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Università degli Studi di Palermo





To Tony and Serena





Acknowledgements

I want to thank all the people who have supported and motivated me in writ-

ing this work. I would like to thank prof. Vincenza Capursi for supervising

this thesis, for advice and encouragement during my PhD course.

Special thanks are due to prof. Vito Muggeo for his suggestions. Other peo-

ple have, in different ways, helped me through. In particular, special thanks

go to dr. Salvatore Marcantonio, laudable fellow traveler with which I could

report describes the topics of the thesis and dr. Miriam Tagliavia.

Also, I would also like to thank all the members of the Ph.D. program

Board for their helpful comments and suggestions. I would like to extend

my gratitude also to my colleagues and friends and all the members of

the Department of “Statistical and Mathematical Sciences S. Vianelli” who

contributed to make the past three years greatly enjoyable.

Finally, I would like to express my special appreciation to my family, my

husband and my daughter for their patience while I had to organize my

time between them and my studies. My gratitude goes to my parents and

my parents in law for their care qand sacrifice which have always allowed

me to study and complete my thesis.





Contents

1 Introduction 1

1.1 History of SET . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . 5

2 The survey 7

2.1 The survey plan . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The measurement instrument . . . . . . . . . . . . . . . . 9

2.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Students’ characteristics . . . . . . . . . . . . . . . . . . 11

2.5 Students’ ratings . . . . . . . . . . . . . . . . . . . . . . 13

3 Aggregation analysis: Relative Importance Metric 17

3.1 The indicator of Student Performance . . . . . . . . . . . 18

3.2 Relative importance metrics . . . . . . . . . . . . . . . . 19

3.3 Are good and bad students significantly different? . . . . . 23

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.1 Indicator of Students Performance results . . . . . 24

3.4.2 Relative importance metric results . . . . . . . . . 27
i



4 Multilevel IRT Model 37
4.1 Why Multilevel IRT Model . . . . . . . . . . . . . . . . . 37

4.2 Literature background . . . . . . . . . . . . . . . . . . . . 39

4.3 Theoretical background: the Rasch model . . . . . . . . . 40

4.3.1 Polytomous IRT model . . . . . . . . . . . . . . . 42

4.4 Rasch Model and teaching quality . . . . . . . . . . . . . 43

4.5 Two step analysis vs one step analysis . . . . . . . . . . . 45

4.6 Multilevel Framework for IRT model . . . . . . . . . . . . 47

4.6.1 Multilevel Framework for bynary IRT model . . . 47

4.6.2 Multilevel Framework for ordinal IRT model . . . 49

4.6.3 Adding a student level variable . . . . . . . . . . . 55

4.7 Parameter Recovery Study . . . . . . . . . . . . . . . . . 56

5 Multilevel Rasch model results 59
5.1 Partial Credit Model results . . . . . . . . . . . . . . . . . 59

5.1.1 Levels of satisfaction and quality of teaching . . . 64

5.2 Multilevel two-step analysis results . . . . . . . . . . . . . 65

5.3 Multilevel one-step analysis results . . . . . . . . . . . . . 68

A The questionnaire 83

B Items correlation matrix 87

Bibliography 95

ii



List of Figures

3.1 Boxplot of conditional distribution of IS P∗ given age. . . . 25

3.2 Level curves of IS P∗ as a function of age and UEC with

frequency classes of students. . . . . . . . . . . . . . . . . 26

3.3 PMVD component boostrap distribution for bad (—–) and

good(—–) students. . . . . . . . . . . . . . . . . . . . . . 35

4.1 Correspondence between original and service quality appli-

cations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Item scale . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Person scale . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 Category Probability Curves for all items . . . . . . . . . 63

5.2 Person-Item map . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Category Probability Curves for all items . . . . . . . . . 71

iii





List of Tables

2.1 Number of questionnaire per class . . . . . . . . . . . . . 11

2.2 Univariate distributions of Students’ characteristics . . . . 12

2.3 Other students’ characteristics . . . . . . . . . . . . . . . 14

2.4 Answers to items: 1 = definitely no, 2 = more no than yes,

3 = more yes than no, 4 = definitely yes . . . . . . . . . . 16

3.1 Distribution of students for classes of values of IS P∗. . . . 27

3.2 PMVD weights of teaching quality items. . . . . . . . . . 30

3.3 Boostrap statistics . . . . . . . . . . . . . . . . . . . . . . 33

3.4 OLS analysis . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Results of parameter recovery study . . . . . . . . . . . . 57

5.1 Fit statistics of initial model . . . . . . . . . . . . . . . . 61

5.2 Fit statistics of final model . . . . . . . . . . . . . . . . . 62

5.3 LRT test . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Parameter estimates: multilvel two-step analysis . . . . . . 67

5.5 Empty model . . . . . . . . . . . . . . . . . . . . . . . . 68

5.6 Model with items . . . . . . . . . . . . . . . . . . . . . . 69

5.7 Model with students characteristics . . . . . . . . . . . . . 70
v



5.8 Answer probability for each category . . . . . . . . . . . . 73

5.9 Model with ISP* variable . . . . . . . . . . . . . . . . . . 75

5.10 Quality item values . . . . . . . . . . . . . . . . . . . . . 77

5.11 Quality item values (continued) . . . . . . . . . . . . . . . 78

B.1 Items correlation matrix . . . . . . . . . . . . . . . . . . . 88

vi



Chapter 1

Introduction

The assessment of teaching plays an important role within the Italian uni-

versity. In 1993, the norm 537/93 established a national and local university

evaluation system having the duty to monitor the productivity of research

and of teaching. In accordance with this norm, Italian universities created

theirNV (Nucleo di Valutazione) and began to operate in the wide and com-

plex set of assessment activities. This has contributed to the collection of

material relating to different aspects: the evaluation of university research,

Students Evaluation of Teaching (SET), the analysis of student career by

the universities.

The presence of a rating system has encouraged the formalization of “qual-

ity procedures” that are based on an internal and an external activity. The

former refers to the process of maintaining and improving the quality, the

latter to periodic quality assessment. A meaningful assessment, internal or

external, requires the collection of points of view of those who participate

in an important way to the training process. So it is necessary to take into

account not only the opinions of professional trainers (teachers at various
1



2 Chapter 1. Introduction
levels and roles) but also students’ opinions. The SET takes into account

students’ opinions through an evaluation form (questionnaire): this con-

tains a set of compulsory items for all universities and it is structured in

sections concerning several aspects of university courses (teaching, man-

agement aspects, class facilities, etc...)

The main purpose of this study is to measure the concept of quality of

teaching in the opinion of students at the University of Palermo. This con-

cept is considered a latent variable that cannot be directly observable and

measurable. In order to measure the latent variable the construct needs to

be operationalized in terms of a certain number of dimensions, which are

measured through a set of indirect variables or a battery of items. In the

psychometrical and psychological literature, multi-item Likert type scales

are the main tools for measuring an underlying theoretical concept, which

is not directly observable. So we can assess the quality of university courses

obtaining an approximation of the true measure by indirect measurements

provided by students’ ratings.

Rating is an indicator of the level of the specific attribute that it is supposed

to be measured by that item. Obviously, it is necessary to emphasize that

the result depends on subjective factors, since each student is influenced by

his/her own needs and expectations, which on the other hand depend on the

different cultural backgrounds and the different socio-economic conditions.

Apart from the methodological nature of the results, we should not forget

that the point of view from which the evaluation originates is the opinion

of students. So, due to the presence of heterogeneity of the opinions of

students, you cannot expect to arrive at a measure of the quality of teaching

based on a system of shared values.
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1.1 History of SET

During the past few decades Student Evaluation of Teching (SET) has been

considered as an important tool in the improvement of teaching quality even

if Marsh (Marsh, 1984) and Wachtel (Wachtel, 1998) report that student

evaluation programs were introduced to Harvard in 1915, and the first stud-

ies on SET effectiveness were written in the 1920s by Remmers (Remmers

and Brandenburg, 1927; Remmers, 1928, 1929). Student evaluation re-

search had a wide development in the 1970-1980 decade, when most of the

research was devoted to the utility and validity of students’ evaluation (Cen-

tra, 1993). Kulik (Kulik, 2011) states that the initial aim of SET served two

goals: mapping the quality of teaching in universities, and providing infor-

mation and help instructors in order to improve their teaching. For Marsh

(Marsh, 1984) students ratings are also very useful to make administra-

tive decisions and to satisfy a fundamental principle of the evaluation: the

accountability. Although the implementation of SET was spread in many

faculties, a lot of universities were resilient to the use and the utility of these

ratings. Supporters argue that evaluative judgements have a strong positive

influence on the improvement of instructional skills. Marsh (Marsh, 1987)

states that opinions about the role of SET vary from “reliable, valid and

useful” to “unreliable, invalid and useless”. Today, more than 90% of U.S.

universities use some sort of student evaluation mechanism to assess teach-

ing (Murray, 2005). The desire to implement a measurement of teaching ef-

fectiveness based on student feedback is understandable and commentable.

Students are one of the consumer groups interested in the product of an

university education; therefore, their opinions are a vital source of informa-

tion concerning the quality of instruction at institutions of higher education

(Wright, 2006).
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1.2 Aims

The general aim of this thesis is to measure the quality of teaching, through

levels of satisfaction of students, on several aspects of university courses

(items) i.e, students’ ratings. The first question we asked is: what are the

items that explain the overall students satisfaction? The second question is

this: there are variables, such as student characteristics, that may influence

the overall satisfaction? In the first phase of our work, we considered ag-

gregated data in order to give some suggestions to the policy makers on the

variables or items that determine the students’ opinion. The statistical unit

is the single teaching course. The purpose is to simplify the questionnaire,

to give a policy making tool for the planning and for the improvement of

the teaching. In particular we are interested to determine an explicit quan-

tification of the relative importance of each item for the overall satisfaction

of teaching that is a proxy of the teaching quality.

In the second phase of this work we want to analyze individual data (stu-

dent), in order to take into account the students characteristics as variables

within the model and to assess whether students’ characteristics can affect

the teaching evaluation. To sum up, the focal point of the thesis is the

transition from an aggregated view of data to an individual view. Initially,

using simple statistical tools, we tried to highlight any differences in terms

of satisfaction among students. Subsequently, we applied more complex

models in order to take into account the complex structure of our data and

the student as the statistical unit. This was finalized to the introducion of

the student characteristics as variables within a single model and to obtain

more specific results.
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1.3 Outline of the thesis

Chapter 2 is devoted to a descriptive analysis of the data. In particular we

present descriptive and explorative analysis of the data. In particular, we

also describe the main features of survey and the instrument of measure-

ment adopted to reveal students’ opinions.

In Chapter 3 we introduce the methodology for aggregated analysis. First of

all we introduce the Indicator of Student Performance that combining age

and UEC (University Educational Credits) give us information on students

career. The indicator allows to split students in bad and good according to

their performance. Subsequently, in order to determine what the items that

explain the overall satisfaction for bad and good students are, we consider

a regression linear model, in which items are covariates and the overall sat-

isfaction item is the response variable. Various strategies can be adopted to

deal with the previous issue. Our interest is to investigate the suitability of

relative metrics in linear regression (Feldman, 2006; Grömping, 2007) as

analitical tools for observational studies with correlated regressors.

Chapter 4 introduces the methodological framework underlying the Rasch

model and its generalizations are introduced. The wide family of Multilevel

(or Generalized Linear Mixed or Random) Models represents a method-

ological framework within which tha main part of IRT (Item Response

Theory) models may be placed. The most famous application of the IRT

approach has been proposed by the mathematician George Rasch in 1960

(Rasch, 1960) and it is known as Rasch model.

In the last decades a number of item response models have been developed

as extensions of the Rasch model in the statistics and psychimetrics liter-

ature for the analysis of dichotomous and polytomous discrete responses:

the Nominal Response Model (Bock, 1972), the Graded Response Model
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(Samejima, 1969), the Rating Scale Model (Andrich, 1978), the Partial

Credit Model (Masters, 1982). The most interesting part of these exten-

sions concerns the structural part of the model and the effect of the predic-

tors (students characteristics), which can be either fixed or mixed.

In Chapter 5 we present Multilevel IRT model results. Summarizing the fo-

cal aspects of our work, in Chapter 3 we consider aggregated data in linear

regression model in which item C2 (that expresses the overall satisfaction

declared by students) is a proxy of the quality of teaching; in Chapter 4 (and

then in Chapter 5) we consider individual data in multilevel IRT model.

Here items are at grade; in this way we obtain for which items students are

more satisfied and so which items are the drivers of the quality of teaching.



Chapter 2

The survey

This study is based on data which are collected at a Faculty of the University

of Palermo, from classes attending the academic year 2006-2007. Data

on courses evaluations are provided by the Center for the Evaluation of

University Activities, which is responsible for coordinating the survey on

students’ opinion about the quality of teaching at university.

The measurement instrument is an ad hoc questionnaire addressed to reveal

students’ opinion of course quality. The purpose is to assess the quality

of university courses obtaining an approximation of the true measure by

indirect measurements provided by students’ ratings.

2.1 The survey plan

The plan for the detection of the opinion survey of students on the campus

of Palermo can be summarized as follows:

a) target population: students who attend classes;
7
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b) scope of the survey: the single teaching;

c) measurement instrument: questionnaire outlined by the Academic

Senate;

d) the time of detection: the detection takes place during the last weeks

of the terms.

In particular:

a) the reference population consists of students in classroom who take

part in the questionnaire. So this is not a sample survey in a prob-

abilistic sense, but a partial survey, as it is intended for students in

attendance at that particular lesson;

b) as regards the object of detection, i.e. teaching to evaluate, it should

be noted that all ongoing teaching should be detected. Indeed the

coverage of the teachings evaluated, is not total. This is due mainly

to the fact that financial resources by the university are not adequate;

c) a description of the measurement instrument is shown in the follow-

ing paragraph;

d) the detection is performed only after the students have carried out

at least three quarters of the total hours provided for each course.

Moreover, classroom with less than 10 students were not considered.

What I have just said brings out the character of our cross-sectional obser-

vational study. In fact, neither study subjects nor the variables of interest

(ie the items of the questionnaire) are manipulated by the researcher, you

do not know in advance the characteristics of the subjects, the policy un-

derlying the realism (Kish, 1987). Moreover, since the detection is made
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at a precise moment in time we talk about cross-sectional study in which

subjects have in common the fact that they attend the same course.

The questionnaire was administrated by 200 detectors, recruited among stu-

dents of all faculties. After the survey, the questionnaires are sent to Centre

for Evaluation where answers are trasferred on a computer via an optical

reader. Finally, the data (aggregated by faculty and university) are sent to

the NV of the University, which provides validation of their ”formal” anal-

ysis of the results and elaborates the final report.

2.2 The measurement instrument

The evaluation form used in the survey is structured in six sections. These

sections provide information about students’ personal details and students’

opinion on several aspects of university courses, such as courses facilities,

curriculum programming and teaching activities of the whole course. The

preliminary section contains general information about the course (course

code, type of degree, term, etc). The first section refers to student’s personal

characteristics (date of birth, residence, age, secondary school, number of

credits collected, etc). Sections (B, C, D, E, F) contain items concerning

various aspects of the course: teaching characteristics (B), global satisfac-

tion and previous knowledge of the topic (C), management aspects (D),

class facilities (E), teacher’s characteristics (F). Finally, section G refers to

courses organized in modules.

The items are measured on four categories according to the Likert scale:

definitely no, more no than yes, more yes than no, definitely yes. Items B2,

B6, B7, E2, have not considered in this study. In fact, in the faculty chosen

for the survey the evaluation of tutorials, laboratory activities are not given
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from all courses. For the same reason section G has not been considered.

The item C1 was not considered because it is inherently ‘bearer of qual-

ity’, in the sense that it is our opinion that the interest in a discipline may

positevely affect the assessment probably upwards, regardless of the intrin-

sic quality of provided service.

B9 is an ambiguous item. This refers to the level of previous knowledge on

the topic with the intent to understand the contents of the course properly.

The exclusion of the item B1 is motivated by the decision to eliminate all

the questionnaires which have a percentage of less than 50%.

The removal of the item F1, for the percentage of classes taught by teachers

owner, finds its reason in the difficulty of interpretation of the item itself. It

is assumed that the high percentage of classes conducted by the teacher can

be considered an enrichment of the concept of education?(in this case the

item would be oriented positively with the quality of teaching)

The item B5 (”The teaching content is overlaid on his other teachings?”)

is also deleted: from previous analysis (Sulis, 2007), it was found that stu-

dents interpret (you do not understand why) in a positive way the overlap-

ping with other teachings.

2.3 Data

In our analysis we consider the undergraduate courses because they are

more established and attended by more of students. The dataset consists

of 8503 questionnaires, corresponding to 286 courses in the only under-

graduate courses. The number of students per course range from 10 to 108

with a mean of 42 and a median value of 40. As table 2.1 shows, around

the 15.3% of the questionnaire are the evaluation of courses with less than
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20 evaluators. Whereas 68% of the courses have collected more than 30

evaluators; 156 courses out of 286 are medium classes, with a number of

evaluators between 10 and 30; 108 classes have a number of evaluators be-

tween 31 and 60; 22 are large classes with more than 60 students; more than

100 questionnaires have been gathered only for one course. Summarizing,

the largest classes (37.8%) are those with a number of students between 61

and 100, but the percentage of classes of small-medium size (33.2%) is also

high.

n. stud. per class n. students (%) n. courses (%)

10-20 1305 (15.34) 95 (33.22)

21-30 1444 (16.98) 61 (21.33)

31-60 4331 (50.93) 108 (37.76)

61-100 1326 (15.59) 21 (7.34)

>100 97 (1.14) 1 (0.35)

Total 8503 (100.0) 286 (100.0)

Table 2.1: Number of questionnaire per class

2.4 Students’ characteristics

In this section we show some descriptive statistics of the characteristics of

the respondents. The distribution of the gender variable (Table 2.2) shows

a significant male presence in the faculty considered (76.8% of students).

As far as the secondary school of origin is concerned, it can be noted that

63.9% of the questionnaires filled out by students come from high school.

The percentage is much lower for students from other schools.
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The univariate distribution of residence variable shows a majority of ques-

tionnaires completed by students in site (41.5%) compared to permanent

students (37.2%).

A lower value (21.3%) is detected for commuter offsite students. Most of

the students involved in the survey does not carry out any job (82.2%) and

is not relevant to include students who have a full time job (2%)(Table 2.2).

modalities n. students % students

Gender

Male 6289 76.77

Female 1903 23.22

Total 8192 100.0

Secondary School

High school 5284 63.84

Other 2992 36.15

Total 8276 100

Residence

in site student 3191 41.46

permanent resident student 2864 37.21

commuter offsite student 1642 21.33

Total 7697 100.0

Occupational Status

no job 6771 82.22

part-time 1301 15.79

full-time 167 2.02

Total 8239 100.0

Table 2.2: Univariate distributions of Students’ characteristics
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The age distribution (Table 2.3) shows that questionnaires were filled

out by students aged 19 to 21; just under 8% are over 24. The analysis

of the characteristics concerning students’ university curricula reveals that

80.8% are in course student (“regular student”), but more than half of the

total of the questionnaires refers to students who have gathered less than

60 credits. The distribution of the number of credits (Table 2.3) already

gathered by the student when he/she fills in the questionnaire is strongly

skewed towards the bottom, with just 5.9% of the evaluation forms fulfilled

by students who have gathered more than half of the credits.

2.5 Students’ ratings

In this section we will analyze the distributions of ratings given by students.

The students’ ratings are measured by means of an ordinal scale with four

categories. Since there is no information about distances between cate-

gories, as generally happens when working with ordinal scales, we prefer

to avoid the attribution of scores and perform the analysis with appropriate

statistical tools available for the type of variables. Table 2.4 shows fre-

quency distributions (percentage) for each category of the 16 ordinal items.

Almost all item distributions are positively skewed. In fact more than 50%

of students gives positive responses to each items. In particular, items F2,

F3, F4, F5 have median in the last category. Other items register the highest

percentage of units in the more yes than no category. If items are ordered

according to the percentage of students who are very satisfied, items F5, F3,

F2, F4, F7 are in the first five ranking positions. At the bottom we find items

E1, B10, B11, D1, D2 that concern managements aspects and coordination

among courses. The last column of the table 2.4 shows an indicator that
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modalities n. students % students

Age

18 369 4.34

19 2212 26.06

20 2099 24.73

21 1638 19.30

22 959 11.29

23 561 6.61

24 266 3.13

25 159 1.87

>26 225 2.65

Total 8488 100.0

Number of credits collected

0-30 3787 44.51

30-60 1759 20.69

60-90 1284 15.10

90-120 1003 11.79

120-150 505 5.93

150-180 165 1.94

Total 8503 100.0

Regularity

out of course student 1430 17.07

in course student 6765 80.75

repeating student 182 2.17

Total 8377 100.0

Table 2.3: Other students’ characteristics
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summarizes the students’ ratings taking into account their heterogeneity

(Bernardi et al., 2004; Capursi and Librizzi, 2007). The general expression

of the indicator is the following:

IS 0.5 = 1 −
(

1
k − 1

m−1∑
m=1

Fr
m

)1/r

, (2.1)

where Fm is the cumulative distribution function of items responses in cor-

respondence to the modality m of the ordinal variable.

The 2.1 is a average power of order r. The average takes into account of the

judgements variability. With the same average level of the distribution and

symmetric distributions, when the variability of the distribution increases,

the average increases if r > 1 and decreases if r < 1. The final expression

is

IS 0.5 = 1 −
(
1
3

3∑
m=1

F0.5
m

)2

, (2.2)

For the reasons concerning the choice of r, see Capursi and Librizzi (2007).

In particular, the transformation (2.2) is obtained as a particular case of the

complement to the unity of a relative index of dissimilarity between the

ordinal empirical distribution of the judgments and the ordinal distribution

’excellent’, namely the utmost agreement on the best judgment (Leti, 1983).

So (2.2) gives a quantitative variable for each item and the statistical unit is

the single teaching course. Moreover, the indicator allows to discriminate

the items with the same median. Among all the items with the median more

yes than no, the highest value (0.87) corresponds to items F3 and F5, for

which 62.6% and 64.5%, respectively, of the opinions are positive.
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% observations in each category

Item 1 2 3 4 n. observed median IS 0.5

B3 5.7 15.4 39.4 39.6 8373 3 0.76

B4 8.0 17.4 35.1 39.5 8395 3 0.73

B8 8.8 18.4 43.5 29.3 8435 3 0.69

B10 13.1 19.3 40.6 27.0 8435 3 0.65

B11 10.8 23.9 43.7 21.6 8398 3 0.64

C2 9.4 18.0 40.0 32.6 8446 3 0.70

D1 14.0 24.4 42.1 19.5 8432 3 0.60

D2 22.6 34.9 33.1 9.3 8404 2 0.46

D3 12.8 20.2 37.5 29.5 8335 3 0.65

E1 12.2 20.6 39.9 27.2 8448 3 0.65

F2 5.4 8.9 29.3 56.4 7489 4 0.81

F3 2.6 6.3 28.4 62.6 8387 4 0.87

F4 3.5 7.4 38.1 51.0 8122 4 0.83

F5 2.6 5.8 27.1 64.5 8380 4 0.87

F6 9.4 15.5 37.0 38.1 8401 4 0.72

F7 9.3 14.3 35.3 41.1 8393 4 0.74

Table 2.4: Answers to items: 1 = definitely no, 2 = more no than yes, 3 =

more yes than no, 4 = definitely yes



Chapter 3

Aggregation analysis: Relative
Importance Metric

In this chapter we describe the methodology and results concerning the first

phase of the work. In particular we want to investigate what are the items

that explain the satisfaction. Because our study is observational with cor-

related variable (see Appendix B), we make use of Relative Importance

Metric (RIM) in linear regression to estimate the weight for each item in

explanation of satisfaction. In this phase of work the data are transformed

by means 2.2 (Chapter 2, Section 2.5), so that the variable entering in the

regression model, i.e. the items, are quantitative.

Moreover, under the assumption that the performance of students’ careers

can affect the expressed opinions, we use a performance indicator. This in-

dicator, described in the next section, is built on the basis of the information

obtained through the questionnaire filled out by students. This is intended

to verify whether the drivers of the quality of teaching are different depend-

ing on the performance.
17



18 Chapter 3. Aggregation analysis: Relative Importance Metric

We introduce the Indicator of Student Performance in Section 3.1. Section

3.2 and 3.3 present the relative importance metric PMVD (Proportional

Marginal Variance Decomposition) and a statistical test to compare PMVD

metric for two groups of students (bad and good students). The results of

the application to teaching evaluation data (Chapter 2) are shown in Section

3.4.

3.1 The indicator of Student Performance

Since the questionnaire is anonymous, the only way to know the perfor-

mance of students is using the information included in the questionnaire.

Such information declared by students, relate to credits gathered, age, sex,

school of provenance ... By combining the variables age and acquired cred-

its we build a performance indicator (ISP) (Librizzi, 2008) shown below:

IS P = (A − 19) ∗ 0.8 −C/60. (3.1)

A indicates the student age declared by him/her in the day when the ques-

tionnaire was filled out, C indicates the variable credits (the credits he/she

says to have gathered). C are divided by 60 to express them in terms of

‘fruitful years’, given that students should acquire 60 credits per year. We

subtract 19 from A, since it is the standard age for students to enter into

the Italian university system. Therefore, the result is the number of years

spent in university studies (assuming that students enter into the university

system at the age of 19 exactly). This number is multiplied by 0.8, to adjust

it to the standard of students performance, since students with an excellent

career are very rarely observed. This is equivalent to assume that a student
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reaches, on average, 48 credits per year.

Indicator 3.1 can take negative values and it has not a theoretical maxi-

mum, since there is no theoretical maximum for student age. To sort out

this drawback, IS P is standardized in the following way:

IS P∗ = 1 −
IS P + k

max(IS P + k)
, (3.2)

where k = −min(min(IS P), 0). In this way the second addend of 3.2 gets

values between 0 and 1. For a straightforward interpretation we consider 1

minus the fraction. So, in according to our data IS P∗ is equal to 0 when a

student is 28 years old and he has just acquired 30 UEC; IS P∗ is equal to

1 when IS P is equal to its maximum that is obtained crossing age 20 with

the higher number of observed credits. IS P∗ allows,to classify students in

bad and good relating to their performance.

3.2 Relative importance metrics

Weighting techniques based on a multiple regression model are widely used

because of the numerous advantages that such techniques involve, like the

possibility to determine the weight of the single simple indicators (Nardo

et al., 2005). When regressors are uncorrelated each covariate contribution

is just the R2 from univariate regression, and all univariate R2-values add

up to the full model R2. But, when data come from observational studies,

the covariates are usually correlated and such techniques are not appropri-

ate because it is not simple to break down R2 into components from the

individual regressors. Let consider the linear regression model

Y = β0 + X1β1 + ... + Xnβn + ε (3.3)
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where random variables X j, j = 1, ..., n, denote n regressor variables and

ε denotes an error term with expectation 0 and variance σ2. This model

implies E(Y |X1, ..., Xp) = β0 + X1β1 + ... + Xpβp and var(Y |X1, ..., Xp) =

var(ε|X1, ..., Xp) = σ2. The marginal variance model is

var(Y) =

n∑
j=1

β2
jv j +

n−1∑
j=1

n∑
j+1

β jβk
√

v jvkρ jk + σ2. (3.4)

The regression variances are denoted as v j, j = 1, ..., p, the inter-regressor

correlations as ρ jk. If X’s are uncorrelated, the explained variance can be

split into the contribution β2
jv j (v j = var(X j)), can be consistlently esti-

mated using the unique sum of squares for each regressor. If X’s are corre-

lated, it is not possible to decompose var(Y) in the usual way.

The difficulty in decomposing R2 for regression model with correlated re-

gressors lies in the fact that each order of regressors yields a different de-

composition of the sum of squares (Achen, 1982). Generally the regressors

enter into the model in the order they are listed.

In 1982 Achen has introduced a distinction between “dispersion impor-

tance”, i.e., importance relating to the amount of explained variance, “level

importance”, i.e., importance of each regressor for the response’s mean, or

“theoretical importance” i.e., change in the response for a given change in

the regressor. Some scholars have proposed analytical procedures able to

underline the relative importance of each variable within a regressive model

(Firth, 1998). Nevertheless, these various approaches have not found unan-

imous agreement because of the different results reached in presence of

correlation among the regressors. Moreover, if we consider a regression

model we can observe that regressors are significant, but among these we

cannot determine a ranking of the regressors or a quantification of the rela-
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tive importance of each regressor for the response.

Approach to this issue are proposed in literature by means of relative impor-

tance metrics for the R2 decomposition (Feldman, 2006, 2007; Lindeman,

1980).

In literature the more used metrics are LMG (Lindeman Merenda Gold)

and PMVD (Proportional Marginal Variance Decomposition). Both metrics

(Lindeman, 1980; Feldman, 2006, 2007) decompose R2 into non-negative

contributions that automatically sum to the total R2.

The approach taken by the metrics LMG and PMVD is based on se-

quential R2s. It takes into account the dependence on orderings by aver-

aging over orderings (Kruskal, 1987a,b), either using unweighted averages

(LMG) or weighted averages with data-dependent weights (PMVD).

The following criteria for decomposition of the model R2 are considered

useful in the literature, though seldom listed explicitly:

a) Proper decomposition: the model variance is to be decomposed into

shares, and the sum of all shares has to be the model variance.

b) Non-negativity: all shares have to be non-negative.

c) Exclusion: the share allocated to a regressor X j with β j = 0 should

be 0.

d) Inclusion: a regressor X j with β j = 0 should receive a non zero share.

Feldmann (Feldman, 2006) critized that LMG violates the exclusion crite-

rion (for which the share allocated to a regressor X j with β j = 0 should be

0) and designed PMVD specifically for satisfying this criterion. If a causal

interpretation of the variance allocations is intended, LMG’s equalizing be-

havior must be seen as a natural result of model uncertainty and LMG is
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to be preferred (Grömping, 2007). In our study we prefer PMVD metric

for two reason. First of all our aim isn’t to find the causal link between

items taking into account the correlation structure between items; secondly

we consider exclusion an indispensable criterion in the application. For de-

scribing the metric PMVD, we introduce the following notation. In linear

regression the coefficients βk, k = 0, ..., p are estimated by minimizing the

sum of squared unexplained parts. Denoting ŷi the fitted values and con-

sidering a set S of p regressors, R2 is given by the ratio between regression

deviance and total deviance:

R2(S) =

∑n
i=1(ŷi − y)2∑n
i=1(yi − y)2 . (3.5)

R2 measures the proportion of variation in y that is explained by the p re-

gressors in the model.

The sequentially added explained variance, obtained when we add the re-

gressors with indices inM to a model that already contains the regressors

with indices in S is gives as

seqR2(M|S) = R2(M∨S) − R2(S). (3.6)

The order of the regressors in any model is a permutation of the regressors

x1, ..., xp. It is denoted by r = (r1, ..., rp). Let S k(r) the set of regressors

entered into the model before regressor xk, according to the order r, then

the portion of R2 allocated to regressor xk in the order r can be written as

seqR2({xk}|S k(r)) = R2({xk} ∨ S k(r)) − R2(S k(r)). (3.7)
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As said, PMVD can be seen as an average over orderings as well, with

data-dependent weights accordind to the r-th order:

PMVDk =
1
p!

p!∑
r=1

w(r)seqR2({xk}|r), (3.8)

where w(r) denotes the data-dependent weights. In this case, if the co-

efficients of the regressors are not zero, the permutation r has a weight

proportional to

L(r) =

p−1∏
i=1

seqR2({xri+1 , ..., xrp}|{xr1 , ..., xri})
−1 (3.9)

and

w(r) = L(r)/
∑

r

L(r) (3.10)

is the probability associated to the order r, where summation in the denomi-

nator is over all possible permutations r. In other words, PMVD weights are

obtained through a weighted mean of increases R2 over all possible entry

orders. Feldman’s proposal (Feldman, 2007) gives a weigth proportional

to the R2 explained by each regressor. This implies that the distribution of

relative importance measures is concentrated on few regressors with high

predictive power.

3.3 Are good and bad students significantly differ-
ent?

To answer to this question, it is necessary to construct a statistical test to

compare, for every item k = 1, ...,K, the weights obtained with PMVD met-
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ric for two grous. Because we have not standard error of PMVD, we utilize

bootstrap procedure to construct an empirical sampling distribution and to

assess the reliability of relative importance measures (Efron and Tibshrani,

1993). To build the statistical test, for two groups, we resample 500 times

the values PMVD for every item, obtaining two matrices M1 and M2 of di-

mension 500xK. Then, relating these matrices, we obtain the ratio matrix R

with generic element rik, where i = 1, ..., 500, 500 is the sample dimension

and k = 1, ...,K indicates the item. The joint distribution of the K distri-

butions rk is a multinormal distribution. From R matrix we determine the

variance and covariance matrix bootstrap V?(R̂) of dimension KxK. The

statistical test is the following (Dobson, 1983):

r̂T V?(R̂)−1r̂, (3.11)

with a χ2
K distribution, where r̂ is the ratio vector of observed weights

PMVD between two groups.

3.4 Results

3.4.1 Indicator of Students Performance results

In this section we present some considerations on indicator (3.2), justifying

the classification of students in relation to their performance. The graphic

representation of conditional distribution of IS P∗ given age (Figure 3.1)

highlights an increasing monotonous trend of median level of non regularity

to the growth of age. So, the variability of IS P∗ is explained by age.
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Figure 3.1: Boxplot of conditional distribution of IS P∗ given age.

Other considerations on indicator (3.2) can be drawn from Figure 3.2

• in this graphic we can observe the level curves of IS P∗;

• the lowest values of the indicator are obtained for the students who

have a very bad career;

• the indicator increases for decreasing values of age and/or increasing

values of credits (UEC);

• we can observe that in the top right side of the graphic there are not

any observed values, because it is not possible that a student is ahead

of schedule;

• dots size highlights a very high frequency of 19 students years old

who acquired 30 UEC. So we can consider that values between 0.7
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and 0.8 correspond to a standard career. For example, this interval

comprehends students who achieve a first degree (180 UEC) at 22 or

23 years old.

Figure 3.2: Level curves of IS P∗ as a function of age and UEC with fre-

quency classes of students.

In Table 3.1 we can observe the frequency of distribution for classes of

values of IS P∗. The three classes of values greater than 0.7 represent pos-

itive results. In particular more than half (about 70%) of students have an

excellent or standard career.
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Classes of values Frequency % frequency

0-0.1 33 0.39

0.1-0.2 36 0.49

0.2-0.3 100 1.18

0.3-0.4 140 1.65

0.4-0.5 266 3.13

0.5-0.6 742 8.74

0.6-0.7 2400 28.28

0.7-0.8 3982 46.91

0.8-0.9 755 8.89

0.9-1 34 0.40

Table 3.1: Distribution of students for classes of values of IS P∗.

These empirical considerations lead us to define the following dichoto-

mous variable:

P =

 0 if IS P∗ ≤ 0.7

1 if IS P∗ > 0.7.

P takes value 0 if the student time lag is greater than the standard one, i.e.

if he has a bad career performance. On the other hand, when the time lag

indicator is greater than 0.7 (P = 1), we consider the student has a good

career performance.

3.4.2 Relative importance metric results

Students satisfaction depends on several aspects of the teaching activities,

but not all with the same importance. We are interested in identifying which
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items are the drivers of quality of teaching in the students opinion (Cam-

postrini et al., 2006), as in Capursi et al. (V. Capursi, 2008), and above all,

in highlighting possible differences between good and bad students. The

complexity of the concept that we want to measure makes necessary to pay

attention to analysis of data. In fact, evaluation items of the questionnaire

are highly correlated, so it is difficult to identify those that greatly influence

the global satisfaction. We use relative importance metric to try to obtain

weights that more explain students satisfaction. Before relative imporan-

tance analysis, original ordinal data were aggregated by teaching course by

means 2.2.

PMVD metric

To find the relative importance of such items, we use PMVD method on the

basis of a linear model in which the indicator (2.2) for item C2, is regressed

on indicator of questionnaires items. We consider item C2 because we

think that C2 can express the general perception of teaching quality from

students. Initially, we consider a model in which IS P∗ variable is present.

Because of high correlation of item covariates, the effect of this variable is

non relevant. For this reason we consider two separated models for the two

groups of students (bad and good):

IC2i =β0i + β1iIS B3i + β2iIS B4i + β3iIS B8i + β4iIS B10i + β5iIS B11i+

+β6iIS D1i + β7iIS D2i + β8iIS D3i + β9iIS E1i + β10iIS F2i+

+β11iIS F3i + β12iIS F4i + β13iIS F5i + β14iIS F6i + β15iIS F7i + εi,

(3.12)

the first one (i = 0) for bad students and the second one (i = 1) for good

students. Results are shown in Table 3.3, where PMVD weights are scaled
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so that they sum to 1 to make interpretation easier. First of all, we can

observe that many items have weigth zero or almost zero. In particular, for

both groups, items refer to organization of teaching (B11, D1, D2, D3, E1)

have small weigths. R2 is equal to 0.78 for the first model and 0.88 for the

second one.

Observing the weights, the items that explain more the students satisfaction,

in term of relative importance, are B3 and F7 for bad students; the more

importance items for good students B3, F6 and F7. So there are some

differences. For good teacher motivation (F6) is more important than bad.

We observe a weigth of 0.282 for good and 0.075 for bad. Moreover, the

first group of students give a great importance than the second group to the

clarity of teaching (F7) (0.647 vs 0.545). Bad students give small weigths to

items F2, F3, F4, F5 (that refer to the teaching. For good unique important

items in section F are F6 and F7. The good students are very demanding

than good respect to clear explanation of formative objective of the teaching

(B3) (0.132 vs 0.165). It seems that, somehw, the career performance, can

be an element of discrimination to evaluate the teaching quality.
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PMVD

Items P = 0 P = 1

B3 0.165 0.132

B4 0.000 0.001

B8 0.019 0.019

B10 0.026 0.009

B11 0.008 0.001

D1 0.000 0.002

D2 0.016 0.000

D3 0.003 0.001

E1 0.004 0.003

F2 0.002 0.005

F3 0.022 0.000

F4 0.031 0.000

F5 0.021 0.000

F6 0.035 0.282

F7 0.647 0.545

Table 3.2: PMVD weights of teaching quality items.

Boostrap results

Summary statistics from bootstrap procedure are presented in Table 3.3.

Mean bootstrap values overlap with the observed PMVD weigths (Table

3.2). In fact, for bad students, items B3 and F7 are the only items with

higher weight. For good students, items B3, F6 and F7 have mean val-

ues greater than other mean value items. We observe OLS (Ordinary Least

Square) analysis results (Table 3.4). For bad, items B3, B10, B11, D2, F3,
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F4, F5 and F7 have significant coefficients. If we consider mean value in

Table 3.3, these items (except for B3 and F7) have low weigths. For good

students items B3, B8, B10, F2, F6 and F7 have significant coefficients. If

we consider mean value in Table 3.3 these items (except for B3 F6 and F7)

have low weigths. So, through PMVD metric we obtain different results in

terms of importance in the explanation of overall satisfaction.

Considering that the excess kurtosis of the normal distribution is zero, the

Bera Jarque p.values are based on the Bera Jarque test statistic and repre-

sents the confidence level in rejecting the hypothesis of asset return distri-

bution normality based the sample values for the skew and kutorsis of the

distribution. This test statistic is distributed χ2. According to this test, the

hypothesis that residuals are normal cannot be accepted only for any item.

Figure 3.3 shows the univariate distribution of PMVD component shares

for all items for two student groups. It is evident that there are two types

of distributions: highly skewed distributions almost exponential in nature

such as observed for items F7 for both groups; symmetric kurtotic distri-

bution such as observed for F6 in good students. In particular items with

a low weight PMVD are approximately exponential, items with a high ex-

planatory power in terms of relative importance have skew and kurtosis

values lower that others. Now, we concentrate just on items B3, F6 and F7.

We note that for item B3 and F7 there is the overlapping between the two

curve. For item F6 there is a difference between two groups. In particular,

for good students F6 has higher frequencies for high values of PMVD than

bad students. Moreover we can oserve the non-overlapping between the

two curves.

The null hypothesis of statistical test (3.11) is:

H0 : βk0 = βk1,
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where βk0 and βk1 are the coefficients of model (3.12) with k = 1, ..., 15 for

i = 0 (bad students) and i = 1 (good students). Considering this statistical

test with χ2
15 distribution, for α = 0.05 we can reject the null hypothesis of

equality of weights between two groups, that can be considered, in terms of

relative importance, statistically different. It seems that this overall differ-

ence can be due to item F6 for which good students give more importance

than bad.
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In fact, considering the statistical test (3.11) with a χ2
15 distribution, for

α = 0.05 we can reject the null hypothesis of equality of weights between

two groups, that can be considered, in terms of relative importance, statis-

tically different.

bad good

Par. Beta Std. Err. t-stat p-val Beta Std. Err. t-stat p-val

Interc. -0.108 0.059 -1.831 0.068 -0.169 0.052 -3.264 0.001

B3 0.273 0.073 3.741 0.000 0.247 0.054 4.584 0.000

B4 0.016 0.052 0.304 0.761 -0.039 0.041 -0.965 0.335

B8 0.111 0.045 2.470 0.014 0.099 0.034 2.843 0.004

B10 0.100 0.038 2.600 0.009 0.077 0.028 2.685 0.008

B11 0.085 0.036 2.336 0.020 0.031 0.027 1.166 0.245

D1 -0.019 0.047 -0.404 0.686 0.050 0.041 1.198 0.232

D2 0.105 0.045 2.325 0.021 0.003 0.039 0.073 0.942

D3 -0.056 0.040 -1.414 0.158 -0.041 0.030 -1.356 0.176

E1 -0.051 0.035 -1.452 0.148 0.047 0.031 1.493 0.137

F2 -0.067 0.056 -1.192 0.234 0.092 0.041 2.248 0.025

F3 0.257 0.071 3.614 0.000 -0.000 0.058 -0-003 0.997

F4 0.215 0.066 3.242 0.001 -0.028 0.059 -0.482 0.630

F5 -0.374 0.087 -4.278 0.000 0.008 0.072 0.114 0.909

F6 0.094 0.061 1.532 0.127 0.258 0.054 4.809 0.000

F7 0.448 0.065 6.901 0.000 0.392 0.043 9.065 0.000

Table 3.4: OLS analysis
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Figure 3.3: PMVD component boostrap distribution for bad (—–) and

good(—–) students.





Chapter 4

Multilevel IRT Model

4.1 Why Multilevel IRT Model

In Chapter 3 we introduce relative importance metrics to determine the

drivers of teaching quality. In this Chapter we want to use other models

in order to take into consideration the complexity of Student Evaluation

Teaching data. One of such models are Item Response Theory (IRT) mod-

els (P. de Boeck, 2004)

Our data are organized as a hierarchical structure (students in course, courses

in courses degree). In this case, it is reasonable to expect that latent vari-

able levels in the lower part of the hierarchy (students) are correlated to a

greater extent with those belonging to different higher level units. In other

words, it may be supposed that students within courses are not independent:

students are evaluating the same course, they shared for a term the same lec-

turer, the same class environment and the same group rules: probably they

have shared their opinion of the course during the term, affecting the final

opinion on each other (Snijders and Bosker, 1999; Goldstein, 2002).
37
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Within the framework of multilevel (or random effects or generalized lin-

ear mixed) models, an item response model (Rasch, 1980) is embedded in

a hierarchical model. This framework is characterized by the treatment of

person ability parameters as random parameters in a IRT model.

The importance of hierarchical structure has been well known in statistics

for a long time. Methodological developments try to include hierarchies in

analysis. In particular two approaches were considered and used. In the

first approach it is estimated a single regression model for individual data,

ignoring the presence of groups. In the second, multiple regression mod-

els are estimated, one for each group. So considering the first approach,

we estimate a single Rasch model for all students, without distinguishing

between the various courses, in the second we estimate a series of Rasch

models, one for each course. These two solutions are very simple to apply

but do not take into account in an appropriate way the structure of the ag-

gregate data.

Using multilevel models we treat the data taking into account their hierar-

chical structure and the dependence of responses through the random ef-

fects. The Chapter is structured as follows: Section 4.2 describes the liter-

ature for the application of multilevel IRT model, the third section (Section

4.5) refers to the different procedures with which to develop a multilevel

model. In particular, the two-step analysis is described, highlighting the

possible issues; Section 4.3 is devoted to a brief description of IRT models

for binary and ordinal data, introducing and presenting the main features of

the Rasch model; in the fifth section (Section 4.4) we introduce the interpre-

tation of the parameters of the IRT models in the context of the evaluation

of teaching. In Section 4.6 we present a multilevel model as framework for

IRT model both for binary and ordinal data. In particular we describe the
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algebraic equivalence between multilevel ordinal model and ordinal IRT

model. Moreover, in Section 4.7 we show via simulation study the alge-

braic equivalence between the two models.

4.2 Literature background

Literature contains various applications for binary multilevel IRT mod-

els. Verhelst and Eggen (1989) and Zwinderman (1997, 1991) consid-

ered the combination of an IRT model with a structural linear regression

model.Raudenbush and Sampson (1999) discussed a multilevel model that

can be seen as a Rasch model embedded within a hierarchical structure,

where the first level of the multilevel model describes the relation between

the observed item scores and the ability parameters. Kamata (2001) intro-

duced a multilevel formulation of the Rasch model using HLM software.

Fox and Glas (1991) and Pastor (2003) explored and illustrated the use

of Kamata’s three level IRT model in educational and psychological mea-

surement and research. As concerns polytomous data, Maier (2001) uses a

hierarchical Partial Credit Model (PCM), with covariates at the level of in-

dividuals, to determine whether gender differences existed in the student’s

mood in a mathematics classroom. Fox (2001) estimates multilevel IRT

models with latent dependent and independent variables and dichotomous

and polytomous items, in order to assess the school effectiveness. Adam

et al. (1997) and Patz and Junker (1999) discussed models that can han-

dle both dichotomous and polytomous item responses along with a latent

variable as outcome in a regression model.
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4.3 Theoretical background: the Rasch model

The Rasch Model (RM) was the simplest model among the IRT models. It

was first proposed in the 60s to evaluate ability tests (Rasch, 1960). The

RM is a latent structure model by means of which it is possible to derive

continuous measures on an interval scale from total scores obtained by a set

of subjects on a set of items. This situation is common in social sciences, as

stated, for example, by Molenaar in a fundamental book on Rasch Model

(Fischer and Molenaar, 1995): “It is easy to find examples of observable

human behaviour indicating that a person has more or less of such a general

property, but the concept has a surplus value, in the sense that no specific

manifest behaviour fully covers it. This is the reason why such properties

are called latent traits”. The fundamental assumption of the Rasch model

is that the answer each subject gives to each item depends on two parame-

ters: one is the person parameter and represent a subject measure (θ j), the

other is the item parameter that is the item measure (πi). Then the response

probability of each subject to each item is a function of person and item

parameters. It is possible to compare these two parameters because they

belong to the same continuum. Their interaction is expressed by the differ-

ence θ j − πi ( j = 1, ..., J, i = 1, ..., I). In a deterministic sense a positive

difference means that the subject’s abilities are superior to the item’s diffi-

culty and therefore we can be sure that an exact response will always have

been given. From a probabilistic perspective, such as that of the RM, this is

not true since a subject who is intrinsically capable of giving a right answer

(θ j > πi) may instead, given a wrong response. Likewise, it is possible that

a subject lacking in ability can accidentally give a right answer.

The more simple Rasch Model is the dichotomous one. In this case, the

probability of a correct answer Yi j = 1 by the subject j of ability θ j when



4.3. Theoretical background: the Rasch model 41

answer to the item i of difficulty πi is:

P(Yi j = 1) = pi j =
exp[θ j − πi]

1 + exp[θ j − πi]
=

1
1 + exp[−(θ j − πi)]

(4.1)

In the dichotomous model data are collected in the raw score matrix, with

J rows (one for each subject) and I columns (one for each item), whose

values are equal to 0 or 1. The sum of each row r j =
∑I

i=1 yi j represents

the total score of the subject j for all the items; the sum of each column

si =
∑J

j=1 yi j represents the score given by all subjects to the item i. These

scores are given according to a metric that, being nonlinear, produces some

conceptual distorsion when we compare the row and column totals. So, it

is necessary to change these scores according to a metric that is founded on

the conceptual distances between subjects and items (Wright and Masters,

1982). The transformation takes place through the logit:

log
pi j

1 − pi j
(4.2)

Some assumptions are fundamental in all family of Rasch models parame-

ters. The first is that the items measure only one latent feature (unidimen-

sionality. Another important characteristic is that the answers to an item

are independent of the answers given to other items. As far as the param-

eters are concerned, for which no assumptions are made, by applying the

logits previously described, θ j and πi can be expresses according to a com-

mon measurement unit on the same continuum (parameters linearity); the

estimation of person ability (θ j) is free from sampling distribution of the

items attempted; the estimation of the item difficulty (πi) is free from the

sampling distribution of the sample employed (paramters separability); and



42 Chapter 4. Multilevel IRT Model

the row and column totals on the row score matrix are sufficient statistics

for the estimation of θ j and πi. A fully examination of these assumptions is

beyond the scope of this paper. For a detailed discussion see (Fischer and

Molenaar, 1995).

4.3.1 Polytomous IRT model

The Rasch dichotomous model has been extended to the case of more than

two ordered categories. In this model it is introduced the assumption that

between each category and the next there is a threshold that qualifies the

item’s position and characterizes the πi as a function of the difficulty pre-

sented by every answer category. Thus the answer to every category m

depends on the value πim that is the category difficulty for category m and

item i. In particular πim = πi − cm is the difference between the location

parameter for item i and the category threshold for category m.

Different politomous models have proposed:

• the Rating Scale Model (RSM) (Andrich, 1978). A fundamental con-

dition of the RSM is the equality of the threshold values for all the

items: even if the distance between a threshold and another one can

differ, the pattern of these distances is constant for all the items;

• the Partial Credit Model (PCM)(Masters, 1982). In this model the

difficulty levels differ item by item and the subject receives a partial

credit (score for each item) equivalent to the relative level of difficulty

of the completed performance. The thresholds can differ freely in the

same item or from one item to another.

The IRT model considered in our analysis is the PCM. Denote with pmi j

the probability of person j to respond with category m to item i, assuming
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for item i there are M ordered response categories (m = 1, ...,M). Then this

probability is:

P(Yi j = m) =
exp[θ j − πim]

1 + exp[θ j − πim]
(4.3)

This function depends from the person parameters θ j, the item parameter

πi and the threshold parameters δm that measure additional difficulty to en-

dorse the m-th response category. These parameters represent the cut-off

between one response category and the following

4.4 Rasch Model and teaching quality

In order to apply the Rasch model for measuring the quality of teaching, we

need to find a correct interpretation of the parameters taking into account

the context of teaching evaluation. Two different factors are often confused

but are very different. Let us start with an example: we want to measure

the quality of ice cream in Italy and in Germany. Probably Italian people

about are less satisfied than Germany people. The quality of ice cream is

the same. Satisfaction differs because of cultural differences, traditions. So

we can consider quality as the attribute factor and satisfaction as the person

factor and together these factors determine the result of the single answer in

the questionnaire. We can define now the correspondence between original

application (in psychometrics) and service quality application of the Rasch

model. The factor related to the persons, that in original application was

the ability, become now the satisfaction. The factor related to the items that

was the difficulty, in quality service becomes the quality (Figure 4.1).
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Original applications

ABILITY (Persons) ————- DIFFICULTY (Items)

Service quality applications

SATISFACTION (Persons) ————- QUALITY (Items)

Figure 4.1: Correspondence between original and service quality applica-

tions

In the original context the scale of the πi parameters is interpreted in

the following way: the smallest values of the πi parameters are associated

to easy item (so the subjects have a high probability of exceeding the item’s

difficulty); while the highest values are associated to the more difficult items

(the probability of overcoming the item’s difficulty is lower). On the other

hand, in quality context, the scale has to be read in the opposite way (Figure

4.2: the smallest values of the πi parameters identify the items with good

quality (because the subject satisfaction probabilities are high), while the

highest values of the item parameters correspond to items with bad quality

(lower subject satisfaction probabilities).

Less
Di f f iculty
−−−−−−−→More

Easy
Quality
−−−−−−−→ Difficult

Good −−−−−−−→ Bad

Figure 4.2: Item scale
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For the scale of the parameters θ j the interpretation is the same in both

cases (Figure 4.3): the smallest values of the parameter, which identifies

subjects of low ability, now identifies subjects with low levels of satisfac-

tion, and the greatest values, which previously corresponded to subjects

with a high degree of ability, now correspond to subjects with a high level

of satisfaction.

Henceforth πi will be named item quality and θ j person’s satisfaction.

Less
Ability
−−−−−−−−−−→More

Little
S atis f action
−−−−−−−−−→Much

Little −−−−−−−−−→Much

Figure 4.3: Person scale

4.5 Two step analysis vs one step analysis

A two step analysis using Item Response Theory (IRT) models is a common

practice, especially in investigating effects of student characteristics on stu-

dent abilities. In such a two-step analysis, student abilities are estimated via

a standard IRT model as the first step. Then, in the second step, ability esti-

mates are used as an outcome variable, and student characteristic variables

are used as predictors in a simple linear model, such as multiple regression

and analysis of covariance. For example in Pagani and Zanarotti (2010),

students’ satisfaction, measured through person location parameters (PLP)

obtained with the Partial Credit Rasch model, was used to assess the qual-

ity of teaching service in a set of university courses. Firstly, the authors
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use the PLP to obtain a measure of the level of satisfaction, then they intro-

duce this measure as a dependent variable in a multilevel model to detect

individual and environmental determinants of the level global satisfaction.

Lucadamo (2010) the purpose is to evaluate the Customer Satisfaction of

the patients of an hospital. The quantification of the response is made by

the use of the Rasch analysis, and in the second step of the work, he tries to

verify if the patient satisfaction can be influenced by socio-economic fac-

tors using a multilevel model. Rampichini and A. Petrucci (2004) present a

methodology for the analysis of student ratings of university courses. First

they discuss simple descriptive measures that take into account the ordinal

nature of the ratings; then they present net measures which account for the

characteristics of the students. These measures are obtained through multi-

level modelling.

These two step analyses may not provide accurate results, because of at

least two reasons. First, the standard error ability estimates from an IRT

model are heteroschedastic. Second, it is known that person parameter

estimates from marginal maximum likelihood estimation are biased and

inconsistent (Goldstein, 1980). Through a single analysis rather than two-

step analysis, one can expect improved estimation of the effects of student

characteristic variables on a latent trait, because these effects are estimated

simultaneously with ability parameters. As a result, the heteroschedastic

nature of the standar errors of ability parameters, is to take into account.

In the next Chapter we present two-step and one-step analysis results, in

order to highlight some differences in outcome.
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4.6 Multilevel Framework for IRT model

In this Section we present the multilevel framework for IRT model. In

particular we demontrate the algebraic equivalence between multilevel and

IRT models. This framework we allow us to carry out a one-step analysis.

We pay more attention on ordinal IRT model. For greater comprehension

of the equivalence, we present, initially the multilvel framework for the

simplest IRT model: the Rasch Model (RM). Next, we present multilevel

framework for an ordinal IRT model: Partial Credit Model (PCM). In par-

ticula we show the equivalence between a three-level model and the ordinal

PCM. This provide estimates of group-level satisfaction as well as person-

level satisfaction. Moreover we add in the model a person characteristic to

try to quantify the varioatio of person-characteristic variable effectc across

groups.

4.6.1 Multilevel Framework for bynary IRT model

We can show the equivalence between multilevel and Rasch Model ((Ka-

mata, 2001)) expressing the 4.1 by means logit link function. This function

can be used to model the log odds of the probability of a correct response:

ηi j = θ j − πi = log
(

pi j

1 − pi j

)
(4.4)

where ηi j is the log odds of obtaining a correct response to item i for a

person j. For a set of I items, the items could be modeled assuming a

Bernoulli distribution and the logit link function such that ηi j becomes:

ηi j = β0 j + β1 jX1i j + β2 jX2i j + ... + βk−1X(k−1)i j = β0 j +

k−1∑
q=1

βq jXqi j (4.5)
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where Xqi j is the q-th dummy variable for person j, with values -1 when

q = i, and 0 when q , i for item i. β0 j is an intercept term, and βq j is a

coefficient associated with Xqi j, where q = 1, ..., k−1. For item i associated

with the q-th dummy variable the equation 4.5 becomes

ηi j = β0 j − βq j. (4.6)

Note that no indicator variable is associated with the k-th item because it is

assumed that βk j = 0 to warrent the full rank of the design matrix. β0 j is

an intercept term, and a value 1 is assigned to X0i j for all observations. So,

β0 j is considered to be an overall effect that is common to all items. On the

other hand βk j = 0 means that the effect of the k-th item, compared with

the overall effect, is assumed to be zero. Then the probability that person j

answers item i correctly is expressed as:

pi j =
1

1 + exp(−ηi j)
. (4.7)

This is the level 1 or item level of the multilevel model, with items nested

within students. At this level the βs are constant across people. It should

also be noted that the βs are not the final parameters that are considered to

be item difficulties. The item parameters are defined in the level-2 model,

and they may be characterized as being constant across people.

The level-2 model is the person level model. Since β0 j is treated as a pa-

rameter common to all items in the level-1 model, it must be assumed in

the level-2 models that β0 j is a random effect across people. In this way,

a latent trait common to all items but variable across people can be mod-

elled. Also while the level-1 model does not assume that β1 j through β(k−1) j



4.6. Multilevel Framework for IRT model 49

are common across people, the level-2 models may model that item effects

are constant across people by modelling the specifying βq js as constants.

Therefore, the level-2 model is:



β0 j = γ00 + µ0 j

β1 j = γ10
...

β(k−1) j = γ(k−1)0

(4.8)

where µ0 j is a random component of β0 j and is distributed as N(0, σ2
mu).

The level-1 model together with the level-2 models show that item pa-

rameters are fixed across people and vary across items, while a latent trait

(person parameter) varies across people and fixed across items, because

there are not random terms added into β1 j through β(k−1) j. When level-

1 and level-2 models are combined, the linear predictor model becomes

ηi j = γ00 + µ0 j − γq0 for person j and for a specific item i that is associ-

ated with q-th dummy variable. Then, combining 4.6 and 4.8 in 4.9, the

probability that person j answers a specific item i correctly is expresses as

pi j =
1

1 + exp{−[µ0 j − (γq0 − γ00)]}
, (4.9)

where i = q. This has exactly the same form as the Rasch model in Equa-

tion 4.1, where θ j = µ0 j, πi = γq0 − γ00 for q = i.

4.6.2 Multilevel Framework for ordinal IRT model

In presence of ordinal data, very useful models are multilevel ordered lo-

gistic regression models, also called the multilevel ordered logit models or
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the multilevel proportional odds models.

The multilevel ordered models can be formulated as threshold models. The

real line is divided by threshold into M intervals, corresponding to the M

ordered categories. The first threshold is δ1. δ1 defines the upper bound

of the interval corresponding to observed outcome 1. Similarly, threshold

δm defines the boundary between the intervals corresponding to observed

outcomes m − 1 and m. The latent response variable (teaching quality) is

denoted by y∗i j (for item i and student j) and the observed variable yi j is

related to y∗i j by the threshold model defined as

yi j =



1 if −∞ < y∗i j ≤ δ1

0 if δ1 < y∗i j ≤ δ2
...

M if δM−1 < y∗i j ≤ +∞

The Three-level model

Consider the latent response variable y∗i jg for level-one units i (items), level-

two units j (students) and level-three unit g (courses). The ordinal models

can be written in terms of y∗i jg

y∗i jg = ηi jg + εi jg (4.10)

where

ηi jg = β0 jg +

k−1∑
q=1

βq jgXqi jg (4.11)

where Xqi jg is the q-th dummy for student j in course g, with values -1 when

q = i and 0 when q , i. β0 jg is an intercept term and βq jg is the coefficient
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associated with Xqi jg.

In absence of explanatory variables and random intercepts, the response

variable yi jg takes on the values of m with probability

pi jg(m) = P(yi jg = m), (4.12)

for m = 1, ...,M. As ordinal response models often utilize cumulative com-

parisons of the ordinal outcome, they define the cumulative response prob-

abilities for the M categories of the ordinal outcome yi jg as

Pi jg(m) = P(yi jg ≤ m) =

m∑
k=1

pi jg m = 1, ...,M (4.13)

Note that this cumulative probability for the last category is 1. Therefore

there are only (M−1) cumulative probabilities to estimate. If the cumulative

density function of εi jg is F, these cumulative probabilities are denoted by

P(yi j ≤ m) = F(δm − ηi j) m = 1, ...,M − 1, (4.14)

Equivalently, we can write the model as a cumulative model

G[Pi jg(m)] = δm − θi jg (4.15)

where G = F−1 is the link function.

If εi jg follows the logistic distribution, this results in the multilevel ordered

logistic regression model. Assuming the distribution of the error term ε∗i jg

of the latent response y∗i jg to be logistic, the cumulative probability function

of yi jg will be written as
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Pi j(m) = P(εi jg ≤ δm − ηi jg) =
exp(δm − θi j)

1 + exp(δm − θi jg)
. (4.16)

The idea of cumulative probabilities leads naturally to the cumulative logit

model

log
[
P(yi j ≤ m)
P(yi j > m)

]
= δm − ηi j (4.17)

Level-1 model

The level-1 model, which models variation of item responses within people,

was used to model the log-odds of the probability of endorsing item i for

student j in course g. The model is:

log
[

p(Yi jg ≤ m|xi jg, β0 jg)
1 − p(Yi jg ≤ m|xi jg, β0 jg)

]
= δm − (β0 jg +

k−1∑
p=1

βq jgxqi jg) (4.18)

where δm is the threshold parameter for category m = 1, ...,M − 1. β0 jg

represents the overall effect common to all items for person j.

Level-2 model

The second level or student-level of the model is used to model variation of

students satisfaction level within course:



β0 jg = γ00g + µ0 jg

β1 jg = γ10g + µ1 jg

β2 jg = γ20g + µ2 jg
...

βp jg = γ(k−1)0g + µ(k−1) jg

(4.19)
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The item effects (β1 jg, ..., β(k−1) jg) are specified as random across students,

so that the second level models the variation in β0 jg among students within

courses, and the variation among students within courses for each item.

It is assumed that the distribution of µ0 jg (the satisfaction estimates for

students) is N(0, σ2
µ). σ2

µ represents the variation of satisfaction among

students within courses.

Level-3 model

The third level of the model is used to model variation among courses in

satisfaction using the parameters estimated for each course (γ00g, γ10g,...,

γ(k−1)0g) in level 2 as outcome variables. In the following specification of

the model, the item and the latent trait effects are specified as random across

the courses: 

γ00g = α000 + ξ00g

γ10g = α100 + ξ10g

γ20g = α200 + ξ20g
...

γ(k−1)0g = α(k−1)00 + ξ(k−1)0g

(4.20)

Variation in ξ00g (the satisfaction level estimate for courses) is assumed to

be distributed N(0, σ2
ξ) representing the variation among courses in satis-

faction.

For item i, combining 4.19 and 4.20 in 4.18 we obtain the log odds for each

category:

log
[

p(Yi jg ≤ m|xi jg, β0 jg)
1 − p(Yi jg ≤ m|xi jgβ0 jg)

]
= δm − (α000 + ξ00g + µ0 jg +αi00 + ξi0g + µi jg)

(4.21)
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Equivalence between Multilevel ordered logit and ordinal IRT models

The ordinal IRT model is:

P(yi j = m) =
exp(θ j − πim)

1 − exp(θ j − πim)
(4.22)

where m is the category score, θ j is the latent trait level for person j, and

bim is the category difficulty for category m for item i. The items of our

questionnaire have four possible response categories (1, 2, 3, 4), then the

item will have three category boundary values, bi1, bi2 and bi3. The first

category corresponds to the probability of getting a score of 2 or 3 or 4

versus a score of 1, the second category value corresponds to the probability

of getting a score of 3 or 4 versus 1 or 2, the third one corresponds to the

probability of getting 4 versus 1 or 2 or 3.

To demonstrate the equivalence between the parametrization of the ordinal

IRT model and multilevel ordered logit model, 4.22 can be manipulated to

obtain the following representation of the first category:

log
[

p(Yi jg ≤ 1)
1 − p(Yi jg ≤ 1|

]
= πi1 − θ j (4.23)

Equation 4.22 and 4.23 are equivalent:

πi1 − θ j = δ1 − (α000 + ξ00g + µ0 jg + αi00 + ξi0g + µi jg) (4.24)

It follows that µ0 jg + ξ00g + ξi0g + µi jg is equivalent to the satisfaction pa-

rameter θ j and δm − (α000 + α100) corresponds to the ability parameter πi.

Similarly, the value associated with the second category can be written as
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log
[

p(Yi jg ≤ 2)
1 − p(Yi jg ≤ 2|

]
= πi2 − θ j (4.25)

The equivalence between the models resulting in

πi2 − θ j = δ2 − (α000 + ξ00g + µ0 jg + αi00 + ξi0g + µi jg) (4.26)

We can obtain same results for the third category.

4.6.3 Adding a student level variable

One of the aim of our analysis is to assess whether some student charac-

teristics affect students satisfaction and so whether student characteristics

affect the quality of teaching. In the model described above we can add

a student level variable to explain possible differences in satisfaction. We

consider for example gender variable. The level 2 model takes the follow-

ing form:



β0 jg = γ00g + γ01g(gender) + µ0 jg

β1 jg = γ10g + µ1 jg

β2 jg = γ20g + µ2 jg
...

βp jg = γ(k−1)0g + µ(k−1) jg

(4.27)

and the level 3 model becomes
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γ00g = α000 + ξ00g

γ01g = α010

γ10g = α100 + ξ10g

γ20g = α200 + ξ20g
...

γ(k−1)0g = α(k−1)00 + ξ(k−1)0g

(4.28)

This model includes the coefficient for gender α010. To obtain the log odds

of different categories it is necessary to add this coefficient to the previous

formulation in Section 4.6.2.

4.7 Parameter Recovery Study

This simulation study is intended to show parameter recovery for the equiv-

alence between the Multilevel ordered logit model and the ordinal IRT

model. In this simulation study, we replicate the data analysis 50 times

for the same condition so that we would be able to argue whether mul-

tilevel IRT model reproduces ordinal IRT model parameter values. The

variables of interest in this simulation study are: sample size (n = 500,

n = 1000), the numbers of items (k = 10, k = 20). For each replication in

each of the four conditions person’s satisfaction values are sampled from a

standard normal distribution N(0, 1). Item difficulty parameter values are

determined so that values are uniformly spaced when items are ordered by

quality. Then along with the sampled person-parameter values, the answer

probability for the different category of answers is computed for each per-

son by the ordinal Rasch model. Then, the probability value is compared

with a random number sampled from a uniform distribution with a range
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between 0 and 1. A simulated response is scored 1 (definitely no) if the

probability of answer 1 was greater than or equal to the sampled uniform

number; the response is scored 2 (more no then yes) if the sampled uni-

form number is between probability of answer 1 and 2; the response is 3

(more yes than no) for uniform number between probability of 2 and 3; the

response is 4 (definitely yes) for uniform between probability of answer

3. The generated data set is analyzed and item and person-parameter are

estimated throught a multilevel models. Estimated parameter values are

compared across four conditions using mean of correlation coefficient be-

tween estimated and true item-parameter values and standard deviations of

correlation coefficient. Table 4.1 shows summary statistics from the condi-

tions of the simulation experiment.

The means of correlation coefficients between true and estimated item qual-

ity are shown in the third column. The values are consistently very high,

greater than 0.98, and they are only different in their third decimal place.

Also, their standard deviations, shown in the fourth column, are very small,

and they are also only different in their third decimal place. These results

show that the reformulated model is able to reproduce item parameter val-

ues very well across all the conditions.

Item sample mean(r) sd(r)

10 500 0.985 0.002

1000 0.989 0.0009

20 500 0.983 0.001

1000 0.987 0.0007

Table 4.1: Results of parameter recovery study





Chapter 5

Multilevel Rasch model results

This chapter we present the main results for the models introduced in Chap-

ter 4

The first results are related to the PCM then, using satisfaction person pa-

rameters of PCM, we apply two-steps Multilevel model and show results.

Finally we exhibit the output of the multilevel one-step model for item vari-

ables and students’ characteristic variables.

5.1 Partial Credit Model results

For select the best model, we can consider some fit statistics. In particular

the Item-trait interaction test (that approximates a χ2 distribution) measures

the coherence of items. In our case items have a different quality in relation

to the lower or greater student satisfaction. In fact X2 = 3479.451.

By the πi coefficients related to the items we can obtain two important re-

sults: calibrate the questionnaires and rank the attribute from the one with

the best quality to the least. The observed misfit can be decomposed into
59
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contributions of individual items through the analysis of individual param-

eter estimates, individual item-fit. This allows you to identify those items

that affect the fit to the model and that, therefore, must be eliminated.

To calibrate the questionnaires we can observe from the output If some

quality item parameters which cannot fit correctly.

Table 5.1 shows the item location parameter πi, the values with the corre-

sponding p.value, the misfit values. Item B5, B6, B7, B11, D2, D3, E1 have

to be deleted.



5.1. Partial Credit Model results 61

Item Chisq df p-value Outfit MSQ Infit MSQ

B3 6239.229 9146 1.000 0.682 0.696

B4 7908.201 9179 1.000 0.862 0.860

B5 12558.625 9037 0.000 1.390 1.269 *

B6 9799.067 9209 0.000 1.064 1.051 *

B7 10299.168 9127 0.000 1.128 1.095 *

B8 7852.911 9231 1.000 0.851 0.851

B10 9408.018 9201 0.064 1.022 1.015

B11 10010.667 9175 0.000 1.091 1.056 *

C1 8006.306 9253 1.000 0.865 0.904

C2 5876.676 9236 1.000 0.636 0.642

D1 8888.761 9227 0.994 0.963 0.966

D2 9565.748 9194 0.003 1.040 1.035 *

D3 10480.979 9122 0.000 1.149 1.125 *

E1 10773.069 9249 0.000 1.165 1.109 *

F2 8793.351 9132 0.994 0.963 0.977

F3 7120.461 9176 1.000 0.776 0.823

F4 6906.089 8855 1.000 0.780 0.814

F5 5895.798 9173 1.000 0.643 0.726

F6 6094.177 9193 1.000 0.663 0.698

F7 5684.363 9181 1.000 0.619 0.645

Table 5.1: Fit statistics of initial model

The best model is reduced to 7 items (Table 5.2. The possible causes

of misfit are different: B5, B10, B11 are items that relate to aspects (load

of study, teaching coordination) probably require a general knowledge that
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the student has not yet, B6, B7 (aspects related to the evaluation of the ac-

tivities ) are not present in all degree courses, D2, D3 (organization) do not

concern the teaching, E1 (infrastructure) does not affect the quality of the

work by the teacher.

If we sort the items by quality parameter we obtain a ranking of the items

from the one with the best quality to the one with the least (Table 5.2),

according to the interpretation of the scale given in the previous Chapter.

In Table 5.2 we can see the quality items values and threshold parameters.

All items in this table refer to the teacher (availability to clarification, ob-

served school hours and the timetable of receiving, educational objectives,

clarity). Items F6 (teacher motivation) and C2 (overall student satisfaction)

represent educational aspects for whom students perceive quality levels of

education lower.

Item πi Threshold 1 Threshold 2 Threshold 3

F5 -0.325 -1.227 -0.895 1.148

F3 -0.285 -1.303 -0.817 1.268

F4 -0.111 -0.963 -0.766 2.062

B3 -0.723 -0.851 -0.281 2.738

F7 -0.961 -0.097 -0.400 2.580

F6 1.048 -0.142 -0.482 2.803

C2 1.210 -0.247 -0.644 3.234

Table 5.2: Fit statistics of final model

In figure 5.1 the Category Probability Curves are plotted for all items.

In the horizontal axes we put the person satisfaction values and in the ver-

tical axis the probability related to each response category. We can observe



5.1. Partial Credit Model results 63

that for items F3 and F5, the higher category of response are more probable

than other items. Moreover for items F4 and F5 there are quasi perfect over-

lapping between the first and the second category. This points to a possible

bad choice of the number of categories.
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Figure 5.1: Category Probability Curves for all items

If we sort the satisfaction parameters, we obtain a ranking of the sub-
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jects from the one least satisfied to the most satisfied. The satisfaction pa-

rameters are useful to segment a population with the aim of obtaining dif-

ferent clusters of satisfaction. In our case we can observe (Table 5.3) from

LRT (LIkelihood Ratio Test (Andersen, 1973) that item score is different

(DIF - Differential Item Functioning) from students who attend high school

than students who attend other schools; item score is different from bad

and good students (IS P∗); there is a different level of satisfaction among

students of different ages; there is no difference between female and male

students.

LRT p-value DIF

Gender 0.203 no

School 0.006 yes

Age 0.045 yes

ISP* 0.031 yes

Table 5.3: LRT test

5.1.1 Levels of satisfaction and quality of teaching

The relationship between the location of the item and location of persons

along the continuum can be detected by the Figure 5.2 in which the Item/Person

Threshold Distribution is shown. The large difference between the standard

deviation of the subjects (1.35) and the item (0.67) indicates that the level

of satisfaction expressed is not fully captured by the items. The average lo-

cation of the parameters relating to the subjects (1.78), also indicates a level

of overall satisfaction expressed by the above average quality items (0.41).

So, the two scales have not a similar range, this does not guarantee that
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there is an equilibrium between quality factor and satisfaction factor. prob-

ably selected items fail to capture all levels of satisfaction. This could lead

to a reflection on the choice of the items that make up the questionnaire.
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Figure 5.2: Person-Item map

5.2 Multilevel two-step analysis results

In this section we show results from a Multilevel two-step analysis de-

scribed in Chapter 4.

The first step concerns the estimate of the PCM given in the previous sec-
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tion. In the second step we introduce in the multilevel model as response

variable the measures of students’ satisfaction (satisfaction parameters) ob-

tained by the PCM model in order to detect individual determinants of the

level of global satisfaction.

The parameters of the multilevel random intercept model where estimated

by lmer functionc in lme4 package.

As previous analysis we consider some characteristics of the student: age,

gender, school and IS P∗. On the first level we can find the students, on the

second level we consider the courses. Table 5.4 reports the parameter esti-

mates for both empty model and complete model with students variables.

From this table it follows that the estimate of the grand mean γ00 is 1.65.

This mean should be interpreted as the expected value of the level of satis-

faction for a random student in a randomly drawn course.

The variance between students within the courses about the true course

mean is 1.1582 = 1.341 (σ2
ε ), while the between-group variance (vari-

ance between the courses) is 0.7112 = 0.505 (σ2
µ). These variance com-

ponent estimates give an intraclass correlation coefficient estimate of ρ̂ =

0.505/(0.505 + 1.341) = 0.273 indicating that about 27% of the variance in

satisfaction is between courses.
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Empty model Model 1

Fixed Estim Std. Err. p-value Estim Std. Err. p-value

Intercept(γ00) 1.650 0.004 0.000 2.951 0.736 0.000

genderM(γ10) -0.110 0.035 0.002

age≤ 22(γ20) -0.022 0.025 0.386

school-

high(γ30)

-0.012 0.031 0.712

ISP*(γ40) -0.884 0.309 0.004

Random Var. Std Dev. Var. Std Dev.

σ2
µ 0.505 0.711 0.515 0.718

σ2
ε 1.341 1.158 1.327 1.152

Table 5.4: Parameter estimates: multilvel two-step analysis

To explain variance at the individual level, four level 1 explanatory vari-

ables are introduced. The complete model is the following:

yi j = β0 j + β1 j(gender) + β2 j(age) + β3 j(school) + β4 j(IS P∗) + εi j

β0 j = γ00 + µ0 j

β1 j = γ10

β2 j = γ20

β3 j = γ30

β4 j = γ40

(5.1)

The grand mean is γ00 and the regression coefficients for gender, age,

school and ISP* are γ10, γ20, γ30 and γ40. The random effects µ0 j are

the level-2 residuals, controlling for the effects of variables. From output

(Table 5.4) we can show that the overall level of satisfaction (2.951) has

increased if compared to the empty model. Moreover, it can be noted that
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age and school effects are not significant. Males are less satisfied then fe-

males; good students are less satisfied than bad students. Let us make a

remark: the effect of age is not significant, while the effect of IS P∗ is sig-

nificant. Probably this is due to the correlation between these two variables.

In fact, we recall that IS P∗ is function of age, and then could capture the

significance of performance and age.

5.3 Multilevel one-step analysis results

In this section we show the results of the three-level model, with two levels

of aggregation: students nested in courses. To take into account the vari-

ability between items, between students and between courses, it is decided

to include random effects for each of these variables. Initially, we estimated

a model without explanatory variables with only random effects (Table 5.5).

Then we considered a model with the items (Table 5.6).

Random Var Std. Dev.

item (σµi jg) 0.802 0.895

student (σµ0 jg) 1.023 1.011

course (σµ00g) 0.435 0.659

Table 5.5: Empty model
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Coefficients Estim. Std.Err p.value

itemb11(α100) -0.124 0.0309 0.000

itemb3 (α200) 0.724 0.0309 0.000

itemb4 (α300) 0.626 0.0313 0.000

itemb8 (α400) 0.254 0.0307 0.000

itemc2 (α500) 0.278 0.0304 0.000

itemd1 (α600) -0.466 0.0307 0.000

itemd2 (α700) -1.259 0.0309 0.000

itemd3 (α800) 0.067 0.0315 0.031

itemf3 (α900) 1.989 0.0335 0.000

itemf4 (α1000) 1.420 0.0336 0.000

itemf5 (α1100) 2.089 0.0309 0.000

itemf6 (α1200) 0.503 0.0309 0.000

itemf7 (α1300) 0.644 0.0311 0.000

Table 5.6: Model with items

We can see that the items are all significant, except item D3. In partic-

ular, the items for which students are more satisfied than the reference item

B10, are the items B3, B4, B8, C2, D3, F3, F4, F5, F6, F7, whose coeffi-

cients have positive values. In particular, F5 (2.086), F3 (1987), B3 (0.723),

F7 (0.637) are the items for which there is greater satisfaction. These items

seem to lead to high levels of quality of teaching.

The item D2 is less satisfactory. In the third estimated model we introduce

the explanatory variables sex, age and school (Table 5.7). At this moment

we don’t include the variable IS P∗.
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Random Var Std. Dev.

item (σµi jg) 0.798 0.893

student (σµ0 jg) 1.007 1.004

course (σµ00g) 0.434 0.658

Coefficients Estim. Std.Err p.value

itemb11 (α100) -0.129 0.0319 0.000

itemb3 (α200) 0.723 0.0319 0.000

itemb4 (α300) 0.615 0.0323 0.000

itemb8 (α400) 0.251 0.0317 0.000

itemc2 (α500) 0.277 0.0314 0.000

itemd1 (α600) -0.469 0.0317 0.000

itemd2 (α700) -1.269 0.0319 0.000

itemd3 (α800) 0.050 0.0326 0.123

itemf3 (α900) 1.987 0.0346 0.000

itemf4 (α1000) 1.424 0.0333 0.000

itemf5 (α1100) 2.086 0.0345 0.000

itemf6 (α1200) 0.498 0.0319 0.000

itemf7 (α1300) 0.637 0.0320 0.000

genderM (α010) -0.075 0.0341 0.027

schoolhigh (α020) -0.013 0.0298 0.653

age≤ 22 (α030) 0.117 0.0430 0.007

Table 5.7: Model with students characteristics

The variances of the random effects decrease slightly. We can see that

the sex and age characteristics of students influence their satisfaction. In

particular, younger students are more satisfied and males are less satisfied
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than women.

The random effects µi jg, µ0 jg and ξ00g are not parameters, so they cannot

be estimated in the conventional sense, but a “best guess”is provided by the

conditional modes. Similarly the conditional variances provides an uncer-

tainty measure of the conditional modes. In Figure 5.3 we present normal

probability plots of the conditional modes of the random effects for the each

factor.

Figure 5.3: Category Probability Curves for all items

To provide a measure of the precision of the conditional distribution of

these random effects we add lines extending ±1.96 conditional standard de-

viations in each direction from the plotted point. We can see that many of
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the intervals, above all for students and courses, overlap with the zero line

but there are several levels that are clearly greater than zero or clearly less

than zero. As indicated by the estimates of the variances of the random ef-

fects, the student factor accounts for the greatest level of variability. There

are students with low levels of satisfaction, and students with high levels.

So it seems that students perceive the quality of teaching in different ways.

Table 5.8 show answer probabilities for some items and different categories,

considering different profiles of students. It can be see that for all items the

probabilities of answer definitely yes is highest for women aged less than

22. The probabilities for the first category are similar. For item B3, B8,

F3, F6, F7 the highest probability of answer more no than yes refers to

males aged less than 22. Comparing males and females, regardless their

age, women are increasingly satisfied for items B3, B4, B8, F3, F6 and

F7. These results highlight, in more detail, the differences in terms of sat-

isfaction among students with different characteristics and so the different

perception of quality that students, with different characteristics, have to-

wards facilities provided to them.
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Item gender age m pm

B3 M ≤ 22 1 0.042

2 0.147

3 0.519

4 0.291

M > 22 1 0.047

2 0.161

3 0.523

4 0.268

F ≤ 22 1 0.039

2 0.139

3 0.514

4 0.346

F > 22 1 0.044

2 0.152

3 0.521

4 0.327

B4 M ≤ 22 1 0.040

2 0.142

3 0.516

4 0.341

M > 22 1 0.045

2 0.137

3 0.540

4 0.322

F ≤ 22 1 0.037

2 0.134

3 0.511

4 0.355

F > 22 1 0.042

2 0.147

3 0.519

4 0.335

B8 M ≤ 22 1 0.042

2 0.149

3 0.518

4 0.336

M > 22 1 0.047

2 0.159

3 0.523

4 0.318

F ≤ 22 1 0.039

2 0.137

3 0.513

4 0.349

F > 22 1 0.043

2 0.150

3 0.520

4 0.329

Item gender age m pm

F3 M ≤ 22 1 0.041

2 0.145

3 0.518

4 0.337

M > 22 1 0.046

2 0.158

3 0.523

4 0.318

F ≤ 22 1 0.038

2 0.137

3 0.513

4 0.350

F > 22 1 0.043

2 0.149

3 0.519

4 0.330

F6 M ≤ 22 1 0.041

2 0.144

3 0.517

4 0.338

M > 22 1 0.046

2 0.157

3 0.523

4 0.319

F ≤ 22 1 0.038

2 0.136

3 0.513

4 0.351

F > 22 1 0.043

2 0.149

3 0.519

4 0.331

F7 M ≤ 22 1 0.041

2 0.142

3 0.516

4 0.341

M > 22 1 0.045

2 0.156

3 0.522

4 0.322

F ≤ 22 1 0.038

2 0.134

3 0.646

4 0.354

F > 22 1 0.042

2 0.147

3 0.519

4 0.334

Table 5.8: Answer probability for each category
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Table 5.9 presents model with the inclusion of ISP* variable. We can

see that coefficients for the items are similar than coefficients in Table 5.7,

but the significance of the characteristics of students change. The variable

school is still not significant, but now age is also non significant. The ISP*

variable is significant. The explanation for this is the same as presented in

Section 5.3 ISP* could capture the age effect, it seems that age and IS P∗

are highly correlated. Moreover good students are less satisfied than bad

students.
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Coefficients Estim. Std. Err p.value

itemb11(α100) -0.129 0.0319 0.000

itemb3 (α200) 0.723 0.0319 0.000

itemb4 (α300) 0.615 0.0324 0.000

itemb8 (α400) 0.251 0.0318 0.000

itemc2 (α500) 0.276 0.0315 0.000

itemd1 (α600) -0.469 0.0318 0.000

itemd2 (α700) -1.269 0.0320 0.000

itemd3 (α800) 0.050 0.0326 0.124

itemf3 (α900) 1.988 0.0346 0.000

itemf4 (α1000) 1.424 0.0334 0.000

itemf5 (α1100) 2.086 0.0347 0.000

itemf6 (α1200) 0.498 0.0319 0.000

itemf7 (α1300) 0.637 0.0320 0.000

schoolhigh (α010) -0.002 0.0118 0.859

age≤ 22 (α020) -0.029 0.0586 0.614

genderM (α030) -0.082 0.0336 0.014

ISP* (α040) -0.568 0.1558 0.000

Table 5.9: Model with ISP* variable

These results are similar to results seen in multilevel two-steps analy-

sis. But, in this model we have results for items and students characteristics

simultaneously; while in multilevel two-step model we obtain items results

from PCM. Moreover, in multilevel two-step models, the standard error of

IS P∗ is twice than standard error in multilevel one step-analysis. This may

highlights the drawbacks of multilevel two-step model discussed in Chap-
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ter 3.

The next tables (Table 5.10 and 5.11) show the values of quality item pa-

rameters differentiated by gender and ISP*. Item F3, F4 and F5 show high

quality, in particular females with a bad performance have greater levels

of quality than other students profiles. For other items males with a good

career have less levels quality than students with other characteristics. Low

quality for items B11, D1 and D2 highlights that students are not satisfied of

organizational aspects of courses. To sum up, it seems that some items are

the drivers of the teaching quality, with some difference between students

with different characteristics.
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Item Gender ISP* quality item parameter

B11 M good -0.780

M bad -0.211

F good -0.697

F bad -0.129

B3 M good 0.072

M bad 0.641

F good 0.155

F bad 0.723

B4 M good -0.036

M bad 0.532

F good 0.046

F bad 0.615

B8 M good -0.400

M bad 0.168

F good -0.318

F bad 0.251

C2 M good -0.374

M bad 0.194

F good -0.292

F bad 0.277

D1 M good -1.12

M bad -0.552

F good -1.038

F bad -0.469

D2 M good -1.920

M bad -1.352

F good -1.838

F bad -1.269

Table 5.10: Quality item values
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Item Gender ISP* quality item parameter

F3 M good 1.337

M bad 1.905

F good 1.419

F bad 1.988

F4 M good 0.773

M bad 1.342

F good 0.856

F bad 1.424

F5 M good 1.435

M bad 2.004

F good 1.518

F bad 2.086

F6 M good -0.153

M bad 0.415

F good -0.071

F bad 0.498

F7 M good -0.014

M bad 0.554

F good 0.068

F bad 0.637

Table 5.11: Quality item values (continued)

With reference to the results of the PCM the selected items are the

same. But if we consider the relative importance of items (Chapter 3), the

items drivers of the quality are different from those obtained in the one-step

model.



Concluding remarks

The main issue of this research is the difficulty in identifying the most suit-

able process of measurement of a latent multidimensional construct such as

‘quality of teaching activities’. That difficulty is present in all approaches

used in this thesis. In the regression context, the approach of the rela-

tive importance metrics considers the overall satisfaction item as a proxy

of our latent construct. This approach represents an effort to provide pol-

icy makers the drivers of satisfaction/quality identified by the students with

good and bad performance. The results are different between the good and

bad students, despite some overlapping in some aspects. For istance, in

both groups of students, items B3 (formative objectives explained by the

teacher) and F7 (clarity of the teacher) are important in explaining satis-

faction, but the intensity is different in the two groups. Moreover, item F6

(the teacher motivates the interest in the subject) explains satisfaction just

for good students. In other words, it looks like that performance is a “dis-

criminating” indicator when analyzing B3, F6, and F7 items. These results

provide a useful starting point to construct a ‘quality teaching indicator’

based on performance without controlling for students’ characteristics.

On the other hand, an alternative way to the previous data may be given

by an analysis on individual data in which it is possible to take into ac-
79
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count the characteristics of the students. By contrast, if you want to take

into account the characteristics of the students not only synthesized by the

IS P∗ indicator, an analysis of individual data is the natural study. More-

over, the sharing of the same course, the same teacher and the same class

lead to a model that takes into account the hierarchical structure of data

and the diversity that characterize the students. We are talking about mul-

tilevel model model as a framework for IRT models for ordinal data. The

items, regarding the teacher, are the most important ones as measuring the

perceived‘quality of teaching activities‘. In particular, the results for the

PCM show low satisfaction for the items C2 and F6, differing satisfaction

for school, age, and performance, but not for gender. In general, the results

highlight level of satisfactions which are not completely captured by the

items.

Then, we introduced in the multilevel model the measures of satisfaction,

obtained by the PCM (two-step analysis), in order to assess the importance

of individual characteristics in explaining the overall satisfaction. The main

results are: the effect school and age are not significant, males are less satis-

fied than females, the good students are less satisfied than the bad students.

Thus, the perception of ‘quality of teaching’ seems to be conditioned by the

gender and by the performance.

Introducing a three-level model with two levels of aggregation (one-step

analysis), in which students are nested into courses, we can observe - for-

getting variables related to students characteristics - the items with a greater

satisfaction are F5, F3, B3, F7. Again those items are related to the char-

acteristics of the teacher. On the other hand, when we introduce the ex-

planatory variables gender, school, and IS P∗, the variable IS P∗ influences

the satisfaction and we can see good students are less satisfied than bad
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students. Moreover, it can be observed the probability of answering ‘def-

initely yes’ for the all items is higher for females with less than 22 years.

These results are in accordance with PCM results. On the contrary, males

less than 22 years have a higher probability to answer ‘more no than yes’

than females. This reveals a lower perception of ‘quality of teaching’.

In summary: the items that seem to be the drivers of high quality teach-

ing are F3, F4 and F5 for both females and males. However this is more

marked for females with bad performance. It should be noted that although

the value is not very high, the sign for the items and F6, F7 and C2 re-

mains positive for both males and females with a bad performance. For

some items the males with a good performance seem less satisfied. The

low quality of items B11, D1 and D2 suggest the lack of student satisfac-

tion towards the organizational aspects.

Finally, we want to stress that the chosen approach is strongly affected

by the aim: in fact, if the aim is to construct an indicator of the ‘quality

of teaching’ without controlling students characteristics, then the metric

PMVD seems appropriate. But, if the objective is to find a measure of

the‘quality of teaching‘in terms of satisfaction and ‘quality’ contained in

each item and the characteristics of the evaluators, the multilevel one-step

model seems more informative. Nevertheless, both results do not seem con-

tradictory as the most important items in any approach are those related to

the teacher.
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B
3

B
4

B
8

B
10

B
11

C
2

D
1

D
2

D
3

E
1

F2
F3

F4
F5

F6
F7

B
3

1.000
0.697

0.588
0.316

0.322
0.834

0.301
0.301

0.352
0.354

0.324
0.444

0.482
0.677

0.818
0.790

B
4

1.000
0.444

0.345
0.387

0.616
0.392

0.354
0.321

0.362
0.363

0.467
0.410

0.547
0.619

0.603

B
8

1.000
0.331

0.401
0.652

0.321
0.377

0.335
0.367

0.361
0.384

0.432
0.431

0.594
0.599

B
10

1.000
0.321

0.419
0.373

0.440
0.237

0.345
0.300

0.345
0.316

0.387
0.453

0.401

B
11

1.000
0.333

0.345
0.367

0.378
0.398

0.345
0.324

0.453
0.467

0.456
0.456

C
2

1.000
0.334

0.249
0.312

0.336
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0.461
0.550
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0.877

0.890

D
1

1.000
0.694

0.545
0.384

0.345
0.342

0.340
0.234

0.312
0.342

D
2

1.000
0.339

0.365
0.299

0.332
0.298

0.311
0.316

0.318

D
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1.000
0.366

0.321
0.345

0.156
0.299

0.303
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E
1

1.000
0.321

0.320
0.343

0.306
0.305

0.228

F2
1.000

0.575
0.543

0.522
0.499

0.501

F3
1.000

0.678
0.534

0.677
0.555

F4
1.000

0.589
0.861

0.506

F5
1.000

0.775
0.876

F6
1.000

0.899

F7
1.000

Table
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