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Chapter 1

Introduction

The assessment of teaching plays an important role within the Italian uni-
versity. In 1993, the norm 537/93 established a national and local university
evaluation system having the duty to monitor the productivity of research
and of teaching. In accordance with this norm, Italian universities created
theirNV (Nucleo di Valutazione) and began to operate in the wide and com-
plex set of assessment activities. This has contributed to the collection of
material relating to different aspects: the evaluation of university research,
Students Evaluation of Teaching (SET), the analysis of student career by
the universities.

The presence of a rating system has encouraged the formalization of “qual-
ity procedures” that are based on an internal and an external activity. The
former refers to the process of maintaining and improving the quality, the
latter to periodic quality assessment. A meaningful assessment, internal or
external, requires the collection of points of view of those who participate
in an important way to the training process. So it is necessary to take into

account not only the opinions of professional trainers (teachers at various
1



2 Chapter 1. Introduction

levels and roles) but also students’ opinions. The SET takes into account
students’ opinions through an evaluation form (questionnaire): this con-
tains a set of compulsory items for all universities and it is structured in
sections concerning several aspects of university courses (teaching, man-
agement aspects, class facilities, etc...)

The main purpose of this study is to measure the concept of quality of
teaching in the opinion of students at the University of Palermo. This con-
cept is considered a latent variable that cannot be directly observable and
measurable. In order to measure the latent variable the construct needs to
be operationalized in terms of a certain number of dimensions, which are
measured through a set of indirect variables or a battery of items. In the
psychometrical and psychological literature, multi-item Likert type scales
are the main tools for measuring an underlying theoretical concept, which
is not directly observable. So we can assess the quality of university courses
obtaining an approximation of the true measure by indirect measurements
provided by students’ ratings.

Rating is an indicator of the level of the specific attribute that it is supposed
to be measured by that item. Obviously, it is necessary to emphasize that
the result depends on subjective factors, since each student is influenced by
his/her own needs and expectations, which on the other hand depend on the
different cultural backgrounds and the different socio-economic conditions.
Apart from the methodological nature of the results, we should not forget
that the point of view from which the evaluation originates is the opinion
of students. So, due to the presence of heterogeneity of the opinions of
students, you cannot expect to arrive at a measure of the quality of teaching

based on a system of shared values.
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1.1 History of SET

During the past few decades Student Evaluation of Teching (SET) has been
considered as an important tool in the improvement of teaching quality even
if Marsh (Marsh, [1984) and Wachtel (Wachtel, |1998) report that student
evaluation programs were introduced to Harvard in 1915, and the first stud-
ies on SET effectiveness were written in the 1920s by Remmers (Remmers
and Brandenburg, |1927; Remmers, 1928} [1929)). Student evaluation re-
search had a wide development in the 1970-1980 decade, when most of the
research was devoted to the utility and validity of students’ evaluation (Cen-
tral,|1993). Kulik (Kulik, [2011])) states that the initial aim of SET served two
goals: mapping the quality of teaching in universities, and providing infor-
mation and help instructors in order to improve their teaching. For Marsh
(Marsh, [1984)) students ratings are also very useful to make administra-
tive decisions and to satisfy a fundamental principle of the evaluation: the
accountability. Although the implementation of SET was spread in many
faculties, a lot of universities were resilient to the use and the utility of these
ratings. Supporters argue that evaluative judgements have a strong positive
influence on the improvement of instructional skills. Marsh (Marsh| [1987)
states that opinions about the role of SET vary from “reliable, valid and
useful” to “unreliable, invalid and useless”. Today, more than 90% of U.S.
universities use some sort of student evaluation mechanism to assess teach-
ing (Murray}, 2005)). The desire to implement a measurement of teaching ef-
fectiveness based on student feedback is understandable and commentable.
Students are one of the consumer groups interested in the product of an
university education; therefore, their opinions are a vital source of informa-
tion concerning the quality of instruction at institutions of higher education
(Wright, 20006).
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1.2 Aims

The general aim of this thesis is to measure the quality of teaching, through
levels of satisfaction of students, on several aspects of university courses
(items) i.e, students’ ratings. The first question we asked is: what are the
items that explain the overall students satisfaction? The second question is
this: there are variables, such as student characteristics, that may influence
the overall satisfaction? In the first phase of our work, we considered ag-
gregated data in order to give some suggestions to the policy makers on the
variables or items that determine the students’ opinion. The statistical unit
is the single teaching course. The purpose is to simplify the questionnaire,
to give a policy making tool for the planning and for the improvement of
the teaching. In particular we are interested to determine an explicit quan-
tification of the relative importance of each item for the overall satisfaction
of teaching that is a proxy of the teaching quality.

In the second phase of this work we want to analyze individual data (stu-
dent), in order to take into account the students characteristics as variables
within the model and to assess whether students’ characteristics can affect
the teaching evaluation. To sum up, the focal point of the thesis is the
transition from an aggregated view of data to an individual view. Initially,
using simple statistical tools, we tried to highlight any differences in terms
of satisfaction among students. Subsequently, we applied more complex
models in order to take into account the complex structure of our data and
the student as the statistical unit. This was finalized to the introducion of
the student characteristics as variables within a single model and to obtain

more specific results.
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1.3 Outline of the thesis

Chapter 2] is devoted to a descriptive analysis of the data. In particular we
present descriptive and explorative analysis of the data. In particular, we
also describe the main features of survey and the instrument of measure-
ment adopted to reveal students’ opinions.

In Chapter[3|we introduce the methodology for aggregated analysis. First of
all we introduce the Indicator of Student Performance that combining age
and UEC (University Educational Credits) give us information on students
career. The indicator allows to split students in bad and good according to
their performance. Subsequently, in order to determine what the items that
explain the overall satisfaction for bad and good students are, we consider
a regression linear model, in which items are covariates and the overall sat-
isfaction item is the response variable. Various strategies can be adopted to
deal with the previous issue. Our interest is to investigate the suitability of
relative metrics in linear regression (Feldman, 2006; (Gromping), 2007) as
analitical tools for observational studies with correlated regressors.
Chapter 4| introduces the methodological framework underlying the Rasch
model and its generalizations are introduced. The wide family of Multilevel
(or Generalized Linear Mixed or Random) Models represents a method-
ological framework within which tha main part of IRT (Item Response
Theory) models may be placed. The most famous application of the IRT
approach has been proposed by the mathematician George Rasch in 1960
(Rasch, [1960) and it is known as Rasch model.

In the last decades a number of item response models have been developed
as extensions of the Rasch model in the statistics and psychimetrics liter-
ature for the analysis of dichotomous and polytomous discrete responses:
the Nominal Response Model (Bockl, [1972), the Graded Response Model
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(Samejima, [1969), the Rating Scale Model (Andrich, 1978), the Partial
Credit Model (Masters, |1982). The most interesting part of these exten-
sions concerns the structural part of the model and the effect of the predic-
tors (students characteristics), which can be either fixed or mixed.

In Chapter[5| we present Multilevel IRT model results. Summarizing the fo-
cal aspects of our work, in Chapter 3] we consider aggregated data in linear
regression model in which item C2 (that expresses the overall satisfaction
declared by students) is a proxy of the quality of teaching; in Chapter[d](and
then in Chapter [5)) we consider individual data in multilevel IRT model.
Here items are at grade; in this way we obtain for which items students are

more satisfied and so which items are the drivers of the quality of teaching.



Chapter 2

The survey

This study is based on data which are collected at a Faculty of the University
of Palermo, from classes attending the academic year 2006-2007. Data
on courses evaluations are provided by the Center for the Evaluation of
University Activities, which is responsible for coordinating the survey on
students’ opinion about the quality of teaching at university.

The measurement instrument is an ad hoc questionnaire addressed to reveal
students’ opinion of course quality. The purpose is to assess the quality
of university courses obtaining an approximation of the true measure by

indirect measurements provided by students’ ratings.

2.1 The survey plan

The plan for the detection of the opinion survey of students on the campus

of Palermo can be summarized as follows:

a) target population: students who attend classes;
7
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b)

c)

d)

scope of the survey: the single teaching;

measurement instrument: questionnaire outlined by the Academic

Senate;

the time of detection: the detection takes place during the last weeks

of the terms.

In particular:

a)

b)

c)

d)

the reference population consists of students in classroom who take
part in the questionnaire. So this is not a sample survey in a prob-
abilistic sense, but a partial survey, as it is intended for students in

attendance at that particular lesson;

as regards the object of detection, i.e. teaching to evaluate, it should
be noted that all ongoing teaching should be detected. Indeed the
coverage of the teachings evaluated, is not total. This is due mainly

to the fact that financial resources by the university are not adequate;

a description of the measurement instrument is shown in the follow-

ing paragraph;

the detection is performed only after the students have carried out
at least three quarters of the total hours provided for each course.

Moreover, classroom with less than 10 students were not considered.

What I have just said brings out the character of our cross-sectional obser-

vational study. In fact, neither study subjects nor the variables of interest

(ie the items of the questionnaire) are manipulated by the researcher, you

do not know in advance the characteristics of the subjects, the policy un-

derlying the realism (Kish, [1987). Moreover, since the detection is made
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at a precise moment in time we talk about cross-sectional study in which
subjects have in common the fact that they attend the same course.

The questionnaire was administrated by 200 detectors, recruited among stu-
dents of all faculties. After the survey, the questionnaires are sent to Centre
for Evaluation where answers are trasferred on a computer via an optical
reader. Finally, the data (aggregated by faculty and university) are sent to
the NV of the University, which provides validation of their “formal” anal-

ysis of the results and elaborates the final report.

2.2 The measurement instrument

The evaluation form used in the survey is structured in six sections. These
sections provide information about students’ personal details and students’
opinion on several aspects of university courses, such as courses facilities,
curriculum programming and teaching activities of the whole course. The
preliminary section contains general information about the course (course
code, type of degree, term, etc). The first section refers to student’s personal
characteristics (date of birth, residence, age, secondary school, number of
credits collected, etc). Sections (B, C, D, E, F) contain items concerning
various aspects of the course: teaching characteristics (B), global satisfac-
tion and previous knowledge of the topic (C), management aspects (D),
class facilities (E), teacher’s characteristics (F). Finally, section G refers to
courses organized in modules.

The items are measured on four categories according to the Likert scale:
definitely no, more no than yes, more yes than no, definitely yes. Items B2,
B6, B7, E2, have not considered in this study. In fact, in the faculty chosen

for the survey the evaluation of tutorials, laboratory activities are not given
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from all courses. For the same reason section G has not been considered.
The item C1 was not considered because it is inherently ‘bearer of qual-
ity’, in the sense that it is our opinion that the interest in a discipline may
positevely affect the assessment probably upwards, regardless of the intrin-
sic quality of provided service.

B9 is an ambiguous item. This refers to the level of previous knowledge on
the topic with the intent to understand the contents of the course properly.
The exclusion of the item B1 is motivated by the decision to eliminate all
the questionnaires which have a percentage of less than 50%.

The removal of the item F1, for the percentage of classes taught by teachers
owner, finds its reason in the difficulty of interpretation of the item itself. It
is assumed that the high percentage of classes conducted by the teacher can
be considered an enrichment of the concept of education?(in this case the
item would be oriented positively with the quality of teaching)

The item B5 ("The teaching content is overlaid on his other teachings?”’)
is also deleted: from previous analysis (Sulis, [2007)), it was found that stu-
dents interpret (you do not understand why) in a positive way the overlap-

ping with other teachings.

2.3 Data

In our analysis we consider the undergraduate courses because they are
more established and attended by more of students. The dataset consists
of 8503 questionnaires, corresponding to 286 courses in the only under-
graduate courses. The number of students per course range from 10 to 108
with a mean of 42 and a median value of 40. As table 2.1] shows, around

the 15.3% of the questionnaire are the evaluation of courses with less than
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20 evaluators. Whereas 68% of the courses have collected more than 30
evaluators; 156 courses out of 286 are medium classes, with a number of
evaluators between 10 and 30; 108 classes have a number of evaluators be-
tween 31 and 60; 22 are large classes with more than 60 students; more than
100 questionnaires have been gathered only for one course. Summarizing,
the largest classes (37.8%) are those with a number of students between 61
and 100, but the percentage of classes of small-medium size (33.2%) is also
high.

n. stud. per class n. students (%) n. courses (%)

10-20 1305 (15.34) 95 (33.22)
21-30 1444 (1698) 61 (21.33)
31-60 4331 (50.93) 108 (37.76)
61-100 1326 (15.59) 21 (7.34)
>100 97 (1.14) 1 (0.35)
Total 8503 (100.0) 286 (100.0)

Table 2.1: Number of questionnaire per class

2.4 Students’ characteristics

In this section we show some descriptive statistics of the characteristics of
the respondents. The distribution of the gender variable (Table 2.2)) shows
a significant male presence in the faculty considered (76.8% of students).

As far as the secondary school of origin is concerned, it can be noted that
63.9% of the questionnaires filled out by students come from high school.

The percentage is much lower for students from other schools.
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The univariate distribution of residence variable shows a majority of ques-
tionnaires completed by students in site (41.5%) compared to permanent
students (37.2%).

A lower value (21.3%) is detected for commuter offsite students. Most of
the students involved in the survey does not carry out any job (82.2%) and

is not relevant to include students who have a full time job (2%)(Table @I)

modalities n. students % students
Gender
Male 6289 76.77
Female 1903 23.22
Total 8192 100.0
Secondary School
High school 5284 63.84
Other 2992 36.15
Total 8276 100
Residence
in site student 3191 41.46
permanent resident student 2864 37.21
commuter offsite student 1642 21.33
Total 7697 100.0
Occupational Status

no job 6771 82.22
part-time 1301 15.79
full-time 167 2.02
Total 8239 100.0

Table 2.2: Univariate distributions of Students’ characteristics
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The age distribution (Table shows that questionnaires were filled
out by students aged 19 to 21; just under 8% are over 24. The analysis
of the characteristics concerning students’ university curricula reveals that
80.8% are in course student (“regular student”), but more than half of the
total of the questionnaires refers to students who have gathered less than
60 credits. The distribution of the number of credits (Table [2.3) already
gathered by the student when he/she fills in the questionnaire is strongly
skewed towards the bottom, with just 5.9% of the evaluation forms fulfilled

by students who have gathered more than half of the credits.

2.5 Students’ ratings

In this section we will analyze the distributions of ratings given by students.
The students’ ratings are measured by means of an ordinal scale with four
categories. Since there is no information about distances between cate-
gories, as generally happens when working with ordinal scales, we prefer
to avoid the attribution of scores and perform the analysis with appropriate
statistical tools available for the type of variables. Table 2.4 shows fre-
quency distributions (percentage) for each category of the 16 ordinal items.
Almost all item distributions are positively skewed. In fact more than 50%
of students gives positive responses to each items. In particular, items F2,
F3, F4, F5 have median in the last category. Other items register the highest
percentage of units in the more yes than no category. If items are ordered
according to the percentage of students who are very satisfied, items F5, F3,
F2, F4, F7 are in the first five ranking positions. At the bottom we find items
E1, B10, B11, D1, D2 that concern managements aspects and coordination

among courses. The last column of the table 2.4 shows an indicator that
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modalities n. students % students
Age
18 369 4.34
19 2212 26.06
20 2099 24.73
21 1638 19.30
22 959 11.29
23 561 6.61
24 266 3.13
25 159 1.87
>26 225 2.65
Total 8488 100.0
Number of credits collected
0-30 3787 44.51
30-60 1759 20.69
60-90 1284 15.10
90-120 1003 11.79
120-150 505 5.93
150-180 165 1.94
Total 8503 100.0
Regularity

out of course student 1430 17.07
in course student 6765 80.75
repeating student 182 2.17
Total 8377 100.0

Table 2.3: Other students’ characteristics
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summarizes the students’ ratings taking into account their heterogeneity
(Bernardi et al.l 2004; (Capursi and Librizzi, 2007). The general expression

of the indicator is the following:

1 m—1 L/r
ISos5=1- (k_—l ZF;) : 2.1)
m=1

where F, is the cumulative distribution function of items responses in cor-
respondence to the modality m of the ordinal variable.
The[2.1]is a average power of order r. The average takes into account of the
judgements variability. With the same average level of the distribution and
symmetric distributions, when the variability of the distribution increases,
the average increases if » > 1 and decreases if » < 1. The final expression
is
13 2
ISos=1- (5 Z F,?,-S) , 2.2)
m=1

For the reasons concerning the choice of r, see Capursi and Librizzi| (2007).
In particular, the transformation (2.2)) is obtained as a particular case of the
complement to the unity of a relative index of dissimilarity between the
ordinal empirical distribution of the judgments and the ordinal distribution
“excellent’, namely the utmost agreement on the best judgment (Leti, [ 1983)).
So gives a quantitative variable for each item and the statistical unit is
the single teaching course. Moreover, the indicator allows to discriminate
the items with the same median. Among all the items with the median more
yes than no, the highest value (0.87) corresponds to items F3 and F5, for
which 62.6% and 64.5%, respectively, of the opinions are positive.
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% observations in each category

Item 1 2 3 4 n. observed median ISgs
B3 57 154 394 396 8373 3 0.76
B4 80 174 351 395 8395 3 0.73
B8 8.8 184 435 293 8435 3 0.69

B10 13.1 193 406 27.0 8435 3 0.65

B11 10.8 239 437 216 8398 3 0.64
C2 94 18.0 40.0 326 8446 3 0.70
Dl 14.0 244 421 195 8432 3 0.60
D2 226 349 331 93 8404 2 0.46
D3 12.8 202 375 295 8335 3 0.65
El 122 206 399 272 8448 3 0.65
F2 54 89 293 564 7489 4 0.81
F3 26 63 284 626 8387 4 0.87
F4 35 74 381 51.0 8122 4 0.83
F5 26 58 271 645 8380 4 0.87
F6 94 155 37.0 38.1 8401 4 0.72
F7 93 143 353 4l1.1 8393 4 0.74

Table 2.4: Answers to items: 1 = definitely no, 2 = more no than yes, 3 =

more yes than no, 4 = definitely yes



Chapter 3

Aggregation analysis: Relative

Importance Metric

In this chapter we describe the methodology and results concerning the first
phase of the work. In particular we want to investigate what are the items
that explain the satisfaction. Because our study is observational with cor-
related variable (see Appendix [B), we make use of Relative Importance
Metric (RIM) in linear regression to estimate the weight for each item in
explanation of satisfaction. In this phase of work the data are transformed
by means [2.2] (Chapter [2] Section [2.5), so that the variable entering in the
regression model, i.e. the items, are quantitative.

Moreover, under the assumption that the performance of students’ careers
can affect the expressed opinions, we use a performance indicator. This in-
dicator, described in the next section, is built on the basis of the information
obtained through the questionnaire filled out by students. This is intended
to verify whether the drivers of the quality of teaching are different depend-

ing on the performance.
17



18 Chapter 3. Aggregation analysis: Relative Importance Metric

We introduce the Indicator of Student Performance in Section Section
and [3.3] present the relative importance metric PMVD (Proportional
Marginal Variance Decomposition) and a statistical test to compare PMVD
metric for two groups of students (bad and good students). The results of

the application to teaching evaluation data (Chapter[2)) are shown in Section

B4

3.1 The indicator of Student Performance

Since the questionnaire is anonymous, the only way to know the perfor-
mance of students is using the information included in the questionnaire.
Such information declared by students, relate to credits gathered, age, sex,
school of provenance ... By combining the variables age and acquired cred-

its we build a performance indicator (ISP) (Librizzi, 2008) shown below:

ISP=(A-19) 0.8 - C/60. 3.1

A indicates the student age declared by him/her in the day when the ques-
tionnaire was filled out, C indicates the variable credits (the credits he/she
says to have gathered). C are divided by 60 to express them in terms of
“fruitful years’, given that students should acquire 60 credits per year. We
subtract 19 from A, since it is the standard age for students to enter into
the Italian university system. Therefore, the result is the number of years
spent in university studies (assuming that students enter into the university
system at the age of 19 exactly). This number is multiplied by 0.8, to adjust
it to the standard of students performance, since students with an excellent

career are very rarely observed. This is equivalent to assume that a student
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reaches, on average, 48 credits per year.
Indicator can take negative values and it has not a theoretical maxi-
mum, since there is no theoretical maximum for student age. To sort out

this drawback, IS P is standardized in the following way:

3 ISP +k

ISP"=1- (ISP 1)’ 3.2)
where k = —min(min(IS P),0). In this way the second addend of gets
values between 0 and 1. For a straightforward interpretation we consider 1
minus the fraction. So, in according to our data IS P* is equal to 0 when a
student is 28 years old and he has just acquired 30 UEC; IS P* is equal to
1 when IS P is equal to its maximum that is obtained crossing age 20 with
the higher number of observed credits. 1S P* allows,to classify students in

bad and good relating to their performance.

3.2 Relative importance metrics

Weighting techniques based on a multiple regression model are widely used
because of the numerous advantages that such techniques involve, like the
possibility to determine the weight of the single simple indicators (Nardo
et al.,2005). When regressors are uncorrelated each covariate contribution
is just the R? from univariate regression, and all univariate R>-values add
up to the full model R%>. But, when data come from observational studies,
the covariates are usually correlated and such techniques are not appropri-
ate because it is not simple to break down R? into components from the

individual regressors. Let consider the linear regression model

Y=B0+ X181 +..+ X8, + € (3.3)
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where random variables X;, j = 1,...,n, denote n regressor variables and
€ denotes an error term with expectation 0 and variance o®>. This model
implies E(Y|X1,...,Xp) = ﬂo + X]ﬂ] + ...+ Xp P and var(YIXl,...,Xp) =

var(elXy, ..., X)) = o%. The marginal variance model is

n n-1 n
var(Y) = Z,B?vj + Z Zﬁjﬁk VY jVip i + o 3.4

j=1 j=1 j+1

The regression variances are denoted as v;, j = 1,..., p, the inter-regressor
correlations as p . If X’s are uncorrelated, the explained variance can be
split into the contribution ﬁ%v i (v; = var(X;)), can be consistlently esti-
mated using the unique sum of squares for each regressor. If X’s are corre-
lated, it is not possible to decompose var(Y) in the usual way.

The difficulty in decomposing R? for regression model with correlated re-
gressors lies in the fact that each order of regressors yields a different de-
composition of the sum of squares (Achen, |1982). Generally the regressors
enter into the model in the order they are listed.

In 1982 Achen has introduced a distinction between “dispersion impor-
tance”, i.e., importance relating to the amount of explained variance, “level
importance”, i.e., importance of each regressor for the response’s mean, or
“theoretical importance” i.e., change in the response for a given change in
the regressor. Some scholars have proposed analytical procedures able to
underline the relative importance of each variable within a regressive model
(Firthl [1998)). Nevertheless, these various approaches have not found unan-
imous agreement because of the different results reached in presence of
correlation among the regressors. Moreover, if we consider a regression
model we can observe that regressors are significant, but among these we

cannot determine a ranking of the regressors or a quantification of the rela-
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tive importance of each regressor for the response.

Approach to this issue are proposed in literature by means of relative impor-
tance metrics for the R2 decomposition (Feldman), 2006, 2007; |[Lindeman,
1980).

In literature the more used metrics are LMG (Lindeman Merenda Gold)
and PMVD (Proportional Marginal Variance Decomposition). Both metrics
(Lindeman, [1980; |Feldman), |2006, 2007) decompose R? into non-negative
contributions that automatically sum to the total R?.

The approach taken by the metrics LMG and PMVD is based on se-
quential R%s. It takes into account the dependence on orderings by aver-
aging over orderings (Kruskal, [1987alb), either using unweighted averages
(LMG) or weighted averages with data-dependent weights (PMVD).

The following criteria for decomposition of the model R? are considered

useful in the literature, though seldom listed explicitly:

a) Proper decomposition: the model variance is to be decomposed into

shares, and the sum of all shares has to be the model variance.
b) Non-negativity: all shares have to be non-negative.

¢) Exclusion: the share allocated to a regressor X; with 8; = 0 should
be 0.

d) Inclusion: aregressor X; with §; = 0 should receive a non zero share.

Feldmann (Feldmanl, [2006)) critized that LMG violates the exclusion crite-
rion (for which the share allocated to a regressor X; with g; = 0 should be
0) and designed PM VD specifically for satisfying this criterion. If a causal
interpretation of the variance allocations is intended, LMG’s equalizing be-

havior must be seen as a natural result of model uncertainty and LMG is
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to be preferred (Gromping, 2007)). In our study we prefer PMVD metric
for two reason. First of all our aim isn’t to find the causal link between
items taking into account the correlation structure between items; secondly
we consider exclusion an indispensable criterion in the application. For de-
scribing the metric PMVD, we introduce the following notation. In linear
regression the coefficients B, k = 0, ..., p are estimated by minimizing the
sum of squared unexplained parts. Denoting y; the fitted values and con-
sidering a set S of p regressors, R? is given by the ratio between regression

deviance and total deviance:

?:1(5’1’ _y)z

RY(S) == —
( ) Z,’-’zl(yz'—i)z

(3.5)

R? measures the proportion of variation in y that is explained by the p re-
gressors in the model.

The sequentially added explained variance, obtained when we add the re-
gressors with indices in M to a model that already contains the regressors

with indices in § is gives as

segRZ (M|S) = R*(M V S) — R*(S). (3.6)
The order of the regressors in any model is a permutation of the regressors
X{,..., Xp. It is denoted by r = (ry,...,r,). Let Si(r) the set of regressors

entered into the model before regressor xi, according to the order r, then

the portion of R? allocated to regressor x; in the order r can be written as

seqR*({xi}IS k(1) = R*({xx} V S k(r) — R*(S (1)) (3.7)
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As said, PMVD can be seen as an average over orderings as well, with

data-dependent weights accordind to the r-th order:

p!
PMVD, = - Z w(r)seqR2({xi)|r), (3.8)
p' r=1

where w(r) denotes the data-dependent weights. In this case, if the co-
efficients of the regressors are not zero, the permutation » has a weight
proportional to

p-1

L(r) = | | 5eqR*(xry,, os i, My s o 2 1) (3.9)
i=1

and

w(r) = L(r/ D L) (3.10)

is the probability associated to the order r, where summation in the denomi-
nator is over all possible permutations r. In other words, PMVD weights are
obtained through a weighted mean of increases R over all possible entry
orders. Feldman’s proposal (Feldman, |2007) gives a weigth proportional
to the R? explained by each regressor. This implies that the distribution of
relative importance measures is concentrated on few regressors with high

predictive power.

3.3 Are good and bad students significantly differ-

ent?

To answer to this question, it is necessary to construct a statistical test to

compare, for every item k = 1, ..., K, the weights obtained with PMVD met-
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ric for two grous. Because we have not standard error of PMVD, we utilize
bootstrap procedure to construct an empirical sampling distribution and to
assess the reliability of relative importance measures (Efron and Tibshrant,
1993). To build the statistical test, for two groups, we resample 500 times
the values PMVD for every item, obtaining two matrices M| and M, of di-
mension 500xK. Then, relating these matrices, we obtain the ratio matrix R
with generic element rj, where i = 1, ..., 500, 500 is the sample dimension
and k = 1,..., K indicates the item. The joint distribution of the K distri-
butions r¢ is a multinormal distribution. From R matrix we determine the
variance and covariance matrix bootstrap V*(R) of dimension KxK. The

statistical test is the following (Dobson, [1983)):

VR, (3.11)

with a Xf( distribution, where 7 is the ratio vector of observed weights

PMVD between two groups.

3.4 Results

3.4.1 Indicator of Students Performance results

In this section we present some considerations on indicator (3.2)), justifying
the classification of students in relation to their performance. The graphic
representation of conditional distribution of IS P* given age (Figure
highlights an increasing monotonous trend of median level of non regularity

to the growth of age. So, the variability of /S P* is explained by age.
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Figure 3.1: Boxplot of conditional distribution of IS P* given age.

Other considerations on indicator (3.2) can be drawn from Figure [3.2]

in this graphic we can observe the level curves of IS P*;

o the lowest values of the indicator are obtained for the students who

have a very bad career;

o the indicator increases for decreasing values of age and/or increasing

values of credits (UEC);

e we can observe that in the top right side of the graphic there are not

any observed values, because it is not possible that a student is ahead

of schedule;

e dots size highlights a very high frequency of 19 students years old

who acquired 30 UEC. So we can consider that values between 0.7



26 Chapter 3. Aggregation analysis: Relative Importance Metric

and 0.8 correspond to a standard career. For example, this interval

comprehends students who achieve a first degree (180 UEC) at 22 or

23 years old.

UEC
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Figure 3.2: Level curves of IS P* as a function of age and UEC with fre-

quency classes of students.

In Table [3.1] we can observe the frequency of distribution for classes of
values of IS P*. The three classes of values greater than 0.7 represent pos-
itive results. In particular more than half (about 70%) of students have an

excellent or standard career.
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Classes of values Frequency % frequency

0-0.1 33 0.39
0.1-0.2 36 0.49
0.2-0.3 100 1.18
0.3-0.4 140 1.65
0.4-0.5 266 3.13
0.5-0.6 742 8.74
0.6-0.7 2400 28.28
0.7-0.8 3982 46.91
0.8-0.9 755 8.89
0.9-1 34 0.40

Table 3.1: Distribution of students for classes of values of IS P*.

These empirical considerations lead us to define the following dichoto-

mous variable:

0 ifISP <07
1 if ISP*>0.7.

P takes value O if the student time lag is greater than the standard one, i.e.
if he has a bad career performance. On the other hand, when the time lag
indicator is greater than 0.7 (P = 1), we consider the student has a good

career performance.

3.4.2 Relative importance metric results

Students satisfaction depends on several aspects of the teaching activities,

but not all with the same importance. We are interested in identifying which
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items are the drivers of quality of teaching in the students opinion (Cam-
postrini et al., 2006), as in Capursi et al. (V. Capursi, |2008)), and above all,
in highlighting possible differences between good and bad students. The
complexity of the concept that we want to measure makes necessary to pay
attention to analysis of data. In fact, evaluation items of the questionnaire
are highly correlated, so it is difficult to identify those that greatly influence
the global satisfaction. We use relative importance metric to try to obtain
weights that more explain students satisfaction. Before relative imporan-
tance analysis, original ordinal data were aggregated by teaching course by
means

PMYVD metric

To find the relative importance of such items, we use PMVD method on the
basis of a linear model in which the indicator ([2;2]) for item C2, is regressed
on indicator of questionnaires items. We consider item C2 because we
think that C2 can express the general perception of teaching quality from
students. Initially, we consider a model in which IS P* variable is present.
Because of high correlation of item covariates, the effect of this variable is
non relevant. For this reason we consider two separated models for the two

groups of students (bad and good):

Icai =Poi + BrilS B3i + BoilS pai + B3ilS psi + PailS proi + BsilS pi1i+
+B6ilS p1i + B7ilS p2i + BsilS p3i + BoilS 1i + Proil S Fait
+B11lS F3i + B12ilS Fai + P13ilS Fsi + PrailS rei + P15ilS Fri + €,

(3.12)

the first one (i = 0) for bad students and the second one (i = 1) for good

students. Results are shown in Table 3.3, where PMVD weights are scaled
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so that they sum to 1 to make interpretation easier. First of all, we can
observe that many items have weigth zero or almost zero. In particular, for
both groups, items refer to organization of teaching (B11, D1, D2, D3, E1)
have small weigths. R? is equal to 0.78 for the first model and 0.88 for the
second one.

Observing the weights, the items that explain more the students satisfaction,
in term of relative importance, are B3 and F7 for bad students; the more
importance items for good students B3, F6 and F7. So there are some
differences. For good teacher motivation (F6) is more important than bad.
We observe a weigth of 0.282 for good and 0.075 for bad. Moreover, the
first group of students give a great importance than the second group to the
clarity of teaching (F7) (0.647 vs 0.545). Bad students give small weigths to
items F2, F3, F4, F5 (that refer to the teaching. For good unique important
items in section F are F6 and F7. The good students are very demanding
than good respect to clear explanation of formative objective of the teaching
(B3) (0.132 vs 0.165). It seems that, somehw, the career performance, can

be an element of discrimination to evaluate the teaching quality.
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PMVD
Items P=0 P=1
B3 0.165 0.132
B4 0.000 0.001
B8 0.019 0.019
B10 0.026 0.009
B11 0.008 0.001
D1 0.000 0.002
D2 0.016 0.000
D3 0.003 0.001
El 0.004 0.003
F2 0.002 0.005
F3 0.022 0.000
F4 0.031 0.000
F5 0.021 0.000
F6 0.035 0.282
F7 0.647 0.545

Table 3.2: PMVD weights of teaching quality items.

Boostrap results

Summary statistics from bootstrap procedure are presented in Table [3.3
Mean bootstrap values overlap with the observed PMVD weigths (Table
. In fact, for bad students, items B3 and F7 are the only items with
higher weight. For good students, items B3, F6 and F7 have mean val-
ues greater than other mean value items. We observe OLS (Ordinary Least
Square) analysis results (Table . For bad, items B3, B10, B11, D2, F3,
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F4, F5 and F7 have significant coefficients. If we consider mean value in
Table these items (except for B3 and F7) have low weigths. For good
students items B3, B8, B10, F2, F6 and F7 have significant coefficients. If
we consider mean value in Table[3.3]these items (except for B3 F6 and F7)
have low weigths. So, through PMVD metric we obtain different results in
terms of importance in the explanation of overall satisfaction.

Considering that the excess kurtosis of the normal distribution is zero, the
Bera Jarque p.values are based on the Bera Jarque test statistic and repre-
sents the confidence level in rejecting the hypothesis of asset return distri-
bution normality based the sample values for the skew and kutorsis of the
distribution. This test statistic is distributed %>. According to this test, the
hypothesis that residuals are normal cannot be accepted only for any item.

Figure [3.3] shows the univariate distribution of PMVD component shares
for all items for two student groups. It is evident that there are two types
of distributions: highly skewed distributions almost exponential in nature
such as observed for items F7 for both groups; symmetric kurtotic distri-
bution such as observed for F6 in good students. In particular items with
a low weight PMVD are approximately exponential, items with a high ex-
planatory power in terms of relative importance have skew and kurtosis
values lower that others. Now, we concentrate just on items B3, F6 and F7.
We note that for item B3 and F7 there is the overlapping between the two
curve. For item F6 there is a difference between two groups. In particular,
for good students F6 has higher frequencies for high values of PMVD than
bad students. Moreover we can oserve the non-overlapping between the
two curves.

The null hypothesis of statistical test (3.11)) is:

Hy : Bro = B,
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where By and By are the coefficients of model withk =1, ..., 15 for
i = 0 (bad students) and i = 1 (good students). Considering this statistical
test with fo distribution, for @ = 0.05 we can reject the null hypothesis of
equality of weights between two groups, that can be considered, in terms of
relative importance, statistically different. It seems that this overall differ-
ence can be due to item F6 for which good students give more importance

than bad.
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In fact, considering the statistical test li with a st distribution, for
a = 0.05 we can reject the null hypothesis of equality of weights between
two groups, that can be considered, in terms of relative importance, statis-

tically different.

bad good
Par. Beta  Std. Err.  t-stat p-val Beta  Std. Err.  t-stat  p-val
Interc. -0.108 0.059 -1.831 0.068 -0.169 0.052 -3.264 0.001
B3 0.273 0.073 3.741 0.000 0.247 0.054 4.584 0.000
B4 0.016 0.052 0.304 0.761 -0.039 0.041 -0.965 0.335
B8 0.111 0.045 2470 0.014 0.099 0.034 2.843  0.004
B10 0.100 0.038 2.600 0.009 0.077 0.028 2.685 0.008
B11 0.085 0.036 2336 0.020 0.031 0.027 1.166  0.245

D1 -0.019  0.047 -0.404 0.686 0.050  0.041 1.198 0.232
D2 0.105 0.045 2325 0.021 0.003 0.039 0.073  0.942
D3 -0.056  0.040 -1.414 0.158 -0.041 0.030 -1.356 0.176
El -0.051  0.035 -1.452 0.148 0.047 0.031 1.493  0.137
F2 -0.067  0.056  -1.192 0.234 0.092 0.041 2248  0.025
F3 0.257 0.071 3.614 0.000 -0.000 0.058 -0-003 0.997
F4 0.215 0.066 3242 0.001 -0.028 0.059 -0.482 0.630
F5 -0.374  0.087  -4.278 0.000 0.008 0.072 0.114  0.909
F6 0.094 0.061 1.532  0.127 0.258 0.054 4.809 0.000
F7 0.448 0.065 6.901 0.000 0.392 0.043 9.065 0.000

Table 3.4: OLS analysis
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Chapter 4

Multilevel IRT Model

4.1 Why Multilevel IRT Model

In Chapter |3| we introduce relative importance metrics to determine the
drivers of teaching quality. In this Chapter we want to use other models
in order to take into consideration the complexity of Student Evaluation
Teaching data. One of such models are Item Response Theory (IRT) mod-
els (P. de Boeck, 2004)

Our data are organized as a hierarchical structure (students in course, courses
in courses degree). In this case, it is reasonable to expect that latent vari-
able levels in the lower part of the hierarchy (students) are correlated to a
greater extent with those belonging to different higher level units. In other
words, it may be supposed that students within courses are not independent:
students are evaluating the same course, they shared for a term the same lec-
turer, the same class environment and the same group rules: probably they
have shared their opinion of the course during the term, affecting the final

opinion on each other (Snijders and Bosker, |1999; |Goldstein, [2002).
37
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Within the framework of multilevel (or random effects or generalized lin-
ear mixed) models, an item response model (Rasch, [1980) is embedded in
a hierarchical model. This framework is characterized by the treatment of
person ability parameters as random parameters in a IRT model.

The importance of hierarchical structure has been well known in statistics
for a long time. Methodological developments try to include hierarchies in
analysis. In particular two approaches were considered and used. In the
first approach it is estimated a single regression model for individual data,
ignoring the presence of groups. In the second, multiple regression mod-
els are estimated, one for each group. So considering the first approach,
we estimate a single Rasch model for all students, without distinguishing
between the various courses, in the second we estimate a series of Rasch
models, one for each course. These two solutions are very simple to apply
but do not take into account in an appropriate way the structure of the ag-
gregate data.

Using multilevel models we treat the data taking into account their hierar-
chical structure and the dependence of responses through the random ef-
fects. The Chapter is structured as follows: Section 4.2]describes the liter-
ature for the application of multilevel IRT model, the third section (Section
[.3) refers to the different procedures with which to develop a multilevel
model. In particular, the two-step analysis is described, highlighting the
possible issues; Section[4.3]is devoted to a brief description of IRT models
for binary and ordinal data, introducing and presenting the main features of
the Rasch model; in the fifth section (Section4.4) we introduce the interpre-
tation of the parameters of the IRT models in the context of the evaluation
of teaching. In Section 4.6 we present a multilevel model as framework for

IRT model both for binary and ordinal data. In particular we describe the
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algebraic equivalence between multilevel ordinal model and ordinal IRT
model. Moreover, in Section 4.7| we show via simulation study the alge-

braic equivalence between the two models.

4.2 Literature background

Literature contains various applications for binary multilevel IRT mod-
els. [Verhelst and Eggenl (1989) and [Zwinderman| (1997, [1991)) consid-
ered the combination of an IRT model with a structural linear regression
model.Raudenbush and Sampson| (1999)) discussed a multilevel model that
can be seen as a Rasch model embedded within a hierarchical structure,
where the first level of the multilevel model describes the relation between
the observed item scores and the ability parameters. [Kamatal (2001) intro-
duced a multilevel formulation of the Rasch model using HLM software.
Fox and Glas| (1991) and |Pastor| (2003)) explored and illustrated the use
of Kamata’s three level IRT model in educational and psychological mea-
surement and research. As concerns polytomous data, Maier| (2001) uses a
hierarchical Partial Credit Model (PCM), with covariates at the level of in-
dividuals, to determine whether gender differences existed in the student’s
mood in a mathematics classroom. |[Fox| (2001)) estimates multilevel IRT
models with latent dependent and independent variables and dichotomous
and polytomous items, in order to assess the school effectiveness. |Adam
et al.| (1997)) and [Patz and Junker| (1999) discussed models that can han-
dle both dichotomous and polytomous item responses along with a latent

variable as outcome in a regression model.
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4.3 Theoretical background: the Rasch model

The Rasch Model (RM) was the simplest model among the IRT models. It
was first proposed in the 60s to evaluate ability tests (Raschl, [1960). The
RM is a latent structure model by means of which it is possible to derive
continuous measures on an interval scale from total scores obtained by a set
of subjects on a set of items. This situation is common in social sciences, as
stated, for example, by Molenaar in a fundamental book on Rasch Model
(Fischer and Molenaar, [1995): “It is easy to find examples of observable
human behaviour indicating that a person has more or less of such a general
property, but the concept has a surplus value, in the sense that no specific
manifest behaviour fully covers it. This is the reason why such properties
are called latent traits”. The fundamental assumption of the Rasch model
is that the answer each subject gives to each item depends on two parame-
ters: one is the person parameter and represent a subject measure (6;), the
other is the item parameter that is the item measure (7r;). Then the response
probability of each subject to each item is a function of person and item
parameters. It is possible to compare these two parameters because they
belong to the same continuum. Their interaction is expressed by the differ-
ence ; —m; (j =1,..,J,i = 1,..,I). In a deterministic sense a positive
difference means that the subject’s abilities are superior to the item’s diffi-
culty and therefore we can be sure that an exact response will always have
been given. From a probabilistic perspective, such as that of the RM, this is
not true since a subject who is intrinsically capable of giving a right answer
(6; > m;) may instead, given a wrong response. Likewise, it is possible that
a subject lacking in ability can accidentally give a right answer.

The more simple Rasch Model is the dichotomous one. In this case, the

probability of a correct answer Y;; = 1 by the subject j of ability 6; when
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answer to the item i of difficulty 7; is:

explfj —m] 1
1 +explf; —m] 1+ exp[—(0; — m;)]

P(Y;;=1)=p;j= 4.1)

In the dichotomous model data are collected in the raw score matrix, with
J rows (one for each subject) and I columns (one for each item), whose
values are equal to O or 1. The sum of each row r; = Z{:l yij represents
the total score of the subject j for all the items; the sum of each column
s; = 25:1 yij represents the score given by all subjects to the item i. These
scores are given according to a metric that, being nonlinear, produces some
conceptual distorsion when we compare the row and column totals. So, it
is necessary to change these scores according to a metric that is founded on
the conceptual distances between subjects and items (Wright and Masters,

1982)). The transformation takes place through the logit:

Pij
1= pij

log “4.2)

Some assumptions are fundamental in all family of Rasch models parame-
ters. The first is that the items measure only one latent feature (unidimen-
sionality. Another important characteristic is that the answers to an item
are independent of the answers given to other items. As far as the param-
eters are concerned, for which no assumptions are made, by applying the
logits previously described, ; and 7; can be expresses according to a com-
mon measurement unit on the same continuum (parameters linearity); the
estimation of person ability (6;) is free from sampling distribution of the
items attempted; the estimation of the item difficulty (71;) is free from the

sampling distribution of the sample employed (paramters separability); and
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the row and column totals on the row score matrix are sufficient statistics
for the estimation of §; and 7r;. A fully examination of these assumptions is
beyond the scope of this paper. For a detailed discussion see (Fischer and
Molenaar, |1995)).

4.3.1 Polytomous IRT model

The Rasch dichotomous model has been extended to the case of more than
two ordered categories. In this model it is introduced the assumption that
between each category and the next there is a threshold that qualifies the
item’s position and characterizes the 7r; as a function of the difficulty pre-
sented by every answer category. Thus the answer to every category m
depends on the value m;;, that is the category difficulty for category m and
item i. In particular m;, = m; — ¢, is the difference between the location
parameter for item i and the category threshold for category m.

Different politomous models have proposed:

o the Rating Scale Model (RSM) (Andrich,|1978)). A fundamental con-
dition of the RSM is the equality of the threshold values for all the
items: even if the distance between a threshold and another one can

differ, the pattern of these distances is constant for all the items;

e the Partial Credit Model (PCM)(Masters, [1982). In this model the
difficulty levels differ item by item and the subject receives a partial
credit (score for each item) equivalent to the relative level of difficulty
of the completed performance. The thresholds can differ freely in the

same item or from one item to another.

The IRT model considered in our analysis is the PCM. Denote with p,,;;

the probability of person j to respond with category m to item i, assuming
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for item i there are M ordered response categories (m = 1, ..., M). Then this
probability is:

expl0; — mim]
1 +expl6; — mim]

P(Y,'j = m) = (43)
This function depends from the person parameters 6;, the item parameter
m; and the threshold parameters ¢, that measure additional difficulty to en-
dorse the m-th response category. These parameters represent the cut-off

between one response category and the following

4.4 Rasch Model and teaching quality

In order to apply the Rasch model for measuring the quality of teaching, we
need to find a correct interpretation of the parameters taking into account
the context of teaching evaluation. Two different factors are often confused
but are very different. Let us start with an example: we want to measure
the quality of ice cream in Italy and in Germany. Probably Italian people
about are less satisfied than Germany people. The quality of ice cream is
the same. Satisfaction differs because of cultural differences, traditions. So
we can consider quality as the attribute factor and satisfaction as the person
factor and together these factors determine the result of the single answer in
the questionnaire. We can define now the correspondence between original
application (in psychometrics) and service quality application of the Rasch
model. The factor related to the persons, that in original application was
the ability, become now the satisfaction. The factor related to the items that

was the difficulty, in quality service becomes the quality (Figure [4.1)).
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Original applications

ABILITY (Persons) \ — | DIFFICULTY (Items) \

Service quality applications

SATISFACTION (Persons) \ S ] QUALITY (Items) \

Figure 4.1: Correspondence between original and service quality applica-

tions

In the original context the scale of the ; parameters is interpreted in
the following way: the smallest values of the &r; parameters are associated
to easy item (so the subjects have a high probability of exceeding the item’s
difficulty); while the highest values are associated to the more difficult items
(the probability of overcoming the item’s difficulty is lower). On the other
hand, in quality context, the scale has to be read in the opposite way (Figure
|.2} the smallest values of the 7; parameters identify the items with good
quality (because the subject satisfaction probabilities are high), while the
highest values of the item parameters correspond to items with bad quality

(lower subject satisfaction probabilities).

Dif ficulty
Less ——— More

Quality .
Easy ——— Difficult

Good ——— Bad

Figure 4.2: Item scale
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For the scale of the parameters 6; the interpretation is the same in both
cases (Figure [4.3): the smallest values of the parameter, which identifies
subjects of low ability, now identifies subjects with low levels of satisfac-
tion, and the greatest values, which previously corresponded to subjects
with a high degree of ability, now correspond to subjects with a high level
of satisfaction.

Henceforth 7r; will be named item quality and 6; person’s satisfaction.

Ability
Less > More

. Satisfaction
Little —— Much

Little ——— Much

Figure 4.3: Person scale

4.5 Two step analysis vs one step analysis

A two step analysis using Item Response Theory (IRT) models is a common
practice, especially in investigating effects of student characteristics on stu-
dent abilities. In such a two-step analysis, student abilities are estimated via
a standard IRT model as the first step. Then, in the second step, ability esti-
mates are used as an outcome variable, and student characteristic variables
are used as predictors in a simple linear model, such as multiple regression
and analysis of covariance. For example in [Pagani and Zanarotti| (2010),
students’ satisfaction, measured through person location parameters (PLP)
obtained with the Partial Credit Rasch model, was used to assess the qual-

ity of teaching service in a set of university courses. Firstly, the authors
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use the PLP to obtain a measure of the level of satisfaction, then they intro-
duce this measure as a dependent variable in a multilevel model to detect
individual and environmental determinants of the level global satisfaction.
Lucadamo| (2010) the purpose is to evaluate the Customer Satisfaction of
the patients of an hospital. The quantification of the response is made by
the use of the Rasch analysis, and in the second step of the work, he tries to
verify if the patient satisfaction can be influenced by socio-economic fac-
tors using a multilevel model. Rampichini and A. Petrucci|(2004) present a
methodology for the analysis of student ratings of university courses. First
they discuss simple descriptive measures that take into account the ordinal
nature of the ratings; then they present net measures which account for the
characteristics of the students. These measures are obtained through multi-
level modelling.

These two step analyses may not provide accurate results, because of at
least two reasons. First, the standard error ability estimates from an IRT
model are heteroschedastic. Second, it is known that person parameter
estimates from marginal maximum likelihood estimation are biased and
inconsistent (Goldstein, [1980). Through a single analysis rather than two-
step analysis, one can expect improved estimation of the effects of student
characteristic variables on a latent trait, because these effects are estimated
simultaneously with ability parameters. As a result, the heteroschedastic
nature of the standar errors of ability parameters, is to take into account.

In the next Chapter we present two-step and one-step analysis results, in

order to highlight some differences in outcome.
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4.6 Multilevel Framework for IRT model

In this Section we present the multilevel framework for IRT model. In
particular we demontrate the algebraic equivalence between multilevel and
IRT models. This framework we allow us to carry out a one-step analysis.

We pay more attention on ordinal IRT model. For greater comprehension
of the equivalence, we present, initially the multilvel framework for the
simplest IRT model: the Rasch Model (RM). Next, we present multilevel
framework for an ordinal IRT model: Partial Credit Model (PCM). In par-
ticula we show the equivalence between a three-level model and the ordinal
PCM. This provide estimates of group-level satisfaction as well as person-
level satisfaction. Moreover we add in the model a person characteristic to
try to quantify the varioatio of person-characteristic variable effectc across

groups.

4.6.1 Multilevel Framework for bynary IRT model

We can show the equivalence between multilevel and Rasch Model ((Ka-
mata, [2001))) expressing theby means logit link function. This function
can be used to model the log odds of the probability of a correct response:
Dij
i =0, —m = log| —— 4.4

771] J Tt og(l_pij) ( )
where 7;; is the log odds of obtaining a correct response to item i for a
person j. For a set of I items, the items could be modeled assuming a

Bernoulli distribution and the logit link function such that 7;; becomes:

k-1
nij = Boj + B1;Xuij + B2jXaij + . + Br-1X-1)ij = Boj + Zﬁqjxqij 4.5)
g=1
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where X;; is the g-th dummy variable for person j, with values -1 when
q = i, and 0 when g # i for item i. fBy; is an intercept term, and 3,; is a
coefficient associated with X,;;, where ¢ = 1, ...,k — 1. For item i associated

with the g-th dummy variable the equation .5|becomes

nij = Boj — Byj- (4.6)

Note that no indicator variable is associated with the k-th item because it is
assumed that B;; = O to warrent the full rank of the design matrix. So; is
an intercept term, and a value 1 is assigned to Xo;,; for all observations. So,
Bo; is considered to be an overall effect that is common to all items. On the
other hand g;; = 0 means that the effect of the k-th item, compared with
the overall effect, is assumed to be zero. Then the probability that person j

answers item i correctly is expressed as:

1

R 4.7
1 + exp(—n;j) 7

Dij
This is the level 1 or item level of the multilevel model, with items nested
within students. At this level the 85 are constant across people. It should
also be noted that the 8, are not the final parameters that are considered to
be item difficulties. The item parameters are defined in the level-2 model,
and they may be characterized as being constant across people.
The level-2 model is the person level model. Since By is treated as a pa-
rameter common to all items in the level-1 model, it must be assumed in
the level-2 models that 5; is a random effect across people. In this way,
a latent trait common to all items but variable across people can be mod-

elled. Also while the level-1 model does not assume that 3y ; through B—1);
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are common across people, the level-2 models may model that item effects
are constant across people by modelling the specifying ;s as constants.

Therefore, the level-2 model is:

Boj = Yoo + Hoj
Bij =710
. ! 4.8)

Bu-1)j = Yx-1)0

where pg; is a random component of By; and is distributed as N(0, ol u).
The level-1 model together with the level-2 models show that item pa-
rameters are fixed across people and vary across items, while a latent trait
(person parameter) varies across people and fixed across items, because
there are not random terms added into 3y, through B_1y;. When level-
1 and level-2 models are combined, the linear predictor model becomes
nij = Yoo + Moj — Y40 for person j and for a specific item i that is associ-
ated with g-th dummy variable. Then, combining 4.6] and [4.§]in 4.9 the

probability that person j answers a specific item i correctly is expresses as

1
1+ expl=luo; — (g0 — Yoo)I}

Dij 4.9

where i = g. This has exactly the same form as the Rasch model in Equa-

tion@ where 6; = uoj, i = y40 — Yoo for g = i.

4.6.2 Multilevel Framework for ordinal IRT model

In presence of ordinal data, very useful models are multilevel ordered lo-

gistic regression models, also called the multilevel ordered logit models or
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the multilevel proportional odds models.

The multilevel ordered models can be formulated as threshold models. The
real line is divided by threshold into M intervals, corresponding to the M
ordered categories. The first threshold is d;. ¢; defines the upper bound
of the interval corresponding to observed outcome 1. Similarly, threshold
0, defines the boundary between the intervals corresponding to observed
outcomes m — 1 and m. The latent response variable (teaching quality) is
denoted by y:.‘j (for item i and student j) and the observed variable y;; is

related to y?‘j by the threshold model defined as

1 if—oo<y;‘jS61
0 if61<y:.‘j§62
Yij =1y .

M ifoy_ < yfj < 400

The Three-level model

Consider the latent response variable y? ™ for level-one units i (items), level-
two units j (students) and level-three unit g (courses). The ordinal models

can be written in terms of y;.kjg

Yijg = Mije + €ijg (4.10)
where
k-1
Nijg = ﬁOjg + Zﬁqjgxqijg “4.11)

q=1

where X,; ;¢ is the g-th dummy for student j in course g, with values -1 when

g = iand 0 when g # i. fyj, is an intercept term and S, is the coefficient
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associated with X ,.
In absence of explanatory variables and random intercepts, the response

variable y;, takes on the values of m with probability
Pijg(m) = P(y;jg = m), 4.12)

form =1, ..., M. As ordinal response models often utilize cumulative com-
parisons of the ordinal outcome, they define the cumulative response prob-

abilities for the M categories of the ordinal outcome y;;, as
m
Pijg(m) = Pyijg <m)= Y pyje  m=1,..,M  (413)
k=1

Note that this cumulative probability for the last category is 1. Therefore
there are only (M —1) cumulative probabilities to estimate. If the cumulative

density function of ¢, is F, these cumulative probabilities are denoted by
P(yij <m) = F(6, — 1ij) m=1,..M-1, (4.14)

Equivalently, we can write the model as a cumulative model
G[P;j,(m)] = 6, — O;j, (4.15)

where G = F~! is the link function.

If €;j, follows the logistic distribution, this results in the multilevel ordered
logistic regression model. Assuming the distribution of the error term el.*jg
of the latent response y; o t0 be logistic, the cumulative probability function

of y;je will be written as
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exp(om — eij)
1+ exp(6m — 0ijg)

Pij(m) = P(€jg < Om — Nijg) = (4.16)

The idea of cumulative probabilities leads naturally to the cumulative logit
model

P(y; i< m)

log| ———| =6 — 1mi; 4.17

g[P(yij Sy | = Om T (4.17)

Level-1 model

The level-1 model, which models variation of item responses within people,
was used to model the log-odds of the probability of endorsing item i for

student j in course g. The model is:

Yiie < mlxjjg, Bo; -
log p( ijg | ijg ﬁOJg) ]

= 0m = (Bojg + wje)  (4.18)
1 = p(Yijg < mlxijg,Bojg) m = (Boje I;ﬁwg qijg

where 6,, is the threshold parameter for category m = 1,..,.M — 1. By,

represents the overall effect common to all items for person j.
Level-2 model
The second level or student-level of the model is used to model variation of

students satisfaction level within course:

Bojs = Yo0g + Hojg
Bljg = Y10g + H1jg

Bajs = Y20g + M2jg (4.19)

Bpjg = Yk-1)0g + Hk-1) g
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The item effects (B jg, ..., Bu-1)j¢) are specified as random across students,
so that the second level models the variation in 3, among students within
courses, and the variation among students within courses for each item.
It is assumed that the distribution of ugj, (the satisfaction estimates for
students) is N(O, oﬁ). 0'2 represents the variation of satisfaction among

students within courses.

Level-3 model

The third level of the model is used to model variation among courses in
satisfaction using the parameters estimated for each course (yoog, Y10gs-+-»
Yk-1)0g) in level 2 as outcome variables. In the following specification of
the model, the item and the latent trait effects are specified as random across

the courses:

Yoog = @000 + €00g
Yi0g = @100 + &10g

Y205 = @200 + 20 (4.20)

Yk=1)0g = Ak-1)00 + Ek—1)0g

Variation in &g, (the satisfaction level estimate for courses) is assumed to
be distributed N(0, 0'2) representing the variation among courses in satis-
faction.

For item i, combining 4.19]and[4.20]in [4.18| we obtain the log odds for each

category:

P(Yije < mlxije, Bojg)
log = 0m — (@00 + €00g + Hojg + @ioo + Eiog + Hijg)
1 = p(Yije < mlxijofoje) " § T ¢ u 2Jil)
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Equivalence between Multilevel ordered logit and ordinal IRT models

The ordinal IRT model is:

exp(8; — im)

P ii = =
i = m) 1 —exp(0; — mjm)

(4.22)

where m is the category score, 6; is the latent trait level for person j, and
bim 1s the category difficulty for category m for item i. The items of our
questionnaire have four possible response categories (1, 2, 3, 4), then the
item will have three category boundary values, b;|, bp and b;3. The first
category corresponds to the probability of getting a score of 2 or 3 or 4
versus a score of 1, the second category value corresponds to the probability
of getting a score of 3 or 4 versus 1 or 2, the third one corresponds to the
probability of getting 4 versus 1 or 2 or 3.

To demonstrate the equivalence between the parametrization of the ordinal
IRT model and multilevel ordered logit model, can be manipulated to

obtain the following representation of the first category:

Yiie <1
z[—ﬂlﬁ——L-znn—@ (4.23)
1 = p(Yije < 1]
Equation 4.22] and 4.23] are equivalent:
mit — 6 = 61 — (@000 + €oog + Mojg + ioo + Eiog + Mijg) (4.24)

It follows that wgj, + &00g + Eing + Mije 18 €quivalent to the satisfaction pa-
rameter 6; and 6,, — (@poo + @100) corresponds to the ability parameter ;.

Similarly, the value associated with the second category can be written as
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p(Yije <2) }
logl ————=——=|=nmn—-06; (4.25)
g[l — e <2i| =T
The equivalence between the models resulting in

mip — 6 = 62 — (@ooo + €oog + Hojg + ioo + Eiog + Mijg) (4.26)

We can obtain same results for the third category.

4.6.3 Adding a student level variable

One of the aim of our analysis is to assess whether some student charac-
teristics affect students satisfaction and so whether student characteristics
affect the quality of teaching. In the model described above we can add
a student level variable to explain possible differences in satisfaction. We
consider for example gender variable. The level 2 model takes the follow-

ing form:

Boje = Yoog + Yoig(gender) + pio e
Bijg = Yi0g + H1jg

Bajs = Y20g + M2jg 4.27)

Bpjg = Yk-1)0g + Hik-1) g

and the level 3 model becomes
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Y00g = @000 *+ &00g
Yoig = @010
Y10g = @100 + €104

(4.28)
Y20¢ = @200 + 20

Yk-1)0g = Xk-1)00 + Ek—-1)0g

This model includes the coefficient for gender ag;g. To obtain the log odds
of different categories it is necessary to add this coeflicient to the previous

formulation in Section [4.6.2

4.7 Parameter Recovery Study

This simulation study is intended to show parameter recovery for the equiv-
alence between the Multilevel ordered logit model and the ordinal IRT
model. In this simulation study, we replicate the data analysis 50 times
for the same condition so that we would be able to argue whether mul-
tilevel IRT model reproduces ordinal IRT model parameter values. The
variables of interest in this simulation study are: sample size (n = 500,
n = 1000), the numbers of items (k = 10, k = 20). For each replication in
each of the four conditions person’s satisfaction values are sampled from a
standard normal distribution N(0, 1). Item difficulty parameter values are
determined so that values are uniformly spaced when items are ordered by
quality. Then along with the sampled person-parameter values, the answer
probability for the different category of answers is computed for each per-
son by the ordinal Rasch model. Then, the probability value is compared

with a random number sampled from a uniform distribution with a range
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between 0 and 1. A simulated response is scored 1 (definitely no) if the
probability of answer 1 was greater than or equal to the sampled uniform
number; the response is scored 2 (more no then yes) if the sampled uni-
form number is between probability of answer 1 and 2; the response is 3
(more yes than no) for uniform number between probability of 2 and 3; the
response is 4 (definitely yes) for uniform between probability of answer
3. The generated data set is analyzed and item and person-parameter are
estimated throught a multilevel models. Estimated parameter values are
compared across four conditions using mean of correlation coefficient be-
tween estimated and true item-parameter values and standard deviations of
correlation coefficient. Table [4.1| shows summary statistics from the condi-
tions of the simulation experiment.

The means of correlation coefficients between true and estimated item qual-
ity are shown in the third column. The values are consistently very high,
greater than 0.98, and they are only different in their third decimal place.
Also, their standard deviations, shown in the fourth column, are very small,
and they are also only different in their third decimal place. These results
show that the reformulated model is able to reproduce item parameter val-

ues very well across all the conditions.

Item sample mean(r) sd(r)

10 500 0.985 0.002
1000 0.989  0.0009

20 500 0.983 0.001
1000 0.987  0.0007

Table 4.1: Results of parameter recovery study






Chapter 5

Multilevel Rasch model results

This chapter we present the main results for the models introduced in Chap-
ter 4]

The first results are related to the PCM then, using satisfaction person pa-
rameters of PCM, we apply two-steps Multilevel model and show results.
Finally we exhibit the output of the multilevel one-step model for item vari-

ables and students’ characteristic variables.

5.1 Partial Credit Model results

For select the best model, we can consider some fit statistics. In particular
the Item-trait interaction test (that approximates a x> distribution) measures
the coherence of items. In our case items have a different quality in relation
to the lower or greater student satisfaction. In fact X*> = 3479.451.

By the 7; coefficients related to the items we can obtain two important re-
sults: calibrate the questionnaires and rank the attribute from the one with

the best quality to the least. The observed misfit can be decomposed into
59
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contributions of individual items through the analysis of individual param-
eter estimates, individual item-fit. This allows you to identify those items
that affect the fit to the model and that, therefore, must be eliminated.

To calibrate the questionnaires we can observe from the output If some
quality item parameters which cannot fit correctly.

Table [5.1] shows the item location parameter 7;, the values with the corre-
sponding p.value, the misfit values. Item B5, B6, B7, B11, D2, D3, E1 have
to be deleted.
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Item Chisq df  p-value Outfit MSQ Infit MSQ

B3 6239.229 9146  1.000 0.682 0.696
B4 7908.201 9179  1.000 0.862 0.860
B5 12558.625 9037  0.000 1.390 1.269 *
B6 9799.067 9209  0.000 1.064 1.051 *
B7 10299.168 9127  0.000 1.128 1.095 *
B8 7852911 9231  1.000 0.851 0.851
B10 9408.018 9201 0.064 1.022 1.015
B11 10010.667 9175 0.000 1.091 1.056 *
Cl1 8006.306 9253  1.000 0.865 0.904
C2 5876.676 9236  1.000 0.636 0.642
D1 8888.761 9227  0.994 0.963 0.966
D2 9565.748 9194  0.003 1.040 1.035 *
D3 10480.979 9122  0.000 1.149 1.125 *
El 10773.069 9249  0.000 1.165 1.109 *
F2 8793.351 9132  0.994 0.963 0.977
F3 7120.461 9176  1.000 0.776 0.823
F4 6906.089 8855  1.000 0.780 0.814
F5 5895.798 9173  1.000 0.643 0.726
F6 6094.177 9193  1.000 0.663 0.698
F7 5684.363 9181  1.000 0.619 0.645

Table 5.1: Fit statistics of initial model

The best model is reduced to 7 items (Table The possible causes
of misfit are different: B5, B10, B11 are items that relate to aspects (load

of study, teaching coordination) probably require a general knowledge that
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the student has not yet, B6, B7 (aspects related to the evaluation of the ac-
tivities ) are not present in all degree courses, D2, D3 (organization) do not
concern the teaching, E1 (infrastructure) does not affect the quality of the
work by the teacher.

If we sort the items by quality parameter we obtain a ranking of the items
from the one with the best quality to the one with the least (Table [5.2),
according to the interpretation of the scale given in the previous Chapter.
In Table[5.2) we can see the quality items values and threshold parameters.
All items in this table refer to the teacher (availability to clarification, ob-
served school hours and the timetable of receiving, educational objectives,
clarity). Items F6 (teacher motivation) and C2 (overall student satisfaction)
represent educational aspects for whom students perceive quality levels of

education lower.

Item T Threshold 1 Threshold 2 Threshold 3

F5 -0.325 -1.227 -0.895 1.148
F3 -0.285 -1.303 -0.817 1.268
F4 -0.111 -0.963 -0.766 2.062
B3 -0.723 -0.851 -0.281 2.738
F7 -0.961 -0.097 -0.400 2.580
F6 1.048 -0.142 -0.482 2.803
C2 1.210 -0.247 -0.644 3.234

Table 5.2: Fit statistics of final model

In figure the Category Probability Curves are plotted for all items.
In the horizontal axes we put the person satisfaction values and in the ver-

tical axis the probability related to each response category. We can observe
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that for items F3 and F5, the higher category of response are more probable
than other items. Moreover for items F4 and F5 there are quasi perfect over-

lapping between the first and the second category. This points to a possible

bad choice of the number of categories.
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Figure 5.1: Category Probability Curves for all items

If we sort the satisfaction parameters, we obtain a ranking of the sub-
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jects from the one least satisfied to the most satisfied. The satisfaction pa-
rameters are useful to segment a population with the aim of obtaining dif-
ferent clusters of satisfaction. In our case we can observe (Table[5.3) from
LRT (LIkelihood Ratio Test (Andersen, [1973) that item score is different
(DIF - Differential Item Functioning) from students who attend high school
than students who attend other schools; item score is different from bad
and good students (/S Px); there is a different level of satisfaction among
students of different ages; there is no difference between female and male

students.

LRT p-value DIF
Gender  0.203 no

School  0.006  yes
Age 0.045  yes
ISP* 0.031 yes

Table 5.3: LRT test

5.1.1 Levels of satisfaction and quality of teaching

The relationship between the location of the item and location of persons
along the continuum can be detected by the Figure[5.2in which the Item/Person
Threshold Distribution is shown. The large difference between the standard
deviation of the subjects (1.35) and the item (0.67) indicates that the level
of satisfaction expressed is not fully captured by the items. The average lo-
cation of the parameters relating to the subjects (1.78), also indicates a level
of overall satisfaction expressed by the above average quality items (0.41).

So, the two scales have not a similar range, this does not guarantee that
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there is an equilibrium between quality factor and satisfaction factor. prob-
ably selected items fail to capture all levels of satisfaction. This could lead

to a reflection on the choice of the items that make up the questionnaire.

Person-Item Map

Person
Parameter
Distribution

LA T TTIT T TT T 1T T

-3 -2 -1 0 1
Latent Dimension

Figure 5.2: Person-Item map

5.2 Multilevel two-step analysis results

In this section we show results from a Multilevel two-step analysis de-
scribed in Chapter 4]

The first step concerns the estimate of the PCM given in the previous sec-
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tion. In the second step we introduce in the multilevel model as response
variable the measures of students’ satisfaction (satisfaction parameters) ob-
tained by the PCM model in order to detect individual determinants of the
level of global satisfaction.

The parameters of the multilevel random intercept model where estimated
by Imer functionc in Ime4 package.

As previous analysis we consider some characteristics of the student: age,
gender, school and IS Px. On the first level we can find the students, on the
second level we consider the courses. Table reports the parameter esti-
mates for both empty model and complete model with students variables.
From this table it follows that the estimate of the grand mean yqg is 1.65.
This mean should be interpreted as the expected value of the level of satis-
faction for a random student in a randomly drawn course.

The variance between students within the courses about the true course
mean is 1.158% = 1.341 (02), while the between-group variance (vari-
ance between the courses) is 0.711% = 0.505 (o’i). These variance com-
ponent estimates give an intraclass correlation coefficient estimate of p =
0.505/(0.505 + 1.341) = 0.273 indicating that about 27% of the variance in

satisfaction is between courses.
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Empty model Model 1
Fixed Estim Std. Err. p-value | Estim  Std. Err.  p-value
Intercept(ygy) 1.650 0.004 0.000 2951 0.736 0.000
genderM(y1o) -0.110  0.035 0.002
age< 22(y20) -0.022  0.025 0.386
school- -0.012  0.031 0.712
high(y3)
ISP*(y40) -0.884  0.309 0.004
Random Var.  Std Dev. Var. Std Dev.
o 0.505 0.711 0.515 0.718
o2 1.341 1.158 1.327  1.152

Table 5.4: Parameter estimates: multilvel two-step analysis

To explain variance at the individual level, four level 1 explanatory vari-

ables are introduced. The complete model is the following:

Yij = Poj + Prj(gender) + B j(age) + B3 j(school) + B4;(IS P*) + €

Boj = Yoo + Hoj

Bij =10 5.1)
B2j =20

B3j =730

Baj = vao

The grand mean is gy and the regression coeflicients for gender, age,
school and ISP* are 19, Y20, Y30 and ys49. The random effects ug; are
the level-2 residuals, controlling for the effects of variables. From output
(Table [5.4) we can show that the overall level of satisfaction (2.951) has

increased if compared to the empty model. Moreover, it can be noted that
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age and school effects are not significant. Males are less satisfied then fe-
males; good students are less satisfied than bad students. Let us make a
remark: the effect of age is not significant, while the effect of IS P* is sig-
nificant. Probably this is due to the correlation between these two variables.
In fact, we recall that IS P* is function of age, and then could capture the

significance of performance and age.

5.3 Multilevel one-step analysis results

In this section we show the results of the three-level model, with two levels
of aggregation: students nested in courses. To take into account the vari-
ability between items, between students and between courses, it is decided
to include random effects for each of these variables. Initially, we estimated
a model without explanatory variables with only random effects (Table[5.5).
Then we considered a model with the items (Table [5.6).

Random Var  Std. Dev.
item (07,,) 0.802 0.895
student (07,,) 1.023 1.011
course (07,,) 0435 0.659

Table 5.5: Empty model
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Coeflicients Estim. Std.Err p.value
itembl1(aj00) -0.124 0.0309  0.000
itemb3 (a200) 0.724  0.0309  0.000
itemb4 (a300) 0.626 0.0313  0.000
itemb8 (as00)  0.254  0.0307  0.000
itemc2 (@so0)  0.278  0.0304  0.000
itemdl (asp0) -0.466 0.0307  0.000
itemd2 (a700) -1.259 0.0309  0.000
itemd3 (agpo)  0.067 0.0315  0.031
itemf3 (a9pp)  1.989 0.0335  0.000
itemf4 (aj000) 1.420 0.0336  0.000
itemf5 (@1100) 2.089  0.0309  0.000
itemf6 (@j200) 0.503  0.0309  0.000
itemf7 (aj300) 0.644 0.0311  0.000

Table 5.6: Model with items

We can see that the items are all significant, except item D3. In partic-
ular, the items for which students are more satisfied than the reference item
B10, are the items B3, B4, B8, C2, D3, F3, F4, F5, F6, F7, whose coeffi-
cients have positive values. In particular, F5 (2.086), F3 (1987), B3 (0.723),
F7 (0.637) are the items for which there is greater satisfaction. These items
seem to lead to high levels of quality of teaching.

The item D2 is less satisfactory. In the third estimated model we introduce
the explanatory variables sex, age and school (Table[5.7). At this moment

we don’t include the variable IS P*.
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Random Var  Std. Dev.

item (07y,) 0.798 0.893

student (07;,) 1.007 1.004

course (0 g, ) 0.434 0.658
Coeflicients Estim.  Std.Err  p.value
itemb11 (aj00) -0.129  0.0319 0.000
itemb3 (a200) 0.723  0.0319 0.000
itemb4 (a300) 0.615  0.0323 0.000
itemb8 (aa00) 0.251 0.0317 0.000
itemc2 (as00) 0277  0.0314 0.000
itemd1 (ag00) -0.469  0.0317 0.000
itemd2 (a700) -1.269  0.0319 0.000
itemd3 (agoo) 0.050  0.0326 0.123
itemf3 (a90p) 1.987  0.0346 0.000
itemf4 (@ 1000) 1.424  0.0333 0.000

itemf5 (a1100) 2.086  0.0345 0.000
itemf6 (@ 1200) 0498  0.0319 0.000
itemf7 (a1300) 0.637  0.0320 0.000
genderM (ag10) -0.075 0.0341 0.027
schoolhigh (agy9) -0.013  0.0298 0.653
age< 22 (ao30) 0.117  0.0430 0.007

Table 5.7: Model with students characteristics

The variances of the random effects decrease slightly. We can see that
the sex and age characteristics of students influence their satisfaction. In

particular, younger students are more satisfied and males are less satisfied



5.3. Multilevel one-step analysis results 71

than women.

The random effects p;jq, poje and &po, are not parameters, so they cannot
be estimated in the conventional sense, but a “best guess”is provided by the
conditional modes. Similarly the conditional variances provides an uncer-
tainty measure of the conditional modes. In Figure [5.3] we present normal
probability plots of the conditional modes of the random effects for the each

factor.

Items

.
(Intercept)

Course Students

(ineroopl) : - - Tinercent

H

1 1
Standard normal quantiles

2 o 2
Standard normal quantiles

Figure 5.3: Category Probability Curves for all items

To provide a measure of the precision of the conditional distribution of
these random effects we add lines extending +1.96 conditional standard de-

viations in each direction from the plotted point. We can see that many of
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the intervals, above all for students and courses, overlap with the zero line
but there are several levels that are clearly greater than zero or clearly less
than zero. As indicated by the estimates of the variances of the random ef-
fects, the student factor accounts for the greatest level of variability. There
are students with low levels of satisfaction, and students with high levels.
So it seems that students perceive the quality of teaching in different ways.
Table[5.8|show answer probabilities for some items and different categories,
considering different profiles of students. It can be see that for all items the
probabilities of answer definitely yes is highest for women aged less than
22. The probabilities for the first category are similar. For item B3, BS,
F3, F6, F7 the highest probability of answer more no than yes refers to
males aged less than 22. Comparing males and females, regardless their
age, women are increasingly satisfied for items B3, B4, B8, F3, F6 and
F7. These results highlight, in more detail, the differences in terms of sat-
isfaction among students with different characteristics and so the different
perception of quality that students, with different characteristics, have to-

wards facilities provided to them.
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Item gender age m py Item gender age m py
B3 M <22 1 0.042 F3 M <22 1 0041
2 0.147 2 0145
3 0519 3 0518
4 0291 4 0337
M >22 1 0.047 M >22 1 0.046
2 0.161 2 0158
3 0523 3 0523
4 0268 4 0318
F <22 1 0.039 F <22 1 0.038
2 0.139 2 0137
3 0514 3 0513
4 0346 4 0350
F >22 1 0.044 F >22 1 0.043
2 0.152 2 0.149
3 0521 3 0519
4 0327 4 0330
B4 M <22 1 0.040 F6 M <22 1 0041
2 0.142 2 0.144
3 0516 3 0517
4 0341 4 0338
M >22 1 0.045 M >22 1 0.046
2 0.137 2 0157
3 0.540 3 0523
4 0322 4 0319
F <22 1 0.037 F <22 1 0.038
2 0.134 2 0136
3 0511 3 0513
4 0355 4 0351
F >22 1 0.042 F >22 1 0043
2 0.147 2 0.149
3 0519 3 0519
4 0335 4 0331
B8 M <22 1 0.042 F7 M <22 1 0041
2 0.149 2 0.142
3 0518 3 0516
4 0336 4 0341
M >22 1 0.047 M >22 1 0045
2 0.159 2 0.156
3 0523 30522
4 0318 4 0322
F <22 1 0.039 F <22 1 0.038
2 0.137 2 0134
3 0513 3 0.646
4 0349 4 0354
F >22 1 0.043 F >22 1 0042
2 0.150 2 0147
30520 3 0519
4 0329 4 0334

Table 5.8: Answer probability for each category
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Table [5.9] presents model with the inclusion of ISP* variable. We can
see that coefficients for the items are similar than coefficients in Table
but the significance of the characteristics of students change. The variable
school is still not significant, but now age is also non significant. The ISP*
variable is significant. The explanation for this is the same as presented in
Section [5.3] ISP* could capture the age effect, it seems that age and IS P+
are highly correlated. Moreover good students are less satisfied than bad

students.
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Coeflicients  Estim. Std. Err p.value
itembl1(aj90) -0.129 0.0319 0.000
itemb3 (a200) 0.723 0.0319 0.000
itemb4 (a300) 0.615 0.0324 0.000
itemb8 (a400) 0.251 0.0318 0.000
itemc2 (@s00)  0.276  0.0315 0.000
itemd1 (agp0) -0.469 0.0318 0.000
itemd?2 (a709) -1.269 0.0320 0.000
itemd3 (agpp)  0.050 0.0326 0.124
itemf3 (agpp)  1.988 0.0346 0.000
itemf4 (aj000) 1.424 0.0334 0.000
itemf5 (ay100) 2.086 0.0347 0.000
itemf6 (a1200) 0.498 0.0319 0.000
itemf7 (@j300) 0.637 0.0320 0.000

schoolhigh (ag19) -0.002 0.0118 0.859
age< 22 (o) -0.029 0.0586 0.614
genderM (ag30) -0.082 0.0336 0.014

ISP* (@ps9)  -0.568 0.1558 0.000

Table 5.9: Model with ISP* variable

These results are similar to results seen in multilevel two-steps analy-
sis. But, in this model we have results for items and students characteristics
simultaneously; while in multilevel two-step model we obtain items results
from PCM. Moreover, in multilevel two-step models, the standard error of
IS P+ is twice than standard error in multilevel one step-analysis. This may

highlights the drawbacks of multilevel two-step model discussed in Chap-
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ter

The next tables (Table and show the values of quality item pa-
rameters differentiated by gender and ISP*. Item F3, F4 and F5 show high
quality, in particular females with a bad performance have greater levels
of quality than other students profiles. For other items males with a good
career have less levels quality than students with other characteristics. Low
quality for items B11, D1 and D2 highlights that students are not satisfied of
organizational aspects of courses. To sum up, it seems that some items are
the drivers of the teaching quality, with some difference between students

with different characteristics.
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Item Gender ISP* quality item parameter

B11 M good -0.780
M bad -0.211

F good -0.697
F bad -0.129

B3 M good 0.072
M bad 0.641

F good 0.155

F bad 0.723
B4 M  good -0.036
M bad 0.532

F good 0.046

F bad 0.615
B8 M  good -0.400
M bad 0.168

F good -0.318

F bad 0.251

Cc2 M  good -0.374
M bad 0.194

F good -0.292

F bad 0.277

D1 M  good -1.12
M bad -0.552

F good -1.038

F bad -0.469

D2 M  good -1.920
M bad -1.352

F good -1.838

F bad -1.269

Table 5.10: Quality item values
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Item Gender ISP* quality item parameter

F3 M good 1.337
M bad 1.905
F good 1.419
F bad 1.988
F4 M good 0.773
M bad 1.342
F good 0.856
F bad 1.424
F5 M  good 1.435
M bad 2.004
F good 1.518
F bad 2.086
F6 M  good -0.153
M bad 0.415
F good -0.071
F bad 0.498
F7 M  good -0.014
M bad 0.554
F good 0.068
F bad 0.637

Table 5.11: Quality item values (continued)

With reference to the results of the PCM the selected items are the
same. But if we consider the relative importance of items (Chapter [3), the
items drivers of the quality are different from those obtained in the one-step

model.



Concluding remarks

The main issue of this research is the difficulty in identifying the most suit-
able process of measurement of a latent multidimensional construct such as
‘quality of teaching activities’. That difficulty is present in all approaches
used in this thesis. In the regression context, the approach of the rela-
tive importance metrics considers the overall satisfaction item as a proxy
of our latent construct. This approach represents an effort to provide pol-
icy makers the drivers of satisfaction/quality identified by the students with
good and bad performance. The results are different between the good and
bad students, despite some overlapping in some aspects. For istance, in
both groups of students, items B3 (formative objectives explained by the
teacher) and F7 (clarity of the teacher) are important in explaining satis-
faction, but the intensity is different in the two groups. Moreover, item F6
(the teacher motivates the interest in the subject) explains satisfaction just
for good students. In other words, it looks like that performance is a “dis-
criminating” indicator when analyzing B3, F6, and F7 items. These results
provide a useful starting point to construct a ‘quality teaching indicator’
based on performance without controlling for students’ characteristics.

On the other hand, an alternative way to the previous data may be given

by an analysis on individual data in which it is possible to take into ac-
79



80 Chapter 5. Multilevel Rasch model results

count the characteristics of the students. By contrast, if you want to take
into account the characteristics of the students not only synthesized by the
IS P* indicator, an analysis of individual data is the natural study. More-
over, the sharing of the same course, the same teacher and the same class
lead to a model that takes into account the hierarchical structure of data
and the diversity that characterize the students. We are talking about mul-
tilevel model model as a framework for IRT models for ordinal data. The
items, regarding the teacher, are the most important ones as measuring the
perceived‘quality of teaching activities‘. In particular, the results for the
PCM show low satisfaction for the items C2 and F6, differing satisfaction
for school, age, and performance, but not for gender. In general, the results
highlight level of satisfactions which are not completely captured by the
items.

Then, we introduced in the multilevel model the measures of satisfaction,
obtained by the PCM (two-step analysis), in order to assess the importance
of individual characteristics in explaining the overall satisfaction. The main
results are: the effect school and age are not significant, males are less satis-
fied than females, the good students are less satisfied than the bad students.
Thus, the perception of ‘quality of teaching’ seems to be conditioned by the
gender and by the performance.

Introducing a three-level model with two levels of aggregation (one-step
analysis), in which students are nested into courses, we can observe - for-
getting variables related to students characteristics - the items with a greater
satisfaction are F5, F3, B3, F7. Again those items are related to the char-
acteristics of the teacher. On the other hand, when we introduce the ex-
planatory variables gender, school, and IS P*, the variable IS P* influences

the satisfaction and we can see good students are less satisfied than bad
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students. Moreover, it can be observed the probability of answering ‘def-
initely yes’ for the all items is higher for females with less than 22 years.
These results are in accordance with PCM results. On the contrary, males
less than 22 years have a higher probability to answer ‘more no than yes’
than females. This reveals a lower perception of ‘quality of teaching’.

In summary: the items that seem to be the drivers of high quality teach-
ing are F3, F4 and F5 for both females and males. However this is more
marked for females with bad performance. It should be noted that although
the value is not very high, the sign for the items and F6, F7 and C2 re-
mains positive for both males and females with a bad performance. For
some items the males with a good performance seem less satisfied. The
low quality of items B11, D1 and D2 suggest the lack of student satisfac-
tion towards the organizational aspects.

Finally, we want to stress that the chosen approach is strongly affected
by the aim: in fact, if the aim is to construct an indicator of the ‘quality
of teaching’” without controlling students characteristics, then the metric
PMVD seems appropriate. But, if the objective is to find a measure of
the‘quality of teaching‘in terms of satisfaction and ‘quality’ contained in
each item and the characteristics of the evaluators, the multilevel one-step
model seems more informative. Nevertheless, both results do not seem con-
tradictory as the most important items in any approach are those related to

the teacher.
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Universita degli Studi di Palermo
QUESTIONARIO DI VALUTAZIONE DELLA DIDATTICA

PRIMA DELLA COMPILAZIONE LEGGERE ATTENTAMENTE LE ISTRUZIONI RIPORTATE SUL RETRO

INFORMAZIONI GENERALI

Data di compilazione ........./ ..... Anno accademico: ..

= Primo periodo didattico = Secondo periodo didattico

Denominazione Corso di Studi:

1 Laurea I° livello N.O. 3 Laurea specialistica = Laurea V.O.

= Laurea a ciclo unico

Denominazione Insegnamento®:

[P IR
1) LO STUDENTE
a: <18 20
AT [Ew = = omom o2 o0&
24 25 26 27 228
o | == o | = )
A2 | Sesso M = maschio F = temmina o
A3 | Scuok daria di i A= Liceo classico D = Liceo scientiico G = Al licei A B ] E F
el socio-pedagogico  E = Ist. tecnico commerc. st. tecnico indusiriale 1 3 & = == =
C = Ist. tecnico per geometri F = Ist. professionale I = Altro el L. iy
A4_| Residenza A= In sede B = Fuori sede pendolare C=Fuori sede stanziale | A, B, C
AS | Anno di corso al quale lo studente & iscritto In corso S & & 4 & &5
gt EE e TE BT T
Fuor corso L & & 2 F
A6 | Numero totale di crediti acquisit alla data della rilevazione B0 gL ol oL 1ALIR0 TR
1210 211240 241270 2713
Lol 24em mign
A7 | Insegnamenti frequentati in questo periodo didattico e e z5

A8 | Attivita lavorativa in questo anno accademico A = nessuna B = saltuaria ¢ part-time  C = a tempo pieno

Legenda: 1 = decisamente no 2= i no che sl 3 = pit sl che no
3) LINSEGNAMENTO

Bi | Quante ore di lezione hai frequentato (in percentuale)?

B2 | Quante ore di itazioni hai (in ? (se I
rispondete non applicabile)

non prevede esercitazioni,

B3 | Gli obiettivi formativi dell'insegnamento™ sono stati ilfustrati in aula in modo chiaro?
B4* | Le modalita dell'esame sono state illustrate in aula in modo chiaro?
BS | Linsegnamento” ha contenuti che si a quelli degli altri i

B6" | Le attivita didattiche inlegrative (esercitazion, laboratori, seminari, ecc...) sono utili ai fini delfapprendimento?
(se non previste attivita didattiche integrative, rispondete non applicabile)

B7 | Le attivita didattiche integrative (esercitazioni, laboratori, seminari, ecc...) previste allinterno dellinsegnamento!!

sono adeguatamente coordinate tra loro? (se non previste attivita didattiche integrative, rispondete non applicabile) 15 é éx é %
B8 | Il materiale didattico (indicato o fornito) & adeguato per lo studio della materia? 5 2y i34 r:‘%
B9* | Le conoscenze preliminari possedute sono sufficienti per la comprensione degli argomenti irattati? =5 2y & s
B10*| Il carico di studio richiesto da questo insegnamento®! & proporzionalo ai crediti indicati nel piano di studi? g 2 A
B11 | L'insegnamento® ha contenuti coordinati con altri insegnamentit’? N 3 & e
}) INTERESSE E SODDISFAZIONE
e 1] { Sei interessato ai contenuti di questo insegnamento"? (indipendentemente da come & stato svolto) él é é él ]
c2* { Sei soddisfatto di come & stato svolto questo insegnamento(”? i 2, r:3:| é, |
)) ORGANIZZAZIONE
D1* | Lorganizzazione complessiva (sedi, orario, esami, ecc..) degli insegnamenti® ufficialmente previsti in questo
periodo didattico & accettabile? 1 2 - 3 4
= o | i | =
D2* | 1l carico di studio ivo degli previsti in questo periodo didattico & sostenibile? &0 2 = %
D3 | L'orario di svolgimento dell'attivita didattica tiene conto dei tempi di spostamento fra le sedi/aule didattiche? =N 25 g £
) INFRASTRUTTURE
. e = . - i 3 3 o
E1" | Le aule in cui si svolgono le lezioni sono adeguate? (si vede, si sente, si trova posto) P S -
E2" | | locali e le atrezzature per le attivita didattiche integrative (esercitazion, laboratori, seminar, ecc..) sono adeguali?
i ivita didattiche integrative, deter licabile; A 2 3 4 NA
(se non previste attivita didattiche integrative, rispondete” non applicabile) L 2 & A W

) Per la Facolta di Medicina e Chirurgia si intende Corso Integrato

I &
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Responsabile dellinsegnamento/modulo  COGNOME: NOME:

Denominazione modulo (solo se

Scrivere in stampatello e per esteso all'interno degli spazi predisposti

Legenda: 1 = decisamente no 2 = piit no che si 3 = piu si che no 4 = decisamente si NA = non applicabile

F) RESPONSABILE DELL'INSEGNAMENTO/MODULO

F1 | Quale percentuale delle ore di lezione tra quelle previste per il docente @ stata svolta dal docente stesso? <‘5§’f 5°°|/°__~_§‘°"/° *é%

F2 | Nelfimpossibilita di svolgere la lezione, il docente avverte con congruo anticipo (0 comunque in tempo utile)? -
£3 | Ii docente rispetta I'orario di svolgimento dellattivita didattica previsto dal calendario o conglistudent? | A, 2 8 4
F4 | Il docente rispetta Forario previsto per il ficevimento? b 2 & 4
F5* | Il docente & disponibile alle richieste di chiari durante le lezioni? -
Fe* | if docente stimola/motiva linteresse verso la disciplina? O T i
F7* | 1l docente espone gli argomenti in modo chiaro? T

G) DOMANDE RELATIVE AL MODULO (da ilare solo se I & articolato in moduli)

G1 | I modulo ha contenuti che si sovrappongono a quelii degli altri moduli? &1 é ‘% '_%
G2 | Le conoscenze preliminari possedute sono sutfficienti per la comprensione degli argomenti traftati? ) I i
G3 | Sei interessato ai contenuti di questo modulo? (ind da come & stato svolto) N
G4 | Sei soddisfatto di come & stato svolto questo modulo? T

* Le domande contrassegnale con un asterisco compongono un questionaric minimo che il Comitato Nazionale per la Valutazione del Sistema Universitario e il Consiglio
Nazionale degli Studenti Universitari suggeriscono di adottare, al fine di garantire un'omogenea rilevazione su scala nazionale e assicurare la compatibilita dei dati.

‘) Per la Facolta di Medicina e Chirurgia si intende Corso Integrato

MARCATE LE CASELLE COSi: mm E NON COSi: cXi 7 e =) =l

ISTRUZIONI PER LA COMPILAZIONE
A) Scrivere esclusivamente con una penna nera o blu
B) Scrivere in stampatello e per esteso all'interno degli spazi predisposti —— — e =
C) Annerire la casella corri alla risposta esatta. Non sono ammesse correzioni di alcun tipo.
Saranno considerate errate le risposte per le quali lo studente abbia annerito pii: caselle o apportato correzioni
D) Non piegare, sguaicire o macchiare il questionario

SI RICORDA CHE | QUESTIONARI COMPILATI SONO RIGOROSAMENTE ANONIMI E LE INFORMAZIONI CONTENUTE
SARANNO ELABORATE E DIFFUSE SOLO IN FORMA AGGREGATA

c. 120.000 - Tipografia PETRONE - 091.302612
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B3 B4 B8 BI0O BI1l C2 DI D2 D3 EI F2 F3 F4 F5 F6 F7
B3 1.000 0.697 0.588 0.316 0.322 0.834 0.301 0.301 0.352 0.354 0.324 0.444 0.482 0.677 0.818 0.790
B4 1.000 0.444 0.345 0.387 0.616 0.392 0.354 0.321 0.362 0.363 0.467 0.410 0.547 0.619 0.603
B8 1.000 0.331 0.401 0.652 0.321 0.377 0.335 0.367 0.361 0.384 0.432 0.431 0.594 0.599
B10 1.000 0.321 0.419 0.373 0.440 0.237 0.345 0.300 0.345 0.316 0.387 0.453 0.401
BI1 1.000 0.333 0.345 0.367 0.378 0.398 0.345 0.324 0.453 0.467 0.456 0.456
Cc2 1.000 0.334 0.249 0.312 0.336 0.389 0.461 0.550 0.722 0.877 0.890
Dl 1.000 0.694 0.545 0.384 0.345 0.342 0.340 0.234 0.312 0.342
D2 1.000 0.339 0.365 0.299 0.332 0.298 0.311 0.316 0.318
D3 1.000 0.366 0.321 0.345 0.156 0.299 0.303 0.312
El 1.000 0.321 0.320 0.343 0.306 0.305 0.228
F2 1.000 0.575 0.543 0.522 0.499 0.501
F3 1.000 0.678 0.534 0.677 0.555
F4 1.000 0.589 0.861 0.506
F5 1.000 0.775 0.876
F6 1.000 0.899
F7 1.000

Table B.1: Items correlation matrix
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