2 + (n2 + n3 + n4 + n8)/2;

t3 = (γ̃ + ỹ)/2 + (n3 + n4 + n5 + n7)/2;

t4 = (ã1 + ã2 + δ̃ + ε̃+ ỹ)/2 + (n4 + n5 + n7 + n8)/2;

t5 = (b̃1 + ẽ2 + g̃1 + g̃2 + ε̃+ ζ̃)/2 + (n2 + n4 + n5 + n6)/2;

t6 = (ã1 + ã2 + δ̃ + ε̃)/2 + (n3 + n6 + n7 + n8)/2.
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Remark 3.4.2.3. The lattice πφ∗Ω2,2 is isomorphic toD4(2) with the following generators:
d′1 = (2b̃2 − 2ã2 + z̃ − w̃ + b̃1 − ã1)/3, d

′
2 = w̃ + (2b̃2 − 2ã2 + z̃ − w̃ + b̃1 − ã1)/3, d

′
3 =

ã2 − b̃2, d
′
4 = ã1 − b̃1.

Definition 3.4.2.4. Define the lattice Γ̃ as the overlattice of N ⊕ πφ∗Ω2,2 obtained by
adding to the set of generators the elements

x′1 = (d′2 − d′1 + n2 + n3 + n4 + n8)/2, x′2 = (d′2 + d′4 + n3 + n6 + n7 + n8)/2;

Proposition 3.4.2.5. The lattices Γ2,2 and Γ̃ are isomorphic.

Proof. The lattices πτ∗Ω2,2 and πφ∗Ω2,2 are both isomorphic to D4(2). Moreover, the
gluings that realizes Γ2,2 as an overlattice of πτ∗Ω2,2 ⊕ N , and Γ̃ as an overlattice of
πφ∗Ω2,2 ⊕N , are isomorphic: indeed, one can easily check that the orbits for the action
of O(D4(2)) on AD4(2), and of O(N) on AN , are determined by the order and square of
their elements.

3.4.3 The surface Ỹ as quotient of Z̃τ

We conclude with the description of the K3 surface Ỹ , which is the minimal resolution
of the quotient X/(Z/2Z)2. We can obtain Ỹ as quotient of either Z̃τ , Z̃φ by the residual
symplectic involution φ̂, τ̂ respectively.
The residual involution φ̂ fixes eight isolated points, and it acts on the curves repres-
ented by the classes n1, . . . , n8 of the second integral cohomology of Z̃τ (which are the
exceptional curves introduced by the resolution Z̃τ → Zτ ) by exchanging them pairwise
(τ̂ acts similarly on Z̃φ).

Proposition 3.4.3.1. Consider the sublattice πτ∗W ⊕A⊕8
1 of finite index of H2(Z̃τ ,Z):

the map π̂φ∗ acts in the following way on it:

A2

â1, â2

⊕ A2

ĉ1, ĉ2

⊕ A2(2)
ê1, ê2

⊕ A2(2)

f̂1, f̂2

⊕ A2

ĝ1, ĝ2

⊕ U(6)
x̂, ŷ

⊕
[
8 4
4 8

]
v̂1, v̂2

⊕ A⊕2
1

n1, n8

⊕ A⊕2
1

n2, n5

⊕ A⊕2
1

n3, n7

⊕ A⊕2
1

n4, n6

A2

a1, a2

A2(2)
e1, e2

A2(2)
g1, g2

U(12)
x, y

[
16 8
8 16

]
v1, v2

⊕ A1

n1

⊕ A1

n2

⊕ A1

n3

⊕ A1

n4

⊕ ⊕ ⊕ ⊕

The lattice π̂φ∗H
2(Z̃τ ,Z) can be obtained by Q-linear extension to the elements α̂, γ̂, ε̂, ζ̂, η̂

which are the image via πτ∗ of the elements in (3.3.1.1), and ν, s1, . . . , s6 defined in Re-
mark 3.4.1.3. The symbol ⋆ denotes the image of ⋆ in π̂φ∗H

2(Z̃τ ,Z).

Proof. The only difficult thing is to determine which are the pairs of classes exchanged
by π̂φ∗|A⊕8

1
, and π̂τ ∗|A⊕8

1
. To do this, we need to ensure that the the intersection form of

the images of s1, . . . , s6 via π̂φ∗ (respectively, of s̃1, . . . , s̃6 via π̂τ ∗), computed with the
push-pull formula, is that of an integral even lattice: the only valid choice is the one in
the statement.
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Remark 3.4.3.2. The element γ/2 is integral in π̂φ∗H
2(Z̃τ ,Z): in fact, it holds

π̂φ∗(s1 + s3 + s4) = γ/2 + (a1 − a2 + e1 + 2e2 − ε+ 2n2 + n4 + 2n3 − 5n1).

A similar result holds for π̂τ ∗H
2(Z̃φ,Z). A more geometric explanation is given in

Remark 3.4.6.1, using the surface Xω and its quotients.

Remark 3.4.3.3. The co-invariant lattice for φ̂∗ (which is a copy of Ω2 = E8(2), since φ̂ is
a symplectic involution on Z̃τ ), is entirely contained in Γ2,2: indeed, it is the orthogonal

complement in Γ2,2 of ⟨n1+n8, n2+n5, n3+n7, n4+n6, ê1+ f̂1, ê2+ f̂2, â1+ ĉ1, â2+ ĉ2⟩.

The resolution of the singularities Ỹ → Z̃τ/φ̂ introduces in cohomology another copy of
the lattice N : calling m1, . . .m8 the (−2)-classes that generate N over Q, we can choose
as elements that glue π̂φ∗H

2(Z̃τ ,Z)⊕N to H2(Ỹ ,Z) the following:

k1 = (a2 + e1 + g2 + η)/2 + (m2 +m3 +m5 +m8)/2,

k2 = (g1 + η + ζ)/2 + (m2 +m3 +m4 +m8)/2,

k3 = (a1 + a2 + g1 + s1 + ε+ s3 + s4 + n8)/2 + (m3 +m4 +m5 +m7)/2, (3.4.3.1)

k4 = (a2 + e1 + ζ)/2 + (m4 +m5 +m7 +m8)/2,

k5 = (a2 + e2 + s1 + ζ + s3 + s4 + n8)/2 + (m2 +m4 +m5 +m6)/2,

k6 = (a1 + e2 + ε+ ζ)/2 + (m3 +m6 +m7 +m8)/2.

3.4.4 The exceptional lattice M2,2 and the map π2,2∗

The latticeM2,2, as described in [71, §6, case 2a], is an overlattice of A⊕12
1 = ⟨v1, . . . , v12⟩

obtained by adding as generator the elements (v1 + · · ·+ v8)/2 and (v5 + . . . v12)/2. We
want to find an explicit embedding of M2,2 in H2(Ỹ ,Z): actually, we can obtain it as
overlattice of N ⊕ π̂ρ∗Γ2,2 = N ⊕ ⟨n1, n2, n3, n4⟩, as follows.

Proposition 3.4.4.1. The lattice M2,2 is generated over Q by the elements n1, . . . , n4,
m1, . . . ,m8. To get a set of Z-generators, add the elements

µ1 =
m1 + · · ·+m8

2
, µ2 =

n1 + · · ·+ n4 +m1 +m2 +m7 +m8

2
.

Proof. A Q-basis of M2,2 is obviously {n1, . . . , n4,m1, . . . ,m8}, as these are the classes
that come from resolution of the singularities in our construction. Notice moreover that
it holds µ1 ∈ N , while µ2 is the one of the only two linear combinations of the form
(n1 + · · ·+ n4 +mi +mj +mh +mk)/2 which are integral in H2(Ỹ ,Z), the other being
of course (n1 + · · ·+ n4 +m3 +m4 +m5 +m6)/2.

Remark 3.4.4.2. Consider the map (π2,2)∗, defined as the composition π̂φ∗ ◦ πτ∗: then

(π2,2)∗H
2(X,Z) is a sublattice of index 2 of π̂φ∗H

2(Z̃τ ,Z). Indeed, it does not contain
the element γ/2 (see Remark 3.4.3.2).
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3.4.5 The surface Ỹ as quotient of Z̃φ

Proposition 3.4.5.1. Consider the sublattice πφ∗W ⊕A⊕8
1 of finite index of H2(Z̃φ,Z):

the map π̂τ ∗ acts in the following way on it:

A2

ã1, ã2

⊕ A2

b̃1, b̃2

⊕ A2

ẽ1, ẽ2

⊕ A2

g̃1, g̃2

⊕ A2(2)
w̃, z̃

⊕ U(6)
x̂, ŷ

⊕
[
8 4
4 8

]
v̂1, v̂2

⊕ A⊕2
1

n1, n5

⊕ A⊕2
1

n2, n4

⊕ A⊕2
1

n3, n8

⊕ A⊕2
1

n6, n7

A2

a1, a2

A2(2)
e1, e2

A2(2)
g1, g2

0 U(12)
x, y

[
16 8
8 16

]
v1, v2

⊕ A1

ñ1

⊕ A1

ñ2

⊕ A1

ñ3

⊕ A1

ñ6

⊕ ⊕ ⊕ ⊕ ⊕

The lattice π̂τ ∗H
2(Z̃φ,Z) can be obtained by Q-linear extension applied to the elements

α̃, γ̃, ε̃, ζ̃, η̃ which are the image via πφ∗ of the elements (3.3.1.1), and ν, t1, . . . , t6 defined
in Remark 3.4.2.2. We denote ⋆̃ = π̂τ∗⋆; if ⋆ = πφ∗• for • ∈ H2(X,Z), then • = ⋆̃.

The resolution of the singularities Ỹ → Z̃φ/τ̂ introduces in cohomology another copy of
the lattice N : calling m1, . . .m8 the (−2)-classes that generate N over Q, we can choose
as elements that glue π̂τ ∗H

2(Z̃φ,Z)⊕N to H2(Ỹ ,Z) the following:

h1 = (e2 + a1 − t̃4 − ε− ζ − ñ1 − t̃3)/2 + (m5 +m3 +m2 +m8)/2;

h2 = (a2 − t̃4 − ζ − ñ1 − t̃3)/2 + (m4 +m3 +m2 +m8)/2;

h3 = (g2 + e2 + e1 + a2 − t̃4 − ζ − ñ1 − t̃3)/2 + (m7 +m5 +m4 +m3)/2;

h4 = (g2 + e2 + a2 − t̃4 − ζ − ñ1 − t̃3)/2 + (m7 +m5 +m4 +m8)/2;

h5 = (g1 + e2 + a1 − ε+ a2)/2 + (m6 +m5 +m4 +m2)/2;

h6 = (g1 + g2 + e1)/2 + (m7 +m6 +m3 +m8)/2.

Proposition 3.4.5.2. The lattice M2,2 is generated over Q by the elements ñ1, ñ2, ñ3, ñ6
m1, . . . ,m8. To get a set of Z-generators, add the elements

µ1 =
m1 + · · ·+m8

2
, µ′2 =

ñ1 + ñ2 + ñ3 + ñ6 +m3 +m4 +m5 +m8

2
.

Remark 3.4.5.3. We won’t give the explicit change of basis of H2(Ỹ ,Z) between Ỹ
obtained as quotient of Z̃τ or Z̃φ. Notice however that the lattice M2,2 is preserved:
indeed, it is generated over Q by the exceptional curves introduced in the resolution of
X/(Z/2Z)2, which do not depend on the intermediate quotient.

3.4.6 Quotients of the surface Xω

In this section, we give a geometric description of how the element described in Remark
3.4.3.2 appears: to this end, we will consider the action of (Z/2Z)2 on the elliptic K3
surface Xω described in Section 3.2.1, looking in particular at the reducible fiber I∗6 .
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We are going to rewrite the curves C0, . . . , C10 in terms of the basis of NS(Xω) described
in Section 3.2.2: starting from its sublattice

A⊕6
2 ⊕ U(3) = ⟨s, C0, t, C1, r, C10, q, C9, C3, C4, C7, C6, u1, S2 − u1⟩

(which in Section 3.3.1 correspond, in the same order, to ⟨a1, a2, b1, b2, c1, c2, d1, d2, e1, e2,
f1, f2, x, y⟩) we recover the missing curves of the fiber I∗6 as

C5 = (2u1 − S2 − C3 − 2C4 − 2C6 − C7)/3 = γ − e2 − f2,

C8 = (S2 − u1 − r − q − C6 − 2C7 − 2C9 − 2C10)/3,

C2 = C8 − (2C0 + 2C3 + C4 − C6 − 2C7 − 2C9 + 2C1 − 2C10 − q + t+ s− r)/3.

C0 C1

C2 C3 C4 C5 C6 C7 C8

C9 C10

The action of τ exchanges C0 with C1, C9 with C10; on each of the remaining curves τ
fixes two points (as it’s a symplectic involution acting on a rational curve), giving the
eight singular points of the quotient surface Zω := Xω/τ . Since Ĉi := πτ∗C = dπ(C),
where d is the degree of π|C , it holds Ĉ2

1 = −2 = Ĉ2
9 , Ĉ

2
i = −4 for i = 2, . . . 8, ĈiĈi+1 = 2

for i = 1, . . . 8.

The resolution introduces eight rational curves, giving a fiber of type I∗12 on Z̃ω. Num-
bering the exceptional curves n1, . . . , n8 as in Section 3.4.1.1, the fiber of type I∗12 is
spanned as follows:

Ĉ1 n7

K2 n4 K3 n8 K4 n2 K5 n5 K6 n1 K7 n6 K8

n3 Ĉ9

with the curves Ki defined as:

K2 = (Ĉ2 − n4 − n7)/2; K3 = (Ĉ3 − n4 − n8)/2;

K4 = (Ĉ4 − n2 − n8)/2; K5 = (Ĉ5 − n2 − n5)/2;

K6 = (Ĉ6 − n1 − n5)/2; K7 = (Ĉ7 − n1 − n6)/2; K8 = (Ĉ8 − n3 − n6)/2.

The action of the involution φ̂ on Z̃ω is described in Section 3.4.3: the curves of the
fiber I∗12 are identified symmetrically with respect to K5, on which φ̂ fixes two points
(that become two of the eight isolated singularities of the quotient surface Yω := Z̃ω/φ̂).
Again, by definition of the map π̂φ∗, calling Ci = π̂φ∗Ĉi (i = 1, . . . , 10), Kj = π̂φ∗Kj

(j = 2, . . . , 8) and nk = π̂φ∗nk (k = 1, . . . , 8) all the curves C1, C9,Kj , nk have self-

intersection −2, with the exception of K
2
5 = −4.
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Remark 3.4.6.1. Since n2 = π̂φ∗n2 = π̂φ∗n5, and C5 = γ − 2e2, it holds

K5 = (C5 − 2n2)/2 = γ/2− e2 − n2.

Therefore, since e2, n2 are integral elements, also γ/2 is integral.

To conclude, we compute the resolution: we have to introduce two new rational curves,
giving a fiber of type I∗6 on the K3 surface Ỹω: numbering the exceptional curves
m1, . . . ,m8 as in Section 3.4.3, the I∗6 -type fiber is spanned as follows, with K̃5 :=
(K5 −m1 −m6)/2:

C1 n3

K2 n4 K3 n1 K4 n2 K̃5

m1 m6

.

3.4.7 A lattice-theoretic characterization of the intermediate quotient surface

Similarly to theorem 2.4.5.1 for the action of Z/4Z, we give a lattice-theoretic character-
ization of K3 surfaces which admit a symplectic involution, and are themselves resolution
of the singularities of a quotient of a K3 surface by a symplectic involution which is one
of the generators of Aut(X) = (Z/2Z)2, acting symplectically.

Theorem 3.4.7.1. Let Z̃ be a K3 surface such that rk(NS(Z̃)) = 12. There exists a K3
surface X with a symplectic action of (Z/2Z)2 such that Z̃ is birationally equivalent to
the quotient X/ι, where ι is one of the generators of (Z/2Z)2 if and only if NS(Z̃) = Γ2,2

(see Def. 3.4.1.5).

Proof. The “only if” is true by construction (see Sections 3.4.1, 3.4.2). Conversely,
suppose NS(Z̃) = Γ2,2: the embedding Ω2 ⊂ Γ2,2 described in Remark 3.4.3.3 defines a
symplectic involution ρ̂ on Z̃, and the Néron-Severi lattice of the resolution Ỹ of Y = Z̃/ρ̂
is a copy of M2,2, as proved in Proposition 3.4.4.1; therefore, by Nikulin’s results in [71]
the surface Ỹ is the resolution of the quotient of a K3 surface X by the symplectic action
of (Z/2Z)2, and it holds NS(X) = Ω2,2. The action of (Z/2Z)2 on Ω2,2 defines three
copies of Ω2 ⊂ Ω2,2, as described in Section 3.3.2; choose one of them, and define ι as the
involution for which it is the co-invariant lattice (this is always possible by the Torelli

theorem). Taking the quotient map πι : X → X/ι and the resolution X̃/ι, it then holds

NS(X̃/ι) ≃ NS(Z̃).

3.4.8 The dual maps

We’re now going to define the dual maps

π∗τ : H2(Z̃τ ,Z) → H2(X,Z)
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π∗φ : H2(Z̃φ,Z) → H2(X,Z)

π∗2,2 : H
2(Ỹ ,Z) → H2(X,Z)

using the descriptions of H2(Z̃τ ,Z), H2(Z̃φ,Z), H2(Ỹ ,Z) provided in Sections 3.4.1,
3.4.2, 3.4.3 respectively. The proof of the following proposition is similar to that of
Proposition 2.4.4.1.

Proposition 3.4.8.1. 1. The map π∗τ : H2(Z̃τ ,Z) → H2(X,Z) annihilates N , and
acts on πτ∗W ⊂ πτ∗ΛK3 as follows

πτ
∗ : A⊕3

2 ⊕ A2(2)
⊕2⊕U(6) ⊕

[
8 4
4 8

]
// A⊕6

2 ⊕ A⊕2
2 ⊕ U(3) ⊕

[
4 2
2 4

]
â1, â2ĉ1, ĉ2
ĝ1, ĝ2

ê1, ê2
f̂1, f̂2

x̂, ŷ v̂1, v̂2

 � //

a1 + b1, a2 + b2
c1 + d1, c2 + d2
g1 + h1, g2 + h2

2e1, 2e2
2f1, 2f2

2x, 2y 2v1, 2v2


Its action can be extended to πτ∗ΛK3 adding the following elements (and their
respective image to the image lattice): α̂ = (−â1 + â2 + ĉ1 − ĉ2 − ê1 + ê2 + f̂1 −
f̂2)/3, γ̂ = (x̂ − ŷ − ê1 + ê2 − f̂1 + f̂2)/3, δ̂ = (x̂ − 2ĉ1 + 2ĉ2 − ê1 + ê2)/3, ε̂ =
(x̂+ ĉ1 − ĉ2 − ê1 + ê2)/3, ζ̂ = (x̂+ ĉ1 + ĉ2 + ê1 + ê2 + ε̂)/2 + v̂2/2 + ĝ1 + ĝ2, η̂ =
(x̂+ ĉ1 + ĉ2 + ê1 + ê2 + ε̂)/2 + (ĝ1 − ĝ2 − v̂2)/3 + v̂1/6;

to extend the action to H2(Z̃τ ,Z), add also s1, . . . , s6 (see Remark 3.4.1.3).

2. The map π∗φ : H2(Z̃φ,Z) → H2(X,Z) annihilates N , and acts on πφ∗W ⊂ πφ∗ΛK3

as follows

πφ
∗ : A⊕4

2 ⊕ A2(4) ⊕U(6) ⊕

[
8 4
4 8

]
// A⊕6

2 ⊕ A⊕2
2 ⊕ U(3) ⊕

[
4 2
2 4

]

ã1, ã2
b̃1, b̃2
ẽ1, ẽ2
g̃1, g̃2

z̃, w̃ x̃, ỹ ṽ1, ṽ2

 � //


a1 + d1, a2 + d2
b1 + c1, b2 + c2
e1 + f1, e2 + f2
g1 + h1, g2 + h2

2z, 2w 2x, 2y 2v1, 2v2


Its action can be extended to πφ∗ΛK3 adding the following elements (and their re-
spective image to the image lattice): γ̃ = (x̃− ỹ− 2ẽ1 + 2ẽ2)/3, δ̃ = (x̃− b̃1 + b̃2 −
ã1 + ã2 − ẽ1 + ẽ2)/3, ε̃ = (x̃− z̃ + w̃+ b̃1 − b̃2 − ẽ1 + ẽ2)/3, ζ̃ = (x̃+ z̃ + b̃1 + b̃2 +
ẽ1+ẽ2+ε̃)/2+ṽ2/2+g̃1+g̃2, η̃ = (x̃+b̃1+b̃2+ẽ1+ẽ2+ε̃)/2+(g̃1−g̃2−ṽ2)/3+ṽ1/6;

to extend the action to H2(Z̃φ,Z), add also t1, . . . , t6 (see Remark 3.4.2.2).

3. The map π∗2,2H
2(Ỹ ,Z) → H2(X,Z) annihilates M2,2, and acts on π2,2∗W ⊂

π2,2∗ΛK3 as follows
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π2,2
∗ : A2 ⊕ A2(2)

⊕2⊕U(12) ⊕

[
16 8
8 16

]
// A⊕8

2 ⊕ U(3) ⊕

[
4 2
2 4

]
(
a1, a2

e1, e2
g1, g2

x, y v1, v2

)
� //


a1 + b1 + c1 + d1
a2 + b2 + c2 + d2

2e1 + 2f1, 2e2 + 2f2
2g1 + 2h1, 2g2 + 2h2

4x, 4y 4v1, 4v2


Its action can be extended to πφ∗ΛK3 adding the following elements (and their
respective image to the image lattice): γ = (x − y − 2e1 + 2e2)/3, ε = (x +
a1 − a2 − e1 + e2)/3, ζ = (x + a1 + a2 + e1 + e2 + v2 + ε)/2 + g1 + g2, η =
(x+ a1 + a2 + e1 + e2 + ε)/2 + (g1 − g2 − v2)/3 + v1/6;

to extend the action to H2(Ỹ ,Z), add also γ/2 and k1, . . . , k6 (see (3.4.3.1)).

Corollary 3.4.8.2. The image of the map π∗2,2 : H
2(Ỹ ,Z) → H2(X,Z) is not primitive

in H2(X,Z): indeed, it is a sublattice of index 23 of the invariant lattice for the action
of (Z/2Z)2 on X.

Proof. One finds the elements π∗2,2(k4 + k6)/2, π
∗
2,2(a1 + ε+ η)/2, π∗2,2γ/4 are integral in

H2(X,Z). However, they do not belong to π∗2,2H
2(Ỹ ,Z): indeed, a Z-basis of the latter

is given by the image via π∗2,2 of {a1, γ/2, ε, η, k1, . . . , k6}.

3.5 Projective families of K3 surfaces with a symplectic action
of (Z/2Z)2 and their quotients

Projective families of K3 surfaces with a symplectic action of a finite group G are classi-
fied by the Néron-Severi lattice of their general member, which is always some overlattice
of finite index of ΩG ⊕ ⟨2d⟩ (see Remark 1.4.0.5). The notation for the overlattices is
explained in Remark 2.5.0.5.
As is the case with the action of Z/4Z, the family of X uniquely determines the family
of Ỹ , the resolution of X/(Z/2Z)2. However, unlike the cyclic case, when G = (Z/2Z)2,
knowing the family which X belongs to is not always enough to determine the family
the intermediate quotient surface Z̃ belongs to: indeed, two different phenomena can
happen. When d is even, the two generators τ, φ of (Z/2Z)2 may act differently on the
polarization L of X (the third involution ρ = φ ◦ τ always acts as τ acts): if so, the two
quotient surfaces Z̃τ , Z̃φ belong to different projective families. Moreover, when d =4 2
the projective family polarized with the lattice (Ω2,2⊕⟨2d⟩)′ admits two distinct actions
of (Z/2Z)2, corresponding to two different primitive embeddings of Ω2,2: for one of them,
the involutions τ∗, φ∗ act differently on the ample class L = Ω⊥

2,2, for the other they act

similarly. Therefore, if X belongs to this family, there are three different families Z̃ can
belong to.

We proceed similarly to Section 2.5: we are going to skip repeating the explanation of
the methods, and the proofs which are readily adapted from those presented there.
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3.5.1 Projective families of K3 surfaces with a symplectic action of (Z/2Z)2

Proposition 3.5.1.1. The relation ∼Ω2,2 (see Def. 2.5.1.1) divides AΩ2,2 in 4 non-
trivial equivalence classes (plus the trivial one {0}):

k
g

0 1/2 1 3/2

2 111 0 144 0
4 0 384 0 384

The equivalence classes for ≈Ω2,2 are given in the table below: for each one we give a
representative element x(k,g,n) in terms of the generators of Ω2,2.

class (k, g, n) representative x(k,g,n)

(2, 0, 108) f1−e1+h1−g1
2

(2, 0, 3) b1+c1+d1−3a1
2

(2, 1, 108) w+f1−e1+h1−g1
2

(2, 1, 36) w/2

(4, 1/2, 384) b1+c1+d1−3a1
4

(4, 3/2, 384) b2+c2+d2−3a2
4 + w

2

Theorem 3.5.1.2. Let X be a projective K3 surface that admits a symplectic action of
(Z/2Z)2, such that rk(NS(X)) = 13. Then, NS(X) is one of the following lattices:

1. for every d ∈ N, NS(X) = Ω2,2 ⊕ ⟨2d⟩;

2. for any d =4 0 there are two possible overlattices of index 2 of Ω2,2⊕⟨2d⟩, NS(X) =
(Ω2,2 ⊕ ⟨2d⟩)′(i), i = 1, 2: these are not isometric lattices;

3. for d =4 2, NS(X) = (Ω2,2 ⊕ ⟨2d⟩)′: this lattice is uniquely determined by d and
the index, but it admits two non isomorphic embeddings ι1, ι2 : Ω2,2 ↪→ NS(X),
i.e. no isometry ψ ∈ O(Ω2,2) exists such that ι1 = ι2 ◦ ψ;

4. For d =16 4 or d =16 −4, NS(X) = (Ω2,2 ⊕ ⟨2d⟩)⋆ overlattice of index 4 of
Ω2,2 ⊕ ⟨2d⟩, uniquely determined by d and the index of the overlattice.

Example 3.5.1.3. We are going to exhibit a primitive embedding in ΛK3 of each of the
lattices presented in 3.5.1.2, having fixed the primitive embedding of Ω2,2 in H2(X,Z)
described in Section 3.3.2, by providing examples of primitive classes L ∈ Ω

⊥H2(X,Z)
2,2 such

that L2 = 2d (we may assume that L is ample by Lemma 2.5.0.2). We use the notation of
Section 3.3.1, and we construct the overlattices using the elements x(k,g,n) in Proposition
3.5.1.1. We remark that using x(2,1,108) and x(2,1,36) we obtain isomorphic lattices.
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1. For every d ∈ N \ {0}, the class

L0 = L0(d) = (x+ 2y − e1 − f1 + e2 + f2)/3 + dy

generates the lattice ⟨2d⟩ such that Ω2,2⊕⟨2d⟩ is primitively embedded inH2(X,Z).

2. For d = 4h, h ∈ N \ {0} the class

L
(1)
2,0(h) = 2L0(h) + e1 + f1 + g1 + h1

generates the lattice ⟨2d⟩ such that (Ω2,2 ⊕ ⟨2d⟩)′(1) is primitively embedded in

H2(X,Z); L(1)
2,0/2 + x(2,0,108) is in fact integral in H2(X,Z).

3. For d = 4(h− 1), h ∈ N \ {0, 1} the class

L
(2)
2,0(h) = 2L0(h) + a1 + b1 + c1 + d1

generates the lattice ⟨2d⟩ such that (Ω2,2 ⊕ ⟨2d⟩)′(2) is primitively embedded in

H2(X,Z); L(2)
2,0/2 + x(2,0,3) is in fact integral in H2(X,Z).

4. For d = 4h+ 2, h ∈ N, the class

L
(a)
2,2(h) = 2L0(h) + v2 + f1 + e1 + h1 + g1

generates the lattice ⟨2d⟩ such that (Ω2,2 ⊕ ⟨2d⟩)′ is primitively embedded in

H2(X,Z); L(a)
2,2/2 + x(2,1,108) is in fact integral in H2(X,Z).

5. For d = 4h+ 2, h ∈ N, the class

L
(b)
2,2(h) = 2L0(h) + v2

generates the lattice ⟨2d⟩ such that (Ω2,2 ⊕ ⟨2d⟩)′ is primitively embedded in

H2(X,Z); L(b)
2,2/2 + x(2,1,36) is in fact integral in H2(X,Z).

6. For d = 16h− 4, h ∈ N, the class

L4,−4(h) = 4L0(h) + a1 + b1 + c1 + d1

generates the lattice ⟨2d⟩ such that (Ω2,2 ⊕ ⟨2d⟩)⋆ is primitively embedded in
H2(X,Z); L4,−4/4 + x(4,1/2,384) is in fact integral in H2(X,Z).

7. For d = 16h+ 4, h ∈ N, the class

L4,4(h) = 4L0(h) + 2v2 + a2 + b2 + c2 + d2

generates the lattice ⟨2d⟩ such that (Ω2,2 ⊕ ⟨2d⟩)⋆ is primitively embedded in
H2(X,Z); L4,4/4 + x(4,3/2,384) is in fact integral in H2(X,Z).
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3.5.2 Projective families of K3 surfaces that arise as resolution of the singularities of
X/(Z/2Z)2

Projective surfaces Ỹ that are the resolution of X/(Z/2Z)2 have to primitively contain
in their Néron-Severi both the exceptional lattice M2,2 described in Section 3.4.4 and a

positive class L of square 2e that generates M
⊥NS(Ỹ )

2,2 : therefore, Ỹ is polarized with the
lattice M2,2 ⊕ ⟨2e⟩ or one of its cyclic overlattices.

Theorem 3.5.2.1. The relation ∼M2,2 (see Def. 2.5.1.1) divides AM2,2 in 4 non-trivial
equivalence classes (plus the trivial one {0}):

k
g

0 1/2 1 3/2

2 55 64 72 64

We give a representative element x(k,g,n) for each non-trivial equivalence class (k, g, n)
for ≈M2,2 in terms of the generators of M2,2 introduced in Proposition 3.4.4.1.

class (k, g, n) representative x(k,g,n)

(2, 0, 54) (n1 + n4 +m1 +m7)/2

(2, 0, 1) (m3 +m4 +m5 +m6)/2

(2, 1/2, 64) (n1 +m1 +m6)/2

(2, 1, 54) (n1 + n4 +m1 +m4 +m5 +m7)/2

(2, 1, 18) (m3 +m6)/2

(2, 3/2, 64) (n1 +m1 +m3 +m4 +m5)/2

Theorem 3.5.2.2. Let Ỹ be a projective K3 surface such that rk(NS(Ỹ )) = 13 and
NS(Ỹ ) contains primitively M2,2 and ⟨2e⟩, e ∈ N \ {0}. Then, NS(Ỹ ) is one of the
following:

1. for every e, NS(Ỹ ) =M2,2 ⊕ ⟨2e⟩;

2. for every e, NS(Ỹ ) is an overlattice of index 2 of M2,2 ⊕ ⟨2e⟩. If e =4 0 there are
two non isomorphic possibilities for NS(Ỹ ): (M2,2 ⊕ ⟨2e⟩)′(i), i = 1, 2; if e =4 2
NS(Ỹ ) = (M2,2 ⊕ ⟨2e⟩)′ is unique, but there are two non isomorphic embeddings
of M2,2 in NS(Ỹ ). If e is odd, this overlattice uniquely determined by e and the
index.

Each of these lattices admits a unique primitive embedding in ΛK3.

Proof. The overlattices of M2,2 ⊕ ⟨2e⟩ are in bijection with the equivalence classes for
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≈M2,2 . Fix the primitive embedding M2,2 ↪→ ΛK3 as in Proposition 3.4.4.1: the ortho-
gonal complement of M2,2 is the overlattice of index 2 of the lattice (π2,2)∗H

2(X,Z)
obtained by the addition of γ/2 as generator.

We can use as generators of the lattice ⟨2e⟩ = M
⊥NS(Ỹ )

2,2 the primitive classes L in

H2(Ỹ ,Z) obtained from (π2,2)∗L (with L as in Example 3.5.1.3) as follows:

1. NS(Ỹ ) =M2,2 ⊕ ⟨2e⟩ is realized as follows:

� if e =2 0 by L = (π2,2)∗L
(2)
2,0(h)/4, h = e+ 1;

� if e =4 1 by L = (π2,2)∗L4,4(h)/4, h = (e− 1)/4;

� if e =4 3 by L = (π2,2)∗L4,−4(h)/4, h = (e+ 1)/4;

2. NS(Ỹ ) = (M2,2 ⊕ ⟨2e⟩)′ is realized as follows:

� if e =2 1, L = (π2,2)∗L0(e)/2; if e =4 1 the element L/2+x(2,3/2,64) is integral

in H2(Ỹ ,Z), if e =4 3 the element L/2 + x(2,1/2,64) is;

� if e =4 2, L = (π2,2)∗L
(k)
2,2(h)/2; if k = a L glues to an element of the class

(2, 1, 54), that is x(2,1,54) if h is even, (n1+n4+m1+m3+m6+m7)/2 otherwise;

if k = b, L glues to an element of the class (2, 1, 18), that is x(2,1,18) if h is
even, (m4+m5)/2 otherwise; the lattices obtained for k = a, b are isomorphic,
but the isomorphism does not restrict to an isometry of M2,2;

� if e =8 4, either L = (π2,2)∗L
(1)
2,0(h)/2, h = e/4, and L glues to (n1 + n4 +

m1 +m3 +m4 +m5 +m6 +m7)/2, which belongs to the class (2, 0, 54); or

L = (π2,2)∗L
(2)
2,0(h)/2, h = e/4 + 1, and L/2 + x(2,0,1) is integral; the lattices

obtained are not isomorphic.

� if e =8 0, either L = (π2,2)∗L
(1)
2,0(h)/2, h = e/4, and L/2 + x(2,0,54) is integral;

or L = (π2,2)∗L0(d), d = e/4, and L/2+ x(2,0,1) is integral; again, the lattices
obtained are not isomorphic.

Since all the equivalence classes for the relation ≈M2,2 have been used, we’ve exhausted

all the possibile overlattices ofM2,2⊕⟨2e⟩. Each non-isomorphic NS(Ỹ ) admits a unique
primitive embedding in ΛK3, by Proposition 1.2.1.11.

Corollary 3.5.2.3. In the following table we give the correspondence between families
of K3 surfaces X with a symplectic action of (Z/2Z)2, and Ỹ which is the minimal
resolution of the quotient X/(Z/2Z)2, with the notation of Remark 2.5.0.5. The primitive
classes L ∈ NS(Ỹ ) that generate the sublattices ⟨nd⟩ as stated are indicated in curly
brackets.
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NS(X) NS(Ỹ )

d =2 1 Ω2,2 ⊕ ⟨2d⟩ (M2,2 ⊕ ⟨2d⟩)′ {L = π2,2∗L0/2}

d =4 2
Ω2,2 ⊕ ⟨2d⟩ (M2,2 ⊕ ⟨8d⟩)′ {L = π2,2∗L0}

(Ω2,2 ⊕ ⟨2d⟩)′ (M2,2 ⊕ ⟨2d⟩)′
{
L =

π2,2∗L
(k)
2,2

2 , k = a, b
}

d =8 0

Ω2,2 ⊕ ⟨2d⟩ (M2,2 ⊕ ⟨8d⟩)′ {L = π2,2∗L0}

(Ω2,2 ⊕ ⟨2d⟩)′(1) (M2,2 ⊕ ⟨2d⟩)′
{
L =

π2,2∗L
(1)
2,0

2

}
(Ω2,2 ⊕ ⟨2d⟩)′(2) M2,2 ⊕ ⟨d/2⟩

{
L =

π2,2∗L
(2)
2,0

4

}

d =8 4

Ω2,2 ⊕ ⟨2d⟩ (M2,2 ⊕ ⟨8d⟩)′ {L = π2,2∗L0}

(Ω2,2 ⊕ ⟨2d⟩)′(1) (M2,2 ⊕ ⟨2d⟩)′(1)
{
L =

π2,2∗L
(1)
2,0

2

}
(Ω2,2 ⊕ ⟨2d⟩)′(2) (M2,2 ⊕ ⟨2d⟩)′(2)

{
L =

π2,2∗L
(2)
2,0

2

}
(Ω2,2 ⊕ ⟨2d⟩)⋆ M2,2 ⊕ ⟨d/2⟩

{
L =

π2,2∗L4,−4

4 ,
π2,2∗L4,4

4

}
3.5.3 Projective families of K3 surfaces that are intermediate quotient for the sym-

plectic action of (Z/2Z)2

Projective surfaces Z̃ that are the resolution of X/⟨ι⟩, where ι is one of the generators of
(Z/2Z)2 have to primitively contain in their Néron-Severi both the lattice Γ2,2 described

in Definition 3.4.1.5, and a positive class L of square 2x that generates Γ
⊥NS(Z̃)

2,2 : therefore,

Z̃ is polarized with the lattice Γ2,2 ⊕ ⟨2x⟩ or one of its cyclic overlattices.

Remark 3.5.3.1. Since the orthogonal complement of Γ2,2 in H2(Z̃,Z) is the image of
H2(X,Z) via the map πι∗, where ι is either τ, ρ or φ, one expects that any overlattice S
of Γ2,2 ⊕ ⟨2x⟩ be realized with Γ⊥S

2,2 = πι∗L, L chosen among those in Example 3.5.1.3,
divided by an appropriate integer if not already primitive. This is, however, not entirely

true: indeed, for L ∈ {L(1)
2,0, L

(b)
2,2} the classes πτ∗L and πφ∗L realize different overlattices

S; therefore, to get the full picture both involutions τ, φ must be considered simultan-
eously (while ρ gives the same results as τ).

There is an alternative path we could have taken: find classes L
(3)
2,0, L

(c)
2,2 which glue to

the same orbit as L
(1)
2,0, L

(b)
2,2 respectively for the action induced by O(Ω2,2) on the discri-

minant group, but on which τ∗ acts as φ∗ acts on L
(1)
2,0, L

(b)
2,2 respectively. For instance,

in the same orbit for the action induced by O(Ω2,2) on the discriminant group we find
the elements w/2, which is killed by πτ∗, but not by πφ∗, and (e1− f1)/2, which is killed
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by πφ∗, but not by πτ∗.

Theorem 3.5.3.2. Let Z̃ be a K3 surface such that rk(NS(Z̃)) = 13; suppose NS(Z̃)
admits a primitive embedding of both Γ2,2 and a class of positive square 2x that generates

Γ
⊥NS(Z̃)

2,2 . Then NS(Z̃) is one of the following:

1. for any x, Γ2,2 ⊕ ⟨2x⟩;

2. for any x =4 0 there are two non-isomorphic overlattices of index 2: (Γ2,2⊕⟨2x⟩)′(i),
i = 1, 2;

3. for x =4 2, (Γ2,2⊕⟨2x⟩)′, uniquely determined by x and the index of the overlattice;

4. for x =8 4, (Γ2,2⊕⟨2x⟩)⋆, uniquely determined by x and the index of the overlattice.

Proof. Consider the table of non-trivial equivalence classes for ∼Γ2,2 :

k
g

0 1/2 1 3/2

2 23 0 40 0
4 0 96 0 96

An element of the form (E + α)/2, with E2 = 2x and α ∈ Γ2,2, has integer, even self-
intersection only if x is even, and an element of the form (E + α)/4 only if x =8 4.
The equivalence classes for ≈Γ2,2 are presented in the following table:

class (k, g, n) repr. x(k,g,n) ∈ πτ∗H
2(X,Z) repr. y(k,g,n) ∈ πφ∗H

2(X,Z)

(2, 0, 3) f̂1−ê1
2

n2+n3+n4+n8
2

(2, 0, 8) n3+n5+n6+n8
2

n3+n4+n5+n7
2

(2, 0, 12) f̂1−ê1+n4+n6+ĉ1−â1
2

b̃1−ã1+n6+n7
2

(2, 1, 4) f̂1−ê1+n4+n6

2
n6+n7

2

(2, 1, 12) ĉ1−â1
2

b̃1−ã1
2

(2, 1, 24) n3+n6+n5+n8+ĉ1−â1
2

b̃1−ã1+n3+n4+n5+n7
2

(4, 1/2, 96) 3(f̂1−ê1)
4 + n6+n8

2
n2+n3+3n4+3n8

4 +
x′1
2

(4, 3/2, 96) f̂1−ê1
4 + n3+n4+n5+n6

2
n2+3n3+n4+3n8

4 +
x′1+n5+n6

2

The corresponding overlattice of Γ2,2 ⊕ ⟨2x⟩ can be realized having fixed either the
embedding Γ2,2 ∈ H2(Z̃τ ,Z) as in Definition 3.4.1.5, or Γ̃ ∈ H2(Z̃φ,Z) as in Proposition
3.4.2.5 (recall that Γ2,2 ≃ Γ̃, and it admits a unique primitive embedding in ΛK3). We
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write πι∗L where both πτ∗L, πφ∗L give the same projective family: this can be checked
by direct computation of the discriminant group.

1. The lattice Γ2,2 ⊕ ⟨2x⟩ is realized as follows:

� if x = 2h+ 1, Γ⊥
2,2 = πτ∗L

(b)
2,2(h)/2;

� if x = 2h, Γ⊥
2,2 = πφ∗L

(1)
2,0(h)/2;

2. The overlattices of index 2 of Γ2,2 ⊕ ⟨2x⟩ are realized as follows:

� if x = 4h+2, Γ⊥
2,2 can be πι∗L0(2h+1), πι∗L

(2)
2,0(2h+2)/2 and, depending on the

parity of h, one between πι∗L4,−4(h/2 + 1/2)/2, πι∗L4,4(h/2)/2, (respectively
for h odd or even). The three overlattices thus realized are isometric, but the
isometry does not restrict to Γ2,2: indeed, the selected positive classes glue to
elements belonging respectively to the orbits (2, 1, 4), (2, 1, 24), (2, 1, 12).

� if x = 8h + 4, Γ⊥
2,2 can be πι∗L0(4h + 2), πι∗L

(2)
2,0(4h + 3)/2 or πι∗L

(a)
2,2(h)/2;

the first two choices give isometric overlattices (the isometry does not re-
strict to Γ2,2, since they glue to elements belonging respectively to the orbit
(2, 0, 8), (2, 0, 12)), the last gives a different one (it glues to an element in
(2, 0, 3)).

� if x = 8h, Γ⊥
2,2 can be πι∗L0(4h), πι∗L

(2)
2,0(4h+1)/2 or πτ∗L

(1)
2,0(h); the first two

choices give isometric overlattices (the isometry does not restrict to Γ2,2, since
they glue to elements belonging respectively to the orbit (2, 0, 8), (2, 0, 12)),
the last gives a different one (it glues to an element in (2, 0, 3)).

3. The overlattice of index 4 of Γ2,2 ⊕ ⟨2x⟩ for x = 8h + 4 is realized by Γ⊥
2,2 =

πφ∗L
(b)
2,2(h): it glues to an element in (4, 3/2, 96) if h is even, in (4, 1/2, 96) if h is

odd.

Corollary 3.5.3.3. We give the correspondence between families of projective K3 sur-
faces X with a symplectic action of (Z/2Z)2 and Z̃, the resolution of the singularities
of the quotient X/ι, with ι one of the generators of (Z/2Z)2, by describing the relation
between the Néron-Severi lattices of their general member. When choosing different in-
volutions gives different results, they are denoted τ, φ accordingly to the previous sections.
The notation is explained in Remark 2.5.0.5.
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NS(X) NS(Z̃)

d =2 1 Ω2,2 ⊕ ⟨2d⟩ (Γ2,2 ⊕ ⟨4d⟩)′ {πι∗L0}

d =4 2

Ω2,2 ⊕ ⟨2d⟩ (Γ2,2 ⊕ ⟨4d⟩)′(1) {πι∗L0}

(Ω2,2 ⊕ ⟨2d⟩)′
(Γ2,2 ⊕ ⟨4d⟩)′(2)

{
πι∗L

(a)
2,2

}
Γ2,2 ⊕ ⟨d⟩

{
πτ∗L

(b)
2,2/2

}
(Γ2,2 ⊕ ⟨4d⟩)⋆

{
πφ∗L

(b)
2,2

}

d =8 0

Ω2,2 ⊕ ⟨2d⟩ (Γ2,2 ⊕ ⟨4d⟩)′(1) {πι∗L0}

(Ω2,2 ⊕ ⟨2d⟩)′(1)
Γ2,2 ⊕ ⟨d⟩

{
πφ∗L

(1)
2,0/2

}
(Γ2,2 ⊕ ⟨4d⟩)′(2)

{
πτ∗L

(1)
2,0

}
(Ω2,2 ⊕ ⟨2d⟩)′(2) (Γ2,2 ⊕ ⟨d⟩)′

{
πι∗L

(2)
2,0/2

}

d =8 4

Ω2,2 ⊕ ⟨2d⟩ (Γ2,2 ⊕ ⟨4d⟩)′(1) {πι∗L0}

(Ω2,2 ⊕ ⟨2d⟩)′(1)
Γ2,2 ⊕ ⟨d⟩

{
πφ∗L

(1)
2,0/2

}
(Γ2,2 ⊕ ⟨4d⟩)′(2)

{
πτ∗L

(1)
2,0

}
(Ω2,2 ⊕ ⟨2d⟩)′(2)

(Γ2,2 ⊕ ⟨d⟩)′
{
πι∗L

(2)
2,0/2

}
(Ω2,2 ⊕ ⟨2d⟩)⋆

{πι∗L4,−4

2 ,
πι∗L4,4

2

}
3.6 Projective models

Given a nef and big divisor L on X, there is a natural map ϕ|L| : X → P(H0(X,L)∗) ≃
Pn, with n = L2/2+1. Any automorphism σ of X that preserves L induces an action on
P(H0(X,L)∗): in particular, if σ is finite of orderm, we can splitH0(X,L) in eigenspaces
corresponding to the m-roots of unity.

Remark 3.6.0.1. As we already discussed in Remark 2.6.0.1, the action of σ on H0(X,L)
could have order km for some integer k > 1, being such that

σm : (x0, . . . , xn) 7→ ξk(x0, . . . , xn)

for ξk a root of unity. Consider however the action of (Z/2Z)2 = ⟨τ, φ⟩ on X: even if we
tacitly take τk and φh on H0(X,L) instead of τ and φ (as we did in Remark 2.6.0.1),
we don’t have any control on the order of their composition ρ – we only know that it
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divides kh. Therefore, if the group acting on H0(X,L) is bigger than (Z/2Z)2, we can
assume it is dihedral.

3.6.1 Eigenspaces of τ, φ

Let X be a K3 surface with a symplectic action of (Z/2Z)2, let L be the ample class that

generates Ω
⊥NS(X)

2,2 . We consider the action of the symplectic involutions τ, φ ∈ (Z/2Z)2

(recall that the third involution ρ = φ◦ τ acts on L as τ acts): if Z̃τ , Z̃φ are the minimal
resolution of X/τ,X/φ respectively, we have

H0(X,L) = π∗τH
0(Z̃τ , E1)⊕ π∗τH

0(Z̃τ , E2)

= π∗φH
0(Z̃φ, F1)⊕ π∗φH

0(Z̃φ, F2);

the nef divisors E1, E2 ∈ NS(Z̃τ ), F1, F2 ∈ NS(Z̃φ) that satisfy these equalities for the
choices of ample classes introduced in Example 3.5.1.3 are defined in the following tables
with the exceptional curves numbered as in Sections 3.4.1, 3.4.2:

L0(d) d =2 0 d =2 1

E1 πτ∗L0/2− (n3 + n5 + n6 + n8)/2 πτ∗L0/2− (n1 + n8)/2

E2 πτ∗L0/2− (n1 + n2 + n4 + n7)/2 πτ∗L0/2−(n2+n3+n4+n5+n6+n7)/2

F1 πφ∗L0/2− (n1 + n2 + n6 + n8)/2 πφ∗L0/2− (n6 + n7)/2

F2 πφ∗L0/2− (n3 + n4 + n5 + n7)/2 πφ∗L0/2−(n1+n2+n3+n4+n5+n8)/2

L
(1)
2,0(h) any h

E1 πτ∗L
(1)
2,0/2− (n1 + n4 + n6 + n8)/2

E2 πτ∗L
(1)
2,0/2− (n2 + n3 + n5 + n7)/2

F1 πφ∗L
(1)
2,0/2

F2 πφ∗L
(1)
2,0/2−

∑8
i=1 ni/2

L
(2)
2,0(h) any h

E1 πτ∗L
(2)
2,0/2

E2 πτ∗L
(2)
2,0/2−

∑8
i=1 ni/2

F1 πφ∗L
(2)
2,0/2

F2 πφ∗L
(2)
2,0/2−

∑8
i=1 ni/2

L
(a)
2,2(h) any h

E1 πτ∗L
(a)
2,2/2− (n1 + n4 + n6 + n8)/2

E2 πτ∗L
(a)
2,2/2− (n2 + n3 + n5 + n7)/2

F1 πτ∗L
(a)
2,2/2− (n1 + n5 + n6 + n7)/2

F2 πτ∗L
(a)
2,2/2− (n2 + n3 + n4 + n8)/2

L4,±4(h) any h

E1 πτ∗L4,±4/2

E2 πτ∗L4,±4/2−
∑8

i=1 ni/2

F1 πφ∗L4,±4/2

F2 πφ∗L4,±4/2−
∑8

i=1 ni/2
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L
(b)
2,2(h) any h

E1 πτ∗L
(b)
2,2/2

E2 πτ∗L
(b)
2,2/2−

∑8
i=1 ni/2

F1 πφ∗L
(b)
2,2/2− (n1 + n5 + n6 + n7)/2

F2 πφ∗L
(b)
2,2/2− (n2 + n3 + n4 + n8)/2

3.6.2 Eigenspaces and classes in NS(Ỹ )

To determine the eigenspaces of the full action of (Z/2Z)2, we will have to consider the
residual involutions φ̂, τ̂ on Z̃τ , Z̃φ respectively, and how they act on the divisors Ei, Fj
defined in Section 3.6.1. In particular, recall from Propositions 3.4.3.1, 3.4.5.1 the action
of the residual involutions on the Nikulin lattice:

φ̂ =(n1, n8)(n2, n5)(n3, n7)(n4, n6)

τ̂ =(n1, n5)(n2, n4)(n3, n8)(n6, n7).

Theorem 3.6.2.1 (see [32, Prop. 2.7] and [26, Thm. 5.6]). Let X be a K3 surface that
admits a symplectic action of (Z/2Z)2, and let L be an ample divisor on X invariant
for this action. We distinguish two cases:

1. Let L2 = 2d =4 0, NS(X) = Ω2,2⊕ZL: then the action of (Z/2Z)2 on P(H0(X,L)∗)
is induced by an action of D4, the dihedral group of order 8, on H0(X,L) as follows.
Consider the presentation

D4 = ⟨a, b | a2 = b2 = 1, (ab)4 = 1⟩

then D4 acts as (Z/2Z)2 on Pd+1, as

a :(x0 : · · · : xd/2+1 : xd/2+2 : · · · : xd+2) 7→ (x0 : · · · : xd/2+1 : −xd/2+2 : · · · : −xd+2)

b :(x0 : · · · : xd/2+1 : xd/2+2 : · · · : xd+2) 7→ (xd/2+2 : · · · : xd+2 : x0 : · · · : xd/2+1).

2. For any other deformation family, there exist divisors D1, . . . , D4 ∈ NS(Ỹ ) such
that

H0(X,L) = π∗2,2H
0(Ỹ , D1)⊕ π∗2,2H

0(Ỹ , D2)⊕ π∗2,2H
0(Ỹ , D3)⊕ π∗2,2H

0(Ỹ , D4)

and every π∗2,2H
0(Ỹ , Di) corresponds to one of the subspaces which are the inter-

section of eigenspaces for the action of the two generators of (Z/2Z)2 on H0(X,L):

H0(X,L) = V++ ⊕ V+− ⊕ V−+ ⊕ V−−.
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Proof. For each projective family, consider for the associated ample class L the divisors
E1, E2 defined in section 3.6.1: the residual involution φ̂ on Z̃τ fixes E1, E2 in all cases,
except for L0(d) and d even, when they are exchanged. The same holds for the action
of τ̂ on Z̃φ and the divisors F1, F2.
If the divisors are fixed by the residual involution, we can splitH0(X,L) in four subspaces
V+,+(L), V+,−(L), V−,+(L), V−,−(L), each spanned by π∗2,2H

0(Ỹ , Di) for some nef divisors
of the quotient surface: the proof follows the same argument of the cyclic case (see
Proposition 2.6.1.1), using the divisors Di defined below.

– Consider L0(d), d odd; depending on the value of d mod 4, we define D1, . . . , D4 as
follows:

L0(d) d =4 1 d =4 3

D1
π2,2∗L0

4 − n1+m1+m3+m4+m5
2

π2,2∗L0

4 − n1+m1+m6
2

D2
π2,2∗L0

4 − n1+m2+m6+m7+m8
2

π2,2∗L0

4 − n1+m2+m3+m4+m5+m7+m8
2

D3
π2,2∗L0

4 − n2+n3+n4+m2+m3+m4+m5+m7+m8
2

π2,2∗L0

4 − n2+n3+n4+m2+m6+m7+m8
2

D4
π2,2∗L0

4 − n2+n3+n4+m1+m6
2

π2,2∗L0

4 − n2+n3+n4+m1+m3+m4+m5
2

– Consider L
(1)
2,0(h), whose square is 2d = 8h; depending on the value of h mod 2, we

define D1, . . . , D4 as follows.

L
(1)
2,0(h) h =2 0

D1
π2,2∗L

(1)
2,0

4 − n1+n4+m1+m7
2

D2
π2,2∗L

(1)
2,0

4 − n1+n4+m2+m3+m4+m5+m6+m8
2

D3
π2,2∗L

(1)
2,0

4 − n2+n3+m2+m8
2

D4
π2,2∗L

(1)
2,0

4 − n2+n3+m1+m3+m4+m5+m6+m7
2

L
(1)
2,0(h) h =2 1

D1
π2,2∗L

(1)
2,0

4 − n1+n4+m1+m3+m4+m5+m6+m7
2

D2
π2,2∗L

(1)
2,0

4 − n1+n4+m2+m8
2

D3
π2,2∗L

(1)
2,0

4 − n2+n3+m2+m3+m4+m5+m6+m8
2

D4

π2,2∗L
(1)
2,0

4 − n2+n3+m1+m7
2

– Consider L
(2)
2,0(h), whose square is 2d = 8(h−1); depending on the value of h mod 2, we

define D1, . . . , D4 as follows (the elements µ1, µ2 are defined in Proposition 3.4.4.1).

96



L
(2)
2,0(h) h =2 0 h =2 1

D1
π2,2∗L

(2)
2,0

4 − m3+m4+m5+m6
2

π2,2∗L
(2)
2,0

4

D2
π2,2∗L

(2)
2,0

4 − m1+m2+m7+m8
2

π2,2∗L
(2)
2,0

4 − µ1

D3
π2,2∗L

(2)
2,0

4 − n1+n2+n3+n4+
∑

imi

2

π2,2∗L
(2)
2,0

4 − µ2

D4
π2,2∗L

(2)
2,0

4 − n1+n2+n3+n4
2

π2,2∗L
(2)
2,0

4 − µ1 − µ2

– Consider L
(k)
2,2(h), k = a, b, whose square is 8h + 4; depending on the value of h mod

2, we define D1, . . . , D4 as follows:

L
(a)
2,2(h) h =2 0 h =2 1

D1
π2,2∗L

(a)
2,2

4 − n1+n4+m1+m4+m5+m7
2

π2,2∗L
(a)
2,2

4 − n1+n4+m1+m3+m6+m7
2

D2
π2,2∗L

(a)
2,2

4 − n1+n4+m2+m3+m6+m8
2

π2,2∗L
(a)
2,2

4 − n1+n4+m2+m4+m5+m8
2

D3
π2,2∗L

(a)
2,2

4 − n2+n3+m2+m4+m5+m8
2

π2,2∗L
(a)
2,2

4 − n2+n3+m2+m3+m6+m8
2

D4
π2,2∗L

(a)
2,2

4 − n2+n3+m1+m3+m6+m7
2

π2,2∗L
(a)
2,2

4 − n2+n3+m1+m4+m5+m7
2

L
(b)
2,2(h) h =2 0 h =2 1

D1
π2,2∗L

(b)
2,2

4 − m3+m6
2

π2,2∗L
(b)
2,2

4 − m4+m5
2

D2
π2,2∗L

(b)
2,2

4 − m1+m2+m4+m5+m7+m8
2

π2,2∗L
(b)
2,2

4 − m1+m2+m3+m6+m7+m8
2

D3
π2,2∗L

(b)
2,2

4 −
∑

j nj+m1+m2+m3+m6+m7+m8

2

π2,2∗L
(b)
2,2

4 −
∑

j nj+m1+m2+m4+m5+m7+m8

2

D4
π2,2∗L

(b)
2,2

4 −
∑

j nj+m4+m5

2

π2,2∗L
(b)
2,2

4 −
∑

j nj+m3+m6

2

– Consider L4,−4(h) and L4,4(h), whose square is 32h − 8, 32h + 8 respectively; since
π2,2∗L4,±4/4 is primitive in NS(Ỹ ), we define D1, . . . , D4 as follows (the elements
µ1, µ2 are defined in Proposition 3.4.4.1):

L4,±4(h) any h

D1
π2,2∗L±4,4

4

D2
π2,2∗L±4,4

4 − µ1

D3
π2,2∗L±4,4

4 − µ2

D4
π2,2∗L±4,4

4 − µ1 − µ2
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Table 3.4: Euler characteristics

no. L χ(D1) χ(D2) χ(D3) χ(D4)

d =4 1 1 L0 (d+ 3)/4 (d+ 3)/4 (d− 1)/4 (d+ 3)/4

d =4 3 2 L0 (d+ 5)/4 (d+ 1)/4 (d+ 1)/4 (d+ 1)/4

d =4 2
3 L

(a)
2,2 (d+ 2)/4 (d+ 2)/4 (d+ 2)/4 (d+ 2)/4

4 L
(b)
2,2 (d+ 6)/4 (d+ 2)/4 (d− 2)/4 (d+ 2)/4

d =8 0
5 L

(1)
2,0 d/4 + 1 d/4 d/4 + 1 d/4

6 L
(2)
2,0 d/4 + 2 d/4 d/4 d/4

d =8 4

7 L
(1)
2,0 d/4 d/4 + 1 d/4 d/4 + 1

8 L
(2)
2,0 d/4 + 1 d/4 + 1 d/4− 1 d/4 + 1

9 L±4,4 d/4 + 2 d/4 d/4 d/4

Consider now the projective family with ample class L = L0(d), d even: then we cannot
split H0(X,L) in four subspaces, but rather we find

H0(X,L) = V+ ⊕ V−

where V+, V− are the eigenspaces for one of the generators of (Z/2Z)2 (say τ), and the
other generator (say φ) acts exchanging the two.
By Remark 3.6.0.1, onH0(X,L) we have an action as follows: choose a basis {x0, . . . , xd+2}
of H0(X,L) such that

τ :(x0, . . . , xd/2+1, xd/2+2, . . . , xd+2) 7→ ξk(x0, . . . , xd/2+1,−xd/2+2, . . . ,−xd+2)

with ξk some root of unity, so that τ2 is the multiplication by ξ2k; then it holds

φ(xi) =ξmfi(xd/2+2, . . . , xd+2) for every i = 0, . . . d/2 + 1,

φ(xj) =ξmfj(x0, . . . , xd/2+1) for every j = d/2 + 2, . . . d+ 2,

with ξm another root of unity and fi linear such that φ2 is the multiplication by ξ2m;
composing them, we get

φ(τ(xi)) =ξkξmfi(xd/2+2, . . . , xd+2) for every i = 0, . . . , d/2 + 1

φ(τ(xj)) =− ξkξmfj(x0, . . . , xd/2+1) for every j = d/2 + 2, . . . , d+ 2,

while

τ(φ(xi)) =− ξkξmfi(xd/2+2, . . . , xd+2) for every i = 0, . . . , d/2 + 1
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τ(φ(xj)) =ξkξmfj(x0, . . . , xd/2+1) for every j = d/2 + 2, . . . , d+ 2,

so it holds τφ = −φτ . Therefore (τφ)2 is the multiplication by −ξ2kξ2m. Substituting
τ̃ = τk, and φ̃ = φm, we still get (τ̃ φ̃)2 = −id, so τ̃ φ̃ has order 4 and τ̃ , φ̃ span the
dihedral group D4 (as anticipated in Remark 3.6.0.1); by projectivizing, the action of
D4 loses faithfulness, and we see on P(H0(X,L)∗) an action of (Z/2Z)2 via the maps
described in the statement.

Proposition 3.6.2.2. In case 2 of Theorem 3.6.2.1 it holds

π∗τH
0(Z̃τ , E1) =π

∗
2,2H

0(Ỹ , D1)⊕ π∗2,2H
0(Ỹ , D2),

π∗τH
0(Z̃τ , E2) =π

∗
2,2H

0(Ỹ , D3)⊕ π∗2,2H
0(Ỹ , D4).

Proof. See the proof of Proposition 2.6.2.2.

Remark 3.6.2.3. To define D1, . . . , D4 we chose to use the description of Ỹ as resolution
of the quotient Z̃τ/φ̂. The same results can be obtained using Z̃φ/τ̂ instead.

3.6.3 Projective models with L2 = 4

There are three families of K3 surfaces X polarized with an ample class L such that
L2 = 4: for one of them L = L0(2), so the action of (Z/2Z)2 is as described in case
1 of Theorem 3.6.2.1; the other two correspond to no. 3, no. 4 of Table 3.4, and
we can read from there the dimension of the eigenspaces for the action of (Z/2Z)2.
Moreover, by the correspondence between projective families of X and its quotients, and
in particular by the degree of L̂ι (the pseudo-ample class on the intermediate quotient
surface Z̃ι, ι ∈ {τ, φ}) and of L on Ỹ , we expect the dimension of the projective space
in which the quotients are naturally embedded.

We proceed by firstly defining an action of (Z/2Z)2 = ⟨τ, φ⟩ on the correct projective

space (P3 for L = L0(2), L
(a)
2,2(0), P1 × P1 if L = L

(b)
2,2(0)) with eigenspaces of the

expected dimension, and finding a family of K3 surfaces which are invariant for it.
Recall from Remark 1.4.0.4 that each of the projective families of X has dimension
7 = 20− (rk(Ω2,2) + 1). To check the simplecticity of the action of (Z/2Z)2, it is suffi-
cient to check that each of the two generators is a symplectic involution, i.e. that each
fixes 8 points on X.

Let L = L0(2): consider the action of (Z/2Z)2 on P3 given by

(z0 : z1 : z2 : z3)
τ7−→ (−z0 : −z1 : z2 : z3)
φ7−→ (z2 : z3 : z0 : z1)

then φ exchanges the eigenspaces of τ , which is the action described in Section 3.6.1 for
L0(2). Quartic surfaces invariant for this action are of the form

Q3 : q(z0, z1) + q(z2, z3) + αz20z
2
2 + βz0z1z2z3 + γz21z

2
3 + δ(z20z2z3 + z0z1z

2
2)+
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+ ε(z20z
2
3 + z21z

2
2) + ζ(z0z1z

2
3 + z21z2z3) = 0;

they depend on 11 parameters, but taking into account projectivities of the form (z0 :
z1 : z2 : z3) 7→ (az0+bz1 : cz0+dz1 : az2+bz3 : cz2+dz3) which commute with the given
action of (Z/2Z)2 we find a moduli space of dimension 7. This is therefore a complete
family of K3 surfaces with a symplectic action of (Z/2Z)2. The quotient surfaces Zτ , Zφ
admit projective models as complete intersection of 3 quadrics in P5, as in [32, §3.4].

Since L
2
= 16, we expect Ỹ ⊂ P 9, so it doesn’t admit a natural model as complete

intersection of hypersurfaces.

The following two models are numbered according to Table 3.4.
no. 3: Consider the action of (Z/2Z)2 on P3 given by

(x0 : x1 : x2 : x3)
τ7−→ (−x0 : −x1 : x2 : x3)
φ7−→ (−x0 : x1 : −x2 : x3)

then the eigenspaces are all of the same dimension. The family of quartic surfaces

Q4 :
3∑
i=0

aix
4
i +

∑
i,j=0...3
j>i

bijx
2
ix

2
j + x0x1x2x3,

whose general member is smooth, is invariant for the action above, and it depends on 7
projective parameters up to the action of projectivities that commute with τ, φ.

Since the action of τ, φ is the same up to a change of coordinates, the quotient surfaces
Zτ , Zφ will be described by similar equations. As in [32, §3.4], we consider the map given
by the degree 2 invariants under the action of τ

(x0 : x1 : x2 : x3) 7→ (x20 : x
2
1 : x

2
2 : x

2
3 : x0x1 : x2x3) = (z0 : z1 : z2 : z3 : z4 : z5);

then the surface Q4 maps to the complete intersection of quadrics in P5

R4 :


z24 = z0z1

z25 = z1z2

z4z5 = −
∑3

i=0 aiz
2
i −

∑
i,j=0...3
j>i

bijzizj

which is a projective model for Zτ . Now, the automorphism ρ̂ on P5 is

ρ̂ : (z0 : z1 : z2 : z3 : z4 : z5) 7→ (z0 : z1 : z2 : z3 : −z4 : −z5) :

the surface R4 has the same form as in [32, §3.7], so its quotient under the action of ρ̂,
which is a projective model for Y , is the quartic surface in P3 = (z0 : z1 : z2 : z3)

S4 : z0z1z2z3 + (

3∑
i=0

aiz
2
i +

∑
i,j=0...3
j>i

bijzizj)
2 = 0.
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no. 4: we have L
(b)
2,2(0) = H1 +H2 with

H1 =
L0(0) + v2 + w

2
, H2 =

L0(0) + v2 − w

2
; ⟨H1, H2⟩ =

[
0 2
2 0

]
,

and
τ∗(H1) = H2, φ∗(H1) = H1, φ∗(H2) = H2.

Hence
ϕ|L(b)

2,2(0)|
= ϕ|H1+H2| : X

2:1−−→ P1 × P1

is a double cover ramified along a curve B of bidegree (4, 4) invariant for the action of
(Z/2Z)2 on P1 × P1 given by

(x0 : x1)(y0 : y1)
τ7−→ (y0 : y1)(x0 : x1)
φ7−→ (x0 : −x1)(y0 : −y1);

curves of this type depend on 7 projective parameters when taking into account the
action of the group of projectivities of the form (x0 : x1)(y0 : y1) 7→ (x0 : ax1)(y0 : ay1),
which are the only ones that commute with the action above. We take the quotient
of X by the action of τ as described in [32, §3.5]: the surface Zτ is a double cover of
P2 = (x0y0 : x0y1 + x1y0 : x1y1) = (w0 : w1 : w2) ramified along a sextic curve C, the
union of the image Bτ of B, which is a quartic curve, and the conic curve invariant for
the action of φ̂ induced on P2,

φ̂ : (w0 : w1 : w2) 7→ (w0 : −w1 : w2).

To find a projective model of Y , we map Zτ to the space of invariants of degree two of
φ̂, P3 = (w2

0 : w2
1 : w2

2 : w0w2) = (z0 : z1 : z2 : z3): then Y is a double cover of the
surface z0z2 = z23 ramified along C (the image of the sextic curve C) which is a cubic
curve.

Now, let’s go back and describe Zφ: the action of φ on P1 × P1 fixes 4 points, which
do not belong to the branch curve: therefore, if we write X : t2 = b, where b is the
polynomial of bidegree (4,4) such that B : b = 0, to have 8 fixed points on X we find
that φ acts as the identity on t.
Proceeding as in case no. 3 of Section 2.6.3 we embed P1 × P1 in P3 via the Segre
map

(x0 : x1)(y0 : y1) 7→ (x0y0 : x0y1 : x1y0 : x1y1) = (z0 : z1 : z2 : z3) :

now X is a double cover of the quadric surface z0z3 = z1z2 ramified along the image of
B.
We consider the induced action of φ on the weighted projective space P(2, 1, 1, 1, 1),

φ : (t; z0 : z1 : z2 : z3) 7→ (t; z0 : −z1 : −z2 : z3);
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the space of invariants of degree 2 for φ is P6 = (t : z20 : z21 : z22 : z23 : z0z3 : z1z2) =
(t : a0 : a1 : a2 : a3 : a4 : a5), and the quotient surface Zφ is described by the complete
intersection 

a4 = a5

a0a3 = a24
a1a2 = a25
t2 = b

where b is now a quadric: this is therefore a projective model of Zφ as the complete

intersection of 3 quadrics in P5, as we expected since (πφ∗L
(b)
2,2(0))

2 = 8.

The action of τ̂ on P5 changes sign to t and exchanges a1 with a2, fixing the other
coordinates. Let

P5 = (t : c0 : c1 : c2 : c3 : c4) = (t : a0 : a1 + a2 : a1 − a2 : a3 : a4) :

similarly to the surface S4 of case no. 4 of Section 2.6.3, to compute the quotient surface
we use the projection from the line ℓ = (λ : 0 : 0 : µ : 0 : 0) on the invariant space for
the action of τ̂ :

π : P5 → P3 = (c0 : c1 : c3 : c4).

Then, Zφ covers 4:1 the surface c20 = c3c4, and τ̂ exchanges pairwise the points on each
regular fiber: therefore we get again a model of Y as double cover of a quadric surface
in P3, as expected.
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Chapter 4

Generalizing Shioda-Inose structures to the
order 4

Introduction

Given any abelian surface A, if X is a K3 surface such that there exists a Hodge isometry
T (A) ≃ T (X), then X admits a symplectic involution ι such that X/ι is birational to
the Kummer surface Kum(A) [63, Thm. 6.3]: the triple (A,X, ι) is called a Shioda-
Inose structure. In [27] it is proved that if A admits a symplectic automorphism σA of
order 3 (which is not a condition satisfied by the general abelian surface), and X is a
K3 surface such that there exists a Hodge isometry T (A) ≃ T (X), then X admits a
symplectic automorphism σX of order 3 such that X/σX is birational to the generalized
Kummer surface Kum3(A), the resolution of the singularities of A/σA. The quadruple
(A, σA, X, σX) is called a generalized Shioda-Inose structure.

Some abelian surfaces A admit a symplectic automorphism α of order 4: however, in this
chapter we prove that, if a K3 surface X satisfies the condition T (X) ≃ T (A), it is not
even guaranteed that X admit an action of a group of order 4 at all. Unlike the order 3
case, it is therefore impossible to give a full generalization of Shioda-Inose structures to
the order 4, so we propose two different partial generalizations.

Definition 1 (see Def. 4.2.5.1). Let X be a projective K3 surface. We say that X admits
a strong order 4 Shioda-Inose structure if there is a symplectic automorphism τ of order
4 on X and a pair (A,α) as above such that the resolution of the singularities of X/τ2

and X/τ are isomorphic to Kum(A) and Kum4(A) respectively.

The quadruple (A,α,X, τ) is a strong structure if and only if (A,X, τ2) is a classical
Shioda-Inose structure, so it holds T (X) ≃ T (A); however, strong structures do not
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exist for any pair (A,α), but only if

T (A) ≃

 −4k 1 1
1 2 0
1 0 2

 .
To give a structure that exists for any pair (A,α), we turn to Morrison-Nikulin in-
volutions: these are special symplectic involutions on a K3 surface X, that exchange
two algebraic copies of the lattice E8. For a projective K3 surface, the existence of a
Morrison-Nikulin involution and of a Shioda-Inose structure are equivalent properties
(see Theorem 4.2.1.4).

Definition 2 (see Def. 4.2.5.4). Let X be a projective K3 surface. We say that X admits
a weak order 4 Shioda-Inose structure if there is a symplectic automorphism τ of order
4 on X such that τ∗ cyclically permutes four orthogonal algebraic copies of D4.

If a K3 surface X has a symplectic automorphism τ that satisfies this definition, then
there exists a pair (A,α) such that the resolution of the singularities of X/τ is isomorphic
to Kum4(A) (see Theorem 4.2.4.12); conversely, given any pair (A,α) we can find a K3
surface X with a symplectic automorphism τ as above, such that X/τ is birational to
Kum4(A) (see Theorem 4.2.4.14).

If the quadruple (A,α,X, τ) is a weak structure which is not strong, then T (A) ̸≃ T (X);
even worse, T (A) does not always uniquely determine T (X). We remark that this is
a crucial flaw of this construction: indeed, by Theorems 1.3.0.14, 1.3.0.8, in classical
Shioda-Inose structures to each abelian surface A corresponds a unique K3 surface X,
and to each X with a Morrison-Nikulin involution at most two abelian surfaces (A and
A∨) (see Remark 4.2.5.2). Without a Hodge isometry of the transcendental lattices, we
can only give a correspondence between families of A and X that form a weak order 4
Shioda-Inose structures.

Theorem 1 (see Cor. 4.2.4.16). In the following table we compare the transcendental
lattices of A, Kum4(A) and X, where the quadruple (A,α,X, τ) is a weak order 4 Shioda-
Inose structure.

T (A) T (Kum4(A)) T (X)

∀d ⟨2⟩⊕2 ⊕ ⟨−2d⟩ ⟨2⟩⊕2 ⊕ ⟨−8d⟩

⟨4⟩⊕2 ⊕ ⟨−2d⟩
or−2(d− 1) 2 2

2 4 0
2 0 4


d = 4h+ 1 ⟨2⟩ ⊕

[
2 1
1 −2h

]
⟨2⟩ ⊕

[
8 4
4 −8h

] 4− 2h 3 3
3 4 0
3 0 4


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d = 8k + 6

−4k − 2 1 1
1 2 0
1 0 2

 ⟨4⟩ ⊕
[
4 4
4 −8(2k + 1)

]
⟨2⟩⊕2 ⊕ ⟨−2d⟩

d = 8k + 2

−4k 1 1
1 2 0
1 0 2

 ⟨4⟩ ⊕
[
4 4
4 −16k

] ⟨4⟩ ⊕
[

4 4k + 2
4k + 2 4k2

]
or−4k 1 1

1 2 0
1 0 2



4.1 The Kummer surfaces Kum(A), Kum4(A)

Let A be an abelian surface, with local coordinates (z1, z2). Assume A admits the
automorphism α defined by

α(z1, z2) = (z2,−z1) :

this is a symplectic automorphism of order 4, because α∗(dz1 ∧ dz2) = dz1 ∧ dz2. The
wedge product

∧ : H2(A,Z)×H2(A,Z) → H4(A,Z) ≃ Z

gives H2(A,Z) a lattice structure (H2(A,Z),∧) = U⊕3. Computing the action of α∗ on
H2(A,Z), we see that it acts on two of the copies of U exchanging the generators of each
copy, and as the identity on the remaining one.

Remark 4.1.0.1. The co-invariant lattice of the action of α∗ is spanned by the classes
dz2 ∧ dz2 − dz1 ∧ dz1, dz1 ∧ dz2 + dz2 ∧ dz1: it is therefore the lattice Ω := ⟨−2⟩⊕2. A
complex 2-torus T admits α as an automorphism if and only if Ω is primitively embedded
in NS(T ).

We want to describe explicitly the maps induced in cohomology by the rational (dashed)
arrows in the following diagram:

A

p
��

π

xx

Kum(A)

p̂

��

π̂

ww

// A/α2

��

Kum4(A)
β
// Kum(A)/α̂ // A/α

(4.1.0.1)

where α̂ is the involution induced on the Kummer surface Kum(A) by α on A.
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4.1.1 The surface Kum(A)

The construction of the Kummer surface Kum(A) is classical: take an abelian surface
A, and the involution defined by ι(a) = −a for every a ∈ A; ι fixes exactly 16 points
on A, and acts trivially on the second integral cohomology lattice H2(A,Z) ≃ U⊕3: the
minimal resolution of the quotient A/ι is the K3 surface Kum(A), which is characterized
by the existence of a primitive embedding of the Kummer lattice K2 in its Néron-Severi
lattice [70, §.3, Thm. 3]. We recall here the construction, assuming A = E × E with E
an elliptic curve, α((e, f)) = (f,−e) symplectic of order 4, ι = α2: by deformation, this
gives us the description of the map

π∗ : H
2(A,Z) → H2(Kum(A),Z)

for any abelian surface A with a symplectic automorphism of order 4.
The involution e 7→ −e on an elliptic curve E fixes exactly 4 points, that can be identified
with a copy of (Z/2Z)2 = {(0, 0), (1, 0), (0, 1), (1, 1)} under the group law of E: thus,
the fixed locus of α2 on A = E × E is isomorphic to (Z/2Z)4, and the quotient surface
A/α2 has 16 A1 singularities.

Definition 4.1.1.1 ([70, §3, Def. 1], see also [31, Rem. 2.3]). Call kabcd the class of
the rational curve that resolves the point (a, b, c, d) ∈ (Z/2Z)4 in the Kummer surface.
The lattice K2 is the overlattice of ⟨kabcd | (a, b, c, d) ∈ (Z/2Z)4⟩ obtained adding as
generators the classes

w0 =
∑

(a,b,c,d)∈(Z/2Z)4
kabcd/2,

w1 = (k0000 + k0001 + k0010 + k0011 + k0100 + k0101 + k0110 + k0111)/2,

w2 = (k0000 + k0001 + k0010 + k0011 + k1000 + k1001 + k1010 + k1011)/2,

w3 = (k0000 + k0001 + k0100 + k0101 + k1000 + k1001 + k1100 + k1101)/2,

w4 = (k0000 + k0010 + k0100 + k0110 + k1000 + k1010 + k1100 + k1110)/2.

Since α2 acts trivially on H2(A,Z), we can apply the push-pull formula to conclude that
π∗(U ⊕ U ⊕ U) = U(2)⊕ U(2)⊕ U(2).

Theorem 4.1.1.2 ([31, Rem. 2.8]). Call {v1, . . . , v6} the generators of U(2)⊕3 such
that v2k+1v2k+2 = 2, k = 0, 1, 2 and the other intersections are trivial: then the lattice
H2(Kum(A),Z) is the overlattice of K2 ⊕ U(2)3 obtained by adding as generators the
classes

β1 = (v1 + k0000 + k0001 + k0010 + k0011)/2,

β2 = (v2 + k0000 + k0100 + k1000 + k1100)/2,

β3 = (v3 + k0000 + k0010 + k0100 + k0110)/2,

β4 = (v4 + k0000 + k0001 + k1000 + k1001)/2,

β5 = (v5 + k0000 + k0001 + k0100 + k0101)/2,

β6 = (v6 + k0000 + k0010 + k1000 + k1010)/2.
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4.1.2 The involution α̂ and the surface Kum4(A)

Among the 16 points fixed by α2, α fixes the four points {(a, b, a, b) | a, b ∈ Z/2Z},
and exchanges the remaining ones as (a, b, c, d) 7→ (c, d, a, b): therefore, there are 10
singular points on the quotient surface A/α, of which 4 of type A3, and 6 of type A1 [9,
Prop. 2.1]. The K3 surface Kum4(A), that arises as minimal resolution of the quotient
A/α, is characterized by the existence of a primitive embedding of the lattice K4 in its
Néron-Severi lattice.

Definition 4.1.2.1 ([9, §4, cas 4.2]). The lattice K4 is the overlattice of A⊕4
3 ⊕ A⊕6

1 =
⟨mγ,1,mγ,2,mγ,3 | γ = 1, . . . , 4⟩ ⊕ ⟨mj | j = 1, . . . , 6⟩ obtained by adding as generator
the class

µ :=

∑
γ 3mγ,1 + 2mγ,2 +mγ,3

4
+

∑
jmj

2
. (4.1.2.1)

It is the smallest primitive sublattice of ΛK3 which contains the exceptional curves of
Kum4(A).

We want to describe the surface Kum4(A) as minimal resolution of Kum(A)/α̂, where
α̂ is the symplectic involution induced by the automorphism α of A.
Define the sublattice of H2(Kum(A),Z)

W = ⟨kabcd | (a, b, c, d) ∈ (Z/2Z)4⟩ ⊕ ⟨vj | j = 1, . . . , 6⟩,

isomorphic to ⟨−2⟩⊕16 ⊕ U(2)⊕3.

Proposition 4.1.2.2. 1. The isometry α̂∗ induced by α̂ acts on W as the permuta-
tion

(k0010, k1000)(k0001, k0100)(k0011, k1100)(k0110, k1001)(k1011, k1110)(k0111, k1101)

(v1, v2)(v3, v4),

and as the identity on the remainig generators of W ;

2. Consider the map π̂∗ : H2(Kum(A)) → H2(Kum4(A)): then π̂∗(W ) = ⟨−4⟩⊕4

⊕⟨−2⟩⊕6 ⊕ ⟨2⟩⊕2 ⊕ U(4).

3. Denoting ⋆̂ = π̂∗⋆, a Z-basis for π̂∗(H
2(Kum(A),Z)) is

{k̂0000, k̂0001, k̂0010, k̂0011, k̂0101, k̂0110, k̂1010, ŵ0, ŵ1, ŵ2, β̂1, β̂3, β̂5, β̂6}.

Proof. The action of α̂∗ on W is deduced by the action of α∗ on H2(A,Z), and by that
of α̂ on the singular points of A/α2; we extend α̂∗ to H2(Kum(A),Z) by Q-linearity
using the elements wi, i = 0, . . . , 4 (see Def. 4.1.1.1) and βj , j = 1, . . . , 6 (see Thm.
4.1.1.2). Then, applying the push-pull formula to the generators of W , we get π̂∗(W ),
and by Q-linear extension we get the whole π̂∗(H

2(Kum(A),Z)).

As any symplectic involution on a K3 surface, α̂ fixes 8 points on Kum(A) [71, §5]: to
resolve the singularities of Kum(A)/α̂, we have to introduce 8 rational curves, whose
classes in cohomology generate a copy of the Nikulin lattice (see Definition 2.4.2.1).
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Remark 4.1.2.3. The lattice π̂∗(H
2(Kum(A),Z)) has the same discriminant group of

N , that is, (Z/2Z)6 with the same discriminant form of U(2)⊕3. Thus, applying [72,
Prop. 1.6.1] we find that π̂∗(H

2(Kum(A),Z)) ⊕ N is a sublattice of finite index of
H2(Kum4(A),Z). In particular, we can choose as gluing classes the following:

γ1 = (k̂0000 + k̂0101 + ŵ0 + β̂6 + n2 + n3 + n5 + n8)/2;

γ2 = (k̂0000 + k̂0101 + n2 + n3 + n4 + n8)/2;

γ3 = (k̂0000 + ŵ0 + β̂5 + n3 + n4 + n5 + n7)/2;

γ4 = (k̂0000 + ŵ0 + n4 + n5 + n7 + n8)/2;

γ5 = (k̂1010 + β̂5 + n2 + n4 + n5 + n6)/2;

γ6 = (k̂1010 + ŵ0 + n3 + n6 + n7 + n8)/2.

We now want to describe the lattice K4 (see Def. 4.1.2.1) as embedded by our con-
struction in H2(Kum4(A),Z): since K4 is the exceptional lattice for the quotient A/α,
it is generated by the Nikulin lattice N , and the image via π̂∗ of the Kummer lattice
K2.

Proposition 4.1.2.4. The sublattice A⊕4
3 ⊕A⊕6

1 of K4 is spanned by the following classes
of π̂∗K2 ⊕N :

m1,1 = n2; m1,2 = (k̂0000 − n2 − n8)/2; m1,3 = n8;

m2,1 = n3; m2,2 = (k̂0101 − n3 − n4)/2; m2,3 = n4;

m3,1 = n1; m3,2 = (k̂1010 − n1 − n7)/2; m3,3 = n7;

m4,1 = n5; m4,2 = (k̂1111 − n5 − n6)/2; m4,3 = n6;

m1 = k̂0010 = k̂1000; m2 = k̂0011 = k̂1100; m3 = k̂0100 = k̂0001;

m4 = k̂0110 = k̂1001; m5 = k̂0111 = k̂1101; m6 = k̂1110 = k̂1011.

To get the whole K4, add to the generators the classes:

µ =

∑
γ=1,4 3mγ,1 + 2mγ,2 +mγ,3

4
+

∑
γ=2,3mγ,1 + 2mγ,2 + 3mγ,3

4
+

∑
jmj

2
;

ν =
m1 +m2 +m4 +m5 +m3,1 +m3,3 +m4,1 +m4,3

2
;

ξ =
m2 +m3 +m4 +m6 +m2,1 +m2,3 +m4,1 +m4,3

2
.

Proof. Consider the diagram (4.1.0.1). The automorphism α̂ acts on the exceptional
curves of Kum(A) fixing two points on each of the 4 curves whose class is kabab, and
exchanging the other curves in pairs: therefore the surface Kum(A)/α̂ is singular in
eight points. Blowing up the two singular points on the image of each curve kabab
we get an A3 lattice, and the eight exceptional curves introduced with the blow-up β
span the Nikulin lattice N = ⟨mi

1, m
i
3⟩4i=1. Denote k̂abcd the pullback β∗p̂∗kabcd: then
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by push-pull we have k̂2abcd = k̂2cdab = −2 for every (c, d) ̸= (a, b), while k̂2abab = −4;

moreover, the class k̂abab is by definition orthogonal to the exceptional curves, therefore
k̂abab = mγ,1 +2mγ,2 +mγ,3 for some γ. To determine which copy of A3, A1 in K4 each

k̂abab, k̂abcd, ni corresponds to, we still have to require that the image of the elements γi
defined in Remark 4.1.2.3 be integral in H2(Kum4(A),Z); this forces the definition of
K4 as stated.

Remark 4.1.2.5. The orthogonal complement to K4 is the lattice ⟨2⟩⊕2 ⊕U(4), spanned
by the classes v̂1 = π̂∗v1 = π̂∗v2, v̂3 = π̂∗v3 = π̂∗v4, v̂5, v̂6. This corrects a mistake in
[61, Ex. 4.3].

4.2 Generalizing Shioda-Inose structures

4.2.1 Results on Shioda-Inose structures

Definition 4.2.1.1 ([63, Def. 6.1]). A K3 surface X admits a Shioda-Inose structure if
there is a symplectic involution ι on X with rational quotient map π : X 99K Y such
that Y is a Kummer surface, and π∗ induces a Hodge isometry T (X)(2) ≃ T (Y ).

Recall that a K3 surface Y is the minimal resolution of X/ι if and only if there exists
a primitive embedding of the Nikulin lattice N ↪→ NS(Y ) [71, §5] (see also Definition
2.4.2.1). If we want Y to be a Kummer surface, then we’re asking that both N and K2

be primitively embedded (obviously non orthogonally because of their rank) in NS(Y ).
The following proposition suggests how to do it:

Proposition 4.2.1.2 ([63, Thm. 5.7]). The lattice E8 ⊕N has the same discriminant
form as U(2)⊕3: indeed, it belongs to the same genus as the lattice K2.

The lattices E8 ⊕N and K2 are negative definite: they are in the same genus, but not
isomorphic, as it can be proved by counting the number of elements of square −2.
Suppose however that we have a projective surface Y lattice-polarized with E8 ⊕N (so
that NS(Y ) has signature (1, 16)). Then, Theorem 1.2.1.14 guarantees the existence of
a primitive embedding of K2 in NS(Y ), so that Y is a Kummer surface.

Theorem 4.2.1.3 ([63, Thm. 5.7]). Let X be a K3 surface such that E⊕2
8 ↪→ NS(X):

then there is a symplectic involution ι on X such that, if π : X 99K Y is the rational
quotient map,

1. there is a primitive embedding E8 ⊕N ↪→ NS(Y ),

2. π∗ induces a Hodge isometry T (X)(2) ≃ T (Y ).

A sympletic involution ι that exchanges two copies of E8 orthogonally embedded in
NS(X) is called a Morrison-Nikulin involution on X. As it turns out, for X projective
admitting a Morrison-Nikulin involution is equivalent to admitting a Shioda-Inose struc-
ture.
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Theorem 4.2.1.4 ([63, Thm. 6.3]). Let X be a projective K3 surface. Then the fol-
lowing are equivalent:

1. X admits a Shioda-Inose structure.

2. There exists an abelian surface A and a Hodge isometry T (X) ≃ T (A).

3. There is a primitive embedding T (X) ↪→ U⊕3.

4. There is a primitive embedding E⊕2
8 ↪→ NS(X).

The following theorems gives the relation between NS(X) and NS(Y ), with the notation
of Remark 2.5.0.5; the lattice (N ⊕ ⟨4d⟩)′ appears also Theorem 2.5.3.1.

Theorem 4.2.1.5 ([31, Thm. 2.18]). Let X be a projective K3 surface admitting a
Morrison-Nikulin involution ι: then ρ(X) ≥ 17 and NS(X) ≃ R ⊕ E⊕2

8 , where R is an
even lattice with signature (1, ρ(X)− 17).
Let Y be the resolution of the singularities of X/ι: then NS(Y ) is an overlattice of index
2rk(R) of R(2) ⊕ N ⊕ E8. In particular, if ρ(X) = 17 then NS(X) ≃ ⟨2d⟩ ⊕ E⊕2

8 , the
surface Y is the Kummer surface of a (1, d)-polarized abelian surface, and NS(Y ) ≃
(N ⊕ ⟨4d⟩)′ ⊕ E8.

Theorem 4.2.1.6 ([29, Thm. 2.7]). Let Kum(A) be a Kummer surface with Picard
number 17, let H be the generator of K⊥

2 ⊂ NS(Kum(A)), H2 = 4d > 0. Then
NS(Kum(A)) = (K2 ⊕ ⟨4d⟩)′, uniquely determined. More precisely, if v4d ∈ K2 is such
that (v4d +H)/2 is integral in NS(Kum(A)), one can assume that:

� if H2 =8 0, then v4d = k0000 + k1000 + k0100 + k1100;

� if H2 =8 4, then v4d = k0001 + k0010 + k0011 + k1000 + k0100 + k1100.

From a lattice-theoretic perspective, the lattices (K2 ⊕ ⟨4d⟩)′ and (N ⊕ ⟨4d⟩)′ ⊕ E8

are abstractly isomorphic (one can apply for instance [54, Cor. VIII.4.2]). In the case
d = 1, Naruki [69] provides an explicit description of this isomorphism, with the property
that the (−2)-curves that generate the Kummer lattice and the lattice E8 ⊕ N are all
effective.

In the classical case, the condition T (X) ≃ T (A) is equivalent to the existence on X of
a symplectic involution ι (a Morrison-Nikulin involution) such that X/ι is birational to
Kum(A). This cannot be generalized to the order 4: indeed, in Section 4.2.3 we prove
that if A admits a symplectic automorphism of order 4, the condition T (X) ≃ T (A)
does not even guarantee that X admit a symplectic action of a group of order 4, be it
Z/4Z or (Z/2Z)2. However, in Section 4.2.4 we find a generalization of Morrison-Nikulin
involutions: if a projective K3 surfaceX has a symplectic automorphism of order 4 τ that
cyclically permutes four copies of D4 contained in NS(X), then there exists an abelian
surface A with a symplectic automorphism of order 4 such that X/τ is birational to
Kum4(A) (and the converse is also true).
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4.2.2 Families of abelian surfaces A with an automorphism of order 4, and of K3
surfaces Kum4(A)

Complex 2-tori T with a symplectic automorphism of order 4 are characterized by the
fact that NS(T ) contains primitively the lattice Ω := ⟨−2⟩⊕2. The moduli space of
abelian surfaces (i.e.projective tori) with an automorphism of order 4 splits in irredu-
cible components, each corresponding to a deformation family. The Néron-Severi lattice
of general member A of each deformation family is a cyclic overlattice of finite index
(possibly 1) of Ω⊕ ⟨2d⟩ (where Ω⊥ is generated by the ample class H of A) that can be
primitively embedded in U⊕3.

Remark 4.2.2.1. There exists a unique primitive embedding of Ω in U⊕3 = ⟨u1, . . . , u6⟩:
up to isometries of the latter, Ω = ⟨u1 − u2, u3 − u4⟩ (see also Section 4.1). From now
on, call ω1 = u1 − u2, ω2 = u3 − u4, and b1 = u1 + u2, b2 = u3 + u4 ∈ Ω⊥.

Theorem 4.2.2.2. Let A be an abelian surface with a symplectic automorphism of order
4, and let H with H2 = 2d the generator of Ω⊥NS(A). Then NS(A) is one of the following:

1. For every d, NS(A) = Ω⊕ ⟨2d⟩.

2. For d =4 1 or d =4 2, NS(A) = (Ω⊕⟨2d⟩)′ (see Remark 2.5.0.5 for the notation),
uniquely determined.

Proof. Cyclic overlattices of Ω⊕⟨2d⟩ correspond to isotropic elements of the form (H +
w)/2 ∈ AΩ⊕⟨2d⟩, with w ∈ AΩ; non-isomorphic overlattices are in bijection with the
equivalence classes of the action of O(Ω) induced on the discriminant group AΩ, by
Theorem 1.2.1.3. The action of O(Ω) splits AΩ in 3 classes: {0}, {ω1/2, ω2/2} and {(ω1+
ω2)/2}. Each of the corresponding overlattices admits a unique primitive embedding in
H2(A,Z) by Theorem 1.2.1.5.

Example 4.2.2.3. We give examples of H ∈ Ω⊥U⊕3 that realize each possible NS(A), and
the corresponding transcendental T (A):

1. For every d, H0(d) = u5+du6 generates the lattice ⟨2d⟩ such thatNS(A) = Ω⊕⟨2d⟩
is primitively embedded in U⊕3;

TAb0 {d} = ⟨2⟩⊕2 ⊕ ⟨−2d⟩.

2. For d = 4h+1, H1(h) = 2H0(h)+ b1 generates the lattice ⟨2d⟩ such that NS(A) =
(Ω⊕⟨2d⟩)′ is primitively embedded in U⊕3 (the element (H1(h)+ω1)/2 is integral);

TAb1 {h} = ⟨2⟩ ⊕
[
2 1
1 −2h

]
.

3. For d = 4h + 2, H2(h) = 2H0(h) + b1 + b2 generates the lattice ⟨2d⟩ such that
NS(A) = (Ω⊕ ⟨2d⟩)′ is primitively embedded in U⊕3 (the element (H2(h) + ω1 +
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ω2)/2 is integral);

TAb2 {h} =

 −2h 1 1
1 2 0
1 0 2

 .
Example 4.2.2.4. The abelian surface A = E × E, with E elliptic curve, belongs to the
second class of examples. Indeed, we can take as Z-basis of NS(E × E) {e1, e2, δ}, the
classes of the curves E1 = {(z1, 0) | z1 ∈ E}, E2 = {(0, z2) | z2 ∈ E},∆ = {(z, z) | z ∈
E}. Each of these curves is isomorphic to an elliptic curve, and intersects the other two
in one point: therefore, as a lattice we have

NS(A) = ⟨e1, e2, δ⟩ =

0 1 1
1 0 1
1 1 0

 ,
which can be embedded in U⊕3 with orthogonal complement isomorphic to TAb1 {0}.

The surface Y = Kum4(A) is a projective K3 surface such that there exists a primitive
embedding K4 ↪→ NS(Y ). Therefore, if Y is general NS(Y ) = K4 ⊕ ⟨2d⟩ or some cyclic
overlattice of the latter.

Theorem 4.2.2.5. We classify the overlattices of K4 ⊕ ⟨2d⟩ that are admissible as
Néron-Severi of a K3 surface, up to isomorphism:

1. for every h, (K4 ⊕ ⟨8h⟩)∗, uniquely determined;

2. for every d =4 1, 2, (K4 ⊕ ⟨2d⟩)′, uniquely determined.

Proof. The induced action of O(K4) splits AK4 into 9 orbits: in the following table,
the cardinality of each orbit (except {0}) is displayed, denoting k the order, and g the
square of the elements cointained. Notice that there are two different orbits containing
elements with (k, g) = (2, 1).

k
g

0 1/2 1 3/2

2 3 0 3+1 8
4 12 12 12 12

The lattice K4⊕⟨2d⟩ is not admissible as Néron-Severi lattice of a K3 surface: indeed, it
has rank 19 and length 5, so the corresponding transcendental lattice would have rank
3 and length 5, which is impossible.
Let L be the generator of K⊥

4 , L2 = 2d. Let v/4 be a representative of one of the classes
(4, g). Then it holds (

L+ v

4

)2

=
2d+ v2

16
=
d

8
+ g,
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which is an even integer only if d = 4h: more precisely, if g = 0, 1/2, 1, 3/2 then h =4

0, 3, 2, 1 respectively. Each of the lattices (K4 ⊕ ⟨8h⟩)∗ thus realized admits a unique
primitive embedding in ΛK3 by Theorem 1.2.1.5.
Now let w/2 be a representative of one of the classes (2, g): Then it holds(

L+ w

2

)2

=
2d+ w2

4
=
d

2
+ g;

since the orbit (2, 1/2) is empty, d ̸=4 3. If d = 4h, the overlattice (K4 ⊕ ⟨8h⟩)′ thus
generated is not admissible as Néron-Severi lattice of a K3 surface: indeed, it has again
rank 19 and length 5. For d =4 1, 2 the overlattices (K4⊕⟨2d⟩)′ are uniquely determined,
and each of them admits a unique primitive embedding in ΛK3.
The overlattices of index 2 are uniquely determined because the two orbits of elements
of order 2 and square 1 glue to elements of different square in K⊥

4 = U(4) ⊕ ⟨2⟩⊕2 =
⟨u1, u2, a1, a2⟩. Indeed the discriminant form of AK4 is

q =


3/2 0 0 0
0 3/2 0 0
0 0 0 1/4
0 0 1/4 0

 = ⟨x1, x2, x3, x4⟩,

and the two orbits are generated by the elements v1 = x1+x2 and v2 = x1+x2+2(x3+x4)
respectively: v1 glues to elements of the form 2F +a1+a2+u1 (any F in K⊥

4 ), while v2
glues to 2F + a1 + a2 + u1 + u2; elements of the first form have square 16h+4, elements
of the second form have square 16h+ 12.

The following theorem generalizes Theorem 4.2.1.6 to abelian surfaces A with a sym-
plectic automorphism of order 4, and surfaces Kum4(A). For the notation, see Remark
2.5.0.5.

Theorem 4.2.2.6. If NS(A) = Ω⊕ ⟨2d⟩, then NS(Kum4(A)) = (K4 ⊕ ⟨8d⟩)∗.
If NS(A) = (Ω⊕ ⟨2d⟩)′, then NS(Kum4(A)) = (K4 ⊕ ⟨2d⟩)′.

Proof. Take the image of Hj in Example 4.2.2.3 via the composite map (π̂ ◦ π)∗: if
necessary, divide it to get a primitive class Ĥj , which by construction belongs to R := K⊥

4

in H2(Kum4(A),Z). Then, find the maximum integer k such that Ĥj/k belongs to
AR; since H

2(Kum4(A),Z) is unimodular, if k > 1 then K4 ⊕ Ĥj is not primitive in
H2(Kum4(A),Z), but an overlattice of index k of it is: indeed, there exists an element
θj ∈ K4 such that (Ĥj + θj)/k is integral in H2(Kum4(A),Z) (see Remark 1.2.1.7).
More precisely, the class Ĥ0(d) glues to one of the orbits (4, g) depending on the value
of d modulo 4; Ĥ1(h) glues to an element in the orbit (k, g) = (2, 3/2); Ĥ2(h) glues to
an element in one of the two orbits with (k, g) = (2, 1) depending on the parity of h.

4.2.3 K3 surfaces with transcendental lattice T (A)

This section provides a negative answer to the following question:
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Question 1. Given a general abelian surface A with a symplectic automorphism α of
order 4, consider a K3 surface XA such that T (XA) ≃ T (A): does XA admit a symplectic
action of a group of order 4?

Remark 4.2.3.1. In [27] it is proved that the answer is affirmative if, instead of symplectic
automorphisms of order 4, we consider those of order 3; it is also proved that it’s negative
for symplectic automorphisms of order 6. Moreover, for the order 3 the automorphism
γ on X is such that X/γ is birational to Kum3(A): therefore, Shioda-Inose structures
can be fully generalized to symplectic automorphisms of order 3.

We can rephrase this question as a lattice-theoretic problem: indeed, XA admits a sym-
plectic action of G ∈ {Z/4Z, (Z/2Z)2} if and only if there exists a primitive embedding
of the lattice T (XA), that is isomorphic to one of the lattices TAbi of Example 4.2.2.3, in
the invariant lattice for the action of G on ΛK3.

Proposition 4.2.3.2. Let A be a general abelian surface with a symplectic automor-
phism of order 4, let ⟨H⟩ = Ω⊥NS(A), H2 = 2d: then a K3 surface XA such that
T (XA) ≃ T (A) has a symplectic automorphism τ of order 4 if and only if d is even.
More precisely, referring to Example 4.2.2.3 for the notation, the valid cases are:

1. T (XA) = TAb0 {d}, for any d > 0 even;

2. T (XA) = TAb2 {h}, for d = 4h+ 2, h ≥ 0.

Proof. The invariant lattice for the action of Z/4Z on ΛK3 is

I4 := U ⊕ ⟨−2⟩⊕2 ⊕ U(4)⊕2 = ⟨u1, u2⟩ ⊕ ⟨a, b⟩ ⊕ ⟨v1, v2⟩ ⊕ ⟨w1, w2⟩

(see [37, Table 10.3], and Proposition 5.1.1.1 for the isometry between I4 and the inva-
riant lattice as described in Section 2.3.2). Consider ⟨2⟩⊕2, that is a primitive sublattice
of TAbi for all the examples: since ⟨−2⟩⊕2⊕U(4)⊕2 does not represent 2, the only primitive
embedding of ⟨2⟩⊕2 in I4 up to isometries is ⟨u1+u2, u2−u1−a−b+w1+w2⟩ := ⟨t1, t2⟩,
its orthogonal complement being D4(2) ⊕ U(4) = ⟨w2 − a − b, b − a, a − u1 + u2, w1 −
a − b⟩ ⊕ ⟨v1, v2⟩. Call ⟨d1, . . . , d4⟩ = D4(2) (numbered as in Example 1.2.0.2): then,
since D4(2) ⊕ U(4) does not represent −2, TAb0 {d} can be the transcendental of a K3
with a symplectic automorphism of order 4 only for d even. To do so, choose as the
class of square −2d that generates (⟨2⟩⊕2)⊥T (A) as v1 − nv2 if d = 4n, as d1 + v1 − nv2 if
d = 4n+ 2.
The lattice TAb1 {h} cannot be realized: indeed, I4 is obtained as overlattice of ⟨2⟩⊕2 ⊕
D4(2)⊕ U(4) by adding as generator the class

α :=
t1 + t2 + d1 + d2 + d4

2
,

which has intersection 1 with both t1 and t2. The lattice TAb2 {h} can be the transcend-
ental of a K3 with a symplectic automorphism of order 4 for any h: the class that has
square −2h and intersection 1 with both t1 and t2 is as in the following table:
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h = 4n α+ d3 + v1 − nv2

h = 4n+ 1 α+ v1 − nv2

h = 4n+ 2 α+ d2 + d3 + v1 − nv2

h = 4n+ 3 α+ d2 + 2d3 + v1 − nv2

Proposition 4.2.3.3. Let A be a general abelian surface with a symplectic automor-
phism of order 4, let ⟨H⟩ = Ω⊥NS(A), H2 = 2d: then a K3 surface XA such that
T (XA) ≃ T (A) has a symplectic action of (Z/2Z)2 if and only if d is even. More
precisely, referring to Example 4.2.2.3 for the notation, the valid cases are:

1. T (XA) = TAb0 {d}, for any d > 0;

2. T (XA) = TAb2 {h}, for d = 4h+ 2, h ≥ 0 even.

Proof. The invariant lattice for the action of (Z/2Z)2 on ΛK3 is

I2,2 := U ⊕ U(2)⊕2 ⊕D4(2) = ⟨u1, u2⟩ ⊕ ⟨v1, v2⟩ ⊕ ⟨w1, w2⟩ ⊕ ⟨d1, . . . , d4⟩

(see [37, Table 10.3], and Proposition 5.1.2.1 for the isometry between I2,2 and the
invariant lattice as described in Section 3.3.2). Up to isometries, ⟨2⟩⊕2 admits a unique
primitive embedding in I2,2: choosing as its generators ⟨u1 + u2, v1 + v2 − u1 + u2⟩, its
orthogonal complement in I2,2 is

U(2)⊕D4(2)⊕
[
−2 2
2 −4

]
= ⟨w1, w2⟩ ⊕ ⟨d1, . . . , d4⟩ ⊕ ⟨u1 − u2 − v1, v1 − v2⟩,

and I2,2 is obtained as overlattice by adding as generator the class β = ((u1+u2)+(v1+
v2 − u1 + u2) + (v1 − v2))/2 = u2 + v1, that has intersection 1 with both generators of
⟨2⟩⊕2.
Therefore, we can primitively embed TAb0 {d} in I2,2 for any d, choosing as generator of

⟨2⟩⊕2⊥ the class w1 − kw2 for d = 2k, u1 − u2 − v1 +w1 − kw2 for d = 2k+ 1; similarly,
we can primitively embed TAb2 {h} for h even (that is, for d = 4h+ 2 =8 2) by choosing
as the class with square −2h u2+v1+w1−kw2; again, the other possible transcendental
lattices are not admissible.

4.2.4 Families of covering K3 surfaces

Since given an abelian surface A with a symplectic automorphism of order 4, the con-
dition T (X) ≃ T (A) does not imply the existence of a symplectic action of a group G
of order 4 on the K3 surface X, in this section we try a different approach. An equival-
ent condition for the existence of a classical Shioda-Inose structure is the existence of
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a Morrison-Nikulin involution ι on the K3 surface (see Theorem 4.2.1.4): in this case,
the resolution of the singularities Z of the quotient X/i is such that NS(Z) contains
primitively the lattice E8 ⊕ N , which is in the same genus of the Kummer lattice K2

(see Theorem 4.2.1.3 and Proposition 4.2.1.2), so Z is a Kummer surface.
The generalization of Morrison-Nikulin involutions we propose is that of a symplectic
automorphism τ of order 4 that permutes cyclically four algebraic copies of the lattice
D4: indeed, in this case the surface Ỹ that is the minimal resolution of Y = X/τ is such
that NS(Ỹ ) contains primitively the lattice ∆ (see Definition 4.2.4.1), which is in the
same genus of K4 and admits a primitive embedding of M4.

Recall from Section 2.4.3 that a K3 surface Ỹ is the minimal resolution of Y = X/τ ,
with X a K3 surface and τ symplectic automorphism of order 4, if and only if there is
a primitive embedding of M4 in NS(Ỹ ). Refer to section 2.4.3 for the notations.

Definition 4.2.4.1. Consider the lattice D4 = ⟨e1, e2, e3, e4⟩ (the intersection form is
described in Example 1.2.0.2); define the lattice ∆ as the overlattice ofM4⊕D4 obtained
by adding to the set of generators the class

δ =
m2

1 +m2
3 +m3

1 +m3
3 + m̃1 + m̃2 + e2 + e4
2

. (4.2.4.1)

Remark 4.2.4.2. The lattice ∆ has the same signature and discriminant form of the
lattice K4: it is not isomorphic to it, as it can be seen by comparing the number of
classes of square −2 in each lattice.

Remark 4.2.4.3. One could consider the lattice M2,2 in place of M4, and study primitive
embeddings of M2,2 in K4, to explore the possibility that Kum4(A) be covered by a
K3 surface admitting a symplectic action of (Z/2Z)2. We remark that the lattice ∆
characterizes K3 surfaces covered by a K3 surface X with a symplectic automorphism τ
whose action can be seen on algebraic classes (see Theorem 4.2.4.12 for a more precise
statement); however, a similar approach applied to a K3 surface X with a symplectic
action of (Z/2Z)2 does not give a lattice that can play the role of ∆.

Proposition 4.2.4.4. The lattice H2(Kum4(A),Z) is an overlattice of ∆⊕⟨−4⟩⊕⟨4⟩⊕
⟨8⟩⊕2: calling a the generator of ⟨−4⟩, χ the generator of ⟨4⟩ and ω1, ω2 the generators
of ⟨8⟩⊕2, the classes we have to add to the set of generators are:

ϕ = (ω1 + ω2)/2,

ψ = (a+ χ+ ω1)/2,

x1 = (m4
1 +m4

3 + m̃1 + e1 + e4 + ψ + a)/2,

x2 = (m3
1 +m3

3 + m̃2 + e1 + e4 + χ+ ϕ+ ψ)/2,

x3 =
δ +m2

2 +m2
3 +m3

1 +m3
2 +m4

1 +m4
3 + e1

2
+
m̃1 − m̃2 + e2 − e4 + 3χ+ a

4
,

x4 =
δ +m2

2 +m2
3 +m4

2

2
+
m3

1 +m3
3 −m4

1 +m4
3 − m̃1 + m̃2 + e2 + e4 + 3(a− ϕ)

4
.
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Proof. By direct computation it can be proved that the lattice generated as above is
unimodular of signature (3,19). Compare also to Section 2.4.3 (the notation is the
same).

Remark 4.2.4.5. This choice of generators of H2(Kum4(A),Z) gives a primitive embed-
ding of the lattice ∆ in it.

Theorem 4.2.4.6. We find the following isomorphisms of the lattices introduced in
Theorem 4.2.2.5:

1. The lattice (K4⊕⟨8d⟩)⋆, where K⊥
4 = ZĤ0(d), is isomorphic to (∆⊕⟨8d⟩)∗, where

∆⊥ is generated by either F0(d) = a+ϕ−d(a+ϕ−ω1), or G0(d) = a+χ−d(a+ϕ).
The isomorphism between the two overlattices associated to F0(d) and G0(d) does
not preserve ∆.

2. Let d = 4h + 1. The lattice (K4 ⊕ ⟨2d⟩)′, where K⊥
4 = ZĤ1(h), is isomorphic to

(∆⊕ ⟨2d⟩)′, where ∆⊥ is generated by F1(h) = a+ χ+ ψ − h(a+ ϕ).

3. Let d = 4h + 2. The lattice (K4 ⊕ ⟨2d⟩)′, where K⊥
4 = ZĤ2(h), is isomorphic to

(∆⊕ ⟨2d⟩)′, where ∆⊥ is generated by either F2(h) = a+χ+ ϕ− h(a+ ϕ−ω1) or
G2(h) = χ+ h(a+ χ). If h is even, the isomorphism between the two overlattices
associated to F2(h) and G2(h) does not preserve ∆ (but it does for h odd).

Proof. The induced action of O(∆) splits A∆ into 15 orbits: in the following table, the
cardinality of each orbit (except {0}) is displayed, denoting k the order, and g the square
of the elements cointained.

k
g

0 1/2 1 3/2

2 2+1 0 2+1+1 8
4 8+4 8+4 8+4 8+4

This gives us more non-isomorphic overlattices of ∆⊕⟨2e⟩ than there are for K4 ⊕⟨2e⟩,
but the classes containing elements of the same order and square, when glued to the
appropriate positive class, give rise to lattices in the same genus (this can be checked
directly); by Proposition 1.2.1.11 we can conclude that they are actually isomorphic as
lattices.

Remark 4.2.4.7. The isomorphisms between overlattices of ∆⊕⟨2e⟩ obtained by different
isometry classes of A∆ do not preserve ∆ (see Cor. 1.2.1.7). This will give more than
one deformation families of K3 surfaces covering the same generalized Kummer (see
Theorem 4.2.4.14 and Corollary 4.2.4.16).

We are now going to pull back the Néron-Severi lattices we found for Ỹ = Kum4(A) in
Theorem 4.2.4.6 through the map π4 : X 99K Ỹ induced by a symplectic automorphism
of order 4 on a K3 surface X. Recall that Ỹ is polarized with ∆ ⊕ ⟨2d⟩ or one of its
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overlattices (Theorem 4.2.4.6), that ∆ itself is an overlattice of D4 ⊕ M4 (Definition
4.2.4.1), and that π∗4D4 = D⊕4

4 (see Proposition 2.4.4.1).
This process will allow us to find the Néron-Severi lattice of the K3 surfaces X with a
symplectic automorphism τ of order 4 that complete the following diagram

X

p4
��

π4

yy

Kum4(A) // X/τ

(4.2.4.2)

and such that τ permutes cyclically four algebraic copies of D4.

Recall from [71, Thm. 4.15] that a K3 surface X admits a symplectic automorphism of
order 4 if and only if there exists a primitive embedding in NS(X) of the co-invariant
lattice Ω4 (see Section 2.3.2). The following proposition is a re-statement of Proposition
2.4.4.1: recall from Definition 4.2.4.1 and Proposition 4.2.4.4 that H2(Kum4(A),Z) is
an overlattice of M4 ⊕D4 ⊕ ⟨−4⟩ ⊕ ⟨4⟩ ⊕ ⟨8⟩⊕2.

Proposition 4.2.4.8. The map π∗4 annihilatesM4, and acts on D4⊕⟨−4⟩⊕⟨4⟩⊕⟨8⟩⊕2 as

π4
∗ : D4 ⊕ ⟨−4⟩ ⊕

4 0 0
0 8 0
0 0 8

 // D⊕4
4 ⊕ A⊕2

1 ⊕

4 0 0
0 2 0
0 0 2



e1
e2
e3
e4

, a, χ, ω1, ω2

 � //


e1 + f1 + g1 + h1
e2 + f2 + g2 + h2
e3 + f3 + g3 + h3
e4 + f4 + g4 + h4

, 2a1 + 2a2, 2ρ, 4ω1, 4ω2


where e1, . . . , e4, f1, . . . , f4, g1, . . . , g4, h1, . . . , h4 are the generators of the four copies
of D4, a1 and a2 are the generators of the two copies of A1, ρ is the generator of ⟨4⟩,
ω1 and ω2 are the generators of ⟨2⟩⊕2.
The map π∗4 can be extended to H2(Kum4(A),Z) adding the elements defined in (4.2.4.1)
and Proposition 4.2.4.4 (and their respective images to the image lattice).
The lattice π∗4H

2(Kum4(A),Z) is primitively embedded in H2(X,Z) with the lattice Ω4

as orthogonal complement.

Definition 4.2.4.9. Consider the latticeD⊕4
4 ⊕⟨−4⟩⊕2 spanned by the elements ei, fi, gi, hi

for i = 1, . . . , 4, a1− a2 and σ. Define the lattice Π as its overlattice obtained by adding
to this set of generators the following:

ζ1 = (σ + e1 − g1 + e2 − f2 + f4 − g4)/2,

ζ2 = (e1 − g1 + f1 − h1 + e2 − g2 + f4 − h4)/2,

ζ3 = (σ + f1 − h1 + e2 − h2 + f4 − e4)/2

ζ4 = (e2 − g2 + e4 − g4 + a1 − a2 + σ)/2.
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Then Π is a negative definite lattice of rank 18 with the same discriminant form as
⟨−4⟩⊕2.
The orthogonal complement of Π in H2(X,Z) is

Π⊥ = U ⊕ ⟨4⟩⊕2 = ⟨ω1 + ω2 + a1 + a2
2

,
ω1 − ω2 − a1 − a2

2
⟩ ⊕ ⟨ρ, 2ω2 + a1 + a2⟩.

Remark 4.2.4.10. The lattice Π is the primitive saturation (see Definition 1.2.1.1) of
π∗4∆⊕ Ω4 in H2(X,Z).

Theorem 4.2.4.11. Let X be a K3 surface. Then X admits a symplectic automorphism
τ of order 4 such that τ∗ permutes cyclically four copies of D4 in NS(X) if and only if
there exists a primitive embedding Π ↪→ NS(X).

Proof. Suppose that τ∗ permutes cyclically four copies of D4 in NS(X), with generators
e1, . . . , e4, f1, . . . , f4, g1, . . . , g4, h1, . . . , h4. Then the co-invariant lattice Ω4 associated
to its action contains the elements ei− fi, ei− gi, ei−hi for i = 1, . . . , 4; these elements
generate a lattice of rank 12, while Ω4 has rank 14. Moreover, we also have to preserve the
embedding Ω2 ↪→ Ω4 of the co-invariant lattice for the action of τ2: since by hypothesis
the classes ei − gi, fi − hi are co-invariant classes for the action of τ2, we deduce that
Ω2 = E8(2) is an overlattice of finite index of ⟨ei − gi, fi − hi⟩i=1,...,4 = D4(2)

⊕2. There
is only one way to construct this overlattice: using the same notation as in Section 2.3.2,
we have to add the classes α− γ, β − δ, and therefore these classes belong to Ω4 too; in
the definition of Π, these are ζ2, ζ1 + ζ3. We still have to add two generators to get a
lattice of rank 14, that should be invariant for τ2, but not for τ : by uniqueness of the
action of Z/4Z on ΛK3, we can refer to Section 2.3.2 and conclude that they are two
orthogonal classes of square −4; in the notation of that section, these are σ and a1− a2,
and they glue to some of the other generators; in the definition of Π, the same gluing is
given by ζ1, ζ4.
Therefore, Π is by construction the smallest primitive sublattice of H2(X,Z) containing
Ω4 and D⊕4

4 such that the four copies of D4 are cyclically permuted by the action of τ
on Ω4.

The following theorem is a generalization of Theorem 4.2.1.3.

Theorem 4.2.4.12. Let X be a K3 surface such that D⊕4
4 is primitively embedded in

NS(X), and suppose there exists a symplectic automorphism τ of order 4 on X such
that τ∗ acts on the four copies of D4 as the permutation (1, 2, 3, 4); let π4 : X 99K Ỹ be
the rational quotient map, then:

1. there is a primitive embedding ∆ ↪→ NS(Ỹ ), where ∆ is the minimal primitive
overlattice of M4 ⊕D4 in ΛK3;

2. if X is projective, then there exists an abelian surface A such that Ỹ = Kum4(A).

Remark 4.2.4.13. Notice that, unlike the original theorem, we have to suppose that
τ exists, because the condition D⊕4

4 ⊂ NS(X) is not enough by Theorem 4.2.4.11.
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Moreover, T (Ỹ ) is not a multiple of T (X): the relation between them will be furtherly
explored in Corollary 4.2.4.16.

Theorem 4.2.4.14. Let A be a general abelian surface with a symplectic automorphism
of order 4, let X be a K3 surface with a symplectic automorphism τ of order 4 that
cyclically permutes four copies of D4 in NS(X). Then Kum4(A) is a minimal resolution
of X/τ , and T (X) is as follows (see Remark 2.5.0.5 for the notation):

1. if NS(Kum4(A)) = (K4⊕⟨8d⟩)∗, then NS(X) = Π⊕⟨2d⟩, and T (X) is isomorphic
to

TK3
0,F {d} = ⟨4⟩⊕2 ⊕ ⟨−2d⟩

or NS(X) = (Π⊕ ⟨8d⟩)′, and T (X) is isomorphic to

TK3
0,G{d} =

−2(d− 1) 2 2
2 4 0
2 0 4


2. if d = 4h+1 and NS(Kum4(A)) = (K4 ⊕ ⟨2d⟩)′, then NS(X) = (Π⊕ ⟨8d⟩)∗, and

T (X) is isomorphic to

TK3
1 {h} =

4− 2h 3 3
3 4 0
3 0 4


3. if d = 4h+ 2 and NS(Kum4(A)) = (K4 ⊕ ⟨2d⟩)′, then

� if h =2 1, NS(X) = (Π⊕ ⟨2d⟩)′, and T (X) is isomorphic to

TK3
2 {h} = ⟨2⟩⊕2 ⊕ ⟨−2d⟩;

� if h =2 0, then either NS(X) = (Π⊕ ⟨2d⟩)′, and T (X) is isomorphic to

TK3
2,F {h} = ⟨4⟩ ⊕

[
4 2h+ 2

2h+ 2 h2

]
,

or NS(X) = (Π⊕ ⟨2d⟩)∗, and T (X) is isomorphic to

TK3
2,G{h} =

−2h 1 1
1 2 0
1 0 2

 .
Proof. We compute π∗4Fi, π

∗
4Gi for each of the classes Fi, Gi of Theorem 4.2.4.6: if they

are not primitive, we divide them accordingly to get primitive classes F̃i, G̃i. The lattice
NS(X) is the primitive saturation in ΛK3 of Π⊕ ZF̃i, or Π⊕ ZG̃i respectively.
The action of O(Π) induced on AΠ gives six orbits: {0}, (2, 0), (2, 1), (4, 3/4), (4, 3/2),
(4, 7/4), where the orbit denoted (k, g) contains all the elements of AΠ of order k and
square g.

More precisely, we find:

120



1. F̃0(d) = π∗4F0(d)/4 = (ω1 +ω2 + a1 + a2)/2+ d(ω1 −ω2 − a1 − a2)/2, F̃0(d)
2 = 2d,

NS(X) = Π⊕ ⟨2d⟩;
G̃0(d) = π∗4G0(d)/2 = a1 + a2 + ρ− d(ω1 + ω2 + a1 + a2), G̃0(d)

2 = 8d, NS(X) is
an overlattice of index 2 of Π⊕ ⟨8d⟩, associated to the class (2, 0) of AΠ.

2. F̃1(h) = π∗4F1(h) = 3(a1+ a2+ ρ)+ 2ω1− 2h(ω1+ω2+ a1+ a2), F̃1(h)
2 = 32h+8,

NS(X) is an overlattice of index 4 of Π⊕ ⟨8d⟩, associated to the class (4, 3/2) of
AΠ.

3. F̃2(h) = π∗4F2(h)/2 = 2F̃0(h) + ρ, F̃2(h)
2 = 2d, NS(X) is an overlattice of index 2

of Π⊕ ⟨2d⟩, associated to the class (2, 1) of AΠ.
G̃2(h) = π∗4G2(h)/2 = ρ + h(a1 + a2 + ρ): if h =2 0 NS(X) is an overlattice of
index 4 of Π⊕ ⟨2d⟩, associated to the class (4, 3/4) of AΠ; if h =2 1 NS(X) is an
overlattice of index 2 of Π ⊕ ⟨2d⟩: in this case, there is a Π-preserving isometry
between this lattice, and the one defined by F̃2.

Remark 4.2.4.15. There is one orbit for the action of O(Π) on AΠ we did not use, namely
(4, 7/4). Consider the positive class G̃3 = 4F̃0+ρ: it holds G̃

2
3 = 32k+4, and the primitive

saturation of the lattice Π ⊕ ZG̃3(k), which is the overlattice associated to the orbit
(4, 7/4), is isomorphic to that of Π⊕ZG̃2(4k); the isometry doesn’t preserve Π, but still
these lattices, being isometric, give the same projective family of K3 surfaces polarized
with the lattice Π. Now, having two different embeddings of a co-invariant lattice for
some symplectic action in the same NS(X) usually gives two different projective families
of the quotient surfaces. However, in this case it holds G̃3 = π∗4G3/2, with G3 =
2F0(k) + χ, G2

3 = 32k + 4 and there is a (∆-preserving) isometry between the primitive
saturation of ∆⊕ZG3(k) and that of ∆⊕ZG2(4k): therefore, also the Kummer surfaces
belong to the same projective family.

Corollary 4.2.4.16. We give a table comparing the transcendental lattices of A, X and
Kum4(A). We remark that requesting that Π be primitively embedded into NS(X) is
not enough to give a bijection between deformation families of abelian and K3 surface
which cover the same generalized Kummer surface.

T (A) T (Kum4(A)) T (X)

∀d ⟨2⟩⊕2 ⊕ ⟨−2d⟩ ⟨2⟩⊕2 ⊕ ⟨−8d⟩

⟨4⟩⊕2 ⊕ ⟨−2d⟩
or−2(d− 1) 2 2

2 4 0
2 0 4


d = 4h+ 1 ⟨2⟩ ⊕

[
2 1
1 −2h

]
⟨2⟩ ⊕

[
8 4
4 −8h

] 4− 2h 3 3
3 4 0
3 0 4


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d = 8k + 6

−4k − 2 1 1
1 2 0
1 0 2

 ⟨4⟩ ⊕
[
4 4
4 −8(2k + 1)

]
⟨2⟩⊕2 ⊕ ⟨−2d⟩

d = 8k + 2

−4k 1 1
1 2 0
1 0 2

 ⟨4⟩ ⊕
[
4 4
4 −16k

] ⟨4⟩ ⊕
[

4 4k + 2
4k + 2 4k2

]
or−4k 1 1

1 2 0
1 0 2


4.2.5 What is a generalized Shioda-Inose structure?

As it can be seen from the table above, it is indeed possible to find generalized Shioda-
Inose structures in a strict sense, as in the following definition, but only for certain
projective families.

Definition 4.2.5.1. A K3 surface X admits a strong order 4 Shioda-Inose structure if
there is a quadruple (A,α,X, τ) such that:

1. τ is a symplectic automorphism of order 4 on X;

2. A is an abelian surface with a symplectic automorphism of order 4 α such that the
resolution of the singularities Y of X/τ is isomorphic to the surface Kum4(A);

3. the triple (A,X, τ2) is a classical Shioda-Inose structure, that is, T (X) ≃ T (A)
and the resolution of the singularities of X/τ2 is isomorphic to Kum(A).

X

/τ2

##

/τ

��

A

/α2

{{

/α

��

Kum(A)

�� ��

Kum4(A)

Remark 4.2.5.2. For classical Shioda-Inose structures, given any abelian surface A, the
existence of a Hodge isometry T (X) ≃ T (A) allows to single out exactly one K3 surfaceX
that completes the structure: indeed, the image of the period of A through the isometry
gives a period of a (projective) K3 surface, that by Theorem 1.3.0.8 corresponds to
exactly one K3 surface. On the other hand, given (X, ι) such that X/ι is birational to
a Kummer surface, one usually finds two abelian surfaces that complete the structure,
one being the dual of the other (see Theorem 1.3.0.14).
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Remark 4.2.5.3. If the surface X admits a strong structure, then there exists a Hodge
isometry T (X) ≃ T (A). However, with this definition it is not possible to generalize
Morrison’s theorem 4.2.1.4. Indeed, from Corollary 4.2.4.16 we derive the following facts:

1. if A, X are such that T (A) ≃ TAb0 {8k + 6} and T (X) ≃ TK3
2 {2k + 1}, then

T (A) ≃ T (X), so they form a Shioda-Inose structure and they admit a symplectic
automorphism of order 4, but they do not form a strong order 4 Shioda-Inose
structure: indeed the quotient X/τ is birational to a generalized Kummer surface
Kum4(B), with T (B) ≃ TAb2 {2k + 1}, and not to Kum4(A). We get a diagram
like this instead:

X

/τ2

&&

/τ

��

A

xx

��

Kum(A)

%%yy

Kum4(B) Kum4(A)

2. an abelian surface A can belong to a strong order 4 Shioda-Inose structure only if
T (A) ≃ TAb2 {2k}, because then we can take T (X) ≃ TK3

2,G{2k} ≃ T (A);

3. the existence of a primitive embedding Π ↪→ NS(X) is not sufficient to conclude
that X admits a strong order 4 Shioda-Inose structure: indeed we have a strong
order 4 Shioda-Inose structure only if T (X) ≃ TK3

2,G{2k}, while the embedding
exists for any of the transcendental lattices in Theorem 4.2.4.14.

We can therefore propose another definition:

Definition 4.2.5.4. A K3 surface X admits a weak order 4 Shioda-Inose structure if there
exists a symplectic automorphism τ on X of order 4 permuting cyclically four copies of
D4 in NS(X).

With this definition, we can better generalize Morrison’s theorem:

Theorem 4.2.5.5. Let X be a projective K3 surface. Then the following are equivalent:

1. X admits a weak order 4 Shioda-Inose structure;

2. there is a primitive embedding Π ↪→ NS(X);

3. There exists an abelian surface A with a symplectic automorphism of order 4 such
that Kum4(A) is isomorphic to the resolution of the singularities of X/τ , and the
projective families of A and X correspond accordingly to Corollary 4.2.4.16.
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Proof. The equivalence between 1) and 2) is proven in Theorem 4.2.4.11. Moreover, 2) is
equivalent to 3) because if T (X) is one of those in Corollary 4.2.4.16, the correspondent
NS(X) is one of those in Theorem 4.2.4.14, so it’s a cyclic overlattice of Π⊕ ⟨2d⟩.

Remark 4.2.5.6. If X admits a strong order 4 Shioda-Inose structure (A,α,X, τ), then
the same quadruple forms also weak structure.

The absence of a Hodge isometry between T (A) and T (X) in weak structures allows
only, given X, to identify only the projective family to which A belongs; conversely,
given A, we have also the problem that depending on T (A) there can be up to two
different families of K3 surfaces X that form a weak structure with A.
Therefore, we conclude that it is not possible to give a full generalization of Shioda-Inose
structures to the order 4: one has to give up either the generality of the existence, or the
(almost) uniqueness of the abelian and K3 surface that interact with each other.

4.2.6 Examples

We’re going to provide two examples of K3 surfaces admitting an order 4 Shioda-Inose
structures, both of them admitting a Jacobian fibration (see Section 2.2.1 for the related
theory).
The first one is the surface X4 of Section 2.2.2, that admits a strong order 4 Shioda-
Inose structure. We already know from Section 2.2.3 that the symplectic automorphism
τ induced by the generator of MW (π) exchanges four copies of D4 in NS(X4), and in
Remark 2.3.1.2 also the two copies of E8 exchanged by τ2 are provided. We can prove
that Z̃4, the resolution of the singularities of X4/τ

2, is a Kummer surface. By Theorem
4.2.1.3 we only need to check that π2∗T (X4) ≃ T (X4)(2): since T (X4) = ⟨ω1, ω2⟩, we
can see this holds by Proposition 2.4.1.1.

An example of weak order 4 Shioda-Inose structure can be found in Shimada’s catalogue
([90], see also the tables in the preprint version). Consider p : X → P1 (no. 2711) the
Jacobian fibration whose trivial lattice is T (p) = U ⊕ 2D5 ⊕ A7, and MW (p) ≃ Z/4Z:
since NS(X) is a cyclic overlattice of T (p) of index 4, the discriminant group of the
Néron-Severi of X is ANS(X) = Z/8Z: the transcendental lattice of X is TK3

1 {0} of
Theorem 4.2.4.14.
The Kodaira type of X is 2I∗1 + I8 + 2I1. Call {Cαk , k = 0, . . . , 5} the irreducible com-
ponents of the two copies of I∗1 (α = 1, 2), such that Cα0 , C

α
1 intersect only Cα2 , C

α
4 , C

α
5

intersect only Cα3 , and C
α
2 intersects Cα3 ; call {Bi, i = 0, . . . , 7} the irreducible compon-

ents of I8 such that, for every i ∈ Z/8Z, Bi intersects only B(i+1).
The trivial section s intersects C1

0 , C
2
0 , B0, and the torsion sections of p intersectBi, C

1
j , C

2
k

only if i, j, k satisfy the height formula

0 = 4− i(8− i)/8− δj − δk, with δj , δk =

{
1 j, k = 1

3/4 j, k = 4, 5;

we choose as generator t of MW (p) the section that intersects B2, C
1
5 , C

2
5 . Then the

action of the symplectic automorphism τ (induced by t) on the singular fibers is as
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follows:

Cα0
τ∗7−→ Cα5

τ∗7−→ Cα1
τ∗7−→ Cα4

τ∗7−→ Cα0 for α = 1, 2, τ∗(B[i]8) = B[i+2]8 .

Call u = τ∗t, v = τ∗u: the four orthogonal copies of D4 on which τ∗ acts as a cycle
of order 4 are {s, C1

0 , C
2
0 , B0}, {t, C1

5 , C
2
5 , B2}, {u,C1

1 , C
2
1 , B4}, {v, C1

4 , C
2
4 , B6}. Taking

the quotient X/τ , we get an I2 fiber in place of the I8; the action on the two I1 fibers of
X fixes the nodal points, which become A3 singularities in the quotient X/τ ; in place of
the I∗1 fibers we get a configuration of curves as follows (C

α
0 is the image of Cα0 via the

quotient map, similarly C
α
2 ), where the black point is an A3 singularity, the white one

an A1:

C
α
0

C
α
2

Resolving the singularities, we get another elliptic K3 surface q : Y → P1 (no. 2717 in
Shimada’s catalogue): its Kodaira type is 2I∗1 +2I4+I2, which alongside the information
that MW (q) ≃ Z/4Z gives ANS(Y ) = Z/2Z× (Z/4Z)2, which is the one expected by the
correspondence of Corollary 4.2.4.16. The surface Y is a Kummer-4 surface Kum4(A),
with T (A) ≃ ⟨2⟩ ⊕ U .

Remark 4.2.6.1. We can also find two orthogonal copies of E8 inNS(X): ⟨B1, B5, B6, B7,
B0, s, C

1
0 , C

1
2 ⟩ and ⟨C2

4 , u, C
2
1 , C

2
2 , C

2
3 , C

2
5 , t, C

1
5 ⟩. Call ι the involution that exchanges

them: then, ι is not τ2, and the resolution of the singularities of X/ι is a Kummer
surface Kum(B) for an abelian surface B such that T (B) ≃ T (X).
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Chapter 5

Action of a group of order 4 on a K3[2]

type manifold and involutions on
Nikulin-type orbifolds

In this chapter, we apply our knowledge of symplectic actions of groups of order 4 G on
K3 surfaces to study the symplectic action of G on a K3[2]-type manifold X. Indeed, it
is proven in [39] that this action is always standard, meaning that a pair (X,G) can be
always deformed to a natural pair (S[2], G). We classify the irreducible components of
the moduli space of projective K3[2]-type manifolds with a symplectic action of G (see
Theorems 5.1.1.2 and 5.1.2.2). For some of them, we find the general member: either
as Fano manifold over a cubic fourfold, or as Hilbert scheme of two points of a quartic
surface with a mixed (partially non-symplectic) action of G, or as double cover of a cone
over P2 × P2.

We then turn our attention to Nikulin orbifolds and their deformation class (see Example
1.5.1.2): if X admits a symplectic action of G, and i ∈ G is an element of order 2,
then the Nikulin orbifold Y obtained as terminalization of X/i admits a symplectic
involution induced by the quotient G/i. The two groups of order four induce two very
different involutions on Y : indeed, we can see from the action on X that the one induced
by Z/4Z fixes only points on Y , while the locus of the one induced by (Z/2Z)2 has
codimension 2. We describe the action of these involutions on H2(Y,Z), using the same
quotient maps we introduced for K3 surfaces in Chapters 2 and 3. We then prove that
these induced involutions extend to any deformations of Y that satisfy a given lattice-
theoretic condition: thus, we can define standard symplectic involutions on Nikulin-type
orbifolds.

Theorem 2 (Thm. 5.4.2.10). Let Y be a Nikulin-type orbifold such that NS(Y ) contains
primitively either D4(2) or D6(2), and T (Y ) satisfies similar lattice theoretic condistions
(see Lemma 5.4.2.8). Then Y admits a standard symplectic involution ι.
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We remark that, differently than what happens on the known IHS manifolds, it is not
enough that a Nikulin-type orbifold Y be polarized with the correct anti-invariant lattice
for it to admit a standard involution: there is also a gluing datum between invariant and
co-invariant lattices, i.e. a specific embedding of the co-invariant lattice in H2(Y,Z),
that has to be respected. The correct gluing is described in Lemma 5.4.2.8.

We conclude with the lattice-theoretic classification of projective Nikulin orbifolds that
are terminalization of X/i, where X is a K3[2]-type manifold with a symplectic action of
a group of order 4 G, and i ∈ G is an element of order 2. After noticing that standard in-
volutions on Nikulin-type orbifolds commute with the non-standard involution described
in [52], we classify also projective Nikulin-type orbifolds that admit a mixed action of
(Z/2Z)2, where one of the generators is standard, and the other is not.

5.1 Projective families of K3[2]-type manifolds with a symplectic action
of a group of order 4

If X is a K3[2]-type manifold, then H2(X,Z) ≃ ΛK3[2] = E⊕2
8 ⊕ U⊕3 ⊕ ⟨−2⟩. The

symplectic action of a group of order 4 G on a K3[2]-type manifold X is always standard
[39], so in particular the co-invariant lattice ΩG will be the same as the one for the action
of G on a K3 surface S: hence, if X is projective, it will be polarized with the lattice
ΩG ⊕ ⟨2d⟩ or one of its overlattices [16, Prop. 2.1]: indeed, an ample class on X has
necessarily positive self-intersection, and ΩG is negative definite. These lattices have
been already classified as Néron-Severi group of general projective K3 surfaces S with a
symplectic action of G in Theorems 2.5.1.4, 3.5.1.2, so if X is also general there exists
an S such that NS(X) ≃ NS(S); however, since ΛK3[2] is not unimodular, unlike what
happens for K3 surfaces NS(X) does not necessarily determine T (X), because there can
be more than one primitive embedding NS(X) ↪→ ΛK3[2] . Each pair (NS(X), T (X))
gives a different projective family (see Remark 1.4.0.5).

Remark 5.1.0.1. Consider the isometry

ΛK3[2] ≃ ΛK3 ⊕ ⟨−2⟩ :

For either group of order 4 G, ΩG admits a unique primitive embedding in ΛK3[2] . Indeed,
we have to apply Theorem 1.2.1.14: the discriminant group of ΩG does not contain any
element of order 2 and square 3/2 (see Propositions 2.5.1.2, 3.5.1.1), so the only primitive
embedding we get is the one such that Ω⊥

G = ΛGK3 ⊕ ⟨−2⟩.

As a consequence, we have that each projective family of X is determined by the em-

bedding in ΛK3[2] of the class of positive square that generates Ω
⊥NS(X)

G .
We’re going to distinguish between families polarized with a class L = (LS , 0) ∈ ΛK3 ⊕
⟨−2⟩, i.e. those families such that NS(X) ≃ NS(S), T (X) ≃ T (S) ⊕ ⟨−2⟩ for some
general projective K3 surface S admitting a symplectic action of G, and families po-
larized with a class M = (LS , n) with n > 0, for which if NS(X) ≃ NS(S), then
T (X) ̸≃ T (S)⊕ ⟨−2⟩.
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5.1.1 Families of projective K3[2]-type manifolds with a symplectic action of Z/4Z

Let G = Z/4Z = ⟨τ⟩. Since the action of G on a K3[2]-type manifold X is standard, it
holds

Λτ
K3[2]

= ΛτK3 ⊕ ⟨−2⟩.

For convenience, we give a new description of the lattice ΛτK3, introduced in Section
2.3.2, as direct sum of elementary lattices.

Proposition 5.1.1.1. The lattice ΛτK3 as described in Section 2.3.2 is isometric to the
lattice

U
s1, s2

⊕ ⟨−2⟩⊕2

w1, w2

⊕ U(4)⊕2

w3, . . . , w6

via

s1 = (a1 + a2 + ω1 + ω2)/2;

s2 = (−a1 − a2 + ω1 − ω2)/2;

w1 = ω2 + (e1 + f1 + g1 + h1 + e4 + f4 + g4 + h4 + a1 + a2 + ρ)/2;

w2 = ω2 + e3 + f3 + g3 + h3 + e4 + f4 + g4 + h4+

+ (e1 + f1 + g1 + h1 + e2 + f2 + g2 + h2 + a1 + a2 + ρ)/2;

w3 = ρ+ (e2 + f2 + g2 + h2 + e4 + f4 + g4 + h4)/2;

w4 = ρ− (e2 + f2 + g2 + h2)/2 + (e4 + f4 + g4 + h4)/2;

w5 = 2ω2 + e1 + f1 + g1 + h1 + e3 + f3 + g3 + h3 + a1 + a2+

+ (e2 + f2 + g2 + h2 + e4 + f4 + g4 + h4)/2;

w6 = 2ω2 + e4 + f4 + g4 + h4 + a1 + a2 + ρ.

Theorem 5.1.1.2. The deformation families of projective K3[2]-type manifolds X with
a symplectic automorphism τ of order 4 are determined by the pairs (NS(X), T (X))
appearing in the following table, where the class L indicated is the generator of ⟨2d⟩ =
Ω
⊥NS(X)

4 : the classes L0, Li,j are defined in Example 2.5.1.6, while the Mi and M̃i are
defined in the proof below.

NS(X) T (X) L L2

d =4 1 Ω4 ⊕ ⟨2d⟩

U(4)⊕2 ⊕ ⟨−2⟩⊕3 ⊕ ⟨2d⟩ L0(d) 2d

U(4)⊕2 ⊕Km M1(m) 2(4m− 3)

U(4)⊕Dm M̃1(m) 2(4m+ 1)

d =4 2

Ω4 ⊕ ⟨2d⟩
U(4)⊕2 ⊕ ⟨−2⟩⊕3 ⊕ ⟨2d⟩ L0(d) 2d

U(4)⊕2 ⊕ ⟨−2⟩ ⊕Hm M2(m) 2(4m− 2)

(Ω4 ⊕ ⟨2d⟩)′(1)
U(4)⊕2 ⊕ ⟨−2⟩ ⊕Hm

L
(1)
2,2(m) 2(4m+ 2)

(Ω4 ⊕ ⟨2d⟩)′(2) L
(2)
2,2(m) 2(4m− 2)
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d =4 3
Ω4 ⊕ ⟨2d⟩

U(4)⊕2 ⊕ ⟨−2⟩⊕3 ⊕ ⟨2d⟩ L0(d) 2d

U(4)⊕2 ⊕ ⟨−2⟩⊕2 ⊕Gm M3(m) 2(4m− 1)

(Ω4 ⊕ ⟨2d⟩)′ U(4)⊕2 ⊕ ⟨−2⟩⊕2 ⊕Gm L2,3(m) 2(4m+ 3)

d =4 0

Ω4 ⊕ ⟨2d⟩ U(4)⊕2 ⊕ ⟨−2⟩⊕3 ⊕ ⟨2d⟩ L0(d) 2d

(Ω4 ⊕ ⟨2d⟩)′
U(4)⊕ ⟨−2⟩⊕3 ⊕ Fm L2,0(m) 2(4(m− 1))

U ⊕ U(4)⊕ ⟨−2⟩⊕2 ⊕ Em M4(m) 2(4(m− 1))

(Ω4 ⊕ ⟨2d⟩)⋆ U ⊕ U(4)⊕ ⟨−2⟩⊕2 ⊕ Em L4,j(h) 2(4(m− 1)), see table 5.2

Table 5.2: Relation between m, j, h

m (mod 4) 0 1 2 3

j 12 0 4 8
h (m− 4)/4 (m+ 3)/4 (m− 2)/4 (m+ 13)/4

Gm =

[
−2m 1

1 −2

]
Hm =

 −2m 1 1
1 −2 0
1 0 −2

 Km =


−2m 1 1 0

1 −2 0 0
1 0 −2 2
0 0 2 −4



Dm =


−2m 1 1 1 2 2

1 −2 0 0 0 0
1 0 −2 0 0 0
1 0 0 −2 0 0
2 0 0 0 0 4
2 0 0 0 4 0

 Em =

[
−8m 4

4 −2

]
Fm =

 −2(m− 1) 2 0
2 0 4
0 4 0



Proof. We use Nikulin’s theorem 1.2.1.14 to determine all primitive embeddings of each
of the Néron-Severi lattices described for K3 surfaces in Theorem 2.5.1.4 in the ambient
lattice ΛK3[2] , whose discriminant group is Z/2Z with discriminant form q = [3/2]. By
Remark 5.1.0.1, we can start by fixing the embedding induced by Ω4 ↪→ ΛK3. Now, for
each Néron-Severi lattice we have the primitive embedding induced by ΛK3 ↪→ ΛK3 ⊕
⟨−2⟩, x 7→ (x, 0) (see Example 2.5.1.6); then, applying Theorem 1.2.1.14 we find as
necessary condition to have alternative embeddings of the same Néron-Severi lattice
that its discriminant form contain an element of order 2 and square 3/2: if there is more
than one such subgroup, we can then check if they give rise to different embeddings. If
this is the case, according to Theorem 1.2.1.14 we find a different orthogonal complement
T (X) (in our case, each T (X) is unique in its genus).
The embeddings we find through this process are unique up to isometries of ΛK3[2] , so we
can choose for each one a representative: we give a class M of square 2d in Λτ

K3[2]
= Ω⊥

4

as generator of Ω
⊥NS(X)

4 , such that T (X) has the correct discriminant form.
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The lattice Ω4 ⊕ ⟨2d⟩ has discriminant form

qΩ4⊕⟨2d⟩ :=

[
0 1/4
1/4 0

]⊕2

⊕
[
1/2

]⊕2 ⊕
[
1/2d

]
:

let γ be the generator of the subgroup [1/2d], α1, α2 those of [1/2]⊕2, x1, x2 those of one

of the

[
0 1/4

1/4 0

]
blocks. For d =4 3, dγ has order 2 and square 3/2; for d =4 1, dγ has

order 2 and square 1/2, so α1 + α2 + dγ has order 2 and square 3/2; for d =4 2, dγ has
order 2 and square 1, so α1 + dγ has order 2 and square 3/2; for d =4 0, dγ has order
2 and square 0, so we have no alternative embeddings. These alternative embeddings
of Ω4 ⊕ ⟨2d⟩ are realized by the following classes of square 2d in Λτ

K3[2]
= ΛτK3 ⊕ Zµ,

µ2 = −2 (see Proposition 5.1.1.1 for the notation):

� for d = 4m− 3, M1(m) = 2(s1 +ms2) + w2 − w1 + µ,

� for d = 4m− 2, M2(m) = 2(s1 +ms2) + w1 + µ;

� for d = 4m− 1, M3(m) = 2(s1 +ms2) + µ.

For d =4 1, the class

M̃1(m) = 2(s1 +ms2) + w3 + w4 + w2 − w1 + µ

provides a third different primitive embedding of Ω4 ⊕ ⟨2d⟩ in the ambient lattice: the
associated subgroup of qΩ4⊕⟨2d⟩ is generated by α1 + α2 + dγ + x1 + x2. For d =4 0
the lattice (Ω4 ⊕ ⟨2d⟩)′ admits another primitive embedding, realized by the following
classes:

� for d = 4(m− 1), M4(m) = w3 +mw4 + 2µ.

These are the only cases in which there exist alternative embeddings, as the discriminant
group of the other Néron-Severi lattices does not contain any element of order 2 and
square 3/2.

Remark 5.1.1.3. Notice that there are pairs of projective families with general member
X1, X2 such that NS(X1) ≃ NS(X2) but T (X1) ̸≃ T (X2), and others such that the
converse holds.

5.1.2 Families of projective K3[2]-type manifolds with a symplectic action of (Z/2Z)2

Let G = (Z/2Z)2 = ⟨τ, φ⟩. As above, since the action of G on a K3[2]-type manifold X
is standard, it holds

ΛG
K3[2]

= ΛGK3 ⊕ ⟨−2⟩,

and we can give a description of ΛGK3 as direct sum of elementary lattices.
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Proposition 5.1.2.1. The lattice Λ
(Z/2Z)2
K3 as described in Section 3.3.2 is isometric to

the lattice
U

s1, s2

⊕ U(2)⊕2

u1, . . . , u4

⊕ D4(2)
m1, . . . ,m4

via

s1 = (x+ 2y − e1 − f1 + e2 + f2)/3;

s2 = y;

u1 = (v1 + v2 + g1 + h1 − g2 − h2)/3;

u2 = (v1 + v2 + g1 + h1 + 2g2 + 2h2)/3;

u3 = (−v1 + 2v2 + 2g1 + 2h1 + g2 + h2)/3;

u4 = (−2v1 + v2 − 2g1 − 2h1 − g2 − h2)/3;

m1 = (a1 + b1 + c1 + d1 − (a2 + b2 + c2 + d2) + 2e1 + 2f1 + e2 + f2 − 2y)/3;

m2 = (a1 + b1 + c1 + d1 + 2(a2 + b2 + c2 + d2) + 2e1 + 2f1 + e2 + f2 − 2y)/3;

m3 = − e1 − f1 − e2 − f2;

m4 = e2 + f2 + 2y.

Theorem 5.1.2.2. The deformation families of projective K3[2]-type manifolds X with
a symplectic action of (Z/2Z)2 are determined by the pairs (NS(X), T (X)) appearing

in the following table, where the class L indicated is the generator of ⟨2d⟩ = Ω
⊥NS(X)

2,2 :

the classes L0, L
(h)
i,j are defined in Example 3.5.1.3, while the Mi are defined in the proof

below.

NS(X) T (X) L L2

d =4 1 Ω2,2 ⊕ ⟨2d⟩
⟨−2d⟩ ⊕ ⟨−2⟩ ⊕ U(2)⊕2 ⊕D4(2) L0(d) 2d

U(2)⊕2 ⊕Bm M1(m) 2(4m− 3)

d =4 3 Ω2,2 ⊕ ⟨2d⟩
⟨−2d⟩ ⊕ ⟨−2⟩ ⊕ U(2)⊕2 ⊕D4(2) L0(d) 2d

U(2)⊕2 ⊕D4(2)⊕Gm M3(m) 2(4m− 1)

d =4 2

Ω2,2 ⊕ ⟨2d⟩ ⟨−2d⟩ ⊕ ⟨−2⟩ ⊕ U(2)⊕2 ⊕D4(2) L0(d) 2d

(Ω2,2 ⊕ ⟨2d⟩)′ ⟨−2⟩ ⊕D4(2)⊕ Ph L
(a,b)
2,2 (h) 2(4h+ 2)

d =8 0

Ω2,2 ⊕ ⟨2d⟩ ⟨−2d⟩ ⊕ ⟨−2⟩ ⊕ U(2)⊕2 ⊕D4(2) L0(d) 2d

(Ω2,2 ⊕ ⟨2d⟩)′(1) ⟨−2⟩ ⊕ U ⊕Rh L
(1)
2,0(h) 2(4h)

(Ω2,2 ⊕ ⟨2d⟩)′(2)
⟨−2⟩ ⊕ U(2)⊕2 ⊕Qh L

(2)
2,0(h) 2(4h− 4)

U ⊕ U(2)⊕ Cm M8(m) 2(8m− 8)

131



d =8 4

Ω2,2 ⊕ ⟨2d⟩ ⟨−2d⟩ ⊕ ⟨−2⟩ ⊕ U(2)⊕2 ⊕D4(2) L0(d) 2d

(Ω2,2 ⊕ ⟨2d⟩)′(1) ⟨−2⟩ ⊕ U ⊕Rh L
(1)
2,0(h) 2(4h)

(Ω2,2 ⊕ ⟨2d⟩)′(2) ⟨−2⟩ ⊕ U(2)⊕2 ⊕Qh L
(2)
2,0(h) 2(4h− 4)

(Ω2,2 ⊕ ⟨2d⟩)⋆ ⟨−2⟩ ⊕ T
(±4)
h L4,±4(h) 2(16h± 4)

Gm =

[
−2m 1

1 −2

]
Bm =


Gm

1 1 −2 1
0 0 0 0

1 0
1 0
−2 0
1 0

D4(2)

Cm =


−4m 2

2 −2
−2 2 0 0
0 0 0 0

−2 0
2 0
0 0
0 0

D4(2)



Ph =


−2h 1 1 1 0

1
1
1
0

U(2)⊕2

 Qh =


−2h 2 0 0 0

2
0
0
0

D4(2)

 T
(−4)
h = U(2)⊕2 ⊕


−2h 1 0 0 0

1
0
0
0

D4(2)



T
(4)
h = U ⊕



−8h −2 0 0 0 0 0
−2 0 2 0 0 0 0
0 2 −4 −2 0 0 0
0 0 −2 −4 −4 2 0
0 0 0 −4 −8 4 0
0 0 0 2 4 −4 2
0 0 0 0 0 2 −4


Rh =



−8(h+ 1) 2 0 0 0 0 0
2 0 2 0 0 0 0
0 2 4 2 0 0 0
0 0 2 −4 2 0 0
0 0 0 2 −4 4 0
0 0 0 0 4 −8 4
0 0 0 0 0 4 −8



Proof. The proof is analogous to that of Theorem 5.1.1.2. We now use the Néron-Severi
lattices described for K3 surfaces S in Theorem 3.5.1.2; again, by Remark 5.1.0.1 Ω2,2

admits a unique primitive embedding in ΛK3[2] up to isometries, so we start by fixing
the embedding induced by Ω2,2 ↪→ ΛK3. For each NS(X) ≃ NS(S) we have at least the
embedding such that T (X) ≃ T (S)⊕⟨−2⟩ (see Example 3.5.1.3). The additional choices
are as follows: for d odd, the lattice Ω2,2 ⊕ ⟨2d⟩ admits another primitive embedding,
realized by the following classes of square 2d in ΛG

K3[2]
= ΛGK3 ⊕ Zµ, µ2 = −2 (see

Proposition 5.1.2.1 for the notation):

� for d = 4m− 3, M1(m) = 2(s1 +ms2) +m3 + µ;

� for d = 4m− 1, M3(m) = 2(s1 +ms2) + µ.

For d =8 0 the lattice (Ω2,2 ⊕ ⟨2d⟩)′(2) admits another primitive embedding, realized by

� M8(m) = 2(µ+ u3 +mu4) +m2 −m1.

These are the only cases in which there exist alternative embeddings, for the discriminant
group of the other Néron-Severi lattices does not contain any element of order 2 and
square 3/2.
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5.2 Fixed loci

Given a pair (X,G) with X a K3[2]-type manifold and G group of order four acting
symplectically, by Remark 1.4.2.4 we know that the locus of points of X with nontrivial
stabilizer is topologically the same of that of the natural pair (S[2], G).

Proposition 5.2.0.1. Let G = Z/4Z act symplectically on a K3[2]-type manifold X, let
τ be a generator of G. Then τ fixes 16 points, of which exactly 8 lie on the K3 surface
Σ fixed by τ2.

Proof. The action of G = Z/4Z = ⟨τ⟩ on a K3 surface S fixes 4 points {p1, . . . p4} and
exchanges two pairs of points, q1 7→ q2, r1 7→ r2 (these are fixed by τ2).
Let [s1, s2] with s1 ̸= s2 be the class in S[2] of the unordered pair of points {s1, s2} ⊂ S.
The natural action of τ2 on S[2] fixes 28 isolated points: 6 of the form [pi, pj ] with
i ̸= j ∈ {1, . . . , 4}, 16 of the form [pi, qj ] or [pi, rj ] with i ∈ {1, . . . , 4}, j ∈ {1, 2}, 4 of the
form [qi, rj ], i, j ∈ {1, 2}, and the points [q1, q2], [r1, r2]; moreover, it fixes the K3 surface
Σ = [s, τ2(s)], s ∈ S. Let ∆ be the blow-up of the singular locus of S(2) = (S × S)/σ,
where σ is the exchange of the two copies of S. Then, Σ ∩ ∆ consists of 8 lines, over
the points [pi, pi], [qj , qj ], [rj , rj ], i ∈ {1, . . . , 4}, j ∈ {1, 2}. The K3 surface Σ fixed by the
natural symplectic involution ι on S[2] is isomorphic to the resolution of the singularities
of S/ι: if ι = τ2, we get a surface isomorphic to Z̃ (see Section 2.4.2); the involution
induced by the action of G/τ2 on Σ exchanges pairwise the four lines over [qj , qj ], [rj , rj ],
and fixes two points on each of the remaining four lines.

Proposition 5.2.0.2. Let G = (Z/2Z)2 act symplectically on a K3[2]-type manifold X,
let τ, φ, ρ be the three involutions in G. The action of G stabilizes (with order 2) 72
isolated points and three K3 surfaces Στ ,Σφ,Σρ, each fixed by the respective involution.
The three surfaces intersect pairwise in 4 points as follows: the points in Στ ,Σφ belong
to the set of 28 isolated points fixed by ρ, and similarly the other pairs. The fixed locus
of G consists therefore of 12 points, lying in the intersection of the three K3 surfaces.

Proof. Call {t1, . . . t8}, {q1, . . . q8}, {r1, . . . r8} the points of the K3 surface S fixed re-
spectively by τ, φ, ρ: the involutions φ, ρ act on the set {t1, . . . t8} exchanging them
pairwise in the same way, say t2i−1 ↔ t2i. Similarly, each two involutions act in the
same way on the set of points fixed by the third one.
The involution τ on S[2] fixes a K3 surface Στ ≃ Z̃τ (see Section 3.4.1) given by the
points [s, τ(s)], and the 28 isolated points [ti, tj ] for i ̸= j ∈ {1, . . . 8} (similarly the other
two involution); moreover, it holds

Στ ∩ Σφ = {[p, τ(p)] = [q, φ(q)]} = {[ri, τ(ri)]},

which are four of the isolated points fixed by ρ. The other pairs of fixed surfaces intersect
similarly. Notice that each involution acts on each of the surfaces fixed by the other
involutions (for instance, τ acts on Σρ and Σφ).
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5.3 Examples

To find a projective model of a general member X in the moduli space of projective
K3[2]-type manifolds with a symplectic action of some group H, the action of H on X
should not be natural, i.e. it cannot be X = S[2] with H acting symplectically on S, as it
is explained in the following Remark 5.3.0.1. Therefore, one has to resort to alternative
constructions that give IHS manifolds of K3[2]-type.

Remark 5.3.0.1. Let S be a general member in the moduli space of projective K3 surfaces
with a symplectic action of some group H. The Hilbert square S[2] is not a general
member in the moduli space of K3[2]-type manifolds with a symplectic action of H:
indeed, NS(S[2]) = NS(S)⊕⟨−2⟩ is an overlattice of finite index of ΩH⊕⟨2d⟩⊕⟨−2⟩, so
it has a bigger rank than that of a general member X, for which NS(X) is an overlattice
of finite index of ΩH ⊕ ⟨2d⟩. Notice also that the moduli space of S and of S[2] have the
same dimension (see Remark 1.4.0.4).

Projective models of K3[2]-type manifolds with a symplectic involution ι have been con-
structed in [15] and [16]. We are going to adapt some of these constructions, supposing
that ι ∈ G a group of order 4.

Actions on the Fano variety of lines of a cubic fourfold.
Let C be a cubic fourfold in P5: if C is smooth, the Fano variety of lines F (C) is an
IHS manifold of K3[2]-type. We recall here two important results about these mani-
folds:

Proposition 5.3.0.2 ([8, Prop. 2, Prop. 4, Prop. 6.ii]). 1. There exists a Hodge iso-
metry H4(C,Z) ≃ H2(F (C), Z), that maps H i,j(C) to H i−1,j−1F (C).

2. The Fano variety of lines of a Pfaffian cubic fourfold CV is isomorphic to the Hilbert
scheme of two points over a K3 surface SV of degree 14: this gives a Hodge isometry

H2(F (CV ),Z) ≃ H2(S
[2]
V , Z) ≃ H2(SV , Z) ⊕ ⟨−2⟩; in particular, the image of the

Plücker polarization g of F (CV ) is 2L − 5δ, where L is the polarization of degree

14 of SV and δ is half the class of the exceptional divisor of S
[2]
V → Sym2(SV ).

Remark 5.3.0.3. As a consequence of the first statement we get that an automorphism
ϕ of C lifts to a symplectic automorphism of F (C) if and only if ϕ acts as the identity on
H3,1(C). As a consequence of the second we get that F (C) is naturally polarized with a
class of square 6 and divisibility 2, as this properties hold for 2L− 5δ.

In [15] it is shown that the only case in which an involution ι of a cubic fourfold C
lifts to a symplectic involution of F (C) is when ι is induced by the automorphism of P5

ϕ : (x0 : x1 : x2 : x3 : x4 : x5) 7→ (−x0 : −x1 : x2 : x3 : x4 : x5) and the cubic fourfold has
equation

C2 : x20λ1(x2, x3, x4, x5)+x21λ2(x2, x3, x4, x5)+x0x1λ3(x2, x3, x4, x5)+Γ(x2, x3, x4, x5) = 0

where the λi are linear, while Γ is cubic. Moreover, in the same paper there is a descrip-
tion of the fixed locus of the symplectic involution on F (C2): it consists of 28 points,
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given by the line x2 = x3 = x4 = x5 = 0 and the 27 lines on the cubic threefold
Γ(x2, x3, x4, x5) = 0, and the K3 surface Σ ⊂ P1 × P3 described by the complete inter-
section

Σ :

{
Γ(x2, x3, x4, x5) = 0

x20λ1(x2, x3, x4, x5) + x21λ2(x2, x3, x4, x5) + x0x1λ3(x2, x3, x4, x5) = 0.
(5.3.0.1)

1: Action of Z/4Z. Of all the automorphisms ψ of P5 of order four such that ψ2 = ϕ,
the only one that acts on a smooth cubic hypersurface C4 such that ψ∗|H3,1(C4) = id is
ψ : (x0 : x1 : x2 : x3 : x4 : x5) 7→ (ix0 : −ix1 : x2 : x3 : −x4 : −x5), with

C4 : C(x2, x3)+x2Q1(x4, x5)+x3Q2(x4, x5)+x
2
0ℓ1(x4, x5)+x

2
1ℓ2(x4, x5)+x0x1ℓ3(x2, x3) = 0,

where C is a cubic polynomial, Qi are quadric and ℓi are linear. Notice that C4 is
a specialization of C2, as the general cubic Γ(x2, x3, x4, x5) is replaced by C(x2, x3) +
x2Q1(x4, x5) + x3Q2(x4, x5), and the ℓi depend on less variables than the corresponding
λi. This family has 6 moduli (the equation depends on 16 projective parameters, but the
space of projectivities of P5 that commute with ϕ has dimension 10), so F (C4) is a general
member of a family of projective K3[2]-type manifolds with a symplectic automorphism
of order 4: in Theorem 5.1.1.2, this is the family associated to M3(1), because this
polarization is the only one with square 6 and divisibility 2.
Following [15, §7], we give a model of the K3 surface fixed by τ2, Σ4 ⊂ P1

(x0:x1)
×P3

(x2:···:x5)
as:

Σ4 :

{
C(x2, x3) + x2Q1(x4, x5) + x3Q2(x4, x5) = 0

x20ℓ0(x4, x5) + x21ℓ1(x4, x5) + x0x1ℓ2(x2, x3) = 0;

notice that this is a specialization of the surface Σ in (5.3.0.1), with the additional
property that it admits a symplectic involution: indeed the residual involution induced
by ψ fixes 8 points on Σ4, so it is symplectic.
This family of Fano varieties was already described in [23], in which also the fixed locus
of the automorphism of order 4 is partially computed (there is one line missing). There
are 16 lines on C4 which are fixed by τ := ψ|C4 : calling P0 = (1 : 0 : 0 : 0 : 0 : 0),
P1 = (0 : 1 : 0 : 0 : 0 : 0), we have the six lines that join one of the points P0, P1 with one
of the three solutions P̃j = (0 : 0 : sj : tj : 0 : 0) of the system {C(x2, x3) = 0, x0 = x1 =
x4 = x5 = 0}, and the two lines that join P0 with the solution of {ℓ1(x4, x5) = 0, x0 =
x1 = x2 = x3 = 0}, P1 with the solution of {ℓ2(x4, x5) = 0, x0 = x1 = x2 = x3 = 0}:
these give the 8 fixed points of F (C4) belonging to the K3 surface fixed by τ2.
Moreover, we have the lines (0 : 0 : 0 : 0 : x4 : x5) and (x0 : x1 : 0 : 0 : 0 : 0), and
the six lines that join each of the P̃j with each of the two solutions of {sjQ1(x4, x5) +
tjQ2(x4, x5) = 0, x0 = x1 = 0}: these give the 8 points fixed by τ among the 28 isolated
points fixed by τ2.

2: Action of (Z/2Z)2. Consider the action of (Z/2Z)2 on P5 given by

(x0 : x1 : x2 : x3 : x4 : x5)
τ7−→ (−x0 : −x1 : x2 : x3 : x4 : x5)
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φ7−→ (−x0 : x1 : −x2 : x3 : x4 : x5)

and the invariant cubic fourfold

C2,2 : x0x1x2 + x20ℓ
′
0(x3, x4, x5) + x21ℓ

′
1(x3, x4, x5) + x22ℓ

′
2(x3, x4, x5) + C ′(x3, x4, x5) = 0,

where ℓ′i are linear and C
′ is cubic. Again, C2,2 is a specialization of C2; this family has 8

moduli (the equation depends on 20 projective parameters, but the space of projectivities
of P5 that commute with ϕ has dimension 12), so F (C2,2) is a general member of a
family of projective K3[2]-type manifolds with a symplectic action of (Z/2Z)2 – the one
in Theorem 5.1.2.2 associated to M3(1).
Again, the K3 surface fixed by τ can be described in P1

(x0:x1)
× P3

(x2:···:x5) as:

Σ2,2 :

{
x22ℓ

′
2(x3, x4, x5) + C ′(x3, x4, x5) = 0

x20ℓ
′
0(x3, x4, x5) + x21ℓ

′
1(x3, x4, x5) + x0x1x2 = 0.

The surfaces fixed by the other involutions in (Z/2Z)2 are described by similar equations,
obtained by permutation of the coordinates.

If F (C) admits a symplectic action of a group G of order 4 and i ∈ G has order 2,
then there is an involution on the surface fixed by i: the surface Σ defined in (5.3.0.1)
specializes to Σ4,Σ2,2 if G = Z/4Z, (Z/2Z)2 respectively. We show that these are the
most general specializations of Σ that admit a symplectic involution.

Proposition 5.3.0.4. There are exactly two families of K3 surfaces in P1 × P3 with a
symplectic involution. The surfaces Σ4 and Σ2,2 are general members of these families.

Proof. A K3 surface in P1 × P3 is a smooth complete intersection of divisors of bidegree
(2, 1) and (0, 3) respectively. We exclude involutions of P1×P3 that act as the identity on
either component, because they fix lines on the invariant surfaces (or these are singular).
The only suitable involutions are therefore:

ι1 :(x0 : x1)(x2 : x3 : x4 : x5) 7→ (x0 : −x1)(x2 : x3 : x4 : −x5),
ι2 :(x0 : x1)(x2 : x3 : x4 : x5) 7→ (x0 : −x1)(x2 : x3 : −x4 : −x5).

Invariant K3 surfaces for ι1 are given by taking both divisors in the positive eigenspace
(otherwise the resulting surfaces are singular), so they satisfy the same equations as
Σ2,2. Invariant K3 surfaces for ι2 are given either by taking both divisors in the same
eigenspace (positive or negative), or by taking one in the positive and one in the negative
eigenspaces. However, in the former case we find that ι2 fixes the resulting surface, so
we have to exclude it; the latter case has Σ4 as a general member.

Non natural actions on the Hilbert square of a K3 surface. We start by recalling
the construction of Beauville’s involution [7], the first example of non-natural automor-
phism on an IHS manifold: it is a non-symplectic, non-natural involution defined on
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S[2] for a smooth quartic surface S ⊂ P3 without lines (this condition is satisfied by the
general smooth quartic surface).
The Hilbert square S[2] parametrizes non-ordinate pairs of points [p, q] of S: take the
line ℓ ⊂ P3 through p and q: then ℓ ∩ S = {p, q, P,Q} (not necessarily distinct). Define
Beauville’s involution β on S[2] generically as [p, q] 7→ [P,Q]; the isometry β∗ has inva-
riant lattice ⟨2⟩, generated by the class H − µ, where ⟨H⟩ ⊕ ⟨µ⟩ = ⟨4⟩ ⊕ ⟨−2⟩: the latter
is the Néron-Severi lattice of S[2] for S general, as NS(S) is spanned by the hyperplane
class, that has self-intersection 4.

Proposition 5.3.0.5. Let S ⊂ P3 be a smooth quartic surface without lines, that has an
automorphism α that preserves the polarization (that is, α is induced by an automorphism
of P3): then, the induced automorphism α on S[2] commutes with Beauville’s involution
β.

Proof. The automorphism of P3 maps lines into lines, so β([α(p), α(q)]) = [α(P ), α(Q)].
From a lattice-theoretic perspective, we can show that α∗ ◦ β∗ = β∗ ◦ α∗ on H2(S[2],Z),
which implies that α and β commute (see Remark 1.3.0.13): firstly, notice that β∗H =
3H−4µ, β∗µ = 2H−3µ, and there is a basis of the orthogonal complement K of ⟨H,µ⟩
in H2(S[2],Z) such that β∗ acts as −id on each class. On the other hand, the induced
automorphism α of S[2], being natural, is such that α∗ acts as the identity on ⟨H,µ⟩: its
co-invariant lattice is therefore contained inK. Take a class of the form u = aH+bµ+cv,
with v ∈ K: then β∗α∗u = (3a+ 2b)H − (4a+ 3b)µ− cα∗v = α∗β∗u.

If α acts as −id on ωS , then α ◦ β is a non-natural symplectic automorphism of S[2].
This construction can therefore be used to describe the general member of a projective
family of K3[2]-type manifolds with a finite symplectic action.
When α is an involution, this has been done in [16, Rem. 2.13]. To obtain a non-natural
symplectic action of a group of order 4 G, we are going to start from K3 surfaces with
a mixed action, i.e. an action of G such that only a proper subgroup K ⊂ G acts
symplectically. Mixed actions of finite groups on K3 surfaces have been classified in
[12].

1: Non natural action of Z/4Z. Quartic surfaces with equation

S4 : a1x
4
0 + x20(a2x

2
1 + a3x2x3) + x0x1(a4x

2
2 + a5x

2
3)+

+ x21(a6x
2
1 + a7x2x3) + x22(a8x

2
2 + a9x

2
3) + a10x

4
3 = 0

are invariant for the automorphism γ : (x0, x1, x2, x3) 7→ (x0,−x1, ix2,−ix3), which acts
as −id on its symplectic form [2, Ex. 1.2]. The general member of this family is smooth
and contains no line. Since this family of surfaces has 6 moduli, taking the Hilbert square
we obtain a complete family of projective IHS manifolds of type K3[2] with a symplectic
automorphism of order 4 τ := β ◦ γ (see Remark 5.3.0.1).

Proposition 5.3.0.6. Let X be the general member of the projective family of K3[2]-type
manifolds associated in Theorem 5.1.1.2 to M̃1(1): then X is the Hilbert scheme of two
points on S4.
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Proof. There are 5 deformation families of K3 surfaces with an automorphism of order 4
that acts as −id on the symplectic form; each of them has a different fixed locus, and the
corresponding invariant lattices have different ranks [2, Prop. 2]. The automorphism γ
on S4 has empty fixed locus, and its invariant lattice is

Lγ = U(4)⊕


−8 4 −4 0
4 −8 4 −4

−4 4 −4 2
0 −4 2 −4


(see [12] and the attached database [13], entry (1.2.7.55)): therefore NS(S4) (which
has rank 14 and is recorded in the database) is an overlattice of Ω2 ⊕ Lγ , where Ω2 =
E8(2) is the coinvariant lattice for the symplectic involution γ2. Since by Proposition

5.3.0.5 X = S
[2]
4 admits the symplectic automorphism τ = β ◦ γ of order 4, the lattice

NS(X) = NS(S4)⊕⟨−2⟩ is isomorphic to Ω4⊕⟨2d⟩ or one of its overlattices; moreover,
the involution τ2 on X is induced by γ2 on S4, so Ω2 is embedded in Ω4 according to
Section 2.3.2, and it holds NS(X)τ

2
= NS(S)γ

2 ⊕ ⟨−2⟩.
We find Lγ ⊕⟨−2⟩ as Ω⊥

2 in the lattice Ω4 ⊕⟨2⟩, so NS(X) = Ω4 ⊕⟨2⟩: the (−2)-class δ
that generates (Lγ ⊕ Ω2)

⊥NS(X) cannot glue to Ω2, so NS(S4) = δ⊥ in Ω4⊕⟨2⟩. Finally,
knowing NS(S4) we can compute (the genus of) T (S4), and since T (X) ≃ T (S4) we

can completely determine the deformation family of S
[2]
4 : this is the one associated in

Theorem 5.1.1.2 to M̃1(1).

2: Non natural action of (Z/2Z)2. The family of quartics

S2,2 : f4(x0, x1) + x22f2(x0, x1) + x23g2(x0, x1) + αx22 + βx2x3 + γx23 = 0

admits a mixed action of (Z/2Z)2, with generators σ : (x0, x1, x2, x3) 7→ (−x0,−x1, x2, x3)
and ι : (x0, x1, x2, x3) 7→ (x0, x1,−x2, x3): here σ is symplectic, while ι and σ ◦ ι are non-
symplectic and each of them fixes a curve of genus 3 on S2,2. The general member of this
family is smooth and contains no line. This family has 8 moduli, so taking the Hilbert
square we obtain a complete family of projective IHS manifolds of type K3[2] with a
symplectic action of (Z/2Z)2 = ⟨σ, ι ◦ β⟩.

Proposition 5.3.0.7. 1. The invariant lattice for the mixed action of (Z/2Z)2 on
the quartic surface S2,2, such that both non-symplectic involutions fix a curve of
genus 3, is U(4)⊕ ⟨−2⟩⊕2.

2. The Hilbert square X = S
[2]
2,2 is a general member of a family of projective IHS

of K3[2]-type with a symplectic action of (Z/2Z)2: in Theorem 5.1.2.2, this is the
family associated to the class M1(1).

Proof. In the database [13] the collection of possible mixed actions of (Z/2Z)2 on a K3
surface S consists of 354 elements: there are two of them for which both non-symplectic
involutions fix a curve of genus 3, the entries (1.2.9.13) and (1.2.9.21).
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Since we know that one of the symplectic involutions on X = S
[2]
2,2 is natural, we can

compare the orthogonal complement of Ω2 appropriately embedded in NS(X) with the
invariant lattices of the two possible actions: thus we can exclude (1.2.9.13), and find
that NS(X) = Ω2,2 ⊕ ⟨2⟩ = ⟨−2⟩ ⊕ K, where K is the Néron-Severi lattice of the K3
surface (1.2.9.21): this is therefore our S2,2. Since T (X) ≃ T (S2,2), we can then find
the deformation family which X belongs to – the one associated in Theorem 5.1.2.2 to
M1(1).

Another example for (Z/2Z)2. Following [16, §5.1], we can search for a projective
model of a K3[2]-type manifold X as a double cover of a cone C(P2 × P2) ⊂ P9, with a
symplectic involution ι that acts exchanging the two copies of P2.
From a lattice-theoretic point of view, this model is given by a big and nef divisor
H = F1 + F2 ∈ NS(X) such that ⟨F1, F2⟩ = U(2) and ι∗F1 = F2.

Proposition 5.3.0.8. The involution ι can never be the square of a symplectic auto-
morphism of order 4 on X, but it can be one of the generators for a symplectic action
of (Z/2Z)2.

Proof. The same lattice-theoretic condition gives for K3 surfaces a projective model as
a double cover of P1×P1 with a symplectic involution ι that exchanges the two copies of
P1: if ι is the square of a symplectic automorphism of order 4 it always holds ι∗F1 = F1

(see §2.6.3 no.3) so this model cannot be realized; if ι is one of the generators of (Z/2Z)2
however this model exists (see §3.6.3, no.5).

5.4 The action of G in cohomology, and the induced involutions

Let X be a K3[2]-type manifold with a symplectic involution i, and π : X → X/i be
the quotient map. Since (X, i) is always a standard pair, if we denote iS a symplectic
involution on a K3 surface, and πS the associated quotient map, then it holds:

i∗ : H2(X,Z) ≃ ΛK3 ⊕ ⟨−2⟩ → ΛK3 ⊕ ⟨−2⟩, (x, µ) 7→ (i∗Sx, µ)

and therefore

π∗ : H
2(X,Z) ≃ ΛK3 ⊕ ⟨−2⟩ → πS∗ΛK3 ⊕ ⟨−4⟩, (x, µ) 7→ (πS∗x, µ̃). (5.4.0.1)

Recall from Example 1.5.1.2 that if Y is the Nikulin orbifold obtained as terminalization
of the quotient X/i, then

H2(Y,Z) ≃ ΛN := U(2)⊕3 ⊕ E8 ⊕ ⟨−2⟩⊕2. (5.4.0.2)

Remark 5.4.0.1. Notice that U(2)⊕3⊕E8 ≃ πS∗(H
2(S,Z)). Its orthogonal complement in

H2(Y,Z), ⟨−2⟩⊕2 is generated by (µ̃± Σ̃)/2, where Σ̃ is the exceptional class introduced
in the terminalization Y → X/i.
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If X admits a symplectic action of a group H with ⟨i⟩ a normal subgroup, then on Y
there is a residual symplectic action of H/i. In this section, we’re going to describe the
residual involution ι induced on Y by a group G of order 4 acting symplectically on X.
By the standardness of the action of G on K3[2]-type manifolds, we can take as πS
in (5.4.0.1) one of the quotient maps π2∗ (if G is cyclic, see Section 2.4.1), or πτ∗, πφ∗
(otherwise, see Sections 3.4.1, 3.4.2 respectively); then, ι acts on U(2)⊕3⊕E8 ⊂ H2(Y,Z)
as the induced involutions on πS∗ΛK3, and as the identity on ⟨−2⟩⊕2 = ⟨(µ̃±Σ̃)/2⟩.

5.4.1 Action of G on the K3 lattice revised, and results on the cohomology of the
terminalization of X/G

To describe the induced involution ι on H2(Y,Z) in a convenient way, we start by
providing an explicit isometry between the invariant lattice ΛiK3 and the abstract lattice
U⊕3 ⊕ E8(2): this will allow us to then compute the action of ι on the standard basis
for ΛN, the one that gives as intersection matrix exactly (5.4.0.2).

Using our knowledge from Chapters 2 and 3 of the action of G on ΛK3, we can also
give some partial results about the cohomology of the terminalization W of the quotient
X/G, by computing the image via the quotient map of the invariant lattice ΛGK3.

Remark 5.4.1.1. What’s left unknown is whether the image of H2(Y,Z) via the quotient
map is a primitive sublattice of H2(W,Z). Moreover, in the case G = (Z/2Z)2 the
terminalization W → X/G introduces two new divisors, and their contribution to the
cohomology of W is yet to be determined.

The case G = Z/4Z

Recall from Section 2.3.2 that the co-invariant lattice Ω2 ≃ E8(2) ⊆ Ω4 for the involution
τ2 is generated by the elements α − γ, β − δ, e1 − g1, e3 − g3, f1 − h1, f2 − h2, f3 −
h3, f4 − h4.

The lattice R = Ω
⊥Ω4
2 is generated by the elements r1 = e1−f1+g1−h1, r2 = α−β+γ−

δ, r3 = e3−f3+g3−h3, r4 = g1−f1+e4−f4+α−γ−(e2−g2+e4−g4+a1−a2+σ)/2, r5 =
a1 − a2, r6 = σ.

Proposition 5.4.1.2. The lattice Λτ
2

K3 invariant for τ2∗ is an overlattice of ΛτK3 ⊕ R
isometric to the lattice U⊕3 ⊕ E8(2) with the following generators, using the elements
si, wj introduced in Proposition 5.1.1.1, and rj as above:

U⊕3 =⟨s1, s2⟩ ⊕ ⟨w3 + w4 + w6 + r5 + r6
2

,
w1 + w3 + w4 + w6 + r4 + r5 + r6

2
⟩⊕

⊕ ⟨w1 − 3w2 + w3 + w4 − 3w5 − w6 + r1 − r6
2

− 4w6 − 3r3 − 4r4 − r5 − 3r6,

w1 − w2 + w3 + w4 − w5 − r6
2

− w6 − r3 − r4⟩;

E8(2) =⟨w3 + r1 − r2
2

+ w4 + w6 + r5 + r6,
w3 − r1 + r2

2
+ w2 + r4 + r5,
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3w6 − w3 + r2
2

+ r3 + r4, −w3 + w4 + 3w6 + 3r5 + r6
2

− r2 − r3 − 2r4,

w3 + r1 + r2
2

,
−w3 + w5 + w6 + 3r3 + 3r5 + r6

2
− r1 + r2 + 3r4,

−w4 − r2 − r5 + r6
2

− w1 + w6,
w3 + r1 − r2

2
+ w1 − r4⟩.

Lemma 5.4.1.3. Denote ⋆̂ := π2∗⋆, ⋆ := π4∗⋆.
The (primitive) image of

ΛτK3 = U ⊕ ⟨−2⟩⊕2 ⊕ U(4)⊕2 = ⟨s1, s2⟩ ⊕ ⟨w1, w2⟩ ⊕ ⟨w3, . . . , w6⟩

via the maps π2∗ and π4∗ introduced in Section 2.4.1 is as follows:

π2∗(U ⊕ ⟨−2⟩⊕2 ⊕ U(4)⊕2) = U(2)⊕ ⟨−4⟩⊕2 ⊕ U(2)⊕2 =

⟨ŝ1, ŝ2⟩ ⊕ ⟨ŵ1, ŵ2⟩ ⊕ ⟨ŵ3/2, . . . , ŵ6/2⟩,

π4∗(U ⊕ ⟨−2⟩⊕2 ⊕ U(4)⊕2) = U(4)⊕ ⟨−2⟩⊕2 ⊕ U⊕2 =

⟨s1, s2⟩ ⊕ ⟨w1/2, w2/2⟩ ⊕ ⟨w3/4, . . . , w6/4⟩.

Proposition 5.4.1.4. Let X be a K3[2]-type manifold with a symplectic action of G =
Z/4Z. The terminalization W of the quotient X/G is a primitive symplectic orbifold,
π1(Wreg) = Z/2Z, and H2(W,Z) is an overlattice of finite index (possibly 1) of U⊕2 ⊕
U(4)⊕ ⟨−2⟩⊕2 ⊕ ⟨−4⟩⊕2.

Proof. By Proposition 5.2.0.1 we know that the generator τ of G fixes points on X, so
the terminalization of the quotient is a primitive symplectic orbifold, of which we can
compute the fundamental group of the regular locus (see Proposition 1.5.1.1). Let Y be
the Nikulin orbifold that arises as terminalization of X/τ2: since the involution ι induced
by G/τ2 on the Nikulin orbifold Y does not fix any surface, the terminalizationW → Y/ι
does not introduce any new divisor. The quotient map πι∗ acts on H2(Y,Z) as follows:
on ⟨(µ̃ ± Σ̃)/2⟩ it doubles the intersection form; on its orthogonal complement, that is
an overlattice of π2∗(R ⊕ ΛτK3), it annihilates π2∗R and acts on π2∗Λ

τ
K3 as described by

Lemma 5.4.1.3. Therefore, πι∗H
2(Y,Z) = U⊕2 ⊕ U(4)⊕ ⟨−2⟩⊕2 ⊕ ⟨−4⟩⊕2.

The case G = (Z/2Z)2

Consider now G = (Z/2Z)2 = ⟨τ, φ⟩. Since, having fixed a basis of ΛGK3, the actions of
τ∗, φ∗ are differently described, we are going to give both quotient maps.

Proposition 5.4.1.5. With the notation of Section 3.3.2, consider the elements:

ω1 =(d2 − a2 + c2 − b2 + f1 − e1 − f2 + e2 − d1 + a1 + b1 − c1)/3;

ι1 =(m2 +m4 − b1 + c1 + d1 − a1)/2;

ι2 =(m1 +m2 − b2 + c2 + d2 − a2)/2;
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ι3 =(m1 + f1 − e1 + ω1)/2;

ι4 =(m3 +m4 + f1 − e1)/2.

Then the lattice ΛτK3 is isometric to the lattice U⊕3⊕E8(2) with the following generators,
using the same notation as Proposition 5.1.2.1:

U⊕3 =⟨s1, s2⟩ ⊕ ⟨ι4 + u3 + u4 +m2, u3 + u4 +m2⟩⊕
⊕ ⟨ι3 + u3 + u4 +m2 + 2(ι1 + u1 + u2 + u4), ι1 + u1 + u2 + u4⟩;

E8(2) =⟨m3 +m4 − 2(ι4 + u3 +m2)− 5u4 − 3(ι1 + u1 + u2),

ι2 − 2ι1 − 4ι3 + 6ι4 − u1 + 2m1 +m2 − 2m3 − 2m4,

u1 − u2, 2ι1 − ι2 + 2ι3 − 2ι4 + u1 + 2u2 + 2u4 −m1,

ι1 + ι2 + u3 +m3, u1 + u2 + u4 − ι2 +m1 +m2 +m4,

ι2 + u4 −m1, u3 +m2 − ι2 − 2(ι1 + u4 + u1 + u2)⟩.

Proposition 5.4.1.6. Consider the elements:

ω2 =(c2 − a2 − d2 + b2 + z − w + d1 − b1 − c1 + a1)/3;

κ1 =(m1 +m2 + b2 − a2 + c2 − d2)/2;

κ2 =(u1 + u2 + u4 + w)/2;

κ3 =(m2 +m4 + b1 − a1 + c1 − d1)/2;

κ4 =(u1 + u2 + u3 +m1 +m4 + ω2)/2;

Then the lattice ΛφK3 is isometric to the lattice U⊕3⊕E8(2) with the following generators:

U⊕3 =⟨s1, s2⟩ ⊕ ⟨u1, κ2⟩ ⊕ ⟨u4, κ4 − 2u1 − κ2 + 3u4⟩;
E8(2) =⟨m2 − 2u4 − κ1, m1 − κ1, −(m1 +m3 + κ3), κ1 + κ3 −m2 −m4,

m2 +m3 − u1 − 2u2 − u3 − u4 − κ1 + 2κ2 + 2κ4, u2 − u1 + 4u4 − 2κ2,

m4 −m2 −m3 + 2u1 + u2 + u3 − u4 + κ1 − 2κ4, m3 − 2u4⟩.

Lemma 5.4.1.7. Recall that

Λ
(Z/2Z)2
K3 = U ⊕ U(2)⊕2 ⊕D4(2) = ⟨s1, s2⟩ ⊕ ⟨u1, . . . , u4⟩ ⊕ ⟨m1, . . . ,m4⟩.

Denote ⋆̂ := πτ∗⋆, ⋆̃ := πφ∗⋆ (see Sections 3.4.1, 3.4.2). Define

µ1 = (m̂4 + m̂2)/2, µ2 = m̂3 + (m̂4 + m̂2)/2, µ3 = (m̂1 + m̂2)/2, µ4 = (m̂4 − m̂2)/2

β1 = ũ1, β2 = (ũ1 + ũ2)/2, β3 = (ũ1 + ũ3 + ũ4)/2, β4 = ũ3.

Then the intersection matrix of {β1, . . . , β4} is

B =


0 2 0 0
2 2 1 0
0 1 2 2
0 0 2 0

 ,
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and the (primitive) image of Λ
(Z/2Z)2
K3 via the maps πτ∗, πφ∗ is

πτ∗(U ⊕ U(2)⊕2 ⊕D4(2)) = U(2)⊕ U⊕2 ⊕D4(2) =

⟨ŝ1, ŝ2⟩ ⊕ ⟨û1/2, . . . , û4/2⟩ ⊕ ⟨µ1, . . . µ4⟩,

πφ∗(U ⊕ U(2)⊕2 ⊕D4(2)) = U(2)⊕B ⊕D4 =

⟨s̃1, s̃2⟩ ⊕ ⟨β1, . . . β4⟩ ⊕ ⟨m̃1/2, . . . , m̃4/2⟩;

Denote ⋆ := π2,2∗⋆ (see Section 3.4.4): then π2,2∗Λ
(Z/2Z)2
K3 is not a primitive sublattice of

ΛK3, but an overlattice of it of index 2 is. Define

ν1 = (−m1−m2)/4, ν2 = (m1−m2)/4, ν3 = (m2+m4)/4, ν4 = (m3)/2+(m1+m2)/4;

then we consider:

(π2,2∗(U ⊕ U(2)⊕2 ⊕D4(2)))
′ = ⟨2⟩ ⊕ ⟨−2⟩ ⊕ U(2)⊕2 ⊕D4 =

⟨(s1 + s2)/2, (s1 − s2)/2⟩ ⊕ ⟨u1/2, . . . , u4/2⟩ ⊕ ⟨ν1, . . . ν4⟩.

Remark 5.4.1.8. The lattices U⊕2 ⊕ U(2)⊕D4(2) and U(2)⊕B ⊕D4 are isomorphic.

Proposition 5.4.1.9. Let X be a K3[2]-type manifold with a symplectic action of G =
(Z/2Z)2. The terminalization W of the quotient X/G is an IHSO, and H2(W,Z) is a
lattice of rank 14 containing the lattice U(2)⊕2 ⊕D4 ⊕ ⟨2⟩ ⊕ ⟨−2⟩ ⊕ ⟨−4⟩⊕2.

Proof. Since G is generated by symplectic involutions, each fixing a surface on X, the
terminalization of the quotient is an IHSO (see Proposition 1.5.1.1). Let Y be the
Nikulin orbifold that arises as terminalization of the quotient of X by any involution
of G, suppose τ . The involution ι induced on the Nikulin orbifold Y fixes two surface,
the image in Y of the surfaces Σρ,Σφ: indeed, τ acts on each of them, so they are not
identified in the quotient. Therefore, the terminalization W → Y/ι introduces two new
divisors. The image of H2(X,Z) via the quotient map π2,2∗ is computed similarly to
Proposition 5.4.1.4.

5.4.2 Induced involutions on Nikulin orbifolds

In this section, we are going to describe the action of the induced involutions on ΛN

(5.4.0.2). At first, we take Y a Nikulin orbifold arising as terminalization of X/i, where
X is a K3[2]-type manifold and i ∈ G, a group of order 4 acting symplectically on X. We
then prove that (under appropriate conditions) if Ỹ is a deformation of Y , it can carry
a symplectic involution that acts in cohomology as ι. Therefore, in analogy to standard
actions on K3[2]-type manifolds, we introduce the notion of standard involution on a
Nikulin-type orbifold, and find lattice-theoretic conditions for its existence using the
Torelli theorem for IHSOs [51, Thm. 1.1].
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Remark 5.4.2.1. 1. When giving the matrices for the induced involutions, we follow
the convention of matrices acting on the left on column vectors: notice that this
is the opposite of what Sage [87] uses as default.

2. We provide two different representations of the involution induced by the action
of G = (Z/2Z)2 on X, corresponding respectively to the actions of (Z/2Z)2/τ and
(Z/2Z)2/φ. There exists an isometry of ΛN sending one to the other.

3. The involution induced by Z/4Z, and that induced by (Z/2Z)2 are different, as
one can see by comparing the multiplicity of the eigenvalues: the invariant lattices
for the two actions have different rank.

Proposition 5.4.2.2. The involution induced by Z/4Z on H2(Y,Z) = ⟨−2⟩⊕2⊕U(2)⊕3⊕
E8 is represented by the following matrix:

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 3 3 −3 1 3 1 −1 −2 1 0 0 0
0 0 0 0 4 3 −2 2 3 1 −1 −2 1 0 −1 1
0 0 0 0 2 1 29 10 1 2 −4 1 1 −4 −2 0
0 0 0 0 −2 −3 102 29 −3 4 −10 7 1 −13 −6 0
0 0 0 0 4 −2 280 86 −2 15 −32 16 5 −36 −18 −1
0 0 0 0 4 0 186 58 0 11 −22 10 4 −25 −12 0
0 0 0 0 10 2 380 120 2 22 −45 19 8 −50 −25 0
0 0 0 0 14 2 554 174 2 32 −66 28 12 −72 −37 0
0 0 0 0 10 0 462 144 0 26 −55 25 9 −60 −30 0
0 0 0 0 8 0 372 116 0 20 −44 20 8 −49 −24 0
0 0 0 0 6 0 256 80 0 14 −30 13 6 −34 −16 0
0 0 0 0 2 0 128 40 −1 7 −15 7 3 −17 −8 0


Proof. By Remark 5.4.0.1, the induced involution acts as the identity on ⟨−2⟩⊕2, and
it acts as τ̂∗ on π2∗ΛK3 ≃ U(2)⊕3 ⊕ E8 (see Section 2.4.1). Using the description of
Λτ

2

K3 provided in Prop. 5.4.1.2, we compute its image via the map π2∗ (see Proposition
2.4.1.1): for every x ∈ E8(2), π2∗x/2 is integral and primitive, so that the primitive
completion of π2∗Λ

τ2

K3 is U(2)⊕3 ⊕ E8, as was already proved in [63, Thm. 5.7]. Since
the elements s1, s2, w1, . . . , w6 are invariant for τ∗, while r1, . . . , r6 are anti-invariant, we
can determine the action of τ̂∗ on U(2)⊕3 ⊕ E8.

Corollary 5.4.2.3. The invariant and co-invariant lattices for the involution ι induced
on Y by G = Z/4Z are:

H2(Y,Z)ι = U(2)⊕3 ⊕ ⟨−4⟩⊕2 ⊕ ⟨−2⟩⊕2; (H2(Y,Z)ι)⊥ = D6(2).
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Proposition 5.4.2.4. The involution ι induced by (Z/2Z)2 on H2(Y,Z) = ⟨−2⟩⊕2 ⊕
U(2)⊕3⊕E8 is represented by the following matrices, ι being the generator of (Z/2Z)2/τ
in the first case, of (Z/2Z)2/φ in the second one:

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 1 3 0 −2 0 0 1 0 0 0 0
0 0 0 0 0 0 7 4 −6 −1 0 3 1 1 −1 −3
0 0 0 0 3 0 14 7 −12 −2 0 6 2 1 −1 −5
0 0 0 0 2 0 8 4 −7 2 0 2 2 0 0 −4
0 0 0 0 0 0 0 0 0 2 0 −1 1 −1 1 −1
0 0 0 0 0 0 −4 −2 3 4 1 −4 1 −2 2 0
0 0 0 0 0 0 −8 −4 6 7 0 −6 1 −3 3 1
0 0 0 0 0 0 −8 −4 6 6 0 −6 1 −2 2 2
0 0 0 0 0 0 −4 −2 3 4 0 −4 1 −1 2 0
0 0 0 0 0 0 2 2 −3 2 0 0 1 0 1 −2
0 0 0 0 0 0 6 4 −6 0 0 2 2 0 0 −3




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 2 0 −3 0 0 0 0 1 −2 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −3 1 6 −1 −1 1 0 −1 3 −2 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 2 −1 −1 0 1 0
0 0 0 0 0 0 0 0 −1 0 1 0 −1 0 1 0
0 0 0 0 0 0 0 −2 0 0 2 −1 −2 0 2 0
0 0 0 0 0 0 0 −2 0 0 3 −2 −2 0 2 0
0 0 0 0 0 0 0 −2 0 0 2 −2 −1 0 2 0
0 0 0 0 0 2 0 −4 0 0 2 −2 0 −1 2 0
0 0 0 0 0 0 0 0 0 0 2 −2 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 1


Proof. The proof is similar to that of Proposition 5.4.2.2.

Corollary 5.4.2.5. The invariant and co-invariant lattices for the involution ι induced
on Y by G = (Z/2Z)2 are:

H2(Y,Z)ι = U⊕2 ⊕ U(2)⊕D4(2)⊕ ⟨−2⟩⊕2; (H2(Y,Z)ι)⊥ = D4(2).
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Definition 5.4.2.6. Let Y be a Nikulin-type orbifold. We call an involution ι standard if
the pair (Y, ι) can be deformed to a pair (Ỹ , ι̃), where Ỹ is the terminalization of S[2]/i
for some K3 S with a symplectic action of a group G of order 4, i ∈ G is a symplectic
involution, and G/i = ⟨ι̃⟩.

Remark 5.4.2.7. Let φ be an isometry ofH2(Y,Z) with invariant and co-invariant lattices
as those given in Corollary 5.4.2.3 or 5.4.2.5: this does not guarantee the existence of a
standard involution f of Y such that f∗ = φ.
Indeed, H2(Y,Z) can be obtained as overlattice of D6(2)⊕(U(2)⊕3⊕⟨−4⟩⊕2⊕⟨−2⟩⊕2) in
more than one way: the correct way to have the induced involution is obtained by gluing
along a certain subgroup of the discriminant form of D6(2) isomorphic to (Z/2Z)6, but
there is at least another gluing along (Z/4Z)2 × (Z/2Z)2.
Similarly, H2(Y,Z) can be obtained as overlattice of D4(2) ⊕ (U(2) ⊕ U⊕2 ⊕ D4(2))
by gluing along (Z/2Z)4, but also along (Z/4Z)2. Therefore, the lattice-theoretic data
needed to characterize the induced involutions consist of invariant lattice, co-invariant
lattice and their gluing: the latter is given in Lemma 5.4.2.8 below.

Lemma 5.4.2.8. Let Y be a Nikulin-type orbifold which admits a standard symplectic
involution ι. Then one of the following holds:

1. the gluing between H2(Y,Z)ι ≃ U(2)⊕3 ⊕ ⟨−4⟩⊕2 ⊕ ⟨−2⟩⊕2 and (H2(Y,Z)ι)⊥ ≃
D6(2) which gives H2(Y,Z) as overlattice is obtained by adding as generators the
following elements: (d5 + d6 + u1 + u2 + v2)/2, (d5 + a1 + u1 + v2)/2, (d1 +
d4 + d6 + a1)/2, (d3 + d6 + v1)/2, (d2 + d4 + d6 + a2)/2, (d1 + d3 + a2 + v2)/2;
here {d1, . . . , d6} are the generators of D6(2) (numbered as in Example 1.2.0.2),
{u1, u2} and {v1, v2} those of two of the copies of U(2), {a1, a2} of ⟨−4⟩⊕2; this
corresponds to the case where ι is induced by Z/4Z;

2. the gluing between H2(Y,Z)ι ≃ U⊕2 ⊕U(2)⊕D4(2)⊕ ⟨−2⟩⊕2 and (H2(Y,Z)ι)⊥ ≃
D4(2) which gives H2(Y,Z) as overlattice is obtained by adding as generators the
following elements: (d1+d2+e2+e4)/2, (d2+d3+e4)/2, (d2+e1+e3+e4)/2, (d4+
e2 + e3 + e4)/2; here {d1, . . . , d4} and {e1, . . . , e4} are the generators of the two
copies of D4(2) (numbered as in Example 1.2.0.2); this corresponds to the case
where ι is induced by (Z/2Z)2.

Remark 5.4.2.9. We say that an embedding φ : D6(2) ↪→ ΛN satisfies the condition (⋆)
if the gluing between φ(D6(2)) and its orthogonal complement is as in Lemma 5.4.2.8.1.
Similarly, we say that ψ : D4(2) ↪→ ΛN satisfies the condition (⋆) if the gluing between
ψ(D4(2)) and its orthogonal complement is as in Lemma 5.4.2.8.2.

Theorem 5.4.2.10. Let Y be a Nikulin-type orbifold such that there is an embedding
of Dk(2) in NS(Y ), with k either 4 or 6, such that the induced embedding φ : Dk(2) ↪→
H2(Y,Z) satisfies the condition (⋆); then Y admits a standard symplectic involution.

Proof. We define the isometry α on H2(Y,Z) that acts as −id on φ(Dk(2)), and as
the identity on its orthogonal complement. To apply the Torelli theorem for IHSOs
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[51, Thm. 1.1] we need to show that α is 1) an integral Hodge isometry which 2) is a
monodromy operator and 3) preserves the Kähler cone. The first condition is satisfied by
construction, because T (Y ) is contained in the orthogonal complement to φ(Dk(2)), so
α acts on it as the identity; the second is satisfied because there exists a Nikulin orbifold
Y ′ with an induced involution ι such that ι∗ acts as α, and monodromy is invariant under
deformations. To prove 3), refer to the description of the walls of the Kähler cone of Y
in [52]. The lattice φ(D6(2)) does not contain any wall-divisor: indeed it contains no
(−2)-classes and, if we assume E8 ⊕ U(2)⊕3 = ⟨e1, . . . , e8⟩ ⊕ ⟨ui,1, ui,2⟩i=1,2,3 (numbered
as in example 1.2.0.2), we get as generators of φ(D6(2))

d1 = 2e1 + 2e2 + 5e3 + 7e4 + 5e5 + 4e6 + 3e7 + e8 + u2,1 + 2u2,2 + u3,1 − u3,2,

d2 = −12e1 − 8e2 − 17e3 − 25e4 − 21e5 − 16e6 − 11e7 − 5e8 − u3,1 − 5u3,2,

d3 = −6e1 − 4e2 − 8e3 − 12e4 − 9e5 − 8e6 − 6e7 − 3e8 − u2,2 − u3,1 − u3,2,

d4 = 3e1 + 2e2 + 3e3 + 5e4 + 4e5 + 4e6 + 3e7 + 1e8 − u2,1 + 2u3,2,

d5 = 16e1 + 11e2 + 23e3 + 33e4 + 27e5 + 22e6 + 15e7 + 8e8 + u2,1 + 2u3,1 + 5u3,2,

d6 = e1 + e5 − u2,1,

so no elements of square −4,−6,−12 in φ(D6(2)) have divisibility 2; a similar result
holds for φ(D4(2))).
If NS(Y ) = Dk(2)⊕ ⟨2d⟩ (k = 4, 6, d ∈ Z>0) or one of its overlattices, then wall classes
in its Néron-Severi will have the form aL+ bv, with a, b ∈ Q \ {0}, v ∈ Dk(2) and L the
generator of Dk(2)

⊥NS(Y ) : since α does not reflect any of these classes, the Kähler cone
of the general projective Y is preserved.

5.5 Classifying Nikulin-type Orbifolds with a standard symplectic invo-
lution

In the first part of this section, we classify projective Nikulin orbifolds with an induced
symplectic involution: these are obtained as quotients of projective K3[2]-type manifolds
with a symplectic action of a group of order four G, whose deformation families are
classified in Sections 5.1.1, 5.1.2. We establish a correspondence between the moduli
space of projective K3[2]-type manifolds with a symplectic action of a group G of order
4, and the Nikulin orbifolds obtained as terminalization of their partial quotient.

We then classify projective Nikulin-type orbifolds Y with an action of (Z/2Z)2 = ⟨ι, κ⟩,
where ι is standard (see Definition 5.4.2.6), and κ is the non-standard involution defined
in [52] (see Theorem 5.5.2.1): therefore, NS(Y ) admits a primitive embedding of either
D6(2)⊕⟨−2⟩, orD4(2)⊕⟨−2⟩, with the additional property that the embeddingDk(2) ↪→
H2(Y,Z) satisfies condition (⋆) (see Remark 5.4.2.9).

5.5.1 Families of Nikulin orbifolds with an induced symplectic involution

The general (non-projective) Nikulin orbifold with an induced involution has Néron-
Severi lattice Ωι ⊕ ⟨−4⟩, where Ωι = D6(2) if ι is induced by G = Z/4Z, Ωι = D4(2) if ι
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is induced by G = (Z/2Z)2; the class that generates Ω⊥
ι is the exceptional class Σ̃ that

is introduced with the terminalization Y → X/i.

The case G = Z/4Z

In the following table we classify the projective families of Nikulin orbifolds Y admitting
a natural involution induced by an action of Z/4Z on a K3[2]-type manifold X, by giving
the possible pairs (NS(Y ), T (Y )) in the second and third column. Projective families of
X are classified in Theorem 5.1.1.2; we consider the map π∗ introduced in (5.4.0.1), with
πS∗ = π2∗ described in Section 2.4.1. If X is polarized with a class L of square 2d, then
on Y we consider the pseudo-ample class H = π∗L, or H = π∗L/2 if the former is not
primitive: therefore, it holds H2 = 4d or H2 = d respectively. The relation between the
number d in the first column and m appearing in the last columns is given in the proof of
Theorem 5.1.1.2, where the classesMi(m) are constructed; since in many cases the same
lattice T (Y ) obtained using H = π∗Mi(m), therefore depending on m, is obtained also
using Li(h), we write Li(m) accordingly (see Example 2.5.1.6). The relation between
m, j, h appearing in the last line of the table is explained in Table 5.5.

Remark 5.5.1.1. Notice that for the families with a polarization L = (LS , 0) ∈ ΛK3 ⊕
⟨−2⟩, i.e. those families such that T (X) = T (S)⊕ ⟨−2⟩ for some general projective K3
surface S admitting a symplectic action of G, the class Σ̃ does not glue to any element
in NS(Y ); for the families with a polarizationM = (LS , n) instead, Σ̃ glues to π∗M (see
Remark 1.5.1.3).

NS(Y ) T (Y ) H H2

d =4 1
D6(2)⊕ ⟨4d⟩ ⊕ ⟨−4⟩ ⟨−4d⟩ ⊕ ⟨−4⟩⊕3 ⊕ U(2)⊕2 π∗L0(d) 4d

(D6(2)⊕ ⟨4d⟩ ⊕ ⟨−4⟩)′ Cm ⊕ U(2)⊕2 π∗
(∼)

M 1(m) 4(4m− 3)

d =4 2

D6(2)⊕ ⟨4d⟩ ⊕ ⟨−4⟩ ⟨−4d⟩ ⊕ ⟨−4⟩⊕3 ⊕ U(2)⊕2 π∗L0(d) 4d

(D6(2)⊕ ⟨4d⟩ ⊕ ⟨−4⟩)′
Bm ⊕ ⟨−4⟩ ⊕ U(2)⊕2

π∗M2(m) 4(4m− 2)

(D6(2)⊕ ⟨4d⟩)′ ⊕ ⟨−4⟩ π∗L
(1,2)
2,2 (m) 4(4m± 2)

d =4 3

D6(2)⊕ ⟨4d⟩ ⊕ ⟨−4⟩ ⟨−4d⟩ ⊕ ⟨−4⟩⊕3 ⊕ U(2)⊕2 π∗L0(d) 4d

D6(2)⊕ (⟨4d⟩ ⊕ ⟨−4⟩)′
Fm ⊕ ⟨−4⟩⊕2 ⊕ U(2)⊕2

π∗M3(m) 4(4m− 1)

(D6(2)⊕ ⟨4d⟩)′ ⊕ ⟨−4⟩ π∗L2,3(m) 4(4m+ 3)

d =4 0

D6(2)⊕ ⟨4d⟩ ⊕ ⟨−4⟩ ⟨−4d⟩ ⊕ ⟨−4⟩⊕3 ⊕ U(2)⊕2 π∗L0(d) 4d

D6(2)⊕ ⟨d⟩ ⊕ ⟨−4⟩

Gm ⊕ ⟨−4⟩⊕2 ⊕ U(2)⊕2

π∗L2,0(m)/2 4(m− 1)

(D6(2)⊕ ⟨d⟩ ⊕ ⟨−4⟩)′ π∗M4(m)/2 4(m− 1)

(D6(2)⊕ ⟨d⟩)′ ⊕ ⟨−4⟩ π∗L4,j(h)/2 4(m− 1), see Table 5.5
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Table 5.5: Relation between m, j, h

m (mod 4) 0 1 2 3

j 12 0 4 8
h (m− 4)/4 (m+ 3)/4 (m− 2)/4 (m+ 13)/4

Bm =

 −4m 2 2
2 −4 0
2 0 −4

 Cm =


−4m 2 2 2

2 −4 0 0
2 0 −4 0
2 0 0 −4

 Fm =

[
−4m 2

2 −4

]
Gm =

[
−4m 4

4 −4

]

Remark 5.5.1.2. The projective families of K3[2]-type manifolds associated to the polar-
izations M1 and M̃1 give Nikulin orbifolds that belong to the same projective family.

A similar statement holds for L
(1)
2,2 and L

(2)
2,2. These are the only families for which this

phenomenon happens.

The case G = (Z/2Z)2

In the following table we classify the projective families of Nikulin orbifolds Y admitting
a natural involution induced by an action of (Z/2Z)2 = ⟨τ, φ⟩ on a K3[2]-type manifoldX,
by giving the possible pairs (NS(Y ), T (Y )) in the second and third column. Projective
families of X are classified in Theorem 5.1.2.2; we consider the map π∗ introduced
in (5.4.0.1), with πS∗ = πτ∗, πφ∗: these maps are described in Sections 3.4.1, 3.4.2
respectively. They may act differently on the polarization of X, as given a class L of

positive square, L ∈ Ω
⊥H2(X,Z)
2,2 , the two involutions τ∗, φ∗ may act differently on L (see

Lemma 5.4.1.7): in this case, the same family of X can give rise to more than one family
of Y , as it happens for projective K3 surfaces (see Corollary 3.5.3.3). When there is no
difference between πτ∗ and πφ∗, we use the notation πι∗. On Y we consider the pseudo-
ample class H = π∗L, or H = π∗L/2 if the former is not primitive: therefore, it holds
H2 = 4d or H2 = d respectively. The same considerations as in Remark 5.5.1.1 can be
applied here.

NS(Y ) T (Y ) H H2

d =2 1 D4(2)⊕ ⟨2d⟩ ⊕ ⟨−4⟩ U ⊕ ⟨−4⟩ ⊕D4(2)⊕Qh πτ∗L
(b)
2,2(h)/2 2(2h+ 1)

d =4 0

D4(2)⊕ ⟨4d⟩ ⊕ ⟨−4⟩
U ⊕ ⟨−4⟩ ⊕ Th πφ∗L

(1)
2,0(h)/2 4h

⟨−4d⟩ ⊕ U2 ⊕D4(2)⊕ ⟨−4⟩ πι∗L0(d) 4d

(D4(2)⊕ ⟨4d⟩ ⊕ ⟨−4⟩)′ ⟨−4d⟩ ⊕ U2 ⊕D4(2)⊕ ⟨−4⟩ πι∗M8(m)/2 8(m− 1)

(D4(2)⊕ ⟨4d⟩)′ ⊕ ⟨−4⟩ U ⊕ ⟨−4⟩ ⊕ ⟨2⟩ ⊕ Ph πτ∗L
(1)
2,0(h) 16h

d =4 1

D4(2)⊕ ⟨4d⟩ ⊕ ⟨−4⟩
U ⊕ ⟨−4⟩ ⊕ Th πφ∗L

(1)
2,0(h)/2 4h

⟨−4d⟩ ⊕ U2 ⊕D4(2)⊕ ⟨−4⟩ πι∗L0(d) 4d
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(D4(2)⊕ ⟨4d⟩)′ ⊕ ⟨−4⟩ ⟨−4d⟩ ⊕ U2 ⊕D4(2)⊕ ⟨−4⟩ πι∗L4,4(h)/2 16h+ 4

(D4(2)⊕ ⟨4d⟩ ⊕ ⟨−4⟩)′ U2 ⊕Rm πτ∗M1(m) 4(4m− 3)

D4(2)⊕ (⟨4d⟩ ⊕ ⟨−4⟩)′ B ⊕ Fm πφ∗M1(m) 4(4m− 3)

d =4 2

D4(2)⊕ ⟨4d⟩ ⊕ ⟨−4⟩
U ⊕ ⟨−4⟩ ⊕ Th πφ∗L

(1)
2,0(h)/2 4h

⟨−4d⟩ ⊕ U2 ⊕D4(2)⊕ ⟨−4⟩ πι∗L0(d) 4d

(D4(2)⊕ ⟨4d⟩ ⊕ ⟨−4⟩)′ ⟨−4d⟩ ⊕ U2 ⊕D4(2)⊕ ⟨−4⟩ πι∗M8(m)/2 8(m− 1)

(D4(2)⊕ ⟨4d⟩)′ ⊕ ⟨−4⟩
U ⊕ ⟨−4⟩ ⊕Wh πι∗L

(a)
2,2(h) 16h+ 8

D4 ⊕ ⟨−4⟩ ⊕ Vh πφ∗L
(b)
2,2(h) 16h+ 8

d =4 3

D4(2)⊕ ⟨4d⟩ ⊕ ⟨−4⟩
U ⊕ ⟨−4⟩ ⊕ Th πφ∗L

(1)
2,0(h)/2 4h

⟨−4d⟩ ⊕ U2 ⊕D4(2)⊕ ⟨−4⟩ πι∗L0(d) 4d

(D4(2)⊕ ⟨4d⟩)′ ⊕ ⟨−4⟩ ⟨−4d⟩ ⊕ U2 ⊕D4(2)⊕ ⟨−4⟩ πι∗L4,−4(h)/2 16h− 4

D4(2)⊕ (⟨4d⟩ ⊕ ⟨−4⟩)′ U2 ⊕D4(2)⊕ Sm πι∗M3(m) 4(4m− 1)

Ph =


−4− 4h 2 2 0 0 0

2 −2 0 0 0 0
2 0 −4 0 2 −2
0 0 0 −4 2 2
0 0 2 2 −4 0
0 0 −2 2 0 −4

 Qh =

 −4h 2 0
2 0 2
0 2 −2

 Sm =

[
−4m 2

2 −4

]

Rm =


−4m 2 2 2 −2 0

2 −4 0 0 2 0
2 0 −4 0 2 0
2 0 0 −4 0 0

−2 2 2 0 −4 2
0 0 0 0 2 −4

 Th =



−4− 4h 2 0 0 0 0 0
2 0 0 2 2 0 0
0 0 −8 0 4 0 0
0 2 0 0 4 −2 0
0 2 4 4 0 2 0
0 0 0 −2 2 −4 2
0 0 0 0 0 2 −4



Vh =


−4h 2 0 0 0

2 8 4 0 0
0 4 2 1 0
0 0 1 −2 1
0 0 0 1 −2

 Wh =



−4− 4h 2 0 0 0 0 0
2 0 −2 0 0 0 0
0 −2 0 0 2 0 0
0 0 0 −4 0 2 2
0 0 2 0 −4 2 −2
0 0 0 2 2 −4 0
0 0 0 2 −2 0 −4



Fm =


−4m 2 0 0 0 0

2 −8 4 0 −2 2
0 4 −4 2 4 0
0 0 2 −4 −4 0
0 −2 4 −4 −6 0
0 2 0 0 0 −6



150



Remark 5.5.1.3. The classes πι∗L0(e) and πι∗L
(2)
2,0(e + 1)/2 give the same projective

family of Nikulin orbifolds; in other words, the projective families of K3[2]-type manifolds

associated to the polarizations L0(e) and L
(2)
2,0(e+1) give Nikulin orbifolds that belong to

the same projective family, independently of the involution in (Z/2Z)2 we choose when
taking the quotient. These are the only families for which this phenomenon happens.

5.5.2 Nikulin-type orbifolds with a symplectic action of (Z/2Z)2

We now describe Nikulin-type orbifolds with a particular symplectic action of (Z/2Z)2.
The two natural involutions induced respectively by the action of Z/4Z or (Z/2Z)2 on
a K3[2]-type manifold X can be extended to Nikulin-type orbifolds by deformation (see
Theorem 5.4.2.10). Moreover, we can consider the non-standard involution described in
[52], which consists in the reflection on a class of square −2 and divisibility 2.

Theorem 5.5.2.1 ([52, Thm. 8.5]). Let Y be a Nikulin-type orbifold such that there
exists D ∈ NS(Y ) with D2 = −2 and div(D) = 2. Then there exists an irreducible
symplectic orbifold Z bimeromophic to Y and a non-standard symplectic involution κ on
Z such that:

H2(Z,Z)κ ≃ U(2)⊕3 ⊕ E8 ⊕ ⟨−2⟩, Ωκ := (H2(Z,Z)κ)⊥ ≃ ⟨−2⟩.

Remark 5.5.2.2. If Y is a Nikulin orbifold obtained as terminalization of a natural pair
(S[2], ι), then NS(Y ) = ⟨−2⟩2: therefore κ exists on Y , and it acts exchanging the
exceptional classes Σ̃ and π∗δ [60, Prop. 4.5].

Corollary 5.5.2.3. Let Y be a Nikulin-type orbifold. Then Y admits a symplectic action
of (Z/2Z)2 = ⟨ι, κ⟩, where ι is standard and κ is the non-standard involution described
in Theorem 5.5.2.1, if and only if it satisfies the following conditions:

1. there exists a primitive embedding of D6(2)⊕ ⟨−2⟩ or D4(2)⊕ ⟨−2⟩ in NS(Y );

2. the primitive embedding of NS(Y ) in H2(Y,Z) satisfies condition (⋆) (see Remark
5.4.2.9).

Proof. The co-invariant lattice Ωκ of the non-standard involution κ can always be em-
bedded in the invariant lattice of the standard involutions in a way compatible with
Lemma 5.4.2.8: use one of the orthogonal ⟨−2⟩ components. With this choice, κ com-
mutes with the standard involution on Y , whose existence is guaranteed by Theorem
5.4.2.10: therefore, we get a symplectic action of (Z/2Z)2 on Y . Moreover, this is the
only valid choice: indeed, κ exists if and only if Ωκ is embedded with divisibility 2 in
H2(Y,Z), and all such embeddings are equivalent; if ι is either standard involution, we
can always embed Ωι in Ω⊥

κ such that Lemma 5.4.2.8 is satisfied.

Theorem 5.5.2.4. Let Y be a general projective Nikulin-type orbifolds with a symplectic
action of K = ⟨ι, κ⟩, where κ is the non-standard involution described in Theorem 5.5.2.1
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and (Y, ι) is a deformation of the natural pair (Ỹ , ι̃), where Ỹ is the terminalization of
S[2]/i, S is a K3 surface with a symplectic action of G = Z/4Z and i ∈ G of order 2.
Then Y belongs to one of the deformation families described in the following table.

NS(Y ) e T (Y ) k

D6(2)⊕ ⟨2e⟩ ⊕ ⟨−2⟩

e =2 0 ⟨−2k⟩ ⊕ U(2)⊕2 ⊕ ⟨−4⟩⊕2 ⊕ ⟨−2⟩ e

e =8 1
Gk ⊕ U(2)⊕2 ⊕ ⟨−4⟩⊕2 (e+ 1)/2

R′
k ⊕ ⟨4⟩ (e− 1)/8

e =8 3

Gk ⊕ U(2)⊕2 ⊕ ⟨−4⟩⊕2 (e+ 1)/2

M ′
k ⊕ U(2) (e+ 5)/8

Q′
k ⊕ ⟨−4⟩ ⊕ ⟨4⟩ (e+ 29)/8

e =8 5

Gk ⊕ U(2)⊕2 ⊕ ⟨−4⟩⊕2 (e+ 1)/2

N ′
k ⊕ ⟨−4⟩ (e− 5)/8

P ′
k ⊕ U(2)⊕ ⟨−4⟩ (e− 5)/8

e =8 7
Gk ⊕ U(2)⊕2 ⊕ ⟨−4⟩⊕2 (e+ 1)/2

S′
k ⊕ U(2)⊕ ⟨−4⟩ (e+ 9)/8

(D6(2)⊕ ⟨4e⟩)′(1) ⊕ ⟨−2⟩

e =4 0 Sk ⊕ U(2)⊕ ⟨−4⟩ ⊕ ⟨−2⟩ e/4 + 1

e =4 1 Rk ⊕ ⟨4⟩ ⊕ ⟨−2⟩ (e− 1)/4

e =4 2 Qk ⊕ ⟨−4⟩ ⊕ ⟨4⟩ ⊕ ⟨−2⟩ (e+ 14)/4

e =4 3 Pk ⊕ U(2)⊕ ⟨−4⟩ ⊕ ⟨−2⟩ (e− 3)/4

(D6(2)⊕ ⟨4e⟩)′(2) ⊕ ⟨−2⟩

e =4 0 M ′′
k ⊕ U(2) e/4 + 1

e =4 1 N ′′
k ⊕ ⟨−4⟩ (e− 1)/4

e =4 2 Mk ⊕ U(2)⊕ ⟨−2⟩ (e+ 2)/4

e =4 3 Nk ⊕ ⟨−4⟩ ⊕ ⟨−2⟩ (e− 3)/4

Gk =

[
−4k 2

2 −2

]
Sk =


−4k 2 0 4

2 0 4 0
0 4 0 0
4 0 0 −4

 S′
k =


−8 2 0 0 0

2
0
0
0

Sk



Rk =


−4k + 4 2 0 0 2 0

2 0 0 0 2 0
0 0 −4 0 2 0
0 0 0 −4 2 0
2 2 2 2 −4 2
0 0 0 0 2 −4

 R′
k =


−8 2 0 . . . 0

2
0
...
0

Rk


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Qk =


8− 4k 2 2 2 −2

2 −4 0 0 0
2 0 −4 0 0
2 0 0 0 2

−2 0 0 2 0

 Q′
k =


−8 2 0 . . . 0

2
0
...
0

Qk



Pk =


−4− 4k 2 2 0

2 −4 0 0
2 0 0 4
0 0 4 0

 P ′
k =


−8 2 0 0 0

2
0
0
0

Pk



Mk =


8− 4k 2 2 0 0

2 −4 0 0 0
2 0 0 0 2
0 0 0 −4 2
0 0 2 2 −8

 M ′
k =


−8 2 0 . . . 0

2
0
...
0

Mk

 M ′′
k =


−2 2 0 . . . 0

2
0
...
0

Mk



Nk =


−4k 2 2 2 2 0

2 −4 0 0 0 0
2 0 0 2 0 0
2 0 2 0 0 0
2 0 0 0 0 −2
0 0 0 0 −2 0

 N ′
k =


−8 2 0 . . . 0

2
0
...
0

Nk

 N ′′
k =


−2 2 0 . . . 0

2
0
...
0

Nk



Proof. The embedding Ωκ ↪→ ΛN is always such that Ω⊥
κ ≃ πS∗H

2(S,Z)⊕ ⟨−2⟩, where
S is a K3 surface with a symplectic involution i, and πS : S → S/i. Call α the generator
of (πS∗H

2(S,Z) ⊕ Ωκ)
⊥, and embed Ωι in Ω⊥

κ such that the condition (⋆) is satisfied.
Denote Ω = Ωι ⊕ Ωκ.
Suppose now that i = τ2 ∈ ⟨τ⟩ = Z/4Z, that acts symplectically on S. We remark that
the gluings in Lemma 5.4.2.8.1 are exactly the image via πS∗ of the ones that define
H2(S,Z) as overlattice of finite index of Ω4 ⊕ ΛτK3. Therefore, we can obtain all the
projective families of Y using as generator of Ω⊥NS(Y ) an element of the form πS∗L+nα,
with L an ample class on S and n = 0, 1, 2. This bound on n is given by the condition (⋆),
that allows overlattices of Ω⊕ ⟨2d⟩ of index at most 2: indeed, the classes of isomorphic
overlattices of index 2 vary with the value of d (mod 4).
If n = 0 we find all the projective families with NS(Y ) = πS∗NS(S) ⊕ ⟨−2⟩, T (S) =
πS∗T (S)⊕ ⟨−2⟩; if n = 2, since (πS∗L+2α)2 = (πS∗L)

2 − 8, but πS∗L+2α glues to the
same isometry class of AΩ as πS∗L, we can find new projective families; lastly, if n = 1
we find all the projective families with NS(Y ) = Ω⊕ ⟨2e⟩ for e odd.

Theorem 5.5.2.5. Let Y be a general projective Nikulin-type orbifolds with a symplectic
action of K = ⟨ι, κ⟩, where κ is the non-standard involution described in Theorem 5.5.2.1
and (Y, ι) is a deformation of the natural pair (Ỹ , ι̃), where Ỹ is the terminalization of
S[2]/i, S is a K3 surface with a symplectic action of G = (Z/2Z)2 and i ∈ G of order 2.
Then Y belongs to one of the deformation families described in the following table.
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NS(Y ) e T (Y ) k

D4(2)⊕ ⟨2e⟩ ⊕ ⟨−2⟩

e =2 0
⟨−4k⟩ ⊕ ⟨−2⟩ ⊕ U⊕2 ⊕D4(2) e/2

M ′′
k ⊕ U ⊕D4(2) e/2

e =8 1

Gk ⊕ U⊕2 ⊕D4(2) (e+ 1)/2

Mk ⊕ ⟨−2⟩ ⊕ U ⊕D4(2) (e− 1)/2

R′
k ⊕ U (e− 1)/8

e =8 3

Gk ⊕ U⊕2 ⊕D4(2) (e+ 1)/2

Mk ⊕ ⟨−2⟩ ⊕ U ⊕D4(2) (e− 1)/2

N ′
k ⊕ U ⊕ U(2) (e− 3)/8

S′
k ⊕D4 (e− 3)/8

e =8 5

Gk ⊕ U⊕2 ⊕D4(2) (e+ 1)/2

Mk ⊕ ⟨−2⟩ ⊕ U ⊕D4(2) (e− 1)/2

Q′
k ⊕ U⊕2 (e+ 3)/8

e =8 7
Gk ⊕ U⊕2 ⊕D4(2) (e+ 1)/2

Mk ⊕ ⟨−2⟩ ⊕ U ⊕D4(2) (e− 1)/2

(D4(2)⊕ ⟨4e⟩)′ ⊕ ⟨−2⟩

e =4 0
Pk ⊕ ⟨−2⟩ ⊕ U e/4

S′′
k ⊕D4 e/4

e =4 1 Rk ⊕ ⟨−2⟩ ⊕ U (e− 1)/4

e =4 2
Nk ⊕ ⟨−2⟩ ⊕ U ⊕ U(2) (e− 2)/4

Sk ⊕ ⟨−2⟩ ⊕D4 (e− 2)/4

e =4 3 Qk ⊕ ⟨−2⟩ ⊕ U⊕2 (e+ 1)/4

Gk =

[
−4k 2

2 −2

]
Mk =

 −4k 2 0
2 0 2
0 2 −2

 M ′′
k =


−2 2 0 0

2
0
0

Mk



Nk =


−4− 4k 2 0 0 0

2 −4 0 2 −2
0 0 −4 2 2
0 2 2 −4 0
0 −2 2 0 −4

 N ′
k =


−8 2 0 . . . 0

2
0
...
0

Nk


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Pk =



−4− 4k 2 0 0 0 0 0
2 −2 0 0 2 0 0
0 0 2 0 2 0 0
0 0 0 −4 0 2 2
0 2 2 0 −4 2 −2
0 0 0 2 2 −4 0
0 0 0 2 −2 0 −4



Qk =


−4k 2 0 0 0

2 −16 4 4 4
0 4 −4 0 0
0 4 0 −4 0
0 4 0 0 −4

 Q′
k =


−8 2 0 . . . 0

2
0
...
0

Qk



Rk =



−4k 2 0 0 0 0 0
2 0 2 0 0 0 0
0 2 −2 1 0 0 0
0 0 1 −4 2 0 0
0 0 0 2 −4 −4 4
0 0 0 0 −4 −8 4
0 0 0 0 4 4 −8


R′

k =


−8 2 0 . . . 0

2
0
...
0

Rk



Sk =


−4k 2 0 0 0

2 8 4 0 0
0 4 2 1 0
0 0 1 −2 1
0 0 0 1 −2

 S′
k =


−8 2 0 . . . 0

2
0
...
0

Sk

 S′′
k =


−2 2 0 . . . 0

2
0
...
0

Sk


Proof. The proof is similar to that of Theorem 5.5.2.4.
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Chapter 6

Transcendental lattices of the known IHS
manifolds

6.1 Introduction

The contents in this chapter come from a paper written jointly with Ángel David Ŕıos
Ortiz [83]. Our aim is to study the connection between complex algebraic manifolds
sharing the same transcendental lattice. Indeed, it was already known by Beauville [6]
that S[n], the Hilbert scheme of n points on a K3 surface S, shares the same transcend-
ental lattice with S, and the same happens for Kmn(A) and the abelian surface A itself.
With a few exceptions, all known constructions of IHS manifolds are actually obtained
as some moduli space on either a symplectic surface (abelian or K3) or a cubic fourfold:
hence, the transcendental part of their Hodge structure will be completely determined
by the symplectic surface or cubic fourfold.

The philosophy behind this work is that two (projective) IHS manifolds that share the
same transcendental lattices are tightly related to each other, even if they are not of the
same deformation type, and sometimes even if one of them is not a IHS manifold but
has a Hodge structure that resembles one.
With this philosophy, in this work we will investigate the following question: given an IHS
manifold belonging to one of the known deformation types for which the transcendental
lattice is that of a symplectic surface (we call them induced, see Definition 6.2.0.1), is
this manifold birational to a moduli space over said surface?

In Section 3 we positively answer such a question for Beauville’s examples [6], the first
discovered examples of IHS manifolds. We prove that a IHS manifold of Kmn-type X is
induced by an abelian surface A if and only if X is birational to a moduli space on A, and
an analogous result holds if X is a K3[n]-type manifold and is induced by a projective
K3 surface S (the latter case was already essentially proved by Markman in [46]).
In Section 4 we study O’Grady’s examples [76, 75], where we can actually see new
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phenomena appearing: transcendental data are not enough to determine whether a
manifold will be a (desingularized) moduli space, but we have to include algebraic data;
this is manifestly shown in the cohomology of these manifolds, and to explore these cases
lattice theory is needed. We give lattice-theoretic criteria and construct many examples
of Hodge structures of manifolds in O’Grady’s families which are induced by symplectic
surfaces but are not moduli spaces. We highlight the very different behavior of induced
IHS manifolds which are or aren’t moduli spaces, and we point out connections with
the non-modular construction of O’Grady’s 10 dimensional example due to Laza-Saccà-
Voisin.

6.2 Induced IHS manifolds

Definition 6.2.0.1. Let X be a projective IHS manifold and (T, q) be a Hodge structure
of K3-type with a Beauville-Bogomolov form (see Definition 1.3.0.1). We say that X is
induced by T if there exists a Hodge isometry T (X) ∼=Hdg T .

Definition 6.2.0.2. Let X be a projective IHS manifold belonging to one of the known
deformation families: we say that X is induced by an abelian or K3 surface S if there
exists a Hodge isometry T (X) ∼=Hdg T (S).

By results due to Orlov [78, Thm. 3.3] a projective K3 surface which is induced by
another K3 surface is derived equivalent to the latter (that is, their derived categories
are isomorphic). Mukai showed that a K3 surface which is induced by another K3 surface
is a moduli space over the latter [65]. This gives a very precise interpretation of induced
IHS manifolds in dimension 2.

Theorem 6.2.0.3 (Orlov, Mukai). Let S and S′ be two projective K3 surfaces. The
following are equivalent:

1. S is induced by S′.

2. S and S′ are derived equivalent.

3. S is isomorphic to a fine two-dimensional moduli space over S′.

Remark 6.2.0.4. In the literature, two projectice K3 surfaces S and S′ are said to be
Fourier-Mukai partners if any of the equivalent statements of Theorem 6.2.0.3 hold for
S and S′.

Let S be a K3 surface, then the set of K3 surfaces induced by S modulo isomorphism
is finite [41, Prop. 16.3.10]. We can generalize this result to the case of induced IHS
manifolds.

Proposition 6.2.0.5. Let (T, q) be a fixed Hodge structure of K3-type, and fix a lattice
Λ; then the set

{X IHS with H2(X,Z) = Λ, X induced by (T, q}/ ∼bir

is finite.
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Proof. Let X be a IHS manifold induced by (T, q) and fix a marking H2(X,Z) ≃ Λ,
where Λ is the abstract lattice of the deformation type of X (see Example 1.2.0.3).
Denote by Mon(X) the monodromy group of X. By [93, Thm. 3.4] this is a finite index
subgroup of O(Λ). Consider the set Emb(T (X),Λ) of primitive embeddings of abstract
lattices. The set of orbits of Emb(T (X),Λ) under the action of Mon(X) is finite. Under
a fixed orbit, the lattice T (X)⊕NS(X) is a sublattice of H2(X,Z) of finite index: this
implies that there exists finitely many ways of extending the Hodge structure on T (X)
to Λ, and any such determines X up to bimeromorphisms by Theorem 1.3.0.11.

Corollary 6.2.0.6. Let (T, q) be a fixed Hodge structure of K3-type, and fix a lattice Λ
of rank at least 5. Then the set

{X IHS with H2(X,Z) ∼= Λ and induced by (T, q)}/ ∼=iso

is finite.

Proof. With the assumption on the rank of Λ, the positive solution by Amerik and
Verbitsky to the Kawamata-Morrison Cone Conjecture for IHS manifolds proves that
there are a finite number of bimeromorphic models of a given X (see [1, Thm. 1.9]):
this, combined with Proposition 6.2.0.5, gives the stated result.

A result analogous to Theorem 6.2.0.3 for IHS manifolds is at the moment out of reach:
however, if we restrict to those belonging to the known deformation types, and which
are moreover induced by a symplectic (abelian or K3) surface, some result can be indeed
obtained. This will be done in the following sections.

6.3 Induced IHSs in Beauville’s deformation families

6.3.1 Moduli of sheaves on symplectic surfaces

In the following, S will be a projective K3 or abelian surface. Let H̃(S) denote the even
cohomology ring, i.e.

H̃(S) := H0(S,Z)⊕H2(S,Z)⊕H4(S,Z). (6.3.1.1)

We define a pure weight-two Hodge structure on H̃(S) ⊗ C by requiring the degree 0
and 4 parts to be algebraic:

H̃0,2(S) := H0,2(S), H̃2,0(S) := H2,0(S), H̃1,1(S) := H0(S)⊕H1,1(S)⊕H4(S).

For any v = (v0, v2, v4) ∈ H̃(S), with degree q component given by vq, we set v∨ :=
(v0,−v2, v4). On H̃(S) we define Mukai’s bilinear symmetric form by

⟨u,w⟩ := −
∫
S
u ∧ w∨ =

∫
S
u2 ∧ w2 −

∫
S
(u0 ∧ w4 + u4 ∧ w0). (6.3.1.2)
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Definition 6.3.1.1. The Mukai lattice of S is the free module H̃(S) with Mukai’s bilinear
symmetric form ⟨·, ·⟩. An element v = (v0, v2, v4) ∈ H̃(S) is called a Mukai vector if
v0 ≥ 0 and v2 ∈ NS(S).

As a lattice, H̃(S) is isometric to the abstract Mukai lattice

Λ̃S :=

{
Λ̃K3 = ΛK3 ⊕ U if S is a K3 surface

Λ̃Ab = ΛAb ⊕ U if S is an abelian surface
(6.3.1.3)

where ΛK3 = E⊕2
8 ⊕ U⊕3 and ΛAb := U⊕3; notice that H̃(S) is a Hodge structure of

K3-type.

Let F be a coherent sheaf on S. Define the Mukai vector of F to be

v(F ) := ch(F )
√

td(S) = (rk(F ), c1(F ),
1

2
(c1(F )2 − 2c2(F )) + εrk(F )), (6.3.1.4)

where the last equality is Hirzebruch-Riemann-Roch Theorem, with ε = 1 if S is K3,
and ε = 0 if S is abelian. Notice that the Mukai vector of a coherent sheaf is indeed a
Mukai vector in the sense of Definition 6.3.1.1.

LetH be a polarization and v a Mukai vector on S. We writeMv(S,H) (resp. M s
v (S,H))

for the moduli space of H-semistable (resp. H-stable) sheaves on S with Mukai vector
v. If S is abelian, a further construction is necessary: we define Kv(S,H) := Alb−1(0),
where Alb is the Albanese morphism, cf. [99].

Example 6.3.1.2. Let H be an ample divisor on S and let v := (1, 0, 1 − n). Then
Mv(S,H) = S[n]. If S is abelian then Kv(S,H) = Kmn(S). This construction induces
an embedding ι : H2(S,Z) → H̃(S) with v⊥ = H2(X,Z), where X is either S[n] (when
S is a K3 surface) or Kmn(S) (when S is an abelian surface).

The moduli spaces constructed above can be singular for two reasons: either the Mukai
vector is non-primitive, or the polarization is not v-generic.

Definition 6.3.1.3. Fix a Mukai vector v ∈ H̃(S) and let AmpR(S) be the ample cone
of S. A v-wall is a hyperplane defined by WD := D⊥ ∩ AmpR(S) where D ∈ NS(S)
satisfies

v20
4
(2v0v4 − (v0 − 1)v2 · v2) < D ·D < 0. (6.3.1.5)

A polarization H is called v-generic if H is not contained in any v-wall.

Remark 6.3.1.4. For any chosen v there exists a locally finite union of hyperplanes in
NS(S)⊗ R, outside of which any polarization is v-generic.

The following theorem is the final result of works by several authors: at first, Mukai
proved that the moduli space of simple sheaves on an abelian or K3 surface, of which
Mv(S,H) is a compact subscheme (assuming that v is primitive and H is v-generic), is
smooth and admits a non-degenerate holomorphic 2-form [64]. O’Grady [74] proved the
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relation between Mv(S,H) and S[n] when S is a K3 surface, and Yoshioka [99] did the
same for Kv(S,H) and Kmn(S) if S is abelian.

Theorem 6.3.1.5. Let S be an abelian or projective K3 surface, v a primitive Mukai
vector and H a v-generic polarization. Then Mv(S,H) = M s

v (S,H), and we have the
following results:

1. if S is a K3 surface and ⟨v, v⟩ ≥ 2, then Mv(S,H) is an IHS manifold of di-
mension 2n = ⟨v, v⟩ + 2, which is deformation equivalent to S[n], the Hilbert
scheme of n points on S. Moreover, there is a Hodge isometry between v⊥ and
H2(Mv(S,H),Z), where the latter has a lattice structure given by the Beauville-
Bogomolov form;

2. if S is abelian and ⟨v, v⟩ ≥ 6, then Kv(S,H) is an IHS manifold of dimen-
sion 2n = ⟨v, v⟩ − 2, which is deformation equivalent to Kmn(S), the generalized
Kummer manifold on S. Moreover, there is a Hodge isometry between v⊥ and
H2(Kv(S,H),Z).

In particular, T ((Mv(S,H)) ∼=Hdg T (S) and T ((Kv(S,H)) ∼=Hdg T (S) as pure Hodge
structures of weight 2.

6.3.2 Induced IHSs of K3[n]-type

Let X be a projective IHS manifold of K3[n]-type and let ΛK3[n] be the abstract K3[n]

lattice (see Example 1.2.0.3). Markman constructed in [46] a natural O(Λ̃K3)-orbit iX
of primitive isometric embeddings of H2(X,Z) in Λ̃K3. This allowed him to prove the
following.

Theorem 6.3.2.1 ([47, Cor. 9.9]). Let X and Y be two manifolds of K3[n]-type. Then
X and Y are bimeromorphic if and only if there exists a Hodge-isometry f : H2(X,Z) →
H2(Y,Z), satisfying iX = iY ◦ f .

In particular, this gives a criterion to check if a IHS manifold of K3[n]-type is bimero-
morphic to a moduli space of sheaves on a K3 surface, which we will apply to the IHSs
of K3[n]-type that are induced by a K3 surface.

Denote by Emb(ΛK3[n] , Λ̃K3) the set of isometric embeddings of the lattice ΛK3[n] in

Λ̃K3. In [46, Lemma 4.3.(i)] Markman establishes a bijective correspondence between
the set

Pn = {(r, s) ∈ Z2 coprime such that − s ≥ r > 0 and − rs = n− 1}

and the set of O(Λ̃K3)-orbits in Emb(ΛK3[n] , Λ̃K3). This correspondence is given by

assigning to each pair (r, s) the embedding (r, 0, s)⊥ in Λ̃K3. The following theorem is
essentially proved in [46], for convenience we give the proof.
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Theorem 6.3.2.2. Let X be a projective IHS of K3[n]-type and S a projective K3 surface,
then X is induced by S if and only if X is bimeromorphic to a moduli space Mv(S,H)
for some v ∈ H̃(S) and a v-generic polarization H.

Proof. To prove the implication from right to left notice that by Theorem 6.3.1.5 for any
Mukai vector v and v-generic polarization H on S we have that T (Mv(S,H)) ∼=Hdg T (S).
By Lemma 1.3.0.9, if X is bimeromorphic to Mv(S,H), then T (X) ∼=Hdg T (Mv(S,H))
and we are done.
For the other implication, suppose that T (X) ∼= T (S) and consider the embedding

ι : H2(S[n],Z) → H̃(S)

given as (1, 0, 1−n)⊥ as in Example 6.3.1.2. By construction we have that T (S)⊥ in H̃(S)
contains a copy of U , that is H0(S) ⊕ H4(S), so by Theorem 1.2.1.10 the embedding
ι|T (S) is unique up to isometries; therefore, if we consider also ιX : H2(X,Z) → Λ̃, then

there exists an isometry ϕ : Λ̃ → H̃(S) such that ϕ(ιX(T (X))) = T (S).
Set Λ = ϕ(H2(X,Z)) and let v := Λ⊥: this is a primitive vector that takes values in
H̃(S)alg. Possibly by changing sign, we can assume that v is a Mukai vector, hence by
Theorem 6.3.1.5 for any v-generic ample class H in S we have v⊥ ∼= H2(Mv(S,H),Z)
as Hodge structures: this means that ϕ restricted to H2(X,Z) is in fact an isometry
of Hodge structures that, by construction, extends to the Mukai lattice. By Theorem
6.3.2.1 we conclude that X and Mv(S,H) are bimeromorphic.

Remark 6.3.2.3. In the previous section we claimed that X is a moduli space and not
just bimeromorphic to one. Using [5, Thm. 1.2], when X is bimeromorphic to a moduli
space of semistable sheaves, then there exists a Bridgeland stability condition σ such
that X is isomorphic to the moduli space of σ-stable sheaves.

Corollary 6.3.2.4. Every IHS manifold of K3[n]-type X with Picard rank ρ ≥ 13 is
induced by a unique K3 surface.

Proof. By [63, Cor. 2.10] the assumption on the Picard rank guarantees that for every
lattice T of signature (2, 20− ρ) there exists a unique primitive embedding T ↪→ ΛK3. If
T has a Hodge structure of K3-type, we can extend it uniquely to a Hodge structure on
ΛK3, imposing T⊥ ⊂ Λ1,1

K3. By Theorem 1.3.0.8, this allows us (having fixed the marking
H2(S,Z) ≃ ΛK3) to find a unique K3 S such that T (X) ∼=Hdg T (S): the result then
follows by Theorem 6.3.2.2.

6.3.3 Induced IHSs of Kmn-type

The strategy of proof given in the previous section has an analogue for the Kmn defor-
mation type. Let X be a projective IHS manifold of Kmn-type and let ΛKmn be the
abstract Kmn lattice (see Example 1.2.0.3).

161



Theorem 6.3.3.1 ([59, Thm. 4.3]). Let W(ΛKmn) denote the subgroup of O+(ΛKmn)
consisting of orientation preserving isometries acting as ±1 on the discriminant group
Λ∗
Kmn

/ΛKmn. Denote by
χ : W(ΛKmn) → {1,−1}

the associated character. Then Mon2(X) consists precisely of orientation preserving
isometries g ∈ W(ΛKmn) such that χ(g) · det(g) = 1.

We need also an analogue of the monodromy invariant embedding due to Markman.
Recall the following result by Wieneck.

Theorem 6.3.3.2 ([97, Thm. 4.9]). Let X be a IHS manifold of Kmn-type, n ≥ 2. Then

there exists a canonical monodromy invariant O(Λ̃Ab)-orbit ιX of primitive isometric

embeddings of Λ = H2(X,Z) in the Mukai lattice Λ̃Ab.

Lemma 6.3.3.3. There exists a bijective correspondence between the set

Qn = {(r, s) coprime such that − s ≥ r > 0 and rs = n+ 1}

and the set of O(Λ̃Ab) orbits in O(ΛKmn , Λ̃Ab).

Proof. Recall that ΛKmn ≃ ΛAb⊕⟨−2(n+1)⟩. For every (r, s) ∈ Qn define the embedding

ιr,s : ΛKmn → Λ̃Ab by sending ΛAb to ΛAb ⊕ 0 and the generator of ⟨−2(n + 1)⟩ =

(ΛAb)
⊥ΛKmn to (r, 0,−s). Notice that ιr,s(ΛKmn) = (r, 0, s)⊥. Suppose that there exists

an isometry g ∈ O(Λ̃Ab) such that ιr,s = ιr′,s′ ◦ g: then g must fix ΛAb ⊕ 0 and send
(r, 0,−s) to (r′, 0,−s′). Since both vectors are contained in 0 ⊕ U , then g has to be
given by an isometry of U = ⟨u, v⟩, but O(U) ∼= (Z/2Z)2, generated by the isometries
(u, v) 7→ (−u,−v) and (u, v) 7→ (v, u): therefore g must be the identity (otherwise the
conditions on r, s are not met).

Conversely, let ϕ : ΛKmn → Λ̃Ab be an embedding. By [72, Thm. 1.14.4] there is a

unique O(Λ̃Ab)-orbit of embeddings of U⊕3 into Λ̃Ab, hence there exists an isometry

g′ ∈ O(Λ̃Ab) such that ϕ(U⊕3) is sent to U⊕3 ⊕ 0. Let v ∈ ΛKmn be a vector generating

the sublattice ⟨−2(n + 1)⟩ = (U⊕3)⊥; since Λ̃Ab = U⊕3 ⊕ U , we reduce the problem to
classify the possible embeddings of v into U ; since O(U) ∼= (Z/2Z)2 we have that these
embeddings are classified as pairs in the set Qn.

Lemma 6.3.3.4 ([91, Lemma 3]). Let A be an abelian surface. There exists a canonical
isomorphism of Hodge structures g : H2(A∨,Z) → H2(A,Z) such that det(g) = −1.

Remark 6.3.3.5. By definition of the Mukai lattice, Lemma 6.3.3.4 implies in particular
that there is a Hodge isometry g̃ : H̃(A) ∼=Hdg H̃(A∨).

Lemma 6.3.3.6. Let A be an abelian surface and fix a Mukai vector v ∈ H̃(A); let ṽ =
g̃(v) ∈ H̃(A∨); then there exists a Hodge isometry ϕ : H2(Kv(A

∨),Z) → H2(Kv(A),Z)
for v-generic polarizations. Moreover, with respect to the Mukai embedding we have
det(ϕ) = −1 and χ(ϕ) = 1.
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Proof. By Lemma 6.3.3.3 we can assume that v = (r, 0, s) for some r, s. Then, by
Theorem 6.3.1.5 we know that

H2(Kv(A
∨),Z) ∼=Hdg v

⊥ ∼=Hdg H
2(Kv(A),Z)

as Hodge structures; observe that due to the specific choice of v we can assume the
previous isomorphism to be given as g on H2(A,Z) and fixing (r, 0,−s). This is a
Hodge isometry by construction and det(ϕ) = −1; observe that since this restricts to
the identity on (r, 0,−s), then χ(ϕ) = 1 as claimed.

Theorem 6.3.3.7. Let X be a IHS manifold of Kmn-type, then X is induced by A if and
only if X is bimeromorphic to Kv(A,H) or Kṽ(A

∨, H ′) for some v ∈ H̃(A), ṽ = g̃(v)
(see Remark 6.3.3.5), H a v-generic polarization, H ′ a ṽ-generic polarization.

Proof. By Lemma 1.3.0.9 we just need to prove the implication from left to right. Sup-
pose that T (X) ∼= T (A) and consider the standard embedding ι : H2(Kmn(A),Z) →
H̃(A) given as (1, 0, 1 − n)⊥. By construction, we have that T (A)⊥ in H̃(A) contains
a copy of U , that is H0(A) ⊕ H4(A), so by Theorem 1.2.1.10 the embedding ι|T (A) is
unique; hence there exists an isometry φ : Λ̃ → H̃(A) such that φ(ιX(T (X))) = T (A).
Set Λ = φ(H2(X,Z)) and v = Λ⊥: this is a primitive vector that takes values in H̃(S)alg.
Possibly by changing sign, we can assume that v is a Mukai vector; by Theorem 6.3.1.5
for any v-generic ample class H in S we have v⊥ ∼=Hdg H

2(Mv(S,H),Z). This means
that φ restricted toH2(X,Z) is in fact an isometry of Hodge structures that, by construc-
tion, extends to the Mukai lattice. We already know that φ ∈ W(Λ) (cf. the previous
Remark), by Theorem 6.3.3.1 what we are left to show is that χ(φ) det(φ) = 1. If not,
by Lemma 6.3.3.6 there exists a Hodge isometry ψ : H2(Kv(A

∨),Z) → H2(Kv(A),Z)
such that det(ψ) = −1 and χ(ψ) = 1, and composing with ψ we obtain the required
equality.

We provide a result analogous to Corollary 6.3.2.4 for this deformation type.

Corollary 6.3.3.8. Every IHS manifold of Kmn-type with Picard rank ≥ 4 is induced
by a unique abelian surface or its dual.

Proof. Let X be a IHS manifold of Kmn-type and of Picard rank at least 4. Then its
transcendental lattice T (X) is of rank at most 3, therefore it occurs as the transcendental
lattice of an abelian surface A by [63, Cor. 2.6]; moreover, the embedding T (X) ⊆ U⊕3

is unique, therefore it induces a unique Hodge structure on T (A) ≃ T (X): by Theorem
1.3.0.14, the same Hodge structure is shared by two abelian surfaces, A or A∨. By
Lemma 6.3.3.4 we get that X is induced by either of them.

Remark 6.3.3.9. An abelian surface A is isomorphic to its dual if and only if it is prin-
cipally polarized, i.e. it is polarized with a class H ∈ NS(A) such that H2 = 2. This
happens when A is isomorphic either to the Jacobian of a genus 2 curve or the product
of two elliptic curves [11, Cor. 11.8.2].
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6.4 Induced IHSs in O’Grady’s deformation families

6.4.1 Singular moduli of sheaves on symplectic surfaces

Let S be a projective K3 or abelian surface. We will be using the same notation as
in Section 6.3.1. Moduli spaces of stable sheaves with non-primitive Mukai vector are
singular. Through the works of O’Grady [74, 76] Lehn and Sorger [45] and its final form
by Perego and Rapagnetta in [80, 81], we have a clear understanding on when these
spaces are resolvable symplectic varieties (see Definition 1.5.0.8); in all the other cases,
they have terminal singularities.

Theorem 6.4.1.1. Let S be an abelian or projective K3 surface, v a primitive Mukai
vector such that ⟨v, v⟩ = 2 and H a v-generic polarization. Then M2v(S,H) (resp.
K2v(S,H) if S is abelian) is a resolvable symplectic variety and we have the following
results:

1. if S is a K3 surface, then the symplectic resolution π : M̃2v(S,H) → M2v(S,H)
is a IHS manifold of OG10-type. There is a Hodge isometry between v⊥ and
H2(Mv(S,H),Z), where the latter has a lattice structure given by Lemma 1.5.0.10.

Moreover, if α ∈ v⊥ has divisibility 2, then α±σ
2 ∈ H2(M̃2v(S,H),Z), where σ is

the exceptional divisor of π.

2. if S is abelian, then the symplectic resolution π : K̃2v(S,H) → K2v(S,H) is
a IHS manifold of OG6-type, and there is a Hodge isometry between v⊥ and
H2(K2v(S,H),Z). Moreover, H2(K̃2v(S,H),Z) ∼=Hdg H2(K2v(S,H),Z) ⊕⊥ Zσ,
where σ is the exceptional divisor of π.

In particular, there are isomorphisms T (M̃2v(S,H)) ∼=Hdg T (S) and T (K̃2v(S,H)) ∼=Hdg

T (S).

6.4.2 Induced IHS’s of O’Grady 6 type

Let X be a projective IHS manifold of OG6-type. In this case the monodromy group
is maximal [60]. Hence the bimeromorphic class of a IHS manifold of OG6-type is fully
determined by the Hodge structure of its Beauville-Bogomolov lattice.

Theorem 6.4.2.1 ([60, Thm. 1.1]). Let X,Y be two IHS manifolds of OG6-type. Then
X and Y are bimeromorphic if and only if H2(X,Z) ∼=Hdg H

2(Y,Z).

We want to study whether induced OG6-type manifolds are symplectic resolution of a
singular moduli space over an abelian surface or not, similarly to Beauville’s examples in
the previous sections. The following theorem follows a similar strategy as in [35, Thm.
1.1].

Theorem 6.4.2.2. Let X be a projective IHS manifold of OG6-type induced by an
abelian surface A. Then the following are equivalent:

1. There exists an algebraic class σ ∈ NS(X) of square −2 and divisibility 2.
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2. X is bimeromorphic to a K̃2v(S,H) for some v ∈ H̃(A) and some v-generic po-
larization H.

Proof. The second item implies the first by Theorem 6.4.1.1. For the other implica-
tion, notice that by Theorem 1.2.1.14 there exist exactly two non-isomorphic primitive
embeddings of the lattice ⟨−2⟩ in ΛOG6 = U⊕3 ⊕ ⟨−2⟩⊕2 = ⟨ui1, ui2⟩i=1,2,3 ⊕ ⟨a1, a2⟩:
up to isometries of the latter, to realize the first embedding we can choose as generator
ρ = u11−u12: then ρ has divisibility 1, so we exclude this case; to realize the other embed-
ding, we choose as generator σ = a1, the generator of one of the orthogonal components
⟨−2⟩: then σ has divisibility 2.
In the latter case NS(X) has ⟨σ⟩ as an orthogonal summand. Let Λ′ := ⟨σ⟩⊥ in ΛOG6,
then we have

Λ′ = ΛAb ⊕ ⟨−2⟩ ∼= H2(Kv(A,H),Z). (6.4.2.1)

where the last isomorphism is as abstract lattices. If we let π : ΛOG6 → Λ′ be the
projection map, then T (X) is isomorphic to its image under π. Since T (X) ∼= T (A),
this defines a level 2 Hodge structure on H2(Kv(A,H),Z) that by construction lifts to
an isomorphism of level 2 Hodge structures

H2(X,Z) ∼= H2(K̃v(A,H),Z). (6.4.2.2)

By Theorem 6.4.2.1 we have that X is bimeromorphic to K̃v(A,H).

In the rest of this section we will study several examples of induced IHS of OG6-type
which are not resolution of the singularities of moduli spaces. We first notice that there
are strong conditions a lattice has to satisfy to be the transcendental lattice of an abelian
surface.

Theorem 6.4.2.3 ([63, Thm. 1.6 and Cor. 2.6]). Let T be an even lattice of signature
(2, k).

1. If k = 0, 1 there is a primitive embedding T in ΛAb.

2. If k = 2 there is a primitive embedding T in ΛAb if and only if T ∼= U ⊕ T ′.

3. If k = 3 there is a primitive embedding T in ΛAb if and only if T ∼= U⊕2 ⊕ T ′.

Moreover there exists a (not necessarily unique) abelian surface A such that T (A) ∼=Hdg

T .

We are going to say that an induced OG6-type manifold X arises from a moduli space to
mean that there exist an abelian surface A, a primitive Mukai vector v and a v-generic
polarization H such that X = K̃2v(A,H).
As a consequence of Theorems 6.4.1.1 and 6.4.2.2, given a Hodge structure on a lattice
T and a primitive embedding ϕ : T ↪→ ΛOG6, the condition

there exists σ ∈ ϕ(T )⊥ such that σ2 = −2, σH2(X,Z) = 2Z (6.4.2.3)
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is equivalent to the fact that the OG6-type manifold X such that T (X) = ϕ(T ),
NS(X) = ϕ(T )⊥ arises from a moduli space.

We are going to give examples of induced IHS manifold X of OG6-type that do not
arise from a moduli space for each of the transcendental lattices T (X) ≃ T allowed as
transcendental lattices of abelian surfaces by Theorem 6.4.2.3. In each of the following
examples the orthogonal complement T⊥ of T in ΛOG6 does not admit any primitive
embedding of ⟨−2⟩ with divisibility 2, so condition (6.4.2.3) is not satisfied.

Example 6.4.2.4. Fix generators u1, u2, v1, v2, w1, w2, a, b of the OG6-lattice ΛOG6 where
u1, ..., w2 are generators of the hyperbolic planes and a, b are the two classes of square
−2 and divisibility 2.

1. rk(T ) = 5: Consider the lattice T = U ⊕ U ⊕ ⟨−4⟩: embed it in ΛOG6 as
⟨u1, u2, v1, v2, a+b⟩. Then T⊥ = U⊕⟨−4⟩, so condition (6.4.2.3) is not satisfied. In-
deed, a primitive class of even divisibility is of the type (2k+1)(a−b)+2(hw1+jw2)
with k, h, j integers, but none of these classes has square −2 (to this end, odd mul-
tiples of w1, w2 are needed).

2. rk(T ) = 4: Consider T = U ⊕ ⟨6⟩ ⊕ ⟨−10⟩: embed it in ΛOG6 as ⟨u1, u2, 2(v1 +

v2) + a, 2(w1 − w2) + b⟩; then T⊥ = A2 ⊕
[
−2 3
3 −2

]
.

3. rk(T ) = 3: Consider T = U ⊕⟨4⟩: embed it in ΛOG6 as ⟨u1, u2, 2(v1 + v2)+ a+ b⟩;
then T⊥ = U ⊕A3.

4. rk(T ) = 2: Consider T = ⟨6⟩⊕2: embed it in ΛOG6 as ⟨2(u1+u2)+a, 2(v1+v2)+b⟩:
then T⊥ = U ⊕A⊕2

2 .

The following theorem provides a characterization of induced IHSs with transcendental
Td = U ⊕ U ⊕ ⟨−2d⟩, d ∈ N̸=0, as in case (3) of Theorem 6.4.2.3.

Theorem 6.4.2.5. Let X be an induced IHS of OG6-type such that rk(NS(X)) = 3.
Then X does not arise from a moduli space if and only if it holds

d = 4k + 2, T (X) ≃ U ⊕ U ⊕ ⟨−2d⟩, NS(X) ≃

 2k 1 1
1 −2 0
1 0 −2

 . (6.4.2.4)

Proof. The proof relies heavily on Theorem 1.2.1.14. Since X is induced by an abelian
surface, its transcendental lattice is of the form Td = U ⊕U ⊕⟨−2d⟩. If d = 0, 3 (mod 4)
there exists only one possible embedding of Td in ΛOG6 up to isometries of the latter,
given by Td ↪→ U⊕3 ↪→ ΛOG6: the corresponding NS(X) is Sd := ⟨2d⟩ ⊕ ⟨−2⟩⊕2, which
obviously satisfies condition (6.4.2.3). Moreover, Sd is unique in its genus (see Theorem
1.2.1.10).
If d = 1 (mod 4), there are two possible embeddings of Td in ΛOG6: one as above with
orthogonal complement Sd, the other described by ⟨u1, u2, v1, v2, d−1

2 w1+
d−1
2 w2+

d+1
2 a⟩,

which gives as NS(X) a lattice of the form S′⊕⟨−2⟩, with sign(S′) = (1, 1), so it satisfies
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condition (6.4.2.3). The lattice NS(X) is again unique in its genus, since its discriminant
form is qS = [−1/2d] so rkNS(X) = 2 + ℓ(NS(X)) (see Theorem 1.2.1.10).
If d = 2 (mod 4) there are again two possible embeddings, one of which gives NS(X) =
Sd, and the other described by ⟨u1, u2, v1, v2, 2kw1− 2kw2+ a+ b⟩, where k = (d− 2)/4:
in this case it holds

NS(X) =

 2k 1 1
1 −2 0
1 0 −2

 (6.4.2.5)

which is unique in its genus (its discriminant form is [(1− d)/2d]). This lattice does not
contain any classes σ that satisfy the requirements of condition (6.4.2.3): indeed, calling
{b1, b2, b3} a basis of NS(X), to have even divisibility it has to be σ =

∑
xibi with x1

even, and x2 =2 x3: none of these classes however have square −2.

Remark 6.4.2.6. Taking k = 0 in (6.4.2.5), choosing the basis {b1, b2 + b1, b3 − b2 − 2b1}
we get NS(X) = U ⊕ ⟨−4⟩ as in Example 6.4.2.4.

Remark 6.4.2.7. Let T = U ⊕U ⊕ ⟨−4⟩, and consider X an OG6-type manifold induced
by T . If NS(X) = U ⊕ ⟨−4⟩ = ⟨u1, u2, x⟩, then by Theorem 6.4.2.5 X does not arise
from a moduli space; the movable cone coincides with the positive cone, because there
are no classes of divisibility 2; the walls of the Kähler cone are α⊥, for any α of the
form α = au1 + bu2 + cx such that c2 − ab = 1; on the other hand, if NS(X) =
⟨4⟩ ⊕ ⟨−2⟩⊕2 = ⟨y, α1, α2⟩ (i.e. X arises from a moduli space), then the walls are of the
form ay+ bα1 + cα2 such that either b2 + c2 = 2a2 +1, or the following conditions hold:
b, c are odd, and b2+ c2 = 2a2+2. The movable cone coincides with the ample cone (all
classes of square −2 have divisibility 2).

Proposition 6.4.2.8. If X is an IHS manifold of OG6-type such that T (X) = U ⊕U ⊕
⟨−4⟩ and NS(X) = U ⊕ ⟨−4⟩, then Bir(X) is infinite.

Proof. By the solution of the Kawamata-Morrison Cone Conjecture [1] we need to prove
that there exist an infinite number of walls inside the movable cone. By the previous
remark it is therefore sufficient to show that for any class α of the form α = au1+bu2+cx
such that c2 − ab = 1 there exists a positive class β = du1 + eu2 + fx such that αβ = 0:
to this end, we need to prove that the system

Σ :

{
af + be− 4cg = 0

2ef − 4g > 0

admits a solution for any choice of a, b, c such that c2 − ab = 1.
Notice firstly that we can always suppose a ≥ b. If c = 0, then (a, b) = (1,−1): then
any choice of e, f, g that satisfies e = f, g < e2/2 is a solution to Σ. If c = ±1, then
a = b = 0, so g = 0 and any choice of e, f such that ef > 0 is a solution to Σ. If
c ̸= 0,±1, then a, b have the same sign, and we write

Σ :

{
g = (af + be)/4c

2ef − (af + be)/c > 0;
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if c > 0, choose e, f such that ef > c > 0: then 2efc − (af + be) > 2 + 2ab − af − be,
which is positive for any choice of e, f with opposite sign to a, b. Therefore, a solution
to Σ is given by any pair e, f with opposite sign to a, b, such that 4c divides both e and
f . If c < 0, take instead any pair e, f with the same sign as a, b, such that 4c divides
both e and f .

We will now give some more details in case rk(T ) = 4: it always holds T = U⊕Q, where

Q =

[
2α β
β 2γ

]
such that d := β2 − 4αγ > 0.

Remark 6.4.2.9. If det(Q) is odd, then any IHS of OG6-type with transcendental lattice
T = U⊕Q arises from a moduli space, because there exists only one primitive embedding
of T in ΛOG6.

Example 6.4.2.10. If Q =

[
2α 0
0 −2γ

]
, then T = U ⊕Q can be the transcendental lattice

of an induced IHS of OG6-type that does not arise from a moduli space if and only if
either γ = 1, α = 3 (mod 4), or γ = 2, α = 2 (mod 4): in the first case, the embedding
can be realized as Q = ⟨2(v1+kv2)+a, 2(w1−hw2)+b⟩, giving α = 4k−1, γ = 4h+1; in
the second case, Q = ⟨2(v1+kv2)+a+b, 2(w1−hw2)+a−b⟩, giving α = 4k−2, γ = 4h+2.
The corresponding Néron-Severi lattice will be, respectively,

−2k2 1− 2k 0 0
1− 2k −2 0 0

0 0 −2h2 1 + 2h
0 0 1 + 2h −2

 ,


−2k 0 1 1
0 2h 1 −1
1 1 −2 0
1 −1 0 −2

 .
Neither contains classes of square −2 and divisibility 2. All the other combinations for
the values of α, γ modulo 4 give only one possible primitive embedding of U⊕Q in ΛOG6.

6.4.3 Induced IHS’s of O’Grady 10 type

Let X be a projective IHS manifold of OG10-type. As in the OG6-type case the mono-
dromy group is maximal, therefore the bimeromorphic class of a IHS manifold of OG10-
type is fully determined by the Hodge structure of its Beauville-Bogomolov lattice.

Theorem 6.4.3.1 ([77, Thm. 5.4]). Let X,Y be two IHS manifolds of OG10-type. Then
X and Y are bimeromorphic if and only if H2(X,Z) ∼=Hdg H

2(Y,Z).

We will again follow the strategy of [35, Thm. 1.1] in order to find a necessary and
sufficient criterion to decide whether a IHS of OG10-type induced by a K3 surface is the
resolution of the singularities of a moduli space. See also [21] for a similar result.

Theorem 6.4.3.2. Let X be a projective IHS manifold of OG10-type which is induced
by a K3 surface S. Then the following are equivalent:

1. There exists a class σ ∈ NS(X) such that qX(σ) = −6 and div(σ) = 3.
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2. X is bimeromorphic to a M̃2v(S,H) for some v ∈ H̃(S) and some v-generic po-
larization H.

Proof. By Theorem 1.2.1.14 there exist exactly two non-isomorphic primitive embed-
dings of the lattice ⟨−6⟩ in ΛOG10 up to isometries of the latter: to realize the first
embedding we can choose as generating class u1 − 3u2 (where ⟨u1, u2⟩ = U), which
has divisibility 1; for the other case, take instead as generating class a1 + 2a2 (where
⟨a1, a2⟩ = A2), which has divisibility 3.
Let σ be a class of square −6 and divisibility 3 in ΛOG10 and let Λ′ := σ⊥ be its or-
thogonal complement in ΛOG10: then we have Λ′ = U⊕3 ⊕ E⊕2

8 ⊕ ⟨−2⟩. The lattice Λ′

embeds in the Mukai lattice H̃(S) as λ⊥, with λ2 = 2, so Λ′ ≃Hdg H
2(M2λ(S,H),Z),

for any λ-general polarization H.
Now, if we let π : ΛOG10 → Λ′ be the projection map, then T (X) is isomorphic to
its image under π. Since T (X) ∼= T (S), this defines a level 2 Hodge structure on
H2(M2λ(S,H),Z). We can extend this to an isomorphism of level 2 Hodge structures

ΛOG10
∼= H2(M̃2λ(S,H),Z), (6.4.3.1)

via the construction of the lattice A2 as overlattice of ⟨−2⟩ ⊕ ⟨−6⟩, which is the only
way to embed Λ′ in ΛOG10 primitively: calling α (respectively β) the generator of ⟨−2⟩
(resp. ⟨−6⟩), it holds A2 = ⟨α, (α + β)/2⟩. By the strong form of Torelli’s theorem we

have therefore that X is bimeromorphic to M̃2λ(S,H).

We are going to say that an induced OG10-type manifold X arises from a moduli space
to mean that there exist a K3 surface S, a primitive Mukai vector v and a v-generic
polarization H such that X = M̃2v(S,H).
As a consequence of Theorems 6.4.1.1 and 6.4.3.2, given a Hodge structure on a lattice
T and a primitive embedding ϕ : T ↪→ ΛOG10, the condition

there exists σ ∈ ϕ(T )⊥ such that σ2 = −6, σH2(X,Z) = 3Z (6.4.3.2)

is equivalent to the fact that the OG10-type manifold X such that T (X) = ϕ(T ),
NS(X) = ϕ(T )⊥ arises from a moduli space..

Example 6.4.3.3. Let T =

[
4 2
2 4

]
: there exists a unique K3 surface S such that T (S) ≃

T , which is the surface Xω described in Section 3.2. Embed T in ΛOG10 as follows: call
⟨u1, u2, v1, v2, a1, a2⟩ the standard basis of U ⊕ U ⊕A2, then T = ⟨u1 + 2u2 − v1 − v2 −
a1, u2 − u1 − 2v1 − 2v2 − a1 − a2⟩; its orthogonal complement in ΛOG10 is the lattice
N = U ⊕E⊕2

8 ⊕D4. If X is such that (NS(X), T (X)) = (N,T ), then X is induced, but
it does not arise from a moduli space: moreover, the discriminant of the Néron-Severi
lattice of the latter is bigger.

The induced OG10-type manifolds in the example above contain a copy if U in their
Neron-Severi lattice. One important family of OG10-type manifolds which also has
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this property was produced by Laza, Saccà and Voisin in [44] via a compactification
of the intermediate Jacobians of hyperplane sections on a general cubic fourfold; this
construction was further extended by Saccà in [86] to include every smooth cubic fourfold.
More precisely, if Y ⊆ P5 is a smooth cubic fourfold, and JV → V ⊂ (P5)∨ the fibration
in intermediate Jacobians of smooth hyperplane sections, in [86, Thm. 1.6] it is proven
that there exists a smooth IHS compactification of JV .

Definition 6.4.3.4. A IHS manifold of OG10-type bimeromorphic to a smooth compac-
tification of the fibration JV → V ⊂ (P5)∨ for some smooth cubic fourfold Y ⊂ P5 as
considered above is called an LSV manifold.

Remark 6.4.3.5. The IHS compactification of the intermediate Jacobian fibration asso-
ciated with a smooth cubic fourfold Y is not unique, but its bimeromorphic class it is.
We will use JY to denote any compactification of JV → V .

Remark 6.4.3.6. The algebraic copy of U in LSV manifolds comes from the construction
as follows. There are always two distinguished algebraic classes, an isotropic class F
coming from the naturally associated fibration, and a rigid class θ given by the compac-
tification of the Theta divisor on the fibers: hence, it holds

⟨F, θ⟩ =
[
0 1
1 −2

]
.

Therefore U = ⟨F, θ + F ⟩.

Proposition 6.4.3.7. Let X be a IHS manifold of OG10-type. If X is an LSV manifold
then U ⊆ NS(X). Conversely, if U ⊆ NS(X) and X is very general, then there exists
a cubic fourfold Y such that X is bimeromorphic to JY .

Proof. If X is an LSV manifold, then is bimeromorphic to JY , where Y is a cubic
fourfold. By [86, Lemma 3.5] it holds U ⊆ NS(JY ) = NS(X), the last equality by
Lemma 1.3.0.9.
IHS manifolds of OG10-type which contain a copy of U in the Neron-Severi form an
irreducible moduli space MU of dimension 20 (see Remark 1.4.0.4). Hence, by counting
dimensions, in order to prove the claim it suffices to show that LSV manifolds are dense
inside MU . Let Y be a smooth cubic fourfold, then by [86, Lemma 3.2] there exists an
isomorphism

T (JY )⊗Q ∼=Hdg H
4(Y,Q)tr (6.4.3.3)

of rational Hodge structures.
Let M be the moduli space of smooth cubic fourfolds (which has again dimension 20)
and define the subspace

V = {Y ∈ M such that H2,2(Y ) ∩H4
prim(Y,Z) = ⟨h2⟩}

of very general cubic fourfolds (see Example 1.3.0.2 for the notation): this is an open
subset in M. The Torelli Theorem for cubic fourfolds 1.3.0.15 states that two cubic
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fourfolds Y, Y ′ are isomorphic if and only if there exists a Hodge isometry H4(Y,Z) ∼=Hdg

H4(Y ′,Z) preserving the square of the hyperplane class. If Y is in V, then (h2)
⊥

=
H4(Y,Z)tr = H4(Y,Z)prim: therefore the only distinction between cubic fourfolds in
V is given by the Hodge structure we put on the abstract primitive lattice H4

prim =

U⊕2 ⊕ E⊕2
8 ⊕A2. By (6.4.3.3) this shows the claim.

Remark 6.4.3.8. Although Proposition 6.4.3.7 implies that an open dense set of U -
polarized manifolds of OG10-type X is actually in the LSV family, it is not explicit in
any way: this prevents us from finding a cubic fourfold Y such that JY is bimeromorphic
to a given X.

Proposition 6.4.3.7 prompts a question: if X is induced by a K3 surface and it does
not arise from a moduli space, does it always belong to the LSV family? We negatively
answer the question in the case of Picard rank 3, which is the most generic case.

Proposition 6.4.3.9. Let S be a projective K3 surface such that NS(S) = ⟨2d⟩, d ∈
Z>0: then there exists an OG10-type manifold X which is induced by S, but is doesc not
arise from a moduli space, if and only if d = 3(3h+1). Moreover, X belongs to the LSV
family if and only if d is odd and no prime of the form 6n+ 5 divides it.

Proof. The condition d = 3(3h + 1) ensures by Theorem 1.2.1.14 that there exist two
different embeddings of the transcendental lattice T = T (S) in ΛOG10: indeed if γ is a
generator of AT , then the group G = ⟨2d3 γ⟩ is isomorphic to the discriminant group of A2.
We then compute the orthogonal complement to G in AT , which is H = ⟨3γ⟩: following
Theorem 1.2.1.14, if X is not a moduli space, then the discriminant form q of NS(X)
is the opposite to that of H, that is, q = [3/2(3h+ 1)]. The lattice U ⊕ ⟨−2(3h+ 1)⟩ is
unique in its genus [72, Prop. 1.13.4], and its discriminant form is q̃ = [−1/2(3h + 1)]:
therefore we only need to find conditions under which q̃ is equivalent to q.
Recall that two quadratic forms defined on a finite abelian group G are equivalent if
and only if they are p-equivalent for every prime p (see Definition 1.2.0.12). In our case,
since G = Z/2(3h+1)Z is cyclic, we can use [54, Lemma IV.1.4]. Let |A2| = 2n: then, it
holds q|A2 = 3m/2n, and q̃|A2 = −m/2n (for some m odd), which are equivalent if and
only if n = 1. Therefore 3h+ 1 should be odd. Suppose now p ̸= 2: then q|Ap = q̃|Ap if
and only if −2, 6 are both square, or both non-square numbers modulo p. Since −2 is
a square if and only if p =8 1, 3, and −6 is a square if and only if p =24 1, 5, 19, 23, it
holds q|Ap = q̃|Ap if and only if p =24 1, 7, 13, 15, 19, 21. Taking the complementary (and
excluding p = 3, that does not divide 3h+ 1), we get the statement.

Example 6.4.3.10. Let {e1, . . . e8} be a Z-basis of E8 and let {u1, u2} be a basis of U as
in Example 1.2.0.2. Let S0 be a K3 surface such that NS(S0) = ⟨6⟩: let X0 be an OG10-
type manifold such that NS(X0) is generated as a sublattice of ΛOG10 by ⟨e6, u1, u2⟩:
then X0 is induced by S0 and it does not arise from a moduli space, but it is a member
of the LSV family. Indeed, it holds NS(X0) = U ⊕ ⟨−2⟩.
Let S1 be a K3 surface such that NS(S1) = ⟨24⟩; let X1 be a IHS of OG10-type such
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that NS(X1) is generated as a sublattice of ΛOG10 by ⟨e6, e7,−e5+ e8+u1+3u2⟩: then
X1 is induced by S1, but it’s neither a resolution of a moduli space, nor a member of
the LSV family. Indeed, it holds

NS(X1) =

 −2 1 −1
1 −2 1

−1 1 2

 :

this lattice has discriminant form q = [3/8], so there exists no primitive embedding of
U in it. Indeed, if by contradiction such an embedding existed, then there would exist
an even lattice K of rank 1 such that NS(X1) = U ⊕ K, and qK = [3/8] [72, Cor.
1.13.4]; but comparing signatures, it should also hold K = ⟨−2k⟩, k ∈ Z>0, which has
discriminant form [−1/2k], that is never equivalent to qK .

6.5 The most algebraic IHS manifolds

K3 surfaces whose Néron-Severi lattice has maximum rank 20 are called singular K3
surfaces: their moduli space is reduced to a point (see Remark 1.4.0.4), and they have
interesting geometric properties. Some notable examples of singular K3 surfaces are
Fermat’s quartic, and also the surfaces X4 and Xω from Sections 2.2.2, 3.2.1.

Theorem 6.5.0.1 ([92, Thm. 4.4]). Let Q be the set of matrices with integral entries

of the form Q =

[
2a b
b 2c

]
such that a, c > 0, b2 − 4ac < 0: there is a bijection between

the set of singular K3 surfaces and Q/SL2(Z), given by S 7→ T (S).

Remark 6.5.0.2. A similar result holds for abelian surfaces: indeed the set Q/SL2(Z)
also parametrizes the minimal rank transcendental lattices of abelian surfaces (see The-
orem 6.4.2.3) up to isometries, and for each lattice TQ with intersection matrix Q the
corresponding Néron-Severi lattice satisfies Theorem 1.2.1.10; the only difference is that,
by the Torelli theorem for abelian surfaces 1.3.0.14, one finds for each T (S) two abelian
surfaces S and S∨ instead of the unique K3 surface.

A natural question is how to extend this result to IHS manifolds, at least for the known
deformation types. In the case of Beauville’s deformation families we get the following
result.

Corollary 6.5.0.3. Let X be a K3[n]-type manifold such that rk(NS(X)) = 21: then
X is bimeromorphic to a moduli space of sheaves on the unique K3 surface with tran-
scendental lattice T (X).
Let X be a Kmn-type manifold such that rk(NS(X))5: then X is bimeromorphic to a
moduli space of sheaves on the abelian surface A or its dual A∨, with transcendental
lattice T (A) ≃ T (X).

Proof. If X is a K3[n]-type manifold of Picard rank 21, the transcendental lattice T (X)
is a positive definite lattice of rank 2, hence it is the transcendental lattice of a unique
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K3 surface S by Theorem 6.5.0.1. By Theorem 6.3.2.2 we get that X is bimeromorphic
to a moduli space of sheaves over S.
If X is a Kmn-type manifold, an analogue result holds by Remark 6.5.0.2 and Theorem
6.3.3.7.

For O’Grady’s deformation families, due to the classification results of induced OG6-type
and OG10-type manifolds given in Section 6.4, there is no analogous result as Corollary
6.5.0.3. Instead, we get the following.

Corollary 6.5.0.4. The transcendental lattice of rank 2 and smallest discriminant group
for which an induced IHS manifold in one of the O’Grady’s deformation families does
not arise from a moduli space of sheaves over a K3 surface or an abelian surface is:

1.

[
4 2
2 6

]
for OG6-type;

2.

[
4 2
2 4

]
for OG10-type (see Example 6.4.3.3).

Proof. It follows by the classification of reduced positive definite binary forms of small
determinant [19, Table 15.1, pp. 360], via a direct computation using Theorems 6.4.2.2
and 6.4.3.2.
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